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Abstract. Transfer algorithms allow the use of knowledge previously
learned on related tasks to speed-up learning of the current task. Re-
cently, many complex reinforcement learning problems have been suc-
cessfully solved by efficient transfer learners. However, most of these
algorithms suffer from a severe flaw: they are implicitly tuned to transfer
knowledge between tasks having a given degree of similarity. In other
words, if the previous task is very dissimilar (resp. nearly identical) to
the current task, then the transfer process might slow down the learn-
ing (resp. might be far from optimal speed-up). In this paper, we address
this specific issue by explicitly optimizing the transfer rate between tasks
and answer to the question : “can the transfer rate be accurately opti-
mized, and at what cost ?”. We show that this optimization problem
is related to the continuum bandit problem. We then propose a generic
adaptive transfer method (AdaTran), which allows to extend several ex-
isting transfer learning algorithms to optimize the transfer rate. Finally,
we run several experiments validating our approach.

1 Introduction

In the reinforcement learning problem, an agent acts in an unknown environ-
ment, with the goal of maximizing its reward. All learning agents have to face
the exploration-exploitation dilemma: whether to act so as to explore unknown
areas or to act consistently with experience to maximize reward (exploit). Most
research on reinforcement learning deal with this issue. Recently Strehl et al.
[17] showed that near optimal strategies could be reached in as few as ˜O(S ×A)
time steps. However, in many real-world learning problems, the state space or
the action space have an exponential size.

One way to circumvent this problem is to use previously acquired knowledge
related to the current task being learned. This knowledge may then be used to
guide exploration through the state-action space, hopefully leading the agent to-
wards areas in which high rewards can be found. This knowledge can be acquired
in different ways:

D. Richards and B.-H. Kang (Eds.): PKAW 2008, LNAI 5465, pp. 1–11, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 Y. Chevaleyre, A.M. Pamponet, and J.-D. Zucker

– By imitation: in particular, in a multi-agent environment, agents may observe
the behavior of one another and use this observation to improve their own
strategy [13].

– By bootstrap: related tasks may have been previously learned by reinforce-
ment [14,1,10] and the learned policy may be used to bootstrap the learning.

– By abstraction: a simplified version of the current task could have been
generated to quickly learn a policy which could be used as a starting point
for the current task [18,21].

– By demonstration: a human tutor may provide some explicit knowledge.
Other similar settings exist in the literature, among which “advice taking”
[19] or “apprenticeship” [20].

In this paper, we will focus on a simple version of the “bootstrap” transfer
learning problem [1]: we will assume that a policy (or a Q-value function) is
available to the learner, and that this policy has been learned on a past task
which shares the same state-action space as that of the current task.

Given this knowledge, the learning agent faces a new dilemma: it has to bal-
ance among following the ongoing learned policy and exploring the available pol-
icy. Most transfer learners do not tackle this dilemma explicitly: the amount of
exploration based on the available policy does not depend on its quality. Ideally,
this amount should be tuned such that the transfert learner be robust w.r.t. the
quality of the past policy : good policies should speedup the learner while bad
ones should not slow it down significantly. Recently, a new approach has been
proposed to solve this issue [10,11]. The main idea of this approach is to estimate
such similarity between the two tasks, and then to use this estimate as a parame-
ter of the transfer learning process, balancing between ongoing and past policies.
However, measuring this similarity is a costly process in itself and moreover there
are no guarantee that this similarity optimizes the transfer learning process.

In this paper, we show that a parameter called the transfer rate controling the
balance between past policy and the ongoing policy can be optimized efficiently
during the reinforcement learning process. For this purpose, we first show in
which way this optimization problem is related to the continuum-armed bandit
problem. Based on this relation, we propose a generic adaptive transfer learn-
ing method (AdaTran) consisting of a wrapper around some standard transfer
learning algorithm, and implementing a continuum-armed bandit algorithm.

