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Abstract. Due to the uncertainty of software processes, statistic based schedule 
estimation and stochastic project scheduling both play significant roles in soft-
ware project management. However, most current work investigates them  
independently without an integrated process to achieve on-time delivery for 
software development organisations. For such an issue, this paper proposes a 
two-stage probabilistic scheduling strategy which aims to decrease schedule 
overruns. Specifically, a probability based temporal consistency model is  
employed at the first pre-scheduling stage to support a negotiation between cus-
tomers and project managers for setting balanced deadlines of individual soft-
ware processes. At the second scheduling stage, an innovative genetic algorithm 
based scheduling strategy is proposed to minimise the overall completion time 
of multiple software processes with individual deadlines. The effectiveness of 
our strategy in achieving on-time delivery is verified with large scale simulation 
experiments.  

Keywords: Software Process, Schedule Estimation, Project Scheduling, Prob-
abilistic Strategy, Genetic Algorithm.  

1   Introduction 

A software project is typically characterised by dynamic changes of the development 
environment and variant decisions of human stakeholders [13, 15]. Therefore, the 
estimation of software development schedule (and cost) with uncertainty as well as 
project scheduling under uncertainty are widely investigated and applied in software 
projects [6, 8]. But still, they are considered to be challenging issues for software de-
velopment organisations of all sizes.  

It has been witnessed that for a majority of software projects, on-time delivery of 
core capabilities is increasingly become the main focus of software processes in the 
dynamic business world nowadays [13]. Meanwhile, for many software development 
organisations, especially of small and medium sizes, their main business targets are 
short-term contracts from a relatively fixed group of customers in the market. These 
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customers usually require the development of small scale software components within 
hard deadlines so as to meet their dynamic and urgent business needs. The competi-
tive strength of these software development organisations critically relies on the abil-
ity of on-time delivery. Therefore, instead of pursuing multiple objectives such as 
reducing project schedule, budget and staff overload at the same time, this paper fo-
cuses on achieving on-time delivery. For software development organisations, an es-
timated software schedule serves as the guideline for project bidding and planning 
given specific customer needs and software process performance [14]. Furthermore, 
project scheduling is to decide “who does what” and optimise specific objectives, e.g. 
minimum schedule and budget. In recent years, great efforts have been dedicated to 
statistic based schedule estimation and stochastic project scheduling in software pro-
ject management [6, 9]. However, most current work investigates schedule estimation 
and project scheduling independently without an integrated process. On one hand, 
estimated schedules for specific software processes cannot be realised without project 
scheduling to assign proper employees with proper tasks. On the other hand, without 
schedule estimation, project scheduling will not be effectively guided and probably 
result in frequent schedule overruns.  

To achieve on-time delivery, this paper proposes a two-stage probabilistic project 
scheduling strategy to address the above issues. Specifically, at the first pre-
scheduling stage for individual software processes, a probability based temporal con-
sistency model is presented to facilitate a win-win negotiation between customers and 
project managers. This negotiation, namely pre-scheduling, supports the setting of 
balanced deadlines based on the process performance baseline. At the second schedul-
ing stage for multiple software processes, an innovative genetic algorithm (GA) [1] 
based scheduling strategy which utilises a two-phase searching algorithm and a pack-
age based initialisation approach is proposed. The objective for the scheduling stage is 
to minimise the overall completion time of multiple software processes given that all 
individual software processes can be completed ahead of the deadlines as set at the 
pre-scheduling stage.  

The remainder of the paper is organised as follows. Section 2 presents the related 
work and problem analysis. Section 3 gives the overview of our two-stage probabilis-
tic project scheduling strategy. Section 4 presents the pre-scheduling stage and  
Section 5 proposes the scheduling stage. Section 6 describes large scale simulation 
experiments to verify the effectiveness of our strategy in achieving on-time delivery. 
Finally, Section 7 addresses our conclusions and future work. 

