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Preface

Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. 
V.I. Arnold launched several mathematical domains (such as modern geometric mechanics, 
symplectic topology, and topological fluid dynamics) and contributed, in a fundamental 
way, to the foundations and methods in many subjects, from ordinary differential equations 
and celestial mechanics to singularity theory and real algebraic geometry. Even a quick 
look at a partial list of notions named after Arnold already gives an overview of the variety 
of such theories and domains:  

KAM (Kolmogorov–Arnold–Moser) theory, 
The Arnold conjectures in symplectic topology, 
The Hilbert–Arnold problem for the number of zeros of abelian integrals, 
Arnold’s inequality, comparison, and complexification method in real algebraic geometry, 
Arnold–Kolmogorov solution of Hilbert’s 13th problem, 
Arnold’s spectral sequence in singularity theory, 
Arnold diffusion, 
The Euler–Poincaré–Arnold equations for geodesics on Lie groups, 
Arnold’s stability criterion in hydrodynamics, 
ABC (Arnold–Beltrami–Childress) flows in fluid dynamics, 
The Arnold–Korkina dynamo, 
Arnold’s cat map, 
The Arnold–Liouville theorem in integrable systems, 
Arnold’s continued fractions, 
Arnold’s interpretation of the Maslov index, 
Arnold’s relation in cohomology of braid groups, 
Arnold tong es in bifurcation theory, 
The Jordan–Arnold normal forms for families of matrices, 
The Arnold invariants of plane curves. 

Arnold wrote some 700 papers, and many books, including 10 university textbooks. He 
is known for his lucid writing style, which combines mathematical rigour with physical and 
geometric intuition. Arnold’s books on Ordinary differential equations and Mathematical
methods of classical mechanics became mathematical bestsellers and integral parts of the 
mathematical education of students throughout the world.  
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VIII

Some Comments on V.I. Arnold’s Biography and Distinctions 

V.I. Arnold was born on June 12, 1937 in Odessa, USSR. In 1954–1959 he was a student at 
the Department of Mechanics and Mathematics, Moscow State University. His M.Sc. 
Diploma work was entitled “On mappings of a circle to itself.” The degree of a “candidate 
of physical-mathematical sciences” was conferred to him in 1961 by the Keldysh Applied 
Mathematics Institute, Moscow, and his thesis advisor was A.N. Kolmogorov. The thesis 
described the representation of continuous functions of three variables as superpositions of 
continuous functions of two variables, thus completing the solution of Hilbert’s 13th prob-
lem. Arnold obtained this result back in 1957, being a third year undergraduate student. By 
then A.N. Kolmogorov showed that continuous functions of more variables can be repre-
sented as superpositions of continuous functions of three variables. The degree of a “doctor 
of physical-mathematical sciences” was awarded to him in 1963 by the same Institute for 
Arnold’s thesis on the stability of Hamiltonian systems, which became a part of what is 
now known as KAM theory.  

After graduating from Moscow State University in 1959, Arnold worked there until 1986 
and then at the Steklov Mathematical Institute and the University of Paris IX.  

Arnold became a member of the USSR Academy of Sciences in 1986. He is an Honorary 
member of the London Mathematical Society (1976), a member of the French Academy of 
Science (1983), the National Academy of Sciences, USA (1984), the American Academy of 
Arts and Sciences, USA (1987), the Royal Society of London (1988), Academia Lincei 
Roma (1988), the American Philosophical Society (1989), the Russian Academy of Natural 
Sciences (1991). Arnold served as a vice-president of the International Union of Mathema-
ticians in 1999–2003.  

Arnold has been a recipient of many awards among which are the Lenin Prize (1965, 
with Andrey Kolmogorov), the Crafoord Prize (1982, with Louis Nirenberg), the Loba-
chevsky Prize of Russian Academy of Sciences (1992), the Harvey prize (1994), the Dannie 
Heineman Prize for Mathematical Physics (2001), the Wolf Prize in Mathematics (2001), 
the State Prize of the Russian Federation (2007), and the Shaw Prize in mathematical 
sciences (2008).  

One of the most unusual distinctions is that there is a small planet Vladarnolda, discov-
ered in 1981 and registered under #10031, named after Vladimir Arnold. As of 2006 Arnold 
was reported to have the highest citation index among Russian scientists.  

In one of his interviews V.I. Arnold said: “The evolution of mathematics resembles the 
fast revolution of a wheel, so that drops of water fly off in all directions. Current fashion 
resembles the streams that leave the main trajectory in tangential directions. These streams 
of works of imitation are the most noticeable since they constitute the main part of the total 
volume, but they die out soon after departing the wheel. To stay on the wheel, one must 
apply effort in the direction perpendicular to the main flow.”  

With this volume Springer starts an ongoing project of putting together Arnold’s work 
since his very first papers (not including Arnold’s books.) Arnold continues to do research 
and write mathematics at an enviable pace. From an originally planned 8 volume edition of 
his Collected Works, we already have to increase this estimate to 10 volumes, and there 
may be more. The papers are organized chronologically. One might regard this as an 
attempt to trace to some extent the evolution of the interests of V.I. Arnold and cross-
fertilization of his ideas. They are presented using the original English translations, when-
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ever such were available. Although Arnold’s works are very diverse in terms of subjects, 
we group each volume around particular topics, mainly occupying Arnold’s attention dur-
ing the corresponding period.  

Volume I covers the years 1957 to 1965 and is devoted mostly to the representations of 
functions, celestial mechanics, and to what is today known as the KAM theory.  

Acknowledgements. The Editors thank the Göttingen State and University Library and the Caltech library 
for providing the article originals for this edition. They also thank the Springer office in Heidelberg for its 
multilateral help and making this huge project of the Collected Works a reality. 

March 2009 Alexander Givental 
 Boris Khesin 
 Jerrold Marsden  
 Alexander Varchenko 
 Victor Vassiliev 
 Oleg Viro  
 Vladimir Zakalyukin 
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ON THE REPRESENTATION OF
FUNCTIONS OF TWO VARIABLES IN THE
FORM χ[φ(x) + ψ(y)]�

V.I. Arnol’d

1. Kolmogorov proved [1] that the set of functions of two variables repre-
sentable as a certain combination of continuous functions of one variable and
addition is everywhere dense in the space C(E2) of continuous functions de-
fined on the square E2. It follows immediately from our result proved below
that this is not true for the simplest combinations: the set of functions of the
form χ[φ(x) + ψ(y)] even turns out to be nowhere dense in C(E2) .

Fig. 1.

We shall indicate a closed subset N of the square |x| � 2, |y| � 2 (Fig. 1)
such that for any continuous function f(x, y) vanishing on (and only on) N
there exists δ(f) > 0 such that |f(x, y) − χ[φ(x) + ψ(y)]| � δ at some point
of this square for any continuous functions χ, φ and ψ; every function having

� 12, No. 2, 119–121 (1957)Uspekhi Math. Nauk
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2 V.I. Arnol’d

N as its level set is ‘with a neighbourhood’ non-representable in the form
χ[φ(x)+ψ(y)] . An example of such a set N is the ellipse (x+y)2+ (x−y)2

4 = 1.
We shall prove this. Since f(x, y) is of constant sign outside the ellipse

we can assume that f(x, y) > 0 there. Then clearly there exists δ > 0 such
that f(x, y) > 2δ at all points in the region G

def= (x + y)2 + (x−y)2

4 > 5
4 , that

is, outside the ellipse M
def= (x + y)2 + (x−y)2

4 = 5
4 . Suppose that there exist

continuous functions φ(x), ψ(y), χ(z) such that |f(x, y)−χ[φ(x)−ψ(y)]| < δ †

for all (x, y), 2 � x, y � 2. Then the inequality χ[φ(x) + ψ(y)] < δ holds on
N and the inequality χ[φ(x) + ψ(y)] > δ holds on M .

The largest open connected sets G− ⊃ N and G+ ⊃ G,� where χ[φ(x) +
ψ(y)] < δ and χ[φ(x) + ψ(y)] > δ, respectively, are separated by the closed
set F where χ[φ(x) + ψ(y)] = δ (that is, each continuum intersecting G− and
G+ also intersects F ), because the continuous function χ[φ(x) + ψ(y)] on a
continuum takes all values between any two given values. By a well-known
theorem (Theorem E in [2]) the boundary of G+ has a component F ′ ⊆ F
already separating G− and G+, and hence M and N . We claim that the
continuous function φ(x) + ψ(y) is constant on F ′. Indeed, suppose that, on
the contrary, z1 = φ(x) + ψ(y)|a < φ(x) + ψ(y)|b = z2, where a, b ∈ F ′. Then
in a sufficiently small neighbourhood of a there is a point a′ ∈ G+ where
φ(x) + ψ(y) < z1 + z2−z1

3 , and in a sufficiently neighbourhood of b there is a
point b′ ∈ G+ where φ(x) + ψ(y) > z2 − z2−z1

3 . Therefore on a polygonal line
joining a′ and b′ in G+ there is a point c where φ(x)+ψ(y) = z1+z2

2 ; also there
is a point c on the continuum F ′ where φ(x) + ψ(y) = z1+z2

2 . Consequently,
χ[φ(x)+ψ(y)]|c′ = χ[φ(x)+ψ(y)]|c, which contradicts the conditions c′ ∈ G+,
c ∈ F ′.

We denote by z the unique value of φ(x)+ψ(y) at points of F ′. Then on the
intervals x = − 1

2 , y ∈ [1.1, 1.22] and x = −1
2 , y ∈ [−0.62,−0.5] intersecting M

and N there are points (−1
2 , y1) and (− 1

2 , y2) at which φ(x)+ψ(y) = z. There
is such a point (x1, y2) on the interval on which the line y = y2 intersects the
strip between M and N for x > 0.

It follows from the equalities��

φ(−1
2 ) + ψ(y1) = z ,

φ(−1
2 ) + φ(y2) = z ,

φ(x1) + ψ(y2) = z

that φ(x1)+ψ(y1) = z and χ[φ(x1)+ψ(y2)] = δ. However, it is easy to see that
the point (x1, y1) lies in G, therefore χ[φ(x1)+ψ(y2)] > δ. This contradiction
proves the ‘stable’ non-representability of f(x, y) in the form χ[φ(x) + ψ(y)];

† Translator’s note: This should be |f(x, y) − χ[φ(x) + ψ(y)]| < δ .
� Translator’s note: This should be G+ ⊃ M .

�� Translator’s note: The second of these inequalities contains a misprint. It should
read φ(− 1

2
) + ψ(y2) = z .

2



On the representation of functions of two variables 3

in particular, for the function f(x, y) = (x+y)2 + 1
4 (x−y)2−1 we can choose

δ > 1
4 .

2. I.A. Weinstein proved that the class of continuous functions of the form
χ[φ(x)+ψ(y)] that are strictly monotone in each variable is a closed subset of
C(E2). Here the strict monotonicity is essential: we claim that the function xy
is not representable in the form χ[φ(x) + ψ(y)] even though it is the uniform
limit of the sequence of functions exp

(
ln(x+ 1

n )+ln(y+ 1
n )

)
, which do have the

form χ[φ(x) + ψ(y)] (where φn(x) = ψn(x) = ln(x + 1
n ) and χ(z) = exp(z)).

Fig. 2.

In fact, if χ[φ(x) + ψ(y)] = xy everywhere in the square x, y ∈ [0, 1],
then the function φ(x) + ψ(y) would take the same value at the points (0, 0),
(0, 1), and (1, 0). Indeed, any two of these three points can be joined by a
polygonal line having no common points with the set xy = 0 apart from the
end points, and also by a polygonal line lying entirely in this set. If φ(x) +
ψ(y) took different values a and b at these end points (see Fig. 2), then the
intermediate value a+b

2 would be taken both on the set xy = 0 and outside
this set, which would mean that χ(a+b

2 ) = 0 and χ(a+b
2 ) > 0 simultaneously.

This contradiction proves that φ(0)+ψ(0) = φ(0)+ψ(1) = φ(1)+ψ(0); hence
φ(0) + ψ(0) = φ(1) + ψ(1) and therefore

0 = χ[φ(0) + ψ(0)] = χ[φ(1) + ψ(1)] = 1 .

In other words, there do not exist any functions φ(x), ψ(y), χ(z) such that
χ[φ(x) + ψ(y)] = xy.

We also point out that the first example of a continuous function not repre-
sentable in the form χ[φ(x)+ψ(y)] (obtained simultaneously by A.A. Kirillov
and the author), namely, the function f(x, y) = min(x, y) (where x, y ∈ [0, 1])
can also be approximated to arbitrary precision by functions of the form
χ[φ(x) + ψ(y)].

Received 26 December 1956
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ON FUNCTIONS OF THREE VARIABLES

V.I. ARNOL'D

In the present paper there is indicated a method of proof of a theorem

which yields a complete solution of the 13th problem of Hilbert (in the sense

of a denial of the hypothesis expressed by Hilbert).

Theorem 1. Every real, continuous function f{%1.x2.%3) of three variables

which is defined on the unit cube E3 can be represented in the form

( 1)

whe re the func t ions h.. and <p.. of two var iab les are rea I and cont inuous.
t} t}

A.N. Kolmogorov [1] obtained recently the representation

3
f (% 1. x 2. %3-) = . I hi [ cP i (% 1. x 2). X:3],

t =1
(2)

where the functions hi and <Pi are continuous, the function hi is real,

and the function <l'i takes on values which belong to some tree S. In the

construction of A.N. Kolmogorov (for the case of functions of three variables),

the tree a can be taken not as a universal tree. but such that all of its

points have a branching index not greater than 3. For this, the functions ukm

of the fundamental lemma [1] (for n = 2) must be chosen so that in addition

to the indicated five properties they must have the following properties.

(6) The boundary of each level set of each function uk. divides the plane

into not more than 3 parts.

(7) For every r, G~1) E2
•

On the basis of this remark, Theorem 1 is a consequence of the existence of

the representation (2) and of the next theorem.

Theorem 2. Let F be any family of real equicontinuous functions fee)

defined on a tree =all of whose points have a branching index < 3. One can

realize the tree as a subset X of the three-dimens ional cube E3 in such a

way t hat any Junct ion of the fami ly F can be represented in the form.

3

fee> = ~ fk(%k)'
k= 1

where x = (Xi' x2. X3) is the image of e€ a in t he tree X; the f k (xk)

are continuous real functions of one variable. while the fk depend continuously

51*

*

Translation of V.I. Arnol’d: On functions of three variables Dokl. Akad. Nauk SSSR 114:4 (1957),

 Editor’s note: translation into English published in Amer. Math. Soc. Transl. (2) 28 (1963), 51–54. 

 679–681
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on f (in the sense of uniform convergence).

We will introduce certain auxiliary concepts. Let K be a finite complex

of segments contained in E3 and consisting of segments which are not parallel

to any coordinate plane.

Definition 1. A system of points

ao =! a 1 =F ••• =F an _ 1 =F an

belonging to K will be called a zigzag (lightning) if the segments (Ji_1(Ji

are perpendicular to the axes Xa ., respectively, and
t

a1 =F a 2 =I ••• =F an- 1 =I <X n •

The finite system of the pairwise distinct points a·· . tagged by
1.11.2··· t n

the corteges of indices i1i2." in' will be called a branching scheme if

(1) there exists only one point ao tagged with one index; (2) the presence

of (J. i . . in the system implies the presence of a· . in the
t12··· t n-1 t n 1.1··· t n_1

system.

Definition 2. A branching system of points at' 1.' contained in K will
1'" n

be called a generating scheme if for a given cortege i 1••• i n the set of points

of the form a i1 ••• i i +1 lies on the plane passing through a· . andn n t1 ••• tn
perpendicular to some coordinate axis xa,. ., and contains all points of

t l' •• t n
intersection of this plane with K, that are dist inct from a . '.

t 1 ••• t n
The tree a can be represented in the form

00

== U Dn , Dn C Dn+1'
n= 1

where Dn is a finite tree, D1 is a simple arc, and Dn+1 is obtained from

Dn by attaching segments Sn at certain points Pn that are not branch points

or endpoints of dn [2].
We will denote by (Un the upper boundary of the oscillations of the

functions f € F on the components of the difference E\Dn • It is easy to

see that

CU n -+ 0 when n -+ 00.

Therefore, one can select a sequence

n1 < n2 < ... < nr < ""

so that

1
cu n (: - when n) nr •

r 2
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ON FUNCTIONS OF THREE VARIABLES

The realization X of the tree a in E3 is constructed in the form

m

X = U D~,
n-l

53

where D~ is a complex of segments which realize Dn in such a way that the

images S~ of the arcs Sn are segments that are not perpendicular to the

coordinate axes.
to

The inductive construction of D~ is performed so that U D~ is a tree
n= 1

[2], and that the following conditions are satisfied.

(1) Every function f € F can be represented on Dn in the form

(3)

where the f'k(xk) depend continuously on f.

(2) The tree D~ has for every point aD a generating system issuing

from a l , and whose initial direction <X O can be chosen arbitrarily.

(3) Let An be the set of points D~ which Is the image of the branch

points of S. There exists a denumerable set Bn C D~, Bn n An = 0 such that

the zigzag ao ••• am' which begins at ao € D~"Bn' has no points in common

with An and no coincident points ai = aj' i =I j.

(4) If nr < n ~ nr+l , then

(4)

This proof of the possibility of the inductive construction of the trees

D~, and of the functions f'k with properties (1) to (4), is too complicated

to be given here. Roughly speaking, at each step the attached segment 8~+1 is

chosen of very short length; its direction, and the way of mapping of 8n+1 on

S~+1 are selected so as to guarantee the fulfillment of properties (2) and (3)

by D~+1. The preservation of equality (3), in the transition from n to

n + 1, on the newly attached segment 8n+1, requires the introduction of a

correction f'k+ 1
- f'k, for at least one of the functions fk' on the pro

Jection S~+1 on the axis xk. For the preservation of equality (3) on the

earlier constructed tree D~, it is necessary to compensate for this correction

by means of new corrections for the functions fk on a number of other segments.
The exact method of the introduction of these corrections, we will not present

here. We only note the following: these corrections must be such that inequality

(4) will be preserved for n' = n + 1; if S~+1 1s chosen small enough, and if
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its direction is chosen appropriately, it must be possible to produce it for

every function fk on a finite system of non-intersecting segments of the axis

%k. In the proof of this possibility one makes use of the fact that the tree

D~ has properties (2) and (3).

The proof of the existence of the continuous function

and of the validity of the equation

on the entire X, is not complicated.

I express my sincere thanks to A.N. Kolmogorov for the aid and advice I
have received from him in the preparation of this work.

Bibliography

[1] A.N. Kolmogorov, On the representation of continuous functions of several

variables by superpositions of continuous functions of a smaller number of

variables, Dokl. Akad. Nauk SSSR 108 (1956), 179-182. (Russian)

[2] K. Menger, Kurventheorie, Teubner, Leipzig, 1932.

Translated by:

H. P. Thielman



THE MATHEMATICS WORKSHOP FOR
SCHOOLS AT MOSCOW STATE
UNIVERSITY�

V.I. Arnol’d
Moscow

The mathematics workshop for schools at Moscow State University in the
name of Lomonosov came into existence in 1935. The organizers of the work-
shop were: the now-deceased Corresponding Member of the Academy of Sci-
ences of the USSR L.G. Shnirel’man, Professor L.A. Lyusternik (now Cor-
responding Member of the Academy of Sciences of the USSR), and Doctor
I.M. Gel’fand (now Corresponding Member of the Academy of Sciences of the
USSR).

The activities of the workshop proceed in two streams: twice a month (on
Sundays) lectures on mathematics are given by professors and instructors at
Moscow State University and other institutes (separately for the pupils of the
7–8 class and for pupils of the 9–10 class) and sections of the mathematics
workshop meet weekly under the guidance of students and (more rarely) post-
graduate students of the university.1 The annual Mathematical Olympiad is, in
a certain sense, the culmination of the activities of the circle; here the directors
of the mathematics workshop traditionally play a large role in bringing this
about.

General information on the activities of the mathematics workshop in the
1955/56 academic year is given in the preceding issue of “Matematicheskĭı
Prosveshchenie”; there one can find the list of lectures given in that year.2

The series “Popular lectures on mathematics” published by Gostekhizdat will
give an idea of the character of these lectures.3 The main part of this series of
books by Moscow authors consists in expositions of the lectures given in the
mathematical circle for schools at Moscow State University. Here we wish to
shed light on the activities of the sections of the circle (the early part of these

� Mat. Prosveshchenie 2, 241–245 (1957)
1 It was only at the very beginning of the activities of the workshop that professors

of Moscow State University were also involved in the work of the sections.
2 Dynkin, E.B., Girsanov, I.V.: The nineteenth School Mathematical Olympiad in

Moscow. Mat. Prosveshch. 2, No. 1, 187 (1957).
3 Editor’s note: See the paper by N.B. Beskin on pp. 275–290 of this issue.
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activities is well reflected in the series of books“Library of the mathematical
circle”, also published by Gostekhizdat).

The ‘lessons’ of a section take place in the form of a discussion: the super-
visor of the section introduces the topic of study to the participants; 5–10
minutes is set aside for each problem; then the solution is explained and
the supervisor continues his talk on the topic being studied. Each individual
problem is not difficult (most of the pupils manage it in 5–10 minutes). At the
end of the lesson the pupils are given (usually more difficult and sometimes
very difficult) homework problems, which are collected at the beginning of the
next lesson.

Below we give a summary account of two lessons of the workshop (a section
for 10 pupils) on the themes “Variation of a curve” and “Harmonic functions”.

Variation of a curve

We are given a line segment AB of length 1. If this line segment is illu-
minated by parallel rays, then the length of the shadow thrown onto various
lines will vary from 0 to 1. More precisely, the length of the projection of the
segment onto lines lying in the same plane will, in general be different for
different lines; however in all cases it will be between 0 and 1. The length of
the projection of AB onto a line l is called the variation of the segment AB
in the direction l (Fig. 1); we shall denote it by Vl(AB) or simply by Vl if it
is clear which segment we are referring to.

Fig. 1. Fig. 2.

It is intuitively obvious that the mean value of the ‘shadow’ over all direc-
tions exists and that it is between 0 and 1. More precisely, this means that if
we divide the 360◦ angle into n equal parts, and take the arithmetic mean

Vn =
Vl1 + Vl2 + · · ·Vln

n

A

B

l

A

B

10
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of the variations of the segment AB in the directions l1, l2, . . . , ln (Fig. 2),
then the limit

lim
n→∞Vn = K

exists and K lies between 0 and 1.
This number K is called the mean variation or simply the variation of the

unit segment AB.
This number is not very difficult to find;4 it is equal to 2

π ≈ 0.637. However,
we shall not find it now, but calculate it later via an indirect route (Problem 7)
Nevertheless, we shall use the fact that this limit exists from the very outset.

Problem 1. What is the variation of a segment of length a?

Solution. Since, clearly, the variation of such a segment in any given
direction is a times as large as that of a unit segment parallel to it, and the
limit of this quantity, that is, the mean variation of the segment of length a,
is equal to Ka.

We define the variation of a polygonal line in some direction to be the
sum of the lengths of the projections of its component line-segments (‘links’)
in this direction (Fig. 3).

Fig. 3.

Problem 2. Determine the variation of a square of side 1 in the directions of
its sides and its diagonals.

Solution. Clearly, the variation of the square in the direction of each side
is equal to 2, and in the direction of a diagonal is equal to 2

√
2.

The mean variation of a polygonal line over all directions, or simply the
variation of the polygonal line over all directions is defined, as above, via the
passage to the limit: V = limn→∞ Vn, where Vn is the arithmetic mean of the
variations of the polygonal line along the n directions of the sides of a regular
n-gon.

4 See, for example, the book Yaglom, A.M., Yaglom, I.M.: Elementary problems in
a non-elementary setting. Gostekhizdat, Moscow (1954), Problem 147b.

l

11
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Problem 3. Determine the variation of a polygonal line of length a.

Solution. Clearly the variation of a polygonal line in each direction is
the sum of the variations of the projections of its links in this direction, and
since the mean value of a sum is equal to the sum of its mean values,5 the
variation of the polygonal line is the sum of the variations of its links. Since,
by Problem 1 the variation of each link is equal to the product of the length
of this link by K, the variation of the polygonal line is Ka.

Fig. 4. Fig. 5.

In order to transfer the definition of variation to curves we need to make
precise the notion of a curve. This is difficult to do in the general case. How-
ever, we shall assume that the curve is either convex or can be divided into
finitely many convex pieces. Then when one projects the curve in any given
direction one can divide it into finitely many pieces each of which is inter-
sected just once by each of the projecting lines.6 Then the variation of the
curve in the chosen direction is, by definition, the sum of the lengths of the
projections of its pieces in this direction (Fig. 4). It can be shown that there
exists a mean value of this quantity over all directions. We call this the mean
variation or simply variation of the curved line.

It is clear that if the curve is a polygonal line, then we arrive at the previous
definition.

5 The precise meaning of this phrase is as follows: the arithmetic mean of the
variations of a polygonal line over n directions is equal to the sum of the arithmetic
means of the variations of its links over these directions. Therefore the limit as
n → ∞ of arithmetic means of the variations of the polygonal line over the
different directions is equal to the sum of the limits of the arithmetic means of
the variations of the individual links.

6 Here we do not rule out the case when such a piece is a straight-line segment,
so that when projecting in one of the directions the straight-line segment lies
entirely in the projecting line.

l

12
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Problem 4. Find the variation of a circle of diameter D.

Solution. First we choose some direction. The diameter having this di-
rection divides the circle into two pieces, namely, into two arcs each of which
is intersected by any line perpendicular to the chosen direction in at most one
point. Hence the variation of the circle in the chosen direction is equal to 2D.
Clearly the variation in any other direction is the same, therefore the mean
variation of the circle is equal to 2D.

We now select several points on the curve and join them successively by
straight lines (Fig. 5). Then we obtain a polygonal line. It can be shown that
for sufficiently good curves (for example, for all convex curves) the limit of
the lengths of these polygonal lines exists, provided that as these polygonal
lines vary the length of the largest link of the lines tends to zero. This limit
is called the length of the curve.

It can also be proved that for curves that can be divided into finitely many
convex pieces the limit of the variations of these polygonal lines exists as the
length of the largest link tends to zero.

Problem 5. Find the limit which the variation of a polygonal line inscribed
in a “sufficiently good” curve of length a tends to when the polygonal line
varies so that the length of its largest link tends to zero.

Solution. Since for each polygonal line of length an the variation is equal
to Kan and an → a for “sufficiently good” curves, the limit of the variations
of the polygonal lines is equal to Ka.

Problem 6. Prove that the variation of a (‘sufficiently good’) curve of length
a is equal to Ka.

Solution. It suffices to observe that one can inscribe in such a curve a
polygonal line with arbitrarily small links whose variation along each of the
n given directions coincides with the variation of the curve. Therefore, once
the limit in Problem 5 exists it is equal to the variation of the curve.

Problem 7. Find the numerical value of K, that is, the variation of a segment
of length 1.

Solution. Since, on the one hand, a circle of diameter D has length D
and hence variation KπD (Problems 5 and 6) while, on the other hand (Prob-
lem 4), the variation of this circle is equal to 2D, it follows that K = 2

π .
By the width of a curve with respect to a given direction we mean the

smallest distance between two lines of this direction that enclose the curve.
A curve has constant width if its width with respect to all directions is the

same. Examples of a curve of constant width are the circle and the so-called
Rello triangle consisting of three equal arcs of a circle (Fig. 6).7 With the help
7 There is a lot of information about curves of constant width in the book: Yaglom,

I.M., Boltyanskii, V.G.: Convex figures. Gostekhizdat, Moscow (1951).

13
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of variation one can obtain a very elegant proof of the following Barbier’s
Theorem:

Problem 8. Prove that all curves of constant width h have the same length
πh.

Solution. This follows from the fact that the variation of each such curve
in any direction is equal to 2h; see the reults of Problems 6 and 7.

Fig. 6.

Here is another problem which at first glance appears to be rather com-
plicated:

Problem 9. A curve L of length 22 is contained in a circle C of radius 1.
Prove that there is a line intersecting L in at least 8 points.

Solution. The variation of L is equal to 2
π · 22 > 14 (Problems 6 and 7).

On the other hand, the length of the projection of L in any direction does not
exceed 2 (L is contained in C!). Hence for some directions certain parts of the
projection of L will be covered by the projections of separate arcs of L more
than 7 times (that is, at least 8 times). This completes the proof.

We now turn to an account of the lesson devoted to the topic “Harmonic
functions”.

The conclusion of this article will appear in the next issue

14
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в ШI{()ЛЬНОМ МАТЕМАТИЧЕСКОМ КРУЖКЕ ПРИ МГУ

В. И. Арнольд

(Москва)

(Окончание)

(З)

(1)

(2)

м8'11'

Рис. 1.

о

Гармонические функции

две первые задачи не имели отношения к основной теме. для

полноты освещения занятия кружка мы ПРИВОДIIМ их; близкая 1{ ним

по методу решения третья задача явля" N
лась подготовительной J{ четвертой, с ко

торой, по существу, и начиналась тема.

3 а д а ч а 1. Найти наибольшее и наимень

шее значения выр ажения

а sin ~ + ь cos ~ (а и Ь положительны).

Реш е н и е'. Проведем два взаимно-пер

пендикулярных луча ОМ и ON и построим

прямоугольный треугольник ОАВ с катетами

ОА == а и АВ === Ь, расположив их так, как на
рис. 1 (прямые углы MON и ОАВ ориентированы против часовой стрелки).
Обозначим угол AON через ер, тогда, проектируя ломаную ОАВ на ось ОМ
(проекции направленные!), получаем 1):

(аВ') ==пр. ЙВ==пр. ОА + пр. АВ:::::: а sin ~ + ь cos~.

Если вращать треугольник ОАВ вокруг вершины О) то угол ер изменя
ется; наибольшее и наименьшее значения проекции (ОВ') достигаются, когда

а ,r 2 + Ь2
отрезок ОВ коллинеарен ОМ, т. е. когда tg" ~ :::= ь; они равны у а и

- Уа2 +Ь2•

3 а д а ч а 2. доказать, что если

а. cos CPl + а2 cos СР2 +... + аn cos С?N == О
и

a1cos (qJl + 1) + a2 cos (92 + 1) + ... + аm cos (~т + 1) =0

(все коэффициентыai положительны), то и при любом cl

а 1 cos (~ + а) + а2 cos (92 + а) +.,. + аm cos (ерт + а) = О.

1) (аВ') - величина направленной проекции~

* The school mathematical circle at Moscow State University: 
Mat. Prosveshchenie 3 (1958), 241–250

*

Editor’s note: V.I. Arnol’d: 
harmonic functions. Published in 
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Реш е н и е. Выберем в плоскuсти JIУЧ ОМ И построим JI0маную линию

ОА1А2 ••• Аnz (на рис. ~m=3), ГД~ OAt=a!) А1А2 ==а2 , ... , Аm_]Ат=аm,

причем BeKfopbI ОАl' А1А,2, ..•, Ат _1Аrn образуют с лучом ОМ соответственно

уг.пы tfl' ер2' •••, <Рт· Легко видеть, что условие (1) означает, что ОАm L ОМ,

а условие (2) - что ОАm -.l ОМ, гле ОАт ПО"ТJучается из ОАm вращением

Gз==Gm
t

~ М
а ----~--------------- ---- .....

Рис. 2,.

против часовой стрелки (при обычном направлении отсчета,УГ ЛОВ) на угол

1 (радиан). Оба условия вместе означают поэтому, что ОАт = О, Т. е. Аm со..
впадает с. О. Но в таком случае проекция вектора ОАm, повернутого на угол а

т

[Т. е. выражение ~ ai cos (~i + а)], тоже равна нулю, что и ДQкаэывает (3).
i=l

3 а Д а ч а 3. Вычислить сумму т векторов с общим началом в центре

правильного т-угольника и с концами в его вершинах (рис. 3, а).

Было предложено 'Три решения ..
Реш е н и е 1. ПУСТЬ сумма этих векторов - вектор ОА· Повернем много-

О 21t К ~.
угольник вокруг точки на угол т. .аждыи вектор-слагаемое повернется

2~ --
на -; тогда и сумма ОА повернется на тот же угол, приняв положе·

ln

ине ОА' .. BMec:re с тем каждый вектор перейдет при таком повороте В" СЛе

ДУЮЩИЙ, так что сумма не изменится-, следовательно, ОА' ОА. Но эти век ..
2~ --

торы образуют угол -. Это может быть лишь при условии ОА= о.
m

Реш е н и е 2. Складывая векторы по «правилу треугольника» в порядке

следования вершин, получим, очевидно, т-звениую ломаную,. все звенья ко ...
торой равны (они равн·ы радиусу окружности,: описанной около МНОГОУГОЛЬ

21t
ника) и все внешние углы равны (они равны -, рис. 3, б). Отсюда следует

т
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ЧТО ломаная образует правильный т-угольник; так как он замкнут, то иско

мая сумма равна нулю.

Реш е н и е 3. Достаточно доказать 9ТО дЛЯ правильного т-угольника,

расположенного в комплексной плоскости так, что его вершины изобра ..

-J----+---~--:r

а}

Рис. 3.

жают все корни т-й степени из 1: 1, €, Е2, ••• , еm - 1 (рис. 3, в). Такой правиль
вый 1n-УГОЛЬНИК мы в дальнейшем будем называть основным т-угольником.

UeHTp основного т-угольника изображает чис

ло О, а одна из веРlllИН - число 1.
Как известно, вершины основного т-уголь

н ка изображают все решения уравнения

zm - 1 == О. По теореме Виета, сумма этих ре

шений равна нулю, ибо коэффициент при zm-1
В этом уравнении равен нулю. Но комплекс

ные числа складываются по правилу сложения

изображающих их векторов. Следовательно,

сумма векторов, о которых говорится в условии

задачи, равна нулю.

3 а д а ч а 4. Вычислить предел К

n-l

L sinC~)
К == Вт 1r_,="'_-_1 _

n

~ среднее значение функции у == sin х на ОТ- д7

резке О::::;; х ~ 1t.

Реш е н и е. Рассмотрим снова правильныfi tJис. 4.
т-угольник, о котором говорилось в предыду~

щей задаче; на этот раз будем считать радиус описанной окружности рав
ным 1, а число его сторон q е т н ы м: т = 2n (на рис. 4 т == 8). Сложим теперь

только «правую· половину» векторов: ОА1 + АО2 + ... + ОАn == OL.
Замыкающая OL рассматриваемой суммы будет совпадать с диаметром Dn
окружности, описанной около нового т-угольника. Легко видеть, что если век-

тор ОА} направить горизонтально, то эта замыкающая при большом т близка
к ее проекции OL' на вертикальную прямую Ot. А так как проекции
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единичных векторов ОА1 , ОА2, ••• , ОАn на эту верТI1каль равны как раз

sin 0=0.,
. 2тс . 7t • 4п . 21t

SlП ln'= Sln N' Sln т ::::: SlП N' ... , . (n -1)11:
Sln---,

n

D
то среднее значение К равно пределу, i( которому с.тремится частное -..!!. Но

II

б 4 Ьn Dn
из подобия т-угольников, изо раженнЬJХ на рис. ,ЯСНО, что - = -2 (радиус.

аn

ОА1 = 1), где аn == 2 sin 2:.., а Ьn = 1. Следовательно,
n

n-l

~ sin (k1C)
k~ n jOL, D 2

Вт == Нт --== Нт ~ == Вт _
n~ 00 n n -:"00 n n-:;ОО n n-+ОО n.2 sin~

2n

(

. 71:) . 1t. 2 Sln 2n 2 . Sln 2n 2 2 1).
=== 11т -:-- ==-: 11т --==-:1=-

n....:;.оо 1t 1t 7t n....:;.оо те 1t 1t

. 2n 2п

3 а м е ч а н и е. Полученный результат имеет следующий геометрический

смысл: предел, к которому стремится площадь ступенчатом фигуры, изображен

иой на рис. 5) между полуволной синусоиды и осыо абсцисс, равен 2.

Рис. 5.

3 а Д а ч а 5. ДокззаiЬ, что среднее значение произвольного многочлена

с комплексиыми коэффициентами

Pk (Z)==zk+a1z
k- 1 + ... +ak (1)

в n вершинах правильиого n-угольника на комплексной ПЛОСКОСiИ, при n > k)
равно значению многочлена в центре этого многоугольника.

Решение производится в три этапа.

t) Таким образо~) этот предел оказался равным тому значению К, КО1'ОрЫЙ

мы раньше (см. «Математическое проевещение», вып. 2, СТр. 242) назвали

средней вариацией единичного отрезка. Это не случайно; решение всего цикла

задач о вариациях кривых может рассматриваться как косвенное вычисление

указанного в этой эадаче предела.
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1О. Пусть сначала Pk (z) == zk И правильный n-угольник является о с н о в 
1I Ы М (СМ. решение 3 задачи 3).. Тогда сумма k-x степеней комплексных чисел,

изображаемых вершинами n:угольника, равна нулю при любом k < n.

(
27t . 27t)

В самом деле, при замене каждого числа z на Z COS n+1 sin n == z·~·

многоугольник переходит в себя (он поворачивается на ~;). а каждое зна-
n k 2-тrk +. 2rck 1

чение z умножается на € == cos n 1 sin n i: . Значит, сумма значе-·

J-IИЙ zk В вершинах n-угольника не меняется и в то же время УМНО)l{ается на E
k•

Следовательно, она может равняться только нулю.

Это же рассуждение непосредственно переносится и на случай

Pk(z)=azk
•

20. Так как среднее значение Р, (z) == azl (1 ~ l~ n) в нершинах основ

НОГО л-угольника равно нулю, то и среднее значение суммы Zk + a1zk - 1+ ...
... + ak_)z равно нулю. Следовательно, среднее значение многочлена Р1 (z)
В его вершинах равно a.k' Т. е. Pk (О). '

Рис. 6.

30. Обозначим теперь комплексные числа - вершины основного n-уголь-

А о 1 о о 2 О n-l б)
ника о череЗ.Z'l= , Z2 = с, zз == Е f ••• , .zn=E .(рис. и рассмотрим про-

иавально расположенный одноименный правильный МНОГОУГОЛЬНИJ\ А с. верши

нами Zl' Z"!" ••• , Zn. Очевидно, правильный многоугольник А МОЖНО получить

из Ао поворотом, гомотетическим расширением (или сжатием) и параллел~~

ным переносом. Другими словами, наидутся два таких КОМПJlексных ЧИСJlа а И

~, ЧТО

Zi=az1+~ (i= 1, 2 ,••• , n).

_Здесь модуль а равен отношению сторон многоугольников А и Ао, аргу

мент - углу поворота, а ~ - комплексное число, изображаемое центром мно

гоугольника А.

Теперь заметим, что среднее значение многочлена (1) в вершинах.

Zl' Z2f ••• , ZN равно

n

n

~Pk (a.z~ +~)
"=1

n

n
~Qk (zj)
i=l

n
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где

Qk (z) = Pk (az + ~)=(a: + ~)k+ а1 (az + ~)k-l + .. '+ak_l (а: +~)+ak

есть многочлен k-и степени относительно z [ТОЙ же, что и Pk (Z)], прИнимаю..

щий в точках z~, z~, ••• , z~ соответственно значения Р (Zl)' р (Z2)' ••• , р (zn).

Поэтому среднее значение Pk (z) В точках Zl' Z2' ••• , zn равно среднему зна ...
qению Qk (z) в точках Z0, ZO, ••• , Zn.°, т. е. (см. этап 20) равно

1 2

Но Qk (О) СОБпадает с значением многочлена Pk (z) в центре многоуголь

ника А, что и завершает доказательство.

Пусть t (z) - нскоторая функция комплексного перемениого z. Рас ..
'смотрим послеДОЕательность правильных n-УГОЛЬНИКОВ (n == 3, 4, 5, ... ),
вписанных в определенную окружность комплексной плоскости, и по

следовательность средних арифметических f (z) в вершинах этих мно

гоугольников. Если при n ---? 00 эти средние арифметические стремятся

к определенному пределу, не зависящему от выбора вписанных в

·окружность l\lНОГОУГОЛЬНИКОВ, то этот предел

'называется среднu.лt значенuе,м, функции f (z) по окружности.

Из задачи 5 следует, что среднее значенuе nрОU3ВОДЫ-lОZО ЛtflОZО

члена по любой окружности равно значенuю Эfnого .,flflогочлена 8
.центре оuружн,остu.

Можно говорить не только о среднем значении функции в смысле

'среднего арифметического, но и о ередне/}[, zеомеlnрuчес1СО.м функ

ЦИll f (z) по некоторой окружности. Под этим "онимается действи

тельное неотрицательное ЧИСЛQ

~значение корня арифметическое!), где Zi"- также вершины правильного

n-угольника, вписанного в окружность.

Рассмотрим задачу, связанную с понятием среднего геометрического

функции на окружности.

3 ад а ч а 6. Доказать теорему: если многочлен Pk (z) степени k не имеет

корней виутри или на окружности, то его среднее геометрическое на этой

окружности равно модулю его значения в центре окружности.

Реш е н и е проведем снова в три этапа.

1О. Пусть сначала окружность есть окружность '1 z r == 1, правильные

,n-угольники - основные, а многочлен P 1 (z) == Z + а. (Очевидно; Iа I> 1, так
как иначе корень P1 ' (z) лежал бы внутри окружности.)

Рассмотрим произведение

(Zl + а, а) + (-?, ..... (Zn + а).
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в точке г:::= а. «СтарUIИИ коэффициент» многочлена Рn (z) при zn равен еди

нине, а корни его равны - Zl' - г2' •.• , - zn; поэтому Рn (z) ~ zn - (- 1)n..
Следовательно,

Но так как 1а I> 1, то

lim vl а In + 1 == Нт V l а I
n

- 1=! а 1,
n~OO n~r:ю

n/-
откуда Нт V Fn (а) == Iа (, что и доказывает теорему в этом частном случае.

n~CJ:J

20. Так как, очевидно, среднее геО.'и,еmРllчес/(,ое ПрОllзведенuя равно про

изведению средних геометрических, то доказываемая теорема справедлива и

для Лlобого многочлена Рn (Z), все корни которого ПО МОДVЛЮ больше 1, так

как такой многочлен есть произведение сомнож~телей вида (z + а{), где -ai
- корни Рn (z).

30. Наконец, пусть данная окружность S +- произвольная,имеющая центр

в точке, изображающейкомплексноечисло ~, а радиус сх; ее уравнение) z- ~ !== CX~
Рассмотрим преобразование комплексной плоскости

W-az+ ~.

Оно переводит единичную окружность.!z I= 1 и круг J zJ ~ 1 соответственнО'
в окружность S и в ограничиваемый его круг.

Подставим в данный многочлен Рn (z) вместо z выражение az + р. Получим;

Рn (az + ~) == Qn (z);

при этом значения многочлена Qn (z) в вершинах основного n-угольника равны'

значениям Рn (z) В вершинах ll-угольника, вписанного в S (ер. с решением

задачи 5). Все корни Q (z) лежат вне круга Iz i~ 1 [все корни Р (z) лежат вне

круга, ограниченного S); среднее геометрическое Рn (z) ПО окружности S равн()

среднему геометрическому· Qn (z) по окружности Iz 1=1. Но это последнее:

среднее вычислено в п. 20; оно равно I Qn (О) I= lPn (~) l, ч. Т. д.

р д

Рис. 7.
в

3 а д а ч а 7. На плоскости имеются две фиксированные точки А и В (рис. 7).
Рассмотрим функцию 6==1 (М) точки М ЭТОЙ плоскости, равную углу -а (наи
меньшему, отсчитываемому' против часовой стрелки), на который поворачивается

луч МА дО совмещения с МВ. Доказать, ЧТО среднее значение функции f (М)
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по любой окружности S, не пересекающеи лучей АР и BQ, равно значению
.f(M) в центре О окружности1).

Реш е н и е. ПУСiЬ М1 М2 ••• Мn - правильный n-угольник, вписанный

в окружность s. Обозначим углы AMiB через 6i; угол АйВ через 60. НУжно
.J{оказать, ЧТО

}' бl+б2+.00+бn А _ 1. (б 1 -б(})+(б 2-бl})+ .... +(бn -60)
1т - Vo- 1т -~--------------= о.

-n-+ 00 n n~OO n

Но, очевидно, для любой точки М на окружности S

б - 60 = L. ОВМ - L ОАМ;

'таким образом, требуется доказать, что

l ' (1. ОВМ1 + L ОВМ2 + .. 0 + L. ОВМn
1т -

,n-::,.ф n

_LOAM. + ,L OAM2+ o
•• + LOAMn ) =0, (1)

fl

'То е. что среднее значение угла ОВМ на окружности S равно среднему зна

-чению угла ОАМ на этой окружности. Предположим теперь, что n == 2т че'IНО

и (2nz)-угольник M1M2 0. оМ2m имеет прямую ОА осью симметрии, проходящей

-через середины сторон M1M2m и MmMm+l~ В этом случае, очевидно,

L OAM1 +1. ОАМ2m == 2тс,

L ОАМ2 + L ОАМ2т _ 1 = 21t, .... , L ОАМn+1. ОАМт_ 1 = 21t

;1-1, следовательно,

2т

1I е 3 а в и с и м о о т 3 Н а ч е н и я 11.
Отсюда вытекает, что еСЛll mолыtо среднее значеНIIВ ФУНКЦllll L ОАМ

.cyи~ecmвyeт (а 9ТО мы будем предполагать, не задерживаясь на доказательстве),

то оно равно 7t. Точно так же равно 1t и среднее значение по окружности

,ФУНКЦИИ L DВМ, что и доказывает (1) и требуемую теорему.

ФУНJСЦUU, среднее 3Ha tteflUe иоmорых н.а 1Саждой окружности

,равно значению в цеН"lре окружностu, называются z а р .At о fl U 
.Ц, е с 1с и .м Ио

Из задачи 5 вытекает, ЧТО действительная часть и коэффициент

при мнимой части любого многочлена от комплексного переменного

(ТОЧКИ комплексной плоскости) являются гармоническими функциями; за

дача 6 связана с гармоничностью логарифма модуля многочлена (В об-

1) Приведенное ниже решение задачи 7 заимствовано из заметки Б. Ао У с 
:{J е н с к о го «Геометрический вывод ОСНОВНЫХ свойств гармонических ФУНК

ЦИЙ», Успехи матем. наук 4, ВЫПо 2 (30), сТр. 201-205, В которой эта задача

l{ладетс.я в основу теории гармонических ФУНКЦИЙ,
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лзсти, где многочлен не имеет корней), задача 7 дает геометрический,

пример гармонической функции.

Гармонические функции играют выдающуюся роль в математике,

физике и технике. Для примера упомянем здесь о задаче нахождения,

распределения температур в произвольной плоской однородной плас ..·
ТIIнке.. ЯСНО, что если распределение температур - устаНОВИ8шееся,

Т. е. самопроизвольного перераспределения теl\'1ператур не происходит,

ТО оно дается гармонической функцией, ибо если бы среднее значение

температуры на малой окружности было, наПРИ!\Jер, больше темпера-··

туры в центре О, то точка О нагревалась бы.

Очевидно, что задаl-tная 8 не/(оmорой области гармонuчест-сая

фуи1Сl~UЯ .klO JlCeт npUHUAlaтb наибольшее U наu.мен.ьшее значеНllЯ

ЛU(UЬ на гран,ис,е а/пои области, ибо если бы наибольшее значение

достигалось во внутренней точке О, то среднее значение по окруж~

насти с центром в О не могло бы совпадать со значением в о. Это

предложение называется nринциnОА,е ма1ССU.АtУЛtа и играет большую

роль в теории гармонических функций. Из него следует, что значе ..
нин гармонической функции в области полностью определяются ее

значениями на границе этой области: так, например, распределение

температур на пластинке определяется температурами на крае плас

тинки. Действительно, если бы существовали две разные гармонические

функции, ТО их разность (которая, очевидно, тоже будет гармониче

ской функцией) была бы равна нулю на границе области и отлична от

нуля где-то внутри нее; но это противоречит тому, что гармоническая.

функция принимает наибольшее и наименьшее значения на границе.

ФУНКЦИИ, заданные в отдельных точках ПЛОСКОСТИ, например в цен ...
трах квадратов бумаги «в клетку», называются ФУfl1СЦUЯ.мu на сеlnке ..
Гарлtон,uчес1СОй фут-uсцuей на сетl<е называется такая, у которой зна ...
чение в каждой точке равно среднему арифметичеСКОl\'1У ее значений.

в соседних точках. Как и для гармонических функций на ПЛОСКОСТИ,

здесь можно показать, что наибольшее и наименьшее значения гармо"

ническая на сетке функция принимает на границе сетки и ЧТО значе

ния гармонической функции на сетке однозначно определяются ее зна ..
чениями в граничных узлах сетки.

При математическом приБЛИiкенном решении задач, связанных с гзр·

МQническими функциями, их часто заменяют гармоническими на CeTI<e

функциями. Таким образом, например, МОЖНО ВрlЧИСЛИТЬ температуру

в точке однородной плоской пластинки~ если известна температура на

краю. для этого пластинка делится на мелкие квадратики, где темпе

ратура предполагается неизменной, и выписывается условие гармонич

ности на сетке, состоящей из центров квадраТИI<ОВ: среднее арифмети"

ческое температур соседей данного квадратика равно его собственной

температуре; решение задачи удобно ЛрОВОДИТЬ методом последователь

ных приближений.

Легкая задача 8 касается одного важного СЕойства гармонических.
функций на сетке [СМ. также задачу 20 на стр. 269. -Ред.J.
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3 а Д а ч а 8. В каждой клетке бесконечного листа клетчатой бумаги напи

сано натуральное число, равное среднему .арифметическому чисел, СТОЯЩИХ

в четырех соседних KJleTKax. доказать, что во всех клетках написано одно и

то же ЧИСJlО.

Реш е н и е. Четыре с.ос.еда-числа в такой таблице, как указа.но в УСЛовии.

не МОГУТ быть все больше его и не МОГУТ быть все меньше его. Вместе с тем

среди любого количества натуральных чисел всегда есть наименьшее n. Все

четыре его соседа равны n, так как они не меНЫl1е ll, и если хотя бы ОДНО

было больше, то среднее арифмеТyJчеекоетоже было бы больше n, тогда ff~K ПО

УСЛОRИЮ оно равно n.
Точно так же соседи этих соседей равны ПИТ. д. T'lK мы убеждаемся)

что все числа Б клетках равны n.



ON THE REPRESENTATION OF
FUNCTIONS OF SEVERAL VARIABLES AS
A SUPERPOSITION OF FUNCTIONS OF A
SMALLER NUMBER OF VARIABLES�

In this paper we wish to give an account of several recent papers by Moscow
mathematicians devoted to the question in the title of this paper. §1 contains
the definition of superposition of functions and the statement of Hilbert’s 13th
problem relating to superpositions. §2 is devoted to superpositions of smooth
functions. In §3 we present several very recent papers, in spite of the fact
that the content of that section is now perhaps only of historical interest.
The principal topic there is the description given by Kronrod of “the tree of
components of a function of several variables”, which is a concept whose pop-
ularization would seem to be very desirable (although the connection between
this concept and the problems considered in our paper has proved to be less
close than it originally appeared). The reader interested only in the strongest
(and, moreover, the simplest in its method of proof) result relating to the
representation of continuous functions of several variables as superpositions
of functions of a smaller number of variables can, after looking at the intro-
ductory §1 go straight to §4, missing out §2–3. In addition, the smaller print
in this paper means, as usual, that the corresponding material is auxiliary
and omitting it will not affect the reader’s understanding of what follows.

1. One of the problems of the famous problem book by Pólya and Szegö1

begins as follows:
“Do functions of three variables exist at all?”
The meaning of this question is as follows. Suppose that we have two

functions of two variables u(x, y) and v(y, z). We now consider a new func-
tion of two variables w(u, v) and substitute our functions in place of u and
v. Then the function w[u(x, y), v(y, z)] now depends on the three variables
x, y and z. Thus, by substituting in place of the arguments u and v of the
function of two variables w(u, v) the new functions of two variables we obtain

� Mat. Prosveshchenie 3, 41–61 (1958)
1 Pólya, G., Szegö, G.: Problems and theorems of analysis, part I. Moscow, Section

II, Problems 119 and 119a.

V.I. Arnol’d
Moscow

translated by Gerald Gould 
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a function of three variables (one can even obtain a function of four variables
w[u(x, y), v(z, t)]; we call this function a single superposition formed from the
functions of two variables u, v and w. It is clear that all the properties of this
function are determined by our three functions of two variables. Pólya and
Szegö’s question (which, however, was not formulated in their book in all its
breadth) is as follows: can all functions of three variables be reduced to such
a superposition (or a somewhat more complicated superposition) of functions
of two variables, or do there in fact exist functions that are “essentially of
three variables” which cannot be reduced to functions of two variables.

Note first of all that if one can also use discontinuous functions, then
the answer to Pólya and Szegö’s question is clearly negative.2 Thus the only
question of interest is whether or not all continuous functions of three variables
are representable as superpositions of continuous functions of two variables.

In fact, a discontinuous function u = φ(x, y) enables one to map the (x, y) plane
bijectively onto the line u [the fact that the set of pairs (x, y) of numbers and the
set of numbers u have the same cardinality means precisely that these sets can be
bijectively mapped onto each other]. We now choose any function of three variables
F (x, y, z) and define the function ψ(u, z) by the equality

ψ[φ(x, y), z] = F (x, y, z) ;

this is possible because each pair of values (x, y) corresponds to a unique value
u = φ(x, y) and we can take ψ(u, z) to be equal to the corresponding value of
F (x, y, z).3

For the simplest continuous functions of three variables it is not hard to
find representations of them as superpositions of continuous functions of two
variables. For example, the function

F (x, y, z) = xy + yz

can be represented in the form

F = w[u(x, y), v(y, z)] ,

where
w(u, v) = u + v, u(x, y) = x + y, v(y, z) = yz .

For the somewhat more complicated function

F (x, y, z) = xy + yz + zx

it is already impossible to represent it as a simple superposition of functions of
two variables;4 However, it is possible to represent it as a double superposition
of functions of two variables, that is, in the form
2 See the solution of problem 119 in Pólya and Szegö’s book.
3 It suffices to require that no two distinct pairs (x, y) correspond to the same value

u = φ(x, y); here, for values ū not belonging to the range of the function φ(x, y)
the function ψ(ū, z) can be defined arbitrarily.

4 See Pólya and Szegö’s book.
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On the representation of functions of several variables 3

w{u[p(x, y), q(y, z)], v[r(y, z), s(z, x]} ;

it suffices merely to set
w(u, v) = u + v

and

u(p, q) = p + q, p(x, y) = xy, q(y, z) = yz, v(r, s) = s, s(z, x) = zx .

In general, all entire rational functions of several variables can by definition
be obtained from their arguments by means of a multiple application of the
operations of addition and multiplication, that is, they are the result of a
multiple superposition of functions of not more than two variables

φ(x, y) = x + y, ψ(x, y) = xy, f(x) = x + a, g(x) = ax ,

that is, the result of a multiple substitution of the arguments of these functions
by more complex expressions formed by means of the same functions. By
analogy with this, the rational functions are obtained as superpositions of six
of the simplest functions of not more than two variables:

φ(x, y) = x + y, ψ(x, y) = xy, χ(x, y) =
x

y
,

f(x) = x + a, g(x) = ax, h(x) =
a

x
.

If a segment of x is a function of known segments a, b, c, . . ., then in order to be
able to construct it using a ruler and compasses, it is necessary and sufficient
that this function be homogeneous of the first dimension and that it be a
superposition of these same simplest functions and the function y =

√
x. All

the elementary functions can be represented as superpositions obtained via
those same functions and in addition certain special functions of one variable,
such as

n
√

x, ex, ln(x), sin(x), and others.

The simplest examples of algebraic functions going outside the limits of the
class of elementary functions are provided by the roots of algebraic equations;
the arguments of these functions are the values of the coefficients of the equa-
tions. But the roots of equations of the first, second, third and fourth degrees
are, as is well known, elementary functions of the coefficients obtained as the
result of superposition of those same functions of two variables, the sum, the
difference, the product and the quotient, and (for equations of these 2nd–4th
degrees) functions of the single variable n

√
x (here n = 2 in the case of a

quadratic equation and can be equal to 2 or 3 in the case of equations of
the 3rd and 4th degrees). For equations of the 5th and higher degrees such a
representation is not possible in general; this was shown by Abel. However,
the roots of equations of the 5th and 6th degrees can be expressed in terms of
the coefficients by means of superpositions of certain more complex analytic
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4 V.I. Arnol’d

functions of two variables; these representations can be used for the practical
calculation of the roots of equations; in particular for nomographic solution
of equations.

Attempts to obtain a representation of roots of 7th-degree equations as a
superposition of suitable functions have not been crowned with success. Using
algebraic transformations the general 7th-degree equation

x7 + a1x
6 + a2x

5 + a1x
6 + a3x

4 + a4x
3 + a6x + a7 = 0

can be reduced to the form

x7 + ax3 + bx2 + cx + d = 0

where a, b and c are elementary (algebraic) functions of the coefficients
a1, a2, . . . , a7 of the original equation, therefore they are expressed in terms
of these coefficients as superpositions composed of simple functions of two
variables. Thus, the question of the possibility of representing the roots of a
7th-degree equation by superpositions of functions of two variables reduces to
the problem of finding such a representation for the special function of three
variables a, b, c of the roots of the equation written above.

To date it is not known whether this function of three variables (which is
easily seen to be analytic) can be represented as a superposition of analytic
functions of two variables. Nevertheless, Hilbert managed to show that certain
analytic functions of three variables are not such superpositions.

Hilbert’s result is in connection with the following situation. If a function of
three variables is a superposition of functions of two variables, then among the
partial derivatives of the superposition and the functions of which it is composed
there exist fully determined analytic relations. Therefore if all analytic functions of
three variables are representable in such a form, then the space of coefficients of the
series expansion of the functions of two variables involved in this superposition can
be mapped analytically onto the space of coefficients of the expansion of functions of
three variables; but this is not possible, since the latter space has a greater dimension
(here we are restricted by the definite but large number of first coefficients of the
expansion, that is, the first partial derivatives).

In his lecture at the 1900 International Mathematical Congress held in
Paris the celebrated German mathematician David Hilbert posed 23 prob-
lems awaiting solution.5 The thirteenth of these “Mathematical problems” of
Hilbert’s was as follows:

Can the roots of the equation

x7 + ax3 + bx2 + cx + 1 = 0

be represented as superpositions of continuous functions of two variables ?

5 Hilbert, D.:Mathematische Problemen; Gesammelte Abhandlungen, vol.3, No.17
(1935). [Editor’s note: Translation of this work of Hilbert’s will appear in the next
issues of Mat. Prosveshch.]
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On the representation of functions of several variables 5

Hilbert conjectured that the answer to this question would turn out to
be negative; in that case the more general question of whether all functions
of three variables are superpositions of continuous functions of two variables
would be solved at the same time.

2. The first results touching on Hilbert’s 13th problem were obtained un-
der the assumptions that the superpositions have some special form, for exam-
ple, under conditions restricting the ‘single’ superpositions; they all supported
Hilbert’s conjecture.6 The strongest result here is the result of A.G. Vitushkin
who succeeded in constructing a polynomial such that neither the polynomial
itself nor any function sufficiently close to it (in the sense of uniform conver-
gence) can be decomposed into a simple superposition of continuous functions
of two variables in any region or in any system of coordinates.

Further results are in connection with restrictions imposed on the func-
tions involved in the superposition. As already recalled, Hilbert had noted
earlier that it was impossible to obtain all the analytic functions of three
variables as superpositions of analytic functions of two variables. Important
results in this direction were obtained by Vitushkin,who by using his theory of
multidimensional variations of functions and sets showed that not all l times
continuously differentiable functions of three variables can be represented as
superpositions of

[
2
3 l

]
times7 differentiable functtons of two variables all of

whose derivatives of order
[
2
3 l

]
satisfy Lipschitz condititons.8

In Kolmogorov’s interpretation9 Vitushkin’s results are connected with
the difference of the ‘dimensions’ of the corresponding function spaces. As
Pontryagin and Shnirel’man had already proved in 1932, the dimension of
a compact metric space (for example, a cube in Euclidean space) can be
defined in the following way. We cover our space with ‘small’ sets of diameter
ε. Clearly, the number N(ε) of sets required to do this will increase as ε
gets smaller; here it can be shown that N(ε) increases as 1

εn , where n is the

6 The simplest examples of this kind already appear in the book of Pólya and
Szegö; a number of other examples (due to A.Ya. Dubovitskĭı and R.A. Minlos)
are given in the book:Vitushkin, A.G.: On multidimensional variations. Moscow
(1955).

7 Here the square brackets indicate the integer part.
8 It also follows from this result that there exists in a three-dimensional cube

an analytic function (of three variables) satisfying a Lipschitz condition with
Lipschitz constant 1 such that no functions close to it (including the function
itself) can be represented as an s-fold superposition of two variables satisfying a
Lipschitz condition with some constant L1 (s and L1 are given in advance), and
there exists an unbounded differentiable function satisfying a Lipschitz condition
with Lipschitz constant 1 which is not a superposition of functions of two variables
satisfying a Lipschitz condition. See Vitushkin’s book referred to in footnote 6.

9 Kolmogorov, A.N.: Estimates of the minimum number of elements of ε-nets in
various function classes and their application to the question of the representation
of functions of several variables as superpositions of functions of a smaller number
of variables. Usp. Mat. Nauk 10, No.1, 192–195 (19??).
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6 V.I. Arnol’d

dimension of the space; thus the dimension n can be defined as the limit

lim inf
ε→0

[
− log N(ε)

log ε

]
.

For infinite-dimensional spaces this limit is equal to infinity. However, in
a number of cases the number N(ε) can increase as the function 1 : exp(zk),
where k is some constant which one can provisionally call the “dimension of
the infinite-dimensional space”. Thus for infinite-dimensional spaces the role
of dimension is played by the limit10

lim inf
ε→0

[
− log log N(ε)

log ε

]
.

For the space of functions f(x1, x2, . . . , xn) of n arguments defined on an
n-cube, where the functions are l times differentiable in all their arguments
and are such that all the partial derivatives of order l satisfy a Hölder condition
of order α,11 the above-defined dimension can be considered to be equal to

n

l + α
.

Hence it follows, in particular, that the set of l times differentiable functions
of three arguments is in a certain sense ‘richer in its elements’ than the set
of

[
2
3 l

]
times differentiable functions of two arguments satisfying a Lipschitz

condition (that is, a Hölder condition of order 1); hence it follows that it is
impossible to express all the first functions as superpositions of the last ones.

10 Instead of the number N(ε) of sets of diameter ε completely covering the (com-
pact) space one could choose the number M(ε) of points of an ε-net, that is, the
smallest number of points such that each point of the space is at a distance of
at most ε from at least one of the chosen points, or the maximum number K(ε)
of points such that the distance between any two of them is greater than ε. It is
curious to note that the same definition of the dimension of function spaces was
arrived at (almost at the same time) by Shannon [Shannon, C.E.: The mathe-
matical theory of communication, Urbana (1949); in the Russian translation of
Shannon’s work (in the collection “Theory of transmission of electric signals in
the presence of noise”. Inost. Lit., Moscow (1953)) the corresponding place was
omitted for some reason] which started from arguments relating to “the theory of
information”: in the space of the transmitted information K(ε) is the maximum
number of ‘ε-different signals’ that cannot be confused by the receiver provided
that the distortion of the information in the transmitter does not exceed ε.

11 A function f(x) satisfies a Hölder condition of order α if there exists a number
C such that for each x1, x2 in the domain of the function

|f(x1) − f(x2)| < C|x1 − x2|2 .

A function of several variables is said to satisfy a Hölder condition if it satisfies
this condition as a function of each of its variables.
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On the representation of functions of several variables 7

3. However, in the domain of all continuous functions Hilbert’s conjecture
has proved to be false.

In the spring of 1956 Kolmogorov succeeded in showing that every contin-
uous function of n variables (n � 4) defined on an n-cube is a superposition
of continuous functions of the three variables.12 The main tool in his con-
struction is the one-dimensional tree of components of level sets of a function
introduced by Kronrod.13

Fig. 1. Fig. 2.

By the level set of a function we mean the collection of all points in the
domain of the function at which the function takes some fixed value. For
example, if the function of a point of part of the land surface represents the
height at this point above sea level, then the level set will consist of all points
of the locality having the same height above sea level; in topography these
level sets are called contour lines. In Figs. 1 and 2 we have depicted simple
functions of two variables and the ‘maps’ of the level sets of these functions
(that is, a partition of the squares on which the functions are defined into
12 Kolmogorov, A.N.: On the representation of continuous functions of several vari-

ables by superpositions of continuous functions of a smaller number of variables.
Dokl. Akad. Nauk SSSR 108, 179–182(1956); English transl. in Amer. Math Soc.
transl. Ser. 2, vol. 17, 369–373 (1961).

13 Kronrod, A.S.: On functions of two variables. Usp. Mat. Nauk 5, No.1, 24–134
(1950).
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8 V.I. Arnol’d

their separate level sets). A level set can consist of a single piece (for example,
all the level sets of the function depicted in Fig. 1 or the 1-level set of the
function depicted in Fig 2; or it may consist of several connected pieces or
components (for example, the 3-level set in Fig. 2 consists of the two pieces
3a and 3b). To study the structure of the set of components of a level set of
a continuous function Kronrod proposed that one use the notion of a tree.

In topology, by a tree we mean a curve (‘one-dimensional locally connected
continuum’) not containing any closed arcs (‘homeomorphic images of a cir-
cle’). A tree can be represented in the following way. From the base of the
‘trunk’ of the tree there emerge ‘branches’ at the ‘branch points’ (the number
of branch points can be denumerable and from each such point there can be
denumerably many branches coming out of it); in turn, from each branch there
can emerge new branches (we can call them ‘twigs’), and so on (Fig. 3). In
general a tree can be somewhat complex; however, as the celebrated Austrian
(now American) mathematician Karl Menger showed, there exists in the plane
a universal tree such that any other tree is a part of it (more precisely, such
that any tree is homeomorphic to a part of the universal tree).14

Fig. 3.

14 Menger, K.: Kurventheorie, Ch. X. Berlin–Leipzig (1932).
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On the representation of functions of several variables 9

Kronrod showed that the set of components of all level sets of a continuous
function of several variables is naturally representable as a tree.

Thus, for example, the set of components of the level set of the functions
depicted in Fig. 1 corresponds to a segment (the set of level 1 corresponds
to the point 1 of this segment and the set of level 2 corresponds to the point
2); the set of components of the level sets of the somewhat more complicated
function depicted in Fig. 2 corresponds to a Y -shaped tree (the set of level 1
corresponds to point 1 of the tree, the “figure 8” set of level 2 corresponds to
the branch point 2: the components 3a and 3b of the set of level 3 correspond
to the points 3a and 3b of the tree).

In more precise terms, one can introduce on the set of components a natural
topology after which it becomes a topological space T which Kronrod called the
one-dimensional tree of the function.

A study of the structure of this space can be carried out in the following way.
First, T is the continuous image of an n-dimensional cube and therefore T is a locally
connected continuum. Second, under the map d of the cube onto T the inverse image
of each point of T is a component, that is, a closed connected set. We call such maps
monotone.15 Visually they can be represented as a contraction without gluing: for
example, the projection of a square onto one of its sides is a monotone map, while
the formation of a cylinder from a square by gluing is not a monotone map. One
can prove that simple connectedness is preserved under a monotone map; therefore
T , which is the monotone image of a cube, is a simply connected set. Finally, under
a mapping of T onto a segment different components of the same level are taken to
each point of the segment, that is, a zero-dimensional subset of T (not containing
connected pieces) and, as is well known, under a map with zero-dimensional inverse
images the dimension is not lowered. Therefore T is one-dimensional. Thus T is a
one-dimensional and simply connected locally connected continuum. Hence T is a
tree.

We can regard each function f(x1, x2, . . . , xn) as a superposition of two
maps: 1) a map d(x1, x2, . . . , xn) of the domain of definition onto the tree of
components of the level sets of f ; under the map d the image of each point
of the domain of definition is the component of the level set containing this
point; 2) the map f(d) of the set of components onto the segment that is the
range of the function f(x1, x2, . . . , xn). Under this map all the components of
the level set f(x1, x2, . . . , xn) = t are taken to the point t.

Thus, for example, the function of two variables f(x, y) = xy defined on
the square −1 � x � 1,−1 � y � 1 can be represented as a superposition of
two maps: the map of the square onto the X-shaped tree of the components of
the level sets of this function (Fig. 4) [under which all the points of the ‘cross’
xy = 0 or one of the branches of the hyperbola xy = const are taken to a single
point of the tree], and the map of this tree onto the segment −1 � t � 1 [under
which two points of the tree corresponding to branches of the same hyperbola
(or one branch point corresponding to the cross xy = 0)are taken to the same
point of the segment.

15 Editor’s note: Since (non-strictly) monotone continuous functions of a single vari-
able have this property [see the remark by Keldysh on p.261 of the current issue].
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10 V.I. Arnol’d

Fig. 4.

Thus, each function f(x1, x2, . . . , xn) of n variables can be represented as
a superposition of two new functions: the function d(x1, x2, . . . , xn), which
defines a map of the domain of definition of f(x1, x2, . . . , xn) onto the tree of
components of the level sets of this function, and f(d), which is the map of the
tree onto a segment (since each point d of the tree belonging to a given level
set corresponds to a single value of f(d) of the function f . Since a tree can be
embedded in a plane, the points of this plane can be defined by the coordinates
u(d) and v(d); this means that the second map f(d) can be regarded as a func-
tion of two variables f(u, v), while the first map d(x1, x2, . . . , xn) can be re-
garded as two functions of n variables u(x1, x2, . . . , xn) and v(x1, x2, . . . , xn).

Kolmogorov managed to represent each function of n variables as a sum
of n + 1 functions each of which has standard (that is, not dependent on the
function in question) components of the level sets:

f(x1, x2, . . . , xn) =
n+1∑
r=1

fr(x1, x2, . . . , xn) ;

thus, each function of two variables f(x, y) can be represented as a function
of three functions f1(x, y), f2(x, y) and f3(x, y) where the ‘maps’ of the level
sets of these three functions do not depend on f , but have some predetermined
form, as illustrated in Fig. 5. Here for each function fr(x1, x2, . . . , xn) (r =
1, 2, . . . , n+1) the map dr(x1, x2, . . . , xn) of the domain of definition onto the
tree will not depend on the function f ; on the other hand, the second map
fr(d) of the tree onto the range of fr does depend on f .

We now regard the function of n variables f(x1, x2, . . . , xn) as a one-
parameter (depending on the parameter xn!) family of functions of n − 1
variables:

f(x1, x2, . . . , xn) = fxn
(x1, x2, . . . , xn−1) .

C1 B1

B2

C2

A

C1
C2

B1
B2

A

' '

'

B

A

C
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On the representation of functions of several variables 11

Fig. 5.

In this case we have

f(x1, x2, . . . , xn) = fxn
(x1, x2, . . . , xn−1)

=
n+1∑
r=1

fr
xn

(x1, x2, . . . , xn−1)

=
n+1∑
r=1

fr
xn

(dr(x1, x2, . . . , xn−1))

=
n+1∑
r=1

fr(dr(x1, x2, . . . , xn−1), xn) , (1)

where dr(x1, x2, . . . , xn−1) is a map of the domain of definition of the function
fr

xn
(x1, x2, . . . , xn−1) which, as we have said, is independent of the value of

the parameter xn (the components of the level sets of the function fr are
standard!) and fr

xn
(dr) = fr(dr, xn) is the map of the point of the ‘standard

tree’ dr onto the range of fr (which now depends on xn). By introducing the
system of coordinates (ur, vr) onto the plane of the tree dr we obtain:

f(x1, x2, . . . , xn) =
n∑

r=1

fr(ur(x1, x2, . . . , xn−1), vr(x1, x2, . . . , xn−1) , xn) ; (2)
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12 V.I. Arnol’d

in other words, we have a representation of an arbitrary function f of n
variables as a sum of n functions each of which can be represented as a
superposition of a function of three variables fr(ur, vr, xn) and two functions
ur(x1, x2, . . . , xn−1) and vr(x1, x2, . . . xn−1) of n − 1 variables. In the case
when n > 3 we can apply the same process to the functions ur and vr of
n − 1 variables, so that we can eventually represent a function of n variables
f(x1, x2, . . . , xn) as a superposition of functions of three variables. Thus, the
function f(x1, x2, x3, x4) can now be represented in the form

f(x1, x2, x3, x4) =
4∑

r=1

fr(ur(x1, x2, x3), vr(x1, x2, x3), x4) ; (2a)

[we recall once more that the function of four variables f = f1+f2+f3+f4 can
be obtained as a superposition consisting of a single function of two variables
φ(f1, f2) = f1 + f2]. For n = 3 we obtain in this way only the representation

f(x, y, z) =
3∑

r=1

fr(dr(x, y) z) , (3)

Fig. 6.

where dr(x, y) is a map of the square (x, y) onto the tree (which can be defined
by two functions of two variables) and the fr(dr, z) are defined on the set of
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On the representation of functions of several variables 13

pairs (dr, z) where z ranges over the segment and dr ranges over the tree, that
is, functions of three variables that can, however, be defined on some special
two-dimensional set, which is the direct product of the tree and the segment
(see Fig. 6).

Recently it became clear16 that the results of Kolmogorov can be improved:
any continuous function of n variables can be represented as a sum of 3n
functions each of which can be represented as a superposition obtained by
substituting in the function of two variables in place of one of the arguments
the function of n − 1 variables.

The proof of this result is based on the fact that the trees dr featuring above
can be located in a three-dimensional cube (u, v, w) so that each function
defined on any of them can be decomposed into a sum of three functions
depending only on one of the coordinates

fr(dr) = φr(ur) + ψr(vr) + χr(wr) . (4)

Hence from (1) we obtain:

f(x1, x2, . . . , xn) =
n∑

r=1

fr
xn

(dr(x1, x2, . . . , xn))

=
n∑

r=1

[φr
xn

(ur(x1, x2, . . . , xn−1)) + ψr
xn

(vr(x1, x2, . . . , xn−1))

+χr
xn

(wr(x1, x2, . . . , xn−1))

=
n∑

r=1

[φr(ur(x1, x2, . . . , xn−1), xn) + ψr(vr(x1, x2, . . . , xn−1), xn)

+χr(wr(x1, x2, . . . , xn−1), xn) .

In particular, as applied to functions of three variables we obtain instead of
(3):

f(x, y, z) =
3∑

r=1

[φr(ur(x, y), z) + ψr(vr(x, y), z) + χr(wr(x, y), z)] . (5)

Thus, each continuous function of three variables can be represented as a sum
of 9 functions each of which is a single superposition of functions of two
variables. This then is the answer to the question posed by Hilbert.

In the proof of the decomposition (4) an essential role is played by the fact
that in Kolmogorov’s construction one can, as it turns out, avoid only trees having
exceptional branch points of the third order (that is, points at which a single branch
emerges from the main ‘trunk’). Next it is easy to see that the simplest ‘Y-shaped’
tree can be arranged in the square (u, v) so that any function f(u, v) defined on it

16 Arnold, V.I.: On functions of three variables. Dokl. Akad. Nauk SSSR 114, 679–
681 (1957).
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14 V.I. Arnol’d

can be represented as the sum of two functions of a single variable: in fact, if in
Fig. 7a we define arbitrarily the function φ(u) on the interval

`
0, 1

2

´
, then we can

define the function ψ(v) on the interval
`
0, 1

2

´
since the sum φ(u)+ψ(v) on OA of the

tree coincides with f(u, v); next, we define the function ψ(v) on the interval
`

1
2
, 1

´

so that the sum of φ(u)+ψ(v) on the interval AB of the tree coincides with f(u, v);
finally, we can define φ(u) on the interval

`
1
2
, 1

´
so that the sum φ(u) + ψ(v) on

the interval AC of the tree coincides with f(u, v); thus the function f(u, v) defined
on the tree can be represented as the sum φ(u) + ψ(v). If the tree has two branch
points, that is, it has the form depicted in Fig. 7b, then the function f(u, v) defined
on it can also be represented as a sum φ(u) + ψ(v) ; we merely need to start from
the definitions of the functions φ(u) and ψ(v) on the interval

`
3
4
, 1

´
, assuming that

on the interval DC of the tree the sum φ(u) + ψ(v) coincides with f(u, v), and
then define the functions φ(u) and ψ(v) in the same way as before, so that the sum
φ(u) + ψ(v) on the entire tree coincides with the function f(u, v). In the same way,
any function defined on a tree with finitely many third-order branch points can be
represented as a sum of two functions of one variable. For functions defined on a tree
with infinitely many branch points, the above procedure fails; nevertheless, such a
tree can be located in a three-dimensional cube such that a function defined on it can
be represented as a sum of three functions depending on the separate coordinates.

Fig. 7a. Fig. 7b.

It turns out that the complicated constructions that we have been talking
about are superfluous for obtaining the final result. In the next section we
give a much more direct route enabling one to obtain stronger theorems.

4. The above discussion enables one to answer in the negative the question
posed by Pólya and Szegö whether there exist functions of three variables;
more precisely this means that all continuous functions of three variables can
be reduced to superpositions of continuous functions of two variables and all
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On the representation of functions of several variables 15

the properties of a function of three variables f(x1, x2, x3) are completely
determined by certain functions of two variables, namely, the nine functions
ur, vr, wr(r = 1, 2, 3) and the nine functions φr, ψr, χr (r = 1, 2, 3) featuring
in the representation (5). It is now natural to pose the question: do there exist
functions of two variables ?

The precise meaning of the latter question is as follows. A superposition

F [f1(f2(. . . fn−1(fn))) . . .]

of any number of functions of one variable is, of course, a function of one
variable and one cannot obtain functions of more than one variable in this
way. However, if we add to our supply of functions of one variable just one
‘standard’ function of two variables, say, the sum

g(x, y) = x + y,

then superpositions composed of g(x, y) and functions of one variable can now
be functions of any number of variables; thus, for example, the (n − 1)-fold
superposition of the function g

g(g(g . . . g(g(x1, x2), x3), . . . , xn−1), xn) = x1 + x2 + . . . + xn−1 + xn

is a function of n variables. Here there arises the question: can all continuous
functions of two or more variables be represented as superpositions of this
kind ? This is the question we have in mind when we ask whether there exist
(‘artificial’) functions of two variables. [More precisely, here we could ask: is
our supply of functions of two variables essentially exhausted by one such
function g(x, y) = x + y?]

If we restrict ourselves to the simplest representations of functions of two
variables as a superposition of the function g(x, y) and continuous functions
of one variable, then the answer to the question of the possibility of obtaining
all functions of two variables will be negative; thus, one can show by quite
elementary means that the set of functions defined on a square that are rep-
resentable in the form f [φ(x) + ψ(y)] (f, φ, ψ are continuous functions of one
variable) not only fails to coincide with the set of all continuous functions,
but is even nowhere dense and non-closed.17 On the other hand, Kolmogorov
had proved even before he had obtained the representation (2) that any con-
tinuous function of n variables can be approximated to within any degree of
accuracy by a superposition of continuous functions of one variable and the
sum g = x + y; thus, for example, any function f(x, y) of two variables can
be approximated arbitrarily closely by an expression

P1(x) · Q[R1(x) + y] + P2(x) · Q[R2(x) + y] ,

17 See Arnold, V.I.: On the representation of functions of two variables in the form
χ[φ(x) + ψ(y)]. Usp. Mat. Nauk 12, No.2, 119–121 (1957).
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16 V.I. Arnol’d

where P1(x), P2(x);R1(x), R2(x);Q(u) are specially chosen polynomials of one
variable.18

In more recent times, in his attempts to simplify the methods by which he
had obtained the representations (2) and (5), Kolmogorov turned his attention
to more elementary considerations that led him to the above result. Along
these lines he succeeded in proving by extraordinary elementary and elegant
means that each continuous function of n variables defined on the unit cube
of n-dimensional space En can be represented in the form

f(x1, x2, . . . , xn) =
2n+1∑
r=1

hq

[
n∑

p=1

φp
q(xp)

]
, (6)

where the hq(u) are continuous and the φq
p(xp) are, in fact, standard, that

is, they do not depend on the choice of the function f ; in particular, each
continuous function of two variables can be represented in the form

f(x, y) =
5∑

q=1

hq[φq(x) + ψq(y)]. (6a)

For n = 3 it follows from (6) that

f(x, y, z) =
7∑

q=1

hq[φq(x) + ψq(y) + χq(z)]] =
7∑

q=1

Fq[gq(x, y)z] ,

where we have set

Fq(u, z) = hq[u + χq(z)], gq(x, y) = φq(x) + ψq(y) .

This last formula is even stronger than (5), since here the function of three
variables f(x, y, z) is representable in the form of seven (and not nine, as in (5))
terms that are single superpositions of functions of two variables; here these
functions of two variables themselves have a special simple structure, and the
inner function gq(x, y) (and the functions χq(z) occurring in the definition of
Fq(u, z)) are, moreover, standard [so that all the properties of the functions
f(x, y, z) are completely determined by the seven functions of one variable
hq(v)].

The proof of (6) is so simple and beautiful that we shall reproduce it here
almost in its entirety, referring those interested in the details to the author’s
more formalized account.19 Since all the ideas of the proof occur quite clearly
already in the case n = 2, we shall merely talk about the representation (6a)

18 See Kolmogorov’s paper mentioned in the footnote 9 on page 5.
19 See Kolmogorov, A.N.: On the representation of continuous functions of several

variables as superpositions of continuous functions of one variable. Dokl. Akad.
Nauk SSSR 114, 953–956 (1957).
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On the representation of functions of several variables 17

of an arbitrary continuous function f(x, y) of two variables x and y. The
possibility of such a representation is proved in several stages.

1◦. The ‘inner’ functions φq(x) and ψq(y) of the representation (6a) are
completely independent of the function f(x, y) to be decomposed.

Fig. 8.

To define these functions we require certain preliminary constructions. We
consider a ‘town’ consisting of a system of identical ‘blocks’ (non-intersecting
closed squares) separated by narrow ‘streets’ all of the same width; see Fig. 8.
We homothetically reduce our ‘town’ N times; for the centre of the homothety
we can take, for example, the point A1; we obtain a new ‘town’, which we call
‘a town of rank 2’. The ‘town of rank 3’ is obtained in exactly the same way
from the ‘town of rank 2’ by a homothetic reduction with homothety coefficient
1
N : the ‘town of rank 4’ is obtained by a homothetic N -fold reduction by the
‘town of rank 3’, and so on. In general, the ‘town of rank k’ is obtained from
the original ‘town’ (which we call ‘the town of the first rank’) by an Nk-fold
reduction (with the centre of the homothety at A1; incidentally the choice of
the centre of the homothety is of no importance in what follows).

We call the system of ‘towns’ constructed above the 1st system. The ‘town
of the first rank of the qth system’ (q = 2, . . . , 5) is obtained from the ‘town’

A1

A2

A3

A4

A5
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18 V.I. Arnol’d

depicted in Fig. 7† by moving the point A1 to the point Aq by a parallel
translation. It is not difficult to see that the ‘streets’ of the ‘town’ can be
chosen sufficiently narrow so that a point of the plane will be covered by at
least three blocks of our five ‘towns of the first rank’. In the same way, the
‘town of the kth rank’ of the qth system (k = 2, 3, . . . : q = 2, . . . , 5) is obtained
from the ‘town of the kth rank of the first system’ by a parallel translation
taking the point Ak

1 to the point Ak
q , where Ak

1 and Ak
q are obtained from the

points A1 and Aq by a homothety taking the ‘town of the first rank’ of the
first system (that is, our original ‘town’) to the ‘town of the kth rank’ of the
same first system; here each point of the plane will belong to ‘blocks’ of at least
three of the five ‘towns’ of any fixed rank k.

We define the function

Φq(x, y) = φq(x) + ψq(y) (q = 1, 2, . . . , 5)

so that it divides any two ‘blocks’ of each ‘town’ of the system q, that is, so
that the set of values taken by Φq(x, y) on a certain ‘block’ of the ‘town of
kth rank’ (here k is an arbitrary fixed number) of the qth system does not
intersect the set of values taken by Φq(x, y) on any other ‘block’ of the same
‘town’. Here, of course, it suffices to consider the function Φq(x, y) on the unit
square (and not on the entire plane).

In order that the function Φq(x, y) = φq(x)+ψq(y) divide the ‘blocks’ of the ‘town
of the first rank’ we can require, for instance, that on the projections of the ‘blocks’
of the ‘town’ onto the x axis φq(x) differs very slightly from the various integers and
on the projections of the ‘blocks’ on the y axis ψq(x) differs very slightly from the
various multiples of

√
2 (because m + n

√
2 = m′ + n′√2 for integers m, n, m′, n′,

only if m′ = m, n′ = n). Here, these conditions do not, of course, determine the
functions φq(x) and ψq(y) (on the ‘streets’ the function Φq = φq +ψq can in general
be defined completely arbitrarily for the moment); using this we can select limits
on the values of φq(x) and ψq(y) on the ‘blocks’ of the ‘town of the second rank’ so
that the function Φq(x, y) = φq(x)+ψq(y) divides not only the ‘blocks’ of the ‘town
of the first rank’ but also the ‘blocks’ of the ‘town of the second rank’.20 In similar
fashion, by bringing into consideration ‘towns’ of subsequent ranks and refining each
time the values of the functions φq(x) and ψq(y), in the limit we obtain continuous
functions φq(x) and ψq(y) (one can even require that they be monotone) satisfying
the conditions in question.

2◦ By contrast, the functions hq(u) of the decomposition (6a) depend
essentially on the original function f(x, y).

To construct these functions we prove first of all that any continuous func-
tion f(x, y) of two variables x and y defined on the unit square can be repre-
sented in the form

† Translator’s note: This should be Fig. 8.
20 The designated programme can be carried out if N is sufficiently large (so that

the blocks of subsequent ranks do not join on to blocks of the previous ones).
Kolmogorov chose N = 18.
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On the representation of functions of several variables 19

f(x, y) =
5∑

q=1

h(1)
q ∗ Φq(x, y)) + f1(x, y), (7)

where the Φq(x, y) = φq(x) + ψq(y) are the functions constructed above, and

M1 = max |f1(x, y)| � 5
6

max |f(x, y)| =
5
6
M , (7a)

max |h(1)
q (|Φq(x, y)| � 1

3
M, q = 1, . . . , 5 . (7b)

We choose the rank k sufficiently large so that the oscillation21 of the
function f(x, y) on each ‘block’ of any of the ‘towns of rank k’ does not
exceed 1

6M ; this, of course, is possible since as k increases the ‘blocks’ decrease
without limit. Next, let p

(ij)
1 be a certain ‘block’ of a ‘town of the first system’

(and of the chosen rank k); then on this ‘block’ the (continuous) function
Φ1(x, y) takes values belonging to a certain segment Δ

(ij)
1 of the real line

(where, in view of the definition of the function Φ1, this segment does not
intersect segments of values taken by Φ1 on any of the other ‘blocks’). We
now define the function h

(1)
1 on the segment Δ

(ij)
1 to be a constant equal to

one third of the value taken by f(x, y) on any interior point M
(ij)
1 of the block

p
(ij)
1 (it does not matter which). (We call this point the ‘centre of the block’.)

In similar fashion we define the function h
(1)
1 on each of the other segments

defined by the values of Φ1(x, y) on the ‘block’ of the ‘town of rank k’ of
the first system; here all the values of h

(1)
1 will be at most 1

3M in modulus
(since the value of f(x, y) at the ‘centre’ of any ‘block’ will not exceed M in
modulus). We now define in arbitrary fashion the function h

(1)
1 (u) at those

values of the argument u at which it has not already been defined, with the
proviso that it be continuous and that inequality (7b) should hold; we define
all the other functions h

(1)
q (u)(q = 2, . . . , 5) in similar fashion.

We now prove that the difference

f1(x, y) = f(x, y) −
5∑

q=1

h(1)
q (Φq(x, y))

satisfies condition (7a), that is,

|f1(x0, y0)| � 5
6
M ,

where (x0, y0) is an arbitrary point of the unit square. This point belongs
(as indeed do all the points of the plane) to at least three blocks of ‘towns of
rank k’; therefore there certainly exist three of the five functions h

(1)
1 (Φq(x, y))

taking at the point (x0, y0) a value equal to one third of the value of f(x, y)
21 that is, the difference between the largest and smallest values
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20 V.I. Arnol’d

at the ‘centre’ of the corresponding ‘block’, that is, differing from 1
3f(x0, y0)

by not more than 1
18M (since the oscillation of f(x, y) on each block does

not exceed 1
6M); the sum of these three values h

(1)
q (Φq(x0, y0)) differs from

f(x0, y0) in modulus by at most 1
6M . But since each of the remaining two

numbers h
(1)
q (Φq(x0, y0)) does not exceed 1

3M in modulus (in view of (7)), we
obtain

|f1(x0, y0)| =
∣∣∣f(x0, y0) −

5∑
q=1

h(1)
q (Φ(x0, y0))

∣∣∣ � 1
6
M +

2
3
M =

5
6
M ,

which proves (7a).
We now apply the same representation (7) to the function f1(x, y) featuring

in (7); we obtain

f1(x, y) =
5∑

q=1

h(2)
q (Φq(x, y)) + f2(x, y)

or

f(x, y) =
5∑

q=1

h(1)
q (Φq(x, y)) +

5∑
q=1

h(2)
q (Φq(x, y) + f2(x, y)) ,

where

M2 = max |f2(x, y)| � 5
6
M1 �

(
5
6

)2

M

and
max |h(2)(Φq(x, y)) � 1

3
M1 � 1

3
· 5
6
M (q = 1, 2, . . . , 5) .

Next we apply the decomposition (7) to the function f2(x, y) so obtained,
and so on; after an n-fold application of this decomposition we obtain

f(x, y) =
5∑

q=1

h(1)
q (Φq(x, y)) +

5∑
q=1

h(2)
q (Φq(x, y)) + · · ·

+
5∑

q=1

h(n−1)
q (Φq(x, y)) + f2(x, y) ,

where

M2 = max |fn(x, y)| �
(

5
6

)n

M

and

max |h(s)
q (Φq(x, y)| � 1

3

(
5
6

)s−1

M (q = 1, 2, . . . , 5; s = 1, 2, . . . , n − 1)) .

The last estimates show that as n → ∞

44



On the representation of functions of several variables 21

f(x, y) =
5∑

q=1

h(1)
q (Φq(x, y)) +

5∑
q=1

h(2)
q (Φq(x, y)) + · · ·

+
5∑

q=1

h(n)
q (Φq(x, y)) + · · · ,

where the infinite series on the right hand side converges uniformly, as does
each of the five series

h(1)
q (Φq(x, y)) + h(2)

q (Φq(x, y)) + · · · + h(n)
q (Φq(x, y)) + · · · (q = 1, 2, . . . , 5) .

This enables us to introduce the notation

hq(u) = h(1)
q (u) + h(2)

q (u) + · · · + h(n)
q (u) + · · · (q = 1, 2, . . . , 5) .

Thus, we finally obtain

f(x, y) =
5∑

q=1

hq(Φq(x, y)) =
5∑

q=1

hq[φq(x) + ψq(y)] ,

which is the required decomposition (6).
In conclusion we note that the representations (2), (5) and (6) are of purely

theoretical interest, since they use essentially non-smooth functions such as
the Weierstrass function;22 therefore for practical purposes these representa-
tions are, it would seem, useless (in contrast with the representations (recalled
earlier) of roots of equations of the 5th and 6th degrees as superpositions of
functions of two variables). Thus the results that we have obtained do not
remove the problem of finding convenient representations of, say, roots of 7th
degree equations.

It is also unclear to what extent the decomposition (6) can be further
improved; for example, the question of the uniqueness of the choice of the
function h has not been solved. Also there are no methods enabling one to
represent a given smooth function as a superposition of functions that are also
relatively smooth; the strongest result in this direction remains the purely neg-
ative results of Vitushkin. Positive results of this kind would be of enormous
interest.

We note one further result of Kolmogorov that goes in another direction. He
proved that for each function of two variables defined on a square there exists a sum

22 In view of the results of Bari (see Bari, N.K.: Mémoire sur la représentation finie
des fonctions continues. Math. Ann. 103, 145-248 and 590–653 (1930), one can
represent each continuous function of one variable as a superposition of absolutely
continuous functions. It therefore follows from (6) that each continuous function
of n variables can be represented as a superposition of monotone functions of one
variable and the sum function g(x, y) = x+y; however, these monotone functions
are also essentially non-smooth.
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22 V.I. Arnol’d

of the form φ(x) + ψ(y) that best approximates this function. It can also be shown
that for any (even everywhere discontinuous) bounded real function f defined on
a compact set and any continuous function g defined on the same set there is a
continuous function φ such that the deviation of φ(g) from f is a minimum. In
particular, for each bounded function f(x) there is a continuous function φ(x) best
approximating it (in the sense of uniform convergence).
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The present work is devoted to the proof of the following theorem, which

was stated in an earlier note [1].

Theorem 1. Every real continuous function f(%1,%2.%3) of three variables,

defined on the unit cube E3, can be represented in the form
a 3

f (Xl' X2' X3) == ~ ~ hij[CPl} (Xh X2), Xs],
;-1}-1

61* Editor’s note: translation into English published in Amer. Math. Soc. Transl. (2) 28 (1963), 61–147

*

Translation of V.I.Arnol’d: On the representation of continuous functions of three variables by 
superpositions of continuous functions of two variables, Mat. Sb. (n.S.) 48 (90):1 (1959), 3–74
Corrections in Mat. Sb. (n.S.) 56 (98):3 (1962), 392
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where hij and ~ij are real continuous functions of two variables.

For the proof of this theorem in note [1]. use was made of two theorems

whose complete proofs were not given in that paper. Here are these theorems.

Tbeore.2. Every continuous function f(%1.%2,%3) defined on E3 can be

represented in the for~

a

f (Xb X2' Xa) = 2j hi ['Pi (Xh ~), Xa],
i=1

where hi and ~i are continuous functions; the functions hi are real and

are defined on the product ax E l of the tree (see [3]. Chapter X) e by the

interval E l
, while the functions ~i(%1'%2) are defined on a square and have

for their values points of S. Here e is a tree, whose points have a branching

index not greater than 3.

Theore.3. Let F be any family of real J equi-continuous functions fee)

defined on the tree a all of whose points have a branching index ~ 3. Then

one can realize the tree in the form of its hOMeomorphic image X. a subset of

the three-dimensional unit cube E3, in such a way that every function f of

the family F can be represented in the form

3

f (X) = ~ fk(Xk),
k==l

whe r e % = (% 1, %2, %3) is t he image in X of the e Ie me nt e€ a, f (x) = f «( ) ,
and the fk(%k) are continuous real functions of one variable. Here fk

depends continuously on f in the sense of uniform convergence.

FOr greater explicitness, let us consider

the case n = 2 of the lemmas of the note [2].

The proofs (as well 8S the formulations) of

these lemmas are somewhat different from those

given by A.N. Kolmogorov. This is due to the

introduction of the items 6) and 7) into the

fundamental lemma, and to our desire to obtain

crB
If

Ft--....N ---. M

A I

II t----t-----#

D'

Theorem 2 (with the exclusion of the last phrase) is contained in a work of

A.N. Kolmogorov [2]. Its proof is also outlined there, but the proofs of the

lemmas used there were not published. In Part I of the present work there are

presented the proofs of these lemmas for the

case when the branching index of the points of

the obtained tree is not greater than 3. After

that, the Theorem 2 given above is derived from

these lemmas.

Pigure 1. Representation
in the fOrJll <I>(x) + t/J (y)
of a function given on a

Y-type tree.
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Theorem 2 in the formulation given above.

Theorem 3 is proved in the second part of this work. The ideas behind this

theorem are quite simple.

Let a continuous function I(e) (e € l\) be given on a Y-type tree

(Figure 1). Then there exist continuous functions 1
1
(x) and 12 (y) such that

11(x)+/2(y)=f(e) if % and y are the coordinates of the point eeti.

The proof can be accomplished, for example, as follows.

Suppose that the function 11(%) on A8 is equal to /(e1) for a point

e1 € LN whose abscissa is %. In order that I = 11 + 12 on XL, one has to

define 12(y) on DE as /2(y) = !(e2) - 11(%), where e2 € KL is the point
with coordinates x,y. Hereby, /2 = 0 at the point E. Let 12 (y) = 0 on
EF also. Finally, in order that f = 11 + 12 on LM, one has to set

f 1 (x')=/(es)' where es€LM is the point of LM with abscissa x'. It is
easily seen that the constructed functions f 1 (%) and f

2
(y) are the desired

ones.

It is easy to devise an analogous construction for the function given on a

more complicated tree (Figure 11). In general, we have the following type of

theorem.

Every linite· tree, whose branch points are of index not greater than 3,

can be mapped homeomorphically onto a flat segment-like complex K such that

every continuous function fee) is representable on K in the form

f(e) = 11 (x) + f 2 (y), where % and yare t he coordinates of the point

ee K. ••

Theorem 3 asserts that an analogous result holds in the three-dimensional

space for any tree whose points have a branching index not greater than three.

The proof is very involved, but can be reduced in essence to the considerations

given above, and to the transition to the infinite tree from finite trees.

Theorem 1 is a direct consequence of Theorems 2 and 3. Taking the risk of

possibly confusing the reader, who could derive the proof himself, we neverthe

less present a simple argument.

From Tbeorem 2 it follows that one can express the function f(%1,x2,xa)

as the sum of three functions h·(e·,%3) (i = 1,2,3) from the product of the
t t

tree (e· € a), none of whose points have a branching index greater than 3.
1.

by the segment (x € E1
): (e·, %3) € =X E1

• Theorem 3 asserts that the
t

function h(~) on such a tree can be expressed as the sum of three continuous

A tree with a finite number of points.
•• The reader can easily construct the proof of this theorem after he reads ~3-7.

Whether it is possible to give an analogous representation for an infinite tree,
is not known.
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functions hj(xj) (j = 1,2,3) of the coordinates %i of some realization
x}. (e) of the tree a in the three-dimensional space. These functions h. (% .)

} }
depend continuously on the decomposed function h(e) (in the sense of uniform

convergence) if the function h belongs to the same family F of equi

continuous functions on the tree a for which the realization is constructed.

The functions hi (ei .%3) that are obtained from Theorem 2 can be considered to

be such a family of functions hi (e) on the tree a, which depend continuously

on the parameter X3 E E1
, and they are, therefore, eQui-continuous. Applying

Tbeorem.3, we find a realization of a 1n the form X C ES
•

3
In the decomposition f(X1,%2,X3) = ~ h·(e·,%3), e· = q>,(X1,X2) is a

i=l1. t 1. t

point of the tree a and depends continuously on X1 and %2 (Theorem 2).
Hence, after the realization of a in the form X, every coordinate % € X
becomes a real, continuous function of %1 and %2. If e

i
= (J>i(%1,%2) and

the jth coordinate of the point % that is realized bye· is <p .. (Xi, %2),
I. I.}

then, in view of Theorem 3'3 the decomposition of hi (ei ,%3). as a function of

hi Ceil, into the BUll ~ hi' (x}.(ei » can be written in the form
XO i =1 }%O

3

hi [~i (Xh X2), X3] = ~ hij [<Pij (X h Xz), X3].
j=l

'lberefore.
3 3

f (Xl' x", X3) = ~ ~ hij [<Pij (Xl' x2 ), X3],
i=1 j=l

which is the assertion of Theorem 1.

About two months after the completion of our work [1], A.H. Kolmogorov [2]

strengthened the Tbeorem 1 by showing that every continuous function on the

three-dimensional cube is representable in the form

7

f (Xl' X2' X3) == ~ hi [<Pil (Xl) + <Pi2 (X2) --1- <Pi3 (x3)] ,
i=1

where the functions hi and <p are continuous; the functions <Pik are,
however, selected once for all independently of f. From this result of
A.N. Kolmogorov it follows that the three-dimensional cube can be imbedded in
a seven-dimensional space so that any continuous function on the cube will be
expressible as the sum of continuous functions of (seven-dimensional)
coordinates. According to the work [2], an analogous representation for a

square can be realized in a five-dimensional space. From this it follows
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directly that in a five-dimensional space we can place our tree a, once for

all, so that any function continuous on it is expressible as the sum of con

tinuous functions of the coordinates (while in our Theorem 3 the representation

in the three-dimensional space depended on the family F). But by modifying the

methods of the note [2], one can obtain a representation of the tree e which

is valid for all continuous functions f in the three-dimensional space also.

In the constructions of the first and second parts of the present work, use

is being made of the tree of the components of the level sets, which was intro

duced by A.S. Kronrod. The essential information about this tree can be found in

the Appendix. The Appendix and each of the two parts of this work are independent

of each other.

I take this opportunity to thank my teachers A.G. Vituskin and

A.N. Kolmogorov for their constant attention, counsel and help. In particular,

I am indebted to A.N. Kolmogorov for the final formulation of the fundamental
ce inductive lemma" of the second part.

PART I

Proof of 'lheorell 2

Here we shall prove Theorem 2. The fundamental lemma of the work [2] and

Lemma 2 are proved in such a formulation that the tree a, under consideration

in Theorem 3, consists of points whose branching index does not exceed 3.

The following notations will be used:

R2 is the plane of the (x,y) points; E2 is the closed unit square in

this plane, i. e., the set of points (x, y) with 0 ~ x ~ 1, 0 ~ y ~ 1.

The metric in the plane is defined as the distance

Ud(A) denotes a d-neighborhood of the set A, i.e. the set of all

points in the plane whose distance from the set A Is less than d (d > 0).

A is the closure of A.

A polygon is a closed broken line that does not intersect itself. An open

polygon Q is the part of the plane lying inside a polygon, while a closed

Polygon Q is the closure of the open polygon.

An open polygonal band is the part of the plane bounded by two noninter

secting polygons, one of which lies inside the other (Is separated by the

other from infinity). A closed polygonal band is the closure of an open one.
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The set of the level c of a function u(x,y) is the set of points (x.y)

such that u(x,y) = c.

A list of the topological terms used in this work is given at the end of

the Appendix.

§1. PUndamental lemma

Suppose that we are given a finite number of nonintersecting regions gm

in a plane, and that over each region there is a hill u
lIl

• The set of hills

form a "mountain country" G. Suppose that we are given not only one

mountain country G (Figure 2) but an infinite sequence r of such mountain
countries,

where the "country of rank k" Gk consists of some finite number mk of
r

bills ukm of rank k (m = 1, ••. ,mk) over the regions gkm; no two regions
of a given mountain country intersect each other (Figure 2). Fbr large k.

r
the country Gk has more hills, but their bases, the regions gkm' are

smaller.

Finally, let us suppose (and this is not shown in Figure 2) that we are

given three such sequences of countries r r (r = 1, 2, 3), namely. three systems

r r. Each of them consists of mountain countries Gk (k = 1, 2, ... ). and each

mountain country Gk consists of hills ukm (m = 1•••• ,mk).

In the fundamental lemma there are constructed three such systems of hills

uk. satisfying a number of requirements. FOr example. every hill u~m is

constructed in such a way that over every region gk'm' (k' > k) it possesses

a horizontal plane (requirement 5).

Pun~Dtal lemma. It is possible to define on the plane R2
a system of

real functions ukm(x,y), with indices lying within the limits

and having the following properties:

1) o ~ ukm ~ 1.

2) ukm =I 0 just on the region r whose diameter is less than dk > 0;gkm
dk -t 0 k -tOO; uk. = 1 on the set r only.as gk+1 m·

3) T1Io sets r and r
11 i t h the s arne indices r and k, butgkm gkm'

'" i- ",', do not intersect.

4) For any given k, and for every point of the square E2
, it is true

that



53

CONTINUOUS FUNCTIONS OF 11IREE VARIABLES 67

3 mit

O<C< ~ ~ U~m-<C,
r=1 m==1

r

with the same index

Figure 2. System ot mountain
countries. All the horizontal

planes R2 are actually in the
same plane.

at Most.

7) For every r, g~1 J E2
•

The functions uk. and the sets

gkm with the same index r = ro will

be called functions and sets of the one

system rOt while those with the same

index k (and arbitrary r and m)

will be said to be tunctions and sets

of the same rank. '!be index • will

be called number. Obviously. tor any N
the totality of functions (sets) of

rank not higher than N in each system

will be finite.

It is known that for every € > O. the bounded region E J E2 of the

plane R2 can be enclosed (covered) by means of closed 'squares Pea' whose

sides are parallel to the coordinate axes, in such a way that the set ot
squares can be divided into three sys

tems p~.. 1 ~ r ~ 3, whereby the

distance between any two squares of one

system will be greater than € / 2

(Lebesgue covering, Figure 3). These

squares are the cells ot the regions
r

gk,. •

All the successive constructions

where c and C are constants independent of k.

5) The function ukm is constant on each set

r when k' > k but m and .' arbi-

trary.

6) The boundary of each level set

of the function ukm is connected and

divides the plane R2 into three parts

Figure 3. Lebesgue covering. The
squares of one system are lined.

those of another system are black.
those of the third one are white.

The functions Q~ are constructed
c.ia

for the black squares ~km.

for each r are done independently.

During each of the constructions of the

functions ukm' r is kept fixed.

The sets gkm em = 1, •••••k) are



54

68 V.I. ARNOL'O

obtained from the squares P~k.' where €k > o. The selection of the number

€k will be described later. The regions gkm will be obtained by means of a

., dilatat ion" of the ~k in such a way that ~ C grk C Q~ , where Q~
m Vkm. m - c;km vkm

is the closure of the square which is an (Ek /6)-neighborhood of

~klll: UEk/ 6 (~klll) = Q~km (see Figure 3).

It is obvious that if 1Jl1 =! 1Jl2, P(Q~k ,Q~ ) > Ek/ 6 • 'Iberefore
_ _ c; m1 vkM2

P(gkm 1' gkll2) ~ €k/6 •

This means that by this construction the requirement 3) of the fundamental

lemma will be satisfied.

In order to fulfil the requirement 2), it is obviously necessary that

€k ~ 0 as k ~oo. It will become obvious that this condition will be ful

filled by the construction given below.

This construction is divided into several stages. Everything that is con

structed at the nth stage will carry the superscript n together with that

of the system r.

In general, all notations are constructed so that AE
rn should be read as

km
follows: the object A is constructed for the function u (or the set g) of

the system r of rank k and number m. i.e. for ukm (gkm) at the nth

stage. The letters have the following designations:

P is the square cell.

Q is an approximation to g from within.
A.

Q is an approximation to g from without.

Xo Is an approximation to the set of the level u = x (0 < x < 1) and to

the boundary of the set of the level u = x when % = 0 and x = 1.

xft is an approximation to the boundary of the set of the level

u=x (O<x< 1).

FOr example, xi8~n denotes the approximation to the boundary of the
c;km

set of the level ukm = Xi constructed at the nth stage.

Ie start the construction of the gkm at the kth stage. but at the nth

stage (n ~ k) we construct the (n - k + 1)st approximation to gkm from

Qrn ere QArn b Qrn+1 ""' Qrn d rwithin and from without: €k m - gkm Ekmo Here y Ekm ~ €k m an gkm
CD

is determined as U Q~nkm' i.e. as the sum of the dilated approximations
n= k

from within.

The functions ukm are constructed with the aid of their level sets. The

construction is begun at the kth stage where one constructs the first

approximation °Of:. = ~:II \ Q~:1Il to the set of the zero level. At the
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next stage one constructs the first approximations to the sets of the levels

1/2 and 1, and to certain other levels, and the second approximations to the

zero level. At each stage there appear first approximations to new levels, and

one makes successive approximations to the earlier used levels. Each approxi

mation is a closed polygonal band imbedded in the preceding approximation, while

the level set itself is the intersection of all its approximations. The values

of the function u on each of such level sets are selected so that ukm is

continuous, positive on gkm' larger than 1/2 on P~kM but does not exceed

1 anywhere. The requirements 1) and 4) of the fundamental lema will thus be

satisfied.

We shall make use of an elementary geometric lemma whose proof will be

omitted. It is sufficient to examine Figure 4 to convince oneself of the truth

of this lemma.

Case 1) Case 2)

Figure 4. The polygons Q. are black.
'!be band B is lined.

Geoaetrlc Ie.... Let A b~ a closed polygonal band whose width (i.e. the

smallest distance between the boundaries of the polygons) is greater than a

positive number d. Let the Qm (m = 1, ... ,M) be closed nonintersecting

po lygons.

1) If the diameter of each of the polygons Q. does not exceed d, then

it is possible to construct a polygon S which is strictly inside the band A,

separates the boundary of the band A, and does not intersect the polygons

Q11& (m = 1, ••• ,M).

2) If another closed polygonal band B lies strictly inside the band A,
and if the polygons Q. do not intersect the boundaries of A and B, then

the polygon S, which separates the boundaries of A and does not intersect

Qm' can be drawn strictly within the band A so that its intersection with B

wi II be an in t e r val (se gnae nt ) •

We now begin the construction at the first stage.

In order to fulfil the requirement 7) of the fundamental lemma, we set
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Figure 5. 1 is the boundary
of ~1' 2 is the boundary of
Qii. 3 is the boundary of

Q"r1 O~1
11- The shaded band u 11

is the first approximation
to the boundary of the

region g~1.
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£1 = 1. 111 = 1. P~1 = E2
• We construct the squares (Figure 5)

Q;l = Q~~ = Ul- (P~l)andQ~~ = U!. (P~l).
6 12

This is the first approximation to g~1' for we see that

Qr 1 ere Q"r 1 ~r 1 \ nr 1 0 r 1
11 - g11 - 11· Q11 Y11 = 011 is called the first approximation to the

boundary g~1 - This is a closed polygonal band of width 1/12.

If 8 2 < (1/12),3/4), then the squares

Q~2m (m = 1•••• ,m2) can be taken for the Qm
in the geometric lemma. • while the first

approximation to the boundary of g~1 pla.ys
the role of A.

With this selection of £2. we start the

second stage (Figure 6). For this £2 we

construct the squares

~2m' Q~2m = ~~m = Uc2/ e (pLm);

Qr2 U. r TIt 1'2£ m = E (Pg m) (m = 1. 0 •• • 112)· e QE;
2 2/12 2 2 m

are the first approximations to the regions

g~III' while the °<fc~m = Q~:III \ rfe~m are the

first approximations to their boundaries.

It will be convenient to perform the con-

struction so that the boundaries of the

regions gkm and gk'm' do not intersect. It can happen that this requirement

is not fulfilled for the first approximation: the band °O~~ ma.y intersect the

squares Q~ • However. on the basis of the geometric lemma one can draw a
C,2M

polygon within this band which separates Q~~ from infinity and winds among

the squares Q~ without touching them. This polygon, naturally, can be
C,2m

enclosed in the closed polygonal band °o~~ which will be the second approxi-

mation to the boundary of g~1 or to the boundary of the set of the level

u~1 = O. (This explains the use of the left 0 superscript.) The band o~~

determines the second approximation Q~~ to g~1 and can be represented in

h "r2 \ Q1'2t e form Q11 11 •

At the second stage we construct also the first approximations to certain

other level sets of the function u~1. It is easy to see that. since

£2 < (3/4)·(1/12). one can find a square Q~2m. which will lie entirely within

P~1. It is the first approximation to the set of the level 1 for the function

The construction of the squares is described after the formulation of the
fundamental 'lemma (aee Figure 3). For the region E, which occurs there, one
ahould take Q'11.
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r 1~2 A r2 \ 2
u1l' while the band u 11 = QE~* Q€2 m* is the first approximation to the
boundary of this set.

Next, in order to satisfy the requirement 4), we construct the set of the

level 1/2. The boundaries of P~1 and Q~~ are at a distance of 1/12 from

each other, while £2 < (3/4)~1/12). Therefore, applying the geometric lemma

to the band between P~1 and Q~~, we construct a polygon, and then a closed
d 1/20r2 h A r 2ban 11' w ich winds among the squares Q€2 m (m = 1, ..• ,M2) without

touching them, lies within Q~~, and separates P~1 from infinity. The band

1/2Q~~ becomes the first approximation to the set of the level 1/2 for the

function u~1. The successive approximations 1/2 Q~~ (n > 2) are constructed

within this band.

Finally, one constructs at the second stage the first approximations to the

sets of the levels of the function u~1 that contain g~m' and one determines
the values u~1 on these sets.

First of all we discard forever those squares Q~ which were found to
A ~2m

lie outside Q~~ (and, hence, outside Q~~). The remaining squares

Q~2m (m € ~~) (excluding Q~2m*) lie in the ring-shaped regions into which

Qr2 iii b .. d d °Or2 1/20r2 d 1,v-211 S d V ded y the ftntshe ban s 11' 11 an v 11 • Each ring-
shaped region Is an open polygonal band which separates ~€ *, and everything

2-
that lies within it, from infinity.

Let us consider any one square Q~2mo (me € ~~, • ~ m*). We take the
closure of the polygonal band in which the given square lies, for the band A
of the geometric lemma; the remaining squares Q~ m (m ~ me) we take for

A 2
the Q, and the band 0Q~2m = Q~2 \ Q~2 for the band B. In accordancem ~2 (:.1mO (:.2mo

001'2with this lemma, we now draw the polygon S, which intersects € ~ in an__ 2'owv

interval, separates Q~ * from infinity, lies inside the open polygonal band
2m --

between the finished bands, and does not touch the squares Qe
r (m ~ ao).
2-

This polygon S can be enclosed in a closed polygonal band d, which has the

same properties, in such a way that d UQe is also a closed polygonal
% r2 2mo

band (Figure 6). It is °011, the first approximation to the level set, for

the function u~1' that contains g~mo. The value Xo of the function u~1

on this level set Is determined below.

Adding the band XOO~~ to the finished ones, we choose from the M;: a
%1r\42 dnew m =I mo. m::l m*, and construct by the same method an -v11' an so on,

until the set M;: is exhausted and every square Q~2m (m € M[12
) is en-

closed in the first approximation to some level set of the function u~1.

These approx~~ations are polygonal closed nonintersecting bands. The sets

xi8~~ = %iO~~\~:mt' are called a-type closed bands. Each of them divides
~2
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GyrI
If

Figure 6. The thin lines are first
stage constructions. The black

squares are the Q€2'I • There
should be many more of them but

then one would not be able to see
anything on the figure. The black

square at the center is Q~ *.
(;,2"

Only a few of the bands containing
the squares are shown; the second

stage is not completed.

the plane into three parts: the Qg:"'i' the part that contains 10~~, and
the part that contains °O~~ (Figure 6). They are the first approximations to

the boundaries of the level sets of u~1

containing g~m. (mi EM:: ; "'i ~ ",*).
t

Finally, let us determine the values

Between the boundary of the set g~ 1

d 1/20r2 ran 11' the function u11 will
increase from 0 to 1/2, while between
1/~2 1 r2 /-v11 and 0 11 , from 1 2 to 1.
The bands %iOr2 are divided by 1/2~2

11 11

into two classes: P1 outer bands lying
outside 1/~~~, and P2 inner ones.
Let us reorder them by means of an index

j = j(i) in the order determined by their
separation from infinity: the outer ones

from 1 to P1' the inner ones from

P1 + 1 to P1 + P2. Let us spread out
the increase of u from 0 to 1/2

uniformly among the outer bands, by

letting the jth band be an approximation

to the set of the level u~1 = j /2(P1 + 1).
For the inner bands of uniform increase

from 1/2 to 1, we let the jth band

be the approximation to the set of the level 1/2 + (j - Pl)/2(P2 + 1).

Thus we have obtained the following objects at the second stage:

1) The first approximations Q~2 and O~2 to the sets g~_ and their
e:;,2- (;, 211 .qa

boundaries.

2) The second approximations Q~~ and o~~ to the g~1 and its

boundary.

3) The first approximations to the set of the level 1 of the functIon

u~l and to its bounda~, to the set of the level 1/2, and to the sets of

the levels of u~l onwhichthe g~lIl. ("i~m*; mEM;:> lie, and also to
A r2 1. 1,.2 1/2-r2 %i,.2 %i er2

the boundaries of these sets, Q€2.*' 011'v1i' 011' 11·

4) The values %i of the function u~l on the g~mi' and on the level
sets that contain them (not yet cODstructed).

The approximations to the open sets are open polygons containing the

preceding approximations, while the approximations to the closed sets are
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closed polygons, polygonal bands, and 8 -type bands contained within the

preceding approx~ations.

We note that the construction at the second stage of the functions and sets

of rank 2, is exactly the same procedure (if one disregards the scale €2) as

that used at the first stage for the construction of the functions and sets of

rank 1.

In general, after the nth stage we will have:

1) the first stage of the construction of the functions and sets of the

nth rank, the second stage of the construction of the functions and sets of the

(n - 1)st rank, and so on up to the (n -l)st stage of the construction of u~.

d r. •an g2m'

2) the nth approximations Q~~ and °O~~ to the set g~1 and its

boundary, respectively;

3) the (n -l)st approximation to the level sets of the function u~1'

which we began to construct at the second stage, and the (n - 2)nd approxi

mations to those level sets which we began to construct at the third stage, and

so on up to the first approximations xiO~~ and Xi 8~~ to the level sets of

u~1 that contain the g~m" and to the boundaries of these level sets. Here
t

Mrn
nl i E 11' 1.e. -i runs through those values from 1 to Iln for which the

corresponding squares Q~ . do not lie within Q~n I (1 < k < n; .' ~ "'k)'C,nmt c,k ll

but lie inside Q~~;

4) the values Xi of the function u~1 on g~m (- € M~~).

Ie have the following results.

1°. The approximations to the open sets are open polygons whose boundaries

do not intersect each other (nor, in particular, the small squares Q~ = Q~n ).
~n'" c'n'"

These approximations contain the preceding ones.

2°. The approximations to the closed sets are closed polygons, closed

polygonal. or polygonal 8-type bands enclosed in the preceding approximations.

The polygons that are the boundaries of these approximations do not intersect

the other polygons constructed at the nth stage (nor, in particular, the

boundaries of the small squares Q~ ).
c'nln

3° Each one of the bands xiOrn and each of the Xi ern (1ft; € M.
1
n
1

)
• 11' 11 ~

contained in it, separates Q~~III. from infinity, while %i(~~~, besides that,

separates from the rest of Q~n . C %iO rn the first approximation to the set
c'nnlt 11

-.
We call attention to the fact that the notation always reflects the number of
the stage at which aD object is constructed and not the number of the approxima-

. F 1 ()rn· h f' .. rtlon. or examp e, ~c lS t e 1rat approxlmatlon to 2~ •
c,nnl 'tnm
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g~.i which lies on the set of the level u~1 = xi.

4°. The values of u~1 are uniformly distributed on g~m (m € M;:).
The last phrase has the following meaning by definition.

Let the bands A and B be constructed at the nth stage of the approxi

mation to the set of the levels a and b of the function u~1' where a

and b are determined up to the nth stage. Suppose that at the (n - l)st

stage there was no band (of the approximation to the set of the level u~1)

between A and B, but at the nth stage such bands Ci (i = 1, .•• , p)

were constructed (the numbering of the Ci is from A to B). If the value

Xi of the function u~1 on the level set for which Ci is the first approxi

mation Is equal to i(b - a)/(p +1) then the values of u~1 on g~m are said

to be distributed uniformly between A and B. The condition 4) requires that

the values of u~l on g~. be so constructed between any two bands A and

B of the indicated type.

The (n + l)st stage begins with the selection of an €n+1. Since any two

of the polygons that bound the nth stage approximations to all level sets of

all the functions u~a (k ~ n) and to their boundaries do not intersect

(provided they are not identical), there exists a positive number d such that

the distance between any two distinct polygons is greater than d. We choose

€n+1 so that €n+1 < 3d/4. This 8n+1 permits us to carry out the first

stage of the construction of the sets g~+1 m and of the functions u~+1 m •

the second stage of the construction of g~m and u~, and 80 on up to the

nth stage of the construction of g~ and u~",.

Since we now assume that we have gone through the stages of rank less than

n + 1 for u~l' and since they are entirely analogous tor the remaining gkm
and uk.. (k ~ n). we consider only, as an example, the first stage ot the

construction of the sets g~+1 m and of the functions u~+1 III •

For € +1 we construct a Lebesgue covering with the squares PE + m ofnAn 1

the nth approximations Q~~ to g~1 from without. We divide this covering

into three systems p~ a' and construct with them the first approximations
C,n+1

to gr from within and from without,
na

Q~n~~:n= Uan+1 (P~n+lm),
12

(m = 1, ... , mn+l)

and the first approximations to the boundaries of

(m = 1, ... ,mn+l).
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(The squares Q~ + m will be called the small squares.)
n 1

Since cn+1 < 3d/4, one can now proceed with the second stage of the

construction of g~m and u~m' and so on to the nth stage of the construction
r d r

g2m an u2m •

Suppose all this has been done. Then one has to carry out the (n + l)st

stage of the construction of g~1 and u~1.

Let us consider any closed band %O~~ which is an approximation to the set

of the level % of the function u~1. If x = 0, or x = 1/2, then xo~~

will not intersect the sets Qk
n (k ~ n). It can intersect the squares

A r n+1 nt

Q~n+1m = QC
n

+1nt' but their diameters are less than d, which is less than or

equal to the width of the band. Therefore, applying the geometric lemma, and

expanding the polygon S up to the closed polygonal band which winds within
the band xO~~ without touching the small squares, we obtain the bands
°0~~+1 and 1/20~1n+1 that satisfy all the requirements 1° to 4°.

If x = 1, then 10~;h will be 1<:fg2';.+.1, a band that already has been

constructed, since we assume that the nth stage of the construction of the

functions u~m. has been completed.

If x ~ 0, 1/2, or I, then the band xiO~~ contains the approximation

Q~~mi to gkmi (k ~ n), which was constructed at the nth stage, and this
° r n+1band contains, therefore, also the band 0Ekmi that has been constructed at

the (n + l)st stage. Since this band, which contains Orn and is con-
Ekmi '

tained in Q~~.i' does not intersect the small squares, one can choose it for

the band B in the geometric lemma, while for the band A of that lemma, we

can take xiO~~. Applying the lemma, we obtain a polygon S which 1) inter
sects the band °Or n+1 in an interval 2) separates 10 r n+1 from 00r n+1

€klfli ' 11 11 '

3) lies inside xiO~~, and 4) winds among the small squares without touching

them. Dilating S to the closed polygonal band d, which has the properties
x· r n+1 U ::.r n+12), 3), and 4) and which is such that 1°11 = d ~Ek.i is also a closed

polygonal band (that this is possible is obvious), we obtain the following

approximation XiO~1n+1 to the set of the level u~1 = Xi.

xi8~1n+1 = xio~;+1 \ Q~kn.~1 is the next approximation to the boundary of

this level set.

Having completed the indicated operation for all the bands %iO~~, we
will have the set of all closed polygonal nonintersecting bands %~~+1

that separate 10~;+1 from infinity. These bands will be referred to as

finished bands.

Let us begin to construct first approximations to the level sets of the
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function u~1 that contain the sets g~+l m of rank n + 1.

The boundaries of the finished bands XiO~;+l do not intersect the small

squares. Let us consider the numbers m that correspond to those small squares

that lie in Q~:+l, and do not lie in any of the finished bands. The set of
+1 A +1 +1all such m, we denote by M[ln • The small squares Q~:+lm (m E M[l n )

must be included in the first approximations to the level sets. The finished

bands divide the Q~:+l into open polygonal bands which contain the small

squares. In each of these bands we proceed exactly as it was described in the

performance at the second stage. The only difference is that we now have more

finished bands. As a result, we obtain the bands xiO~ln+l and the (H)-type

bands Xi a~1n+1 which are approximations to the level sets and their

boundaries. The values xi in each open band between two finished bands are
distributed uniformly.

In this manner one can accomplish the construction by building at each stage

objects that have the properties 1°, 2°, 3°, 4°:

SUppose that all stages have been completed.

r U QriWe define gkm as k
i = k m·

The level sets of the function ukm which contain the sets gk'm' (k' > k)

are defined as the intersections of the corresponding polygonal bands, the

approximations. The values of the function on these levels are determined at

the k'th stage.

On all regions gkm the functions ukm are extended by continuation.

Below it is proved that this can be done, and that the obtained functions will

satisfy all the requirements of the fundamental lema.

It is obvious that €k .... 0 when k --t 00. Recalling how the squares P

were constructed, we see that U iJ" pr is an everywhere
kim}

Pk.Tn' C g km (k i > k)
t J

dense set on gkm. Because of this. the sum It km of all level sets on which

we determined ukm is everywhere dense in gkm 0 We shall show that the

function ukm is uniformly continuous on the set It km ·
Without restricting the argument, we will set k = Tn = 1, and will give

the proof only for u~1 = u.

Let € > 0 be given. At each (n + l)st stage one can find between any
x r n+1 yor n+1 "rtwo bands 0 11 • 11 at least one square Q~ • if the construction

C,n+1m
of the levels u = x and u = y began before the (n + l)st stage. Indeed,

the width of the open band On between xO~~ and YO~~ is greater than d,

while the squares ~ have diameters less than d and enter into
C,n+1



63

CONTINUOUS FUNCTIONS OF 'I1IREE VARIABLES 77

Lebesgue covering in such a way that one of them ~ ~ has points in on.
A. r n+1 n+1nl

This square, and with it QE - will, obviously. fall into the open band on+ 1

n+1m

between x0';,1n+1 and YO~1n+1. But at the (n + l)st stage (n > 1) the

values between the newly constructed band were distributed uniformly. Therefore,

the largest interval between the values of u on two level sets, whose approxi

mations are neighboring bands of the nth stage, will decrease by two at each

stage. Hence, there exists a stage k such that if xif.k and y~k are
11 11

neighboring bands, then Ix - y I < E/2.

Let us select 0 = Ek+
1

• Suppose that p(a,b) < o. Then the points a

and b are separated by one band %O';,~ only, since the distance between the

polygons that bound the bands is greater than Ek+
1

= o. Hence, there exists a

band %o~~ which is not separated from a and b by any other band. But it

is obvious that at such points the function u differs from z by less than

E/2 (the rank k is chosen in this way). Therefore, I u(a) - u(b) I < €, and

the function u is thus uniformly continuous on the everywhere dense set of the

compact g.

This function can be extended (and in a unique manner) over the set g.

Figure 7. The bands are con
structed at the nth stage.
In the shaded area u dif-
fers from the value on the
level u = % (whose approxi
mation is the middle band

%O~~) by less than 8/2.

The condition 5) will be fulfilled if

gk'm' C gkm because

Ie set u = 0 outside of g. Such a continuation of the functions

will satisfy the requirements 1) to 7) of the fundamental lemma.

Indeed, the fulfillment of the require-

ments 1), 2), 3), and 7) is obvious.

The condition 4) is satisfied with the

constants c = 1/2 and C = 3, because for

any k each point of E2 is covered by at

least one, and by not more than three squares

p~ for some m and r. But on thesevkm
squares 1/2 ~ ukm ~ 1. The level sets

ukm = 1/2 were constructed especially for

this purpose ..

that is, the set gk'm' is contained en-

tirely in the level set of ukm. If g~'m' C R~\gkm' then uk'In' = 0 on
gk'm'. The boundaries of gkm and gk'm' do not intersect, by their
definition. Each of these sets is a region, and hence there can occur no
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The condition 6) is also satisfied. This is obvious for the sets of the

levels 0 and 1. (It is easy to see that each of the remaining level seta of the

function ukm is obtained as the intersection of a sequence of closed polygonal

bands, and it is, therefore, connected, and divides the plane into two parts,

one containing the set where ukm = 0, the other one where ukm = 1.) The

boundaries of the level sets of ukm that contain gk'm" divide the plane

into not more than three parts because they are obtained as the intersection of

sequences of closed polygonal 8 -type bands. The boundaries of the remaining

level sets of ukll (with the exception of the 0 level set for which 6) is

trivial) coincide with exactly these sets because none of such level sets con
tains points of the open set

which is everywhere dense in gkm' and consists of all points of gkm that
belong to the sets of higher rank of the same system.

This completes the proof of the fundamental lemma.

§2. Proof of Theore. 2

Let ukm be functions that satisfy the conditions of the fundamental lemma,

gkm be sets on which the functions are positive, and let dk and 0 < c ~ C

be the constants occurring in that lemma. Fbr the purpose of constructing the

representation of a function of three variables in the form indicated in

Theorem 2, we first decompose a function of two variables into an absolutely

and uniformly convergent· series of the functions ukmo
Lemma 1. Suppose that we are given on the square E2 a family F of

continuous functions which form a compact in the uniform metric (i.e. the

family consists of uniformly bounded and equi-continuous functions u, and

is closed with respect to uniform convergence). Then every function f E F

can be represented in the form
go 3 mit

f (X) = ~ ~ ~ a~m (f) U~m (x),
k-l '-1 m=-1

(1)

where the coefficients akm are independent of x, depend continuously (in the

sense of the uniform metric) on the f E F and are such that
CD

I a~m (f) I< ak, ~ Uk < 00,
It-=l
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where the ak depend only on the family F.

