

Lecture Notes in Computer Science 5543
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Qing Wang Vahid Garousi
Raymond Madachy Dietmar Pfahl (Eds.)

Trustworthy Software
Development Processes

International Conference on Software Process, ICSP 2009
Vancouver, Canada, May 16-17, 2009
Proceedings

13

Volume Editors

Qing Wang
Institute of Software
Chinese Academy of Sciences
4 South Fourth Street, Zhong Guan Cun, Beijing 100190, China
E-mail: wq@itechs.iscas.ac.cn

Vahid Garousi
University of Calgary
Schulich School of Engineering
Department of Electrical and Computer Engineering
2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
E-mail: vgarousi@ucalgary.ca

Raymond Madachy
Naval Postgraduate School
Department of Systems Engineering
Bullard Hall, Room 201J, 777 Dyer Road, Monterey, CA 93943, USA
E-mail: rjmadach@nps.edu

Dietmar Pfahl
Simula Research Laboratory
P.O.Box 134, 1325 Lysaker, Norway
E-mail: dietmarp@simula.no

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, I.6, D.2.1, D.1, D.3.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-01679-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01679-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12677566 06/3180 5 4 3 2 1 0

Preface

This volume contains papers presented at the International Conference on Software
Process (ICSP 2009) held in Vancouver, Canada, during May 16-17, 2009. ICSP
2009 was the third conference of the ICSP series, continuing the software process
workshops from 25 years ago. The theme of ICSP 2009 was “Processes to Develop
Trustworthy Software.”

Software development takes place in a dynamic context of frequently changing
technologies and limited resources. Teams worldwide are under increasing pressure to
deliver trustworthy software products more quickly and with higher levels of quality.
At the same time, global competition is forcing software development organizations
to cut costs by rationalizing processes, outsourcing part or all of their activities, reus-
ing existing software in new or modified applications and evolving existing systems
to meet new needs, while still minimizing the risk of projects failing to deliver. To
address these difficulties, new or modified processes are emerging including lean and
agile methods, plan-based product line development, and increased integration with
systems engineering processes.

Papers present research and real-world experience in many areas of software and
systems processes impacting trustworthy software including: new software develop-
ment approaches; software quality; integrating software and business processes;
CMMI and other process improvement initiatives; simulation and modeling of soft-
ware processes; techniques for software process representation and analysis; and
process tools and metrics.

In response to the call for papers, 96 submissions were received from 26 different
countries and regions including: Australia, Austria, Brazil, Canada, Chile, China,
Colombia, Finland, France, Germany, Greece, India, Ireland, Italy, Japan, Mexico,
New Zealand, Pakistan, Russia, Serbia, Singapore, Spain, Sweden, Turkey, UK, and
USA. Each paper was rigorously reviewed and held to very high quality standards,
and finally 33 papers from 12 countries and regions were accepted as regular papers
for presentations at the conference.

 The papers were clustered around topics and presented in seven regular sessions
organized in two parallel threads. Topics included process management, process tools,
process modeling and representation, process analysis, process simulation modeling,
experience report, process metrics.

Highlights of the ICSP2009 program were three keynote speeches, delivered by
Günther Ruhe (University of Calgary, Canada), Rick Selby (Northrop Grumman
Space Technology, USA), and Lionel C. Briand (Simula Research Laboratory and
University of Oslo, Norway).

On this 25th anniversary of workshops in the field, it was gratifying to see increas-
ing maturity in the work with the continued high rate of submissions from all over the
world. Although this was only the third ICSP conference, it continued a long tradi-
tion of important workshops and conferences in the field starting with the Interna-
tional Software Process Workshop (ISPW, from 1984 to 1996), the International

VI Preface

Conference on the Software Process (ICSP, from 1991 until 1996), the International
Workshop on Software Process Simulation and Modeling (ProSim, from 1998 until
2006), and the Software Process Workshop (SPW, in 2005 and 2006). ProSim and
SPW were held together in 2006 and merged in 2007 to form the new International
Conference on Software Process. This year we were able to tighten the review process
with the help of our reviewers to keep up the tradition.

This conference would not have been possible without the dedication and profes-
sional work of many colleagues. We wish to express our gratitude to all contributors
for submitting papers. Their work forms the basis for the success of the conference.
We also would like to thank the Program Committee members and reviewers because
their work guarantees the high quality of the workshop. Special thanks go to the key-
note speakers for giving their excellent presentations at the conference. Finally, we
also would like to thank the members of the Steering Committee, Barry Boehm,
Mingshu Li, Leon Osterweil, David Raffo, and Wilhelm Schäfer for their advice,
encouragement, and support.

We wish to express our thanks to the organizers for their hard work. The confer-
ence was sponsored by the Chinese Academy of Sciences (ISCAS) and the ISCAS
Laboratory for Internet Software Technologies (iTechs). We also wish to thank the
31st International Conference on Software Engineering (ICSE 2009) for sponsoring
this meeting as an ICSE co-located event. Finally, we acknowledge the editorial sup-
port from Springer for the publication of this proceeding.

For further information, please visit our website at
http://www.icsp-conferences.org/icsp2009.

March 2009 Dietmar Pfahl
Raymond Madachy

Qing Wang

International Conference on Software Process 2009

Vancouver, Canada
May 16–17, 2009

Steering Committee

Barry Boehm University of Southern California, USA
Mingshu Li Institute of Software, Chinese Academy of Sciences,

China
Leon J. Osterweil University of Massachusetts, USA
David M. Raffo Portland State University, USA
Wihelm Schäfer University of Paderborn, Germany

General Chair

Dietmar Pfahl Simula Research Laboratory and University of Oslo,
Norway

Program Co-chairs

Raymond Madachy Naval Postgraduate School, USA
Qing Wang Institute of Software, Chinese Academy of Sciences,

China

Publicity Co-chairs

Vahid Garousi University of Calgary, Canada

Secretary

Juan Li Institute of Software, Chinese Academy of Sciences,
China

Lizi Xie Institute of Software, Chinese Academy of Sciences,
China

Program Committee

Muhammad Ali Babar University of Limerick, Ireland
Stefan Biffl Technische Universität Wien, Austria
Thomas Birkhölzer University of Applied Science, Konstanz, Germany
Danilo Caivano University of Bari, Italy

