
D. Richards and B.-H. Kang (Eds.): PKAW 2008, LNAI 5465, pp. 91–108, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Generalising Symbolic Knowledge in Online
Classification and Prediction

Richard Dazeley and Byeong-Ho Kang

School of Information Technology and Mathematical Sciences,

University of Ballarat, Ballarat, Victoria 7353, Australia
School of Computing and Information Systems,
University of Tasmania, Hobart, Tasmania, 7001

r.dazeley@ballarat.edu.au, bhkang@utas.edu.au

Abstract. Increasingly, researchers and developers of knowledge based systems
(KBS) have been incorporating the notion of context. For instance, Repertory
Grids, Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all in-
tegrate either implicit or explicit contextual information. However, these meth-
odologies treat context as a static entity, neglecting many connectionists’ work
in learning hidden and dynamic contexts, which aid their ability to generalize.
This paper presents a method that models hidden context within a symbolic
domain in order to achieve a level of generalisation. The method developed
builds on the already established Multiple Classification Ripple-Down Rules
(MCRDR) approach and is referred to as Rated MCRDR (RM). RM retains a
symbolic core, while using a connection based approach to learn a deeper un-
derstanding of the captured knowledge. This method is applied to a number of
classification and prediction environments and results indicate that the method
can learn the information that experts have difficulty providing.

Keywords: Hidden context, knowledge based systems, knowledge representa-
tion, ripple-down rules, situation cognition.

1 Introduction

Traditionally, knowledge based approaches have been based on the physical symbol
hypothesis [1] which is built around the idea that knowledge is a substance that exists.
However, after numerous failed systems some researchers have revised these concepts
of knowledge and moved towards a situation-cognition (SC) based view. The SC view
revolves around the premise that knowledge is generated at the time of its use. This
implies that the existence of knowledge is based on the context of a given situation [2,
3]. A few methodologies, such as Formal Concept Analysis (FCA) [4], Repertory Grids
[5] and Ripple-Down Rules (RDR) [6], have adopted a weak SC position by including
contextual information. These approaches either incorporated the context directly in the
knowledge itself or in the structure the knowledge was represented. These methods have
been reasonably successful, however, they assume that the context is a priori, and there-
fore, deductive [7]. This assumption leads to static representations of contextual based

92 R. Dazeley and B.-H. Kang

knowledge. However, context in certain situations could be considered a posteriori, and
therefore, inductive [7].

The aim of this paper is to present an algorithm that moves away from these con-
textually static representations and instead heads towards an intermediate SC [8] view
by handling hidden and dynamic contexts. This involves incorporation similar behav-
iour to the traditional strengths of connection based approaches while still being able
to acquire and retain knowledge quickly. The result is a system that learns quickly and
is still able to generalise effectively. The results in this paper investigates the
method’s ability to classify cases quickly in an online environment and to predict
continuous values. This notion of a symbolic based system capable of finding hidden
contextual information through the generalisation of captured knowledge, led to the
notion of combining a Knowledge Based System (KBS) with an Artificial Neural
Network (ANN). The KBS selected for use in this paper was MCRDR, as this is cur-
rently one of the methodologies most capable of modelling multiple contexts [9].

This paper is broken into three main sections. The first section will provide a back-
ground on MCRDR. This is followed by a discussion of the algorithm developed.
Lastly, extensive results will be given, detailing the systems ability to discover more
knowledge than that provided by the expert in both an online environment and in
predicting continuous values.

2 Multiple Classification Ripple-Down Rules (MCRDR)

Ripple-Down Rules is a maintenance centred methodology for a KBS based approach
using the concept of fault patching [10] and was first proposed by Compton and
Jansen in 1988 [6]. It utilises a binary tree as a simple exception structure aimed at
partially capturing the context that knowledge is obtained from an expert. It was as-
sumed that the context was the sequence of rules that had evaluated to provide the
given conclusion [6, 11-15]. Therefore, if the expert disagrees with a conclusion made
by the system they can change it by adding a new rule. However, the new rule will
only fire if the same path of rules is evaluated [13].

Ripple-Down Rules has been shown to be a highly effective tool for knowledge
acquisition (KA) and knowledge maintenance (KM). However, it lacks the ability to
handle tasks with multiple possible conclusions. Multiple Classification Ripple-Down
Rules (MCRDR) aim was to redevelop the RDR methodology to provide a general
approach to building and maintaining a Knowledge Base (KB) for multiple classifica-
tion domains, while maintaining all the advantages from RDR. Such a system would
be able to add fully validated knowledge in a simple incremental contextually de-
pendant manner without the need of a knowledge engineer [16, 17].

The new methodology developed by [16] is based on the proposed solution by
[12, 13]. The primary shift was to switch from the binary tree to an n-ary tree represen-
tation. The context is still captured within the structure of the KB and explanation can
still be derived from the path followed to the concluding node. The main difference
between the systems is that RDR has both an exception (true) branch and an if-not
(false) branch, whereas MCRDR only has exception branches. The false branch instead
simply cancels a path of evaluation. Like with RDR, MCRDR nodes each contain a
rule and a conclusion if the rule is satisfied. Each, however, can have any number of
child branches.