We choose two representative transfer approaches, namely Probabilistic Policy
Reuse (PPR, [1]) and Memory-guided Exploration (MGE, [12]) which, wrapped
inside AdaTran, will be referred to as AdaTran(PPR) and AdaTran(MGE). We
show experimentally on a grid-world task that AdaTran is much more robust
than non adaptive transfer algorithms.

The paper is organized as follows. After some preliminaries and a state of the
art on transfer learners, we introduce the continuous bandit problem and relate
it to the optimization of the transfer rate. The following section introduces the
AdaTran framework and its instantitation AdaTran(PPR) and AdaTran(MGE).
Then, a set of experiments in which AdaTran is compared to standard transfer
learners assesses both its robustness and efficiency.
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2 Preliminaries

Reinforcement learning problems are typically formalized using Markov Decision
Processes (MDPs). An MDP M is a tuple 〈S, A, T, r, γ〉 where S is the set of all
states, A is the set of all actions, T is a state transition function T : S×A×S →
R, r is a reward function r : S × A → R, and 0 ≤ γ < 1 is a discount factor on
rewards. From a state s under action a, the agent receives a stochastic reward
r, which has expectation r(s, a), and is transported to state s′ with probability
T (s, a, s′). A policy is a strategy for choosing actions. If it is also deterministic, a
policy can be represented by a function π : S → A. As in most transfer learning
settings, we assume that the learning process is divided into episodes : at the
beginning of an episode, the agent is placed on a starting state sampled from
a distribution D. The episode ends when the agent reaches a special absorbing
state (the goal), or when a time limit is reached.

For any policy π, let V π
M (s) denote the discounted value function for π in M

from state s. More formally, V π
M (s) � E [

∑∞
t=0 γtrt], where r0, r1, . . . is the reward

sequence obtained by following policy π from state s. Also, let V π
M � Es∼D[V π

M (s)].
To evaluate the quality of an action under a given policy, the Q-value function
Qπ(s, a) � r(s, a) + γEs′∼T (s,a,.) [V π(s′)] is generally used (Here, as there are no
ambiguity, M has been omitted). The optimal policy π∗ is the policy maximizing
the value function. The goal of any reinforcement learning algorithm is to find a
policy such that the agent’s performance approaches that of π∗.

To speed up learning on a new task, transfer learners exploit knowledge pre-
viously learned on a past task. Here, we will assume an in [1] that the past task
and the current task have the same state-action space. We study the case where
the available knowledge has the form of a policy π̄ learned on the past task or
of a Q-value function Q̄. Both cases lead to different transfer learners, such as
PPR and MGE.

3 Transfer Learners with Static Transfer Rates

In this section, we will present two state-of-the-art transfer learners, namely
PPR (Probabilistic Policy Reuse, as well as PPR-decay, a variation on PPR
[1]) and MGE (Memory-Guided Exploration [12]), exhibiting a parameter which
controls the balance between the ongoing learned policy and π̄. As most transfer
methods, PPR and MGE have been directly build on a standard Q-learner, and
thus share the same structure. The only difference with a Q-learner lies in the
action selection method (referred here as ChooseAction).

The most widely used transfer method probably is Q-reuse ([14], also some-
times referred to as direct transfer). Based on a Q-learner, this method simply
uses Q̄ to initialize the Q-values of the current task. Caroll et al note in [12] that
with this approach, “if the tasks are too dissimilar, the agent will spend too much
time unlearning...”. To overcome this drawback, they propose an alternative to
Q-reuse, namely Memory-Guided Exploration, a standard Q-learner in which the
action selection procedure has been replaced as shown in table 1. Here, ξ is a
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Table 1. Examples of ChooseAction(st, π̄, ϕ) functions in static transfer learners

ChooseAction(st, π̄, ϕ) Name of transfer algorithm

at = argmaxaa
{

(1− ϕ)Qt(st, a) + ϕQ̄t(st, a) + ξ
}

where ξ is some real-valued random variable.