 Organization VIII

Keith Chan Hong Kong Polytechnic University, Hong Kong

Sorana Cimpan University of Savoie at Annecy, France

Oscar Dieste Universidad Politecnica de Madrid, Spain

Jacky Estublier French National Research Center in Grenoble, France

Anthony Finkelstein University College London, UK

Vahid Garousi University of Calgary, Canada

Dennis Goldenson Carnegie Mellon University, USA

Volker Gruhn University of Leipzig, Germany

Paul Grünbacher Johannes Kepler University Linz, Austria

Kequing He Wuhan University, China

Dan Houston The Aerospace Corporation, USA

LiGuo Huang Southern Methodist University, USA

Hajimu Iida Nara Institute of Science and Technology, Japan

Katsuro Inoue Osaka University, Japan

Ross Jeffery University of New South Wales, Australia

Raymond Madachy Naval Postgraduate School, USA

Frank Maurer University of Calgary, Canada

James Miller University of Alberta, Canada

Jürgen Münch Fraunhofer Institute for Experimental Software
Engineering, Germany

Flavio Oquendo University of South Brittany, France

Dewayne E. Perry University of Texas at Austin, USA

Dietmar Pfahl Simula Research Laboratory, Norway

Dan Port University of Hawaii, USA

Juan F. Ramil The Open University, UK

Andreas Rausch Technische Universität Kaiserslautern, Germany

Daniel Rodriguez University of Alcalá , Spain

Günther Ruhe University of Calgary, Canada

Mercedes Ruiz University of Cádiz, Spain

Ioana Rus University of Maryland, USA

Walt Scacchi University of California, Irvine, USA

Barbara Staudt Lerner Mount Holyoke College, USA

Stan Sutton IBM T. J. Watson Research Center, USA

Guilherme H Travassos Federal University of Rio de Janeiro/COPPE, Brazil

Qing Wang Institute of Software, Chinese Academy of Sciences,
China

Yasha Wang Peking University, China

Brian Warboys University of Manchester, UK

Paul Wernick University of Hertfordshire, UK

 Organization IX

Ye Yang Institute of Software, Chinese Academy of Sciences,
China

Yun Yang Swinburne University of Technology, Australia

Li Zhang Beihang University, China

External Reviewers

Fengdi Shu Institute of Software, Chinese Academy of Sciences,
China

Junchao Xiao Institute of Software, Chinese Academy of Sciences,
China

Jian Zhai Institute of Software, Chinese Academy of Sciences,
China

Lizi Xie Institute of Software, Chinese Academy of Sciences,
China

Dapeng Liu Institute of Software, Chinese Academy of Sciences,
China

Table of Contents

Invited Talks

System Engineering in the Energy and Maritime Sectors: Towards a
Solution Based on Model-Centric Processes . 1

Lionel Briand

Decision Processes for Trustworthy Software . 2
Guenther Ruhe

Synthesis, Analysis, and Modeling of Large-Scale Mission-Critical
Embedded Software Systems . 3

Richard W. Selby

Process Management

Statistically Based Process Monitoring: Lessons from the Trench 11
Maria Teresa Baldassarre, Nicola Boffoli, Giovanni Bruno, and
Danilo Caivano

The How? When? and What? for the Process of Re-planning for
Product Releases . 24

Anas Jadallah, Ahmed Al-Emran, Mahmoud Moussavi, and
Guenther Ruhe

Overcoming the First Hurdle: Why Organizations Do Not Adopt
CMMI . 38

Nazrina Khurshid, Paul L. Bannerman, and Mark Staples

Value-Based Multiple Software Projects Scheduling with Genetic
Algorithm . 50

Junchao Xiao, Qing Wang, Mingshu Li, Qiusong Yang,
Lizi Xie, and Dapeng Liu

Process Tools

Meta Model Based Architecture for Software Process Instantiation 63
Peter Killisperger, Markus Stumptner, Georg Peters,
Georg Grossmann, and Thomas Stückl

Distributed Orchestration Versus Choreography: The FOCAS
Approach . 75

Gabriel Pedraza and Jacky Estublier

XII Table of Contents

An Architecture for Modeling and Applying Quality Processes on
Evolving Software . 87

Fadrian Sudaman, Christine Mingins, and Martin Dick

Process Analysis

Evaluating the Perceived Effect of Software Engineering Practices in
the Italian Industry . 100

Evgenia Egorova, Marco Torchiano, and Maurizio Morisio

Evidence-Based Insights about Issue Management Processes: An
Exploratory Study . 112

Vahid Garousi

Process Aspect: Handling Crosscutting Concerns during Software
Process Improvement . 124

Jia-kuan Ma, Lei Shi, Ya-sha Wang, and Hong Mei

Stochastic Process Algebra Based Software Process Simulation
Modeling . 136

Jian Zhai, Qiusong Yang, Feng Su, Junchao Xiao, Qing Wang, and
Mingshu Li

Process Simulation Modeling

Combining Aspect and Model-Driven Engineering Approaches for
Software Process Modeling and Execution . 148

Reda Bendraou, Jean-Marc Jezéquél, and Franck Fleurey

Dynamic COQUALMO: Defect Profiling over Development Cycles 161
Dan Houston, Douglas Buettner, and Myron Hecht

A Hybrid Model for Dynamic Simulation of Custom Software Projects
in a Multiproject Environment . 173

Javier Navascués, Isabel Ramos, and Miguel Toro

On the Relative Merits of Software Reuse . 186
Andres Orrego, Tim Menzies, and Oussama El-Rawas

Investigating the Gap between Quantitative and Qualitative/Semi-
quantitative Software Process Simulation Models: An Explorative
Study . 198

He Zhang

Table of Contents XIII

Experience Report

Bridge the Gap between Software Test Process and Business Value: A
Case Study . 212

Qi Li, Mingshu Li, Ye Yang, Qing Wang, Thomas Tan,
Barry Boehm, and Chenyong Hu

Subcontracting Processes in Software Service Organisations - An
Experience Report . 224

Jakub Rudzki, Tarja Systä, and Karri Mustonen

On Reducing the Pre-release Failures of Web Plug-In on Social
Networking Site . 236

