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Abstract. Increasingly, researchers and developers of knowledge based systems 
(KBS) have been incorporating the notion of context. For instance, Repertory 
Grids, Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all in-
tegrate either implicit or explicit contextual information. However, these meth-
odologies treat context as a static entity, neglecting many connectionists’ work 
in learning hidden and dynamic contexts, which aid their ability to generalize. 
This paper presents a method that models hidden context within a symbolic 
domain in order to achieve a level of generalisation. The method developed 
builds on the already established Multiple Classification Ripple-Down Rules 
(MCRDR) approach and is referred to as Rated MCRDR (RM). RM retains a 
symbolic core, while using a connection based approach to learn a deeper un-
derstanding of the captured knowledge. This method is applied to a number of 
classification and prediction environments and results indicate that the method 
can learn the information that experts have difficulty providing. 

Keywords: Hidden context, knowledge based systems, knowledge representa-
tion, ripple-down rules, situation cognition. 

1   Introduction 

Traditionally, knowledge based approaches have been based on the physical symbol 
hypothesis [1] which is built around the idea that knowledge is a substance that exists. 
However, after numerous failed systems some researchers have revised these concepts 
of knowledge and moved towards a situation-cognition (SC) based view. The SC view 
revolves around the premise that knowledge is generated at the time of its use. This 
implies that the existence of knowledge is based on the context of a given situation [2, 
3]. A few methodologies, such as Formal Concept Analysis (FCA) [4], Repertory Grids 
[5] and Ripple-Down Rules (RDR) [6], have adopted a weak SC position by including 
contextual information. These approaches either incorporated the context directly in the 
knowledge itself or in the structure the knowledge was represented. These methods have 
been reasonably successful, however, they assume that the context is a priori, and there-
fore, deductive [7]. This assumption leads to static representations of contextual based 
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knowledge. However, context in certain situations could be considered a posteriori, and 
therefore, inductive [7]. 

The aim of this paper is to present an algorithm that moves away from these con-
textually static representations and instead heads towards an intermediate SC [8] view 
by handling hidden and dynamic contexts. This involves incorporation similar behav-
iour to the traditional strengths of connection based approaches while still being able 
to acquire and retain knowledge quickly. The result is a system that learns quickly and 
is still able to generalise effectively. The results in this paper investigates the 
method’s ability to classify cases quickly in an online environment and to predict 
continuous values. This notion of a symbolic based system capable of finding hidden 
contextual information through the generalisation of captured knowledge, led to the 
notion of combining a Knowledge Based System (KBS) with an Artificial Neural 
Network (ANN). The KBS selected for use in this paper was MCRDR, as this is cur-
rently one of the methodologies most capable of modelling multiple contexts [9].  

This paper is broken into three main sections. The first section will provide a back-
ground on MCRDR. This is followed by a discussion of the algorithm developed. 
Lastly, extensive results will be given, detailing the systems ability to discover more 
knowledge than that provided by the expert in both an online environment and in 
predicting continuous values.  

2   Multiple Classification Ripple-Down Rules (MCRDR) 

Ripple-Down Rules is a maintenance centred methodology for a KBS based approach 
using the concept of fault patching [10] and was first proposed by Compton and 
Jansen in 1988 [6]. It utilises a binary tree as a simple exception structure aimed at 
partially capturing the context that knowledge is obtained from an expert. It was as-
sumed that the context was the sequence of rules that had evaluated to provide the 
given conclusion [6, 11-15]. Therefore, if the expert disagrees with a conclusion made 
by the system they can change it by adding a new rule. However, the new rule will 
only fire if the same path of rules is evaluated [13]. 

Ripple-Down Rules has been shown to be a highly effective tool for knowledge 
acquisition (KA) and knowledge maintenance (KM). However, it lacks the ability to 
handle tasks with multiple possible conclusions. Multiple Classification Ripple-Down 
Rules (MCRDR) aim was to redevelop the RDR methodology to provide a general 
approach to building and maintaining a Knowledge Base (KB) for multiple classifica-
tion domains, while maintaining all the advantages from RDR. Such a system would 
be able to add fully validated knowledge in a simple incremental contextually de-
pendant manner without the need of a knowledge engineer [16, 17]. 