For the proof of this theorem we need the following proposition.

Lemma on the approximation by means of a linear ca.b1nation of functions of

rank k. Let f(x) be a continuous real function on E2
, and let

max f f(x) I<M.
xEEJ

Let k be a positive integer, and

max If (x) - f (y) , --< Ok.
p (X, y) -< dk

Then one can determine coefficients b~, independent of x, such that

f(x)=S(x) + R(x),
where

3 mk

S (X) = ~ ~ b~u~m (X),
'-I m=1

(2)

(3)

(4)

Hereby one can select the b: so that they depend continuously (in the sense

of the uniform. metr ic) on f(x), and sat isfy the inequal i ty 'b; t ~ MIe.

Proof. Ie pick a point xkna in each one of the sets gkm' and set

br = f(xkr ) Ie. Obviously, the br depend continuously on f and Ibr I ~ MIe.m _ na M

Next we will show that the inequality (4) is fulfilled at each point x € E2
•

The R(x) is determined by means of (2) and (3) for the given choice of

br • Let us keep the arbitrary point x € E2 fixed. From the properties 2)m
and 3) of the functions uk. (see the fundamental lemma) it follows that at

most three of the functions ukna' for a given k, will be different from

zero at each point oX, and these will correspond to different r. SUppose

that for the given point x these functions are ukr (r = 1,2,3). Then,mr
for the given point x, we have

3 3

S (x) == ~ b'mrU~mf (X) == _1_ ~ f (X;mr ) U~mr (x).
f=1 C r~l

Let us suppose at first that xrk (r = 1,2,3) and x were selected so
"'r

fortunately that they coincided: xkr = x (r = 1,2,3). Then s(x) would be
"'r

(5)
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and R(x) would be, correspondingly,

R' (x) = f (x) - S' (x).

But from the requirement 4) ot the fundamental lemma it follows that

8

o< C -< LJ U~mr (x) -< c.
r=1

Therefore, we have the following estimate for R(x),

(6)

IR' (x) I -= If (x) - S' (x) I= If (x) I(1- ~) -< M (1 - ~). (7)

The same estimate for R'(x), defined ~ the equations (5) and (6) holds,

obviously, also without the hypothesis that xrk = x (r = 1,2,3). In ordermr
to appraise R(x) in the general case, we consider

IR (x) - R' (x) I =: IS (x) - S' (x) I=
3 3

= f- I ~ [f (Xkmr) - f (x)] Ukmr (x) 1-< -7: ~ f (Xkm) - f (x) IUkmr (x).
r~1 r-I

Since (see condition 2) of the fundamental lemma) the diameter of the region

gkm is less than dk , we have that

1R (x) - R' (x) I< _1 Ok ~ Ukmr (x)
C r=1

or, on the basis of property 4) of the fundamental lemma, that

IR(x) - R' (x) I< Ok.

This, in combination with (7), establishes the lemma.

Proof of Lemma 1. Let f E F be a real function continuous on E2
, and

let

sup If (x) I< M =: Mo, sup If (x) - f (y) I= Ok_
xEEJ, feF xEE!, uEE!, fEF

p(x, U)<dk

As k ..... 00, Ok ..... o. Therefore, one can select a k 1 = k 1 (F) so large that

0k
1

< cMo /2C. Applying the lemma on the approximation, with k = k 1 , and

assuming that akr = br , we obtain1m m

3 m k1

f (X) = ~ ~ ak1m (f) U~lm (x) + R1 (x);
r-l m--I
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moreover

sup IR1 (x) J ~ M o (1 - ~) + 0k1 < Mo(1 - ~) ,
~EEtt fEF C 2C

where the ak
1
m depend continuously on f € F, and

setting 1 - c/X= O. and OMo = M1 , we obtain

sup IR1 (x) I< Mlo
xEE!, fEF

81

It is obvious that the R1(x) that correspond to all possible f € F t form a

compact F1' as a continuous image of a compact. In particular, these R1(x)

are uniformly bounded and equi-continuous. Furthermore, each function R € F1

depends continuously on the corresponding function f € Fo . Let us introduce

the notation

We can repeat the preceding argument, and in conclusion obtain a k 2 = k 2 (F)

such that

3 milt

R1 (X) = ~ 2J a~Jm (R1) U~lm (X) +R2 (X),
r==l m=l

where

and the ar depend continuously on R1 € F1 ,k2,m
Furthermore.

and, hence, on f € Fo.

Continuing in the same way, we obtain the sequence

r-l m-l

moreover
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sup IRn+l(X) I< 6Mn = 6n
+1M,

xEE', fEP

where the akr depend continuously on f € F, and
nm

(n = 0.1,2'00.' if we use the notation Ro(x) = f(x».

Let us introduce the notation

(8)

(9)

n-l n-l 3 mkl+1

Sn (x) = ~ (R,(x) - Ri+l (x» = ~ ~ ~ ak mUk m (x). (10)
i+l '+1

i-O

Then it is obvious that

'-0 r-=1 m=l

f (x) = Sn (x) + Rn(x).

From the inequalities (8) and (9) it can be seen that the sequence Sn(X)

(n = 1.2'0 •• ) converges to f(x) absolutely and uniformly, and that

, 4k
r

. '< ak. = MO i
-

1
/ C (i = 1.2, ... ).

t m t

This proves the leDlDa, since one may set akm = 0 when k ~ k i (i = 1,2, ... )

and then obtain (1) from (10).

In the proof of Theorem 2 use is made of the following result.

Lemma 2. The space of the components of the level sets of the function

ex> mk

Fr(x, y) = ~ :2 ~ Ukm(X, y)
k=1 m=l

is a tree with a branch point index not greater than three.

Every funct ion

CX) m k

f,(x, y) == ~ ~ akmukrn
k=1 m-l

is constant on each component of a level set of the function Fr if the akm

are such constants that the series (*) converges uniformly and absolutely.

Proof of Lemma 2. Let r be fixed. First, let us prove that all the com

ponents of the level sets of the function Fr(x,y) are 1) components of the

level sets of the function ukm (k = 1,2, ... : m = 1, ... ,mk)' 2) boundaries of
such components, 3) separate points which are intersections of sequences of

the sets gkm'k (k ~oo).
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Let us pick a point a in the plane. The point a belongs either to an

infinite number of the sets gkm' or there exists a "last rank" Ito ~ 0

after which the point a does not belong to any gkm (k > ko)'

Let us consider the first case. We will prove that such a point is a com

ponent of the level sets of the function Fr' Suppose that the point a belongs

to an infinite sequence {gk .•. }. From the condition 3) of the fundamental
t,,·t

lemma it follows that the k i are all distinct. We shall assume that k i +1
> k i .

One can easily deduce from the fundamental lemma (requirements 2) and 5»,

that if the sets gkm and gk'm' intersect, and if h' > k, then gk'm' C gkm.
In the proof of the fundamental lemma given above, this result is obtained auto

matically (see the proof of the fact that the requirement 5) is fulfilled).

Therefore, we have a sequence of inscribed sets gk' ,J gk J .00 9 a.
co tmt i+1mi+1

In this connection, n gkr . ,= a, since the diameters of the sets gkr t'-t'
i = 1 tmt II.

tend to zero as i ~OO (requirement 2) of the fundamental lemma).

On the boundary M
t
, of each set gkr , " the value of the function F is

tMt r
less than that at the point a. Indeed, all the functions ukr (h ~ k,) are

In t

zero on Mi (this is a direct consequence of the requirements 2) and 5) of

the fundamental lemma), while all the functions ukr (It < k,) take on them t

same values as at the point a (requirement 5». At the point a, however,

all the functions uk,lJt. (j ~ i) are positive, and, therefore,
co Ink J J

F (a) = I 1
2

I Uk (a) 1s greater than Fr on M
t
,.

r k = 1 k m= 1 m

But each continuum that contains a, intersects some set of the Mi
co

because U M. separates a from all the points of R2 \a (Figure 8) 0

i = 1 t

This means that on each continuum that contains a one can find a point b

where Fr(b) ~ Fr(a), but this indicates precisely that a is a component of

the level sets of the function Fro

Now, let us consider the second case. Suppose the point a € gkomo does

not belong to any gkm (k > ko)o Then a will belong to a continuum K,

the set of a nonzero level z of the function urk •omo
Let us assume at first that K does not contain the regions gkm (k > ko).

Then 0 < z < 1. We will prove that K is a component of a level set of the

function F.
r

Let us select two sequences z: and z~ (i = 1,2, ... ) which converge
t t

to z from above and from below, and which are such that the sets Mi and
M~ of the levels z, and z~ (i = 1,2, ... ) of the function ukr .~ do not

t t t O•."V

contain the regions gkr and 0 < z~ < z < z: < 1. This can be done because
m t t



70

84 V.I. ARNOL'n

o < % < 1 and the regions gkm constitute a denumerable set. The continua M:
and M-', obviously, separate K from the points where urk is greater than

t 0"'0
(0

U (M: U M-:), separate
i = 1 t t

point of R2 '\K, rukomc
as well as on the

z: and less than %i. and all of them together. i.e.

K entirely from all points of R2 '\K, since at every
+ -is greater than some % i or less than some %i. On K.

+ -sets Mi and Mi' the function Fr does not change since all the terms with

uk. (k > ko) are zero in view of the assumption on the absence on K. M; and

Mi of the sets gkm. But the values of Fr on K. on M; and on Mi are

different, because all terms uk. with k.< ko are the same on these continua

(requirement 5». all the terms uk. with k > ko are equal to zero, while

the function urk is equal to % on K. to %:- on M+1." and to %' on M-:.
01Jl() t 1. t

Figure 8. Representation of all types of components. In the
third case % ~ 1. The gk1m

'
are lined. The case % = 1

is left to the reader.

(0

Each continuWD M =I K, but containing K, intersects U (M: U M-')
i = 1 t t

(Figure 8). Therefore it has points where Fr differs from the values of Fr
at the points of K. This means that K is a component of the set of levels

of the function Fr.

In the remaining case the proof 1s analogous to the one given above. and we

will only indicate it. If the set K ~ a of the level ukomo = z contains

8k'm" then the component of the level set of the function Fr that contains
a will be L. the boundary of K (Fig. 8). Actually. the point a does not
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belong to gk,., (since ko Is the "last rank" ). The boundary of K

divides the plane into no more than three parts (requirement 6». First.

suppose that % ~ 10 Then in two of these parts ukomo will take on values

greater and less than z. while in the third part gk'm" uk'm' is positive.

The point a cannot lie in any of these parts but lies on the boundary of K.
On the continuum L, the function Fr is constant, because all the functions

uklR are constant (requirements 5) and 6». In order to prove that L is a com

ponent of the level set of the function Fr' it is necessary to separate it by

means of continua, with values of Fr , from all points of R2 '\L. For this it

is necessary to use sets of levels near zero of the function uk'm' and sets

of levels close to % of the function ukr (Figure 8).
01aO

The remaining case, z = I, is even simpler because the boundary of the set

urk = 1 divides the plane into two parts only (this is a direct consequence
0"'0

of the construction of the functions ukm' but it can also be deduced from

requirements 2) and 6) of the fundamental lemma).

The structure of the components of a level set for the function Fr has

thus been explained. Not a single one of them divides the plane into more than

three parts. It follows (Appendix, Theorem 3) that the tree of the function Fr
consists of points whose branching index does not exceed 30

In order to complete the proof of Lemma 2, we note that all the functions

ukm are constant on each component of the level sets of Fr' This implies

the truth of the second assertion of the lemma 0

Theorem 2. Every real function f(%1'%2'%~) that is continuous on EB

can be represented in the form

3

f (Xh X2' Xa) = ~ hi [~l (Xh X2 ), X3 ],

i=1

where hi and ~i are continuous functions, the functions hi are defined

on the product a x E1 oj the tree by the interval E1, while the ~i(%1'%2)

are defined on the square E2
, and have for their values points of E. lIere

e is a tree whose points have branching indices not greater than 3.

Proof. A function f(%1' %2' %3) of three variables can be considered as

a family of functions of two variables that depends on the third variable as a

parameter: f%~(%1'%2)' where the function f%3(%1,%2) is defined for each

%3 on a single square 0 ~ %1'%2 ~ 1, and at a point (a,b) is equal to

f(a,b,%~). Obviously, each of the functions f%~(x1'%2) is continuous and

depends continuously (in the sense of t~ uniform metric) on the parameter

%3 (0 ~ %3 ~ 1)0 Therefore, the family of functions f%3(%1,%2) forms a
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compact. Hence, we can apply the Lemma 1 and obtain

00 3 mk

fx. (Xh x2) = ~ ~ ~ a~m (X3) U~m (Xl' X2).
k=l r=1 m=l

CD

and I ak < (X) •

k=l
it follows that each of the series

00 m k

f~. (Xh X2 ) = ~ ~ a~m (X3 ) U~m (Xl' X2) (r = 1, 2, 3)
k=l m==l

converges absolutely and uniformly. (But by the fundamental lemma only one of

the uk. (m = 1•••• ,mk) is different from zero at any given point.) We shall

show that f~3(%1' %2) depends on x3 continuously (in the same sense).
(X)

Indeed, suppose € > o. We can select N so large that ~ ak < €/4.
k=N

Since the akm(x 3 )ukm(x 1 ,x2 ) depend continuously on x3 ' the same thing must
be true for the finite sum. Hence there exists a 8 > 0 such that if

Iy - % I < 8 then

(r=l, 2,3).

But since

ClO mk co mil GO

SUp I~ ~ akm (y) ukm (xlt Xt) - ~ ~ akm (z) ukm (Xl> X2) 1-< 2 ~ Uk < ;,.
%1,x,EEI k-N m=l k-N mc::l k-N

we find that for 'y - z , < 8, it is true that

Now we apply Lemma 2 and see that for any given %3' each of the functions

%3 € [0,1] is constant on each component of the level set of one of the con
CD 1 mk

structed functions Fr (x 1 ,x 2 ) = It - ~ uk (X1'%2) which does not depend
k = 1 k2 m= 1 m

on f (x l' x '2' X 3) •

Let us consider (see Appendix) the tree of components of the level sets of

the function Fr (x
1
,x2 ). The mapping t(a) = ~r(x1tX2) associates with each

point % of the square E2 = A a point ~r of the tree T which represents
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the component t of the level set of Fr (%1,%2) that contains (%1,%2). We

can consider this mapping as a function ~r(%1'%2) defined on the square and

with values from the tree. If one wishes, one can realize the tree on a plane.

This mapping can then be written with the aid of two real functions defined on

the square. The mapping tea) is continuous. The functions fr (%1,%2) generate
%3

on rr functions fr (~r) which are equal to the values of fr (%1,%2) at any
%0 %3

point of the component t of the counteTimage of ~r on E2
• Because of Lemma

2, this value is the same at all points of this component. It is obvious that

the obtained functions fr (~r) are continuous on rr and depend continuously
%3

on %3. Therefore, one may consider the family fr (~r) (%3 € [0,1]) as a
%3

continuous real function fr(%3'~r) on the product of the tree by the interval

of variation of %3:

t:. (Xh x2) = tf' (Xs, cpr (Xh x2»).
From the three trees T r (r = 1,2,3) we can compose a single tree S. By

Lemma 2, each of the three trees consists of points whose branching indices are

1, 2 or 3. The tree S, obviously, can be constructed so that it has the same

property. Each of the functions fr(%3'~r) (r = 1,2,3) can be extended con

tinuously over the product of the entire tree S. by the interval (it does not

matter in what way this is done). Let us denote this extension by hr(~r,%3)

(r = 1,2,3). From the relation (1), Lemma 1, we obtain in this notation

s
f (Xh X2, Xs) = ~ hr [CPr (Xl' X2), Xs].

r-=l

This completes the proof of Theorem 1.

PART II

Proof of The.orem 3

We shall now construct the tree X C E3 mentioned in Theorem 3. This tree

is to be homeomorphic to the universal tree =which does not have points

whose branching index is greater than 3. The latter tree, as is well known

(see Appendix, Theorem 5), can be obtained by attaching branches. More

precisely, S can be represented in the form

00

3; = U ~n' ~n C .1n+lt
fl=l

where ~n is a finite tree (curved complexes). ~ 1 is a simple arc and ~n+1

is obtained from ~n by attaching at the point Pn (which is not a branch

point) simple arcs on (Figure 9). We note that the set of points Pn that
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are now branch points of a, is at most denumerable. Everything that pertains

to the abstract tree a will be denoted by Greek letters, while the correspond

ing items of its realization X will de designated by Latin letters. The

realization of X will be constructed in the form

Qg

X = U Dn, Dn C Dn+b
n=l

where the Dn are segment complexes in a three-dimensional space; the homeomor

phism between a and X will be constructed as a continuation of the

homeomorphisms 6. n and Dno

It is known that in order for X to be a realization of = (and, hence, to

be a tree), it is sufficient that the following conditions be fulfilled (see

Appendix, LeDJDl&S 10 and 11):

ex) Each newly constructed branch sn' except for its base, must lie

entirely inside the open, still empty, simplex Tn. Furthermore, for all twigs

8 m attached to sn (Pm € sn) later (m > n) Tm C Tn (Figure 9).

On Figure 9, and in Menger's work ([3], Chapter X), where the tree X

lies in a plane, the simplexes T are triangles. In our case they are

tetrahedra. This makes no essential difference.

(3) The simplexes Tn must be sufficiently small: the diameters of the

Tn tend to zero when n ..... 00 •

y) The points P
n

at which the new branches are attached may not have been

earlier branch points or endpoints for Dno

Figure 9. Finite trees: " abstract", curved tree ~, and
its realization as a complex D 0
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In the sequel (~~ 3-7), in the construction of Dn and X, we will always

be able to choose the points Pn and the direction of the segments sn with

sufficient freedom: each time the forbidden points or directions will have an

everywhere dense complement. '!be length of the sn will always be chosen

sufficiently small. The conditions CX), (3), and y) can.. therefore, be assumed

to have been satisfied at each step. In order not to complicate the future

presentation, we will not mention this 10 the sequel. We assume that by attach

ing each branch sn we construct the corresponding tetrahedron Tn' and will
not worry about the fulfillment of the conditions a), (3), and y).

In order that the obtained tree X may satisfy the conditions of Theorem

3, i.e. in order that each continuous function of the given family may be

represented as the sum of functions of coordinates, it is necessary to select

the Pn and sn with certain restrictions. For the precise formulation of
these restrictions, we need several new concepts which are presented in the

next section.

~3. Fundamental definitions. Inductive properties 1-4

In a three-dimensional space· let K be a finite set of segments or

straight lines. These segments (straight lines) are not to be parallel to the

coordinate planes.

Definition 1 (Figure 10). A zigzag (certain type of broken line) is a

system of points ao ~ a1 ~ ••• ~ 4 n-1 ~ an of K, such that the segments

ai-14i (i = 1, •••• n - 1) are perpendicular to the coordinate axes %ai and

ai -:# ~ ~ <Xa ~ .0. =I an. The segments ai -1ai are called I inks of the zigzag.

If ao = an' the zigzag is said to be closed.

One should visualize the zigzag in the following way. The beginning ao
is a point of K. We choose the first direction a1 • The plane that passes

through ao and is perpendicular to the axis %a1 (we shall refer to it as

the "plane of the coordinate direction <It'') intersects K at a point a1.

We shall say that it leads froll 40 to a1. In exactly the same "83' the link

a1a~ lies in the plane of the direction <X 2 (~a 1) so that at a1 there
occurs a break. At the point 4 ~. the direct ion again change s to ex 3 (-:I. <X 2 )

and we arrive at the point a3, and so on until we get to an. the end of the

zigzag.

Or somewhat modifying the described process we obtain the generating

• In ~ 3 -7 the number of dimensions could be ~ 2. The graphs correspond to the two
dimensional ca.e.
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scheme that was defined in note [1]. A more descriptive definition will be

given here.

Definition 2 (Figure 11). The beginning of the generating scheme is the

point 00 € K •

Figure 10. The zigzag
c00102a3a4C5ae.

Figure 11. A generating scheme
from the point 00. If one in
cludes the point ~. then the
obtained double generating
scheme will be of the class of
the point 8.0.

The beginning is also called the end of rank o. We choose a coordinate direction

~o and draw through the point 00 the plane of this direction. In general, it

will have several points of intersection with K in addition to the point ac.
We shall call this plane a plane of rank 1. and these points, ends of rank 1.

The plane of rank 1 leads from ao into each of the ends of rank 1.

Next. this process is continued. At each end a of rank n we select a

coordinate direction ~ different from the one along which we arrived at this

end.· Through a we pass the plane of this direction. If this plane does not

pass through any other point of K besides a, we do no more to this point a;

it Is called a free end. If. however, ° is Dot a free end. then we obtain
points of intersection of the plane with K. which are called ends of rank

n + 1. In this manner the constructed plane of rank n + 1 leads away from

the nonfree end of rank n and leads to ends of rank n + 1.

If this process terminates, i.e. if all the ends of some rank N are free

ends. and if all ends of all ranks as pairwise distinct ••• then the entire

• That i., different from the direction of the plane of rank n at whose inter

section with K the point a lies.
•• This mean. that in the construction we do not arriYe at the same point twice.
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structure is called a generating scheme which leads from the point ao in the

direction 0:0. N is called the rank of the scheme.

In this manner, a generating scheme (or system) consists of a beginning 00.

of ., supporting" planes of different ranks, and of ends of different ranks.

We will need a certain generalization ot generating systems, a double

generating system. It differs from the simple one defined above only in that

from some of its points (ends) one draws two planes', and not just one. In this

way, all three directional coordinate planes that pass through such a point,

can be supporting planes in a double scheme it one of these planes leads into,

and the other two away from the point. Double systems can be obtained, for

example, by combining simple ones which have only the beginning in common, or by

connecting to some nontree end a of a simple scheme A a generating system

B, for which a is the beginning, and which has no common points with A
except Q.

Every free end a of a double (or simple) generating system can be con

nected to the beginning ao by a unique zigzag all of whose points are ends of

a scheme. and all of whose links lie in the supporting planes of the scheme.

If there were several such zigzags, then the ends of the scheme could not be

pairwise distinct. The indicated zigzags are called zigzags of the scheme. They

are finite, not closed, and do not contain closed parts.

Definitions of stability. We shall say that two zigzags (generating schemes)

on K are of the same type if their points can be put into a one-to-one

reciprocal correspondence in such a way that corresponding points lie on the

same segments (straight lines) of K,· while the corresponding links are

perpendicular to the same coordinate axis.

Ie shall say that the zigzag aQ ••• an is not longer than the zigzag

bo••• b. (m ~ n) if it is of the same type as a part bo••• bn of the second

one.

A generating scheme A is not longer than a generating scheme B if one

can set UP a correspondence between their zigzags under which all zigzags of

A are not longer than the corresponding zigzags of B. The types of the

generating schemes which are not longer than a given one form a finite set.

Ie shall say that a generating scheme A that begins at ao is stable

if ao has such a neighborhood that the generating schemes of the points of

K that lie in this neighborhood are not longer than A. For example, the

complex K of Figure 11 admits a generating scheme, beginning at any point

• No branch points can lie within a segment of a segment-like complex K. The com
plex of Figure 11 consists of 5 segments. This remark does not apply to the set
of straight linea of K.
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with an arbitrary first direction. Here, for any point, except for the branch

points A, B, and the end points C, D of the zigzag that issue from B, the

scheme is stable.

The zigzags of the same type produce a mapping of the set of all their

beginnings (initial points) into the set of their ends. This mapping is linear

and nondegenerate (because the segments of K are not perpendicular to the

coordinate axes). We will make frequent use of these facts in what follows.

The set of all points of K which are vertices of zigzags that issue from

the point ao are called the class of points accessible from ac. or simply

the class of the point ao on K. The class of a set of points is defined in

an analogous way. We call attention to the fact that the class of a point. and

hence the class of a denumerable set is a denumerable set. All generating
schemes of a point ac, and of points belonging to the class of ao lie in

the same class.

Now we can formulate the inductive lemma which will be proved in ~~4-9.

Let us return to the function f on the tree S.
SUppose that con Is the upper boundary of the variation of the functions

f € F on the component difference a\ t1 n • As n -t m, Ct) n -t o.
Indeed, if =' is a realization of e constructed (see Appendix. Theorem

5) on the plane, then F will give rise to a family F' of equi-continuous

functions defined on the planar continuum a I. Since the diameter (see condi

tion f3, and Figure 9) of the triangles Tn tends to zero when n -t m. and

since every component a '\~'n lies in the triangle Tm (m > n), it follows

that for large enough n the diameter of the component a' \t1~ will be so

small that the oscillation of any function f' € F' will be arbitrarily small

on every component. Therefore one can pick a sequence

nl<~< ... <n,< ... ,
80 that (Un ~ 1/r 2 when n > nr •

We shall next list the inductive properties of the tree Dn, of the

homeomorphism of !1 n on D, and of the functions f'k(xk) (m ~ n; k = 1,2.3).

Here the tree D is a realization of ~n. D lies in a three-dimensional
cube of a segment-like complex whose segments are not perpendicular to the

coordinate axes.

1. Let A be the set of points of Dn which are images of the branch
points· of a that lie on ~n. Let Kn be the set of straight lines whose

segments form Dn , and let en be the class of the set of vertices of the

• More precisely, one should s.y of the" points Pm It becauae Theorem 4 is not
proyed in the Appendix. In the sequel, branch pointa can be taken as the pointe

Pm and Pm'
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closed zigzags on Kn•

Then:

a) Cn is at most denumerable,

b) Cn does not intersect An (and hence not the class An on Kn ).

c) no two points of An belong to the same class on Kn .

2. On Dn there is a finite number of simple generating schemes such

that from any point ao € Dn one can start 1n any direction to generate the

scheme of one of the "canonic" type.

3. Every function f € F is representable on Dn in the form
3

f(x) = ~ f'k(xk)' where the xk are the coordinates of the point x € Dn•
k=1

and the fk(xk) are continuous functions which depend continuously on f(x).

4. If nr < n < nr+1. then

93

Inductive lemma. If the tree Dn , the homeomorphism of ~n

the functions fk(xk) (k = 1.2,3: m ~ n) have the properties

one can construct a tree Dn+1 • a mapping of ~n+1 on Dn+1 •

fk+1 (xn). with the same properties. by attaching to the point

segment Sn that is not perpendicular to the coordinate axes.

Scheme of proof:

on Dn• and

1 to 4, then

and func t ions

Pn a branch-

i indicates the property of the tree Dn• of the homeomorphism ~n
n

onto Dn• or of the function fk(xk)' In the section that appears in any

rectangle. the property i n+
1

is derived from the properties that are con

nected with this section by means of arrows.
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~4. Indactive preservation of property 1

We will assume that Dn has the property 1, and we will show what condi

tions have to be imposed on Sn in order that this property may be preserved

on Dn+1• The conditions that one finds are not very restrictive: the

direction may be chosen from an everywhere dense set of the second category; •

the length can be arbitrarily small.

Let us DOW assume that on Kn , that is on Dn , to which there have been

added rays which extend the segments Dn , the following conditions hold:

a) the class en of the points of closed zigzags is at most denumerable;

b) the points of closed zigzags of Kn are not accessible on Kn from

the points of An which are the images on Dn of the branch points of a;
c) no two points of An are such that one is accessible from the other

on Kn•

Let us first restrict the selection of the direction of Sn in such a way

that the condition a) is guaranteed on Dn+1 • The number of the types of

zigzags is at most denumerable for every choice of Sn, because the type is

determined by the initial and successive straight lines of Kn and by the

direction of the path, i.e. by a finite sequence of elements of a finite set.

For each type there either is no closed zigzag, or there is one, or else all

zigzags of the given type are closed. This follows from the linearity of the

corresponding type of mapping of the initial straight line onto a finite one.

In case that all zigzags of a type are closed, we say that a closed zigzag is

stable. Obviously. it is sufficient that there be no closed zigzags on Kn+1

in order that condition a) be satisfied on Dn+1 •

Suppose that Dn+1 has been constructed, and that the segment Sn is not

perpendicular to the axes. The stable closed zigzags can occur only among

zigzags which have a common point with the straight line that supports Sn.

Let M be such a point. It can be taken for the beginning of a closed

zigzag. Suppose that the equations of the straight line in the system of

coordinates in which the origin 0 has been translated to Pn are given as

X 2 = bxl , X 3 = eXl,

where neither b nor c are zero, because the segment Sn is not parallel

to the coordinate planes. For the sake of definiteness, let us assume that a

closed zigzag issues from the point M(xQ,bxQ'cxo) in the direction Xi and
falls on for the first time again exactly at the point M where it arrives

from the direction %2. Let the straight line at which the zigzag arrives at

• That ia, from the complement of the Bum of a denumerable number of nowhere den8e
aeta.
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the ith step, have the equations %2 = bix 1 + f3 i' %3 = CiXi + Yi. Neither

one of the coefficients bi, and Ci can be zero. The second point of the

zigzag has the coordinates Xo, b 1XO + f3 l' C 1%0 + Y1. If the second direct ion

is, for example, %2. then the coordinates of the third point will be

In general the coordinates of each point depend linearly on Xo, and the

coefficients are determined by the intermediate straight lines. We assume that

the zigzag does not intersect I before it is closed. Then the last point will

have the coordinates

because the direction %2 will lead to the point xo,bxQ'cxo, and one obtains

bxo = 12%0 + A2 • For stable closure it is necessary that the equation be satis

fied for all Xo, i.e. b = 12 and A2 = O. Hence, such a closed zigzag will

be stable only if lies in the plane X2 = 12%1. The corresponding directions

I will be called forbidden directions.

If the zigzag closes after it has been on several times, a necessary

condition for stability is bici = la, where 10 is some constant depending

on Kn and on the type of the zigzag. Here is the difference between the

number of arrivals of the zigzag on I from the direction %2 and the number

of departures from I in this direction; j has a similar meaning for the

direction %3. If the direction of is not a forbidden one (i.e. b1cJ ~ 10),

then there can exist no closed zigzags of the considered type. Suppose that

(Io - 1) 2 + i 2 + j2 ~ o. Then the directions for which bi ci = 10 form

nowhere a nondense set (a curve) in the space of directions. Therefore all

directions which are forbidden by some types of zigzag for which

(La - 1)2 + i 2 + j2 ~ O. lie on a denumerable Bet of smooth curves and con

stitute an everywhere dense set of the second category of forbidden directions.

If, however, i = 0, j = 0, and Io = 1, then the closed zigzag will be

stable for b and C arbitrary, and, in particular, if we direct I along

the straight line q on whose segment qn € Dn the point Pn lies, where

the branch Sn is attached. It is true here that some, but not all, points of

the zigzag (namely those lying on I and q) will run together. But it Is

easy to see that on Kn there Is defined a stable zigzag and that the points

of q will belong to its class. But on q there are points An. This yields

a contradiction with the condition c) which is satisfied by D.

The final result is as follows: one can choose the direction from an
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everywhere dense set of the second category so that Dn+1 will satisfy the
condition a).

Let us now go over to the condition c). We consider two branching points of

a whose images lie on Dn (in An). The Sn must be chosen so that it will
be impossible to connect the points from An in Dn+1 by means of a zigzag.

For zigzags which do not contain points of Sn' this Is already so. because

the condition c) is satisfied on Dn• The set of pairs of points An is

denumerable. So is the set of all types of zigzags. Let us consider one of

these types and one of the pairs_ The requirement that a zigzag of this type

connects these points leads to forbidden directions for which such a con-

nection can occur, and, Just as in the preceding proof, all forbidden

directions lie on a denumerable set of smooth curves. The condition b) leads to

the same type of requirement for the points An and closed zigzags Kn+1 -

We must now concern ourselves with the fulfillment of condition b) for the

points of An+1 "An (lying on sn) and with condition c) for pairs of such

points An+1 of which at least one lies on Sn. Having selected in the manner

described the direction 1 from the everywhere dense set of the second cate

gory (from the complement of the forbidden directions). we map an on 'n.

Thus we have constructed Kn+1• Let us put on 1 the points of the class

An. This denumerable set must not intersect the images of the branching points

of a on Sn. The same prohibition applies to the set of points of the closed

zigzags on Kn+1 and the classes (on Kn+1 ) of these points. The set of for

bidden points or, as we shall say, the "taboo set" is at most denumerable

because of the W83 in which 1 is chosen.

The requirements a) and b) will be fulfilled on Dn+1• while the re

quirement c) will hold on Dn if we do not map the branching points of =
into the forbidden points 'n. SUch a mapping of Sn on 1 for which the

requirement c) on Dn+1 is also satisfied, will now be described. Here the

segment sn may be arbitrarily small. This fact will be used later.

Let us now assume that we have chosen Sn and its size. On Sn there is

a taboo set (at most denumerable) which cannot contain the images a of

branching points ~ of a that lie on un- The mapping must be homeomorphic,

and we must take care that the points a are inaccessible to each other on

Kn+1•

Let us arrange the branching points of a on an into a sequence

(X1, a 2 ••••• (The point Pn is not included in this seQuence.) The denumerable
set is everywhere dense on un.· Therefore, a similar·· mapping of this set on

• If thi. i. not the c••e then we .dd to the point. a: some points ~.

•• That i., an order preserying.
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an everywhere dense set Sn can be extended to the homeomorphism un on Sn.

We still have to map the points a on sn. Since there are no ends un among

the <X i, the images ai of the (X i are distributed in the interval s~ whose

closure is Sno

Let us consider on S n a denumerable system of intervals 8~, 1 ~ k < 00,
1.

1 ~ i ~ i k , such that

1) for every k
ik k
lJ 8. =

i = 1 l

I
sn ,

2) each of the intervals S~••••• S~k is less than €k; €k .... 0 when

k-.oo.

If each of the intervals contains at least one point a j, then the points

aj (j = 1,2'0.0) form an everywhere dense set Sno Let us arrange all these

intervals into one sequence Sz (l = 1,2, ... ).

Let us assume that the directions on un and Sn have been selected so

that Pn and Pn are the left endpoints.

First step. We pick a nonforbidden point a1 on 01. It will be the

image of a point ~. The points of the class of a1 form on 'n a

denumerable set. We add this set to the taboo set.

second step. The point a1 divides un into a left and a right part.

Let a il be a point (X with smallest subscript in the left part, while a. i r
has the same meaning for the right part. The point al divides the intervals

o into those that lie to the left of a1' those that lie to the right of 41'

and those that contain a1. Among the intervals that do not lie to the right

of a1, with a subscript greater than 1, we select the one with the smallest

subscript. On it we pick a nonforbidden point to the left of a1. This will

be ail' the image of ailo We add to the taboo set all points of the class

of ail. We select from the remaining intervals 8 which are not to the left

of al. the one with the smallest subscript. In this interval we pick a non

forbidden point a i r to the right of (J1. We add to the taboo set the points of

the class of air.

After the nth step, 0" will be divided into 2n intervals by the 2n - 1

points ~1' ~ iI' <X i r , <X ill' <X il r '· o. '<Xi rro •. r
"'--'"

"-1 times

The (n + l)st step. In each one of the 2" intervals we pick a point with

the smallest subscript and denote this subscript in the left-most interval by

i ll ••. l • then by i ll ... lr , ... , in the right-most one by i rr.•. r •
~ ""-..--"

" times "-1 times n -1 times
The mapping of these 2" points aill ..• l' <Xirr ... r on 8n takes place
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in exactly the same way as described in the second step_ The image of ex. the

point at is always picked in the interval 8 which is not to the left of ex .•
t

the left end of the interval (CX i, ex i) from which ex was picked, and not to

the right of aj. Hereby one picks the interval with the smallest subscript

from all the intervals 8 having the given property. In the interval 8, the

point a Is picked between ai and aj from the nonforbidden points. Then

one adds to the taboo set all the points of the class of the point a. After

this one constructs the image of the next point ex until the (n + l)st step

is completed.

The proofs that the mapping of the points a on a is defined after the

performance of all steps for all a. that this is a similar (order preserving)

mapping, and that by the thus generated homeomorphism un and Sn retain the

properties a), b), and c), can be accomplished without difficulty_

§5. Le.. on 18n8rating schemes

Before we start the proof of the possibility of preserving the inductive

properties 2, 3, and 4, let us investigate more closely generating schemes of

segment-like complexes K. It is immaterial whether these schemes are simple

or double.

If one omits the beginning in a generating scheme. then the remainder can

be considered as the set ot intersecting generating schemes starting with the

ends ot the first rank (of the shortened system).

Le... 1 (Figure 12). If the shortened systems Ai of a given system A

are stable, and the initial point ao is not a branch point of K, then A
is s tab Ie.

Proof. Let e, > 0 be such a number that an €1-shift· of the initial

points ai ot the shortened schemes will not lengthen these systems (see

definition ot stability in ~3). Furthermore, from the stability of Ai it
follows that the ai are not branching points of K. Since the complex K
18 a closed set, there exists an £2 > 0 such that the plane, which is

parallel to the first plane of the scheme A and which is at a distance of at

least €2 from it, intersects only those segments of K which contain ao

and the points ai-

By taking € < min (€1.€2), we obtain an E-neighborhood of the point ao

The existence of this neighborhood proves the stability of the scheme A.

• We recall that the di.tance between the points (%1'%2'%3) and (%~,%~,%~) is

max ( I%i - %i I ).
l~ i~ 3
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Figure 12. The generating scheme aoa1a2 has rank 1. The layers
of generating schemes of semineighborhooas are shaded.

Lemma 2. If no vertex of a generating scheme is a branching point. then

the generat ing scheme is stab le.

99

Proof. '!be proof is accomplished by induction. If the rank of the scheme

is zero and the point ao is a free end, and not a branching point of K.
then. obviously, there exists in K a neighborhood of the point ac. which is

composed of points with the same property (see Figure 12. where the points a1

and a2 are shown with the mentioned neighborhoods of stability). If the

assertion of the Lemma 2 has been proved for a scheme of rank n, then its

truth for a scheme of the next higher rank follows from Lemma 1.

Lemma 3. Suppose that the generating scheme A with initial point a is

stable. Then for every positive € there exists a positive number 8 such that

every supporting plane that corresponds to the scheme A and leads a.ay fro.

the point b of B is at a distance not greater than g fro. the correspond

ing plane of the scheme A. provided that the initial point b is nearer than

o to the initial point a.

Proof. The generating scheme A has a finite number of supporting planes

ni (a) of each direction r = 1.2.3.

For the scheme B which leads away from the point b in the interval of

stability of the scheme A, there are defined planes, points. and zigzags of

the scheme B that correspond to planes, points. and zigzags of the scheme A.
(The converse is in general not true, because the zigzags of the scheme B can

terminate earlier.)

Let us consider the planes "~(b). (This Is the notation for the plane
t

Which corresponds to the plane n i (a) in the scheme A.)
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Lemma 4 (Figure 13). Let us assume that

Figure 13. Relative to Lemma
4. The thick arrows represent

the generating systems.

The coordinate Xr is the same for all the points n ~ (b); it depends
t

linearly on any coordinate of the initial point b. It follows from this and

from the finiteness of the number of supporting planes of the scheme A, that

for every point b in a sufficiently small neighborhood of the point a all

planes of the scheme B are nearer than € to the corresponding planes of

the scheme A.

We note that the segments of a complex are always assumed to be non

perpendicular to the coordinate axes. From the finiteness of the number of the

segments it follows that their inclination to the coordinate planes is bounded

from below. Hence, Lemma 3 implies that a sUfficiently small change of the

beginning of a scheme will produce an arbi

trarily small shift of the vertices of the

scheme. These vertices will not disappear.

These properties will be referred to as the

continuous dependence of a stable generating

system on its beginning. A finite number of

stable generating schemes Ai depend in a

uniformly continuous manner on the beginning,

in the sense that for every E > 0 there

exists a 0 > 0 which is the same for all

these schemes.

the class of the point b does not contain a

closed zigzag. Let A be a stable generating scheme which starts at a, and

let B be a stable generating scheme with beginning at b, whose first

direction is the same as that along which the scheme A leads into b. Then

the points a and b have neighborhoods Ua and ub such that if the scheme

A' (this is a scheme that corresponds to A but its beginning is at a' E ua )

passes through the point b" E ub' then the scheme B' (which corresponds to

B but leads away from b ' € ub) has no points in common with A'. provided

b I =I b".

Proof. Let US consider the set of points of the schemes A and B.
Suppose that the shortest distance between two points is ~ > O. We will pick

for the points a and b neighborhoods u and ub such that if a' E u •
a a

b' € ub' then the points of the schemes A' and B' will be at a distance

less than ~/3 from the corresponding points of the schemes A and B. Such

neighborhoods can be found in view of the remark relative to the Lemma 3. These

are the neighborhoods sought.

Indeed. let a', b' and bIt be the points mentioned in the hypothesis of
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the 1emmao Suppose that the point y lies on A' and B' (Figure 13). As a

point of A'. it has a mate <X on A. As a point of B'. it has a mate fJ
on B. We will prove that <X and ~ coincide. Indeed, in the opposite case

they would be at some distance not less than ~ from each other. But the point

y is at a distance less than Tf /3 from its mate f3. and at a distance less

than ry /3 from a for the same reason. The obtained contradiction proves that

a = f3 f> But this implies that the zigzag that connects b with f3 in B lies

entirely in A. in the opposite case one could connect b with ~ (= tt) by

means of a zigzag through A in a different way. But the class of the point b,

by the hypothesis of the lemma, contains no closed zigzags. The scheme A' 1s

not longer than A. It contains y. which corresponds to <X. and it contains

b", which corresponds to bo This implies that A' contains a zigzag connect

tng b and y of the same type as the zigzag (b <X) EA. On the basis of

similar arguments, the zigzags (b{3) = (b<X) and (b'y) are of the same type.

The zigzags b'y and b"y must, therefore, also be of the same type. This,

however, contradicts the nondegeneracy of the corresponding type of linear

transformation because the points b' and btl had been assumed to be distinct.

This contradiction establishes Lemma 4.

In §8 we will make use of still another property of stable systems. We shall

call it the property N. A scheme A which leads away from the point ao E K.
has the property N if the point ao lies on the segment ~C K, where it

possesses neighborhoods· U1 and U2 (in the case when ao is an endpoint of

K, ao has a one-sided neighborhood) such that for all points ~ E U1 there

exists a generating scheme A'(~) of the same type and not longer than A,

and for all points a~ € U2 there exists a generating scheme A"(a~) of the

same type not longer than A.

Examining Figure 12 one can understand that these types do not necessarily

coincide, but may all three (type A, type A', and type An) be different.

The following lemma is true:

Lemma 5. Every stable generating schetrte has the property N.

Thus Lemma 5 can be deduced from Lemma 6 just as Lemma 2 can be deduced

from LeDlDa 1.

Lemma 8. Let A be a generating scheme that starts at ao in K. If

each of the shortened schemes Ai of the scheme A has the property N, and

the point ao is not a branching point of K, then the scheme A has the

property N.

The proof of Lemma 6 is analogous to the proof of Lemma 1.

• That i., inter"al. which lie on ~ and ha.,e aO for a limit point.
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We introduce now the concept of a generating scheme (system) of intervals.

FOr this purpose we consider a generating scheme of points of the interval

u of the complex K. Suppose they are all of the same type (as, for example,

those of the scheme A' of the points of the interval Ua in the definition

of the property N). The set of corresponding points of these schemes form

intervals in which the zigzags of one type map the interval u. The corres

ponding planes of these systems form layers. If the parallel layers do not

intersect then we have a generating scheme of the interval u. It consists of

the intervals of a scheme analogous to the ends which lie in the intersection

of K with the layers of the scheme that are analogous to the planes. The

interval of a scheme of rank 0 is u; the set of all planes of the first

direction of the schemes of the points u is a layer of rank I. It will lead

from u and will lead to the intervals of rank I. And so on. From the com

binatorial viewpoint, a generating scheme of intervals is constructed in the

same way as a generating scheme of points. In place of free ends we have here

free intervals.

The following concept was not introduced for the schemes (systems) of points.

An interval of a layer is the intersection of the layer with the coordinate axis

that is perpendicular to the layer. The generating schemes of points u

associate with each point u a point in each interval of the scheme and a

plane in each layer. This defines a linear mapping u on each interval of the

layer.

Applying the Lemmas 2, 3, and 5 to the tree Dn which has the inductive

properties 1 and 2, we can establish that Dn has a generating scheme that

leads from the point Pn, and trom each point of the class Pn. This scheme

(system) is stable, has the property N and depends continuously on its

beginning. The scheme exists because Dn has the inductive property 2, and

the class of the point Pn does not contain branching points in view of

property 2. Thus, the lemmas are applicable to this scheme.

§6. Inductive preservation of generating schemes

In §4 it was shown how one can add to Dn a branch Sn, as small as we

please, in such a way that Dn+1 would have property 1. In order that Dn+1

may have the inductive properties 2, 3. and 4, it is necessary that Sn be

small enough. Having chosen the direction of the straight line 1 in accord

ance with §4. having selected E > 0 sufficiently small, and then Sn in the

E-neighborhood Pn, as described in ~4, we find that all four inductive

properties hold on the constructed tree Dn+1 •
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In this section it will be proved that if Dn has the properties 1 and 2.

and if the direction l has been chosen correctly, then there exists an E > 0

such that if Sn is placed in the E-neighborhood of Pn' then Dn+1 possesses
the inductive property 2.

In accordance with the property 2, the tree Dn has a finite set of types

of canonical generating schemes. We shall transform these types somewhat. We

shall try to obtain a finite number of generating schemes Ai which pass

through Pn and which are such that for every 0 > 0 there exists an E > 0

such that the planes of the canonic schemes of points lying outside a 8
neighborhood of the beginning ai of the scheme A1 will not intersect the

E-neighborhood of Pn.

Suppose that the existing canonic types do not possess this property. Since

the number of types is finite, one of them must be nonregular. By this we mean

that this type contains generating canonic schemes which have planes arbitrarily

close to Pn if there is no scheme that passes through Pn. We select from the
sequence of initial points of the indicated schemes, a sequence that converges

to a, and we consider the set of limit points of the set of points of all

these schemes. This set of limit points cannot be a generating scheme. But it

contains Pn' and by adding to some of its points (their number is, obviously,

finite) their generating schemes, we obtain the generating scheme of the point

a. The added points are all distinct from each other and from those that

existed before, because in the class of Pn there are no points of closed

zigzags.

By Lemma 2, the obtained system is stable. Therefore, there must exist a

neighborhood of the point a such that the generating schemes which start in

this neighborhood must be schemes that correspond to this point, because of

stability. Let us replace (in this neighborhood of a) the nonregular type

of generating schemes by the schemes that correspond to a. The obtained types

will be considered to be canonico It is clear that the remainder of the

canonic nonregular type is regular. This can be proved easily by making use of

the linearity of the corresponding mappings.

Having performed this operation with all the old nonregular types, we

obtain new canonic types; we shall call them simply canonic types. A finite

number of the points ai have canonic schemes passing through Pn- All non

regular types are now in the intervals of stability of these schemes Ai- From

the linearity of the mapping of the neighborhood of a i into the neighborhood

of Pn with the aid of the corresponding zigzags of the canonic schemes, there

follows the following assertion.

For every 8 > 0 there exists an E > 0 such that the E-neighborhoods
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of the point

schemes whose

corr~spond to

Pn can be intersected by the planes of only those new canonic

beginnings lie in a 8 - ne ighborhood of the po ints ai' and which

the A. in the sense of stability.
t

Let Ai be a canonic generating scheme

that leads away from ai and passes through

Pn. We shall consider the following generating

schemes (Figure 14):

Bi , the scheme that leads away from Pn

in the same direction along which Ai arrived

at Pn.Figure 14. The thick arrows
represent generating

schemes. Ci , the generating scheme, leading away

from Pn' whose first direction is different

from the ones along which Ai leaves Pn and arrives at Pn' and from the

first direction of Bi . (In case Pn = ai' the scheme Bi is not defined,

and we do not consider it.)

All these schemes pass through Pn' and they are, therefore, stableo

According to the inductive condition I, the constructed generating schemes

have no points in common besides Pn' and the Bi and Ai satisfy condition

4.

Let us consider the set of all the points of all three schemes. Let the

positive number ~ be the least distance between any two points of this set.

Applying Lemma 4 to Ai and B., we find a 0 - neighborhood of the point ai'
t I

and an E-neighborhood of the point Pn such that Ai and B i will not

intersect if their beginnings lie in the indicated neighborhoods (for the

definitions of A' and B' see Lemma 4). Applying Lemma 3 to the schemes

Ai' Bi , Ci , we find a 02 > 0 and an 8 2 > 0 such that all the points of

A~, B~, C~ will be at a distance greater than T/ /3 from their correspond-

ing points of At" B" C. provided that the beginning of A~ lies in a 02-
t t t

neighborhood of ai' and the beginnings of the remaining schemes in an E2 -

neighborhood of Pn0 Here C~ is a scheme of the same type as Ci but

shorter.

Let us choose a positive number 0 less than 01 and 02. For this we

find an 83 > 0 such that the 8 3 -neighborhood of Pn is intersected by the

planes of only those canonic generating schemes whose beginnings lie in 0
neighborhoods of the points a i and whose first directions are the same as

those of Ai. We choose a positive number 8 less than 8 1 • 82, and 8 3 •

From the finiteness of the number of types Ai it follows that all the num

bers 8 and 0 can be chosen uniformly for all i. Consequently. we can
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obtain a system of 0 - neighborhoods of the points ai' and E - neighborhoods

of the Pn such that the following statements are true.

A) The E-neighborhood of Pn is intersected by the planes of only those

canonic schemes whose beginnings 1ie in 0 - neighborhoods of the points a i •

and which correspond to Ai.

B) The schemes A~ and B~ do not intersect if their beginnings lie in
t t

the indicated 0- and E-neighborhoods.

C) In the transition from Ai' Bi , Ci to A;. B~, c; the points of

these schemes will be shifted over distances less than ~ /3 provided the

beginnings remain within the indicated neighborhoods.

Recalling the meaning of the positive number TJ. we see that if the

beginnings lie in the indicated neighborhoods, then the schemes B~, C~ cannot

have any points in common besides the beginning. The same thing is true for

C ~ and A ~ • B ~ and A ~ •
t t t. t

Let us inscribe a parallelepiped P in the obtained neighborhood of Pn.

The edges of the parallelepiped are to be parallel to the coordinate axes, its

center is to be at Pn. and one of its diagonals is to lie on qn0 Inside P

we attach to qn at Pn a segment 2s n in the direction (see §3)

(Figure 15) °

/!=A"----.nr--,,_---""

Figure 15. The attaching of sn. Figure 16. Generating scheme lead
ing away from the point a on Dn+1 •

The length of the segment Sn will be restricted from above. In order to

preserve property 2 on Dn+t • it is sufficient that 2sn C P. We shall prove

this.

If the planes of the canonic generating scheme Dn• which leads away from

some point of Dn • do not intersect 2sn• then the scheme will remain to be

a generating scheme also on Dn+1 • In particular. this is known to be the case

for all points that lie outside the 8 - neighborhoods of the points ai. From
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the property A) it follows that it is sufficient to construct a generating

scheme leading away from each point of the 8 - neighborhood of a· in the first
't

direction of Ai- Let A be such a point. The canonic scheme A~ which leads

away from a on Dn in the first direction of the scheme Ai' corresponds to

A. because the 0 - neighborhood is smaller than the interval of stability.
t ,

Suppose that A intersects 2s n at the point x. Then A i intersects qn

in some point x'; x ~ x' if a = a .• - In the sequel we will assume that
t

a ~ ai- Let us pass a plane through x'. The first direction of this plane is

the same as that of C i - Suppose that x" is the point of intersection of this

plane with qn. From the choice of the direction of 2s n it follows that
x" ~ x' and %_

Let us construct (Figure 16) generating schemes C~ and B~ leading away
t t

from the points x". From the properties B) and C) of the E- and o-neighbor-

hoods it follows that the schemes A~ and B~, as well as the schemes A~
t t t

and C~ have no points in common, while B~ and C~ have only the beginning
1. t 1., , ,

in common_ It is easy to see that the planes Ai' Bi , Ci , that do not pass

through x, x', x", cannot intersect P_

All the thus far considered generating schemes led away from Dn• With

their aid one can construct, however. schemes which will lead away from an a
Ion Dn+1 • The scheme Ai does not lead to Dn+1 only because the point x

is not free on it. Let us select a direction at this point for the first plane

of the scheme Ci • The obtained plane intersects Un+1 (in addition to the

point x) also at the point x" and at points of the first rank of the scheme,
Ci - From the points of the first rank we leave along directions. along which

I , II
we pass to Ci - Bi leads away from the point x on D. Since these schemes

do not intersect, except at the point xu. because they cannot have any points

In common with Ai' and since the planes of the schemes A~. B~. C~ do not
intersect P (except for the four planes which are here being considered and

pass through x. x', xu), we obtain a generating scheme that leads away

from a to Dn+1• In case 4i = Pn' and a € 2s n• one does not have to

construct x": the scheme C~ is con
t

structed at the point x' (Figure 17). The

proof is analogous to the preceding one.

The proof of the inductive fulfillment

of the property 2 on Dn+1 under the con

ditions of the fulfillment of the properties

1 and 2 on Dn• will be finished as soon as

Figure 17_ Generating scheme we give the finite number of types of gen-
that leads from x on Dn+1 • eratlng schemes. But we have actually done
• In ca.e (I = CJi. the acheaae Ai remaina a generating acheme on Dn+!.
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this in the construction of the generating schemes leading away from a. Indeed,

it is easy to see that the set of types of schemes, which are here used (schemes

A~, B~, and C~) is finite, because they are not longer than the schemes Ai'
Bi , Ci which are the schemes of the canonic type on Dn•

§7o Inductive preservation of the decomposition of functions

This section contains the construction of the representation of a function

(defined on a finite tree Dn) in the form of the sum of functions of the

coordinates.

Lemma 7. Let A be a scheme that leads away from a point ao of a complex

K. and let f(x) be a function, defined on K, which differs from zero at

the point ao only. Then there exists functions of the coordinates xk of the

point x such that for every point x E K

3

f (X) == ~ fk (Xk),
k=--=l

where the functions [k(x) differ from zero only at those points of the kth

axis which are the intersections of this axis with the planes of the scheme A.

Proof. Let us assume that f~(xk) =O. If we substitute ~ into the
right-hand side of equation (*) then this equation will fail to hold only at

the point of rank 0 of the scheme A. We will call the function f~(xn) the

zeroth approximation to fk(xk). The function of the nth approximation,

fk(xk)' will be constructed in such a way that the following conditions hold.

1) If the function fk(xk) is substituted for fk(xk) in the equation (.),

then this equation will fail to hold only at the points of rank n of the

scheme A.

2) fk(xk) = f k-1 (xk) (n = 1.2•... ), if the point xk of the kth axis

does not lie on planes of rank n of the scheme A.

The functions of the zeroth approximation possess the property 1). and if
.N+1

the rank of the scheme A is N, then the f
k

(xk) will satisfy, obviously,

all the requirements of Lemma 7. If the tk- 1 (xk) are constructed so that the

conditions 1) and 2) hold, then we set

I

tn
-

1 (x) = ~ f~-l (X1t~.-1
The expression f(x) - /n-1(x) = ~n(x)t the nth disjoint. is different from

zero at the points of rank n - 1 of the scheme A. Let a be such a point.
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and suppose that the plane 11, which leads away from this point, intersects

the kth axis at the point xk(a). From the definition of the generating system

it follows that all the xk(a), that correspond to different a and n, are

distinct. Introducing corrections ~k(xk) = ~n(a) for fk-1 (xk) at the points

xk(a), we set f'k(xk) = f'k-
1

(xk) + ~k(xk). It is obvious that f'k(xk) has the

properties 1), 2). Hence, one can construct all the f k+1 (xk). This completes

the proof of Lemma 7.

Lemma 8. Let A be a scheme which leads away from the interval

complex K, and let f(x) be a continuous function, defined on K,

differing from zero on s only. Then there exist continuous functions

of the coordinates of the point x such that for every point x € K

s of the

and

a

f (X) = ~ fh (Xk),
k=l

where the functions fk(xk) are different from zero only on the intervals of

the layers of the scheme A.

The proof of this assertion is analogous to the proof of Lemma 7. All

points and planes are replaced by intervals and layers, while the functions

which differ from zero at separate points are replaced by continuous functions

differing from zero only on separate nonintersecting intervals at whose ends

they are zero. In particular, the disjoints and corrections will be such

functions.

Lemma 9. The assertions of Lemmas 7 and 8 are true for double schemes.

Proof. The proof of this lemma is again accomplished with the aid of the

distribution of corrections. At the points (intervals) from which two planes

(layers) issue, one may ignore one of them, obtain a simple system and make use

of the Lemma 7 (8)0 But then the corrections and disjoints of all ranks will

be equal. One can decrease the size of the corrections if one makes use of both

issuing planes (layers) for the "distribution of the corrections along two

direct ions" .

Suppose, for example, that the planes "1 and "2 of the directions X1

and X2, respectively, lead away from the point a. In order that the equa

tion (.) may hold at the point ao, one may set

~~ (Xl) == -rILiI (x), f~ (Xl) == f~ (Xl) + L\~ (Xl),

~~ ~X2) =--= 12 L\ 1 (x), f~ (Xl) == f~ (X2) + ~~ (X2),

3

where, as before f~ (Xk) == 0, ~l (x) == f (x) - ~ fk (Xk) and where 11' 12> 0,
k==l
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Y1 + Y2 = 10 Then the equation (.) will fail to be satisfied at all ends of

rank 1, and one has to introduce the correction at a greater number of points

than one would have had to if one had ignored 772 by assuming that Y2 = o.
In the final construction of the functions Jk(xk) in §9. use will be made

of the distribution along two directions.

Lemma 10. Suppose that we are given on a segment-like complex K two

cont inuous Junct ions: an "0 ld" one,

3

f (X) = ~ Tk (Xk),
k==l

where the fk(xk) are continuous functions of the coordinates xk of the

point x € K, and a "new II one f(x), which differs from the old one only

on the interval s that possesses on K a generating scheme A (simple or

double). Then one can find "corrections for fk" which are continuous

functions gk(xk)' differing from zero only on the intervals of the layers of

the scheme A, and which are such that if one writes fk(xk) = fk(xk) + gk(xk)'

then on the entire complex K

3

f (X) = ~ fk (Xk).
k-l

Lemma 10 is a direct consequence of the Lemmas 8 and 9 if one introduces

the function g(x) = f(x) - [(x). The process of the distribution of the

corrections along two directions, which leads to the construction of the
3

gk(xk) ( I gk(xk) = g(x», determines the disjoints ~n(x). the corrections
k=1

~k(xk) = }k(x) t\n(x), and the approximations gk(xk) = gk- 1(x k ) + ~I:(xk). It

is clear that one may consider the functions fk(xk) = fk(xk) + gk(xk) as
3

approximations to the f k (xk); the disjoints f(x) - ~ f'k(xk) and
k=l

corrections f~(x.) - f~-1(x.) will hereby be the same. The construction of
t t t t

the fk(xk) (k = 1,2,3; n = 0,1.2, .• 0,N + 1), which was described above,

will be called the distribution of corrections.

Lemma 110 For the preservation on Dn+1 of the inductive property 3, it

is sufficient that the interva l 2s n have a generat ing scheme on Dn U 2s n ·

The expansion of f(x) as a sum of functions fk+ 1 of the coordinates can

be accomplished through the introduction of corrections for fl: with the aid

of the distribution of corrections along two directions determined, in

general, by the double generat ing scheme of 2s n .

Proof. Suppose that on Dn U2s n , the interval 2s n has a generating
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scheme. On Dn, every continuous function can be expressed as the sum of

functions of coordinates (inductive requirement 3n). We select for the old
3

function fn{x) = ~ fJ:(xk)' and for the new function, lex) on Dn+1 • On
k= 1

Dn U2s n we define this function so that the difference between it and the old

function on 2s n is an even function relative to the midpoint of 2s n. Then

we will have the conditions of Lemma 10. from which follows the possibility of

the representation of f{x) on Dn+1 as the sum of functions of the coordinates

by the method of the distribution of the corrections along two directions. If

each correction depends continuously on the expanded function (and this can,

obviously, be obtained from the conditions of Lemmas 7-11), then the expansion
3

I(x) = I fk+ 1(xk) depends continuously on f. In §7 every correction depends
k= 1

continuously on the expanded function.

If the branch Sn is constructed as indicated in §§3-5, then the require

ments 1n+1 and 2n+1 will be satisfied on Dn+1 • The last requirement means

that there exists on Dn+1 a finite number of canonic generating schemes of

intervals. For this it is only necessary t.hat (§5) the direction of Sn be

chosen correctly and that the branch Sn lie in a sufficiently small neighbor

hood P of the point Pn.

Lemma 12. Suppose that the conditions In and 2n are fulfilled on Dn .

If Sn lies in a small enough neighborhood p' C P of the point Pn. then

2s n has a generating scheme on Dn U 2sn•

Proof. Let us consider the above constructed canonic generating schemes

of the points 2s~ on Dn+1 with a given first direction (Figure 17). When

x changes on 2s~. then x' runs through a one-sided neighborhood u of

the point Pn on qn. Because of the stability of the schemes A and C.

there exists a semineighborhood u on the same side of Pn for whose points

all schemes A' and all schemes C' will be of the same type (Lemma 5).

The points and parallel planes A and C do not intersect in pairs

(excepting at the point Pn). From the continuous dependence of A' and C'

on the initial point x' it follows that if x' changes in a sufficiently

small neighborhood of the point Pn. then the points and planes of the schemes

A' and C' will be as close as we please to the corresponding elements of the

schemes A and c. Let TJ > 0 be the least of the distances between any

plane TT of one of the schemes A, C and a point (not on 17) of one of these

schemes. Let E > 0 be the radius of a neighborhood of the point Pn such

that the planes and points of the schemes A and C are shifted by not more

than TJ/3 when the point x' varies over the E-neighborhood of Pn. Then
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N

the intersection u with the €-neighborhood of Pn will yield a semineighborhood

of the point Pn which is an interval u having on Dn+1 nonintersecting
generating schemes (see §5) A· and C·.

This follows from the fact that all schemes A' and C' are of the same

type; any two parallel layers of these schemes will, obviously, not be

separated by a distance greater than ~/3. If we now place the segment 2s n
in a small enough neighborhood Pi of the point Pn (namely such that x'

falls into ~) then the interval 2s~ will have a generating scheme on Dn+i

whose first direction will coincide with the first direction of A.

From the Lemmas 11 and 12 it follows that for the preservation of the in

ductive property 3 on Dn+i it is sufficient that the segment Sn be small

and have a properly chosen direction (§~-5).

In §7 use is made of a generalization of the Lemma 12.

By the N-characteristic XN of a generating scheme Au of the interval

u on K we shall mean the set of directions of the generating layers of the

intervals of rank less than N referred to these intervals. The N
characteristic XN and K determine uniquely the elements of the scheme Au

whose rank does not exceed N.·

LelllD& 13. Suppose that the condit ions In and 2n are fulfi lled on Dn •

For every N > 0, there exist a ne ighborhood P(N) of the point Pn and

generating schemes of intervals u C P(N) such that

1) Among them there exist schemes A~N with an.y N-characteristic.
1 )<2

2) The intervals of the schemes AXN and AN, different from u, dou u
not intersect if the first directions of these schemes are distinct.

3) If the intervals Ui € P(An, U2 ~ P(N) do not intersect, then none

of the intervals of the schemes A'>W and AXN will intersect.
U1 U2

The proof of Lemma 13 is analogous to the proof of Lemma 12. and is left

to the reader.

Up to now our constructions have not depended on whether the function f
belongs to the class F which is mentioned in the inductive lemma. In §9 the

expansion constructed here will depend on F. This will not destroy the

possibility of expanding any function on Dn into the sum of functions of the

coordinates. We can. obviously, without loss of generality, assume that F is

a compact. It is easy to see that within the limits of F, the continuous

dependence of fk on f is uniform.

• In the N-characteristic one can indicate the dlrections of the layers that lead
away from the intervals which are not in the 8cheme Au t because this scheme
may terminate earlier with a free end.
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~8. Arithmetic lemma

In this section there are proved two lemmas with whose aid there will be

obtained, in the next section, corrections along two different directions.

Leoma 14. Let

where

Let

where

a -~ b+c == d, (1)

I aI, I b I, I c I< 3 --t- e, (2)

I d 1--< 1. (3)

a' == a + !:la, (4)

I tla I < I + s, (5 )

0<£<9<1. (6)

Then one can determine numbers ~b(a, b, c, ~a) and ~c(a, b, c, ~a) such

t hat if

b' ~ b+~b, c' == c+ ~C

then

I b' I tIC' I < 3 + B+ £,

a' +b' +c' =d

I tib I. I tic I -< max (\1 tia I - ;~ I. €)

(7)

(8)

(9)

(10)

and, such that

the dependence of ~b and ~c on a, b, c, ~a, which vary I
within the restrictions (1) to (6), be continuous and that

as ~a -+ 0, ~b and ~c wi II tend to zero.

Proof. We shall prove first that under the conditions of the lemma

I b + c I < 4 + O.

(11)

(12)

Indeed, from (1) it follows that b + c = d - a. Therefore,

I b + cl ~ \dl + Iat. But since according to (2) and (3), \ a\ < 3 + e, \d\ < I,

it follows that Ib + c\ < 4 + e. From (12) and (2) we obtain

2 (3 -}- B) ± (b -t- c) > 2 -f- e. (13)

In order to satisfy the requirements of the lemma, we define ~b and ~c

as

~b == -lbLla,

Llc == - 1ella,
(14)
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If Yb + Yc = 1, then (9) will be fulfilled.

If here Yb and yc depend continuously on a, b, c, tta =I 0, then (11) is

satisfiedo In order to select Yb and Yc so that the inequalities (8) will

not be violated, we introduce

Ab = 3 -t-- B- b -t- ; ,

At = 3 +B+b + i '
J,-; == 3 + 0 - c + ; ,

+ 3 €Ac = +B+c+"2.
(15)

These numbers, which are positive because of (2), give the leeway which one has

for the introduction of the corrections ~b and L\c; thus, for example, Ab
shows how much one may add to b in order that the sum b I may not exceed

3 + 8 + E/2 (see (8».

The inequality (13) shows the correction L\a, which does not exceed 2 in

absolute value, can be made to satisfy (8) by selecting Yb and Y
c

in (14)

between 0 and 1. Namely, if ~a > 0, we set

).+ ).+
b c

1'b = A++).+' A = At:" +)..:
,

c
b c

and if L\a < 0, we let

A- )..-
b c

Ab ==
At; +A;

Ie =
Ab +A;

(16a)

(16b)

We shall prove that (1)-(7), (14), (15), (16a), and (16b) imply (8), (9),

(10), (11). Indeed, (9) is satisfied because of the obvious equation Yb + Yc = 1.

From (12), (13), and (15) we obtain

(17)

and therefore, Yb and Yc will depend continuously on a,b,c, L\a when

L\a fOe Since 0 < Yb' Yc < I, the condition (11) is satisfied. From (5),
(6), and (7) it follows that

I f!a I < 1 +2 e < 1.
Al + At-

± ±
Therefore, lL\bl < Ab , lL\cl <Ac • But from (15) it follows that

I b =f At I < 3 + a+8, I c =t= A~ I< 3 + e+c,

and because of (7), (14), (16a), and (16b), 'b" < 3 + e + €, 'c" < 3 + e + E,

i.e. (8) is fulfilled. It remains to prove that (10) holdsQ In case '~a' ~ 8,

(10) 18, obviously, a consequence of the relations 0 < Yb < I, 0 < Y < 1.
t c

From (15) and (2) it follows that Ab > €/2. Hence, in view of (17),, c



100

114 V.I. ARNOL'n

Yb > €/30. From this we have in accordance with (14) that,e
I~bl, 1~c \ > 't\a \ €/30. Therefore, in case It\a I ? € it follows that

lL\bl>e2/30, l~el>€2/30. But since (see (14) and (16»

l~bl + l~c' = I~a', it now follows that I~bl < I~a\ - e2
/30,

l~cl < l~at - e2 /30, namely the condition (10) and Lemma 14 have been proved.

Lemma 15. Let

Let

a+b+c=d

I a I, I b I, I c I < 3 + a,
I d 1< 1 +s.
d'=d+Lld,

(1)

(2)

(3 )

(4)

where

I 6.d I < 1+E, (5)

0<6<1, 0<6<1. (6)

Then one can determine the numbers ~a(a, b, c, ~d) and ~b (a, b, c, ~d) so that

if

then

and that

a' = a + ~a, b' = b+~b

a' +b' + c == d',

I a' I < 3 + e+s, I b' 1 < 3 -t- 0+ E,

I a -- ~b I < 3 -1- 0 -t- ~

the dependence of 6.a and ~b on a, b, c, and ~d, which )

vary within the given (see (1)-(6» limits, will be con

tinuous, and if ~d -t 0 then /}a and /).b will go to zero.

(7)

(8)

(9 )

(10)

(11)

Proof. For the fulfillment of the inequalities (9) it is sufficient that

o~ 6.a < )"d or - A;; < ~a ~ 0, (12)

O~~b<}..:l or -AM<~b~O,

where

}.~ = 3+e+ 6 - a,
Atl == 3 -1- 0 -1- E - b,

A; == 3 + 0+s +a,

Abl == 3 +0 + s +b,
(13)

since a and b satisfy relation (2).

In order that (10) be satisfied, it is sufficient that

0<: ~b < Atz or - A;; < 6.b<:: 0, (14)
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where

A~ === 3 + a+ ~ + a, Ai; =:: 3 + 6 + ~ - a,

again because of (2).

setting now

we find that

115

(15)

(16)

(17)

Indeed, by (1) we have, a + d = d - c. Therefore, I a + b t ~ t d' + I c I
and, by (2) and (3),

(18)

But because of (13), A: + A;1 = 6 + 2(} + 2€ - (a + b). Hence, it follows
+ +from (18) that Aa + Ab1 > 2. At the same time we have, in view of (13) and

+ \ + ()(15), that Aa + I\b2 = 6 + 2 + 2 € > 2. In accordance with (16), the first

inequality of (17) has been established; the second one can be proved to be

valid in a similar way.

Now we set

where if ~d > 0,

(19)

and if tld < 0,

lb= (20a)

1'a===---
A~+Ab

(20b)

(21)

We shall prove that (1)-(7), (13), (15), (16), (19), (20a) , and (20b)

imply (8), (9) , (10) , and ( 11 ) .

Indeed, from (20) we obviously obtain Ya + Yh = 1, which implies (8) in

view of (19), (I), (4), and (7). From (2), (13), (15), and (16) it follows that

every A is positive, and, hence, that 0 < Ya < 1, 0 < Yb < 1. Since, if

t!id =f. 0, the Ya and Yb depend continuously on a, b, c, and ~d (see (20a)

and (20b», it now follows that (11) must be fulfilled because of (19).

Finally, from (17), (3), and (16) we obtain

~d <~< 1 - d d < 1 +2 £ < 1.
A% + At 2 '>.; + Ab
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Taking into account the fact that A is positive, we obtain with the aid of

(20a) , (20b), (19) and (21) the inequalities

o~ b.a<"Ad or -'A; < ~a~ 0,

o~ ~b <}.t or - )\b < ~b <: 0,

These inequalities and (16) imply the relations (12) and (14). From (12) follows

(9), and (14) implies the inequality (10). This completes the proof of Lemma 15.

§9. Inductive preservation of property 4

In this section it will be shown how one must distribute the corrections in

the method of §7 in order to fulfil the inductive requirement 4n+1 •

In §3 we introduced the numbers nr o The oscillation of any function f of

the considered class F on any component of the complement of ~n in S does

not exceed 1/r2 provided n ~ nr • In particular, this will be the case on

each branch an if n ~ nr •

We will denote by fn«() the function defined on ~n which coincides on

~n with f E F, and also its continuous extension (over any ~m (m > n) and

on the entire ::) which is constant on each component of the complement of ~n

in S. That such an extension exists, and is unique, follows directly from the

fact that the intersection of ~n with the closure of each component E\~n

consists of one point. The function which corresponds to fn(e) on Dm we

will denote by tn(x) on X. Let us introduce the function

gm (x) === fm (x) - tn, (X) (1)

(nr < m~ nr+1). On Dnr this function is zero, depends continuously on

f E F, and does not exceed 1/r 2 anywhere in view of the definition of r

and tm(x).

Let nr ~ n < nr+1. Suppose that Dn and fk(xk) are determined so that

the requirements In' 2n , 3n , and 4n are satisfied. Then (for n = nr this is

trivial)

(2)

n+1OUr problem consists of selecting Sn and fk (xk) so that the requirements

3n+1 and 4n+1 will be fulfilled.

From here on, till the end of this section, r will be kept fixed. In

order to shorten the formulas in all estimates, the factor 1/r2 will be
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omitted. Thus, the inequality (2) will be written now in the form

117

(2')

This can be considered as a temporary change of the scale of the f - axis, or

one can suppose that we are confining ourselves to the case r = 1, 1/r 2 = 1,

because the remaining cases can be treated in an analogous manner.

Thus, let us assume that on Dn the requirements In , 2n , 3n , and 4n are

satisfied. Then on Dn

3

gn (x) == ~ g~ (Xk),
k=l

(3)

where gJ:(xk) = f'k(xk)- fJ:r(xk) when n > nr, and when n = nr' gk(xk) = 0,
gn(x) = o. As usual, the xk are the coordinates of the point x. In (3)

x E Dn • The fulfillment of the requirement 4n on Dn means that

where we have introduced the notation

(4)

en ==
fl -- nr

nr +1 - nr (5)

We will construct Dn+1 in accordance with §7, and will select functions

gk+ 1 (xk)' which depend continuously on f E F, in such a way that if

x E Dn+1

. gn+l (x), (6)

Here, nr < n + 1 ~ nr +1' and one has to assume that

(7)

(8)

in order to prove 3n+1 and 4n+1 •

When n increases from nr to nr+1. then 8n increases from 0 to 1,

and when n increases by 1. On increases each time by l/(nr+1 - nr). We

choose E, 0 < E < 1/(nr +1 - nr ). Then en + E < 8n+1 . 11lis will be kept

fixed in the remainder of this section.

Construction of 2s n • On Dn there exists a point Pn where Sn is to

be attached.

Let us consider the rays l ' and I" (Figure 18), into which the point
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Pn divides the line containing qn. When the direction Sn has been chosen,

then the three coordinates which pass through 2s n will intersect these rays.

Let us now select the direction 2sn so that one of these rays l' (it will

be called the principal ray) will intersect the planes of one direction; this

direction will be called the principal direction. The planes of the remaining

two directions will intersect the ray Zn (it will be called the minor

direction). One of these planes is chosen arbitrarily and is called the minor

plane. Finally, this entire operation can be performed by not picking Sn from

the forbidden directions of §4, which is now assumed. The direction Sn has

been chosen.

The following assertions are true.

A. From every sufficiently small semineighborhood upr of the point Pn

on the principal ray, one can start on Dn a double scheme A of the interval

upr so that two layers will lead away from the intervals of ranks 1.2•...• N.

where N is taken equal to [30/e'2] + 1 (in order to have NE 2 /30 > 1). and

such that among the directions of the layers of rank 1 there is no principal

direction.

From every sufficiently small semineighborhood um of the point Pn on a

minor ray one can start on Dn a double scheme B of the interval um so

that two layers will lead away from the intervals of ranks 1.2•...• N. and

that the first direction is the principal one. The symbol N has the same

meaning here as in the preceding paragraph. The scheme C with the same N
characteristic can be started from the semineighborhood upr if this neigh

borhood is small enough. Finally, if the interval Um is sufficiently small,

then, on Dn, one can start from this neighborhood a double generating scheme

D whose first direction is a minor direction and for which the splitting takes

place in the intervals of ranks 1, 2, 0 • 0 ,N 0

B. If the mentioned semineighborhoods upr and Urn are small enough.

then the intervals in the construction of A will not intersect except for

those which coincide by construction (on I ' and In).

These assertions are consequences of Lemma 13 of §7.

The segment 2s n of the direction selected above. is attached to Pn in

the neighborhood P of Pn which is now chosen in such a way that the

following three requirements are satisfied:

1) The oscillation of each function gk(xk)' which corresponds to f E F,

in P must be less than E/4.

2) The neighborhood P Must be so small that under the condition that

Sn C P it is possible to map on on Sn (see §4), and to satisfy the
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requirements In+1. 2n+1 (§~4. 6).

3) The projection of 2s n on Z' and Z" along the principal and minor

directions must fall within the above constructed (see assertions A and B)

semineighborhoods upr and um of the point Pn on qn if 2s n C Po

Figure 18. A double generating scheme of the interval 2s~ on
Dn+1 U 2sn• On the left, the first layers are shaded; on the

right the representation 1s more schematic.

A sufficiently small neighborhood P of the point Pn will satisfy the

requirement 1) because of the equicontinuity of the functions f E F, the

continuous dependence of gk(xk) on f E F, and the possibility of applying

the Arzela-Ascoli lemma to the functions gk(xk) and f E F. Earlier (§~4, 6)

it was established that for a sufficiently small P the requirement 2) is

satisfied. Finally, the possibility of fulfilling the requirement 3) for small

enough neighborhoods P is a consequence of the assertions A and B.

Now we select a neighborhood P that satisfies the requirements 1). 2),

and 3). In P we pick 2sn with the above chosen direction. We construct the

mapping an on Sn as in ~4. On Dn+1 = Dn USn the conditions I n+1 and

2n+1 are fulfilled because of 2).

Let us now construct on Dn lJ 2sn (Figure 18) a double generating scheme

of the interval 2s n of the following structure:

1. The initial interval 2s n has two generating layers whose directions

are the principal and the minor ones.

2. From the interval of the first rank, which lies on the principal

direction, there starts a scheme A (see assertion A). From the remaining
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intervals of the first rank to which the layer of the first direction leads,

there issues the scheme C (see assertion A).

3. From the intervals of the first rank to which the layer of the minor

direction leads, there start in the same way the schemes B (from urn), and

D (from the rest).

This construction is actually a generating scheme (double one). Indeed, the

schemes A, B, C, D, and Dn do not intersect (except in the general intervals

on upr and urn). Since (except for the initial intervals) these schemes do

not have intervals on upr and urn, their layers of rank greater than 1 do

not intersect upr and Um, and hence not 2s n . The layers of the first

rank do not intersect 2sn because of the definitions of the principal and

minor directions.

We will call the obtained scheme the large scheme.

Each zigzag of the large scheme which leads away from 2s n either passes

through at least N intervals distinct from 2s n, where the large scheme

splits, or else terminates with a free end of lower rank. In any case, from all

the intervals of rank 1,2, ..• ,N in the large scheme, which enter into the

schemes A and C, and from the intervals of ranks 2,3, ... ,N + 1 in the large

scheme, which enter into the schemes Band D, there issue two layers. This

follows from the assertions A and B.
n+1Construction of the functions gk (xk)c We have seen (see (3)), that on

D

This formula can be considered to be the definition of g(x) in the coordinate

parallelepiped, stretched out over Dn in the product of the regions of

definition of the functions gk(xk) (k = 1,2,3). On Dn+1 , there is defined

the function gn+1(x) = t n+
1

(x) - tnr(x). The function gk+1(xk) is to be

found so that on Dn+1 we would have

3

gn+l (x) = 2J g~+l (Xk)'
k--l

In this manner, when xED. and, in particular, at the point Pn,

3

~ g~+l (Xh) = gn (x).
k=l

We determine gn+1(x) on 2sn so that the function

(9)
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on 2sn be even relative to the middle of this interval. It Is obvious that

the function ~o(x) is defined and continuous on Dn U ~n and is different

from zero only on 2s n•

We shall determine the functions gk+1 (xk) so that the equation (*) is

fulfilled everywhere on Dn U2S n . We can do this by distributing the correc

tions along two directions that correspond to the larger scheme.
n~l 0 n+1 nFor the zeroth approximation to 8k (xk) we take gk (xk) = gk(xk). If

one substitutes the zeroth approximation in equation (*) for gk+ 1 (xk)' the

equation will be destroyed only on 2s n• We obtain the first approximation

from the zeroth one by making corrections on the intervals of the layers of

rank 1 of the large scheme. If x € 2s n• and if, for example. Xl and X2

are points (of these intervals of layers) that correspond to x. we obtain

But then if Yl + Y2 = 1. and if

19~+l (Xl) == og~+l (Xl) + ~~ (Xl)'

the equation (*) will be vitiated on the intervals of the first rank only. In

general, for the (i -1)st approximation the equation (*) will be destroyed on

Dn U 2sn only on the intervals of the large scheme of rank i - 10 The ith

approximation is then obtained from the (i - l)st one by making corrections

on the intervals of layers of rank i of the larger scheme. If x belongs to

the layer u of rank i - 1 of the large scheme. and if, for example, U2

and U3 are intervals of layers that issue from u, while X2(X) € U2. and

X3(X) € U3 correspond to x. and if the (i - l)st disjoint at the point x

is

then we set

3

~i_l(X)==gn+l(X)- ~ 1-lg~+1(Xk)'
k-l

Ll~ (X2 (X» == 12Ll, -1 (x),

~~ (X3 (x» = '3~i-l (x),

(10)

(11)
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(We do not assume that Y2 and Ys are constants. They

and will be determined later.) Now we sUPPose that

(12)

and that the ith approximation is constructed so that the equation (*) is

vitiated only on the intervals of rank i of the large scheme. The process

described in §7 is called the distribution of corrections. Thanks to the con

struction of the large scheme, it proceeds in two directions when 1.~ i .~ N

or 2.~ i .~ N + 1. and later terminates as in the case of a simple generating

scheme when all intervals of some rank remain free.

We still have to take care of Y1 and Y2' for every distribution of the

corrections, so that (see (7»

1ig~+l I < 3 + Bn+1

and all corrections 6.l (xk) will be continuous, will vanish at the ends of the

intervals of the layers of the large scheme, and will depend continuously on

x and f € F. Under these conditions the equation (*), i.e. (6), will be

satisfied because of the results of the lemmas of §7; and, in view of (5), (6),

(7), and (8), the fulfillment of the conditions 3n+1 and 4n+1 will have

been established.

Lemma 16. Suppose that the layer of the direction Xi leads to the

interval u of rank i ~ 1 of the large scheme, and that the layers of the

directions X2 and X3 lead away from it. Let x € u. Then

3I~l-lg~+l(Xk)l-< 1.
k=l

(13)

(14)

Proof. Since u is an interval of rank i, it has not been touched
i-1 n() n(previously in the distribution of the corrections: gk xk = gk xk)' Hence

(13) follows from (4), while (14) follows from the estimate of gn(x) (see

definition gn(x».

Lema 17. In the hypotheses of Lemma 16, let 6. i- 1 (x) be cont inuous on

u, vanishing at the ends of the disjoint u (see (10», and depend contin

uously on f € F. Furthermore, suppose that

I ~1-l(X) 1·< 1+8.

Under these condit ions one can find correct ions 6.i '). (x). 6.is (x) so that
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I) I tl~ (x) I, I tl; (x) I < max (II tli-dx) I - ;~ I, E ) ,

2) I tg~+1(X2) I, I ig;+1(X3)J<3+0n +1t

3) ~~ (x) + L\~ (x) = - L\,-1 (X),

i-1 n+1( )c = gs X3,

€ satisfy the condi

lemma coincide in

if one sets

i .
4) ~~(x) and ~~(x) will depend continuously on f E F, and, when

~ i-1 (x) ..... 0, ~~(x) ..... 0 and L\~ (x) ..... o. (He re it is assumed in accordance
. h (2) h i n+1( i-1 n+1 + A k

Wtt 1 , tat gk xk) = gk (xk) 0i(xk(x».)

Proof. The numbers a = i-1g~+1(x1)' b = i-1g~+1(x~),

d = gn(x) (by Lemma 16), and s = ~. 1(x), () = (), and
t- n

tions of the arithmetic Lemma 14. The conclusions of that

these notations with the conditions of the present lemma

~~ (x) = ~b, ~~ (x) === ~c.

Remark. It is obvious that Lemmas 16 and 17 remain valid if one makes a

permutation of Xi' %2, X3 in their hypotheses and conclusions.

LeDlDa 18. If the first disjoints ~o(x), ~1 (x), ~2(x) do not exceed

1 + e:

I ~1 (X) I ~ 1 + c, I ~2 (x) I < 1+s,

and if the functions of the first and second approximations

2gk+1(xk) are less than 3 + 0n+1 :

then one can find

andA A 1 n+1so that the equation (.) will be satisfied. If 0o(x) and °1(X), gk
2gk+1 depend continuously on x and f E F, then gk+ 1 (xk) can be

selected to be continuously dependent on x and f E F.

Proof. The Lemma 17 is in this case applicable to all intervals of the

large scheme whose rank is greater than zero and from which issue (lead away)

two layers. This is true, because in the use of Lemma 17 for the distribution

of corrections the ~. decreases only when increases. Making use of the
t

conclusion 1) of Lemma 17, we see that if from the beginning of the large

scheme up to a given one of its intervals there have been N intervals from

which issued two layers, then in this distribution of corrections the Quantity

t1. is less than max (t 1 + € - N E 2 / 30 t ' E). But in the large scheme each
t

zigzag with a free end either has at least N first intervals from which two
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layers issue, not counting the beginning, or all intervals of the zigzag up

to the free one, included, have two issuing layers. Bearing in mind that

NE~30 > 1, we see that in both cases all corrections ~ n+1 are in absolute

value less than €. In the further distribution of the corrections with the

aid of simple generating schemes of intervals of rank N + 1, as in Lemma 8

within ~7, the functions gk(xk) will receive corrections whose absolute value

is less than e, on the new intervals. But on these intervals

and since on the intervals of lower rank the inequality follows from Lemma 17

(rank > 1) and from the hypothes is of Lemma 18 (rank 0 and 1), the latter

lemma is proved.

If one now determines ~o, ~1' ~2' 19 J:+1 2 gk +1 so that they satisfy

the conditions of Lemma 18, then, obviously, the construction of the function

gk+1 under the requirements 3n+1 and 4n+1 will have been accomplished. Let

us first consider the distribution and corrections from the interval of the
A n+1 n 0 n+1 n Azeroth rank 2s n- Here ilO(X) = g (x) - g (x), gk (xk) = gk(xk)' 0o(x)

depends continuously on % and f, and vanishes at the ends 2s n of the dis

joint. For the sake of definiteness, let us assume that the coordinates of the

principal and minor directions of the point x € 2s n are Xi and X2. Let

U1 and U2 be the corresponding intervals of the first rank of the large

scheme, and let x' € U1, x" € U2 be points which correspond to x (Figure

18). We will write also %1(X), X2(X). X(X1), X(X2), x(x'), X2(X~), etc. to

indicate this correspondence.

Lemma 190 If the point % lies in the above-defined neighborhood P of

the point Pn, then

3

I~ g'k (Xk) I< 1+ e;
k-l

I .10 (x) I = I gn+l (x) - gn (x) I < 1 + e.

3

~ g~ (Pnk) = gn (Pn)
k '1

(see definition gn(x»,

Because of the conditions on the neighborhood P, we find that in it
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Using this and the preceding inequality. we obtain the first conclusion of the

lemma.

The function Ign+1(x) - gn(x) I is even (see the definition of gn(x» on

2s n• and it vanishes at the endpoints of this segment. Therefore. it will be

sufficient to establish the second conclusion of the lemma on ·sn.

By the definition of gn we have

and

The first requirement on P guarantees the fulfillment of the inequality

which together with the preceding inequality proves Lemma 19.

Lema 20. For every x E 2s n one can find ~i(x) and ~~(x) [we wi II

write also ~i(X1) and ~~(X2) for ~i(X(X1» and ~~(X(X2» respectively]

such that

1) ~ ~ (X) -t- ~~ (X) = ~ 0 (X),
2) \ 19~+l(xk)l = IOg~+l(Xk)+ ~l(Xk)1 < 3 -t- Bn+1,

3) IOg~+1 (Xl) - d~ (X (Xl)) 1<3 + an +; .
4) ~i(x) and ~~(x) depend continuously on x and ~o(x), and when

~o(x) -+ 0 so does ~~ (x) -+ o.
Proof. The numbers

a = 0g~+l (Xl)' b = 0g~+l (X2), C == 0gf~+l (X3 ),

S === gn + 1 (X), e:: -: 0n and 8

satisfy (because of the fulfillment of condition 4n and by the definition of

On and € in Lemma 19) all the requirements of the arithmetic Lemma 15.

Applying it, we obtain the conclusion of Lemma 20 if we set

~ ~ (x) === ~a, ~~ (x) == /lb.

In particular, for this definition of ~~ and 19J:+1, we have

I ~l (X) I < 1+s and 11g~+1(Xfl) I < 3+ 0n+l"

In order that the condition of Lemma 18 be satisfied, it is still necessary

to determine ~~ and 2gk+1 so that '~3(X)' ~ 1 + € and
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I 2gk+1(xk) 1< 3 + 0n+1. For those intervals of the large scheme where it

splits, i.e. for all, except U2~ Um' this can be done with the aid of Lemma

17.

W " "e introduced the point x (x) with the coordinates xk' whereby the

point x" and its coordinates are functions (linear) of the point x, or of

any of its coordinates, and conversely. We thus have

The remaining functions of the first approximation coincide with the

functions of the zeroth approximation. Let us suppose that in accord with the

distribution of the corrections along the directions of the large scheme,

Because of the choice of i\~(x) (see Lemma 20),

Lemma 21. In terms of the above notation

I 2an+l (X") I < 3 -L e
Dl 1 I n+r

Proof. According to conclusion 3) of Lemma 20,

where

x(x").

P) ,

x1 is the coordinate of an arbitrary point x E 2s n , in particular

In view of the first requirement on P (and u", obviously, lies in

I Og~+l (xd - Og~+l (x~) I < ~ .

Whence,

I Og~+l(X~)-t1~(X(Xl» I <3+6n +}S<3+0n +1•

which was to be proved, because ~ ~(x~) = -~ ~ (X(X1».

Since each successive correction does not exceed, in the above described

process, the preceding disjoints, we obtain from the mentioned fact that

I [\~(%~)I ~ 1 + €, the result that 1[\3(x)1 ~ 1 + E. Bearing in mind Lemma 21,

we can convince ourselves that our chosen ~~(xk) does, indeed, satisfy the

conditions of Lemma 18. This lemma has been proved, and we obtain functions

gk+1 (xk) that fulfil all the requirements that were stated in the beginning

of this section, and the inequalities (6) and (7). If we suppose (see (8» that
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then we obtain a decomposition which has the properties 3n+1• 4n+1 •

This completes the proof of the inductive lemma. because for n = 1. it 1s

trivial.
(X)

'!bus. the tree X = U Dn, the homeomorphism of X on a. and the
n=1

decomposition of a function from F into the sum of functions of the

coordinates on Dn have been constructed under the requirements of the

inductive lemma.

§10. Proof of Theorem 3

As a result of the application of the processes described in the preceding

section, one obtains trees Dn that are realizations of ~ n' where
(X)

X = U Dn realizes S in the form of a subset of the three-dimensional
n:.:: 1

space.

On each tree. every function f € F can be represented as

3

f (x) = 2J t'k (Xk ),

k=l

where the continuous functions II: of the coordinates %k of the point % € D

depend continuously on F. The sequence fk(xk) converges uniformly as

n --.00. This follows from the fact that I fk(xk) - fkr(xk) I is not greater

than 4/r
2 when nr < n ~ nr+1 and. hence.

co

I f~ (Xk ) - f~r (Xk ) I < ~ i} (n > nr )·
l-=r

Let us denote by fk(xk) the limits of these sequences. The sum of these three

functions is a continuous function [(X1.X2.X3). For the point (%1.%2. X3) € Dn•

3

~ f't (x,,) = f (x) for all m > n.
k-l

Therefore we have also for the limit the result
3

~ fIt (x~) == f (x) at each point xEDn for any n.
k=l

00

But U Dn is an everywhere dense subset of its closure in X. The
n=1
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3
and ~ fk(xk) coincide, therefore, on the

k = 1
entire tree X.

The proof will be complete if we can establish the continuous dependence of

fk(xk) on f·
Let E > 0 be given. Let us consider an N so large that

I fk(xk) - fk(xk) 1< € /3 for all n ~ N and for all f k, f k which correspond
to any function f € F.

In view of the requirement 3n, the functions fk(xk)' with a fixed n = N,

depend continuously on f € F. Therefore, f has a neighborhood of radius 8
such that for f' € F and I f' - f I < 8 it is true that

I fkN(xk) -!t.(%k) 1< € /3 for all %k. From this it follows that for every
€ > 0 there exists a 8 > 0 such that if If' - f I < 0, then

Ifk(xk) - fk(%k) 1< €, which was to be proved.

In this manner, for every family F of real equi-continuous functions f(~)

defined on a tree a. each of whose points has a branching index less than or

equal to 3, one can realize the tree in the form of a subset X of the three

dimensional cube E
3

in such a way that every function of the family F can

be represented in the form

3

f (~) = ~ fk (Xk ),

k=-l

where x = (%1,X2,X3) is the image of ~ € S in the tree X, the fk(xk)

are continuous real functions of a single variable, and f k depends

continuously on f in the sense of uniform convergence.

This is Theorem 3.

It implies Theorem 1, as was indicated in the Introduction.

APPENDIX

The space of the ca.ponents of the level sets of a continuous function

That the set of the components of the level sets of a continuous function,

defined on a square, is a tree is clear from Figure 19. Here we will assign an

exact meaning to these words by following A.C. Kronrod [4] who introduced

the concept of the space of the components of level sets, and K. Menger [3]

who has made a study of trees. The theorems proved below are the main tools in

both parts of the work. At the end of the Appendix there is placed (for the

nonspecialists) a list of the basic concepts of point-set topology.
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A. Construction of the metric space T/

A

If!) (
r,-...

Figure 19. The set of levels, the
space of components, and the graph
of the function. Some cOQ>onents
are denoted by numbers. The branch
ing index of the points 1. 5 cr,
6 E Tf Is 1, of the points 2, 4a ,
40", Sa Is 2, of the point 3 is 3.
The corresponding components thus
do not divide A, divide A into
2 parts, or into three parts, res
pectively.

Let us consider the entire set Tf
of all components of all level sets of

the continuous function !(a). Tf
will be called the space of components

of the level sets of !(a). We define

a metric on this space so that Tf
becomes a metric space. The components

of the level sets of f (a) are subsets

of A and are points in Tf . Any

given component will be denoted, the

first time, by a capital letter, and

after that by the same small letter.

As is known, the oscillation of 8

function on a set is the difference

between its upper boundary and its

lower boundary on the given set. The

oscillation of a continuous function on

a compact is finite and non-negative.

Let K1 and K2 be components of

a level set of a continuous function

!(a) on a continuum A. aY P(K1 ,K2 ), we denote the lower boundary of the

oscillation f(a) on all continua F ~ A that contain Ki and K2 :

consists of components, continua that

do not intersect each other.

Let a continuous real function f(a) be given on a continuum A (Figure

19). The set of a level, or a level set, is the set of all points a for which

f(a) has the same value. The set of a level is thus a closed set; the level

sets do not intersect, and constitute

all of A. Each set of a given level

Pi (K1 , K2) =-= inf [max f (a) - min f (a)].
/(aUK.CFc:;A aEF aEF

If one now defines the distance between points k 1 and k 2 of the space

of components as p(k 1 ,k2 ) = P(K 1 ,K2 ), then Tf becomes a metric space. It

is, indeed, obvious that

In order to prove that p(k 1 , k 2 ) = 0 implies k 1 = k 2 , we have to make
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A

Figure 20. For Lemma 1.
If for every p(k,kn ) the
components Kn have points
bn exterior to E, then
K will have a point b
exterior to E. The heavy
curve is itFn•

Lemma 1. For every open set E (E k A) which contains a component K of

a level set of a function !(a) that is continuous on the continuum A, there

exists a 8> 0 such that if p(k,k 1 ) < 8, then the component K1 is con

tained in E.

Proof. If the lemma were not true (Figure 20), there would exist a sequence

of components Kn such that p(k, kn} < 1 / n even though, for every n, Kn
would contain a point bn exterior to E. But

by the definition of p(k,kn ) there exist for

n = 1, 2, ••• continua Fn ~ A, each of which

contains K and Kn with the same n, and such

that the oscillation of I(a) on Fn is less
than 2 / n. There fore, the values of I on Fn

must differ from the values of I(a) at the

points of K by less than 2 / n. The sequence

of the points bn (n = 1.2, ... ) that are exterior

to E have, because of the compactness of A\E •

a limit point b € A\E. The lower topological

limit il Fn of the connected subsets Fn of the
compact A is not empty, since it contains K.

Thus the upper topological limit It Fn is con

nected. At the points of the upper limit. f(a)

takes on the same value as on K, because in

every neighborhood of such a point there are points of Fn for every n (no mat

ter how large), but these f<a) will differ from f(a) (a € K) by less than 2/n.

The upper limit, obviously, contains also K C E and b E A\E. This

contradicts the fact that K is a component contained in E. because the

upper limit. a connected set where f(a) is constant. must lie entirely in

one component. This establishes the lemma.

On the basis of Lemma 1, it follows from p(k 1 .k2 ) = 0 that K1 and K2

both lie in any given open set if this set contains either K1 or K2 • But

this can happen only if K1 = K2 because otherwise the distance between K1

and K2 in A would be positive.

The metric in Tf has thus been defined. The topology induced by this

metric in Tf coincides with that of the work [4] if A is locally connected.

A.S. Kronrod introduces a topology in T
f

with the aid of neighborhoods which

are defined as sets K that intersect with some open sets E ~ A. It can be

easily seen that the topology on Tf depends only on the decomposition of A

into components.
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B. Two representations connected with a continuous function

Let us consider two representations. or mappings (Figure 19):

1. tea) maps A on Tf and mates any point a of the continuum A with

the point t E T
f

, where t is the component T~ A which contains a.

t E T
f

with

T~A that

real axis f and mates any point

at the points of the component

2. f(t) maps Tf into the

a number f, the value of f(a)

corresponds to t E Tf .

The use of the same letter I for I(a) and I(t) should not lead to any

misunderstanding because these functions have entirely different definitions.

We will say that the function f(a) defined on A generates the function f(t)

on Tf .

If A is locally connected, then each of these mappings is continuous.

1. Since f(a) is continuous, it is true that for every € > 0 there

exists a a> 0 such that the oscillation of f(a) on any set of diameter

less than 0 is less than €. Because of the local connectedness of A, any

o-neighborhood of a point a E A has a connected subneighborhood u8(a).

Obviously, if b 1s contained in uS(a), the components Ka and Kb of the

level sets that contain a and b are such that p(ka.kb) < €.

2. If k1 , k2 are two points of Tf that correspond to K1 , K2 • and if

p(k 1,k2 ) < €, a1 E K1, a2 E K2• then If(a1) - f(a2) I < e, because the

oscillation of a function is not less than its increment. Thus,

'f(k 1 ) - f(k 2 ) I < €.

The continuity of tea) and f(t) has thus been proved.

If on A there 1s given a continuous function g(a) which is constant

on each component of every level set of the function f(a), then g(a) also

gen~rates a continuous function get) on Tf (namely one which is equal to

g(a) at each point of the corresponding component), and we have g(t(a» = g(a).

Indeed, for every € > 0 there exists a 0 > 0 such that the oscillation of

g (a) on any set of diameter less than 0 is less than e. Let ES (11 be a

o - neighborhood of the component T s: A, i.e. the set of points of A all of

whose points are nearer than a distance 0 from T. By Lemma 1, t (D has

in T
f

a neighborhood all of whose components lie in the interior of ES(T).

Hence, we have found, for the given € > 0, a neighborhood of the point

t E Tf in which Iget) - g(t1) I < €. This establishes the continuity of

g(t).

Let us now consider the counterimages of points for the mappings tea)

and f(t). The counterimage t E Tf is a component T ~ A, i.e., a connected

set.
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A

Definition [7]. A continuous mapping is said to be monotone if the

counter image of every point is connected.

By means of a monotone mapping one can transform a square with its boundary

into a sphere, but not into a torus as we will see later. A monotone trans

formation is, so to speak, a contraction without "gluing together". Under

monotone mappings there are preserved certain topological properties of sets.

It is for this reason that the monotoneness of

tea) yields some information on the space T
f

.

In the mapping f(t), the counterimage of a

point is the set of all points T
f

where f(t)

takes on one value, i.e. the set of all components

of a set of one level of f(a).

From here on, A will be assumed to be

locally connected, so that the functions tea)

and f(t) are continuous.

Figure 21. To Lemma 2. The Lemma 2. Every point t E T
f

has a neigh-
construction of the neigh-

borhood u(t) as small as we please (i.e. forborhood EET of the com-
ponent T. every open subset E C T

f
that contains t,

there exists an open set u(t), t E u(t) C E)

such that its boundary consists of some points of two level sets of f(t).

Proof. Let T be the component that corresponds to t, and let a be

the value of f(a) at the points of T. Let us consider (see Figure 21) the

open set Ee of all points a E A, where 'f(a) - aI < €. E€ contains T,
and let EET denote the component of E€ that contains T (EET is a region

because A is locally connected. If a point lies in EET' then the entire

component containing this point of the level set f(a) will, obviously, lie

in EET' It is clear that on the boundary of EET' f(a) = ex ± E. We shall

show that the image uE(t) of the region EET under the mapping tea)

satisfies the requirements of Lemma 2 for a small enough positive €.

1. ut(t) is an open set in Tf that contains t E T
f

.

This assertion is established by the application of Lemma 1 to EET and

to the components contained in this regiono

2. Suppose that K is a component which under the mapping t(a) is

transformed into one of the boundary points of uE(t); then K is contained

in the boundary of EEr'

The truth of this assertion can be proved by the application of Lemma 1

to the regions containing K.

3. For a sufficiently small positive €, the oscillation of the function
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!(a) on EE' and on the continuum EeT is as small as we please. This implies

that for a positive E, small enough, uE(t) is an arbitrarily small neighbor

hood of t.

This proves Lemma 2.

It follows from Lemma 2 that a level set of the function f(t) is a zero

dimensional subset of Tf , since each of its points has an arbitrarily small

neighborhood whose boundary is not intersected by the level set.

We have thus proved the next theorem.

Theorem 1. The real continuous function f(a), defined on a locally

connected continuum A is the product of two continuous mappings: a monotone

mapping t(a) of the continuum A on the space T
f

of the components of the

level sets of the functions f(a), and a mapping f(t) of the space Tf on

the real axis, under which the counter image of every point f is of zero

dimension. The function g(a), which is continuous on A and constant on each

component of the set of the level f(a), generates a function g(t) continuous

on T
f

such that g(a) = g(t(a».

c. Singly connected sets

Definition. A locally connected continuum M is said to be singly

connected [7] if it cannot be represented as the sum of two continua whose

intersection is not connected.

For example, the circle and the torus are not singly connected.

Remark. This definition is equivalent to the following ones.

A locally connected continuum is singly connected if every compact subset

of it that divides it has a component that divides it.

A locally connected continuum is singly connected if every continuous

mapping of it on a circle is homotopic to a mapping on a point.

It does not follow from singly connectedness that every simple closed curve

on M can be contracted, without breaking it, into a single point.

Lemma 3 [7]. The monotone image F2 of a locally connected continuUM F1
is a sing ly connected, loca lly connected cont inuum.

Lemma 4 [7]. Under a monotone mapping of a compact, the complete counter

image of a continuum is a continuum.

Proof of Lemma 4. In the opposite case, this complete counterimage could

be divided into two nonintersecting closed sets A and B, whose images A'
and B' would intersect. If C' were a point of intersection of the images,

then its counter image would intersect A and B, while at the same time it
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would lie in A UB, and hence would not be connected. Therefore, the mapping

would not be monotone.

consists of two nonintersecting compacts,

i.eo A nB = F1 UF2 • Let the distance

between F1 and F2 be greater than

h > O. We will consider spherical neigh

borhoods with radius h 13 of all points

B are continua whose intersection

Proof. Let us assume the opposite,

and suppose, for the sake of definiteness,

that the square E = A UB, where A andFigure 22. To Lemma 5. If it
were true that A U B = E,
A nB = F1 U F2 , then the
region G, which separates the
point a € F 1 from the point
b € F2 , would intersect the
sets A, B that connect a and
b. This would contradict that
G is connected because
A nB = F1 U F2 I ies in the
exterior of G. of F1 and F2 • These neighborhoods

cover F1 U F2. It is possible to select

from them a finite number of neighborhoods, and it is clear that they can be

so chosen that F1 and F2 are covered, but their coverings do not intersect

(Figure 22). It is obvious that the square is broken up by a finite number of

curves each of which consists of a finite number of circular arcs, into parts

Proof of Lemma 3. F2 , the continuous image of a locally connected con

tinuum, is a locally connected continuum. Let A2 and B2 be continua in F2 ,

A2 U B2 = F2' In view of Lemma 4, the counterimages of A2 and B2 , the sets

Ai and B1 , are continua. Obviously,

Ai U B1 = F1 · Therefore, A1 n B1 is

connected in view of the singly connected

ness of Fl' But A2 n B2 is the image

of Ai n B1 and hence is a connected set.

This completes the proof of Lemma 30

Lemma 5 [7]. The Euclidean cubes of

any dimension, and the spheres of dimen

sions 2 and higher, are singly connected.

of three types: those which are part of the covering of F 1 , those which

belong to the covering of F2 and remaining ones. The coverings of F1 and

F2 are at a distance greater than h/3 from each other. Therefore the

remaining regions separate them. Let a € F1 and b E F2 • Every broken line*

that intersects a and b must intersect one of the regions of the remaining

points. We consider it an obvious fact for E (a cube or sphere) that among

the considered regions there is one G which separates a and b. We note

only that this assertion is not true for a torus and other nonsingly connected

sets. The cont inua A and B both contain a and b. Hence G contains

• And, hence, every continuum.
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some points of A (which are not 10 B) and points of B (which are not in

A, because A n B = F1 U F2 ). Both sets A nG, B nG are closed and do not

intersect, and their sum is G, because AU B = E. This contradicts the

connectedness of G. This contradiction shows that the hypothesis on the in

correctness of Lemma 5 was false. Hence Lemma 5 is true.

BY combining Theorem 1 and Lemmas 3 and 5, we obtain the following im

portant property of Tf ·

Figure 23. To Lemma 6. The locally connected one-dimensional
continuum T that contains the cycle ambna can be broken

into two connected parts (8 is the heavy curve, A = T \B)
by means of a nonconnected intersection.

Theorem 2. The space of the components of the level sets of a continuous

function defined on a singly connected locally connected continuum is a singly

connected locally connected continuum. In particular, the space of the com

ponents of the level sets of a function that is continuous on a cube of any

dimension and on a sphere of dimension greater than 1 is such a continuum.

D. Trees

Definition. A tree is a locally connected continuum that does not contain

homeomorphic images of a circle [3].

Since a tree is a locally connected continuum, any two points of it can be

connected by a closed are, and since the tree does not contain a homeomorphism

of a circle, the arc is unique.

Lemma 6 [7]. A one-dimensional singly connected continuum is a tree.

Proof. Let us assume that such a continuum has two points a and b

[Figure 23], which can be connected by nonintersecting arcs amb and anb.

In view of the one-dimensionality of T, the point a has a neighborhood U,

whose closure does not contain b, and whose boundary is of zero dimension.



122

136 V.I. ARNOL'n

Let KaU be the component of the point a in this neighborhood. Because of

the local connectedness of T, KaU is an open set in T. Let us consider

T"KaU. This closed set consists of the components, continua Tal so that

T = (KaU) U (U To.) • In part icular, among these cant inua there is a component
a

Tab :J b. Let us suppose that B = Tab and A = T\B. Obviously, A U B = T.

B is a continuum, and A is a compact. We will show that A is connected.

Indeed, from the fact that T= (KaU) U (UTa), it follows that
a

T"B = (KaU) U (U Ta) = U ((KaU) UTa). It is easy to see that each set
a =I ab a =f. ab

(KaU) U Ta is connected. This implies that T\B, and hence A, is connected.

Let us show also that A nB contains the boundary of V. Indeed

A n B = Ii nT\B. 1.e. A n B is the bOWldary of B = Tab and, hence, is

contained in the boundary KaV, which is contained in the boundary of U.

Each of the arcs amb and anb intersects the boundary of V, since a is

in the interior of V, and b is in its exterior. Suppose that ~ and v

are the first points of intersection of these arcs with the boundary of U
starting from a. An B contains ~ and v, since it is obvious that these

points are not contained in KaU, but do lie in B, namely in the boundary

of B. From the zero-dimensionality of the boundary of V it follows that

A nB is not connected, because a zero-dimensional connected set cannot have

two distinct points. Thus, we have obtained a decomposition of T into the

sum of two continua A and B whose intersection is not connected. This

means that T is not a singly connected, locally connected continuum. This

contradiction to the hypothesis of the lemma proves that T cannot contain

homeomorphisms of a circle. Hence, T is a tree, which was to be proved.

Lemma 7. The space of the components of the level sets of a real contin

uous function defined on a compact is at most one-dimensional.

Proof. Fran Lermna 2 it follows that each point t E Tf has an arbitrarily

small neighborhood whose boundary is contained in the sum of two level sets of

f(t) and is, therefore, either empty or zero-dimensional. Therefore, the

space T
f

is at most one-dimensional.

It is obvious that the space Tf can be zero-dlmensional only in the case

that the function f is a constant. Eliminating this case, when Tf is a

single point, we can draw the following conclusion from Theorem 2, and from

the Lemmas 6 and 7.

'ftleorem 3 [4]. The space of the components of the leve l sets of a real

continuous function defined on a locally connected, singly connected continuuM.

is a tree.
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The space of the components of the level sets of a real continuous function

defined on an n-dimensional cube or on a sphere of di.ension n ~ 2 is a tree.

The branching index of a point of a tree is the number· of parts (compon

ents) into which the tree falls after the given point is removed from the tree.

If the tree T is the space of the components of the level sets of a

continuous function, then the branching index of a point of the tree is related

to the structure of the component to which this point belongs.

Theorem 38 [4J. me number of parts into which a component of a level set

of a continuous function divides the region of definition of this function is

equal to the branching index of the corresponding point of the space of the

compone nt s.

Proof. Indeed, the mapping f(a) sets up a single-valued correspondence

between the region of definition of the function f and the space of the

components (Figure 19).

E. structure of trees

We have seen that any two points of a tree can be connected by means of a

simple arc, and by just one exactly. With the aid of this property one can

obtain, following Menger [3]. a convenient representation of trees. and can

study their structure by reducing the investigation to finite trees, i.e. to

trees with a finite number of branching points. We will confine ourselves to

the consideration of trees which do not have any points with a branching index

greater than three. since we use only this type of tree in Parts I and II of

the present work.

Let E be a tree whose points have branching indices not greater than 3.

From the compact E we pick a denumerable everywhere dense set A: a1. a2• •••

The pair of points a1. a2 determines in aa uniQue simple arc a1,a'l. which

we denote by 00' From the remaining points a:h a4. • •• we pick the first

point that is not contained in 00' and we denote it by as. There is a

unique simple arc ala3 in S. We denote by P1 the point nearest to ~3

on the arc 00' (This point may happen to be a1 or a2.) Next. we denote

the arc a3P1 by 0'1' and. setting 00 = ~ 1, ~1U 01 = 1!2. we see that

when i = 1. the simple arc a i. the point p 1 and the finite trees tl i'
6. i+ 1 have the following properties:

1 t') 6..+ = 6.. U 0· ,
1 1 t t

2
1
,) a·n6.·=p·.

1 1 l.

• Or the power, or cardinal number of the set of parts, if this set is infinite.



124

138 V.I. ARNOL'O

3 i ) ~ i contains all points ak (k ~ i + 1).

If the finite trees ~ i (i = 1, ... , n) are constructed, and all ~ i+1 '

~t" u
t
·, p. (i = 1, ... ,n-l) satisfy the conditions 1.),2.),3.), then it

t ttl-

is easy to construct ~n+1. For this purpose we select, from the points of A
that have not been included in ~ , the point with the smallest subscript. Letn
it be ~n+2. In view of 3n+1) the subscript of this point is greater than n.

Hence, if we include it in ~n+1 we guarantee the fulfillment of condition 3
n
).

The simple arc a1~n+2 C =that connects these points is uniquely determined.

Suppose that Pn is the first point from ~n+2 on a1~n+2. We denote the

simple arc an+2 Pn by an. Then the conditions In) and 2n ) are satisfied.

In this manner we can determine ~ , (J , p for all n ~ 1, and the condi-n n n
tions In)' 2n), 3n ) are all satisfied.

Each finite tree ~ n bas no point whose branching index is greater than

3. Indeed, in the opposite case there would be four simple arcs adr
(r = 1, ... , 4) that would intersect at a. Let us denote by Br the set of

those points of the tree that can be connected with a by means of simple

arcs that intersect the arc adr (excluding, obviously, the poipt a). Such

sets, for different r, will intersect each other, because the simple arc

that connects two points of ~n is uniQue. The components of the set a\a
(which is open in the locally connected continuum S) are open. Hence, any

two points of such a component can be connected by a simple arc. This shows

that every set B constitutes an entire component of S\a. Therefore, there
r

should be at least four such components. But this is impossible, because the

branching index of every point of the tree is less than 4.

Because of condition 3 i ), and of the fact that A is everywhere dense

Figure 24. The heavy curve is ~ 2;
6. 1 and 6. 2 do not satisfy the
requirement 4) of Lemma 8.

ex>

U ~n = 2.
n:.::l

(X)

The subsets E\ U ~ do not divide
(X) n= 1 n

S, because U 6. is connected, and
n=1 n

through the addition of some limit points

to a connected set, its connectedness is

not destroyed. In particular, the points
(X)

of the set E\ U ~ do not divide the
n= 1 n

tree E into separate parts. The points

of a tree which do not divide the tree are

called ends of the tree.
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Before we give the conclusions of the study of the structure of a tree, we

will change the construction of t:1 n so that the points Pn will not be ends of

~n. Suppose, for example, that 00 has for one of its ends a
2

the point p .
n1

We join 0n1 to 00, and obtain a simple arc which we denote by oa. If one

of the ends of a6 is p , then we join 0 to 06, and obtain the simple
n2 n2 N

arc a~ = a6 U a , and so on, until either the end 00 is not a p point
n2 N m

for any m, or ad infinitum. In the first case we set 00 = agew . In the
Nsecond case, let be a limit point of the ends 00. It will not divide S,

because it it did, then l would separate a1 from some point an € A,· and

would then belong to one of the sets ~n. By the construction of on'

could not be a limit point of ends of t!n. It follows that l.:j pm for any m,
and we have obtained for this second case that agew = ail. After such a treat

ment of both ends of 00, we pick from the arcs an the first one which is

not contained entirely in ugew, and repeat the same treatment of its ends.

Hereby we will not touch the completed arcs; and, continuing this process, we

will obtain a new system ~~ew, p~ew, o~ew, whose elements we will denote

simply by ~n, Pn, an. This system will have, in addition to the properties

1), 2), 3), also the property

4) Pm =I Pn if m =I n• ••

We have thus proved the following lemma.

Lemma 8. Every tree S whose points have no branching index greater than

3 can be represented in the form

00

.::: = U ~n'
n-=l

where the !in are finite trees composed of arcs an attached at the points

Pn so that:

1) ~i=aO'

2) L\n+1 = ~n U an'

3) on n~ n = Pn,

4) Pm =I Pn if m =I n, and the points Pn are not ends of !in·

One can show that only the points Pn have a branching index greater than

two, and that Lemma 8 without the condition 4) is true for every tree. This

implies the next theorem.

Theorem 4 [3]. Every tree E consists of a set that is everywhere dense

• Because the components of a\ l are regions .
•• The old p's could coincide (Figure 24) if one connected successively two branchea

to p, the end of ~. The new construction prevents this, and since ~ haa no
points with branching index greater than 3, property 4) is satisfied.
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Figure 25. To Theorems 4,
6, 7.

in S and is composed of the points of an at most denumerable set of simple

arcs which do not intersect pair-wise in more than one point, and of a set con-

sisting of the ends of = (which can be everywhere

dense in =and have the power of the continuum).

The branching index of the points of = is at

most denumerable, and greater than two only in a

denumerable set of points (namely, at the points

of intersection of simple arcs indicated above).

It is obvious that the representation of the

tree in the form of Lemma 8 is not unique. The

proof of Theorem 4 will not be given here, because

this theorem is not being used in the present
work.

Let us also consider the structure of the

components of the remainder E\~N. This set is

open in S; its components are regions, and in

each of them any two points can be connected by

means of a simple arc, without passing outside the

component.

LeDlll& 9. Le t S, an' Pn ' ~n (n = 1, 2, ... )

be the objects defined in Lemma 8. Then the following statements are true.

1. The boundary of every component K of the set S \ /!iN cons ists of one

po in t, name ly of the poi n t Pm (m = m(N, K) ~ N ) .
00

2. Any two points of E\ U 6. n lie in different components of S\~N
n= 1

for N sufficiently large.

Proof. 10 Let us suppose that this boundary has two distinct points a.

b E t1 nK (Figure 26, 1). The points a and b have nonintersectingn
connected neighborhoods because E is locally connected. Suppose that

a' E u nK is a point of the first of these neighborhoods ua ' anda
b' E ub n K one of the second neighborhood. The points a' and b' can be

connected by means of a simple arc which lies entirely in K, while the points

a and b belong to /!iN as points of the boundary of K and can, therefore,

be connected by a simple arc ab in /!iN. The arcs ab and a' b ' do not

intersect. From the fact that it is possible to connect a and a' by a

simple arc in Ua ' and band b' by a simple arc in ub' we conclude that

in E there is a curve aa'b'ba that contains a homeomorph of the circle.

Thus, the boundary of K must be a single point.
00

Since U a is everywhere dense in E (by Lemma 8), there exists an
n= 0 n
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arc an that intersects the region K. Among such arcs. let am be the one

with least subscript. Obviously, m > N. Since 6. + contains this arcm 1

(condition 2), Lemma 8), and since 6. does not intersect K, a intersectsm m
the boundary of K. But this boundary is a single point that belongs to ~N

and, hence. to 6. m ' Therefore (condition 3), Lemma 8) the truth of the first

statement has been established.

Figure 26. To Lemma 9. The heavy line is
the tree ~N.

1. If the boundary of a component of the
complement of ~N had two distinct

points a and b. then E would con
tain a homeomorph of a circle.

2. For sufficiently large N, ~N will
00

separate any two points a. b € E\ n~ 1 ~n·

a b

00

2. Suppose that a and b are two points of =\ u ~ . aed and bed
n= 1 n

are simple arcs connecting a and b with the point d E ~ 1. e is the last

point away from d that lies on both these arcs (Figure 26,2). This point can

coincide with only one of the points a. b, d. and we can, therefore,

assume that a ~ c. In this case c separates a from d, for if a and d

should belong to the same component of the open set S \c, one would be able to

connect them by a simple arc not passing through c, and =would contain a

homeomorph of the circle, because this arc would not coincide with the simple

arc aeb. Therefore, c E ~N for some N because it can be seen from Lemma
00

8 that the points S \ u ~ do not divide E. This ~N separates a
n= 1 n

from b, for the points a and b can be connected by a simple arc aeb,

and hence by no other one. This establishes Lemma 9.

F. Realization of trees

All trees can be imbedded homeomorphically in a plane. We construct a

planar set that 1s homeomorphic to a given tree E whose points have branching

indices not greater than three. In this we follow Menger [3].
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Let =
00

U ~n be the representation given in Lemma 8. We will select
n= 1

in the plane a straight line segment and an open triangle To containing so.

Let us map ao on So homeomorphically with the aid of the homeomorphism fl'
Then there will be on So a point P1 which is the image of Pi. We can

construct an open triangle T1 , of diameter less than d1 (this positive

number will be defined later) with vertex at Pi, which does not intersect

D1 = So' except at the point Pi' and whose closure lies in To-

We select within T1 a point and connect it with P1' Then we obtain a

segment S1. We map a1 homeomorphically on S1' We have constructed a

homeomorphism f2 of ~2 on D2 = soU S1.

Suppose that we have constructed on R2 complexes of segments (segment

like complexes) Di from the segments si with the aid of the triangles Ti
and the points Pi' and also let f i +1 be the homeomorphism ~i +1' on Di +1'

where i, j = 1,2, ... , n - 1 (see Figure 9) and

Ii) D1 = So,

2 i ) Di+1 = Di U si'

3 i ) DinTi=Pi'

4i ) (R'2 \ T i) n S i = Pi'

5.;) if i>j, T·nT.=O or else T.CT.,
~ t ] t ]

6i) the diameter T i is less than d i > 0,

7 t' ) I . maps ~. 1 the same way as I· 1 (i > 1).
t t - t-

Let the arbitrary positive number dn be given. On An there exists, in

general, a point P
n

E a k (k < n) (if there is no such point, then An is

the resulting tree). The homeomorphism In determines, on Dn, a point

P
n

E sk' the image of P
n

• It is easy to select in the triangle Tk a small,

open triangle T so that the following conditions hold:
n

1) one of this triangle's vertices is Pn ,

2) Tn C Tk ,

3) Tn does not intersect sk'

4) Tn does not intersect T i (i < n) if Tk does not lie in Ti ,

5) the diameter Tn is smaller than dn·

Having picked in Tn a point, and connected it to Pn, we obtain a seg

ment which we denote by s _ Obviously, by mapping a homeomorphically on
n n

s n' we determine the required homeomorphism I n+1 on ~ n+ 1 so that the

conditions Ii) to 7
i

) will be satisfied. We have thus proved the truth of the

following lema.
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(X)

Lemma 10. Let E= U ~n be the representation given in Lemma 8. Let d
n=1 n

be a positive number. In the plane n2
one can construct (with the aid of the

segments sn' the points Pn' and the triangles Tn) complexes Dn and

homeomorphisms f n: ~n .-. Dn such that the coruii t ions 1n ) -7n) are sat is fied

for any n = 2, 3'.0 .•

Now, let E, ~n' Dn , un' sn' Pn , Pn' Tn' f n (n = 1,2, ... ) be such a
system of objects, and suppose that d

n
> 0, d

n
'-' 0 as n '-'00.

(X)

Lemma 11. In the notation given above, X = U Dn is a tree that is
n= 1

homeomorphic to E, and the homeomorphism can be constructed so that it

coinc ides with f n on ~n if n = 1,2, .. 0 •

Proof. We define a sequence of mappings f' (n = 1.2, ... ) of E in X,
n

namely on D
n

, so that on ~ , f' coincides with f . We obtain f' on E
n n n n

as f (<P (e)): the product of a cant inuous mapping cp of all of S on ~ n'n n n

and f n which transfers ~n on Dn homeomorphically. Such a mapping will

coincide with f on ~ if cp keeps every point of ~ unchanged. We have,n n n n
therefore, defined a mapping <p on ~ so that cp (e) = e (c; E ~ ). Everyn n n n
component K C E\ ~ has a unique boundary point p (m = m(K, n) ) n) in

n m
accordance with assertion 1 of Lemma 9. Let us set cp (e) = P (K ) <c; E K).n m,n
Now, <P (e) is everywhere defined; we will show that this mapping is continuous.

n

The point eE E\ ~ n has a neighborhood K which is transformed into the same

point as e. We still have to prove the continuity at the points of ~ . We
n

will point out a neighborhood for such a point e. which will be transformed

into an arbitrarily previously given neighborhooa ue. A connected neighbor

hood v C ue of the point e will doo (This neighborhood exists because of

the local connectedness of E.) The points TJ of this neighborhood of e
will go into its interior by the transformation <pn. Indeed, this is obvious

for the points TJ E ~n. Let TJ E S\L\n. Then TJ will be contained in

some component K of the set E\ ~ n0 Let P = P(K, n), be the boundary of

K. Firstly, P E v, because the points TJ and e of the region v can be

connected by a simple arc lying in v. On this arc one can find a point of

the boundary K because the initial point TJ of this arc belongs to K

while the end e does not belong to K; this is the point p (Lemma 9).

Secondly, the image of p under the mapping <Pn is P by the definition of

CPn. The continuity of <Pn has thus been proved, and it implies the con

tinuity of f~(C;) = fn(Q)n(c;))·

The sequence of mappings f~ (n = 1,2, ... ) converges uniformly on S.
Let a positive E be given. From the fact that dn '-' 0, it follows that
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for n ~ N(E) dn < €. We will show that at every point eE S, a.nd for any

n > N(E), P(f~ (e), f~(E) (~» < E. This follows from the fact that the image

of e under the mapping f~ lies in the triangle 1r
m

(m > N(E», when

Pn € DN(E)' or on Dn in accordance with the conditions 1) to 7) of Lemma 10.

Figure 27. To Lemma 11. The heavy line tree
De is homeomorphic to ~6 that separatese and TJ. Some of the triangles T

m
(m > 6) have been drawn, for which p € De.
Among them T(~, M) and T (77, Itt) (M > ft)
have been shaded. They contain the images of
~ and Tf under all mappings f ~ (m > M) 0

Thus, f = lim f~ is a continuous mapping. Obviously, it coincides with
n .... oo

f n on ~n· We shall prove that to distinct points of =there correspond
ro

distinct images in X. This is obvious for the points ~ E U ~ n. The
00 n= 1

points ~ and TJ of S\ u ~ lie, for sufficiently large N, in
n= 1 n

different components, Ki , K'2 of the complement of ~N (Lemma 9). From this,

and from the definition of I' with the aid of properties 3) and 4) of
n

Lemma 8, it follows that from some M on U~f > N) the images ~, TJ under

f~ (m ~ M) lie in different triangles T(e,M) , T(7J,M) , whose closures inter
sect DN (Figure 27). From the condition 5) of Lemma 10 we now see that

T(e,M)O T(TJ,M) = O. which shows that
ro

[(~) f [(rO. In
ro

exactly the same way,

one can consider the case when eE U ~ , 7J E E\ U ~ . The image of
n= 1 n n= 1 n

the entire tree E under the mapping f contains all of Dn, and hence it

is X. Therefore, f is a reciprocal one-to-one continuous mapping of the

compact =on X, i.e. it is a homeomorphism. This implies that X is a

tree. Lemma 11 has thus been established.

The process used in the proofs of Lemmas 10 and 11 for the construction of

the tree X, and of the mapping f in accord with the conditions 1) to 4)

of Lemma 8, for S, 6., a t p (n = 1,2, ... ) and d ..... 0, can be called
n n n n

the method of attaching branches. Our result can then be formulated as follows.
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Theorem 5 [3]. Let there be given a tree S whose points have no branching

indices greater than three; then one can construct in the plane, by the method of

attaching branches, a tree X, homeomorphic to :S, and a homeomorphism f
betwe en E a nd X.

The next more general theorem can be proved in an analogous way.

Theorem 6 (3]. Every tree S has a homeomorphic image in the plane.

A set M is said to be universal for a class Aa if each set Aa has a

homeomorphic image in M.

Theorem 7 [3]. If in the representation of Theorea 4 the set of points of

intersection of the simple arcs is everywhere dense, and if the branching

index of E at everyone of its points is n (respectively, denumerably

infinite), then the tree is universal for the class of all trees whose branching

index does not exceed n (respectively, for all trees). The trees which are

described above do actually exist.

Theorems 6 and 7 are not used in this work. The reader can provide the

proofs himself, or he can find them in the work [3]. We note without proof that

the space of the components of the level sets of a continuous function defined

on a square can be a universal tree. An example (for the case n = 3) is the

function F(x,y) constructed in Part I (§ 2) of this work.

Concepts and theorems of point-set topology used without further comment

1. Concepts ([6], Chapters VII and VIII; [7J; [8]; [9J).

Metric space. Topological space. Open and closed sets, boundary. Continuous

mapping and homeomorphism. Everywhere dense set. Connectedness.

A compact is a metric space in which one can select from every infinite

sequence a convergent subsequence. A continuum is a connected compact. The

component of a point of a set (or simply a component of a set) is the largest

connected subset that contains the given point.

A set is locally connected if every neighborhood· of any point contains a

subneighborhood of this point.

A set is zero-dimensional if in any neighborhood of each of its points

there is a neighborhood of the same point whose boundary is empty.

A set is one-dimensional if in any neighborhood of each of its points

there lies a subneighborhood of the same point whose boundary is zero

dimensional.

• Here and in the sequel, a neighborhood of a point is any open set containing
this point.
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A region is an open connected set. A simple arc is a set that is homeomorphic

to a segment of a straight line. The set A separates B from C if every

continuum that contains B and C contains A. If A separates b € B C M
from c € C C M, then one says that A divides M.

The point x belongs to the upper topological limit liM. of the sets
t

Mi (i = 1.2•... ) if in everyone of its neighborhoods there lie points of an

infinite number of the sets Mi. The point belongs to the lower topological

limit !!M i if in everyone of its neighborhoods there are points of all but

a finite number of the sets Mi.

2. Theorems.

A metric space which is a continuous image of a compact is a compact, of a

continuum is a continuum. of a locally connected continuum is a locally con

nected continuum [6].

A reciprocal one-to-one continuous mapping of a compact is a homeomorphism

[6]. A continuous mapping of a compact is uniformly continuous.