Xingliang Yu, Jing Li, and Hua Zhong

Technical Software Development Process in the XML Domain 246
Liming Zhu, Tu Tak Tran, Mark Staples, and Ross Jeffery

Process Metrics

Software Product Quality: Ensuring a Common Goal 256
Sebastian Barney and Claes Wohlin

Predicting Upgrade Project Defects Based on Enhancement
Requirements: An Empirical Study . 268

Lei He, Juan Li, Qing Wang, and Ye Yang

Process Modeling and Representation

Incremental Process Modeling through Stakeholder-Based Hybrid
Process Simulation . 280

Xu Bai, Liguo Huang, and Supannika Koolmanojwong

A Process-Oriented Approach for the Optimal Satisficing of
Non-Functional Requirements . 293

Christopher Burgess and Aneesh Krishna

A Pattern for Modeling Rework in Software Development Processes 305
Aaron G. Cass, Leon J. Osterweil, and Alexander Wise

Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling
Strategy for Software Projects . 317

Xiao Liu, Yun Yang, Jinjun Chen, Qing Wang, and Mingshu Li

Incrementally Introducing Process Model Rationale Support in an
Organization . 330

Alexis Ocampo, Jürgen Münch, and William E. Riddle

XIV Table of Contents

A Process for Driving Process Improvement in VSEs 342
Francisco J. Pino, Julio Ariel Hurtado Alegŕıa, Juan Carlos Vidal,
Félix Garćıa, and Mario Piattini

Modeling Software Evolution with Game Theory . 354
Vibha Sazawal and Nikita Sudan

Structural Considerations in Defining Executable Process Models 366
Borislava I. Simidchieva, Leon J. Osterweil, and Alexander Wise

Analyzing a Software Process Model Repository for Understanding
Model Evolution . 377

Mart́ın Soto, Alexis Ocampo, and Jürgen Münch

Process Trustworthiness as a Capability Indicator for Measuring and
Improving Software Trustworthiness . 389

Ye Yang, Qing Wang, and Mingshu Li

A System Dynamics Model That Simulates a Significant Late Life
Cycle Manpower Increase Phenomenon . 402

Douglas Buettner

Author Index . 411

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, p. 1, 2009.
© Springer-Verlag Berlin Heidelberg 2009

System Engineering in the Energy and Maritime
Sectors: Towards a Solution Based on Model-Centric

Processes

Lionel Briand

Simula Research Laboratory
University of Oslo

Abstract. The Maritime and Energy industry is facing rapid change with an in-
creasing reliance on software embedded systems and integrated control and
monitoring systems. From a practical stand point, challenges are related to in-
creased system complexity, increasingly integrated sub-systems relying on
Commercial-Of-The-Shelf software, longer supply chains for equipment and
components delivered by different suppliers, and short duration for construction
and commissioning of ships and offshore platforms. As a result, there is a lack
of visibility into the architecture of systems, their design rationale, how subsys-
tems/components were verified and integrated, and finally how systems were
validated and certified with a particular focus on safety. In turn, this has hin-
dered effective collaboration among stakeholders, including suppliers and sys-
tem integrators.

This talk will present a recent initiative, led by Simula Research Laboratory
and Det Norske Veritas (DNV), Norway, to address the above problems. The
general approach relies on model-centric processes, where models of the system
specifications, architecture, and design properties, are used to support the
documentation of architecture and design rationale, traceability among devel-
opment artifacts, and guide safety analysis and testing, among other things. The
project is focused on devising novel but scalable approaches to the long-
standing model-driven development challenges.

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, p. 2, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Decision Processes for Trustworthy Software

Guenther Ruhe

University of Calgary

Abstract. A recent survey done across different engineering domains has
revealed that support of decision-making is one of the key motivations for
performing process modeling. Decisions are focal points at all stages of the
software development lifecycle. The appropriateness of decisions made about
methods, tools, techniques, activities and resources is of pivotal importance for
the success (or failure) of a project. The discipline of software engineering
decision support studies the processes of facilitating "good decisions". Besides
effectiveness and efficiency, transparency is a key characteristic of the "good-
ness" of decisions.

This talk analyzes software engineering decision-making processes with
emphasis on its transparency. From empirical studies it was shown that trans-
parency of processes improves trustworthiness into solutions offered. This is
especially true for solutions offered from decision support systems with com-
prehensive and complex computations done to generate candidate decision al-
ternatives. More specifically, we discuss the transparency of decisions for the
class of product release decision process. We provide the state-of-the art prac-
tice in this area and summarize existing research to address current deficits. Ex-
perience from a series of real-world projects in this area is analyzed from the
perspective of how transparent processes have contributed to trustworthy
software.

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 3–10, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Synthesis, Analysis, and Modeling of Large-Scale
Mission-Critical Embedded Software Systems

Richard W. Selby

Northrop Grumman Space Technology
Computer Science Department, University of Southern California

Abstract. Mission-critical embedded software performs the core processing
logic for pervasive systems that affect people and enterprises everyday, ranging
from aerospace systems to financial markets to automotive systems. In order to
function properly, these embedded software systems rely on and are highly in-
terdependent with other hardware and software systems. This research identifies
design principles for large-scale mission-critical embedded software and
investigates their application in development strategies, architectures, and tech-
niques. We have examined actual embedded software systems from two differ-
ent problem domains, advanced robotic spacecraft and financial market
systems, and these analyses established the foundations for these design princi-
ples. Both system types embody solutions that respond to detailed specifications
defined and modeled with heavy user involvement. Both system types possess
mission-critical logic represented using state machines and other structured
techniques. They both use a layered architecture approach with a foundation
that provides infrastructure services, a layer with a simple set of foreground and
background tasks, a layer with deterministic synchronous processing steps, and
a layer with event-driven monitoring, commanding, and sequencing capabili-
ties. The architectural approach supports a domain-specific command sequenc-
ing macro language that defines table-driven executable specifications and
enables developers to work at higher abstraction levels throughout the lifecycle.
The architectural approach also facilitates extensibility, reuse, and portability
across multi-processor execution environments. The systems rely on extensive
built-in self-tests, invariants, and redundant calculations that assess states and
detect faults. From a development standpoint, both systems use risk-driven in-
cremental lifecycles, system modeling, end-to-end prototyping, and statistical
analysis of development processes. Based on insights gained from embedded
software design principles and their application on these as well as other sys-
tems, improvement opportunities and research directions will be identified.