The new methodology developed by [16] is based on the proposed solution by  
[12, 13]. The primary shift was to switch from the binary tree to an n-ary tree represen-
tation. The context is still captured within the structure of the KB and explanation can 
still be derived from the path followed to the concluding node. The main difference 
between the systems is that RDR has both an exception (true) branch and an if-not 
(false) branch, whereas MCRDR only has exception branches. The false branch instead 
simply cancels a path of evaluation. Like with RDR, MCRDR nodes each contain a 
rule and a conclusion if the rule is satisfied. Each, however, can have any number of 
child branches.  
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Inference occurs by first evaluating the root and then moving down level by level. 
This continues until either a leaf node is reached or until none of the child rules 
evaluate to true. Each node tests the given case against its rule. If false it simply re-
turns, X (no classification). However, if this node’s rule evaluates to true then it will 
pass the case to all the child nodes. Each child, if true, will then return a list of classi-
fications. Each list of classifications is collated with those sent back from the other 
children and returned. However, if none of the children evaluate to true, and thus they 
all return X, then this node will instead return its classification. Like with RDR the 
root node’s rule always evaluates to true, ensuring that if no other classification is 
found then a default classification will be returned. 

Knowledge is acquired by inserting new rules into the MCRDR tree when a mis-
classification has occurred. The new rule must allow for the incorrectly classified 
case, identified by the expert, to be distinguished from the existing stored cases that 
could reach the new rule [18]. This is accomplished by the user identifying key differ-
ences between the current case and each of the rules’ cornerstone cases. A cornerstone 
case is a case that was used to create a rule and was also classified in the parent’s 
node, or one of its child branches, of the new node being created. This is continued 
for all stored cornerstone cases, until there is a composite rule created that uniquely 
identifies the current case from all of the previous cases that could reach the new rule. 
The idea here is that the user will select differences that are representative of the new 
class they are trying to create [18]. 

3   Methodology 

The approach developed in this paper is a hybrid methodology, referred to as Rated 
MCRDR (RM), combining MCRDR with a function fitting technique, namely an 
artificial neural network (ANN). This hybridisation was performed in such a way that 
the function fitting algorithm learns patterns of fired rules found during the inferenc-
ing process. The position of rules and conclusions in the MCRDR structure represents 
the context of the knowledge, while the network adjusts its function over time as a 
means of capturing hidden relationships. It is these relationships that represent the 
methodology’s hidden contexts. 

This amalgamation appears simplistic but is by no means trivial. The fundamental 
difficulty was finding a means for taking the inferenced results from MCRDR and 
coding an input sequence for the network. The problem is caused by MCRDR’s struc-
ture constantly expanding. Therefore, the network’s input space must also grow to 
match. However, previous work in the function-fitting literature has not attempted to 
develop a network capable of increasing its input space. The problem arises from the 
internal structure of neural networks where, as the input space is altered, the intercon-
nections between neurons and the associated weights are also changed.  

Basically, the system discussed in this paper is designed to recognise patterns of 
rules for particular cases and to attach weightings to these observed patterns. These 
patterns exist because there is either a conscious or subconscious relationship between 
these classes in the expert’s mind. Therefore, the captured pattern of rules in their 
static context is effectively a type of hidden or unknown context. This now discovered 
context can be given a value representing its contribution to a particular task.  
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1. Pre-process Case 
Initialise Case c 
c ←  Identify all useful data elements. 

2. Classification 
Initialize list to store classifications 
Loop 

If child’s rule evaluates Case c to true 
list ←  goto step 2 (generate all classifications in child’s branch). 

Until no more children 
If no children evaluated to true then 
 list ←  Add this nodes classification. 
Return list. 

3. Evaluate Case 
x       ←   Generate input vector from list. 

ANN  ←  x  
v       ←   ANN output value. 