The components of a compact are continua; the components of an open set in

a connected space are regions [6].

In a region of a locally connected continuum any two points can be connected

by means of a closed arc ([3]; [7]; [9J).

The intersection of a decreasing sequence of continua F1 d F'2 :) F3 d

is a cont inuum [6J .

If the sets B C M and C C M lie in different components of M,\A,
then A separates B from C. If the closed set A of a locally connected

continuum M separates B from C, then Band C lie in different

components of M\A.
A set that consists of two noncoinciding simple arcs with common ends

contains a simple closed arc (homeomorph of a circle). The sum of four simple

arcs aa', a'b', b'b, ba have the same property if a'b' n ba = 0 and

aa' n bb' = O.

In a compact, the upper topological limit of a sequence of connected sets

is connected. provided the lower topological limit is not empty [6J.

A connected zero-dimensional set consists of one point [8].

A uniformly continuous function defined on a set that is everywhere dense

in a compact, can be extended to a function over the entire compact. This

extension is unique.

A reciprocal one-to-one, and similar (order preserving) correspondence

between two sets 51 and 82. where 81 is a denumerable everywhere dense

subset of a segment I. and 82 is a denumerable everywhere dense subset of a
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segment [2, can be extended to a homeomorphism between the segments. Such an

extension is unique.
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SOME QUESTIONS OF APPROXIMATION AND
REPRESENTATION OF FUNCTIONS

v. I. ARNOL 'n

1. Statement of the problem. Let {and g be functions of two variables.

Then

F (x, y, z) = f[x, g (y, z)]

is a function of the three variables x, y and z. This is an example of a super

position constituted of the functions f and g.

In general, a superposition constituted of given function, or a superposItIon

of given functions, means a function which is obtained by substitution of some

of the functions in place of the arguments in other functions of the set.

Superposition is a fundamental idea in analysis. For instance, the elementary

functions are, by their definition, those functions which are superpositions of the

functions a (x, y) = x + y, b (x, y) = xy, c (x, y) = x Y and the known functions of

one variable, logx, sin x, etc.

Obviously a superposition constituted of functions of two variables can be a

function of an arbitrary number of variables. Here we shall consider the converse

problem: which functions of several variables are superpositions of functions of

a smaller n umber of variable s.

The problem is due to D. Hilbert. The roots of the equations of 5th and 6th

degree are superpositions of functions of two variables, when considered as

functions of the coefficients. For equations of 7th degree it has not been possible

to find such a representation; the representation reduces to functions of three

variables. This led Hilbert to pose the following problem (the 13th of his HMathe

matical Problems" [1]):

Is every analytic {unction of three variables a superposition of continuous

(unctions of two variables? Is the root x(a, b, c) of the equation

x 7+ ax 3 + bx 2 + cx + 1 = 0

a superposition of continuous {unctions of two variables?

It is necessary to consider the class of functions of which the superposition

is constituted. It is easy to see [2] that any function of three variables can be

represented as a superposition of functions of two variables by a proper choice

of the latter functions. On the other hand, we have:

Theorem 1 (D. Hilbert). There is an analytic function 0 f three variables

192* Amer. Math. Soc. Transl. (2) 53 (1966)

* 

Editor’s note: translation into English published in 
Translation of V.I.Arnol’d: Some questions o  approximation and representation of functions. Proc.
Internat. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960, pp. 339–348

f

192–201 , 
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which is not a superposition 0 f in finitely di fferentiabl e func tions 0 { two variables.

This can be explained in the following way: the number of independent co

efficients of the Taylor series up to order n for functions of three variables is of

order n 3, and for functions of two variables is of order n 2
• Consequently, if a

function of three variables is a superposition of a particular iorm (for example,

f[x, g (y, z)]) of infinitely differentiable functions of two variables, then the co

efficients of a sufficiently high order in its Taylor series must obey some rela

tion depending on the form of the superposition (for the simplest fonn given above

it is enough to take coefficients for terms up to fourth order). The different types

of superposition form a countable set; there is an analytic function of three vari

ables which does not obey any of the corresponding relations. It cannot be a

superposition of analytic functions of two variables of any form whatever.

This explains the posing of the problem of the possibility of reduction to

superpositions of continuous functions. Hilbert expected that a reduction of this

type would also be not always possible.

For superpositions of the simplest forms this is actually the case [2,3,4].

2. Superpositions of smooth functions. Vituskin [5,4] showed that if the

resolution of an arbitrary smooth function (having p derivatives) of three vari

ables into a superposition of functions of two variables is possible, then this

requires a lowering of the order of smoothness one and a half times.

We consider the class of functions given on the n-dimensional unit cube En

which have all parital derivatives up to order p inclusive and are such that their

pth order partial derivatives all satisfy a Holder condition of degree 0 < a ~ 1. 1)

Definition. The class of all such functions will be denoted by F n
a; herep,

n is the dimension, p + a the smoothness, and (p + a)/n the quality of the func-

tions of the class.

We note that, for example, functions which obey a Lipschitz condition

(Holder condition of degree 1) have smoothness 2.

Theorem 2 (Vituskin). There is a {unction o{ class Fn a which cannot bep,
represented as a superposition of functions of better quality and of smoothness

~ 1, i.e. functions of classes F~, f3 with (q + (3)/m > (p + a)/n, q 2. 1.

For example, a function of three variables of smoothness 3 cannot always be

represented as a superposition of functions of two variables of smoothness greater

than 2.

1) A function !(x l' x 2' • • • , x n ) obeys a Holder condition of degree a with constant

M if l[(x) - !(r)\ ~ MIIx - r11 a.
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This result, which was obtained in a very complicated way by means of the

theory of multidimensional variation [4], created by Vituskin on the basis of work

of Kronrod r Adel'son-Vel'skil, Landis and others [61 has since then been related

by Kolmogorov [7] to the concepts of Shannon's information theory. The considera

tions which arise in this connection have independent interest, going far beyond

the limits of the Hilbert problem which stimulated their development (see also the

report of Kolmogorov uLinear dimension of topological vector spaces ").

3. Entropy of function classes. Three decimal figures are needed to give the

position of a point of the interval (0, 1) with an accuracy of 0.001. To give a

point of a segment with accuracy f the number of decimal places needed is,

log Ilf and for a point of an n-dimensional cube n log 1/( figures are needed. It

therefore makes sense to talk of "the number of signs which are necessary to

specify a function f € F with accuracy (" where F is some class of functions.

This number is the "minimal capacity of a table of functions". It is known how

much the capacity of a table of functions increases with an increase in the number

of variables, and how it decreases when the smoothness of the functions increases

(interpolation of high order!). It turns out that the minimal capacity of a table of

functions of class F n (C) to accuracy ( has an order of growth (1/()n/(p +a) asp,a
( ~ O. Here Fn a.(C) means the class of functions f E Fn for which If I andp, p,a
the absolute values of the derivatives of order .:s p do not exceed C and which

obey the Holder condition with constant C. In information theory it is convenient

to consider not decimals to the base ten but binary decimals. For this reason

logarithms to the base 2 occur in the exact formulations below.

Let X be a totally bounded* set in the metric space R. By definition for

any (> 0 there is a finite set of points R such that X' is covered by the balls

of radius ( with centers at these points «( -net in R for X).

Definitions. Let

N:(X) be the minimal number of poi nts of an (-net in R for X;

N(X) be the minimal number of sets of diameter 2f covering X;

M(X) be the maximal number of (-different signals in X, i.e. the maximal

number of points of X such that balls of radius ( with centers in these points do

not intersect.

Then

H:(X) = log 2N:(X), HiX) = log 2NIX), C(X) = logif/X)

are called respectively the (-entropy of X relative to R, the (-entropy of X
and the (-capacity of X.

*Translator's note. I.e. precompact.
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It is ea sy to show that

HJ;(X) ~ C~'<X} ~ H(X} ~ H:(X).

195

By a table to accuracy ( for a function of a given class we mean a choice of O's

and l's by means of which this function is determined with accuracy ( at every

point. The number of tables formed of n signs is 2n• Consequently, the result

of Vitu~kin which shows that H(X) is the minimal capacity of a table of functions

of class X with accuracy ( in the case when X is compact in the space C 1) is

natural.

Estimates of H( have been given for a series of important classes [8,9,11]:

(A) for the class of functions of n complex variables analytic in a region

G = n7=1 Gi (where Gi is a region in the complex plane) uniformly bounded by

some constant C and considered on K = n'!_1 K. (where K. is a continuum con-
l - l l

here C(G, K) is the geometrical characteristic of G and K calculated in the

re gular manner defined in [9].

(B) In [8,11] it was proved that

Theorem 3 (Vituskin and Kolmogorov).

where 0 < k :s K are constants not depending on f.

It is easy to show by means of these formulas for q 2: 1 that the superposi

tion of any fixed type of functions of quality (q + f3}/m of a given compact

family Fm /3(C 1) cannot give all the functions of a compact family Fn a(C) ifq, p,
the quality of the latter is worse than «p + a)/n < (q + fJ)/m).

Roughly speaking the point is that the minimal capacity of a table of func

tions of class F n a (C) is of order (11()n /(p +a) and the capacity of the table ofp,
all functions of class Fm B( C1) which enter into a superposition of a concrete

I
q,

form is of order (1/f)m (q +/3). If the representation of all functions of class

Fn (C) by such superpositions of functions of class Fm /3(C 1) is possible, thenp,a q,
a sufficiently full table of all the functions entering into the superposition could

replace a table of the superposition functions to accuracy f; consequently

1) The continuous functions on a compact with metric p(!, g) =max If - gl.
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(l/f)n/(p+a)::;K(I/f)m/(q+/3) where O<K <00 is independent of (. This means

that n/(p + a) ~ m/(q + (3): if the representation is possible, then it has to be in

terms of functions of quality not better than the functions which are represented.

By the well-known method of condensation of singularities we now construct a

function of the class F n a (C) which cannot be represented by any superpositionp,
of functions of the classes F~t,B(Cl) for any possible C1 and (q + (3)/m >
(p + a}ln. This is the theorem of VituSkin.

4. Superpositions of continuous functions. Hilbert's problem, however, is

concerned not with smooth but with continuous functions. In this domain the re

sults have turned out contrary to his hypothesis.

In 1956 Kolmogorov showed [12] that any continuous function given on the

n-dimensional cube En for n 2 3 has a representation

where the functions g of n - 1 variables and the functions h of 3 variables are

real and continuous.

Apply ing this representation several times one can see that any continuous

function of n 2: 4 variable s is a superposition of continuous functions of 3 vari

ables.

The proof is very complicated. The basic apparatus used is the tree of com

ponents of the level sets of a function, introduced by Kronrod.

A level set of a function (x) is a set of all the values of x in its domain

of definition for which, for some c, (x) = c.

A component of a level set is any connected piece of the level set. On

Diagram I the level sets for 0 :s c :s 1/2 consist of one component those for

1/2 < c :s 2/3 of two components, and for 2/3 < c ::s I of one.

A function is a map of its domain of definition onto its range of values. This

map can be represented as the product of the following two maps:

(1) A map of the domain of definition onto the set of components of the level

sets, each point being put into correspondence with the component to which it

belongs.
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Figure 1. The level sets for 0, 1/2, 2/3
and 1 are designated, by the values to
which they corre spond. 2/3' and 2/3" are
the two components of the level set for 2/3.

Figure 2. The tree of components of the
level sets of the function of Figure 1. The
components are designated as in Figure 1.

(2) A map of the set of components onto the set of values: each component

goes into the value which the function takes on that component.

Let the domain of definition be a compact set F.

If the function is continuous then a ttnatural topology" is introduced for the

set of components. Let A be a component and U any open set in F which con

tains A. Then the set of all components of level sets which meet U form a

neighborhood UA of the component A.

Now the first map is continuously montonic 1) and the second continuous

with zero-dimensional inverse images. It follows that the space of components

is a locally connected simply connected continuum, i.e. a tree [13,14]. It is

called the tree of th e funct ion.

The connection of this with the function is very simple. For instance, the

function of Figure 1 has a tree which is homeomorphic to the horn shown in

Figure 2. The number of segments into which a point of the tree di vides the tree

is equal to the number of parts into which the corresponding component of the

level sets divides the domain of definition.

One of numerous noteworthy properties of trees [12] makes use of the result

that there is a universal tree in the plane (one which contains a homeomorphic

image of any tree). The functions which appear in the superposition indicated

above and in later superpositions have trees which are universal, or almost

universal, and this is an indication of the serrated nature of their graphs.

1) I.e. the inverse image of each point is connected.
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The Hilbert problem was formulated for functions of three variables, and the

Kolmogorov theorem does not answer it. However, it turned out that, after a

further complication in the construction and on arranging a tree in three-space in

such a way th.at any function on it is represented as a sum of functions of the

coordinates, one can represent any continuous function given on the three dimen

sional cube in the form

3 3
{(Xl' x 2' x 3) = ~ ~ hi .[¢i'(X 1' x 2), x 3]

'-1 '-1 J JI, - J-

where hand ¢ are real continuous functions of two variables.

This proves, contrary to Hilbert's hypothesis, that any continuous function of

n ~ 3 variables can be represented as the superposition of continuous functions

of two variables.

Finally, soon after this Kolmogorov succeeded in provin~ the following theorem.

Theorem 4. Any function continuous on the n-dimensional cube can be repre

s ented in the form

r(x l' .•. , Xn)= 2ni 1 Xi[ I ¢i .(x .)],
'-1 '-1 J IL- J-

where X and c/J are real continuous functions of one variable.

Every continuous function, therefore, is a superposition of continuous func

tions of a single variable and of a single particular function of two variables,

namely addition.

The method of the present article is more elementary than that of [12] and

[1 S] and does not use the concept of a tree. The proof of Theorem 4 can easily

be understood in the note [16].

The functions cPij are standard and independent of [(xl'···' x n). The con

struction in [16] can be regarded, for this reason, as a method of using the stand

ard functions

n
¢i(x 1,···, x n) = 2 ¢ ..(x.) (i = 1,· •• , 2n + 1)

j =1 "1 J

to imbed a special n-dimensional cube En homeomorphic to F in (2n + 1) -dimen

sional space. The function f(x l' .. · , xn ) induces a continuous function

f( cPl' • • • , cP2n + 1) on F. F has the noteworthy property that any continuous

function {( cP1'···' ¢2n+l) on F can be represented as the sum of functions

Xi(¢i) of the coordinates of a point in F.

Problems. The results obtained can be reduced to the following table:
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Functions
used q+p....~

em
Fm Fm Am

00

Functions
q,/3

represented
1"""'-'

en + - - -
....

""-
p+a. "" q+'> (p +Q) ",/n, q " 1

"
~

"-

co PJ - - -p,a

+ q < 1, or

g+P< (p+~)ml" ?

Fn + ? - -
00

An + ? - -

199

Here en is the class of all continuous functions on the n-dimensional cube,

F:' all the infinitely differentiable functions, An the analytic functions; the

sign + means that all the functions of the class on the left are superpositions of

functions of the class above (m < n). From this the following problem arises

naturally:

Problem. Can every function of the class Fn be represented as a super-p,a
position of functions of the class Fm /3 for (q + f3)/m = (p + a}/n? forq,

(q + f3}/m > (p + a}/n -( (f > o) (m <n)?

Can every function of the class F: or of An be represented as a superposi

tion of functions of Fm /3 ? of F m ?q, 00

The study of particular forms of superposition reveals very remarkable prop

erties of classes of functions which can be represented as superpositions of a

given form [17]. We derive the following problem.

Problem 2. Find the simplest superposition 0 f functions of m < n variables

in terms of which one can represent (a) a given function 0 f n variables; (b) a

given class of continuous functions of n variables; (c) all continuous functions of

n variables. lnvesti!{ate analogous problems for approximation with arbitrary

degree 0 f ac curacy.

For a more practical approach to such problems see [18].



142

200 v. I. ARNOL'O

The estimate of Hf in Theorem 3 is coarse in so far as the constants k and

K are not determined. It is not clear how they depend on C, n, p and a; the

asymptotic behavior of Hf is unknown, i.e. for which function ¢ (f) (supposedly,

for con stants ), is

The difficulty of this question is clear if we note that in the cas e of the

Euclidean metric, which is by far the easiest case, it corresponds to the problem

of the densest packing of balls and the most economical covering of space by

balls.

Problem 3. Improve the estimate of H given in Theorem 3. Establish the

asymptotic behavior of HL(Fn (C)) for f ~ o.
~ p, a

Since the f-entropy Hf(F) characterizes the minimal capacity of a table of

functions of class F to accuracy f, a knowledge of the behavior of llf is essen

tial for an estimate of different methods of approximating given functions, of in

troducing them to machines and of storing them in the memory of the machine.

However, what is important here are the values of II f for small but finite (.

Problem 4. F.or various classes (Fn (C) etc.) give accurate estimates of
p,U

H
f

for finite f.. Investi/{ate methods of tabulation by means of which the capacity

of the table approximates to the minimal value. Estimate the increase in the dif

ficulty of usin~ a tabulation with decrease of its capacity.
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KOLMOGOROV SEMINAR ON SELECTED
QUESTIONS OF ANALYSIS�

V.I. Arnol’d and L.D. Meshchalkin

The seminar was concerned with two groups of questions.
I. Ill-posed problems in analysis and mechanics, that is, problems whose

solutions are everywhere discontinuously dependent on the parameter, in the
main, ‘problems with a small denominator’.

The simplest example of a problem with small denominators is the equa-
tion

g(z + 2πμ) − g(z) = f(z) , (1)

where f(z) is given and g(z) is an unknown function of period 2π. The solution
is formally given by the Fourier series

g(z) =
∑
n�=0

fn

exp(2πinμ) − 1
exp(inz) ,

where fn is the Fourier coefficient of f(z).
If μ is rational, then some of the denominators will be zero, while if μ

is irrational, then some of the denominators will be arbitrarily small. The
convergence of the series is determined by the arithmetical properties of μ;
for sufficiently small f(z) the solution exists for almost all μ (in the sense of
Lebesgue measure). The dependence of the solution on μ is everywhere discon-
tinuous in general. Nevertheless, series of this kind occur both in analysis and
in applications. They were first encountered in astronomy. “The difficulties
encountered in celestial mechanics due to the existence of small denominators
and the approximate commensurability of the mean motions relate to the very
nature of things and cannot be avoided.” (Poincaré).

The lectures by Vakhaniya on boundary-value problems with data on the
entire boundary for the vibrating-string equation, by Boyarskĭı and Vakhaniya
on singularities of shells of negative curvature, by Arnol’d on maps of the cir-
cle onto itself, and by Kolmogorov on certain problems of classical mechanics

� Uspekhi Mat. Nauk 15, No. 1, 247–250 (1960)
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contained a survey of material put together here ([1] –[14]). Apart from prob-
lems that, like (1), are formally immediately soluble, certain problems have
been considered that require perturbation theory even for their formal solu-
tion. It has not been possible to establish convergence of power series of a
small parameter, which is usually required here (see, for example, [10]). To
get round these difficulties Kolmogorov ([13]) applied Newton’s rapidly con-
vergent method. Of the new results along these lines we note the following:

1. An analytical investigation of maps of the circle onto itself enabling one,
for example, to carry over results in the study of the vibrating-string equation
on an ellipse to curves that are analytically close to an ellipse (V.I. Arnol’d).

2. A presentation of the results of [13] in terms of maps of the annulus,
enabling one, for example, to solve D. Birkhoff’s celebrated problem on the
motion of a point on a billiard table in the case when the table is analytically
close to an ellipse (Kolmogorov).

3. Establishing the analytic independence of solutions obtained by New-
ton’s method on a small parameter and the monogenic (in the sense of Borel)
dependence ([15]) of solutions of certain problems on a parameter playing
the role of μ in (1) (Arnold). The conjecture that the first dependence was
non-analytic, and the second was monogenic was expressed by Kolmogorov
([14]).

The lecture by Artsimovich and Leontovich was devoted to questions of
“magnetic traps”, which are necessary for the realization of controlled ther-
monuclear reactions. A rigorous qualitative study of the behaviour of a charged
particle in magnetic fields of certain configurations is, it would seem, reminis-
cent of the analysis of problems of billiard type [16].

The consideration of an ill-posed problem shouldconclude with a discussion
of the actual meaning of the mathematical result. In applications ill-posedness
turns up after passing to the limit (for example, as certain parameters tend to
0 or ∞: instances or such parameters are time in qualitative theory, viscosity
in hydrodynamics, and thickness in the theory of shells). The interpretation
of the mathematical model (in which the passage to the limit is carried out
just before the solution of the problem: the parameters are set equal to 0 or
∞) must consist in indicating which properties of the model correspond to
which properties of the prelimit model. Such an interpretation can be produced
only in a very small number of cases. However, such properties apparently
can be interpreted in this way and have a real meaning, and not merely for
“structurally stable” properties in the sense of Andronov and Pontriyagin [17].

II. Some sessions were devoted to the study of mathematical models of the
turbulent motion of an incompressible viscous liquid. In his opening remarks on
this theme Kolmogorov pointed out the following two main conclusions from
experimental material which must lie at the basis of one’s considerations:

1. As the viscosity ν decreases the laminar solutions of stationary problems
usually become either unstable, or the stability is so slight that it is not
actually observed.
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2. As ν → 0 the decrease in smoothness of the solutions observed in prac-
tice is so strong that the order of dissipation of the energy per unit mass
depends only on the typical veleocity of a typical path, and not on ν.

Kolmogorov put forward for consideratikon the solution of the system

Du

Dt
= −∂p

∂x
+ νΔu + γ sin y ,

Dv

Dt
= −∂p

∂y
+ νΔv , (2)

∂u

∂x
+

∂u

∂y
= 0,

where

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
,

Δ =
∂2

∂x2
+

∂2

∂y2
,

with periods 2a and 2π with respect to x and y, respectively, and∫ a

−a

v(x, y)dx =
∫ π

−π

u(x, y)dy = 0 . (3)

He expressed the conjecture that for small ν there must be a structurally stable
solution (that is, there is a non-trivial invariant measure μν in the (u, v) space)
such that μν → 0 as ν → 0, where the limit measure is concentrated on the
continuous functions. Among other models we note the following, proposed
by G.I. Barenblatt:

Du

Dt
= v

∂2u

∂y2
+ f .

However, none of the models confirms Kolmogorov’s conjecture, which remains
open. Yaglom and Volevich have made a survey of papers by Burgess and Hopf
closely related to this topic [18]–[20].

Meshchalkin and Sinăı have, with the help of straightforward calculations
with continued fractions, managed to investigate completely the question of
the stability of the laminar solution

u =
γ

ν
sin y, v = 0

of equations (2), (3). Thus it turns out, in particular, that for a < π the
laminar soltion is always stable, while for a > π (for a fixed velocity profile,
that is, for γ

ν = const) one can always find a γ0
† such that for ν < ν0 the

laminar solution is unstable. These arguments involving artificial models are

† Translator’s note: This should be ν0 .
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justified by the fact that already the proof given by Wasow and Lin [21]–
[23] of the stability of a Couette flow and the proof of the instability at high
speeds of a Poiseuille planar flow based on computer calculations is not in total
compliance with the mathematics. The results of Lin were even declared to be
erroneous, because Petrov [24] presented a proof of the stability of Poiseuille
planar flow at all speeds. However, at the seminar V.B. Lidskĭı indicated a
flaw in Petrov’s proof (see [25]).

V.I. Arnol’d and L.D. Meshchalkin
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[25] N.I. Pol’skĭı, On the convergence of certain methods of analysis, Ukr. Mat. Zh.
7, No. 1 (1955), 56–70.

148



ON ANALYTIC MAPS OF THE CIRCLE
ONTO ITSELF�

V.I. Arnol’d

After the appearance of the papers by Siegel [1], [2] and Kolmogorov [3], [4]
problems with small denominators lost their unapproachability.

One problem of this kind is the following. Let t(φ) be a continuous function
of period 2π with φ1 + t(φ1) > φ2 + t(φ2) for φ1 > φ2. Then the function
T (φ) = φ + t(φ) determines in natural fashion a map T of the circle of points
exp(iφ) onto itself. If t(φ) ≡ α, then T is a rotation through an angle α. The
map Ψ(φ) = φ + ψ(φ) can also be regarded as a change of variable on the
circle.; the new variable at the point φ is Ψ(φ), and the new variable at the
point T (φ) is Ψ(T (φ)). We say that the change of variable Ψ(φ) converts T
into T ′ if T ′[ψ(T (φ)] = Ψ [T (φ)]: T ′ is T written in terms of the parameter
Ψ(φ). Clearly, T ′ is a map of the circle onto itself, namely, T ′ = ΨTΨ−1.

Poincaré’s Problem. Under what conditions can T be converted into a
rotation under a suitable change of variable ?

Poincaré [5] introduced the rotation number of T . It is necessary that the
rotation number of T be equal to α. Denjoy [6] proved that if the rotation
number α of T is incommensurable with 2π and dt

dφ is of bounded variation.
then the required change of variable exists.

Many authors have considered the Dirichlet problem for the string equa-
tion in a rectangle and in an ellipse. In order to reduce the general case to
these two cases one has to solve Poincaré’s problem. It is therefore natural
to restrict the admissible changes of variable by insisting on smoothness and
solving Poincaré’s problem for smooth T .

Until now this has only been achieved for analytic transformations that
‘are slightly different from a rotation’. The idea is as follows.

Let t(φ) = t0 + t̃(φ) = t0 +
∑

n�=0 tn exp(inφ) be the Fourier expansion of
the given function. Poincaré’s problem is equivalent to the functional equation
Ψ [φ + t(φ)] = Ψ(φ) + α or, which is the same,

ψ(φ + t(φ) − ψ(φ) = α − t(φ). (1)
� Uspekhi Mat. Nauk 15, No. 2, 212–214 (1960) (Summary of reports announced

149

translated by Gerald Gould 

to the Moscow Math. Soc.)



2 V.I. Arnol’d

Suppose that α − t(φ) is small. We select a change of variable Ψ(φ) such
that T = ΨTΨ

−1
(that is, the T in the parameter Ψ(φ)) differs from a rotation

by an angle much smaller than T . For this we define ψ from the ‘equation of
first approximation’ (cf. (1)

ψ(φ + α) − ψ(φ) = −t(φ) . (2)

The Fourier coefficients of ψ(φ) (if they exist) are

ψn =
tn

1 − exp(inα)
(n = ±1,±2, . . .) . (3)

If α is commensurable with 2π, then there will be zeros in some of the de-
nominators in the above equation, while if it is incommensurable, then there
will be arbitrarily small denominators in the above equation. By a well-known
theorem in the metric theory of Diophantine approximation, for almost all x
there exists c > 0 such that ∣∣∣x − m

n

∣∣∣ >
c

|n|3 (4)

for all integers m and n. It is easy to see that the Fourier series with co-
efficients (3) converges to the smooth solution (2) if t(φ) is a sufficiently
smooth function, and that x = α

2π satisfies (4). Making the change of vari-

able Ψ(φ) = φ + ψ(φ) we find that T = ΨTΨ
−1

: φ → φ + t1(φ), where
t1(φ) = t0 + ψ(φ + t(φ)) − ψ(φ + α), and t1(φ) is obtained on substituting
Ψ

−1
(φ) in place of φ. We now estimate the difference between T and a rotation

by an angle α:

t1(φ) − α = t0 − α + ψ(φ + t(φ)) − ψ(φ + α)

= t0 − α +
dψ

dφ

∣∣∣
ξ
(t(φ) − α) .

One naturally expects that |t(φ) − α| ∼ ε implies that |ψ| ∼ ε and
∣∣∣dψ

dφ

∣∣∣ ∼ ε;

it can be shown that |t0 − α| ∼ ε2, so that |t(φ) − α| ∼ ε2. We proceed with
the transformation T in the same way as with T and for each approximation
the ‘error’ |t(n)(φ)−α| is squared. The rapid convergence typical of Newton’s
method paralyses the effect of small denominators.2

A transformation T is said to be analytic if the function t(φ) is analytic
in a strip enclosing the real axixs.

Theorem For c > 0, R > 0 there exist M > 0 and � > 0 such that if an
analytic transformation T of the circle satisfies the conditions

1◦. |t(φ) − α| < M for |Im φ| < R,

2◦.
∣∣∣ α

2π
− m

n

∣∣∣ >
c

n3
(m = 1, 2, . . . ; n = ±1,±2, . . .) ,

2 Newton’s method was first used for a similar purpose by Kolmogorov [4].

150



On analytic maps of the circle onto itself 3

where α is the rotation number of T , then there exists a change of variable Ψ
that is analytic in the strip |Im φ| < � and converts T into a rotation through
an angle α.

In [8] more complicated theorems of this type are proved. It turns out, in
particular, that the power series in a small parameter proposed by Poincaré
converge. The space of maps of the circle onto itself is studied, and we consider
certain approaches to the question of typicality and exceptionality of various
cases.

It is interesting to note that the requirement 2◦ is essential: the change
of variable in Denjoy’s theorem (mentioned earlier) can even turn out to be
not absolutely continuous in spite of the fact that T is analytic and α

2π is
irrational.
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SMALL DENOMINATORS. I
MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF

v. I. ARNoL'n

4 10 the first part of the paper it is shown that analytic mappings of the eire>

. cumferencet differing little from a rotation, whose rotation number is irrational and

satisfies certain arithmetical requirements, may be can'ied into a rotation by an

analytic substituti()n of variables •. In the second part we consider the space of

mappins,s of the circumference onto itself and the place occupied in this space by

.mappings of various types. fie indicate applications to the investigation oftta

jectories on the torus and to the Dirichlet problem for the equation 01 the string.

Intt~ucdon

Continuous mappings of the circumference onto itself were studied by Paine;>

care (see [l]~ Chapter XV, pp. 165-191) in connection with the qualitative ineo

vestigation of trajectories on the torus. The problem of Dirichlet for the equation

of the string can be reduced to such mappings, but the topological investigation

turns out here to be insufficient (see [5]). In the first portion of the present

paper we attempt an analytic refinement of the Denjoy theorem completing the

theory. of Poincare [2].

Suppose that F(z) is periodic, F(z+ 211) =·F(z), real on the real axis and

analytic in its neighborhood, with F' (z) +=.- 1 for 1m z =·0. Then to the mapping

of a strip of the complex plane defined by z --.. Az := z + F (z) there corresponds

an orientation-preserving homeomorphism B of the neighborhood of tbe points

w (z) =e iz :

w·:a:·W(z) --+ w(Az) == Bw.

In this sense we say that A is an analytic mapping of the circumference onto itQ

self.

*Suppose that the rotation number of A is equal to 21TP.. From Denjoy's

theorem it follows that for .irrational JL there exists a continuous inversible real

function ifJ(z} of the real variable z, periodic in the sense that

¢(z + 217) = ¢(z) + 217

and such that

<p (A z) =: ¢ (z) + 21T1L. (1)

.We assume that the reader is acquainted with the results of the papers [1] (pp. 165
191, 322-335) a.nd [2], which appear in the textbooks [3] (pp. 65-76) and [4] (pp.442-456).

213

*

* Am. Math. Soc. Transl. (2) 46 (1965), 213–284 Editor’s note: translation into English published in 
Translation of V.I. Arnol’d: Small denomnators. I. Mapping the circle onto itself. Izv. Akad.
Nauk SSSR Ser. Mat. 25:1 (1961). Corrections in Izv. Akad. Nauk SSSR Ser. Mat. 28:2 (1964),
 479–480
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We shall say that ¢ is a new parameter and that when expressed in the parameter

if; the transformation A becomes a rotation by the angle 211P.. Such a function ep
must be unique up to an additive constant.

In §1 it is shown that for' certain irrational P.9 in spite of the analyticity of

F (z), the function ¢ in (1) may turn out not to be absolutely continuous. The

idea of this example consists of the fQl1owing. Since under rotations of the cir~

cumference length is preserved, the reduction of a transformation to a fe,tatiOn by

an appropriate choice of parameter amounts to the determination of the 'invariant

measure of the transformation. In the case of a rational rotationoumber the in

variant measure is concentrated, as a rule, at separate points, the points of the

cycles of the transformation. However, if the [o,tation number is irrational, .but
can be approximated extremely well by rationals, then the invariant measure reo

tains its singular character, though it is distributed everywhere densely on the

circumference.

The following conjecture appears to be plausible:

There exists a set M 5;. [0, 1] of measure 1 such that for each p. EM the

solution of the equation (1) for any analytic transfonnation A with ro'tation

number 2tT/l is analytic.

At present this is proved only for analytic transformations sufficiently close

*to a ['otation by the angle 21TP. (§4, Theorem 2). The proof consists in the con-

struction of the solution of equation (1) by means of the solution of eq...ations of
the ,form

g(z -}- 2n(-t) - g(z) ~-= j(z).

In the solution of this equation by the use of Fourier series, there appear small

denominators, making the convergence difficult. The calculation of the successive

corrections, adaptinB the solution 'of the equation (2) to the equation (1), is car

ried out,by a method of the type of Newton'smeth,od, and the rapid convergence

of this method guarantees. the possibility of realizing not only all the approxi

mations of tbetbeory of perturbations, but also the passage to the limit.

*Note added in proof. As this paper was going to press the author learned of the work
of A. Finzi [38]9 [39]. From the results of [38) it follows that if the rotation number of a
sufficiently smooth mapping of the circumference onto itself satisfies certain arithmetical .
requirements, then the transformation may be converted into a rotation by a continuous 1y
differentiable change of variables. Thus the method of A. Finzi does not require that the
transformation be close to a rotation. This partly confirms the conjecture stated above. A.
Finzi notes, however, th.at he does not see how to extend his method to the case when a
higher smoothness of the substitution of variables is required.. The present paper contain's '
a partial answer to some of the questions posed by Finzi. For a partial answer to some of
the questions posed here the reader is referred to the Finzi papers.
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~, Newton'~ mePtod was applied for a similar purpose by A. N. Kolmogorov [6].

Theotem 2 of the present paper is in a way a discrete analogue of his theorem on

the preservation of conditionally periodic motions under small changes of the

Hamilton's function. In distinction to [6] we have no analytic integral invariants

at our disposal, but rather we seek them. Moreover, we prove (in Theorem 2) the

analyticity of the dependence on a small parameter i, from which there follows

.the convergence of all the series in powers of l that are usual in the theory of

perturbations •

A direct proof of the convergence of these series has not been achieved, and

*A. N. 'Kolmogorov has even cooj~ctured (before studying the paper [7] of K. L.

~iegel) that they might diverge.

Another conjecture of Kolmogorov, stated by him in the report [8], turned out

to be true: questions in which small denQmina.tors playa role are connected with

the' monogenic functions of Borel [9]. For our case this is established in §§7,8

and used in §11.

Certain important problems with small deno~inato[swere solved by K. L.
Siegel (see [7], [33], [34], [35]). There is a direct connection between mappings

of the circumference and the problem of the center for the Schroeder equation: is
it possible to make an analytic substitution of variables ep(z) =z + b2z 2 + • It.
whick will convert a mapping of tke neighborhood of tke origin of the complex

plane, given by the analytic function f(z) =.e 2"iJ..4 z +'a2z 2 + • 41 q, into a rotation

by the angle 21TP.?

The resUlt of Siegel in [7] is analogous to our Theorem 2 and may be obtained

by the same method. The problem of the center is a singular case of the problem

of the mappioa of a. circumference whose radius, in the singular case, is ·equal to

zero. In comparison with the general case the position here is simpler, since the

solution (the Schroeder series) may be for·lD.ally written down direcdy. The ap

plication of Newtontsmethod also gives the Schroeder series; in distinction to

Theorem 2, each coefficient of the solution will be exactly defined after a finite

number of approximations.

In the second part .of the paper we cite the classical mappings of the ciro

cumferenceonto it self. and discus s the question of the typicality of various cases.

In §9 we introduce the function Il(T) (rotation number) on the space of mappings

of the circumference. Further we study, for rational (910) and irrational (§11) Il.

the level sets p.(T) a: p. from the point of view of their structure· (Theorems 6 and

7)and density (Theorems 5 and 8). Of greatest importance from the topological

*In a report to the Moscow Mathematical SoCiety on January 13, 1959.
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point of view are the rough mappings(tbe word ttrough" being taken in the sense

of Andronov and Pontrjagin [10]) with normal cycles and rational rotation numbers;

*these mappings form an open everywhere dense set. F'roro the point of view of

measure in finiteedimensiooal subspaces the ergodic case also is typical. In §12

we consider the two-dimensional subspace of mappings x -+ x + a + E cos x.

In §~13 and 14 the preceding results are applied to the qualitative investi

gation of trajectories on'the torus and, to the Dirichlet problem for the. equation

of the string.

I wish to express my thanks to A. N. Kolmogorav for his valuable advice and

assistance.

Part I

On analytic ,mappings of the circumference onto itself

The basic content of the first part of this paper Is contained in §~4-6 (Theo

rem 2). For an understanding of the proof of Theorem 2 (§'§"5,6) it is necessary

to study subsections 2.1 and 2.3 of §2 and subsection 3.3 of §3. For the lemmas

on implicit functions and 00 finite increments contained in §3 one may turn 'at need

to the references. Each of §§1, 2, 7 may be read independently of all the rest.

In §S we prove a generalization of Theorem 2 (Theorem 3), used in the second

portion of the paper.

§l. Die case when the new parameter is not all absolutely
continuous function of the old· paraDleter

1.1. ht this section we construct an analytic mapping A of the circumference

C, subsets Gn (n := 1, 2,· •• ) of the circumference and integers Nn (n -= 1, 2;···)

such that:

1. mes Cn --+ 0 as n-+ 000

2. ANn (C\Gn) C Gn•

3. The rotation number p. of the transformation A is irra.tional.

This transformation A cannot be converted into a rotation ,by an ab$olutely

continuous change of variables. Indeed, let ¢ be a continuous parameter in whic~

the transformation becomes a rotation by the aogle 2fTp. (ep exists from Deojoy's

theorem). Suppose that G C C. The measure of the set ¢(G) of values ¢(x)Ij

x € G,coincides with the measure of ¢(ANC), since these sets superpose under

a rotation. Therefore it follows from condition 2 that:

*Note added in proofo This result was also obtained by V.. A. Pliss in the paper [43],
published while this paper was being printed. , '
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files cp (G'n) >;.:rt.
In view of condition 1, ¢ is not an absolutely continuous function on C.

1.2. For dte construction we use the following lemmas.

Lelilmil a. Let the transformation A of tke circumference be semistable

forward* and analytic in the neighborhood of the real axis, and suppose t.hat the

o points zo, Zk:S A (zk-l) (0 < k < n) form a cycl.e, i.eo, A (zn -1) = Zoe Then for

any f > 0 there is in the indicated neighborhood of the real axis a transformation

A' differing from A by less than l and having exactly one cycle~ in fact %0'

ZI'···' zn-l·
Proof. We construct a correction ~(z) analytic in the strip in question,

vanishing at the points %0' zl'·· .. , zn-l and positive on the remainder of the

real poittts.

Put
.L

ol' (z) = .A (z) -+- e'~ (z);

for sufficiendy small £' > 0,' f' d (z) I < £ in the indicated strip and A 6 (z) is a

transfonnation of the circumference. Evidently the transformation (A ')n moves

forward all the points z not less than the transformation An; furthermore the

p<>ints zo' Q •• , zn-I move by '2mn., and the remaining points by not less than 2fTm.
Lemma a is.proved.

Definition. Suppose that A is a transformation of the circumference C and

that G is a set on C. We shall say that the transformation A has property 2 re....

lative to G and N if AN (C\c) c c.
Lemmao fJ. Given a transformation A with the single cycle zo.. ·· ,zn-l and

any l> 0, then A possesses property 2 relative to the set Gl of points of tke

fOneighborhood oof the cycle and any N exceeding someN0 (i) ..

Proof. Suppos e that z; < x< z ., where x.x. is. one. of' the arcs into which. . ~ I J J
the cycle divides .the circumference. The points Akn (x) (n ::::·1, 2, ••• ) lie on

the arc z·z. and form a monotone sequence (for mote details see §lO).. Therefore
l 1

it follows that in the case when the transformation A is semistable forward (the

case of backward semistability is completely analogous),

.Jilin (x) .~ - zi.
k->-+o.:-

Indeed, supopose that A is the limit of the monotone sequence Aokn (x). Then A

is -invariant with respect to An and belongs to a cycle satisfying the inequalities

*This means that for some integers m, n and any reoal %, An (z) ~ z + 2mn, with
equality atllainedo
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lim -Atkrt-+- l (x) ==: A 1 (Zj).
k-+co

The same is true for the other intervals into which the cycle divides the cirG

cumference.

Consider the points xi = zi + £. By what has been proved, beginning with

some NO(l), all the points ANxi lie in an (-neighborhood of the cycle. Evidently

that NO is the one desired. .

Le8lllla y. Suppose that the trans formation has property 2 relative to G and

N, and suppose that (> o. Then there exists a 0 > 0 such that each transformation

B differing from A by less than 8 has property 2 relative to N and the (....neighbor

hood of G.

Proof. The lemma follo.ws in an obvious way from the continuous dependence

of AN on A.

Lemana 8. Suppose that A is a semistable forward transformation, B (z) :::

.4 (z) + h, h > o. Then the rotation number Jl of the transfo1imation B is strictly

larger than the rotation numl!Jer min of the transformation A.

Proof. Evidendy Jl ~ min. In addition Bn (z)·> An (z) and therefore B does

not have a cycle of order n. Hence p. > min.

Lemma f (degenerate case of Liouville's theorem). If the inequality

Ia- min I < ell n I for any c > 0 has an infinite set of irreducible solutions min,
then the number a is irrational.

Proof. If a = piq, then for n> q

since the quotient min is irreducible, so that Ipn - qm I :f 0 for q < n.

1.3. The transformation A is formed as a limit of a sequence of trans

formations A with rational rotation numbers. 'Beginning with the transformationn .
Z ~ Al (z), we shall suppose that it has the following properties:

11- A1 is analytic in the strip I 1m z I < R, and in this strip fA'1 (z) I < e/2.
21- The rotation number of Al is rational: III :Z·P1/ql.

31a• A1 is semis table forward.

3 1b- A 1 has exactly one cycle.

The existence of such an A1 is evident: from each A; with property 11 '

one may obtain, with an appropriate choice of h > 0, A ~ =: A~ + h with properties

lIt 2 1 and 3 1, and then one may correct Ai to Al using Lemma a. The sub

sequent transformations An are obtained from the prec~d.iogones by using a



158

MAPPINGS OF THE CIRCUMFERENCE ONTO' ITSELF 219

pro~ess based. on ~he following Induction Lemma.

Induction Lemma. Suppose that 8n > 0 and suppose given transformations

Ak (k :1:1, 2,···, n) and R >0, C > 0 such that

In. For 11m z I < Rthe Ak are analytic and satisfy the inequalities

2n e The rotation numbers of the Ak are rational and for k > 1

i PI.' Ph'-::~I:
~ qk qk-l
I ,

3n• A k is semistable forward an.d has a unique cyclp.

Then one may construc·t a transformation An +I such that the sequence Ak
(k = 1, 2,· •• , n + 1) will have properties In +1' 2n +1' 3n +1 and

4n +1- I .lln·~-l (z) - An (z) 1 « 6n for Inl Z == O.

Proof. Consider the transformation AA: Z -. An (z) + AS' A> O. Evidently

there exists a AO> 0 such that for A< AO

I .h (x) --- An (z) I < 2~~;r (1 1m z : < Ill,

l)
\,,4), (z) - Lin (Z) \<; (lIn z ::=:: 0)

and the rotation number of ,AA is strictly larger than Pn/qn (Lemma 0) and less
than

Pn 1
qn --lt2-TmaXq;)2

l-:::en

(continuity of the rotation numtber, see §9). Suppose that the rotation Dumber of

AAO is p.. We select a rational number Pn +l/Qn+I'

j ry p, 1
~<~<~fJ·
qn q1l+1

Among all the A for which the rotation number of AA is pn +1/qn + 1 we select

the largest. Suppose that it is AI" The transformation AAl has the properties

In +1' 2n +1' 4n +1' and, as is easily seen, is semistable forward. We apply Lemma

a to it. The~ we obtain a transformation An '+1 satisfying all the requirements of
the Induction Lemma.

1.4. The transformation A1 satisfies requirements lIt 21, 31 of the Induction

Lemma for the same C, R. We shall describe the choice of 8
n

in carrying out the

induction from An to An +1- We denote by 9: the E-neighborhood of the single
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A h f G* · 1 ha -11-2cycle n' where (> 0 is chosen so that t e measure 0 'n 15, ess t n 2 •

By Lemma f3 there is an Nn such that An has property 2 relative to C: and Nn.
By Lemma y there exists a 8: > 0 for' which the transformation A has property 2

relative to Nn and to a Gnoneigbborhood of C: of measure 2-n - 1 if on the real

axis

Choose
. (' bn b';'t'6.,.. '-1 ::.= IUln ---- ---- \"I ') , .);'- - /~

(we formally take 00 ::0). Applying the Induction Lemma, we obtain An +1-

If the transformations An' n =1, 2,···, are constructed in the way de

scribed, then, in view of prQperty In this, sequence converges uniformly in the

strip 11m z 1< R, so that the limit A is '8Q analytic transformation. Evidendy

!A (z)-- _t" (z) I<: ~ I A'i-H (z) - A'i (z) i< ~ bn ( ~r-;-l < b" (1m z ~, 0)
k=n k=n

for any n and therefore A has property 2 relative to Cn and Nn' n =: 1, 2,···_
From property 2n and the continui~ofthe rotation number, we conclude on the

basis of Lemma ( that the rotation number of A is irrational. Indeed, for any n

Thus all three properties of subsection 1.1 are satisfied, so that A is the

desired transformation.

1.5. Remark. Considering the example just constructed, it is not difficult to

see that a transformation A with the indicated properties may be found in any

family of analytic transformations

z --,. ./1 A Z == Z - 1- ~ -1- F (z)

and therefore in any neighborhood of any transformation with an irrational rotatioo

number, given only that the family has the following property: among the trans- •

formations A1 there are no rotatiOns. Probably the family z - z + Ii + t cos z

has this property;, in this case an example may be given by a simple analytic

formula.

§2. On the functional * equatiOll f/ (z + 21tfL) ~.. fJ (z) 0== f (z)

,.. Hilbert [12] gave this equation as an example of an analytic problem with a nonanao

lytic solution. It is encountered in investigations on the'mettlc theory of dynamical sys
tems (see [13]t [14]), and is the simplest example of a problem with small denominators.

Added in proof. This paper was already if;l press when the 'a~thot became acquaintecl '
with the paper [ 40] of A. Wintner in whIch this equation was apparen'tly first studied ftom
a modern point of view.
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,~, 2.1. Suppos~ that f(z) is a function of period 211, p. a real number. It is re

quire~ to define from the equation

g (z + 23tf.!) - g (z) = f (z)

'a function g (z) having' period 2TT.

In case the equation (1) is solvable, evidently

(1 ,. /

2r:V(z)d;:; == O.
o

Furthermore, if g(z) is a solution~ then g(z)+ C is also a solution. There..

fore we s,hall consider only right sides which are in the mean equal to zero aod

seek only solutiQlls in the mean equal to zero. In each function cfJ(z) on [0, 2"]

we single out the constant part

and the variable part

~,= 2~ ~ rp (z) dz
f)

q; (z) =: cp (z) - <po

The equation T= 0 is thus a necessary condition for the solvability of equation

(1). By a solution of (1) we shall from now on always understand the variable

part g(z).

If p. =min, i.e., is rational, then for the existence of a solution it is neces

sary that
a

~ I (z + 2n ~) = 0,
11"=]

since this sum may be expressed in terms of the solution in the form

n n
~ ( , 2 In I 2' k ) L} ( 2 k )7 g Z -I :rt - --~ jt - - g' Z -+- j'[ - ,....J II In' I n
k~l k=l

and in these two sums the terms are identical. If such a condition is satisfied,

then 'a solution exists but it is defined only up to an arbitrary function of period

2,,/n, since such a function satisfies the homogeneous equation

( + ? n~)g Z .... j[ n - g (z) == O.

Now if Il is irrational, then the equation has a unique solution; in fact,

1) For, irrational fl equation (1) cannot have two distinct continuous solutions.

Proof. The difference of two continuous ,solutions of equation (1) satisfies

the equations

g(z+2n) --g(z)~O,

g (z + 2rqt) - g (z) == 0;
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i.e., this continuous function has two incommensurable periods. Such a function

isa constant (see [15], pp. 55-56); it takes 00 one and the same value at all

points 211" + 21TP.l, which form an everywhere dense set. Since
21t

~ g (z) dz = 0,
o

then the constant in question is zero.

2) For an irrational Il equation (1) cannot have two measurable .solutions not

c oine iding almos t everywhere.

Proof. Again we consider the difference of two solutions of (1) and denote it

by g (z). It can be considered as a function on the circumference, since it has

period 2",_ By condition 1

g (z -J- 21(11) - g (z) = 0;

i.e., g(z) does not change under a rotation through the angle 211P._ Therefore the

set Ea of points of the circumference where g (z.) > a is invariant under a rotation

through the angle 21TP.. If the function g (z) is constant almost 'everywhere, then

this constant, as in case 1), is zero. If g (z) is not constant, then for SOOle a

the set Ea has a measure satisfying 0 < meas Ea < 21T. But it is well known that

a set invariant with respect to rotations by an angle ooncanmensurable with 211

has measure zero or a complete measure (see, for example, [3]; for the proof it

is sufficient to use the theorem on points of density). Thus g(z) = 0 almost
everywhere.

If the function fez) is expanded in'to the Fourier series

I(z) == ~/neinz,

n=FO

then for the Fourier coefficients of g (z) we have

i.e.,

g (z);=: ~ gn einz .

n=FO

(2)

.
For rational p. some of the denominators vanish. For irrational p. there are arbi-

trarily small denominators. We note that

(3)

for any integer n and some ~nteger m. Therefore ·the smallness of the denomi

nators in (2) depends 00 the approximation of p. by rational numbers.

Lemma I (see [16]). Suppose that f > o. For almost every (in the sense of

Lebesgue measure) p. with 0 ~ Il ~ 1 there exists a K >·0 su.ch that

I f.111 -- ,u12 _K_ (4)
• __Y"' n 1+E
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fo~' any integ~rs Tn and n > o.
Proof. We select any K > 0 and estimate the measure of the set EK of

points p., 0 < /l < 1, not satisfying the inequality (4), which we rewrite in the

-form

223

1f1-~·I>n~E'
, This set contains all the points min with circumferences of radius Kln2 +E.For

a fixed n the number of these points will be equal to n + 1, and the common

length of the circumferences (on [0, 1]) will be equal to Kln l +E". Therefore
00

mes ]!.:]('~ ~ ~ = C(8) K.4.J nITE
n=l

The set of points p., for which the number K required in the lemma does not

exist, is contained in EK for any K > 0, so that this measure is less than

C(l) K for any K; i~e., it is equal to zero.

2.2. We shall show that foe almost all p. small denominators worsen tbe con

vergence of the seri~s (2) only a little.

LelDDla 2 (see [17]). The series
00

s--" '1 1
- L.J 1l1+£ I nit - mn I

n=J

converges for any l > 0 and any integers mn , if p. is such that

(5)

(6)

(7)

:0'

for all integers m and n > O.

Proof. Without loss of generality we may sqppose that Ip.n -'mn I < 1. We

consider series Si of the same type as S, but in which the summation is extended

only over those indices n =n~i) for which

1 J (i) 1 (i) (i)
i+l < f.!nk -In (i)I<-;- (i === 0,1,2, ... ; nk+l>nk).2 nk 2"-

The series Si taken together contain all the terms of S, so that it is .suffic1ent

to prove that

~Si< 00.

i=O

To estimate Si we note that from ('6) the successive indices n~i), n~~l of terms

of the serie's Si are significandy far apart: since from (7) there follows the in

equality

! ( i) (i) ) I l
i f.1 nk -nk+l '·-In! < ~i-l 'I

.:..
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from (6) we deduce

where

Therefore we obtain

v.. I. ARNOL' D

1

l'J
i
> (2i-1 K)l+e-r:.-.

Evidently n\i) > Ni , and more generally n~i) > kNi, so that in view of (5), (7),

(8) we have

(L (t:, K) >0),

Here

so that
00

~,S·LIt
i=o

oc,

as was required -to be proved.
*As is well known, if [(x) is a function p +. l times differeQtiable, then its

Fourier cotE ficients have an order of decrease

and if

_ (1 )P-t-1+£In -- 0 -n

then [(x) is differentiable p + € times. From this and from inequality (3) and

Lemmas l.aod 2, applied to the series (2), we obtain the following result:

Jf the function f (z) is P + 1 + £ + ~ times differeT/,tiable~ then, for almost all
Jl equation (1) has a p + £ times differentiable solution.

On the other hand, it is not hard to construct examples for which the Dumber

. *I.e., a function whose ptb derivative satisfies a Holder condition of degree l:

I f<P) (x + It) -- f(P) (x) I< ekE.
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p.·t-an be' appr.oxi~atedby rationals so well that in spite of the rapid decrease of

the n~erato[s fn the series (2) converges slowly or not at all. So even if fez)
is analytic there may appear cases where g(z) is not analytic but is infinitely

. differentiable, or even only differentiable finitely many times, or only continuous,

or eveD discontinuous, or the solution is not measurable (s.ee [14], [17]). *
, 2.3. Consider the equation (1) in the class of analytic functions. To investi

.gate this case we recall two lemmas concerning the Fourier coefficients of ana

lytic functions.

Lemma 3. If tke function fez) of period 211 in the strip 11m z I .~R is ana

lytic and in this strip (f(z) I ~ C, then· its Fourier coefficients satisfy the in
ifqualities

Proof. By definition,

In = 2~ 2~ f (z) e-inz dz.
o

From the periodicity of f(z)e -inz,

rf (z) e-inz dz = 2"r~ f (z) e- inz dz,
o 2~

so that

1In::::: -2Jt

2r,1-·i~

~ f (z) e-·illz dz
°i·;;:-

for any T € [- R, R]. Integrating in the case n > 0 along the line r == -·R. and

for n < 0 along r = R, we obtain
2::

If I~ ~ \ Cl'- \ n I R d,::,
n ~ 2Jt ~. '~',

o
as was required to be proved.

LeIDllUl 4. Suppose that the Fourier coefficients of f(z) satisfy the inequal

ities Ifn I~ Ce-I n IR. Then f(z) is analytic and satisfies for /1m z I::; R - 8,
o< 0 < R, the inequality

,. I 2C
! ! (z) 1 <: ----, . "1 __ {~-8 '

and its deri*!Jative satisfies the inequality

If' (z) I < (1 ~~-5)! •

*A. N. Kolmogorov. has conjectured that this last case is realized whenever the
series In*o If; 1/le21nJJn 1-1 (2 diverges. .
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Proof. For 11m z I $ R - 0, 0 < 0 < R it is evident that

Ieinz 1. < el n f (R-5).

Therefore

and

In the same way

00 00

~ I/neil1Z 1<2 2J Ce-n& < 2C-0
n=-co n=o 1 - e

00 00

~ l/nineinz I~ 2C ~ ne-no <: 2C
n=-oo n==o (1 - e-o)~ .

In the strip Ildl z I .~R - 0 the series converge absolutely ~niformly. The lemma

is proved.

Now it is not difficult to investigate the analytic solutions of equation (1).
'V

Theorem 1. Suppose that fez) = f (z) is an analytic function of period 21T

and that, for 11m z I ~ R, I f(z) I~ C. Let 11 be irrational, K > 0 and

If! - ': I> :a (9)

for any integers m and n > o. Then the equation

g (z + 2nJ1) - g (z) == I (z)

has an analytic solution g (z) = g (z), and for 11m z I 5:.R - 20 and any 0< 1,

0< 8< R12,

Ig (z) 1< ;~ ,
Ig' (z)1 < :~ .

(10)

(11 )

Proof•. Applying Lemma 3 for the estimate of the Fourier coefficients fn of

the fonc.cion fez), and usinS inequalities (3) and (9), we obtain from (2)

Ignl<~n2e-lnIR. (12)

We note the simple inequality

I Ip ( p)P el
n 18 (13)

n < e~'
valid for any 8 > O. In fact p 10 x < p In (pie) + x, since the function p In oX _·x

bas its maximum at x = p. Putting x ::: 81 n I, we obtain (13). Applying (13) to

(12) (for p = 2), we have
Ce- I n l Ref n I 5 Ce- I n I (R-&)

I gn 1< K62 ==. Kfl~
so that from Lemma 4 we obtain in the strip 11m z I :£ R - 28:
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Ig (z) \< Kb2 (12~ e-O) , I g' (z) I< Kb2 (12~ e-8)2 ·

Since I 1 - e -81 > 8/2 for 0 < I~ we therefore obtain the ioequ~lities (10) and

'(11). The theorem is proved.

Remark 1. Evidendy the solution is real if f(z) is real on the real axis.

Remark 2. If the function {(z, A) depends analytically on a parameter A, then

. the solution (under the conditions of Theorem 1) also depends analytically on that

parameter.

2.4. We consider equation (1) for complex p.. 10 this case the solution of the

homogeneous equation

g (z + 21(11) - g (z) === 0

is any doubly periodic function with periods 21T and 21TP., so that the solution of

the problem is certainly not unique. If we require that g (z) be analytic in a strip
of width greater than 11m 217/l I, then the solution of (1) is defined uniquely up to

a constant. Indeed, a strip of that width contains a parallelogram of periods, and

a solution of the homogeneous equation analytic in it is bounded in the entire

plane; i.e., it is a constant. The condition g =0 singles out the unique solution

which is given by the series (2). This series converges for any nooreal p., but we

are interested in estimates, and thus we must exclude neighborhoods of rational p..

We shall denote by MXthe set of points /l of the rectangle in the complex plane

o :s Re JL ~ 1, 11m /l.ts r such that for all integer m, n the inequality

IfL- : I> 1~13
is satisfied. It is evident that along with p. the points jI, 1 - JL and 1 - ii are

also contained in Mxa
Instead of itJequalities (3) we have

Ie2"iz - 11 > min (+ ' n Iz - m I) (14)

for any complex z with som~ integer n. We shall prove (14). H Ie 21Tiz - 1,1 ~ t.
then (14) is proved. H Ie 2

1T&Z - 11 < t. then we join the points 1 and e21T1z by

a segment and consider the integral

e21tiz

1 ~ dw 1 . 1--. - === -. (In e21t1Z - In· ) = z -m,
2ttl u' 2nl

. 1
where In w is one of the branches of the logarithm and 10 1 = 21Tim, m an integer.

Since the segment of integration lies entirely in the circle

1
lw- 1 1<T'
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aDd in this circle Iwi> t. we have

e21tiz

I ~ d; I< 2 Ie2"iz - 1 I·
1

Therefore

Iz - m I< -*- Ie2dz
- 1 I,

as was required to be proved.

If p. € MX' then by applying (14) to z = Iln we find

( 1 rt}..~) .Ie21ti
p.n - 1 I>- min 2' n~

Thus, if /l € MX' where K < 1/211, then

Ie2"il'-n -11 > :~ . (15)

Theorem 1'. Suppose that !(z) =f (z) is an analytic function of period 2"

and that I f(z) I $. C for 11m z I 5:. R, and suppose that p. E MK, K < 1/217. Then
the equation

g (z + 2n~) - g (z) === f (z)

has an analytic solution g (z) =g(z), and for 11m (z -21TP.) I < R - 20 and any

8 < 1, 0 <0< R/2,

(1)

Ig (z) I< Jt~~3' Ig' (z) I< Jt~4 •

Proof. From formula (2) and Lemma 3, we have

But for I1m (z - 217/L) I < R - 28

.f ein (Z-2~fJ.) I< el n I (R-20),

so that it follows from (17) that
. Ce-20 I n II a e1nz [ ~ ----

On ~ 1 _ e-2i1i /J.n •

Since 1 -Il € MK, we have from (15),

11
. rtK- e-2ot1.p.n I2 

~ nt ,

which means that

(16)

(17)

C -201 n I 2

I inz I~ e ngne ~ nK .

Hence from (13) it follows that the series g(z) and g' (z) con~erge, and according

ly the inequalities (16) are valid (see the proofs of Theorem 1 and Lemma 4).

Remark 1. Remark 2 to Theorem 1 applies also to Theorem l' •
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~. Remark 2. ~et us fix the function f and the number z and consider the de

pen~eoce of the solution just found on p.:

g (It) = 2l e27ti::-1 einz
• (2),

n=t=o

The function g (IL) is .analytic in the upper and lower half-planes, ,but the axis

m; p. = 0 is a cut. On it the series' (2) converges almost everywhere, but to an

everywhere discontinuous limit. That does oot prevent us in §7 from differenti

ating the solution with respect to p. even for 1m #l = 0 if we make u~e of the ideas

of Borel [9]. For the time being we shall take tbe formula

8g ~ 2nine2rr.ilLnIn .
011 == - LJ (e21titLn _1)2 e

tnz

n=FO

to have a meaning only in the upper and lower half-planes separately.

§3. Lemmas necessary for the proof of Theorem 2

3.1. Lemaaa 5. If at each point of the segment z1z2 the function f(z) is ana

lytic and Idf/dzl~L, then If(z2}-{(zl) I~L Iz2-z11.
Proof. Indeed,

from which it follows ,that
Zz

If (Z2) - f (Zt) I< ~Idld~) II dz 1< L IZ2 - Zt! .
Zl

Remark. The example f(z) = eiz , z 1 = 0, z2 = 211 shows that in the complex
domain the theorem on the finite increment in the form

or

is invalid.

3.2. Lemma 6 (on imp~icit functions). Suppose that the functions F(f), ell (i, ~)

are analytic and that for lEI .~ EO' It! I ~ L\o

IF(B)I<M1 , l<D(B, L\)I<M21~1,

where M1/(1 - M2) < ~o/3 and M2 < 1/6.' Then

1. The equation Ii + F (E) + (I) (i, Ii) = 0 has analytic solution Ii* (E), satisfying

for III < EO the inequality I~*(l) I ~ M1/(1 - M2).

2. The equa,tion t1 + F (E) + til (E, A) == 1\1 nasa solution Ii =·A (L\l' ~:),
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analytically depending on ~1 and f, I!!1 I < t!J.o/6, I f 1< EO' where

I ~(~l' 8), ~ 6.* (8) 1 < 21 ~1

Proof. The disk IA I < M1/(1 - M2) lies, when M1/(1 - M2) < AOt If I $ lOt

in the region where IF (l) I :5 Ml' 1<I> (l, A) t< M21 A I, and therefore under the
transformation A -+ - F(l) - cI>(l, A) is carried inside itself:

IF(e) + <l>(e, A)I<lU1 + 1 M~12M2= t M 1M2 :

The fixed point of the transforma tion is the desired solution A* (E). Analyticity

follows from the usual theorem OD implicit functions, since
a
a~ (A + F (B) + <I> (B, A» =1= 0,

which follows from the estimate of a<l>/a~. using Cauchy's integral formula: for

I~ I $ 2l\o/3, 1£ I< (0

I
a<D I< }J!12~o <-.!-
o~ ~ fj,o 2·

T
2. Under the transformation w -+ w + tI»(w, f) the point d * (f) goes into

- F(f), and the point w of the disk I, w - A* (E) I $.2 , Al I i~to the PQint

w + <D (L\*(B), B) + [<D (w, 8) - <D (A* (8), 8)].

Since under the conditions of the lemma

1<D(w, B)-<D(A*(e), e)I<I~11

for the points of this dis'k (Lemma 5), the image of the disk I w -·A*«() 1$ 21 All
contains the entire disk Iw + F(l) 1·:5 L\1 and has the point ~(~It (), going into

Al - F(.E). This point satisfies the inequality

and the equation
l ~ - /).* 1< 21 All

A = /).1 - F (e) - cD (B, ~).

Figure 1

Uniqueness and analyticity follows from the inequality Ia~/a~ I <1.
2

Remark. It is easy to see that if under the conditions of Lemma 6 the functions

F (E) and til (l, 1\) are real for real l, ~, then L\* (l) and 1\ (AI t l) are real for •

real ~lt E.

3.3. Newton's method (see [18], [19]). Suppose that

we are seeking a solution of the equation f(x) = 0

(Figure 1). We determine x roughly as %0 and find the

point of intersection xl of the taogent at Xo to the

curve y = [(x) with the x axis:
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l. Further, we ~efine successively .
f (Xn - 1)

'X n = xn- 1 - -I' /---)
~xn-l. *

and estimate the rapidity of convergence of the process. Suppose that x is the

'desired solution and IXo- x I =E'. Then the devia:tion of the curve from its tan

gent at the point %0 has order f2 at the .point x, which means that "xl _·x I is

a quantity of order (2. Thus after the nth step the error will be of order 2n ,

. which represents extraordinarily fast convergence.

We shall apply a similar method to the solution of a linear functional equation

approximated by the equation considered iii §2. The rapid convergence will para

lyze the denominators appear.jng at each step.

§4. Theorem 2 and the Fundamental Lemma

4.1. Heuristic coosideratioDs. The U'adsformatiOd

z ---* z + 23tf1

is; a rotation. of the circumference. The transformation

z ---* z -1- 2nJ.1 + eF(z)

~s a rotation perturbed by the term (F (z), which is small along with E'. Its rotation

number, even if F =0, may be different ~om 21TIl_However, we may seek l1 =
/),.(f) such that the transformation

z~ z + 2nl-t + A + 8 F(z)

will have a rotation number equal to 2171l- We. sb.all show that for numbers Il that are

normally approximable by rational numbers, and sufficiently small E',

1) /),. (f) depends analytically on (;

2) the trans formation z -+ z + 21T1l + l1 + iF (z) may be converted into a

rotation through the angle 217/l by an analytic substitution of variables ep(z) =
z + g(z).

Here g (z) is a correction small with f, and pro.perty 2) means that

q> (z + 2Jtf1 + ~ (8) + BF(z), 8) == cp (z, e) + 2nl-t-
or, what is the same thing (the. dependence of g on l is implied),

g (z + 2~~ + ~ + 8 F(z» - g (z) := - ~ - e F(z). (1)-

This equation differs from that considered in C§2 only by small quantities of

second order, and therefore it is natural in the first.approximation to choose

t! =L\ (l) so that the right side of equation ( 1) will be equal to zero in the mean:

Al = ---: eF

*Here we cite no exact assumptions and estimates. They are given in the paper [18]
in a very general form, which, however, does not include the arguments of the following
sections.
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and to seek gl (z) as the solution of the equation

gl (z + 23tfl) - gl (z) == -- e F(z).

The g 1 thus defined bas order l and in the variable ¢l = z -g1 our transfonnation

has the form
z~z + 2:rtl-t + ~1 (e) -+- B F (z)

'P1 (z + 21l!l + ~1 (8) + eF (z)) == z + 2nfJ. + Li1+ e F
+ gl (z + 2JTfl + ~1 + eF) = z ~f- gl (z) -+- 2rql
+ [gl (z + 21lf.t + [\1 + eF) - gl (z -+- 2:£(.t)]

+- [fSl (z + 2nl1) - gt (z) + Ep:'(Z)] --:- (~1 + f. P).

The last two terms vanish because of the choice of,11 and gl (z) and we obtain

<PI (z) --? <PI (z) + 2n~ -l-F2(z, e).

Now the 'tpetturbation" has the form

F 2 (z, e) = gl (z + 2n:"" -I- ~1 -+ eF) - gl (z -+ 2n:",,) = dg~;~) (~l + eF).

Here dg 1/dz, as also g l' is a quantity of order l, and, since the saine relates

to the second factor, the perturbation in the parameter cPt has order i 2• With the

trans formation

Cfl -)- CPl -!.~ 2Jtll -1- F 2

one may proceed in the same way and define a "correction to ~e frequency"

~2 and a new parameJer cP2 such that the transformation

((Jl ~ ({Jl -+- 2Jtl-l -1- ~2 -~ F"!.
in tbe parameter ¢2 goes into the transformation

qJ2 -)- q>2 -t- 2ITll -+- f':1'

where F3 '" (4. However, here in the param~~er z the traosformatioo

wi11 Dot have the form

z~ z -}_. 2:qt ,-1,- ~ -+- c[?

Therefore we need to begin wIth the transformation

z -',.. z -1- 2J1!l ~1- ~1 (e) -t- 11; (L\:1) -+. cP';

then with a proper choice of L\; (L\2) we may in the parameter CP1 obtain the

transformation

(fl ~,.. (Pi -t-- 2IT,.,., ~~ -i- P'; ((P,),
and in the parameter cP2 the transformation

(P:~ -)- CP2 ·-i·- 2JTll -i- }.~,

and so forth. The rapid convergence of the method {Fn ."" (2,n-I) makes it pos

sible to carry out the limit transition and in the limit to obtain a new parameteJ
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¢ (z, €)and a, final co.rrection ~ (i) with the properties 1) and 2).

The usual method of solution of our problem in the theory of perturbations

would consist in seeking L\(f) and ¢(z, i) in the form of series in powers of i,

while the coefficients of the series would be successively determioedby equation

(1) in the first approximation, in the second, and so forth. The proof of con

vergence of such series by direct _estimates has not beenacbieved, though it re

.sults from the following fundamental theorem of this paper.

4.2. Theorem 2. Suppose given a family of analytic transformations of the

circumference, depending analytically on two parameters i, L\;

1 A) I~) 1 A ! T.-:t ( )z -----;;- .../ (z, e, ti ~ Z -- - ,,-:r~l 1- u t 1 1 Z, e (2).'

and numbers R > 0, £1 > 0, K > 0, L > 0 such that

1) F (z + 2", l) = F (z , E);

2) for 1m z = 1m i =0 we always have 1m F (z, E) = 0;

3) for 11m z I :£R, lEI $ EO

! }? (.::, C') 1 ~, L Ic ,; (3)

4) the irrational number Jl for any integers m and n satisfies the inequality

(4)

Then there exist numbers £' and R', 0 < i' ,~ EO' 0 < R' ,$;R, and {unctions

Ii (E), ¢'(z, i), real for real land z and analytic for IE' < i' , 11m z I < R " such

that

cp (A (z, 8, ~ (8)), 8) == cp (Z, 8) + 23tfl. (5)

This theorem is proved in §6 on the basis of the following lemma.

FWldameatal Lemma. Suppose given a family of analytic transformations of

the circumference, depending analytically on t.he parameters i, L\:

z -> .Ao(z, B, ~) == z + 2n~ + 11 + F (z, 8) +<1> (z, E, ~) (6)

and numbers Ro > 0, iO > 0, K > 0, 0 > 0, C > 0, 0 < [\0 < 1 such that

1) F (z + 217, () = F (z, i) ~(z + 2", l, ~) = (}){z, i, Ii);

2) for 1m z = 1m ( = 1m Ii = 0 always 1m F = 1m 4l = 0;

3) for 11m z I $. RO' I(I ~ EO' Iii I ~ ~o

IF(z,g)I<C.<68
, (7)

i<D(z, e, ~)I<~l~l; (8)
4) the irrational number p. for any integers m and n satisfies the inequality

(4);

5) the number 0 satisfies the inequal~ties
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and moreover

6< R o
8 ' (9)

(10)

c<~o. (11)

Then there exist analytic functions z(¢, E), ~(hl' l), F 1 (¢, E)" <1>1 (ep, E, ~l)

such that

1. Identically

(12).

where

Al (cp, 8, 1\1) == q> + 21tf.t -r- 1\1 + PI (cp, e) + cD1(<p, 8, 1\1). (13)

2•. F1(cp + 2n:, 8)= F'l(CP, e), (1)1(CP + 2n, 8, A1)= <l>1(CP, E, AI); z(cp+211:, E)=

z (cp, 8) + 2:rt.

3. For Imcp == ImA1 = 1m8 = 0 always Imz == Im~ === ImPI = 1m (1)1=0.

4. For 1~11<C, IImCPl<Ro-7~, 18 1<80

C2

IF1 (<p,e)l<b6 ' (14)

)<VI (cp, E, L\l) 1< i)21~1 I, (15)

\z(Ip,8)-cpl<;, 1:~1<2, (16)

ILl (ill> 8) 1< Llo' I:~II < 2. (17)

The Fundamental Lemma shows that small (of order C) perturbations of the

rotation z ~ z + 217P. may be compensated by the change in the parameter z -+ ep
for ~ = [\(&1' E), so that in the new parameter the difference from a rotation will be

of ord~r C2• The proof of the lemma is given in the next section.

4.3. 10 §11 we shall use the following assertion.

Corollary to Theorem 3. Suppose that the irrational number p. sati&fies in-.

equality (4) of Theorem 2, and suppose that R > o. Then there exists a C(R,K» 0

such that if the trQll,sformation

Az : z -~ z -t- 2Jtf.1 + F(z)

has a rotation number 21TP. and IF (z) I .~ C for Ilui z I .~ R, then Az may be

converted into a rotation by tke angle 211/1 by an analytic change of variable~.
Proof. Consider the function

F(z)
FJ(z) == max IF(z)1

I lIn zl-.<R
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and the family of ~ransformations

Aez : Z -7 Z + 2rrll + ePi (z),

satisfyio8 the conditions of Theorem 2 for L = 1, since IF1 (z) I =s 1 for 11m z ,. ~R.

According to Theorem 2, there exists an E' (R, K) > 0 such th~t for c: < i' the

tran s formalion

z~z+ 2Jtfl + A (8) + eFI(z)

.can be converted into a rotation through the angle 211P.. Choose C (R, K) < i' •

Then, if IF (z) f ~ C for 11m z f s R, there exists a L\ such that

Z-->Z + 2:n:fl + 11 + F(z)
fan be turned by an analytic transformation of coordinates into a rotation through

the angle 21TP., since

F (z) ~ max 1F (z) IF I (Z),
11m zl<R

and
max IF (z) 1 -< C < e'.

But the rotation number of Az is equal to 2111L, from which it follows that A =0

(see item 2 in the proof of Theorem 4 in §10, where it is shown that for an arbi

trarily small L\ the rotation number of the transformation z -+ z + 21111- + A + F(z)

is large r than 211P.). The corollary is prov~d.

The assertion of the corollary may be obtained directly as well, using con

structions analogous to those of Theorem 2. Because of the absence of the para

meters' E and tl, these constructions will be less clumsy.

4.4. Remark on the multidimensional case. All the constructions of §C§2-8

may be considered to be multidimensional if we replace a point of the circumference

by a point of a torus of k variables. Condition 4) of Theorem 2 ·is replaced by the

following condition of ttiocommensurability" for the vector ;:
-;.. ~ J{

1 no -~- (t-t, n) I >- --=;- (18)
In r

w

for any integer vector ~ = (no, • •• , nk). Here (~, T:) is the scalar product

k k" ~ ~LJ f.!i ll i, f n [ === LJ Inil·
1=1 i=u

For sufficiendy large w condition (18) is satisfied for almost all vectors p,.
Without dwelling in detail' on the formulations and proofs of all the inequa

lities, lemmas .and theorems for the multidimensional case, we present only one

result.

Multidimensiollal Theorem 2. Suppose that p. ='{1!1' •.•• , P-k) is a vector with

incommensu,rable components sa,clt that for any integer vector ;:



175

236 v. I. ARNOL'D

I -~ ~ -"'--. !{
1 11 0 1- (f.!, n) I /,,>~ •

11l1'lOTi

Then there exists an (R, C, k) > 0 s~ch that for the vector field FG) on the

torus, analytic and sufficiently small, IF (Z) I < l (or 11m -; t < R, there exists a

vector ~ for which the transformation
-? -+- -+- ~ --).

z~ z -t- a -1-- ]/ (z)
of the torus into itsel{is converted into

~ --> ~ --}--- 2J(~

by an analytic substitution of variables.

§5 Proof of the Fundamental LeQllllB

5.1. Constmction of z (cp, f), ~ (~1' f), F I (ep,-E) and WI (cP, i, L\1). The

function z (cp, f) is constructed as the invers·e to

cp (z, c) =:: Z ~ g (z, e), (1)

and the function ~(~I,f) as the inverse to L\1 (L\, f). In subsection 4.1 we saw

these functions had to be chosen so that the expression

g (A 0 (z, e, ~), 1:.) - g (z, e) -i- J? (: ~ e) --~- ~ -}- (1) (z, c, ~)

would be small. Without defining A (AI' f) for the time being (i.e., considering L\
as ~n independent variable) we define g*(z, E, A) as the solution of the equation

0*(- I") ~ A) (r:;'(-r A) i:'(~ .. ) rh(C' co A")~ ·Lo 1- ,.;:..,Jt~, c, L} - (~ ':"', e, Ll :--= - ~' ':", C - '.J-' '-J, c., ~,'

Expressing the transformation Ao (see §4, formula (6» in te rms of the parameter

-i/ (z, c., ~) == z -i- ,g ':' (:., f., ~),

'We obtain

(.p~' r[1
0

(z, c, ~), B, ~] == .z -r-- 2J1~, -;- ~ -f- I:? (z, e) -1- Q) (z, E, ~)

~- g~ (z ~i- 2jl~, c, ~) -1- g* (A o (z, f, ~) - g* (z + 2ntl, c, L1)~

or, transforminlJ the right side by means of (2),

<:p* [A o(z, c, L\), B, ~] == Z + g* (z, B, 8) + ~:Ttf1 + ~ + P (e) + <D (e, L\)

+ g. [A o(z, B, L\), B, ~] - g* (z + 2nf!, e, L\).

Thus from (1) we obtain

<:p:~ [Ao (z, e, ~), B, L\] = (()* (z, B, L\) + 2JtJ.t -t- ~ + P (e.) + <D (e, ~) +
+ g4< [Ao(z, B, L\), B, L\] - g* (z --1- 2n~, B, Ll). 7(3)

We define L\~(l) as the solution of the equation

(4)
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g* (z, c, L\~ (B)) = g (Z, B).

237

(5)

'Now the new parameter ¢(z, E) is defined by equations (5) and (1). We represent

'(3) in the form

~ [A o (z, e, ~), e] == cp (Z, 8) + 2j{1l -1- ~1 (B, ~) -l- PI (Z, e) + $1 (z, B, 8), (6)

where

F\ (z, E) == g (ZI, e) - g (z I I, e), (7)

A ( ) (8)$1 (z, e, L\) === g (ZIII' 8) - g ZI, e ,

~1 (e, L\) = 11 + F (e) + <D (B, ~), (9)

ZI = z + 2:rtll + Ii (z, e) + <D (z, e, A~ (e)), (10)

ZII ~ z + 23tfl, (11)

Zl11 = z + 2Jtfl + if (z, e) + ~1 (e, ~) + <Ii (z, B, ~). (12)

We define z(¢, f) from (1), f\(h 1, f) from (9), and write

F1 (cp, 8) == III (z «((), 8), e),

CD 1 (cp, C, ~1) == $1 (z (<p, B), c, ~ (AI, B)),

Al (cp, E, At) ::::: cp [.A o (z (<p, e), B, A (AI, e)), B).

('13)

(14)

(15)

5.2. We shall prove that the functions just constructed are those sought. As ..

sertions 1, 2, and 3 of the Fundamental Lemma are satisfied in an obvious way.

The proof of assertion 4 is based on the following estimates.

1°. Estimate of ~o (f). On the basis of the inequalities (10), (II) of §4,
Lemma 6 of §3 is applicable to equation (4). Here M1 =,C, M2 == 0, and since

C - ~o 6./ 1
l-{) <3' ~7

(see formulas (10), (11) of §4),

* c
I ~() (e) I < 1 -- b •

Taking into account that [) < t. we find for III < lO that

(16)

(17)

2°. Estimate of g (z, l). Inequality (16) makes it possible to estimate the

right side ~f equation (2). For 11m z I < R, 'E t SEO' ~ = ~O(E), from (16) and

inequalities (7), (8), (10) of ~4 it follows that

1if (z, B) + cD (z, B, ~) 1< 2C + 2<,} • 2C < 4C.

Applying Theorem 1 of §2 to equation (2)~ we obtain on the basis of (5), (17) and
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condition 4) of the Fundamental Lemma that for 11m z I ~ RO - 20, If I·~ f O and

any 0 < 1, 0 < 0 < Ro/2,

Ig(z, B)I<8:~', I:: 1<1~~C ,
from which, in view of inequality (9) of §4,

C Iag (z, e) I<~
\ g (z, B) 1< F t OZ ()5 •

Since C< 88 by inequality (7) of ~4, it follows that

Ig(z, E)I<~·

Therefore under the mapping z~ cp(z, l) ~ z + g(z, l) the strip

I1m z I<R o - 2~

(18)

gQes into a region containing the strip

11m <P I<Ro - 3~.

In the latter the inverse function is analytic, since Ia¢/az I >t for 11m z 1< RO -28.

In the same way one proves inequality (16) of §4.

3°. Estimate of F 1 (cp, f). Suppose that IImz I < Ro - 30, If I .=$ foe Sioce,

from inequality (16) and conditions 3) and 5) of the Fundamental Lemma,

} 1 1 (Cf, e) ~;.= jt'l (z (cp, 8), c),

the imaginary parts zI and zlI (see (10) and (11» do not exceed RO -28. Ap

plying Lemma 5 of §3, we find on the basis of (17) and (18) that for 11m Z I <
Ro -30, If I S fO

(19)

We note that the appearance of C2 in this inequality is the most essential feature

of the proof of Theorem 2.

For 11m 4> I ~.Ro - 40 and If I :s EO we have from 2°

11m z (cp, 8) 1< Ro - 3~,

and therefore estimate (14) of §4 follows from (19) in view of the definition of

F 1 (ep, f) and inequality (10) of §4.

4°. Estimate of 1A([\I' f) -~~(E) I. The equati~n

~ = ~1- F(e) -$(e, ~),

defining [\(A1, f), belongs to the type considered in Lemma 6 of §3. We have

seen (see (16» that IAO(f) I < 2C, from which, on the basis of formula (11) of §4t

it results that
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. ,~.

I~~ (e) I< ~o •

Thus Lemma 6 is _applicable, and for I[\11 ~ c < ~o/6, Ii's fO

I~ (~1' E) - ~~ (8) I < 21 ~11·

C~mparing (20) and (21), we find that for III S lO' IAl I ~ C
2I~(~b 8) I< 3~o.

For 'l' < lO' 16.' < (2/3)L\0' from Cauchy's formula we have

I
&<D I< 6L\o /_1
&L\ L\o --.. ~

-3-

(see inequalities (8), (10) of §4). Estimate (17) of §4 is proved since it is

evident- that

239

(20)

(21)

I~ I=== I 1 - < 2.I iM i 1 + a<D
&~

5°. Estimate of J ~1 (¢, l, Ll 1) I. Let us set up the difference zIII - ZIe From

formulas (12) and (10) it is equal to

Ll l +- (j) (z, e, t:. (Lll> e» - d) (z, e, Ll~ (e».

From Lemma 5 of §3, for' 1m z I ~. ROt III s fO' 1/~1 I < Ao/6

Iij) (z, e, Ll (Lll> e» - d) (z, e, Ll~ (e» I< ILl- Ll~ I ,
tV

since Ia<l>/aL\, < 1. Comparing the inequality just obtained with inequality (21),

we have

(22)

Apply.ins Lemma 5 of §3 to the right side of (8), on the basis of (22), (18) and in

equalities (7), (10) of §4 we find that

I<Ddz, e, ~) I< ~ 31 ~1 I< ()21 ~d (23)

under the condition that III ~ lO' IL\1 I < f!0/6,

f 1m (z + 1:\1 + F + <Ii) 1< R o - 26.

This last inequality is satisfied if

Indeed, tben

l-P -f- cD i< b + 26~o ,< 36

(see formulas (7), (8), (17) of §4 and inequality (20» in both the terms Z III and

zl· Fori Jm-cP 1 ~ Ro- 7B, '~11 < C we have, from 2°,
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11m z 1< R o- 66.
Therefore estimate (15) of §4 follows from (23).

The Fundamental Lemma is proved.

§6. Proof of Theorem 2

6.1. Construction of z {¢, l)and ~ (l). We put cI> = 0 in the Fundamental

Lemma, and as F (z, l) we take the function F (z, l) of Theorem 2. W'e choose

01 > 0 so that

Let 60}2 < L\O < 1, R = ROt K be the same as in the condition of the theorem. Let

L(' < C1 = 0 ~2, 0 <(' < (0' eland 01 be respectively (0' C and 0 of the Funda..

mental Lemma. Then all the hypotheses of that lemma are satisfied, and for

I1m ¢ 1 I s. R - 701, If Is. f', I~ I I .s. CI' we find that

where

IF 1 (CPr, E) I< 6~8 = {)~2,

I<D1(<Ph c, ~1) 1< 6i f ~1 1< {)2! 1:\1 1,
J z (flJ17 B) - fIJI I<: (\, I:;1 I< 2,

I ~ (~1' c) I ~~ L\o,

I:~ /<2.
*More generally, if the functions

(1)

(2)

(3)

(4)

U))

L\k-l (~Ji' E), FA' (CPk' E), cD!.: (<pit, co, ~k), (JJ/a'-l (CPk' E) ~

Ala' (cp'u f:., ilk),

are defined for k = ·1, 2, • ;., n and satisfy the conclusion of the Fundamental

Lemma with z replaced by ¢k-l' ¢by ¢k t RO by Rk - 1, RO - 70 by Rk = Rk - 1

7ok, ~O by ok-I' Ao by Ak - 1, Al by Ak,8 by 0kt C by Ck = 81 2 for each

k = 1, 2, ••• , n, then we may introduce functions ¢n+l and L\n+l such that the

conclusion of the Fundamental Lemma will be valid for them for k = 1, 2, ••• ,

n + 1. Indeed ,inequalities (9) and (10) are satisfied for on from the definition ·of

01' (11) follows from the inequality Ck +1 = CZI2 < (1/6) C.k ' and all the other
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. 'bonditions.. of tlIe lemma enter into the conclusion (of course, for the functions

with the preceding index). Therefore we may consider all the functions indicated

above as having been constructed. The functions ¢n -1 (¢n' f), &n -1 (~n' l)

· (n = N, N - 1, • • ., 1) define the functions

Z(N) (CPN, B) ==: Z (CP1 ( ... (CPN, e) ), e), (6)

~~N) (L\N' 8) === L\ (L\1 (..• (L\zv, e) ), e). (7)

Put 6N = 0, and suppose that &~) (0, E) = &(N) (l). Then

L\ (e) == lim &(N) (8),
N-?-oo

z (cp, 8) == lim z(N) «(P, e).
N~oo

For the basis of the convergence of L\ (N) «() and z (N) (1), l) we note first of all

that from the definition of 0n~ for (i) > 0

lim 2N
~~ == o.

N-?oo

6.2. Convergence of /l(N) (£). The functions A&N) (~N' (), as follows .from

formula (7) and from inequality (17) of §4, are defined for If I ~ lO' IL\N' ~ 0&2.
Since

in the indicated region, on the basis of (5), the inequality

I

of.,,(N) I
__0_ <2N

i)f."N

is satisfied, and since

I d N [dN+l (. · . (~M, B) . · . e), E] 1< 6}J

if l ~M 1~ 0],2 (M ~ N), therefore from Lemma 5 of §3,

111: [~N (dN+l ... (~1\tI, B) ••• , 8), 81 - ~~N) (0, c) I<2N~~.

Thus in view of (7) we deduce that

I fj.(N) (8) - ~(M) (8) I< 2N 6}J,

from which it immediately follows that &(N) (i) converges for If I :S fO' and also

that f).. (f) is analytic.

6.3. Convergence of z(N)(ep, f). From the Fundamental Lemma, the functions

¢1i -1 (¢~, f) are defined for .' 1m cPn l s.R, If I s. EO' and, in view of (3), differ

from their arguments ¢n by less than an' so that
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Figure 2

Thus formula (6) defines zeN) (cp, E) in the strip
n

I1m cp I< Rn = Ro - 7~ 6k -
, h:=1

From condition I} on the choIce of 81, all these strips contain the strip 11m ¢t ~

RIB, so that all the functions z(N) (cP, l) are defined in the latter.

Since
M

ICPN (CPN+l • • • (CPlll' 8), ...• 8) - CPlll1 < ~ 6k •

k=N

and this sum, from the definition of 8n , is not larger than 2oN, we find from (6)

that

On the basis of (3),

I
oz(N) I N

----a<p < 2 ,
so that

which pro.ves the uniform convergence of zeN) (¢, l) for 11m ¢i .~ RIs, If l :;; foe
6.4. We shall define ¢(z, f) as the inverse to z (cp, l). From inequalities

(1) and (2) and from the fact that 0 ~ 0 as n ~ 00 it results thatn

<p (z, e)~ cp (z, e) + 2Jtf.1

when z -+ A (z, f, t! (f». Theorem 2 is proved.

§7. 00 monogenic functions

7.1. The concept of monogeneity. In the investigation of the dependence

of the solutions of equation (1) of §2 on the parameter p. we encounter functions

analytic in the upper and in the lower half

plane, and everywhere discontinuous on the •

real axis. All the functions, ~n' gn' cPn' Fn' <Iln
constructed in §6, considered as functions of

p" have these properties (see§8). These

functions belong to the type called by Borel

[9] monogenic.

The monogenic functions of Borel are defined on the set E = U k=1 Ek' •

where Ek ~ Ek +1 are perfect compact subsets of. the complex plane. In our case

Ek is the set M~ of points fl of the rectangle 11m III :s R, 0 ::s Re Il ::s 1 of the"
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complex plane, for which

jll- ",~ I:> I:1 3 (K = ~),
, i.e., the set formed by rejecting from the rectangle 11m JL I ,~R, O,~ Re JL:51 the

circles Cm1n,K' shaded in Figure 2, of radii Kit n 13 with centers at rational
poin~s min.

Definition. A function f(pJ is said to be uniformly differentiable on a per

fect compact set F of the complex plane, and the function g (Il) its derivative,

if for any l > 0 there exists a O(l) such that

I f (~1) - j (f.!2) -- g (1-13) I< E,
~1 - ~l2

whenever 1(.11 - f.t31 < 6, 1112 - ~l'31 < 6, ~1, 112' 113 E)?

A function is monogenic 00 E = Uk=1 Ek if it is uniformly differentiable on

each Ek•

In particular, a uniformly differentiable function on E is monogenic on'

E = U l=lEk, and' conversely a function monogenic on E = U Z=1 Ek is uni

formly differentiable on E. Such functions will be called monogenic on E, in

distinction to those that are monogenic on E = U k=1 Eke

The following properties of monogenic .functions are evident.

1) From monogenicity on E = Uk=1 Ek follows continuity of the derivative

on Ek•

2) If r is a rectifiable curve joining two points a and f3 in Ek' then

~ f' (Il) dll = f (~) - f (IX).
r

3) If a function is analytic in a neighborhood of each point of a set, it is

monogenic on the set.

4) If Ek contains a region, then 'a function in it which is monogenic on

E = LJ k=1 Ek is analytic.

An example of a nonanalytic monogenic function was constructed in §2, as

is proved in subsection 7.4 (see Lemma 10; the fact that g(fl) is not analytic

for 1m JL =0 is left to the reader to prove).

Properties of monogenicity of a function may essentially depend 'on its region

of defini~on E = Ur=lEk and on the d~compositionof E into the Ek- If the

rapidity of decrease of the components of the complements to the Ek is suf··

ficiently great, then, as Borel proved, monogenic functions on E = Uk=1 Ek

have many properties of analytic functions (Cauchy integral, infinite differenti

ability, uniqueness of the monogenic prolongation). The question as to which of
these properties are preserved in our case will be left aside t since in the sequel
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(§§a and 11) we use only the definition of uniform differentiability.

The class of functions monogenic on E = U k=1 Ek depends not only on E
but also on Ek- However, if E is obtained by using another system of sets, E =

Uk=1 Fk , Fk £ Fk +1, such'that

E rxk C F k ~E{3k (<x < 1 < ~),

C :J C' -::J C
m -m -·mK'
n' K n,K n' 2

c' Ce" cC
m t K - .!!!:.., K - m, 2K
n n n

Then

c cC" cC
m K- m,K-- m,2K
n' 2 n n

and after deletion from the rectangle of the disks e"mln,K there remains a set

N~, having both of the needed properties.

Lemma 7. Suppose that the disks Cm1n,K and Cp/q,K (n ~ q) intersect
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and· K .( 1/9. ,The,n n > 2q4/3; i_e., the smaller disk is much smaller than the

large~.

Proof. Indeed, the sum of the radii of the circles is larger than the distance

between their centers, so that

Since pn - qm I: 0, then 1.-£_ - .!!!-I :> --!- and
q n ~ qn '

in view of the inequality n ~ q we obtain

or
4

n3 > L_ q3.
K

Taking into account the fact that K <1/9, we have

as was required to. be proved.

Operation 1: Construction of the C'm/n,K- This construction consists of an

infinite number of succes~jvelyrealized stages such that after the nth stage

disks C' m/n•.K (0 :S m .~ n) have been constructed with the following properties:

An. No disk Cm1!nl,K (nl > n) can join a disk C'mln,K to a disk

C'm2In2.K (n 2 ::;n) if these disks C'mln,K and C'm2!n2,K do not intersect

each other.

n

( K / 1)
~T'

2K ,- 2
n:~ -""~). 8

1

11 ')},. 2
-~ \. >-')-., ...,

B _ C . }.~:-= C' C._ C
1n

. •n 'In.n --- m .
-n~' -2- --;t • A ";;' Ii

We begin with the first stage. Suppose that e'm / l • K = Cm / ltK - Then the

property B 1 is satisfied. Property A 1 is also satisfied, since the diameter of

the disk C~l/nl,K (nl. > 1) is less than

.and the distance between the disks CO/1,K,

and Cl/l,K' is larger than

The first stage is done. Figure 4
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Now we suppose that we have successively performed n - 1 stages. We con

sider any disk C:= elK (Figure 4). Suppose that 0 is its center, AB the dia-m n,
meter lying on the real axis, E and D· the means of AD and DB. The disk C
can only intersect with those disks C' I K (n 2 < n) for which em / K io-

m2 R2, 2 n2,
tersects with C (because of property B k' k ~ n - 1). Further, all such disks

e'm I K intersect also one with another (as a consequence of property
2 R2,

A k, Ie ~ n - 1).

Now we arrange the disks in the order of decrease of n 2 (i.e., of the growth

of the disks):

Ci = C~.i. K (n = n2.0> n2.1 >... >n2.1 > 1).
n2,i

From Lemma 7, n2 ,i ~ 2n2,i+l (O.~ i ~ l- 1), sO that n > 21 and l < lOB2n.

Thus, the circumferences of. the disks Cm I K yield in their intersection with
2 n2,

the diameter AB not more than 2 log2n points. Therefore among the portions

into w-hich these points divide the segment BD and the segment AE, there is at

least one length larger than K/4n 3Iog2n. Now the ·diameter of the circumference

Cmllnl,K (n 1 > n), which intersects with C, by Lemma 7 does not exceed
K K

8n4 < 4n3 Jog2 n ·

We take the ends BI and AI closest to 0 of the largest pieces of BD and AE,
which we denote by B'D' and A'E' , as the ends of the diameter of C' I K.

m n,
Such a choice does not contradict property Bn- It is clear that if the circumference

C 1 = Cmilnl,K (n 1 > n) intersects C" mln,K' then it lies inside C, and among

thedisk~ em In K (n 2 ~n) can only intersect the Ci- But since the diameter
2 2, I , , ,

of C1 is less than the lengths of B D aod A E , therefore C1 can only inter-

sect those Ct which are intersected by C'mln,K- Therefore property An is also

satisfied, and thus we have given the construction of the nth stage.

At the conclusiQn of all the stages one obtains a system of disks C'mln,K
with the following properties: .

A. No disk C can join C' and C' if nl > n2, nl > ns
ml K m 2 , K m 3 , K
nl' 112 n3

and C' nc' . = o.
~%,K ll'a.K
nz n 3

Property B follows from Bn , and property A from A
n2

if n2 2. n 3, and

from A if n3 > R2-n3 -
Operation 2: ConstmCtiOD of the C'~/n,K. Now we shall enlarge the disks
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of the systeJ;ll C'.mln,K-

'Bya tail C = C' I K we shall mean the collection of all the C~ -I - K
m n, mr, nl"

(n i > n) which may be joined to C by a monotone finite chain of pairwise inter-

, secting disks e'm o In" 0 K (0-< k< l.):
lk lk' - -"

Figure 5

n·10

IJl·
10 < C'm. nCm' .n' njk nh:+l'

3k 3k-r'1---n:-' K -n-'-, K
:Jk Jk+l

Obviously, if the disk C1 enters into the tail of the disk C2' then the tail

of C1 always enters ioto the tail of C2- Moreover, if the tails of eland C2

*intersect, then one of the tails lies entirely in the other. We shall prove this

• fact. We suppose on the contrary that the disks eland c2 may be joined to a

common disk of their tails, C
3

, by monotone

chains. Two such chains at the same time

join eland c2- Of the chains joining C1

and C2 we select one consisting of the

smallest number of disks. In this chain only

successive disks intersect one another (see

Figure 5; in the system of circles drawn

there the shaded tail is the largest). If this

chain is monotone, then our assertion is proved. If the chain is not monotone,

then there is a disk in it which joins two preceding it, which contradicts prop erty

A of operation 1. Thus, if two tails .intersect, then one of them contains the

other.

Suppose that a· and {j are the upper and lower bounds of the points of the

real axis covered by the tail of the disk C =C Imln,K- The disk with diameter

af3 will also be a disk e'l I K· _ .From what has been stated above it follows
m n, **

that the circumferences of two such disks do not intersect. Evidendy C/~/n,K2
c' / K". We shall show thatm n,

c" cCm - 1n
n' K nt 2K

Indeed, on the basis of Lemma 7, it is easy t'O estimate the" measure of the

tail of C. Suppose that the disk C1 belongs to the tail of C and the monotone

c~ain joining C1 to C consists of N disks. Since each of those following them

is not less than 8 times smaller than the preceding one, the sum of their dia

lD:eters does not exceed the diameter of C for any N. Therefore it is evident

*It is easy -to see that if two tails intersect as point sets, then they have a common
disk.

**But they can touch.
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that a and f3 are distant from C~/n,K by not more than 1/7 of the diameter of

Cm/n,K' and from the center min by not more than 9/7 of tbe radius of Cm1n,K.
Hence it follows that

c" cC
m t J( - ~.2 J(
n n

The construction of the N~ is complete.

7.3. Differentiation of sequences. The passage to the complex plane of 11

was undertaken largely for the sake of the following lemma, which is not valid if

by the set N~ is meant its part lying on the real axis.

Lemma 8. Suppose that the sequence fn(p.) of functions, monogenic on the

set N~, converges there uniformly to {(Jl), and

that tke derivatives converge uniformly to g (p.).

Then {(Il) is monogenic on N~ and f' (Il) = g (p).

~ Proof. Suppose that l > O. We may choose

~ 0> 0 so that

I t (~~-=-:2(1t2) - g (~3) 1< E

when 'IL 1 - /l3 I < 0, 1IL2 - 113 I < 0, Ill' 1l2' Jl 3 €
Figure 6 NR

K·
Ifo> 0 is sufficiently small, then all of these points lie in one component

of N~.

We shall show that in such a case the points Ill' f.L2 may be joined in N~ by
a rectifiable curve r such that the following conditions are satisfied:

1) for any point Jl € r I J.L - Jl3 1 < 20;

2) the length of r is less than 2' III - 1l 2 1.
Indeed, let us join the points. III aDd 112 by a segment ILlll2 (see Figure 6).

This segment may intersect certain disks Ci' by the deletion of which from the

rectangle '1m p.' ::; R, Re Il E [0, 1] the set N~ was formed. These disks are dis

joint and do not separate III from f.L 2 in N~t since the points 111 and p. 2 lie in .

one component. The disks Ci excise on IllJL2 nonintersecting intervals ~i" We

replace each such interval ~i by the smaller of the two arcs into which 1l11l2 •

divides the circumference Ci , and denote this arc by Yl- The length of ~i is in

creased by such a substitution by not Qlore than 11/2 times, and therefore the

length of r will be less than 21 III - Jl2 1. 'The distance III 1 - IL 2 1, by hypoth

esis, does not exceed 20, so that all the points of Yi are less than 8 units

distant from the midpoint of ~i. This last point, as well as all the points of the

segment 1l11l2' lies in the disk \ III - 11 2 I < 8, so that for any point p. € Yi

I I ./ 2~f1 _.- .. l-t:l 1« u.

Thus the curve r is the one desired.
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. -1, 2.' We ~ave, akeady noted that if ¢ (p.) is monotone in N~ and r is a recti

fiable curve with endpoints III and 1l2' then

~ lp' «(1) d!t = lp (1!3) - lp (VI)'
r

(,For the proof it is only necessary to equate the integral to the integral sum.)

Applying this equation to the curve r constructed above and to the function

fn (IL), which is monogenic by hypothesis., we obtain

~ f~ (!t) d!t = In (!t2) - f n (!tI).
r

In view of the unu9rm cObvetgence of the In to f and f~ to g, we may pass to

the limit on left and right:

~ g (~t) d!t = I (!t2) - I (!ti)'
l'

3. Now we shall estimate

I f (~2) - f (~l) _ a (II. ) I· .
112 - III 5 r3

To this end we consider the integral

We have

I~(g(!t) - g(1!3» dll 1< ~ Ig (ft) -g (ft3) II dll I<max Ig (!t) - g (113) 1·21!t2 - !til,
jr r ~Er.

since the length of r is less than 21 112 - III I·
Thus,

\
' f (~2) - f (J.11) - g (~3) \ -< 2 max Ig (~) - g «(13) I.

J.12 -.,.- III p.E l'

The eight side of the last inequality, from property 1) of the curve r, is twice

the increment of g (Il) on a segment of length less than 20, and, in view of the

unif orm continuity of the func tion g (p.) on the compactum N~, tends to zero

along with o. Lemma 8 IS thus proved.

7 .4. Functions of several variables and operations on them. In what follows

we shall need functions analytic in one variable and monogenic in the others.
. *

Suppose that the variable z is angular (varies in the strip 1m z € (ab» and
**has period 211, the variables f and ~ vary in the neighborhood of zero, and

*The boundaries may depend on p..
** I.e." as z increases by 211, funccio~s of z have increments of 0 or 2TT.
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P. € N~.

Defiriitioo. The function fez, i, f}, Il) is analytic in z, l, and ~, and mono

genic in Il € N~ if the series

I (z, 8, ~, fl) = ~ Ikmn (iJ') eikz em 8 n,

in which the coefficients are monogenic functions of Il € N~, converges along

with its derivative with respect to Il uniformly for Il € N~ and z, l, ,t!, varying

in the indicated regions.

Evidently such a function is continuous, while

a) for fixed Il it is analytic in z, l, f} and

b) for fixed z, €, !l it is monogenic in /l € N~.

Property b) follows' from Lemma 8.

LemI:'1a 9. Suppose that the {unctions hi (z, f, t!, 11) are monogenic with

re s peet to Il € E and analytic in z, E,!!.. The 11, the following fune tions have the

same property in the corresponding regions:

1) the functions

it (z, B, ~, f.1) + h2 (z, B, ~,(.1), ht (z, e, ~, f.l) h2 (z, C, ~, :J..),

hI (h2 (z, E, ~, (.1), B , ~, Jl), hI (z, c, h2 (z, c. ~, ~), ~);

2) the solution cPlz, f, tJ., Jl) of the equation h (cp, f, ~, Il) = z;

3) the solution y(z, €, t!, III of the equation h(z, f, y, Il) = t!;

4) the partial derivatives of h with respect to z, l, t!;

5) the integral with respect to a parameter I~1T h (z, E, Ii, III dz;

while in all these cases the usual rules of differentiation apply; for example, in

case 2) dk
o<p ~
a~ -ah·

afP
The proof repeats well-known arguments from standard analysis and will be

omitted.

LeDUDa 10. Suppose that the function f(z, f, .t!, Il) = f is analytic with

respect to z in the region 11m z I ~ R; E, If I s lO; 1111 ~ ~o and is monogenic

with respect to f..L € N~, and suppose that in the indicated region

III <:C, I:: '<:L.
Then the solution of the equation

g (z + 2rrl1, B, t!, ll) - g (z, c, ~, ~) = f (z, e, ~, f-t)

is monogenic with respect to p. € N~ and analytic with respect to z in the
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re~lon I' 1m (~ - 2,1T1l) I .$ R - 20, f, III :5 _fO' A, 1 11 1 ::; 110, while in this region

Ig I<:~, I~: I<:~, Ia;~ I< ~~~ ,

I
og I - C + L 103 I 02g I C + L 10

3

8i1 <~(¥' oz811 <~ b7.

Proof. The solution is giyen for fixed p. by the s~rjes (2) of §2:

h-fn(~' c,~) ._____ etnz
2it inp.. 1 'n:to e -

of which it is required to establish the uniform convergence for I 1m (z - 21T1l) I ~_
R - 20, since

But the uniform convergence of this series has been established in §2 along
with the desired estimates of g and ag/az in the proof of Theorem 1', since

1 1

LV2rt eM 2it
K - K·

Estimates of the other derivatives are obtained by differentiation of the series

using the usual formulas and taking account of inequality (13) of §.2.

§S. On the dependence of the CODStru(:tiods of Theorem 2 Gap.

8.1. We have seen, in- subsection 7.4, that the solution of the linear equation

(1) of §2 depends on p. monogenically. In-the present section we shall prove the

monogenicity with respect to p. of the functions I1n , Fn' <1ln, gn' t1(n) constmcted

in §6.

It turns out that the region of monotonicity contracts as n increases (by

11m 21T1l1 at each step) and the author has Dot been able to establish whether the

solution of equation (1) of §4 depends monogenically on p..

The monogenicity of 11(n) with respect to p. for real p. is used in §11.
There we shall also make use of the smallness (uniformly with respect to n) of
ati(n)/ap. for small f. .

In order to shorten complicat~d expressions in this section the argument f

will be -dropped in all functions. This is similar to the way in which we earlier

ignored tbe dependence on Il and took only z, cP, f, t1 as arguments. -

The construction of /1(n)(Il) was carried out in the following way.

Step by step we constructed new parameters ¢n = ¢n (epn-l t p,) and quantities

~n -1 = !1n -1 (I1n, Il) such that the transformation

(J)n-l~ cpn-l + 211:"" + Lln- 1(l1n , ll) + Fn-l (~n-l' fl) +<Dn- 1 (~n-l' L\n-l([\n, J1) fl)

is converted into the transformation
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q>n -> {j)n + 2nll + L\n + Fn (tpn, !t) + <I>n ({j)n, L\n, Jl)

with significantly smaller F and <1>, where CPo = Z'1 FO= F 7 <1>0 = 0, l\0 = l\.

Further, we constructed L\(n)(/-L) 'such that the transformation

z~'z + 2n!t + L\(n) (!t) + F (z)

converts, in the variable ¢n' into the transformation

<Pn -7 (})n +- 2n!t + F ft (<Pn, f.1) + <Dn (<Pn, 0, fl),
to which end we put

~};L) (fl) = /i k (Llk~l (1-1), f.1) (k == 0, 1, ... ,n~ 1),
L\~n) (f.1) = o.

Thus we obtained

(1)

(2)

(3)

(4)
(5)

~~n) (11) = L\(n) (J.l).

Theorem 3. Under the conditions of Theorem 2, for sufficiently small f > 0,

o <K < 1/9
L\ (f.1) ~ lim L1.<n) (fl),

n~oo

where the functions ~(n)(p.) are monogenic with respect to /.L € N'/( (rn >0) and

under these condition$ Ia~(n)/aJL I < 6L I£f.
The proof of this theorem rests on the following lemma, which repeats the

Fundamental Lemma (see ~ and 5).

Lemma Il. Suppose we are given a family of analytic mappings of the cir

cumference, depending analytically on L\ and monogen.ically on p. € N'x,

z~ A o (z, ~, f.t) = z + 2~~ + F (z, f1) + 8.+- <D (z, d, ll)

and numbers Ro'> 0, 1/9 > K > 0, 0 > 0, C > 0, 0 < 1\0 < 1, 0 < r < 1/217" 211r ,::;

RO -50 such that

1) F (z ,-+ 2:r, l-t) =~ }1 (z, J-L), cD (z + 2:rt, 11, (1) = <D (z, A, ll);
2) for lm z ~~ 1m,..., = 1m A = 0 always 1m F = 1m <D :-::; 0;

3) fot J1rnzl<Ro' ~tENK, I~I <Ag

lFt~, 11)I<C,

I ~(Z, t-t) I <c
011 ~ J

I<D (z, fL, ~) I< ~21 ~ I,
I (}(Jl (~/. 6) I<: ~21 L\ I;

4) the number 0 satisfies the inequality

K2
~< 5.104 ;

5) C = ()27, ~o = ~26.

Then there 'exist functions z (cp, JL), I!! (1.\1' JL) analytic in, ep, ~l and mono-



192

MAPPINGS OF THE CIRCUMFERENCE ONTO ITSELF

genic in p.€ N'Ksuck that

,1. Identically

253

, where
Al ({P, f.1, t11):.: <p + 2nv. + At + F 1 (cp, fI) + <1>1 (q>, Il, at).

2. F I (cp + 2n, t-t) = F'l (cp, 1-1), <1>1 (q> + 231:, JI, ~I) = <D1 (cp, !J', ~t),

Z (cp + 2n, JI) = Z (cp, J1) + 231:.

3. For 1m cp = 1m L\1 ~: 1m J.1 = 0 always 1m z = 1m A = 1m F1 = 1m eDl = 0
4. For IL\1' <628

, 11m cp I< R o - 7~ -11m 231:111, J.t ENEe the functions

• constructed above are analytic in ¢, L\1' monogenic in p. € N'K, and the following

relations hold:

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)'

(16)

8.2. The proof of Lemma 11 is more complicated tban the proof of the Funda

mental Lemma. The construction repeats the considerations of subsections 5.1

with the difference that p. changes from a fixed real number to an independent

complex variable. In the construction of A (1\1)' z (ep), g, F 1 and AI' following

subsections 5.1, one uses integration with respect to z, the solution of equation

(1) of §2, the construction of an inverse function and the .substitution of a function

into a function. Ftom the lemmas of subsection 7.4 all of these operatioJls do not

lead out of .the class of functions monogenic, in JL E N'x and analytic with respect

to '.z, A, ¢, fl 1 in the corresponding regions.

Therefore special attention need be directed only t() inequalities (9), (10),

(11), and (12), which are not in the Fundamental Lemma. Their proof is based on

the following estimates.
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1°. Estimate of ag*lafl. On the basis of subsections 5.1, 7..4, and in view

of the conditions of the lemma, for 11m z I ~ RO' p. € N'K, I!! I So. [\0

IOFI' loa>1 20l-t <2C, o~ < 26 I~o I< 2C.

Thus the right side of equa tion (2) of §5 has a derivative with respect to p.

not exceeding 4C. Applying Lemma 10, we find that

*' < 1ee (17)Ig ~ K63 ,

Iago, 32C (18)7fZ < K~4 ,

Ia2go1 40C (19)az2~ -< K6fJ t

IagO \<: 5·1Q3C (20)of.t ~ K2~6 ,

Ia2go1 5·1OSC (21)ozoJA. -< K 2 67

for !1m (z - 2nJ-t) 1< R - 26, J1 E N'K, IL\ 1-< L\o.
2°. Estimate of a~~/afl. From equation (4) of ~ 5 and subsection 7.4 it fol

lows that

aF o<ii
o~~ (11) aiL +~
aj.t = - 1 -+ a<D

· aA

E~timating ~~ as in 1° of subsection 5.2, we find that

Ii\~ I< 2C < ~o •

For· IL\ I5 L\0/2, using Cauchy"s ilitegral formula, we find from (4) that

I:~I-< ~:o = 2~< ~, I~~ I<}, I::I< 1.
_ "2

Accordingly 11 + a~/a~ I > 1/2 for It! I ~ ~O/2. Therefore, on the basis of (3),

(5), and Lemma 9,
8~*I0/ 1< 2(C + ~2i\O)·

In view of (6), o2L\O < C, so that

l
af).* ra; 1< 4C

for It € NN
3°. Estimate of og/all- From subsections 7 _4 and 5.1,

8g iJg* I og* o~~
a;:t:::::: a~ --t- af). ~. ,

(22)

(23)

. '( .
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aZg _ a2g* i)2g* &l1~ (24)
ozoJ.! - azol1 + aza~ a,.., •

First we shall estimate ag* /al1 and a2g*/aza~. We Dote that the equation

g* (z + 2nf.!, ~, f.!) - g* (z, L\, fl) = - F (z, 11) - ij) (z, L\, f.!)

on differentiation with respect to 6. gives the equation

ag* og* 8<ii
~(z + 2:rtfl, ~, f-l) - ~ (z, ~,t-t) = - iJA

of the same fOflll with respect to ag*/a~, and we may use Lemma 10. To this end
'V

we estimate aw/at! using Cauchy's integral formula: for 11m z I ~_R,I L\j .~ ~O/2

IoiD I .- 26
2
~o < 4b2

ad ~ L\o •
-2-

From Lemma 10, for IIm(z - 21T1l) I ~ Ro- 28, IL\ 1-$ 110/2, Il € N'x

I
og* ! 4 .s.2-Ml< K63 4u'

I:~g;z 1< K~4 46
2

•

Substituting these estimates, and also estimates (20), (21) and the estimate of

~~ from point 2°, into formulas (23) and (24), we find that

I
og I 5C 103 16 C104

a;:t < ](2 ~ -t Kb 4C < K266 ,

I
a2g I 5·103C 32 C'l04

dz0f.L < K3bi + Kf:P' 4C < K2lP

for 11m (z - 211/l) ( $ R - 20, P. € NKe
4°. EstiJaate. of aL\ (i\1' Il)/afl- Analogously to subsection 2°, we have

of 8<D
a11 iJi! -+ 8i!
OJ.! 8<D

1 + 8tJ,

and if 18 , .~ t!J.oI2, then, as in wint 2°, we obtain

I:~ I<4C.

In order that the inequality ,~, < ~O/2 should be satisfied it is suffici~nt that

I~ll $ 027
• For then, as was shown in §5, I~O I ~ 2C, I/).- ~O I ~ 21 8 1 1, and

since C = 827, then for I III I =s 027 we have
27 {)26 AoIA (l\1' ~) \ <4l) < 2 = 2" .

Thus, for IL\l t S 027
, P. € NK'

IM (:~.IL) 1<4 C. (25)
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At the same time we have shown that for I1\1 1$ 027 the estimates of point

1° are valid.

5°. Estimate of aft' IIall. From s~bsectioos 5.1 and 7.4 we have .

where

ZI = Z + 2nl1 +F (z, J-t) + CD (z, J1, A: (J1)),
ZII= Z + 2nl-t.

(27)
(28)

The first two brackets on tbe right side of (26) may be estimated by.using the

lemma on finite increments, Lemma 5 of ~3. We have

Iog (zr) _ og (zII) I/' Iz _ z II 02g I·
of.1 of.L ~ I If £Itt cJz '

putting their estimates in place of zI -:zII and a'lglap.az, we obtain

and analogously

IOg(ZI) ag(zn) I~la2gll \~ 400 4C _160C2

az- -a-z- ~ az2 zr- ZII ~ KfJ5 - KfJ5 •

The last term on the right side of (26) may be estimated using inequalities (3),

(5), (22), (18) and does oot exceed

Thus

laFl I<C2 [4 0 10
4 + 2 160 ~_200]<5'104C2.

ofL . K267 3t K65 I K64. K2i)7

All of these estimates are valid if the arguments zI and zII do not leave •

the region 11m (z - 2"JL) 1:5.Ro - 28, where the estimates of g and its derivatives

operate. To this end it -suffices, for example, that Ilin z I ~ RO- 38. Indeed,
then

i.e.,
11m (ZI - 21t~) I< R o - 2~.

Thus,. for 11m z 1~ Ro - 30, /l € N'K, IL\1 1 < 027
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6°. Estimate of (a/ap.)(l\ - A~).~We have

!... (il (~ ) _ ~* ( )) == a~ (L\l' J-t) _ a~ (0,1-1) •
all, 1, p., 0 f..l Of1 of1'

"by the lemma on finite increments,

257

(29)

I !...(~._~*)\~I a2!l(~lt~) \l~-~~I.
of1 0 ~ oL\t0J-t

!e estimate Ia2L\(L\I' P.)/a~lall, using the Cauchy integral, as the derivative

of aA/a/l. For 1[\11 ~ 827, as follows from (25),la~/a1L1 < 4C. Therefore in

the disk I~ll .~ 027/2 always

I
[)2.A' 4 C

8,1lafL I< {)2? = 8.
2""

In particular, 1a2A/aL\ l ap.1 < 8 when I All ~ 828• Since

I~ - L\~ 1< 21 L\ll,
then for 11\11 S 028 , Il € Nl<.

a *
o~ (L\ (Ill' ~) - L\o (f.-l)) \< 16 1 L\1 r. (30)

""' . ""'
7°. Estimate of (a/all) [tIl(l\ (1\1' Il)) - <Il([\O(Il))]. This derivative is equal

to

The first difference may be estimated using the lemma on finite increments: for

Il\ I ~ l\0/2, Il € N1<., 11m z I 5. R

Ia(J). (~) _ aiD (~.) I~ I a2
(D II ~ - L\*:I < 8~21 ~ I

OJ-t a~ I ~ a~aL\ 0 ~ 1

""' ""'
(here Ia2~/aILal\ I is estimated using the Cauchy integral: Ia2<1>/apal1 t <
28

2 Iilo I/~I iloI '" 482
).

The second difference may be written in the form

a(i) (A) (at! (l\l) aA~) aA~ (OCD (1\) _ otii (L\~») (31)
~ 8i1 - oJ.L + Oil a~ aA'

where the first term is estimated with the use of inequality (30) and does not ex

ceed 161 L\ll, since I~/a~ I < 1 (see point 2C) and the second term, from the

lemma on finite increments, does not exceed

IaA· \ \ 82(D I .. C 16 2 f " ,all 8,12 I il (ill) - AoI< 4 {)24 Ul'
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Here the only new estimate is that of a2~/aL\2. To find it we employ the expres

sion for the second derivative obtained from the Cauchy integral:

\
a2~ 1 2l,i~8.0 16
aA2 < 2 (~or = a24

for J L\ I .~ ~O/2, for which, as we have seen in point 4°, it is sufficient that the

inequality t All ~ ~27 should be satisfied.. Comparing all three estimates, we

find that

la~ [ii> (A) - q; (A;)]I< 8~: IAll + 161 All + 128 ~31 All.

Finally we have

Ia: (et> (A (AI> lL» - q; (A: (lLml < 100 IAll (32)

for 1~11::;828t Ilmzl~Ro,p.€NK·

8°. Estimate of (a/all) <i1 (z, p., l\ (l\ l' Il)). It is convenient for us rust to

consider the function of z, p. and l\1' and not· of z, /l, and d. We have

ZI = Z + 2n~ + F (z, J.t) + <D (z, 11, ~~ (ll), (27)

Zm = Z + 2nJl + A1 + F (z, It) + (f> (z, It, 8 (L\1' J-t» +A1 • (34J

The first two brackets on the right side of (33) may be estimated as in point 5°:

since

ZIn - ZI = Al + (i) (z, 11, Ll) - if) (z, 11, ~* (11))

and, using the estimate (22) of §5,

IZIII - zIl < 3\[11 I·
Analogously,

where che factor r JZI/dll f is 'estimated using conditions' 3) of Lemma 11 and
estimate (22), taking account of the fact that C < 1. It remains for us to estimate'
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,(a/all) '(zIIl-zl). We have

ZUI - ZI = d l + (j) (z, t-t, d (L\1' ~» - iD (z, f.1, a~ (~)).

From estimate (32) we find that
, a

a.... (ZIII - ZI) -< 100 I dll,
where I£\} I ,~ 828, Il € N'K.

Thus,

259

I8g (zIlI) l' oZIII azI ) I 32 C 104C
OZ 8it - oJt < 100 f d l I K64 -< K64 !L\1 \.

Comparing the estimates of all three terms of the right sid,e of equation (33), we

• find that

~ <I> (z ~ (L\ ») I~ C 104

3 I 1600 C ' C 104 C 105

Of.L 1 ,J.t, I, Il ~ K2{)7 Idll + K6f> J d l f -I- K64 ' dll < lC2b71 ,111·

All of these estimates have been derived under the hypothesis that I~l I S
828.1l € N'K and that zI' zIII do not leave the strip 11m (z --21TP.) I ~ RO --20,
where Lemma 10 operates. For this it is sufficient, for example, that 11m z I :s:
RO - 40, since then

11\1 +F (z, B) + <i> (z, B, d) 1< () + 2C + 2C < 2~,

11m (ZIII - 23tf.1) r~ R o - 46 + 26 ~ Ro - 2~.

6°. Estilnate of ·az/aIl. The function g (z, IL) is, defined for

11m (z - 2nlt) I<Ro- 2~.

Therefore the following function is also defined in that strip:

q> (z, It) == z + g (z, f.t).

Since in that strip Ig (z, p.) <0 I (see (6), (17», then the image of this strip

as Z -t ¢ contains the strip

11m ((f) - 2J1f.1) I <:Ro - 36,

which as ¢ ~ z goes into a region containing the strip

Ilin (z - 231f.t) 1< Ro - 4~.

From subsections 5.1 and 7.4 it follows that

8g

8z 0""
oJt = - ----ag i

1 + OZ

From inequality (18) and conditions 4), 5) of Lemma 11, IiJg/iJz I < t. Thus, ap

plying estimate (23), we obtain
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for 11m ('Z - 217p) I ~RO - :Z8, p. € N'K and, in particular, for

IInl (cp - 2j(~) 1<Ro- 30.

10°. Estimate of (a/aIL) F 1(¢t Il), (a/all) <Ill (<P, Il, ~1). From subs~ction

5.1,

F I (fP, ~) == FI (z (q>, ~), t-t),

cD1 (cp, ~, ~1) = cD1 (z (cp, f-t), l-t, L\ (L\1' ~)).

The function z (¢, IL) is defined for I1m (¢ - 2171L) t ~ R0 -·38, p. € N'K, ~nd
if

11m (z -- 21T~) I< Ro - 4b,

then for. this z there exists a ¢ such that z = z (q;, p.) and

IInl (cp - 21tf.1) l~ Ro - 3b.

The ·functioDs F1 (z), ~l (2:) are defined for 11m z I~ Ro- 48 and therefore

the functions F l(¢' IL), ~l (¢, /l, ~1) are defined for

I 1m <P f <Ro - I1m 2nfL I - 56
under the hypothesis that 11m 217/l t .~ RO -50, i.e., that 2TlJ.L $.RO - 50. 10 this

region

,..
where in the calculation of awl/aP. the independent variables are taken to be z,

p. and Al t as in point 8°. ,.. ....

For the estimation of aF1/az and atl>/az we use the Cauchy integral.

Staying at a distance 0 from the boundary of the strip, where the estimates of

F1 and i 1 are known, we see from the estimates of 3° and 50 of §5 that

for 'lmz' ~ RO - 50. Applying estimates 5°, SO and 9°, we find from (35) that

I
OF l I ,. 5·104C2 104C 4C2

a;,t ~ K2fJ7 + K 266 -t/; ,

\

8(1)1 I~ c . '105 I L\ 1 I + 3D I ~!..I 1o~q
U,..., ~ ](207 b6 j(2f)6·

Thus, for

'~11<~28, I-tEN~{, 2nr~Ro-56, ·IIm(Pl,~Ro-IIJn2Jt[J.l-6~ y

we have

I W1 (<p, !1, A1) 1< Jb~l I,

l aWl I./' C I ~l I18i1 ~- {)13 '
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5.104
/' (6)

K2 () <-.... 1.

10 exacdy the sam.e way all the remaining estimates 10-9°, in view of con

ditions 4) and 5) of Lemma 11, may be brought into the form (7)-(16).

, Lemma 11 is proved.

8.3. Proof of Theorem 3. Theorem 3 is derived from Lemma 11 in the same

way as Theorem 2 was derived from the Fwdamental Lemma in §6.
We choose 81 > 0 such that

co

1) ~ ()n < ~ ,
n=l

[{2

2) {)1< 5.104 •

I!
where {)n == b 2

n-l (n === 2,3, ... ),

it

Let R ::= RO' K be the same as in condition of Theorem 2, f.1 E.i\T:1t
(n-t1>, L\o =

bi6
, Leo < C1 , where

(35)

and Cl' 81 are respectively the C and 8 of Lemma 11. Then from inequalities
(7)-(16) we obtain

~54 I!:.

IF11 < ~~3 < ()~O>5 = «()1 2 )27 = b;7,
1

\
aF1 !<fJ27

,
a~ 2 ,

6i7
3 2I<I>11 < ~1318.11 < 61 11\1 I= 62 18.1I,

1

I00:1 1< ()~ I tld
for

Thus, we again find ourselves in the conditions of Lemma 11, but with a decrease

of .781 + R/8(n + 1) in the radius of R l • Since
00

~ bn < ~ ,
n=l

then we may carry out n successive approximations, and the last·will operate for
R

II I ~ R l\T1fi7:(n+v
111 CPn ~ 8 (It + 1) , f1 E' J( ,
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Omitting the usual (see ~6) proof of the convergence of the approximations

for real /l, we estimate 1af:fJn)/a/l I.
From subsection 8.1 it follow~ that

Putting Ck = 0,£7 t on· the basis of Lemma 11 we find that

If

then

Since

then
l
a~~n) I
- =0

81J. '

Theorem 3 is proved.

Remark. 10 exactly the same way we may prove the monogenicity of the

functions gn' Fn' <Iln, epn and obtain analogous estimates.

Part n·
On the space of mappings of the circumference onto itself

The problem of studying the dependence of the rotation number on the coef

ficients of the equation was posed by Poincare [1]. The consideration of the

rotation number as a function on the space of mappings makes it possible to

elucidate questions concerning typical and exceptional cases.

Angular coordinates of a point on a circumference will be denoted by small

greek letters; cP and ¢ + 217 are one and the same point of the circumference. We

shall use capital letters to denote transformations:

T : ¢ -+ T¢.

We shall consider only continuous one-to-one direct (orientation-preserving)

transformations. As an example one may cite the rotation through the angle

(): ¢ ~ c:P + 8. To each transformation we assiBo a ~tdisplacement, n namely. a
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function on the cfrcumference showing bow much each point is displaced. We shall

denote a displacement by the same letter as the transformation, but in lower case:

T : q> -+ T cp = q> + t (q».

Here t (¢) is the displacement. If T is a rotation through the angle 0, then

t (</J) == O. Generally speaking, a shift, as also ¢, is defined only up to a multiple

of 211. However, if we define t (¢) at one point, we may uniquely continue it by

continuity•

If T is. a smooth transformation, then t (¢) is a smooth periodic function:

We denote by
t (q> -1- 231) == t (q».

the nth .power of the transformation of T. In connection with this notation we

suppose that branches of t(n)(ep) are chosen to correspond to the branches of.

t(¢):
t(n) ( q» = t (n-l) (cp) + t (Tn-l ( cp)) (n = 2, 3 , . . .).

Under this condition t(n)(¢) is called a displacement with nsteps.

~9. The function Il (T) and its level-sets

We consider the spaces

C ':) C1~ C2~ ••• ~ en~ ... :J Coo :J A

of one-to-one direct mappings of the circumference onto itself, continuous, con

tinuously and infinitely differentiable, and analytic in the neighborhood of the

real axis, with the topologies usual in these spaces. Each successive topology

is stronger than the preceding one aod each of the spaces is everywhere dense in

the preceding one.*
Poincare [1] defined for each transformation T € C the rotation number

21111. Thus on the space C there is given a function p.(T). The following theorem

was stated by Poincare without proof.

Theorem 4. The function Il(T) is continuous at each point of C.

Proof. We shall show that p.(T) is continuous at the point To.

Suppose given a point l > O. We choose a number n > 2,/£ such that

n~ /" (T) < In + 1
n ......... f1 0 n·

*If T lies in one of the spaces C1, C2, ••• t A without distinction as to which one,
then we shall call T a smooth transformation.
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T~ : fP ~'cp + t~n) (cp)

each point is shifted by more than 21Tm. Indeed, if some point were shifted less,

and another point more, then there would be a point shifted by exactly 217m, i.e.,

a point which is fixed for To. Then, evidently t in spite of the choice, of n,· we
would have

m
fl= -.n

If all the points were shifted by less than 211m, then we· would have J1.~ min,

which again contradicts the choice of n.

Analogously one proves that each poiot is shifted in the course of n steps

through less than 21T(m + 1). Thus

21tm < t~n) (<p) < 2n; (m + 1).

In view of the continuity of t~n) (ep),

21tm + f} < t~n} (cp) < 2n (m + 1) -11

for some .,., > 0, and in view of the continuous dependence of T(n) on T there

exists a 0 > 0 such that

as soon as the transformation T differs from Toby less than 0:

I t (q» - to (q» 1< o.
For such T

231m < t(n) (cp) < 2n (m + 1)~,

so that

Thus, I f.L (T) - p. (TO) I < l for t t (¢J) -to <¢) I < o. The theorem is proved.