2   Related Work and Problem Analysis 

2.1   Related Work 

With the dynamic nature of software development environments, various uncertainty 
and inconsistencies arise and thus bring challenges for schedule (and cost) estimation 
in software processes [15]. Jørgensen and Shepperd present a systematic review of 
software development schedule/cost estimation studies in [9]. For the 9 categories of 
research topics, estimation methods account for 61% of the samples and rank the first 
place. In recent years, various strategies such as feature prioritisation, core capability 
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determination, risk driven strategies, earned value management, statistical process 
control and so forth, are presented to deal with uncertainty assessment and uncertainty 
control for software schedule (and cost) [13]. For schedule estimation of a specific 
software process, one of the most important concepts is Process Performance Baseline 
(PPB) [6]. PPB utilises two indicators, i.e. process performance and process capabil-
ity. Here, process performance is “a measure of actual results achieved by following a 
process” and process capability is “the range of expected results that can be achieved 
by following a process”. In [14], a statistic based approach is proposed to establish 
and refine software process performance baseline where the average value μ  and the 
standard deviation σ  of data samples are defined as process performance and capabil-
ity respectively. Specifically, process performance baseline is normally controlled 
under the limits of σμ 3± .  

Project scheduling is to allocate proper tasks to proper employees or subcontractors 
in order to result in successful projects. Due to the uncertainty of software projects, 
most project scheduling strategies aim to generate a feasible schedule within given 
constraints, such as schedule and budget, to serve as a baseline schedule for real pro-
ject execution. Five fundamental approaches for scheduling under uncertainty are 
identified in [6], i.e. reactive scheduling, stochastic project scheduling, fuzzy project 
scheduling, proactive scheduling and sensitivity analysis. Specifically, stochastic pro-
ject scheduling strategies mainly concern about scheduling project tasks with uncer-
tain durations in order to minimise the expected project schedule [3, 16]. Among 
them, genetic algorithm, as a commonly applied heuristic method, is often employed 
to solve complicated optimisation problems in resource constrained scheduling  
problems [12]. An empirical study in [7] demonstrates that the evolution algorithm is 
capable of finding the best-known solutions in 68% of the 2370 instances with an 
average overall error rate of 0.95%.  [3] proposes a time-line based model as well as 8 
heuristic rules to simulate real-world situations to enhance the ability of GA. In [1], 
structured studies have shown that GA is flexible and accurate for many different 
software project scenarios.  

2.2   Problem Analysis 

For a specific software project, schedule estimation and project scheduling are two 
fundamental issues for achieving on-time delivery. In practice, for project bidding and 
negotiation, project managers usually need to estimate project schedules based the 
statistic performance of software development organisations. During this period of 
time, project deadlines are set based on estimated schedules. However, practical data 
show that about one-third of the projects exceed their estimated schedules by 25% 
[13]. Two of the critical problems cause schedule overruns are as follows.  

1) A project schedule is not well balanced between the software process perform-
ance baseline and customer needs. If project deadlines are far beyond the software 
process performance baseline, schedule overruns are highly expected. Therefore, in 
practice, some robust project scheduling strategies such as temporal protection inten-
tionally extends the statistic task durations to protect the baseline schedule from re-
source breakdowns [6]. Meanwhile, most work only emphasises the role of project 
managers to estimate schedules and set project deadlines for individual software proc-
esses. However, the deadlines may often be set unrealistically tight due to customers’ 
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pressure and thus results in frequent schedule overruns. Therefore, compromised pro-
ject schedules which achieve proper balance between the software process perform-
ance baseline and customer needs are certainly more desirable.   

2) An individual baseline schedule does not consider the situation of multiple soft-
ware processes [3]. One of its priorities for project scheduling is to ensure that soft-
ware processes can be completed within specific deadlines. However, since software 
process performance is heavily dependent on the people who execute the process 
rather than the device of the product line, one of the major reasons deteriorates the 
performance and causes significant delays is the competition of employees among 
multiple software processes. In fact, this problem frequently occurs in a software de-
velopment organisation and causes serious overruns even though project schedules 
are estimated based on the performance baseline. In another word, without consider-
ing the situation of multiple software processes, baseline schedules for individual 
software processes cannot guarantee the success of on-time delivery.  

To tackle the above two problems, joint efforts need to be dedicated by schedule 
estimation and project scheduling as an integrated project scheduling strategy.  

3   A Two-Stage Probabilistic Project Scheduling Strategy  

In this section, we present the overview of our two-stage probabilistic project schedul-
ing strategy. As depicted in Table 1, our project scheduling strategy consists of two 
stages, i.e. the pre-scheduling stage and the scheduling stage.  