4. Return RM evaluation 
Return list of classifications for case c and 
Value v  of case c. 

 
Fig. 1. Pseudo code algorithm for RM 

List of classifications.
l = Z, Y, U 

Tokens: 
a, b, c, f, i 

Document: 
a b b a c f i 

Value of case. 
v = 0.126 

Rule 5: 
If f then class Y

Rule 6:
If e then class W 

Rule 4: 
If c,!h then class V

Rule 8:
If a then class U

Rule 7: 
If c,g then class Y 

Rule 3:
If !b then class X 

Rule 1: 
If a then class Z

Rule 2:
If d then class Y 

Rule 0:
If true then … 

MCRDR Neural Network 

Pre-Process

Case / Document 

RM - case 
evaluation

 

Fig. 2. RM illustrated diagrammatically 

The full RM algorithm, given in pseudo-code in Fig 1 and shown diagrammatically 
in Fig 2, consists of two primary components. Firstly, a case is pre-processed to iden-
tify all of the usable data elements, such as stemmed words or a patient’s pulse. The 
data elements are presented to the standard MCRDR engine, which classifies them 
according to the rules previously provided by the user. Secondly, for each attribute, 
rule or class identified, an associated input neuron in the neural network will fire. The 
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network produces a vector of output values, v , for the case presented. The system, 
therefore, essentially provides two separate outputs; the case’s classifications and the 
associated set of values for those classifications. 

Fig 2 shows a document classification and storage system where documents are 
also rated to judge their immediate importance. In this example a document with the 
tokens {a b b a c f i} has been pre-processed to a set of unique tokens {a, b, c, f, i}. 
The case is then presented to the MCRDR component of the RM system, which rip-
ples the case down the rule tree finding three classifications: Z, Y, and U; from the 
terminating rules: 1, 5, and 8. In this example, which is using the Terminating Rule 
Association (TRA) method (section 3.3), the terminating rules then cause the three 
associated neurons to fire. The input pattern then feeds forward through the neural 
network producing a single value of 0.126. Thus, this document has been allocated a 
set of classifications that can be used to store the document appropriately, plus a rat-
ing indicating the importance of the document. 

3.1   Learning in RM 

Learning in RM is achieved in two ways. Firstly, the value for each corresponding 
value for receives feedback from the environment concerning its accuracy. Thus, a 
system using RM must provide some means of either directly gathering or indirectly 
estimating each elements value. For example, in an email application where the system 
was required to order the documents in the order of importance, the amount of reward 
given to the network could be based on the order the articles are read by the user or 
whether the user prints, saves, replies, forwards or deletes the email. How the network 
actually learns is either using the standard backpropagation approach using a sigmoid 
thresholding function, or, using the RM specific algorithm described in section 3.4. 
The MCRDR component still acquires knowledge in the usual way (section 2). There-
fore, in the basic RM implementation the expert must still review cases and check 
classifications are correct. 

3.2   Artificial Neural Network Component 

The ANN used is based on the backpropagation algorithm and was designed to be 
plugged on to the end of the MCRDR component. Integration of the MCRDR and 
ANN components is carried out by codifying the relevant features taken from 
MCRDR and converting these into a single input array of values, x , which is to be 
provided to the ANN for processing. Two methods were used in this paper referred to 
as the Rule Path and Terminating Rule Association methods. The rule path method 
provided an input for every rule that fired while the terminating method only fired 
input nodes associated with the final rule that was reached by the inferencing process. 

3.3   Adding Neurons 

As the input space grows new input nodes need to be added to the network in such a 
way that does not damage already learnt information. A number of methods were 
developed for altering the input space, such as backpropagation and radial basis func-
tion networks, as well as non neural network methods such as Kernel based methods. 
This paper will discuss the most stable and effective method found. This particular 
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Shortcut 
connections  

Fig. 3. Network structure of RM showing a single hidden layer network with shortcut connec-
tions directly connecting the input nodes to the output nodes 

method allows for non-linear relationships while being able to learn quickly when 
new inputs are added.  

RM captures the initial information by directly calculating the required weight to 
provide us with the correct weighted-sum using a new learning rule referred to as the 
single-step-Δ-initialisation-rule (3.4.1). When applying this weight it must be done in 
so that does not affect any of the already learnt weights. Therefore, the network struc-
ture needed to be altered by adding shortcut connections (Fig 3) from any newly cre-
ated input node directly to each output node and using these connections to carry the 
entire weight adjustment. When a new input node is added, additional hidden nodes 
also may be added. Therefore, connections must be added in the following places: 

• From the new input node to all of the old hidden nodes.  
• From all input nodes, new and old, to each of the new hidden nodes, if any.  
• From each of the new hidden nodes, if any, to all of the output nodes.  
• The shortcut connections from the new input node to all of the output nodes.  

 

Original connections (not changed) 

New connections (set to zero) 

New connections (given random values) 

New connections (calculated using the Single-step-Δ-initialisation-rule) 

a) Adding input node only. b) Adding both input and hidden node. 