Remark. Even iii very nice cases the function p. (T) is only continuous. For

example, consider the family of transformations

T h : cP~ q> + h + 0,1 sin2 cp,

where h is a parameter. By what has been proved, 11 (Th) is a continuous ~etioo

of h. With increasing h the function Il (Th) grows, but with a lag at each rational

value of p.. To this value there corresponds a whole segment [h 1h2] of values.of .

k. 00 the other band, for h > hz the function p. (Th) increases with extreme
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rapidity_ E. G. Belaga showed that, for example t in the neighborhood of the Cl"igin

'Il (T~) grows at least as fast as CJh,/-log ho

A level set of p.(T) is a set of transformations with the same rotation number

217P._ To such transformations there belong the rotation through the angle 217P.,

transformations convertible into rotations through the angle 217P. by an.appropriate

change of variables, and possibly other transformations.

The structure of the level set 11 (T) = p. essentially depends 00 whether Il is

rational or irrational.

2:Jf

Figure 7

o

21t T{If)

~10. 'The case of radanal Il·

10.1. If ,.,.(T) =m/n, then, as Poincare showed, Tn bas fixed points:

t(n) (a) = 217 m. The set of these points is invariant relative to T and closed, as

the level set of the continuous function t(n) (a). The points a, Ta, ••• , Tn -1 a

are called a cycle. In the investigation of cycles it'is convenient to consider the
graph of the, transformation Tn and the graph of the function t(n) (cp) (see Figure

7; on this drawing we have shown the gtaph of T(¢) =¢ + t cos ¢ and we have

indicated the image of 0 for several iterations of T). A cycle is called isolated

if in some neighborhood of its points there are

no points of other cycles. An isolated cycle is

stable if one of its points, and thus all of its

points, has arbitrarily small neighborhoods

which are taken into their own interiors by the

transformation Tn. It is easy to see. that as'

n -+ + 00 the points of such a neighborhood

tend to points of the cycle, which explains the

usage. A stable cycle of the transformation

T-l is called an unstable cycle of T. An iso

lated cycle issemistable forward (backward)

~
t('1) ~~ I1J if all the points of SOOle neighbothoodof a
~_~ point of the 'cycle (the ·point itself excluded)
(j ~ 2Jt are moved forward (backward) by the trans-

formation Tn, i.e., if, in this neighborhood

t(n) (cp) - 2nm, > 0 « 0).

A 'transformation T € C1 is normal if at the points of its cycles

dt(n) (<p) 'I

d<p =r O.

Evidently, a normal transformation has a finite number of cycles, while all

of these cycles are stable or unstable. Indeed, those roots of t(n)(¢) -·217m,

where dt.(n)/dep < 0, are points of stable ~ycles, and those where dt(n)/d¢ > 0

are points of unstable cycles. Therefore it follows that the points of stable and
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unstable cycles of a normal transformation alternate.

10.2. Theorem 5. Normal transformations form a set open in C1 and every
where dense in A.

Proof. 1. The points of a cycle are the points where t(n)(ep) =2mn. At these

poiots dt(n)(ep)/dep =t= o. Therefore for a small, along with the first derivative,

variation of t(n)(¢) the function t(n)(cp) -·211m does not acquire any new roots

and the old ones do not disappear, but rather are displaced contiou~usly,while

the derivatives at the roots preserve sign. This means that the transformation T
with such .a variation of the function t(n) (¢) becomes normal. In view of the con

tinuous dependence of t(n) {cp} on T, the first assertion of the theorem is proved.

2. We shall show that arbitrarily close to any transformation there is an ana

lytie transformation with a cycle. Evidently it is sufficient to prove this for all

analytic transformation and analytic proximity. Suppose that T is an analytic

transformation with an irrational rotation number, and suppose that l > O. Among

the points CPn = rn¢O is one displaced from cPO by less than i, for exam.pIe, back

ward:

2nnl - e < t(n) ({(Jo) < 2nm

(Denjoy's theorem). We consider a family of analytic transformations T}... (,\ ~ 0,

To = T):

It is Dot hard to see that for A= l TAdisplaces cPo ahead:

t~n) (<Po) >- 2Jtm.

Hence, in view of the continuity of t~n) (CPO) in A, it follows that for some

AO~ f TAO has a cycle cPO' TAo¢o'···:

t},~) (C{>o) === 2nm.

3. An analytic transformation with a cycle can be converted into a normal

transformation by an arbitrarily small variation. Indeed, suppose that T is an

analytic transformation, and among its cycles there is no stable cycle (and there

fore also no unstable cycle). We choose a cycle cPO' cPI'· .• ) cPn-1 and introdbce

an analytic function ~ (¢), vanishing at these points and having there negative

derivatives. The transfocmation

for small (J is arbitrarily proximate to T and bas at least one stable cycle cPO'
cPl t • • • t ¢n -1- Therefore it is sufficient to consider the case when the desired

tra·nsformation T has a stable cy·cle. We shall construct over T an analytic

function 0 (4)) which
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1) is eq'ual to zero and bas aoegative (positive) derivatives at the points of

.the stable cycles of T;

2) is positive (n~gative) at the points of the cycles of T which are semi
stable forward (backward).

4 The existence of such a function is obvious, since the number of all cycles

of T is finite, because the analytic function t(n) (¢) -,2mn has an isolated root

.and therefore is not identically zero.

Consider the transformation Te : ep ~ ep + t(c/J) + 08(e/». For small (J this

transformation is normal. The fonnal proof of the fact that the stable cycles of T
for small () are only somewhat shifted, while the roots of t(n)(ep) -:2mn become

~ultiple, and the semistable cycles vanish, is left to the reader. For sufficiently

small () the transformation T (} is the desired one.

Theorem 5 is proved.

10.3. The construction of a normal transformation may be easily perceived

from the graph of the function t(n) (¢) - 2'11111. Its roots are the points of the cycles

of the transformation and divide the circumference into arcs. Each such arc af3
is bounded at one end by a point a of a stable cycle and at the other end by a

point f3 of an unstable cycle. For n -+ + 00 the points of the arc wind around

onto the stable cycle, and for n -4 - 00 onto the unstable cycle, i.e.,

lim T kn (y) == rJv (mod 2n),
k-?oo

lim T kn (r) == ~ (mod 2n),
k->-oo

where y e (a, (3). Assertions of this type ate well known in the, qualitative

theory of differential equations, and we omit the proof.

Thus a topologically normal transformation is characterized by three integers

mt n, k, where min is ·the rotation number and k th,e number of stable (and

therefore of unstable) cycles. Two transformations with the same m,. n, k are

similarly arranged in the sense that oneaf them can be converted into the other

by a continuous change of variables on the circumference (i.e., T2 = 4JT1«1>-1,
where <Il € C). In addition the derivative dt(n) (ep)/de/> at the points of the cycle,

which characterizes the rapidity of winding around onto the cycle, is an invariant

under a smooth change of variables. Probably there are no other invariants, but I

have not been able to prove this.

Theo~m 6. The se~ Em / n at the level p. =min in any of the spaces C1, •••

• • • ,'A is connected and consists of

1) a kernel U k=1 E~/n of normal transformations dense in Em/ n and open

in CP (A). The kernel consists of connected components E~/n of transformations

with k stable and k unst.able cycles. Two transformations of one component E~/n

may be converted one into the other by a c'ontinuous change of variables;
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2) the boundaries of E m/ andE~/n. The boundary of Em/ n consists of

transformations T for which eln) (ep) - 2mn does not cliange sign. Its parts

F t(t(n)(cP) - 2mn ~ 0) and F _(t(n)(ep) - 21Tm50) contain transformations semi

stable forward and backward, and are connected and intersect in a connected set

Fo. Transformations from F 0 change under a smooth substitution of variables

into rotations. FO lies in the boundary of each component of E~/no

Proof. 1. The sets Em / n , F +' F _ are connected. For the proof we join, with

out leaving the set in question, any transformation T € Em / n (F ..., F _) with the

rotation T2 through the angle 2T7mln by an arc Te (0 ~lJ ~ 2, TO = T). Suppose

that cPo,···, cPn-l is a cycle of T. Making the smooth substitution of variables

cp -+ 'Ycp == ({) .+ 'P (cp)

we transfer the points cPO.···, ¢fI,-l into 2rrml/n (0 ~ l S n - 1). Put

'Iferr == cr +. 01j; (IF)
and consider

T B cP :== ·'YoTqJ-el cp = cp + to (q)) (0 <e-< 1).

This transformation is the transformation T described in the variable 'lie, and

belongs to Em/ n (F +, F_).

Now we consider the segment joining TIt 0 T2=

T ocr == cp + (8 - 1) 2n ';: + (2 - 8) t1 (cp) (1 <e<: 2).

The points 2mnl/n (0 ~ l ~ n - 1) form a cycle Ta for all 1 5:.(} 5 2 and therefore

the curve Te lies entirely in Em / n (respectively F+,F_). The connectedness

is proved.

2. The set E~/n of normal transformations with giyen m, n, k is connected

in any of the spaces C l •... , A. For the proof we join in the space in question

the tr~sformations T0' T2 by the arc Te, (0 :s () .5:. .2). We carry out a smooth sub
stitution of variables

taking the points of the cycles T0 into the corresponding points of the cycles T2

(which is not hard to do since the number of these points is the same and they

follow in the same order). The transformation T1 == 'PT0 \II-I operates on the

points of the cycles of T2 in the same way as the transformation T2; it is easy

to see that it does not have other cycles. Putting

and
lY0 «(})) == lp + 6'¢ «(())

To = o/eTo'Yo1 (0 <8 < 1),

we join Toto T1 by a curve lying in E~/n.
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Consider tbe transforma tion

269

T 1 (<p) == <p -1- t 1 (<r)) T 2 (qJ) = qJ .+- t2 (cp).

The functions t 1 (¢) and t 2 (¢) coincide at the points of the cycles, and there

fore all the transformations

11

0 (cp) == cP + (2 - 0) '1 (cp) + (e - 1) t2 ((p) (1 < e< 2)

have the same cycles. Accordingly, the curve Ta (0 ~ () ~ 2), joining TO to T2'

lies entirely in Ek / .m n-

3. The proof of the fact that the set E~/n is open and that the set L'k E~/n
of normal transformations with the rotation number min is everywhere dense in

Em / n is analogous to the proof of Theorem 5 (subsections 1 and 3).

4. If T l' T2€ E~/n,then we may carry out a cootinuous change of variables

'I' = ¢ + tjJ{¢) such that T1 goes into T2: T2 = 'l'T1'1'-1. Indeed, we denote the

points of the stable cycles of TI by a~ (1 .::; 1~ k, 1 $ i ~ n, T lai = Qi+l' an +1 = all

and the points of the unstable cycles of T1 by bJ (by 1 we denote the number of

the cycle in the order in which it follows on the circumference). Here there are no

points of the cycles on the arc a~bf (thus the same is true of each arc a:b~ and
b~a~+l).*

~ £

1 "lSuppose further that C i and d i are the points of the stable and unstable

cycles of T2' enumerated in an analogous way. The substitution of variables 'I'
carries the points a~, b~ into c~, d~Q and it remains for us to complete the defi-£ £ ~ 1,1

nition of 'I' to the arcs a~b~, b~a~+l. We choose the points x and y inside the1,,, £" .

arcs a~b~ and c~4. The points Tix and Tiy lie in the same arcs closer to a~
and c~ respectively. We map the arc (x, Tix) onto the arc (y, Tiy) homeo

morphically and directly using \II: x ~ y, T1x ~ TiY. Evidendy under the trans-

formations Tf the images of the arc [x, Tixl (or of the arc [y, T~yl under the

transformations TP) entirely cover the whole arc a!b! (1 < i < n) (the whole arc
11 2 . 1,1.--

cidi )· Thus we define 'P(eP) 00 the arc TI{x, TlJ.+nx as T~'PTIP. An analogous

construction is poss ible on a~b ~ and b~a~ +1. The proof of the fact that the sub-
1, 1, 1, 1,

stitution of variables just found is the desired one is not complicated and we omit it.

5. The sttucture of the boundary. If t(n)(¢) - 211m changes sign, then T is

an interior point of Em / n since under a small variation of T, t(n)(ep) -217m will

change sign' as before, and T preserves the cycle. Therefore the boundary Em/ n
enters into the sum of F+ (T·E F + if t(n)(ep) - 2mn ~ 0) and F _. In order to con

vert the transformation T € F0 = F +nF _ into a rotation, we need to carry the

points of one cycle into 211ml/n by a smooth substitution of variables and then to

*By 1 + 1 for l =k we understand 1.
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redefine tbe parameters on all tbe arcs [211ml/n, 211(ml + l)/n], except one

( 1= 0), according to the formula

1J!(cp) =2n,::l + T-1(cp).

By a small variation of a rotation through the angle 21Tm/n one may convert

it into a transformation in any E~/n' roughly as was done in tbeproof of Theorem

5 of subsection 3. From the preceding considerations it follows that the sam"e is

true also for all transformations of F0' which proves the last assertion of

Theorem 6.

10.4. From Theorem 6 (point 4 of the proof) it follows that normal trans

formations are rough in the sense of Andronov-Pontrjagin [10]. Since, by Theorem"

5. the set of all normal transformations is everywhere dense, no nonnormal trans

formation can be rough.

From the topological point of view normal transformations fill out a predomi

nant part of the space oftransformations, namely an everywhere dense open set.

In the following section it will be proved that from the point of view of measure

the typical case is also the ergodic case.

§11. The case of irrational IL

11.1. Consider now the set E~ of irrationallevel p,. In the spaces e2, _•• • A,
by Denjoy's theorem, each transformation TEE J.L may be converted into a rotation

through the angle 217f1. by a continuous change of variables. We are also ,concerned

with transformations which can be converted into a rotation by a smooth change

of variables. The set of such transformations will be denc;>ted by E~'P (respective-

ly by E:; the common notation is E~).

Theorem 7. 1°. The set E~ is everywhere dense in E in the topology of
c. All sets E; are connected. IJ.

2°. If ,.,. is such that III - m/n , > K/, n 13 for any integers m and n not

equal to zero, then the set E~ is open in E f.L in the" topology of A.

Proof. 1°. Suppose that To denotes a rotation through the angle 211"", and

suppose that T1 € E~. Then there exists a smooth substitution of variables

'f~ (rp) === (f) -f-- ~ (cp)

such that T1 = 'liT 0'1'-1. ;The substitution

'Y~ ((p) ~=: q> -1- 0 'lJ ((f)) (0 ~ 0 <1)

converts T0 into TO == tPe Tot/J81; thus the curve T (J joining Toto T1 lies~ en

tirely in E~. The connectedness of E~ is proved.

Vie shall construct in E~ a transformation T* in a'given neighborhood of'

T € EfL- By Denjoy's theorem there exists a continuous substitution of variables
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'I' <¢) such that "T l:;: 'l'T 0'1'-1. We shall construct an analytic substitution lp* (¢J)

.of variables ¢ such that 'II and 'P*, '1'-1 and '1'* -1 differ only slightly in the

metric of C. Then T* = 'I'*T0'P*-1 approximates T in the metrical C and lies

'in E~. Assertion 1° is completely proved.

2°. The fact that the set E~ is open in EJLn A follows from Theorem 2.

Evidently it: is sufficient to show that some neighborhood of the rotation T0 in

E,un A lies in E~. The transformation T € E,un A may be written in the form

cp~ cp + 2Jtfl -1- .F' «(f') ,

while the .neighborhood UR,C of the transformation T0 is given by the inequality

.1 F (cp) I < C for 11m ¢ I < R. But by the Corollary to Theorem 3 '(see subsection
4.3), for a givenR there exists a C such that all the transformations T € UR, CnE}J-

analytically re~uce to rotations. Theorem 7 is proved.

11.2. In turning to the question of typicality from the point of view of measure

(see [8]) we encounter the'absence of a reasonable measure in functional spaces

and therefore we are forced to restrict ourselves to finite-dimensional subspaces.

Consider the two-dimensional space of analytic transformations

.11 a, b : Z~ z -t- a -t- F (z, b) ,J

where for 11m z I < R, Ib I < bO F(z, b) is an analytic function satisfying the

inequality IF(z, b) 1< Lib I·
Theorem 8.

. lnes Eo
Ilm-,)-O~ =::::: 1,
o~o _J't

(1)

where EO is the set of points of the set (ab), a € [0, 277], b € [0, 8], such that

the transformation A ab converts into a rotation by an analyti'c substitution of the

coordinate z.

Proof. 1. Consider the set MK' name ly the compact set of points 0< f1 < 1
satisfying the inequality

I
117- I~ K

~ -- n /li!

for all m, n > O. By Theorem 2, for any Jl € Mk there exis t C = C(K, R) > 0 and

a function A(b, Il), analytic in b, such that the transformation A277JL+6 (b,}J-), b

for p. € MK' Ib I < C may be converted into a rotation by an analytic change of

parameter: .(277P. + &(b, Il), .b) € Eee We denote by MK(b) the set of points Il +

t1 (b, 1l)/2fT, Jl € MK for a fixed b. Then the transformation Db: /l ~ Jl + ~ (b,Il)/217

carries MK into the set MK(b).

Put l> 0 and choose K > 0 so that M2K > 1 -.·f/3 (from Lemma 1 of §2

this is possible). We shall show that for s:ufficiently small b the inequality

mes..:11 K (b) > t - e.
2
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is valid, from which Theorem 8 will follow immediately, since it is evident that
o

2nO lUes Eo > 2n ~ roes M K (b) db.
o '2

2. In §7 we constructed a perfect set N~ = NK' M2K £ NK ~ lJK/2. Evi

dently it is sufficient to show that for sufficiently small b

( _.OJ)In(lS .L\~1\ (lJ) 1 - c..

(Since K > 0 is fixed, we may now drop the index K: NK = N.) .

From Theorem 3, the mapping Db: N --+ N(b) is the limit of a uniformly con

verging sequence of monogenic mappings

D n . I 1 A 11 (b )u 0 ~t ~ ~t --; 2Jt il , ~t .

We shall show that for any f > 0 there exists a b(l) such that for b < b (£)

and any n

Illes D~ (1\:) > 1 - c..

From Theorem 3. there exists a b'(€) such that for n, b < b (€), Il€ N the fol

lowing inequality will hold:

e .
-~ '

'J

(3)

i.e., under the mapping Db' N maps almost without dilation.

We shall show that b (i) has the desired property (the index n will be dropped

everywhere, since the argument is always carried out for n fixed). Suppose b <
b ({). From the definition of monogenicity, for £/3 there exists aD> 0 such

that

if Ip. 1 - /l. 3 , < 0, Ip. 2 - {1 31 < 0 , P. l' f.l2' /13 E N. Then under the same con
ditions

(4)

in view of the choice of b (E).

3. We decompose N into nonintersecting (of course, measurable) parts

Ni, U:=1 Ni '" N, the diameter of each of which is less than 8, and suppose that

Ni (b) are their images under the transformation Db- Since under this trans'formation

the distance between two points of Ni cannot decrease, as follows frof(l (4), by

more than 1 - 2£/3 times, therefore

(1 2e \ . \Ti
. -- -- Illes i !- 3 ) ~,
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frbm which it folJows that
L L

" NTi (b) ---- ('1 28 ') ,,~ l\li~ mes //"> - 3, .LJ mes ·
1=1 1=1

Thus

mes N (b) > (1 - 2;) mes N,

and since

1\! ---- 1 Bfiles 1 ~ /"> - 3 '

we obtain

273

mes N (b) >(1 - 2;) (1 - ~) > 1 - l',

and inequality (3) is proved. Inequality (2) follows from this, since the following

lemma is valid.

Lemma. Suppose that E ~ [0, 1] is a perfect set and that fn is a sequence

of continuous mappings of this set onto Fn ~ [0, 1], uniformly converging to the

mapping f: E -~ F, and suppose O:S ~ < 1. If mes Fn > 1 -!1 for all 11" then

mes F ~ 1 -11.

Proof. Suppose that l > o. We consider the set Df. of contiguous intervals

of F larger than f. There will be a finite number of them, and for a sufficiently

large 11, these intervals will be arbitrarily little different from the corresponding

contiguous intervals of Fn. The sum of the length of the latter for any 11, is less

than ~, since mes Fn > 1 - A.. Therefore the total length of Dl does not exceed

6.. In view of the arbitrariness of the choice of l > 0, the measure of the entire

complement to F is also not larger than ~, a~ was required to be proved.

Putting E = N, fn cDb, Fn =D'b (N), ~ = l, we obtain inequality (2) from (3).

Theorem 8 is proved.

§12. Example

We consider the two-dimensional space of mappings .of the circumference ooto

itself of the form

E
CP ---+ QJ + a -t- c cos <p =Ta,f-. (cp). ('1 )

o ~ X K ff ~ K ~ U ~ M ~ c
~ 6 T J ~ z ~ T T T ~

Figure 8
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For £ = 0 we obtain T 0' namely a rotation through the angle a. For l (I < 1a,
formula (1) defines a direct ooe...toco()oe continuous mapping. of the circumference

onto itself.

The level sets of the function

~l (a, e) =:= !l (7
7

(I, ~)

continuous for If \ ~ 1 may be studied from two points of view. First, we may

seek those points (a, f) of the plane for which p, is rational; the boundaries of

such regions are given by the conditions of semistability of the cycle. For ex

ample, the point (a, l) enters into the level set /l c: 0 if the equation

cp == t:p+ a + 8 cosq;

has a real solution, i.e., the boundary of the region Ji. = 0 is the straight line

a:::: ±(. In the same way we find the regions Il = min. They approach the line

( = 0 with ever narrowing tongues (Figure 8); two boundaries of the region J..L =min
have contact of (n - l)st order. For example, the regions Il = 1/2 and p. = 1/3

have bounding curves

(2)

(3)

Therefore one obtains approximate formulas, valid also for not very small l: for

l :=: 1 formula (2) gives 17 ±0.25 instead of 17 ±0.23237 • •••

The secon<l approach to the dete-rmination of the level sets /l (a, () consists

in using Newton's method for the approximate determation of the curves of ir

rational level J.L. After two steps of Newton's method we obtain the following

approximate equation for the level lines:

O.....---...----------~
a

Figure 9

Figure 9 gives an idea of

11
o

,
J

It I
]

which works well when the cotangents are not large.

the character of the convergence of the

approximations and on the relation of

this result to the preceding one. On this

drawing we have shown the graph of the

function Jl (a) = /l (a, 1). We have de

noted the zeroth approximation of New-

ton's method by 0, the first by I, and

the second by II. The horizontal segments

for Jl = 0, 1/2, 1/3 are determined inde

pendently in accordance with formulas

(2) and (3). F or the number a given by
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~

formula (4) th,e substitution of variables

... h ( ) == ~ ~ sin (cp - :rqt) -1_ e2 sin (2<p - j[~l)
't' CP <p 2 sin 31f.1 '4 sin 31~" sin 21tf.1

converts the ttansforma,tion (1) into the transformation

",~ '¢ + 2nll -+- }?z (¢, e, l!),

275

where F 2 'VE'4.

R.emark. In the theory of oscillations tbe phenomenon of t'locking in" is well

known. This phenomenon corresponds to zones with rational rotation numbers.

Transformations of type (1) and diagrams of the type of Figure 8 describe a

certain regime of the wo.rk of a generator of relaxation oscillations, synchronized

by a sinusoidal impulse (see [25]). Another problem of a similar sort connected

also with the mappings of a circumference onto itself is considered in the book

[37] (pp. 221-231 of 2nd ed.).

§13. On trajectories 00 the tONS*
13.1. Suppose that we are given on the torus x, y€ [0, 217] a differential

equation

and that the usual conditions of existence and- uniqueness theorems are satisfied.

Through each point Yo of the meridian x c: 0 there passes a trajectory

Y (;T, Yo)' y (0, Yo) == Yo·

Following Poincare, we make correspond to the point Yo the point y (217, yO).

Then we obtain a mapping of the circumference x = 0 onto itself, direct, one-to

one, continuous, and smooth or analytic for suff iciently smooth or analytic right

side. If now the function F(x, r) differs by little from a constant, then this map

ping will be close to a rotation. All the properties of the transformation Yl (YO)

reflect the corresponding properties of the solutions of equation (1), and we need

ofily formulate the results of the preceding sections in the new terms.

If the mapping y 1 (YO) is converted by the change of variables from y to ¢ (y)

into a rotation through the angle 2171l, then this substitution may be extended in

a natural way to the whole torus if at the point (x, y (x, yO) we set

(P (x ~ y) == cp (Yo) + ~x.

E"VidentlYt if 4J{y) is a smooth, or analytic, substitution, then the substitution

¢ (x, y) 00" the whole torus will also be smooth or analytic. 10 the x, ¢ coordinates

the trajectories are written in the form

{P = CPo + fl:c

*See [1] _ [4], [14], [19] and [20].
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and one therefore says that a substitution of this kind straightens out, or rectifies,

the trajectories. An analytic rectification of trajectories was obtained by A. N.

Kolmogorov [14] in the case of th~ presence of an analytic integral invariant. On

the basis of Theorem 2 we may now assert that if the function F (x, y) is ana

lytically close to a constant and if the rotation number J.1 satisfies the usual

arithmetic conditions, then the trajectories may be analytically rectified. Thus it

follows that the dynamical system

ely F ~-·-1 ~== ( ~t. y),
( t

dx === 1
dt

has an analytic integral invariant with invariant measure equal to the area in the

x, ¢ coordinates.

On the other hand, in tbe same way as in the example of §1 one may coo

struct an analytic function F (x, y) such that the invariant measure of the system

is not absolutely continuous relative to the area dxdy, although the rotation

number fl is irrational and the system ergodic.*
13.2. Suppose that on the torus we are given a system of differential equa-

tions

dx )dt == 11 (x, y , dy B ( )dt === x, y (_4 (x, y) > 0, (1)

with analytic right side. Consider the equation

dy B (J:, y)
dx == ..4 (x, y) ,

which has the same integral curves as the system. If these may be rectified in

accordance with subsection 13.1, then in tbe new coordinates the system has the

form

~~ = A' (x, cp), dq> == r A' (x, tp),
dt

where A' (x, ¢) = A (x, y (x, ¢)). This system has the analytic integral invariant

1/A' (x, ¢), and in the paper [14] it was shown, with the usual hypotheses on p.,

how to convert it to th e systern

_~~~ == 1 dtj?t
J

-- ~l
ci t - ,

by an analytic substitution of variables.

The contrary possibility, both in the case of an equation and in the ca~e of

a system, is the presence of limit cycles [20]. The decomposition of the space

*Added in proof. The contrary assertion in the review [41], which appeared while
this paper was being printed, is mistaken.
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of right sid.es of the system ( 1) into level sets for the rotation number, the charac

terization of rough systems and the consideration of the question as to the typi

cality, are analogous to the consideratioosof ~9-11. It results that

1. The case of nonnal cycles (it is still rough) .is topologically predominant~

The 4corresponding set of right sides is open and everywhere dense; however, in

systems ,with an integral. invariant this .case cannot happen at all.

2. The ergodic case (the case of irrational p.) is typical as well if one uses

measures in finite-dimensional spaces as the point of departure for judging typi

cality• For s ystemswith an analytic integral invariant this case is predominant.

In the multidimensional case, in the absence of an integral invariant, the

rotation number is not defined. Nevertheless, by making use of the remark of sub

section 4.4, we may obtain the following assertion.

Theorem 9. Suppose that ~ = (1l1t • •• , Iln) is a vector with nonCommensurable
~

components such that for any integer k

-+ ~ c
I (l-"~ k) [>-=;-.

I k In

Then there exists an f(R, C, n) > 0 such that for any analytic vector field F(~
~ ~ ..,.. -io ~

on the torus, i.e., a field with F(x + 21Tk} == F(x)), which is sufficiently small,

,F(;) I < l for 11m -; f < R, there exists a vector t: {or whick tk~ system of dif

fere ntial equations

converts into

by an analytic change of variables.

<§14. Dirichlet's problea for the equation of the string

14.1. Suppose that D' is a region on the plane, convex in the coordinate di

rections; i.e •• its boundary r intersects each line x = c, y == c at hot more than

,two points.

The Dirichlet problem for the equation a2u/axar = 0 00 D consists in finding

on D a function u(x, y) = ¢{x; + t/!{y} which on r is transformed into a given

{unction f(a~ (a € r) : u lr = f.
Here one may impose various requirements of smoothness, analyticity and so

* In the paper [19], to judge from the review [21], it is asserted that a necessary and
sufficient condition for roughness is the presence of one stable cycle. This is not true.
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forth on i, ¢, t/J, r.

Figure 10

!I

In the case when D is the rectangle 0:S x + y .$ 1, 0 ~ y - x ~ t, it is con

venient to refer to the coordinates ~ = x + y, r = y - x. Then our equation becomes

the equation of the string, and the problem may be interpreted as the problem of

finding the motion of the string with respect to two instantaneous photographs

and the motion of the ends. From physical considerations (standing waves) it is

clear that with commensurable 1 and t the problem is not always solvable, and if

it is solvable, not always uniquely. This problem has been the' object of a series

of papers, e.g., [22], [23], [5], [24], [17], [28]. There are difficulties of an ana

logous order in the solution of certain other problems, e.g., [25]_[27].

14.2. {Jniqueness theorems (see [5]). We shall associate with the boundary

certain of its mappings onto itself (see Figure 10). Suppose that P is a trans

formation carrying the point a E r into

the point Pa € r with the same coordinate

x, and that Q is a transformation car

rying the point a € r into the point

Qa € r with the same coordinate y.

These transformations are continuous,

one-to-one J and change the orientation of

the contour r. We write QP = T. Evi

dently

p2 === Q2 ::= ET

, PQ === r-1
.

T is a direct homeomorphic mapping.

Theorem 10 (see lS]). If the contour r is such that for some point ao E r
the set rn ao (n = 0, 1, 2,···) is everywhere dense on r, then the Dirichlet

prob [em for r cannot have more than one continuous solution.

Proof. The solution u (x, y) = ¢ (x) + t/J (y) defines functions ¢(x), t/J (y) up

to a constant. We shall sh ow that under the conditions of the theorems, knowing

¢(x) at one point a € r makes it possible to determine ¢(Tna), tjJ(Tn a) at all

the points rna (n = 0, 1,··.) (we write ¢ (a) and t/J (a) for ¢ (x), ljJ (y),., where

x, yare the coordinates of the point a € i).

Knowing ¢ (a), it is easy to find

1P (Fa) == f (Pa) ~- q:l (a),

since the abscissae of a and Pa are the same. Then we may determine

<p (Ta) == f (1
1

a) - 'P (Pa),

using the fact that the ordinates of the points Pa and Ta coincide. Further, in

the same way we obtain ep, r/J at all the points rnpa, rna. They form a set

everywhere dense on 1, so that continuous functions which coincide at'these
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points of r coincide everywhere. The theorem is proved.

In the case when D is the rectangle 0 S x + y .~ l, 0 s y - x ~ t, the trans

fonnation T is, in particular, a rotation. Indeed, if we introduce on the contour
'r a parame ter

it == 2ct1t
V2 (l + t) ,

'where a is the length measured along the contour from the point 0 to a (Figure

11), then. our trans fonna ti on

T : Tft = \'t + I ~tl

.is a rotation through the angle 21Ttl(t + l). If

D is an ellipse, then it is not difficult to in...

troduce 011 r a parame ter such that io it the

transformation may be written as a rotation.

Indeed, we rnap the ellipse affinely onto a

disk. The straight lines in the coordinate

directions go into two families of. parallel

lines, while two lines of different families .r,
form an angle of "Il, in general not a right 0

angle. Evideotly, when the ellipse is sub- Figure 11

j ected to the transformation T, the circumference rotates by an angle 21TP. (Figure

10).

If r is a curve of bounded curvature, then T is a twice differentiable trans

formation, from which, by Denj~y' s theorem, we have the result that for an ir

rational rotation number J1. the mapping T of the set rna is everywhere dense on

r. Hence we have th~ following theorem.

Theorem 11 (see [5], [24]). If r has bounded curvature and p. is irra.tional,

then the Dirichlet problem can have only one continuous solution.

Remark. Using· the theorem on points of density, it is easy to prove that under

the conditions of our theorem there can be only one measurable solution. On the

other hand, the method of proof of Theorem 10 makes it possiblet for irrational po,
to construct as many solutions as desired, bu.t, generally speaking, nonmeasurable

ones.

14.3. ,Detailed investigation of the rectangle.

Theorem 12 (see (23], (17]). Suppose that on the boundary r of the rectangle

o~ x + r ~ l, 0 S r _·x $ t, there is given a function f{lt) which is (p + l) times

differentiable along the boundary- Then for all Il = t/(t + l) € Mk satisfying the ina

equality Ip. -min I> Kit n t3 for any m and n and -some K > 0, the Dirichlet

problem with the indicated boundary functions has a p - 1 times differentiable
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,p ('6') = ~ Cnein&,

n=f:O
<p ({}) == 2J bnein&,

n=t=o

solution, and the problem relative to f\1t) is correctly posed. In the case of

analyticity of f the solution for the same /lis analogous.

For certain irrational Il, even in spite of the analyticity of the function f ('6'),
the solution may tum out to be

1) only infinitely differentiable,

2) differentiable k, but not k + 1, times,

3) only continuous,

4) dis continuous,

5) nonmeasurable.

Proof. If

f (~) = ~ anein&,

n*o

then, since ¢ (it) depends only on X 7 and t/J(f}) only on y, we have

(p (it) ==: q> (-- 2rt!l - {t), bn == b_nein2;rp. ,

'P (~) == 'l' (- \J'), en == c-n .

Since f (tt) is .real and therefote an = a-n' from the equation f(tt) =
¢ (it) + c/J (~) we find that

or

an -- an

e-·2~itJ.n_ '1 ' (1)

Now, when the formal solution is fouod, the rest of the proof may be carried

*out by an exact repetition of the argument of §2.

Remark. It is clear from formula (1) that for all fl it is possible, by truncating

the series, to construct an ~capproximate solution," the degree of approximation

of which is greater in proportion as the commensurability of 1 and t is less. For

rational J1. the approximation is not higher than the limit imposed by (1., but for

strongly noncommensurable land t we have Theorem 11. This meaning of cor

rectness with respect to a region was introduced by N. N. Vahanija in the paper [28].

We may assert tbat the dependence of the solution on f.L is rrwnogenic (see §7).

14.4. General case. If the boundary of D is such that the transformation T
may be represented as a rotation in a parameter which is a smooth function of the

*Added in proof. In an article [42] by P. P. Mosolov, published while the present
article was at the press, the statement analogous to that of Theorem 12 was proved for an
arbitrary linear differential equation with constant coefficients in which all the deriva-'
tives are of even order.
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point on the 'boundary, then evidendy for each such contour all the arguments of

. subsection 14.3 are applicable, and in the case of a 'tsufficiently irrational Il's

the Dirichlet problem has a smooth solution.

As an example there is the ellipse, for which the parameter was constructed

i~ subsection 14.2-. Now, in the general case of irrational Il, in spite of the arbi

trary degree of smoothness of £1, one cannot guarantee the smoothness of the
parameter in which the transformation T becomes a rotation, although by Denjoy's

theorem such a parameter exists. F. Jobo [5] showed that with a continuous

change of variables x, r of the form x -+ u (x), r ~ v (y) (upreserving the

equation a2w/ax ay =0' t) it is possible to map a region for which T has an ir-

• rational IL onto a rectangle or onto an ellipse with the same 'Il- However this sub

stitution, generally speaking, is only continuous, and it ma y convert smooth

boundary conditions 00 the curve into nonsmooth boundary conditions on the ellipse.

We note that if r is an analytic curve., then P and Q, and thus T and Tn,
are analytic mappings. But ~f r is also analytically close to an ellipse, then in

an appropriate parameter the transformatlon will be analytically close to a rotation.

Therefore it follows from Theorem 2 that among the curves for which Jl € Mk, all

curves sufficiently close to the ellipse are analogous to the ellipse in respect to

the solvability of the Dirichlet problem.

In exactly the same way one may formulate other problems on mappings of

the circumference in these terms. In particular, if the transformation T has a

cycle, then the Dirichlet problem with zero boundary conditions has a nonzero

solution (at least piecewise constant; for more details see [24]).

The Dirichlet problem for the stringequatioo is a problem .on eigenvalues

for the two-dimensional Sobolev equation
a2t1u 82u
~ == ax2

(see f24], [27], [29], [30]). The values of A which belong to the spectrum are

those for which the mapping TA, .cOdstructed for the curves r A, has a cycle

(here by r A we mean the curve r subjected to a dilation dependiog on A).

From the results of §lO it follows that if the cycle is stable, then a~l the

curves close to r A yield an analogous cycle, and accordingly the point A belongs

to the spectrum, together with a neigh~odtood. An example of a curve r gener~

aring a ~ansformation with a stable cycle was constructed by R. A. Aleksandrjan

(24]. On the basis of §lO we may show that su~h curves may lie in any neighbor

hood of any curve r.
The Dirichlet problem for the wave equation with given values on theel

lipsoid. was recently investigated by R. Denc!ev [32].
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THE STABILITY OF THE EQUILIBRIUM POSITION OF AHAMILTONIAN
SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS IN

THE GENERAL ELLIPTIC CASE.

V. I. ARNO~D

1. Let p =q =0 be a fixed point of the system

aH p = _ °aHq t (1)
q = ap'

where H (p, q, t) is an analytic function of p, q, t and periodic in t with period 211. A case is called

elliptic if the equilibrium position is stable in the first (linear) approximation. IThen, as was shown by

Birkhoff [1], by a proper choice of the variables p, q, t the Hamiltonian assumes the form

H =-:-.: 'Ar + c2r2 + ... + cnrn -1- H (p, q, t), (2)

where 2r = p2 + q2, H= 0(,-11 +1) is an analytic function of p, q, t, n ~ 2 and arbitrary. We call a case

a general elliptic case if among the constants c1 (2 ~ 1 < 00) is different from zero.

2. Examples are known where the equilibrium position is unstable, and A is rational [2]. We in

vestigate the case for A irrational.. Let us denote by AK the set of those A for which the inequality

\".f1-ml>-('-\~11)2 (3)i m -r n

is satisfied for all integral m, n > O. Denote by A the union of points of compactness of all the sets

AK• As is known, on a straight line the complement of A is of measure zero [3].

Theorem 1. If A € A then the equilibrium position 0, 0 of the system of equations (1) with the

Hamiltonian H (p, q, t) of the general elliptic type (2) is stable.

Theorem 2. Under the conditions of Theorem 1 in an arbitrary neighborhood of the circumference

of p = q = 0 of the p, q, t-space, there exists an analytic invariant torus TII. whose equation is r =

r(¢, t) (¢ =arctg piq). On the torus T it is possible to introduce the analytic coordinate r/J.(¢, t)
~ .

such tb,at on the torus T the equation (1) will take the form t/J = IJ.. The set formed by the tori T has
~ ~

a positive measure in the p, q, t-space.

Theorem 3. Let the Hamiltonian be of the form

H (r, cp, t) = H0 (r) +H(r, <p, t),

where dHoldr = ~ + 0 (r), It € AK, n(0) = 0 and the function

H = ~ H;nn (r) ei(mq>+nf)

is analytic for 11m ¢, tl ~ p, Ir\ S Pr = ak and satisfies the inequality

"" NIHI ~ M= a ,
and the function 0 (r) for Irl ~ Pr is analytic and
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(7)

Here 8 > 0 is some constant; N, k, a, b are natural numbers. If the inequalities

2k + 28 + 2a + 4b < N < 3k - 14-2b;
~ < 10-8 K2; ~ < 0.1 PI

are satisfied, then there exist functions R(eb, t), 'P(cf>, t) of period 211 in cI> and t, which are analytic

for 11m ¢, tl ~ 0.1 p and such that on the torus r = R (cI>, t) the equations

iJH
(J) =a;'

iJH
r=--::--

dq>

imply ~ = p. (here t/J = ¢ + 'II).

Theorem I follows from Theorem 2, since the tori TIJ. separate the circumference r = 0 from the

rest of the p, q, t-space. Theorem 2 follows from Theorem 3. It is not difficult ~o see than in the con

ditions of Theorem 2 there exist arbitrary small toroidal rings Ir - rol ~ Pr around the circumference

r = 0, to which Theorem 3 is applicable, if r is replaced by r - rOe

3- The last two theorems can ge generalized to systems with n degrees of freedom., However the

resulting invariant (n + l)-dimensional tori do not separate the (2n + I)-dimensional p, q, t phase space

and the question of stability remains open. Analogous theorems can be proven for the circumferences

of equilibrium positions of autonomous Hamiltonian systems. In this case in the (2n - I)-dimensional

manifolds H(p, q) = h lie the tori of dimension n. From this follows:

Theorem 4. The equilibrium position of an autonomous system of Hamilton's equations of two de

grees of freedom in the general elliptic case is stable if A2/AI € A.

Here the general elliptic case is that case when in proper coordinates the analytic function H has

the form [1]

n i 0 '" n +1 2 2where HO(r1, r2) = 0 ~ c iJ
o rl r~, H = O(ri + r2) ,2rt = Pi + qi and h(l) = 110(lA2, -lAI ) does not

~+J=2

vanish identically.

It can also be shown that an arbitrary analytic canonic transofrmation of the plane into itself in a

neighborhood of a fixed point of the general elliptic type is stable if its rotation number A € A. Theo

rems 2 and 3 admit a corresponding generalization even in the many-dimensional case.

4. Let us outline the proof of Theorem 3., This theorem is a stronger version of A. N. Kolmogorov's

theorem on the preservation of a conditionally periodic motion for small variations of the Hamiltonian

[4]. The invariant torus is found, 1S in f\. N. Kolmogorov's work, by Newton's method of approximation.

This method gives fast convergence which can not be destroyed by the small denominator which appears

in formula (9).

Fundamentallemma. Under tlte assumptions (4)-(7) of Theorem 3 there exist an analytic function

F("r', cf>, t) = I ,Fmn{r') ei(m¢+nt) and a number ~ such that the canonical transformation
m 2 +n2IQ

;p = cf> + aFliff') r =r' -r*, r = r' + aFlacf>
'"

transforms the Hamiltonian (4) to the form H("r, -;p, t) = No + Ji, where JlJolar = IJ. + O(r), n(O) = 0 and

the function

H-( - - t) ~ -H-
mn

(-r) ei(m~+nt)r, <p, = .L.J

is analytic lor IIm~, tl s P= P - 38, Irl ~ Pr = Sk and satisfies the inequality
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~ - NIHI<M = ~ ,

and 0(,) is analytic for IFI ~ Pr and

iJG = 6<1~~I<e = 6-1>.

In these formulas '8 = 81~.

Theorem 3 is derived from the fundamental lemma without difficulty, since the error of the sth

approximation Ms is not greater than M< 1~)S •

Not having the possibility to give the proof of the fundamental lemma, we shall only show the

method of constructing F and ,*. As is known lifr, 4>, t) = Jj'(r', <$, t) =8'(r', f/J, t) where we denoted

" -, -, iJj! (?, <po t)
H (r , <p, t) = H (r (r , <p, t), <p, t) + ----at- •

It is obvious that

where
A of of -'
Sl (r', <p, t) = p. ocp + at + H;

St{i', <p, t)=Ho(r)-Ho(r')-r-t(r--r'), IS2!=IQII~~I;

53 (f', <P. t) = H (r) - H (f'). I531 = Ia: II ~~ I·
The function F is defined by the condition 51 == 0:

iH mn
Fmn = J,1m+ n·

Passing to the variables ,', 4>, t we obtain

H' (f', cP, t) = H~ (r') + S2.(;:') + S3
0

(r"7) + H'(f', ri, t) = R~ -+ H',
where 'if '(,', 4>, t) = S2 + S3 unites the variable terms of the Fourier series functions in ¢, t,

S, (i-', (j), t) = S, + Sit (f') = Sf (i', q> (r', <p, t) t). (i =: 2,3).

Now r* is determined from the equation

d~~1 = .....
dr -.,

(8)

(9)

Here the inequality (6) is used in estimating ,*.
When the inequalities (7) are satisfied, the quantity H, estimated by the use of formulas (8) does

not exceed Ml~ = M.
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GENERATION OF ALMOST PERIODIC MOTION
FROM A FAMILY OF PERIODIC MOTIONS

v. I. ARNOL'n

1. The motion of a point x, y on a torus T is called almost periodic if
dy
dx = A, (1)

where A is an irrational constant, and x and yare coordinates on the torus, such that (x + k, y + l)

and (x, y) are the same point T. Let us consider the family of neighboring differential equations

~~ = A+ a + ({(x, y) (2)

where a and l are parameters and {(x, y) is an analytic function.

Recently [1] I showed that if the Uperturbation" l {(x, y) is small, then one may find an a(l),

such that equation (2) for a = a(l), may be brought into the form (1) by an analytic change of variable.

In this article we consider the degenerate case A=. 0; the unperturbed motion takes place along

parallels of the torus y =·constant, i.e., periodically. It turns out that for a large number of small

perturbations such a motion becomes almost periodic. It is interesting to study this changeover, be

cause systems which are almost degenerate frequently occur in mechanics.

The difficulties which appear in bringing the equation to form (1) because of the presence of

small denominators, are overcome by means of successive approximations of newtonian type. A. N.

KoImogorov [2] first adopted this method in constructing almost periodic motions of a system with

hamiltonian

H(p, q) :: H0 (PI'· • • , Pn) + l H(pl' ••• ' Pn' ql' ••• ' qn) +..•.

Essential in the present article is the introduction of certain new (but simple) arithmetical f acts; their

appearance is connected with the degeneracy of the unperturbed system. Generalizing Theorem 2 of

our article, we are able to extend the results [2] to systems with hamiltonian

H = Ho (pI, 0 0 ., Ph) + eHI (pI, . 0 0' pn, ql, .. 0' qh.) +
+ e2f{ (pI, ..., pn, ql, ..., qn) +. (k < n).

2. Let us denote by Ae the set of points A, such that

l~n+m'>8~AI1I-2

for all integers m and n, n I: O. Let A denote the union of the sets Ae for all () > o. It is easy to
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(3)

(4)

1
Let f f(x, y) dx> 0 for all y. Then

o
for every sufficiently small A € AS there can be found an £(A) and a change of variable %= %A (x, y),

which is analytic in x and y, such that equation (3) assumes the form dz/dx = A. The set £(A)

(A € A) has positive measure; zero is its point of density.

The proof of Theorem 1 is based on the following idea: first, one performs the change of vari

able suggested by the usual asymptotic methods, and then applies

Theorem 2. The conclusion of Theorem 1 is true for the differential equation on the torus

~~ '" €C + (2 F(x, y, d,
where c > 0 is a constant, and the function F (x, y, £) is analytic.

3. We shall show how to express equation (3) in form (4). Let us express {(x, y) as the sum of
_ 1 "V_

an averaged part f <y> = f f<e, y) de and a variable part f (x, y) = f(x, y) - f (r). First we introduce a
o

prove the following

Letula. Zero;,s the limit point of the set Ae(O < (J < 0.25) and a point of density of the set A.

Theorea 1. On the torus T, let there be given the following differential equation,*",({(x, y),

depending on the parameter £, with function f(x, y) analytic.

coordinate on the torus
11 := 11 (x, y, £) = 1 + £ h(x, y)

to ensure that the variable part d11/ax will be of order £2. Clearly,

dy - ~ ah ah?f = £ f + £(f + ax) + £2 f ar'

(5)

(6)

in (6) contains

%"V

so that in (5) it is necessary to set h(x, y) = - f f (e, y) de. Then
o

=;;tay -
= £f (.,1) + F 1 (x, Yl' £),

x x
where F1 =£ [T(11) - {(y)] + £2 f ahliJy. Since {<Yl) - [(1) =-£( ff'<e, 1) de, F 1
the factor £2. 0

Let us now transform the coordinate 11 in such a way that the term of order £ on the right side

becomes constant. Since, by the condition of Theorem 1, T> 0, one may set
Yl 1() r c d~ 1 (' dy

y2 yl = ~ 1(i)' c = g1(y) .

The constant c is defined by the conditioo Y2 (1) - Y2 (0) = 1. Now the equation (3) becomes

d12
(It= £c + F2 (x, 12' f),

where F2
'" y~Fl (x, Yl (Y2)' () con~sc~euc;o; (:~y)~:r

~. Coming to the proof of Theorem 2, we shall outline tile first step in CODstructing the variable

z(x, y) = 1 + k(x, y). It is evident that

dz = Iv +(e2F + ak + Iv ak) +e2F ok (A = Be), (7)
dx ox ay ay

502



229

(8)

so in the first approximation we determine k from the condition
2 ak ak 2

f F + ax + ,\ar = f F00·

The Fourier coefficients of the function k(x, y) = I, "mne27Ti(mx+ny) are expressed in terms
m2+n2~O

of the Fourier coefficients of the function F (x, y):

k i f 2Fmn
211 mn=~.

Let us fix f, and assume that the winding number [3] of equation (4) is A € Afr Then k (x, y)

and its derivatives are of order (21 f I,. i.e., of cxder (. The equation (7) gives
dz 2 ak 2
dx = A+ f F ar + f F00·

Since f2F ak/ar is of order £3, and the winding number of equation (7) is A, £2F00 has order £3.

Thus, in the new coordinates, the "perturbation" f2 (F00 + F ak/dy) has the order f3 = (f2)3/2,

which ensures rapid convergence of the successive approximations.

5. The constructions of §4 enable us to prove the following:

Fandamentallemma. Assume that the differential equation

. dy ()
dx=A+Fx,y

on the torus T has the winding number ,\ € A O' and that the function F(x, y) for I1m x, yl < P is

analytic and IF I < M. We shall assume that for some 8> 0 the following inequalities are satisfied:

8 < O.lp; 8 < 2-76; M < oi IAI· (9)

Then there exists a change of variable y = y(x, z) analytic for I1m x, z I < PI = P - 38, such that
dz
-d = A+ Fnew(x, z).
x.. M2

where the function Fnew for I 1m x, z 1 < PI "s analytf,c, and Fnew < M1 =~.

Under the conditions of Theorem 2 we have that Co > 0, fO> 0, P > 0, N > 0, and for If I< fO'

11m x, y I < P, the function F (x, y, f) is analytic, IF I < N, and the winding number of equation (4) is

A(d > COl (£ > 0).

Let us fix 6, 0 < 6 <0.25; in an arbitrary neighborhood of zero there exists a point A€ A (J" Let

,\ = 820 be such a point, and
19 . -7 -1/28 < cO' 8 < lO' 8 < O.lp, 8 < 2 0, 8 < N • (10)

Then, l =£(,\) < ,\cOI < 819, and we have the conditions of the fundamental lemma, with M=
836 > N£2. From conditions (10) it follows that the inequalities (9) are satisfied, and in agreement

with the fundamental lemma we have

M1 = a48 =M4f
3.

Using the fundamental lemma s times, we obtain Ms = M4s/3, so that the proof of convergence of the

approximations for s -... 00 does not present any difficulties.

Moscow State University Received 26/NOV/60
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SOME REMARKS ON FLOWS OF LINE EL EMENTS AND FRAMES

v. I. ARNOL'n

It is well known that many problems in mechanics can be reduced to geodesic flows (see [1-4]).

In this note we define more general dynamic systems in the spaces of line elements and frames of a

Riemannian manifold-the isotropic flows. These include flows connected with curves of constant geo

desic curvature and with the motion of a charged particle on a smooth surface in the presence of a mag

netic field.

1. Let M be an n-dimensional Riemannian manifold. By a k-frame or k-hedron on M we mean

a pair co = (x, ek ), where x € M is the carrier, and ek is an ordered set (e1, •• • , ek ) of pairwise

orthogonal unit tangent vectors to M at the point x. The frame s with a common carrier form a homoge

neous space Ek , while the set of all the frames on M form a space Ok. The volume element in the

space Ok is given by the formula dO = dMrlS, where dM is the volume element in M, and dE. denotes

the invariant measure in the space Ek •

By a flow of k-frames we mean a one-parameter group st of transformations of the space Ok:

(i) -+ stco• By the trajectories of the flow we mean the lines r on M formed by the carriers x (t) of the

elements st<U. By a tangen t flow we mean a flow of n-frames in which the frame st<U is the frame ac

companying the trajectory x(t). Let v denote the velocity of x(t) on r, and let kl' . · . , kn- 1 be the

curvature of r. Clearly, a tangent flow is determined by the functions v(<u), k1 (<u), • • • , kn- 1 «() on

On·

Definition. By an isotropic flow we mean a tangent flow in which the velocity v is constant, and

in which the curvature k1 (x), • • • , kn_ l (x) depends only on the carrier x but does not depend on the

direction of the vectors e1, ••• , en in the frame (U.

In particular, a geodesic flow is isotropic: v == 1, ki == o.
2. An isotropic flow is a dynamical system with an invariant integral. As is known, the measure

dO is an invariant measure for a geodesic flow.

Theorem 1. The transformations st of any isotropic flow preserve the measure dn.

The proof is based on the fact that the infinitesimal transformation sdt consists of the infinitesi

mal transformation of the geodesic flow and an infinitesimal rotation.

For n = 2 an isotropic flow is determined by the geodesic curvature k (x) of the trajectory

through the point x of the surface M. Such a flow is isomorphic to a flow of fixed energy in a dynami

cal system with Lagrangian L 2 + Ll' containing terms that are linear and quadratic in the velocity.. In

this case Theorem 1 follows from Liouville's theorem. Excluding cyclical coordinates it is easy to in

vestigate motion along a curve of constant curvature on a surface of rotation. These curves have been

studied by Minding [5] and Darboux [6].

3. The case of cyclical flows, in which kl' • • • , kn_ 1 are constant, on manifolds of constant

curvature ~ is also easy. One considers the Loba~evskirplane (n = 2, K =- 1). The usual methods

permit one to pass to the case of an arbitrary surface of constant negative curvature [ 2].

Cycles of curvature k in the Loba~evskirplane are of three kinds: proper cycles (k 2 > 1), oricy-
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Translation of V.I. Arnol’d: Some remarks on flows of line elements and frames. Dokl. Akad. Nauk
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cles (k2 = 1) and hypercycles (k 2 < 1). In the Poincare model these are, respectively, disjoint circles,

tangent circles, and circles meeting at an angle a; cos a = k.

Theorem 2. Every hypercyclical (k2 + K < 0) flow on a surface of constant negative curvature K

is isomorphic to a geodesic flow.

The proof is based on the fact that a hypercycle of curvature k is an equidistant curve r 'I" that

is, has the constant distance. r from some geodesic r (where k = -.y:::K th.y:::K r). With the equidistant

curves r r on an arbitrary surface one can connect those tangent flows that are isomorphic to geodesic

flows. On surfaces of constant curvature the equidistant flow r r is cyclical.

4. Similar considerations in Loba~evskilspace lead to the following assertion:

Theorem 3. Every cyclic flow on an n-dimensional manifold of constant* negative curvature -1

belongs to one of the following three types:

1. The flow is isomorphic to a generalized geodesic flow (k i = 0).

2.. The flow is isomorphic to the generalized oricyclic flow (ki = 1, k2 = 0).

3. The flow is isomorphic to one in which the carner stCi) does not move.

The ordinary geodesic flow (in which v = 1, k I ~ k2 = • • • = kn- I = 0) is of the first type; all

these flows are quite similar (see Theorem 5). Among the flows of the second type a similar role is

played by the ordinary oricyclic flow (v = k i = 1; k 2 = • • • = k n- I = 0). Flows of the third type are not

ergodic; the ergodic components are tori of dimension r; in general r = [nI2]; on each torus the flow

has a discrete spectrum with r generators.

The problem of deciding the type of a given flow is settled in the following manner:

Theorem 4.. In a 2r-dimensional space of curvature - 1 a cyclical flow is of the first, second or

third type according to whether ki is smaller than, equal to or larger than

k~ k~ k~ k; k: ... k~r_2
)(2 = 1 + 2""" + 22 + + 2 2 2 •k3 k3 ko kg k6 ..• k2r- 1

In a (2r + I)-dimensional space all fl~ws .with k2r I: 0 are of type 1, while if k2r = 0 the flow is of

type 1, 2 or 3depending on whether ki is smaller than, equal to or larger than K
2•

5. The methods used in a recent work of Va. G. Sinal [4, 7] devoted to ordinary geodesic flows

can also be applied to generalized geodesic flows.

Theorem 5. A flow st of type 1 on a compact manifold of constant negative curvature is a K-sys

tem [4, 7]. The orispherical flow [4, 7]. is conjugate to st.
The entropy [8] of the flow st can be calculated. Let h (kl' • • • , k n_ I ) be the entropy for a unit

of time of the cyclic flow with velocity 1 and curvature kl' · · • , k n- 1 on a manifold of constant curva

ture - 1. Then

h (kl' ... , kn- I ) = h (0) v,

where h(O) = h(O, .•• , 0) is the entropy of a geodesic flow, calculated in [4], and v(kl' k 2, ••• , k
n

_I )

is the velocity of movement in the generalized geodesic flow isomorphic to st.
In particular, for n = 2 we have

h(k) = h(0) sin a = h (0) yr-:::7?1,
while for n = 3 the number v2 = x is the positive root of the equation

x2 + (k~ + k~ - 1) X + ~ = o.

• In each two-dimensional direction.

563



232

In the case of a surface (n = 2), h --+ 0 as k2 --+ 1. This leads one to think that the entropy of the

oricyclic flow h (1) is equal to zero. This has been proven by B. M. Gurevi~ [9]. Probably the entropy

of any flow of type 2 is equal to zero.

6. The spectra of the geodesic and oricyclic flows were first found in [3,. 10] by using an alge

braic construction due to I. M. Gel'fand and S. V. Fomin; this construction depends on a group G and

on certain of its subgroups: compact K, discrete D and one-parameter gt.

Theorem 6. If G is the group of motions of the n-dimensional Loba~evski~space and K is the

rotation group of the (n - k)-dimensionaL Euclidean space, then the corresponding dynamicaL system is

isomorphic to one of the cyclic flows of k-frames on a manifold of constant negative curvature; con

versely, all such flows are obtained in this manner.

The proof is based on the connection between curves of constant curvature and one-parameter sub

groups of the group of motions; conjugate. groups correspond to isomorphic systems.

7. The group of rotation numbers [11, 12] provides an interesting topological characterization of

dynamical systems. I. M. Gel'fand and I. I. Pyateckil-~apirocalculated the rotation numbers for the

geodesic and oricyclic flows on surfaces of constant negative curvature [13].

Theorem 7. If an isotropic flow on a Riemannian manifold, that is not the two-dimensional torus

or the Klein bottle, is ergodi c, then all rotation numbers are zero and the flow has no nonconstant con

tinuous eigenfunctions.

The proof is based on the fact that the trajectories of an ergodic isotropic flow pass equally often

through each point in each direction.
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УСПЕХИ МАТЕМАТИЧЕСКИХНАУК

НАУЧНЫЕ СООБЩЕНИЯ И gАДАЧИ*

ПРИЗНАК НОМОГРАФИРУЕМОСТИС ПОМОЩЬЮ

ПРЯМОЛИНЕЙНОГОАБАНА ДЕКАРТА

В. И. А р н о Jl Ь Д

Прямолинейным абапом Департа называют [1] три однопараметриче

ских семейства прямых на ПЛОСRОСТИ (и1 , и2)

(1)
(2)
(3)

где хl, х2 , Z - параметры семейств (1) - (3).
Рассмотрим RаRие-нибудь хl, х;, и пусть z TaRoBo, что прямая (3)

проходит через точну и1 = /1 (х 1 ), и2 = /2 (х2 ). Тапое Z есть функция х1 И х2 •

Фующии z(x1 , х2 ), «оторые можно получить таким способом, называются

ltомографируеАtыми на nрямолuнеuном деnартовом абаnе 1).
Рассматривая формулы (1), (2) как. формуJIыI преобразования плоско

сти (хl, х2 ) В плоскость (u1, и2), можем сназать, что система линий уровня

z = с номографируемой фующии z (х1 , х 2 ) может быть превращена в семей

ство прямых (3) изменением (1), (2) масштаба по осям x1, х2 • Мы получим

необходимое для тапой возможности геомстричеспое свойство системы

линий уровня функции z (х1 , х2 ).

Оп Р е Д е л е н и е. Множество точен ХО ' Х1 , .•. , X j , ••• , Х" ПЛОСRО

сти (х 1 , х2 ) называется молнией, если отрезок X j _1 ; X j (j = 1, ... , n)
параллелен оси х' (i = 2, если j четно, i = 1, l:если j нечетно). Молния

за.~tnнута, если ХN = Хо•

т е о ре 1\1 а. Пусть фунnция z (х 1 , х2 ) номографируема на прямолинейном

абаne Деnарта и 1, II, III, IV - ее четыре линии уровня (Х Е 1, если

z(X) = Z1 U т. д.). Если mочnи .фtoлltuu

(4)

1) Легко видеть, что это те самые функции, которые допускают номограмму из

выравненных точек формы НошИ' (т. е. с двумя прлмыми шкалами). Они называlOТСfJ

также НОl.юграф ируемыми порядка 4 жанра '1 (см. (11).
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В. И. АРНОЛЬД

nРU1/.;адлежаm этuм ЛUflUЯJ'4 уровl-tя, а имен/но

Х1 , Х6 , Х9 , Х12 ' Х15 ' X 18 E1; Х2 , Х5 , Хв , Х11 ' Х16 ' Х19 Е 11; } (5)

Х4 , Х7 ,. Х14 ' Х17 Е 111; ХО' хз , Х1О , Х13 ' Х20 Е IV,
то .лtОЛJ-l,UЯ (4) заМJ;nута.

Доказательство осповано на известном: алгебраичеСRО~I фанте.

Л е м м а. Пусть А, В, С, D ·-nевыро.ждеНl1Jые лuнейные nреобразоваН1UЯ

11ря.моЙ . Тогда

(6)

д о к а з а т е л ь с т в о. Rаждое преобразование имеет вид х ~ ах + Ь,

где а - коэффициент растяжения. Очевидно, Rоэффициент раСТЯiIiения

произв~дения .преобразований равен произведению их :коэффициентов

растяжения. Поэтому Rоэффициент растяжения каждой сн:оБRИ в (6) равен 1,
т. е. наждая скобка выражает сдвиг. Любые два сдвига прямой перестано

вочны. Это И записано в (6). Полагая D = А, получаем

Следствие.

(7)

ДОRазательство теоре:м:ы. Пусть линии уровня 1, 11,.111, IV
при преобразовании (1), (2) перешли в ..прямые l' (и2 = T 1u1 =h1 (ZI) u1 +
1- 1~2 (ZI»' 11', 111', IV'. Тогда молния (4) перешла в !\'IОЛНИЮ на :П;ПОСRО

сти (и1 , и2)

[7 о' [}l' ... , и20'

а условия (5) запишутся в виде

и2 Т и1 • • и 2 Т "и 1 •
1 == 1 l' •.. , 'о == 4 о'

(4')

(5')

где и}, и] - :координаты точни и j.

Тан нан по определению 1\10ЛНИИ U~k == ll~/{+t,; U1k'== U~k-1' наХОДИl\iI

. T4u~=TIи~, u~==1'~lT4и~,

ТО, продолжая, l\:1Ы выразим через и; последовательно

Обозначим

lt

=Т;lТ1Т;lТ 1T~1112T~lTзТ;lТ1Т;lТ1Т;lТ4 Х

Х Т;lТ2Т;lТlТ;lТ1T~lTз Т;lТ1T~lT2 T~11'4U~. (8)

Т;lТ1 = А, l';lТ1 == В, Т;lТ] == с.

Тогда тождество (7) выражает, что Тl Tj~k в (8) есть Е, т. е. U~o'== u~, сле
k

довательно, молния (4') заМRнута. Очевидно, тогда и NIОЛНИЯ (4) должна

быть зам:ннутоЙ.

3 а м е ч а н и е. Если функция z (х 1 , х2) - номографируемая порядна 3,
Т. е. '~2 (z) в (3) есть нуль, то прямые (3) обраЗУIОТ пучон и потому все

преобразования Т z перестановочны. Пусть опять 1, 11, 111 - три ЛИНИJif

уровня Z (х1 , х2 ), тогда МОЛН,UЯ

ХО ' Х1 , ••• , Х6
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ПРИ3НАR НОМОГРАфир~rЕl\10СТII

ЗГtJIНlfупzа, если

(lIэнестнос «условие ШССТИУГОJlЬНИRа», С:М., напри:мер, [2], рие. 12).
J(ля донааате.льства состаНИl\f, аналогично (8), произвС'дение

u~ == 11~lТ'зТ;11\1~;lТ 271~.

1'al{ на}-\: все l' перестаноuочны, то и~ == и~, -что и тробовалось.

IIр.изнани но:мографируеl\I?СТИ IIIecToro порядна недавно получены

!-f. д. Айаенштат, и. А. ВаЙнштеЙНОj.\iI и М..А. J~рейнеСОl\I [3], а для номо

графируеl\fОСТИ пятого порядна - 3. N!. l\ИIПRИНОЙ и ~1. А. I\peiiHeco~l, [4].
()ни но.сят харантор неравеuсmв; неизвестно, существуют ли равенства,

подоGНlде устаНОВJIСННЫ:М ВЪППС; неоБХОДИl\:Iые для НО1\Jографируемости

пятого и шестого ПОрЯДНОЕ.

Поетупило в редакцию :ЗА 1Jоябрн 1959 г.

ЦИТI1РОВАН:I-IАЯ JIJITEPATYPA

{1] 1-J. г\. Глаголев, Теоретические основы номографии, M.--JI., ГТТИ, 1934.
{2] Т. С т е й с к а л о в а, Элементы теории сетей и их примеНЕ:ние в номографии,

Вычислит. матем., сб. 4 (1959), 173-183.
13] Н.. д. Айзенштат, 11. А. Ванmтейн, М. А. I-\рейпес, О невыпрямляемых

сплетениях, трудыI ~10CK. матем. об-ва 9 (1960), 537-561.
1_4] э. ·М. RИШRИJIа, М. А. Rpei"'IHoc, О приближении ФУII'I\ЦИЯМИ 5-го 1I0мографи

чеСRОГО порядна, ДАН 125, М 2 (1959), 262--265.
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* Editor’s note: V.I. Arnol’d: Remarks on winding numbers. Published in Sibirsk. Mat. Ž.
2:6 (1961), 807–813

Том 11. Х2 6

СИБИРСКИй МАТЕМАТИЧЕСКИй ЖУРНАЛ

Ноябрь - Декабрь

В. И. АРНОЛЬД

ЗАМЕЧАНИЯ О ЧИСЛАХ ВРАЩЕНИЯ *

1961 г.

Дискретный спектр эргодических динамических систем, определенных

дифф~ренциальными уравнениями. связан в известных примерах, с наличием

нетривиальной группы чисел вращения. Впервые числа вращения ввел Пуан

каре (1), изучавший интегральные кривые на поверхности тора. Общее опре

деление дал недавно Шварцман (2).
Мы покажем, что числа вра'дения эргодических геодезических потоков

всегда" равны нулю. Для геодезических потоков на поверхности постоянной

отрицательтельной кривизны равенство нулю чисел вращения доказано

И. М. Гельфэ.ндом и И. И. Пятецким-Шапиро, которые использовали аппа-

рат теории представлений групп С'). •
В де:iствительности рэ.венство нулю всех чисел вращения связано просто

с тем, что почти кан(дая геодезическая эргодического потока идет по MUO

гообразию в одну сторону так же часто, как и в любую другую, в том

числе прямо ПРОТИЗ0ПОЛОЖНУЮ. Это соображение позволяет вычислитьтакже

числа вращения некоторых более общих потоков линейных элементов и

реперов (см. (6)).

§ 1. Определения и обозначения

Пусть на компактном римановом многообразии Q дано гладкое ** вектор

ное поле А. Дифференциальные уравнения

dш = А (ы) (1)
dt

определяют однопараметрическуюгруппу преобразований

ыо --> 51ыо = W (ыо • t).

Если эти преобразования имеют инвариантную меру ~t, ~ (Q) = 1, с поло

жительной плотностью, то говорят, что созокупность (Q, 51, ~) есть опре·

деленная дифференциальными уразнениями (1) динамическая система.

Эргодической называется такая динамическая система, у которой каждое

йнвариантное множество в Q имеет меру О или 1.

Пусть (Q, 51, ~) - определеннэ.я урэ.внеНИi!:Vrи (1) эргодическая динами

ческая система. Число" принадлежит аддитивной группе А чисел враще

ния, если на Q существует гладкая, однозначная с точностью до целого

" Исключение может составить эргодический геодезический поток на двумерном торе,

если он существует.

** Здесь и далее слово «глздкий" означает непреРblВНО дифференцируеМblЙ.
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808 В. ]/1. Арнольд
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р

s
и

такая что

I'л. (2)

j\'10ЛП-IО показать ЧТО при почти всех (IJ Е [2 Иlчееl\iI

1
', F(stw)--F(ш)
1111 --"---

t
Л. (3)

так что числа враu~ения NIO~1(HO определить ЭТИl\!I равенством.

Если [~eCTЬ пространство линейных элементов (1) компаI{ТНОГО РИJ\J8нова

пространства /\11, то опредесl)?еl\/lая уравнеНИSI\I[И (1) CIiCTe;yTa называется по

ТОI<:О}1 линейных элементоз. [-3 3ТО;\/1 случае со Q есть пара (х, где но

сите ль Е а.; ----- вектор, касате.n ьныlй к /vl в х.

I-Iосите.пи )С (i) элементов stш обраЗУI-GТ .ПИНИIО -- траекторию потока на /у1.

lV1bI раССrлатривать ТОЛЬКО касательные лотоки, у которых касатель

ная I( траектории )~ (t) в точке И:v1еет направление ~ ([) элемента

st(j). 1, касательным потокам относятся геодезический поток, у которого

траектории суть геодезические линии /\11, а так)ке изотропные потоки и

потоки эквидистант, определенные в (6).
~lнвариантная мера касательного потока, как мера на пространстве ли

нейных элементов, задается формулой

d~L da ds (Х),

где du - элемент объема на /\;1, а элемент ds (х) определяет некоторую

«УСЛОВНУI-Q» меру на сфере S (х) .JlинеЙных элементов с общим носителем х.

В случае геодезического потока, а таКп{е изотропных и эквидистантных

потоков, мера ds (х) индуцирована метрикой сферы ...$ (х).

О п р е Д е л е н и е. 1У1ера ds на сфере S называется СИ;\1метричной, ее ли

симметричные относительно центра сферы множества имеют одинаковую

:vIepy. J\'lepa d~ на Q СИl\Iметричнз, еСJIИ все меры (l~S (х) симметричныI. Ка

сательный поток симметричен, если его инвариантная ;vlepa си;vrметрична и

величины скорости дви}кения Iпо симметричным направлениям одинаковы,

Очевидно, все геодезические и изотропные ПОТОКИ СИl\1l\;Iетричны.

§ 2. ЧИСJlа вращения еимметричных потоков

т е о ре:УI а 1. 17УС!71Ь /уl - KO]IJ[,naKITU-lое рUJ~аJ-lОВО ]W,/-lогоо6рuэ![г, ОПl/luчное

0/77 дВfj/..lерного /nора, и (О, Si, ~L) -- эргодuчес/(uй СLl.l1'l.л.zеrnРUilНЫЙ nО/nОК в

lZ]Jоспzрансmве [2 ЛlЫ--Lеuны,х эле/'Ilс/-unов )1/1. Тогда все числа вращения потока

равны нулю.

)~оказате.пьство основано на с.пеДУЮUJ,ем извеСТНОI\I топо.п:огичеСКОNI фактес

Jl е м а 1. Пусть /у'l- ОПIлuчног on~ дВУlиерного !nора КО.ипак,mное

рu.Jw~аt-lоео )'rlfiогоо6разuс, Q ,-- npoc/npaHCll1BO его ЛUJ-lеЙ/-I!JLХ элеА-lеНI1108. Тогда

слабые гОJиологuu переNОСЯП1СЯ на [2 с /'1~,1. ЭJПО З/-iCiЦU/n, ЧПlО

если F ((1)) гладкая cjJУ/iКЦUЯ, одНО3'-Lачная на ~2 с lnОЧНОСfПЬЮ до целого

слагае/vlого, ПlО на ~2 суLцесt1lвуеln такая гладкая (!JYHfU-{UЯ G ((й) g (Х),

завUСЯU{GЯ ПiОЛbfСО 0177 l-lОСUП1С/,:Я Х эле/Аеl-imа (J), ЧП1,О F ((1)) - G(ш) одfiОЭNацна

на всеАЕ Q.
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1~ ((1)) l~'

~Гoгдa

вектор

на

Г

хчерез х~. ОБОЗI-IаЧИI\I

ного .к Л1 в х пространства.

~Jl ем Л1 а 2. 11УСПlЬ f
uuя на Q, раССf1с/пво.И } ... (.х, s)

по направлеНИI-О

Для доказательства лем!'лыI замеТИ~I~ что ~! есть косое произведение

П-:Vlерного ЛJ на (n - и сс"ти n:::> 2, то У~П-IО

л{ение на одноеВЯЗНУIО сферу Sn-l не В.лияет на ОДНО\'1срные ГОl'vIО.10ГИИ"

Если }ке 12 2 и А1 не тор, ТО, хотя Усvlно:tкение на окрул'аIОСТЬ и ддст

новый ЦИК,}'f, ОН слабо ГОl\Iологичен Н)7ЛIО,

При доказательстве теоремы 1 ИСПО,iIьзуется еrцс "IСЛСДУ HeKOTO~

рыми екалярньrми произведениями векторов касательныIx простраыств к /~J

и к Q. х (t) траектория на ЛJ касате/IЬНОГО потека, заданного уран,,'

неНИЯl\1П (1) в ПРОХОДЯlцая при t О через носитель х ~) :ГТГI:Ц"::\'Ц'г;-,~',1

dx

р)

(4\
, J

окрестности х t,'доказгте/{ьства этой ЛС~1]\'IЫ достаточно

~ Е S (х) и (О (~ ~2 координаты. Выкладка УПРОLuается при применении нор

:мальных координат; мы ее опустим.

}Jоказательство (теоремы 1).1. ЕСJIИ Л1 не двумерный тор, то

на основании .аеммы 1 любее ЧИС,ТIО враLпения заданного уравнеНИЯl\ЛИ (1)
эргодического потока в пространстве ~~ можно представить в Биде

l\i .\ (А, gracl Р) d~t,
Q,

где F (со) f (х) зависит .ТJИШЬ от х Е J'Л. JJействител~ьно, если функция

F ((1)) однозначна на Q, то, на основании (3), ей отвечает'л О. Поэтому~

заменяя F' в (2) функцией f (х) с помоIцыIo леммы 1, по.пУЧИТ\f ну)кное пред,

став.ление (4).
2. Предполагая. что f" ((1)) f (х) и ПРИi\леняя .пеJ\:ПI:IУ 2, наХОДIГМ:

~л , (.I~ (ш), gIad t (х)) d~t.

Q

I/Iнтегрируя сначала по сфере S (х),. получим:

(grad f1' х) ds (х) dб \ ( gгаd Т1,
_'v[ \

х (15 (Х} d5.

Так как для симметричного потока, очевидно, х cls (х) =:::: О, то теоре\I3.

доказана.

С:.п е Д с т в и е. Если со6С!1'Z8снная эргодического СluлмеГnр!lЧНОс'С

ПОl-nока на Оn1,ЛUЧНОЛ·L Onl двy)~epHoгo 1nора J1ногоо6разuu НС'ЦJерbl13Nа.

:""j-U...l nОСlnОЯН.J-lа.

}l о к а з а т е:1 ь с т в О. Пусть CP/v ((о) -- такая q)ункuия, т. с. <+;"

((I)). По TeOpeI\1e IlJваРП!\lзна (2) о собственных 1" есть

число враUl,ения. Значит '),. О, а тогда СР;.. (ш) постоянна, BBICI.Y ЭРГОДИТ~I-

насти потока.
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3 а м е ч а н и я. Так как изотропные и геодезические потоки симметричны,

теорема 1 применима, в частности, к ним. Впрочем, в случае геодезического

потока доказательство мо)кно упростить, применяя равенство (3) к двум

половинам одной траектории.

Эргодические геодезические потоки существуют. На компактных lVfИОГО

образиях постоянной отрицательной кривизны и на компактных поверхностях

строго отрицательной кривизны геодезические потоки эргодичны. Эти потоки

обладаI-QТ непрерывным спектром (см. (4,5.7)). Как МЫ видели, для геоде

зического потока из эргодичности вытекает отсутствие непрерывных собст

венных функций. Вероятно, измеримых собственных функций тоже не МО

}кет быть.

Заметим еще, что исключенный в теореме 1 случаи двумерного тора,

возможно, и не реализуется: геодезический поток на двумерНОl\l торе вряд

.;iИ может быть эргодическим.

§ 3. Числа вращения потоков реперов

Пусть /vI - n-мерное риманово компактное пространство. Репером sll:=:

(~1' ... , на А'1 называется СОВОКУПНОСТЬ !{, упорядоченных ортогональ

ных единичных векторов касательного к /\11 в точке х (носителе репера)

пространства. Реперы sJt на /\11 образуют риманово пространство реперов [2 k •

lV\bI будем рассматривать потоки реперов ~ft, т. е. определенные уравнени

ями (1) дина:\!Iичес~(ие системы в этом пространстве. Особенно интересны

случаи lг 1 (поток линейных элементов) и k n (поток п-эдров).

Первый вектор репера ~1 назовеl'Л направлением репера. Поток реперов

назовем касательным, если направление репера является направлением опре

деляемой им траектории х (t) на М; здесь х и) - носитель репера st~k..

Очевидно, введенные в (6) изотропные потоки реперов, в том числе геоде

зический поток реперов, а так}ке эквидистантные потоки, являются каса-

ельными.

J-fнвариантная мера потока реперов, как мера на имеет вид:

dl-t dб d~ (х),

где du ~- мера на Л1, а d~ (х) - некоторая «условная» мера на пространстве

8 k (х) реперов ~li. с общим носителеl\t1 Х. В случае геодезического потока,

а так)ке изотропных и эквидистантных потоков, мера d~ (х) индуцирована

инвариантной относительно дви)кении .5\ (х) метрикой и потому симметрична.

Вообще, симметричные меры в случае потоков реперов определим следую

щим образом.

Пусть ..4.=; 81. Обозначим через ер (..4) множество всех реперов sk:=::
(61' ... , ~l{.), У которых ~1 f А. lУ1еру d~ на пространстве Sk реперов ~k

назовем симметричной, если при любом А меры множеств ер (А) и ер (- А)

одинаковы. 1\1ера dl-t на Qk симметрична, если все меры d~ (х) симметричны.

I<~асательный поток симметричен, если его инвариантная мера симметрична

и величины скорости движения по противоположным направлениям одина

ковы.

Очевидно, геодезические и изотропные потоки симметричны. Так же, как

теорема 1, доказывается
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т е о ре lVl а 2. Все числа вращения эргодuческого сu/\tt.;uетрuчного потока

реперов на отЛUЧНОJrl orn двумерного тора и On~ бутылки Клейна fCО.ЛJlnакm

NO/'rl риJиановОJU nроспzрансmве равны о.

Соответствующие обобщения лемм 1 и 2 очевидны. Из них, как в § 2,
получае]\л::

.\ (grad "
;,И

s ,~d5(x))dcr.
Bk(X)

Далее, внутренний интеграл представим в виде:

\ ~~ d~ (х) == \ \ х dY} (~) ds (Х),
Sl~(x) З~(х) cp(~)

(5)

где 11 (~) - условная мера на множестве ер (~) реперов с первым вектором ~.

Для симметричного потока, очевидно, интеграл

, ~~ dl1 (;)
cp(~)

есть нечетная функция ~, ПОЭТОl'лу весь интеграл (5) равен О, че1\1 и дока

зывается теорема 2.
3 а м е'ч а н и е 1. Требование симметричности 1\10ЖНО варьировать; важно

только, чтобы интеграл (5) обраrцался в нуль.

3 а м: е ч а н и е 2. Если n-мерное пространство ;\1 ориентируемо, то по

ток п-эдров GП и Qn не может быть эргодичным. В этом случае естественно

разбить Qn на пространства и Q; n-эдровразной ориентаuии;очевидно,
теорема 2 прило,кима к потокам в каждом из них в отдельности.

3 а м е ч а н и е 3. Пространство биэдров бутылки Клейна совпадает с

пространством линейных элементов тора, поэтому при обобщении леммы 1
возникает новое исключение. При n 2 первое число Бетти 8 1z всегда

равно О.

§ 4. Числа вращения подобных потоков

Динамические системы (Ql' si, ""1) и (Q2' s;, ""2)' заданные дифферен
циальными уравнениями, подобны, если существует гомеоморфное отобра-

/кение Т, переводящее ~ll в Q2' si В s;, f.11 в ~,L2 так, что

т е о р е м а 3. Если СUС111еJЛbl (Ql' S~, ~ti) и (Q2' s;, ~2) эргодut{ныl а nо
доБNЫ, nlO группы их чисел враLценuя совпадают.

)Jля доказательства достаточно воспользоваться равенством (3), кото

рое может СЛУЛ{ИТЬ определением чисел вращения. Каждой непрерывной,

однозначной с точностью ДО целого слагаемого, функuии F1 (0)1) па Ql со

поставим функцию Р2 (ш2 ) Р1 (Т-1Сй1) на обладающую, очевидно, теми

)ке свойствами. Так как таким путеlVI rvIОЖНО получить любую функпию

этого рода на Q2' то из равенства

(st w\
1 I
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в силу (3), вытекает, что I<аждое ЧИСJ10 вращения ОДНОЙ систе1\ЛЫ является

числом враIЦения другой.

Потоки эквидистант (см. (6)) подобны геодезическому. Поэтому теорема 3
позволяет перенести результаты §§ 2 и 3 на потоки эквидистант отлич-

ного от тора и Клейна многообразия.

§ 5. Числа вращения с точки зрения метрической теории

динамических систем

Пусть динамическая система (Q, st, ~L) задана уравнениягvIИ (1) на ком.

пактном римановом Q. В пространстве L 2 (Q) интегрируемых

с квадратом по мере на Q определим операторы сдвига фор-

~л:улами f оператор СИСТЕМЫ, Т. е.

D l' Ut--E
~lnl--- .
t-;.-o 2л it

т е о ре 1\1 а []tno6bl 'А было ЧllС'/ZОjИ вращенuя эргодuческой CUCfne/vlbt

(Q, Sf, J-t), нео6.ходu)ио и досmаtnОЧflО сущес/nвованuе такой гладкой ФУНК

ции ер (w), всюду равной 1 по /riодУЛ10, что Л:-:~ (Dcp, ер).

Д о к а з а т е.п ь с т в О. ЕС.J1И ер (ы) - r.падкая функция, то

1 d ,(st ')-,)-. -dt ер ш
....лt

Если еще ер =-= 1, то ер == cp--l. Тогда

, . 1 ~~ 'dcp - 1 \ d In ер(Dcp, ер) = -- - ер df.t =--: - -- dl1.
, 2лi ~ dt 2лi {) dt

Q Q

-- однозначная

Ввиду однозначности ер (J») функция ф. (ш)
lп ер

гладкая, определенная

2лi

i

с точностью ДО целого слагаемого, поэтомv . .-5..- Ф fstш)'
'" dt \

гладкая на Q. Очевидно, она равна (А, grad <1)), где А - правая

часть уравнения движения (1). Таким образом, из (6) следует, что

(Dcp, ер)
/~ dcl) ,Ь

\ -- d~ ;=-=. \ (А, grad Ф) d~t
fJ а! .;
Q Q

Л.

Наоборот, если ~Лi \ (А, grad Р) d~t, то, поло)кив ер = e2ТCiP , получим,
Q

очевидно, (Dcp, ер) )'v.

3 а е ч а н и е 1. Возможно, что множество значении (Dcp, ер) на равных

по l\10ДУ.пю 1 гладких ер совпадает со множеством всех значении (Dcp, ер)

на функциях, равных по МОДУJ1IО 1, для которых интеграл ~D(p.q;d~t

Q
имеет смыс.л. Если верно хотя бы, что для любой равной по модулк)

функции ер Е для которой Е U:L) , cyUI,eCTByeT непрерыIнаяяФУНК

цИЯ (Ре с модулеl\'l 1, такая что
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ТО из TeopelVIbI 1 вытекает, например, что любой эргодический геодезический

поток на отличном от двумерного тора компактном римановом lVIногообразии

имеет чисто непрерывный спектр.

3 а м е ч а н и е 2. Неизвестно, является ли группа Л чисел враJцения,

т. е. значении (Dcp, ер) на гладких функциях, равных по МОДУЛIО 1, метри

ческим инвариантом системы. Заменив здесь требование гладкости lVIетри

ческим требованием (например, Dep Е L2 или Dcp Е L1), при условии непрерыв-

d
насти -ер (st ro ), мы получим :метрический аналог чисел вращения.

dt

Неизвестно, является ли какой-нибудь из этих инвариантов спектральным.

На двумерном торе существуют эргодические аналитические динамические

системы, для которых уже множество чисел вращения шире множества

собственных значении (8).

Поступило

15.XII.11960
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ON THE BEHAVIOR OF AN ADIABATIC INVARIANT UNDER SLOW PERIODIC

VARIATION OF THE HAMILTONIAN

v. I. ARNoL'n

1. Let a dynamic system depend on the slowly varying parameter A = fl; then the Hamiltonian

H(p, q; A) contains the time t and is not conserved. A function ] (p, q; A) is called an adiabatic in

variant of the system if for small ( the quantity J (t) = J [p (t), q (t); A(t)] changes slightly during the

time t rv 1/( (changes in A, H are finite here).

Let us consider the phase plane P, q for a fixed value of the parameter A. The energy level

H(p, q; A) = H(PO' qo; A) passing through the point PO' qo bounds a certain domain. Let us denote the

magnitude of the area of this domain by 2" 1(PO' qo; A). It can be shown that 1 is an adiabatic invar

iant [1, 2].

It does not generally follow from the adiabatic invariance of a quantity that it varies slighdy in un

bounded time for a fixed small (. This is associated with the possibility of accumulating small changes

in the adiabatic invariant. For example, let us consider the linear vibrational system

As is known, for certain ( (namely, (% 2(jJlk; k = 1, 2 ••• ) parametric resonance is possible and

I(t) -+ 00 as t -+ 00. Here, the rate of change of the system parameters ( can evidently be as small

as desired.

It appears, however, that in a nonlinear system with a slowly varying, periodic analytic Hamiltonian

H(p, q; A), the adiabatic invariant is conserved perpetually: for any." > 0 there is found an (0("') > 0

such that there results from 1(1 < lO

l/(t) - 1(0)1 < ."
for all - 00 < t < 00.

The linear system occupies an exceptional position because the frequency of its vibration is in

dependent of the amplitude. In a nonlinear system the frequency changes as the amplitude increases

and the vibrations do not succeed in increasing as the resonance condition (~ 2wlk is violated.

The proof of the perpetual adiabatic invariance of an operation is projected in the following para

graphs. It can be shown, by an analogous method, that the adiabatic invariant Iy of an autonomous,

vibrational system with two degrees of freedom and the analytic Hamiltonian

H = %2 + j2 + U(lX, y)

2

is perpetually conserved. It is only necessary that the frequency ratio lJJxllJJy should depend in a first

approximation on the vibration amplitude '1 for fixed total energy 1/ = h.

In particular, a field with the potential

U = lJ)2 '12 (lJJ = 1 + A2, A= lX)

is a trap, for ( « 1, which is capable of perpetually detaining a particle with the initial conditions

136

* Editor’s note: translation into English published in Soviet. Math. Dokl. 3 (1962)

*

Translation of V.I. Arnol’d: On the behavior of an adiabatic invariant under slow periodic variation of
the Hamiltonian. Dokl. Akad. Nauk SSSR 142:4 (1962), 758–761
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xo' YO' %0' YO on the order of one. This results from the perpetual adiabatic invariance of the quantity

·2 U
I =L..2-.*r 2(U

2. Let the analytic Hamiltonian H of a vibrational system with one degree of freedom depend

periodically with period 217 on the .slow time ,\ = d. For a fixed value (A = 0) of the pa~ameter ,\ in

the effect I - angle (U variables, the function H has the form Ho(I; ,\) = HO(I; A + 217), 1=0 and the

torus I = const in the p, q, A space (where p, q, A and p, q, ,\ + 211 are cemented) is invariant. A

phase point moves along a meridian of the torus (,\ = const) with the frequency

. aHO
w = ---... = (U (I, ,\).

aI
1

Let w(I) denote the mean frequency - f (U (I, A) d,\ and let T (;j denote the torus itself.
217

If f 1= 0 is small, then it can be considered, in a first approximation, that the motion proceeds over

the torus Tc;,' where the longitude varies slowly C~. = f) and the latitude w varies rapidly with the

slowly-varying frequency it; = (U (I, ,\). It appears that for a sufficiently small f and a frequency w
Hsufficiently incommensurable" with f, there actually exists an invariant torus T w(f) close to T w.

This torus is filled, conditionally, by periodic trajectories with frequencies (i) and f.

For fixed invariant two-dimensional tori TlD(f) divide the three-dimensional space into thin toroidal

layers. Each trajectory, starting from such a layer, is entirely included within it. The thickness of the

layers tends to zero along with f; hence, the proof of the perpetual adiabatic invariance of I is simple

after the tori Tw(f) have been found.

These tori are sought by the Newton method [3]. nSmall denominators" mw + nf appear in the ap

propriate Fourier series. Certain of them are small because of the apprOXimate commensurability of the

frequencies wand f, others because the frequency f is small (degenerate). The difficulty associated

with degeneration is overcome on the basis of the same considerations as in the note [4], which is a

non-Hamiltonian analog of the present note.

3. Preliminary canonic transfocmation. As is known [1,2], the Hamiltonian in the action I - angle w

variables has the form

H (I, w, A) = H0(1, ,\) + fH 1(I, w,'\) (A = ft). (1)

We assume that the functions H0 and HI' having the periods 211 in wand A, are analytic in a com

plex neighborhood of the toroidal layer I 1 ~ 1~ 12•

Theorem 1. Let the frequency (i) (I, A) = aH0/al not go to zero in the layer under consideration.

Then there exist positive numbers fO' ro' Po and analytic functions P, Q, T of the variables I, w, A
independent of f, such that:

1. The functions P, Q - A and T - w have the periods 2" in wand A.

2. The canonic equations with the Hamiltonians (1) are equivalent to the canonic equations with

the Hamiltonians

k (P, Q, T) = fkO{P) + f2 k1(P, Q, T) + . · · , (2)

which are analytic for lfl ~ fO' 11m Q, Tl ~ Po' IP - Po l ~ ro and which have the periods 2" in Q and T.

3. The principal part of the Hamiltonian (2) is fkO(P), where the function ko{P) is inverse to

• Note added in proof. By the same method, the perpetual adiabatic invariance of the magnetic moment in an
axisymmetric magnetic trap [6] can be proved.
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- 1 -
Ho(/) = - f HO(/, A) dA, so that HO(kO(P» == P.

2"
Let us first introduce the new time T = w. As is known [5], the integral curves of a Hamiltonian

system in the I, w, A splrce are invariantly associated with the differential form

I dw - H(/, w, ft) dt = _! (H dA- (1 dw). (3)
f

Multiplication of the form by a constant does not change this relation. Let us consider the inde-

pendent variables in (3) to be H, A, rather than I, w, A. Solving (1) with respect to I, we obtain

I{H, A, w) = 10(H, A) + (/ 1(H, A, w) + ...•

Let us introduce the notation * p = H, q = A, T = w, K = cI, so that

K{p, q, T) = f/O{p, q) + (2/ 1{p, q, T) + . ".

Then

(4)

(5)

H dA - (I dw = p dq - K (p, q, T) dT,

hence [5] the systems with Hamiltonians (1) and (5) are equivalent.

Let us note that in §2 the frequency (U (I, A) varied with time. Using the canonic transformation

p, q --+ P, Q, let us change the coordinate q = A (which has the meaning of time) so that the frequency

with respect to the unchanged time Q would become the constant ~ (l). To do this, let us introduce

the action P - angle Q variables into the system with the Hamiltonian 10(p, q).

H S(q, P) is a generating function, then the transformation is defined by the equations

as as
p = aq; Q =ape

Let us select S so as to satisfy the Jacobi-Hamilton equation

10 [::. q] = ko(P)

with the as yet unknown function ko(P). According to (4), we find as/aq = H0 (ko(P), q) or
q

S = f HO{/, A) dA, where 1 = kO(P). (6)

The periodicity condition Q(p, q + 217) = Q(p, q) + 217 yields now

aHo dko dko iliof dA = 217· - - = 1. (7)aI dP , dP dl

Equality (7) will be satisfied if the function inverse to H0(1) is taken as kO{P). Then the gener

ating function (6) introduces the variables P, Q which satisfy Theorem 1. Hence k{P, Q, n = K{p, q, n.
4. Construction of invariant tori of the system with the Hamiltonian (2) is carried out by succes

sive approximations of Newtonian type [3, 4]. Let (f= o. We will say that the number ~ is sufficiently

incommensurable with f and let us write ~ € n(f), if

Im~ + T£l\ > IfI (lml + \n\)-2

for all integers m, n, \m\ + \nl > O. Let n(f) denote the complement to n«() on the (i) axis. It is easy

to prove:

Lemma. The measure of n(f) does not exceed 10f.

• Do not confuse with p. q, from §§1, 21
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An II = kO(P 1) and a definite frequency wI = 6) (II) correspond to each value P = PI. Let us as

sume that tI6J/d/ f; 0 (which is equivalent to the conditions d2 H0/dI2 f; 0; d2 kO/ dp2 1= 0). From the

lemma presented, it is not difficult to deduce that the measure of the set of those PI for which

wI € n(f), approaches zero along with f.

Theorem 2. Let the Hamiltonian (2) be analytic for IfI < fO in the following neighborhood of the

torus P = PI:

IP - P11 ~ r1; 11m Q, TI ~ PO·

Let us assume that there is compliance in this neighborhood with the inequalities:

I kol ::; M, Ik1 +£k2 + - · -I ::; M, ld:::1 ~ 8 > o.

Then there exists an f 1(r1' PO' M, 8) > 0 such that if the frequency WI is sufficiently incommen

surable with ( for a certain f < fO' (1' then there exist analytic functions FC<Q, T), CC<Q, T) such

that the torus P = F/O, T) is invariant and dC
f

/ dT = (/wl on it. The functions F/Q, T) and

C/O, T) - Q have period 2fT in °and T and as f --+ 0 tend to PI and zero, respectively.

The proof will not fit within the span of the present note (see [3, 4]). As has been explained in

§2, there results from Theorem 2

Theorem 3. Let a vibrational system have the analytic Hamiltonian (1) in the action-angle vari

ables and let aHo/al f; 0, d2 Ho/d/2 f; 0 everywhere in the toroidal layer II S / S 12. Then for any

." > 0 there is found an f2 > 0 such that if IfI < f 2 and II + ." $1(0) $/2 -.", then for all - 00 < t <+ 00

there will be II (t) - 1(0)\ < .".
5. Theorem 3 is also valid when the Hamiltonian varies conditionally-periodically, namely, when

H(p, q, AI' ... , An) in the variables of §1 depends on several angular parameters A which vary each

with its own frequency Ai = f/l i • Let us assume that the /li are strongly incommensurable:

(8)

for some C, v> o.
Transforming to the Htime" T = w, we obtain the Hamiltonian (5) in the form K (h, q, T) where

h = I J1i Pi. Because of condition (8), the transformation p, q --+ P, Q is possible. The Pi enter into

the Hamiltonian (2) only in the form of the combination H = I J1i Pi. Similarly to Theorem 2, it is pos

sible to find invariant sets H = F/Q, T) to which correspond invariant (n + I)-dimensional tori in the

original (n + 2)-space p, q, AI' •.. , An.

6. The case of several degrees of freedom is of considerable difficulty. Theorem 2 admits of the

necessary generalization but it is not generally successful in reducing the Hamiltonian to the form (2).

The fact is that the ratio of the frequencies of the high-speed motions depends on the phase of the

slow motion. The system of equations on the three-dimensional torus

(9)

(x, y, z are angular coordinates of a point on the torus) yields a simple example of this phenomenon;

it is inpossible to rectify the trajectory (9) by a small change of variables along with f.

Consequently, in the case of a general system with n separate variables aod slowly-varying peri

odic coefficients, it is doubtful if there are tori filled by conditionally-periodic trajectories. Even if

such (n + l)-dimensional tori were found, they would not divide the (2n + l)-dimensional Pi' qi' A space

and would not permit the proof of the perpetual adiabatic invariance of the action variables.

Moscow State University
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(2)

SMALL PERTURBATIONS OF THE AUTOMORPHISMS OF THE TORUS

, v
V. I. ARNOL D AND Ja. G. SINAI

1. Let the torus r 2 be realized in the form of the unit square in the plane (Xl' x 2) with pairwise

identified sides. A transformation X -+ Ax = i, given by the integer valued matrix A = II aijll with

determinant ±1 acting on the torus according to the formula xi = ~ ajjxj (mod 1), i = 1, 2, is called

an automorphism of r 2• J

We assume that Ilaijlt has two real eigenvalues which differ mod 1. Then, if (al' 1) is the eigen

vector of A* corresponding to the eigenvalue AI' IAII < 1, then the system of lines on the locus

dX2 + ardxl = 0 (1)

satisfies the following conditions with respect to A;

I. Each straight line r of the family (1) is transformed by A into another straight line Ar of \

(1), i.e. the family (1) is invariant under A.

II. There exists a JLl > 1, such that the lengths s (I) and s (AI) of the segments I and Al on r
and Ar satisfy

s ( AI) ~ ILls ( l).

Similarly, if one takes the system of lines

dX2 + a2dxl = 0, (1')

where (a 2, 1) is the eigenvector of A* corresponding to the eigenvalue A2 , IA21 > 1, then this system

satisfies properties I and II' where n' is formulated exactly as II except that instead of (2) one has

s(AI)::;1L2s (I), 0<1L
2

< 1. (2')

2. It turns out that the property of A possessing a family of curves satisfying I and II (I' and n')
is coarse, i.e. it is preserved under small perturbations of A by nonlinear terms. Indeed, let A( =

A + (B (x), i.e. x -. A~ = Ax + iB (x), where B (x) = (bl(xl' x2 ), b2(xl' x2», where bj(x) is periodic

in each argument with period 1 and is a thrice continuously differentiable function.

Theorem 1. For sufficiently small (> 0 there exists a system of curves

(3)

satisfying I and II with respect to A,. ~ (x, i) has continuous derivatives of bounded variation in x,

and is continuous in l. There are no closed curves q,mong the solutions of (3).

Proof. We employ the method of successive approximation. Let us assume that the curves dX2 +

a~(x, () dX l = 0 have already been constructed. We apply A( to them. If the matrix Uaij + E"abj/axjll-l

has the form Ilajjll+lllgij(x, (}II, where aij are elements of A-I and Ilgij(x, E")I~, is a bounded matrix

which depends continuously on x and E", then the system of curves we obtain can be written in the

form dX2 + a~ +1 (x, d dx} = 0, where

n+l (an + egll (x, en ct~ (A;lX ) + (Cz21 + eg21 (x, e)) (4)
Ct.1 (x, B) = ( ) n(A-l) I ( -l- ( ))(Q12 + eg12 x, e <Xl eXT Q22 I eg22 x, e
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Lemma 1. If m~ Ia~ (x, l) - all < 0, then there ex;,st a /L' 0 < P. < 1 and a C < 00, depending only

on A and B, such that m~x la~ +1 (x, f) - all ~ p.o + Cl.

Proof. Let us rewrite (4) as follows:

anal + liZI + (a~ (A;lx ) - ( 1) an + e (glla~ + g21)

a12ClI + a22 + (a~ (A;lX) - ( 1) a12 + e (g12a~ + g22)

It is not difficult to deduce, from the fact that (at' 1) is an eigenvector of A*, that

Hence

To finish the proof, it is sufficient to take into consideration that, analogously to the foregoing,

- a 1al2 + all := AI"

It follows from Lemma 1 that for every 0 > 0, one can find an II(0) such that m~xla ~ (x, l) - all
<0 for all n,' if « (1(0).

Let us evaluate now Iai +1 (x, () - a ~ (x, l) I. It is easy to find by using (4) that

a~+l (x, e) - (X~(x, e) =Dn (x, 8) [a~(A;-l x, 8) -a~-l(A;lx, e)L

where

D
n

(x, c) = alla22 - 0120;1 + 82 (gllg22 - g12g21) + e (gllQ22 + g22Qn - g21Q12 - gl~21) •

[(a12CI~ + a22) + e (g12a~ + g22)] [(a12a~-1 + a22) + e (g12<x~-1 + g22)]

But, in view of Lemma 1, for every 8> 0 and f < (2 (8) we have la I2 ai + a22 - l/AII ~ 0 for all

n. It follows, since alla22 - aI2a21 = ±1 and IAII < 1, that there exists a p, 0 < P < 1 such that

max I(X~+1 (x~ e) - (X~ (x, e) 1-< p max Ia~ (x, e) - a~-l (x, e) 1.
x x

Consequently a~ (x, d conv~'rges uniformly on r2. Let us put aI (x, () = lim ai (x, (). It is easy
n-a:>

to see that the system of curves r 1

(5)

satisfies properties I and IT with respect to A(. The continuous dependence of aI (x, d on ( is ob

vious. V. I. Oseledec has established the existence of derivatives of bounded variations of aI (x, ()
with respect to x by methods which are similar to the above.

Let us prove now that there are no closed curves among the curves of (5). Suppose that such a

curve exists. Then, in view of property II, the length of the A;n r satisfies s (A;n r) ~ p.in s (r). But,

then A;n r cannot be a curve of (5), since it cannot then satisfy rCi 1 - all < 0 which is satisfied by

all curves of (5). Thus the theorem is proved.

Remark. Similarly, one can prove the existence of curves r 2' dX2 + ~ 2 (x, f) dX1 = 0, satisfying
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I and II'.

3. Let us consider two (nonsimultaneous) equations on the torus

(6)

where the first derivatives of the functions Ii (Xl' x2) of period 1 in xl and x 2 are of bounded vari

ation. For equations of the form (6) Poincare [1] has defined the rotation numbers (L) i.

Theorem 2. Let cuI and (L)2 be irrational and

(7)

where c l' ..• , C2 are constants. Then there exists a homeomorphism of the torus x.-.-. y, straight

ening thei1itegral curves of both equations (6), i.e. transforming them into straight lines r'i: dY2 =
6)idYi (i = 1, 2).

Proof. 10 • Let us denote by r i (xO) the integral curves of (6) passing through the point "0 =
<.4, .s~) and by r;(yO) the line 12 - Y~ =6)i (yI - y~). Let PI' P2 be two integer points. Let us con

sider the point q(Pl' P2) =r 1(PI) n r 2(P2) in the x-plane and q'(PI' P2) =ri (PI) n r;(P2) in

the y-plane. We define the m"apping y -. x by making q (PI' P2) correspond to q' (PI' P2).

2°. Lemma 2. The mapping q' -. q is uniformly continuous.

Proof. According to Denjoy's theorem [2], there exists a continuous transformation of the torus

transforming curves r 1 into lines ri. Hence, for every (> 0 there exists a 81 (€) > 0 such that if

the distance between the two lines ri (PI) and ri (P3) is less than 81' then the distance between

r l(PI) and r 1 (P3) is less than ( e~erywhere. Similar reasoning applied to r; and r 2 gives 82«().

In view of (7), if the distance between q' (PI' P2) and q' (P3' P4) is less than 81(f) and ~(l), then the

distance between q(PI' P2) and Q(P3' P4) is less than Kl (where K depends only on CI and c 2).

This completes the proof of the lemma.

3°. Since, in view of [2] and (7) the set of points q (PI' P2) and q' (PI' P2) is everywhere dense,

one can extend the mapping q' -+ q, by continuity, to the whole y-plane. The homeomorphism of the

plane thus obtained defines the desired homeomorphism of the toms since the lines ri are transformed

into the curves r i.This completes the proof of Theorem 2.

-6. 'Theorem 3. An ergodic automorphism of the two-dimensional torus is structurally stable. *
This means that, under the conditions of Theorem 1, there exists, for sufficiently small (, an automor-

phism of the torus x ....... y whick transforms a perturbed automorphism into a nonperturbed one:

(8)

Proof. Af has, for small i, one fixed point Of in the x-plane. Let us take it as the origin in the x-plane.

Let us CODStruct the homeomorphism of Theorem 2 along the curves r i obtained in §2 (5). Since these are not

closed on the torus, the rotation number CUi is irrational. On the other hand, Wi(f) depends continuously on f.

Hence they are COOStBnts. Hence the lines r i have the directions of the eigenvectors A.

The curves r i (0l) go into themselves under A( while the lines ri (0) go into themselves under

A. Here A maps q' (PI' P2) into q' (API' AP2) and Af maps q(O( + PI' O( + P2) into q(O( + API' O( +
AP2). Hence (8) is satisfied for % = q (PI' P2) and therefore by continuity for all x.

Remark. If A( is analytic then according to [3] the curves r 1 or r 2 can be straightened sepa-

·Or Ceoarse' in the terminology of Aadronov-POIltrjagin.
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rately by an analytic transformation. However, the homeomorphism constructed in §3 may be nondif

ferentiable. Indeed, the eigenvalues of A( at O( may be different from the eigenvalues of A. If the

homeomorphism x +-+ y is absolutely continuous, then A( has, for sufficiently small l, an invariant

measure which is absolutely continuous with respect to the Lebesgue measure and is metrically iso

morphic to A. We do not know, h~wever, whether the condition of absolute continuity is fulfilled even

for measure preserving analytic perturbations.

5. We have succeeded in proving the following in the n-dimensional case:

Theorem 4. If the matrix A = lIaijlt has n real eigenvalues, k of which are greater than 1 while

the remaining ones are less than 1, and A
l

= A + (B, then there exists, on the torus Tn, a system of

(n - k)-dimensional nonclosed, smooth surfaces, invariant under A( and such that for every piece I

of the surface the volume V (I) :5 IL' V (Ai), for fl' , 0 < Il' < 1.

Theorem 5. Let the n-dimensional torus Tn be split into (n - I)-dimensional, smooth surfaces

r: X n = g(xI' · o. xn_l ) and let the functions g be twice continuously differentiable. If none of the

surfaces is closed then there exists a homeomorphism of the torus x +-. y straightening the surfaces

r, i.e. transforming them into the planes r': Yn = cuIYI + ••• + cun-1Yn-1 + C.

Proof. 10 • Let r(xn) be the surface r going through tbe point (0, ••• , 0, xn). We denote by

Qp(xn) (where P = (PI' .0., Pn-I) the point (p, xn) € r(x). Let PI' .. 0, P,,-l be integers. Then one

can consider Q as a transformation of the circle p = 0 onto itseH. It is easy to see that Qp +q =
QpQq since all

P
of QP are commutative. *

20 • Lemma 3. Let there be given a finite number of commuting, twice differenti-able, homeomor

phisms of the- circle QI' Q2' . 0 ~ t Qr. Then either there e~ists a homeomorphism of the circle convert

ing them into rotations or there exists an N such that rI/., ··., Q~ have a common fixed point.

Indeed, if even one of the transformations, say Ql' has an irrational rotation number [1], then it

is a rotation by an irrational angle for some choice of the parameter on the circle. Since all of the

transformations Q commute with Qt (k = 1, 2, ••• ), they commute with all rotations and hence are

themselves rotations. If all the rotation numbers are rational, then for some N each of the transforma-

tions R1 = rI/., .o. R = QN have fixed points. Hence lim R~ I lim R;2 • •• lim R
lI

r %0 = z. It is
r r 111"'00 n2-o(1) lI r -o(l) r

easy to see that z is a fixed point of all of RI , R2t • • • t Rr•

3°. ~e apply Lemma 3 to the transformations Qi = Ql, 0, .0.,0' •• 0 t Qo, .. 0 ,0, r If all til have

a common fixed point z then the surface r(z) is closed, contrary to the conditions of the theorem•.

Therefore, there exists a parameter 1><x1&) such that ¢(Qixn) = ¢(x,,) + CUi" Let us now define %O(x)

by x € r(xO) and put Yi = xi(l ~ i < n), YII = qixo(x) + Ct)lx1 + ••• + Ct)n-Ixn-l. It is easy to see that

x +----. y is the required homeomorphism of the torus.

Theorem 3 was presented to the authors in the form of a conjecture by S. Smen. The authors ex-
\

press their thanks to him as well as to D. V. Anosov and E. G. Belaga for useful discussions.

Moscow State University Received I1/JAN/62

*The same method allows the study of decompositions of fibre bundles with the circle as a fibre. The ques
non reduces to determining the representations of the fundamental group of the base in the group of mappings of
the circle on itself.
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THE CLASSICAL THEORY OF PERTURBATIONS AND

THE PROBLEM OF STABILITY OF PLANETARY SYSTEMS

V. I. ARNOL 'n

1. The theory of perturbations enables us to predict planetary motion for many years ahead with

all necessary accuracy. However~ qualitative questions on the behavior of a system during an in

finite time interval, for example the problem of stability, could not be solved by the theory of perturba

tions. Planetary motion is described in this theory by series of the form

:L a mn cos [(m(ul + n( 2) t + cbmnl.
m,n

In Laplace's time the appearance in higher approximations of the ((secular terms" of the form

at a cos wt and bt /3 was considered inevitable. This led to attempts to prove the ins tability of the

solar systems (see [In. However, by the time of Poincare ([2,31, see also [4,5]) it became clear

that it is possible to construct a perturbation theory in such a way that the series of an arbitrary ap

proximation should contain only trigonometric terms. On the other hand, it turned out that the above

mentioned series diverge, and so the question of stability remained open.

The divergence of these series is connected with a kind of a resonance-the approximate commen

surability of frequencies. For example, the frequencies of Jupiter and Saturn 6J
1

:::: 299".1, w 2 ::::

1201/. 5 almos t satisfy the re lation 2w 1 = 5w r The perturbation is expressed by means of the series

Since the denominator 2w 1 - 5w 2 is very small, one observes a large perturbation of a long period

(see [4]). For the majority of pairs wI' w 2 the quantities ITnW I + nw21 do not vanish, and even ex

ceed K (1m I + In j) -2 for some K > a and all integral m, n > 0 (see [6]). This leads to the hypothesis

that for the majority of initial conditions the planetary system is stable. This hypothesis, however,

was not proved, on account of difficulties of several types. Poincare [2,3] suggested a number of

mode 1 problems which contained some of these difficulties separately.

Nontrivial problems with small denominators were solved for the first time only in 1941 by Siegel

[8]. Siegel also gave (in certain cases; see [91) a rigorous proof of the fact, known to Poincare, that

approximations of the theory of perturbations may converge only in isolated special cases.

An important step forward was made in 1954 by Kolmogorov, who applied a method of Newton's

type and constructed a convergent version of the theory of perturbations in the so called nondegener

ate case (see [10,11]). The results of [10] have numerous applications; however, the majority of

problems of celestial mechanics belong to the degenerate case.

After overcoming separately the difficulties connected with degeneracies of various types in the

mode I problems [12,13,14] by combining Newton's method with classical asymptotic methods, it be

came possible to apply the developed technique to the problem of planetary motion, where all

1008
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difficulties are encountered together. In the present article we give results obtained along this line. *
2. Let us consider, for simplicity, the plane three-body problem of masses M, m l' m 2' where

m l' m 2« M. The perturbation theory gives the following picture of motion [3,4]. In the zeroth ap

proximation the planets m l' m 2 do not perturb each other and move along Keplerian ellipses with

semimajor axes a l' a 2 and eccentricities e l' e 2" The directions of semimajor axes are determined

by the angles wI' w 2 (the lengths of the perihelia). In the zeroth approximation ak , e k' (Uk are pre

s erved during the entire motion. Let us consider an important case when m k' e k are small, a 2 - a 1 > c

and the planets move around M in one direction.

In the first approximation the mutual influence of planets leads only to a small ~ (trembling" of

a Ie' e k' wk around constant values. In the second approximation one observes a slow, but unbounded

(secular) motion of perihelia. Tbi~ slow variation of e Ie' wk may be described in the following man

ner. Let us characterize the Keplerian ellipse by a vector which is directed along the semimajor axis

and is proportional to the eccentricity. It turns out that for each of the planets mk this vector is the

sum of two uniformly rotating vectors ~k l' ~Jc2 whose angular velocities VI' v 2 are small and equal

for both planets. The planetary motion along ellipses which vary in the above described manner will

be called Lagrangian.

Our basic result consists of the fact that, if the masses and the eccentricities of the planets are

sufficiently small, then for the majority of initial conditions there will exist a Lagrangian motion

which differs little from the true motion during the entire infinite time interval.

Let us consider the centers of gravity of the bodies to be stationary. Then the system has four

degrees of freedom. Let 0 < c 1 < C1 < c 2 < C2 < Ole be constants. The conditions c 1 < a 1 < C 1; c 2 <
a 2 < C2; e l' e 2 < 0 define a domain Go in an 8-dimensional phase space. A point of GS uniquely de

fines the initial coordinates and velocities, and consequently the entirt~ motion. Let aI' a 2 be con

stants and m1 = fla 1 M, m2 = p.a 2 M.

Theorem 1. For an arbitrary 17> 0 there will exist an (> 0 such that if 8, fl < (, then the major

ity of points of the domain GS (the exception consists of points which form a set of measure smaller

than T/ mes Gs) move in such a way that: 1) the point always remains in the domain GS; 2) it moves

conditionally periodically, everywhere swee ping out an analytic four-dimens ional torus in GS; 3) it

always remains closer than lJ from a point of the phase space, which represents a certain Lagrangian

motion.

R~ark 1. Analo~s theorems on umetric stability" are valid for the plane problem of n bodies

and for the space problem of three bodies. Their generalization to the space problem for n > 3 bodies

requires ~rtain additional calculations (connected with the exclusion of knots).

Remark 2. The exceptional set in Theorem 1 extends to infinity, is connected and everywhere

dense. Taking into account, on the one hand, these considerations, and on the other, the known fact

of the existence of ~ ~scuttles" in the distribution of small planets, it may be assumed that the motion

of planets is topologically unstable.

3. Let us give a sketch of the proof of Theorem 1. As it is known (3], the Hamilton's function

for the plane problem of three bodies has the fonn
"-'

F = FOC\) + (po) F (A, ~, '7) + (p.) F (A, A, ~, 1]), (1)

·Some of these were announced in lectures on July 11, 1961 during the IV All-Union Mathematical Confer
~ce and on November 27. 1961 during the conference on theoretical astronomy.
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where A = (AI' 1\2)' A = (AI' A2); e= (e1, t"2)' 7J = (7]1' TJ2) are canonically conjugate variables, A}c
corresponding to the semimajor axes, the angles Ak to the phases, and (~k' 7]k) to the vectors

(eA cos wk' e k sin w k ). In formula (l)_th~ bar indicates t~e average with respect to AI' A2 , (Il)F =

,J!l + /12 F 2 +. · '. The functions FO' F, F are analytic; F ha~ the p~riod 2TT with respect to A and

is in the average equal to zero. For small ~, 1] the functions F and F may be expanded in a conver

gent Taylor's series in ~, T/, and moreover, F contains terms in even powers only.

By a preliminary canonical transformation /\, A, ~, TJ -+ AI, A' , ~' ,1'/' C~the averaging out with

respect to the fast variables," see §4) it is possible to reduce F in the major part of the domain GS

to the form

F'=FO(A/)+(/l)F(A / , e', lJ
/)+F

2
(A', A', (, 7]'), (2)

where F2 is a perturbation of the order p.2.

Secular motion is determined by the Hamilton's function (/1) F (e', lJ'), where Ak are regarded as

parameters. The point ~' = r/ = 0 is a stable position of equilibrium with respect to the linear approxi

mation. Introducing after Birkhoff [7] in the neighborhood of zero new canonical variables " ¢, we

reduce F to the form* F = F2 (,) + R3 (r, dJ), where r = (r l' , 2) are quantities of the order e 2; ¢ =

(<hi' ¢2) are angular variables; (/1)F2 = v i 'l + v 2 r 2 + c l1 r i + 2c 12 r 1 '2 + c22r~ and R3 begins with

,3, i.e., e 6. The canonical transformation A', A', (, lJ' --+A", >..
11
", ¢ reduces F' to the form

F" = Fo(All) + (j-L)F
2

(A", ,) + F'~ (A", A", " ¢), (3)

where F~ = F2 + R3 is a perturbation of the order /12 + Jff 3.

The conditionally periodic solutions of equations with Hamilton's function (3) are found by a con

vergent iterative method of Newton's type. In connection with it two difficulties arise. The first is

connected with the limiting degeneration at r :: 0, and is overcome in the same way as in [I2J. The

second difficulty, a characteristic degeneration at p. = 0, is connected with the presence of fast and

slow motions. At Il = 0 the Keplerian motion is described by two ~ ~fast" frequencies AI' A2 , and

for j.L t 0 in the Lagrangian motion there also appear two fl slow" frequencies v l' v 2 (of the order 11)

(cf. [13,14]).

The verification of the satisfaction of conditions (6) of dependence of frequencies on the mo

menta for the Hamilton's function (3) was performed by means of direct calculatioos, which made use

of the expansion of F in powers of e and a 1/a 2 [15].

4. Let us formulate the generalization of results [10] for the case of the characteristic degenera

tion when the Hamilton's function has the form

H = H0 (p l' . . . , Pk) + dJ1 (p l' ... , Pn' q l' ... , qn ) (k < n), (4)

has the period 2TT with respect to each of the variables q l' ... , qn and is analytic** when p varies

in a certain domain G and lIm q I < p. For f = 0 the canonical equations with the Hamilton's func 0.00

(4) describe a conditionally periodic motion qi = Wi (i S k), qk+l ="'= Pn = 0 with frequencies

Wi = aHO/Jpi' For small f it is possible to assume, by neglecting the qtrembling," that the slow

variation of qk + l' ... , Pn is in time influenced only by the average value of HI with respect to the

*In the case of two planets F(t#, ,.,') may be exactly reduced to the form F(r). Our arguments are appli
cable also in the case of n> 2 planets .

•• Added in proof. In connection with the recent articles of J. Moser, the eIlstence of several hundred
derivatives is sufficient.
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fast variables*

- -k~l!1 (p; qk +l' ... , q n) = (217) 'jl l!1 Cp, q) dq 1... d qk·

We will now assume** that ill is independent of the phases of slow motions. Then the Hamilton's

function (4) may be represented in the form

(5)

(6)

Theorem 2. Let for p € G the conditions

Jet ! __J_c)2
f
J
i o l,t= U U, j = 1,.", k); det 1.);j2I)il~1 =1:= 0 (i, j = k -l I,.", n)

cP/Pj , rp/Pj

be salis fied. Denote by T the torus layer Im P = 1m q = 0, P € G, qi E [0, 217).

Then for an arbitrary ." > 0 there exists an f O > 0 such that if I( 1< (0' then in T there exist ana

lytically invariant n-dimens ional tori whic h carry the trajec tories of conditionally periodic motions.

These tori fill T with accuracy up to the remainder of a measure smaller than 17 roes T.

Theorem 2 shows that for small ( for the majority of initial conditions the motion of the sys te m

with the Hamilton's function (5) on an infinite time interval differs but little from the conditionally

periodic motion of n frequencies qi = aii/api(!i = flo + (HI)' P= 0 with suitable initial conditions.

The proof of Theorem 2 is analogous to the arguments of [13], where the case k = 1 is coosidered.

For k > 1 the small denominators appear already in the first stage of the proof, during the averaging

out with respect to the fast variables. In order not to deal with an infinitely large number of resonances

it is convenient (cf., for example, [16]) to take into account in the perturbation HI only the harmonics

up to the Nth order; if N '"V lIn (I, then the higher harmonics give the sum of the order (2.

Let n be the domain in the space W = (wI' ... , wk)' into which G goes under the map P -4

aHO/ap. Denote by DKN the set of those w for which I (w, n) \ > Kin \-S (s =: k + 1, In \ =

In 1 I + .• '. + Ink I) for an arbitrary integral nonzero vector n, In I < N. Denote by GKN the inverse

image of 0KN and by GKN - d the set of points which belong to GKN with the d-neighborhood.

During the proof of Theorem 2 a certain number 0 > 0 is chosen sufficiently small, and then an

( = oT is chosen, where T is a sufficiently large constant which depends only on the number of de

grees of freedom n. The first step of the proof consists of establishing the following lemma.

Lemma. In the conditions of Theorem 2let IJill <M, \a2Ho/apiapjl <f). Let the numbers y,

o satisfr the inequalities

( 1 / If) 2k - 2 k - 2k) 02k +72y < p, 0 < min K, 3' y 4, 1 ,e n (8) , M < .

Then in the domain P € GKN - 20, lIm QI < p - 2y(here N = ! In ! ) there exists an analytic
Y M

canonical one-to-one trans formation p, q ~ P, Q, which reduces H to the form

H = HoCP) + Ji l (P) + H2 (P, Q),

where I P - pi, IQ - q I < Mo- 2k - \ IH 2 1< M2 8- 4k -10.

Since H2' therefore, has in the domain GKN - 28 the order (2, and the magnitude of the

.This remark, which goes back to Gauss, constitutes the essence of me known "method of averaging" l16].
The following may ~ considered as one of the variations of the basis of this method for an infinite time interval.

··This is the case in the problem of planetary motion; see formula (3).
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components of the domain CKN - 20 is of the order lin f. - 1 I, then the proof of Theorem 2 from the

lemma is cooducted analogously to the proof of Theorem 2 in [13].

Moscow State University
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1962 МАТЕN1АТИЧЕСКИй СБОРНИК

Письмо в редакцию

Т. 56(98), N2 3

в м;оей рабо~е «О представлении непрерывных функций трех переменных су

перпозициями непрерывных функций двух переменных», опубликованной в «Мате

матическом сборнике» (т. 48 (90) (1959), 3·-74), !Имеется ошибка, на которую MO~

внимание любезно обратил Боте (Н. О. Bothe). Утверждение индуктивной леммы

(стр. 30), что можно пристроить К дереву отрезок так, чтобы выполнялось требо

вание l.а) (незамыкание ~олний), уже при n = 1 противоречит теореме Паппа. Это

го затруднения мо)кно избежать, если строить дерево не из отрезков прямых, а из

надле2кащим образом искривленных простых дуг. Техническое проведение этой идеи

довольно громоздко. Текст со всеми необходимы,ми исправлениями будет опублико

ван издательством Deutsche Verlag der Wissenschaften в серии Mathematische For
schungsberichte в переводе Боте, которому я очень благодарен за ВНИМание и бди

тельность.

В. И. АРflольд

(Поступило 'в редакцию 12/11 1960 г.)

* Editor’s note: V.I. Arnol’d: Letter to the editor. Published in Mat. Sb. (n.S.) 56 (98):3 (1962), 392

*
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.19в~з г. ~:парm-а·1~ре.;I,'Ь fnl. XJ7III, 6'Ыn. 2 (110)

JТОПЕ-LУН МАТЕМ...4.РИЧЕ('1RН-LУ НАУН

ДI;IНАМIIЧЕСЬ:IIЕ CIICTEl\1bI J!1 IIРЕДСТ.LL\ВJIЕНI1Л ГР~ТПП

Н..\. СТОКГО~ТIЬМСКОi\Il\tIATE~I.A.TI1~IECKOl\t1КОНГРЕССЕ

Динамические систеl\IЫ - одно пз наиболее бурно развиваI{)П~ИХСЯ

13 настоящее вре1\'IЯ направ:тений l\fатеl\lатп:ки. На СТОКГОЛЬ~'1ско:м :конгрессе

собственно дина:мичес:ки:м систеlнаl\1 было поевящено три получасовых обзор

НЫХ ДОRлада и нес:коль:ко 15-:минутных сообщений. В этой заj\:rеТI~е будет рас

еЕазано о содеРiнании некоторыIx из этих докладов и о других вопросах, так

пли иначе касающихся теории] д:ина:МИЧЕ~С:КИХ сиетеlVI п затронутых на Сток

ГО:IЬМ:СКО:М :мате:матичеСRО:М: конгрессе.

1. Проблемы устойчивости. Вопрос об устойчивости ДВИj-нений в консер

вативных нелинейных систе:мах, И~.\Iеющих большое значение ;~ЛЯ :механики

I1 астрономии, остался нерешенньгм: в посвященных е:му I\лаССl1ческих работах

1\. П:уанкаре,А. lVI. Ляпунова и Дa~. Д. Биркгофа. В последние годы, начиная

~ работ 1-\. л. 3игеля [1] и особенно после доклада А. Н. hол:м:огорова на

...~1IстердаJ\IСRОl\1 :конгрессе 1954 г. [2] ~ n этоii: областп: и:м:еется существенное

продвижение.

Основную трудность в пробле~lах УСТОlIЧИВОСТИ представляют {(1'13:1blO зна

}1t~натеЛI~» в рядах теории возмущениii:

~
аmn [(-----,--- COS l1Ui.) ,

1nШlтllШ2 J.

тn, Jl::f:O

( 1)

Здесь некоторые знаменатели lnu) 1 n(.fJ 2 обращаются в U при СОИЗlVlеРИJ\1.ЫХ

ШJ и (()2. Даже если Ю1 и (й'2 неСОI1Зl\lеримы, среди знаменателейвстречаются

С:hОЛЬ угодно l\lалые. Однако для больпrпнетва (В СlVlысле меры Лебега)

пар (()1, (й2 величина InНй1-+- nW21 превосходп.т С(\ 7n\ ~-I n \)-3 при некоторо:м

С > о. 110ЭТОМ:У зна:менатели mш 1 ._;- nш 2 JIИШЬ не;\'1НОГО УХУДШВ-IОТ еходи:мость

ряда ~amn' В теории ВОЗl\IУlцений ряды вида (1) встречаются 13 наа'\до:м пр:п

Q.п:ижении; j\.. Н. I\ОЛl\;fОГОРОВ пред.:lоmПJI вариант теории воа:мущений, осно

ванный на 118тоде Ньютона~ в I\OTOPO?\I ОIппБI-tа кал-'\дого слеДУЮI1J,ОГО прибли

fl"\ения порядка :квадрата Оlllибни предыIущего.. Получается столь бы.страя

СХОДИ.масть, что Уi\Iереино l\Iалые (ДОПУСI\аlоrцпе указанную выIеe оценн:у

снизу) знаl\IенаТ8JIИ не l\lorYT ее разрушить.

Это направление иселедований было представлено на стокголы\е]{о~[[

[~OHгpeece получасовым: ДОR.:1аДОi\1 ю. lVfозора 1I 15-l\IИНУТНЬП\1 донлаДОl\I

В. 11. "Арнольда. Недавно l\10З8РУ удалось, I\о~rбинируя пред.:10iненныI

* Editor’s note: V.I. Arnol’d, A.A. Kirillov, and Ya.G. Sinai: Dynamical systems and group  
blished inrepresentations at the Stockhom Mathematics Congress. Pu Uspekhi Mat. Nauk 18:2 (1963)

*
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190 МАТЕlVIАТИЧЕСКАН iКИ3НЬ В СССР и: ЗА РУБЕЖОМ

Колм:огоровы:м вариант l\1етода Ныотона с подходящим процеССОlVI сгдаЖива

НИЯ, ВОСХОДЯЩИ:М: R Нэшу, перенести теореl\1Ы, до:казанные ранее для дифферен,

циальв:ых уравнений с аналитичеСRИМИ :hоэффициентам:и, на случай нозq>фи

циентов, дифференцируемых Rонечное число раз.

Приведе:м:, в частности, результат Мозера [3] об устойчивостинеПОДВИiI\

ной ТОЧКИ сохраняющего площадь отображения плоской области на себя.

Эта задача была поставлена еще ГIуаИRаре в связи с его исследоваНИЯJ\,IИ

ограниченнойзадачитрех тел. !{aR известно, к этой задачеMOiHHO свести вопрос

об устойчивостипериодическихДБИi--Еений в консервативной систем:е е дву:мя

степеня:ми свободы.

Для устойчивости неоБХОДИl\fО, во ВСЯ:КОl\I СJlучае, чтобы собственные зна

чения линейнойчасти преобразованиявнеподвижнойТОЧRе и:мели модуль 1:
л == e2rcia , 1:==e-2ztia • I\1озер ДОI\азал устойчивость в следующих предположе

ниях:

1) преобразован:ие 333 раза дифференцируеl\10,

m. т

2) а =/= 3' 7;' где n~ целое,

3) с =F И, где с - неноторый инвариант, вычисляемый по значениям

пвено.JIЬКИХ производных преобразования в нуле.

До работ Мозера устойчивость была доказана. лишь в предположении

[4], что

1) преобразование анаJIИТИЧНО,

2) а иррационально,

3) с =F о.

В своем донладе Мозер указал TaIO'h8, что эти :исследования были приме

вены в сш~t\. R задачам об адиабатичеСКОl\-! инварианте в связи с интересом

к дви}:кению зарЯiкенных частиц в ы1гнитноl\11 ПОJIе. Аналогичные советские

работы [4]-[6], опуБЛИI~ованные ГОДОlVI раньше, в CIIIA еще неиз

вестны.