Table 1. Project Scheduling Strategy 

 

At the pre-scheduling stage, the main objective is to set balanced deadlines for in-
dividual software processes. At this stage, Step 1.1 is to model software processes 
with Stochastic Petri Nets [2] which will be introduced later in this section as the 
specification tool. Step 1.2 is to set balanced deadlines for individual software proc-
esses with a probability based temporal consistency model which is to support a win-
win negotiation between customers and project managers. At the scheduling stage, the 
main objective is to generate a scheduling plan which assigns proper tasks to proper 
employees in order to achieve on-time delivery. At this stage, an innovative GA based 
scheduling strategy is conducted as Step 2.1 to minimise the overall completion time 
of multiple software processes. Step 2.2 is to search for the optimal or near optimal 
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solution (i.e. the best or near best project scheduling plan) which meets the deadlines 
for individual software processes set at the pre-scheduling stage. 

Technical details of pre-scheduling and scheduling will be presented in Section 4 
and Section 5 respectively. Here, we introduce Stochastic Petri Nets (SPN) to specify 
software processes. SPN can provide powerful abstractions of such as control flows, 
underlying resources, stochastic temporal information. Besides conventional Petri 
Nets notations of place, transition and arc, an additional new notation of task weight 
is employed for specifying statistic task durations. As proposed in [11], task weight is 
defined with the probability and statistic iteration times of each task based on four 
fundamental control flow patterns, i.e. sequence, choice, parallelism and iteration. 
Specifically, for a sequence process, the task weight is specified as 1. For a choice 
process, the task weight is equal to the probability of the path to be chosen. For a par-
allelism process, the task weight of the path with largest expected duration is defined 
as 1 while others are defined as 0 since they do not dominate the overall execution 
time. For an iteration process, the task weight is defined as the statistic iteration times. 
The duration distribution is associated with each task based on the statistic perform-
ance. The purpose of modelling software processes with SPN is to reflect the stochas-
tic temporal information to support the schedule estimation and project scheduling.  

4   Pre-scheduling for Individual Software Processes 

The temporal consistency model is defined to quantitatively measure the state of spe-
cific processes given specified temporal constraints [4, 5]. In this paper, we employ a 
probability based temporal consistency model to support deadline setting. The prob-
ability based temporal consistency model is defined based on the concept of weighted 
joint normal distribution [11]. Weighted joint normal distribution can be used to ana-
lyse the distribution of the overall completion time, namely the performance baseline 
for a specific process based on the distribution of individual task durations. Here, we 
first define some notations. For a specific task it , its maximum duration and mini-

mum duration are defined as )( itD  and )( itd  respectively. In addition, we employ the 

“ σ3 ” rule which has been widely used in statistical analysis [10]. The “ σ3 ” rule de-
picts that for any sample coming from normal distribution model, it has a probability 
of 99.73% to fall into the range of [ ]σμσμ 3,3 +−  where μ  is the average value and σ  
is the standard deviation. In this paper, we define the maximum duration as 

iiitD σμ 3)( += and the minimum duration as iiitd σμ 3)( −= . Meanwhile, for a software 

process SP  which consists of n  tasks, its deadline is denoted as )(SPF  and its start 
time is denoted as )(SPS . A deadline of )(SPF  is a fixed time by which the process 
SP  must be completed [5]. Now, based on [11], we present the definition of probabil-
ity based temporal consistency model on fixed time temporal constraints (deadlines) 
as follows. 
 
Definition: (Probability based temporal consistency model) 

For a software process SP  with a deadline of )(SPF  that starts at )(SPS , )(SPF is 
said to be of: 
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Fig. 1. Probability Based Temporal Consistency 

With the above model, different states of the software process towards a specific 
deadline are described with continuous probability values. As shown in Figure 1, 
these values form a continuous Gaussian curve. According to the probability based 
temporal consistency model, the basic performance baseline (average activity dura-
tion) can only guarantee a probability consistency state of 50% which is normally 
much lower than the customer’s minimal confidence. Therefore, a more realistic 
deadline acceptable to all stakeholders needs to be negotiated [11].  