 Generalising Symbolic Knowledge in Online Classification and Prediction 93

Inference occurs by first evaluating the root and then moving down level by level.
This continues until either a leaf node is reached or until none of the child rules
evaluate to true. Each node tests the given case against its rule. If false it simply re-
turns, X (no classification). However, if this node’s rule evaluates to true then it will
pass the case to all the child nodes. Each child, if true, will then return a list of classi-
fications. Each list of classifications is collated with those sent back from the other
children and returned. However, if none of the children evaluate to true, and thus they
all return X, then this node will instead return its classification. Like with RDR the
root node’s rule always evaluates to true, ensuring that if no other classification is
found then a default classification will be returned.

Knowledge is acquired by inserting new rules into the MCRDR tree when a mis-
classification has occurred. The new rule must allow for the incorrectly classified
case, identified by the expert, to be distinguished from the existing stored cases that
could reach the new rule [18]. This is accomplished by the user identifying key differ-
ences between the current case and each of the rules’ cornerstone cases. A cornerstone
case is a case that was used to create a rule and was also classified in the parent’s
node, or one of its child branches, of the new node being created. This is continued
for all stored cornerstone cases, until there is a composite rule created that uniquely
identifies the current case from all of the previous cases that could reach the new rule.
The idea here is that the user will select differences that are representative of the new
class they are trying to create [18].

3 Methodology

The approach developed in this paper is a hybrid methodology, referred to as Rated
MCRDR (RM), combining MCRDR with a function fitting technique, namely an
artificial neural network (ANN). This hybridisation was performed in such a way that
the function fitting algorithm learns patterns of fired rules found during the inferenc-
ing process. The position of rules and conclusions in the MCRDR structure represents
the context of the knowledge, while the network adjusts its function over time as a
means of capturing hidden relationships. It is these relationships that represent the
methodology’s hidden contexts.

This amalgamation appears simplistic but is by no means trivial. The fundamental
difficulty was finding a means for taking the inferenced results from MCRDR and
coding an input sequence for the network. The problem is caused by MCRDR’s struc-
ture constantly expanding. Therefore, the network’s input space must also grow to
match. However, previous work in the function-fitting literature has not attempted to
develop a network capable of increasing its input space. The problem arises from the
internal structure of neural networks where, as the input space is altered, the intercon-
nections between neurons and the associated weights are also changed.

Basically, the system discussed in this paper is designed to recognise patterns of
rules for particular cases and to attach weightings to these observed patterns. These
patterns exist because there is either a conscious or subconscious relationship between
these classes in the expert’s mind. Therefore, the captured pattern of rules in their
static context is effectively a type of hidden or unknown context. This now discovered
context can be given a value representing its contribution to a particular task.

94 R. Dazeley and B.-H. Kang

1. Pre-process Case
Initialise Case c
c ← Identify all useful data elements.

2. Classification
Initialize list to store classifications
Loop

If child’s rule evaluates Case c to true
list ← goto step 2 (generate all classifications in child’s branch).

Until no more children
If no children evaluated to true then
 list ← Add this nodes classification.
Return list.

3. Evaluate Case
x ← Generate input vector from list.

ANN ← x
v ← ANN output value.

4. Return RM evaluation
Return list of classifications for case c and
Value v of case c.

Fig. 1. Pseudo code algorithm for RM

List of classifications.
l = Z, Y, U

Tokens:
a, b, c, f, i

Document:
a b b a c f i

Value of case.
v = 0.126

Rule 5:
If f then class Y

Rule 6:
If e then class W

Rule 4:
If c,!h then class V

Rule 8:
If a then class U

Rule 7:
If c,g then class Y

Rule 3:
If !b then class X

Rule 1:
If a then class Z

Rule 2:
If d then class Y

Rule 0:
If true then …

MCRDR Neural Network

Pre-Process

Case / Document

RM - case
evaluation

Fig. 2. RM illustrated diagrammatically

The full RM algorithm, given in pseudo-code in Fig 1 and shown diagrammatically
in Fig 2, consists of two primary components. Firstly, a case is pre-processed to iden-
tify all of the usable data elements, such as stemmed words or a patient’s pulse. The
data elements are presented to the standard MCRDR engine, which classifies them
according to the rules previously provided by the user. Secondly, for each attribute,
rule or class identified, an associated input neuron in the neural network will fire. The

 Generalising Symbolic Knowledge in Online Classification and Prediction 95

network produces a vector of output values, v , for the case presented. The system,
therefore, essentially provides two separate outputs; the case’s classifications and the
associated set of values for those classifications.

Fig 2 shows a document classification and storage system where documents are
also rated to judge their immediate importance. In this example a document with the
tokens {a b b a c f i} has been pre-processed to a set of unique tokens {a, b, c, f, i}.
The case is then presented to the MCRDR component of the RM system, which rip-
ples the case down the rule tree finding three classifications: Z, Y, and U; from the
terminating rules: 1, 5, and 8. In this example, which is using the Terminating Rule
Association (TRA) method (section 3.3), the terminating rules then cause the three
associated neurons to fire. The input pattern then feeds forward through the neural
network producing a single value of 0.126. Thus, this document has been allocated a
set of classifications that can be used to store the document appropriately, plus a rat-
ing indicating the importance of the document.