1 Introduction

Software products for large-scale mission-critical embedded systems require systematic
principles for development strategies and architectures as well as for development proc-
esses and improvement methods. This paper summarizes software product development
principles established and validated across aerospace and financial market systems. The
illustrations describe examples that emphasize aerospace software. The development

4 R.W. Selby

environment examined has an organizational charter that focuses on embedded software
products for advanced robotic spacecraft platforms, high-bandwidth satellite payloads,
and high-power laser systems (Figure 1). The environment emphasizes both system
management and payload software and has well-defined reusable, reconfigurable
software architectures and components. The development languages range from object-
oriented to C to assembler. The organization was appraised at CMMI Level 5 for soft-
ware and also supports other process improvement initiatives such as ISO/AS9100 and
Six Sigma [Hum88] [Wom90]. The developers are skilled in producing high-reliability,
long-life, real-time embedded software systems.

2 Example Embedded Software System

This research examines one example spacecraft called Prometheus intended for a
mission to Jupiter that enables data-intensive exploratory deep-space science. The
spacecraft configuration has 58m length, 36,000kg launch mass, five on-board proc-
essors (excluding redundancy), 250mbps internal data transfer rate, 500gbit on-board
storage, and 10mbps external data downlink rate (Figure 2). The spacecraft has gas-
cooled power with 200kW Brayton output, and it stows in a 5m diameter fairing. The
embedded software implements functions for commands and telemetry, subsystem
algorithms, instrument support, data management, and fault protection. Over the last
several years, the size of on-board software has continued to grow to accelerate data

Prometheus / JIMO

Software Peer Review Software Development Lab

Restricted

JWST NPOESS EOS Aqua/Aura Chandra

Airborne Laser

Software Analysis

Software Process Flow for Each Build, with 3-15 Builds per Program

GeoLITE AEHF MTHEL

Fig. 1. Aerospace software development environment uses incremental software deliveries and
extensive simulations and reviews

 Large-Scale Mission-Critical Embedded Software Systems 5

Spacecraft Docking Adapter

Aerothermal Protection

Power Module

Heat Rejection

Electric
Propulsion

Spacecraft
Bus and
Processors

Spacecraft Docking Adapter

Aerothermal Protection

Power Module

Heat Rejection

Electric
Propulsion

Spacecraft
Bus and
Processors

Stowed Spacecraft

Fig. 2. Example spacecraft with embedded software system

processing and increase science yield. Functionality implemented in software, as
opposed to hardware such as digital ASICs, adds value to missions by enabling post-
delivery changes to expand capabilities and overcome hardware failures.

3 Embedded Software Design Principles

3.1 Embedded Software Design Principles for Strategies

The investigations establish the following example embedded software design princi-
ples for system development strategies:

 Share best-of-class software assets across organizations to leverage ideas and
experience.

 Define common software processes and tools to improve communication and
reduce risk.

 Adopt risk-driven incremental lifecycle with multiple software builds to im-
prove visibility, accelerate delivery, and facilitate integration and test.

 Conduct early tradeoff studies and end-to-end prototyping to validate key re-
quirements, algorithms, and interfaces.

 Design simple deterministic systems and analyze them with worst-case mind-
set to improve predictability.

 Analyze system safety to minimize risk.
 Conduct extensive reviews (intra-build peer reviews, five build-level review

gates, higher level project reviews) and modeling, analysis, and execution
(testbed conceptual, development, engineering, and flight models called CMs,
DMs, EMs, and FMs, respectively) to enable thorough understanding, verifi-
cation, and validation.

An example incremental software development strategy appears in Figure 3.

6 R.W. Selby

g

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

g

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

g

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2 Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH SoftwareDSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

Power
Power

g

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

g

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

g

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

Delivered to, Usage

201320122011201020092008200720062005CY 2004

PMSR
1/05

Data Server Unit (DSU) Builds

Science Computer Unit (SCU) Builds

Flight Computer Unit (FCU) Builds

Note: Science Computer builds for common software only (no instrument software included)

FCU1

ATP
11/04

SM PDR
6/08

SM CDR
8/10

BUS I&T
8/12

SM AI&T
8/13

Prelim Exec and C&DH Software

Prelim Exec and C&DH Software

FCU2

FCU3

FCU4

FCU5

FCU6

FCU7

Final Exec and C&DH Software

Science Computer Interface

Reactor Controller Interface

AACS (includes autonomous navigation)

Thermal and Power Control

Configuration and Fault Protection

SCU1

Final Exec and C&DH SoftwareSCU2 Final Exec and C&DH SoftwareSCU2

DSU1

DSU3

Prelim Exec and C&DH Software

DSU2 Final Exec and C&DH SoftwareDSU2 Final Exec and C&DH Software

Data Server Unique Software

Ground Analysis Software (GAS) Computer Builds

GAS1Preliminary Ground Analysis Software

GAS2Final Ground Analysis Software

A B C D

P

P

P

P

P

P

P

P

P
JPL/NGC, Prelim.
Hardware/Software
Integration
JPL/NGC, Final Hardware
/Software Integration
JPL, Mission Module
Integration

JPL, Prelim.
Hardware/Software
Integration
JPL, Final Hardware/
Software Integration

NR, Reactor Controller
Integration
NGC, AACS Validation on
SMTB
NGC, TCS/EPS
Validation on SSTB

NGC, Fault Protection S/W
Validation on SSTB

NGC, Prelim. Hardware/
Software Integration
NGC, Final Hardware/
Software Integration
NGC, HCR Integration on
SMTB
JPL, Prelim. Integration
into Ground System

JPL, Final Integration into
Ground System

1 Requirements
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test/Software

Integration
5 Verification and Validation

Legend: N is defined as follows:
541 32=

2 53 41=

542 31=

Prototype
Activity

NGC

N Performer of Activity N
JPL

Role/activity shared by
JPL and NGC

Design Agent

P

Power
Power

Fig. 3. Incremental software builds deliver early capabilities and accelerate integration and test

3.2 Embedded Software Design Principles for Architectures

The investigations establish the following example embedded software design princi-
ples for system architectures:

 Partition functions across multi-processor architecture (such as flight, science,
data, power generation, power distribution) to distribute performance, allocate
margins, and improve fault protection.