Now we demonstrate the win-win negotiation for setting balanced deadlines. Here, 
we denote the obtained weighted joint distribution of the target software process SP  

as ),( 2
spspN σμ  and assume the minimum threshold to be %β for the probability consis-

tency which implies the customer’s acceptable bottom-line probability for on-time 
delivery. The actual negotiation starts with the customer’s initial suggestion of a dead-
line of )(SPF  and the evaluation of the corresponding temporal consistency state by 
the project manager. If spspSPSSPF λσμ +=− )()( with λ  as the %α  percentile, and 

%α  is below the threshold of %β , then the deadline needs to be adjusted, otherwise 
the negotiation terminates. For the negotiation, the subsequent process is the iteration 
that the customer proposes a new deadline which is less restricted as the previous one 
and the project manager re-evaluates the consistency states, until it reaches or is 
above the minimum probability threshold [11]. This win-win negotiation, i.e. pre-
scheduling process, facilitates the setting of balanced project deadlines.  
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5   Scheduling for Multiple Software Processes  

To achieve on-time delivery, our scheduling objective is to minimise the overall com-
pletion time of multiple software processes given their individual deadlines set at the 
pre-scheduling stage can be met. For such an objective, we propose an innovative GA 
based project scheduling strategy. GA is a class of evolutionary algorithms inspired 
by evolutionary biology [1, 16]. In GA, three basic GA operations, i.e. selection, 
crossover and mutation, are conducted to imitate the evolution process in nature. Af-
ter the stopping condition is met, the solution with the best fitness value which repre-
sents the optimal or near-optimal solution is returned [3]. 

Here, in order to enhance the performance and satisfy real-world situations, we 
first identify two critical aspects which should be tackled in GA based project  
scheduling.  

(1) How to achieve on-time delivery for individual software processes while mini-
mising the overall completion time for multiple software processes.  

As discussed in Sections 1 and 2, it is a priority to ensure on-time delivery. How-
ever, for software development organisations, it is also important to minimise the 
overall completion time for multiple software processes in order to reduce the project 
cost. Therefore, how to effectively balance these two objectives is a critical aspect. 

(2) How to implement heuristic rules in GA for practical restrictions.  
In real-world software projects, there are many restrictions which affect the tasks-

to-employees assignment. Therefore, in order to support decision making under more 
realistic conditions, many heuristic rules such as resource continuity (e.g. assigning a 
group of highly related tasks to a fixed employee so as to reduce the overhead of task 
transfer), adjustment of workload and overstaffed projects, are supplemented [3]. 
However, how to implement these heuristic rules in GA is a challenging issue.  
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(a) GA Based Project Scheduling Strategy     (b) Package Based Initialisation  

Fig. 2. Pseudo-code for GA based Project Scheduling Strategy 
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In our GA based scheduling strategy, we propose a two-phase searching algorithm 
to address the first aspect and a package based initialisation approach to address the 
second aspect. The pseudo-code for our GA based project scheduling strategy is pre-
sented in Figure 2 where Figure 2(a) presents the scheduling strategy and Figure 2(b) 
presents the package based initialisation approach. As shown in Figure 2(a), our 
scheduling strategy has two main input parameters, i.e. software process models and 
the employee models. Here, software processes models are specified with SPN as 
introduced in Section 3. Each software process model describes the control flows, 
namely the precedence relationships between tasks. Meanwhile, based on the results 
of the pre-scheduling stage, stochastic temporal information such as process deadlines 
and the statistics of task durations are also provided. The employee models mainly 
define the specific skills possessed by individual employees and some other informa-
tion related to the decisions on task assignment such as his/her proficiency level 
(measured in execution speed), payment rate, workload, project experience and so on. 
Our strategy starts with the encoding of an empty task-employee list and generation of 
initial population with package based initialisation (line 1 and line 2). Line 3 to line 
14 is the GA based two-phase searching algorithm to find the best solution. Finally, 
the best solution is decoded (line 15) and the task-employee list is updated (line 16). 
After this scheduling process, the task-employee list which represents the optimal or 
near-optimal scheduling plan is generated.  
 