Connections key 

    bias 

New Input Nodes New Hidden Node 

 

Fig. 4. Process used for adding new input and hidden nodes in RM. (a) shows how inputs are 
added by themselves. (b) shows how input and hidden nodes are added simultaneously. 
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The process for adding nodes and connections is illustrated in Fig 4. Each of these 
different groups of new connections requires particular start up values. First, the new 
connections from the new input node to all the old hidden nodes should be set to zero 
so that they have no immediate affect on current relationships. Occasionally, new 
hidden nodes are also required. These were added at a rate that maintained a number 
equivalent to half the amount of input nodes. If new hidden nodes were added then 
the connections from them to the output nodes should also be set to zero for the same 
reason as with the input nodes. In order for these connections to be trained, the output 
from the new hidden nodes must be non-zero. Thus, the new connections from all the 
input nodes to the new hidden nodes, and their biases, are given random values. Fi-
nally, the new shortcut connections are given a value calculated using the single-step-
Δ-initialisation-rule. 

3.3.1   The Single-Step-Δ-Initialisation-Rule 
The single-step-Δ-initialisation-rule directly calculates the required weight for the 
network to step to the correct solution immediately. This is accomplished by reversing 
the feedforward process back through the inverse of the symmetric sigmoid. This 
calculation is performed by finding the weight needed, using equation (1), for the new 
input connection, wno. This has the requirement that the system does not attempt to set 
the value of the output outside the range -0.5 > (f(net) + δ) > 0.5  as this will cause an 
error. The value for net for each output node, o, was previously calculated by the 
network during the feedforward operation where there are n>1 input nodes and the nth 
input node is our new input. Function f is the asymmetric sigmoid and δ is the amount 
of error. This is then divided by the input at the newly created input node, xn, which is 
always 1 in this implementation, where there are n>0 input nodes and o>0 output 
nodes. Additionally, it is possible for the expert to add multiple new rules for the one 
case. In these situations the calculated weight is divided by the number of new fea-
tures (attribute, rule or class), m. Finally, the equation is multiplied by the step-
distance modifier, Zeta (ζ).  
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(1) 

The Zeta (ζ) modifier should always be set in the range 10 ≤≤ ζ . It is included 

to allow adjustments to whether a full step or partial steps should be taken for the new 
features. For instance, if ζ is 1 then the new weights will provide a full step and any 
future identical cases will give the exact correct answer. A lesser value for ζ causes 
new features to only receive a portion of their value. It was found in testing that the 
inclusion of the ζ modifier allows better performances in some situations.  

This updating method is best understood by seeing what is occurring diagrammati-
cally. Fig 6 shows an input pattern that had a weighted sum of 3.0 at the output node. 
This was passed through the symmetric sigmoid function, finding the output value 
0.47. The correct output after a rule was added is -0.358. The correct weight for  
the new input node is calculated by feeding this target back through the inverse of the 
sigmoid function finding the value -1.8. Therefore, the new node’s weight is the dif-
ference between these two values, giving -4.8. 
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Fig. 5. Example of the single-step-Δ-initialisation-rule shown diagrammatically 

 
Fig. 6. Example of a randomly generated energy pattern used in the MCP simulated expert 

4   Experiments and Results 

This section’s results are in two parts. First RM compares against the two underlying 
methodologies, MCRDR and a backpropagation neural network, in an online classifi-
cation task. The second collection of results illustrates how RM compares against a 
backpropagation neural network in both on and off-line prediction. The aim of these 
results is to show how RM learns as fast as MCRDR, yet maintains the generalisation 
of a neural network. This section also contains a discussion of the simulated experts 
used for the experiments, along with the datasets used.  
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4.1   Experimental Method 

In the first group of experiments the aim is to test RMs classification ability in an 
online environment compared to the underlying approaches. Therefore, the output 
from RMs ANN will consist of a vector, v , of outputs. Each output will relate to one 
possible classification. There will be an equal number of outputs to the number of 
class types in the dataset being tested. If the output is positive then it will be regarded 
as providing that classification. The same output method is used for the backpropaga-
tion method being compared against. In the first collection of results presented in this 
paper each test used 10 different randomisations of the relevant datasets. The test 
investigates how the methods can correctly classify cases over time. In this test the 
entire dataset is broken up into small blocks, each 1/50th of the original dataset, and 
passed through the system one group at a time. The system’s performance is recorded 
after each group, showing how fast the system learns for each new batch of cases. 