 Define software “executive” foundational layer that is common across multi-
processor architecture to enable reuse and flexibility.

 Develop software using architectural simplicity, table-driven designs, deter-
ministic behavior, and common interfaces to improve verifiability and pre-
dictability.

 Adopt high-level command sequencing “macro language” for non-software
personnel, such as system engineers, to use, typically structured as table-
driven templates of commands and parameters, to improve specifiability and
verifiability.

 Define simple deterministic synchronous control-loop designs with well-
defined task structures (typically 3-4 levels), static resource allocation (such
as no dynamic memory allocation), and predictable timing (such as minimiz-
ing interrupts) to improve understandability and verifiability.

 Large-Scale Mission-Critical Embedded Software Systems 7

 Centralize system level autonomy and fault protection and distribute lower
level autonomy and protection to appropriate control points to orchestrate sys-
tem configurations, ensure timely isolations and responses, and support over-
all safety.

 Dedicate pathways for high-speed data (such as from payload instruments to
high capacity storage) to separate specialized processing and faults from core
functionality (such as payload versus spacecraft).

 Adopt large resource margins (processor, memory, storage, bus) to accom-
modate contingencies and post-delivery changes.

An example usage of a common software foundational layer coupled with parti-
tioning of software functionality across processors appears in Figure 4.

SW Functions

SW Functions SW Functions SW Functions SW Functions SW Functions

SW Functions

Flight Science Data Power
Generation

Power
Distribution

P
ro

ce
ss

o
r-

S
p

ec
if

ic
C

o
m

m
o

n
 E

xe
cu

tiv
e

SW Functions SW Functions SW Functions
Command sequencing
Command execution
Telemetry
AACS
Auto navigation
Thermal control
Power coordination
Internal fault protection
System fault protection

Instrument control
Instrument sequencing
Instru. data processing
Internal fault protection

Recorder management
Data storage control
File/byte data protocol
Data compression
Internal fault protection

Instrumentation
Sensor control
Drive control
Coolant loop control
Time-critical safing
Internal fault protection

Power conversion loop
Sensor control
Power distribution
Array battery charging
Health monitoring
Internal fault protection

Start-up ROM
Initialization
Processor self-test
Device drivers
Real-time O/S
Time maintenance
I/O management
Memory load/dump
Task management
Shared data control
Utilities & diagnostics

Start-up ROM
Initialization
Processor self-test
Device drivers
Real-time O/S
Time maintenance
I/O management
Memory load/dump
Task management
Shared data control
Utilities & diagnostics

Start-up ROM
Initialization
Processor self-test
Device drivers
Real-time O/S
Time maintenance
I/O management
Memory load/dump
Task management
Shared data control
Utilities & diagnostics

Start-up ROM
Initialization
Processor self-test
Device drivers
Real-time O/S
Time maintenance
I/O management
Memory load/dump
Task management
Shared data control
Utilities & diagnostics

Start-up ROM
Initialization
Processor self-test
Device drivers
Real-time O/S
Time maintenance
I/O management
Memory load/dump
Task management
Shared data control
Utilities & diagnostics

M
ar

g
in

s

>50% >50% >50% >50% >50%

Fig. 4. Five-processor architecture provides partitioned functions, common executive layer, and
growth margins. Partition of software functions across processors improves performance, mar-
gins, and fault protection.

3.3 Embedded Software Design Principles for Techniques

The investigations establish the following example embedded software design princi-
ples for system development techniques:

 Flowdown requirements systematically from project, system (space, ground,
launch, etc.), module (spacecraft, mission, etc.), segment (bus, software, etc.),
subsystem/build, assembly, etc. to clarify functionality and accountability.

 Identify a manageable number of “key driving requirements”, where key is
top-down mission-success and driving is bottom-up design-limiting, to priori-
tize attention and analysis.

8 R.W. Selby

 Define user-perspective “mission threads” to focus modeling, end-to-end pro-
totyping, and validation.

 Specify “command abstractions” that define standalone command primitives
with pre-conditions, atomic processing, resource constraints (such as timing),
and post-conditions (such as data modified) to enable analysis and predict-
ability.

 Define and enforce “control points”, such as centralized sequential com-
mand queue and explicit data dependency graphs for read/write of data
shared across commands and sequences, to facilitate analysis and isolate
faults.

 Include built-in self-tests, invariants, and redundant calculations in implemen-
tations to help ensure accurate processing and isolate faults.

 Compare executions of system models and software implementations auto-
matically using toolsets to improve verification.

 Apply workflow tools, checklists, statistical analyses, root cause analyses, and
metric dashboards to improve repeatability, visibility, and preventability.

An example analysis of fault-proneness across newly developed, modified, and
reused software components appears in Figure 5 [Sel05]. An example compara-
tive study of software fault detection techniques appears in Figure 6 [Bas99]
[Myr05].

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Module origin

F
au

lt
s

p
er

 m
o

d
u

le
 (

av
e.

)

Mean 1.28 1.18 0.58 0.02 0.85

Std. dev. 2.88 1.81 1.20 0.17 2.29

New
development

Major revision Slight revision Complete reuse All

Fig. 5. Analyses of component-based software reuse shows favorable trends for decreasing
faults, based on data from 25 NASA systems. Overall difference is statistically significant (a <
.0001). Number of components (or modules) in each category is: 1629, 205, 300, 820, and
2954, respectively.

 Large-Scale Mission-Critical Embedded Software Systems 9

c = Code Reading f = Functional Testing s = Structural Testing

0%

10%

20%

30%

40%

50%

60%

70%

80%

cc cf cs ff fs c ss f s

Fault Detection Strategy

Fa
u

lt
s

D
et

ec
te

d
 (

%
,

A
ve

ra
g

e)

Fig. 6. Analyses of fault detection strategies characterize fault types and effectiveness of team-
ing. Comparisons use component-level fault detection strategies applied by 32 NASA develop-
ers and two-person developer teams. The combinations include single and paired developers
using: (c) code reading by stepwise abstraction, (f) functional testing using equivalence parti-
tioning and boundary value analysis, and (s) structural testing using 100% statement coverage
criteria.