3.1 Learning in RM

Learning in RM is achieved in two ways. Firstly, the value for each corresponding
value for receives feedback from the environment concerning its accuracy. Thus, a
system using RM must provide some means of either directly gathering or indirectly
estimating each elements value. For example, in an email application where the system
was required to order the documents in the order of importance, the amount of reward
given to the network could be based on the order the articles are read by the user or
whether the user prints, saves, replies, forwards or deletes the email. How the network
actually learns is either using the standard backpropagation approach using a sigmoid
thresholding function, or, using the RM specific algorithm described in section 3.4.
The MCRDR component still acquires knowledge in the usual way (section 2). There-
fore, in the basic RM implementation the expert must still review cases and check
classifications are correct.

3.2 Artificial Neural Network Component

The ANN used is based on the backpropagation algorithm and was designed to be
plugged on to the end of the MCRDR component. Integration of the MCRDR and
ANN components is carried out by codifying the relevant features taken from
MCRDR and converting these into a single input array of values, x , which is to be
provided to the ANN for processing. Two methods were used in this paper referred to
as the Rule Path and Terminating Rule Association methods. The rule path method
provided an input for every rule that fired while the terminating method only fired
input nodes associated with the final rule that was reached by the inferencing process.

3.3 Adding Neurons

As the input space grows new input nodes need to be added to the network in such a
way that does not damage already learnt information. A number of methods were
developed for altering the input space, such as backpropagation and radial basis func-
tion networks, as well as non neural network methods such as Kernel based methods.
This paper will discuss the most stable and effective method found. This particular

96 R. Dazeley and B.-H. Kang

Shortcut
connections

Fig. 3. Network structure of RM showing a single hidden layer network with shortcut connec-
tions directly connecting the input nodes to the output nodes

method allows for non-linear relationships while being able to learn quickly when
new inputs are added.

RM captures the initial information by directly calculating the required weight to
provide us with the correct weighted-sum using a new learning rule referred to as the
single-step-Δ-initialisation-rule (3.4.1). When applying this weight it must be done in
so that does not affect any of the already learnt weights. Therefore, the network struc-
ture needed to be altered by adding shortcut connections (Fig 3) from any newly cre-
ated input node directly to each output node and using these connections to carry the
entire weight adjustment. When a new input node is added, additional hidden nodes
also may be added. Therefore, connections must be added in the following places:

• From the new input node to all of the old hidden nodes.
• From all input nodes, new and old, to each of the new hidden nodes, if any.
• From each of the new hidden nodes, if any, to all of the output nodes.
• The shortcut connections from the new input node to all of the output nodes.

Original connections (not changed)

New connections (set to zero)

New connections (given random values)

New connections (calculated using the Single-step-Δ-initialisation-rule)

a) Adding input node only. b) Adding both input and hidden node.

Connections key

 bias

New Input Nodes New Hidden Node

Fig. 4. Process used for adding new input and hidden nodes in RM. (a) shows how inputs are
added by themselves. (b) shows how input and hidden nodes are added simultaneously.

 Generalising Symbolic Knowledge in Online Classification and Prediction 97

The process for adding nodes and connections is illustrated in Fig 4. Each of these
different groups of new connections requires particular start up values. First, the new
connections from the new input node to all the old hidden nodes should be set to zero
so that they have no immediate affect on current relationships. Occasionally, new
hidden nodes are also required. These were added at a rate that maintained a number
equivalent to half the amount of input nodes. If new hidden nodes were added then
the connections from them to the output nodes should also be set to zero for the same
reason as with the input nodes. In order for these connections to be trained, the output
from the new hidden nodes must be non-zero. Thus, the new connections from all the
input nodes to the new hidden nodes, and their biases, are given random values. Fi-
nally, the new shortcut connections are given a value calculated using the single-step-
Δ-initialisation-rule.

3.3.1 The Single-Step-Δ-Initialisation-Rule
The single-step-Δ-initialisation-rule directly calculates the required weight for the
network to step to the correct solution immediately. This is accomplished by reversing
the feedforward process back through the inverse of the symmetric sigmoid. This
calculation is performed by finding the weight needed, using equation (1), for the new
input connection, wno. This has the requirement that the system does not attempt to set
the value of the output outside the range -0.5 > (f(net) + δ) > 0.5 as this will cause an
error. The value for net for each output node, o, was previously calculated by the
network during the feedforward operation where there are n>1 input nodes and the nth
input node is our new input. Function f is the asymmetric sigmoid and δ is the amount
of error. This is then divided by the input at the newly created input node, xn, which is
always 1 in this implementation, where there are n>0 input nodes and o>0 output
nodes. Additionally, it is possible for the expert to add multiple new rules for the one
case. In these situations the calculated weight is divided by the number of new fea-
tures (attribute, rule or class), m. Finally, the equation is multiplied by the step-
distance modifier, Zeta (ζ).

() ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

+−

++
= ∑∑

=

−

=
n

q

h
hoh

n

i
ioi

oo

oo

no mxwxwxk
netf

netf
w

0

1

0)(5.0

5.0)(
log

δ
δ

ζ

(1)

The Zeta (ζ) modifier should always be set in the range 10 ≤≤ ζ . It is included

to allow adjustments to whether a full step or partial steps should be taken for the new
features. For instance, if ζ is 1 then the new weights will provide a full step and any
future identical cases will give the exact correct answer. A lesser value for ζ causes
new features to only receive a portion of their value. It was found in testing that the
inclusion of the ζ modifier allows better performances in some situations.

This updating method is best understood by seeing what is occurring diagrammati-
cally. Fig 6 shows an input pattern that had a weighted sum of 3.0 at the output node.
This was passed through the symmetric sigmoid function, finding the output value
0.47. The correct output after a rule was added is -0.358. The correct weight for
the new input node is calculated by feeding this target back through the inverse of the
sigmoid function finding the value -1.8. Therefore, the new node’s weight is the dif-
ference between these two values, giving -4.8.

98 R. Dazeley and B.-H. Kang

Fig. 5. Example of the single-step-Δ-initialisation-rule shown diagrammatically

Fig. 6. Example of a randomly generated energy pattern used in the MCP simulated expert

4 Experiments and Results

This section’s results are in two parts. First RM compares against the two underlying
methodologies, MCRDR and a backpropagation neural network, in an online classifi-
cation task. The second collection of results illustrates how RM compares against a
backpropagation neural network in both on and off-line prediction. The aim of these
results is to show how RM learns as fast as MCRDR, yet maintains the generalisation
of a neural network. This section also contains a discussion of the simulated experts
used for the experiments, along with the datasets used.

 Generalising Symbolic Knowledge in Online Classification and Prediction 99

4.1 Experimental Method

In the first group of experiments the aim is to test RMs classification ability in an
online environment compared to the underlying approaches. Therefore, the output
from RMs ANN will consist of a vector, v , of outputs. Each output will relate to one
possible classification. There will be an equal number of outputs to the number of
class types in the dataset being tested. If the output is positive then it will be regarded
as providing that classification. The same output method is used for the backpropaga-
tion method being compared against. In the first collection of results presented in this
paper each test used 10 different randomisations of the relevant datasets. The test
investigates how the methods can correctly classify cases over time. In this test the
entire dataset is broken up into small blocks, each 1/50th of the original dataset, and
passed through the system one group at a time. The system’s performance is recorded
after each group, showing how fast the system learns for each new batch of cases.

In the prediction domain RM and the ANN must output a single value, which must
be as close to the expected value as possible. In the second collection of results pre-
sented in this paper each test used 10 different randomisations of the dataset. The
first, generalisation test, divides each dataset into ten equal sized groups. Results are
presented where 9/10ths of the dataset are used for training and 1/10th for testing. The
size of the training set is then reduced incrementally in steps of 1/10th, down to 1/10th.
The same 1/10th set is always used as the test set. The online prediction test investi-
gates how the methods can correctly predict values over time. Similar to the online
classification test, the entire dataset is broken up into smaller blocks, each 1/50th of
the original dataset, and passed through the system one group at a time. The system’s
performance is recorded after each group. The value returned is then compared to the
simulated expert’s correct value. The absolute difference between these two values
(error) is then averaged over all the cases in the data segment and logged.

4.2 Simulated Expertise

One of the greatest difficulties in KA and KBSs research is how to evaluate the meth-
odologies developed [19]. The method used by the majority of RDR based research
has been to build a simulated expert, from which knowledge can be acquired [19]. It
is this approach that has been taken in this paper. This section will discuss the three
simulated experts created for the tests performed in this paper.

4.2.1 C4.5 Simulated Expert
The only purpose of the simulated expert is to select which differences in a difference
list are the primary ones. It uses its own KB to select the symbols that will make up
the new KB. C4.5 [20] is used to generate the simulated expert’s knowledge base. The
resulting tree then classifies each case presented, just like our KB under development.
If the KB being constructed, incorrectly classifies a case then the simulated expert’s
decision tree is used to find attributes within rules that led to the correct classification.
This is similar to the ‘smartest’ expert created by Compton et al [21].

100 R. Dazeley and B.-H. Kang

4.2.2 Non-linear Multi-class Simulated Expert
The fundamental problem with the above simulated expert is that it requires an induc-
tion system, such as C4.5, to generate a complete KB prior to its use. This is a prob-
lem because no suitable system is available that can create such a tree for a multiple
classification domain. However, the system being developed in this paper is primarily
targeting domains with multiple classification domains. Therefore, a second simulated
expert was created specifically designed for handling a particular multiple classifica-
tion based dataset (4.3).

This heuristic based simulated expert has two stages in calculating classifications
based on a cases attributes. The first stage uses a randomly generated table of values,
representing the level that each attribute, Aa ∈ , contributes to each class, Cc ∈ . An
example of an expert’s attribute table used is shown in Table 1.