MGE [12]
(Memory Guided Exploration)

at =

{

π̄(st) w. proba.ϕ× 0, 95t

ε-greedy(π) otherwise

PPR-decay [1]

(PPR with exponential decay)

at =

{

π̄(st) with proba. ϕ

ε-greedy(π) with proba 1− ϕ

PPR

(Probabilistic Policy Reuse)

random variable (e.g. normal distributed with zero mean) used to add random
exploration. Clearly, the parameter ϕ influences the procedure: if ϕ → 0, then
the algorithm is similar to a standard Q-learner, and if ϕ → 1, it always follow π̄.

Recently, Fernandez and Veloso proposed a completely different probabilistic
approach to transfer learning (PPR-decay [1]) also based on a Q-learner. At
each step, the algorithm randomly chooses to follow the policy ε-greedy(π) or to
follow π̄, as depicted in table 1. Here, π refers to the policy induces by the Q-
values (π(s) = argmaxaQt(s, a)) and ε-greedy(π) refers to the policy obtained
by choosing π with probability 1 − ε, or a random action with probability ε.
Fernandez et al. proposed arbitrarily to initialize ϕ to one at the beginning of
each episode, and to decrease its influence at each step t by 0, 95t. As for MGE,
PPR-decay mimics a Q-learner when ϕ = 0, but does not follow π̄ at each
step when ϕ = 1, because of the decay. Therefor, we introduce a variation on
PPR-decay, namely PPR, in which ϕ is not decreased during the episode.

Clearly, ϕ can be seen here as a parameter controlling the transfer rate, al-
though it does not have exactly the same role in PPR and MGE. It is not hard
to see that this rate should be dependent on the similarity between the past and
the current task. Computing such a similarity is difficult in the general case, and
that optimizing ϕ can be done during learning, as shown in the next sections.

4 Optimization of the Transfer Rate as a Stochastic
Continuum-Armed Bandit Problem

Consider a transfer method such as one of those discussed above, in which a
parameter ϕ ∈ [0, 1] controls the transfer rate, in such a way that if ϕ = 0, the
policy π̄ is not being used, and if ϕ = 1, the agent follows exclusively π̄. Let us
consider the problem of optimizing ϕ, in order to improve the speedup learning.
For the sake of simplicity, adjustment of ϕ will occur only after each episode,
thus exploiting the sequence of rewards gathered during the last episode.

Consider a learning episode starting at time t. Before the episode begins, the
agent has to choose a value of ϕ, which ideally would yield the highest expected
gain Vt(ϕ) � E [rt + γrt+1 + . . . | ϕ]. At the end of the episode, the agent can
compute

∑

k rt+kγk which is an unbiased estimator of Vt(ϕ). Choosing the best
value for ϕ is challenging, as gradient methods which require the knowledge of
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∂Vt

∂ϕ might not be applicable. It turns out that this problem is a typical multi-
armed bandit problem.

The continuum armed-bandit problem which belongs to the well known family
of multi-armed bandit problems, is a particularly appropriate setting for the
optimization of Vt(ϕ). In [8], a stochastic version of this problem is presented,
for which the specific algorithm UCBC was designed. In [7], an algorithm called
CAB1 is described, in order to solve the adversarial version of this problem. In
our setting, the gain

∑

k rt+kγk is stochastic, and changing in time. Thus, we
will need a generalization of these two settings, namely the stochastic adversarial
continuum armed-bandit problem, which can be described as follows

Definition 1. (The stochastic adversarial continuum armed-bandit problem)
Assume the existence of an unknown distribution family P (. | x, t) indexed by
x ∈ [0, 1] and t ∈ {1 . . . n}. At each trial t, the learner chooses Xt ∈ [0, 1]
and receives return Yt ∼ P (. | Xt, t). Let bt(x) � E [Yt | Xt = x, t]. The agent’s
goal is to minimize its expected regret E [

∑

t bt(x∗) −
∑

t Yt], given that x∗ =
supx∈[0,1]

∑n
t=1 bt(x).

Although this setting seems more general than the adversarial case, the regret
guarantees of CAB1 still hold here. Investigating regret bounds is beyond the
scope of this paper. However, the reader can refer to theorem 3.1 of [7], which
proof can easily be generalized to the stochastic adversarial setting.