4 Future Research

The continuous improvement of software development methods requires effective and
efficient identification of improvement opportunities and systematic steps actualizing
changes [Boe81] [Sel91] [Gra00]. Our future research further explores the parallels
among embedded software for aerospace, financial, and related mission-critical prob-
lem domains. Systems in these domains typically utilize a distributed network of
embedded processors and rely on embedded software to implement major instrumen-
tation, processing, and control functions. Identification of common and
domain-specific software design principles enables sharing of lessons learned and
opportunities for adapting specialized techniques to increase system capabilities,
enhance extensibility, and improve fault prevention and detection.

References

1. [Bas99] Basili, V.R., Shull, F., Lanubile, F.: Building Knowledge through Families of Ex-
periments. IEEE Transactions on Software Engineering SE-25(4), 456–473 (1999)

2. [Boe81] Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs
(1981)

10 R.W. Selby

3. [Gra00] Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting Fault Incidence Using
Software Change History. IEEE Transactions on Software Engineering SE-26(7), 653–661
(2000)

4. [Hum88] Humphrey, W.S.: Characterizing the Software Process: A Maturity Framework.
IEEE Software 5(2), 73–79 (1988)

5. [Myr05] Myrtveit, I., Stensrud, E., Shepperd, M.: Reliability and Validity in Comparative
Studies of Software Prediction Models. IEEE Transactions on Software Engineering SE-
31(5), 380–391 (2005)

6. [Sel91] Selby, R.W., Porter, A.A., Schmidt, D.C., Berney, J.: Metric-Driven Analysis and
Feedback Systems for Enabling Empirically Guided Software Development. In: Proceed-
ings of the 13th International Conference on Software Engineering, Austin, TX (May 1991)

7. [Sel05] Selby, R.W.: Enabling Reuse-Based Software Development of Large-Scale Sys-
tems. IEEE Transactions on Software Engineering SE-31(6), 495–510 (2005)

8. [Wom90] Womack, J.P., Jones, D.T., Roos, D.: The Machine that Changed the World: The
Triumph of Lean Production. Rawson Associates, New York (1990)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 11–23, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Statistically Based Process Monitoring: Lessons from
the Trench

Maria Teresa Baldassarre, Nicola Boffoli, Giovanni Bruno, and Danilo Caivano

Department of Informatics, University of Bari – SER&Practices SPIN OFF
Via E. Orabona 4 - 70126 - Bari - Italy

{baldassarre,boffoli,bruno,caivano}@di.uniba.it

Abstract. Monitoring software processes is a non trivial task. Recently many
authors have suggested the use of Statistical Process Control (SPC) for monitor-
ing software processes, while others have pointed out its potential pitfalls. In-
deed, the main problem is that SPC is often used “as is” without the appropriate
customizations or extensions needed for making it applicable to software con-
texts. This work points out and discusses four main issues related to software
process monitoring and highlights how SPC can be used as solution to address
each problem. The solutions arise from experience collected by the authors dur-
ing empirical investigations in industrial contexts. As so, this work is intended
as a first step in clarifying how SPC can contribute to practically solve some
monitoring issues and guide practitioners towards a more disciplined and cor-
rect use of the approach in controlling software processes.

Keywords: Statistical Process Control, Software Process Monitoring.

1 Introduction

A software process can be considered as a synergic blend of man, machine and meth-
ods in working activities whose execution leads to the production of desired outputs,
starting from the available inputs [1, 2]. Product quality is tightly related to the quality
of the processes used to produce them and therefore “improve quality” means “im-
prove software processes”. This implies the need for monitoring process execution,
highlighting process anomalies and being able to quickly react to them. Since soft-
ware processes are mainly human intensive and dominated by cognitive activities,
each process execution is a creative and unique activity where the predominant hu-
man factor implies differences in process performances and thus multiple outputs.
The phenomena known as “Process Diversity” [3, 4], makes process prediction, moni-
toring, and improvement activities a non trivial task. “Monitoring” is commonly in-
tended as measurement of process performances over time, using process metrics
(such as execution time, productivity, fault detected, costs etc.) able to point out
anomalies through some sort of alert mechanism and quickly react to them We can
therefore state that process monitoring, implies the need to: (i) define process per-
formance thresholds, i.e. typically upper and lower control limits for identifying ad-
missible process performance variations, and use them for controlling the process
behavior by comparing actual performances with admissible ones (i.e. process limits);

12 M.T. Baldassarre et al.

(ii) define the actual process anomalies so the monitor is able to identify them; (iii)
investigate the anomalies, the exceptional performance variations, in order to under-
stand the causes and react to them; (iv) dynamically tune monitoring sensibility and
adapt it to process behavior and admissible process variations over time.

Given the considerations above, the following issues arise: Problem1: Baseline
Definition. Given the heterogeneity of the operative contexts, the different maturity
levels of the processes in use, and (often) the lack of past knowledge about the moni-
tored process, it is difficult to define reliable and useful baselines for characterizing
and evaluating performances. Problem2: Anomalies Detection. “Process anomalies”
is a foggy concept. As so, conceptual and operational tools for identifying anomalies
are needed. Problem3: Causes Investigation. The detected anomalies are difficult to
interpret and it is challenging to discover the causes and undertake the appropriate
actions. Problem4: Tuning Sensibility. Monitoring sensibility should be tuned accord-
ing to process performance relevant changes.

In this paper we propose a couple: “monitoring problem - SPC based solution”
(from here on referred to as “pattern”), for each of the four problems listed above,
according to our experiences collected in previous empirical studies facing monitor-
ing issues, and the use of Statistical Process Control (SPC) [2, 5, 6] in industrial pro-
jects [7, 8, 9, 10, 11, 12, 13], along with a systematic review on SPC [14].

Fig. 1. Research Approach Schema

Furthermore, throughout the paper we use the empirical results as explanatory
cases for showing how each solution works in practice. This paper isn’t an answer
to monitoring problems, nor is a silver bullet on the use of SPC. On the contrary,
we are well aware that SPC applied to software presents various limitations of
different nature, from theoretical to operational [15, 16, 17, 18, 19]. As so, this
work is intended as a first step for clarifying how SPC can contribute to solve
monitoring issues and guide practitioners towards a more disciplined use of the
approach.