До:клад В. J1. Арнольда БЫJf посвящен задачам: теории возмущений, свя

занныIM с ВЫРО}RдеНП0fitI, в том ЧИСJlе задаче 1ННОГИХ тел (С1\I. [4]- (6]).
2. Грубые си:етемыI. При сколь угодно I\'[аЛОl\I изм:енении КОЭффИI~иентов

дифференциального уравнения оеобая точка типа «центр» l\Iожет превратить

ся в фонус; но фонус при достаточно тvlалыIx из:менениях остается ФОRУСОМ~

В Э':ГОМ с:мысле фокус «струнтурно устойчив» или {{груб» (по теРl\ПIНОЛОГИИ

А. А. i\.ндронова 11 л. с. Понтрягина [7J), а центр - нет. Точнее, система

грубая, если при м:ало:м (с производньпv.IИ) ИЗ1\Iенении поля направле~ний она

остается ГОl\1GО:МОРфНОЙ себе, Т. е. l\10ЖНО взаИl\rlНО однозначно II непрерывно

отобразитьфазовое пространствовоз:мущеНIIОП:и: невозм:ущенной спстеrlI друг

на друга таи, чтобы траектории перешли в траеRТОРИИ.

Интересн груБЫ:.\Iсисте~.:Iаl\fстанетпонятен~еслиучесть, что в ПрИЛО~\f~ениях

коэффициенты уравнений никогда не известны аБСОЛIОТНО точно. .А.ндроиов

И Понтрягин исследовали грубые С~Iстеl\lЫ на плоскости; в таких сиетеТУlах

вес неподвижныеточки - узлы, фокусы или еедла, а все периодичеср~ие реше

ния - предельные циклы. В последнее вреJИЯ интерес }{ этой области вновь

пробудился, появились работы Пе:инсото, l\iapRyca и др.
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l\IАТЕ1НАТИЧЕСRАЯ ЖИЗНЬ В СССР И ЗА PYBEjHOl\'1 191

Существенно свежей была идея америкаНСRОГО тополога с. См:эйла,

БысназаВlпего в 1961 г. во вре:м:я пребывания в Москве гипотезу, что

грубой МОiиет быть и консервативная система (а именно, наПРИ:lнер, автом:ор-,

фИ3М тора). Так как в консервативной систеlVlе асим:птотически устойчивы€

движения невоз:можны, это принципиально новый тип грубой систеl\IЫ (рас

С~\JатриваеJ\1ая систем:а ИJ\Iеет всюду плотные траектории, а таRже обладает

БСIОДУ плотным: множеСТВОl\1 периодических траекторий; она эргодична и им:еет

вееьм:а сильное пере:мешивание, а также положительную энтропию; вся эта

сл:оа~ная :картина структурно устойчива).

Указанная гипотеза СМЭЙJlа но врем:ени Стокголь:мского нонгресса была

,J;oказаиа; Д. В. Аносов [8] нашел широкий I\ласс грубых Rонсервативных

CIICTel\{, включающий, в частности, геодезичесние ПОТОНИ на поверхностях

отрицательной кривизньi. 15-минутный ДОRлад Аносова был зачитан на КОН

грессе я. Г. Синаем: и вызвал большой интерес.

ПолучасовойДОI\лад Смэйла был такд{е посвящен проблеl\lе СТРУRТУРНОЙ

устойчивости.'ДОI{лаДЧИR высказал ряд интересных гипотез.

Основная гипотеза состоит в ТО:М, что СТРУНТУРНО устойчивые систе:мы

составляютв пространствевсех динамическихсистем: на даННОl\rlмногообразии

открытое ВСI-DДУ плотное :множество.

Эта гипотеза подтверждаетсявсем:и извеСТНЫl\;IИ сейчас при:мерами. Сl\IЭЙЛ

предложил некоторый подход к доназательству основной ги:n:отезы.

РаССl\fОТРИNI дина:мическую систему с дискреТНЬПvI времеп.е:м, Т. е. диф

ференцируемое отображение Т. Во всех известных ПРИ1\/f.ерах СТРУКТУРНО

устойчивые т обладают следующими свойствами:

1) Все неподвижные ТОЧRИ X i степеней т элементарны, т. е. l\rIОДУЛИ соб

ственных значений их линнйных частей не равны 1.
Тогда через kaJ-КДУЮ точку X i проходят два инвариантных многообразия

хТ :и ХТ, стягивающихся 1:\ Xi при t~+ со и - со.

2) Лlобые два м:ногообразияxt и х; перэсекаются трансверсально, а Х!

и хТ (хТ и xj) не пересекаются.

3) JIlобая точна при t~ 00 стре:мится н заl\/Iыианию множества точе}~ Xi"

У:казанный выше подход Смэйла R оснопной гипотезе о структурной

ус~ойчивости состоит В расчленении ее на две гипотезы:

!-\.) 11з евойств типа 1)-3) вытекает СТРУRтурная устойчивость.

В) В Лlобой ОRрестностилюбой систем:ы есть систе:ма со сво:йстваТVIИ1)-3).
Наl'lilпредставляется,что основная трудность: в доказательстве предло-

n-\GНИЯ В). 3ейферт давно уже ВЫСI{азал гипотезу, что веяное веБТОрНОЭ поле

на трехмерной сфере и:меет заJ\!I-\ИУТУIО интеграЛЬНУIО кривую. Однако это

не доназано: неизвестно даi-не, N[Oi-I{ИО ли получить за:М:RПУТУЮ КРИВУЮ rvlалы!\!

изхr8нение:м:подя.

3. Теория слоений. IJIнтерееныI:иибыли беседы с г. Рибом~ (G. 11eeb) (Фран

, ОДНИl\II из основателей теории «foliations» (В качестве русского терIVIина

;,Iо:tIПIО предлопо:гrь «слоение», так :как наиболее подходящий теРl\IИН «рас

С.погНЕZ:О» YrI-\8 занят).

IIусть }/[ есть n-l\Iерное дифференцируеl\Jое ~lногообразие; раССl\'IОТРИ~1

1~! на k-l\1ерные (вообще говоря, неза~IRнутые) дифференцируемые
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l\JIногообразия («слои»). Это разбиение называется слоениеlVI (слоеНИВJ\I без

особенностей), если окрестность :каждой ТОЧI\И lVJ :м:ожет быть дифференцируе

l\fO и взаи:мно однозначно отображена на :куб n-:мерного евклидов а пространства

:(J, ... , Хn таЕ, что слои отображаются в k-:мерные плоскости Xk+l = Ck+l' •••

Понятие слоения шире, чем: расслоенное пространство (== раселоение ==:::

== косое произведение ), так кан слои вообще не образуют топологического

пространства (базы). ПРИJ\1ер слоения: обм:от:ка тора с иррациональным:ЧИСЛОl\1

вращения. Теория слоений - это теория поверхностей, определенных диффе

ренциальны:ми уравнениям:и; обычная :качественная теория обыкновенных

уравнений-теория слоений с 1-l\lеРНЫl\IИ слоя:ми. Многие факты качественной

теории, установленные Пуан:каре для n== 2, k=== 1, наиболее естественно пере

носятся на слоения с n - l-l\lеРНЫ~IИ (а не l-l\lеРНЫl\lИ) слоя:ми.

При изучении поведения решений обы:кновенных дифференциальных

уравнений в КОl\lплексной области, естественно, ВОЗНИI{ают слоения с двумер

ны:ми СЛОЯl\1И. Другие интересные слоения образованы орбитаlVПI групп ЛИ; не

транзитивно деЙСТВУIОЩИХ на :многообразии м.

В :качестве одного из при.ложениЙ у:каже:м на существенную роль слое

ний, определяе:мых :многообраЗИЯl\IИ х+ и Х-, дЛЯ исследования стру:ктурной

у·сто.йчивости (Cj\tI. п. 2). Теория елоений очень lVlолода; одним: из первых ее

результатов было установление слеДУЮlцего фанта: на трех:мерной сфере

существуе'r бесконечно дифференцируе:мое слоение с двуJylерныl:ии слоями

(г. Риб [9]) и не существует аналитического (А. Хэфлигер [10]).
4. Эргодическая теория на Стокгольмеком KOHI'pecee. На нонгрессе

присутствовало довольно l\IHOrO l\'fате:маТИRОВ, зани:мающихся эргодичеСRОЙ

теорией. Так, Tal\i были Чакон, ()рнштейн,л. I'рин, Мар:кус, Хан, АУС!fендер,

Хедлунд, Биллингсли,Ниобе и др. Но болыпинствоиз н:их~донладовнеделало.

Дело в TOl\f, что сравнительнонезадолго до конгресса в I-IОВОl\I Орлеане (СШi-\)

проходил СИIНПОЗИУ:М по эргодичесн~ойтеории. Как уда.лоеь выяспиrrь ИЗ част

ных разговоров, в А:мерИRе веСЫ\1а интенеивно заНИl\:IаI-отея обобщением: эрго

цическ:их TeOpel\I для проетранств е бесконечноii J\lероЙ. Это,по-види:мому,

и БыIоo самыJVI HOBbIlVI из того, что ДОRладывалось на это:м СИl\iI:позиум:е. Нро:ме

того, там же был прочитанрефератсоветскихработ об энтропии динаl\lичеСRИХ

систе:м (Бпллингсли) и Я:кобс дал свое ДОI-~азате.тrьетво ОДНОГО' результата

I>ох:лина об энтропии неэргодичеекого аВТОl\10РфИЗl\rа.

На СТОКГОЛЬ:МС:КОl\I конгрессе собственно н эргодичеСRОЙ: теории относи

лось три доклада: 1) л. Грина~ 2) .L~.lVlapKyea, л. Ауелендера и (D. Хана (все

США) и 3) я. г. Синая. В первых двух доло}кенныхработах исслеДУIотеянеко

торые дина:мическиесистеJ\IЫ, ПОРОfнденныеоднопараl\IQтричеСКИl\ПIподгруппа

l\Пf движений на однородных пространствах (оБПJ;ая теоретино-групповаяКОН

eTPYI-\ЦИЯ тан:их динам:ичес:кихсистеj\I прпнадлеа-\IlТГельфапдуи ФОJ\ПIНУ [~11 ]).
ГГаI-~, донлад r"fapKyca~ А.услендера и Хана содерn:-'\ал иееледование динамиче

СЕИХ систем: на но:мпактных НИЛЫ\lногообразиях, Т. е. на :многообразиях, полу

чающихся фа:кторизац:ией нильпотентных групп Ли по дискреТНЫ~I подгруп

паlVI. Iiми была наказана эргоДичность и вычислен спектр таких динаl\r.iическ:их

сиетеlVI. При участии Грина им удалось доказать еп~е и ~IИНИl\!lальность этих

дина:м:ичееRПХ спстеl\I, Т. о. существование единственной инвариантной :меры.
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воз:можно, что динаl\'1ичеСRие системы на нильмногообразиях следует считать

nа:иболее естественным: аналогом для случая непрерывного вре:мени авто:м:ор

фН3l\fОВ СRваЗИДИСRреТНЬП\f спеRТРОМ, для ноторых довольно полная Rласспфи

:кационная теория построена л. М. Абрамовым [12]. ДОRлад Грина был посвя

щен различным типаl\1: динам:ичеСRИХ систем: на разреmи:мых :м:ногообразиях.

Донлад я. г. Синая был ,посвящен обзору последних советских работ

по энтропии и K-систеlнаl\I. Был еще :и ряд интересных результатов, поrра

IIИЧНЫХ между эргодичеСRОЙ ·теориеЙ и другими разделами матемаТИRИ,

в частности, теории вероятностей. TaR, М. Розенблатт (США) рас

смотрел следующий вопрос. Пусть f(t) - четная положительно определен

ная функция. Рассмотрим собственные значения интегрального оператора

Т

~ f(t - 1:) qJ ('t) d1: = ЛqJ (t).
-Т

м. Розенблатт при' некоторых предположениях находит аСИМПТОТИRУ j-ro
по величине собственногозначения этого оператора при Т -+ 00. НеRоторые

предварител~ныерезультаты на эту тему имеются в Rниге Гренандераи Сеге

«ФормыТеплица и их приl\tIенения»,а таRже были полученыв неСКОЛЬRОивом

виде ~I. с. ПИНСRеро:м.

В. Рудин (США) сделал ДОRлад о продолженииположительноопределен

ных обобщенныхфункций в случае n переменных. М. г. Крейн еще довольно

давно показал, что заданная на отрезке [О, 1] положительно определенная

функция может быть продолжена на всю прямую с сохранением положитель

ной определенности. Оказывается, что при n>- 2 существуют положительно'

определенные функции, заданные внутри единичного n-мерного :куба и не

продолжаемые на все пространство. Это связано с существованием при n>- 2
ПОJIо~ительных ПОЛИНОl\10В, непредставимых в виде СУМ~IЫ :квадратов (теоре

ма Гильберта) .
п. Мазани сделал ДОRлад о разложении Вольда для полугрупп изометри

ческих операторов г:ильбертова пространства. По-видиl\tIОl\fУ, е:му остались не

известны:ми старые результаты А. 11. Плеснера [13], из которых его результа

ты вытекают.

5. Представления групп. В работе конгресса прини:мали участие l\lногие

специалисты по теории представлений: г. Макки, Дж. Фелл, Р. Кейдисон,

Ф. Маутнер, л. Эренпрайс, Дж. Эрнест, А. Стейн и др. (США), ж. ДИКС~Iье

и Ф. Брюа (Франция), 11. Сатаке :и Р. Такахаши (Япония). К сожалению,

не смогли приехать Хариш-Чандра (США) иР. ГОДl\fан (Франция). Из совет

ских математиков доклады представили И. М. Гельфанд, М. А. НаймарR

и А. А. Кириллов. Почти все зарубежные математики не делали докладов.

Тем не менее в течение всего конгресса интенсивно работала «R-улуарная сек

ция» теории представлений, гдеобсуждались последние достия\ения и пер-

спективы дальнейшего развития теории.

Вот основные направления" в которых работают сейчас зарубежные

м:атемаТИRИ.

1) Вопросы, связанные с понятием виртуальной подгруппы и ее представ 
JfениЙ. Введением в эту область м:ожет служить обзор г. МаКRИ по теории

13 Успехи матем. наун, 'г. X'ТIII, вып. 2
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представлений, перевод ноторого помещен в сБОРНИRе «МатемаТИRа» 6 : 6 (1962).
От:м:ети:м:, что здесь могут ОRазаться полезными язык и методы гомологичеСRОЙ

алгебры. Так, описание представлений виртуальных подгрупп эквивалентно

вычислению одномерной группы RОГОl\10ЛОГИЙ с доэффициентами в некоторых

специальных G-пучнах. Это направление связано также с задачей RлассифИRа

ции динам:ических систем. Каждой эргодичеСRОЙ динамичеСRОЙ системе с не

прерывным (соответственно с дискретным) временем соответствует виртуаль

ная подгруппа аддитивной группы вещественных (соответственно целых)

чисел. и. М. Гельфанд высказал гипотезу о том:, что динамичеСRая систеМа

полностью определяется наБОРОl\1 всех неприводимых представлений СОответ

ствующей виртуальной подгруппы.

2) Изучение двойственного объекта для групп и С*-алгебр. Наиболее

крупные достижения в этой области при:надлежат Феллу, Диксмье и ГЛИМl\IУ.

В частности, из СОВОRУПНОСТИ их результатов вытеиает совпадение трех важ

ных классов С*-алгебр, выделенных разными авторами по разны:м причинам:

класса GСR-алгебр в смысле Каплансного, алгебр с глаДRОЙ двойственной

в смысле Манки и алгебр типа 1 в с:мысле фон Неймана - Диксмье. Для этого

класса алгебр наиболее естественно строится теория харантеров, доказана

однозначность разложения произвольного представления в прямой :интеграл

неприводимых представлений, получено много результатов о топологичеСRО~

и борелеВСRОЙ струнтуре множества неприводим:ых представлений (С:М. [14] и
уRазанную та:м литературу). Из результатов в это:м направлении отмеТИl\I рабо

ты Фелла [15J, [16], в которых дано полное описание топологии в двойственном

пространстве для группы Аn комплексных унимодулярных матриц (n+1)-го

порядка и изучена струнтура групповой С*-алгебры для группы А 1.

3) Дальнейшее изучение представлений вещественных полупростых

групп Ли. Здесь имеется JИНОГО частных результатов, посвященных пред

ставлениям отдельных групп. ОтмеТИ~I, напри:мер, работы Диксмье и Та:ка

хаmи о представлениях группы де Сите (группы движений четырехмерного

пространства ЛобачеВСRОГО). Общей теорией представлений вещественных

полупростых гр'упп Ли много занимается сейчас Хариm-Чандра.

4) Представления простых групп над поле1V! p-адичеСRИХ чисел. Первые

результаты здесь были получены Ф. Маутнером, :который нашел сферические

функции, связанные с группой унимодулярных :матриц второго поряд:ка.

Дальнейшее продвижение было сделано в работах Брюа [17], RОТОРЫЙ перенес
результаты Маутнера на неноторые представления классических групп над

полем p-адичеСRИХ чисел.

Отмети:м, что все эти результатыносят отрывочныйxapaRTep. НИ для одной

группы под полем: p-адичеСRИХ чисел не получено описание всех представле

ний. Неизвестно даже, принадлежат ли эти группы типу 1.
Очень большой интерес вызвал обзорный ДОRлад 11. М. Гельфанда, посвя

щенный теории представлениЙ 1). А:м:ерИRанские :мате:матики организовали

размножение тенста доклада, не дожидаясь его опубликования в трудах

1) и. М. Гельфанд не присутствовал на нонгрессе, и его ДОRлад был прочитал профес

сором Макки (США).
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Itоигресса. Так как на PYCCROl\i1 языке доклад не опубликован, :мы изложим

здесь RpaTRo его содержание.

Первая часть доклада посвящена следующей общей задаче. Рассматри

вается группа G и однородное пространство Х с группой движений G и ста

U:IIoHapHoj! подгруппой г. Пусть L 2(X) означает пространствофункций на Х

с су:ммируемым :квадратом: по :мере, инвариантной относительно движений.

Задача состоит в разложениипространстваL 2(X) на мини:мальныеинвариант

ные относительно G компоненты и в изучении возникающих «сферических»

функций. В случае, когда G - полупростая группа Ли, а Г - не:которая

специальная подгруппа (единичная, максимальная RомпаRтная или картанов

екая), эта задача была решена в работе и. М. Гельфанда и М. и. Граева [18]
с по:мощью :м:етода орисфер. В докладе расс:матривается случай, когда груп

па G полупростая, а подгруппа Г диснретная и таRая, что Х = G/r ко:м

паКтНО или имеет.RОН~ЧНЫЙ объеl\tf. Оказывается, что метод орисфер полезен

II в этой ситуаци;и, хотя его применениесущественноусложняется.Этот :метод

приводит к очень :интереСНЫ1\f функциям, Rоторые автор называет дзета-функ

цИЯМ:И данного однородного пространства. Эти фУНRЦИИ вознинаIОТ следую

ЩИ:М образом. Пусть Q - транзитивное се:мейство компактных орисфер в х.

(Общее определение орисфер С:М.,. наприl\tlер, в работе [19].) Сопостави:м :каж

дой финитной функции на Х ее· интеграЛ~I по орисферам из Q. Мы получим

;rинейное отображениепространствафункций на Х в некоторое пространство

Н функций на Q: f(x)-+ ср(ro). В ЭТОl\-1 пространствеН, естествепно, определе

ны два скалярных произведения: одно индуцировано из L 2(X), другое 
из L 2(Q). ОRазывается, что l\-Iеi-КДУ этим:и СRаЛЯРНЫl\fИ произведениями суще

ствуетзависи:мость (ер, 'Ф)2 = (Мер, '1')1, где м - некоторый огр.аниченныЙ

положительный оператор в Н. 'Разложи~м Н в сумму подпространств НРо ,

в Rаждом из :которых представление G RpaTHo неПРИВОДИl\10l\tIУ представлению

T/i.. Так нан оператор М, очевидно, перестановочен с движениями, то в каж

дом: НR. он задается :матрицей, порядок которой равен :кратности Тk В H}~.

Мы получаем функцию, сопоставляющую наждому инденсу k неRОТО'рую l\Iатри

цу. Это и есть дзета-фун:кция, связанная с х. ТаRИХ функций существует

CTO~ЬKO, сколько Иl\Iеется транзитивных семейств компактных орисфер в х.

Оказывается, что введенная таRИl\i обраЗОl\I дзета-фУНRЦИЯ тесно связана с

обычной дзета-фУНRцией Римана и ее обобщениями. В до:кладе приводится

явное выражение для дзета-функции, связанной с группой вещественных

униl\tIОДУЛЯРНЫХ :матриц n-го порядка и подгруппой целочисленных :матриц.

Вторая часть ДОRлада посвящена представлениям простых групп над

I\онечным полеl\I (групп Шевалле - Диксона). Известная RОНСТРУКЦИЯ Гель

фанда - Наймарка, дающая все представления :ко:м:пленсных групп, в случае

Rонечного поля недостаточна для описания всех представлений. В докладе

описывается новый подход R описанию представлений, основанный на изуче

нии категории представлений, :индуцированных одно:мерны:ии представления

ми неноторых подгрупп (подробнее см. в работе [20], [21]). Этот подход позво
ляет, напри:мер, в единой форме описать представления группы унимодуляр

ных матриц n-го порядна над любым: RонечныыI полем: (а таRже над полем

вещественных или КО~lплексных чисел). Автор надеется, что на Cal\tl0M деле

13*'
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его :констру:кция ПрИIvrеним:а и к другим: полям. В докладе приводится таКЖе

явная формулаДЛЯ дзета-функции,связаннойс группаl\1ИШевалле - ДИКсона.

В сообщении А. А. Кириллова говорилось о последних результатах,

полученных в теории представлений нильпотентных групп Ли. Il0дробное

изложение этих результатов опубликовано в [22].

В. и. Арнольд, А. А. в."uрuллов, я. 11. Сиnаu
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One of the most remarkable of A.N. Kolmogorov's mathematical achieve
ments is his work on classical mechanics of 1954. A simple and novel idea,
the combination of very classical and essentially modern methods, the
solution of a 200 year-old problem, a clear geometrical picture and great
breadth of outlook - these are the merits of the work. Its deficiency has
been that complete proofs have never been published.

In the present paper, written for Kolmogorov's 60th birthday, an
attempt is made to remedy this deficiency. All the basic ideas are set out
in §1; it is my hope that the expert reader will be able to construct the
proofs from them. The remaining sections are written more formally: 1 in §2
the various theorems and lemmas are formulated, and §3 contains the proofs,
based on the techniques of §4.

It is assumed that the reader is familiar with the foundations of
classical mechanics. It is worth noting, however, that the methods we
expound are applicable not only to conservative dynamical systems, but
also to more general systems of differential equations (cp. [17], [14]).

§I. Introduction

I. I Integrable and non-integrable problems of dynamics. We shall
examine conservative dynamical systems with n degrees of freedom, defined

1 The list of notation given at the end of § 4 should be of help to the
reader.

*

* Editor’s note: translation into English published in Russian Math. Surveys 18 (1963) Translation of
V.I. Arnol’d: Proof of a theorem of A.N. Kolmogorov on the preservation of conditionally periodic
motions under a small perturbation of the Hamiltonian. Uspekhi Mat. Nauk 18:5 (1963), 13–40
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by the canonical equations of motion

ali
p= -aq'

oR
q = (ijJ (1)

with an analytic Hamiltonian H(p, q). The classical methods of dynamics
[1] only enable us to investigate the so-called integrable cases.

EXAMPLE 1. Suppose that the phase-space is the direct product of an
n-dimensional torus by a domain of n-dimensional euclidean space. Let
q(mod 2n) be the angular coordinates on the torus, let p vary in the
euclidean space, and let the Hamiltonian depend only on p: H= H(p).
Hamilton's equations (1) take the form

q = (I) (p)

and are immediately integrable. Every torus p = const. is invariant; if
the frequency ratios wi are incommensurable (k 1 Wi + ... + knwn = 0 with
integral ki implies that ki = 0), then the motion is called quasi-periodic
with n frequency ratios Wi, ... , wn; it is easy to prove that the traject
ory pet), q(t) is everywhere dense in the torus. The variables p, q of
example 1 are called operator - angle variables.

A great many integrable problems are known at present. The solution of
all these problems with n degrees of freedom is based on the fact that
there exist (and can be found) n single-valued first integrals in in
volution. 1

It can be shown [2] that the existence of such integrals has as a
consequence the following picture of the behaviour of the trajectories in
the 2n-dimensional phase-space p, q. A certain singular (2n-l)-dimensional
set divides the phase-space into invariant domains. Each of these is
stratified into invariant n-dimensional manifolds. If the domain is bounded,
then these manifolds are tori carrying the quasi-periodic motions. In such
a domain we can introduce the operator-angle coordinates of example 1. If
n first integrals in involution have already been found, then the canonical
transformation introducing the angle variables is given by a quadrature.

EXAMPLE 2. Integrable problems: The two-body problem. The problem of
motion under attraction to two fixed centres. The motion of a free point in
a geodesic on a triaxial ellipsoid. A heavy, symmetric, rigid body fixed at
a point on its axis. A free rigid body not subject to a gravitational field.
Linear oscillations.

Non-integrable 2 problems: the n-body problem, including the so-called
planar, bounded, circular problem of three bodies. The motion of a free
point in a geodesic on a convex surface. A heavy, asymmetric, rigid body.
Non-linear oscillations with n > 1 degrees of freedom.

The discovery of integrable cases was the major interest of the XIXth
century (Jacobi, Liouville, Kovalevska and others). But with Poincare's
work it became clear that the general dynamical system is non-integrable,
1

2

Functions [(p, q) and g(p, q) are said to be in involution if their Poisson

(
at 8g 0/ Og) . . .bracket -- - - - -- vanIshes IdentIcally.
ap oq 8q 8p

More precisely, "not integrated", as the proofs of non-integrability are
complicated, and have been carried out rigorously only in particular cases
(cf. [1], [3J).
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the integrals are not only unknown, but do not exist at all, because the
trajectories, in the large, do not lie on invariant n-dimensional manifolds.

1.2 Perturbation Theory. Let us suppose that the system is disturbed
from an integrable motion by a small "perturbation"; in the notation of
example 1

H(p, q)=Ho(p)+eH1(p, q)+ ... , (2)

where E is small and Hi has period 2n in q. According to Poincare [4] the
investigation of this case is the fundamental problem of dynamics. How
does the perturbation EH1 influence the behaviour of the trajectories, as
t ~ ex:>? Will there still be invariant tori? Will the traj ectory at least
remain close to the torus p = const.?

A comparison of the integrable and non-integrable problems of example
2 shows the importance of these questions for mechanics. A complete
answer to them would contain, in particular, a solution of the problem of
the stability of the planetary system.

A special application of perturbation theory was developed long ago in
astronomy for the approximate investigation of trajectories. If the
canonical transformation p, q ~ pi, q' takes H into the form

H (p, q) = I{~ (p') + e2!i; (p', q') + ... , (3)

then during a time-interval t ~ 8- 1 the motion pi (t), q' (t) will differ
from the quasi-periodic motion described by H~(p/) by a quantity ~E.

Returning to p, q we obtain for pet), q(t) approximate expressions with
errors of order E, for a time-interval t ~ 8- 1

• If greater precision is
required, we may look for a subst i tut ion p', q I ~ p", q" taking H to the
form

H ( ) H " ( ") + 3 l.[" (" ") Ip, q = 0 p g .l.J 1 P ,q I··:

The error will now be ~E3t. If the successive approximations converge,
then in th~ limit we obtain H(p, q) = Hooo(poo), i.e. the system is integrable:
the tori poo(p, q) = const. are invariant and are filled by the trajectories
of quasi-periodic motions.

In carrying out the programme we have just described we encounter two
difficulties:

1°. Small denominators. We look for a canonical transformation
, , , as I oS

p, q ~ p , q of the form p = p + oq' q = q + op I ,

S(p', q) = k Sk(p')ei(kq). ThefunctionH(p, q), in the new coordinates
kiO

pi, q', will be written in the form

H o (p) + gifl (p) + elll (p, q) + ·.· =

=Ho(p')+eH1(p')+·e [~!!~~+flIJ+ g2 ...
iJp oq

In order to obtain (3) we must eliminate the dependence on q of terms of

order E, 1. e. we must have Cw. ~~) + ill = 0 or
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(4)s (p') = ihk (p')
k (00, k) , where iil (p, q) = ~ hk (p) ei(k, q).

h4=O

For certain "resonance" values wthe denominator (W, k) is arbitrarily
small for suitable k. These small denominators cast suspicion on the
validity of our formal transformations.

2°. Divergence of Approximations. There are cases where the series of
approximations terminates and therefore converges. Such cases were in
vestigated in detail by Birkhoff [5]. However, Siegel [3] showed that in
general, including the present case, the approximations diverge. The
structure of the trajectories described in example 1 would follow from the
convergence. In fact, the trajectories of the perturbed system cannot lie
on the invariant tori.

Let us suppose that det I~I i O. Then in any neighbourhood of an

invariant torus of the perturbed system there is an n-dimensional torus
on which all the trajectories are closed. Under a small perturbation this
n-dimensional manifold of closed trajectories collapses, in general.
Consequently the series arising from the perturbation method fails, in

general, to converge in any
domain of the phase space.

In spite of their great
efforts over a long period
Poincare, Birkhoff. Siegel and
others have not succeeded in
making use of perturbation
theory to obtain precise
~laljtative conclusions about
the behaviour of the majority
of the traj ectories, as t -+ 00.

The non-integrable problems of
dynamics appeared inaccessible

Fig. 1. to the tools of modern math
ematics.

1.3 The theorem of A. N. Kolmogorov. Essential progress was made in

1954, when A. N. Kolmogorov proved [6]. [7] that if det la~:~il ¥ O. then

under a small analytic perturbation the majority of the invariant tori do
not collapse but are only slightly deformed. These tori form a nowhere
dense, closed set whose complement has measure small with E.

Apart from this little is known about the behaviour of the traject
ories. In the case of a system with two degrees of freedom the phase space
is four-dimensional. The three-dimensional invariant manifold H= const.
is divided by two-dimensional invariant tori of the perturbed system. The
complementary domain has the form of gaps through which the trajectories
cannot leave, since they cannot intersect the invariant tori (see Fig. 1).
For n > 2 the invariant n-dimensional tori do not separate the (2n-l)
dimensional energy levels H = const., and trajectories from the gaps can
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a priori go to infinity.
We now indicate some applications of A.N. Kolmogorov's theorem and its

generalizations.
EXAMPLE 3. 1 The theorem is applicable to the problem of the motion of

a point on an analytic surface close to a surface of rotation or to a
triaxial ellipsiod and also enables us to establish the stability of the
motion of a planetoid in the planar, bounded, circular three body problem.

The theorem is not applicable, however, in those cases where the
motion of the unperturbed system is described by a smaller number of
frequencies than in the perturbed system (so-called degeneracy), since

in these cases det! aZ/fo I '" O. The so-called limi t ing degeneracy occurring
l0P i OPj I

in the theory of oscillations when investigating the stability of equili
brium configurations and periodic motions is not covered. The paper [6]
stimulated a series of studies in this direction [8], [9].

EXAMPLE 4. The stability of equilibrium configurations and periodic
motions is established for systems with two degrees of freedom in the so
called general elliptic case [8J, in particular the stability of the
Lagrange periodic solution of the planar, bounded, circular three body
problem [9J.

The n-dimensional invariant tori for the perturbation of a degenerate
system carrying out a motion with k < n frequencies arise from sets of
k-dimensional tori compl&ted by quasi-periodic trajectories with k Hfast"
and n - k Hsl ow " frequencies. This phenomenon was studied in [10J, [11],
[12] .

~XAMPLE 5. The eternal adiabatic invariance of the variables of the
system is established for a non-linear oscillating system with one degree of
freedom subject to a slow periodic variation of the Hamiltonian. The
eternal retention of a charged particle is established for an axially
symmetric magnetic field [llJ. In the n-body problem it is proved that if
the masses, eccentricities, and inclinations of the planets are sufficient
ly small, then for the majority of initial conditions the motion is quasi
periodic and the major arcs of the orbits always remain near their
initial positions, (in the case of three bodies the eccentricities need
only be bounded from above, but not necessarily by a very small constant)
[12] .

The recent important papers by J. Mozer [13J, [14J abandon the require
ment of analyticity of the Hamiltonian and substitute instead the require
ment that several hundred derivatives exist. This progress is very sig
nificant and rather unexpected. Moser makes use of a method of Newton's
type, proposed by A.N. Kolmogorov, in combination with a smoothing process
analogous to that introduced by Nash [15J.

I.~. Newton's method. The following variant of perturbation theory
is at the basis of Kolmogorov's proof. Let us suppose that the
perturbation eH i + ... in (2) admits the estimate ieH1 + ... 1 « M« 1 for
IIm.ql ~ p. Then the coefficients hk decrease in geometric progression

1 We restrict ourselves here to examples explicitly considered by A.N.
Kolmogorov in his lectures in Moscow in 1957 and in Paris in 1956.
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like Me- 1kIP • As is known from the theory of diophantine approximation,
for the majority of w the small denominators (W, k) admit a lower bound of
the form \ (W, k)! ~ K\kl-(n+l). With the aid of this bound we obtain for
€2H~ + .. 0 a bound of the form M2 o-v for 11m q' I ~ p - 0. The next
approximation gives an error of order M4

, and so on, the error squaring
each time, as is typical of Newton's method of tangents [1~]. A rapid
convergence of this nature overcomes the influence of the small denominators,
and the series converges for the majority of the W. To prove convergence we
choose a sufficiently small °1 > 0, sufficiently large T, and with M~~ 0l T

we establish for the s-th approximation the inequalities IH(s) I ~ Os 1 = Ms
for 11m q(s) I ~ Ps , Ps > Pro > 0, 0S+l = Os3/2 (s = 1, 2, ... ).

Kolmogorov published only a sketch of a proof of his theorem 1
• A

detailed proof is set out below, but it should be noted that the author of
the present paper is alone responsible for the unwieldy details of the
proof. These details are probably very different from those of the original
proof. Our account is constructed so that it can easily be generalized to
the more complicated cases [8]-[12J. We restrict ourselves to the analytic
case and do not make use of Mozer's results.

In the construction proposed by Kolmogorov each invariant torus of the
perturbed system is found by the aid of a sequence of approximations con
structed in decreasing neighbourhoods of the unknown torus. Also, in the
formula (4) the collection of frequencies w is fixed in advance and does
not depend on p.

In our proof we return to the original idea ~f the perturbation method,
but do not fix wand consider it in (4) as a function W(p'). In order to
avoid dealing with an infinite number of small denominators at once we
restrict ourselves in each approximation to a finite number Ns of harmonics,
each time relating the leading harmonics to the terms of highest order.
Thanks to this we are able to manage without Borel's monogenic functions in
obtaining a bound for the measure of the complementary domain.

1.5 Unsolved problems. The methods developed here can certainly be
applied to various concrete problems of dynamics, for example the investi
gation of moon orbits, asymmetrical tops, and the discovery of the so
called magnetic surfaces. However, I want to dwell on some problem of a
more fundamental nature (see also [20]).

10
• Zones of Instability. How do the trajectories that begin in the

"gaps" of 1.3 behave? Can they, for n > 2, depart very far from the
torus p = const.? In particular, are the equilibrium configurations and
periodic solutions of general elliptic type stable when the number of
degrees of freedom n exceeds 2? The simplest problem is the canonical
mapping of the four-dimensional space.

For n = 2 the motion in a zone of instability is of a different
character (see [5], [21J). As a rough model we can consider the permuta
tion of the sub-intervals 61 = [0, a), 62 = [a, b), 63 = [b, 1) of the
interval [0, 1), into the order ~3' ~2' ~1.

2°. Large Perturbations. Quasi-periodic motions are observed only
for very small values of the perturbation parameter E. Do they occur also
for large perturbations? For the n-body problem, with any values for the

For the first detailed account of the method see [17J.
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masses, does there exist a set of initial conditions of positive measure
giving rise to bounded motions?

The following typical problems are also interesting in their own right:
the reduction to rotations of analytic mappings of a circle onto
itself (cp. [17]), and the Floquet theory for linear differential equations
with quasi-periodic coefficients (cp. [22], [23J).

3°. Dynamical systems of classical mechanics. By a dynamical system
we understand a one-parameter group of measure-preserving transformations
of a smooth manifold, defined by differential equations ([5] I [7]). Suppose
that the canonical equations with Hamiltonian H(p, q) have the first
integrals F 1 = H, F2 , ••• , Fk (Fi(P, q) - univalent functions). Then on
each invariant manifold M : F = const. we have a dynamical system. For
example geodesic streams (see, for example, [24J) and quasi-periodic
motions (see 1.1) can be considered in this way. A series of other systems
has recently been studied ([25], [26J). Do they occur in mechanics, in
particular for H= T + U (where T is the kinetic and U the potential
energy)? What restrictions must be imposed on the topology of the manifold
M? These questions are related to the study of canonical and contact
structures on manifolds, and demand an examination in the large of the
theorems of classical dynamics (see [2).

§2. Formulation of the Theorems

2. I. THEOREM 1. Suppose that the Hamiltonian function H(p, q) tS

analytic in the domain F: pEG, 11m ql ~ p and has peri,od 2TC in
q = ql, ... , qn. Let H= Ho(p) + H1 (p, q), where 1 in the domain F

detl a~2~~j-I=t=O. (1)

Then for any X > 0 there exists M = M(x, p, G, Ho) > 0 such that if in F
we have

(2)

then the motion defined by the canonical equations

(3)all
q == -ap ,

a/I
P===---;Tq '

has the following properties:
1°. There exists a decomposition ReF = F1 + F2 , where F1 is in

variant (i.e. together with the point p, q contains the trajectory pet),
q(t) of the motion (3) passing through it), and F2 is small:
mes F '2 ~ X mes F.

o

1 Instead of (1) it is sufficient that the determinant
iJ2IIo a/lo

api ()Pi api
det ano

iJPi

of order n + 1 should not vanish.
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2°. F1 is composed of invariant n-dimensional analytic tori I~,

defined parametrically by the equations

P=PW+!(J) (Q), q==Q+gw(Q), (4)

(5)

where !w, gw are analytic functions of period 2n in Q= Q1, .•• , Qn, and
w is a parameter determining the torus I w.

3°. The invariant tori I w differ little from the tori p = pw:

Ifw(Q)I<x, Igw(Q)l<x.

4°. The motion (3) on the torus I w is quasi-periodic with n
frequencies w1 , 00', Wn :

Q== w, whe r e ffi == ~1/0_1 (f))
iJp Pw

Theorem 1 is proved in §3 with the aid of the construction provided
by the following inductive theorem.

2.2 THEOREM 2. Consider the function H(p, q), the domains F, G, 0,
and the positive numbers D, M, a, 0, p, S, y, 0, x. We suppose that:

1°. In the domain F(p € G, 11m ql ~ P ~ 1) the function

ts analyt ic and

1111 1<;;M, eldpl,~ld,,'li<8Idpl, 0<8<1<8<00,

where A is a diffeomorphism p ~ W = ~: of the domain G onto the domain n
of the type D (see §4, 4.1).

2°. The inequality
0<6(5) (n, 8, 0, Q, x, D) =

== min {6(1) (n; 0,58; 28); 6(2) (n, x, Q); {)(3) (n, 8, 0,x, D); (6(4) (x, fl)}

is sat tsfied, where o( 1) is defined in 2.3,

{)(2) == min {10--tn
Q4n ; 4--l tL

; x}, {)(4) == x (2 + 8-1)-1,

{)(3) == min {e 2H (32n 2 -t- '100n)-2tl; (6 -+ 1/lE»-1; 4-n-2xone- nD-1n-1 j.
1 n

3°. Let ~ = 03
, Y= 04 , M = oT, T = 8n + 24. Suppose also that

0 1 = 0, and for s ~ 1 put
1
-n

8S + 1 == O~~21' ~s = {)~, Vs == O.~, M s = Or·

Then under the hypotheses 1°, 2°, 3° there exists a sequence of domains
Fo = F, Fl , F2 , ••• of the form Fs : Ps € Gs , 11m Qs I ~ ps and a sequence
of canonical diffeomorphisms Bs : Ps , Q; -+PS - l , QS-l of the domains Fs
into FS - l such that for s ~ 1

1.

2.

1·IB8-EI<~s, IdBs l<2I dxsl, FsCFs_l-~,'

Q
Qs > -3-'

For p, q = B1B2 ••• Bs(Ps , Qs) where Ps , Qs € Fs we have
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H(p, q)=II<S) (Ps, Qs)=H~)(Ps)+H~S)(P8' Qs),

I
iJlliS) I I iJ2H18) I!HiS) i< M s+ lt ax;- < ~S~S+l' • ax: < 6s (x, = Ps, Qs)

. OHb s )
3. The mapptng As : Ps -+ oP

s
is a diffeomorphism of the domain Gs •

such that

~ldP8\~'dA81<eldP81, IAs-As_l \ < ~868' where 8=0,58,8=28.

4. mes(G-Gs)<x mesG.
The proof of Theorem 2 is given in §3 and makes use of the inductive

structure Bs , Fs ; each step being based on the following lemma.
2.3 The inductive lemma. We consider the function H(p, q), domains

F, G, H, and positive numbers a, 0, p, ~, y, 0, M, K. We suppose that
1°. In the domain F(p € G, 11m ql ~ p) the function

H (p, q) = Ho(p) +H 1 (p, q).
is analytic and

IHll~M, 8/dp/<jdA/<8Idpl, 0<8<1<8<00)

where A is a diffeomorphism p -+ W =~ of the domain G onto the domain o.
2°. The numbers ~t y, 0, K satisfy the inequalities

«5<6(1) (n, a, 8) = min {60 (n, 28); 2-1n-18},

10~<2"<Q< 1, 3p<26, 2P<K,
where 0(0) is defined in 2.4.

3°. M< 611 K[32, where V = 2n + 3.
Then there exists a domain F' : P € G1 C G, 11m QI ~ p' = p - 3y and a

canonical diffeomorphism B : P, Q -+ p, q of the domain F' into F, such that

1. IB-EI<P, IdBI<2Idxl, F'CF-~(x=P, Q).
2. H(p, q) = H(p) + H2 (P, Q) where in the domain P, Q € F'

IH 2 1 < M' = M26-2,,~-2,

I fJH2 I< lJtl' I 8
2
H 2 I< 2M'

ax ~'ax2 ~2·

3. The mapping A' : P -+ ~ is a diffeomorphism of G1 onto 0 1 • and

O/ lcIPl < IdA'l < at IdPl, where 0' = 8(1 - 0), 8' = e(l + 0) and

lA' - AI < ~o, and in the notation of 2.4

where

1 1
d=(5+7e)~, N=ylog2M.

4. mes (G - G1) < 8-rt mes (Q - 01), where

Q1 = QKN -d, iT= (6 +76) p.
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The proof is given in §3. The following lemma is crucial to the argu
ment.

2.~ Fundamental lemma. COnsider the function H(p~ q), the domains
F, G, 0, and the positive numbers a, 0, p, ~, y, 6, M, K. We suppose that

10
• In the domain F(p € G, 11m q I ~ p) the function

H (p, g) = H (p) -t- fi (p, g)

is analytic and

Iif (p, q) I< M,

~ Hdp, q)dq=O, 9Idpl<ldAI<:8Idpl (0<9<1<8<00).

where A is a diffeomorphism p ~ w of G onto the domain Q (whose points
cif

are (t,) = op ).
20

. The numbers ~, y, 6, K satisfy the inequalities

6 < ~(O) (n, 8) == min {Li 1, £;:1, £31 e-1 ; L41},

106<2V<Q< 1, 3~<2cS, 2~<K,

whe re L i (n) is defined in 3. 1.
30. M < OVK~2, where V = 2n + 3.

We set N = ~ log ~ and GKN = A- 1
0KN. where 0KN consists of those w

for which I(w, k)\ ~Klkl-(n+1) for all integral k, 0 < Ikl < N.
Then in the domain P € GKN - 2~, 11m QI ~ p - 2y there exists a

diffeomorphism B : P, Q ~ p, q such that

1. IB-EI <~, IdBI < 21dxl (x=P, Q).
2. H(p, q)=H(P)-1-H2(P, Q),where(p, q)=B(P, Q) and for PEGKN

- 2~, 11m Q 1< Q- 21', IH 2 (P, Q) I< M26-2v~-2.

§3. Proofs

3. I. Proof of the fundamental lemma. 10
• The canonical transformation

with generating function Pq + S(P, q)

p=P+Sq , Q=q+Sp

takes H(p, q) into the form

H (p, q) = H (P) + ~1 + ~2+ ~3 + ~4 (P, Q),
where

1:1 = (00 (P), Sq) + [H (P, q)]N,

- - ( ail)
~2=H(p)-H(P)- p-P, ap ,

~3 = il (P, q) - [il (P, q)]N'

(1)

(2)
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~4 = jj (p, q) - jj (P, q),

ii (P, q) = L'hk (P) ei(k, q),

(il (P, q)JN = ~ hdP) ei(k, q), ill (P) = a~~p)
O<lkl<N

and the variables p, q are given in terms of P, Qby (1).
20

• In order that ~1 =0 we set

S(P, q)== ~ Sk(P)ei(R,q),
O<IRI<N

19

where
(3)

For P € GKN we have \(W, k)1 ~ Klkl-(n+1) (0 < Ikl < N). By 20 A of 4.2
and condition 10

. of Lemma 2.4 we have Ihkl ~ Me- 1kIP• Hence by (8) 10
. of

4.2 we have
M -Iklp L L

ISk(P)1 ~ e --~elkI6=M __o_e-lki(p-6)
~ k 6V1 K6v1 '

where Vi = n + 1, Lo = v~1e-V1 and so by 2°8 of 4.2 we have, for P € GKN

and 11m q I ~ p - 20,

IS (P, q) I< :6~~ (L5 = 4n Lo, V2 = 2n +1).

3°. Since M < OV K{32, 0 < L;1 (L 2 = 16nL 5 , 'J = 2n + 3) we have
ML s < (32 °Kov 2 16n' Thus, by 3 · of 4.3, the equations (1) define a canonical

diffeomorphism B of the domain

P EGKN - 2~, 11m QI-<Q- 56<Q - 26 - 3~

(since 3~ ~ 20), moreover

IB-EI< MLs <A, IdBI<2Idxl, IP I MLs
KP6v2 t' - P < K6v2+1

(x=P, Q).
4°. We estimate the quantity I 2 by Taylor's formula (4°. of 4.2). If

PEGKN -2p,IImQI<Q-56,

then from a2
[j ~ e it follows (in view of 0 < L;1 e -\

OPiOPj
L 3 = 0,5Lgn 2

) that

5°. The estimate for I 3 is established in C) 2°. 4.2. Since

Ihkl ~ Me- 1k1p, for P € G, 11m QI .~ p - y - 0, N = ! log! we have (iny M
view of 0 < L;'1. L4 = 2(2;)")
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M2L4 M2
11331 < 6V1 < ~vl+1 •

6°. The estimate for ~4 is obtained from the Lagrange formula (4°. 4.2).
From

there follows

I1m q I< Q- 46 andl P - p , < ~;
and so

P + 'A (p - P) EGKN - ~ (I 'A 1<1)
so that by Cauchy (3°. 4.2),

l
aH I M
ap <T·

For 0 < L;1, L2 = 16Lsn we have

I~ I M2L5n AJ2
4 < K~6"2+1 < K~6V2+2 •

7°. Combining the estimates for ~, I 3 , I 4 and using the conditions
~ < K, 0 < Li 1 = 12- 1

, Y > 30, V = 2n + 3, Vi = n + 1, v2 = 2n + 1 we
obtain, for P € GKN - 2~, 11m QI .< P - 2y ~ P - 50 - Y the inequalities

I [
6-(2"2+3) 6-(\'2+ 2) ]

131 + 132 + 13d--13,1 <M2 ~-r---+- 6-(Vl+ l ) + Kp < M 26-2v ~-2,

as required. The constants Li are given by

L1 = 12, L2 = 4n +2ne-(n+l) (n + 1)n+t, £3 = 2~n-ln2e-(2n+2) (n + 1)2n+2,

£4 = 2n+1e-nnn •

3.2. Proof of the inductive lemma. 1°. We set

where

~ Hdp, q) dq = O.

Then

where

H (p) = H o (p) + HI (p).

Consider the mapping A': p ~ ~ = A(p) + ~(p). By the conditions 2°.,
00 P

30. of Lemma 2.3 we have M < 2n ~2, 0 < 1, 0 < 1. Consequently, by Cauchy

(3°. 4.2), for p € G - /3 we have I~I < ~ < 130. Id~1 < OOldpl. We now apply

the lemma of 5°. 4.3 concerning the variation of the frequency, putting
b = 3~. By 5°. 4.3 A1 maps G = A'-1 0 1 diffeomorphically onto
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0 1 = O«N - d where d = (5 + 78)f3 and G1 + 3f3 is mapped into OKN. Further
more, the conclusions 3 and 4 of the inductive lemma are also valid.

20
• We now apply the basic lemma to the function

H(p, q) = H(p) + fi1 (p, q) in the domain F. Since, by 10
., IH1 1 ~ 2W and

8'ldpl.< IdA'l .< 8'IdpI, the conditions of the inductive lemma imply that
we may apply the basic lemma. This latter gives us a diffeomorphism
B: P, Q -+ p, q of the domain P € GKN - 2f3, 11m QI .< P - 2y and the
inequality IH2 (P, Q)I .< M'. Hence, by Cauchy (30. 4.2). for P € GKN - 2~,

11m QI ~ P - 3y < P - 2y - ~ we obtain ihe estimates of conclusion 2 of
the inductive lemma.

30. According to 10 ., for P, Q € F' : P € G1 • 11m QI ~ P - 3y there
follows P € GKN - 3f3. But then, by 20 ., the conclusions 1 and 2 of the
inductive lemma follow, and"this completes the proof.

3.3. Proof of Theorem 2. 1°. Put K = 1<.0 1 • We shall show that under
the conditions of Theorem 2 the inductive lemma is applicable. In fact,
the condition 1°. of the inductive lemma follows from condition 1°. of
Theorem 2. 0 < 0(1) of the inductive lemma follows from the inequality
o< 0(5) of Theorem 2. Since 0 < 0(2), condition 2°. of the inductive
lemma is satisfied because

'Y < O,1e; 'Y < 4-1
;

t06 < 1061hlP/4n < 10.4-21lV< 2)', 363 < 3.4-16 < 26, 263 < 62 < 6x=K.

Finally, condition 30. follows from the inequality
8n + 24 = T > v + 2 + 6 = 2n + 11.

2°. Since 0 < 0(2), we easily obtain for 5 ~ 1 the inequalities

6s -t- 6s+1 -t- ... < 28s , 3 (Vs + "8+1 + . · .) < 6ys < 6)'1 < 2 f. (4)

By (4), if we put ()° = (), e ° = El, Po = p, () s = 0s _ 1 (1 - Os),

as = 8S +1 (1 + Os), Ps = PS-1 - 3ys (5 = I, 2, ... ), we obtain the
inequalities

(5)

It is easy to verify that for s ~ 1 the numbers ~s, ys, os. Ms, K satisfy
the inequalities of condition 20 • of the inductive lemma with the con
stants 0S-1, 8S - 1 ' PS-l. This was established in 10

. for s = 1.
3°. From °< 0(3) it follows in view of the inequality 1°. 4.2,

1 1for Ns = -log - that
Ys ?Ms

1 ( 1)n 1
68iV~-~; 68(6~ log6;(T+l»)n < <Ss 4n (T + 1) e-16~n < 6~(4n (1'.+ 1) e-1)7l < 1. (6)

Put
a8 = ~ m-2•

NS-l~m<Ns

Since ~(Js < 2, 0 < 5(3) and (6) imply the inequalities
00 ex>

~ [Kos+ (6 -t- 78s) ~sN~] < ~ [Kos -~. 68 ] < 461 < XD-l, (7)
8=1 &=1
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L==n2n.+2 ..D CC~ (2 ~ )n L D,

4°. Suppose that the quantities

.·1s- 1 ,. F s- b Gs- b H<s-l) (Ps - b QS-l), QS-b 8s- b 8 S- b Qs-l (88- 1 )

and ~s, Ys, Os, Mk satisfy the conditions of the inductive lemma. Then
that lemma defines the quantities

A', B, F', G}, Il(P)~1/2(P, Q), Ql' Qb 0',8', Q',

which we denote (in the notation of 2°.), respectively, by

.A s , B s , F s , Gs , 11(8) (P s , Qs) = H~S) (P s ) + IliS
) (P s , Qs), Qs, [~s, Os, 8 s , Qs· (8 s )

From conclusion 2 of the inductive lemma in the form T = 8n + 24 we obtain,
in Fs ,

3 ,

IlIes) I< JI126-2vA-2 == 62T-4n-12 == 621 == 6T = AI +1.
1 s s Ps ~ s 8+1 S

(9)

The conclusions 1, 2, 3 of the inductive lemma with 2°. and (9) imply
that if the quantities (8 S - 1 ) and ~s, Ys, Os, Ms, K satisfy the conditions
of the inductive lemma, then so do the quantities (8 s ) and SS+l' YS+l' 0S+l'
MS +1 , K.

5°. But by 10
. the quantities (80) (where Ao = A, Fo = F, Go = G,

H(O) = H, Po = p, Qo = q and Sl, Yl, 01' Ml , K satisfy the conditions of
the inductive lemma. Consequently it can be applied for all s, and so we
obtain the quantities (8 s ) for s = 1, 2, .... The conclusions 1, 2 and 3
of Theorem 2 now follow from conclusions 1, 2 and 3 of the inductive
lemma in the form (5). We have, however, not yet proved that Fs is non
empty. This follows from conclusion 4 of Theorem 2, which we shall now
prove.

6°. By conclusions 3 and 4 of the inductive lemma we have

mes (G8-1 - Gs) -< e-n mes (Qs-l - Qs), (10)

where Os= (US - 1 )KNs - ds, ds ="(6 + 7es)~s and {ls-l are obtained from
n by means of the formulae

Qo = Q, Q m = (Qm-l)KNrn - dm,
1 1

dm=(5+7es)~s, Nm=YmlOg2Jltlm (m=1, 2, ... ,8-1).

Since dm > 0, 1 < N1 < N2 < ... and the domain n = 00 is of type D by
condition 1°. of Theorem 2, we have by the arithmetical lemma (3°. of 4.1)

mes (QS-l - Qs) -< DL [KG s+ (6 -t- 78s) ~sN~] mes Q.

But since mes n ~ en mes G, (10), (11), (7) lead to

mes(G - Gs) =

(11 )

8 8

= ~ mes (Gm- 1 - Gm ) < 2j [KGm+ (6 + 78nl) ~mN~] D mes G< xmesG. (12)
m=l m=l

Consequently conclusion 4 of Theorem 2 is establisbed.
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3.q. Proof of Theorem I. In this proof all the variables are to be
taken as real, unless otherwise stated.

1°. Because of inequality (1) of Theorem I, for any x > 0 we may find
positive numbers e, a, D, m depending only on x, GLHo such tha1 the domain
C can be represented in the form C( 1)U ... UG(m)U G, where mes G < 'K./2 and
each domain C(i) is transformed diffeomorphically by the mapping

A : p .... ~~o into a domain n( i) of type D (see 10
• of 4. 1); moreover the

inequalities .
eId p I<; Id ~11-< e Id p I (0<8<1<O<00).

are satisfied in each of the domains G(i).
2°. If we can find M(x, p, G(i), Ho ) in each of the domains C(i),

then

gives the proof of Theorem 1. We shall therefore assume henceforth that
condition 1°. of Theorem 2 is satisfied in the domain G. We shall prove
Theorem 1 assuming M = OlT, T = 8n + 24, 01 < 0(5) (n, 0, a, p, 1<., D),
where the constant 0(5) is defined in Theorem 2. In view of (2) §1 the
conditions of Theorem 2 are satisfied and so its conclusion holds.

3°. COnvergence. Theorem 2 yields the sequences Fs and Bs • From
~s = 0; < 4- s and the conclusion 1 of Theorem 2 all the conditions of the
lemma on convergence of 1°. of 4.4 follow. According to this lemma the
sequence of diffeomorphisms Ss =B1 ,B2 ••• Bs (5 = 1, 2, ... ) on the
compactum

F oo = n Fs C·PJ,ECoc, IImCco!<Q:», where Coc = nc" Qoo>t)
s?O .c:::? 0

converge to a certain mapping Soo. From conclusion 4 of Theorem 2
mes Goo ~ (1 - X) mes G. But Ss are canonical transformations and so pre
serve measure, so that mes SsFoo = mes Foo • By 4°. 4.4 it follows that

mes SooF00 >- lim llles ,SsF00 == (2n)7l mesGex ); (2n)11 (1 - x) mes G = (1-x) DlesF.
s~oo •

(13)
We set F' = SooFoo and prove the assertions 1-4 of Theorem 1.

4°. Invariance. It follows from conclusion 3 of Theorem 2 that the
sequence of diffeomorphisms As converges on Goo to a mapping Am' where

(14)
1n==s + t

Let us write the canonical equations with Hamiltonian H(s) (Ps , Qs) in
the form

(15,)

The transformations 5s are canonical and so if xs(t) is the solution
of the equations (15 s ), then x(t) = Ssx(t) satisfies (150). We shall show
that if x~ = Pro, Qoo € Foo putting Xoo = 0, Am (Pm) and xoo(t) is the solution
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of the equation (1500) with initial conditions in Foo, then xoo(t) € Foo and
Soo x oo( t) belongs to F and satisfies (150 ).

o -We use leoma 3 . of 4.4. Suppose that for X s = E..s, Qs' Xs (xs ) = 0,
As (Ps ). By conclusion 2 of Theorem 2 we have Ixs - Xs I < ~ ~S+l in Fs.
From (14) we obtain Ixoo - xsi .< ~S+l in Foo• Also, from the conclusions 2
and 3 of Theorem 2 we obtain

I~:: I<2n<'>s+8 < n+e.

Lemma 3°. of 4.4 now shows that S~oo(t) satisfies (150) =3 §2.
5°. Let us introduce the notation p(.U = A- 1 AooPoo, where Poo € Goo.

Since (see 4°.) IAPoo - ~Poo I .< ~, we have IAPoo - Apwl < al and by lemma
4°. of 4.3 Ipoo - pwl .< ~10-1. Also, by the lemma of 3°. on convergence we
have Isoo - EI .< 2f3. Thus, for Poo' Qoo € Foo we have (from the condition
6 < 6(4) of Theorem 2)

ISoo (Poo , Qoo) - (Pw,~Qoo) I <~ ~I (2 +a-I) < x. (16)

6°. The equations p, q = Soo(A';1 w, Q) for each fixed P00 = A;1 W € Goo
can be written in the form (4) of the conclusion 2 of Theorem 1. They
define the torus Tw and the coordinates Q = Qoo on it. The invariance of I~

is proved in 4°. and also the equation (6) of conclusion 4 of Theorem 1.
The analyticity of Soo with respect to Qoo follows from the uniform con
vergence of Ss for each fixed Poo € Goo in the complex domain 11m Qool ~ Poo.
Conclusion 3 of Theorem 1 follows from (16). This completes the proof of
Theorem 1.

§ij. Technical Lemmas

ij. I. The arithmetical lemma. This lemma expresses the incommensurabil
ity of two random numbers.

1°. Domains of type D. Let n be a bounded domain in a space w and
let the boundary of n consist of a finite number of pieces of smooth
manifolds. It is easy to see there exists a constant D> 0 such that for
any d2 > d 1 > 0

mes [(Q - dl )" (Q - d2)] -<: D (d2 - dl ) mes Q. (1)

We shall say that n is a domain of type D.
An h/2-neighbourhood of a hyperplane will be called a strip r of

width h. For example, the inequality I(k, w) I ~ a defines a strip r, and
if Ikil ~ 1 then the width of r is not greater than 2a. It is easy to see
that in an n-dimensional space W

mes (Q nf) -<: Dnh mes Q. (2)

Let 0' ~ n. We shall say that 0' is of type N in {} if
0' = ({} - d )\U( ri ) where d > 0 and Uri is a union of not more than N
strips of any width. Clearly, for d2 > d1 >0

(Q' - d1),,(Q'-d2) ~ [(Q - d -dl )"(Q-d-d2)] U{[(U r t +d2),,(uri+d1)] nQ},

and so by (1) and (2) we have
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mes [(0' -d1)"'(Q' -d2)] <D (1 +hN) (d2 -d1 ) mesQ. (3)

2°. Integral Points. The number of different vectors k with integral
coordinates k 1 • •••• kn , in an n-dimensional space. for which Ikl = m ~ 1
does not exceed 2nmn- 1

• The number of vectors with )k I ~ m does not exceed
211mn •

The proofs are obvious.
3°. The ari thme.t ical lemma. Let ~ be a domain of type D. Denote by

(lKN (where K > 0, N > 1) the set of w € 0 for which

I(k, ro)I>K\kj-" (v=n+1) (4)

for arbitrary integral vectors k, 0.< Ikl < N. Let d1 • d2 , .••• > 0 and
I<N1 .< N2 .< ••. We introduce the domains Us by the relations

Qo=Q, Qs=Q~-1-d8' Q~-l=(Qs-l)KNs (s=1,2, ... ).

L EM MA. For any s ~ 1 and any d > 0 we have

mes [QS-l,,(Q~-1 - d)] -< LD [Ko s + dN~J mes Q, (5)

where

(Js= L m- 2
, N o==1, L=2n + 2n .

.'Vs-l~m<N8

PROOF. First let us convince ourselves that

mes [QS-l"'Q~-1] -< LDK<1s mes Q. (6)

In fact, (4) defines a strip rk of width not greater than 2K Ikl- v by 1°.
The strip rk with Ikl = m is, by 2°., not greater than 2nmn - 1

• (2) leads to

~ mes(Qnr k)<LDKm-2 mesQ.
11l1=m

(7)mes [Q~-1"'(Q~-1 - d)J < d (1-t- 2n2nN~) Dmes Q.

Summing over m for NS - 1 ~ m < Ns we get (6). Also there are not more than
2nmn distinct k with k ~ m. Thus 0;-1 is of type 2n~ in n and according
to (3)

(5) now follows from (6) and (7).
~.2. Analytical lemmas. These lemmas enable us to study the FOurier

coefficients and derivatives of analytic functions in terms of the
functions themselves, and conversely.

1°. Inequalities. For any m > 0, V > 0, 0 > 0

( )
" m6 tm" ~ ~ _c--...- 1 v 1 v

"'" e (,v' log 6" < e (6") · (8)

In fact, the function f(x) = x - vlog x has a minimum for x = v, so
eX e Jl

that y ~ v. Putting x = m0, x = !logo I we obtain (8).
x 'J

2°. Fourier coefficients. Let
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A) If for 11m ql ~ pwe have If(q) I ~ M, then Ifk I ~ Me-I kiP. •

B) If If(q)1 ~ Me- 1k1p, then for 11m ql ~ p - 6 (where 0 < 6 < p < 1)

If (q) 1< 4tt6- nM.

To prove A) we have to shift the contour of integration in the formula

Ik = (2rtt a ~ I (q) e-i(h, q) dq

to ip. To prove B):

I f I< ~ Me- 1h16 = M (1 +2 ~ e-m6)n = M (1 +e-6r1 (1- e-O)-a < 4H o- nM,
R m>O

since (1 + e- S)(1 - e- S)-l < 40- 1 for 0 < 6 < 1.
We introduce the notation

C) If

then for

we have

I 1m q 1 < Q- 0 - y

I ( 2n)1l ill11'\T! I< -- ---- e-Nv
I n e. 6Tl+1 •

In fact, taking 2°. of 4.1 and (8) into account we have

m?1V

since 1 - e-Y > 6 for y > 20, 6 < 0, 5.
3°. Cauchy estimates. If for x € U the function f(x) is analytic and

If(x)1 ~ M, then for x € U - 6

I
8f I -- l~l I 82j i ./ '2j~1

ax I~T' I aX2-1'~ b 2 ·

The proof is by means of the Cauchy inte~ral

f (x) = ~~-: Ir. { (~L~~ .
.btl J ~-- x

4°. The Lagrange and Taylor formulae. If in the segment ab of the
space x = Xl' ••• , Xn the function f(x) (vector-valued, in general:
1= f1, ... , 1m) satisfies the inequality Id/l ~ Cldxl, then
If(b) - f(a) I ~ Clb - al. In particular,

If (b) - f ((l) ; .:;; en i lJ - a :'

if Iofi I~ c. If in the domain IXi - ai I .~ Ibi - ai I the inequality
OX}
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I ( 8J I ) I 8n
2

2f(b)-f(a)- ax a' b-a <~Ib-al·

27

For the proofs it suffices to write down the increments as integrals of
derivat i ves.

~.3. Geometrical Lemmas. These lemmas guarantee the unique inverti
bility of the changes'of variables.

1° 8-displacement. Let U be a closed domain in the euclidean space
R and let A be a continuous mapping of U into R such that lAx - xl < €.
Then ,its image AU contains U - €.

In fact, let Xo € (U - € )\AU. Then the mapping
A*x = xo+e\ Ax- Xo 1-1 (Ax- xo)

is continuous for Ix - xol ~ 8. Consequently the degree d(t) [27] of the
mapping A* of the sphere St8: Ix - xo} = t€ (0 < t ~ 1) onto the sphere
SE does not depend on t. But d(l) = 1, hence Xo € AU.

2°. The inversion of the €-displacement. Under the conditions of 1°.
suppose that Idxl =f. 0 whenever IdAl =f. o. Then A is a diffeomorphism of
the domain U - 48.

FOr let x, y € U - 4€ and Ax = Ay = z. The sphere D of radius 2€ with
centre at the mid-point of the segment xy lies in U - €. The image Axy C D
of the segment xy is a closed arc containing z which can be shrunk in D to
z. Since IdAl =f. 0, it follows, by 1°. that the segment xy shrinks to a
point, leaving its ends fixed. Hence x = y.

3°. The canonical transformation. Let G and U be domains of n
dimensional euclidean spaces P and q. If the function S(P, q) is analytic
in G x U and lsi .~ M ~ l3 2 16- 1 n- 1

, then the substitutions p = P + Sq,
Q = q + Sp define a canonical diffeomorphism B : P, Q-+ p, q of the domain
P € G - 2l3, Q € U - 3~ such that IB - EI ~ Ml3- 1

, IdBl·< 21dxl (x = P, Q),
Ip - p} ~ M6- 1 for Q € U - 313 - 6.

PROOF. For each P € G - 13, by Cauchy (3°. of 4.2), we have, for the
mapping Bp : q -+ q + Sp

i l-'i'p, Sq I<; .lU~-l < O,2~, I tSl

pp , .SPq, Sqq I-< 2M~-2 < 4-1n- 1 •

and so

According to 2°. Bp is a diffeomorphism of the domain q € U - 1,Sl3 and by
1°. its image contains the domain Q € U - 2~. Hence for P € G - ~,

Q € U - 2~ we have a mapping B: P, Q-+ p, q = P + Sq, Bp1 (Q) (where we
substitute q = Bp1(Q) in Sq after differentiating). For P € G - 213,
Q € U - 313 we obtain

II H J: I . 71fR- 1 / U -)R I dB d I' < 0 rid I" !'~ it P <.... ,..,1-" ,. -.r ,0 x I'

3°. now follows from 2°. and the Cauchy estimates (3°. of 4.2).
4°. Let A be a mapping of the sphere Ue(xo) : Ix - xol ~ € and

oldxl ~ IdAl ,~e}dxl. Then
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Vee (Axo) C AlJe (xo) ~ fJee (Axo).

In fact, the right-hand inclusion follows from the Lagrange formula
(4°. of 4.2). Let y(t) = Yo + ty, where Yo = Axo, 0 < t < 00. FOr small t

there is a continuous branch A- 1 (y(t» k UE(xo)' where A- 1 (yo) = xo. Let t
be the greatest t for which A- 1 (y(t» k UE(xo); then IA- 1 (y) - xol = E at
the point y = Yet). But by the Lagrange formula (4°. of 4.2) we have

i A-1y- .t-l-1yo I -< a-II y- Yo I,

and so Iy - Yol ~ Oe, as required.
5°. Lemma concerning the variation of the frequency ratios. Let A be

be a diffeomorphism of the domain G of the space p onto the domain n of
the space w such that oldpl ~ IdAl ~ eldpl. Further, let A' be a mapping
of the domain G - ~: p -+ A' (p) = A(p) + ~(p), where I~(p) I < ~,
Id~1 < OOldpl. Let Oa be a subdomain of fl and ~ > 0, b > 0, 0.< 6 < 1.
Then there exist domains G' , G1 such that

1) G d G - ~ 2 G' :2 G1 + b 2 G1 ,

2) A' is a diffeomorphism of G' , and oldpl < IdA'l < eldpl, where
0' = 0 (1 - 6), fJ' = 8( 1 + <5).

3) A'G 1 = n 1 = flo - d where d = 28b + (S + e)~, A' (G 1 + b) ~ flo.
4) mes (G - G1)'~ o-n mes (n - 0 1 ), where 0 1 = 00 - d,

d :: 2 8 b + (6 + 8) f3.
PROOF. Evidently, for w € A(G - ~) we have IA'A- 1

- El < ~ and
IdA'A- 1 1> (1 - o)ldWl. According to 2°. for w € A(G -~) - 4f3 the mapping
A'A- 1 is a diffeomorphism, and by 1°. we have
AI A- 1 [A(G - ~) - 4f3] 2 A(G - f3) - 5~. Consequently A' is a diffeomorphism
in the domain Gil = A- 1 [A(G - ~) - 4~], and A'G" 2 A(G - ~) - 5~. But by 4°.
A(G - ~) 2 {} - 8", hence A'G" 2 (1' = n - (5 + e)~. Writing G' = A'-1n',
G1 = A'-1n1, where 0 1 = 00 - d, d = 28b + (5 + e)~ we have
0 1 + 28b s: n' and by 4°. G1 + b ~ G'. The conclusi~s 2) and 3) are now
evident. According to 1°. AG1 = AA'-101 :2 0 1 - ~ = 0 1 hence

mes (C - Cl ) = ~ ( det I ~; IYl
dID -< e-n mes (Q - ACl ) -< e-n mes (Q - Ql)

Q-AGI

~.~. Convergence lemmas. 1°. Suppose that a sequence of domains Fs
is given and diffeomorphisms Bs : Fs -+ FS - 1 (s = 1, 2, ... ) such that

1) iBs-EI<:ds,
2) Fs C Fs- 1 - ds'

3) IdBs 1<: 21 dx I,
4) ds <c4-s •

Then the sequence Ss = B1B2 ••• Bs (s = 1, 2, 3, ... ) converges
uniformly in Foo = nFs to a continuous mapping 800 such that 1800 - EI ~ c.

PROOF. Let x € Fs. Then by 1) IBsx - xl ~ ds. It follows from 2)
that the Lagrange formula (4°. of 4.2) may be applied to the segment
x, Bsx and the mapping 8 s - 1• 3) implies that lass - 1 1~ 2s ldxl and so by 4)

IS8X - Ss-IX 1 = ISS-IB8X - Ss-IX 1-< 2S ds -< 2- S c,

as required.
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2°. Let F denote a d-neighbourhood of the segment x = Xo + vt,

o ~ t ~ ~. Let X(x) be a smooth vector field on F, and Ix - vi ~ e. Denote

by x(t) the solution of the equation ~; = X(x) satisfying the initial con

dition x(O) = xo. Then Ix(t) - (xo + vt)1 ~ d for 0 ~ t.~!!..
€

PROOF. Consider yet) = x(t) - (xo + vt). ly(to)1 = d and for

o ~ t ~ to, ly(t)1 < d. Since ~~ ~ ~ for t < to and y(O) = 0, by the

Lagrange formula ly(te)1 ~ Eto and so to ~~, as required.
€

3°. Suppose that, under the conditions of 1°., we are given a smooth

vector field Xo(x) in Fo defining a motion S6(x) : ~ S6(x) = Xo (S6x ) ,

sg(x) = x. Naturally there arise the motions S~ = S~1sbSs and the

corresponding fie lds Xs on Fs : Xs (x) = dd cst x)1 . Let us suppose that
t s t = 0

5) the sequence Xs (x) converges for s -+ (X), X E Foo to Xoo(x), and tn

Foo we have Ixs - xrol ~ dS +1.
6) the segment x = Xo + vt, 0 ~ t ~ 1 belongs to Fro, and tn this

segment Xro = v.

7) I~:s I~ e in Fs, where the constant e is independent of s.

1
Under the hypotheses 1)-7) we have for 0 ~ t ~ 1 + e

8~ (8ex>7 xo) = 8 00 (xo +vt) S; Fo•

1
We shall show that for 0 ~ t ~ 1 + e

IS~xo - (xo + vt) 1-< dS+1 0

PROOF.

(9)

According to 5) and 6) Ixs - vi ~ dS +1 on the segment Xo + vt (0 ~ t ~ 1 ~e)'

By 2) the ds +1 -neighbourhood of this segment belongs to Fs • In this
neighbourhood, using the Lagrange formula (4°. of 4.2) and 7), we have
Ixs - vi ~ (1 + 8)ds +1. I\1tting, in 2°.,· d = d S +1 and E = (1 + 8)ds +1 we
obtain (9). (9) and (2) show that the segment (xo + vt, S~ xo) belongs to
the domain Fs • Using the Lagrange formulae, 3) and 4) we see that

Isss~x - Ss(xo + vnl ... 0, as s ... 00, for 0 ~ t ~ 1 ~ 8' as required

(because SsS~ = S~Ss).

4°. The measure of the limit. Let F be compact and Ss (s = 1, 2, ... )
be a sequence of continuous mappings of F onto Fs in a euclidean space R,
converging uniformly to the mapping Soo onto Soof. Then

mes SooF >- lim mes FS.

In fact, mes (SooF + 0) < mes F + € for any € > 0 and 0 < O(€). By

virtue of the uniform convergence we have Fo ~ SooF + 0 for s > s(O) and
so, as required: mes Fs , mes (SmF + 0) < mes 8mF + €.
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~.5. Notation. 1°. Functions. All the functions we consider are
taken to be complex-analytic, and real for real values of the argument. We
consider complex n-dimensional spaces of canonically conjugate variables
P = Pi, •.. , Pn; q = q1, ••• , qn (also denoted by
x = Xi, ••• , x2n = p, q = Pi' ..• , qn) and the space of frequencies
W = Wi' •.• , Wn• We take the maximum of the moduli of the coordinates as
a norm in these spaces. The functions we consider have period 2n in qi and
may be expanded in Fourier series

where (h, q) = hiqi + ... + ~nqn, and k is a vector with integral co
ordinates Ki. In the space conjugate to 9, consisting of the orders of the
harmonics k, we take Ikl = Ik i l + ... + Iknl as norm.

We use abbreviated notation of the form
_ at _ at at _

fD==~==-a , ... , -a-==!pl' ... ~ lPn'
J up Pi Pn

where !(p) is a numerical or vector-valued function !(Pl, ... , Pn).
2°. Dbmains. Let U be a compact complex domain, i.e. a bounded domain

in a complex numerical space, together with its boundaries. If d > 0, then
U + d, U - d denote the d-neighbourhood of V and the set of points con
tained in U together with a d-neighbourhood. Vi U U2 denotes the union,
U1 nV2 the intersection, Vi \V2 is the part of V1 not in V2 • V1 ~ V2

means that every point n of V1 (x € V1 ) also belongs to V2 (x E U2 ). Re V
denotes the intersection of the domain U with the real space, 1m denotes
the imaginary part. mes V denotes the Lebesgue measure of Re V [28J even
if the domain U is complex.

A compact domain in the space p is denoted by the letter G, and in the
space W by n (both complex). F denotes the domain in the space x = p, q
defined by the conditions p € G, 11m ql ~ p. The points q and q + 2rrk are
identified as in §1, so that mes F = (2n)n mes G.

3°. Mappings. The mappings we consider are given by analytic functions.
A diffeomorphic mapping, or a diffeomorphism, of the compact domain V1 onto
V2 is a one-to-one mapping that together with its inverse is continuously
differentiable at each point of Vi (or of V2 , respectively). The differen-

tial of the mapping A at the point x is the linear operator dA = ~ dx.

A denotes a diffeomorphism of the domains G and n: Band S are diffe
ormorphisms of the domains F, and are canonical transformations (see for
example, [lJ). E denotes the identity transformation x ~ x.

4°. COnstants. The numbers 0, e, p, K, D are positive constants. The
numbers ~, Y. 6. M, K are very small in comparison with the previous
positive constants, also y »6 » ~ » M.

The numbers N are large and positive.
L, v, T denote absolute positive constants (i.e. depending only on the

number of degrees of freedom).
The index s numbers the approximations.
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§5. Appendix. The rotatory motion of a heavy asymmetric rigid body

We shall show that Theorem 1 of §2 ensures the stability of a rapid
rotation of a heavy asymmetric rigid body fixed at an arbitrary point O.
We shall see that the magnitude and inclination to the horizontal of the
angular momentum vector Malways remain near their initial values (Fig. 2).
In particular, if a body is undergoing a rapid rotation about the major or
the minor inert ial axis, 1 then the angu lar ve loc i ty vector n wi II in the
body always remain near that axis, and in space will slowly precess about
the direction of the gravitational force. Furthermore, the magnitude of
the angular veloci ty n and the angle of inclination of the axis to the
horizontal will always remain near their initial values (Fig. 3).

When discussing a rapid rotation we assume that the potential energy
of the body in the gravitational field n is small in comparison with the
kinetic energy of rotation T. We shall find it more convenient to take
not T» 1, but ll= EU «1, i.e. motion in a weak gravitational field
(which mathematically, of course, is equivalent to a rapid rotation). The
total energy will be

11 =11 +8U.

For the unperturbed motion (8 = 0) we take the motion in the absence
of a gravitational force, i.e. the Euler-Poinsot motion.

5. I. The Euler-Poinsot case. A rigid body with a fixed point is a
system with 3 degrees of freedom and a 6-dimensional phase space. In the
absence of a gravitational force there exist 4 independent single-valued
first integrals

(1)

(the energy and 3 components of the

At the fixed point O. In Figs. 2 and 3 the body
ell ipsoid at o.

inertial

vector M). These 4 functions of posi
tion in the phase-space change their
values for a given motion. The points
of the 6-dimensional phase-space for
which the 4 functions have given val
ues (1) form, in general, a two
dimensional manifold V. We shall show
that these manifolds V(T, M) are tori.

L'

1
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(2)M2 = M~ + Jl!l~ -r- Mi.

In fact, the manifold V is invariant and so the phase-velocity vector
at each point of V touches V; consequently V admits of a vector field
without singular points. It is evident that V is orientable and compact.
The only compact two-dimensional orientable manifold admitting a tangential
vector field without singular points is, as is well known, the torus.

It is also well known and easy to prove (see 5.2) that the phase point
moves on the torus V in a quasi-periodic motion with two frequencies Wi
and w2 • IR order to explain the significance of the frequencies Wi and w2

let us turn to the representation of the motion found by Poinsot (see Fig.
2).

The ellipsoid of inertia, with centre at 0, in the motion of the body
rolls, without sliding, on the fixed plane ~. The plane IT is perpendicular
to the vector Mand is distant p from 0, where

2 2T
P = J12 '

Suppose that initially the ellipsoid touches the plane n at the point
P. In an oscillation the point of contact varies, describing a closed
curve on the ellipsoid (polhode). After a time L the point of contact with
the plane again arrives at the initial point P. On the plane n, however,
the point of contact will not be P, but pi; the ellipsoid has rotated
about the axis M through an angle a.

The frequencies Wi and w2 are given by the formulae

2n a (3)
<01 .::.= -:r' W2 = -:r ·

The quantities Wi and w2 are determined by the values of the integrals T
and M2

, and their ratio CX/2 TC depends only on the geometrical parameters. 1

a=a(p, a, b, c),

where a ~ b ~ c are the principal semi-axes of the initial ellipsoid.
5.2. Reduction to a problem with two degrees of freedom. As in the

Euler-Poinsot case, so when there is a gravitational force, the number of
degrees of freedom is easily reduced from 3 to 2. We choose as generalized
coordinates the Euler angles q>, {}, 'V taking as fixed axis Oz the vertical,
and as fixed axes the principal axes of the inertial ellipsoid at the
fixed point O. The Lagrange function

does not contain the cyclic coordinate~. The corresponding impulse

iJL aT
PfP=-. ='"':'-. =Mz

acp dcp

remains constant. We may consider the function

H = T (Ptt, p~,; tt, '1'; M z) -t- eU ('{}, 'P) (4)

as the Hamiltonian function of the system with two degrees of freedom{}, ~

depending on the parameter Mz • We fix the value of Mz and shall frequently
not indicate the dependence of the function on this parameter.

1 The quantities p, at b, c have the dimensions (mass) -% (length) -1.



291

Proof of a theorem of A.N. Kolmogorov 33

We first examine the case € = 0 (Euler-Poinsot case). The system is
integrable owing to the existence of two first integrals

H=T=const, M2(Ptt, p¢; tt, '1'; Mz)=M~+M~+M~=const. (5)

Points with the same values of T and M2 form a two-dimensional 1 invariant
torus VeT, M2

) in the 4-dimensional phase-space p , PVJ; tt, 'V. Each such
torus corresponds to a certain Euler-Poinsot motion; the phase point moves
in the corresponding quasi-periodic motion with frequencies (3).

For the integration of the system (4) when € = 0 it is convenient to
introduce operator-angle variables 2 by the canonical transformation

Ptt, p¢; tt, '"~ II, 12; WI' W2 (6)

The quantities 1 1 and 1 2 depend only on T and M2, and so T can be repre
sented as a function

whose derivatives with respect to 1 1 and 12 are the frequencies (3):

. iJII
WI = WI = aI ~ ,

In the presence of gravity (8 f 0) the function (4) takes the form

H = H o (II, 12) + el] (I1t 12 ; WIt W2), (7)

where the U perturbation" € U has period 21t in Wi and w2 •

5.3. The investigation of the system with Hamiltonian function (7).
The function (7) has the form (1) §2. We shall show in 5.4 that the condi
tion (2) §2 of non-degeneracy is satisfied. Theorem 1 is therefore
applicable, and the system with Hamiltonian (7) has invariant tori for
sufficiently small €, so that the majority of initial conditions the sys
tem is quasi-periodic.

But since the system (7) has two degrees of freedom, we can say more.
Consider the ratios of the frequencies of the unperturbed system, W1 /W2 •

As we shall show in 5. 4, for fixed energy T this ratio a/21t varies from
torus to torus. It follows then that for sufficiently small £(6) the
perturbed system has invariant tori for each energy-level and in any neigh
bourhood of any point of the phase space. These two-dimensional invariant
tori divide the three-dimensional invariant energy-levels (see Fig. 1).
Thus, even for those initial conditions that do not hit on an invariant
torus of the perturbed system the phase-point for the motion al"ays remains
enclosed between two such neighbouring tori. It follows from 3°. of
1

2

We exclude only those values of T and M2 for which the body can rotate about
an axis of inertia, i.e. in (2), p = a, b, or c.
The canonical transformation (6) is defined by the formulae

where

as
Pt;=7J.6 '

as
w1=a/1 t

as
w2= a/

2
t

8(11.12 ; 1'l', '!')= ~ p1}d1'l'+pl/,d,!,. (8)

Here the integral is taken along a curve lying on the torus (V(T, M2) and does
not depend on the path of integration (in the small). 21tI1 and 21tI2 are the
values of the integral (8) with respect to the base cycle of the torus.
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(9)

Fig. 4.

Theorem 1 that for sufficiently small E the change in 1 i (t), I 2 (t) for an
infinite time will be arbitrarily small.

But M2 is a function of Ii, 1 2 • We are therefore led to the conclusion
that for a rapid rotation of an asymmetric rigid body the magnitude of the
angular momentum vector Mvaries little during an infinite time interval.

More precisely we have the following
THEOREM. For every A> 0 there exists Eo> 0 such that if

o .< E .< Eo, then for any t, -00 < t < 00" we have IM2 (t) - M2 (O) I < 'K.

In view of the conservation of the component Mz the inclination of M
to the horizontal varies little. However, the azimuth of the vector Mwill
not remain constant as in the Euler-Poinsot case. The vector M carries
out a slow precession about the vertical, and the body rotates about M
approximately according to Poinsot (Fig. 2).

In the 6-dimensional phase-space PrpP1}P¢; <p, '6, "" the two-
dimensional invariant tori we have
found correspond to three
dimensional invariant tori and
quasi-periodic motions with three
frequencies Wi' w2 , w3 (rotation,

~z nutation, precession). The pre--fII.:;;;...------------. cession frequency w3 is small with
E, and for E = 0 the three
dimensional tori collapse into

the two-dimensional tori V considered in 5.1.
5.~. Verification of the non-degeneracy conditions. It remains to

check that the condition (2) of §2, which is of the form (Fig. 4):

I a2Ho 1= a(Wb (2) == (i (OOb 002) 8 (Wb a) 8 (T, p) =1= 0
ali alj a (I., 12) 8(Wh a) a(T, p) a (It, 12)

is satisfied. If Ti 0 and the ellipsoid of inertia is not a sphere
(a > c), then evidently

a(Wb (2)

a(W1' 002/ 001)
(10)

(11)

By the similarity arguments it is clear that Wi = K(p) /T", where
K =.K(p; a, b, c) i O. Consequently

8(001' a) K da
a(T, p) == 2 yOT ap ·

It remains to prove that the ratio of the frequencies CX(p) /2 1t does

p'.

Fig. 5.. Fig. 6.