5 AdaTran: A Generic Adaptive Transfer Framework

We now present a generic adaptive transfer learning algorithm, which can be
seen as a wrapper around a transfer learner, optimizing the transfer rate ϕ
using a stochastic adversarial continuum armed-bandit algorithm referred to as
UpdateContBandit. This leads to the AdaTran wrapper, a generic adaptive
transfer algorithm in which many transfer learners can be implemented. Note
that even though most transfer learners do not have such a parameter, they can
often be modified so as to make ϕ appear explicitly.

Algorithm 1. AdaTran
1: Init()
2: t← 0
3: ϕ← ϕ0

4: for each episode h do
5: set the initial state s
6: while (end of episode not reached) do
7: at = ChooseAction(st, π̄, ϕ)
8: Take action at, observe rt+1, st+1

9: Learn(st, at, rt+1, st+1)
10: t← t + 1
11: end while
12: ϕ← UpdateContBandit(π̄, ϕ, 〈r1, r2, . . .〉)
13: end for



6 Y. Chevaleyre, A.M. Pamponet, and J.-D. Zucker

Depending of the function used for ChooseAction (e.g. one of table 1), Learn
(e.g. a TD update of a model-based learning step) and UpdateContBandit (e.g.
CAB1), the AdaTran will lead to different types of transfer learners. In par-
ticular, the experimental section will evaluate AdaTran(PPR), AdaTran(PPR-
decay), and AdaTran(MGE).

Let us now show how CAB1 can be applied. Let ti be the time at which the ith

episode begins. Let ϕt refer to the parameter chosen by CAB1 at time t. Then on
the n first episodes, CAB1 will try to minimize the regret

∑n
i=1 Vti(ϕ∗)−VtI (ϕt),

which consists in finding the best transfer rate.

6 Experiments

In this section, we evaluate AdaTran on a standard benchmark for transfer learn-
ing: the grid-world problem [1,6]. The reason behind our choice of this learning
task lies in its simplicity. As the state space is discrete, and no function approx-
imation method is required, experimental results are more likely to evaluate the
transfer approaches per se instead and not so much the whole machinery needed
to make a complex learning problem tractable. In this learning task, an agent
moves in a 25 × 25 two-dimensional maze. Each cell of this grid-world is a state
and it may be surrounded by zero to four walls. Each cell has two coordinates
(x, y), and the cell at the center of the grid has coordinates (0, 0). At each time
step, the agent can choose to move from its current position to one of the reachable
contiguous north/east/west/south cell. If a wall lies in between, the action fails.
Otherwise, the move succeeds with probability 90%, and with probability 10%,
the agent is randomly placed on one of the reachable cells contiguous to the cur-
rent cell. At the beginning of each episode, the agent is randomly and uniformly
placed on the maze. As the agent reaches the goal state, it is given a reward of
1, and the episode is ended. All other rewards are null and the discount factor is
arbitrarily set to γ = 0, 95. At the beginning of each episode, the learning agent
is place at the center of the grid, at position (0, 0). The goal of the current task T
is to reach the bottom right corner at (12,−12). We generated three tasks T1, T2

and T3 having three different goal positions (12,-10),(12,12),(-12,12).

Fig. 1. grid-world
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Fig. 2. Evaluation of AdaTran(PPR-decay), AdaTran(PPR-decay) and
AdaTran(PPR-decay) against other learners, using T1 as the transfer task

The optimal policies computed on each of these three tasks will serve as
transfer knowledge to solve T . The goals of T1 and T are very close to each
other. Thus, transfer between both might be highly valuable. On the opposite,
the goals in T3 and T are very dissimilar to one another, and transfer is likely
to be less valuable. In between, T and T2 can be seen as “orthogonal” to each
other: moving towards the goal of T2 does not make the goal of T closer or
farther. This will allow us to evaluate the robustness of AdaTran compared to
other algorithms. Each of the following curves have been averaged over 100 runs.
The x-axis represents the episodes, and the y-axis is the average episode length,
given that episode are limited to 10000 steps.