In the prediction domain RM and the ANN must output a single value, which must 
be as close to the expected value as possible. In the second collection of results pre-
sented in this paper each test used 10 different randomisations of the dataset. The 
first, generalisation test, divides each dataset into ten equal sized groups. Results are 
presented where 9/10ths of the dataset are used for training and 1/10th for testing. The 
size of the training set is then reduced incrementally in steps of 1/10th, down to 1/10th. 
The same 1/10th set is always used as the test set. The online prediction test investi-
gates how the methods can correctly predict values over time. Similar to the online 
classification test, the entire dataset is broken up into smaller blocks, each 1/50th of 
the original dataset, and passed through the system one group at a time. The system’s 
performance is recorded after each group. The value returned is then compared to the 
simulated expert’s correct value. The absolute difference between these two values 
(error) is then averaged over all the cases in the data segment and logged. 

4.2   Simulated Expertise 

One of the greatest difficulties in KA and KBSs research is how to evaluate the meth-
odologies developed [19]. The method used by the majority of RDR based research 
has been to build a simulated expert, from which knowledge can be acquired [19]. It 
is this approach that has been taken in this paper. This section will discuss the three 
simulated experts created for the tests performed in this paper. 

4.2.1   C4.5 Simulated Expert 
The only purpose of the simulated expert is to select which differences in a difference 
list are the primary ones. It uses its own KB to select the symbols that will make up 
the new KB. C4.5 [20] is used to generate the simulated expert’s knowledge base. The 
resulting tree then classifies each case presented, just like our KB under development. 
If the KB being constructed, incorrectly classifies a case then the simulated expert’s 
decision tree is used to find attributes within rules that led to the correct classification. 
This is similar to the ‘smartest’ expert created by Compton et al [21]. 
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4.2.2   Non-linear Multi-class Simulated Expert 
The fundamental problem with the above simulated expert is that it requires an induc-
tion system, such as C4.5, to generate a complete KB prior to its use. This is a prob-
lem because no suitable system is available that can create such a tree for a multiple 
classification domain. However, the system being developed in this paper is primarily 
targeting domains with multiple classification domains. Therefore, a second simulated 
expert was created specifically designed for handling a particular multiple classifica-
tion based dataset (4.3).  

This heuristic based simulated expert has two stages in calculating classifications 
based on a cases attributes. The first stage uses a randomly generated table of values, 
representing the level that each attribute, Aa ∈ , contributes to each class, Cc ∈ . An 
example of an expert’s attribute table used is shown in Table 1.  

Table 1. Example of a randomly generated table used by the non-linear multi-class simulated 
expert. Attributes a - l are identified across the top, and the classes C1 – C6 down the left.  

 A b c d e f g h i j k l 
C1 0 0 -1 3 0 0 0 0 0 0 -1 3 
C2 0 0 0 -2 2 0 0 -2 0 0 1 0 

C3 0 -2 1 0 0 0 0 0 0 1 0 -1 

C4 -1 3 0 0 0 0 1 0 -1 0 0 0 

C5 0 0 0 0 -2 2 -2 0 2 0 0 0 

C6 2 0 0 0 0 -2 0 1 0 -2 0 0 

To make the task sufficiently difficult for the systems to learn a second stage of the 
expert’s classification process is to provide a non-linearity.  A non-linear expert needs 
the attributes’ contribution to classifications to vary according to what other attributes 
were in the case. This was achieved by selecting an even number of attributes and 
pairing them together for each of the classes. Once paired, they were given an increas-
ing absolute value. Additionally, alternate pairs had their sign changed. This can best 
be understood by investigating the example shown in Table 2. Here it can be seen that 
for the class C1, the attribute pairs {b, j}, {f, h} and {d, j} have a positive influence, 
while {a, l}, {h, i} and {a, k} have a negative influence.  

Table 2. Example of a randomly generated table of attribute pairs. The top numbers represent 
the positive or negative values for the pairs. Each class in this example has six pairs. 