Table 1. Example of a randomly generated table used by the non-linear multi-class simulated
expert. Attributes a - l are identified across the top, and the classes C1 – C6 down the left.

 A b c d e f g h i j k l
C1 0 0 -1 3 0 0 0 0 0 0 -1 3
C2 0 0 0 -2 2 0 0 -2 0 0 1 0

C3 0 -2 1 0 0 0 0 0 0 1 0 -1

C4 -1 3 0 0 0 0 1 0 -1 0 0 0

C5 0 0 0 0 -2 2 -2 0 2 0 0 0

C6 2 0 0 0 0 -2 0 1 0 -2 0 0

To make the task sufficiently difficult for the systems to learn a second stage of the
expert’s classification process is to provide a non-linearity. A non-linear expert needs
the attributes’ contribution to classifications to vary according to what other attributes
were in the case. This was achieved by selecting an even number of attributes and
pairing them together for each of the classes. Once paired, they were given an increas-
ing absolute value. Additionally, alternate pairs had their sign changed. This can best
be understood by investigating the example shown in Table 2. Here it can be seen that
for the class C1, the attribute pairs {b, j}, {f, h} and {d, j} have a positive influence,
while {a, l}, {h, i} and {a, k} have a negative influence.

Table 2. Example of a randomly generated table of attribute pairs. The top numbers represent
the positive or negative values for the pairs. Each class in this example has six pairs.

 1 -1 2 -2 3 -3
C1 b j a l f h h i d j a k
C2 g b c f e h a b k d g k

C3 i d e b g i k l j a c f

C4 l a c i j a i l f h j a

C5 k g b f d g j f b c a e

C6 c l h j a c j b g k d e

 Generalising Symbolic Knowledge in Online Classification and Prediction 101

Table 3. Two example cases being evaluated by the non-linear multi-class simulated expert

Case A = {a, b, c, d} Case B = {a, c, e, g}
Classifications Classifications Attributes

1 2 3 4 5 6
Attributes

1 2 3 4 5 6
a 0 0 0 -1 0 2 a 0 0 0 -1 0 2
b 0 0 -2 3 0 0 c -1 0 1 0 0 0
c -1 0 1 0 0 0 e 0 2 0 0 -2 0
d 3 -2 0 0 0 0 g 0 0 0 1 -2 0

{a, c} 2 {a, c} 2
{a, b} -2 {e, a} -3
{b, c} 3
Total 2 -4 -1 2 3 4 Total -1 2 1 0 -7 4

Classified Classified

When a case is presented to the expert the class it belongs to is calculated by add-

ing all the attribute values and there attribute pairs. The expert will then classify the
case according to which classes provided a positive, > 0, total. When creating a new
rule, the expert selects the attribute or attribute-pair from the difference list that dis-
tinguishes the new case from the cornerstone case to the greatest degree. Table 3,
gives two example cases where each case has 4 attributes.

4.2.3 Multi-class-Prediction Simulated Expert
Testing RM using simulation has an added difficulty in the prediction domain. This is
because available datasets do not give both symbolic knowledge and a target value
instead of a classification. This could be partially resolved by assigning each classifi-
cation a value. However, fundamentally this would still be a classification type prob-
lem. The approach taken in this paper was to develop a third simulated expert, which
has two stages in calculating a value for a case based on a set of randomly generated
attributes. The first stage uses a randomly generated table of values, in the same way
as the first stage of the non-linear simulated expert described above. This classifica-
tion stage is merely an intermediate step to finding a rating for the case. It is also used
during knowledge acquisition for identifying relevant attributes in the difference lists.
When creating a new rule, the expert selects the attribute from the difference list that
distinguishes the new case from the cornerstone case to the greatest degree. This was
achieved by locating the most significant attribute, either positively or negatively, that
appeared in the difference list (see example in Table 1).

To fully push the system’s abilities, the rating calculated by the simulated expert
needs to generate a non-linear value across the possible classifications. The imple-
mentation used for prediction generates an energy space across the level of class acti-
vations, giving an energy dimensionality the same as the number of classes possible.
Each case is then plotted on to the energy space in order to retrieve the case’s value.
First, the strength of each classification found is calculated. As previously discussed a
case was regarded as being a member of a class if its attribute value was greater than
0. However, no consideration was made to what was the degree of membership. In
this expert the degree of the case’s membership is calculated as a percentage, p, of
membership using Equation 2.

102 R. Dazeley and B.-H. Kang

mt/atp = (2)

This is simply the actual calculated total, ta, divided by the maximum possible total,
tm, for that particular class. Extending the example from Table 3 for case A, classifica-
tion C1, the total 2 is divided by the best possible degree of membership 6, max value
from row C1 in table 1, thereby, giving a percentage, p, membership of 33%. This
calculation is performed for each class. Each class then has a randomly selected point
of highest value, or centre, c, which is subtracted from the percentage and squared,
Equation 3. This provides a value which can be regarded as a distance measure, d,
from the centre. This distance measure can be stretched or squeezed, widening or con-
tracting the energy patterns around a centre, by the inclusion of a width modifier, w.