Let us first consider the experiments with T1 as a transfer task (fig. 2). As
expected, the Q-learner performs worst, unable to exploit a task very similar
to the current task. Also as expected, Qvalue-Reuse and “PPR phi” with ϕ ≥
20% perform extremely well, as they are biased to follow the transfer policy
often. Even though the performance of AdaTran on this task are not as good
as that of these biased transfer learners, compared to the Q-learner, AdaTran
performs much better. For example, after 40 episodes, the average duration of
a Q-learning episode is three times that of an AdaTran(PPR), AdaTran(PPR-
decay) or AdaTran(MGE) episode.
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Fig. 3. Evaluation of AdaTran(PPR-decay), AdaTran(PPR-decay) and
AdaTran(PPR-decay) against other learners, using T2 as the transfer task

Concerning the transfer between T2 and T , the “orthogonality” of both tasks
appears in the curves (fig. 3). No transfer method achieves better or worse results
than Q-learning.

Concerning the transfer from T3 to T , which are very dissimilar tasks, we
note that Q-learning always achieve best results, as it is never mislead by the
transfer policy. Also note that AdaTran is quite close to Q-learning, which is
the best it could do : the bandit in AdaTran must learns as fast as possible not
to follow the transfer policy. It can be seen on figure 4 that PPR-decay is the
best of the non-adaptive transfer learners here. In fact, PPR-decay follows the
transfer policy only at the beginning of each episode, and is thus less penalized
than others by bad transfer policies. Also, the Qvalue-reuse algorithm, which is
one of the most used transfer method in reinforcement learning, performs very
badly : as seen on figure 4, it requires approximately 150 episodes to “unlearn”
the transfer policy. On the contrary, AdaTran(MGE) which also reuses the Q-
values selects low values of ϕ very quickly, thus not using the transfer knowledge
much. Lastly, note that PPR-phi are the worst non-adaptive transfer learners,
as the episode length (y-axis) always reaches it maximal value. Clearly, AdaTran
is shown to be robust to dissimilar tasks (T3) unlike the other transfer methods
studied here, and transfer successfully a high amount of knowledge on similar
tasks (T1).
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Fig. 4. Evaluation of AdaTran(PPR-decay), AdaTran(PPR-decay) and
AdaTran(PPR-decay) against other learners, using T3 as the transfer task

7 Conclusion and Future Work

In this paper, we have presented a new framework for explicitly optimizing the
transfer rate in reinforcement learning. We have shown how this framework could
be applied on two representative transfer learners to make the transfer rate auto-
adaptable, namely the probabilistic policy reuse methods and MGE method,
related to the well known Qvalue-reuse.

We have shown experimentally that AdaTran is robust to misleading transfer
knowledge: when the transfer task is similar to the current task, AdaTran’s per-
formance will be close to non-adaptive transfer methods, but when the transfer
task is very dissimilar to the current task, AdaTran will not spend a large amount
of time forgetting transfer knowledge, unlike non-adaptive transfer learners.

There are four main directions for future work. First, the performance of these
algorithms must be evaluated on real-world learning tasks. Some preliminary
experiments on various grid-world tasks suggest that AdaTran makes transfer
learners much more robust but it remains to be precisely characterized. Another
important issue concerns the optimization criterion. In this paper, we proposed
to optimize V (ϕ). However, this implies trying to maximize the short term gain,
which is heavily biased towards exploitation. Because of the close relation be-
tween our approach and gradient policy search methods, we are studying the
criteria used in the latter [2].
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Also, theoretical work relating the regret of the bandits to the expected per-
formance of AdaTran remains to be done. Finally, we could design bandit algo-
rithms taking the specificity of our problem into account. In fact, the adversarial
setting may be excessive for our application, and the function V (ϕ) probably has
some properties (such as some kind of monotonicity through time) which may
be exploited favorably.
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