 1 -1 2 -2 3 -3 
C1 b j a l f h h i d j a k 
C2 g b c f e h a b k d g k 

C3 i d e b g i k l j a c f 

C4 l a c i j a i l f h j a 

C5 k g b f d g j f b c a e 

C6 c l h j a c j b g k d e 
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Table 3. Two example cases being evaluated by the non-linear multi-class simulated expert 

Case A = {a, b, c, d} Case B = {a, c, e, g} 
Classifications Classifications Attributes 

1 2 3 4 5 6 
Attributes 

1 2 3 4 5 6 
a 0 0 0 -1 0 2 a 0 0 0 -1 0 2 
b 0 0 -2 3 0 0 c -1 0 1 0 0 0 
c -1 0 1 0 0 0 e 0 2 0 0 -2 0 
d 3 -2 0 0 0 0 g 0 0 0 1 -2 0 

{a, c}      2 {a, c}      2 
{a, b}  -2     {e, a}     -3  
{b, c}     3         
Total 2 -4 -1 2 3 4 Total -1 2 1 0 -7 4 

Classified       Classified       

 
When a case is presented to the expert the class it belongs to is calculated by add-

ing all the attribute values and there attribute pairs. The expert will then classify the 
case according to which classes provided a positive, > 0, total. When creating a new 
rule, the expert selects the attribute or attribute-pair from the difference list that dis-
tinguishes the new case from the cornerstone case to the greatest degree. Table 3, 
gives two example cases where each case has 4 attributes. 

4.2.3   Multi-class-Prediction Simulated Expert 
Testing RM using simulation has an added difficulty in the prediction domain. This is 
because available datasets do not give both symbolic knowledge and a target value 
instead of a classification. This could be partially resolved by assigning each classifi-
cation a value. However, fundamentally this would still be a classification type prob-
lem. The approach taken in this paper was to develop a third simulated expert, which 
has two stages in calculating a value for a case based on a set of randomly generated 
attributes. The first stage uses a randomly generated table of values, in the same way 
as the first stage of the non-linear simulated expert described above. This classifica-
tion stage is merely an intermediate step to finding a rating for the case. It is also used 
during knowledge acquisition for identifying relevant attributes in the difference lists. 
When creating a new rule, the expert selects the attribute from the difference list that 
distinguishes the new case from the cornerstone case to the greatest degree. This was 
achieved by locating the most significant attribute, either positively or negatively, that 
appeared in the difference list (see example in Table 1).  

To fully push the system’s abilities, the rating calculated by the simulated expert 
needs to generate a non-linear value across the possible classifications. The imple-
mentation used for prediction generates an energy space across the level of class acti-
vations, giving an energy dimensionality the same as the number of classes possible. 
Each case is then plotted on to the energy space in order to retrieve the case’s value. 
First, the strength of each classification found is calculated. As previously discussed a 
case was regarded as being a member of a class if its attribute value was greater than 
0. However, no consideration was made to what was the degree of membership. In 
this expert the degree of the case’s membership is calculated as a percentage, p, of 
membership using Equation 2.  
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mt/atp =  (2) 

This is simply the actual calculated total, ta, divided by the maximum possible total, 
tm, for that particular class. Extending the example from Table 3 for case A, classifica-
tion C1, the total 2 is divided by the best possible degree of membership 6, max value 
from row C1 in table 1, thereby, giving a percentage, p, membership of 33%. This 
calculation is performed for each class. Each class then has a randomly selected point 
of highest value, or centre, c, which is subtracted from the percentage and squared, 
Equation 3. This provides a value which can be regarded as a distance measure, d, 
from the centre. This distance measure can be stretched or squeezed, widening or con-
tracting the energy patterns around a centre, by the inclusion of a width modifier, w. 

2)(d cpw −=  (3) 

The classes’ centres are combined to represent the point of highest activation for 
the expert, referred to as a peak. Therefore, if the square root of the sum of distances 
is taken then the distance from this combined centre can be found. This distance can 
then be used to calculate a lesser value for the case’s actual rating. Therefore, as a 
case moves away from a peak its value decreases. Any function can be used to calcu-
late the degree of reduction in relation to distance. In this paper a Gaussian function 
was used. Equation 4 gives the combined function for calculating a value for each 
possible peak, vp, where n is the number of classes in the dataset. 
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Finally, it is possible to have multiple peaks in the energy space. In such a situation 
each class has a centre for each peak. Each peak is then calculated in the same fashion 
as above, resulting in a number of values, one for each peak. The expert then simply 
selects the highest value as the case’s actual rating. This rating method is best under-
stood by looking at a three dimensional representation shown in Fig 6.  