Two-phase searching algorithm. To address the first aspect identified, our GA based 
scheduling strategy adopts a two-phase searching algorithm as depicted in Figure 
2(a). The first phase (line 3 to line 10) is to optimise the overall completion time of 
multiple software processes. Based on genetic operations, e.g. selection, crossover 
and mutation (line 4 to line 6), the searching space is expanded and solutions with 
higher fitness values are found. Here, the fitness value is defined according to the 
overall completion time of all the software processes. The smaller the overall comple-
tion time, the higher the fitness value is. The function of validation (line 7) is to check 
the generated solutions if they are correct with restrictions, e.g. the precedence rela-
tionships and other heuristic rules. During each generation, the best child is stored in a 
solution set (line 8) and the worst child is replaced by the best one (line 9). The sec-
ond phase (line 11 to line 14) is to search for the best solution from the whole solution 
set composed of the best child in each generation produced in the first searching 
phase. The best solution found should meet the deadlines of individual software proc-
esses while having the minimum overall completion time. Our two-phase searching 
algorithm guarantees the return of balanced solutions. The reason is that on one hand, 
a vast number of possible solutions are generated and evaluated in the first searching 
phase. On the other hand, the best child with the minimum overall completion time of 
each generation is recorded in the solution set. Therefore, if a balanced solution can-
not be found, especially after huge numbers of generations, we are able to claim that it 
is not possible to find a valid solution which can achieve on-time delivery for all 
software processes. Otherwise, a balanced scheduling plan which meets the deadlines 
of individual software processes should be found in the solution set. However, to  
support decision making, highly ranked solutions in the solution set will be returned 
instead in this case where no best solution exists. The project managers can make fur-
ther decisions, e.g. recruitment of more employees or outsource to subcontractors, to 
ensure the success of on-time delivery. 
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Package based initialisation approach. As the second aspect identified, practical 
restrictions in the real-world software projects should be considered in the schedul-
ing strategy so as to support and satisfy realistic conditions. For such a purpose, we 
propose an innovative package based initialisation approach based on two  
dimensional encoding. As depicted in Figure 3, the first dimension iSched  denotes 
scheduled tasks and the second dimension ialloc  denotes the allocated resources 
(employees or subcontractors). As discussed in many literatures, GA initialisation 
for the initial population is critical towards the outcomes of GA [16]. Basically, the 
initial population should be valid and effective. In our scenario, to be valid, the ini-
tial population should assign specific tasks to valid employees who possess the abil-
ity to fulfil these tasks. Meanwhile, for a specific employee, the tasks assigned to 
him/her should be conformed to their precedence relationships defined in software 
process models. To be effective, more restrictions, e.g. resource continuity and the 
8 heuristic rules proposed in [3], should be applied for practical project manage-
ment. For such an issue, a package based random initialisation approach is to sup-
port the generation of population which is both valid and effective. ‘Package’ here 
denotes a group of highly related tasks in the same software process, which can be 
defined by experienced project managers, with correct precedence relationships. 
Meanwhile, these tasks share the same employees allocated to each package with 
the enforcement of restrictions. The design of a package here not only ensures the 
correct task flows for a software process since tasks with correct precedence rela-
tionships are assigned to the same employees, but also is capable of facilitating re-
source continuity and other heuristics. For a specific package, a set of employees 
are formed first by checking required abilities (line 5 of Figure 2(b)). Afterwards, a 
further checking process is applied to select valid employees based on enforced 
heuristics (line 6 of Figure 2(b)). Finally, one of the valid employees is randomly 
assigned to this package (line 7 of Figure 2(b)). As shown in Figure 3, for the em-
ployee assignment of n  tasks, an employee set, say { }pRRRR ,...,, 321  is first formed. 
After that, specific heuristic rules are applied. For example, one of the employees, 
say 2R , which currently has the lowest workload, is assigned to Package 1. Follow-
ing a similar way, a valid and effective solution comprised of Packages 1, 2, …, k 
(Figure 3) is automatically generated (loop of line 2 of Figure 2(b)). The initial 
population is formed by a fixed size of automatically generated solutions (loop of 
line 1 of Figure 2(b)).  

 

Fig. 3. Package Based Initialisation Approach 
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6   Evaluation 