293

Proof of a theorem of A.N. Kolmogorov 35

not reduce to a constant for any values of the principal semi-axes
a ~ b ~ c > 0, a > c. For the proof we take advantage of the fact that in
a rotation through the angle a (see Fig. 2) the curve described by the
point of contact with the plane n (herpolhode, see Fig. 5) joins up with
itself. It is then easy to see that ~f a > c

~~~ a (p) = co. (12)

In fact. for p = b the herpolhode is a spiral with an infinite number of
turns (Fig. 6) and so (12) follows.

da
Since ~(p) i 00, we have by (12) dp i 0, and so by (11) and (10) we

obtain (9).

In this way. for a > c, the non-degeneracy condition (9) is satisfied
and the rat io of the frequencies a/2rt varies wi th p for fixed T (see
Fig. 4).

We have excluded from the discussion the case a = b = c, but if
a = b ~ c, then wherever the centre of gravity is situated, the body is a
symmetric top (Lagrange case).

Received by the editors 15th January 19~3.
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КАчЕствЕнныIE :вопросыI

НЕБЕСНОЙ МЕХАНИКИ

В. И. АрJI,О,l/ьд

МАЛЫЕ aH~~MEHj\Тf~ЛИ 11 ПРОБtJ1ЕМА УСТОIIЧИВОСТII

В КЛАССИЧЕСКОЙ И НЕБЕСНОй МЕХАНИКЕ

§ 1. Вопросы устойчивости, связанные с раСХОДИl'vl0СТЬЮ рядов

теории возr-лущений, давно заНИlVlаIОТ матеlVlатиков 1[1-6].. В пос

ледние годы в этой области достигнут некоторый прогресс. l~ель

настоящего сообщения - изложить результаты и методы недав

них исследований поведения решений дифференциальных урав

нении динаlVIИКИ на бесканеЧНОlVf ПРОl\'1ежутке вреI\лени {7-1 OJ.
Неприятной ,оеобенноетью рассматр,И'ваеlVIЫХ задз:ч является

ТО, что .сколь угодно l\1алое ИЗ~lенение начальных условий способ·~

но за 'бесконечно большое вреl'vIЯ совершенно иЗ'rvlенить картину

движения. В некоторых случаях TelYl не l'Vlеиее удается точно

ИССtледовать движение (которое оказывается условно-периоди~

ческиl\tl) для большинства начальных условий.

Следует подчеркнуть, что хотя кое-где и будут употребляться

терrvlИНЫ «TeJla», «планеты», речь идет о чисто матеlVlатичеекой

задаче о движении i\1атериа.пьных точек, строго подчиняющихся

законам Ньютона. Л1.ы не останавливаемся сейчас на интересном

вопросе о соотношении ме)кду движением идеализированных

систем на бесконеЧНОlVl ПрОl'лежутке времени и поведениеrvI реаль

ных систеIvl в течение большого конечного промежутка времени.

§ 2. Малые знаменатели. Основной причиной расходимости

рядов являются малые знаIVlенатели, связан-

ные с частот Напри-

~fep, частоты /11 и Сатурна Ш2= 120."5 почти

удовлетворяют соотношению 2(0} =5(й2. В РЯДУ, выра)каЮll.~е:м

ВО31'лущение, член

а

2,-5 cos [(2U)1 - 5(1)2) t .:;..]
2(j)1 - 5(1)2

велик из-за наличия малого знаrv1енателя 2Сй1 - 5(1)2> Этим объяс

няется известное БОЛЫllое долгопериодическое ВО3МУlцение планет

,друг другом.

*

* Editor’s note: V.I. Arnol’d, Small denominators and stability problems in classical and celestial 
mechanics, Problems of the motion of artificial satellites. Reports at the conference on general 
applied topics in theoretical astronomy [Moscow, 20–25 November 1961), USSR Academy of 
Sciences Publishing House, Moscow, 1963, pp. 7–17. 
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Пусть 001' <D2 - два наугад ВЗЯТЫХ действительных числа. Ка.,

жется невероятным, чтобы они оказались соизмеримыми, так что

РЮ1 = .i\'lало вероятно так}ке, что выражения Ipffi1 + qШ21

(р, q == 1 2 ...) будут rv13ЛЫ при небольших р, q. .Li\t\алые

знаменатели в рядах теории возмущений с большой вероятносты-о

не слишком f\tfа~пы - такого рода соображения, неоднократно обсуж

давшиеся астрономами XIX В., с развитиеl\i теории 1\tlepbI получили

строгое обоснование [11]. придадим сейчас точный Сl\IЫС.п: словаI\l:

«наугад взятое из отрезка О (J) 1 число ffi иррационально».

Мы покажем, что вероятность получить число (t), приБЛИII(ае

мое хотя бы одной дробью P/q с ошибкой lvlеньше C/q3, не превос

ходит 4с. Действительно, столь близкие к P/q числа ro образуют

«резонансную зону» ширины 2c/q3. Зафиксируем q ·и рассмотрим

зоны, соответствующие Р= О, 1, ... , q; все эти зоны вместе имеIОТ

длину 2C/q2. Теперь будем менять q = 1, 2, ... ; тогда найдем, ~TO

общая ДЛ!1на всех резонансных зои меньше

00 2с л2
" - ::=: - С < 4с.kJ q2 3
q=l

Таким образом, если выкинуть из отрезка 0-< (j) < 1 резонанс-.

вые зоны общей мерой меньше 0,04, то для оставшихся точек (о

при любых целых р, q =/= о будет

(J) _ .l!-I> 0,01 .
q q3

Точно так же в случае малых знаменателен вида РЮl qЮ2

находим

для большинства пар (йl, (02.

Так как, с другой стороны, числители apQ в коэффициентах

рядов теории возмущений убывают обычно в геометрической про

грессии,. то са~IИ. эти ряды

сходятся ДЛЯ большинства (01' 0)2 С такой же почти скоростью,

как ряд ~ apq •
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,§ 3. Условно-периодические дзижения. РаССl'v10ТРИМ поверхность

тора (баранки) с угловыми координатами ер, 'Ф, меНЯЮП~ИI\1ИСЯ от О

до· 2л. Дифференциальные уравнения

== (й1; ~'Ф- (1)2

dt dt

описывают «равномерное» дви}кение точки ер, tф ПО тору. Это

дви)кение. называется условно-периодичеСКИI\1, если частоты 0)1 и

Ю2 несоизrvlеРИМbl. В этом случае траектория дви}кения заполняет

тор всюду плотно.

Представим себе, что !vlbI наблюдаеlVl ИЗ!vIенение со временем

А [ер (t), 'Ф (t)] какой-нибудь функции А (ер, 'Ф), заданной на торе ,"
т. е. периодической по ер, 'Ф. JlerKO видеть, что А как

времени выраiкается РЯДОl\1 вида

А (t) === ~ apQ cos [(РЮ1 + q(2 ) t C{pq] , (1)

где apq - коэффициенты Фурье А(ср, 'Ф).

Мы6удем дал-ее раlсюмат'ривать Дiви}кение точки, из;ображаю ..
щей систему с n степенями свободы, в 2n-мерНОlVI фазовом про

странстве координат и ИМ1ПУЛЬСОВ. При некоторых условиях мы

найдем, что большинство точек в определенной области фазового

пространства движется условно-периодически по n-мерным то

рам. Изменение со временем координат точек, составляющих

систему, будет тогда выражаться рядами вида (1) (с n ча~гота

ми ffil,.'" (йn).
§ 4. Интегрируемые системы. Можно показать, что в любой

СИ1стеме, Иl\'f'еющей n :пер'вых Iинтеграл·ов ,в и'Нtволюции и ОQfвершаю

щей ограниченное движение, почти все фазовые точки движутся

условно-периодически. Фазовое пространство l\10ЖНО разбить на

О'бласти, и~леющие !вид !произ\ведения n-lмернOiГо 'Гора наlоблаС'ть

n-,мер1НOiГО евкл'идю,в а пространства. Положение фазовой т,очки

в такой области можно характеризовать канонически сопряжен

ными переменны:ми Pl, .." рn, ИЗ которых Ql,.'.' qn Иl\Iеют смысл

YГ~1]OB, так что И~jменение их на 2n не г.леняет точки фазо

вого пространства. Переменные р, q МОЖНО В интегрируемой за

даче выбрать так, чтобы функция Гамильтона Н (Pl, .. , Рn; Ql'.'·'
qn) зависела только от Pl, .. " рn (В задаче двух тел р, Q- элемен

ты Делоне);

(2)

Тогда уравнения Гамильтона принимают вид

(3\
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Уравнения р сопst выделяют в 2n-мерном пространстве р, q
n-мерный тор. В силу уравнений (3) точка q (t) движется по нему

условно-периодически с частотами (i)i (р). В общеl\1 СJlучае эти

частоты не удовлетворяют никакому соотношению

'С нену.певыrvIИ целыми коэффициентаrvIИ. В противноrvl случае гово

рят о вырождении [12].
Если якобиан частот по «импульсам» отличен от нуля

det det
д2Но

=1= о, (4)

то вырождение называют с л у чай н ы м; малым изменением посто

янных р MOiKHO сойти С тора, на котором частоты соизмеримы,

на невырожденный.

Если семейство торов р const содержит отдельные торы

размерности k < n (наПРИNlер, раССМОТРИlVl в TpeXl\1epHOM простран

стве окружность и семейство двумерных торов, в..п.оженны1x друг

вс друга и стягивающихся к ней; здесь k 1, n 2), то вырож-

дение называют предельным.

Если }ке якобиан (4) ТОiкдественно обращается в нуль, то гово

рят о' с о б с т в е н н о 1\1 В Ы Р о ж Д е н и И. В этом случае Н можно

привести к виду

Такая функция Гаl\lильтона описывает условно-периодическое

.движение. с k n частотами

(1)1
дНо.--,
aPi

траектории заполняют k-rvlерНbIе торы Pi const (i:::-= 1, .. " n);
,Qi const (i === k 1, .. " n).

К указанному типу относится задача двух тел при ньютонов

·ском законе притяжения (k ~-=-: 1). ВооБLце же в небесной механике

встречаются вместе все три случая выро}кдения. Мы рассмотрим

их последовательно в § 7-9.
§ 5. Теория возмущений. В теории возмущений рассматривает

ся случай, когда функция Гамильтона отличается от (2) малым

.добаВКОl\tl

• с-" , (5)
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где ВОЗIvlущающая функция еН 1 +... ИIvlеет период 2л по Ql, ... , qn.
Теория основана на гипотезе, что подходящей канонической за·

м:еной пере~l1енных Ivl0ЖНО привести функцию Гамильтона к инте

грируемому виду (2). ТаКИl\rI образом, предполагается, что и у

'системы (5) фазовое пространство разбивается на инвариантные

.п-':\1ерны,е 'Т'о'ры (БЛiиз\к,ие к т'ора:м р = юопst).

Если указанная замена существует и анаtJ1итична по 8, ТО ее

'можно искать в виде ряда по степеням е, коэффициенты которо

го - ряды Фурь,е :ПЮ q, за!в\исящие от р. Как ИЗ1вестио, коэфф,и

циенты таких рядов I\10ЖНО последовательно определить, прирав

нивая члены с еО , e1 и т. д. [3, 12]. При 3ТО1\1 появляются lVlалые

знаменате,пи, так что ряды каждого приближения сходятся не

при ,всех р.

Более ТОЛО,NIОЖ'НО iпоказать [3,13], что 'Все :п р И б л и ж eiH ИЯ

в 1\1 е с т е р а с х о Д я т с я, а с а 1\1 а г и п о т е 3 а о п о в е Д е

н и и р е Ul е н и й н е в е р н а.

Действительно, для интегрируеl\iIОЙ системы (2) в любой ма·

лай области 'пространства р найдется 'Точка Ро, ,ДЛЯ которой вее

частоты (i)i СОИЗ~fеРИI\ЛЫ, а движение периодично. Следовательно,

существует n-мерное lVIногообразие начальных условий (тор

р= Ро), начиная ·с 'которых (система 'То:ЧНо 'В'О3Iв'ращается IB iпреж

нее положение через вреrvlЯ Т. Исследуя уравнения в вариациях,

l\tIОЖНО показать, что, вообще говоря, у воз!'лущенной системы

(5) таlК'ОТОИНlвар-и антн'Ого м'ногообразия не будет. Следо!вате.пь-

НО, систеl\t13 'не ,1Уl0жет :быть интегрируем'ой и .пр:иб.п'ижения теории

возмущений не могут сходиться.

Трудности, связанные с малыми знаrvlенатеJIЯlVlИ, долгое вре

мя не были преодолены. Лишь в последнее время К. л. Зиге,пю

[14], А. Финчи ;[15, 16], А. Н. Колмогорову [7] и А. Е. Ге,пьману

[17] незаВИСИivl0 друг от друга удалось решить ряд 'задач, содер

жащих эти т!руДн!ос'Ти.

§' 6. Метод Ньютона. Из развитых названными учеными м:е

ТОДОВ наиболее СИДЬНЫIvl оказался метод Ньютона, примененный

.д... Н. КОЛl'vlО!ГОРО\ВЫ!J\I. 1\1ы иэложи:vI здесь один из вариантов этого

:метода, позволяющий сходящи:мися последовательны.МИ приб.пи

жеНИЯl\rIИ отыскивать условно-периодические движения в ООlцей

задаче теории возмущений .
.Li\!\ы откажеlVIСЯ от раз.пожениЙ ·по степеНЯlVI е и раССl\10ТРИМ

.<'1" ·г .. ., ..., ......· ... .,." Г аlVIИ,J1ьтона

[l (р, q) Но (р) Н- ( ') н- ( , ~ L!" (р) [) i(.~,q).lP,Q; lP,Q) ~l·tl- ,V
(6)

3адаДИlVIСЯ заранее определенными значеНИЯlYIИ частот U}l, ... , U)N

И БУДСl'vl искать инвариантный П-:vIгрный тор р p(q) и координаТhi
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на не:м Q Q так, чтобы Qi (i)i. В качестве·нулевого приб.JIИ-
. дНо I ~~

жения во3ы'е1vII Р (q)== Ро'] Qo (q)==Qo, где -.,,-1 == ffi, .. l VlbI предпо.ло}ким~.
др! 'Ро

что

, (k, ю) 1> с l/~ . k \

при Jlюбых целых ki , \ k 1> о (ер. § 2).
Первый шаг метода Ньютона весьма близок к обычной теории

возмущений. Сделаеrvl в окрестности тора Р == Ро каноническую

замену переменных р, q~ Р, Q с производящей функцией

Pq + S (Р, q) == Pq 2] Sk (Р) еi(k,л)

k+o

(где коэффициенты Sk будут определены ниже). Тогда

as . I as
р = Р -iiq' Q = qт -ар'

(8)

(9)

и ФУНКЦИЯ Гамильтона (6) примет вид

Н (р, q) == Но (Р) [H1 (Р, q) + (' u), as I +
д.q .'

+ lrно (р) - но (Р) - (ано I ' р - Р ) l
др Ро / .J

[H1(p, q)-H1(P, q)], (10)

где р, q 'всюду должны быть выражены через Р, Q с помощью

(8), (9).
Определим теперь S (Р, q) условиеlVl

Н1 (Р, q) (ш, ~-') ==0, (11)
oq ,/

ИЛИ, что эквивалентно,

(12)

Тогда (10) примет вид

Н (р, q) == Н' (Р, Q) == Но (Р) + Н2 (Р, Q), (13)
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где функция

Н2 == ( (дНо .,1 _ дНо '1 '\ (Р_Р)) + (дН1 i , (р - Р)) (14)
\ др I p1 др Ро) , др pz

:(Рl И Р2 - точки между р и Р) гораздо меньше, чем Н1 •

Действительно, ввиду (7) и (12) можно ожидать, что при Н1 - 8

'будет S -- е; следовательно, \р - Р I также порядка в, и в в-окрест

ности Ро величина Н2 будет порядка 82 (СМ. (14)). Точно так же

среднее значение Н2 (Р) функции Н2 по Q будет порядка 82.

Выберем в указанной окрестности,ту точку Р==РО , для которой

~(Ho+ Н;) !РО == 00.
дР

'Такая точка существует при условии (4) на раестоянии порядка 82

сот Ро. Теперь в е-окрестности РО функция (13)

имеет снова вид (6), но ВОЗl\tlущение Н2 - уже порядка е2 •
Таким образом, BlVIeCTo возмущения порядка 8 осталось возмуще

ние порядка е2 • Приближения, в KOTOpDIX невязка следуюдего

прибли}кения порядка KBa,~paTa невязки предыдуцего, типичны для

быстро сходящихея ivIетодов типа ньютоновского l\.1етода каса

тельных.

Повторяя наши рассуждения применительно к fJ' (Р, Q), полу ..
чим последовательность заlVlен переменных р, q -* Р, Q -> ... ,

определенных во все более узких вло,кенных друг в друга торовых

кольцах р - Ро --- 1; Р - Ро -- 8; . · ·

При этом возмущение яs , остаl-Qщееся после s-ro прибtпижения,

порядка е2$. Столь быстрая сходимость пз.рализует влияние

lV1алых ПОЯВЛЯI0ДИХСЯ в ка:«л,ОМ при

вычислении коэф_рици~нтов Sk ПО JL

§ 7. СХОДИМОСТЬ метода Ньютона. доказа-

тельство того сракта, что при достаточно lVlаЛО?vi ВОЗ?VIУ дении H1(p, q)
последовательные приБЛИII(ения, построенные в предыдуцем пара

графе, сходятся. CootbeTCTBYI-Q.цие оценки ПрИ аккуратном проведе

нии ДОВОЛЬНО УТОIvlительны [18], и MJI YKa)Kel\1 только основную

идею.

Предполо,ким, что при IIПl q 1 Рl Н1 (р, q) аналитич-

на и N1l <M1 .
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Мы построи:м последовательность Р1 > Р2 > ...
оценивать величину

О,5Р1 И будеl\i1.

Sl1p Hs [,

через величину

Используя (7), (12), (14), нетрудно показать, что при достаточно

малом () > о и иеКОТОрОlVl г > О, зависящем только от числа степе-

ней свободы 11, в области IlrH Qs I PS-l - б будет

.-' ~ Л1~_1
H s\ < _...-:-_--.. or

Начиная с числа бl , опредеЛИlVl 02 == 6~/2 , ..• ,(~s б~~1)'"

ЕСt!ТJИ 61 достаточно мало, то

со

2J 65 < О,5Р1'
5=1

Далее, пусть ,/\111 <:: ()~ И р.) ==_: PS-l - 6S- 1 ' Тогда ps > O,5Pl И

Л1~/о~ < ()~k-I·.

Чтобы последняя величина была ~1еньше /\/12 б~ (б~/2)'\ ДOC~
таточно взять 2k r 1,5k; k> 2г

Итак, выбере.М, как указано выше, 01 О И по.лО}КИ1Vi k 21"
1

И /\;11 < Тогда при ps - 05-1 будет Ps 2 Рl И

/\12 < o~, ... ,
Отсюда легко выводится СХОДИl\fОСТЬ последовательности замен

переменных при Imq 0,5PI'
АнаJIОГИЧНЫМИ рассуждеНИЯlVIИ lVIO)I{HO доказать СХОДИМОСТЬ дру

гих вариантов j\fетода Ньютона. Например, удобно в (12) в I<аче-

б дНо: Ф / af!о
стве (J) рать не постоянные -- i ,а ункции й) (р) -

др ipo др

При этом следует ограничиться в S-M приближении конечным

числом гармоник ;\.15' растуI.ЦИМ с S, при определении производя~

щей функции (8).
Тот или другой вариант позволяет доказать следующее [7].
Теорема 1. Пусть функция Гамильтона (6) ана.литична в неко

торой области R :р ( о, \IПlq I Р и выполнено условие невырож

денности (4). Тогда при достаточно малых М1 точки области R"
исключая множество 1Vlалой Bl\!IeCTe С М] меры, движутся условно~

перподически по п-меРИЫl\.f торам, близким к. Topar..1 р const.
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Заметим, что при n = 2 найденные двумерные инвариантные

торы разделяют TpeXl\1epHOe инвариантное многообраз.ие уровня

энергии Н (р, q) =h на узкие торовы�e слои; траектория, начав

шаяся в TaKoivl слое, никогда не может из него выйти и, С.ледова

те.пьно, устойчива по . К раССl'латриваеrvIОМУ случаю

принадлежит, в ,частности, плоская ограниченная круговая зада

ча трех тел. В большинстве же задач небесной lVIеханики теоре

ма 1 не ПРИI\IеНИl\1а из-за предельного или собственного вырожде

ния при l\lалых эксцентриситетах или rvlaccax. l\;'1ы раССl\fОТРИl\if

эти два вида ВЫрО)I{дения ни~ке.

§ 8. УСТОЙЧИВОСТЬ ПО.;10жениЙ равновесия и периодических

движений. llростейшие ВИДЫ предельного выро)кдения - ПО.JI0

жения равно,весия чаiСТОТ k О) ипеРИОДiичес'Кие движе

НИЯ (k 1). В ,случае чисто Iv1J-I'И~1ЫХ харсш(териет;ичееких \пока~

зателей известные l\1етоды Пуанкаре и J1япунова не позволяют

решить вопрос об устойчивости. lv'1ежду тем только этот случай

и представляет интерес для консервативных систем, в которых

аСИl\IIптотичееки устойчивые ДВИ)I(ения невозможны в силу нали

чия поло)кительного интегрального инварианта (теореl'ла Jlиу

БИЛЛЯ). Метод Ньютона позволил исследовать вопрос об устой,

чивости в случае двух степеней свободы.

Изучение окрестности периодическ,ого решения lVfожет быть,.

как известно [5], сведено к исследованию окрестности ПОJIо)кения

равновесия систеl\1Ы с периодическиrvIИ коэффициентами.

Пусть Н (р, (/; t) == Н (р, q; t 2л) -- аналитическая* функция
Гамильтона систеl\1Ы, Иl\1еющей реlпение р q О, которое являет

ся положением равновесия, устойчивы1tl1 в линеЙНОlVl приближении.

Следуя Биркгофу [5J, каноничеСI{И1\rI преобразованиеl'Л р, q r, ер

приведем Н в окрестности нуля к виду

Н 1\10 ""lГ ~ЛJ2г2 На (,.~ (р; t), (15}

где r О (р2 _.+- q2), qJ - угловое переменное, Нз=-= О (га) И ЛО ' }\J1, Л2 --,'

постоянные. Приведениек виду (15) возможно при условии Л1 =1= kjl.
Теоре)и,а 2. Пусть Л2 О. Тогда ДJIЯ почти всех (В Сl\tlЫС.пе меры

Jlебега) значений 1"1 положение равновесия р q г О с.истемы
с функцией Гамильтона (15) устойчиво [9].

J\на.логичные теоремы доказаны для положений равновесия
aBT'OHOrv'l'HbIX iеистем ,с ДБУ1~ЛЯ ,степенями свободы. В случае n>2.
степеней свободы удается только найти занимаЮlцие большую

часть окрестности n -мерные инвариантные торы. Но они не

();. /·2дифференцируемостыо и УСЛОВИЯМИ /'~)

* Во время печатания наСТОЯlцего сборника ПОЯВИ.пась работа JO..Nl0зе
ра {20], который показал, что в теореме 2\10)КНО ограничиться

k k
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Д'елят фазовое пространство, и вопрос об устойчивости остается

открытым.

Результаты [9] применимы, в частности, к .пагранжевым пери

одическиl'Л решениям. Недавно А. Лtl. Jlеонтович [19] доказала,

что .пагранжево периодическое решение плоской круговой огра

ниченной задачи трех тел устойчиво для почти всех значений ОТ

ношении масс, для которых оно устойчиво по первому

приближению.

§ 9. Собственное вырождение. В задачах небесной механи

'КИ,как 'Правило, неВОЗ:VIУllJ;енное Д!вижение OiПИСЫIвается меНЬШИ~f

числом частот, Ч(:!\1 возмущенное. Например, пусть две планеты

масс т}, m2 движутся вокруг центрального тела lVlaccbI М. При

ml=m2=0 планеты не влияют друг на пругаl И (совершают Iкеп

лерово движение, связанное с двумя «БыстрыlIи» частотаrvlИ об

ращения вокруг М. При ml, т2+0 вследствие векового движения

узлов и перигелиев появляются новые, «медленные» частоты.

Трудности, связанные с появлением малых частот, в простеи

шей модельной задаче преодолены в заметке (10]. КоrvIбинируя

соображения [7], [9], [10], можно найти условно-периодические

-решения задачи n тел.

Оказывается, если массы планет достаточно малы, то для

.БОЛЫIIИН1ства -началь-ных 'у'словий, при которых эксцентриситеты

и наклонения достаточно малы, дви)кение будет условно-перио

дичеСКИl\tl, эксцентриситеты и наклонения будут вечно оставаться

малыми, а большие полуоси будут вечно колебаться вблизи на

часЛЬНЫХ значений.

Для определенности раССl\10ТРИМ пространственную задачу

трех тел rлаюс ml == lJ,a 1iVI, m2= f.ta2M и i\;1 (:::'..1е al, а2, j\t1 - ПО~

стоянные, а р, - lVlалыи множитель). JJeHTp тя)кести всех трех

тел будем считать неПОДВИЖНЫI\1; тогда число степеней

сведется к 6, а размерность фазового пространства - к 12.
фазового пространства будем характеризовать 12 эллиптически

ми эле1Vfентами обеих плане r mi, т2, в TOl\1 числе величинами

больших полуосей аl, 02, эксцентриситетов е2 и наклонений

i1, i2 оскулируюших эллипсов, ПО которым вращаются

вокруг /\1 В одну СТОООН\!.

Пусть C1<C1<'" <:.С2< -постоянные. <
<C1; С2<а2<С2 ; e~+ <8; if+i~<8 выделяют 11 фазовом про
странстве ограниченную область G (е). Точка из G (е) определяет

положения и скорости обеих планет и, следовательно,' все дви-

·жение. Можно доказать методаl\'1И (7-10] слеДУЮIцее.

Теорема 3. Для Лlобого 11>0 найдется ео(11»О такое, что

~сли 8<80, ~L<80, то для большинства начальных условий из

·а (8) (исключение составляют точки, образующие множ~rтнu
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rvrеньше 'llшеsо'(8) движение условно-периодично, ek и

вечно остаются l\'Iа.ПЫМИ и all вечно остаIОТСЯ вблизи началь

ных значений.

i\10ЖНО сказать, что TeOpeJ\iia 3 есть l'летрический аналог «тео

пеrvlЫ» tJlапласа об устойчивости планетной систеl\1Ы; последняя

~'eOpel\fa, как известно, никогда не была доказана. Следует за
:\'fетить, что исключительное множество начальных условий в

TeOpel\Je 3 хотя и IHvIeeT l\1алую Л1еру в G (8), все же всюду плотно,

связно н простирается в бесконечность. Движение при исключи

тельных начальных условиях нужно еще исследовать; а prjori
оно l'vIожет оказаться ОСЦИЛЛИРУЮЩИlVIили даже УХОДЯЩИlVI в бес

Е:онечность. Гlринимая во вни:vrание известный факт существова

ния «,;-п-оков» В распределении l\1алых планет, IVIОЖНО предпола

гать, что дulЯ большинства иск.тIlочительных начальных условий

большие полуоси alf. не остаются вечно вблизи начальных значе

ний. Так как сколь угодно малое изменение начальных условий

способно перевести ТИПИЧНУI{) точку В ИСКЛI{)чительную, из спра

веДЛI1ВОСТИ этой гипотезы вытеЕ:алз бы топологическая

ЧI1ВОСТЬ планетной систеNIыI.

с точки зрения теории I\1epbI К3}l(ется, однако, более

раЗУI\!IНЫl'vf, особенно если учесть, что ]\ЛЫ не 3Hael\tI точно началь

ных должны учитывать поправки к законаl\tl Ны{)тона

11нтересуеI\iСЯ движениеТVI а не на 6есконечныIx

ПРО\lе)кутках вреl'vlени.
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INTRODUCTION

§I. Results

The difficulty of qualitative problems of classical mechanics is well
known. In spite of prolonged efforts by many mathematicians most of these
problems still await solution. Only in recent times, beginning with the
work of C.L. Siegel (1942) and A.N. Kolmogorov (1954), has some progress
been made in solVing problems on the stability of motion of dynamical
systems. In particular,

1) The stability of positions of equilibrium and periodic solutions
of conservative systems with two degrees of freedom has been proved in
the so-called general elliptic case.

2) The perpetual adiabatic invariance of the variable of action has
been proved for a slow periodic variation of the parameters of a non
linear oscillatory system with one degree of freedom. It has been
established that a Umagnetic trap" with an axial-symmetric magnetic
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field can perpetually retain charg~d particles. 1

3) Conditionally periodic motions in the many-body problem have been
found. If the masses of n "planets" are sufficiently small in comparison
with the mass of the central body. the motion is conditionally periodic
for the majority of initial conditions for which the eccentricities and
inclinations of the Kepler ellipses are small. Further. the major semi
axis perpetually remain close to their original values and the eccentri
cities and inclinations remain small.

The present paper gives complete proofs of these results which nave
previously been published in the form of notes [14]-[17].

The author's interest in small denominators was stimulated by
A.N. Kolmogorov's lectures in 1957 and he wishes to take this opportunity
to express his deep gratitude to A.N. Kolmogorov for his attention to this
paper.

The author was advised on that part of the work concerned with
celestial mechanics by V.M. Alekseev. The paper by L.A. Artsimovich and
M.A. Leontovich in the autumn of 1958 brought the author's attention to
the problem of the perpetual adiabatic invariance of a magnetic moment.
Many discussions with B..V. Chirikov helped to make the investigation of
this question possible. G.A. Merman carefully read the manuscript and made
a number of valuable remarks. L.Yu. Pius verified the calculations of
Ch. III. §4. The author is grateful to all those named -above.

We shall require results from mechanics not well known among
mathematicians. and certain mathematical ideas little known to those
engaged in the field of mechanics. They are set out in the following two
sections.

§2. Preliminary results fro. mechanics

I. What are small denominators? Astronomers long ago noted 2 that
resonance phenomena connected with the commensurability of frequencies of
interacting motions lead to "small denominators" and considerable
mathematical difficulties.

EXAMPLE 1. During the course of a day Jupiter moves along its orbit
by an amount w1 = 299

11
• 1 and saturn by an amount w2 = 120

11
• 5.

The frequencies w1, w2 are almost commensurable:

200t - 5002 ~ o.
The expression JnW 1 + TlW2 is found as a denominator in series arisfng in
the theory of perturbations of the form

1 Although we use the terms "particles" and "planets". we are really deal
ing with mathematical theorems concerning the behaviour of solutions of def
inite differential equations. The applicability of these theorems to real
systems has to be specially investigated in each individual case.
--Difficulties encountered in celestial mechanics on account of the existence

of small divisors and approximate commen8wabilities of mean motions are con
nected with the very nature of things and cannot be avoided" - H. Poincare
[2] .
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(0.2.1)

Since the time of Laplace the existence has been known of a large long
periodic perturbation of planetary motions around the Sun connected with
the small denominator 2w1 - 5w2•

2. What are stability problems? The first and highly stimulating
problem of this type (which remains unsolved even today) was the question
of the stability of planetary orbits. Do small perturbations of planets
on each other give rise after a sufficiently long time to collisions or
departure to infinity? 1

The theory of stability of motion, developed in the well-known works of
H. Poincar~ and A.M. Lyapunov, made the discovery of asymptotic stability
possible. But stability problems of classical mechanics always refer to the
"neutral case" of purely imaginary characteristic exponents: asymptomical
ly stable motions are not then possible owing to the conservation of volume
in the phase space (Liouville'S theorem). The indicated methods therefore
contribute nothing to investigations of the stability of motion of non
linear conservative systems.

The fundamental difficulty encountered in these investigations is con
nected with the divergence of the series (0.2.1) of the theory of per
turbations on account of the small denominators mw1 + n w2 - H. Poincar~

studied the plane restricted three-body problem and showed that this
difficulty occurs even in model problems which have a perfectly simple
mathematical formulation. G.D. Birkhoff studied one of these problems in
detail (see [3]).

EXAMPLE 2 ("Birkhoff's problem "). An area-preserving
analytic mapping T of the neighbourhood of the zero of a p,q-plane onto
itself is given. Let zero be a fixed point. Is it stable?

It is supposed that the linear part of T at zero is a rotation of the
p, q-plane.

Recently the answer to this question has been found to be positive;
we shall discuss it in §4.

3. In the following chapters we shall use the "frightening formal
apparatus of dynamics". The canonical form of the equations of motion is
not essen~ial for the application of the methods discussed (see, for
example, [IS) but it makes many of the calculations easier. The reader
wll1 find it useful to be acquainted with configuration and phase spaces,
Lagrangian and Hamiltonian equations, cyclic coordinates and laws of con
servation, canonical transformation, Poisson brackets, integral invariants
and action-angle variables such as in [4) or [3], [5], and [6]. As a con
trol it is useful to solve the follOWing problem:

PROBLEM. Let a point move by inertia over a surface S (in the absence
of the force of gravity)~ Find invariant two-dimensional manifolds in the
phase space and investigate the motion of the phase point over it. Con
sider the case when S is a) a torus, b) an ellipsoid of revolution,
c) a triaxial ellipsoid (cf. [57]).
1 see the discussion of this question and of "Laplace's theorem" in [31]_



310

Small denominators and problems of stability of motion 89

§3. Prell.lnary results from mathe-.tlcs

(0.3.'1)

I. What Is conditionally periodic .otlon? Let us consider the surface
of a torus (anchor ring) (see Fig. 1).

On the surface we introduce "geographical" coordinates: longitude q1
and latitude q2. We shall express the angles q1 and q2 in radians and con
sider them to within an
integral multiple of 2 Tt.

The sQuare 0 ~ Qi, 2 ~ 2 Tt
in the qi, q2 - plane can,
for example, serve as a map
of the torus. It is also
convenient to use the whole
q 1, q 2 - plane divided into
sQuares of side 21t. Each
point of the torus has a
representation in each square
of such a map (Fig. 2).

Let us consider the Fig. 1.
point Qi(t), q2(t) moving
along the torus so that its coordinates vary uniformly:

dqt dq2
dt=Wt t T=002.

+00
F (qit q2) = ~

m,n=-oo

(0.3.2)

The functions (0.3.2) are called conditionally
periodic. As an example we can take

then its variation in time for the motion (0.3.1)
is of the form

+00
f (t) = F [qt (t), q2 (t)] = ~ !mnei[(m(J)l+nCl>2)t+CPmlll.

m, n=-oo

Fig. 2.

On the Qi.Q2-map this motion is represented by a straight line.

If Wi = ~, where m and n are whole numbers, then in timew2 n

t = 21t~ = 2Tt.!!:- the point will return to its original position, having
Wi W2

made m revolutions along the parallel and n along the meridian (m = 2,
n = 3 in Fig. 2). In this case (0.3.1) defines a periodic motion.

If, however, Wi is irrational, the moving point never returns to itsw2

original position. In this case the motion (0.3.1) is called conditionally
periodic with two freQuencies Wi, w2 • The trajectory Q1(t), q2(t) is called
a winding of the torus.

Closely connected with conditionally periodic motions are conditional
ly periodic functions. If F(Q1. q2) is a function on the torus expanded as

a Fourier series
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We give below another example to illus
trate Property 2 (the reader may omit this).

3. Lagrange's problem on the mean motion
of perihel ia. Let the vector aCt) in the
x,y-plane be the sum of three vectors:

the trajectory of a conditionally periodic motion is
(see [58]): the portion of time from t = 0 to t = T

which the moving point spends in the domain ~

(see Fig. 3) is proportional to the area of
this domain if T is large. 2

PRO PER T Y 2. For any Riemann in
tegrable function F(q1, q2) the time mean lS

equal to the space mean:
T 2n 2n

,lim ~ ~ F (Wit, W2t) dt = 4~2 ~ ~ F (q,. q2) dq, dq2.
T-:,.oo 0 0 0

Fig. 3. a (t) = 81 (t) + 82 (t) + 83 (t),

of lengths a1, a2, as, rotating uniformly with independentS angular
velocities w1 • w2 • ws . We denote by ~(t) the angle which the vector aCt)
makes with the x-axis (Fig. 4).

PROBLEM. To find the mean angular
velocity of the vector a:

w == lim (p (T) •
T-:,.oo T

SOL UTI 0 N. W = a1 w1 + a2 w2 + as Ws
a1 + (X2 + as

where a1 , <X2 , CIs are the angles of the Fig. 4.
triangle with sides a1. a2, as.

The connection with the motion of perihelia can be understood from
Ch. III, §1, 2. For the bibliography and history of this problem which was

f(t) = cos t + cosy-2 t. The appearance of series of the form (0.3.2) in
any problem always indicates conditionally periodic motion (0.3.1).

2. Certain properties of conditionally periodic motions.
PROPERTY 1. The trajectory of a conditionally periodic motion is

everywhere dense on the torus.
This means that, given any domain 1:1, the moving point p(t), q(t) will

sooner or later find itself in it. Property 1 follows easily from the
following fact:

la) Let ~ be an irrational number and ~ be an arc of the circle
Izi = 1. Then among the points e2~ina (n = I, 2, 3, ... ) there are points
of ~. 1

We also note that
uniformly distributed

1

2

S

Can the number 2n begin with the digit 7? In accordance with 1a) the number
2n can begin with any combination of digits.
With which digits does the number 2n begin more often: 7 or 8?
The numbers W1 , W2' Ws are independent if from k1W1 + k 2 W2 + ksWs = 0.
where the ki are integral, it follows that ki = o.
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solved by 861, Sierpinski and H. Weyl see [52].
~. In the following chapters it is assumed that the reader is ac

quainted with the concept of a differentiable manifold (see [55]). In
particular, a point of an n-dimensional torus is given by n angular co
ordinates Q1, ••• , qn. The reader will find it useful to investigate
generalizations of 1. and 2. to the case of an n-dimensional torus. We
also use the rudiments of measure theory (see [56]) (the reader should know
that the set of rational numbers has measure zero).

Before passing on to the general theory we shall consider a very simple
example in which many essential features of the phenomena to be studied
are mani fest.

§~. The simplest problem of stability

(0.4.1)

Fig. 5.

T
p, q ~ p, q

sl Is
~ A t

p', q' _» pi, q'

Such a mapping T is called an el
liptic rotation.

Let us pass on to a non-linear
mapping. If the linear part of the given
mapping T at zero is an elliptic rota
tion, T is called a mapping of elliptic
type.

EXAMPLEs. Let us consider the map
ping B (Fig. 5) in which each circle
p2 + q2 = 2T is rotated through an angle

00 (i) = 000 + (1)1i -r ...
This mapping is of elliptic type and is stable.

Let us return to Example 2 of §2: an area-preserving analytic mapping
T of the neighbourhood of zero of a p,q-plane onto itself is given. Is
the fixed point 0 stable?

We shall briefly set out the result of applying general methods (see
Chapter I) to this case.

I. Three examples. For linear transformations the problem is solved
by.calcnlating the eigenvalues At, A2 • In view of the preservation of area

- I I t·Ai A. 2 = 1. If Ai and A2 are not real then Ai = A2 , A1 ,2 = 1, A1 ,2 = e ted.

EXAMPLE A. Let us consider an ordinary rotation A of the p,q-plane
through an angle w about the point O. Each circle p2 + q2 = const is
invariant, i.e. transforms into itself: it rotates as a whole through an

angle w. The traj ectory is everywhere dense on the circle if w= 21t ~ •
n

Every linear transformation T with A1 ,2 = e±ied can be reduced to the
form A by a linear change S of the co-
ordinate system:
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Let us consider the coordinate system p',q' connected with p,q by the
analytic transformation S which preserves area and keeps 0 in its original
position. On the p',q'-plane let us consider the mapping B of Example B.

EXAMPLE C. Let us write the mapping B in terms of the coordinates
p, q. Then we obtain the mapping C = s- 1B S.

This mapping is of elliptic type and is stable, since by a change of
variables S it is transformed into the stable mapping B.

Is it possible to obtain any mapping of elliptic type with the con
struction of Example C? This would, in particular, give a positive solu
tion to the problem of stability.

2. Formal solution. It has been known since Birkhoff's time [3] that
if questions on the convergence of the series are disregarded, then under
the conditions

(J) =1= 2n ': (m=O, ± 1, ± 2, ... ; n=1, 2, ... ) (0.4.2)

a mapping T of elliptic type can always be reduced to the form 818- 1 = B
of Example 8 by a formal change of variables S. S is determined by means of
"Birkhoff's series" which are analogous to the series of perturbation

theory. In the general case these series are divergent. The stability of
the mapping T does not follow from the existence of the formal series S.

Nevertheless it is possible to cut short the series S and by a con
vergent change of variables S(8) reduce T to a form which differs from B
by small quantities of arbitrarily high order O(~8). The coefficients
~, Wi' ••• in (0.4.1) which are th~n obtained do not depend on the method
S(8) by which T is reduced to the form B; they are invariants of T with
respect to the area-preserving analytic transformations. If w1 ~ 0, the
mapping T is said to be of general elliptic type.

In this case the angle W(~) through which the circle ~ = const rotates
in the mapping B varies with ~ (see (0.4.1». Therefore some circles are
rotated through an angle commensurate with, and others through an angle
incommensurate with, 21t.

Given appropriate variables the mapping T close to 0 can be regarded
as a rotation B through a variable angle W(~) perturbed by very small
auxiliary terms. Therefore our problem reduces to a study of those
mappings T that differ from B only by perturbations small in comparison
with ~s.

3. Invariant curves. If 8irkhoff's series S converge, then the
neighbourhood of 0 wholly consists of invariant curves of T close to the
circles ~ = const.

It turns out that, i8 fact, the majority of invariant circles of the
m.apping B on which the angle We,;) is incommensurate wi th 21t do not dis
appear for a small perturbation of B, but are only slightly deformed.
Therefore the fixed point 0 is surrounded by arbitrarily small analytic
closed curves invariant with respect to T. and is therefore stable. These
curves can be proved to fill a set of positive measure with 0 as a point
of accumulation (see Chapters I and IV).

But these curves do not fill the neighbourhood of 0 completely and,
in general, do not fill any domain: between them there still remain
"zones of instability", which arise on perturbation from the circles
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~ = canst, where W(~) is commensurate with 2n. On each ray going out from
o the invariant curves carve out a track like Cantor's perfect set, but of
positive measure.

~. Zones of instabil ity. Let us consider an invariant circle of an

" unperturbed" transformation B rotated through an angle We,;) = 21t ~. Onn
an n-fold iteration of B each point of the circle returns to its original
position. This property of B is not, generally speaking, retained for a
small perturbation and such an invariant circle is "scattered away".
G.D. Birkhoff proved that instead of a complete circle of points fixed
relative to Bn, Tn has, in general, a finite even number of fixed points
close to this circle. Half of these points are of elliptic and half of
"hyperbolic" type. 1

Fig. 6.

As we showed in 3., points of elliptic type are, generally speaking,
stable and surrounded by invariant curves not enclosing 0 (Fig. 6). Conse
quently in the general case the neighbourhood of 0 is not stratified into
invariant closed curves. The divergence of Birkhoff's series, mentioned
above, follows from this (see 2.).

The separatrices of hyperbolic points intersecting each other create
an intricate network in the '-zones of instability". In the neighbourhood

1 The reader will readily understand their construction by considering the
1

hyperbolic rotation p.... 2p, q .... '2 q •
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of each elliptic point the same picture holds, with invariant curves,
zones of instability etc.

5. Conditions of stability. We now state the assumptions under which
the existence of invariant curves (see 3.)Aand the stability of T can be
proved.

Conditions used by the author in [14] were that ~~ is irrational.

w~ + w~ + ... I 0, and T is analytic. Then J. Moser [25] showed that, in

place of the irrationality of ~n' it is sufficient to require

Wo # 21t~. 21ti. and in place of the analyticity of T, the continuity of

the 333rd partial derivatives. For Wo = 2 n ~ instability is possible. as

T. Levi-Civita had already established (see [8] and, on the same subject,
the paper by G.A. Merman in [21], pp. 18-41).

§5. Contents of the paper

The paper consists of six chapters. Fundamental ideas and methods are
described in Chapter I; the exposition here is of a non-rigorous heuristic
character. I hope, however, that the thoughtful reader of Chapter I will
be able to establish the proofs of the fundamental results without turning
to Chapters IV and V which contain the strict mathematical basis.

Chapters II and III are devoted to the applications of the general
theory of Chapter I. The concept of an adiabatic invariant with applica
tions to "magnetic traps" is examined in detail in Chapter II. In Chapter
III we are concerned with the problem of many planets. The plane three-body
problem in the case of small eccentricities and small planet masses is
considered in detail.

Chapters IV and V and also Chapter III with the exception of §§1 and 5
are written formally. The reader will find the list of notation at the end
of Chapter V helpful.

The concluding chapter contains a number of separate remarks some of
which refer to unsolved problems.

Chapter I

THEORY OF PERTURBATIONS

In this chapter the ideas and constructions are described that will be
used in Chapters II and III to solve specific problems of dynamics.

We shall use:
1) methods developed by astronomers of the nineteenth century and

completed in the investigations of H. Poincar~ [1] (see §§1, 2, 3, 5);
2) the investigations of G.D. Birkhoff on the stability of positions

of equilibrium and periodic motions [3] (see §9);
3) a method of successive approximations of Newtonian type suggested

by A.N. Kolmogorov [12] (see §4).
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The author's investigations [14]-[17] refer to the so-called degen
eracy. Two remarks in §§6 and 7 allow the proper degeneracy to be
dealt with in §8. Certain cases of limiting degeneracy are examined in
§10. 1

In this chapter we avoid givirigeaccurate formulations and strict proofs
of the theorems. We only show the mainsprings of the complicated con
structions and strict proofs of Chapter IV.

§I. Integrable and non-integrable problems of dynamics

q == w (p)p===o,

We shall consider conservative dynamical systems with n degrees of
freedom defined by the canonical equations of motion

8H 8H
P:=:'-aq-' q=ap- (p=p., .. e,Pn;q=qf, ... ,qn) (1.1.1)

with an analytic Hamiltonian H(p, q). Classical methods of dynamics permit
the investigation only of the so-called integrable cases.

EXAMPLE 1. Let us assume that the phase space p,q is the direct
product of an n-dimensional torus and a domain of an n-dimensional
Euclidian space. Let qi(mod 2n) be the angular coordinates on the torus
and Pi in space and let the Hamiltonian depend only on p: H = H(p). The
Hamiltonian equations (1.1.1) take the form

(
fJH

ffi == -a- == rob ... , ffin)
" p

and are at once integrable. Each torus p = const is invariant; if the
frequencies Ware incommensurate (i.e., from w1 k 1 + ... + wnkn = 0 with
integral ki it follows that ki = 0), then the motion is called conditionally
periodic with n frequencies Wi, •••• wn ; it is easy to prove that the
trajectory pet), q(t) fills the torus everywhere densely. The variables
p,q are called action-angle variables.

A fairly large number of integrable problems are known today. The solu
tion of these problems with n degrees of freedom is based on the fact
there exist (and can be found) n single-vaiued first integrals in in
volution. 2

It can be shown ([20], Ch. VI, §1) that the existence of these in
tegrals implies the following pattern of behaviour of the trajectories in
the 2n-dimensional phase space p,q. A certain particular (2n - 1)
dimensional set divides the phase space into invariant domains each of

1 At the time when the last of our notes [1~-[17] was printed there appeared
the first of two papers by J. Moser [2-U t [25] showing that in place of the
analyticity of perturbations in [12) it is sufficient that several hundred
derivatives should exist. We do not use the results and techniques of J. Moser,
since the main part of the present paper was written before the publication of
[2~, [25]. Only in §10 have we taken into account J. Moser's strengthening of
the resul t of [lil (see also Ch. VI. §6).

2 The functions f(p, q) and g(p, q) are in involution if their Poisson bracket
Of~ af~Op Oq - Oq Op vanishes identically.
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which is stratified into invariant n-dimensional manifolds. If the domain
is bounded. these manifolds are tori supporting conditionally periodic
motions. The action-angle coordinates of Example 1 can be introduced into
such a domain. If n first integrals in involution have been found. then a
canonical transformation introducing action-angle variables is given by
quadrature.

EXAMPLE 2. The following are integrable problems: the two-body prob
lem; the attraction of two fixed centres; the motion of a free point along
a geodesic on the surface of a triaxial ellipsoid; a heavy symmetric solid
body fastened at a point on its axis; an asymmetric solid body fastened at
its centre of gravity; linear oscillations.

Non-integrable 1 problems are: the n-body problem including the so-called
plane restricted circular three-body problem; the motion of a free point
along a geodesic on a convex surface; a heavY asymmetric solid body; non
linear oscillations with n > 1 degrees of freedom.

The search for integrable cases was principally dealt with in the nine
teenth century (Jacobi. Liouville, Kovalevska and others). But with the
work of Poincare it became clear that a dynamical system in its general
form was non-integrable; the integrals were not only not known, but did
not exist at all, because the trajectories on the whole did not lie on in
variant n-dimensional manifolds.

§2. The cla•• lcal theory of perturbatlona

Let us assume that a system differs from an integrable system by small
"perturbations"; using the notation of Example 1,

H (p, q) = H0 (p) + IJ-H t (p, q) + ··., (1.2.1)

where J..L is small and Hi + ... is of period 21t with respect to q. Accord
ing to Poincare [1] the investigation of this case is a fundamental prob
lem of dynamics. What influence does the perturbation lJ,H 1 have on the
behaviour of the traj ectories as t .... oo? Are the invariant tori preserved?
Does the trajectory remain at least close to the torus p = canst?

A comparison of the integrable and non-integrable problems of Example 2
demonstrates the significanc~ these Questions have in mechanics. A com
plete answer to them would contain, in particular, the solution to the
problem of the stability of a planetary system.

For an approximate investigation of trajectories for large t a special
apparatus was developed long ago in the theory of perturbations of
astronomy. If a canonical transformation P. q .... P'. q I reduces H to the
form

(1.2.2)

1 More carefully, one might say problems in which the integration cannot be
performed, since the proofs of non-integrabilit~ are complex and are carried
out rigorously only in individual cases (see [IJ, [10]).
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then in the course of time t - ! the motion p'{t), q'(t) differs from the
~

conditionally periodic motion described by H~(p') by a quantity -J.,L.

Returning to p, q, we shall obtain for pet), q(t) approximate expressions
1with an error of order J.,L for t - ~. If greater accuracy is required, the

following approximation can be made: p',p' ... p",q", which reduces H to the
form

H (p, q) = H~ (p") + J.L3H~ (p", q") + ...

The error now _~3t. If the successive approximations converge, then in
the limit we obtain H(p, q) = H~OO)(p(OO»), i.e. the system is integrable:
the tori p(OO)(p, q) = const are invariant and are filled with trajectories
of conditionally periodic motions.

In carrying out this programme we encounter two difficulties.
I. Small denominators. We shall look for a canonical transformation

, I , as, as
p, q ... p , q in the form p = p + J.J. oq' q = q + ~ Op' ,

S(p', q) = It Sk(p')ei(k,q). The function H(p, q) in terms of the co
k~O

ordinates p', q' is written in the form 1

Ho(p)+IJ.Ht(p)+JLFi.(p, q)+ ... =

=Ho (p')+IJ'//.(p')+/L [0:;0 :: +11.J +/L' ...

In order to obtain (1.2.2) it is necessary to eliminate the terms of order
as -~ depending on q, i. e. we must have (W, oq) + Hi = 0 or

ih (p') -
Sdp')= (:, k) • where H 1 = ~ hkei (1t.Q>. (1.2.3)

k*O

The denominator (W, k) vanishes for certain "resonance" values of k and
for all W is arbitrarily small for suitable k. These small denominators
(W, k) raise doubts concerning the validity of our formal transformations
for n > 1.

2. The divergence of approximations. There are cases in which the
series for each approximation terminate and therefore converge. Such cases
were investigated in detail by Birkhoff (3) (cf. §9). But Siegel [10] has
shown that, as a rule, all the approximations taken together, including
those in this case, diverge. As a consequence of convergence the structure
of the trajectories should be as described in Example 1. In fact, however,
the trajectories of the perturbed system cannot lie on invariant tori.

Let us suppose that detIg; I~ O. Then in any neighbourhood of any

invariant torus of the unperturbed system there is an n-dimensional torus
on which all the trajectories after a certain time become closed. With a
small perturbation this n-dimensional manifold of closed trajectories is

1 The line above Hi denotes averaging with respect to q: H1jP)-(21t)-nfH1(P,q)dq.
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in general destroyed .. Consequently, the series of the theory of perturba
tions do not, generally speaking, converge in any domain of the phase space.

The above considerations do not exclude the possibility that invariant
tori on which (W, k) ~ 0 may exist in a perturbed system. These tori cannot,
however, fill any domain.

§3. Small denominators

In investigating the influence of the small denominators (W, k)
astronomers have for a long time used certain arithmetic arguments (see
[1], [5]). The simplest of these consists in that there are more irrational
numbers than rational.

Furthermore, the components of a randomly selected vector ware in
commensurable. Therefore for almost al1 1 vectors W we have (W, k) ~ 0 for
all integers k ~ o.

The following theorem from the theory of Diophantine approximations
(cf. (54]) expresses this idea more precisely:

Almost every vector W= w1••••• Wn satisfies the inequalities

( I k 1= 1k11 + .. · -t-I kn I; ,,= n -t-1) (1.3.1)

for all integral k ~ 0 and for a certain K(w) > o.
PROOF. Let us consider a bounded domain 0, a fixed K > 0, and

integral k. Then the inequality (1.3.1) fails to hold only in the
"resonance zone" of width less than 2[lkl-v • The volume of this zone

does not exceed Klkl-vD, where the constant D> 0 depends only on O.
The number of values of k with \k\ = m does not exceed Lmn- t (the

constant L > 0 depends only on n). Therefore the measure of all resonance
zones with Ikl = m does not exceed Km- 2DL and the measure of all the zones

with Ikl > 0 does not exceed ~ Km- 2U ~ iD(O), D= 2LD. As K -+ O. the
m= 1

total measure of resonance zones tends to zero and hence the proof of the
assertion immediately follows.

Thus, for the majority of vectors w the small denominators (w. k) not
only do not vanish, but can be estimated from below by a power of Ikl.
From this stems the hope (see [I), [5], [7]) that the series (1.2.3) of
the theory of perturbations might converge for the majority of vectors W:
in fact. the Fourier coefficients hk of the analytic function H1 decrease
in geometric progression.

Let Hi be analytic for 11m ql ~ p and let IH1 (p, q)1 ~ M. Then
Ihk I ~ Me-I kl P (see Ch. V, §3, 2.). With the condition (1.3.1) the

coefficients Sk = (:.h\) decrease in geometric progression almost as

rapidly as the hk: for any 0 > 0 we have

/Sk l < ML e-l k l(p-6)
. KtJv '

1 All, except for a set of Lebesgue measure zero.
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where v, L are absolute constants «4.6.5), Chapter IV). Consequently,
the series S converges for 11m q( < p and in the somewhat smaller domain
11m ql ~ p - 20 we have (see (4.6.6), Chapter IV)

ML
ISI~-v . (1.3.2)

K6

Thus, (1.2.3) converges for almost all W. However, 1) the functions so
obtained depend on p everywhere discontinuously: 2) the convergence of
all the approximations pes), q(s) as s ~ 00 remains doubtful.

§q. Newtons Method

In order to overcome the difficulties 1) and 2) above A.N. Kolmogorov
[12] made the following two suggestions.

1) We shall look for only one invariant torus T~ of the perturbed
system on which there is conditionally periodic motion with frequencies w·.
The set of frequencies w· satisfying (1.3.1) is fixed in advance. We look
for the torus T~. in the neighbourhood of the corresponding invariant torus

_ * . dHo _ *of the unperturbed system: p - p -t-l-t ... , 8p* - ro ·

In the formula (1. 2.3) we put w· in place of 00 (p) = a~o . Then H(p, q)

expressed in terms of the new variables contains an additional term

It [(00-00*) :: ] . For Ip - p·1 ... ~ this term will be of order ~2.

2) In the indicated neighbourhood of the torus p = p. we can intro
duce new variables pi, q,' by means of an analytic canonical transformation
p, q ~ pi, q' in which the Hamiltonian R(p, q) = Bo(p) + H1 (p, q) takes
the form

H (p, q) =H<l) (p', q') = H~1) (p') + H~1) (p', q'),

where IH~1)1 -w IH1 12
•

The so arising quadratic convergence, typical of Newton's tangent
method (see [51]), allows us to find the invariant torus T~. More pre
cisely, the second suggestion above is contained in the folloWing. Let
IH1 I ~ M1 for 11m ql ~ p. By means of (1.2.3), (1.3.1), (1.3.2) and 1)
above we can obtain variables pi, q' such that for 11m q' I ~ p - LO,
Ip' - p·'1 ~ M1 we hav~

IH U) (' ') I /' M illi '1 I. 1)
1 p, q ~ 2 = 62V • { .-:1:.

Here L > 0, V > 0 are constants depending only on the number of degrees
I a/in)

of freedom n; at the point p. we have ap~ = 0)*, and 6 > 0 can be chosen

arbitrarily provided it does not exceed a certain constant depending only
on Ho, W* and p.

We shall now show, with (1.4.1) at our disposal, how to construct con
verging successive approximations to the invariant torus Tw*. Since
H(1)(p', q') has the same form as H(p, q), we can construct with tbe help
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of (1.2.3) the canonical transformations
p', q'~ p". q" _> ...~ p(f;), q(S)~ ... ,

H (p, q) = H(S) (p(S), q(S») = H~~) (p(S») + H~S) (p(S), q(S»).

In the contracting domains, defined by the inequalities

I (8) *(S) I 1If II (S) I M 111 ~P - P -<.n s, m q -< Qs (where 8+1 :.= --q:t- ,
6;Y

L~ aH~) I *
Qs+1=Qs- Us+h ap(S) p*<S)=w (8=1,2, ... )) (Qo=e, k/t=M),

we have. by (1.4.1),

1 / /
(8) Ill. _ ill~
1 -< J.~ 8+1 - 2'\7- ·6s

(1.4.2)

We shall now deal with the quantities os. We put 08 +1 = 0~/2
(s = 1, 2•.•• ). If Ms < or and T is sufficiently large, then by (1.4.2),

~2T-2v .l. S/2 _ .l.T
M s+1 "< Us -< Us - US+10 (1.4.3)

We take T to be large and fixed, for example T = 4V + 1 and assume that
for 11m ql ~ p we have IH1 (p. q)1 ~ M1 = or. where 01 is sufficiently
small. Then for all s = 1, 2, ..• we have IH{s)(p(s), q(s»1 ~ or in the
domain 11m q(s)1 ~ PSt Ip(s) - p.(s)1 ~ Ms. In addition, for sufficiently

small 01 we have O. > ~ > 0 (8 = 1. 2••.• ). It is easy to see that. by

(1.4.2) and (1.4.3), the so constructed domains contract to the invariant
analytic torus, T~.

Thus, we arrive at the following picture of perturbed motion (cf. [13).

We assume that detl~ I= detl~:f I. o. Then in a small neighbourhood of

any point p there are points where the frequencies Ware commensurable and
also points for which W(p) = w· satisfies (1.3.1). In accordance with this,
the canonical equations with Hamiltonian Bo(p) determine everywhere dense
conditionally periodic trajectories on some tori p = const, but not on
others.

It turns out that, for a small perturbation H = Ho(p) + ~1(P, q)
(~~1), most of the invariant tori with incommensurable frequencies w·

satisfying (1.3.1) with fixed
K do not disappear, but are
merely slightly deformed. The
trajectories of the perturbed
motion beginning on the deformed
torus T~. fill it everywhere
densely and conditionally
periodically. The tori T~. form
a closed nowhere dense set
(between them are gaps filled
with the remainders of des
troyed tori with commensurable

Fig. 7. W). But this invariant nowhere
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dense set has a positive measure which tends to the measure of the whole
phase space when K... 0, lJ.... 0 (see §7).

In the case n = 2 the two-dimensional tori T~. divide the three
dimensional invariant "energy level" H = canst (Fig. 7). Therefore a
trajectory beginning in a gap between two tori TM* cannot pass out of this
gap. Thus for n = 2 the existence of invariant tori allows us to reach con
clusions regarding the stability of motion.

In the case n > 2 the n-dimensional tori T01* do not divide the (211 -1)
dimensional manifold H= const, and the "gaps" can extend to infinity. In
this case we obtain information about the motion only for a majority of
initial conditions.

§5. Proper degeneracy

In the arguments of §4 we assumed that the frequencies w(p) =~ were

independent so that det! ;; I'i O. But not infrequently cases of

"proper degeneracy" occur when in the unperturbed system the motion is
described by a smaller number of frequencies no than the number of degrees
of freedom n (see [5]). This is precisely the case in the problem of
magnetic traps (no = 1, n = 2) and in many problems of celestial mechanics,
where the two-body problem (no = 1, n = 3) plays the role of the unperturbed
system. In these cases the determinant

det I aroj I= det I 82l!.'1-jI Bpi op; api

vanishes identically. In the present section we shall consider proper
degeneracy from the point of view of the classical theory of perturbations
(see §2).

EXAMPLE. Suppose that in the action-angle variables P1, ...• qn of
Example 1 (§1) we have

H = H o(Pb ... , Pno) ,

where no < n. We shall denote the vector of "rapid variables" P1' ... , Pno
by Po and the vector of "slow variables" PnO+1•••. , Pn by P1; qo and q1
have similar meanings.

The canonical equations

(where Wo(Po) = ~~) describe the conditionally periodic motion with no
frequencies Wo = w1• ••• , wno over the no-dimensional invariant torus
Po = const, P1 = const, q1 = canst.

We now assume that there exists a perturbation

H(p, q)=Ho(Po)+IJ.H1 (p,·q)+··· (1.5.1)
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Then the classical theory of perturbations 1 gives the following picture of
1the motion (With an accuracy N ~ for t ~ ~). Let us divide Hi into a

"secular part"

-and a periodic part Hi (p, q):

H1 (p, q) == H1 +H1.

It turns out that the secular and periodic parts of the perturbation p~y

completely different roles. The canonical equations with Hamiltonian ~H1 :

. alit
Pt= -J,t-a---j-···,

q!

. alit I

q1 == f..t aP 1 -r-...,

determine the slow secular variation of the parameters Pi, q1, defining an
invariant torus. The periodic part Hi leads only to an additional vibration
of the perturbed trajectory about the conditionally periodic m~ion with
slowly changing parameters described by the Hamiltonian Ho + 'J.,LH 1 •

The indicated picture of the motion is obtained by means of the trans
formation Po, qo ~ p~, q~ of §2 if Pi, q1 are regarded as the parameters.

In order to obtain more precise conclusions regarding the character of
the perturbed motion it is necessary !o investigate the "averaged"
canonical equations with Hamiltonian H1 (P1, q1) (depending on the para
meters Po). In what follows we shall consider cases when these equations
are integrable or nearly integrable, which happens, for example, in the
plane three-body problem with small masses or in the general n-body prob
lem with small masses, eccentricities and inclinations.

In the integrable case with appropriate choice of variables Pi, qi the
secular part Hi = H1 (P1, ... , Pn) does not depend on the angular variables
q1 and as a first approximation we arrive at the conditionally periodic
motion

Po=o,
with no rapid frequencies Wo = eo and n1 = n - no slow frequencies Wi = ~1.

A perturbation arising from 'J.,LB1 and equal on average to zero is super
imposed on this motion.

Our basic result consists in the construction of a rigorous theory of
perturbations similar to that described in §4 for the case of a
proper degeneracy. We shall show that when'J.,L is sufficiently small, for
the majority of initial conditions the perturbed motion is, in fact,
conditionally periodic and close to the first approximation described
above for all -00 < t < + 00 (see §8).

We encounter a number of difficulties in attempting to apply the tech
niques of §4. First and foremost we note that among the small denominators
(W, k) there exist zeros, since for ~ = 0 there are only no frequenctes WOe

Furthermore, in the subsequent approximations n frequencies Wa, Wi

1 In this case it is also called the "method of averaging" (cf. [5]. [7]).
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determine the small denominators [(eo, ko ) + ~(e1' k 1)] of which some are
small owing to the approximate commensurability of the frequencies W, but
others are small on account of degeneracy. For ko = 0 denominators of order
~ are obviously obtained.

§6. Remark I

Difficulties connected with degeneracy were overcome in [15], [16],
[17], at first for no = 1 in the model problem [15] and in the problem of
an adiabatic invariant [16], and then also in the general case [17]. Our
construction is based on two remarks. In this section we shall consider the
first of these, which is sufficient for the investigation of the case
no = 1.

We noted in §5 that some of the denominators [(eo, ko ) + ~(e1' k 1)]
were small on account of the approximate commensurability of the fre
quencies w, but others (for ko = 0) on account of the smallness of ~. It
turns out that typical small denominators (fa, ko ) + ~(e1' k1) admit an
estimate from below of the form

(v=n+1). (1.6.1)
ko =/= 0,if

[

Klkl-v,
! (~o. ko) + ~ (~b k.) I>

I-tKlkj-V, if k=l=O

For it is easily verified that, in the ea, t 1 space for fixed K, ~, k,
the condition (1.6.1) is violated only II in a resonance strip" not wider
than 2K Ik 1- 11

• The subsequent argument proceeds as in §3.
This simple remark permits the construction of converging approxima

tions to the invariant tori in the case in which the Hamiltonian is of the
form

(1.6.2)

For we shall regard Ho + ~H1 as the unperturbed function. We introduce
new variables p', q' by means of a canonical transformation defined as in
§§2 and 4. We assume that IH2 \ ~ M. Then from (1.6.1) and (1.2.3), in a
similar way to (1.4.1)-(1.4.3), we find that

ISI~~ ' IPo - p~ I--- M2, I 'I AlIP-P -~--' I ' I ~~Jq-q --.
J.t

In the new variables

where
(1.f1.4)

(the sign - denotes "is of the order of u in a very rough sense: we dis
regard the divisor K6~, taking Mand ~ as considerably less than Ko~).

Now from (1.6.4) for IH2 1 ~ M- ~2 we obtain IHa l ~ Ma/ 2
• This allows

the introduction of Newtonian successive approximations with MS +1 = M~/2 -~,
tl > 0 (for example, Ms +1 = M:/ S

).

It remains to reduce the Hamiltonian (1.5.1) to the form (1.6.2). This
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operation. which is an averaging over the rapid variables, does not require
any new ideas in the case no = I, n = 2.

In fact, for no = 1 there are no small denominators in (1.2.3) and the
generating function of the canonical transformation p, q ~ p', q' is
determined simply by means of the formula

qo

S (p~, p;, qo, qt) = - Wi.!'~, 11'1. gtl ~ ii 1 (p~, P;. qo, qt) dqo. (1.6.5)
o

It is easy to verify that in the new variables p', q' (see §2) the
Hamiltonian (1.5.1) takes the form

Ho(P~)+·llHl(P', q~)+H2(P', q')+ ... , H 2 --1!2. (1.6.6)

Furthermore, if no = 1, n = 2, then n - no = 1 and the averaged system
with the Hamiltonian Hi (where p~ is a parameter and p~ and q~ are canon
ically conjugate variables) has one degree of freedom and is therefore
integrable. By introducing action-angle variables P~J q~ in place of P~J q~

we reduce H1(P~, p~; q~) to the form H~(p~, p~) and thereby (1.6.6) to the
form (1.6.2).

Problems that can be reduced to the case no = 1, n = 2 are the be
haviour of an adiabatic invariant of an oscillating system with one degree
of freedom for a slow periodic variation of the Hamiltonian, and also the
adiabatic invariance of the magnetic moment in an axially-symmetric mag
netic trap (see Chapter II). Since n = 2, the invariant tori divide the
phase space and our method allows us to prove that the adiabatic invariant
is perpetually conserved and a particle remains perpetually enclosed in
the trap.

If n > 2, then reduction to the form (1.6.2) is possible on the
assumption that the averaged system is integrable or nearly integrable.

In the case no > 1 a substantial additional difficulty occurs in
reducing the Hamiltonian (1.5.1) to the form (1.6.2) or even (1.6.6). The
difficulty is as follows. In averaging over the rapid variables the
estimate IH2 1 - ~2 is obtained in accordance with §4 only in a domain - ~
about the chosen value of Pd.

But it is then not possible to proceed with the subsequent approxima
tions. In fact, for IH2 1 < Min the formula (1.6.3), estimating the

derivatives by Cauchy's formula we obtain Iqo - q~ I .. :2' Therefore in
M2

(1.6.4) 18s 1 N Ii2 and for fW N ~2 it turns out that 8 s N 8 2 so that

Newtonian approximations are not obtained.

§7. Remark 2

The above difficulty can be overcome in the following way. Let us
consider again the non-degenerate case (§§2 and 4). The limitation on the
domain Ip - p*l N ~ is connected with 1) of §4: this introduces into Hi l

)

a term of order Ip _p*12.
Returning to the classical methods of the theory of perturbations (§2)
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we disregard 1) of §4 and take w in formula (1.2.3) of §2 to be a function

W(p) = :0. But then, in order not to have to deal with everywhere dis

continuous functions of p, we restrict ourselves in the series of the theory
of perturbations to a finite number of harmonics, putting

S = Ii Shei(k, q).

0<1 kl<N

Then a term appears in H{ 1) of the form JLil1 -,... lHtlN =,.., Ii hh,e i (hi q).
Ikl~N

In order that this term should be of order ~2 it is sufficient to take N

to be of order In ! (for the Fourier coefficients of the analytic function
~

Hi decrease in geometric progression).
The function S obtained defines a canonical transformation p, q ~ p', q'

which is small prOVided that p' belongs to a certain domain GKN. The
domain GKN is obtained from the domain G, where H is defined, by
eliminating a finite number (- Nn ) of resonance zones: in the domain GKN

l(w(p),k)I>Klkl-v (O<lkl<N; v=n+1). (1.7.1)
From (1.7.1) it is seen that the magnitude of the components of the

( 1)"domain GKN is of order In ~ , i.e. of order N 1. Consequently, the

difficulty mentioned at the end of §6 no longer arises: if on averaging
over the rapid variables we make use of Remark 2, then we obtain (1.6.2)
in a domain of magnitude N 1 and consequently (1.6.3).

Remark 2 is also useful in the non-degenerate case: it enables us to
do without the apparatus of Borel's monogenic functions [IS] on estimating
the measure of the invariant set. The paper [19] gives a formal account of
this idea. Here we take note of the basic technical features of this ap
plication of Remark 2.

It is not difficult to see that if, for 11m ql ~ p, we have If(q)1 ~ M,
then the remainder of the Fourier series admits an estimate of the form

If(q) - [f(q)]NI ~ M2 for 11m ql ~ p - Y if N = ~lnM (for more detail see

3) in Ch. V, §3, 2.).
Let us now assume that the Hamiltonian Ho{p) + H1 (p. q) for 11m ql ~ p

from the domain G satisfies the inequality IH1 I ~ M. Our constructions
depend on the parameters ~. y, 0 and K which henceforth will be chosen
sufficiently small and such that y» 0 :» ~,. M.

On taking account of our Remark 2 the arguments of §§2 and 4 make it
possible to introduce new variables p', 9' so that
H= H~1)(p') +H~1)(p'. q'), where IH~1)1 NM2 in the domain defined by
the following conditions: 1) p' with a ~-neighbourhood belongs to GKN
(see (1.7.1); we shall write p' E GKN - ~); 2) 11m ql < P - 0 - y. Here

N = ! In! and IH( 1) I N M2 denotesy M 1

IB(l> I M2
1 < 11262'V (1.7.2)
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(1.7.3)

(for details see the fundamental lemma in [19]).
The quantities ~, y, 0 > 0 can be chosen arbitrarily provided they are

bounded above by a constant depending on Ho , p, K, where K is also arbi
trary. For a given K > 0 we take the quantities K, ~, y, 0, M so that for
IH1 1 ~ Mthe complement to the invariant tori fills only a part of order K
of the whole phase space.

It is easy to see (see the arithmetic lemma in Chapter V) that the
domain GKN - Sof admissible p' differs from G by resonance strips the
total measure of which has an upper bound of the type

( (1 - ~ -2 N - 1 I 1 "\
\, - ~ m, - y ~1 AI ) •

1~m<N

Similar bounds are obtained for the subsequent approximations, but in place

of 0 the s-th approximation will have as = ~ m- 2 ; consequently
NS-l~m<Ns

~ (18 < 2.
s

The quantities K, ~s. Ys. Os. Ms are chosen so that:

1) 2: (Ys+~s) < ~ (all the approximations are then possible).
s

2) M S+1 = M:~;26;2V < M:/2
(the approximations then converge, see

(1.7. 2»,

3)~(Ka8+~sN~)<.x(then by (1.7.3) the measure of the complement to
8

the invariant set tv K).
We put

1 1
Ns=-in~,

'VS 8

3/2
l)s+l = 6.1J (0 < a ~ 1, T ~ 1).

We choose T to be sufficiently large so that 2) is satisfied. We choose a
sufficiently small so that ~sN~ < Os (if 01 is sufficiently small). Then
for sufficiently small 01 1) is satisfied. Further, for sufficiently
small K and 01 3) is satisfied. K is chosen in this way, and then 01 is
chosen sufficiently small so that all the above requirements are satis
fied.

For M= oI we now obtain converging approximations to the invariant
tori and the measure of the complement to these tori is of order K in
view of 3).

§8. Application to the problem of proper degeneracy

By combining Remarks 1 and 2 all the difficulties of proper
degeneracy can be overcome (see §5). We now pass to the following theorem
(the conditions of which are satisfied. for example, in the three-body
problem when two planets have small masses and the inclinations of their
Kepler ellipses are small).

Let the Hamiltonian be analytic and of the form
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If (p, q) = H o(Po) + IlH t (p, q) -t- · · ·

107

(1.8.1)

in the domain F of the phase space p, q (where P = Po. P1; Po is a vector
of no dimensions, Pi is a vector of n1 = n - no dimensions; q = qo. q1
are. respectively, the rapid and slow angular variables (mod 2X».

We suppose that
1) the secular part of the perturbation

H 1 = (2n)-nc~ H1 dqo

does not depend on the phases q1 of the slow motion: Hi = H1(p);

2) the determinants of the frequencies with respect to the impulses
of order no and n1

do not vanish identically.
Then for sufficiently small I~I and the majori ty 1 of initial conditions

from F. the motion defined by the canonical equations with Hamiltonian
(1.8.1) is conditionally periodic. With these initial conditions the
motion for all -00 < t < +00 is close to conditionally periodic motion
(1.8.2) with no rapid frequencies We and n1 slow frequencies W1 = tJ. e. 1:

( )
aBo

Po = 0, qo = 0>0 Po = 8Po '

(with suitable initial conditions for the system (1.8.2».
The proof first of all uses Remark 2 (§7) in order to carry out an

averaging over the rapid variables (the transformation p, q ~ P'. q' of
§7 with respect to the variables Po. qo where Pi. q1 are regarded as
parameters). Then, for the second and subsequent approximations, use is
made of Remark 1 (§6).

We do not dwell on the details of the proof, because a rather more
general result (see Chapter IV) is required in the application to the n
body problem (n > 3). This general result refers to the case in which the
non-singular degeneracy considered here is combined with a so-called
limiting degeneracy.

§9. Limiting degeneracy. Blrkhoff's transfonaatlon

As "limiting cases" among the n-dimensional invariant tori p = eonst
into which the phase space of an integrable system is stratified, there
are frequently individual tori of dimension k < n. Let us consider as an

x 2 + %2
example an oscillating system with Hamiltonian H= 2 . The

trajectories are concentric circles (n = 1) in the x, x-plane; the position
of equilibrium is given by x = x = 0 (k = 0).

1 In the sense of Lebesgue measure.
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In such cases we speak of a " limiting degeneracy" (see [5]). Two
cases of limiting degeneracy occur particularly frequently (theory of
oscillations!): positions of equilibrium (k ~ 0) and periodic motions
(k = 1). These cases were investigated in detail by Birkhoff [3]. We shall
briefly state here the results of Birkhoff, which will be used in the
subsequent argument. For the proofs see [3] and [8].

We suppose that the point p = q = 0 is a position of equilibrium of
the system with Hamiltonian H(p, q) which is expanded in the neighbourhood
of the origin as a series

H = H 2 (p, q) + 8 s (p, q) +H 4+ ... (1.9.1)

of powers of p = P1, .•• , Pn. q = q1, .•. , qn (the Hm are terms of degree
m).

The canonical equations with Hamiltonian H2 are linear and therefore
integrable. We suppose that the position of equilibrium of the linear
system with Hamiltonian H2 is stable (the so-called elliptic case). Then
there exists a linear canonical transformation P, q ~ p', q', reducing H2

to the form

H2 (p, q) = (A, 't), where l' = Th ••• , 1'n, 2Ti = pi2 + qi';

here A = A1, ••• , An Is the set of fundamental frequencies of the linear
oscillating system with Hamiltonian H2 • In this system the invariant
n-dimensional tori are given by the equations ~ = const > 0; if the
frequencies A are arithmetically independent, the motion is conditionally
periodic and the trajectories fill these tori everywhere densely. The
frequencies Aare the same on all the tori. The action-angle variables
~, ~ are polar canonical coordinates connected with p',q' by the formulae

P = V2T cos cp, q = V2-r sin cpt (1.9.2)

In a small neighbourhood of the origin the terms 8 9 , 8 4 •••• in
(1.9.1) are small in comparison with H2 • Following the ideas of the theory
of perturbations we shall try by means of a suitable canonical transforma
tion p" = p' + ...• q" = q' + ... to eliminate Ha etc. small denominators
(A. k) will then appear. Furthermore, calculation shows that 8 3 can be
eliminated, but there still remains part of 8 4 and of other even-degree
terms. It turns out that. for any integer 2s ~ 3, (1.9.1) can be reduced
to the so-called normal form (1.9.4).

We assume that

(A, k) =1= 0 for Ik I= Ik j I+ ···+Ik n I< 2s - 1. (1.9.3)8

Then there exists a canonical transformation pes) = p' + ..• ,
q(') = q' + .•. , given by convergent power series 1 in the neighbourhood of
the origin such that 1.9.1) expressed in terms of pes). q(s) has the form

where
(1.9.4)

1 Possibly polynomials.
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(1.9.5)1,2

is a polynomial in 1:i (where Aij = Aj i) and H(8) = O( 11:(') Is) is a con
vergent series in the powers pes), q(S), ••• , beginning with terms of
degree 2s. The coefficients hi, Aij, ••• of the polynomial H(s) do not
depend on s nor on the method of redUcing (1.9.1) to the form (1.9.4):
they are invariants of the function (1.9.1) with respect to the canonical
transformations of p, q.

The system with Hamiltonian H(s) is integrable. The action-angle
variables are canonical polar coordinates ~(s), ~(s) conne9ted with pes),
q(s) by the formulae (1.9.2). The invariant tori are given by the equations
,;(s) = canst. The corresponding frequencies A~S) = Ai + 2~Aij,;JS) ,

]

generally speaking. change from torus to torus. If one of the determinants
(of order n or n + 1)

j)2B ail

1
2Aii Ai 1_ a,;2 a,;

'A j 0 - all 0 4= 0
0';

is different from zero, we shall say that (1.9.1) is of general elliptic
type.

The normal form (1.9.4) enables us to investigate the behaviour of
trajectories that begin in a small (-e) neighbourhood of the origin. For
t - e- s the trajectory remains close to the trajectory of the integrable
system with Hamiltonian H(s). The latter trajectory remains in the €
neighbourhood of the origin for all =00 < t < +00. Thus, if (A, k) -:I 0
for k ~ 0, a trajectory beginning in the €-neighbourhood of the origin
remains close to the origin for at least a time Cse- s , where s is arbi
trarily large if € is sufficiently small.

But, as we have already noted in §2, the sequence of series
pes) = pi + •.• , q(s) = q' + .•• diverges as S'" 00. Therefore the
stability of the point O. 0 does not follow from (1.9.4).

The investigation of the neighbourhood of the periodic motion of a con
servative system with n degrees of freedom can [3] be reduced to the
investigation of the position of equilibrium of a system with n - 1 degrees
of freedom for which the Hamiltonian (1.9.1) depends periodically on the
time: H(p. q; t + 21t) = H(p. q; t). If in place of (1.9.3) it is required
that (A. k) =I ko for Ik I , 2s - 1. ko = O. ±1. ±2, ••.• there exists a
Birkhoff transformation p, q ... pCs), q(s) that reduces H(p, q; t) to the
form (1.9.4). The functions p(s)(p, q), q(s)(p, q) and H(s)(p(s), q(s» in
this case still depend on t (with period 21t).

§IO. Stability of positions of equilibrium of Hamiltonian syst...

The stability of positions of equilibrium of a conservative system of
general elliptic type was first established in the author's paper [14] in
the case of two degrees of freedom and on the assumptions (1.9.3)m and
(1.9.5)2. A.M. Leontovich [23] has applied this result to the bounded three
body problem and proved the stability of Lagrange's periodic solutions.
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Then J. Moser observed that, in place of the irrationality of A1 /A2
(condition (1.9.3)00) it is sufficient to take the condition (1.9.3)5/2,
i.e. k 1 Ai + k 2 A2 =I 0 for 'k i l + Ik 2 1 .~ 4. If the number of degrees of
freedom n is greater than 2, stability remains an open question; it has
been proved only for a majority of initial conditions.

Similar results have been obtained (by the author in [14] and then by
Moser in [25]) in the non-autonomous case. Stability was proved in two
frequency problems, i.e. for periodic motion of an autonomous system with
two degrees of freedom and for the position of equilibrium of a system with
one degree of freedom and with a periodic variation of the Hamiltonian.

We mention here the proof of stability of the position of equilibrium
of a Hamiltonian system of general elliptic type with two degrees of free-
dom on the assumption that k 1 A1 + k 2 A2 i 0 for Ik 1 1 + Ik 2 1 ~ 4
(see (1.9.3)5/2).

In accordance with §9 we are justified in taking the Hamiltonian to be
of the form (see (1.9.4»

H~-:Ho('r)+H1(t', cp), where H o(,;) = (A, ,;)+ ~'Aij1:i'tj, \H1 1<CI-rl s
/

2
,

(1.10.1)

and H1(~' ~) is analytic with respect to ~, ~ in the domain I~i - el < e,
11m ~I < 1. We first of all assume that condition (1.9.5)1 is fulfilled.
Then on varying ~ in the domain I~ - el < € the frequencies
'\ 080
A(~) = ~ run through the domain of magnitude of order € about the point

A=A(O).
But it is not difficult to observe that the majority of points A in the

dOmain of magnitude € admit a lower estimate of the small denominators
(A, k) of the form

'(A, k) I>Ke Ik I-v (\kl>O, v=n+1) (1.10.2)

for a suitable K > O.
For it is easy to see that the measure of the resonance strip with

number k constitutes a part of order K/kl- v of the measure of the domain
being considered. The subsequent argument follows along the same lines as
in §3.

It follows from this remark that for sufficiently small K > 0 (not
depending on e) the small denominators (A(~), k) have the lower bound
(1.10.2) for the majority of ~ in the domain G: I~i - el < €; our con
clusion depends in no way on the arithmetic nature of A = A(O).

We now apply the construction of §7 to the function (1.10.1) in the
domain G. We put ~ = 03€. Let IH 1 1 ~ M. For sufficiently small 0 in the
domain G€K,N - ~ we obtain from (1.7.2)

If M < C € 5/2, M < oTt then for sufficiently large T and sufficiently
small 0 it follows from the last formula that
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'H~1)('t". <p')1 <M11/ 10 (in general <~/5-6. 6> 0).

Therefore we put

111

1 1 11/10
Ns=-ln M' ~8+t=fJ8 •

'VS 8

For sufficiently small a. sufficiently small K, sufficiently large T,
sufficiently small 01 and € < ~ = o~/5T, the approximations constructed
in §7 converge. In an €-neighbourhood of the origin we find invariant tori
with conditionally periodic motions.

Up to this point our arguments have been valid for any number of
degrees of freedom n. If. however. n = 2, then the two-dimensional tori
that are found divide the three-dimensional manifold H= canst which con
tains them. If on each such manifold in any neighbourhood of the origin
there is an invariant torus. then the origin is obviously a stable position
of equilibrium.

Tori that are given by our construction exist at each level of

H = const if the ratio Al(~) varies along the line Ho(~) = O. In the caseA2 ('t)

of n degrees of freedom this is expressed by the condition

D (
Ai An-t )
~, ...,.~

--:------ =#= 0
D (T{t ••• , 'tn-i)

(1.10.3)

(where ~n has been expressed in terms of ~1••••• 'tn - 1 from the equation
Ho ('t) =0).

In its symmetrical form (1.10.3) takes the form (1.9.5)2. Thus
stability is obtained for n = 2 on the assumptions (1.9.5)2 and (1.9.3)5/2.
Supposition (1.9.5)'2 can be still further weakened (cf. [14])1.

For n ~ 2 the invariant tori obtained fill a large part of the
e-neighbourhood of the position of equilibrium. This is proved with the
help of estimates of the type (1.7.3) which now express the ratio of the
measure of the resonance zones G\ (GEK, N - ~ ) to the measure of the whole
domain G. A detailed proof is given in Chapter IV (where we have to put
no = 0). For the sake of technical convenience this proof is carried out
under the assumptions (1.9.3)7/2 (i.e. (A, k) i 0 for Ikl ~ 6) and (1.9.5)1.

The question of stability in the general many-dimensional elliptic
case remains open. The simplest unsolved problem is to determine whether
a fixed point of a canonical mapping of a four-dimensional space onto
itself is stable.

Chapter II

ADIABATIC INVARIANTS

In this chapter we consider the concept of an adiabatic invariant
(which has been little studied by mathematicians in spite of its importance

1 Examples are known which demonstrate that (1.9.3) cannot be disregarded com
pletely (see (4)).
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and interest). We investigate the variation of an adiabatic invariant in
the course of an infinite interval of time for a small periodic variation
of the parameters of an oscillating system with one degree of freedom. It
turns out that if the system is non-linear, this variation is small for all
- 00 < t < +00 (see [16]).

§1 contains the definition of an adiabatic invariant and of a per
petual adiabatic invariant. In §2 the proof of perpetual adiabatic in
variance of action is reduced to the general theorem of the type in Ch. It
§8. §3 contains an outline of a similar procedure for a conservative
system with two degrees of freedom. The results obtained are applied in §4
to the investigation of the motion of charged particles in axially
symmetric magnetic fields. We show that adiabatic magnetic traps are
capable of retaining a particle perpetually. The final section contains
some remarks on the many-dimensional case.

§I. The concept of an adiabatic Invariant

We give in this section one of the possible mathematical definitions
of the concept of an adiabatic invariant. We discuss the question of the
accumulation of variations of an adiabatic invariant in linear and non
linear oscillating systems with one degree of freedom.

I. Adiabatic variations. Let us consider a dynamical system in which
the parameters may change, for example, a pendulum of variable length. For
very slow (in comparison with the motion of the system) variations of the
parameters distinctive asymptotic phenomena appear. In the pendulum example
the amplitude of the oscillations turns out (in the limit) to be a function
of the length: if the length is changed sufficiently slowly according to
some arbitrary law, then every time the length returns to its original
value the amplitude of the oscillations will be the same as it was
initially.

Such slow variations of the parameters are called adiabatic. The con
cept of adiabatic variation was introduced by physicists in a somewhat
vague form. It was supposed that the person changing the parameters of the
system did not see it (otherwise he would be able to swing a system by
changing the parameters in time with its own motion). The mathematical
formulation of this last requirement is a very delicate matter.

Following [26] we shall avoid this difficulty and consider slow varia
tions of the parameter A of the form A = f(~t), where f(x) is a fixed and
smooth function and ~ is a very small number. Without loss of generality
we can regard the so-called "slow time" A = ~t as a sloWly varying para
meter and fix the Hamiltonian H(p, q; A). We shall consider very small ~

and concern ourselves with the motion of the system in the course of a

large finite interval of time t N !IJ·
2. The adiabatic invariant. Let us consider a dynamical system with

Hamiltonian

H (p, q; A)
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IJ (t) - J (0) I< x.

W~
Fig. 8.

DE FIN I TION. The function J (p, q; A) is called an adiabatic in
variant of the system if for small ~

J(t)=J[p(t), q(t); A(t)]

varies little during time t H ! (changes in Aand H are here of order 1).
~

More precisely, J is adiabatically invariant if, for any K > 0, it is
possible to find a ~ > 0 such that when 0 < ~ <~, then for all toin the

interval 0 < t < !
~

It is obvious that every exactly self-preserving (invariant) quantity
is an adiabatic invariant. Less trivial examples are given below.

I. Let us consider an oscillating system with one degree of freedom
and a smooth Hamiltonian H(p, q; A). If we fix the value of the parameter
A, then on the phase plane p, q a family of energy level curves
H(p, q; A) = const can be drawn. Curves passing through the point Po, qo
bound a certain domain, the area of which we denote by
27tI(po. qo; A). It can be shown that I is an adiabatic
invariant [5]. [6]. The quantity I is called the variable
of action or the action.

In the case of the mathematical pendulum

HI = -, where W = weAl is the frequency of the oscillations.w
II. As a second example we can consider the motion of a perfectly

elastic ball between two slowly moving parallel planes (Fig. 8). The
product of the distance between the planes and the velocity of the ball is
an adiabatic invariant. This is easily established even by elementary means
(cf. [26]). Example II can also be considered as a limiting case of
Example I.

III. A further example is obtained by considering the motion of a
charged particle in a magnetic field. If the strength of the field B is
constant in time and in space. the particle moves along a spiral around a
line of force. We resolve the velocity vector of the particle v into its
components parallel to and perpendicular to the field:

v=vll+v1..-
It can be shown that, for a slow variation of the field B(h). the mag

nitude of the "magnetic moment"

w
1- 1
-~,

where W.L = vt is the energy of the transverse motion, is an adiabatic

invariant (see [28])_
3. Perpetual adiabatic Invariant. An adiabatic invariant I varies

little during time t ... ~. But during an infinite time it can change very
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considerably. This is connected with the possibility of accumulating small
variations of I. Let us consider, for example, the linear oscillating
system (swing)

(a «: 1).

It is known [6] that for certain ~ (namely, ~ .. 2k
W

, k = I, 2, .•• ) a para

metric resonance is possible: I (t) .... 00 as t ... oo. And such a swing can take
place for an arbitrarily small rate of change of the parameters ~.

It turns out, however, that for a slow periodic variation of the
Hamiltonian H(p, q; A) of a non-linear oscillating system with one degree
of freedOm an adiabatic invariant is perpetually conserved: for any K > 0
it is possible to find ~(X) > 0 such that from I~I < ~ it follows that

I I (t) - I (0) I< ?(

for all - 00 < t < +00. This assertion will be proved in §2.
A linear system is an exceptional case, since the frequency of its

oscillations does not depend on amplitude. In a non-linear system, on the
other hand, if the amplitude is increased, the frequency changes and the

oscillations cannot grow, because the resonance condition~ .. 2~

is violated.

§2. Perpetual adiabatic invarlance of action with a slow
periodic variation of the Hamiltonian

In this section we consider a non-linear oscillating system with one
degree of freedom and an analytic Hamiltonian H(p, q; A) depending period
ically on the slow time A= ~t:

H (p, q; 'A+ 2:rt) = H (p, q; A).

We shall prove the perpetual adiabatic invariance of the action I.
I. Conservative approximation. We first of all consider the roughest

zero approximation: A= const and the system is autonomous. As a con
servative system with one degree of freedom it 1s integrable. It is con
venient to describe the periodic motion of the system by means of the
action-angle variables It W. These variables are introduced by means of
the canonical transformation

as
P=aq-'

with the generating function

asw-- aJ (2.2.1)

q

S (I, q) = ~ pdq,
H=h

where h = Ho (l) is the function inverse to

I (h) = 2~ ~ pdq,
H=h

(2.2.2)

(2.2.3)
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and p in (2.2.2), (2.2.3) denotes the quantity p(h, q) obtained from the
equation H(p, q) = h.

The formulae (2.2.1) define a canonical transformation p, q ~ I, w for
every fixed value of A. The variation of It w with time is determined by
the canonical equations with Hamiltonian Ho(l). Therefore the quantity I
is conserved and the angular coordinate w on the circle I = const varies
uniformally with frequency

· an
w = CJ) (1):== 81

0
• (2.2.4)

All the functions H(p, q; A), 8(1, q; A), p(h, q; A). Ho(l; A), weI; A)
depend on the parameter A which we have omitted in the formulae (2.2.1)
(2.2.4). In the conservative approximation the value of the parameter Ais
fixed. This approximation is applicable during time t H 1.

2. Adiabatic approximation. The action-angle coordinates introduced
in 1. are convenient in the case in which the parameter Avaries with time.
The transformation P. q ~ I. w is canonical but it depends on h and conse
quently on the time t. Therefore the variation of I, w with time is deter
mined by the canonical equations with Hamiltonian

H(I, w; 'A)=Ho(I)+p.Ht(I, w; 'A), (2.2.5)

where H1 = ~ is a single-valued function of period 2ft with respect to to

and A.
The classical theory of perturbations (see Chapter I) gives the follow

ing picture of motion in the phase space p, q; A. We shall identify points
at which the coordinates A differ from each other by a multiple of 2 1t •

Then the equation I = const determines a two-dimensional torus. We shall
call the angular coordinates wand Aon this torus the latitude and longi
tude, respectively (Fig. 9).

In the conservative ap
proximation (~= 0) each point
of the torus moves along its
meridian A= canst with angular
velocity w(I; A) depending on
the longitude. For ~ # 0 a slow
motion (A = ~) across the
meridian is added and the
motion becomes two-frequency.
But - in the approximation of
perturbation theory - the phase Fig. 9.
point remains on the invariant
torus I = const. This approximation is called adiabatic. It is not diffi
cult to see that the true motion is close to the adiabatic approximation

during the time t H !. This proves the adiabatic invariance of I.
~

We now pass to the proof of perpetual adiabatic invariance of I in a
non-linear system.

3. Invariant tori. In a linear system weI) = canst and Ho(I) = Iw.
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We shall assume that the oscillations are non-linear. Let us denote by
w(I) the mean frequency

OJ (l) = 2~ ~ (J) (1; 'A) d'A = d~o , where /lo (I) = 2~ <p /lo (I; A) d1...

We assume that
d2H o = dw =hO
dI2 dI ~ ·

(2.2.6)

With condition (2.2.6) we shall prove the perpetual adiabatic invariance
of I. With this aim in view we shall find many truly (not approximately)
invariant tori for the system with Hamiltonian (2.2.5). These tori are
close to the tori I = canst if ~ is small. They are two-dimensional and
divide the three-dimensional phase space p,q; A into thin layers. If the
initial point Po,qo; Ao lies between two of these tori Ti and T2 • then
the trajectory p(t), q(t); A(t) lies entirely between Tl and T2 • We prove
the following proposition.

I. For any 1(, > 0 it is possible to find ~ > 0 such that if It-LI < IJo ,
then any point Po, qo; Ao lies between two invariant tori Tt , T2 , where

II (Ph 9.; At) - I (P2' 92; A2) I< x,

provided Pl, ql; Ai belongs to T 1 and P2, q2; A2 to T2 •

From Proposition I the perpetual adiabatic invariance of action fol
lows immediately.

THEOREM 1. Suppose that an oscillating system has the anaJ:ytic

Hamiltonian (2.2.5) in action-angle variables and that ~ # 0, ~j1~ # 0

everywhere in the domain II - 10 1 ~ r. Then for any K > 0 it is possible
to find tJ.o > 0 such that if It-LI < ~ and 11(0) - 10 1 ~ r - ". then for all
- 00 < t < +00 we have II ( t) - I ( 0) I < 1(, •

We now proceed to the proof of Proposition I under the assumptions of
Theorem 1.

~. Preliminary canonical transformations. We shall attempt to reduce
the Hamiltonian (2.2.5) to the form (1.8.1). For this purpose it is con
venient to take the phase of the rapid motion w as an independent variable.

LEMMA. Suppose that the frequency weI; A) = ~; does not vanish in

the dOmain in question. Then there exist analytic functions P, Q, T of the
variables I. w. A, not depending on~. such that

1) P, Q- A and T - w have period 2ft with respect to w and A;
2) the canonical equations with Hamiltonian (2.2.5) are equivalent to

the canonical equations

wi th Hami 1tonian

k(P, Q; T)=Jjko(P)+f.t2kt(P, Q; T)+ ... , (2.2.7)

of period 21t tlJith respect to Q. T and analytic in the complex neighbour
hood of the torus layer Ip - 10 I<: r;
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3) in (2.2.7) the function ko(P) is inverse to Ho(I) so that
Ho(ko(P» == P.

We first of all introduce a new time T = w. As is known [4]. the
integral curves of the Hamiltonian system in the space I, w; Aare 1n
variantly connected with the differential form

117

1/ dw-H (I, w; }-Lt) dt = - - (H dA- eI dw).
It

(2.2.8)

Multiplication of this form by a constant does not change the relationship.
In (2.2.8) we shall regard H, A; w as independent variables and not J, w; t.
Solving (2.2.5) for I, we obtain

I(H, 'A; w)=/o(H, 'A)+fA.lt(H, A; w)+ ...

We introduce ~he notation:

p'=H, q'=A, T=w, K==,...I.
Then

and
K(p', q'; T)=llIo(p', q')+JA,2Il(p'~ q'; T)+ ...

H d'A - ~I dw = p' dq' - K (p', q'; T) dT ,

(2.2.9)

so that the systems with Hamiltonians (2.2.5) and (2.2.9) are equivalent
(see [4]).

We note that the frequency weI; A) in 2. varies with time. By means of
the canonical transformation p', q' ~ P, Qwe change the coordinate q' = A
(slow time) so that the frequency with respect to the changed time Q
becomes constant weI). With this in mind we introduce into the system with
Hamiltonian Io(p', q') the action-angle variables P, Q by means of the
canonical transformation

, as
p = (Jq"

with the generating function

Q -~- ap

q'

S (P, q') = ~ Ho(I, A) dA,

where I = ko(P) is a function inverse to Ho(l). Obviously the quantities
P, Q; T found satisfy all the requirements of the lemma in 4.

In accordance with this lemma Proposition 1 in 3. follows from the
analogous assertion for the system with Hamiltonian (2.2.7).

5. Investigation of the system with Hamiltonian (2.2.7). The function
(2.2.7) is not formally within the scope of Cb. I, §8, since it contains
the "time" T explicitly. But the conclusions of Ch. I, §8 are valid and
can easily be obtained by the method which is outlined in Chapter I and
will be worked out in detail in Chapter IV. in a rather more complicated
problem. We shall not dwell here on the details of the proof. We shall
show that by another method the system (2.2.7) can be reduced to a con
servative system with two degrees of freedom. For this purpose we note
that the canonical equations
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dP ok dR ok
-d-c - -7iQ' liT = - aT '

with Hamiltonian

dQ ok
"dT= ap·'

R+k(P, Q, T) =R+l-tko (P)+1-t2
••• (2.2.10)

and angular coordinates Q, T contain the canonical equations with
Hamiltonian (2.2.7). The function (2.2.10) has the form (1.8.1).

An inequality analogous to (1.9.5) and sufficient for the validity of
the results of Ch. I, §8 follows from (2.2.6).

Either of these methods can be used to prove the following proposition.
II. Let (2.2.7) be analytic for II-LI <~ in the domain 11m Q. TI, p,

d 2koIp - Po 1~ r. where 1ko I ~ M. 1k 1 + (J.L) ••• 1~ M. IdP8\ ~ e> o. Then for

every 1( > 0 it is possible to find ~(X, t:L, r, p, M, 8) > 0 such that if
II-LI < I-Lo. then the real torus layer F, where Ip - Pol, r, is filled with
invariant tori with an accuracy up to a residual of measure less than
1( mes F and the distance of each of these invariant tori from a certain
torus P = canst is less than 'K •

Proposition I, and with it also Theorem 1 of 3., easily follows from
Proposition II., by virtue of 4.

§3. Adiabatic Invariants of conservative systems

We prove in this section the perpetual adiabatic invariance of
variables of action in conservative systems with two degrees of freedom.

I. Adiabatic approximation. Let us consider a conservative dynamical
system with two degrees of freedom X, Y. We shall assume that a change in
one of these coordinates. for example X. has little influence on the state
of the system. It can then be supposed approximately that there exists a
system with one degree of freedom Y depending on the slowly varying para
meter ~X. The variable of action Iy (see §2, 1.) corresponds to this
system. The magnitude of Iy is shown to be adiabatically invariant in the
following sense.

Let us fix a function of four variables H( ... ). Let X. Y, Px. Py be
canonically conjugate variables. We consider a dynamical system defined by
the Hamiltonian H(JJ,X. Y; PX, Py). If JJ, is small, then the state of the
system varies little if X varies by a quantity of order 1. We fix the
values of X and PX. Then H is transformed into the function Hy(Y. Py). We
denote by Iy(Y. Py) the variable of action in the system with Hamiltonian
Hy(Y. Py). The magnitude of Iy depends. however. on the parameters I-LX, PX.
For the original system with Hamiltonian H(~X. Y; PX, Py) the action Iy
will be an adiabatic invariant in the sense that the variation of

Iy[J.LX(t). Y(t); PX(t). Py(t)] during time t ow ~ is small together with J.L.

H(~X. Y; Px. Py) can be written in the form H = HXOJ,X. PX; Iy). In
order to determine approximately the variation of X, Px with time it is
sufficient to form the canonical equations with Hamiltonian HX(~X. PX)
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10.

u

(depending on the constant parameter Iy). If in this system with one
degree of freedom the motion is periodic, then a variable of action

Ix H ! can be introduced. In the
~

adiabatic approximation the motion is
composed of rapid oscillations of Y
with frequency wyand slow oscilla
tions of X with frequency Wx of order
~, Iy and ~X being conserved.

This approximation will be proved
below. We shall prove the perpetual
adiabatic invariance of Iy and IJ,Ixon
on the assumption that the mean value

:~ of the ratio :~ depends on Iy for a fixed total energy h.

2. Example. Let us consider motion in a "potential ditch" pulled
out along the x axis (Fig. 10):

H=P~+P~tU(x'Y),WhereU=ro2Y2, ro=1+x2 , x=/lX, 1.t~1.

The quantities introduced in 1. take the form

H = P~+U -I- P~ I y = J>f+U roy = <0 = 1 +x2 , roy = 32
J
h
y

-4-- 1
3

,..
y 2 . 2 '2roy ,

H =P!r+2Iy x
2 +1 IIIx = P!r+2I y x

2
U)x=Il"/2Iy .

x 2 y, r 2 Y2Iy , r JI

Our assumption concerning the dependence of wy on Iy is fulfilled andwx
therefore Iy, 1J.1x are perpetual adiabatic invariants.

At the very bottom of the ditch it is possible to roll away to infinity
(y = Py = Iy = 0, Px = v, X = Xo + vt). But if Iy ~ 0. then the motion
takes place in a bounded domain at least for sufficiently small ~ (Fig. 11).

For let us fix the values of h
and Iy ~ 0 corresponding to the
initial conditions we require
and then allow ~ to tend to zero.

~~~~~~~~~~~~~~~~z For sufficiently small ~we have

II y (t) - I y (0) 1< 0 (,..,)
zma:z; for all

Fig. 11.
-oo<t<+oo.

But since

h-Iy (1 +x2) = pl' :;;;..0,

motion in the x direction is limited by

Ixmaxl = VI: -1 +0 (/I).

3. Preliminary canonical transformation. We shall reduce the
Hamiltonian of the system to the form (2.2.9). The perpetual adiabatic
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invariance of I y and JJ. Ix is easily deduced from the existence of the two
dimensional invariant tori of the latter system since these tori divide the
three-dimensional level of energy H= h.

LEMMA. Suppose that the Hamiltonian H(x, Y; PX, Py) (x = IJ.X) is
analytic and for fixed x, Px defines an oscillating system with action
angle variables [y(x. PX; h), wy(x, Y. PX, Py). Then there exists an
analytic substitution expressing x. Y, Px. Py in terms of new variables
x'. Wi, p', I' such that:

1) The functions x, Y, PX, Py are of period 21t wi th respect to w. As
J.1-+ 0 the variables x', w', pi, I' turn into x, wy, PX, Iy.

2) Along the integral curves of the canonical equations

dPx aH dPy aH dX all
(ft= - oX' (ft== - ay' (ft= ap~\ '

the canonical equations

dP' ax dx' aK
dw' == - ax" dW' iJP'

dY oR
(ft =--= fjPy

(2.3.1)

, iJS
W = aI' ,

as
P y = ay ·

with Hamiltonian K(P', x'; w'; h) depending on the parameter h are satis
fied.

3) K is of the form K = -IJ,I', where

]'=Io(P', x'; h)+fl1l(P', x'; w'; h)+ ...

is an analytic function of period 21t with respect to w' and
10 (p I, x'; h) = I y(x', P'; h).

PROOF. From the relationship H(x. Y; PX. Py) = h we can express p} J.~

the form Py(x, Px, Y; h) and we put 21tIy(x, Px; h) =~py dY. This

relationship defines the function hex, Px; Iy). The generating function
piX + Sex. pl. Y. I'), where

y

S = ~ Py [x, P', Y; It (x, P'; I')] dY.

determines the canonical transformation X, Y, PX. Py -. X', Wi. pi, I' with
the help of the formulae

X , X as
= + ap"

P P" asx = -rf.-t ax '

We also put x I = tJ X'. Since

H{x, Y; p', Py[x, p', Y; h(x, P'; f')]}=-=h(x, P'; I'),
we have

fl {x, Y; Px , Py(x, p', Y; h (x, P'; I')]} = h (x, P'; 1') +It :~ :~~ + ...
Therefore, expressing X. Yin terms of the new variables, we obtain

H ( Y P P) h (' P' I') + as all as allx, ; x, y = x,; f.L ax iJPx - f.-t BP' ax + ··. (2.3.3)
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(2.3.3) can be written in the form (ho =h)

H(x, Y; Px, Py)=H'(x',P',]', w')=ho(x',P'; 1')+~hl(x',P',I',w')+ ... ,

(2.3.4)
where ~1 + ... is an analytic function of period 21t with respect to Wi.

We shall measure the time by the phase Wi. For this purpose in place
of pi, X'; I'. w'; t as independent variables in the expression
P'dX' + I'dw' - Hdt we take, respectively, pI, X'; -H, t; w' (see [4]).
We shall consider h as a parameter and w' as the time. The role of the
Hamiltonian is played by - I' (X', p'; w'; h), where I' is determined from
the equation

H' (f.LX', p', I', w') = h. (2.3.5)

The coordinate t is cyclic; discarding the variables -H, t we obtain a
non-autonomous system with one degree of freedom. We multiply the co
ordinate X' and the Hamiltonian -I' by the constant )..1: ~X' = x', - ~I' = K.
The derivatives of x' and p' with respect to w' are determined by the canon
ical equations (2.3.1) with Hamiltonian K.

In view of (2.3.5) and (2.3.4) the function I' is of the form (2.3.2)
and this proves the lemma.

~. Proof of the perpetual adiabatic invarlance of action. In accord
ance with (2.3.2) the function K is of the form (2.2.9). (2.2.6) follows
from the condition formulated at the end of 1. Therefore the reasoning of
§2 is applicable. It gives invariant tori and the proof of the perpetual
adiabatic invariance of I y and Ii Ix •

§~. Magnetic traps

In this section we consider the motion of a charged particle in a
magnetic field. It is assumed that the instantaneous radius of the spiral
along which the particle moves is small in comparison with the distances
at which the field changes significantly. This condition is fulfilled if
the field is large or if it is almost constant, or if the velocity of the
particle is small. We shall consider the last case (which does not result
in any loss of generality).

We show that in axially-symmetric magnetic traps the adiabatic in
W

variant- B~ Is perpetually conserved. It therefore follows that such traps

are capable of retaining charged particles perpetually.
I. Equations of motion. We assume that the magnetic field B is

determined by a vector potential A which, in polar coordinates r, ~, z has
only ODe component ~ = A{r, z). Then the components of the field strength
Bare

oA
B.,.= -az' B = -.!. orA

z r 8r •

Therefore the lines of force are determined by the equations

rA = const, cp = const.
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(2.4.1)

The Lagrangian of a unit charge of mass 1 with a suitable choice of units
is

1· · · ·L = 2 (r2+ Z2 + r 2fP2) + rA<p.

From this we find the "impulses":

Pr=r, Pz=z, p~=r2~+rA,

and the Hamiltonian:

H - ~ [ 2+ 2+ (pqJ-rA)2 ]
- 2 Pr pz rt ·

Since ~ is cyclic, p~ = Mis conserved and it remains to investigate plane
motion in the field with potential

I(M -rA)2
U (r, z) = 2r2 '

where M is a fixed constant.
The function (2.4.1) defines a "potential ditch" with the zero

bottom along the line of force rA = M. In the neighbourhood of this line
we have

(2.4.2)

where y is the distance from the line of force and B is the magnitude of
the magnetic field strength on the line of force.

2. Change of variables. In order to apply the results of §3, we
introduce curvilinear coordinates x, y into the r, z-plane. We denote by x
the arc length along the line of force rA = Mfrom the fixed point 0 to
the base of the perpendicular from the point r, z onto this line of force.
As in (2.4.2), we shall denote by y the length of this perpendicular (Fig.
12).

Then we have

where k(x) is the curvature of the line of force at the point x, O.
Therefore

and hence

H= ~ ([1+:1(x)]2 +P~)+U, where U(x, y)= ~ B(X)yll+ •••

r

r

o

z z

Flg. 12. Fig. 13.
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The case of interest to us is that in which the radius of the Larmor
spiral described by the charge around the line of force is very small in
comparison with the characteristic dimensions of the field. In the notation
introduced this means that we shall consider values of the constant Mand
the total energy h such that the inequality

U<.h
defines a strip of width ~ tJ, around the line of force rA = M (Fig. 13). It
is therefore convenient to introduce new variables X, Y. PX. Py by means
of the relationships

x=,..,X, y==,..,Y, Px=f.tPX ' Py=IlPy.

The way in which these variables change with time is described by the
canonical equations with Hamiltonian H' = ~-2H:

I 1 (P~ 2 ) ,
H ="2 [1+f.tYk (f.lX )]2 +Py +U, V' (p.X, Y) = fB2 (p.X) y2 + ... ,

which can be written in the form

1/ ' - P1-t-Pt+B2 (x 2
) y2 + H ( Y

- 2 1l1 X , ,PX,Py )+ ... ,

i. e. this function has the form H' (IJ.X, Y; PX, Py; IJ.) similar to that con
sidered in §3. (It is easy to see that the additional dependence on IJ. is
inessential for the applicability of the arguments of §3.)

3. Perpetual adiabatic conservation of the magnetic moment. In con
sidering the formulation of the result to be obtained let us define more
exactly what asymptotic properties we shall be concerned with. We fix the
magnetic field B and also the self-conserving quantity M. Then we fix the
initial value 1 of x and finally choose initial values of y, X, Ysuch that
H ~ 1J.2, IJ. < 1. For this purpose it is necessary to take Y. X, Yof order ~.

We fix Y,X. Y. take y ::' IJ.Y, X = l-LX, Y= IJ. Y and then let IJ. tend to o.
The method of §3 gives us the following result:
I. If the magnetic field is analytic and B(x) > 0, B(x) ... 00 as

Ixl -+ 00, then for any 'K. > 0 it is possib Ie to find IJo > 0 such that if
IJ..L <~, then IIy(t) - Iy(O) I < 'K. for all -00 < t < +00, where

pjr _+-B2Y2
I y = 2B ·

From this it can be seen at once that a particle for which Iy ~ 0 is
locked in a bounded domain provided the field B increases infinitely as
x ... (X) (a trap with stoppers).

The physical meaning of Iy will become clear if we consider the moment
• y2

when Y = O. At this moment cp = 0 and -T == W..L (see §1, 2.• III). Therefore
lV1..

1t2jy = If-· . Thus Proposition I can be formulated as follows:

II. In an axially-symmetric magnetic trap the magnitude of the mag

netic moment U1~ is a perpetual adiabatic invariant.
B

1 It is sufficient to fix a bopnd~d domain of initial values of %. The same
applies to the fixing of y. X. Y and M.
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§5. The many-dimensional case

This section contains a brief discussion of the possibility of catry
ing over the results of §§2 and 3 to the case of many degrees of freedom.

I. The multi-parametric problem. Theorem I is valid when tne
Hamiltonian varies conditionally periodically. namely when
H(p, q; Al , ••• , An) depends on several angular parameters Ai each of
which varies with its own frequency ~i = IJ. E.i •

We assume that
I(k, ~)I>Klkl-v if iki >0, (2.5.1)

for v = n + 1 and a certain K> O. Then going over to the "time" T = w
we obtain the Hamiltonian (2.2.9) in the form K(n', qi, T), where
7(' = ~eiPi. On account of (2.5.1) we can make the transformation
p', q' ~ P, Q. The quantities Pi enter into the Hamiltonian (2.2.7) only
in the form of the combination ll= IEiPi. As in §2, 5. we can find in
variant manifolds with e'quations n = Fl-L (Qi, T); to them correspond the
(n + I)-dimensional tori in the original (n + 2)-dimensional space
p, q; At, ... t An.

2. The case of many degrees of freedom. At this point considerable
difficulties appear; thus, the question of the conservation of adiabatic

invariants even for t N ! has not so far been investigated (see [29]).
lJ,

We can only very briefly dwell on the peculiarities of this case.
The difficulty consists in that the ratio of the frequencies of the

rapid motions may depend on the phase of the slow motion. A simple example
of this phenomenon is given by the system of equations on a three
dimensional torus

x = 11)1 (z) + f!f (X, y, z), 1
y = ffi2 (z) +flg (x, y-, z), J~

Z=IJ.

(2.5.2)

(where x. Y. z are the angular coordinates of a point on the torus); the
trajectories (2.5.2) cannot be rectified by a change of variables.

Therefore invariant tori filled with conditionally periodic motions
can scarcely exist in the case of a general integrable system with n
degrees of freedom and slowly periodically changing coefficients. If such
tori were in fact found, they would be of dimension n + 1 and would not
divide the (2n + I)-dimensional space Pi,qi; Aso that it would still
not be possible to prove the perpetual adiabatic invariance of the
variables of action.

Another approach to the many-dimensional case is given in [30].
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Chapter III

THE STABILITY OF PLANETARY MOTIONS

125

With the help of the fundamental theorem of Chapter IV, we investigate
in this chapter the class of "planetary" motions in the three-body and
many-body problems. We show that, for the majority of initial conditions
under which the instantaneous orbits of the planets are close to circles
lying in a single plane, perturbation of the planets on one another
produces, in the course of an infinite interval of time, little change on
these orbits provided the masses of the planets are sufficiently small
([17], [21]).

In particular, it follows from our results that in the n-body problem
there exists a set of initial conditions having a positive Lebesgue measure
and such that, if the initial positions and velocities of the bodies belong
to this set, the distances of the bodies from each other will remain
perpe tually bounded.

Such a hypothesis was put forward long ago by astronomers, but more
recently, beginning with Birkhoff, mathematicians engaged on this question
have inclined to the opposite view (see [3], [8]).

Precise formulations of the results are given in §1. We shall consider
only the plane three-body problem in detail. In §2 suitable coordinates
are introduced by means of which the problem is reduced in §3 to the form
considered in Chapter IV. §4 contains a verification of the non-degeneracy
conditions which are necessary in the application of the fundamental
theorem of Chapter IV. In the final section a brief indication is given of
the way in which the fundamental theorem of Chapter IV is applied in the
investigation of planetary motions in the plane and spatial many-body
problems.

Poincare~s book [1] has been extensively used in the writing of this
chapter (particularly in §2).

§I. Picture of the motion

In this section we formulate the results of applying the fundamental
theorem of Chapter IV to the problem of the motion of no "planets"
around a massive central boQy (3.-5.). 1. and 2. give an account of
certain conclusions of the non-rigorous classical theory of perturbations.

I. Kepler motion. Let us consider no material points ("planets")
whose masses mi, ••• , mno are small in comparison with the mass M of a
material point called the "central body". SUppose that all these points
attract one another according to Newton's law, i.e. with a force

f -~mj- 2 •rij

If mi, ••• , mno are sufficiently small in comparison with M, then "in the
zero approximation" the attractions of the planets on one another can be
neglected and the central body M can be regarded as· fixed. On these
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assumptions 1 each planet mk moves independently of all the other planets
along a so-called Kepler ellipse with focus at M.

Thus, in the zero approximation the motion of the system is conditional
ly periodic and is described by "0 frequencies of rotation of the planets
about M.

In what follows we shall assume that the planes of all the Kepler
ellipses are close to one another and that the "planets" move along them

in the same direction.
m The perturbations of the planets on

one other result in a difference between
the true motion and that described by the
zero approximation. The theory of perturba
tions gives the following picture of the
motion.

2. Lagrangian motion. For simplicity
let us consider the plane three-body prob
lem (no = 2) and suppose that initially the
eccentricities ek (k = 1, 2) of the Kepler

Fig. 14. ellipses are small. The position of the
ellipse in the plane is defined by the

angle gk formed by the major axis of the ellipse 2ak and the coordinate
axis (gk is called the longitude of the perihelion, Fig. 14).

The perturbed motion can be described as a Kepler motion with variable
parameters ak, ek, gk. It turns out that in the first approximation this
variation in ak, ek, gk reduces to a small (together with the masses of the
planets) "vibration" of ak(t), ek(t), gk(t) about the constant values.

The second approximation contains a small but unbounded (secular)
motion of the perihelia. This small variation in ek and gk can be des
cribed in the following way. We characterize the Kepler ellipse by the
vector ek directed along the major axis and proportional to the eccen
tricity2 having the length ~~ It turns out that for each planet
this vector is the sum of two uniformally rotating vectors: ek = ek1 + ek2.
The angular velocities Vi, V2 of the vectors eki, ek2 are small and the
same for both planets.

The major semi-axes ak do not have a secular variation. The motion of
planets along ellipses varying in this way shall be called Lagrangian.

The theory of perturbations shows (but does not prove) that the true
motion is close to Lagrangian motion during many rotations of ekl. provided
the masses of the planets and the initial values of the eccentricities are
sufficiently small.

An analogous picture with no frequencies Vi' ••• , Vno and n8 vectors
ekl is obtained in the plane problem of no planets.

In the space problem the Kepler ellipse is further determined by the
inclination ik (the angle between the plane of the ellipse and the co
ordinate plane) and the nodal line (the line of intersection of these
planes). The secular variation of these quantities is described by means

1

2

lith negative initial energy
8k is called the Laplace vector.
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of the vector ik of length vmk Vak ik directed along the nodal line. It
turns out that ik is also the sum of uniformly rotating vectors but this
time there are no - 1 of them.

Thus, the Lagrangian motion is conditionally periodic and to the no
"rapid" frequencies of the Kepler motion are added no(in the plane prob
lem) or 2no - 1 (in the space problem) "slow U frequencies of the secular
motions.

3. The true motion. Our basic result is that if the masses,
eccentricities and inclinattons of the planets are sufficiently small, then
for the majority of initial conditions the true motion is conditionally
periodic and differs little from Lagrangian motion with suitable initial
conditions throughout an infinite interval of time -00 < t < + 00.

We shall first of all consider the plane three-body problem. If the
centre of gravity is regarded as fixed, the system has four degrees of
freedom and an eight-dimensional phase space. As coordinates in this
plane we can take, for example, the four quantities three of which (say
a1. e1. g1) define the Kepler ellipse of the first planet and the fourth
the position of the planet on this ellipse, together with the four
analogous quantities for the second planet.

Let us fix the constants ak, Ck. Ck > o. Let the masses of the bodies
be

mk = flak, M = 1 (~ ~ 1).

In the phase space we consider the domain defined by the conditions

(3.1.1)

(3.1.2)

This bounded domain will be denoted by F(E).
Basing ourselves on the results of Chapter IV, we shall prove in §§2-4

the following assertion.
THEOREM. For any 1<. > 0 it is possible to find eo > 0 such that if

then F(8) can be divided into two parts:

F(e)=F(e)+f(e),

of which one, F(E), tS invariant and the other, f(€), small:

lues f (8) <:)( mes F (e).

Points belonging to F(E) have a conditionally periodic motion. marking
out a four-dimensional analytic invariant torus in F(E).

If the initial conditions belong to F(€). then at any moment the true
position of the planets differs from the position of points carrying out a
certain Lagrangian motion by a quantity less than K.

~. The plane problem of no planets. Analogous results are obtained
for no > 2 planets; this case also can be reduced to the fundamental
theorem of Chapter IV. The corresponding calculations are outlined in §5;
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they are not given in full in view of their unwieldiness.
In the plane problem the domain F(E) in the 4no-dimensional phase

space is given by conditions which are generalizations of (3.1.1), (3.1.2):

(3.1.4)

The only change in the Theorem of 3. consists in the replacement of "four
dimensional" by 442no-dimensional".

5. The space problem of no planets. In the space problem the phase
space is 6no-dimensional, to the
conditions of (3.1.3) we have to
add the inequality

flO

}1 Uk V~ ii~e
k=l

and in the theorem of 3. II four
dimensional" should be replaced
by u ( 3no - I)-dimensional". With
these changes the theorem of 3. is
valid.

6. The case of three bodies.
In this case we can to obtain
stronger results than those of 3.
if conservation of angular momentum
(see §5) is used. It turns out that
it is not necessary to require the

Fig. 15. eccentricities to be small; all
that is necessary is that they

should be small enough to exclude the possibility of collision (Fig. 15).
In place of (3.1.1) in the theorem of 3. it is sufficient to require

where

2

~ Uk Vak(1-V1 - e%)<eO(ak, Ch, Ck),
k=l

(3.1.5)

with the condition G1(1 + e1) = c2(1 - e2), 0 ~ e1, e2 ~ 1.
If we denote by F the domain defined by (3.1.5), (3.1.2), then the

following assertion, which strengthens the theorem of 3., holds.
THEOREM. For any 'K > 0 it is possible to find IJ.o > 0 such that if

u < I-Lo,
then F can be divided into two parts:

F=F+!,
of which one, P, tS invariant and the other, i, small:

mes 1-< x mes F.

Points belonging to p have a conditionally periodic motion, marking out a
four-dimensional analytic invariant torus and remaining perpetually in P.
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If the initial conditions belong to F, the variation of the major semi
axes during the whole period of the motion does not exceed 1<..

7. An analogous theorem is valid for the space three-body problem.
In this case F(E) is defined by (3.1.5), m
(3.1.2) and (3.1.4) with sufficiently ~'x,
small E.

'I,
§2. Jacobi, Delaunay and Poincar6

variables

The systems of canonical variables
named after Jacobi (p, q). Delaunay
(L, G. l, g) and Poincare (A. r, A. Y X
and A, e, A, n) are introduced in this 0

section. Fig. 16.
I. Jacobi coordinates. Let us

consider the plane three-body problem. where the masses Mo. m1, m2 have
Cartesian radii-vectores xo, X1. %2. We shall use the system of units in
which the gravitational constant is equal to 1. Then the Lagrangian takes
the form

1 2 • 2 /' 2 m t M0 1n2Af0 m t n12 3 2 1)
L =-:: -2- (Mo.To+ mtx2 + m2·( 2) + I 1+ ' I -+- -I-- --I· ( ..

Xl- XO \X2- XO x2- x •

We shall denote the centres of gravity of the ~ystems Mo; Mo and m1; Mo,
m1 and m2 by Xo • Xi and X2• respectively. On introducing the Jacobi
relative coordinates (Fig. 16)

(3.2.2)
we have

(3.2.3)

where ~i are masses given by:
ft;/o M.

III = ml ---, Jl2 = m2 M
2

(M. = M o+mt, M 2= M o+ ml + m2). (3.2.4)
.ill.

Without loss of generality the centre of gravity of all three bodies
can be regarded as fixed. Then the Hamiltonian of the system is

II=.! (!!1+E-~)_n11A/0_,n2A-lo_r mtn~_-t_(-!!.12Jfo _~_2~Q)J, (3.2.5)
2 f.11 f.12 J l q1 I I q2 I I .1'2 - x 1 I I .1'2 - ;'0 I I q2 I

where Pk = J.Lk qk.
2. Delaunay elements. Let us now turn to the plane problem of the

attraction of a material point of mass m by a fixed centre of mass M. In
this problem

where

_ 1 p2 mM
/1--- -----

- 2 nl, I q I '

p2 = (p<1»2 + (p(2»2, Iq I= V(q(1»2 -l- (q(2»2 ,
p = p(!>, p(2), q = gO), q(2).

(3.2.6)
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(3.2.7)

(3.2.8)

We know that the body m moves along a Kepler ellipse with focus at M. The
form of the ellipse is determined by the major semi-axis a and the
eccentricity e. The position of the ellipse is determined by the angle g
(the longitude of the perihelion) and the position of the body m on the
orbit by the angle l (the mean anomaly). The quantities a, e, l, g are
called elliptic elements.

As we know (see [1]). there exists a canonical transformation

p(V, p(2), q(I), q(2) ~ L, G, l, g,

introducing the Delaunay elements L, G, I, g, where

- -- m3A12

L == m l/rM Va, G = LVi - e2
, H == - 2L2 •

We note that G is the angular momentum:
G = [mq, q] = p(1)q(2) _ p(2)q<V.

Let us denote by Sm,M(L, G; q(1), q(2» the generating function of
the transformation (3.2.7) for which

(2) _ as as as
p - oq(2) , l = aL t g = aG • (3.2.9)

In the plane three-body problem the variables Lk, Gk, lk, gk (k = 1, 2)
are introduced by the formulae (3.2.9) with generating function

S = is J-ll Ali (L1, G1; q~1>, qi2») + S 112, Af; (£2' G2; q~l), q~2»,

M' M M' M Mowhere 1 = 1 and 2 = 2 M1 •

In view of (3.2.4), (3.2.6), (3.2.8), the Hamiltbnian (3.2.5) takes
the form

(3.2.10)

where the coordinates Xc, Xl' X2, q2 are expressed in terms of L, G, l, g
by means of the relationships (3.2.9), (3.2.2).

3. Expansion as a series of powers of the masses. We now assume that
the masses m1 and m2 are small in comparison with Mo:

(3.2.11)

where ~1, a2 are finite and ~ is a small parameter. We shall denote by
(~k) ••• convergent series of the form ~k f k + ~k+1 f k +

1
+ ... It is obvious

that

We shall denote by ak' ek the elliptic elements of the "osoulating U

Kepler ellipses corresponding to Lk • Gk :

(3.2.13).

It is easy to calculate that the square bracket in (3.2.10) takes the form
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(3.2.14)

(3.2.15)

where qk is the radius-vector of the point moving along a Kepler orbit
with elements ak. ek; lk. qk around the origin, and s denotes the cosine
of the angle between the vectors q1 and q2. By virtue of (3.2.14) the
Hamiltonian (3.2.10) can be written in the form

If - ~t~Jl~2 Il~A;f;2 2 [1 Iqt Is' ()3
- -~1-2-- 2L2--J.l Ula2 I \----1-12J -t- I-l ..

£.- -'1 2 I q1 - q2 q2

~. Poincar6 variables, If H. Land G are all divided by the constant
~. the Hamiltonian form of the equations of motion is preserved. By means
of the canonical transformations

J.l-ILk, l-l-IGk; lk, gh -> i\k' fk; Ak' 'Yk ~ A k , £k; All' llh

we introduce the Poincare variables A. r. A. y and l\, E" At 1'\:

(3.2.16)

(3.2.17)
f-li\k == L h , J.!r h == Lk -- Gk , ~k == 1/ 2fk cos 'Yk' \

Ak = lk -+ gk, ,'It == - gh, 11k == l!2fk sin "h' f
The variables A, r are expressed in terms of the elliptic elements by
formulae following from (3.2.8) and (3.2.17):

(

- F ._- - ) flk ·VrjvI ') 18
~\k == ~k ~ ah, f k == ./\k 1 - }/ 1 - e'k ,where~k = == ak +(p,) ... (3...... )

~

The variation of the variables A, r t A. Y (or A. e. A. 1\) with time is

described by the canonical equations with Hamiltonian F = ~ obtained from
~

(3.2.15):

If' _. ~1
3

~ 2
3

R R [1 Iq1 I s J (2-- - -2---\2 - ')A2 - ~P1P2 -,---I - --\" ~. l-l)".'
1 1 .... ~ I q1 - q2 ! q2 ...

(3.2.19)

where Sk = ~k Mk
2

/
3 = Sk + (~) ... = ak + (~) ... depends only on the masses

~

of the bodies.

§3. Birkhoff's transformation

In this section n'ew variables A. X, e, nare chosen. The fundamental
theorem (Ch. 4, §1) is applied to the Hamiltonian of the three-body prob
lem expressed in terms of these variables.

I. The Hamiltonian. We express (3.2.19) in terms of the variables
A, A, e, 1\. Qbv iously,

}1' ;:;=: F0 (1\) + 1l1,'1 (A, A; S, tl)·r (Jl2) ... ,

P? ~;3
F o = - 2Ar - 21\1' F I = - ~I~2 [ ]. (3.3.1)

Furthermore, F is analytic for At. A 2 • A 1 - A 2 i 0, I~I, Inl < R
(where R depends on A) and F is of period 2 1t with respect to Ai. A2 •
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We define the "secular part" of F, i.e. the mean value of F with respect
to A:

(3.3.'2}

where ~ ~ FI dAj dA2 = O. It is easy to see that F is even with respect to

e, n. In F1 we shall consider the variables A as parameters. The point
e= n = 0 is the position of equilibrium of the system with Hamiltonian
F1 (c" 1) (for each fixed A). We apply Birkhoff's theory (Ch. I, ~9) to
F1 (c" 11).

2. The coordinates e', n'. If we disregard the constant Fio , which
has no effect on the Hamiltonian equations, the expansion of F1 in powers
of e, n:

F1 = FlO + F12 + j\, + ···,
begins with a negative 1-definite quadratic form F12 • By a linear canonical
transformation E.. 1) -+ t.', 1\' we can reduce F12 to the form

F12===V~r~+v;r~ (2rk =~k2+11k2=Pkqk; Pk=~k-~i1)k' qk=6k-ill~),
(3.3.3)

where the coefficients vk depend on A. We write F14 in the form

FH, = V~lr~2 + 2v;2r~r;+ v;2r~2 + ... , (3.3.4)

where the dots denote terms of the fourth degree in e', n' which when
expanded in powers of p'. q' only give p~kq~lp~mq~n with
(k - l)2 + (m - n)2 ~ 0; the coefficients Vij in (3.3.4) depend on A.

3. The coordinates e(s), nCB). If the Aare such that

(3.3.5)

then in accordance with Birkhoff's theory (see Ch. I, §9) there exist
further canonical transformations

(2) S / 2 5/2 7/'2 7 / ':t.£, 1) -7 ~', '11' ~ £(2), 11 ~ ~ ,T) -~ ~(3), 11(3) ~ 6 11 ,
(3.3.6)

reducing F1 to the form

fit = F'l8) (r<S») +0 (\ ~(S)12<;, 111(8) 1205 ) (2fkS
) =: (~k8»)2+ (llkS»)2). (3.3.7)

Since F1 is even, it follows that f(2), n(2) = e'. n'. We introduce the
notation:

2f == ~2 +~2,

2r= ~2 + T]2.

From the formulae of the transformation E.', 1)' -+ e, n(see [3], [8]) it
is seen that for 25 = 5 (3.3.7) gives

1 Our Hamiltonian F differs from the perturbation function of celestial
mechanics by a sign.
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(see (3. 3.4».
Consequently, in accordance with Ch. I, §9, in (3.3.~) with 25 = 7 we

have

(3.3.9)

where the coefficients uk and ukl are the same as in (3.3.8) (and
vkZ=vZ k)· __ --

q. The canonical transformation A, A; e, n'" A, X; !, 'T). We denote

by S(e, n) the generating function of the transformation E., 1\'" e, n (see

(3. 3.6). It depends on the parameters A: S = S( A; l, 1)). Let us construct

the generating function AA + s( A; e, 1\). It defines the canonical trans
formation

~ as =
A ~ A=A, A~ A=A+--=-, ~,11 ~ S, 11.

aX
Since Ais changed by a term that does not depend on X, the division
(3.3.2) of the Hamiltonian F1 into a secular and a periodic part is pre-

served. We now denote A, X; e, n; F; v, r by Po, qo; Pi, qi; H; A. 't',

respectively. The Hamiltonian (3.3.1) expressed in terms of A. ~, e, n,
in accordance with (3.3.1), (3.3.2), (3.3.7), (3.3.9), then takes the form
(4. 1. 1), (4. 1. 2) , (4. 1. 3) , (4. 1. 4) 0 f Ch. IV, §1, (no = 2, n 1 = 2).

5. Conditions of non-degeneracy. We now choose Go, P, R and C in
order to satisfy the conditions of the fundamental theorem of Ch. IV, §1.

The transformation (3.3.6) has a singularity at points where condition
(3.3.5) is violated. These points form a finite number of analytic sub
manifolds of the space A, since

Ia(vi, v~) 1=1=0. (3.3.10)
a (At, A2)

The validity of (3.3.10) is proved in §4, 7.
Without loss of generality we can assume that the domain Go in the

space A is situated at a finite distance from the manifolds indicated
above. Then the expressions Ik 1 v~ + k2V~1 (0 < Ik 1 \ + Ik 2 1 ~ 6) have a
lower bound uniform in Go. In consequence of this, for sufficiently small
R and P, the function H defined in 4. is analytic in the domain Ipiqi\~ R,
11m qo\ ~ P, Po e Go. If C is sufficiently large, then condition 3) of the
fundamental theorem (Ch. IV, §1) is fulfilled. Condition 4) requires that

(3.3.11)

(3.3.12)
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The validity of (3.3.11) follows from (3.3.1). Inequality (3.3.12) is
proved in §4, 7. Thus, with the choice of-Co, P, Rand C indicated above,
all the conditions of the fundamental theorem are fulfilled. Conclusions
I-IV of the fundamental theorem give the theorem of §1, 1. of the present
chapter.

§q. Calculation of the asymptotic behavi~ur of the
coefficients in the expansion of F1

It is proved in this section that the determinants (3.3.10) and
(3.3.12) do not vanish identically. The proof is based on the calculation
of the asymptotic behaviour of these determinants as the ratio of the

major semi-axes a = a1 tends to zero.
et2

I. The expansion of qt - q21-1 . From (3.2.19) and (3.3.2) it follows
that

F1 =:; - ~1~2 [ ! q1 ~ q2 1-1 +-l~l.LL:~ 1
I . I q212 J •

But it is not difficult to see that the mean value of Iq11s with respect
to A1 is equal to zero. Therefore

(3.4.1)

We shall put at = a, a~ = 1 and determine the asymptotic behaviour
(3.4.3) as a~ 0 of the coefficients Vi in the convergent expansion in
powers of the variables e', n' (see (3.3.7) and (3.3.8):

1 qt - q2 i-I == v~ -1- v~r~ + v~r~ + V~lr ~2 + 2V~2r~r; + V~2r~2 +R~ + lf~, (3.4.2)

where R~ consists of fourth degree terms in pi, q' of the form
p~kq~lp~mq;n with (k - l)2 + (m - n)~ =J 0 and R~ of fifth and higher
degree terms. In 7. we shall obtain without difficulty from (3.4.3) the
asymptotic behaviour of the determinants (3.3.10) and (3.3.12).

We shall prove that the coefficients Vi in (3.4.2) are of the form

Vo
' = 1+ 0 (a 2 ), ' = _~ 3/'2 I ()- (7/'2) " __3_ 2 0 (7/'2) )

VI 4BI a a, "2 - 4B2 a +- a 'I
v' =..-:: _2-- a +O'-U3 ) v' H__ a3/'2+ 0 (a7/'2) l (3.4.3)

11 Sr1r "12 - 8~lf12 ' Jf
, _::3 2 0 7/2

v 22 - -2~f a + (a ).

The proof is given in 2. - 5. with the help of the lemmas in 6.
2. Expansion In powers of e1' e2. From Ie Verrier's tables [32] we

find that
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I -1 1 2 (e1)2 3 (e2)2 I (4 ( el '\ 4 :q1- q2 I == ( 0) + (0) 2 -1- ( 0) ~"2 I ") \. 2:~) '1-

+ (50) C-i- Y( e~ y -~(6o) ( i-Y+ l(21-1
) ( i ) (1-)+

+ (22-1
) (i-Y (e~ ) +(23-1

) (e~ ) (e~_y JCOS(Yl-Y2)+

1- (31-2) ( ~1 Y( ;2 yCOS 2 (~1 - Y2) + R~, (3.4.4)

where ~ is a series beginning with terms of not lower than the fifth
degree in e cos y, e sin y and where the following notation is used:

(1 0)= ~- A~, (20)=A~+A~, (30)=A~+A~, (40)=3A~+3A~, I
(50) = 2A~ + 14A~ + 24A~ + 12A~, (60) = 3A~ + 9A~ + 9A~+ 3A~, I

(21-1)==2A~1_2A~1_2A;1, (22-1)= -4A21_18.A~1_12A~1, I} (3.4.5)
(23-1) == 2A~1- 2A~1- 22A;1- 30A31_12A~1,

(31-2
) == 3A~2 - 3A~2 + 3A;2 -t- 12A 3

2 + 6A~2. J
In formulae (3.4.5) the coefficients A~ are given by

so that the expansions of A~ in series of powers of tt take the form

A~=2+ ~ +o (a4), A~1=a+O(a3), A~2=: a2 +O(a4), )

A~ = a 2 +0 (a4), A~l = a + 0 (a3), A~2 =: ~ a2 + 0 (a4),

A~= ~2 +O(a4), A;1=O(a3), A22={-a2 +O(a4), (3.4.7)

A: = 0 (0.4), A;l = 0 (a3), .11;2 = 0 (0.4),

A~=O(a4), A;1::=O(a5 ), A~2=O(a4).

3. Expansion In powers of e, T). In accordance with (3.2.18)

-f =- V2k- ( 1- [K + ... ).
On substituting (3.4.8) into (3.4.4) we obtain

'91 - q2!-1 = \'0 + V1 f 1 -i- V2 f 2+ V yr1r 2cos (y 1- 'Y2) + V11r~ + 2V12rif2+
+ V22r : + [%13 l/-r1r~ +X31 yr~r2] cos (" 1- 'Y2) +

+ X22r t f 2 cos 2 ()'1 - )'2) + R s,
where the following notation is used:

(3.4.8)

(3.4.9)
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(2°) (3 0) (21-1) 1
vo:.=(1 0

) "1= 2A.' "2= 2A
2

~ v= V '2 A1A2

(40) - (20) (50) (60) - (30)
V11 =~- , 2'\'12 = 4A1A2 ' V22 == 4A~ 'I (3.4.10)

2 (23-1) - (21-1) 2 (22-1) - (21-1) (31- 2)

?(13 == 8 V A1A~ ,)(31 = 8 V A~1\.2 ,)(22 :-..;: 4A 1i\2 J

and Rs is a series beginning with terms of not lower than the fifth degree
in e, 7'\.

In view of the fact that A 1 = ~1~ A 2 = ~2' the coefficients in
the expansion (3.4.9), on substituting expressions (3.4.5) and (3.4.7)
into the formulae (3.4.10), take the form

3 3/2 7/2 _ 3 2 0 ( 4) 11/4
'\'0=1+0(0.2

), V1= 4~1 a +O(u ), 'V2-4~2 a + a., \'=0(0. ),
(3.4.11)

-- __3_ O( 3) _ 9 3/'2+0 ( 7/'2) __ 3 2 O( 4) (3 412)
Vl1 - 8~~ a + a, "12 - 8~t~2 u a, V22 - 2~~ a + a, ..

11/4 9/4 7/2
Xl3 == 0 (a ), ;(31 == 0 (a ), )(22 === 0 (a ) . (3.4.13)

IJ. Expansion in powers of E,' • n'. Lemma 2 of 6. is applied to the
function

H 2 == 'Vl f l + V2r2+" VrIf; cos (Yl - )'2)

From this it follows that

H2 = ,,~r~ + v~r~, 2f' = ~'2 + f)'2, (3.4.14)

where for x = e, n. p or q with ~ determined from the condition

we have

(3.4.15)

(3.4.16)

and where, in accordance with (3.4.11) and (3.4.27), (3.4.29) from 6.,

ep = 0(0.5
/ 4), 'Vi == 'VI +0 (J/

2
), 'V~ = V2 + 0 (a

7
/

2
).

On substituting (3.4.15) into (3.4.9) we shall obtain the expansion of
(3.4.2) in powers of x':

Iql - q21-1 = v~+ 'V~r~ +v;r; + \'~lr~2 + 2v~2r;r;.,- \';2r~2 -t- R, + R s, (3.4.17)

Where, in accordance with (3.4.11), (3.4.14) and (3.4.16),

, 3 3/2 0 ( 7/2) , 3 2 0 7/2
VI = 4~1 a + a , "2 = 4Pz a + (a ) (3.4.18)

and where R4 consists of fourth degree terms of the form p ~k q ~ 1P~m q ~n
with (k - l)2 + (m - n)2 ~ 0 and R5 of terms of degree higher than the
fourth. In 5. we shall obtain expressions (3.4.3) for the coefficients V~j

in (3. 4. 17).
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5. The calculation of v~,. On substituting for x expressions (3.4.15)
each function of x is expand~ble as a series in x'. A direct calculation
gives for the coefficients of some of these expansions the expressions
(3.4.19)-(3.4.21) with relative error O(~2):

Coefficient of

in the x' x'
1 2

expansion of ~

Xl
--I

1 <p

X2
I

-(J) 1

(3.4.19)

From (3.4.19), putting x = p or q, we obtain

~-
I

I 1

I

~~J
2ri=piqi TJiq2 p;qi 1)~q2=2r2

I I

2rj =PIQt I 1 «p I qJ cp2

PIQ2 -<p 1 __ <p2 <p

P2'11 -q> _<p2 I 1 <p
I

~r2=P2q2 cp2 -q>

I
--<p 1

(3.4.20)

Using (3.4.20) to calculate the coefficients of the expansion in powers of
pi, q I, we obtain

(2ri)2 (2ri) (2r;) (2r~)2

(2r1)2 1 4<p2 <p4
(2r t) (2r2) qJ2 1 <p2

(2r2)2 «p4 4<p2 1

(3.4.21)

Consequently the exact matrix of coefficients (3.4.21) differs from the
unit matrix by O(~2).

With the help of (3.4.23), (3.4.24), (3.4.25), Lemma 1 of 6. and
formulae (3.4.20), it is easy to calculate that all the coefficients of
(ir~)2, (ir~)(2r~) and (2r~)2 in the expansion of the quantities

8 -V,rr~r2 cos ('V1 - '\"2), 8 Vrlr~ cos ('\'1 -- )'2), 8fif2cos 2 ()'1 - '\'2)

in powers of pi, q' are O(Q».

But by (3.4.16) <P = O(~5/4). Since according to (3.4.12) Vij = O(tt)
and according to (3.4.13) Kij = O(tt9 /

4
), the coefficients of the expansion

(3.4.17) are
9/4 0 7/2

Vii=Vii+O(a)O(cp2)+O(a )O(q»=Vli+ (a )
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(a.4.22)(k=l, 2).
PI" ~ £h + ill h , }

qh = ;~~ - ill h

and in consequence of (3.4.12) the vij behave asymptotically like (3.4.3).
6. Two lemmas. We shall use the notation

;k = V2r k COS'Yk'

11k = lf2fhsin 'Yh,

LEMMA 1. The following identities are true:

The proof is obvious. By means of Lemma 1 it is easy to prove
LEMMA 2. Using the notation of (3.4.22) the formulae

(3.4.26)
Xl = x~ cos ~ + x; sin q;,

.[2 = - ;1;~ sin fP +- :r~ cos cp,

where xk denotes t.k and nk or Pk and qk' define a canonical transformation

E.. 1\ -+ 13.', n'. If <p satisfies the relationship

v' = (VI - V2) sin 2<p + V cos 2({) = 0, (3.4.27)

the function H2. = V1 r1 + V2 r2 + VVr1 r2. cos (Y1 - Y2) is expressed in
terms of the new variables x' by the formula

(3.4.28)

where

v~ = VI - i sin 2cp - (VI - V2) sin2 cp, ,,; = V2 + ; sin 2<p+ (Vl-V2) sin2 <:p. (3.4.29)

7. The asymptotic behaviour of the determinants (3.3.10), (3.3.12).
In consequence of (3.4.1) and (3.3.8) the coefficients v' = v are of the
form

(3.4.30)

From (3.4.3) it therefore follows that

I~u ~12 \ = a;4~~~: I V~l v~21
V21 V22 v21 v~21 =

We shall show further that
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a (vi, V2) 0 (vi, V2) /0 (A~~2 == 27 a: -t- 0 ((1~/2) =1= o.
iJ(A1, A1) - iJ(a., a2) o(a, a2) 16 a2

In accordance wi th (3.2.18) for a 1 = ex a2

At = ~t v~ = ~1 V-aa2' A2 = ~2 va;·
Therefore

»7 Po R 5/'2
-==-~-LO( !)-- 04 a~ I a.

On comparing (3.4.35) with (3.4.34) we obtain (3.4.32).

§5. The many-body problem

139

(3.4.32)

(3.4.33)

(3.4.34)

The particular properties of the plane and space problems of three
and many bodies connected with the conservation of angular momentum are
discussed below.

I. The plane problem of no > 2 planets. The arguments of §§2 and 3
easily carryover to the case of more than two planets. If the number of
planets is denoted by no, the number of degrees of freedom is n = 2no
(the centre of gravity of all the bodies is regarded as fixed). The letters
A, A, r, y, e, n in §§2, 3 denote no-dimensional vectors. The inequalities
(3.3.10), (3.3.12) can be verified by the same method as in §4 for no = 2.
We shall not dwell on the details of the calculations which lead to the
results of §1, 4.

2. The integral of the moment in the plane three-body problem. The
arguments of §§2-4 made no use of the law of conservation of angular
momentum which in the notation of §2 is of the form

L,Gh=C.

This first integral of the n-body problem corresponds to the first
integral of the "averaged system" of canonical equations with Hamiltonian
Fi :

On account of the existence of this first integral the averaged system is
integrable in the case no = 2, and ther~fore by a sui table choice of vari
ables Pi, q1 it is possible to reduce F1 to the form

(Po == A) (3.5.1)
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H

without any additional terms Fl (cf. Ch. IV, §1). The transition from e, n
to Pl, q1 is a canonical analytic transformation. For small lei. Inl the
expressions for Pl' q1 are given by Birkhoff's series (see Ch. I. §9).
In this case the series converge. since the averaged system is integrable.

In accordance with (3.5.1) we cannot restriGt ourselves to small lei,
Int and in place of the fundamental theorem of Ch. IV, §1, we can use the
result of Ch. I, §8, (this result is simpler than the fundamental theorem
and is easily deduced from it). We have to place a restriction on A. e
in order to exclude the case of collision (cf. (3.1.5»:

rl+f2<80(Atmax, A2min). (3.5.2)

Condition (3.5.2) distinguishes the domain G in the space r, A in which
the conditions of Ch. I, §8. are fulfilled; on using these conditions we
arrive at the result of §1, 6.

3. Delaunay and Polncar6 variables in the space problem. The space
problem of no planets has 3no degrees of freedom (as before, we regard
the centre of gravity as fixed). Each planet has 6 elliptic elements (see
§2, 2.): a, e, i; l, g. h. Here the angle h - the longitude of the node 
determines the 1irection of the nodal line, i.e. the line of intersection
of the plane of the Kepler ellipse with the q(1), q(2) plane, and the angle
i-the inclination - is the angle between these planes. Finally g - the
longitude of the perihelion - is the angle between the nodal lines and the
direction of the major semi-axis. The Delaunay elements L, G, H, where
H = G cos i is the projection of the angular momentum on the q(3) axis (as
distinct from §2, where H denoted the Hamiltonian), correspond to the
angles I. g. h.

In the space problem the angular momentum vector is conserved, giving
three first integrals:

(3.5.3)

=Cg •

(3.5.4)

(3.5.5)

p = V-it cos~,

q = V2Z sin ~.

The Poincare elements A, r, Z; At Y, t: and A. e, p; A, n. q are deter
mined by the formulae

IlA=L, f.tr=L-G, J.tZ==G-H, ~=-V-2r cosy,

A= l + g +h, 'Y = - g - h, ~ =- - h, 11 = V Zf sin ~,

The Hamiltonian averaged with respect to A

Ft(A; S, 11; p, q)=}\O+F12 -1-Fll.+ ...
is even with respect to e, n. P. q and has a position of equilibrium
given by e = n= p = q = o. The quadratic terms are
F12 = F~2(e, T)) + F~2(P. q) (where F~2(e, 1) is F12 from (3.3.3), the
quadratic form F~2 reducing to

F--" "z + " Z12 = Vi 1 • • • + Vno no ( " 0" "0)Vi == ,V2'··· , Vno > . (3.5.6)
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(3.5.7)

The vanishing of the frequencies v~ is explained by the effect of the
integrals (3. 5. 3), (3. 5. 4).

q. The e1 iminatlon of the node In the three-body problem. As is known
(see [1]), the integrals (3.5.3)-(3.5.5) allow the number of degrees of
freedom of the system to be reduced by 2. In the case of three bodies it is
possible, following Jacobi, to eliminate the variables H, h altogether.

We shall suppose that the coordinate plane q(1), q(2) is perpendicular
to the angular momentum vector of the system. Then in (3.5.3)-(3.5.5) we
have C1 = C2 = 0, C3 = C and

G1 cos i 1 +G2 cosi 2 = C, )

G1 sin i 1 = - G2 sin i 2 = 8, J
h 1 -h2 =~,

where C = const and g is small together with the inclinations. From (3.5.7)
it follows that

f/ t +H2 =.:C,

and therefore

Hi = ; + }c (G~ -G~),

H~ - H~ =Gi -G~,

H e 1 (G2 G2)2=2- 2C 1- 2· (3.5.8)

The coordinates h1 and h2 are obviously not contained in the Hamiltonian
which can therefore be expressed in terms of the variables L, G; l. g of
the plane problem (replacing H1 , 8 2 by the expressions (3:5.8». From the
expansions in powers of g2 :

1 2 I' 1 1 '\ e2 e,2

C = G1 + G2 - 2" E l G. +C-;:) + ··" G1 - H t = 2G
1

-1- · • ., G2 - H 2 =.: 2d; -i- · · · ,

it is not difficult to deduce that the function of L, G; l. g obtained
(still depending on the parameter C) differs from the Hamiltonian of the
plane three-body problem by analytic terms that are small together with 8

2

(i.e. with G1 + G2 - ~.

Thus, the space three-body problem reduces to a certain plane problem
which turns into the plane three-body problem when the inclinations tend
to O. By comparison with 2. and using again Ch. I, §8, we arrive at the
results of §1, 7.

5. The space problem of many bodies. In the case of more than three
bodies there is no such elegant method of reducing the number of degrees
of freedom. We shall note here a method that allows the elimination of one
degree of freedom, namely the one that corresponds to the zero frequency
v~ in (3.5.6).

As is known, the Poisson brackets of the components C1 , C2 • Cs of the
angular momentum vector are given by the formulae

_. (Ci , C2) = C3 , - (C2 , C3) = Cit - (Cs, C1) = C2 •

The two functions ~1' ~2 of Ci , C2 , Cs can be regard~d as canonically con
jugate variables if their Poisson bra~ket (W1 , W2 ) =1. We seek functions
«Il1 , «Il2 of the form

<I>l=Y+CJ>l(X, y, z), <l>2=Z+fP2(X, y, z),

((>1 (x, y, z) = CJ> (x, y, z), <P2 (x, y, z) = <p (x, z, y),



363

142 V.I. Arnol'd

where -Cs = 1 + X, -C1 = y, -C2 = z.
For the function ~(x, y, z) the following equation is obtained:

1 +x y Z

(<Pl , <D2) = <PIX 1 + <Ply <Viz =1. (3.5.9)

({)2x CP2y 1 + CP2Z

From (3.5.9) it is possible to find, for example, a symmetric solution
~(x, y, z) = ~(x, z, y) on expanding ~ as a series ~ = ax + by + cz + ...

Let us now return to the problem of no planets. In view of (3.5.9) it
is possible to choose 3no pairs of canonical variables so that:

1) Ak and Ak comprise no pairs.
2) no pairs correspond to the eccentricities (like G and g, r and y,

e and T)).

3) no pairs correspond to the inclinations (like Hand h. Z and C.
p and q).

4) ~1 and W2 comprise one of these latter pairs.
Since ~1 and ~2 are first integrals, they do not in any way enter into

the Hamiltonian, and we obtain a system with 3no - 1 degrees of freedom.
In the expansion corresponding to (3.5.6) there will therefore be no - 1
frequencies and no - 1 pairs of variables. The method of §3 enables us to
reduce the Hamiltonian to the form (4.1.1) (with n = 3no - I, n1 = 2no - I,
where no is the number of planets) and obtain from the fundamental theorem
the results of §1, 5.

The rather lengthy calculations involved in the solution of (3.5.9),
the construction of variables satisfying conditions 1)-4), and the
verification of non-degeneracy conditions analogous to the arguments of §4
will not be discussed here.

Chapter I V

THE FUNDAMENTAL THEOREM

In this chapter we give the precise formulation and ~omplete proof of
the theorem on which the arguments of Chapters II and III are based. In
the choice of formulation (§1) we were concerned more by the convenience
of its application to celestial mechanics than by the generality and
finality of the result.

The proof (§§9-14) is rather cumbersome. Apart from the ideas enum
erated in Chapter I it is based on a large number of almost trivial in
equalities. The most important part of the present chapter is §6. where
the fundamental lemma formulated in §4 is proved. The list of notation
given at the end of Chapter V will be of help to the reader.

OUr inequalities are based on the lemmas of Chapter V. In deriving
these inequalities no attempt has been made to achieve elegance or pre
cision in evaluating constants. We have frequently imposed more stringent
conditions than necessary (for example. ~ < g4 in §1). The reader can thus
easily strengthen the results.
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§Io Fundamental theorem

143

Let us consider a function H. a domain Go and positive numbers P. R, C.
We suppose that the following four conditions are fulfilled:

1) The function H(p, q) (where p = Po. P1; q = qo, q1; Po is a vector
of dimension no and Pl = a vector of dimension nl. where no + n1 = n; qo
are angular variables, H(po. P1, qo + 27t, q1) = H(po, Pl. qo, q1» is
analytic in the domainF:Po € Go, 11m qol~ p, IX11~R (X1 = Pt. ql) and
depends on the parameter t-L, 0 < ~ ~ t-Lo.

2) H is of the form

H=Ho(Po)+I-tHt(p, q)+(~2)H2(P, q), (4.1.1)

where

with

and

(4.1.3)

}It(Po, 't)=Ao+ 2: Ai'ti+ ~ Aij't(Cj+

i==1 i ~ j== t

nl

~ Aiik'ti'tiik,
i, j, k==l

(4.1.4)

where ~o, ~i, ~ij = Aji and Aijk are functions of Po and

2'ti=P;to+i+q;to+i (i==1, ... ,nt). (4.1.5)

3) In F the following inequalities are satisfied (for a certain c~ 1):

4) In Go

I(f.t2) H 2 1 ~ f.t 2C,

IHII -< C, III j I ,<~ C, I III I -=~ C,

IN1 1-<CI-lt I7
•

(4.1.6)

(4.1.7)

(4.1.8)

(4.1.9)

(4.1.10)

On th!:. assumptions 1) - 4). for any 1<. > 0 it is possible to find
£(1<.; Ho, H1 , Go; p, R. C; 1Jo) > 0 such that, when 0 < € < Eo and
o < ~ < e4

, then:
I. The domain Re FE;

Po ERe Go, I 1m qo I = 0, 0 < 'ti < E,

consists of two sets FE and fe, of which one, FE, is invariant with res
pect to the canonical equations with Hamiltonian (4.1.1) and the other. fe,
is small:

mes ie < x mes Fe. (4.1.11)

II. Pe consists of invariant n-dimensional analytic tori T~, given
by the parametric equations
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(4.1.12)

(4.1.13)

Po = PO ro + fo w (Q), go == Qo + goro (Q),

PI = V2 ('tro + f1
00

(Q)) COS [Q t -\- g too (Q) ] ,

ql = V2 (Te + tiro (Q)) sin [Qi + gIro (Q)j,

where Q = QQ, Q1 are angular parameters and PoCe) and't(.c) are constants
depending on the number of the torus w.

III. The invariant tori T(.c) differ little from the tori

Po == PoCi) = const, 't == 'to) = const:

Itiro (Q) 1< )(8, Igiro (Q) I< Xc.

IV. The motion determined by the Hamiltonian (4.1.1) on the torus T(.c)
is conditionally periodic with n frequencies w:

Eh 0110 ORt ) (4 1 11.)w erewo= -~-, Wl==J.t~-. •. <1-
UPOw vTO)

The fundamental theorem is proved in §§9-14 on the basis of an in
ductive process given by the following theorem.

§2. The inductive theorem

SUppose that the function H(p, q), the domains G, a, and the positive
numbers D, e, e. p, ~; ~, y, 0, e, J.L. M, K have the following properties:

1) In the domain F: pEG, 11m ql ~ p the function

I{(~g)==Ho(Po)+Ht(p)+H2(p,q) (4.2.1)

(where p = po. Pi; q = qo, q1 are angular variables, dim Po = no,
dim P1 = n1, no + "1 = n) is analytic.

2) The mapping A of G onto S: .
a 1. alIt 422

p~Ap= apo(Ho+Ht ), ~ iJPt ' ( •. )

is diffeomorphic, where

1 I I8
2
110 I I (j211 t I ~ 0 e 1 1...\ ) (4 2 3)e dpl·< IdA <8I dpl, ap~- <8, I .Op2 <Jl~~ ( < <: <0<00. ..

3) In F
IH 2 (p, q) 1-< f-tM.

4) The following inequalities are satisfied:

6 ~ 6(4) (n, a, S, Q, x, D) ==

= min{~(1 >(n, 28, ~ ); ~(2) (Q, n); ~(:i) (n, e, 9, D, X)},
~<.K,

where 0(1) is defined in §3,

b< 2) = min {10- tinQ4n, 2 :5611.J,
b(3) = min {e2n [2 8n (n + 4)]-2n; (fl + 148)-1; 4-n-ssne-nD-ln-lx}.

5) Let

(4.2.4)

(4.2.5)

(4.2.6)
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t

~=~38, y=6Tn, e=6T , K=f)e, M==e7
/

2 6-1 , T=16(n+4). (4.2.7)

6) In the notation of Ch. V, §2, 5., g is of the form

'=' ~* N < 1 1 1 K ........ K-- = '-' KoNodo' 0 y 11 2M , 0..:7 ,

D
where ~ is a domain of type e.

We introduce the numbers Os(s ~ 1) by means of the relations
01 = 0, 0S+1 = 6;5/14. For s ~ 1 we put

t
R ~3 ~ 411 AT M 7 /2~ -I (th ;'{ M 15/14) (429)t's = uses, Ys = Us , 8 8 :::= V s , s = 8 s Us en.L~ 8+1 :::.:..: S ., •

On the assumptions 1) - 6) there exist a sequence of domains
F(O) =F. F(i) ••• of the formP(s), Q(s) =X(s) €F(s): pes) €G(s),

11m Q(s)\ ~ Ps and a sequence of canonical diffeomorphisms
Bs : pes), Q(s) -+ p(S.i), Q(S ••1) of the domains F(s) into F(S-1) such that:

I. For all s ~ 1

Qs >~.. (4.2.10)

II. For p, q = B1 £2 ••• Bs (p(s), Q(s») and p(s), Q(s) = Xes) € F(s).

pes) = p~s). p~s). we have

H (p, q) == H(s) (P(S), Q(S») == Ho (P(S») -t- H~S) (P(S)) +H~S) (P(S), Q(S»), (4.2.11)

IH(s) (P<S) Q(8» I M I aII~'~) I ~ R Ia2fl~S) I ~ 4 2 1')
2 , < 11 s+b ax<S) I <usps+ 1J ax<S)2 < US' (.. ....)

III. The m~ping A(~)

P(s)~ A(s)P<s) = _0_ [Ho (P(S») + H(s) (FJ(S»)l .! _8- H(8) (P(S») (4 ~ 13)
[)P~S) 0 1 .. ' ,..., ap~S) 1 -'-I.

tS a diffeomorphism of the domain e(s) for which

eIdP(s) I< Id.A(s) 1< eIdP(s) I, 1 -
I A(s) - A(s - 1) 1< ~s6s, e ="2 a, E> = 28.

(4.2.14)
IV. For each s ~ 1 we have

mes (G - G(S» < ]- e-n mes 3*. (4.2.15)

The inductive theorem is proved by induction in §8.
Each step in the proof is based on the use of the following lemma.

§3. The Inductive lemma

SUppose that the function H(p, q), the domains G, a. and the positive
numbers 8, 8, P;~. y, 0, M; K. ~have the following properties:

1) In the domain F: p € G, I 1m q I ~ p the function

H(p, q)==Ho(Po)+fJ t (pt)+H2 (p, q) (4.3.1)

(where p = Po, P1; q = qQ, q1 are angular variables. dim ,Po = no,
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dim P1 = n1: no + n1 = n) is analytic.
2) The mapping A of G onto S:

A a (H 1 alit
p-> P==apo' o-t-Ht), "it apt'

is diffeomorphic, where

(4.3.2)

(0<0<1-<:0<00).

(1.:1.3)
3) In F

(4.3.4)

(4.3.10)

(4.3.9)

(4.3.5)

(4.3.6)

4) The following inequalities are satisfied:

156<.3"~Q~1, 3~<20, I-!<K<1,

6< 6(1) (n, e, 8) = min {<'\(O) (n, 8);~},

where 6(0) (n, e) is defined in the fun.damental lemma (§4).
On the assumptions 1) - 4) there exist a domain

F' (X = (P. Q) E F': P € G' c G. 11m QI~ p' < P - 3y) and a canonical
diffeomorphism B : p. Q -+ P. q of F' into F such that:

I. IB - EI < 13. IdBl < 21dXl. F' c F - 2S.
II. For (P. q) = x = BX; X = (P. Q € F'); P = (Po. P1 ) we have

H(p, q)~/Io(l)o)+Hi(lJ)+H2(P,Q), (4.3.7)

IH; (P, Q) 1< ftM ', I ~!j I< It 11-;', I~;; I< 2ft ~:, (4.3.8)

l12M' ==--<-- {j-V v=:.: 4n+ 7.
K~2 '

III. The mapping A'

P-/.A'j)= ;Jp8
o

(IJo -1- H;), ~ 811~
U Jl aPt

is a diffeomorphism of G' onto S'. for which

8'ldP: < IdA'1 <0' dPI. la;~ol<e. la:~il<lte',

where 8' = (1 - 0)8. 8' = (1 + 0)8.
Here. in the notation of Ch. V. §2.

(4.3.11)

~' = 'E: IlKN - d, d == (5 + 78) ~,
1 1

N == VIn'2/v1 · (4.3.12)

'en ':::1 t-' h ~, ~, Q.... -dIV. mes (G - G ) < - mes ( ~ - r::: ). w ere ~ =:: - t-J = /:!,j.LK1V -

and d = ( 6 + 7 e )t3 •
The inductive lemma is proved in §7. The key point in the proof is the

use of the following lemma.

§q. Fundamental lemma

Suppose that the function R(p, q), the domains G, S. and the positive
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numbers S, e, P; ~, y, 0; J..L, M, K have the following properties:
1) In the domain F: P € G, 11m ql ~ p (p = Po, Pi; q = qo, q1 are

angular variables, dim Po = no, dim Pi = ni, no + n1 = n) the function

147

If (p, q) = H 0 (Po) + lit (p) + H2 (p, q)

1.S analytic.
2) The mapping A of G onto S:

a
P~ Ap = d- (Ho+Ht ),

Po

(4.4.1)

(4.4.2)

is diffeomorphic, where

A I I
a2/J0 I --- Qe I d p I -< Id -< e Idp \, ap~ '~\':"'J ,

3) In F

1

82Ht ! ...fj p 2 -< ~e (0<8<1<8<00).

(4.4.3)

\J12 (p, q)l~IlM, (v=2n+3). (4.4.4)

4) The following inequalities are satisfied

108~2),<:>Q,~1, 3~~28, Il<K<1,

8< 8(0) (n, 8) = 4 2nn- 1 (n + 1) -<2n+2) e2n+ 2E)-1.

(4.4.5)

(4.4.6)

(4.4.8)

(4.4.7)

We put N = ~ In 1and GJ.LKN = A- 1
8f-LKN' where Ef-LKN consists of those

e € s, E, = eo, E,1, for which

If- {K1kl-<n+t), if ko=/=O,
1(1;0, kO)+j.t(;b k,)I> j.tKlk!-(n+l). if k=/=O,

for all integral vectors k, 0 < Ikl < N.
On the assumptions 1) - 4) there exists a diffeomorphism B: P, Q -+ p, q

of the domain P € Gj.LK1V - 2~, 11m QI~ p - 2y into F, where:

I. IB-EI <~, /dB/< 21dXI (X=P, Q).
II. For (p, q) = x = B X and P € Gj.LKN - 2a, 11m QI ~ p - 2y,

ll(p, q)=/{o(Po)+Ht(P)+lJ;(P, Q),
where

IH; I< j.tllf', M' = ~; 6- 2
\1 (2v = 4n + 6). (4.4.9)

The first step (see §10) of the proof of the fundamental theorem is
the use of the following lemma.

§S. Lemma on averaging over rapid variables

Suppose that the function H(p, q), the_domains Go, F i , 0, and the
positive numbers 8, 8, p; ~, y, 0; K, M, M have the following properties:

1) In the domain F: Po E: Go, 11m qol ~ p, Xi E: F1 (p = Po. Pi;
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q = qQ. q 1; Xi = Pi. q 1; the variab l es qo angul ar 1; dim Po = no,
dim Pi = n1. no + n1 = n). the function

(~fil dqo ~ 0)
(4.5.1)

is analytic.
2) The mapping AQ of Go onto 0:

a1-/
Po -;> iloPo == roo == -a-~ ,

Po

is diffeomorphic. where

(4.5.2)

e J dpo 1-< IdAo1-< e \dpo I,

3) In F
I

iJ2}lo I 'e
ap~ I~ (0 < 8< 1-<8 < (0). (4.:>.3)

(v=2n+3). (4.5.4)

4) The following inequalities are valid:

10o-<2y<e<1, 3~<o, fJ~<:~K, M<,~7, (4.5.5)

{) ,< 0(0) (n, 0) == 4- 2nn-2 (n +1)-(2n+2) e2n+ 2e- 1 (4.5.6)

We put N = ~ In ~ and introduce the notation (Go)KN = A(/OKN. where

flKN consists of those Wo € n for which

1(0)0, ko)1 > K I ko I-(n+ t) (4.5.7)

for all integral vectors ke• 0 < Ikof < N.
On the assumptions 1) - 4) there exists a diffeomorphism B : p. Q .... p. q

of the domain F':

into F. where:
AJ

I. IB - E I< K~b2n+2 ' 'dB \ < 2 IdX i

II. For p, q = x = BX, where X € F'.

(X == P, Q)

where

(4.5.8)

~1' - AtAl J::-2v
.i - ~2 u , 2v == 4n+ 6. (4.5.9)

III. G~ = (Go)KN - 2(3 = A; 1 {lKN - 2S.
The proof of this lemma in analogous to that of the fundamental lemma

(see §6. 8.).

1 In this lemma, in contrast to all the others, it is not assured that q1 is
an angular variable.
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§6. Proof of the fundamental lemma

I. The construction. The canonical transformation
as as

p=P+aq, Q=q+ iJP (4.6.1)

with generating function Pq+S(P, q), S= ~ Sk(P)ei(k. q), reduces
I It I > 0

H(p,q) to the form

H(p, q)=Ho(Po)+IJ1(P)+~1+~2+~3+~4+~51(P,Q), (4.6.2)
where

~I= [( ro (P) ~~- )+[H2 (P, q)lN J'
~2=[Ho(Po+~Po)-Ho(Po)-( ~~:)~PoJ.

~3= [HdP+~P)-HdP)-(~~I~p) J'
~4=[jj2(P+8P, q)-H2 (P, q)],

~5 = [il2 (P, q) - [H2 (P, q)]N]

and

the variables p, q in (4.6.2) being replaced, after all the differentia
tions, by their expressions in terms of P, Q from (4.6.1).

We define S so that ~i == O. For this we put
ihk (P) 6

Sk(P)=(k,ro(P» (O<lkl<N), Sk=O (lkl>N). (4..3)

2. Estimate for S. For P € GI-LKN we have

{
Klk/-(1l+0,

I(ro (P), k)I= I(~o, k0) +It (~.. k I)I:> ilK Ik \-(n+ 1) ,

if

if

ko =f::: 0,

l: 0
(4.6.4)

'=1= ,

(4.6.5)
(k =1= 0), }

(ko =1= 0),

where e = ea, ei is the frequency vector introduced, connected with the
frequency vector w = Wa, w1 by the relationships Wo = eo, Wi = IJ, ci •

In accordance with 1) of Ch. V, §3, 2., it follows from condition 3)
that Ihkl ~ lJ,Me- 1kIP • By comparison with (4.6.3) and (4.6.4) we find, in
view of (5.3.10), that

lSI < f.tM ~ e-I k I (p-6)
k JlK fJ'Vl

lSI < flAf L. e- k (p-O)
k K fJ'Vl

where L 1 = (:1 )'\11
, 'Vi = n+ 1.
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Therefore. in accordance with 2) of Ch. V, §3, 2. for 11m ql ~ p - 20
we have

(4.6.6)

3. Estimate for B. In accordance with condition 3) it follows from
(4.6.6) that

for {) < £;1, (4.6.7)

(4.6.8)

Therefore the lemma of Ch. V. §4, 3. on the canonical transformation
is applicable. According to this lemma the equations (4.6.1) define a
canonical diffeomorphism B: P, Q~ p, q. mapping the domain P € G~N - 2S,
11m QI ~ p - 50 (~ P - 20 - 3~. since 3~ ~ 20 in accordance with (4.4.5»
into F. where, in view of (4.6.7) and (4.6.5),

IB-EI<P. /dBI<2I dX I, I~PI<~6":~I')/
' A/) I ill L 2
ILl 0, < f.t K bV2 +1 •

q. Estimates for ~2' ~3. We shall apply Taylor's formula (5.3.14).
If P € G~N - 2S, 11m QI ~ p - 50, then for I~I ~ 1 we shall have, in view
of (4.6.8), P + A~P € Gp,KN - ~ and it therefore follows from (4.6.8), con-

dition 2) and 0 ~ L41 Er 1 that
I~ I 2 M2 8n2LL< 2 AJ2 ~

2 , < I-! K2 2i)2V2+ 2 I-! K2 f)'V 3

By the same reasoning and in the same domain

]1,[2 en2L~ 1l'f2 1
I~31 < K2 /1 262V2+2 < /1 K2 6V3 • (4.6.10)

5. Estimate for ~4. We use formula (5.3.4). For P € GMKN - 2S.
11m QI ~ p - 50, I~I < I, we have P + 'A!1P € GJ.LKN - ~ and by Cauchy's

f 1 lalil ~M Th ~ L- 1 L- 1 - 1ormua (5.3.3) oP <13· erefore, foru~ 3 < 2 n

(4.6.11)

6. Estimate for ~5. We shall apply 3) of Ch. V, §3, 2. For
p € G~N - 2S, 11m QI ~ p - 50 - y, in accordance with (4.6.8) P € G,

11m ql < P - Y - 6. For N= ~ In It. 6 ~ Lsi. in view of (4.4.5) we find

from 3) of Ch. V, §3, 2. that

1~51</1~-t~5</1~: (v5=n+2, L5=2(~)n). (4.6.12)

7. Estimate for H'. By condition 4) we have 0 ~ o(O)(n, 8) = L~1Er1.

It is easy to see that L~ ~ L4 , L5 ~ L4 • Since 8> 1, then for {) < 5(0) (n,8)
we shall have 0 ~ L;1, o~ L;1 and the estimates (4.6.9)-(4.6.12) are valid
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for P € G~N - 2~, 11m QI ~ p - 2y ~ P - Y - 50. In this domain (4.6.2)
takes the form H(p, q) = Ho(Po) + H1 (P) + ff~(P, Q), where, in view of
4.-6. and condition 4),

, ( 2 .:l/2 I i112 .l'f2 I 2 '\ -V3 M2 -(4n+GIH2 (P, Q)I,~ ~ K2r-1-t K2+f.t Kp -rf.tM ,)6 <~tK~l) ),

which proves the fundamental lemma.
8. Proof of the lemma on averaging. This proof is similar to that

given above and we shall indicate only the necessary changes.
The generating function in 1. is taken to be of the form

Po qo + P1 q1 + S, where

S(Po, Pt, go, g1)= 2 Sko(PO, Pf, ql)ei (kO,qo),
Ito =1= 0

and, in place of (4.6.3), we have

S p p _ ihko (Po, Pl~ qt)
ko( 0, Il qd- (Wo(Po),k o)

In consequence of this ~3 is of the form

(0 < IkoI< N).