The third dimension, shown by the height, illustrates the value at any particular 
point in the energy space. This figure shows a dataset with only two possible classes, 
C1 and C2, and two peaks. A three class dataset cannot be represented pictorially. The 
advantage of this approach is that it generates an energy pattern that is nonlinear. At 
no location can a straight line be drawn where values are all identical. 

4.3   Datasets 

The method was tested using six datasets. The first five are standard datasets retrieved 
from the University of California Irvine Data Repository [22]. These five datasets 
were tested using the C4.5 based simulated expert. The sixth dataset is a purpose 
designed randomised set and is used with the non-linear multi-class and multi-class-
prediction simulated experts. Below is a list describing each of the five dataset used 
from the University of California Irvine Data Repository [22].  
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• Chess – has 36 attributes with a binary classification over 3196 cases. In 
each 1/50th group there are 63 cases. 

• Tic-Tac-Toe (TTT) –has 9 attributes with a binary classification over 958 
cases. In each 1/50th group there are 19 cases. 

• Nursery Database – has 8 nominal attributes with 5 classifications over 
12960 cases. In each 1/50th group there are 259 cases. 

• Audiology – has 70 nominal-valued attributes with 17 classifications over 
only 200 cases. In each 1/50th group there are 4 cases. 

• Car Evaluation –  has 6 attributes with 4 classifications over 1728 cases. In 
each 1/50th group there are 34 cases. 

The multi-class dataset builds cases by randomly selecting attributes from the envi-
ronment. For instance, an environment setup for the example simulated experts used 
in section 4.2.2 would allow for 12 possible attributes. For the tests in this paper each 
case selected 6 attributes, giving a possible 924 different cases. There were also 6 
possible conclusions. Therefore, in each 1/10th group used in the offline prediction 
there are 92 cases and 18 cases in each 1/50th group. 

4.4   Online Classification 

One of the main features RM was aiming to achieve from the use of the ANN was the 
ability to learn quickly and generalise well in an online environment. The results in 
this section investigate how RM compares with its two underlying methodologies in 
the online environment. Fig 7 (a) - (f) shows how RM, MCRDR and the ANN per-
form on the six datasets. Each point on the charts is an average of the previous 10 data 
segments (except 2 data segments for the Audiology dataset) which are then further 
averaged over the ten randomised runs. Each segment contains a random selection of 
cases, each 1/50th the size of the whole dataset. Error bars have been omitted to allow 
for greater readability. 

These comparisons are powerful indicators of the advantages of RM over a stan-
dard backpropagation neural network when being applied in an online environment. 
On the chess, TTT and audiology datasets it can be seen that RM has learned as fast 
or nearly as fast as MCRDR. On the nursery and car evaluation datasets it was only 
between 3% and 6% below MCRDRs performance and overtime was narrowing this 
gap. This meets our original goal of gaining the speed of MCRDR’s instantaneous 
learning as soon as a rule is added. In the multi-class results this same result can be 
observed, except it can also be seen how RM continued to learn after MCRDR had 
accrued all its possible knowledge.  

MCRDR’s failure to continue to learn after its initial gains was a point of concern 
in the multi-class test. However, after investigation, it was found to be caused by two 
main factors. Firstly, for a case to be correctly classified it must get all six classes 
correct. Therefore, MCRDR’s performance was not as poor as it first appears. Sec-
ondly, there is one unusual problem in the MCRDR rule creation and validation 
phase. It is possible that when an expert attempts to create a rule there may be no 
suitable attributes available. This generally only occurs on the later difference lists 
generated when there are multiple cornerstone cases.  
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a) Multi-class dataset 
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b) Chess dataset 
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c) Tic-Tac-Toe dataset 
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d) Nursery dataset 
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e) Audiology dataset 
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f) Car evaluation dataset 
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Fig. 7. (a) – (f) shows charts comparing the performance of RM, an ANN and MCRDR using 
different datasets. The x-axis shows the amount of 1/50th data segments that have been seen. 
The y-axis shows the average accuracy over the last 10 data segments. 