2)(d cpw −= (3)

The classes’ centres are combined to represent the point of highest activation for
the expert, referred to as a peak. Therefore, if the square root of the sum of distances
is taken then the distance from this combined centre can be found. This distance can
then be used to calculate a lesser value for the case’s actual rating. Therefore, as a
case moves away from a peak its value decreases. Any function can be used to calcu-
late the degree of reduction in relation to distance. In this paper a Gaussian function
was used. Equation 4 gives the combined function for calculating a value for each
possible peak, vp, where n is the number of classes in the dataset.

5.0

1

1

0

2

15.0

−

∑
+

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=

n

j
jj

m
j

a
j

cw
t

t

p

e

v

(4)

Finally, it is possible to have multiple peaks in the energy space. In such a situation
each class has a centre for each peak. Each peak is then calculated in the same fashion
as above, resulting in a number of values, one for each peak. The expert then simply
selects the highest value as the case’s actual rating. This rating method is best under-
stood by looking at a three dimensional representation shown in Fig 6.

The third dimension, shown by the height, illustrates the value at any particular
point in the energy space. This figure shows a dataset with only two possible classes,
C1 and C2, and two peaks. A three class dataset cannot be represented pictorially. The
advantage of this approach is that it generates an energy pattern that is nonlinear. At
no location can a straight line be drawn where values are all identical.

4.3 Datasets

The method was tested using six datasets. The first five are standard datasets retrieved
from the University of California Irvine Data Repository [22]. These five datasets
were tested using the C4.5 based simulated expert. The sixth dataset is a purpose
designed randomised set and is used with the non-linear multi-class and multi-class-
prediction simulated experts. Below is a list describing each of the five dataset used
from the University of California Irvine Data Repository [22].

 Generalising Symbolic Knowledge in Online Classification and Prediction 103

• Chess – has 36 attributes with a binary classification over 3196 cases. In
each 1/50th group there are 63 cases.

• Tic-Tac-Toe (TTT) –has 9 attributes with a binary classification over 958
cases. In each 1/50th group there are 19 cases.

• Nursery Database – has 8 nominal attributes with 5 classifications over
12960 cases. In each 1/50th group there are 259 cases.

• Audiology – has 70 nominal-valued attributes with 17 classifications over
only 200 cases. In each 1/50th group there are 4 cases.

• Car Evaluation – has 6 attributes with 4 classifications over 1728 cases. In
each 1/50th group there are 34 cases.

The multi-class dataset builds cases by randomly selecting attributes from the envi-
ronment. For instance, an environment setup for the example simulated experts used
in section 4.2.2 would allow for 12 possible attributes. For the tests in this paper each
case selected 6 attributes, giving a possible 924 different cases. There were also 6
possible conclusions. Therefore, in each 1/10th group used in the offline prediction
there are 92 cases and 18 cases in each 1/50th group.

4.4 Online Classification

One of the main features RM was aiming to achieve from the use of the ANN was the
ability to learn quickly and generalise well in an online environment. The results in
this section investigate how RM compares with its two underlying methodologies in
the online environment. Fig 7 (a) - (f) shows how RM, MCRDR and the ANN per-
form on the six datasets. Each point on the charts is an average of the previous 10 data
segments (except 2 data segments for the Audiology dataset) which are then further
averaged over the ten randomised runs. Each segment contains a random selection of
cases, each 1/50th the size of the whole dataset. Error bars have been omitted to allow
for greater readability.

These comparisons are powerful indicators of the advantages of RM over a stan-
dard backpropagation neural network when being applied in an online environment.
On the chess, TTT and audiology datasets it can be seen that RM has learned as fast
or nearly as fast as MCRDR. On the nursery and car evaluation datasets it was only
between 3% and 6% below MCRDRs performance and overtime was narrowing this
gap. This meets our original goal of gaining the speed of MCRDR’s instantaneous
learning as soon as a rule is added. In the multi-class results this same result can be
observed, except it can also be seen how RM continued to learn after MCRDR had
accrued all its possible knowledge.

MCRDR’s failure to continue to learn after its initial gains was a point of concern
in the multi-class test. However, after investigation, it was found to be caused by two
main factors. Firstly, for a case to be correctly classified it must get all six classes
correct. Therefore, MCRDR’s performance was not as poor as it first appears. Sec-
ondly, there is one unusual problem in the MCRDR rule creation and validation
phase. It is possible that when an expert attempts to create a rule there may be no
suitable attributes available. This generally only occurs on the later difference lists
generated when there are multiple cornerstone cases.

104 R. Dazeley and B.-H. Kang

a) Multi-class dataset

0

10

20

30

40

50

60

70

80

90

100

10

12
10

24
10

36
10

48
10

RM(bp(Δ))

ANN(bp)

MCRDR

b) Chess dataset

40

50

60

70

80

90

00

10 50 90 13
0

17
0

RM(bp(Δ))

ANN(bp)

MCRDR

c) Tic-Tac-Toe dataset

50

60

70

80

90

100

10 25
0

49
0

73
0

97
0

RM(bp(Δ))

ANN(bp)

MCRDR

d) Nursery dataset

20

40

60

80

100

10 50 90 13
0

17
0

RM(bp(Δ))

ANN(bp)

MCRDR

e) Audiology dataset

20

40

60

80

100

2 10 18 26 34

RM(bp(Δ))

ANN(bp)

MCRDR

f) Car evaluation dataset

50

60

70

80

90

100

10 50 90 13
0

17
0

RM(bp(Δ))

ANN(bp)

MCRDR

Fig. 7. (a) – (f) shows charts comparing the performance of RM, an ANN and MCRDR using
different datasets. The x-axis shows the amount of 1/50th data segments that have been seen.
The y-axis shows the average accuracy over the last 10 data segments.