The paper is organized as follows: in section 2, the 4 patterns that describe the 4
“monitoring problem–SPC solution” couples are presented (Fig. 1); section 3 dis-
cusses the main outcomes of section 2 and organizes them in a disciplined process for
guiding monitoring activity; finally, in section 4 conclusions are drawn.

 Statistically Based Process Monitoring: Lessons from the Trench 13

2 Software Process Monitoring and Statistical Process Control:
Identified Patterns

Each pattern (monitoring problem-SPC based solution couple) was obtained from the
generalization of our experience collected during empirical investigations on the use
of SPC in an industrial software project [7]. In such study SPC was applied to a leg-
acy data set collected during the execution of a renewal project made up of two sub-
projects: reverse engineering and restoration, in which the process improvements
made were known. The project data was used to validate, through a simulation on
legacy data, whether SPC would have been able to point out the process performance
changes during project execution. The renewed legacy software system was an aged
banking application, made of 638 Cobol programs. A total of 289 programs were
subject to reverse engineering, while 349 to restoration. For each program, the metrics
collected and analyzed during project execution were: PERFORM-
ANCE=NLOC1/EFFORT2. The programs were renewed sequentially. In the explana-
tory case of this paper, we will only present the data related to the reverse engineering
sub-project, from here on referred to as RE. However, similar considerations can be
made for the restoration sub-project as well. Table 1 reports the PERFORMANCE
value for the first 30 RE data points.

Table 1. Reverse Engineering Data Points

1 2 3 4 5 6 7 8 9 10
213.875 243.600 237.176 230.700 209.826 226.375 167.765 242.333 233.250 183.400

11 12 13 14 15 16 17 18 19 20
201.882 182.133 235.000 216.800 134.545 363.241 411.392 409.298 406.861 406.989

21 22 23 24 25 26 27 28 29 30
404.147 425.801 293.073 423.644 353.160 416.469 496.097 358.352 511.646 396.718

Fig. 2. Reverse engineering performance expressed in NLOC/Hour

1 NLOC: number of lines of code in a program, excluding lines of comment and blank spaces.

If a statement extends over several lines of listing it is considered as a single line of code.
2 EFFORT: man-hours spent for the reverse engineering/restoration of a cobol program.

14 M.T. Baldassarre et al.

The trend of the performances is shown in figure 2 where three major improve-
ments made during RE, identified as T1, T2, and T3 are recognizable. Just to provide
some details, in T1 a more structured, formalized and transferable reverse engineering
process was provided to the developers, in T2, a tool for automating the RE process
was introduced, in T3 reading procedures for checking reengineered programs were
introduced. As it can be seen in the graph, process performances vary deeply during
project execution. In the next paragraphs we present and discuss each of the 4 patterns
and relate them to the explanatory case on RE.

2.1 Pattern 1: Baselines Definition SPC Theory

Problem: Monitoring involves measuring a quantifiable process characteristic over
time and pointing out anomalies3. A process must be characterized before being moni-
tored, for example by using a couple of reasonable threshold values, one for the upper
and one for the lower process performance limits. When the observed performance
falls outside these limits, someone can argue that there is something wrong in the
process. Moreover, process characterization requires past knowledge which is often
lacking. This is especially true in innovative projects where a production process is
used for the first time and no historical data is related to it.

Solution: SPC, developed by Shewart in the 1920s, has shown to be effective in
manufacturing [20] and has recently been used in software contexts [21, 22, 23, 24,
25, 26]. It uses several “control charts” together with their indicators [27, 28] to estab-
lish operational limits for acceptable process variation. By using few data points, it is
able to dynamically determine an upper and lower control limit of acceptable process
performance variability. Such peculiarity makes SPC a suitable instrument to face
problem 1. A control chart usually adopts an indicator of the process performances
central tendency (CL) and upper and lower control limits (UCLs and LCLs). Process
performances are tracked overtime on a control chart, and if one or more of the values
fall outside these limits, or exhibit a “non random” behavior an anomaly (technically
speaking, the effect of an assignable cause) is assumed to be present. Many control
charts exist in literature, but in software processes, due to the scarceness of data and
since measurements often occur only as individual values, the most used ones are the
XmR i.e. individual (X) and moving range (mR) charts (Fig. 3) [29, 30]. We will
briefly introduce them. In an X chart: each point represents a single value of the
measurable process characteristic under observation; CLX calculated as the average of
the all available values; UCLX and LCLX are set at 3sigmaX around the CLX; sigmaX
is the estimated standard deviation of the observed sample of values [6, 31] and it is
based on statistical reasoning, simulations carried out and upon the heuristic experi-
ence that: “it works”4. In a mR chart: each point represents a moving range (i.e. the
absolute difference between a successive pair of observations); CLmR, is the average

3 Examples of anomalies are: reduction in productivity, an exceptional defect density or an u

execution time (too high or too slow).
4 Simulations carried out have shown that the following rules of thumb work:

- Rule1: from 60% to 75% of the observations fall in the CL ± sigma.
- Rule2: from 90% to 98% of the observations fall in the CL ± 2sigma.
- Rule3: from 99% to 100% of the observations fall in the CL ± 3sigma.

 Statistically Based Process Monitoring: Lessons from the Trench 15

of the moving ranges; UCLmR = CLmR+3sigmamR and LCLmR=0; sigmamR is the esti-
mated standard deviation of the moving ranges sample. With reference to the explana-
tory case, if we consider the first 15 RE data points (reported in table 1), we obtain:

ii
mi

xx
m

mR −×
−

= −
−=

∑ 1
1.....11

1 = 33.11

3sigmaX = 2,660 * mR = 88.07

CLX = X = 210.58

UCLX = X + 2,660 * mR = 298.64;

LCLX = X - 2,660 * mR = 122.52

CLmR = mR =33,11;

UCLmR = 3,268* mR =108,2;

LCLmR = 0

 Fig. 3. XmR charts on the first 15 RE data points

The control charts are presented in figure 3. Note that the control limits carried out
using SPC are based on a process observation and they are expression of it. They are
not the result of expert judgment and, therefore obtained deterministically.