The complexity of the multi-class dataset, especially the use of attribute pairs high-
lights this problem. This caused the simulated expert to be unable to create required 
rules on some occasions. Therefore, for the purposes of this test, failed rules were not 
added to the knowledge base. However, these lost rules can now be treated as a form 
of hidden context. Therefore, RM’s ability to significantly outperform the MCRDR’s 
performance shows its ability to capture that hidden information even when it is un-
available to the knowledge base. The performance of RM appears to essentially learn 
exactly like any standard learning curve but rather than start from scratch it began 
from where MCRDR had finished learning. 
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4.5   Prediction Generalisation 

Traditionally, MCRDR and other KBSs can usually only be applied to classification 
problems. Even when used for prediction they usually still use the same basic classifi-
cation style but each classification gives a predictive value instead. One advantage 
found with RM is that it can also be applied in a prediction environment. This can be 
achieved by the network being setup to output just a single value, representing the 
system’s prediction for the task at hand.  

The ability of a method to generalise is measured by how well it can correctly rate 
cases during testing that it did not see during training. The value returned by RM and 
the ANN is then compared to the simulated expert’s correct value. The absolute dif-
ference between these two values (error) is then averaged over all the cases in the data 
segment and logged. The results shown in Fig 8 show they each performed. Each 
point on the charts is the average error for the test data segment averaged over ten 
randomised runs of the experiment, for each of the nine tests. To reduce the complex-
ity of the charts shown, error bars have been omitted. 

These results show that the RM hybrid system has done exceptionally well both 
initially as well as after training is complete when generalising. Additionally, it can be 
observed that the neural network was unable to significantly improve with more train-
ing data. This problem is caused by the network having consistently fallen into 

 

a) After One Training Round 
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Fig. 8. (a) – (b) Two charts comparing how RM and ANN. Chart a) shows how the methods 
compare after only one viewing of the training set. Chart b) shows how the methods compare 
after training was completed. The x-axis shows how many tenths of the dataset were used for 
training. All results used the last tenth for testing. The y-axis shows the average error. 

local minimum, a problem common to neural networks especially in prediction do-
mains. RM is less likely to encounter this learning problem as the knowledge base 
provides an extra boost, similar to a momentum factor, which propels it over any local 
minima and closer to the true solution. Therefore, not only does RM introduce KBSs 
into potential applications in the prediction domain, as well as, allow for greater gen-
eralisation similar to an ANN, but it also helps solve the local minima problem.  
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4.6   Prediction Online 

The process of RM being able to predict an accurate value in an online environment 
could potentially allow the use of RM in a number of environments that have previ-
ously been problematic. For instance, KBSs in information filtering (IF) have diffi-
culties due to their problems in prediction, while neural networks are far too slow. 
RM allows for the inclusion of expert knowledge with the associated speed but also 
provides a means of value prediction. Fig 9 shows a comparison between RM and an 
ANN in an online environment. Here it can once again be observed that RM has 
performed outstandingly well from the outset and was able to maintain this perform-
ance. This fast initial learning can be vital in many applications as it is what users 
usually expect.  

 

0.01

0.02

0.03

0.04

0.05

10 25
0

49
0

73
0

97
0

RM(bp(Δ))

ANN(bp)

 

Fig. 9. This chart compares how RM and an ANN, perform in an online environment.  The x-
axis shows the amount of 1/50th data segments that have been seen. The y-axis shows the aver-
age error over the last 10 data segments, also averaged over 10 trials.  

5   Conclusion 

This paper presented an algorithm that detects and models hidden contexts within a 
symbolic domain. The method developed builds on the already established Multiple 
Classification Ripple-Down Rules (MCRDR) approach and was referred to as Rated 
MCRDR (RM). RM retains a symbolic core that acts as a contextually static memory, 
while using a connection based approach to learn a deeper understanding of the 
knowledge captured.  

A number of results were presented in this paper, which have shown how RM is 
able to acquire knowledge and learn. RM’s ability to perform well can be put down to 
two features of the system. First, is that the flattening out of the dimensionality of the 
problem domain by the MCRDR component allows the system to learn a problem that 
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is mostly linear even if the original problem domain was non-linear. This allows the 
network component to learn significantly faster. Second, the network gets an addi-
tional boost through the single-step-Δ-initialisation rule, allowing the network to start 
closer to the correct solution when knowledge is added. 
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