The complexity of the multi-class dataset, especially the use of attribute pairs high-
lights this problem. This caused the simulated expert to be unable to create required
rules on some occasions. Therefore, for the purposes of this test, failed rules were not
added to the knowledge base. However, these lost rules can now be treated as a form
of hidden context. Therefore, RM’s ability to significantly outperform the MCRDR’s
performance shows its ability to capture that hidden information even when it is un-
available to the knowledge base. The performance of RM appears to essentially learn
exactly like any standard learning curve but rather than start from scratch it began
from where MCRDR had finished learning.

 Generalising Symbolic Knowledge in Online Classification and Prediction 105

4.5 Prediction Generalisation

Traditionally, MCRDR and other KBSs can usually only be applied to classification
problems. Even when used for prediction they usually still use the same basic classifi-
cation style but each classification gives a predictive value instead. One advantage
found with RM is that it can also be applied in a prediction environment. This can be
achieved by the network being setup to output just a single value, representing the
system’s prediction for the task at hand.

The ability of a method to generalise is measured by how well it can correctly rate
cases during testing that it did not see during training. The value returned by RM and
the ANN is then compared to the simulated expert’s correct value. The absolute dif-
ference between these two values (error) is then averaged over all the cases in the data
segment and logged. The results shown in Fig 8 show they each performed. Each
point on the charts is the average error for the test data segment averaged over ten
randomised runs of the experiment, for each of the nine tests. To reduce the complex-
ity of the charts shown, error bars have been omitted.

These results show that the RM hybrid system has done exceptionally well both
initially as well as after training is complete when generalising. Additionally, it can be
observed that the neural network was unable to significantly improve with more train-
ing data. This problem is caused by the network having consistently fallen into

a) After One Training Round

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9

RM(bp(Δ))

ANN(bp)

b) After Training Complete

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9

RM(bp(Δ))

ANN(bp)

Fig. 8. (a) – (b) Two charts comparing how RM and ANN. Chart a) shows how the methods
compare after only one viewing of the training set. Chart b) shows how the methods compare
after training was completed. The x-axis shows how many tenths of the dataset were used for
training. All results used the last tenth for testing. The y-axis shows the average error.

local minimum, a problem common to neural networks especially in prediction do-
mains. RM is less likely to encounter this learning problem as the knowledge base
provides an extra boost, similar to a momentum factor, which propels it over any local
minima and closer to the true solution. Therefore, not only does RM introduce KBSs
into potential applications in the prediction domain, as well as, allow for greater gen-
eralisation similar to an ANN, but it also helps solve the local minima problem.

106 R. Dazeley and B.-H. Kang

4.6 Prediction Online

The process of RM being able to predict an accurate value in an online environment
could potentially allow the use of RM in a number of environments that have previ-
ously been problematic. For instance, KBSs in information filtering (IF) have diffi-
culties due to their problems in prediction, while neural networks are far too slow.
RM allows for the inclusion of expert knowledge with the associated speed but also
provides a means of value prediction. Fig 9 shows a comparison between RM and an
ANN in an online environment. Here it can once again be observed that RM has
performed outstandingly well from the outset and was able to maintain this perform-
ance. This fast initial learning can be vital in many applications as it is what users
usually expect.

0.01

0.02

0.03

0.04

0.05

10 25
0

49
0

73
0

97
0

RM(bp(Δ))

ANN(bp)

Fig. 9. This chart compares how RM and an ANN, perform in an online environment. The x-
axis shows the amount of 1/50th data segments that have been seen. The y-axis shows the aver-
age error over the last 10 data segments, also averaged over 10 trials.

5 Conclusion

This paper presented an algorithm that detects and models hidden contexts within a
symbolic domain. The method developed builds on the already established Multiple
Classification Ripple-Down Rules (MCRDR) approach and was referred to as Rated
MCRDR (RM). RM retains a symbolic core that acts as a contextually static memory,
while using a connection based approach to learn a deeper understanding of the
knowledge captured.

A number of results were presented in this paper, which have shown how RM is
able to acquire knowledge and learn. RM’s ability to perform well can be put down to
two features of the system. First, is that the flattening out of the dimensionality of the
problem domain by the MCRDR component allows the system to learn a problem that

 Generalising Symbolic Knowledge in Online Classification and Prediction 107

is mostly linear even if the original problem domain was non-linear. This allows the
network component to learn significantly faster. Second, the network gets an addi-
tional boost through the single-step-Δ-initialisation rule, allowing the network to start
closer to the correct solution when knowledge is added.