~3~jjl(PO' Pb qt)-H1(po, Pt, Ql).

For X € F' in place of (4.6.8) we have

(4.6.13)

(4.6.15)

(4.6.16)

I L1Po1< K~~:~I' IL1Qo 1< :~~;2 ' I L1X11 < :~~;2 ("2 = 2n +1). (4.6.14)

The quantity 1~31 is estimated by Lagrange's formula (5.3.4).
From (4.6.13) and (4.6.14) we obtain the estimate

M 22nL2 . Jl.J2

I~31 < K~2I\V2- <;. ~2I\V& •

Further, with N = ~ In i the following estimate is obtained for l5:

I ~ I~MM
5 ~ 6"5 ·

Since M~ M. the estimates (4.6.15) and (4.6.16) reduce to

IH' 1< MJfi 6-2"
2 ~2 ,

which proves the lemma of §5.

§7. Proof of the inductive lemma

I. We put H2 (p, q) = H2 (p) + H2(p, q), where ~i12(P, q)dq == O. Then

H(p. q) = Ha{po) + H~(p) + H2 (p, q). where H~ = H 1 (p) + H2 {p). We consider
the mapping A':

'1 alii"i! apt =--- Ap i" ~ (p);

We apply the lemma on the variation of frequency (Ch. V, §4, 5.). From
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conditions 3), 4) it follows that M< °2e~2 and therefore. by cauchy'S
n M

formula (5. 3. 3), for p € G - 13 we have 161 < i3 < 013. Id li I < 0eIdp I.
Putting 0 0 = SJ.L1(N. b = 3lJ, in the lemma of Ch. V. §4, 5. we find that A'
maps the domain G' = A'-1 diffeomorphically onto 5' = ~N - d.
d = (5 + 78)~, and G' + 3~ into S,.."KN. the conclusions III and IV of the
inductive lemma thereby being fulfilled.

2. We apply the fundamental lemma to the function

H (p, q) -== H 0 (Po) +/J~ (p) + if2 (p, q) I

in the domain F. Since, in accordance with 1., IH2 1 < 2 ~M.
8'Idpl < IdA'l < 8'ldpl and the numbers 8', 8', p, ~, y, o. ~. 2M, K
satisfy the conditions of the fundamental lemma (in view of conditions 1)
4) of the inductive lemma), the fundamental theorem is applicable. It
furnishes in the domain P € G,.."KN - 2~, 11m QI ~ p - 2y the diffeomorphism
B: p. Q... P. q and the inequality IH~(P. Q) I < ~M'. Hence, by Cauchy's
formula. for P E G~N - 3~, 11m QI ~ p - 3y we obtain the estimates of
conclusion II of the inductive lemma.

3. In accordance with 1. it follows from p. Q € F': PEG'.
11m QI ~ p - 3y that P € G,.."KN - 3S. But then, in accordance with 2.,
conclusions I and II of the inductive lemma are valid and the inductive
lemma is thereby proved completely.

§8. Proof of the inductive theorem

I. We shall show that under the conditions of the inductive theorem
the inductive lemma 'is applicable. For conditions 1), 2) in §§2 and 3 are
common. From o~ 0(4) it follows that 0 ~ O(l)(n, 8,8) from 4) of §3.
From 0 ~ 0(2) it follows that y ~ O. 1 p; Y~ 2- 14 • Also, for 0 ~ 0(1), 0(2),

t 1 1

156 < 15~2~4n -< 3b 4n := 3)', 3~ = 363e < 2~2e < 26.

Thus 4) of §3, follows from 4) and 5) of §2. Finally, M < 02n+3 K ~2 in
condition 3) of §3, follows from the in.equality - 3T - 1> 3T +2n +10 (in fact,
T= 16n + 24). Thus, all the conditions of the inductive lemma are ful
filled.

2. From o~ 0(2) it follows. in accordance with (5.3.2), that, for
s ~ I,

68+ "'+1 + ···< 26" 3 ()'8 + )"+1 + ·.. )< 6\" -< 6)'1 < 2 ~. (4.8.1)

From (4.8.1) we see that if, for s ~ 1, we put

68 =88- 1(1-68), e8=e8-1(1+~s), Qs=Qs-t- 3ys (6o=e~ 80=8, Qo=Q),

the following inequalities will be satisfied:
e - 1

6s > 6 ="2' as < e = 28, Q, > Qoo = 3 Q• (4.8.2)

It is easy to verify that, for any s ~ I, the numbers ~s, Ys, os, Es ,
M.; K, ~ satisfy the inequalities of conditions 3). 4) of the inductive
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lemma with constants 8S - 1 ' 8 S - 1 ' PS-1. For s = 1 this is established in
paragraph 4.

3. From 6 ~ 6(3) it follows, in view of inequality (5.3.10), that for
111 1

Ns = -y In I')JI < - In ~4T the following inequalities are valid:
, an, Ys Us

1 1 1

68N~ = 68 (6
8

- 4Ti In6;-4T)n -< 68 C6;T 6; 2n ) n-< 6: (16;T)n < 1. (4.8.3)

Further we put 01 = ~ m- 2 and Os = ~ m- 2 for s > 1. Since
t~m<Nl NS_l~m<Ns

00

~ os<: 2, from 0 < 6(3), (4.8.1) and (4.8.3) we derive the following
8=1

Inequal it ies:
00 00

~ [K0'8 +(6 +788 ) ~.N:] < ~ [610'8 + 6s J8 < 4618 < ;; ,
8=1 s=1

(4.8.4)

where -- (28)nD== 6 LD, L = n2n+2 •

(4.8.8)

q. Suppose that the terms

A(s-t); F(s-t), G<.s-t); H(s-l) (P(s-l), Q(S-I»); 8(s-1) (s >- 1) (4.8.5)s_1

satisfy the conditions of the inductive lemma with constants

8.s- h 8 s- 1; Qs-1; ~S, VS, 8s, M s; K, f.t, (4.8.6)8-t

defined as above. Then the inductive lemma defines

A', B; F', G'; H~(P), n;(p, Q); E', S'; S', e', Q',

which we denote re~pectivelY by
A(s) B· F(s) G(s). H(s) (P(S») H(s) (P(s) Q(S»). ';:(,(s) ~(~). e 8 n (4 8 7)

'8' , '1 '2 , ,--,..., 8' S' ~s· •• 8

From conclusion II of the inductive lemma we obtain in F(s), since
T= 16(n + 4),

IH(s) I~ M; 8-v.< .t,.{7T-3T-4n-t 6) ~15/14(7/2T-l) - M
9. ~ JJ. K~; s I-tus < I-tu, - f.t 8+1·

From conclusions I, II, III of the inductive lemma. bearing in mind 2. and
(4.8.8), we reach the conclusion that if the terms of (4.8.5}8-1 satisfy
the conditions of the inductive lemma with constants (4.8.6}8-1 then the
terms of (4.8.5), will satisfy the conditions of the inductive lemma with
constant s, (4.8.6) s.

5. But, in accordance with 1., the terms of (4.8.5)0 (where A(O) = A.
F(O) = F. G(O) = G. H(O) = H. p(O) = p, Q(O) = q. a(O) = S) satisfy the
conditions of the inductive lemma with constants (4.8.6)0. Hence the
inductive lemma can be applied an indefinite number of times; as a result
we obtain the terms of (4.8.7}8 for s = 1, 2, •••

In view of (4.8.2) and (4.8.8) conclusions I. II, III of the inductive
theorem follow from conQlusions I, II, III of the inductive lemma. We have
not yet proved that F(sj is non-empty. ~is follows from conclusion IV of
the inductive theorem which we shall now prove.
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6. From conclusions III and IV of the inductive lemma we find that

roes (G(S-I)'".G(S» -< ~-n mes (B(S-l)"S\S», (4.8.9)

where E<s> = E~l(J) - ds' ~ = (6 +78s) Ps and :=(8-1) is obtained from 5(0) by
the formulae 8

1 1
E.(k)=E~(~)-dk' dh=(5+7ek)~k' N k =-ln 2J1 /_ (k=1, ... , s---l)

k . Yk 1~ k

Here dk > 0, N1 < N2 < ... and the domain a = =(0) is, in accordance with
condition 6) of the inductive theorem, of the form

8(0) = SKoNodo' No < Nf, Ko > K, do > 0,

where E· is a domain of type ~.

From the arithmetic lemma of Ch. V, §2, 5. we find that

mes (8(S-I)",,8:(8» -< I}L [Ko s + (f t· 7(8 ) ~bN~] mes E*.
8

From (4.8.9), (4.8.10) and (4.8.4) it follows that

(4.8.10)

s

roes (C""C(S» == }1 mes (G(k-1) _ G(k») ~
k=1

<' ~ [z· '(~+~e)A N ll

J
DL 1""'"1* X8 DL~n r-'I* X u-n 1""'"1*

~k~l nOhT U '""'k Ph Ii eenmes.=. '~""2 DLenEenmes~ =20 mes~.

- (4.8.11)

Thus conclusion IV of the inductive theorem is valid and the theorem is
therefore completely proved.

§9. Lemma on the non-degeneracy of diffeomorphisms

For the proof of the fundamental theorem we give more precision to
conditions 4) of §1 which express the non-degeneracy of certain mappings.

I. LEMMA. In the conditions of the fundamental theorem for any
K > 0 there exist po~itive numbers a, 8, D, m, r, ~ depending only on
~, Go, P. R, Ho andH1 , such that the dOmain Go can be split up into m + 1
parts:

Go = G01 UG02U ... UGomUGo,

where
(4.9.1)

and each of the domains Goi for any 0 < ~ < ~ has the following three
properties:

1) The mapping Ao : Po .. Apo = We = ~Ho is a diffeomorphism of Goi
upo

onto the domain 0i of type D in the notation of Ch. V, §1, and at each
point of Goi

aIdpo I<: IdAoI<: e Idpo I, Ia;~o 1<:8. (4.9.2)
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(4.9.3)

t _ aJi~
~1 - 0'" '

eIdp I< IdA 1< e Idp I;

2) The mapp ing A: p -+ Ap = e, where
a ==

P=Po,'t; 6=~o' ~1; ~o=~- (Ho+fJ-1i1),upo

is a diffeomorphism of the domain Gi(r) (Po € Goi, I~I ~ r) onto the
domain ~(r), and at each point of Gi(r)

Ia~ I, Ia;:21I~ e.

3) We denote by Gi (€) the domain of point s p = Po, 't for which

Po EGOi ' IT j - -;-1 ~ ~ ·
we denote the set of points Ap, p € Gi(€), for whichBy ~*(€, d)

eo € {li - d.
Property 3) is that for any 0 < € < r, 0 < d < r the domain at (E, d)

is of type Q(see Ch. v, §1, 3).
€

2. Proof of the lemma. It is necessary to take as Go a sufficiently
small neighbourhood of the analytic manifolds where the determinants
(4.1.9), (4.1.10) vanish. Then outside Go the inequalities

e*E<lla;~oll <8*E, e*E<IIAiJII<e*E, 1:~~I<e*

are valid for sufficiently small e* and large e*. From these inequalities,
with the help of the lemma on distortion (Ch. V, §4, 6), it is easy to
derive inequalities (4.9.2) and (4.9.3) for certain a. 8, 0 < e~ 1 ~ 8 < 00

and sufficiently small r, jj:. Then .r, ~ and Goi are chosen so that Ao and
A are diffeomorphisms. Finally, for sufficiently small r and ~ and
sufficiently large D, condition 3) is also satisfied (in accordance with
III of Ch. V, §1, 3.; this choice of D completes the proof of the lemma.

3. REMARK. We shall assume that the fundamental theorem is proved
for each domain Goi separately, i.e. that we have found

We put

Bo==eo(x; Ho' H t ; Go' Ro' C, Q)= m~ll 80(2:; Ho' Ht ; GOh Ro' 0, Q).
l~t~m

In view of (4.9.1) this value Eo satisfies all the requirements of the
fundamental theorem.

Bearing in mind the above remark we shall henceforth suppose that in
the domains

PoEGo; pEG(r) (i.e. PO EG0 1 l'tl<r); pEG*(e)

( 1. e. Po EGo' I't - f I~ ~ ') (0 < e < r)

conditions 1), 21, 3) of 1. are fulfilled.
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§IO. Averaging over rapid variables

The proof of the fundamental theorem begins with the application of
the lemma of §5 to the function

(4.10.1)

We perform this first step of the proof below.
I. Assumptions. We shall assume that the function R(p. q), the

domains F, Go and the positive numbers P. R = vr: c; e, e. D. m, r; K

satisfy conditions 1)-4) of the fundamental theorem and conditions 1)-3)
of §9. 1. In addition we suppose that

f.A.-<e 4
, E=8T , T>n+2, Q-<1, D>1,

and introduce the quantities
t

~=.63, V=28 4n, Ko=fJ, M=,...,fJ-1, M=e4fJ-l.

Finally we assume that 0 is sufficiently small:

fJ -< 6(5) (n, 8, e~ C, T, R, Q, x, D),
where

6(5) = min {6(O) (n, 6); 6(6) (n, Q, R, C); 6(7) (n, 8, 8, T, x, D)}.

Here o(o} is defined in §5, a(e} = min {o. 04; pn S-4n; ~, E}.

(4.10.2)

(4.10.3)

(4.10.4)

~(7) _ • {_1 (_e )271

u -mIn 48' 16nT '

2. Assertions. On the assumptions of 1. in the domain F' of the space
p. Q:

PoEG~, IImQol<Q-2Y<Q'=0,5Q, IX11<R-3~<R'=O,5R, (4.10.5)

there exists a canonical diffeomorphism B: P, Q~ P. q. where

I. IB-E\<,..,6-(2n+7),ldBI<2IdXI.
II. For p, q = BX, where X € F'. the function H(p, q) from (4.1.1) is

of the form

H(p, g)=Ho(Po)+~H1(Po'Pi, Qt)+H2(Po' Pi, Qo' Ql), (4.10.6)

where 8 0 and 81 are the same as in (4.1.1)-(4.1.3) and

IH21 < Jte46-(4n+t fl). (4.10.7)
t

III. G~ = A~lQKoNo - 263 ~here No = ~ 6- 4nfor~) ·

IV. If G~ is the domain in the space Po for which

Ao G~;;) 0K
o

No - 4803
, then mes (Go \G~) ~ i mes Go.

3. Proof. From 0 ~ 0(6), (4.10.3) and (4.10.2) it follows that

106<2y~t-<{, 3~<6< ~, 6<K, ~C<M-<M<62n+3~2. (4.10.8)



378

Small denominators and problems of stability of motion 157

In accordance with (4.1.7), (4.10.8) and (4.9.2) and the conditions
(4.10.4) and (4.10.2), the function (4.10.1), the domains F, Go, G1 :

IX1I ~ R and the numbers e, a, P; ~, Y. 0; Ko, M, Msatisfy conditions 1)
4) of the lemma on averaging in §5. This lemma furnishes the domain F' and
the mapping B.

The inequalities (4.10.5) follow from (4.10.8). In view of (4.10.3)
assertion I follows from §5, 1. Assertion II follows from §5, II and
(4.1.6) of §1, since H2 = OJ,2)H2 + H~ and hence, in view of (4.10.3),
(4.10.2) ,

Assertion III is the same as §5. III.
We shall prove assertion IV. We have, in view of 0 ~ 0(7) in (4.10.4),

mes (Go"'G~) -< e-11 mes [Q".(QKoNo - 4e~3)] -< e- n (2Ko+ o2N~) DL mes Q ~

-< e-n 3<sDL mes Q ~ 368nS- n DL mes Go < ~ mes Go.

We have used successively the arithmetic lemma (Ch. V, §2. 2.) and the

. 1 . t ~ {1 1 "en}Inequa 1 y u ~~:- 48-' N~' 6en LD .

1

The inequality 5 < No" follows from () < ( 1;~Tyn, No < {) -411 In a~T .

In fact. in view of (5.3.1). In-1 -<.4T!!:!....(!)tn, and hence
64T " e 6

§ II.

Assertions I-IV are proved.

Polar coordinates

I. Notation. In order to carry out the second and subsequent
approximations we now change from the Cartesian coordinates Pi. Q1 of §10
to polar coordinates~, ~ by means of the canonical transformation

P.=V2TCOSCP, Q1==l2Tsin<p. (4.11.'1;

We shall denote the variables po. Qa, 1:. q> by the letters P~, Q~, Pt, Qt
and the transformation (4.11.1) by the letter B*: B*~ = X, where
X* P* p* n* Q* p n X P Q= 0, 1. '<0. 1 = o. 1:, '<0. <1>; = 0, Pi, O. Q1. We note that all
the variables Q* have the sense of angles.

2. LEMMA. Suppose that in the conditions of §10, 1. the following
inequalities are valid:

T>8n+30, <S<6<S)=2- 15C- 1• (4.11.2)

COnsider the domain X* € F*'(€), where P~ € G~ as in §10, 2.; P~ € G1 (€).

[Ip;-~ I<-~-]· 11m Q*I" O.5p. In this domain the function (4.1.1) of

p, q = x = BX = BB* X· takes the form

H(p, q)=-=}lo(P~)+-~'/l(P:,P~)+H3(1)~, p~, Q~, Q~)=I{*(lJ*tQ*), (4.11.3)
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where He and H1 are the same functions as in (4.1.1)-(4.1.4). and H3 is an
analytic function of period 21t wi th respect to Q* and such that in 'F*' (E)

" I pe 7./2
!//3/ < --6'--- . (4.114)

3. Proof. Since 6 < 6(6) we have %< 2-6 R2 = (
R
4

l t. Therefore the

lewma on polar coordinates (Ch. V, §4, 7.) is applicable and in accordance
with this (4.10.6) takes the form

H (p, q) = H o (P~) + ~jjt (P~, P~) + flYt +H2 ,

where, in accordance with (4.1.8), (5.4.4) and (4.10.7),

IH t l<CI8P;1 7
/

2 IH2 l<t-te46-(4n+15).

It follows from 6 ~ 0(8) (4.11.2) that in the domain F*'{E)

I~Hll -< ~C87/2e 7/2 < -iF e 7/2,

and from T> 8n + 30 (4.11.2) we find that
7/2

IH 2 1 < Jle 7/2e1/26-(~n+15) < Ilh-.

(4.11.5)

(4.11.6)

(4.11.7)

On comparing (4.11.5)-(4.11.7) we obtain the relationships (4.11.3) and
(4.11.4).

§12. The applicabil ity of the inductive theorem

We shall show below that for sufficiently small C the function
(4.11.3) satisfies conditions 1)-6) of the inductive theorem of §2.

I. Assumpt ions. Let

6 -< 6(9) (n, 8, 8, C, R, Q, x, D),

where

6(9) = min {6 14
{ n, e, e, -~ , i-, D ) . 6(5) (n, e, e, C, 16 (n+4), Q, x, D); 6(8) (C)} •

0(4) being defined in §2, 6(5) in §10 and 5(8) in §11.
We assume that conditions 1)-4) of the fundamental theorem and condi

tions 1)-3) of §9, 1. are fulfilled. In addition we assume that

f.1,<e4
, Q<:1.

Then for T = 16(n + 4) the assumptions of §10 and §11 are satisfied; thus
(4.1.1) takes the form (4.11.3) in the variables P*. Q* E F*'.

2. The domai ns S, G. We call to mind the notation of certain domains
introduced above.

Go is the original domain in the space Po (see §9).
n = Ao Go is a domain in the space we-

Gl(E) consists of Pl. for which IPl - ; I~ ~.
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G*(E) = G*(E) = Go X G1 (E) consists of P = Po, P1 such that Po € Go,
P1 € G1 (E).

S*(E, do) consists of E, = E,o. 13.1 such that E, = Ap, where p € G*(E)

and eo € n - do.

We introduce a new domain E. consisting of e= eo, E,1 such that
e= Ap, where p € G*(€) and

Go EQKoNo - do,
'1 _J_ ()

where K o== (), No == - () 4n In 84 , do == 3863 (for the notation nKo No see
2

Ch. V, §2, 2.)~ We also introduce the domain
G == A-IE.

3. Properties of the domains a. G. We shall prove the following
assertions (see Ch. V, §§1 and 2).

D
I. The domain S*(E.do) is of type - and

E

mes B* (e, do) -~ E)n mes G* (e).

II. In E*(E, ,J) the domain E is of the +orm [E * (€. d )]u.o J I r 0 Ko No do •

III. G ~ G~ x G1 (E), where G~ = AC;10KoNo - 203
•

IV. G ~ G~ x G1 (E), where G~ = Ao1
( OKaNo - 4e03

).

I follows from (4.9.3) and 3) of §9 since. in accordance with (4.10.4)
and (4. 10. 2) .

II is obvious from the definition of S (see 2.).
The proofs of III and IV are based on the fact that, in view of

(4.9.3). if P = Po. P1; e= ee, E,1; Wo = AoPo, e = Ap, then

leo - wol < ~8 < ese.
By definition of G it follows from P € G that eo € nKoN

o - 3e63
•

This means that Wo € OK I\T - 28 63 and P € Ao1
( OK NT - 286 3

). It
0 1'0 0 1 0

therefore follows, in accordance with Ch. V, §4, 4. that Po € G~, which
proves III.

If, however, Po € G~, i.e. Wo € 0KoNo - 4863
, then to € o.KaNo -3803

,

and for P1 E G1 (E) we have pEG, which proves IV.
~. Verification of conditions 1)-6) of the inductive theorem. We

shall show that. on the assumptions of 1.• the function H*(p*, q*)
from (4.11.3), the dOmains G, S. constructed in 3., and the numbers,
D, 8, e, ~. ~ of §10. together with

2 1

~=~3e, e==oT, 1'=16(n+4), ,,=64n , f.t<e4 , M=e 7!2o-1, K==lJe (4.12.1)

satisfy conditions 1)-6) of the inductive theorem.
Condition 1) (where IJ.H1{P*) plays the role of H1 {p) and H3 (P*, Q*)

that of H2 (p, q» follows from §11, 2. and 3., III.
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(4.13.1)

Condition 2) follows from 2), §9.
Condition 3) follows from (4.11.4) and (4.12.1).
Condition 4) follows from the fact that, in 1.• 6 ~ 6(4).
Condition 5) follows from (4,12.1).
Condi tion 6) follows from 3., I and II, E* (€, do) playing the role of S*.

1

In fact K o== () > e6 == K, No == ifj-41t Jll -~- = ~ In _J._
2 2e 7/2 '\' 2Jl·

Thus all the conditions of the inductive theorem are satisfied. Its
conclusions I-IV are therefore valid.

§13. Passage to the 1 imit

We construct here the invariant tori of the canonical equations With
Hamiltonian H*(P*, Q*) (4.11.3).

I. Convergence. We shall denote by F = F(o) the domain P6 € G = G(O),

11m Q*I ~ ~ in the space P*. Q* (the domain G is defined in §12. 2.). In

accordance with §12, 4. the inductive theorem of §2 furnishes a sequence
of domains F(s) and diffeomorphisms B s connecting p~(s), Q(s) with
P*, Q* = Ss(p(s), Q(s»: Ss = B 1 B 2 ••• B se In the coordinates p(s), Q(s)

the Hamiltonian H*(P*, Q*) (4.11.3) in F(s) takes the form H(s)(P(s), Q(s»
of §2.

In accordance with §2, I, the convergence lemma of Ch. V, §5, 1. with
ds = ~s < 4- s is applicable to the sequences Bs and F(s). By virtue of
this lemma the sequence of diffeomorphisms Ss on the set j?(oo) == nF(s)

s;? 0

converges uniformly to a certain mapping 800 :

ISoo-EI<2~1.

The set F(OO) is of the form p(OO) € G(OO), 11m Q(OO) J ~ Poo

( Qoo >- -~-, G(oc) =-= 0 G(s) '\ •
6 s~o.J

2. Invariance. All variables in this subsection are taken to be real.
We shall show that the set SooF(OO? is invariant with respect to

motions determined by H*(P*, 0*). We shall write the canonical equations
with Hamiltonian H(s)(P(s). Q(s» = H*(P*, Q*) in the form

X(s) = ¥(s) (X(s» (where X(s) = P(s), Q(s); y<s) = - H~ls), H I~sl,». (Ll.-13.2)s

The transformations Ss are canonical. Therefore, if X(s)(t) satisfies
(4.13.2>s, X*(t) = Ssxs(t) will satisfy (4.13.2) •.

In exactly the same way the equations with Hamiltonian
Ho(P~s» + H~s)(P(s» define a vector field yes) = (0; A~S), ~A{s»,

where Ab s ). A~s) are the first no and the last n1 components of the
vector A(s)(P(s» from §2. III.

In accordance with §2. III. as s ~ 00 the sequence of diffeomorphisms
A(s) on G(OO) converges to the limit A(OO). where (cf. (1/.8.1»
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(4.13.3)

If A(OO) is written in the form A~OO). A~~)L the vector field
(0; A~OO), JJAiOO» on F(OO) will be denoted by y(OO) = y(OO) and the solution
of the equations (4. 13. 2)m (8 straight line) by x(OO) (t). It follows from

§2, II, that IY(') - y(') I < ~ ~'+1 in F('). In view of (4.13.3) we have

Iy(s) - y(OO) 1 < ~S+1 in F(OO). From §2. II, we obtain

I
aY(s) I
ax(s) < 2n66 + 28 < 38. Therefore the lemma of Ch. V. §5, 3. is ap-

plicable and we find that for X(OO) (0) E F(OO) the point X·(t) = SOO(X(OO) (t»
belongs to F and satisfies (4.13.2) •.

Thus the set F· = SJ(OO) is invariant.

§I~. Proof of the fundaMental theorem

We shall complete here the proof of the fundamental theorem begun in
§10. All the variables are taken to be real. We use the construction and
notation of §§10-13.

I. The construction of F~. We put

Fe = BB*F* = BB*SooF(oo) , (4.14.1)

where B is defined in §10. B· in §11, Sa> and F(OO) in §13. We shall prove
the assertions I-IV of the fundamental theorem.

We first prove that
F* C F*' (e) - ~t, (4.14.2)

where p., Q. E F·'(€) denotes p. E G~ x G1 (E) (see §11, 2.). From §2. I,
it follows that F· ~ B1 F( 1) ~ F - ~1 and from §12. 3., III, that
G ~ G~ x G1 (c). Therefore (4.14.2) is valid, BR· is defined on F* and
(4.14.1) has a meaning.

Further. let

x* = B*-Ix , r=BX, X=B*X*, X* EF*,

x* = P: ,P:, q~, q;, X=-=Po, Pi' qo, qt, X=Po, Ph Qo, Q., x* P* P* Q* Q*= 0' l' 0' l'

x: = P:, q;) Xo = Po, qo, Xo= Po, Qo, X: = P~, Q:,

x~ = p;, q;, Xt = Pi' qt, X 1 =PbQh X;=p;, Q~.

By definition of B· we have %6 = xo, X6 = Xo. In view of §10. I,

Ix: - X: I< J!~1(2n+7) < 8 3 < ~h IXi - XII < e3 < -V6~e. (4.14.3)

Also it is obvious that IX1I < "f2€, IX 1I <~. In view of (4.14.2),

\P!\ ~ ~1 = 6~ € and, in accordance with (4.14.3). I X 1 - x1 1 < JPt.
Therefore by the leBa of Ch. V, §4, 8., Ix: - X: I<: max {-,a, 2 ';;fe} < e'.
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Together with (4.13.3) and (4.14.2) this gives

I x* -x* 1 < e2
• (4.14.4)

2. Invariant tori. We fix p(OO) € C(OO) and consider in the space of
x the torus

(4.14.5)

with coordinates Q(OO) on it. In accordance with §13. 2. and since the
transformations B, B· are canonical. the equations with Hamiltonian (4.1.1)
on this torus have the form

Q(oo):::::: (0 (where (0 == (0o, rot and~ == U>o, Ilffit = A(oo) (P(C:O»).

We introduce the notation:
(4.14.6)

p~==A-l£=A-lA(oo)(P(oo»), (4.14.7)

where A is the diffeomorphism from §9. In accordance with (4.13.3).
IA - A(OO) I < ~1. Therefore IAP(OO) - Ap~1 < Sl and by the lemma of Ch. V,
§4. 4. we have

(4.14.8)

We now denote the torus (4.14.5) by Tw• put p~ = Pow, ~w. Q(OO) = Q
and prove assertions II-IV of the fundamental theorem.

Assertion IV follows immediately from (4.14.6) and (4.14.7).
Assertion II is obtained from (4.14.5) by noting that x = B*x* and

putting
go == q _Q<oo)
woo '

gi
w

== q~ - Q~oo).

The analyticity of fiw(Q), gi~(Q) follows from the convergence of Ss

in the complex domain F(OO) (~13, 1.).
We now prove assertion III. In accordance with (4.14.4), (4.13.1),

(4.14.8) and since 6 < 6(7) (§10, 1.), we have

Ip* - p~ I'<: Ip* - p* I+ Ip* - P(oo) I+ IP(oo) - p~ I< e~ + 2~1 + 0-1~1 < X8,

Ig* - Q(oo) I-< Iq* - Q* I+ IQ* - Q(oo) I< e2 + 2~t < xe.

3. An estimate of the measure of FE- In view of §2, IV, and §12, I.
we have

(4.14.9)

Further, in accordance with §2, 3., IV, and §10, 2., IV, we have

mes rG* (e)""Cj = mes (Go X G1 (e»""G]-<

< mes [(Go"G~] X G1 (e)] -< -i mes [Go X G1 (f.)) = -i mes G* (c). (4.14.10)

By the lemma of Ch. V, §5, 4., in view of (4.14.9) and (4.14.10),

IJtes SooF(oo) >- mes F(oo) = (2n;)n mes Goo:>
>- (23t)n (1 - x) mes G* (e) = (1- it) mes F(e).

But, since the canonical transformation BB· conserves measure, we
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obtain § 1. I:

mes Fe = mes BB* SOO.F'(CD) =- mes S ooF(oo) >- (1 - x) mes F (e). (4.14.11)

The estimate (4.14.11) shows that the set FE of invariant tori we have
constructed is non-empty. and this completes the proof of the fundamental
theorem.

Chapter V

TECHNICAL LEMMAS

The lemmas used in Chapter IV are collected together in this chapter.
§2. 2. - 5. and §3, 2. play an important part.

§I. Domains of type D

To each domain is associated a number characterising its surface to
volume ratio.

I. Let n be a domain in the space W bounded by a piecewise smooth
surface. It is easy to see that

I. There exists a constant D > 0 such that. for any d'2 > d i > O.

mes [(Q - d 1)""'(Q - d2)] < D (d2 - dt ) mes Q. (5.1.1)

In this case we shall say that Q is of type D. Obviously the domain
En homothetic to n is of type DIE.

2. In Ch. IV. §9. we use an estimate of the type of domains con-
structed in a special way. Let 0 < E < Eo. 0 < ~ < ~o;

Go is a domain with a piecewise smooth boundary in the space Po;
G is a domain with a piecewise smooth boundary in the space P;
P = Po. Pi;

Gi (E) = ~ is the neighbourhood of a point of the space Pi;

G*(E) = Go x Gi (€) is a domain in the space p: Po € Go. Pi € Gi (E);

Ao is a diffeomorphism of Go onto n. Ao Po = We € U;
A is a diffeomorphism of G onto S. Ap = t. = ea. ei € S depending on 1..1.

so that, if IJ.-+ O.then IAopo - (Ap)ol = Iwo - E.oI -+ 0 uniformly wich
respect to P € G together with derivatives.

3. We shall be interested in the domain AG*(E). The following
generalisations of I are easily proved:

II. There exists a constant D > 0, not depending on the direction of
€ and the centre Pi of the domain G1 (€). such that all dOmains AG*(E) for
which G*(€) C G are of type DIE.

III. There exist constants D > 0. ii> O. r > O. not depending on Pi
and e. such that for 0 < ~ < jj, 0 < d < r the domain S*(€, d) defined
below is of type Die.

Here g*(e. d) consists of points e= eo. ei = Ap for which
P € G*(e) c G. eo c U - d.



385

164 v. I. Arnol'd

The proofs of assertions I, II, III are omitted in view of their
elementary and cumbersome character.

Il. Str ips. The ~ - neighbourhood of the hyperplane will be called a

strip r of width h. For example, the inequality I(k. W) I < a defines a
strip of width not greater than 2a in the space w if Ikl ~ 1. It is easy
to calculate that the intersection of a strip of width h with one of the n
coordinate axes of W is not longer than nh. Hence. in view of (5.1.1). we
obtain

mes (Qnf) <: Dnh mes Q. (5.1.~)

Let {}' en. We shall S83 that Q' is of type N in Q if

Q' = (n - d) ',( uri), where d) 0 and U ri is the union of not more than
N strips. Obviously. for d2 > d1 > 0,

(QI - dt)",,(Q' _. d2) ~ [(Q - d - d 1)",,(Q - d - d2)] U
U{[(uri +d2)""( uri +d 1)1nQ},

and it therefore follows from (5.1.1) and (5.1.2) that

(5.1.3)

§2. Arithmetic lemmas

These lemmas exvress the incommensurability of numbers taken at random.
I. Integral points. Vectors with integral components ki = 0, ± I, ±2•..

will be denoted by k = k i ••••• kn, and the number = Ikil + •.. + Iknl
by Ikl. It is easy to calculate that the number of different vectors k
with Ikl = m ~ 1 does not exceed 2 n mn- 1

• and when Ikl ~ m the number
does not exceed 2n mn •

2. Let n be a domain of type D. We denote by {lKlV (where K > o.
N > 0) the set of points W from n for which

I(k, (I»)I>Klkl-v (v=n+1) (5.2.1)

for any integral vectors k. 0 < Ikl < N. Let d1 • d2 • ••• > 0 and
o < N1 < N2 < ... We introduce the domains n(s) by means of the relation
ships 0(0) = 0, O(s) = 0k'N'/) - d s •

LEMMA. For any s ~ 1 and any d> 0 the inequality

mes [Q{S-1)".(Q~N~) - d)] < LD [Ka~+ dN~] mes Q, (5.2.2)

is val id, where

3. PROOF. We first of all satisfy ourselves that

mes [Q(S-l)"'Q~N~)] -< LDKas mes Q. (5.2.3)

In fact (5.2.1) does not hold in a strip rk of width not greater than
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2K lkl- v
• There are not more than 2n mn -

1 different k's with Ikl = m.
It therefore follows from (5.1.2) that

~ Qn) ;' LDK~ mes( r k ~-m2 mesQ.
Ikl=m

Summation over m, NS - 1 ~ m < Ns gives (5.2.3).
We now observe that there are not more than 2n mn different k' s with

Ikl ~ m. Consequently n(S-i) is of type 2nN~ in {} (see §1. 4.). From
(5.1.3) we obtain

(5.2.4)

(5.2.2) follows at once from (5.2.3) and (5.2.4).
11-. The domai n S. Let S be a domain of type D in the n = no + n1

dimensional space of points e= ea. l!1. We denote by a~KN (where
o < J..L < 1, K > 0, N > 0) the set of points e from S for which

fK\k\-V, if lkol*O,
/(ko, £0) +f.1 (k1, £1)1> If.1K \kl-V , if Ikl+O ('V=n+1), (5.2.5)

for all integral vectors k, 0 < Ikl < N. Let d1 , d2 , ••• > 0 and
o < N1 < N2 We introduce the domains 5(s) by means of the relation-
ships

):;1(0) _):jl ):(8) - ):(s-1) d
..... - ..... , ""'"'" - .....IJ.KN s - S· (5.2.6)

L E MMA. For any s ~ 1 and any d > 0 the inequal i ty

mes [S(S-t)""(E~sKJ~ - ds)] -< LD [KGs +dN;] mes 8,
is valid, where

-2m, N o=1,

(V:=.::.rt+ 1)

The proof is based on the fact that (5.2.5) is violated only in a
strip rk of width not greater than 2K 'k 1-11

• In fact, if IkoI =I 0 the
width of rk along one of the first no directions does not exceed 2K Ikl-v•

If, however, ko = 0 then ~ can be cancelled in (5.2.5) and the width of
rk along one of the latter directions will not exceed 2K Ik I-v. The subse
quent proof proceeds as in 3.

5. The domal n SKoNodo ' In the domain is of 4. we single out the
part =K l\T d (where Ko ~ K, 0 < No ~ N1. do ~ 0) as follows. The point

Ol'O 0eo. e1 = e € S belongs to SKoNodo if. for any We for which leo - ColoI ~ do.
we have

for all integral vectors ko, 0 < Ikol < No.
It is easy to verify that the lemma of 4. remains valid if

gO) = SKoNod
o

is put in place of gO) ~ E in (5.2.6).
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§3. Analytic lemmas

(5.3.1)
1

I 1 ./ 'V ( 1 )v
nT~-e- T ·

These lemmas enable estimates to be made of the Fourier coefficients
and the derivatives of analytic functions in terms of the functions them
selves and conversely.

I. Inequal ities. For any m > 0, V > 0, 0> 0
m~/ 'V)V e

"tV~ ('" \.e- 6V
eX eV

In fact, f(x) = x - V In x has a minimum at x = v. Therefore Xli ~ vll •

For x = me and x = lIn 61 we obtain (5.3.1).
_1

h f ~ s:. 1 +0. and ~ 0;Further, suppose t at, or s ~ 1, U S +1 = Us , a > 0, U1 ~ 2 .
Then

co

8S +1 -< 2-s 81, ~ 8s < 261•

s==1

(5.3 2)

.1

In fact, for 01 ~ 2 a, we shall have 0S+1 = o~ Os ~ o~ Os ~ 2- 10s whence
(5.3.2) easily follows.

2. Fourier coefficients. Let f(q) = k~ei(k,q) (q = q1' ... , qn).
k

Then:

1) If If(q)1 ~ M always holds for 11m ql ~ p, then Ifkl ~ Me- 'kiP.
2) If Ilkl ~ Me- Iklp, then for 11m ql ~ p - 6 we shall have

IfI < 4n O- n Al (if 0 < o~ p~ 1).

The first result is obtained by displacing tne contour of integration
in the formula fk = (21t)-n J f(q)e- i (k, q)dq by an amount ± ip. For 0 ~ 1
we have (1 + e-S)(l- e- 8)-t < 40"1. Therefore

Iti~ 'Y Me-lkl~=M(1+2 'YI e-mf»n:::::M(1-re-~)n(1-e-~)-11<4n6-nM.
~ -

m.>O

We introduce the notation RNf =: ~ fkei (k,q).

I I Ikl ~ N
3) If Ifkl ~ Me- k P, then, for 11m ql ~ p - 0 - y (where

46 ~ 2y ~ P ~ 1) we have jRNf 1< (2: )n {)~1 e- Ny•

For taking account of §2, 1. and (5.3.1), we have

IRNfl~M ~ (2m)ne- m({J+y) <M ( ;~ )n~ e-my< (~I)n~1e~:~y<
m~N m~N

< ( 2; )n ()~1 e-Ny •

since 1 - e-'Y > 0 for 40 ~ 2y ~ 1.
3. Cauchy's estimates. If for x € U the function f(x) is analytic

and I/(x)1 ~ M, then for x € U - 0
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(5.3.3)

The proof is obtained from the Cauchy integral f (x) ~ 7-~-:- A; j--(~)~~~ •
21tt ';t' ~ :t

~. Formulae of Lagrange and Taylor. If f(x1 • ...• xn ) is a contin
uously differentiable (generally speaking, vectorial: f = f1 • •••• fm)
function in the neighbourhood of the segment (a, b) of the space x and

Idfl ~ Cldxl on ab, then If(b) - f<a) I ~ Clb - al. In particular, if

\;~j\<;C, then Idfl ~Cnldxl and

If (b) - f (a) I~ en I b -- a I. (5.3.4)

For a function f(x) which is twice continuously differentiable tn

the domain IXi - ai I < Ibi - ai I and for which I 8
2! 1< 8, the following

(1Xi dXj

inequality is valid:

(5.3.5)

Inequalities (5.3.4) and (5.3.5) are equally valid in real and complex
domains. For their proof it is sufficient to write the increment in the
form of an integral of the derivative.

§q. Geometric lemmas

These lemmas guarantee the single-valued reversibility of change of
variables.

I. e-displacement. Let U be a closed domain in the Euclidean space
R and A a contiTUlous mapping of U in R, with lAx - xl ~ €. Then the image
AU contains U - €.

PROOF. Let Xo € (U - €) \ AU. Then the mapping

Ax-· Xo I IA*x = Xo + 8 -I-'1-' -I is continuous for x - Xo ~ €. Therefore the degree
.r x -Xo

d(t) (see [55]) of the mapping A* of the sphere St€: Ix - €\ = t€

(0 < t ~ 1) onto the sphere S€ does not depend on t. But d(l) = 1 and
d ... 0 as t ... 0, i. e. X € AU.

2. Inversion of e-displacement. SUppose that, in the conditions of

1., IdAl ~ 0 for Idxl I o. Then A is a diffeomorphism of the domain U - 4€.
PROOF. Let x. y € U - 4€, Ax = Ay = z. The sphere D of radius 2€ with

centre at the middle of the interval xy lies in U - €. The image Axy ~D

of the interval xy is a closed arc in z which in D shrinks to the point z.
It follows from 1. and IdAl ~ 0 that the interval xy can shrink into a
point leaving its ends in place. Therefore x = y.

3. Canonical transformation. Let G and U be domains of the n
dimensional spaces P and q. If the function S(P. q) in G x U is analytic
and lsi ~ M~ 16·1n-1~2. the relationships p = P + Sq. Q= q + sP define



389

168 V.I. Arnol'd

a canonical diffeomorphism B: P, Q ... p, q of the dom.ain PEG - 2~,

Q € U - 3~. where IB - EI ~ Mf3-1, IdBI < 21dXI (X = P, Q) and, for

Q € U - 3~ - 0, we have Ip - p I ~ M0- 1
•

PROOF. For each PEG - ~ for the mapping B: q ... q + Sp = Q we have
by Cauchy (§3, 3.) Isp, sql ~ M~-l < O.2S Ispp, SPq, Sqql ~ 2M~-2 < 4- 1n- 1

•

Therefore IBp - EI ~ M~-t < 0.2S and IdBpt =I- 0; in accordance with 2.,

Bp is a diffeomorphism of the domain q E U - 1. as and by 1. its image

contains the domain Q € U - 2~. Therefore for P € G - S, Q € U - 2a the
following mapping B is determined: P, Q-:+ P. q = P + Sq, Bp 1 (Q) (where in
Sq after differentiation we Dut q = Bp1 (Q». For P € G - 2S, Q € U - 3~,

we have IB - EI < MB- 1 < 0.2S and IdB - dxl < 0.5Idxl. 3. now follows

from 2. and Cauchy's estimates.

q. Let A be a mapping of the sphere Ue(xo): Ix - xol ~ € and

eldxl ~ IdAI ~ eldxl. Then
Uee (Axo) c AUe (xo) (- Uee (Axo).

PROOF. The right-hand inequality follows from Lagrange's formula
(§2, 4.). Let y(t) = Yo + ty, where Yo = Axo, 0 ~ t < 00. For small t
there exists a continuous branch A- l (y(t» c Ue Xo. where A- l yo = Xo.

Let t be the greatest t for which this is so; then for y = yet) we shall

have tA -1 (y) - Xo I = €. But by Lagrang~' s formula

IA- 1 (y) - A- 1
(yo) I ~ e-tlY" - Yol, i.e. Iy - Yol ~ eE. which is the result

required.

5. Lemma on the variation of frequency. Let A be a diffeomorphism of

the domain G of the space p onto the domain a of the space W and let

81dpl ~ IdAI ~ eldpl. Also let A' be a mapping of the domain G - S:
p ... Ap + 6(p), where ILi(p) I < a and Id 61 < 0 81 dp I. Let 0 0 be a subdomain

of 0, f3 > 0, b > 0, 0 < 0 < 1. Then there exist domains G1 and G' such

that:

1) G2G-132G1 2-G'+b2.G';

2) A' is a diffeomorphism of G1 and 8'ldpl < IdA'1 < 8'ldpl, where

8 I = 8( 1 - 0), a' = 8( 1 + 0);
3) A'G' =0' = 0 0 - d. where d= 26b + (S +8)"; A'(G' + b) c no;
4) mes (G',G') ~ e- n mes (0\0'), where 0' = 0 0 - d,

d= 29b + (6 +8)~.

PROOF. For w € A(G - ~) it is obvious that IA'A- 1
- EI < ~ and

IdA'A-tl> (1 - 0) ldwl. In accordance with 2., for w € A(G - f3) - 4~,

the mapping A'A- 1 is a diffeomorphism and, in accordance with 1.,

A'A- 1 (A(G - ~) - 413) 2 A(G - f3) - S~. Therefore A' is a diffeomorphism of

G" = A- 1 (A(G - ~) - 4a) and A'G" d A(G - e) - sa. But, in accordance with

4., A(G - fj) 2 (} - a~ and therefore A'G" 2 (} = n - (S + 8)J3. We now
put G1 = A'-t0 1t G' = A' lIII1 0', where a' = 0 1 - d, d = 2f)b + (S + 8)~.

Then 0' + 2 f) b ~ 0 1 and, according to 4. we have G' + b ~ G1 • The

validity of 1), 2), 3) is obvious. Also, in accordance with 1.,
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AG' = M'-10' 2 0' - a= 0'; therefore

(~ ( l fJA I)" -1 -mes (C"C') = _, \. det I 8p dro <·e- n mes (Q"'.AC') < e-n mes (Q"Q').
g".AG'

6. Lemma on distortion. Let the linear transformation D

z=x, y~x', y'=z,wherex'-=-Ax, y'=Bx+Cy, z'=Dz,

be composed of transformations A, B. C, for which

0..4 Ix 1< IAx I<8A \ x I, IBx 1<8B Ix I, 8e Ix1< 1Cx I<Be Ix I·
Then

eD Iz I-< IDz 1-< 8 D Iz I, (5.4.1)

where 8v = 8A + aB + 8C and 8D1 = 0,41 + eC1 + 8,41 ec18B •

PROOF. The right-hand inequality in (5.4.1) is obvious and the left
hand inequality follows from the fact that D- 1 is of the form

z' == x', y'~ x, y = Z, where x ~ A-Ix', Y =:". C-Iy' - C-IBA-Ix', Z = D-IZ'.

7. Lemma on polar coordinates. Let

P = V2T cos cp, q = V'-2-r sin cp. (5.4.2)

If !(p, q) is analytic for Ixl ~ R (x = p, q; Ixl = max {Ipl, 'qll), then
f[p(~, ~), q(~, ~)] is analytic for

I 't - 'to I< To, JIm qJ I< 1 ( To = ( : y)
and furthermore, for 11m ~I ~ 1, we have

Y"GI <lxl~Y'-8ITI.

(5.4.3)

(5.4.4)

PROOF. In the domain (5.4.3) the functions (5.4.2) are single-valued
and 1.1: I<vf2TT ch 1 < V81 17 1-< 1116170 = R. FUrthermore ~ = P2 + q2 and
therefore liTtl-< Ix I·

8. Further note on poJar coordinates. SUppose that, in a real dOmain,

Pi == V2t'~ cos <Pi' qi = Y 2T i sin CPh
;L'i=Ph qi (i=1, 2), L\Z=Zt- Z2 (z=p, q, t', cp or x).

If IXil< ~, IdX!<YTi, then IdTI<ldxl, IdqJl< 2~-=1 .
't't

V
- 1

PROOF. We put ri = 2Ti· For IXi 1<"2' it is obvious that

Ir;\< ~2 and IdTI=ld ;21< ~2Idrl<ldxl. Also, for V2\dXI<V2Tt <rt

V21 L\x \ 2\ Ax Iwe have ll\<p I< arcsin < ../--, as required.
rt y 'tt

§5. Convergence lemm.s

I. Let a sequence of domains F(s) and diffeollOrphisrn.s
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Bs : F(s) -+ F(S-1) (s = 1, 2, ... ) be given. We suppose that:

1) IRs - EI < ds• 2) F(s) ~ F(S-1) - ds• 3) \dBs \ < 2ldxt. 4) d s < C4-s
I

Then the sequence Ss = B1B2 ••• Bs (s = 1, 2, ... ) converges uniformly on

F(OO} = rl F(s) to a continuous mapping Soo for which ISeD - EI < c.
PROOF. Let x € F s• From 1) it follows that IBsx - xl < ds • From 2) it

follows that Lagrange's formula (§3, 4.) is applicable to the interval
x, Bsx and to the mapping 8 S - 1 • From 3) it follows that IdSs - 11 < 2s ldxl.
In accordance with 4) Issx - sS-1xl = ISS-1BSx - SS-1 xl < 2s ds < C 2- s ,

which it was required to prove.

2. Let F = d be a neighbourhood of the interval x = xo + vt, O~ t~~.

Let Y(x) be a smooth vector field in F and If - vi ~ E. We denote by x(t)

the solution of the equation ~ = Y(x) with initial condition x(O) = xo,
t d

Then Ix(t) - (xo + vt)! ~ d for o~ t ~ g'

PROOF. We consider yet) = x(t) - (xo + vt). Suppose that for t < to

we always have ly(t)1 < d and ly(to)1 = d. Since for t < to we have

I~ I~ e and yeO) = 0, then by Lagrange's formula Iy(to) I ~ eto and

thence to ~ ~. which it was required to prove.

3. Suppose that in the conditions of 1. in F(O) a smooth vector field

yeO) (x) is given, defining the motion S~O) (x): :it S; (x) =yeO) (~(x»,

S8x = x. There naturally arise motions S; = S;1SbSs and corresponding

fields y( s) on F( s): y( s) (x< s» = !!:.- (st X(s» I
dt s t=O

We suppose that: 5) the sequence y(s)(X) converges as s -+ 00,

X € F(eD) to y(eD) (X) and on F(OO) we have Iy( s) - y(OO) I < ds+1; 6) the

interval x = Xo + vt, 0 ~ t ~ 1, belongs to F(OO) and on this interval
ayes)

yeW) = v; 7) on F(s) we have ax(s) ~ e, where the constant e does not

depend on s.

Then for 0 ~ t ~ 1 ~ (9 we have S6(Sw xo) = Sw (Xo + vt) C F(O).

PROOF. We shall show that

1IS~xo - (;ro +vi) 1< dS+1 for O,~ t -< 1-+-8 . (J.:>.1)

On the interval Xo + vt 0 ~ t ~ 1 ~ e ' in accordance with 5) and 6) I

Iy(s) - vi ~ d S +1 • In the ds + 1 -neighbourhood of this interval (which
belongs to F(s) by 2) of 1.) by Lagrange's formula we find from 7) that
Iy( s) - v I ~ (1 + 8)dS +1 • Putting d = dS +1 and € = (1 + 8)ds +1 in 2., we
obtain (5. 5.1).

In view of (5.5.1) and 2) the interval with ends Xo + vt, S;xo belongs
to the domain F(B). By Lagrange's formula, in view of conditions 3) and
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4), we have ISsS~-Ss(xo+vt)I~Oass~oo. O~t~l~e' which it

was required to prove.
q. Measure of the limit. Let F be a compactum in the Euclidean space

R and Ss (5 = 1. 2••.. ) be a sequence of continuous mappings of Fan
F(s} C R. converging uniformly to the mapping Soo on F(oo}. Then

mes F(oo) ~ lim mes F(s).

PROOF. For 6 < 5(€) and any € > O. mes (F(oo) + 0) < mes F(oo) + €. By

virtue of uniform convergence. for sufficiently large s(o)F(s) ~F(OO} + 0.
we obtain

mes F(S) < mes (F(oo) +~) < mes F(oo) t e,

as required.

§6. Notation

The basic notation. systematically used in Chapters IV and V. is listed
below.

I. Functions. All the functions considered are assumed to be complex
analytic and real for real values of the arguments. We consider n
dimensional complex spaces of canonically conjugate variables
P = Pi, .•.• Pn and q = Q1 • •..• qn, denoted also by
x = Pi • •••• qn = Xi • •••• X~n. These variables are split into two groups:
"0 "rapid" variables Pi • .•.• Pno comprise the vector Po. and the
remaining n1 "slow" variables PnO+1 • ... , Pn the vector Pi. Similarly we
define qo, q1 and Xo = Po. qo; Xi = Pi, q1 (the use of Pi both as a vector
and as a component does not lead to confusion since components are scarcely
ever used). We also consider n-dimensional spaces of frequencies w= Wo. Wi

and of reduced frequencies E, = E,o, E,1. where wo = ea. Wi = ~ei and ~ is a
small parameter. The maximum of the modulus of coordinates Ixi = m~x Ixjl

)

serves as the norm in all these spaces.
The functions considered are of period 2ft with respect to the vari

ables q (or qo) and are expressible in terms of a Fourier series as
follows:

_ n

where f= fo; (k. q) = ~ kjq).• ~' = ~ • []N= I ,and k is a
j = 1 k =# 0 Ik I <N

n

vector with integral coordinates k j. The modulus Ik I = . l Ik j I serves as
1=1

the norm in the space conjugate to q of numbers of harmonics of k. We use
abbreviated notation of the type

... ,
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where f is a numerical or vector function f(X1' ••• , x m).

2. Domains. Let U be a compact complex domain. i.e. a bounded domain
in a complex numerical space considered together with its boundary. If
d> 0, we denote by U + d, U - d the d-neighbourhood of U and the set of
points belonging to U and the d-neighbourhood. If Vi and U2 are two domains
then Vi UU2 denotes their union, V1 U U2 their common part and U1 U2 that
part of U1 not contained in U2; U1 ~ U2 denotes that U1 is contained in U2,

and u € U that the point u belongs to U; Ui x l'2 denotes the set of pairs
U1, U2 where Ui e Ui , U2 € U2 •

Re U denotes the intersection of U with the real space, 1m the imagin
ary part, and mes U the Lebesgue measure of Re U even when U is complex.

The letters G, Go, Gi ; (}; a, So, a1 denote compact domains in the
complex spaces p, Po, P1; we; e, eo, e1 , respectively. The letter F denotes
domains in the space x specified by conditions of the type p € G,
11m ql ~ p. The points q and q + 2nk are thereby identified so that
mes F = (2 Tt) n mes G.

A list of special notation for the domains is given in Ch. IV, §12, 2.
(see also Ch. V, §1, 2.).

3. Mappings. The mappings considered are given by analytic functions.
A one-to-one mapping which is continuously differentiable together with its
inverse at each point is called a diffeomorphic mapping or diffeomorphism
of the compact domain Vi on U2 • The differential of the mapping A at the

point x is a linear operator dx -+ dA = ~~ dx.

Diffeomorphisms of the domain G of the form p ~ wand p ~ e are
denoted by the letter A. The letters B and S denote diffeomorphisms of the
domains F that are canonical transformations (see, for example, [14]). E
denotes the identity mapping. A ~ E denotes that IAxl ~ Ixl for any x.

By means of the substitutions B and S we introduce new variables into
the space x denoted by X, x·, X·, Xes) and so on. The variables Xo, Xi;
Po, Pi; Qo, Qi then correspond to xo, Xi; Po, Pi; qo, qi etc.

11-. Constants. The numbers p, e. e, C, x are positive constants. The
numbers ~, Y. 0, €, ~ are very small in comparison with these positive
constants and Y» 0» € ~ a> J..L. The numbers N are large and positive.

L and v denote constants that are large, positive and absolute (i.e.
depending only on the number n of degrees of freedom).

The index s enumerates approximations.

Chapter VI

APPENDIX

This chapter consists of remarks concerning a number of solved and
unsolved problems. The five sections are independent of each other.

In §1 it is shown why the motion in integrable problems of dynamics
is always conditionally periodic.

Certain unsolved problems are considered in §2: the possibility of
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topological instability of many-dimensional systems (zones of instability)
is discussed and also two model problems in which the perturbations are
large (the problem of mappings of a circle onto itself and the reducibility
of equations with conditionally periodic coefficients). The results of
e.L. Siegel and E.G. Belaga on the linear normal form to which a system of
differential equations in the neighbourhood of a position of equilibrium.
periodic solution or conditionally periodic motion can be reduced are
reported on in §3.

Certain mechanisms giving rise to intermixing are discussed in §4.
Finally, in §5 a short description is given of the smoothing techniques
which enabled J. Moser to weaken the requirement that the Hamiltonian
should be analytic.

§I. Integrable systems

We give here an explanation why conditionally periodic motions always
arise in integrable problems of dynamics.

J. Liouville proved (see [4]) that if, in the system with n degrees
of freedom,

all
p= -aq , all

q= 8p (6.1.1)

n first integrals in involution (see 1.),

(6.1.2)

(6.1.3)

are known, then the system is integrable by quadratures. Many examples of
integrable problems are known. In all these examples the integrals (6.1.2)
can be found.

It was pointed out long ago that the manifolds in these examples,
specified by the equations Fi = Ii = const, turn out to be tori, and
motion along them is conditionally periodic. We shall prove, follOWing [20],
that such a situation is unavoidable in any problem admitting single-valued
integrals. (6.1.2). The proof is based on simple topological arguments.

I. Notation. A point of the 2n-dimensional Euclidean space p, q will
be denoted by x = %1' ••• , X2n. We shall denote by grad F the vector
gradient FX1 ' ••• , FX2n of the function F(x). The Hamiltonian equations
(6.1.1) then take the form

('0 -OE)x ::= I grad H, where I = E

and E is the unit matrix of order n.
We introduce the skew-scalar product of two vectors x, y:

[x, y] == (Ix, y) = - [y, xl, (6.1.4)

which, as can easily be verified, expresses the sum of the areas of the
projections of the parallelogram with sides x. y onto the coordinate
planes Pi q i (i = 1, ...• n).

Linear transformations S which preserve the skew-scalar product (so
that [Sx, Sy] = [x, y] for all x, y) are called simplicial. For example,
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Fig. 17.

the transformation with matrix I is simplicial.
The skew-scalar product of the gradients [grad F, grad G] is called

the Poisson bracket (F. G) of the functions F and G. Obviously, F is a
first integral of the system (6.1.3) if and only if its Poisson bracket
(F. H) with the Hamiltonian vanishes identically. If the Poisson bracket of
two functions vanishes identically, the functions are said to be in involu
tion.

2. THEOREM. Let the Hamiltonian system with n degrees of freednm
(6.1.3) have n single-valued first integrals (6.1.2) which are pairwise tn
involution. Let the equations F i = Ii = canst (i = 1, ... , n) define in the
2n-dimensional space x an n-dimensional compact manifold M= Mf at each
point of which the gradients grad Fi (i = 1, ...• n) are linearly inde
pendent.

Then Mis an n-dimensional torus and the point x(t) representing a
solution of the equations (6.1.3) has a conditionally periodic motion
along it.

PROOF. A) Mis parallelizable, i.e. it has n tangential vector fields
linearly independent at each point.

For, let us consider the system (6.1.3) with Hamiltonian Fi. Since
(Fi. Fj) = 0, all the functions Fj are first integrals and every trajectory
lies wholly on M. Therefore the velocity field I grad Fi touches M (Fig.
17). On account of the non-degeneracy of I the vectors I grad Fi
(i = I, ...• n) are at each point linearly independent.

B) Let D be a surface in M and r its bound-

ary. Then ~ pdq (i.e. the sum of

the areas of the projections of Donto the co
ordinate planes Pi, qi (i = 1, ... , n» is
zero.

It is sufficient to prove this result for
infinitely small parallelograms lying in M. If
r is a parallelogram with sides E., n. then
the sum of the areas of the projections is the
skew-scalar product of e and n:

&pdq=[S,1)).
r

Suppose now that e and n touch Mat a certain point. In accordance
with A) any vector tangential to Mis a linear combination of the n vectors
I grad Fi. But these vectors are skew-orthogonal since, in accordance with
(6.4.2),

and hence, since r is simplicial,

[IgradFi,IgradFjJ=O.

Therefore [e. ,,] = O. as required.
C) The vector fields I grad Fi are irrotational (they are gradients of
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many-valued functions).

115

q

In accordance with B) ~ P dq does not depend on the path of integration
qo

lying on Mf in the neighbourhood of the point qQ. The integral can there-
fore be regarded as a many-valued function Seq; f). The equations

p = ~. g =~ in each neighbourhood define a canonical transformation

f. g ~ p, q with generating function S (see [4]). In the variables f. g
the Hamiltonian Fi is fi and the Hamiltonian equations reduce to

(j =F i). (6.1.5)

In view of the linear independence of the velocity fields I grad Fi
the differentials dgi are at each point of M linearly independent. We
shall consider the gi as local coordinates on M. At the intersection of
two neighbourhoods they differ by constants so that the differentials dgi
are defined in the large. The functions gi, however, are many-valued on M.

In g coordinates the vector fields I grad Fi on M are. like the
gradients of gi, irrotational. The manifold Mis thus parallelizable by
means of irrotational fields. Hence it is easy to deduce that M is a torus.

D) LEMMA. Suppose that on the n-dimensional m.anifold M there exist
n differentials dgi linearly independent at each point (closed differential
forms of the first degree). Then this manifold is a direct product of n
circles and straight lines.

For. let 0 be a point of Mand N a universal covering space of M. To
each path OA on Mthere corresponds a path O'A' on N. The functions

gj(A')= ~ dgj transform N into a Euclidean space g1. • gn- It is easy
0"...4.'

to verify (cf. [60]) that in consequence of the independence of the dgi :
a) this mapping is onto the whole space g;
~) each point of g corresponds to only one point A' of N;
y) if 0' and 0" of N cover 0 and g(G") = g(O') + g(O"). then 011I

covers O.
In view of a) and ~) N can be identified with the Euclidean space

gi, •••• gn and in view of y) points covering 0 form a lattice in N (the
aggregate of integral linear combinations of k linearly independent
vectors). Obviously points A' and A" of N cover a certain point A if and
only if A' - A" is a vector of the lattice. On identifying these points in
the Euclidean space N we obtain the direct product of k circles and n - k
straight lines. The lemma is now proved.

E) COm.pletion of the proof of the theorem. In accordance with C) the
manifold Mf satisfies the conditions of the lemma. Being compact it is an
n-dimensional torus. Since. in accordance with (6.3.5), the coordinates
g vary uniformly in the motion (6.3.3), this motion is conditionally
periodic. The theorem is now proved.

3. Remark.. A) Action-angle variables. The set of points of the
2n-dimensional space x. where the n vectors grad Fi are linearly depend
ent. is in general of dimension n - 1. The n-dimensional manifolds Mf. on
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which the grad Fi are linearly dependent, are therefore an exception (the
n-dimensional and (n-I)-dimensional manifolds in 2n-dimensional space do
not, in general, intersect,. Thus, in the Ie general case" a (2n -1)
dimensional singular set divides the 2n-dimensional phase space of the
integrable system into domains which are a direct product of the n
dimensional torus and part of the n-dimensional Euclidean space. It is
known that action-angle variables I - W (denoted by p, q in Ch. I, §1)
can be introduced without difficulty into such a domain.

For, let us choose the torus Mf and consider the n integrals

tl i S (f) = ~ P dq
Vi

(i=1, ... , n)

over the basic cycles Yi of the torus Mf. It is obvious that the quantities
1

Ii(x)=2it~i S(F1 (x), ... , Fn(x)) (i=1, . .. , n),

being functions of Fj , are themselves first integrals in involution.
Let us assume that the Ii(X) are functionally independent. Then the

arguments of 2. can be applied. In C) of 2. a canonical transformation
p, q ~ I, w is constructed (the variables I, w being denoted in 2. by
f. g). A circuit of the cycle Yi gives to the variable Wj an increment

~i wJ" = !1. i ~~ ==~~l"S = o2_:rt!~:.= 2n8" '.
ali ali alj lJ

Therefore the variables ware angular coordinates on the torus.
B) Canonical structures. For simplicity we restricted ourselves in 1.

and 2. to the case in which the phase space p,q is Euclidean. It is,
however. easy to verify that all the conclusions remain valid in the more
general case when the phase space is a differentiable manifold on which a
canonical structure is given (i.e. a non-degenerate closed 2-form is chosen
which plays the role of dp /\ dq).

C) "Dynamical systems" and classical dynamics. The theorem of 2. has
a simple group-theoretical basis. The Poisson brackets form a Lie algebra
and the motions described by the Hamiltonian equations the corresponding
Lie group. The commutativity of the motions with Hamiltonians Fi follows
from (6.4.2). Compact uniform spaces where a Lie commutative group acts
transitively are tori.

It would be interesting to consider from this point of view the more
general case when there exists a closed set of m single-valued first
integrals F1 , •••• Fm not in involution:

(FiJ F i )=CfJij(F1, ••• , F m )·

The functions ~ij define a Lie algebra. What kind of algebra is this and
what restrictions dOes it impose on the topology of the invariant manifold
Mf (Fi = fi = const) and on the motions (6.3.3) on it? It can be shown
that these motions preserve a certain measure on Mf. A one-parameter group
of smooth transformations of the manifold preserving measure 1s called a
"dynamical system".

What "dynamical systems", defined by differential equations on a
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Fig. 18.

smooth manifold, can arise in problems of mechanics?
We know that geodesic flows (see, for example, [3], [33]) and condi

tionally periodic motions can be obtained. A number of other dynamical
systems (see [34]) have also been investigated recently. Is it possible
that they are encountered in mechanics and in particular in "natural
systems" with Hamiltonian H= T + U (where T is the kinetic and U the
potential energy)?

§2. Unsolved problems

There are many problems to which methods already worked out are
applicable. We note, for example, G.D. Birkhoff's "billiards problem"
[3], the establishment of non-ergodicity of the geodesic flow on a convex
analytic manifold [3], the problem of "magnetic surfaces" ([35], [36)),
various problems of the dynamics of a solid body [37], and numerous prob
lems of celestial mechanics. We shall not dwell on these problems, but
consider more fundamental questions.

I. Zones of instabil ity. The fundamental and primary problem arising
in connection with the contents of the preceding chapters is as follows:

PROBLEM I. Does there exist a real instability in many-dimensional
problems of perturbation theory when the invariant tori do not divide the
phase space?

We have already ~ndicated (Ch. I, §10) that the first uninvestigated
case is the problem of the stability of a fixed point of a canonical map
ping of a four-dimensional space onto itself. In many-dimensional problems
the invariant tori are of at least two dimensions fewer than the phase
space: the tori lie in the phase space as lines in a three-dimensional
space (Fig. 18).

It can be supposed that topological instability is a
typical case: certain trajectories beginning in the gaps
between invariant tori can go a long way, .since all the
gaps merge into a connected set extending to infinity
(see Fig. 18). The topological instability of planetary
motions would, in particular, follow from the validity
of this hypothesis. The results of Chapter III do not
exclude the possibility that an arbitrarily small change
in the initial conditions can completely change the character of the motion
for an infinite time. In Chapter III we proved only that such a change in
the initial conditions must be of a highly special form: the majority of
changes in the initial conditions leave the motion conditionally periodic.
We can say that we have proved the "metric stability" of motion, i.e.
stability for all initial conditions except for a set of small measure.
We can now formulate our hypothesis as follows:

A typical case in many-dimensional problems of perturbation theory is
the combination of topological instability with metric stability of condi
tionally periodic motions.

The verification of this hypothesis requires a more detailed consider
ation of the asymptotic methods adapted for the case of resonance.
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2. Invariant tori divide the phase space. This case also merits a
detailed study of the zones of instability. Let us for definiteness con
sider Birkhoff's problem (Fig. 6). Since the time of Poincar~ it has been
known that the general case of the behaviour of the separatrices of two
neighbouring hyperbolic points is the intricate network depicted 1 in
Fig. 19. Strictly speaking, the proofs of the non-existence of the first
integrals and the divergence of the series of perturbation theory [10).
[38) are based on this idea, but the presence in an analytic system of a
general type of hyperbolic non-singular points in any neighbourhood of 0
has not yet been rigorously proved. The existence of zones of instability
is thereby not proved, nor the fact the separatrices intersect in the
general case. I do not doubt that this is so, but it should be stated that
no strict proof exists in the literature.

Fig. 19.

A study of the behaviour of a typical trajectory in a zone of in
stability from the point of view of ergodic theory is also of interest. As
the simplest model we can consider the rearrangement of the parts
61 = [0. a). 6 2 = [a, b). 6 3 = [b, 1) of the interval [0.1) in the
order 6 3. 6 2. 6 1 •

3. Large perturbations. The destiny of invariant tori is traced out
in the preceding chapters for very small values of the perturbation para
meter IJ.. Are conditionally periodic motions retained also for large
perturbations?

PROBLEM II. Do there exist bounded motions filling a set of
positive measure in the three-body (and n-body) problem with arbitrary
mass values and mutual distances comparable with one another? Is there a
critical value of ~ at which the invariant torus is destroyed? No answers
have yet been found to these questions even in model problems, two of
which we shall briefly consider here.

1 On discovering this Poincare wrote: "The intersections form a kind of lattice,
web or network with infinitely tight loops; neither of the two curves must ever
intersect itself, but it must bend in such a complex fashion that it intersects
all the loops of the network infinitely many times.

One is struck by the complexity of this figure which I am not even attempt
ing to draw. Nothing can give us a better idea of tbe complexity of the tbree
body problem and of all problems of dynamics where there is no bolomorpbic
integral and Bolint s series diverge" ([iJ, vol. III, p. 389).

We have borrowed Fig. 19 from the work of V.K. Mel'nikov [35].
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~. Analytic mappings of a circle onto itself. On the circle we intro
duce an angular coordinate ~ (mod 2n). Then a rotation through an angle
2 1t W is written in the form

To: cp~(p+2nw. (6.2.1)

Let us consider the more general mapping of a circle onto itself - a
rotation through a variable angle f(~):

T: cp~cp+f(cp), (G.2.2)

where J(ep) is a function of period 21t. If <P1 + J(Cf>1) < <J)2 + !(<P2) always
holds for CPt < C:P2, the transformation (6.2.2) is one-to-one.

We are interested in the sequence of points on the circle <P, ~, T~ .... ,
obtained from c:p by iterations of the transformation T. Poincare [2) proved
that there always exists a time average of the angle of rotation, the so
called rotation number

2nw == lim [f£l+ j (T<f2~. • •+f (Tn-l<p) •
n

The arithmetic properties of the number W have an essential influence
on the behaviour of the points yn~. We assume that w satisfies the usual
requirements of irrationality: for a certain K > 0,

(6.2.4)

Inffi -1- m 1>- Kin 1- 2
• (6.2.3)

PROBLEM III. Let the mapping T be analytic. Is it possible to
convert T into a rotation To through an angle 21tw by an analytic change
of variable S:

In (6.2.4) S is the mapping ~ ~ ~ + g(~), the function g(C:P) is analytic,
of period 21t and Ig I I < 1. A. Denjoy [39] proved that a change of variable
S, satisfying (6.2.4), exists and is continuous. A. Finzi [40] established
that S is continuously differentiable. The analyticity of S can be proved
only on the assumption that T differs little from a rot~tion. In this con
nection see [18].

5. General ization of Floquet's theory. Suppose that we are given a
matrix A(q) analytically dependent on the point q = qt, ... , qk of a
k-dimensional torus (so that A(q + 2n) = A(q». Let the point q(t) have
conditionally periodic motion over the torus with frequencies q= W

(W = Wi' ••• , Wk).

Let us consider the system of linear differential equations with con
ditionally periodic coefficients

(6.2.6)

~ = A [q (t)] x (x = Xi' ••• , x n). (6.2.5)

The system (6.2.5) is called reducible to the system with constant coeffi
cients

if there exists a matrix C(q) that is analytic on the torus and such that
the substitution x = C(q)y turns (6.2.5) into (6.2.6).

In the case of periodic coefficients (k = 1) any system is reducible
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in accordance with the Floquet-Lyapunov theorem (at any rate with complex
C(q); in the real case C(q) can be of period 41t).

If k ~ 2, the coefficients of (6.2.5) are conditionally periodic and
the system can turn out to be irreducible even for n = 1 (through the
fault of the small denominators). But if the frequencies wsatisfy the
usual arithmetic requirements of the type (6.2.3), then the system (6.2.5)
is reducible for n = 1. We shall assume that the arithmetic requirements
are satisfied.

PROBLEM IV. 1 Is the system always reducible for k, n> I?
A.E. Gel'man [41J has proved that for n = 2 the reducible A(q) fill a

certain domain in the functional space of all matrices on the torus. L.Ya.
Adrianova [42] has extended this result to the case n > 2. If domains of
irreducible A(q) exist, the question of their normal form arises. It would
also be of interest to investigate the more general question of the normal
form of the linear system (6.2.5) in which q = q(t) is the phase point of
a certain dynamical system. Such a problem arises naturally in the study
of the neighbourhood of an invariant manifold as is seen below.

§3. Neighbourhood of an invariant manifold

A qualitative investigation of the behaviour of solutions of a system
of ordinary differential equations usually begins with the finding of indi
vidual, particularly simple solutions: positions of equilibrium and periodic
trajectories. After that the distribution of integral curves in the neigh
bourhood of these solutions is investigated which sometimes leads to im
portant conclusions regarding the behaviour of the solutions as a whole.

It is also of interest to consider the behaviour of integral curves
In the neighbourhood of invariant manifolds of a more complex structure
than that of fixed points and periodic trajectories. The next case in order
of complexity is the torus filled with conditionally periodic trajectories.
We shall set forth here the results obtained by E.G. Belaga [22J in the
study of the neighbourhood of such a torus. Analogous results for positions
of equilibrium and periodic trajectories were obtained earlier by e.L.
Siegel [9].

I. The neighbourhood of positions of equil ibrium. Let us consider an
analytic system of ordinary differential equations with the point 0 as its
position of equilibrium. In the fir5t approximation the equations are
linear:

(X=Xt, .•• , Xn), (6.3.1)

where A is a constant matrix. If the eigenvalues Ai of the matrix A are
distinct, then by a linear transformation y = Bx the matrix A can be
reduced to diagonal form

(Y=Yb ... , Yn), (6.3.2)

1 D.G. Mackie kindly informed me of A.M. Gleason's example which leads to a
negative answer if smoothness of A(q) is not assumed. We are interested in
the case in which the matrix A(q) depends analytically on q.
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where A is the diagonal matrix formed by the eigenvalues.
For the linear system

z=Az

181

(6.3.3)

(6.3.4)

an investigation of the structure of the neighbourhood of 0 presents no
difficulty. But will the term 0(y2) in (6.3.2) change perhaps the picture
obtained?

In his dissertation Poincare showed that this does not happen if the
following assumptions are made:

1) the convex envelope of points Ai in the complex plane does not
contain 0;

2) none of the numbers Ai is a linear combination of all the Awith
integral non-negative coefficients.

On the assumptions 1), 2), Poincare constructed a non-linear change
of variables:

which reduces (6.3.2) to the form (6.3.3) in a certain neighbourhood of O.
The substitution (6.3.4) obviously solves the problem of constructing a
neighbourhood of 0: the integral curves of the systems (6.3.1) and (6.3.3)
behave identically.

Condition 1) is not satisfied in an integral domain in the space A.
It turns out, however, that systems which are not reducible to the form
(6.3.3) are an exception; for almost all A (excluding a set of Lebesgue
measure zero), whatever the analytic component 0(y2) in (6.3.2) may be,
there exists an analytic transformation of (6.3.4) to the form (6.3.3).
This result is due to C.L. Siegel [9].

The substitution (6.3.4) can be sought in the form of a Taylor series
for y; the coefficients are calculated successively by formulae containing
small denominators (6.3.5). The proof of convergence given by Siegel is
based on the argument that among these denominators small denominators are
encountered only occasionally.

If Newton's method is employed in determining the substitution (6.3.4),
the same result is obtained without the use of the above argument.

The Newtonian approximations not only converge but even become stable:
each coefficient of the Taylor series is determined exactly after a finite
number of approximations (after the s-th approximation terms of degree
28

-
1 + 1 become stable).
For the existence of the substitution (6.3.4) it is sufficient that

the small denominators arising should, for a certain K> 0, allow the
estimate

71

(lkl=Llkjl>1; i=1, ... , n) (6.3.5)
;=1

for any vector k with integral non-negative components kj. Condition
(6.3.5) is automatically satisfied if conditions 1) and 2) are fulfilled
(see above); it is satisfied for almost all A, but not for any canonical
system.

2. The neighbourhood of periodic motions. The mapping of an area
normal to the trajectory at any point onto itself is naturally connected
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with periodic motion. We shall formulate here the results of Siegel [8] on
the construction of such a mapping in the simplest case (the so-called
"problem of the centre". see [53J).

Let
(6.3.6)

be a conformal mapping of the neighbourhood of 0 of the complex plane z

onto itself and let w satisfy condition (6.2.3). Then the fixed point 0
is stable. Furthermore, there exists an analytic substitution

w.= Z + b2z2 -i- b3z3 + ... ,
tran,sforming T into a rotation through an angle 21tw:

Consequently the neighbourhood of 0 in the z plane is divided into
analytic invariant curves Iwl = const. The trajectory T"z (n = 1, 2, ... )
fills this curve everywhere densely.

It is instructive to compare the conformal mappings with the canonical
(see Introduction. §4).

An analogous result is obtained for the many-dimensional case. On

combining Floquet's theory (see §2, 3.) with this result we can convince
ourselves that a study of the neighbourhood of a periodic trajectory in
the "general case" reduces to the study of a certain linear system with
constant coefficients. We shall not dwell on this result in detail, since
it is contained in the more general theorem of the following subsection.

3. The neighbourhood of a conditionally periodic motion. We suppose
that a system. of n +,m differential equations has an m-dimensional in
variant torus T filled with trajectories of conditionally periodic motion
with frequencies ~1' ••• , wm. We assume that coordinates qt, ...• qm;
Xi, •••• Xn can be introduced into the neighbourhood of this torus, where
the q are angular coordinates on the torus T, the equation of which now
has the form x = o. Our differential equations will take the form

x=A(q)x+/(x, q)

q=w-!--g(x, q)

(X=Xt, , x n ), }

(Q=q1' , qm),
(6.3.7)

where f = O(x 2
), g = O(x).

We shall assume that a linear system with matrix A(q) is reducible
(see 5.). Therefore in place of (6.3.7) we shall consider the system

y=AY-rf(Y, g), q==w-r-g(y, g) (6.3.8)

with a diagonal constant matrix A of eigenvalues At. An and with
analytic f = O(y 2), g = O(y) of period 27t in q.

Using the same Newton's method, E.G. Belaga [22J proved that, under
the assumption (6.3.11) there exists an analytic change of variables

Y=y+<p(y, q), Q=q+'I'(Y, g),

reducing (6.3.8) to the linear system

Y=AY, Q=ro.

(6.3.9)

(6.3.10)
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(6.3.11)

The variab les of (6.3. 9) (where cp = 0(y2), 'V = O(y) are of period 21t in q)
can be introduced if the following arithmetic condition is satisfied: for
a certain K ~ 0

I(k, A,)-eAi+i(l, w)I>K(lkl+ll !)-<m+n+l)

(e = 0, 1; j = 1, ... , n; i2 = -1)

for all integral vectors k = k i , ••• , k n ; l = li • ... , lm; in (6.3.11)

n m

Ik I= Z ka, > 1+8, ka > 0, III = Z' Il~ I·
~1 a=1

The non-linear system (6.3.8) is thereby reduced to the easily
integrable linear system (6.3.10). We note that condition (6.3.11) imposes
a restriction only on the eigenvalues Ai defined by the matrix A in (6.3.7)
and on the frequencies wof the conditionally periodic motion; the functions
f and g in (6.3.7) are arbitrary. Condition (6.3.11) is violated only on a
set of Lebesgue measure zero in the A, w-space. Unfortunately all canonical
systems are in this exceptional set.

It would be interesting to construct a theory for the neighbourhood of
conditionally periodic motion of a canonical system analogous to the
theory constructed by Birkhoff (Ch. I, §9) for the neighbourhood of a
position of equilibrium and of a periodic trajector~T. Such a theory would
help us to understand the structure of the zones of instability in the
many-dimensional case (see §2, 1.). But it must be based on the corres
ponding linear theory which we do not yet have at our disposal (see §2, 5.).

q. More complex cases. The structure of the neighbourhood of motions
more complex than conditionally periodic has not been investigated at all. 1

The question of reducing a system to linear form in the case of com
plex time also seems to me to be of interest. If the time is complex, the
Hintegral curves" are two-dimensional surfaces (in the real sense). The

study of the behaviour of these surfaces in the large is only beginning
[43J, [44J.

§11-. Inte rm i x i ng

The "ergodic hypothesis" of statistical mechanics is concerned with
the idea that in a dynamical system of "general form" motion on a sur
face of constant energy H = h has properties of ergodicity and intermixing.
The results of the preceding chapters show that ergodicity and intermixing
are not general phenomena, but are connected with special conditions. We
here consider certain mechanisms that can cause intermixing.

I. Call isions. As the simplest model let us consider the motion of
two perfectly elastic spherical particles on the surface of a two
dimensional torus having a Euclidean metric. For simplicity we shall first
consider one of the particles as fixed. The second particle (which can now
be regarded as a point) moves on a Htorus billiard table" (Fig. 20),

1 Added in proof. Interesting results on the existence of invariant manifolds
in dissipative systems have recently been obtained by N.N. Bogolyubov and
J. Moser, using Newton's method.
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Fig. 21Fig. 20

being reflected from the fixed circumference according to the law "the
angle of incidence is equal to the angle of reflection".

Let us at the same time
consider an elliptic billiard
table (Fig. 21). The ellipse
can be regarded as an oblate
ellipsoid on which the point
moves along a geodesic. passing
at each reflection from one
side to the other. In pre
cisely the same way a torus
billiard table (Fig.20) can be
be regarded as a two-sided

torus with a hole on which the point moves along a geodesic. But if the
two-sided ellipse is an oblate ellipsoid. the two-sided torus with a hole
will be an oblate "Kringel" (of genus 2). Thus, motion on our torus
billiard table is a limiting case of motion along a geodesic on the knot
shaped surface.

As is well-known. the character of the motion along a geodesic depends
strongly on the Gaussian curvature of the surface. On surfaces of negative
curvature the geodesics are sharply unstable; in this case ergodicity. a
very strong intermixing, etc have been proved ([33]. [46], [47]).

We now turn to our billiard tables and consider the curvature to which
Fig. 20 and Fig. 21 correspond. The ellipsoid has a positive curvature to
whose integral is equal to 4 TC (the Gauss-Bonnet Theorem). On flattening the
ellipsoid all the curvature is accumulated along the boundary of an ellipse.
For a "Kringel" the integral of the curvature is equal to - 4 Tt. TI'lus, a
two-sided torus billiard table can be regarded as an oblate surface with
negative curvature everywhere: on flattening. all the curvature is
accumulated along the circumference.

The preceding arguments are not, of course. a proof of the ergodicity
of our model. But they show that attempts can be made to apply the methods
of investigating geodesics on surfaces of negative curvature to the proof
of the ergodic hypothesis. 1

2. Singular spectrum. There is another case of intermixing. this
time much slower. in the following example given by A.N. Kolmogorov [11]:

;; = rotA (x, y), (6.4.1)

(x, y(mod 2ft) are angular coordinates of a point of the torus. A > 0 is

an anaiytic function on the torus. w2 is irrational).w1

For certain values of W2
• which are abnormally well approximated by

Wi
rational numbers. A(x, y) can be chosen so that (6.4.1) is a system with

1 The first attempts in this direction were made by N.B. Krylov [48].
Added in proof. Ya.G. Sinai has very recently proved ergodicity in the bil
liard table problem considered here and also in a number of problems of
statistical mechanics.
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intermixing. It would be interesting to clarify the character of the
spectrum of the dynamical system (6.4.1) (the spectrum is, presumably,
singular) .

There is one further mechanism of intermixing associated with secular
motions. As the simplest model I take a one-dimensional system with low
friction; but analogous phenomena also exist in the conservative case (cf.
[49] ).

3. Evolution. Let us consider a one-dimensional system with potential
energy U( q) (Fig. 22) and low friction ~F(p, q), J..L« 1. It is clear that
almost every point of M will in the course of time arrive at one of the
potential minima A or B. But at which one?

u

Fig. 22.

p

Fig. 23.

(6.4.2)

It turns out that, if the initial energy h > O. there exist definite
probabilities PA and PB of arriving at A or at B; these probabilities are
given by the formulae (see Fig. 23)

PA ~a F dq

PB - ~b F dq I

Since the motion is determined by initial conditions, it is necessary
to define the probability of moving from x to A. Let n (d) = d be the
neighbourhood of a point x of the phase space and fl A(d, J..L) the set of
initial conditions from (} (d) leading to arrival at A for friction IJ,F. By

definition,

1° I" mes QA (d, Jl)PA = 1m 1m .
d---+O ... -+0 mes Q (d)

Formula (6.4.2), the proof of which is left to the reader, shows that PA
does not depend on x (if H(x) > 0) and is determined by the value of
F(p, q) at the critical level of energy H(p, q) = O.

There can be a similar loss of determinacy in conservative systems in
the degenerate case (Ch. I, §5). when the secular variation of an no·
dimensional invariant torus reduces it to that particular manifold where
the stratification of the phase space into invariant tori of the un
perturbed system has a singularity.

Another slower process of intermixing is connected with the passage
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of an evolving system through resonances (cf. Ch. II, §5). All these
phenomena still await a rigorous mathematical investigation. Interesting
non-rigorous arguments are contained in a dissertation by B.V. Chirikov
(Novosibirsk, 1959).

A.M. Molchanov in [21], pp. 42-49, formulated an incorrect "theorem
on the division of motions". A weaker assertion (the change of variable
is many-valued when there is periodicity in the slow motion) is plausible.
But A.M. Molchanov states that he has no proof of this assertion.

§5. Smoothing techniques

In this section we give an account of the basic idea of smoothing
techniques which go back to J. Nash [50] and have enabled J. Moser to
replace the requirement that the Hamiltonian should be analytic by the
requirement that the 333-rd derivatives should be continuous. The reader
will find detailed formalized proofs in the excellent papers by Moser [2~,

[25]; in these papers, however, one of the important ideas (the use of
inequality (6.5.6)) is somewhat concealed. We shall follow the proof given
by J. Moser at the Moscow state University in the autumn of 1962.

I. Technical lemmas. Let us consider the periodic functions

(6 5:1)

We introduce the following notation:

(I k 1= \k 1 \ + · · · + Ikn ;).

(6.5.2)

(6.5.3)

(6.5.4)

(6.5.5)

We shall find estimates for the derivatives

I
E/l+ ...+ln

I f(l) I= I f(l)·(x) I= max -.!: II I f I·
O~ll+"" +ln~l ax 1 ••. ax n

Let 0 ~ A~ l be an integer. The following assertions are known and
easily proved:

If If(l)l ~ M, then IRNf( )1 ~ CMN-(l- -8).

If IfI ~Mo, then Ifl~ )(x)1 ~CMoN +S.

A-

If IfI ~Mo, If(l)1 ~M. then IfO")I<CMo(~Y~. (6.5.6)

Here 0 > 0 is a constant not depending on [, Mo , M, N, l, X; C > 0 is
a constant not depending on f, Mo, M, N (see [59]).

2. Newtonian approximations with smoothing. Suppose that there exists
a process of Newtonian-type successive approximations similar to that
described in Chapter I. We shall assume that, with respect to the
"perturbation" [<x), a "change of variable" x ~ x + g(x) is constructed,

where the function g(x) is defined, for example. by the series

g (x) -- ",' J~ ei (h, x) (6 r: 7)- ~ (k,w). .J.

A*O
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We assume (on account of the usual arithmetical properties of W) that

187

/g(x)I<Klf(V)(x)l· (G.5.S)

We further suppose that in the next approximation the role of the perturba
tion is played by the function f' - the sum of several quantities of the
form

~2:==f(x)-f(:x+g(x) etc. (6.5.9)

The quantities in (6.5.9) are of order f2 if we take g and the derivatives
of f and g to be of the same order of smallness as f. This assumption is
valid if f(x) is analytic (see Chapters I and IV).

But if f(x) is differentiable only a finite number of times, in view
of the "loss of smoothness" (6.5.8) we can carry out only a finite num
ber of approximations. It turns out that this difficulty can be overcome
by means of smoothing. We replace f(x) by an infinitely differentiable
function fN(x) (see (6.5.2», transferring the remainder RNf to the terms
of the next approximation (6.5.9). For a sufficiently large (but finite)
number of derivatives of f(x) and sufficiently small If I the quantities
Ns (s is the number of the approximation, Ns -+ (0) can be dealt with so
that the approximations converge.

In accordance with (6.5.6) it is sufficient to estimate the function
and its highest derivative. If f(x) satisfies the inequalities

It(l)I<M (6.5.10)

then in the next approximation we shall obtain for the perturbation f' the
estimates

11'(1) I < kIf < Ml+a (6.5.11)

for a certain 0 < ~ < 1 not depending on f. Mo. M (for example. ~ = ~).

From the estimates (6.5.11) the convergence of the approximations is
easily deduced. The derivation of the inequalities (6.5.11) is outlined
below; to avoid overloading the formulae we shall not write in the con
stants 0, K, C. For example, (6.5.5) will be written in the form

If~w) (x) I~ ~WolVA.

3. An estimate for If'l. In accordance with 2. the finite trigono
metric sum g(x) is determined by the formula (6.5.7), where 0 < Ikl ~ N.
On estimating If(v)(x)! in (6.5.8) with the help of (6.5.6), we find from
(6.5.10) that, for 1 ~ v ~ I,

"Ig(O)I~Mo(~~Y' Ig(l)I~MN'J (6.5.12)

(the estimate for g(l~ = g~l)(X) follows from (6.5.5). Interpolating
(6.5.10) and (6.5.12) with the help of (6;5.6) we ~ind that, for 0 ~ v,
A~ I, A. \i A 'VA

if('A.)I~Mo(~)f, Ig('A.)\~Mo(~Y-+fNT. (6.5.13)



409

188 V.I. Arnol'd

On differentiating 0 ~ A~ times the product f~ we obtain from

(6.5.13) the coarse estimate

I(I ag )(A,) 1--- M 2 ( lvl )~ + ~ax ~ 0 Af~ l l N2'V.

In accordance with (6.5.4) we have

(6.5.14)

\RN!(O)'~ MN-l, IRN!(l) I~ M. (6.5.15)

But, in accordance with 2., f' is made up of quantities of the form f~

(cf. (6.5.9» and RNf. Therefore (6.5.14), (6.5.15) give

2\' ~ (M i+ ~~
I1'(0) I ~ Jt;/I - ]t(/2 (-.:If ) T N l + 1\1N-l If'(l) I~ M' = M 2 -) l N2v -f- MI ~ 0 - 0 ill 0 ,~o 1.10 • •

(6.5.16)
~. Convergence. We now choose N and show that, for sufficiently large

I and sufficiently small MOt the inequalities (6.5.11) follow from (6.5.16).
Let M < Me , N = Mo~, where ~ > 0 and ~ > 0 will be chosen below. In
accordance with (6.5.16) the inequalities' (6. 5. 11) are satisfied if

2v ~v ( ~v )2--t (1+x)-T>1+a, ~l-x>1+a, 1.+:Y (1+x)+2~v<x(1+a)+2.

(6.5.17)
All the quantities in these inequalities, except for v, are in our

control. Let us first of all choose 0 < a < 1. We shall show that the
inequalities (6.5.17) are compatible. For I » v, ~v. ~v the inequality

(6.5.17)1 is satisfied; for l»~, inequality (6.5.17)2 is satisfied; and

fore a - ~)x ~~"-inequality (6. 5.17) 3 also. We now choose 13 > 0, then l<

sufficiently large so that a~ ~ ~ and, finally. I sufficiently large so

l ~ K V ~ 'V 'X. 1 ~v 1 IIthat » 13-' -r <t u, -r 1: , T ~ · Let lYIO be sufficiently small.

With the parameters ~, ~, K, l chosen in this way (6.5.11) follows
from (6.5.10). In a completely analogous way we put NS +1 = N~+a = (Mbs)-~

in the (5 + l)-th approximation and obtain an estimate of the type (6.5.11)
with

(6.5.18)

Since Mo «1 the convergence of the apprqximations follows easily from
(6. 5. 18).

5. Remarks. 1) The convention at the end of 2. not to write in the
constants 0, C, K is harmless, provided that l » K ~ 0, that the
inequalities (6.5.17) are satisfied with something to spare, and that
Mo <: (1, K, C-1) is sufficiently small.

2) Newton's method often requires estimates of the derivatives f' not
with respect to x but with respect to y = x + g(x). It is not difficult,
however, in this case also to obtain inequalities of the type (6.5.16).

3) On choosing l sufficiently large, one can obtain convergence of



410

Small denominators and problems of stability of motion 189

the approximations with r-th derivatives (r< 1). In [25] 1 was taken to
be 333.

4) Instead of substituting a trigonometric sum for f(x) or g(x) it
is sometimes useful to adopt a more accurate smoothing.

Received 16th April, 1963.
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UNIFORM DISTRIBUTION OF POINTS ON A. SPHERE

AND SOME ERGODIC PROPERTIES OF SOLUTIONS

OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS IN A COMPLEX REGION

v. I. ARNOL'n AND A. L. KRYLOV

The phenomena of dense trajectories, ergodicity, and mixing occur often in analysis. The metric

theory of dynamical systems (see [1]) gives an approach to these questions, at least in the case of

Hone-dimensional time." In this paper we consider some problems in which a noncommutative dis

crete group plays the role of time. We were led to these problems by an attempt to study ergodic prop

erties of solutions of linear differential equations in a complex region (see [2]).

1. Uniform distribution of points on the sphere.

Theorem 1. Let A, B be two rotations of the sphere 52, and x a point of the sphere. If the se

quence of points

x; Ax, Bx; A 2x, ABx, BAx, B2x; ... (1)

is dense on the sphere, then it is uniformly distribu.ted.

By uniformly distributed we shall mean the following: Let !!i be a region of the sphere which is

bounded by a piecewise smooth curve. Starting from x and performing n rotations A or B, we get

2B image points

Anx, An-1Bx, An-2BAx, ... , BBX • (2)

The number of points in (2) which lie in the region !!i we denote by pn (~). Theorem 1 asserts that

Pn (L\)
lim ----
n-+oo 2n

mes ~
= ---2-·

mes S
(3)

For the proof of Theorem 1 we use a method of H. Weyl [3]. Consider an arbitrary continuous

function f( x) defined on the sphere S2. Form f
n
(x), the arithmetic mean of f( x) at the points

(2). Following Weyl, to prove (3) it is sufficient to establish that

lim fn ( x) = T== f I (x) dx / mes S2 •
n...oo S2

For the study of the time means In' unitary operators arise in a natural way in L 2( S2) :

~f(x) == f(A -Ix); Sl31{x) = f(8- 1x).

Using these operators, the time means may be written in the form

(4)

(5)fn(x)= 21n (~+lfl)nf(x)= [~;lfl )"f(x).

It is known (see, for example, [4]) that the space L 2 (S2) can be decomposed into an orthogooal

sum of subspaces Rl ( 1= 0, 1, 2, .•. ), invariant under all rotations of the sphere. The space R
l

is

of dimension 2l + 1, consists of the spherical functions of degree l, and has no proper subspace invar
iant under all rota tions.

*

* Editor’s note: translation into English published in Soviet. Math. Dokl. 4 (1963). Translation of 
V.I. Arnol’d and A.L. Krylov: The uniform distribution of points on a sphere and certain ergodic 
properties of solutions of linear ordinary differential equations in a complex domain. Dokl. Akad. 
Nauk SSSR 148:1 (1963), 9–12 
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It is easy to see that to establish (4) it is sufficient to consider functions f(x) which belong. to

some invariant subspace Ri ·

Lemma 1. Let A and 8 be finite-dimensional unitary operators. Then either

II (A tBYII< 1, (6)

for all k 2: 1, or else for some vector f 1= 0 we have

Af=8f; A2f=ABf=BAf=B 2 f; A3f=A2Bf=ABAf=··· =8 3[; etc. (7)

The proof of the lemma stems from the fact that if II [ + g II = II fll + II g II and II [II = 1\ gIl = 1, then f= g.

Now we establish formula (4) for [ belonging to Rl' 1> o. In Rl' if the operators ~ and ~ in

(5) satisfy (6), then fn -It 0 and (4) follows. We show that (7) is impossible. From the assumption

that the points of (1) are dense in S2, it follows easily that the closure of all products of A and 8
is the whole group of rotations of the sphere. Therefore, from (7) it follows that the representation of

this group on each subspace R1 is commutative, which is not the case for 1 > O. This completes the

proof of Theorem 1.*
2. Generalizatioo. Theorem 1 may be considered as an ergodic theorem in which the role of time

is played by a free semigroup with two generators. We may construct a dynamical system in which

"time" is a group r with a finite number of generators aI' a 2 ' • • • , as. We shall thus speak of a

group of measure-preserving transformations Ay (Y € r) on a measure space n for which A
Y1Y2

A A and Ay _ 1 = A-y 1 •
Yl Y2

In order to define the time means, we consider the collection f n of elements of r obtained by
-1 -1 -1

multiplying exactly n factors of the form aI' ai' a 2' a 2 , ••• , as' as. Let the number of such

products be N(n ). Then the "time mean" fn (x) of the function [( x), x € n, we define by

In (x) = 2 f( AyX) / N(n).

'Ye:~

The method of § 1 permits the investigation of the behavior of f
n

(x) in certain cases, approximately

described by the term ((discrete spectrum."

Let n be a homogeneous space (in § I the sphere S2) OIl which a compact Lie group G acts

transitively, and let the transformations Ay (Y € f) belong to G. For a class of groups r we have

succeeded in proving that the sequence of points Ayx is uniformly distributed in their closure, pro

vided the latter is connected. In other words, the time means [n (x) of a continuous function converge

to the phase mean on the closure of the trajectory AyX (Y € f).

As examples we consider two cases:

1) r = free group with two generators a, b.

2) r = group with generators a, b, c, and the relation abc = e.

It is easy to see that fn (x) = Snl(x), where So = E and, respectively,

51 == 1/4 (~ + ¥3 +U-l + ¥3-1
); Sn+l == 4/3 SlSn - 1/3 Sn-l (n> 1), (8)

Sl=1/6(U+~+~+ U-l+~-l+[-l); Sn+l =3/25 1S n- 1
/ 4 Sn _1/4Sn-l (n >I) (9)

·M. Maljutov has given another proof of Theorem 1.
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(here ~, B, ~ are the unitary operators induced by their respective groups r: Af(x) = {(A;l x».

Let us consider the closure of the trajectory Ayx (Y € r). It is a homogeneous space M, acted

on transitively by the closure r of the group A" in G. Decompose L 2(~ into an orthogonal sum

of finite-dimensional subspaces Rl' invariant and irreducible relative to r (see [4 ] ) •

The operators S1 (and hence Sn' by virtue of their dependence on S 1 ) are self-adjoint. The

study of Sn on R1 reduces to the study of its eigenvalues, for which one obtains recurrence equations

from (8) or (9). Solving these equations, we see that either Sn --+ 0 on R1 as n --+ OQ, or else Rl is

one-dimensional and for f € Rl' D € r implies D{ = ±f·
Let us show now that if M is connected, then f is constant on M. Let K be the component of

the identity in r. For D in K, obviously Df = f, and therefore on Kx the function f is constant.

But since M is connected, it coincides with Kx, and thus f is constant on M. From this it follows

easily that the time means converge to the phase mean.

Remark 1. Above we studied the time means 00 the ,cspheres" r n. It is easy to establish anal
n

ogous theorems about means on the "balls'· U rk •
k=O

Remark 2. If A and B are two arbitrarily chosen rotations of the sphere, then usually the sequence

(1) is everywhere dense. Probably for two arbitrarily chosen elements A, B of any compact Lie

group, the general case will be that in which the products of A and B are everywhere dense. But if

the group G is not compact, then the subgroup formed from an arbitrary number of elements may be

discrete (for example: let G be the group of motions of the Loba~evskian plane and r a subgroup of

the discrete group associated with a surface of genus p (see [5]».

3. Equations with complex time. From a geometrical point of view the solutions of ordinary dif·

ferential equations in a complex region are represented as two-dimensional surfaces stratifying the

phase space. Such a surface may fill out or be everywhere dense in the phase space. In this case

one would naturally except uniform distribution in some sense. Let us consider the system of linear

differential equations

dx
dz = A (z)x, (10)

where z is a complex variable, x is a vector (x 1 ' • • • , x n) in n-dimensional complex space en' and

A is a matrix depending analytically on z except at three singular points z 1 ' z 2' z 3 on the Riemann
sphere.

The phase space is of real dimension 2n + 2. It is the product of the Riemann sphere minus the

three points z 1 ' z 2' z 3 (henceforth denoted by Z) and en (z). It is stratified by the solutions,

namely surfaces of real dimension 2 locally defined by x = x (z), where x (z) satisfies the system (10)
and z € z.

To each path on Z starting from z0' and to each vector X o € en (z 0) corresponds a mique solu-

tion x( z) with the initial value xO(zo). This defines a linear transformation from Cn(zO) to Cn(z).

In particular, to each closed path y corresponds a linear transformation Ay of the space en (z) into

itself. The transformation Ay depends only on the homotopy class of the path y on Z. These trans

formations form an anti-representation of the fundamental group of Z. The group of transformations

Ayare called the monodromy group of the sys tem (10).

Lemma 2. If the monodromy group is bounded, then the system (10) has a unique integral

3
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(B (z) x, x) = const, where B (z) is a positive definite unitary matrix uniquely defined for each z E Z.

The proof depends on the fact that, in view of the compactness of the closure of the Ay ' the rep

resentation Ay is equivalent to a unitary one.

From Lemma 2 it follows that every two-dimensional surface forming a solution in the (2n + 2)

dimensional space is a level surface on the (2n + 1)-dimensional surface (Bx, x) = c, and the points

on distinct branches of the solution x (z) over the point z 0 lie on the sphere (B ( z0) x, x) = c. Ac-

cording to the results of §§ 1 and 2, these points are uniformly distributed in their closure (if it is

connected): for the fundamental group of Z possesses three generators a, b, c with the relation abc = e.

There is a case in which it is clearly possible to extract the conditions of boundedness of the

monodromy group. This is the hypergeometric equation of Gauss:

(11)

We assume that the parameters a, f3, y ·are real.

Theorem 2. The hypergeometric equation (11) has. a singl-e-valued first integral

bllxx + buxx' + b21x'x+ bux'x' = canst, (12)

where x' = dx/dz and the bij ( z) are single-valued (but not complex-analytic) functions defined for

z I: 0, 1, 00 and forming a self-adjoint matrix II bi ; ( z) II.
In order to find the functions bij' it suffices to notice that both generators Aa' Ab of the mono

dromy group, explicidy written out in [7], leave a certain inner product invariant.

In accord with Riemann and Schwartz, connected with the equation (11) is a curvilinear triangle

with vertices ATT, f.L1T, VTT, where A= 11 - yl, f.L = Iy- a- ,g" v::xl a- 131 (see [6]). If the sum of the angles

of this triangle exceeds 17, then the matrix Ilb ij ( z) II is positive definite, the monodromy group consists

of unitary matrices in the metric Ilxll = (B( z 0) x, x), and all branches of the solution over each point

z lie on a sphere (12) of the space of x, x', and are uniformly distributed on this sphere for almost all

values of the parameters a, f3, y (the excluded values form a one-dimensional manifold) .

4. In conclusion we point out some unresolved questions.

1°. Are the ergodic theorems of Birkhoff and von Neumann true for dynamical systems with non

commutative Htime" ?

2<: Do the results of § 2 generalize to an arbitrary group with a finite number of generators?

3°. Do the results of §§ 1 and 2 generalize to the noncompact case ( e. g., if {l = the Euclidean or

Lobacevskian plane) ?

4°. What sort of generalizations do §§ 1 and 2 have in the case where the role of time is taken by

a Lie group, e. g., the group of motions of the Lobalevskian plane?

5°. Equation (10) can be written in the form dx = (A (z ) dz)x. If we mean by A (z )dz the matrix

of differentials, then the arguments of § 3 are transferred to an equation on a Riemann surface. The

difficulty is in showing that the monodromy group is bounded.

6°. Uniform distribution of the surface representing the solutions of (10) in the (2n + l)-dimensional

manifold Me: (Bx, x )= c probably occurs under the following metric: on Z introduce the metric of

constant negative curvature (see [5]), and on en (z) the metric defined by the inner product (B(z)tX, y).

70. The system (10) may be regarded as a dynamical system in which the role of time is played by

the universal covering Z, i. e., the Loba~evskianplane. But it is also associated with an ordinary dy-
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namical system with continuous time. To this end we consider as a point pf the new phase space the

point (z, x) € Me together with the direction g of the vector tangent to Z at z. The action is de

fined thus: the point z moves steadily along the geodesic defined by g, and x Hfollows" z accord

ing to the equation (10). The metric and the invariant measure are defined in 6°.

The indicated construction permits an ttincreased flow" defined on the manifold and on the group

of automorphisms (constituting the representation of the fundamental group of the manifold). The re

sulting ttproduct" present an interesting study.

Moscow State University Received IS/JUNE/62
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ON A THEOREM OF LIOUVILLE CONCERNING
INTEGRABLE PROBLEMS OF DYNAMICS

v. I. ARNOL 'n

1. Liouville proved that if in a system with n degrees of freedom,

aH
p=--,

aq
aH

q=ap
(1)

the ,first n integrals in the involution H = F l' F 2' · ~ ~ !' Fn are known, then the

-system is integrable in 'quadratures (see [1 ]). Many examples .are known of inte

grable problems. It has often been noted that in these examples the bounded invari

ant manifolds determined by the equations Fi = fi = const (i = 1, .. • , n) turn out

to be tori and motions on them are conditionally periodic. We shall prove that this

situation ·isnecessary.in any.problem which is .integrable in the indicated sense.

The proof is based on simple .topological considerations.

2. Not~tion. A point (p, q) of 2n-dimensional Euclidean space will be de-

noted ·by x = (Xl' ••• , x 2 ). We denote the vector (F x , ••• , Fx ) associated
n 1 2n

with the function F(x) by grad F. Then the Hamiltonian equations t~ke the form

-where

x== I grad H, (2)

and E is the nth order unit ~atrix.

For the two vectors x, y we define ·the skew-scalar product [x, y] '= (lx, y) =

~ [y, x]. Linear transformations S preserving the skew-scalar product, so that

[Sx, Sy] = [x, y] for all x, y, are called symplectic. For example a transformation

with the matrix I is symplectic.

The skew-scalar product [grad F, grad G] is called the Poisson bracket (F, G)

of the functions F and G. Evidently the function is a first integral of the system

(2) if and only if its Poisson bracket with the Hamiltonian function (F, H) -is

equal to zero. If the Poisson' bracket of two functions is equal to zero, then one

says that these functions stand ininvolu~ion.

A point of the n-dimensional torus is given by n angular coordinates. cPl' ....
••• , cPn (mod 211). A conditionally periodic mation of a point on a torus .is one under

which the coordinates change uniformly.

3. Theorem. Suppose that t~e Hamiltonian system (2) with n degrees of free

dom has n single-valued integrals H = F l' F2 , •• * ·~Fn' standing pairwise in invo-

292

* Editor’s note: translation into English published in Amer. Math. Soc. Transl. (2) 61 (1967), 292–296
 

* 

Translation of V.I. Arnol’d: On a theorem of Liouville concerning integrable problems of 
dynamics. Published in Sibirsk. Mat. Ž. 4:2 (1963)
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lution with one another. Suppose that the equations F i = f i (i = 1, ... ,n) dis

tinguish in the 2n-dimensional space n-dimensional compact manifolds M= Mr' at

each point of which the vectors grad Fi (i = 1, .•• , n) are linearly independent.

ThenM is ann-dimensional torus and the point x depicting the solution of equa

tions .(2) moves along it in a conditionally periodic manner.

We divide the proof into four parts.

1) M isparallelizable, i.e. it hasn tangent vector fields linearly independent

at each point. Indeed, consider the system (2) with the Hamiltonian function Fi'

Sine e (F i' F j) = 0, all the func tions F j are firs t in te grals .and e ach tra je ctory lies

entirely on .Mr. Accordingly, the field of velocities I grad Fi is tangent to M. Be

cause of the nondegeneracy of the matrix I, the vectors I grad F i (i = 1, ... , n)

are linearly'. independent.

2) Suppose that D is a surface in M and r its boundary. Then ~r pdq (the

sum of the areas of the projections of D on the planes Pi q i (i = 1, .• " , n)) is

equal to zero.

For the proof we may .restrict ourselves to infinitely small parallelograms ly

ing in M. If r is a finite parallelogram with sides ~, TJ, then the sum of the areas

of the proje€tions is evidently [~, 7]]. Now suppose that g, 7] are tangent to M
at some point. From 1), any vector tangent to M is.a linear combination of the

I grad F i • But from [grad Fi , gradF j ] =0, because I is symplectic, it follows

that [[' grad Fi' I grad Fj] = 0. Accordingly [g, 7]] = 0, as was required to be

proved.

3) The vector fields I grad F i on Mare irrotational (i. e. they are gradients

of (multiple-valued) functions ..

From 2), f~o pdq does not depend on the particular path of integration lying

on Mr in the neighborhood of the point qO' Therefore this .integral may be consid

ered as a multiple-valued function Seq, f). The equations p =aSlaq, g =

aSIaf define in each small region a canonical transformation p, q .(-_.~ f, g with

generating functi~n Seq, f) (see [1 ]). In the variables f, g the Hamiltonian func

tion Fi is f
i

and the Hamiltonian equations yield gi = 1, gj = i= o.
Because of the linear independence of the vector fields of velocities I grad Fi'

the differentials dg i at each point are linearly independent. We shall consider

g i as local coordinates on M. In the irit~rsectionof two neighborhoods they dif

fer bya constant, so that the differentials dg i are uniquely defined, and g multi

ply defined on Al. In ·the g-coordinates the velocity fields I grad Fi on Mare irro

tational, as gradients of the func tions g i. Thus the manifold ~1 is paralle lizable

by means of irrotational fields. Therefore it is easily.deduced that it isa torus.

4) Lemma. Suppose that on the n-dimensional compact manifold M there
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exist n differentials dg i' i e. closed differential forms of degree 1, linearly inde
pendent at each point. Then this manifold is the direct product of n circumfer-

ences.

Indeed, suppose that 0 is a point of M and that M' is the universal cover

ing surface ·of M. To each path OA on M there corresponds a path 0' A' on M '.

The functions gi(A ') =fO'A ,dg i map M' into the Euclidean space gl' ..• lIgn ·

It is easily verified (see for example [2]) that

a) this is a mappirig onto the entire space g l' ... • , gn;

b) at each point g there is .onlyone image of a point A ' ;

c) if 0' and 0" cover 0 and g(O")=g(O')±g(O"), then 0'" covers O.

Because of a) and b), we may identify: M 'with Euclidean space. In addi

tion, from c), the points covering 0 form a gra ting (collection 'of integer-valued

linear combinations of k independent vectors). More generally, the points A '
and A II cover one point A if and only if A' -A II is a vector of the grating.

Identifying in the Euclidean 'Space all of these points, we obtain the direct pro

duct of k circumferences .and n - ··k straight lines. Because ,of the 'compactness

of M, k =n. The lemma is .proved.

From 3), the manifol~ Mf satisfies the conditions of the lemma. Accordingly

it is an n-dimensional torus. Since the coordinates g change continuously, the

motion on Mf is conditionally:periodic. :The tQeorem is proved.

Rema~k 1. The set of points of tQe 2n-dimensional space x where· n of the

vectors gradF i are linearly dependent generally :speaking has .dimension n - 1.

Therefore n-dimensional manifolds M on which grad Fi are linearly.dependent are

exceptional (generally speaking, an 'n-dimensional manifold and an (n - I)-dimen

sional manifold do not intersect in2n-dimensional space ).

Remark 2. For n = 2 the Hamiltonian function'F 1 and the first integral F2

automatically stand in involution~ . In this .case the theorem is almost trivial, since

the torus is .tQe only:compact oriented manifold admitting a vector field without

singular poirits. Therefore even in'a non..;Hamiltonian 'system of the fourth order

with two first integrals the level surfaces F i =·fi are tori (see [3 ]).

Remark 3. In the formulation 'of the theorem we have restricted ourselves for

simplicity to the case when ·the initial phase space was .Euclidean~Nothingwill

change if this is. .an 'arbitrary 'manifold with a canonical structure, i.e. with canon

ical transformations in the form of admissible changes of variables. For simplicity

we have not formulated the corresponding theorem in the cas'e when M
f

is not com

pact, either.

Remark 4. The question remains open as to the topological character- of the

level manifolds Mf when the number k of first integrals F i is Jess than the 'num-
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ber n of degrees.of freedom, and also when the integrals at hand do not stand in

involution~· Further, although all known 'systems .integrable in quadratures have

n first integrals in involution, the necessity of this .has not been proved.

4. The consideration'of problems of dynamics naturally leads to the question

as .to how many linearly.independent irrotational fields a manifold may .have. For

example tbethree·-dimensionalsphelre isparallelizable, but does .not have even one

irrotational tangent field without singularities. Indeed, the gradient of a local

function'on ·th:esphere is the gradient of a unique function; since ·the sphere is

simply connected. Ata maximum point of the functi~nthe gradient vanishes.

In general it is .not difficult to show that the compact manifold M admits k

irrotational tangent yector fields grad F j' linearly independent at each point, if

and only ifit is a skew produ~t with a k-dimensional field as basis. Indeed, under

small changes .thevectors grad F. remain linearly independent. By such changesJ.
one may-arran'ge it. so that for anyone-dimensional cycle Yi we ,will have

~
A-1 ..

·dF~. -_ _ l.'.1 - -- ,. ,
li IV

where Mij and N are integers. The univalent functions ¢j=exp(27TiNF j ),

s S j ~ k, map M onto the k-dimensional torus T. Because of the linear indepen..;

deace ,of the gradF. at each point M is representable .in the form of a skew pro-
J

duct with basis T.

The question as to the existence of nondegenerate ,closed forms .of degree> 1

and also of planes' and frames, is .not ,so simple. Some ,necessary conditions, in

terms of obstructions .and characteristic .clas ses, are known, but they are certain..;

ly.far from being sufficient.

The ·following question on fiherings is.connectedwith the above question.

Suppose ,that the neighborhood of eac.h point of th:e ·n-dimensional manifold M may

be diffeomorphically mapped onto the Euclidean cube. Consider the preimages of

the horiiontal planes x n =const. If the mappings .of intersecting neighborhoods

are so in agreement that the preimages in the intersection either do not intersect

or else .coincide, then we say .that t~ere is given'a fiberingdevoid of singularities

of Minto (n - I)-dimensional surfaces. A typical example: the fibering of the

two-dimensional torus .into the trajectories of a conditionally-periodic motion.

Analogously.one defines fiherings into (n - k)-dimensional surfaces.

Proble~. Determine whether there exists a fibering of a given n-dimensional

manifold into (n - k)-dimensional surfaces. Investigate the behavior of the sur

faces of the fibering in the large.

The study of fiberings is .the natural generalization of the qualitative theory

of ordinary differential equations. The fibering of an n-dimensional manifold in..:

to (n - 1)-dimensional ones calls into mind more the qualitative theory on two-
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dimensional manifolds than the libering of an n-dimensional space into curves.

Added iti 'proof. While this paper was being put into type A. S. ~varc :kiridly

called my ,attention 'to papers ,of French topologists devoted to the problem posed

above. See for example [4].
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INSTABILITY OF DYNAMICAL SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

v. I. ARNOL'D

1. Recent progress in perturbation enables us to find many conditionally periodic motions in

every nonlinear dynamical system which is close to an integrable system (see [1,2]. The stability of

all the motions of the system follows from these results only when the dimension of the phase space

is ~ 4. The purpose of the present note is to give an example (3) of a system with a 5-dimensional

phase space which satisfies all the conditions of[I,2] but is nons table. * The secular changes /2 in

the system (3) have the velocity exp (- 1/F) and consequently cannot be dealt with by any approxi

mation of the classical theory of perturbations.

We first introduce some definitions.

2. The whiskered torus. By a torus r k we shall mean a direct product of k circumferences,

which can be described by the k angular coordinates cP = cPl' •• • , ¢ k (mod 217). A conditionally peri

odic motion with frequencies (V is defined by the equations ¢ = (V = const (where I n£<Ui *0 for inte

gral n i , I nJ ~ 0). Assume that in the phase space of the dynamical system there is an invariant

torus T and on it a conditionally periodic motion. We shall call T a whiskered torus if T is a compo

nent of the intersection of two invariant open manifolds Y -, Y+ where all the trajectories on the

arriving whisker Y- approach T as t -.. + 00, and on the departing whisker Y+ all the trajectories

approach T as t ~ - 0Cl •

Example 1. By the standard whiskered torus we shall mean the torus x = y = z = 0 in the system

x= Ax, Y= - /1Y, i = 0, cP = (V (1)

defined in the (l+ + l_ + 1
0

+ k)-dimensional space x, y, z, cP (¢ taken mod 217).

Of essential importance below is the concept of an obstructing set. Let M be a smooth submani

fold of the space X. The tangent plane to M at the point x will be denoted by TMx. The manifold

N complements M at the point x € M nN, if TMx + TNx = TXx • We shall say that the set 0 ob

structs the manifold M at the point x € M if every manifold N which complements M at x is inter

sected by O.

Example 2. A spiral {} which winds onto a closed curve M obstructs the curve. **

Another example is given by the standard whiskered torus (1). Let U be a neighborhood of the

point ~ of an arriving whisker x = z = O. By 0 = U U(t) we denote the set of all points of all the
t:>O

trajectories which begin in U. Then it is easy to prove the following theorem.

Theorem 1. The set n obstructs the departing whisker y = z = 0 at an arbitrary point TJ of the

whisker.

3. The transition chain. If the whiskered torus T has the property that the images of an arbitrary

* In contradistinction to stability, nonstability is itself stable. I believe that the mechanism of "transition
chains" which guarantees that nonstability in our example is also applicable to the general case (for example,
to the problem of three bodies).

** The articles [3,4] are based on this fact.

581

*

* Editor’s note: translation into English published in Soviet. Math. Dokl. 5 (1964). Translation of 
V.I. Arnol’d: Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk 
SSSR 156:1 (1964), 9–12 



424

neighborhood of an arbitrary point ~ of one of its arriving whiskers obstruct the departing whisker at

an arbitrary point 11 of the latter, then the torus will be said to be a transition torus. By Theorem 1,

the standard torus (1) is a transition torus.

Assume that the dynamical system with phase space X bas certain transition toruses Tl' • ....

• .... f T5' ...... These toruses will be said to form a transition chain if the departing whisker Y: of

every preceding torus T5 comelements the arriving whisker of the following torus Y; +1 at some

point of their inters ection x 5 € Y: n Y; +1•

Let Tl' • .... 'I T5' ......be a transition chain. Then the following theorem is easily proved.

Theorem 2. An arbitrary neighborhood of the torus T 1 is connected with an arbitrary neighborhood

of the torus T s of trajectories of the given dynamical system.

Consequently, for the proof of nonstability it is sufficient to find a transition chain which connects

distant toruses Tl' T5. The search for whiskered toruses and especially the investigation of their

intersections in the general problem of the theory of perturbations demands very complicated calcula

tions. We will confine ourselves here to an example in which a specially chosen perturbation vanishes

on the toruses T5.

4. A Donstable system. We consider a system with two degrees of freedom which is periodic in

the time t with period 211. ((The phase space" /1' /2; 91,1:>2; t is the direct product of the planes

/1' /2 with the three-dimensional torus cPt' CP2' t (mod 217). The Hamiltonian, depending on the param

eters (, 11, will have the form H = Ho + (H l' where *

Ho = 1/2 (Ii + !~), eH I = e (cos q>1 - 1) [1 + Jl~], B = sin (j)2 + cos t. (2)

In other words, we consider the system of differential equations

<PI = 11' (j)2=!2; 11 = e sin <PI [1 +....Bl, 12 = e (1 - COS(j)I) Il COS<P2;

B = sin <P2 + cos t. (3)

We first investigate the nonperturbed system «( = 0). Every three-dimensional torus /1 = (1)1'

12 = (1)2 is invariant. On it the three-frequency motion ~ 1 = (1)1' ¢2 =(1)2' i = 1 takes place. A torus is

said to be nonresonant, if the frequencies on it are independent of one another (i.e., n1U)1 + n2(1)2 +

nO 1= 0 for integers in n 1= 0). The equation /1 = 0 determines a family of resonant toruses (since

(1)1 = 0).

We now consider a perturbed system: assume 0 < (11 « ( « 1. In [1,2] it is proved that for the

majority of nonresonant initial conditions the quantities /1 (t), /2 (t) will change little in the course of

the whole infinite interval of time - 00 < t < + 00. It turns out, however, that close to the resonant

manifold /1 = 0 there is a zone of nonstability. More precisely, we have the following theorem.

Theorem 3. Assume 0 < A < B. For every (> 0 we can find a 110 > 0 such that for 0 < 11 < 110

the system (3) is nonstable: there exists a trajectory which connects the region /2 < A with the region

/2 > B.

5. A proof of nonstability. Choose a fixed ( > o.
A. First assume 11 = O. Then the variables can be separated:

H(l) = 1/2 Ii + e (cos <PI - 1), (4)

Thus /2 = 0, CP2 = /2 = (1) = const, and the change of /1' ¢1 with time will be described by the

It is easy to construct an actual mechanical system with the Hamiltonian (2).
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Hamiltonian of the ordinary pendulum H( 1). Let the number w be irrational. Then the following asser

tion is easily proved.

Assertion A. The manifold T w defined by the equations II = ¢1 = 12 - w = 0 is a two-dimensional

whiskered torus of the system (3). The whiskers are three-dimensional and have the equations

V -- . <PI
or /1 = ± 2. e SIn 2 ' (5)

(6)

The whiskers are supplemented by the asymptotic trajectories

11 (t) = + 2Ve Ch-1T, CPl (t) = ± arc ctg (- sh T), Cj)2 (t) = cPg + ill (t-tO),

where T = F (t - to), /1 (to) = ±2F, ¢I (to) = ±1T, ¢2(tO) = <I>~.

Thus for t ~ + 00 the point of the departing wbiske r of the torus T ev falls again on the same

torus Tw. In other words, the departing whisker forms one manifold together with the arriving whisker.

Of course, for 11 1= 0 this manifold splits into two whiskers, which intersect each other. * We shall see

that (in distinction to the separatrices of systems with a phase space of dimension :s 4, considered

in [5,6] .these whiskers also intersect the whiskers of neighboring toruses TU),.

B. Now suppose f.1t= O. From (3) it is evident that the toruses TU) remain invariant for all 11.

Assume that w is irrational. By the standard method of contractive mappings we can prove the follow

ing assertion. **
Assertion B. The manifold Tev is a whiskered transition torus of the system (3), if f1 is suffi

ciently small.

As sume wI < A < B < w s • For the proof of Theorem 3 it is sufficient to construct a transition

chain of toruses TwI' • - - 1 Tu)s and to make use of Theorem 2. The construction of such a chain is

based on a study of the perturbation of the whiskers (5) for small /1. It turns out that the following

lemma holds.

Lemma 1. Assume A < w < B. Then the departing whisker Y: of the torus TU) intersects with

the arriving whiskers YC:, of all toruses Tw ' which are sufficiently close that lw - w'l :s K (where

K = K (f, fl, A, B) > 0).

The proof of Lemma 1 requires certain calculations. The nonperturbed whiskers have the equa

tion (5): H(l) = 0, H(2) = w 2/2, where H(k) are the function of (4). Assume a> 0 (for example,

a = 17/2). It is easy to show that for 1¢1 I < 217 - ::t the equations of the perturbed departing whisker

Y; can be written in the form

(7)

where the functions /1{ = 0 (f.1) have the period 2" with respect to ¢2' t and are equal to 0 for

¢ 1 = O. In exactly the same way the arriving whisker YC:' for 1<1>1 - 217 I < 2" - (l has equations

(8)

The intersection of the whisker Y: and YC:' will be sought on the plane ¢l = 11. In the notations

of (7) and (8) Lemma 1 is an assertion concerning the solvability with respect to ¢2' t of a system of

*The splitting of separatrices was studied by Poincare in the final chapter of uNew methods" [5]. The in
vestigations of Poincare ·were recently continued by Mel 'nikov [6].

** It is convenient to use the conical metric Ilf(x) II = max Ix- I f(x)l.
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equations
~i (n; <F2' ~t; (0) = ~; (n; <P2' t; CU'),

1/2002 + ~; (n; CJ>2' t; (0) = ~; (n; <P2' t; W') + 1/2ffi
/
2.

(9)

The solvability of the system (9) can be deduced from the following approximate expressions for
~±

k

Lemma 2 (compare [6]). The perturbations of the whiskers are ~f = /lot + 0(/12), where

o

116t (1[; cp~, to;w) = ~ {H, H(k)} d (I - to)I(6)

+00.

(10)

(the Poisson bracket is integrated along the nonperturbed trajectory (6».

For in fact, in accordance with the definitions (7), (8), the quantities lif represent the incre

ments of H(k) in the perturbed motion (3). The derivative of the function H(k), in view of the system

of equations (3), is exactly the Poisson bracket tH, H(k)}. Consequently, lit is exactly equal to the

integrals (10) extended over the perturbed trajectories. Thus we easily derive the estimate li~ - /lot =

0(/l2), which completes the proof of Lemma 2.

From Lemma 2 it is obvious that the solvability of system (9) depends basically on the solvability

with respect to ¢g, to of the approximate system

(11)
where

+00
6k = 6! (n; cpg, to, (I)) - 6; (Jt; cpg, to, (I) = ~ {H, H(k)} d (I - (0)1(6). (12)

An easy calculation, based on formulas (2)-(6), gives the result

+00
\ aB61 = - 28 j U tfi dt,

-00

(13)

where u = ch -2 r , r = VT (t - to), B = B (¢2' t), ¢ 2 = ¢~ + W (t -.to). For B = sinep2 + cos t the

integrals (13) involve * the residues

(14)

Setting to = 0 in (14) we see that the system (11) is solvable for

(15)

From Lemma 2 it now follows that for sufficiently small 11 the system (9) is also solvable. From

the inequality (15) it is easy to obtain, uniformly for A < w < B, the estimate mQ)a,x Iw - w" = K (w)

from below, as required in Lemma 1. Thus the proof of Lemma 1 is complete. It allows us to construct

a chain of transitional toruses T , ••• 1 T (W 1 < A < B < w ). From the formula (14) it is clear thatQ)l Q)s S

for sufficiendy small /l this chain can be so chosen that the consecutive intersecting whiskers lie in

general position and complement one another in the sense of §2. Then the chain T , ••• 1 T will beQ)1 Q)s

* The analogous integrals in [6], on page 32, are wrongly calculated
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a transition chain. The application of Theorem 2 to the transition chain TwI' • , ~ f TCl) s completes the

proof of Theorem 3.
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1964 г. сентябрь-октябрь т. XIX, выи. 5 (119)

УСПЕХИ МАТЕМАТИЧЕСКИХ НАУК

ЗАСЕДАНИЯ МОСКОВСКОГО МАТЕМАТИЧЕСКОГО ОБЩЕСТВА*

Заседание 10 марта 1964 г.

Заседание было посвящено памяти крупнейшего французского мате

матика Жака Адамара. Выступавшие П. С. Александров, А. О. Гельфонд,

Г. Е. Шилов, О. А. Олейник, А. Н. Колмогоров говорили о значении работ

Адамара для развития современной математики и о личных впечатлениях от

встреч и бесед с замечательным ученым.

Заседание 17 марта 1964 г.

1. В. И. А р н о л ь Д «О неустойчивости динамических систем со мно

гими степенями свободы».

в последнее время показано, что каждая динамическая система, достаточно близ"

кая к интегрируемой, имеет много инвариантных торов. В случае, когда размерность

фазового пространства не щ:iевосходит четырех, из этих результатов BblTeI{aeT устой

чивость системы. В работе указан пример неустойчивой гамильтоновой системы

с пятимерным фазовым пространством 11, 12; <Р1, <Р2, t:

где <Р1, <Р2, t-угловые переменные, а в, I-t-малые параметры. Величины 11 и 12 не

испытывают вековых возмущений во всех приближениях теории возмущений. Более

того, для большинства начальных условий они действительно мало меняются в тече

ние беснонечного промежутка времени. Однако при сколь угодно малых в, I-t сущест

вуют и такие начальные условия, при которых величина 12 меняется очень сильно.