In this section, we evaluate the effectiveness of our two-stage probabilistic project 
scheduling strategy through large scale simulation experiments where the simulation 
results are independent of specific platforms. The settings for simulation experiments 
are presented in Table 2. We manually generate stochastic Petri Nets with a random 
size of 10 to 20 tasks. To simplify our simulation scenario so as to focus on the objec-
tive of on-time delivery, we only set two attributes for employee models, i.e. the exe-
cution speed (measured for proficiency level) and the workload. The execution speed 
of each employee is randomly specified from a range of 1 to 3 where 1 denotes that 
the mean execution time equals to the expected duration while 3 denotes that the 
mean execution time equals to the expected duration divided by 3. The workload of 
each employee is a random value from 0 to 1 where 0 means the employee has not 
been assigned with any tasks and 1 means the employee is fully occupied and cannot 
be assigned with more tasks. For each task assignment to a specific employee, his/her 
workload increases by 0.1 so an employee can take up to 10 tasks. Accordingly, we 
adopt one simple heuristic rule that is assigning the current task to the employee with 
minimum workload. As for the settings of GA operations, maximum generation is 
used as the stopping condition and its value is 1000. The initial population size is set 
as 100. The crossover rate and mutation rate are set as 0.7 and 0.1 respectively as 
common practice. To evaluate our strategy with large scale simulation experiments, 
we conducted 3 rounds, i.e. COM(1.00), COM(1.15) and COM(1.28) with different 
λ as 1.00, 1.15 and 1.28 to reflect different pre-scheduling results with 84.1%, 87.5% 
and 90.0% consistency respectively. As depicted in Table 3, within each round, we 
conducted 10 experiments with different settings of number of tasks (T) with a range 
of 30-320 in total whilst 10-20 for each process, the number of processes (P) with a 
range of 2-20, and the number of resources (R) with a range of 3-36. 

Table 2. Settings for Simulation Experiments 

  
 
Two attributes, i.e. the improvedPercent (the difference of the overall completion 

time before and after our GA based scheduling strategy divided by the one before) 
and the overrunRate (the number of processes which fails to be completed within 
deadlines divided by the number of total processes), are investigated. Here, for  
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fairness, the overall completion time before our scheduling strategy is specified as the 
average completion time of all valid solutions generated in the GA based searching 
phase. Meanwhile, we also investigate the overrunRate of the initial project schedul-
ing plans generated by package based initialisation but without the GA based search-
ing phase, namely a NIL strategy, for the purpose of comparison. To investigate the 
statistic performance, each experiment is executed for 100 times. Therefore, in our 
simulation, 3 rounds, 10 experiments and 100 execution times, namely a large scale of 
3000 independent experiments, have been executed.  

The simulation results are presented in Figure 6. As can be seen from the left sub-
plot in Figure 6, the mean improvedPercent and the number of tasks are roughly on 
the same trend. This verifies the effectiveness of our strategy in scheduling multiple 
software processes and optimising their overall completion time. Furthermore, our 
strategy performs even better when the scheduling scenario becomes more compli-
cated as shown by increasing improvedPercent. We also note that despite the increase 
of probability consistency, i.e. from 84.1%, 87.5% to 90.0%, which means less re-
stricted deadlines, the mean improvedPercent does not vary much. Hence, a larger 
probability consistency does not guarantee a better improvedPercent. As for the over-
runRate depicted in the right subplot of Figure 6, the simulation results show that if 
without GA based searching phase, i.e. the NIL strategy, the average overrunRate is 
high with a growing trend based on the increase of the number of software processes. 
However, with our scheduling strategy, the overrunRate is much lower as depicted. In 
this case, the increase of probability consistency results in the lower mean overrun-
Rate. To conclude, we can claim that our two-stage probabilistic scheduling strategy 
is effective for achieving on-time delivery.  

  

Fig. 6. Simulation Results 

7   Conclusions and Future Work 

In this paper, we have proposed a two-stage probabilistic scheduling strategy which 
integrates statistic based schedule estimation and stochastic project scheduling in or-
der to achieve on-time delivery of software projects. Our strategy aims to generate the 
best scheduling plan which can meet the deadlines of individual software processes 
while having the minimum overall completion time of multiple software processes. 
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Hence, at the first pre-scheduling stage, a probability based temporal consistency 
model has been presented to facilitate a win-win negotiation between customers and 
project managers for setting balanced project deadlines based on individual software 
process performance baselines. Given these deadlines, at the second scheduling stage, 
an innovative GA based project scheduling strategy which utilises a two-phase 
searching algorithm and a package based initialisation approach has been proposed to 
search for the best scheduling plan under the resource constraint of the current soft-
ware development organisations. Based on the results of large scale simulation ex-
periments, it has been verified that the best scheduling plan can be found in most 
cases with our project scheduling strategy. However, even in the case where such so-
lution does not exist due to the resource constraint, the generated solutions can still 
support the project manager to make further decisions such as recruitment of employ-
ees or outsourcing to ensure the success of on-time delivery. 

In the future, to tackle the case where the best scheduling plan can not be found, 
we will try to identify the key software processes where on-time delivery can be 
achieved with minimum increase of extra cost. 
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