Acknowledgements

The majority of this paper is based on research carried out while affiliated with the
Smart Internet Technology Cooperative Research Centre (SITCRC) Bay 8, Suite
9/G12 Australian Technology Park Eveleigh NSW 1430 and the School of Comput-
ing, University of Tasmania, Locked Bag 100, Hobart, Tasmania.

References

1. Newell, A., Simon, H.A.: Computer Science as empirical Inquiry: Symbols and Search.
Communications of the ACM 19(3), 113–126 (1976)

2. Menzies, T.: Assessing Responses to Situated Cognition. In: Tenth Knowledge Acquisition
for Knowledge-Based Systems Workshop, Catelonia, Spain (1996)

3. Menzies, T.: Towards Situated Knowledge Acquisition. International Journal of Human-
Computer Studies 49, 867–893 (1998)

4. Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts.
In: Rival, I. (ed.) Ordered Sets: Proceedings of the NATO Advanced Study Institute held at
Banff, Canada, pp. 445–472. D. Reidel Publishing, Dordrecht (1981)

5. Kelly, G.A.: The Psychology of Personal Constructs, Norton, New York (1955)
6. Compton, P., Jansen, R.: Knowledge in Context: a strategy for expert system maintenance.

In: Second Australian Joint Artificial Intelligence Conference (AI 1988), vol. 1, pp. 292–306
(1988)

7. Brezillon, P.: Context in Artificial Intelligence: II. Key elements of contexts. Computer
and Artificial Intelligence 18(5), 425–446 (1999)

8. Dazeley, R., Kang, B.: Epistemological Approach to the Process of Practice. Journal of
Mind and Machine, Springer Science+Business Media B.V. 18, 547–567 (2008)

9. Gaines, B.: Knowledge Science and Technology: Operationalizing the Enlightenment. In:
Proceedings of the 6th Pacific Knowledge Acquisition Workshop, Sydney, Australia,
pp. 97–124 (2000)

10. Menzies, T., Debenham, J.: Expert System Maintenance. In: Kent, A., Williams, J.G.
(eds.) Encyclopaedia of Computer Science and Technology, vol. 42, pp. 35–54. Marcell
Dekker Inc., New York (2000)

11. Beydoun, G.: Incremental Acquisition of Search Control Heuristics, Ph.D thesis (2000)
12. Compton, P., Edwards, G., Kang, B.: Ripple Down Rules: Possibilities and Limitations.

In: 6th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW
1991), vol. 1, pp. 6.1–6.18. SRDG publications, Canada (1991)

13. Compton, P., Kang, B., Preston, P.: Knowledge Acquisition Without Knowledge Analysis.
In: European Knowledge Acquisition Workshop (EKAW), vol. 1, pp. 277–299. Springer,
Heidelberg (1993)

14. Preston, P., Edwards, G., Compton, P.: A 1600 Rule Expert System Without Knowledge
Engineers. In: Moving Towards Expert Systems Globally in the 21st Century (Proceedings
of the Second World Congress on Expert Systems 1993), New York, pp. 220–228 (1993)

108 R. Dazeley and B.-H. Kang

15. Preston, P., Edwards, G., Compton, P.: A 2000 Rule Expert System Without a Knowledge
Engineer. In: Proceedings of the 8th AAAI-Sponsored Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada, pp. 17.1-17.10 (1994)

16. Kang, B.: Validating Knowledge Acquisition: Multiple Classification Ripple Down Rules,
Ph.D thesis (1996)

17. Kang, B.H., Compton, P., Preston, P.: Multiple Classification Ripple Down Rules: Evalua-
tion and Possibilities. In: The 9th Knowledge Acquisition for Knowledge Based Systems
Workshop. SRDG Publications, Department of Computer Science, University of Calgary,
Banff, Canada (1995)

18. Preston, P., Compton, P., Edwards, G.: An Implementation of Multiple Classification
Ripple Down Rules. In: Tenth Knowledge Acquisition for Knowledge-Based Systems
Workshop, Department of Computer Science, University of Calgary. SRDG Publications,
Calgary (1996)

19. Compton, P.: Simulating Expertise. In: Proceedings of the 6th Pacific Knowledge Acquisi-
tion Workshop, Sydney, Australia, pp. 51–70 (2000)

20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

21. Compton, P., Preston, P., Kang, B.: The Use of Simulated Experts in Evaluating Knowl-
edge Acquisition. In: 9th AAAI-sponsored Banff Knowledge Acquisition for Knowledge
Base System Workshop (KAW 1995), vol. 1, pp. 12.1--12.18. SRDG publications, Canada
(1995)

22. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, University of Cali-
fornia, Irvine, Dept. of Information and Computer Sciences (1998)

	Generalising Symbolic Knowledge in Online Classification and Prediction
	Introduction
	Multiple Classification Ripple-Down Rules (MCRDR)
	Methodology
	Learning in RM
	Artificial Neural Network Component
	Adding Neurons

	Experiments and Results
	Experimental Method
	Simulated Expertise
	Datasets
	Online Classification
	Prediction Generalisation
	Prediction Online

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