Доказательства основаны па изучении пересечений сепаратрис двумерных инвариант

ных торов 11 =(jJ1=1 2 -w=О.

2. На заседании Общества происходило обсуждение планов редакции

IIздательства «Мир» и сборника переводов «Математика». В обсуждении

ПрIШЯЛИ участие В. И. Арнольд, В. И. Битюцн:ов,А. О. Гельфонд, А. Н. :Кол

Могоров, А. Г. Курош, Б. В. Шабат, Л. Э. Эльсгольц.

3. Председательствующий А. Н. Колмогоров объявляет о принятии

Правлением Общества резюме следующих докладов:

1о. П. П. З а б рей к о и М. А. К р а с н о с е л ь с к и:й «О6
L-характеристиках операторов».
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20. л. с. Фра н к «Разностные методы решения задачи Коши для не

корректных систем первого порядка».

Заседание 24 марта 1964 г.

1. А. М. О л е в с к и й «Об ортогональныхрядах по полным системам».

Рассматриваются ряды

(1)

где {<Рn (х)}-полная ортонормированная в L2 [О, 1] система ФУНRЦИЙ. В ДОRладе

изложены результаты автора, относящиеся R следующим вопросам.

1О. С х о Д и м о с т ь о р т о г о н а л ь н ы х р я Д о В и п о в е Д е н и е к о э Ф Ф и

ц и е н т о в. Установлено существование по любой полной ортонормированной систе

ме расходящихся рядов с Rоэффициентами, достаточно быстро стремящимися к нулю.

Далее, сформулировано необходимое и достаточное (В классе полных систем) усло

вие на коэффициенты сходящихся ортогональных рядов (рядов Фурье).

Подробное изложение результатов этого пункта см. в [5] и [6].
2°. р а с х о Д я Щ и е с я р я Д ы Фур ь е. Здесь основной является с.дедую

щая теорема, опубликованная в [7]: для любой ПОЛНОЙ ортонор,мальной систе,мы суще

ствует непрерывная фун~ция, ряд Фурье ~oтopoй после He~oтopoй nepecтaHoв~и 'Членов

расходится почти всюду.

3°. Коэффициенты Фурье- непрерывных фУНRЦИЙ. Общий

смысл результатов этого ПУНRта состоит В следующем: канова бы ни была полная орто

нормальная система {<Рn (х)}, О коэффициентах Фурье произвольной непрерывной функ

ции по этой системе нельзя сказать ничего большего, чем. выполнение условия

00

~ c~<oo.

n=1

(2)

ПостаНОВRа вопроса восходит :к Карлеману, который доказал существование непре

рывной функции, коэффициенты Фурье которой по тригонометричеСRОЙ системе удовлет-

воряют условию

со

(3)

при всех р < 2. В связи с этим ВОЗНИRЛО следующее

О п р е Д е л е н и е. Непрерывная функция f (х) обладает особенностью Rарле

.мана по отНОUlению ~ систе,ме {<Рn (х)}, если коэффициенты Фурье

1

Сn= ~. f (х) СРn (х) dx
о

(4)

удовлетворяют условию (3) при всех р < 2.
Теорема Rарлемана В дальнейшем подвергалась обобщению различными авторами

(Палей, Ванах, Орлич, с. Б. СтеЧRИН), работы :которых относятся к тригонометрической

системе и к более общим системам, ограниченным В совокупности.

Для произвольных полных систем аналогичный вопрос был поставлен,В [5], где

:было доказано, что для любой полной ортонормальной системы существует функция,

обладающая особенностью Rарлемана.
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Аналогичный результат справедлив и для особенностей вида

со

~ сjiш (n) ==00.

n=1

183

(5)

Именно для любой полной ортонормально:й системы и для любой последовательности

(t) (n) t w существует непрерывная функция f (х), коэффициенты Фурье которой (4) удов

летворяЮт условию (5).
Таким образом, нельзя построить полную систему, которая позволила бы разли

чать по поведению коэффициентов Фурье классы функций С и L2 посредством шкалы lP
или весовых .шкал l~. Наиболее общая формулировка результата содержится в следую

щей теореме, из которой обе предыдущие могут быть весьма просто выведены.

т е о р е м а 1. Пу~mь {<:рn(х)} ~ nроивволъная полная орmонор.uированная система.

Тогда сущесmвуеln фиnсированная nодnоследоваmелъностъ HO.A1JepOe {nk} таnая, 'ЧJnО для

Jt,юбой nоследователъности {b k} с ~ b~ < 00 найдетс,я, HenpepывHa~~ ФУН11,цил f (х), w,оэф

фuцuенniы Фуръе nоmорой (4) удовлеmвОРЯЮln условию

nk+l

~ cA~bh (k> ko)·
n=nk+ 1

Отметим, что положить' здесь nk = k,вообще говоря, не.цьзя.

Мы укажем теперь на возможность усиления приведенных результатов в двух

направлениях. Прежде всего, особенности могут быть локализованы. :Кроме того, усло

вие непрерывности может быть заменено некоторой гладкостью.

Для краткости мы сформулируем последующие результаты лишь для карлеманов

,СRИХ особенностей.

т е о р е м а 2. Пустъ {СРn (х)} - nроивволъная полная ортонорма./tъная система

и Е С [0,1] - nроивволъное множество nОЛО;)Jсителъной меры. Тогда cyufecmeyem неnре

рывна,я, фунw,ция F (х) mаw,а,я" что вс,я,w,ая неnрерывнал фУН11,цил f (х), сuвnадаЮUfал с F (х)

на Е, обладаеm. особенностъiо Rарлемана по отношению w, системе {СРn (х)}.

т е о р е м а 3. Пусть {СРn(Х)} - nроивволъная полная орmонормалъная система

.и хо - nроивволъная то'Чw,а отреВ11,а [0,1]. Тогда существует дифференцируе.маяна [0,1]

.ФУНJhция F (х) таJ'hая, 'Что всяnа,я, непрерывная ФУН11,ция f (х), совпадающая с F (х) в Hew,o
торой OJ'hpeCmHOcmu тО'Ц,J'hи хо, обладает особенностъю Карлемана.

Отметим, что теоремы такого же типа могут быть доказаны для характеристических

функций множеств. Например, справедлива

т е о р е м а 4. Пустъ {СРn (х)} - nроu'В60льная полная ортонор.малъная систе.ма.

Тогда существует MHO:JIcecmeo Е С [0,1], хараj;,терuстu'Чесn;ая фунnцuя J'homopoeo х(Е)

обдадаеm особенностъю Карлемана.

Эта теорема также допускает лонализацию.

Теорема 1 и следствия из нее показывают, что нельзя построить полную систему,

для которой коэффициенты Фурье всех непрерывных функций были бы достаточно хоро

шими. Вместе с тем оказывается, что существуют такие полные системы, для которых

Rоэффициенты Фурье всех непрерывных функций ведут себя плохо. Например, имеет место

т е о р е м а 5. Существует полная ортонор.мированная система {<:Рn (х)} таw,ая,

'Что всяпая непрерывная фунw,ция f (х) =1= Q. обладает особенностъю Rарле.мана по отnо

шению n этой систе.ме.

Заметим, что система, о которой здесь идет речь, вовсе не должна состоять из очень

плохих функций. Разумеется, ни одна из них. не может быть непрерывной, но можно

-сделать так, чтобы наждая функция СРn (х) имела лишь конечное число точек разрыва,

а в' остальном была бы сколь угодноглаДI-\ОЙ.

40. Существование полной ограниченной системы

,с х о Д и м о с т и. Как известно, Д. Е. ;М:еныповым [1] был впервые установлен прин

ципиально важный фант существования всюду расходящегося ортогонального ряда (1)
с Rоэффициентами, удовлетворяющими условию (2). В связи с этим возникло следующее
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о п р е Д е л е н и е. Ортонормированная система {<Vn (х)} называется сиcrnе.;иой

сходUJиосmu, если ряд (1) сходится почти всюду :ка:к только выполнено условие (2).
Иными словами, {<vnJ - система сходимости, если для всякой фУНКЦИИ j (:с) Е LZ

ряд Фурье сходится почти всюду.

Известным примером полной ортонормированной системы сходимости яв.lIяеТСR

система Хаара. Для других классических полных систем (тригонометрической и сис

темы Уолта) вопрос о том, являются ли они системами сходимости, не ретен II поные••
Для тригонометр:и:чес:кой системы - это известная проблема Лузина.

Следует заметить, что тригонометрическая система и система Уолта состоят па

функций, ограниченных в совокупности, т. е. удовлетворяют условию

j <Рn (х) 1< м.

в то же время система Хаара, напротив, устроена из высоких и узких «пи:ков» (см. [4],
стр. 57). В связи с этим возникла следующая проблема: существует ли полная орто

нормированная система Фун:кций, ограниченных в совокупности, являющаяся систем.оЙ

сходимости?

Этот вопрос сформулирован п. Л. Ульяновым в обзорных статьях [2], [3]. в числ~

других неретенных задач теории ортогональных рядов.

Мы <;формулируем теорему, дающую положительный ответ на этот вопрос.

т е о р е м а 6. Суи?ествует полная ортонормированная систе,м,а {8n (х)}, сос

тоящая из фУН1Ъций, огран.иченных в совоnуnности, U явЛЯЮUfаяс,я, cucmeMoilcxoaUJvtйcmu.

Доказательство теоремы осуществляется :конструктивно: дается построение сис

темы {оп}.

Отметим, что остается открытым вопрос о существовании полной ограниченной

в совокупности ортонормальной системы Фун:кций, .по :которой ряды Фурье из LP при

Р < 2 сходятся почти всюду. Система {оп (х)} во вся:ком случае этим свойством не обла

дает. Более того, с ее помощью может быть до:казана следующая

т е о р е м а 7. Существуеn~ полная в L [0,1] ортонор.мироеанна,я, огранuченная

в совоn,уnностисuсте,м,а {<Vn (х·)} и фунn,ция j (х), nринадлежащ~я всеЛ1Jnласса,м, LP [0,1}
при 1 <, р < 2, таnие, 'Что частные су,м,,м,ы Snk (х) ряда Фуръе(1) .эmоЙ фунnции расхо

дятсл почти всюду·на [0,1],·nan,oea бы ни была nоследователъностъnktco.

Такой результат был впервые получен МаРЦИНI\евичем (СМ. [4], стр. 358), но лишь.

6
для t (х) Е LP,p< 5-. Очевидно, что наша теорема в этом отношении о:кончательна.

Полезно отметить, что система {<Рn} В теореме 7 получается из системы {еn } теоремы 6
при помощи не:которой перестановки элементов, не нарушающей впрочем ее основное·

свойство: быть системой сходимости. Та:ким образом, мы можем сделать следующий

вывод: для полных и даже ограниченных в сово:купности ортонормальных систем схо

димость ПОЧТИ ВСЮДУ рядов Фурье из L2 ничего H~ влечет за собой относительно сходи

мости рядов из LP при Р < 2.
Следует заметить, что RОНСТРУ:КЦИЯ, используемая нами при построении системы

{8n (х)}, может быть применена и при исследовании некоторых других вопросов. В каче

стве примера приведем одну задачу из теории лаRунарных систем. И:менно, хорошо изве

стна теорема Сидона, состоящая в том, что еСJIИ ограниченная фун:кция имеет лаRунар

ный тригонометрический ряд Фурье, то 2J jcn 1<. се , где сп - коэффициенты Фурье.

Аналогичный результат известен и для системы Радемахера. Это и некоторые другие·

свойства, хара:ктерные,вообще, для лакунарных систем, образуют группу банаховых

ЭRвивалентностей (СМ. [4], сТр. 295). В книге [4] (стр. 297) поставлен вопрос: обладает ли

этим свойством Лl0бая лаRунарнаясистема?О:казывается, что на этот вопрос следцет

дать оrnрицаlnельный ответ.
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2. с. п. Но в и к о в «Двумерные слоения)}.

3. Происходило избрание НОВЫХ членов Общества. В результате голо-

сования членами Обп~есrва избраны:

А р н о л ьд Влади:мир Игоревич,

Га п о ш к и н Владимир Федорович,

М :и хай JI О В Вале~тин Петрович\,

П о с т н и R О В а ~Пюдмила Петровна,

С и р о т а Александр 11сааRОВИЧ.

4. Президен:r Общества п. с. Александров объявил о принятии Пра

влением Общества' резюме следующих докладов:

1О. А. г. р а м м «Об аналитическом продолжении решения уравнения

llIрёдингера и поведении решения нестационарной задачи при t -> СО».

20. А. и. Пер о в «Об одном многомерном обобщении определителя

Вронского».

Заседание 31 l\IapTa 1964г.

1. А. Н. Т и х он о в «О методах решения нестационарных задач}).

2. Президент Общества п. с. Александров объявляет о принятии Пра

влением Общества резюме слеДУЮIЦИХ ДОRладов:

10. Е. г. ДЬЯI{ОНОВ «Метод мажорирующего оператора для решения

разностных а.налоговнеRОТОРЫХ сильно эллиптичеСRИХ систем».

20. А. А х м ед о в «Об ОДНОJ\i1 способе моделирования работы некото

рого класса систем массового обслуживания».

Заседание 7 апреля 1964 г.

1. ю. и. л ю б и ч «Абстрактная задача Коши)>.

Заседание 14 апреля 1964 г.

1. В. И. Ар н о л ь Д «Периодичность Ботта (применение вар:иационного

исчисления R топологии групп Jlи»>.

2. Председательствующий г. Е. IIIилов объявляет о принятии Правле

нием Общества резюме следующих докладов:

10. я. B~ Хион «Q-кольцоиды, Q-кольца и их представления».

20. Л и н ь Ц з у н - ч и «Аси:мптотика решений линейных дифференци

альных уравнений при сочетании возмущения границы с возмущением опе

ратора».



ERRATA TO V. ARNOL’D’S PAPER
“SMALL DENOMINATORS. I”�

V.I. Arnol’d

G.A. Merman and N.N. Bogolyubov have kindly pointed out to me that in
formula (6) of my paper “Small denominators. I” (see Izv. Akad. Nauk SSSR
Ser. Mat. 25, 21–86 (1961)) a term was omitted. Nevertheless, the estimates in
§5 remain valid (even taking account of this term) if one makes the following
corrections.

1. Replace z(ϕ, ε) by z(ϕ, ε,Δ1) in the following places: p. 40, lines 1, 6,
7, 10, 13 from the bottom; p. 42, lines 13 and 14 from the bottom; p. 43, lines
12, 13 and 15 from the bottom.

2. Replace ϕ(z, ε) by ϕ(z, ε,Δ1) in the following places: p. 42, formula (1);
p. 43, formulae (6), (15); p. 44, line 13.

3. Replace g(z, ε) by g∗� (z, ε,Δ(Δ1, ε)) in the following places: p. 42, for-
mula (1); p. 44, lines 8, 10, 12, 13.

4. On p. 43 add the following to formula (5):

g∗(z, ε,Δ) = g(z, ε) + g2(z, ε,Δ) ,

ϕ(z, ε) = ϕ∗(z, ε,Δ∗
0), z(ϕ, ε) = z(ϕ, ε, 0) .

5. On p. 43 add the following term to the right of formula (8):

g2(zIII , ε,Δ) − g2(zII , ε,Δ) .

6. On p. 43 add the following term to the right of formula (14):

F̂1(z(ϕ, ε,Δ1), ε) − F̂1(z(ϕ, ε), ε) .

7. On pp. 44–45 subsection 4 must be before subsection 2, and in line 8 of
p. 45 1/2 must be replaced by 1/12; and on p. 40, in formula (10) 1/36 must
be replaced by 1/48.

8. on p. 44, line 2, replace Δ = Δ∗
0 by |Δ1| � C, and in line 4 replace

2C + 2δ · 2C by 2C + 2δ · 4C.

� Izv. Akad. Nauk SSSR Ser. Mat. 28, 479–480 (1964)
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2 V.I. Arnol’d

9. On. p. 45, subsection 5, the following should come after formula (22):
Since, in accordance with (2) and (5), the function g2(z, ε,Δ(Δ1, ε)) sat-

isfies the equation

g2(z+2πμ, ε, Δ(Δ1, ε))−g2(z, ε, Δ(Δ1, ε)) = Φ̃(z, ε, Δ∗
0)−Φ̃(z, ε, Δ(Δ1, ε)) ,

and, in accordance with subsection 4, for |Im z| � R0 the right-hand side of
this equation is less than Δ1/6, it follows by Theorem 1 that

|g2| � Δ1

24δ4
,

∣∣∣∣∂g2

∂z

∣∣∣∣ � Δ1

24δ5
(|Im z| � R0 − 2δ) .

Consequently,

|g2(zIII , ε,Δ) − g2(zII , ε,Δ)| � |zIII − zII | Δ1

24δ5

< (2C + 2δ · 4C + 4C)
Δ1

24δ5
<

Δ1C

3δ5
. (24)

Next, we have

|F̂1(z(ϕ, ε,Δ), ε) − F̂1(z(ϕ, ε), ε)| <
16C2Δ1

δ10
. (25)

Taking (24) and (25) into account and applying the lemma. . . (and then
continue as on p. 45).

10. On pp. 46–47 one must introduce the argument Δk in the function
ϕk−1(ϕk, ε) .

Received 5 June1963
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В. и. Арнольд (Мосnва)

МАЛЫЕ ЗНАМЕНАТЕЛИ И ПРОБЛЕМА УСТОЙЧИВОСТИ В КЛАССИЧЕСКОЙ

И НЕБЕСНОЙ МЕХАНИКЕ

§ 1. Введение

Еще Лаплас заметил, ЧТО приближенная соизмеримость средни;х движений

Юпитера (nю =299",1) и Сатурна (nс =120",5) влечет за собой большое возмуще-

ние их движения вокруг Солнца. Причиной является .малый знаменатель

2nю - 5nс , входящий в один из коэффициентов тригонометрического ряда, выра-

жающего координаты планет. Rаi-Rется полезным собрать сделанное в этой области

со времени ставших уже классическими работ Пуанкаре, Ляпунова и Биркгофа.

Простейшей задачей с малыми знаменателями является уравнение

f (х -+- а) - f (х) ===g (х) (1)

(2)

с неизвестной периодической функцией f (х) == f (х + 27t). Если f = ~ tneillx и

n*о

g = ~ gneinx, 'Го формальное сравнение коэффициентов Фурье дает
n:;60

g1Z

In=einrt -1·

При а === 27t: знаменатель eina. -1 обращается в нуль и может быть сколь угодно

малым при любом ао. Из теории диофантовых приближений известно, что для

почти каждого (в смысле меры Лебега) а существует с (а) > О, такое что

- J2: - : I> I : 13

при всех целых т и n =1= О (см. [1]).
Если функция g (х) аналитична, то gn убывают в геометрической прогрессии.

При условии (2) коэффициенты fn также убывают в геометрической прогрессии,

и, следовательно, рид ~ fne inx сходится к аналитическому решению уравнения (1)

при почти всех а.

RaK и в этом простом примере, во многих задачах с малыми знаменателями

(например, в проблеме трех 'Гел) известны формальные ряды, уДовлетворяющие

условию задачи при почленной подстановке. Эти ряды выражают условно-периоди

ческие движения с частотами (J)1, ••• , (J) k И имеJОТ ВИД

(3)

Но вопрос о сходимости представляет обычно гораздо большие трудности, чем

в простейшей задаче. Появлиясь в каждом приближении теории возмущений, малые

знаменатели nl(J)l + ... + nk(J)k приводят К тому, что формальные ряды, как пра

ВИЛО, расходятся ([2], [3]).
Мне известны следующие решенные в настоящее время задачи с малыми зна

менателями:

1. В 1942 г. R. л. 3иг~ль [4] решил теореmU/'i,о-Функ,цuоl-tалъную nробле.му цеl-t

mра, доказав устойчивость аналитического отображения окрестности нуля комплек

СНОЙ плоскости на себя

при почти всех а, равных по модулю единице.

2. В 1952 г. К. Л. 3игель доказал при ~eCЬMa общих предположениях nриво

ди.мость нелинейной систе.мы обыкновенных аналитических дифференциальных

26* 403
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уравнений в окрестности положения равновесия к линейной системе подходящей

аналитической заменой переменных [5].
З.В 1954 г.А. Н. I\олмогоров, применив метод Ньютона, сумел найти инва

риантные торы, несущие условно-периодические траектории, в так называемой

невырожденной задаче теории воа.мущениЙ ([6J, [7]).
4. На прошлом съезде А. Е. Гельман доложил свою работу о nриводи,мости

системы двух динейных дифференцuадьных уравнений с усдовно-nериодичес~ими

коэффициента,ми 11, системе с постоянными коэффициентами [8]. Студент МГУ

э. г .. Белага использовал этот результат для исследования окрестности условно

периодического решения. С помощью аналитической замены переменных он привел

аналитическую нелинейную систему в окрестности инвариантного тора к линейной

системе с постоянными коэффициентами.

5. Соединяя асимптотические ряды Биргофа и метод Ньютона, можно доказать

устойчивость nериоаичес~ого' решения анадитичес~ой га.мидьтоновоЙ систе,мы

в общем эллиnтичеС~ОJt случае (СМ. ниже § 2). В частности, студент МГУ

А. М. Леонтович показал недавно, что лагранжево периодическое решение ограни

ченной задачи трех тел (ер. [4.], [9]) устойчиво при почти всех отношениях масс

тел, когда оно устойчиво по первому приближению.

6. Некоторая модификация метода Ньютона позволяет построить сходящийся

вариант теории возмущений и в случае вырождения (СМ. ниже § 3). Особенно полно

исследован случай, когда имеется только одна «быстрая}) переменная. На этом

пути удается, в частности, доказать, что п.ри медленном периодическом изменении

функции Гамильтона аналитической системы с одной.степенью свободы адиабати

чес~ий инвариант .мало .меняется ва бес~оне'Чный nромежуто~ времени, если только

система не является линейной.

§ 2. Проблема устойчивости

Рассмотрим простейший, но содержащий уже основную трудность случай этой

проблемы. Дано сохраняющее n.лощадь аналltтичес~ое отображение Т 011,ресmносmи

нуля nлос~остu х, у на себя. Пусть нуль - неnодвижная точ~а. Устой'Ч,ива.ли она?

Для линейных отображений вопро~ решается вычислением собственных значе

ний /...1' /...2. Ввиду сохранения площади /...11.2 = 1. Если ЛI, ~ "2 не действительны,

то Х1 = "2, I Л I= 1. Отображение является "эллиптическим поворотом и УСТОЙЧИВО.

При м е р 1. Обыкновенный поворот на угол <р = arg л.

Если линейная часть данного ..отображения есть эллиптический поворот, оно

называется отображением эдлиnmического типа.

При м ер 2. Рассмотрим отображение А, при котором каждая окружность

х2" + у2 = 2r поворачивается на свой угол

~ (r) = arg /... + Clr + C2r2 +....
:Это отображение- эллиптического типа, и оно устойчиво.

При м е р 3. Если записать только что определенное отображение А в системе

координат (р, q), связанной с (х, у) аналитическим преобразованием, сохраняющим

площадь и о~тавляющим О на месте, S: (х, у) ~ (Р', q), то получим на плоскости

(p,q) устойчивое отображение Т = SAS-l.
Следовательно, если при подходящем выборе S данное отображение Т можно

получить с помощью конструкции примера 3, то оно устойчиво.

Со времен Биркгофа [10] известно~ что если не заботить~я о сходимости рядов,

'то при условии )JI, i=- 1 (n == 1,2,3, ... ) отображение эллип~ического типа Т всегда

можно формальной заменой переменных привести к виду А примера 2. Но ряды,

-определяющие S, в общем случае расходятся, и из указанных алгебраических

результатов нельзя сделать вывода об устойчивости ([4], [11]).
Можно, однако, сходящейся заменой привести преобразование к вIi'Ду,ОТЛИ

чающемуся от А лишь членами сколь угодно большого порядка относительно r.
В новых координатах вблизи О наше преобразование можно тогда рассматривать

как поворот А семейства окружностей на зависящий от радиуса угол, ВОЗМУlцен

ный весьма маленькими дополнительными членами.
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Применяя метод Ньютона, можно показать (СМ. [12]), что те из ИJIвариантных

окружностей, на которых угол поворота «достаточно иррационален» [как а в (2)
§ 1], не исчезают при малом возмущении. Поэтому неподвижная точка окружена

сколь угодно малыми инвариантными аналитическими замкнутыми кривыми и, сле

довательно, устойчива. Можно показать далее, что эти кривые заполняют множе

ство положительной меры, имеющее О точкой плотности.

Между инвариантными кривыми остаются «зоны неустоЙчивости». Действи

тельно, рассмотрим инвариантную OKPYj-I~НОСТЬ «невозмущенного» преобразования А,.

т

поворачивающуюся'на угол 'f (r) = 27t n. При n-кратной итерации поворота каж-

дая точка вернется на место. Это свойство при малом возмущении вообще говоря

не сохраняется, и инвариантная окружность рассыпается. Но по известной теореме

Пуанкаре-Биркгофа о неподвижной

точке (см. [10j, [4]), существуют воз

вращающиеся на место после n-крат

ной итерации Т ТОЧКИ, причем в «об

щем случае)~ среди них будут и эл

липтические, и гиперболические отно

сительно T1~. Как мы видели выше,

точки эллиптического типа «вообще го

воря» устойчивы и окружены аналити

ческими инвариантными' КрИВЫМИ, оче

ВИДНО не ;охватывающими о. Следова

тельно, в общем случае окрестность О

не расслаивается на инвариантные замк

нутые кривые. Отсюда вытекает, в

частности, упоминавшаяся выше рас

ходимость рядов Биркгофа.

В окрестности каждой из найден

ных устойчивых точек повт()ряется та

'же картина с инвариантными .кривыми

и зонами неустойчивости и т. д. (см. Инвариантные нривые в онрестности не

рисунок). Форма границ зон неустойчи- подвижной точии в общем эллиптическом

вости мне неизвестна. Было бы .также случае.

важно изучить поведение при итера-

циях отображения Т «общей» точки зоны неустоfIчивости с точки зрения эргоди

ческой теории (найти эргодические компоненты, перемешивание, спектр, энтропию) ..
Результаты, аналогичные указанным выше, получены для окрестности перио

дического решения и положения равновесия автономной гамильтоновой системы

с двумя степенями свободы инеавтономной - с одной степенью свободы [12J..
В общем случае' системы с n степенями свободы удается ваЙ'fИ только n-мерные

инвариантные торы, наполненные условно-периодическими траекториями. Эти торы

образуют множество положительной меры, но они не разделяют 2n-мерные фазовое

пространство, и вопрос об устойчивости остается открытым.

§ 3. Вырождение. Адиабатические инварианты

Rлассическая теория возмущений ([13], [2]) рассматривает условно-периодиче

ские движения, т. е. колебания с несколькими частотами WI, ••• , о.>n (ср. (3) § 1).
Есть много задач, в которых в первом приближении движение вырождается, т. е.

некоторые частоты равны о. Например, в проблеме трех тел перигелии и узлы

в первом приближении неподвижны.

В этих случаях возмущение порядка е вызывает - в дополнение к «быстрым»

Rолебаниям с частотами Wi' имевшимся идри е = О, -медленные колебания. Их

частоты А) будут порядка е. Соответствующие малые знаменатели

k n

~ miWi+ ~ njAj
i=I j=k+l
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опасны не только из-за приближенной соизмеримости всех частот <Oi' Лj' но и (при

mi, =0) из-за малости частот Лj. Появление этих знаменателей ПОРЯДКа е суще

ственно усложняет картину теории возмущений по сравнению с невырожденным

случаем, рассмотренным в [6].
Метод Ньютона позволяет найти инвариантные торы с условно-периодическими

траекториями, если в функции Гамильтона вырожденной системы

(4)

(5)

можно выделить секулярную часть порядка е, не зависящую от фаз Qj медленных

движений, и периодическую часть порядка е2

Н=НО (Рl' , Pk)+eB1 (Pl, ... , Рn)+
-t е2Н 2 (Р1 , , Рn ; Ql, •.. , Qn) + ...

(где все функции цеременных q, Q имеют по ним период 27t). Переход от (4) к (5)
(усреднение по быстрым переменным) легко ОСУIцествим, если имеется только одна

быстрая переменная (k == 1). Эту перемеННУIО тогда удобно принять за время.

Простейший случай - дифференциальное уравнение на торе

dy
dx - е! (х, у)

- рассмотрен в заметке [14]. Аналогичные соображения применимы в обсуждаемой

ниже задаче о поведении адиабатического инварианта при медленном периодическом

изменении аналитической функции Гамильтона Н (р, q; л) (л = et - медленное

время). Интересно, что малые знаменатели в конечном счете выпадают, и полу-

чается простой результат, не содержащий характерного для задач с малыми зна

менателями ограничения «почти всюду».

Рассмотрим фаЗОВУIО плоскость (р, q) при фиксированном значении параметра л.

IIроходящая через точку (ро, qo) линия уровня энергии Н (р, q; л) = н (Po,qo; л)

ограничивает в случае колебательной системы некоторую область. Обозначим через

1 (Ро, qo; л) величину площади этой области. Как известно (см. [13], [1~]),

1 является адиабатическим инвариантом, т. е. изменение

I[p(t), q(t); et]-I(po, qo; О)

1
за большое время t, 0< t < €' имеет порядок е.

Из адиабатическойинвариантности1 не следует, вообще говоря, что 1 мало

меняется за неограниченное время - ro < t < ro при малом е. Это связано с возмож

ностью накопл~ний малых изменении адиабатического инварианта. Рассмотрим,

например, линейную колебатеЛЬНУIОсистему

х == -ш2х (1 + а cos et).

2ы
Как известно, при некоторых е (а именно, е ~ у; k === 1,2, ... ) возможен пара-

метрический резонанс, и 1 (t) ~ 00, когда t ~ 00. Здесь скорость изменения пара

метров системы е может быть, очевидно, сколь угодно малой.

Оказывается, однако, что в нелинейной системе с медленно периодически

меНЯЮI.цеЙся функцией ГаМИJ!ьтона Н (р, q; л) == н (р, q; л + 27t) адиабатический

инвариант сохраняется вечно: для любого "1) > о найдется ео ("1)) > О, таnое что ив

е < ео вытекает

11 (t) - 1 (О) 1<'1
при всех -00< t <00.

Линейная система занимает исключительное положение потому, что частота ·ее

колебаний не зависит от амплитуды. В нелинейной же системе при увеличении

амплитуды частота меняе1.'СЯ, и колебания не успевают нарасти, как нарушается

..-.. 2ш
условие резонанса е "- ".
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Вечно сохраняется также адиабатический инвариант [1/ 'автономной системы

с функцией Гамильтона

Нужно только, чтобы (в первом приближении) отношение частот CJJх/Ш!/ зависело

при фиксированной общей энергии Н === h от амплитуды колебаний у. в частности,

поле с потенциалом

ЯВJIяетсн при € ~ 1 «ловушкой», оп·особноЙ вечно удерживать частицы с Хо, Уо,

ХО, Уо порндка 1. Это вытекает из вечной адиабатической инвариантности величины

у2+и

IlI===~·

§ 4. Нерешенные задачи

Несмотря на имеюп\еесн продвижение, ситуация остается довольно сложной.

Нроме старых веретенных задач, подобных i:Iроблеме устойчивости солнечной

системы, возникает много новых вопросов. Я хочу обсудить лишь очень неБОJIьmое

'число- проблем, кажущихся мне важными по разным причинам.

Т. Им,еется ли действительная' неустойчивость в м,ногом,ерных задачах теории

,возм,ущений, 11tozaa инвариантные торы не делят фазовое пространство (см. § 2)?
Первыми -шагами при рассмотрении этого вопроса могли· бы быть исследование

движения ·в зоне неУСТОЙЧИБОСТИИ перенесение 'относящейся сюда теории Бирк

гофа [10] на многомерный случай окрестнос.ти условно-периодического движения.

Однако даже более простая задача об уравнениях с условно-периодическими коэф

.фициентами не решена из-за отсутствия нужного обобщения теории Флоке. Рас

.смотрим этот вопрос подробнее.

11. Являются ли линейные дифференциальные уравнения С условно-nериодuче

·С1\им,и 11tоэффицuентам,и в общем случае nриводим,ым,и?

Пусть А (р) - ма,трица, аналитически зависящая от точки тора р === (Рl' ..• , Pk),
так что А (р + 21t) === А (р). Пусть точка р движется по тору условно-периодически,

~ частотами

Тогда система линейных дифференциальных уравнений

х===А(р)х (X===(Xl' ••• , Хn)) (6)

будет иметь условно-периодические коэффициенты А (р (t)). Система (6) называется

nриводим,ой к системе с постоянными коэфф'ициентами

у === Ву, (7)

если существует аналитическая на торе матрица С (р), такая что замена перемен

ной Х == С (р) У превращает (6) в (7).
В случае периодических' коэффициентов, т. е. когда k === 1, всякая система,

·согласно классической теории Флоке [16], приводима.

При k> 1 коэффициенты условно-периодичны, и даже одно уравнение (n === 1)
может быть неприводимым из-за малых знаменателей. Однако, если л удовлетворяет

.обычным арифметическим требованиям типа (2) § 1, одно урав:аение приводимо.

Предположим, что эти арифметические требования на л выполнены (а не выпол

няются они только для множества точек А. меры нуль). Спрашиваетсн, при любой

.ли аналитической матрице А (р) система (6) nриводим,а, в случае k> 1, n> 1?
Известно только, что при n === 2 приводимые матрицы А (р) заполняют некото

рую область в функциональном пространстве всех матриц [8]. Если СУlцествуют

области, заполненные неприводимыми А (р), то· интересна проблема нормальной

формы для них. Было бы TaKiHe интересно исследовать более общий вопрос

.() нормальной форме линейной системы (6), в которой р - фазован точка динамиче-
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СRОЙ системы, например геодезичеСRОГО ПОТОRа. Такая задача естественно возникает

при изучении уравнений в вариациях.

Может представлять интерес также задача о перенесении теории Флоке на

случай, когда комплексное время t пробегает замкнутую риманову поверхность

(одномерное комплексное замкнутое многообразие).

111. 3 а Д а ч и с б о л ь m и м и в о з м у Щ е н и я м и. ОтысканиеУСJIовно-перио

дических движений в случае, когда система не близка к интегрируемой, связано

со значительными трудностями. Простейшая модельная задача, в которой эти

трудности уже имеются, состоит в следующем. Пусть дано аналитическое обрати

мое и не меняющее ориентации отображение окружности на себя (примером такого

отображения является поворот окружности). Пуанкаре [17] определил чис.ао враще

ния - средний угол поворота - для любого такого ото.бражения. Данжуа'[18] дока

зал, что если число вращения несоизмеримо с 1, то отображение можно превратить

в поворот непрерывной заменой переменной. Предположим, что число вращения

удовлетворяет арифметическим требованиям (2) § 1..
Будет .аи тогда у~ааанная аамена переменной ана.аитичес~оЙi

Дифференцируемость этой замены доказана недавно А; Финчи [19]. Можно

ноказать, что она аналитична для отображений, мало ОТJlичающихся··от поворота [20].
lУ. Вы Р о ж Д е н и е. 3 а д а ч а т ре х т е л. В случае, когда имеется несколько

быстрых частот, вырождение плохо изучено даже в рамках асимптотической теории.

1
Например, отсутствует строгое исследование поведения при t -.... -;- переменных

действия системы с двумя степенями свободы (см. [1.3], [15]). В задачах, где отно

шение частот быстрых ·движениЙ зависит от фаз медленных, вероятно, возникают

интересные неизученные эффекты. С .другой стороны, интересно узнать, типично

ли условно-периодическое поведение в задачах, где такой зависимости нет, напри

мер в плоской задаче трех тел."

Пусть массы планет т, т' малы по сравнению с массой М центрального тела

т = r-аМ, т' = r-a'м ,
где lJ. - малый параметр, а, а', М - фиксированные константы. Рассмотрим в фазо

вом пространстве область, ограниченную условиями (8)

с<а<С; с'<а'<С'; е, е'<е,

где а, а' - большие полуоси, е, е' - эксцентриситеты и О < с < С < с' < С' - постоян

ные. Обозначим через V (е, r-) объем этой обл"асти (зависящий еще и от постоян

:ных а, а', М, С, С, с', С). Пусть W (е, r-) - мера множества условно-периодических

траекторий, лежащих в области (8).
Верно .аи, что при всех '1:: < 1::0, r- < fJ-о ижее,м,

где 6 (эо, lJ.o) > о не зависит от 1::, r- и стрежится .~ 1 при ео, ·r-o~ О?

То, что W (ео, r-o) > О, мол~но, вероятно, доказать, рассматривая он:рес1:'НОСТЬ

подходящего периодического решения (см. § 2). Прд исследовании типичности

условно-периодических движений в общей проблеме трех и n тел, по-видимому, не

встретится новых принципиальных трудностей по сравнению с задачей, сформули

рованной выше.

У. м а г н и т н ы е л о в у m к и. Имеющиеся в настоящее время общие теоремы

применимы ко многим классическим неинтегрируемым проблемам механики.

Л хотел бы указать здесь еще на одну задачу, важную для современной физики.

Речь идет о движении заряженной частицы в магнитцом поле [21].
Хотя движение и описывается гаМИЛЬТОнQВЫМИ уравнениями, разделение его на

быстрое ларморовское вращение и медленный дрейф выполнено сейчас (в первом

приближении) методом усреднения в неканонической форме [22]. Чтобы применитъ

общую теорию § 3, следовало бы ввести ~анонuчес~им nреобразованием быстрые и

.мед.аенные nеременные, аналогичные элементам Делоне в астрономии, и провести
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* Editor’s note: V.I. Arnol’d: Small denominators and the problem of stability in classical and 
celectial mechanics, Proceedings of the Fourth All-Union Mathematics Congress
(Leningrad, 3–12 July 1961), vol.2, Nauka, Leningrad, 1964, pp. 403–409 

разделение движений в рамках первого приближеНИfl классической теории возму

IJJ;ений (т. е. усреднением функции Гамильтона). Если бы это было сделано, можно

было бы (ср. § 3) строго доказать, например, вечную адиабатическую инвариант

ность .магнитного .момента в акqиа.аьно-си,м,,м,етричноЙ Jl,овушке. Тем самым было

бы доказано, что такаяловуmка удерживает частицы вечно.

В качестве простейшей математической модели можно рассмотреть поведение

.аиниЙ nостОЯ7-tной геодезической кривизны k на данной noeepX7-tосmu С23]. Следует

ожидать, что линия достаточно большой кривизны k постоянно остается в кольце

между двумя линиями уровня гауссовой кривизны поверхности.
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В. и. АРНОЛЬД

УСТОЙЧИВОСТЬ И НЕУС10йчивоеть

в КЛАССИЧЕСКОЙ МЕХАНИКЕ

Предлагаемые дальше лекции служат введением в цикл

работ, поевящеI-IНЫХ строгому качественному исследова

нию нелинейны:у уравнений классической мехаНИКУl, нача

тый работой А. Н. Колмогорова в 1954 г. Речь идет

гланным образом о проблеме устойчивости движения КОИ

серваТИВI-IЫХ систем (задача трех тел и Т. п.).

Полученные результаты дают сспедующую картину по

ведения многочастотных «условно-периодических» движе

ний при возмущении:

1. Для большинства начальных условий возмущенное

движение условно- периодично.

2. Если размерI-Iоеть фазового пространства не более

4, "то возмущенное движение устойчиво.

3. Если размерность фазового пространства 5 и более,

то «общим случаем» является топологическая неустоичи

воеть возмущенного дви)t~еНI'1Я.

Основное ВI-Iиман:ие уделено общим принципам и ме

тодам, Прllложения которых далеко не исчерпываются

получен'НЫМИ к настоящему времени, конкретными резуль

татами. Несколько таких результатов перечислено в пер

вой леКЦИlI.

1. ВВ ЕДЕНИЕ

§ 1. Результаты

Трудность качественных вопросов классической fvIexa
ники хорошо извееТI-Iа. Несмотря на длительные усилия

многих математиков, большая часть этих вопросов все
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еще ожидает решени~. Лишь в последнее время, начиная

с работ К. л. Зигеля (1942 г.) и А. Н. Колмогорова

(1954 г.), наметился некоторый прогресс в решеНI1И

проблем устойчивости движения динамических систем.

В частности:

1. Доказана УСТОЙЧI1ВОСТЬ положеI-IИЙ раВIIовесия и

периодических реЧIений консервативных систем с двумя

степенями свободы .в так называемом обlцем эллипти

ческом случае.

2. Доказана вечная адиабатическая инварl1антноеть

переменной действия при медленном периодическом изме

нении параметров нелинейной колебательной системы

с одной степенью свободы. Установлено, что «магнит

ная ловушка» с 3I{сиально симметри~чным магнитным

полем способна вечно удерживать заряженные чаСТI1цы 1).

3. НайдеflЫ условно-периодические движения в задаче

многих тел. Если массы n «планет» достаточно малы по

сравнению с массой центрального те.ла, то движение ус

ловно-пеРИОДИЧIIО для большинства начальных условий,

при которых эксцентриситеты и наклонения кеплеровых

эллипсов малы. При этом большие полуоси вечно оста

ются вблизи своих начальных значений, а эксцентриси

теты и наклонения - малыми.

4. Доказана устойчивость быстрого вращения тяже

лого несимметричного твердого тела, закреплеНI-IОГО в

произвольной точке.

Здесь изложим только основные идеlf 2).

В следующих двух параграфах приведены некоторые

сведения из механики и математики, мало известные ма

тематикам и механикам.

§ 2. Предварительные сведения из механики

1. Малые знаменатели. Астрономы давно заметили,

что резонансные явления, связанные с соизмеримостью

частот взаимодействующих движений, приводят к «ма-

1) ХОТЯ мы употребляем термины «частицы», «планеты», "речь

всюду идет О математических теоремах, касающихся поведения реше

ний определенных дифференциальных уравнений. Применимость этих

теорем к реальным системам дол)кна быть особо исследована в каж

дом отдельном случае.

2) Подробные доказательства и список литературы опубликованы

в УМН, Т. 18, 5 и 6, 1963. Здесь мы не будем воспроизводить их

в деталях.
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лым знаменателям» и большим математическим труднос

тям 1).
Пример 1. Юпитер за день проходит по своей орбlIте

Ю1 == 299",1, а Сатурн - Ш2 = 120" ,5.
Частоты (1)1' (02 почти СОИЗ!vlеримы:

2ю1 - 5Ю2~О.

Выражение тю!+ nШ2 входит знаменателем в ряды тео

рии ВОЗ~lущений, имеющие ВИД

(1)

Со времен Лапласа известно большое долгопериодиче

ское возмущение движения планет вокруг Солнца, свя

занное с малым знаменателем 2w1 - 5ы2 •

2. Проблемы устойчивости. Первой и весьма стимули

рующей исследования задачей этого рода (не решенноiI

и поныне) был вопрос об устойчивости планетных орбит.

Не вызовут ли малые возмущения планет друг другом

через достаточно большое время столкновений или ухода

в бесконечность?

Теория устойчивости движения, разработанная в из

вестных трудах А. Пуанкаре и А. М. ЛЯllунова, позво

ляет обнаруживать асимптотическую УСТО~IЧИВОСТЬ. Но

проблемы УСТОЙЧИВОСТИ классической механики относятся

всегда к «нейтральному случаю» чисто 1\1НИМЫХ характе

Рlfстических показателей: асимптотически устойчивые дви

жения в них невозможны и:з-за сохранения объема в фа

зовом пространс.тве (теорема Лиувилля). Поэтому указанные

методы не дают ничего для исследования устойчивости

движения нелинейных консервативных систем.

Основная ТРУДНОСТЬ, встречающаяся в этих исследо

ваниях, связана с расходимостью рядов теории ВОЗМУ

щений (1) из-за малых знаменателей mШ1 + nШ2 • А. Пу

анкаре, занимаясь плоской ограниченной задачей трех

тел, показал, что эти трудности встречаются уже в

1) А. Пуанкаре писал: «Трудности, ветречаlощиеся в небесной

механике вследствие существования малых делителей и приблизи

тельных соизмеримостей с.редних движений, .связаны с самой при

радой вещей и не могут быть обойдены».
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ql
Рис. 1.

модельных задачах, допускающих совсем простую мате

матическую формулировку. Дж. Д. Биркгоф подробно

исследовал одну из таких задач.

Пример 2 «<проблема Бuркгофа»). Пусть дано сохра

няющее площадь аналитическое отображение Т окрест

ности нуля плоскости р, q на себя. Пусть нуль - I-Iепо

движная точка.

Устойчива ли она? Предполагается, что линейная часть

т в нуле есть поворот плоскости р, q.
К настоящему времени на этот вопрос получен поло

жительный ответ; обсудим его в § 4.
3. Замечания. В следующих разделах будем пользо

ваться «устрашающим формальныi'Л аппаратом динаМl'IКИ».

Канонический вид уравнений дви}кения не обязателен для

применения и:злагаемых методов, но он облегчает многие

выкладки. ПредполагаIОТСЯ tIзвестными понятия конфи

гурациаиного и фазового пространства, уравнения Лаг

ранжа и Гамильтона, цикличеСI{ие l{оординаты и заКОI-IЫ

сохранения, канонические преобразоваНI1Я, скобки Пуас

сона, интегральные инварианты и переменные действие

угол в объеме учебника JIандау и Лифшица «MexaI-Iика».

В качестве контроля полезно решить задачу.

Задача. Пусть точка движется по инерции по поверх

ности (сила тяжести отсутствует). Найти инвариантные

двумерные многообразия в фазовом пространстве и иссле

довать движение фазовой точки по НИМ. Рассмотреть слу

чаи, когда S' есть: а) тор, б) эллипсоид вращения.

§ 3. Предварительные сведения из математики

1. Что такое условно-периодическое движение. Рас

смотрим поверхность тора (баранки, рис. 1) и введем на

ней «географические» координаты: дол

готу ql И широту q2. YfJIbI ql И q2
будем выражать в радианах и рассмат

ривать с точностью до целого кратного

21t. Картой тора может служить, на

пример, квадрат О -< Ql,2 -< 21t на плос

кости ql' q2. Удобно пользоваться

также всей плоскостью Ql' q2~ разде

ленной r~a квадраты со CTOpOI-IОЙ 21t. Ка)кдая точка тора

имеет изображеНllе в каждом квадрате такой карты

(рис. 2).
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Рассмотрим точку ql (t), q2 (t), движущуюся по тору

так, что ее коорДlIнаты меняются paBI-IОмерв:о:

(2)

•
•

Рис. 2.

•

На l<арте Ql, q2 это движение изобразится прямой ли

I-IиеИ.

Если (J)1/bl2 == т! n, где т и n целые числа, то через

, 2 т 2 n
время t == 1t - == 1t - точка вернется на прежнее место,

(J)1 002

сделав т оборотов по параллел'И и n· по меридиаlIУ (на

pIIC. 2 m = 2, n = 3). В этом случае урав

нение (2) определяет периодическое дви

жеI1ие.

Если: же Ш1/Ш2 - иррациональное число,

то ДВIlжущаяся точка I-Iикогда не придет на

прежнее место. В этом случае движение (2)
называется условно-периодическим" с двумя

частотаrvlИ (01' 002. Траекторию ql (t), q2 (t)
называют оБМОТI<ОЙ тора.

С условно-пеРllодичеекими движениями тесно связаны

условно-пеРlfодиче.ские функции. Если F (ql' q2) - фУI-IК

ЦНЯ на торе, разлагающаяся в ряд Фурье

+00
F (Ql' q2) == ~ fтnei(mq1+nq2),

т, n=-со

то ее ИЗI\денение со временем при движении (2) будет

иметь вид

+00
t (t) == F [ql (t), q2 (t)] = ~ fmnei[(m(j)1+n(J)2)t+~mn]. (3)

т, n=-С'О

ФУНI{ЦИИ (3) называют условв:о-периодическими. Примером

IVlожет слу"жить f (t) == cos t + cos V2 t. Появление рядов
вида (3) в какой-нибудь задаче всегда указывает на

условно-периодическое движение (2).
2. Некоторые свойства условно-периодических движе

нии. 1. Траектория условно-периодического движения

ВСЮДУ плотна на торе.

Это значит, что рано 'или поздно движущаяся точка р (t),
q (t) побывает в любой области /:).. Свойство 1 легко выте

кает из слеДУI{)щего факта:
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lа. Пусть (l - иррациональное число и ~ - дуга окруж

ности 'Z \= 1. Тогда среди точек e27tina (n = 1, 2, 3, ...)
eCTh точки Ь. 1) •

Отметим также, что траектория условно-периодического

движения равномерно распределена: доля времени от t == О

ДО t = Т, которое движущаяся точка проводит в области

f1 (рис. 3), пропорционально площади' этой о·бласти, если

т велико 2).

2. Для любой интегрируемой по Риману

функции F (Ql' q2) среднее по времени равно

среднему по пространству:

т

Нт; 5F (w1t, w2t) dt =
Т-+ОС О

21t 2п

Рис. 3. = 4~2 SSF (ql' q2) dql dq2.
О О

Вот пример к свойству 2.
3. Задача ЛаграНlI{а о среднем движении перигелиев.

Пусть вектор а (t) на ПЛОСI(ОСТИ Х, У есть сумма трех векторов

а (t) = a1(t) + а2 (t) + аз (t)

длин а1 , а2 , аз, вращающихся равномерно с неззвисимыми 3)

угловыми скоростями <JJ1, Ш2 , шв • Обозначим через ер (t)
угол вектора а (t) с осью х (рис. 4).

Задача. Найти среДНIОЮ угловую

скорость вектора а,

w = Вт СР<;) .
Т-+ОО

Ответ: (t) = 0:1001 + а2(1)2 + О:зООз
0:1 + Ct2+аз '

где а,1' CL2 ' а,з - углы треугольника со

сторонами аl' а2 , аз (Боль, Серпинский, Рис. 4.
г. Вейль, 1909).

Прежде чем переходить к общей теории) рассмотрим

простейший пример, в котором уже проявляются l'4ногие

существенные чеРТЬi изучаемых явлении.

1) Может ли число 2n начинаться с цифры 7? Согласно 1а, чис

ло 2n может начинаться с любой комбинации цифр.

2) С какой цифры чаще начинается 2n : с 7 или 8? .
З) Числа (1)1' (02) (0з независимы, если из k1OO1 + k2(02 + kз())з = О

с целыми ki вытекает kr: = о.
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§ 4. Простейша~ проблема устойчивости

Вернемся к примеру 2 из § 2: дано сохраняющее площадь

аналитическое отобраLКение Т окрестности нуля плоскости

р, q на себя. Устойчива ли неподвижная точка О?

Кратко изложим результат применения общих методов

к этому случаю.

1. три nри/и,ера. Для линейных преобразований вопрос

решается ВЫЧllслением собствеНIIЫХ значений Л1 , Л2 • Ввиду

сохра-нения площади, Л1Л2 == 1. Если Л1 И Л2 не действитель-

ны, то Х1 = Л2 , 1"1'21 = 1, Л1 ,2 = e±iill.
Пример 1. Рассмотрим обыкновенный поворот А плос

кости р, q на угол u.> вокруг точки о. Кая{дая окружность

р2 + q2 == const инвариантна, т. е. переходит в себя: она

поворачивается как целое на угол ш. Траектория всюду

плотна на окружности, если w =1= 2'7t m/n.
Всякое линейное преобразование Т с Л1 ,2 =e±iill может

быть приведено к виду А линейнымизменениемS систеl\IЫ

координат: т

р, q~ р, q
S t t S

А

" "p,q -+p,q.

Такое отображени:еТ называетсяэллиптическимповоротом.

Перейдем к нелинейнымотобра}кениям. Если линейная

часть данного отображения Т в нуле есть эллиптический

поворот, то Т называется отображе

нием эллиптического типа.

Пример 2. Рассмотрим отображеНIlе

В (рис. 5), при котором каждая окруж"

ность р2 + q2 = 2tt поворачивается на

свой угол

w ('С) = 000 + W 1tt + ... . (4)

Это отображение эллиитического ТИIта,

и оно устойчиво. Рис. 5.
Рассмотрим систему координат. р',

q', связанную с р, q аналитическим преобразованием S,
сохраняющим площадь и остаВЛЯЮlllИМ О на месте.

На плоскости р', q' рассмотрим отображение В (при

мер 2).
Пример 3. Запишем отображение В в координатах

р, q. Получится отображение С == S-JBS.
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Это отображение эллиптического типа, и оно устойчиво,

так как заменой переменных S превращается в устойчивое

отображение В.

Нельзя ли получить любое отображение элл:иптического

типа конструкций примера 3? Это дало бы, в частности,

и положительное решение проблемы устойчивости.

2. фОрJJ;tальное решение. Со времен Биркгофа известно,

что если не заботиться о сходимости рядов, то при условии

т

W =f=. 2'7t n(т = О, + 1, +2, . . . ; n = 1, 2, 3, о •• ) (5)

отображение эллиптического типа Т всегда мо}кно фор

мальной заменой переменных S привести к виду ...';т8-1 == В
примера 2. Замена S определяется с помощью «рядов Бирк

гофа», аналогичных рядам теории возмущений. Эти ряды,

в общем случае, расходятся. Из существования формальных

рядов S не вытекает устойчивости отображения Т.

Тем не менее, можно оборвать ряд S, и сходящейся

заменой переменных S(5) привести т к виду, лишь малыми

сколь угодно высокого порядка О (tt S
) ОТЛI1чающемуся от В.

Получающиеся при этом коэффициенты ШО ' Ш1 ' .•• в (4)
~Ie· зависят от способа 8(5) приведения Т к виду В; ОНИ

являются инвариантамиТ относительносохраняющихпло

щадь аналитических преобразованиЙ. Если Ш1 =1= О, то

говорят) что отобраJ!<ение Т - общего ЭЛ.пиптического типа.

В этом случае угол W(tt), на который поворачивается

окружность tt = const при отображении В, меняется с tt

(СМ. (4)). Поэтому некоторые окружности повораt.Iиваются

на угол, соизмеримый с 27С, другие же - на несоизме..
римый.

В .надлежащих переменных отображение Т вблизи О

можно рассматривать как поворот В fla переl\1енный угол

w (tt), возмущенный весьма маЛЫ1\1И дополнительными .чле ..
нами. Поэтому наща задача свел ась к изучению Т, отлича

ющихся от В лишь малыми по сравнению с tt S возмущеНИЯl\IИ.

3. Инвариантные кривые. Если бы ряды Биркгофа S
сходились, то окрестность точки О вся состояла бы из

близких к окружностям 't = const ИI-IвариаНТI{ЫХ кривых

отображения Т.

Оказывается, в действительностибольшинство инвари

антн:ых окружностейотображенияВ, на которых угол (t) ('t)
несоизмерим с 21t, не исчезает при малом возrvlущении В,

а лишь немного ]J~еформируется. Поэтому I-Iеподвижная
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точка О окружена сколь угодно малыми инвариантными

относительно Т аналитическими замкнутыми кривыми и,

следовательно, устойчива. Можно показать, что эти кривые

заполняют множество положитеЛЫIОЙ: меры, имеющее О

точкой плотности.

Но эти кривые не заполняют Оl<рестноети точки О

целиком и вообще не заполняют I-Iикакой области: между

ними остаются еще «зоны неустойчивости», ВОЗIIикающие

при .J30змущении из окружностей 'с = const, где w (tt)
соизмеРИl\IО с 21t. На К(1)КДОМ луче, выходящем из О,

инвариантные кривые высекают

след вроде канторова совершен

ного множества, JIO положитеJIЬ..
ной меры.

4. ЗОНЫ неусmоЙчuвосmu. Рас ..
смотрим инвариантную окружность

«невозмущенного» преобразования

В, поворачивающуюся на угол

u> ('t) = 27t :. При n - кратной

итерации В каждая точка окруж

ности вернется на свое место.

Это свойство В при малом воз- Рис. 6.
мущении, вообще говоря, не со-

ХIJзняет'ся, и такая инвариантная окружность «рассы

пается». Дж. Д. Биркгоф доказал, что вместо целой

окружности непоДВИЖНЫХ относительно ВN точек ТN имеет,

вообще говоря, конечное чеТI-Iое число неподв:ижных точек

вблизи этой окружности. Сред,И этих точек половина имеет

эллиптический и половина «гиперболический» тип 1).

Как указано в 3, точки эллиптического типа, вообще

говоря, УСТОЙЧИВЫ и окружены инвариантными кривыми,

не охваТЫВ3ЮЩИМI1 О (рис. 6). СледоватеЛЬfIО, в общем

случае окрестность О не расслаивается на инвариантные

за~/{кнутые кривые~ Отсюда уже вытекает УПОl\линавшаяся

выше расходимость рЯДОВ Биркгофа (СМ. 2, § 4).
Сепаратриссыгиперболическихточек, пересекаясьдруг

с другом, создают в «зонах неустойчивости» запутанную

сеть. В окрестности каждой эллиптической точки имеет

1) Строение последних легко ПОНЯТЬ, рассмотрев гиперболический

1
поворот Р -+ 2р, q~"2 q.
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место та же картина с инварllантными кривыми, зонами

неустойчивости и т. Д.

5. J1словuя устойчивости . Укажем здесь предположения,

в которых доказа~о существоваlIие инвариантных кривых

(СМ. 3) и устойчивость Т. В первоначальном доказатель

стве 11СПОЛЬ30вались иррациональность ыо/2тс, условие

WI + Ш: + ... =/= О и аналитичность Т. Эти условия ослаб
лены ю. Мозером, который вместо ирраЦИОrlальноети

т т

wo/21t требует шо/2тс =/= 3' 4' а вместо аналитичности

т - непрерЫВI-Iоеть 333 производных.

При: шо/2тс == mj3 ВО3!\10жна неустойчивость, как это

установил еще Т. Jlеви-Чивита.

11. КЛАССИЧЕСI(АЯ ТЕОРИЯ ВО3М УЩЕНИИ.

МАЛЫЕ 3IiАМЕНАТЕЛИ

§ 1. Интегрируемые и неинтегрируемые проблемы динамик"

Будем рассматривать консервативные динамические

системы с n степеНЯl\IИ свободы, определяемые каноничес

кими уравнениями движения

· ан· дН
р = - дёi' q.....,. дР (р = Рl' о •• , Рll; q = ql' о о • , qn) (1)

с аналитической функцией Гамильтона Н (р, q). КлаССI1

ческие методы динамики позволяют исследовать лишь так

называемые интегрируемые случаи.

Пример 1. Предположим, что фазовое пространство

р, q является прямым произведением n-мерн:ого тора на

область n-мерного эвклидова пространства. Пусть qi
(mod 27t) - угловые координаты на торе, а Pi - В прост"

ранстве и функция Гамильтона зависит только от р : Н =
= н (р). Уравнения ·ГаМI1льтона (1) ПРИНИl\13ЮТВИД

.. ан

р=О, q=w(p) (ю= др =Ю1 ,'0', юn)

и тотчас интегрируются. Каждый тор р = const инвариан

тен; если частоты w несоизмеримы (из (J)tkl +... +w~-kn = О

с целыми k; следует k1 = О), то Движение называется

условно-периодическим с n частотами W1 ' ••• ,Юn ; легко

доказать, что траектория р (t), q (t) заполняет тор всюду
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ПЛОТНО. Переменные р, q из примера 1 называются пере

менными действи:е - угол.

К настоящему времени найдено l\tlHOrO интегрируемых

задач. Решение всех таких задач с n степенями свободы

oCHOBaI~IO на ТОМ, что существуют (и найдены) n однознач

ных первых интегралов в ИНВОLТlЮЦИИ 1).

Можно показать, что существованиетаких интегралов

влечет за собой следующуюI{артину поведения траекторий

в 2n7~лерном фазовом пространстве р, q. Некоторое особое

2n - 1-1V1ерI-IОе множество разбивает фазовое пространство

IIa инвариантные области. Каждая 113 них расслоена .на
инвариантные n-мерные многообразия. Если область огра ..
ничена, то эти многообразия суть торы, несущие. УСЛОВI-IО

периодические ДВИ)l(ения. В такой области можно ввести

координаты действие - угол примера 1. Если n первых ИН

тегралов в инволюции уже найдены, то каlfоническое пре

образование, вводящее перемеI-Iные действие - угол, Дается

квадратурой.

Прuмер 2. Интегрируемые задачи: задача двух тел;

задача о притяжении двумя неподвижны~ли центра!'ли; дви

JКение свободной точки по геодезической на поверхности

трехосного эллипсоида; ~яжелое симмеТрtlчное твердое

тело, закрепленное в точке на OCII; несимметричноетвердое

тело, закрепленноев центре тяжести; линейные колебания.

Неинтегрируемые2) задачи: задача n тел, в том числе

так называемая плоская ограничеНtlая круговая задача

трех тел; Движение свободной точки по геодезической

на выпуклой поверхности; тя}келое несимметричное твер

дое тело; нелинейные колебания сп> 1 степенями сво

боды.

Интегрируемые случаи в OCHOBHOl\Ji были найдены в

XIX В. (Якоби, Лиувилль, Ковалевская и др.). Но после

работ Пуанкаре стало ЯСНО, что ДИlfамическая система

общего ВI1да неинтегрируема~ интегралы не только не

известны, но не существуют вовсе, так как траектории

в целом не ложатся на инвариантные n-fv1ериые много

образия.

1) Функции f (р, q) и g (р, q) находятся в ИНВОЛЮЦИИ, если их скобка

д! дg д! ag
Пуассона др · aq - aq · др тождественно равна нулю.

2) Осторожнее сказать непроинтегрированные, так как доказа·

тельства неинтегрируемости сложны и проведены строго лишь в ОТ

дельных случаях.
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§ 2. Классическая теория возмущений

Предположим, что система отличается от интегрируе

мой малыми «возмущениями»; В обозначениях примера 1

н (р, q) = но (р) + ~ н1 (р, q) + ···, (2)

где t.L мало и Н1 +.... Иl'леет период 2п по q. Согласно

ПуаIiкаре, исследоваНI1е этого случая есть «основная проб ...
лема динамики». Как влияет возмущеflие rrH1 на поведе

ние траекторий при t -+ оо? Сохраняются ли инвариант

ные торы? Остается ли траектория по крайней мере

вблизи тора р == const?
Сравнени:е интегрируемых и неинтегрируемых задач

примера 2 показывает, какое значение эти вопросы имеют

для механики. Полный ответ на них содержал бы, в

частности, решение проблемы устойчивости планетной

системы.

Для приближенного исследования траекторий при боль

ших t в астрономии давно возник спец:иальный аппарат

теории возмущений. Если удается каноническим преоб-, , н

разованием р, q -+ р ,. q привести к ВI-IДУ

н (р, q) === Но' (р') + t-L2 Со', q') + ·.. , (3)

то в течение времени t ---..!.- движение р' (t), q' (t) на вели-
~

чину '"'""-' ~ будет отличаться от условно-периодического,

описываемого н; (р'). Возвращаясь к р, q, получим для

р (t), q (t) приближенные выражения с ошибкой порядка
1

~ при t,....., -. Если требуется большая точность, можно
~

сделатьследующееприближениер' , q' -+ р", q", приводящее
Н к виду

Н (р, q) = н; (р") + ~8H;' (,0", q") + ... ·

Теперь ошибка будет ---' t.L8t. Если последовате,льные ;.при-

.ближения сходятся, то в пределе получится Н (р, q) ==
= н<:> (р(оо»), Т. е. система интегрируема: торы р(ОО) (р, q)=
= const инвариантны и заполнены траекториями УСЛОВ'Il0

периодических движений.

При проведении указанной программы наталкиваемся

на две трудности.
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1. Малые знаменатели. Будем искать каlIоническое

б I I , aS f

прео разование р, q -+ р ,q в ВI1де Р == Р + f-1 д; q =
aS q

= q + [J- др' ,

S (р', q) == L Sk (р') ei(k, q) •.

k=/=O

Функция Н (р, q) в координатах р', q' зап:ишется в виде 1)

Но (р) + ttH1 (р) + f1H1 (р, q) + ··· == Но (р') + ~Hl (р') +
J ~

+ (1l! дНо дS + jj1 I+ ~2 · .• •
др aqj

Чтобы ПОЛУЧ1IТЬ (3), нужно уничтожить зависящие от q

( дS) ,.....,
члены порядка [J-, т. е. нужно, чтобы 00, дq +Н1 = О

или

S (р') = ihk(p') где Н1 = L hkei(kQ>.
k (О), k) , k=/=O

(4)

Знаменатель (00, k) при некоторых «резонансных» Зflаче

НI1ЯХ k обращается в нуль каковы бы ни были w сколь

угодно малые при подходящих k. Эти 1\1алые знаменатели

(ю, k) ставят под сомнение законность наших формальных

преобразований при n > 1.
2. Расходимость приближений. Есть случаи, когда

ряды каждого приближения обрываются и ПОТО1VlУ с.ходятся.

Такие случаи подробно исследовал Биркгоф. Одна

ко Зигель показал, что все приближения вместе в этом

случае, как правило, расходятся. ИЗ СХОДИМОСТII следо

вала бы описаI-II-!ая в примере 1 структура траекторий.

В действительности же траектории возмущенной системы

могут не лежать на инвариантных торах.

Предположим, что det I~; I =1= о. Тогда в любой окрест
ности любого инвариантного тора невозмущеI-IНОЙ систеlVIЫ

есть n-мерный тор, на котором все траектории через ОДНО

и то же время замыкаются. При IVlаЛОfvl возмущении это

n-мерное многообразие замкнутых траекторий, вообще

говоря, разрушается. Следовательно, ряды теории возму

щений не будут сходиться ни в какой области фазового

пространства.

1) Черта обозначает среднее по q :Н1 (р) = (2nГnSНl (р, q) dq.
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Указанные соображеI.:rия не исключают ВОЗМОЖНОСТИ

существов~ния у возмущеI-IНОЙ системы инвариаНТIIЫХ то

ров, на которых (ш, k) =1= о. Эти торы не могут заполнять

никакой области ..

§ 3. Малые знаменатели

При исследовании влияния малых знаrvfенателей (ю, k)
астрономы давно уже применяли некоторые арифмети

ческие соображения. Простейшее из них состоит в том,

что ирраЦIIонаЛЫIЫХ чисел больше, чем рациональных.

Далее, компоненты наугад взятого вектора w несоизме

римы. Поэтому при почти всех 1) векторах w имеем (ю, k) =F
=1= О при всех целых k =1= о.

Более точно эту мысль выражает слеДУlощая теорема

из теории диофантовых приближений.

Теорема. Почти каждый вектор (j) = 001' ••• , фn удов

летеоряеm неравенствам

для всех целочuслеНflblХ k =1= О при fleKomopOM К (ш) > о.

Д о к а з а т е л ь с т в о. Рассмотрим ограничеНI-IУЮ об

ласть Q, зафикси:руе!'л I( > О и целое k. Тогда иеравеI--IСТВО

(5) нарушено Л}IШЬ в «реЗОllансной зоне» ширины meI-Iьше

2К t k \-V, объем этой зоны не превосходит К Ik I-v D, где

ПОСТОЯНI-Iая D > О зависит лишь от Q.
Всех k с Ik I= m не более Lmn- 1 (постоянная L > О

зависит лишь от n). Поэтому мера всех резонансных зон

с 'k I= т не превосходит Кт-2 DL, а всех с Ik I> 0-
00

- ~ к;/DB -< кВ (Q), l5 = 2LD. При К -+ о суммарная
m=1

мера· резонансных зон стремится к О, откуда непосред-

ственно вытекает доказываемое утвержден:ие.

Таким образом, для большинства w малые знамена ..
тели (00, k) не ТОЛЬК9 не равны нулю, но могут быть оце

нены снизу степенью \k 1. в связи с этим возника~т ,на

дежда на сходимость рядов теории возмущений (4) для

большинства 00: ведь коэффициенты Фурье hk анали

тической функции Н1 уБыIаютT в геОl\1етрической про

грессии.

1) Всех, за ИСКJп{)чением множества лебеговои меры нуль.
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Действительно, пусть функция Н1 аналитична в полосе

11т q \ -< р, и в этой полосе' Н1 \ < М. Сдвигая в формуле
для коэффициентов Фурье

27t

hk = (2тс)-n 5Н1 e-i (k, q) dq
о

контур интегрирования на +ip, получаем

1hk '< Ме- I
k 'Р · (6)

При УСЛОВИИ:, что малые зн:аменатели допускают оценку

(5)

коэффициенты Фурье Sk функции S убываlОТ в геометри

ческой прогрессии почти так же быстро, как и коэффи

циенты hk : при любом о > о имеем в виду (5), (6):

I8k I -< ~~ e-/kl (р-о),

где v, L _. постоянные, зависящие только от размерности.

Следовательно, ряд S сходится при I1т q I< р, а в

несколько более узкой полосе I 1т q 1 < Р - 20 сумма до

пускает оценку вида

ML
\8 1-< Kov · (7)

Таким образом, ряд (4) сходится при IIОЧТИ всех Ы.

Однако: 1) полученные функци:и S всюду разрывно зави

. с.ят от р, поэтому S, строго говоря, не определяет ни

какого преобразования р, q -+ р', q';
2) тем более сомнительна сходимость приближений p(s) ,

q(s) при s -7 СХ).

111. l\'lЕТОД НЬЮТОНА. ТЕОРЕМА КОЛМОГОРОВА

Система последовательных приближений теории воз

мущений наталкивается на существенные трудности, свя

занные с «малыми знаменателями». Эти труднос.ти были

преодолены А. Н. :Колмогоровым с ПОМОЩЬЮ иной схемы

последовательных приближений: с помощью f'летода Нью

тона.
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§ 1. Метод Ньютона

«Метод касатеЛЫ-IЫХ» НЬЮТОI-Iа слу,кит для нахожде

НИЯ послеДовательных приближений X1, Х2 , ••• к корню х

урав~ения f (х) == О (рис. 7).
Пусть X1 - хорошее прибли)кение к корню: f (х1 ) ==

== е «1 (следовательно, \х - Xl\ ~ 8). Так как

t (х) == f (х1) + f' (X1)(X -, Х1) + о (Х - X1)2,

то, пренебрегая О (Х - х1)2 --- 82, получае~.1 уравнение

€ + t' (X1) (Х2 - X1 ) == О,

корень которого Х2 дает flриближение t (х2) --' Е2 И, сле

довательно, Iх -. Х2 \ ~ 82.

Дальнейшие приближения,дадут

,х - хз !~ 64, \х - х4 1 ,......, 88 , так что

каждый раз ошибка возводится в

квадрат. ВозникаI-ощая «сверхсходи-
масть» (\ Х - Xs I-.,.., E

2s
-

1
) является ос

новным для нас свойством l'летода

Ньютона.

В теории возмущений процедура,

аналогичная изложенно!'лу выше по

строению Х2 ' хорошо 11звестиа: это обычная замена пе'ре

менной первого приближения (СМ. раздел 2).
Идея Колмогорова состоит в том, чтобы и в следую ..

щих приближениях итерировать ту же процедуру и вместо

обычной последовательности приближений с точноеты-о

до €, 82, 83, Е4 , . .• получить быстро сходящуюся после

довательность Е, Е2 , в4, Е8 , ••••

Более точно, речь идет о следующих оценках. Пусть

в исходной системе возмущеI-Iие Н1 аналитично по угло

вым переменным q в полосе 1 1т q I < р1 И допускает в

этой полосе оценку Iн1 I< м1 « 1. Для упрощения письма
будем записывать эту оценку в виде

IH1lp1 -< M 1 •

После первого Прllближения теории возмущений вели ..
2 '

чина возмущения Н2 будет уже порядка М1 • Точнее,

оценки, аналогичные проведенным в конце предыдущей

лекции, дают (ДЛЯ иереЗОflаисных значений р)

м
2

IН2 !Р2 < ~2~ = М2 •
01

100



458

Здес.ь Р2 == Р1 - Lo1, 01> О произвольно, а L 11 v - посто

янные, ззвисящи:е толы{о от числа степеI-Iей свободы, по

еТОЯI-IНЫХ 1(, v (В оцеlIке малых знаменателей I(k, ш)\ >
> к \k I-v). .

в каждом следующем приближении получим анало

гичную оценку \н s Ips < м s во все более и более узкоfI

полосе ширины

Ps = Рl - L (01 + 02 + ··.+ 0S-I)·

Чтобы не потерять аналитичности после бесконечного

числа приближений, выберем 01' 02, 8 •• столь малыми,

чт-обы сумма ряда

L (01 + 02 + ·..)
IIe превосходила 0,5 Р18

Чтобы величины

етрем:ились к нулю при s -+ 00, нужно, чтобы 0s -+ О мед
2

леннее, чем Ms '""'-' MS- 1• Положим, например,

1~ 1--!.- 1-.!-
~2 = 81 2 8з =62 2 , ••• , 6s+I = 6s 2 , ••• (61« Рl)

'н докажем СХОДИМОСТЬ H s к нулю при 11т q 1< 0,5 р.

При 01« Рl' очевидно, Ps > 0,5 Pl И, следовательно,

м
2

IH s 'о,5р < IH s Ips < iИs = o~~1 ·
s--1

Заметим тецерь, что если M S- 1 < 0;_1' ТО

l~T
М < 02Т-2') < О 2 == оТ

$ s-1 $-1 $ ,

1
коль скоро 2Т - 2v > 12 Т, например, Т = 4v + 1. Итак,

при М1 < 6~ имеем M s < а; -+ о (s -+00), что И требова
лось доказать1).

1) Распространение описанного метода на случай конечно-диффе

ренцируемых функций принадле}кит ю. Мазеру. Для компенсации

«потери гладкости» МЬЗ~р I3в"qдит в ка)кдое приБЛИ:lкение операцию

сгла)кивания.
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§ 2. TeOpel\1a Колмогорова

Для применения метода Ньютона к отыскаНlIЮ УСЛОВ

но-периодических ДВl1жений А. Н. КОЛI\10ГОРОВ предло

жил поступать следующим образом:

1. Будем искать только один ИI-Iвариантный тор Тю*

возмущенной системы, на котором происходит условно

периодическое движение с частотами ы*. Набор частот ш*,

удовлетворяющий неравенствам (3), фиксируем заранее.

Тор Ты* будем искать в окрестности соответствующего

:ИI-Iвариантного тора невозмущенной системы р = р* + ~... ;
дНо/др* == ш*.

В формуле (2) вместо w (р) = ано/др поставим ю*. Тогда

в выражеНИJI Н (р, q) благодаря новым переменным по-

явится дополнительный член [J. [(00 - 00*) :: ] • При
I Р - р* 1~ 11 этот член будет порядка t-L2 •

2. В указанной окрестности тора р == р* УД,ается ввести

аналитичеСКI1М каноническим преобразованием р, q~p', q'
новые переменные р', q', в которых функция Гаrvlильтона

Н (р, q) == но (р) +н 1 (р, q) принимает вид Н (р, q)=
= H(l) (р', q') = H~1) (р') + Hi1

) (р', q'), где IHi1
) 1---1Н112.

Возникающаятаким образом квадратнаясходимость,типич

ная ДЛЯ ньютонопского метода касательных, позволит

найти 11нвариантный тор Ты*.

Более точно п. 2 заключается в следующем. Пусть

при' 1т q' < р имеем 1Н1 1 -< t-Ll. С помощью оценок (4),
(5), (7) второго раздела :и п. 1 удается получить пере-

менные р', q', такие, что ПР11 I1т q' i< Р -Lo, ~ р'- р*' i -<
-< 111 имее11

2

\H (l) (1 '\ f.L1

1 Р '. q) -< 112 = 02-'} , (1)

где L > О, у > о - постоянные, зависящие толы{о от ч:исла

дн(1)

степеней свободы n. В точке р*' имеем д;' = 00*, а > о

в нашей власти: оно ТОЛЬКО должно не превосходить не.,

которой постоянной, зависящей лишь от НО, ш* :и р.

ПОК8)н:ем теперь, как, располагая оценкоii (1), пост

роит'Ь сходящиеся последовательные прибли}кения к нива

риаНТI-IОl\1У- тору Ти)*. Так как H(l) {р', q') IfMeeT тот )l{e
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ВИД, что и Н (р, q), можно с помощью (1) поеТРОJIТЬ кано·

нические преобразования

р', q' ~ р", q/I _+- ... _>-р(S), q(s) ~ ... ,

н (р, q) = H(s) (p(s), q(S») = H~S) (p(S») + HiS)(p(S), q(S»).

При ЭТОl\11 В стягивающихся областях, определенных не ..
равенствами

l'p(s) - p*(s) I -< [15' I1т q{S) I -< Ps ([15+1 = :~~ , PS+l =

дН(S) I )- р - Lo _0_ = ю* s - 1 2
- s s+l' др(S) Р*(8) ,-" ••• ,

(Ро = р, 111 = 11),
ввиду (1)

(2)

l..!..
Теперь распорядимся величинами as' Положим asH = as 2

(8 = 1,2, ...). Если [1s < а; и т достаточно велико, то,
ввиду (2),

(3)

Зафиксируем T3I{Oe большое Т, наI1РИlVIер Т = 4v + 1, и

предположим, что ПрI'!. I1т q I< Р имеем IH1 (р, q)1 -<
< t11 = 0[, где 01 достаточно l\лало. Тогда при всех S =

= 1, 2, ... будет IH~S) (p(S), q(S») I -< а; в области 11т Q(S)I<
< P

S
' \ p(S) - p*(S) t -< t-Ls • l{роr.ле того, при доетаТОЧI-IО малом

01 будет Ps > р/2 > О (8 = 1, 2, ~ .. )v Поетроеfiные области,

кзи: легн:о сообразить, ввиду (2), (3) стягиваются к 11H~

вариантному анаЛliти.ческому тору Тю*.

Таки~л образом, ПРI1ХО,ЦlfМ к с.педу!ощеЙ картине воз-

мущенного движения. Предположим, что det I~; 1=
= det Iд;;о 1=1= О. Тогда в малой окрестности любой точки р
есть точки, где частоты (J) со:измеримы, 1'1 точки, для ко

торых (J) (р) = <-о* допускает оценку (5) второго раздела.

В соответстви:и с ЭТ}IМ I-!a чаеТI'! торов р === COllst !<аио

1-Iические ураВIlеI1I'IЯ с фУНКUJIей Га~1ильтона г/о (р)
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определяют ВСIОДУ плотные условно-периодические тра ..
ектории, а на ДРУГI1Х - нет.

Оказывается, при малом возмущен:ии (Н:=:: Но (р) +
+ tJwH 1 (р, q), t.L« 1) большинство инвариантных торов с

несоизмериfv1ы'1ии частотами ш*, удовлеТВОР,ЯЮШ,ИМI-1 (5):
, (00, k) \ > к \k \ -v с фиксированным К, не исчезает, а

лишь иеМI-IОГО деформируется. Траектории возмущенного

ДВИ)l(ения, начинающиеся на деформированном торе Тш*,

заполняют его ВС'ЮДУ плотно И условно"-периодически.

Торы Тш* образуют замкнутое нигде не плотное мно

жество (между ними остаются щели, заполненные остат

ками разрушающихся шаров с соизмеримыми Ы). Но это

инвариантное нигде не

плотное множество имеет

положительную меру, ко

торая стремится к мере

всего фазового простран

ства, когда К -+ О, t.L -+ о.

в случаеn=2 двумерные

торы Тш* делят трехмер

ный инвариантный «уро

вень энергии» Н = const
(рис. 8). Поэтому траекто-

Рис. 8. рия, начинающаяся в щели

между двумя торами Тю*

не MO}E~eT выйти из нее. Таким образом, при n == 2 сущест

вование инвариантных торов позволяет делать выводы об

устойчивости движеНII,Я.

В случае n > 2 n-мерные торы Тш* не де.ПЯТ 2n - 1
мерное многообразие Н == const и «щели» !'лоrут прости

раться в бесконечность. В этом случае получаем инфор

маЦИIО о движеllИИ лиш'ь для большинства начальных

условий.

IV. ТРИ ВИДА ВЫРОЖДЕНИЯ

Мы раеемаТрIIвали до сих пор случай, когда в иите

ГрI1руемой: системе с n степенями свободы совершается

nj~ёч~астотное условно-периодичес.кое движение. ОДllако ВО

l\1IIOrltJX важных задачах t.IИСЛО независимых частот ПО

меньше числа степеней свободы n. В этих случаях говорят

о «вырождении». Различают три вида выро}кдеI-II1Я - COQ
ственное, предельное и случайноео
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§ 1. Собственное вырождение

в задаче о ньютоиовском притягивающем центре три

степени свободы (n = 3). Между тем кеплерово движение

оДночастотно (по = 1). Эта задача - типичный пример

собственного вырождения, когда в целой области число

частот ПО меньше числа степеней свободы n.
Для возмущения Бырожденных (собственно) систем

хара,ктерно возникновение в дополнеlIие к невозмущенным

«быстрым» движениям еще нескольких «медленных» или

«эволюционных» движений, так что общее число частот

становится равным числу степеней свободы.

--ql
Рис. 9.

пример. Пусть в переменных действие - угол Рl, ... ,Рn
имеем

где ПО < n. Будем обозначать вектор «быстрых перемен

ных» Рl' ••• , Рnо через Ро, а вектор «меДленных пере

менных» Рn +1' ... , Рn через Рl; аналогичный смысл
о

имеют qo и ql.
Канонические уравнения

qo = 000 (Ро); Ро = О; ql = О, jJ = О (000 (Ро) = :~o)

описывают условно-периодическое движение с по часто

тами ШО = Wl' ••• 'Шnо ПО по-мерномуинварIlантномутору

Ро = const, Рl = const, ql = const (рис. 9)~
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ПреДПОЛОЖI'Il\1 теперь, что имеется возмущение

f/ (р, q) == Но (Ро) + ~Н l (р, q) + '" . (1)

Тогда классическая теория возмущений дает следующую

картину ДВllжения (с точностью ~ tt при t,--.. 1/11). Выде

лим в Н 1 «веI{ОВУЮ часть»

Н1 (р, ql) == Н1 (PI, ••• , Рn; qno+l' ... ~ qn) ==
= (27t)-no SH1dqo

и периодическую часть Н1 (р, q):

Н1 (р, q) == Н 1 + Н1•

Он:азывается, вековая и периодическая части ВОЗМ)7щения

играют совершенно разную роль. KaI-IОI-Iические уравнения

с функцией Гамильтона ~j{l

· ан! · ан!
Рl == -!" aql + ..., q1 = t.t. дР1 + .. ·

определяют медленное, вековое изменение параметров Рl'

~1' определяющих инвариантный тор. Периодическая часть,

Н1 , приводит ЛJ1ШЬ К дополнитеЛЫ-IОМУ дрожанию ВОЗl\ЛУ

щенной траеI<ТОрИИ около условно-периодического движе

НfIЯ с l\lедленно rvlеняющимися параметрами, описываемого

функцией Гамильтона Но + ~Н18
указанная картина Движения получается при помощи

преобраэования Ро, qo -+ p~, q~ из § 2, второго раздела,
если рассматривать Рl' q1 как параметры.

Для получения более точных выводов о характере

ВОЗl'лущенного движения нужно исследовать «усредненные»

канонические уравнения с функци:ей Гамильто:на НI (PI, Ql)'
зависящей от параметров Ро. Расемотриr.л случа:и, !{огда

ЭТI1 ypabheI-IИЯ ИI-Iтегрируеf\ЛЫили БЛИЗКI1 !{ интегрируеI\1ЬПvl,

что имеет место, I-Iапример,' в плоской задаче трех тел

Прli малых r,лассах или в общей задаче n тел при: малых

массах, эксцентриситетах и наклонениях.

В случае интегрируеrvIОСТ~I при надлежащем выборе

перемеI-IНЫХ Pl' qI веI{овая часть &1 == fI1 (/)1, ... , Рn) не
будет зависеть от yrJIOBbIX перемеI-II-IЫХ Ql' и l\1bI ПрI1ХО"

д:им в качестве первого при:бл:и)!{ения !{ условн~о-периоди

чеСI{О~У ДВII)!<еНИ:IО

qo = 000 (Ро), Ро = О; С/l = 001 (р), Рl = О
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с ПО «быстрЬП\t1и» частота!\1И <.00 и nl == n - ПО «медленны

ми» частотами Ш1 ~~. На это дви}кение I-Iакладывается

в средне.м равное нулю (и потому в первом приближе-

нии пренебрежимое) возмущеНI1е) происходящее от ~Нl.
Аналоги:чно поетроеI-IИЯМ третьего раздела, I\t10ЖНО обо

сновать картину, описаНllУЮ выше, слеДУIОЩИМ образом.

Возмущенная система Действительно имеет инвариантные

торы; их !'ложно наЙТII надлежащим обобщением ньюто

новекого процесса. Техника становится более сложной,

но все трУ;.'ltlоети преодолимы, и мы не будем здесь на

них останавли:ваться. ОСНОВНОЙ результа1"\: при доста

точно малых возмущениях ~ ИСТИI-Iное ДВИ)l(ение уеловно

пер}IОД}IЧНО 11 БЛИ3I{О К описанному выше первому при

ближен:и:ю при всех -00 < t < + со (для большинства

начальных условий).

§ 2. Предельное вырождение

Начнем с ПРИ1vlера колебательной системы с ОДНОI1 сте

пеlIЬЮ свободы (маятник, малые колебания):

Н = ~ (х2 + ;2).
Фазовые траеКТОрIIИ - КОН

центричеСИ:llе ?КРJ
7ЖНОСТИ на

плоскости х, х, а TaI{)l{e пола-

х жение равновесия х = х = о
(ри:с. 10). Таким образом, среди

инвариантных торов n-мерных

р == const, на которые распа-

Рис. 10. дается фазовое пространство ИII--

'гегрируеJ\10Й сиетеrvIЫ, _ ~логут

встречаться в качестве «предельных случаев» отдельные

торы размерноеТI1 k < n (ДЛ.Я маЯТНИI{а n == 1, k = O)s
В этих с.п:учаях говорят о «предеcJ1ьнам вырождении».

Особенно часто (теория колебаний) встречаIQТСЯ Два слу

чая предельного вырождеI-IИЯ: ПОЛО)J{ения рав:новесия (k = О)

и периодические движения (k == 1).
АСИIvlптотическая теория, соответствующая теОрИI-I воз

lVlущений, была развита применительно к указаННЫl\Л слу ..
чаЯl\1 Дж. Д. Биркгофом. Роль малого параметра в его

тео.РtIИ IfrpaeT расстояние до неII0ДВ1I}!{ноfI точки (до пе

риодичеСI(ОГО решеНИЯ)Q
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Точные результаты о поведении траектории в целом

опять можно получить ньютоиовскими приближениями.

При большинстве начальных условий, БЛИЗI{ИХ К равно

весному, ДВИ)J(ение оказывается условно периодичным.

При этом, конеЧf-IО, предполагается, что в линейном при

ближении система не~Iтрально устойчива; интересно от

метить, что вторым существенным требованием является

нелинейность системы - линейная система более поДвер

жена резонансу, так как в ней амплитуда не зависит от

частоты.

Настоящая устойчивость (В СlYlыеле Ляпунова) полу

чается из YKa~aHHЫX результатов лишь в первых размер

ностях; пример был подробно разобран в первом раз

деле. Другой пример - классическая задача об устойчиво

сти лагранжевы;х периодических решений плоской круговой

ограниченной задачи трех тел - разобрал А. М. Леон

тович.

Более сложные случаи вырождения (k > 1) соверПlеIIНО

lfe изучены. Главная причина - неудовлетворительность

первого (линейного) приближения, несовершенство теории

Флоке для линейных систем с условно-периодичеСКИМlI

коэффициентами. Первые шаги в этом направлеI-IИИ сде

ланы А. Е. Гельманом, л. Я. Андриановой и э. г. Бе

лагой.

§ 341 Случайное вырождение

В отличие от двух предыдущих видов вырождения,

случаЙI-Iое вырождеIfие встре~ается всюду. В следующем

разделе увид:им, как оно разрушает топологичееКУIО устой

чивость многомерных Cl'!CTeI\.1. СлучаfIное вырождение за

ключается в том, что при IIeKoTopbIX «резонансных» на

чальных условиях ЧI1СЛО частот неВОЗТМУLценного условно..
пеРИОДIlчеСI{ОГО ДБижеI-IИЯ meI-Iьше !\1акс:имаЛЫ-Iогочисла

частот. ОДtIН такой случай уже рассматривался в конце

первого раздела (рождение зон неустойчивости, СМ. рис. 6).
В наших оБЫЧfIЫХ обозначениях начальные условия

случайного вырождения определяются из ypabheI-IИ~

(о), k) == О,

где (t) (р) - вен:тор частот, а k - цеЛОЧИСс.ТIенныЙ вектор.

Таким образом, в общем случае начальные условия слу

чаliно выро}!<деI-IНЫХ ДВI'l}ке~IиfI образуют ВСIОДУ плотное

МIl0жество. ЗаlV!еТИ~I ~Il~eJ 'ЧТО Пl)И n -< 2, ffi =1= О ЗОI-IЫ слу ...
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чайного вырождения с разными k I-Ie пересекаются, а при

n > 2 образуют все вместе связанное lVIножество.

ПоведеI-Iи:е случайно вbII)ождеI-l11ого ДВИ)I<ения при воз

мущении рассмотрим в слеДУЮLL~ем разделе.

v. зоны НЕустойчивоети

в предыдущих леКЦI1ЯХ мы искали в том ИЛИ ином

смысле устойчивые ДВI1жения. Теперь займемся неустой
чивыми.

Рассмотрим снова систему с функцией Гамильтона

Н == 110 (р) + tJJH l (р, q) (q mod 2тс, f1« 1)

и предположим, что I-Iевозмущенные частоты w === дНо/др
меняются от тора к тору:

det I ~; I = det Iа;;о 1 =1= о.

УСЛОВIlе Ш1 == О определяет резонаНСИУI-О зону - одну ИЗ

зон случаlIНОГО вырождения. Эта зона - (n - l)-мерное

многообразие в n-мернам пространстве р (т{аждая точка р

соответствует целому n-мерному тору фазового простран

ства). В больши:н:стве точек расематриваемой зоны выро

ждение «однократное», Т. е. остальные частоты Ш2 , ••• , ШN
целочисленно независимы. Пересечение зон однократного

вырождеНIIЯ -n - 2-мерI-IbIе многообразия «двукратного вы

рождения», и т. Д.

Рассмотрим однократное вырождение средствами клас

сической теории возмуrцений, не заботясь о строгости.

§ 1. Первое приближение. Либрация и J;/~

Пусть р* - точка однократного вырождения: Ш1 (р*) === о.

Для невозмущеНI-IОЙ системы (t-t = О) в расс!'лаТрIIвае!'лом

СJlучае сохраняются не только первые интегра.JIЫ Рl == р; ,
... , Рn == p~, но и ql. Поэтому В соответствии с духо1\t'j

теори:и возмущений, Н1 надлежит усреднять по перемен

ным Q2' ... , qn; получается

I1 == Но (р) + ~~Hl (ql; Pl' Р2' ... , Рn) + ··· , (1)
где точка!'ли означены члены ПОРЯДI\~а ~, в cpeJ~HeM равные

нулю 11 потому «не cyи~eCTBeHHыe». Если их отбросить,
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то останется га!'лильтоиова CI1CTeMa с одной степенью

свободы Рl' q1.' завис.ящая от параметров-констант р;, . .• , P~.
Полученная систеl\Л8 «первого приближения» ДЛЯ Рl,

ql леГI{О интегрируется. Для того чтобы наглядно пред

ставить результат, удобно ввести переменное р = р - pi
вместо Рl. Тогда функция Но + 't1Hl приJ.IИi\1ает ВИД

а

Н (р, Q) == 2 р2 + ~U (Q) 1- ... , (2)
где

д
2

Но
Iа== -2

др} р*'
и (Q) == Н1 (Q; р*).

Рис. 11.

ТОЧI<3l\fIИ обозначены члены, малые по сравнению с р2 И С

1-1; постоянный член Но (р*) также опущен, ибо он f-Ie
влияет на уравнения Гамильтона для р, Q == ql; линеI1-

ный по р член рав.ен О, так как ддНОI == Ш1 (р*) === о.
Рl р* ,

Гамильтониан (2) описывает одномерную' систему

с малым периодическим потенциалом и (Q) (например,

маятник в слабом поле). Поведение решений ясно из

рис. 11, имеющего характерНЬП1 «либрационный» вид. На-

, р клон сепаратрис седел, расстояние

ме)кду ним:и, а также частота ко

лебаний в потенциальной яме 
Q все эти величины пропорциональ ..

ны y~.
Возвращаясь к исходной мно

гомерной системе, увидим, что в

рамках теории возмущений найден

ную картину следует просто умножить на условно-перио

дичес.кое Движение по остальным координатам Q2' • • • , qn.
Истинное положение вещей, конечно, сложнее.

Из проведенных рассуждений во всяком случае ВИДНО,

что подмногообраЗ!Iе случайного вырождения Шl = О при

возмущении разрастается в область, размер которой про ...
порционален -.I~ и в которой резонанс (1)1 = О игра~т су
щественную роль.

OtmeTI-IМ одну характерную особенность системы (2):
ввиду пеРИОДИЧНОСТII потеI-Iциала и (Q) всегда сущес'гвуют

сепаратриссы' идущие из седла в седло. Для дальней

шего будет полезно изучить поведен:ие такой сепаратриссы

при возмущении.
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Начнем с модельной задачи, в которой седло ПРИСУТ

ствует уже до возмущения. Как обнаРУЖ1'IЛ еще Пуан.

каре, при ВОЗ11ущении сепаратрисса расщепляется. Эф

фект расщепления сепаратриссы недавно подробно из)тчеlI

В. К. Мельниковым.

§ 2. Расщепление сепаратриссы

Сущность этого явления состоит в слеД.УI-ощем. Рас

смотрим ДинамичееКУIО систе1\ЛУ с одной степенью свободы,

имеющую неустойчивое положеI-II1е равн_овесия (например,

маятник, перевернутый вверх ногами). На фаза- s-
вой ПЛОСI{ОСТИ р, q такому ПОJl0)кени:ю равно

весия отвечает неподв:ижная точка - седло s.
в седло входит сепаратрисса Г, отделяющая

друг от друга траектории разных типов (В слу

чае маЯТНИI(а - качание от вращения). Сама

сепаратрисса Г есть траектор:ия, изображающая

асимптотически приближаюш,ееся к неустойчи

вому равновесию движение.

Предположим теперь, что наша CIICTeMa под

вергается периодическим по времени малым

(пропорциональным ~« 1) возмущениям. До

пустимо, ЧТО эти возмущения таковы, что седло

S остается положением равновесия и при t1 =1= о. Рис. 12.
Рассмотрим в фиксированный MOmeI-IТ Bpervle-

ни t o плоскость начальных условий р, q. Для возмущен

ной системы на каждой такой плоскости роль сепарат

риссы играет своя кривая r ~ (t o). Точка принадлежит Гр. (t o),
если решение с начаЛЬНЬПvl условием р, q Е Г~). (to) стре

МИТСЯ к седлу S при t -+ -t co . Расстояние между rlJ. (t o)
иневозмущенной сепаратриссой r ра3~ТIагается в ряд по

степеням 1-1.
Явлен:ие расщепления сепаратриссы ВОЗI-IИl<ает в слу

чае, когда невозмущенная сепаратрисса Г идет из седла

в седло (пример: маятник без tpeI-IИЯ). В этом случае на

плоскости р, q (t = t o) возникает пара кривых Г;- (to),
г; (t o), близких к Г, но, вообще говоря, различных. Точка

х+ (t o) (х- (t o)) принадлежит Г+ (Г-';) , если проходящая

через нее траектория х+ (t) (х- (t)) етреr,1ИТСЯ при

t -+ +со (t -+ - со) К седлу s+ (s-) (ри~с. 12).
Еще Пуанкаре заметил, что эти Две кривые на плос

кости t = t о МОГУТ пересекаться, но не дал ни ОДНОГО
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примера и (как ВИДно из 33-й главы «Новых методов

небесной механики») не сумел нарисовать образованную

. их пересечениями запутанную сеть (чертеж 12 принад

лежит Мельникову).

Первый член РЯ,ца, выражающего расстояние между

Г+ и Г-, имеет очень прозрачный смысл. Для упроще

ния некоторых выклаДок ограничимся случаем гамильто ..
новой системы

ан ай
р = - aq' q == др , н == Но (р, q) + вН 1 (р, q, t),

в« 1,

где е - малый параметр, w - частота возмущения,

Н1 (t + 2:) = н 1 (t). Например, для маятника

Но (р, q) = ~2 + А2 cos q

Рис. 13.

р

и уравнение сепаратриссы Г принимает вид

р = 2А sin ~ ; q (t) = 2 arcctg (-sh At), p(t) = c~~' .'
Седла s- и s+ в этом примере имеют координаты р = О,

q = о и q ===' 21t.
Расстояние между· точкой Х;, лежащей на Г; (to), и

ближайшей к ней точкой хо l-Iевозмущенной сепаратрис

сы Г удобно измерять величиной

приращения энергии невозмущен

нога Движения (рис. 13):

А+Н о = Но (х+) - Но (хо).
s+ 27Т q

Так как:в точках ХО и ·8+ функ-

ция Но ПРИНИf\1ает одинаковые зна

чения, /1-fН о есть приращение -Но

ВДОЛЬ траектории возмущенного

движения, а ПОТО1\1У выражается через скобку Пуассона

{Но + еН1 , Но} = d;o:
+00

А+Но = е ~ {Но, Н1} dt,
t о .

где интегрирование происходит по траектории возмущен

ного движения. Поэтому естественно, что величина fj.+H о
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разлагается в сходящийся ряд ~+но = 8~~ + E2~-:- + ... ,
первый член которого дается тем же интеграJIОМ

+00
~:- = 5{Н о' Н1} dt,

t о

раепростраиеИНЫl\1 на траекторию невозмущенного ДВИ

жения.

IЦель между ВОЗlVlущенными еепаратриссами г+ и г

характеризуется разностью ~Ho = I1+Ho-~-Ho, где, ана..
логично /1"tН о,

-00

/1-Но = Но (х-) - Но (хо) = 8 5{н о' Н I } dt.
t о

Таким образом, дuТIЯ величины ~Hо получается ряд

~Hо = в~l + 82~2 -1- · • • ,

первый член которого дается интегралом

+00
tч= 5{н о , H1}dt,

-00

распространенным на всю невозмущеННУIО сепаратриссуГ

от s- ;~O s+.
в ПРИl\lере с ~лаЯТНИI{ОМ, принимая за ХО середину се·

паратриссы р = 2А sin ~, получим для возмущения

L\1 = (S...,4Ah:hA1t sin ш'" dt) sin wto = ~ , где ~ = -АОО •

с 2 S11 ~ 'J
-00 2

VI. НЕустойчивоеть ДИНАМИЧЕСКИХ сиеТЕ1"

со МНОГИ~,"И СТЕПЕНЯМ}I своБодыi

Прогресс теории возмущений позволил найти fovlHOrO
)rсловно-периодичееких движений в ·каждоЙ нелинеЙJ.IОЙ

динамической системе, близкой к интегрируемой. Устой

чивоеть всех Д,вижений системы вытекает из этих резуль

татов лишь в случаях, когда раЗl'vlерноеть фазового про

странства < 4. Теперь ука}кем пример (3) системы с
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Nм

х

5-мерным фазовым пространством, удовлетворяющей всем

условиям первых трех разделов, но I-Iеустойчивоt't 1.

Вековое изменение величины 1z в системе (3) имеет

скорость порядка ехр (-l/VE) и потому I-Ie улавливается
ни в КЭI{ОМ приближении теории возмущений.

Сначала ввеДем некоторые определения.

1. Усатый тор. Тором Tk называется прямое произведение

k окружностей, допускающее k угловых координат ер1' ••. J

<fk (mod 21t). Условно-периодическое движеlfие с частотами w
определяется уравнеIIИЯМИ ~ == w = ~onst, где ~niWi =/== О

при це.ПЫХ ni, ~n7 == о. Пусть в фазовом пространстве ди
намической CffcTeMbI Иl\леется инвариантный тор Tk, И на

нем движеf-Iие условно-периодично. I-Iазовем Tk усатым

тором, если он является КО1'лпонентой пересечения двух

Иl1вяриантных открытых многообразий У-, У+, причем

все траектории на входящеl\Л усе у- стремятся к Tk при

t -+ +00, а на выходящем усе у+ - при t -+ -00.
Прuмер 1. СтаНД~(1рТгIЫМ усатым тором назове~А тор

х == у === z == О в системе

х == АХ, У == - ~y, z == о, ~ == Ш, ( 1)

опред.еленноЙ В, 1+ + '_ + 10 + k-Mep
нам пространстве х, у, г, rp (ер lnod 21t)
(рис. 14).

Рис. 14. Рис. 15. Рис. 16.

Для дальнейшего существенно понятие загора}кивающе ..
го множества. Пусть М-гладкое подмногообразие простран

с.тва х. Касательную плоскость к М в точке х будем

обозначать l.rерез ТМХ 8 Многообразие N дополняет М в

точке х Е М nN, если ТМх + TNx = ТХх • Скажем, ЧТО

1 В отличие от устойчивости, неустойчивость устойчива. Нам кажется,

что мехаНИ3~I «переходных цепочек», обеспечивающий неустойчивость

в нашем примере, действует и в общем случае (например, в задаче

трех тел).
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Рис. 17.

множество g загораживает многообразие М в точке х Е М,

есл·и каждое многообраЗllе N, дополняющее М в х, пере..
секается с Q (рис. 15).

Пример 2. Спираль Q, навивающаяся на замкнутую

кривую М, загораЖl'lвает ее1 (рис. 16).
Другой пример доставляется стандартным усатым тором

(1). Пусть и - окрестность ТОЧI{И - ~ входящего уса

)(, = г==О. Обозначим через Q = Uи (/) мнол{ество всех точек
t>o

всех' траектори:й, начинающихся в u. Легко

.доказывается такая теорема.

Теорема 1. Множество Q загоражuваепz 71
выходящий ус у = z == О в любой его точке 'l.

2. Переходная цепочка. Если усатый тор

т обладает тем свойством) что образы лю

бой окрестности любой точки ~ его входя

щего уса загораж:ивают выходящий ус в лю·

бой точке последнего 1}, то такой тор назо

вем переХОДI-IЫМ. Согласно теореме 1, стандарт-
ный тор - переходныЙ.

Пусть динамическая система с фазовым

пространством Х имеет несколько переход- т..

ных торов Т1, ..• , тЗ' ••• • Назовем эти 'с S

торы переходной цепочкой, еС.ПI1 выходящий

ус У; каждого предыдущего тора T s допол- 75+1 Ys... ®
I-Iяет входящий ус V;+I следующего тора T s+1 в

I-Iекоторой точке их пересечения Xs Е УТ nУ*l
(pI'1C. 17). Пусть Тl' ... , Тз , ••• - переходная

цеII0чка, тогда можно доказать следующую теорему.

Теорема 2. Лю6ая OKpecmHOCn~b тора Т1 соединена

с любой окрестностью тора Тs траекторией рассматри

ваемой дuна.А1.uчеекоЙ CLlcmeMbl.

Таким образом, для доказательства неустойчивости

Д.остаточнонайти переходную цепочку, соеди:няющуюдa~ТIe..
кие торы Т1 , тз. Отыскание усатых торов и, особенно,

изучение их пересечений в общей задаче теории ВОЗl'лущений

требует громоздких вычислений. Ограничимся примеРОl\f,

в котором специально подобранное возмущение исчезает

на торах ТЗ.

1 На этом обстоятельстве основаны работы 1\. Ситникова и А. М. Леон

товича об осциллирующих движениях.
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(4)

(3)

3. Неустойчивая система. Рассl'ЛОТРИМ систему с двумя

степенями свободы, периодическую по времеИII t с периодом

27'С. «Фазовое простраI-IСТВО» 11,/2; ер!, <Р2; t - прямое произ

ве/,,,еИI1е плоскости 1t, 12 на треХl\rlерный ТОр epl' <Р2' t (mod 21t).
Функция Гамильтона 1, зависящая от параметров8, t.1, будет
иметь вид Но + ЕН1, где

Но =; (/1 + 1:), вН1 =в (cosepl-I)[1 + р.8],
В = cos t + sin ер2. (2)

Иначе говоря, рассматривается система дифференциальных

уравнений

~1 = 11' 92= 12' i1= в sin ерl [1 + ~Bl,
i 2 == - 8 (cos epl- 1) t.t cos ер2'

где В = cos t + sin СР2.

РаССl\10ТРИМ сперва неВОЗ1\1ущенную систему (8 = О).

Каждый трехr-лерный тор 11 === const, 12 == const инвариантен.

tIa нем происходиттрехчастотноедвижение~1 = 11' ~2 = I~,
t == 1. Тор называется невырожденным, если на нем час

тоты незаВИ:СИ1\1Ы· (Т. е. n1! 1 + n2! 2 + по =1= О при целых

n =1= О). Уравнение /1 == О определяет семейство вырожден

ных ТОрОВ.

Теперь рассмотрим возмущенную систему: пусть

О < Sr.L ~Z s «1. Для бо.льшинства начальных условий

веJIИЧИНЫ 11 ({), 12 (t) будут мало меняться в течение все

го беСI{онечного промежутка времеИJ1-00 < t « + СО.

Оказывается, однаI{О, что вблизи резонаНСlfОГО lVfногообразия

11 == О появляется зона неустоЙчивост:и. Точнее, справед

ЛIIва теорема.

Теорема 3. Пусть О < А < В. ДЛЯ всякого s > О най

дется ~o > О {nакое, Чf110 nptt О < f1 < f.Lo система неусmой

чива: cyu~ecm8yerrl mраекmОрllЯ системы (3), соединяющая

область 12 ~< А с облаСlnЬЮ 12> В.

4. Доказательство неустоЙчивости. Зафиксируем 8 > о.

А. Пусть сначала f.L = о. Тогда переменные разделяютсяz

.12
н=ни)+Н(2),H(l)=2 11 +s(cosepl- 1),'

Н(2) = ~ J:.
1 Нетрудно построить реаJlЬНУЮ механическую систему с функцией

Гамильтона (2).

116



474

ТаКИ!V1 образом, ;2 = О, ~2 = 12 = (t) = const, а изменеНllе
/1' <РI со временем описывается гамильтонианом обычного

маятника Н(1). Пусть число (t) иррациона~ТIЬНО.ЛеГI{О Дока...
зывается такое утверждение.

Многообразие Тю, определенное уравнеНИЯМI1 11 = ерl =
= 12- W == О, есть двумерный усатый тор системы (3). Усы
трехмерны и имеют уравнения

. v- rn 111 = + 2 е sin l' 12 = 00 или НО) = О, Н(2) = "2 002. (5)

Усы заполнены асимптотическими траекториями
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1
Н(2)= "2002, где H(k) - функции (4). Пусть а > О (например,

(L = ;). Легко показать, что при I<[>1 I< 21t - а уравнение

возмущенного выходящего уса y-t-Tw можно записать в виде

H(l) = 6.. t (<[>1; <[>2' t; w); Н(2) = ~ w2+Lli (<Р1; <Р2' t; (0), (7)

где функции Ll t = о (11) имеют период 21t по <Р2' t и равны
О при ер! = о. Точно так же входящиfI ус У-Тю' при

ер! - 2т: I < 21: - а имеет уравнения

Н(1) = 6..]" (<Р1; <Р2' t; w'); Н(2) = ; 0012 +Ll; (<Р1; <Р2' t; (0). (8)

Пересечение усов У+Тю и У-Тш будем искать в плос

кости ер! = 7t. В обозначениях (7), (8) леМlVlа 1 есть утвер

ждение о разрешимости относитеЛЫiО ер2' t системы урав

нений

(
Llt (1t; <Р2, t; ш) = 6..]" (1t; <Р2' t; w'),

1 2 л + ( . .) _ А - ( • .') 1 ,2 (9)
2"Ю + U2 '11:, 'Р2' t, W - L12 7t, 'Р2' t, W = 2Ш .

Разрешимость системы (9) выводится из следующих

приБЛllжен.НЫХ выражений для llt.
Лемма 2. Возмущенияусов суть ~: = {10: + о (1-12), где

о

l1a/i (1t; <p~, tO, (0) = S{Н, H(k)} d (t - to) (10)
+00

(скобка Пуассона uнmегрuруеmся вдоль невозJvtущенной

траектории (6)).
Действительно, согласно определениям- (7), (8), вели-

чины llt суть приращения H(k) в возмущенномДвижении
(3). Производная функции H(k) В силу системы уравне

ний (3) есть как раз скобка ПуаССОIlа tH, H(k)}. Поэтому
~"! в точности равны интегралам (10), распространенным
на возмущенные траеI{ТОрИИ. Отсюда легко получить оценку

/1t - ~O: = о (1-12), доказывающую лемму 2. .
Из леммы 2 видно, что разрешимость системы (9) зави ..

сит, в основном, от разрешимости относительно ep~, tO при
БЛllженной системы

(11)
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где

+00
= ~ {Н, Hk}d(t-tО).

-00

(12)

Несложные ВЫЧIiсления, основанные на форrv1улах (2) 
(6), дают

(13)

(15)

V- о

где U==Cll-2
t, 't== Е (t - tO), в === в (i'2' t), 'Р2 = <f>2+W (t- 'О).

При В = cost -t- sin 'Р2 интегралы (13) берутся вычетами:

01 = 21t (sh-1 VT1
_) sin to; 02 = 21t'w2 (sh-1 w;.)cos rp~. (14)

" 2 ~ 2~ €

Полагая в (14) tO == О, убеждаемся в разрешимости C1ICTe

l\?lbI (11) ПрI1

I 2 ,2 \ 2 h 1 шп -l/VE
\ W - (J) I < 47tf1(J) S - v- ::=:: tte ·

2 ~

1-'1з леМf\1Ы 2 следует теперь, что при: достаточно ~lалых

~ разреШИI\13 и система (9). Из неравенства (15) леГI{О полу

чается равномерная при:' А < w < В оценка Iw - ш' \тах

СНИЗ)', требуе~1ая в леМI\rlе 1. ТаКИl\1 образом, лемма 1 дока

зана. Она позволяет построить цеПОЧI{У переХОДlfЫХ торов

ТЮ!, ... , ТШв ' Из формул (14) ВIiДНО, что при Достаточно

малом 1-1 эту цеПОЧI{У можно выбрать так, чтобы ПОСJlедо

вательные пересекаI-Gщиеся усы ле}!{али в общем полоя<еI-IИИ

и ДОПОЛIIЯЛИ друг друга в СlVlысле § 2. Тогда цепочка

т1, ..• , ТВ будет переходной. ПрименеНI1е теоремы 2 к

переходной цеПОЧI(е Т1, ••• , т s завершает ДОI<азательство

теоремы 3.
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Doklady 1965
Tom 161, No. 1

CONDITIONS FOR THE APPLICABILITY, AND ESTIMATE OF THE ERROR,
OF AN AVERAGING METHOD FOR SYSTEMS WHICH PASS THROUGH STATES

OF RESONANCE IN THE COURSE OF THEIR EVOLUTION

v. I. ARNOL'O

1. The behavior of solutions of systems of the form

<p = ro (I; e) + 8/(1, cp; e),
(1)

i = eF(I, <p; e),

<p = CPt, • 0 ., CPh; I = Ii, .. 0' Iz
(where ¢ (mod 277) are angles, l « 1, dots indicate time derivatives, the functions w, I, F are analy-

tic for I € G, 11m 1>1 < p, Ilol < l (their dependence on l is not indicated below); G is a complex com

pact domain) is usually studied by the Haveraging method", i.e. by substituting for (1) the averaged

system

j = eF (I), F (I) = (2ntk ~~ F (I, <p; 0) dIp. (2)

Although terms neglected by averaging (F = l F - IF are of the same order of magnitude as the

remaining ones, it is assumed that in time t "" 1/l the difference between exact and averaged solutions

with the same initial conditions lI(tl - J (t)1 remains small. Indeed, in the case of one frequency

(k = 1) it is easy [1] to obtain the estimate

II (t) - J (t) I< C,t8 for 0 < t < 1 / e.

Here and below the Cl' • •. , C22 are sufficiently large constants, independent of l, K, N, x.

In the present note we consider a system with two frequencies (k = 2). We will indicate a con

dition sufficient for the smallness of II - 1 I, and will obtain the estimates C11 '.}7" < I/(t) - I(t) <
C3 Y; 'In2(1/l).

2. We will first of all give an example which shows that without additional assumptions averag

ing may lead to erroneous re suits.

Example 1. Let us consider the system

The averaged equations are jl = (, j2 = O. Let 11(0) = 12 (0) =11(0) =12(0) = 1, ¢1(0) =

¢2(0)=arccos(l/a). The exact solution 11(t)=I2(t)=I+lt after the time t=I/( loses all con

nection with the averaged solutions 11 (t) = 1 + (t" 12(t) = 1.

Returning to system (1), k = 2, we assume that C1J2(I) f. O. Let us introduce the ratio of frequencies

A(I) = (1)1/(1)2.

Condition A. Assume that C;ll < IAI < C4l, i.e. that the quantity

A (I, cp) = (aa~l p) COt - (aa7 p) COl

does not vanish for any cP, if lEG.
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Under condition A the system can not remain fixed in any resonance. In example 1 condition A is

violated: A = 12 -II cos (¢I - ¢2) changes sign at II = 12, if a > 1. *
3. Theorem 1. If condition A is satis fied, we have the estimate

II(t) - l(t) I < c3i'e In2 (1/e) for all 0 ~ t ~ 1/8. (3)

Roughly speaking, Theorem 1 estimates the difference of magnitude V~ between solutions of the

exact and the average systems. The following example shows that, generally speaking, Il(t} - I(t)1 >
Cil Vi.

Example 2. Consider the system

J1 = e, 12 = e cos (<PI - <1'2).

Let ¢I(~) = ¢2(O) = 11(0) = [2(0) -1 = O. Condition A is satisfied for II <12• In the averaged system

I 2(t) == 1. In the exac t solution

T ~

I!(T)-1 =e~ cose ~ dt=¥2e~cosx!dx, 't" = ¥ej2 T.
o 0

For T = II l, obviously, 12(T) - 12(T) = 12(T) - 1 > C;I '.If. **
If we analyse example 2, it is easy to see that the resonance wI = W2 disperses the bundle of

trajectories, which in the beginning differ only by phases ¢. The scattering of the quantity I 2 after

going through the resonance is of the order of Vi.
The idea used in proving Theorem 1 is to divide the space I into two parts: a finite number (of

the order of In2(1/1» of resonant zones of width K and a nonresonant part. In resonant zones the

dispersion \1 - J\r "" K (neglecting logarithms) accumulates:. In the nonresonant domain we form new

variables P, satisfying the conditions IP -II"" ilK, IP -IF(P)1 IV 121K2• From these estimates we

infer that IP - II IV ilK. Thus II - line ~ 11- PI + !p - II IV l/K. Consequently, II - II ~ 11- lie +

II-line"" K + ilK. For K IV Vi we obtain (3).

4. Estimates. Let N > 1 > K > O. Denote by GN the set of points I of domain G, in which

(wI' n) = wini + w2n2#: 0 for integral n I , n2; 0 < Inl = Inil + In2 1 < N. By GK,N we denote the set

of points which are in GN together with a neighborhood of radius K.

It follows from condition A that d(w]n) I: 0 for (wIn) = o. Therefore in GK,N

f (00, n) I> C5- tK, 0 < Inl < N. (4)

We denote the complement of GK,N by RK,N = G\G K,N. Let I(t), ¢(t) (0 ~ t ~ 1/i) be a solu·

tion of system (1), and moreover let I(t) € G. The segment 0 ~ t ~ 1/l is decomposed into two parts:

gK,N (where I(t) € G K,N} and rK,N (where l(t) E R K,N}. Let K < C61
• From condition A we have

the following lemmas.

Lemma 1. The set rK,N consists of no more than C 7N2 segments. The length of each one of

them does not exceed CSK/i.

• Example 1 shows, that condition A can not be replaced by the analogous-.condition A for the averaged sys
tem (2), as was suggested in [2]. However, it is possible that under condition A inequality (3) is valid for most
initial conditions. This is exactly the case in example I, which can easily be integrated: q= - aU/aq, U=-l-X

(q - a sin q), where q = <PI - <P2. See also [3,4]•

•• Example 2 contradicts the statement 1/- II < Cl, formulated in [2]. Peobably in the general case

1/- II > eil Y-:-ln
2

(1/1).
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(5)

Lemma 2. Let a < t < (3 be one of the segments which form gK N' If a + x ~ t ~ f3 - x, then
-1 'I(t) € GK(x),N' where K(x) = K + C9 fX.

Denote by J(J 0' to; t) the solution of system (2) with J(t o) = J o' We have at once

Lemma 3. For It - tol < 1/ f we have IJ(J 0' to; t) - J(J 0' to; t)l < C10lJ0 - J ~I.

Let Ixl ~ a Ixl + b(t), Ix(O)! < C; a, b, c ~ O. It is easy to prove

Lemma 4. Ix(t)1 ~ [c + f~ b(t)dt]e at•

The customary methods (see <§6) are used to prove the fundamental

Lemma 5. There exist functions P = I + S(I, ¢), S(I, ¢ + 217) == S([, ¢) and independent of f, K

constants C11 - C14 such that

IP - eF(P) 1< Cl1e2
/ JCl, IP - II < C12e / K

when IIm¢\ ~ 0, 5p; I€GK,N; N =C I3In(I/f); IfI ~Gi~K2.
5. Proof of Theorem 1. Let 0 < f < Ci~ C62

, K = VC14f < C61
• Applying Lemma 5, form

PU, ¢) and GK N' Denote consecutive segments forming gK N by [/.~ t~] (r = 1, 2, · .• ; for definite-
, 'L tL

ness, tf = 0 € gK,N' l/f E rK,N). Introduce the notations a= L R; I(t~) = I~; J(1" t" t) = J,(t);

P(I(t), ¢(t» = P(t). Taking into account that J /t~J = If: we obtain from Lemma 3,

It follows from Lemma 1 that

f I/:rl-1~1 + IJr (t~l) -Jr (I;.) 1<C1sK.
From Lemma 5 we find for t f ~ t .$ t~ a = C16f, b = If - f F(P)I

rp-jrr~aIP-lrl +b.
Quantity b will be estimated by means of Lemmas 2 and 5:

b(t) < Cu82 / (K + Cg- 1ex)2 for trL + X ~ t ~ trR - x.

Consequently, f b(t)dt < C17f /K for tf ~ t ~ t~. According to (5)

Ip(tf ) - J(tf)1 = IP(tf) -If I < c = C12 f / K.

Now applying Lemma 4 to inequality (8), we find

IP(t~) -J,<t~)1 ~ eCI8(CI2 + C17)f/K < C18f/K.
From (5) and (9) there follows

Combining (6), (7), (10) and Lemma 1, we find for 0 ~ t :$ 1/(

II(t) -l(t) 1< Cl0C7(C13 In (1/ e»~[C1J(+ (C12 + CiS)e / Kl.

(6)

(7)

(8)

(10)

For K =v'~ the right hand side is smaller than C3 {;ln2(1/d, which is what we set out to

prove.

6. Proof of Lemma 5. Let
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(11 )~ ieFn I Is = ~Snei(n, CP); Sn = (<0, n); 0 < n <N,

where F(I, ifJ)=F(n +FU,,J.) can be expanded in a Fourier series: F= 2F e i(n'¢)(Inl > 0) and
~ ~ _ n ~

[F]N = IFnei(n,¢) (0 < Inl <N):, Then! = (F (P) +~l +~ + 23 + 24 + 2 5, where II = [(,F]N +
(as/aifJ)w == 0 (see (11)); I 2 = (F(l) - (F(P); 23 = (F - [(F]N; I 4 = (as/a¢)(F; I 5 == (as/a¢) (f.

For 11m ¢I < 0.9 p, I € CO•l K,N' in view of (4), we have (compare (5])

rSI < Ci28/K, las / aq>1 < C12E / K, las / all < C128 / K2. (12)

If 1 E GK,N' 1£1 < Cii K2
, then the whole segment IPCGO.lK,N. Therefore, for IE GK,N and

11m ifJl < 0.5 p we have, from (12),

1~21<81 ~~ S!<C1982/K; 1~41<C2082/K2. 1~51<C2182/K.

In view of the analyticity of F for 11m ¢\ < p, from N = C131n (1/() for sufficiently large C13 =
2 - • 2 2C13 (P) there follows 12 31 < C22 ( • Thus IP - (F(P)\ < CII f /K (where CII = C19 + C20 + C21 +

C22)' which is w~at we set out to prove.

The reason for writing this note is the mistake in (2]. The author is grateful to A. M. Molcanov

for pointing out this mistake.

Moscow State University
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On a topological property of globally canonical maps
in classical mechanics.

(8 novembre 1965)��

Summary. The inequalities of M. Morse on the number of critical points of a function on a
manifold are used in order to find the periodic solutions of the problems of mechanics.

1. H. Poincaré has clarified the importance of area-preserving transformations
of an annulus in the restricted three-body problem and in all problems of mechan-
ics with two degrees of freedom. Such applications share a remarkable topological
property:

Poincaré’s lemma. Let A be an area-preserving diffeomorphism of a planar annulus.
Let γ be a simple curve in the annulus which is not homologous to 0. The curves γ
and Aγ then have at least two points in common.

Indeed Aγ is neither inside nor outside γ, given that the areas circumscribed by
γ and Aγ agree.

It is Poincaré’s lemma which underlies Birkhoff’s theorem on the existence of
periodic orbits, the “last theorem of Poincaré” and so on [4, 2, 5].

Problems in mechanics with more than two degrees of freedom lead [1] to glob-
ally canonical maps (see definition below) of a toric annulus Ω = Tn × Bn, Bn ⊂ Rn.

In this Note Poincaré’s lemma and its consequences are extended to systems with
several degrees of freedom. The argument involving areas does not hold anymore;
the torus Tn, n > 1, does not bound any domain in Ω. Another topological argument
is used –the theory of M. Morse.

2. Globally canonical maps. Consider a toric annulus Ω = Tn × Bn, where

Bn ⊂ Rn = {p}, (p = p1, ..., pn); Tn = {q mod 2π}, (q = q1, ..., qn).

Definition. The map A : Ω → Ω is globally canonical if it is homotopic to the
identity and

�� Presented by Mr. Jean Leray
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2 C. R. Acad. Sc. Paris, vol. 261 (November 8, 1965), Group 1∮
γ

p dq =
∮

Aγ
p dq, (p dq = p1 dq1 + ... + pn dqn), (1)

for every (possibly non homotopic to 0) closed curve γ ⊂ Ω.

Let x be a point in the annulus Ω. We shall denote by p(x), q(x) its coordinates
and write

P(x) = p(Ax), Q(x) = q(Ax) (2)

as usual.

Lemma. The map A is globally canonical if and only if the integral

A(x) =
∫ x

x0

(Q − q) dP + (p − P) dq (3)

defines a single-valued function A(x).

The function A is called the generating function of the map A.
Proof of the lemma. Let γ be a closed curve in Ω, A a globally canonical map.

We shall show that ∮
γ

(Q − q) dP + (p − P) dq = 0. (4)

Indeed, given (2) one can write (1) as
∮
γ

p dq =
∮
γ

P dQ. (5)

Hence,
∮
γ
(Q− q) dP+ (p− P) dq =

∮
γ
d(P(Q− q)). This latter integral represents the

increase of P(Q − q) along γ.
But A is homotopic to the identity, hence the increase of P(Q − q) is equal to

zero. As a consequence ∮
dP (Q − q) = 0. (6)

Conversely, (4) and (6) yield (5), hence (1) q.e.d.

3. Intersecting tori. Let T be the torus p = 0 in Ω and AT be the image of T
under a globally canonical map A.

Theorem 1. The tori T and AT have at least 2n points (counted with their multiplic-
ities) in common provided that AT has equation

p = p(q),
∣∣∣∣∣∂p∂q
∣∣∣∣∣ < ∞. (7)

Proof. Consider a function defined on AT:

f (x) =
∫ x

x0

p dq (the curve x0x lies on AT). (8)
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Integral (8) does not depend on the path described in AT.
Indeed for a closed curve γ in AT we have

∮
γ

p dq =
∮

A−1γ

p dq = 0

because A−1 is globally canonical, A−1γ ⊂ T and on T we have p = 0. Thus f (x) is
a differentiable function on the torus AT. According to the inequalities of M. Morse
(see for instance [3]), f (x) has at least 2n critical points.3 It follows from definition (8)
that

d f = p dq. (9)

If x is a critical point of f on AT, i.e. d f (x) = 0, then it results from (7) and (9)
that p(x) = 0, x ∈ T, q.e.d.

Corollary. The assertion of theorem 1 holds true if the tori T and AT have equations

p = p′(q), p = p′′(q)

(∣∣∣∣∣∂p
′

∂q

∣∣∣∣∣ < ∞,
∣∣∣∣∣∂p

′′

∂q

∣∣∣∣∣ < ∞,
)
, (10)

and if on T the 2-form dp ∧ dq = dp1 ∧ dq1 + ... + dpn ∧ dqn is identically 0.

Indeed, the change of canonical variables p, q �→ p − p′(q), q transforms (10)
into (7) with p(q) = p′′(q) − p′(q).

4. The fixed points. Let A0 be some globally canonical map

A0 : p, q �→ p, q + ω(p), (11)

where ω : Bn → Rn, ω(p) = ω1(p), ..., ωn(p). If

det
∣∣∣∣∣∂ω∂p
∣∣∣∣∣ � 0, (12)

there exists a point p0 ∈ Bn such that all the ωi(p0) are commensurable to 2π:

ω1(p0) =
2πm1

N
, ..., ωn(p0) =

2πmn

N
. (13)

Obviously for the map AN
0 every point of the torus p = p0 is a fixed point.

Theorem 2. Let A be a globally canonical map close enough to A0. Then the map
AN has at least 2n fixed points (counted with their multiplicities) in the neighborhood
of the torus p = p0.

Proof. It follows from (11, 12, 13) that the map AN
0 is of the form

AN
0 : p, q �→ p, q + α(p), α(p0) = 0, det

∣∣∣∣∣∂α∂p
∣∣∣∣∣
p0

� 0. (14)

3 2n =
∑n

i=0 bi, bi = rank Hi(Tn,R).
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Hence the nearby map AN is of the form

AN : p, q �→ p + β1(p, q), q + α(p) + β2(p, q), β1,2 	 1. (15)

We shall denote by T the torus defined by the equation

α(p) + β2(p, q) = 0. (16)

Provided that A is close enough to A0, it follows from (14) that:
(i) the implicit function theorem applies to (16);
(ii) equation (16) defines a differentiable torus T, p = p′(q), |∂p′/∂q| < ∞;
(iii) the torus AT has equations p = p′′(q), |∂p′′/∂q| < ∞;
(iv) the tori T and AT are close to the torus p = p0.
It follows from the lemma of paragraph 2 that the generating function A of AN is

a single-valued function on Ω. We will denote by a(x) its restriction to the torus T. It
is a differentiable function on T which, according to the theory of M. Morse, has at
least 2n critical points. It follows from (3) that

dA = (Q − q) dP + (p − P) dq.

By virtue of (15, 16), one has Q − q = 0 on T, hence da = (p − P) dq. Using (ii) and
(iii), one shows that at critical points of a(x) one has p − P = 0. Together with (16),
this means that the 2n critical points of a(x) are fixed points of AN .

5. Remark A. By substituting in the proofs the theory of L. A. Lusternik–L. G.
Schnirelman for the theory of M. Morse, in theorem 1 we get (n + 1) geometrically
distinct, intersection points of T and AT. One can ask whether there exists (n + 1)
points of intersection of T and AT for globally canonical homeomorphisms A?

Remark B. Theorem 2 yields the existence of an infinite number of periodic or-
bits in the neighborhood of a generic elliptic periodic orbit (extension of the theorem
of Birkhoff to n > 1).

Remark C. It seems very likely that theorem 1 holds true without hypothesis (7),
provided that A is a diffeomorphism.4 The proof would yield several “recurrence
theorems”.

For instance, consider the planar n-body problem. Assume that the initial values
ai, bi of the axes of the Keplerian ellipses be such that the ellipses do not meet. Then
for every τ there would exist some initial phases5 li, gi such that after time τ the axes
would become equal to their initial values again.

Remark D. It is very likely too that the last theorem of Poincaré can be extended
as follows:

Let A : Ω → Ω (Ω = Bn × Tn; Bn = {p, |p| ≤ 1}; Tn = {q (mod 2π)}) be a
globally canonical diffeomorphism such that, for every q ∈ Tn the spheres Sn−1(q) =
∂Bn × q and ASn−1(q) are linked in ∂Bn × Rn (Rn being the universal cover of Tn).
Then A has at least 2n fixed points in Ω (counted with their multiplicities).

4 If A is not a diffeomorphism, one constructs counter-examples with n = 1.
5 The phases are the angles li, gi mod 2π, which determine the orientation of the ellipses in

the plane (gi) and the positions of the “planets” on the ellipses (li).
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