2.2 Pattern 2: Anomalies Detection Run-Test Set

Problem: monitoring activity points out process anomalies. Anomalies are intended
as some kind of noise in the process performances, the results of an unknown cause in
action that implies unattended variation (in better or worse) and thus lower process
predictability5. During process monitoring, can we say that an anomaly is detected:
when a set of observations rather than a single point fall(s) outside the specified
threshold? or when there is an increasing/decreasing trend in the observed perform-
ances? Usually, only manager experience can answer these questions.

Solution: in software processes, one should look for systematic patterns of points
instead of single point exceptions, because such patterns emphasize that the process
performance has shifted or is shifting. This surely leads to more insightful remarks
and suggestions. There is a set of tests for such patterns referred to as “run rules” or
“run tests” [32, 33] that aren’t well known (or used) in the software engineering
community, as also pointed out by our systematic review [14]. As the sigma concept,
the run rules are based on "statistical" reasoning. The solution to this problem is based
on previous research results of the authors who have proposed a set of indicators [7, 9,
10, 12] consisting of a selection among those present in SPC literature of run tests
resulting most appropriate for software (Table2).

5 In the software context, relevant examples in this sense are: the introduction of a new case

tool that speeds up development; the use of a new testing or inspection technique that reduces
post release defects etc.

16 M.T. Baldassarre et al.

Table 2. Run-Test Set Details

Run-Test Description

RT1: Three Sigma 1 point beyond a control limit (±3sigma)

RT2: Two Sigma 2 out of 3 points in a row beyond (±2sigma)

RT3: One Sigma 4 out of 5 points in a row beyond (±1sigma)

RT4: Run above/below CL 7 consecutive points above or below the centreline

RT5: Mixing/Overcontrol 8 points in a row on both sides of the centreline avoiding ±1sigma area

RT6: Stratification 15 points in a row within ±1sigma area

RT7: Oscillatory Trend 14 alternating up and down points in a row

RT8: Linear Trend 6 points in a row steadily increasing or decreasing

Fig. 4. Run Test Failures in XmR Charts

With reference to the explanatory case, if we continue plotting the data points, from
16 to 22, on the previous control charts (section 2.1), keeping the calculated control
limits fixed, and checking the run tests for each added data point, we can observe the
following anomalies (figure 4): RT1 (for all new points), RT2 (on sets of points from
15-17, 16-18, 17-19, 18-20, 19-21), RT3 (on sets of points from 15-19, 16-20,17-21),
RT4 (on sets of points from 16-22), and RT5 (on sets of points from 15-22). Obvi-
ously this set of anomalies occurs over time as new data points are collected on the
observed process. S, the monitor can face the problem and intervene appropriately.

2.3 Pattern 3: Causes Investigation Run-Test Interpretation

Problem: if the aim of monitoring activity is to point out process anomalies, Soft-
ware Process Improvement aims to find the causes, eliminate them if detrimental or,
otherwise, make them part of the process [34]. The possible causes of variation can be
various such as their effects on process performances and, consequently, the observ-
able anomalies. As so, a standard mechanism is needed to characterize the pointed out
anomalies.

 Statistically Based Process Monitoring: Lessons from the Trench 17

Solution: SPC is only able to detect whether the process performance is “out of con-
trol” and if an anomaly exists. It doesn’t support the manager during the causes inves-
tigation and the selection of the appropriate corrective actions. This solution extends
the SPC-theory by providing a specific interpretation (Table 3) of the anomaly for
each run test failure (section 2.2) from the software process point of view, and sug-
gesting possible causes that make the process “Out of Control” [7]. We have arranged
and interpreted the selected SPC indicators (table 2) in logical classes: sigma (RT1,
RT2, RT3), limit (RT4, RT5, RT6) and trend (RT7, RT8):

Sigma Tests. provide an “early” alarm indicator that must stimulate searching possible
assignable causes and, if the case, their identification and further elimination. One,
Two and Three sigma tests point out a potential anomalous “trend” that “may” under-
take assignable causes. Due to the high variance in software processes the faults high-
lighted by these tests could be numerous but less meaningful than in manufacturing
contexts and might refer to “Occasional Change” (passing phenomena). The signals
that Sigma tests detect may express a general behaviour determined by an assignable
cause or passing phenomena.

Limit Tests. This class of tests point out an “Occurred Change” in process perform-
ance. They highlight the need to recalculate the control limits when the actual ones
are inadequate, because they are too tiny or larger than required. In software process
monitoring we represent a measurable characteristic that expresses a human related
activity outcome (time spent, productivity, defect found during inspection etc.) on a
control chart. Thus a “sequence” of points that Limit Tests detects means something
has changed within the process (i.e. performance mean or variability). The process
changes may refer to “New Mean” or “Decreased/Increased Variability”.

Trend Tests. These tests highlight an “Ongoing Change”: an ongoing phenomenon
that reflects an ongoing shift that needs to be investigated. Typically a failure in this
test class can be the result of both spontaneous and induced process improvement
initiatives. Finally, according to the interpretations given, we are able to define the
following function:

φ: {Run-Test Failures} {Process Changes}
 “detected anomalies” “what happens”

Table 3. Run-Test Interpretation Details

SPC Theory Process Changes
Run-Test Failure Process Performance Type What Happens

None In Control None Nothing

RT1 Out of Control Occasional Early Alarm

RT2 Out of Control Occasional Early Alarm

RT3 Out of Control Occasional Early Alarm

RT4 Out of Control Occurred New Mean

RT5 Out of Control Occurred Increased Variability

RT6 Out of Control Occurred Decreased Variability

RT7 Out of Control Occurred New Sources of Variability

RT8 Out of Control Ongoing Ongoing Phenomena

18 M.T. Baldassarre et al.

For each run-test failure, φ is able to relate the “detected anomalies” to “what hap-
pens” within the process and suggest their cause. With reference to figure 4 of the
explanatory case, we can make the following interpretations: all the anomalies related
to RT1, RT2, RT3 are early alarms that announce a shift in process performance
mean, as pointed out in the RT4 and an increased variability (RT5) with respect to the
process performance threshold in use. These interpretations are coherent with what
really happen in the RE project when (from data point 16 on) a more structured, for-
malized and transferable reverse engineering process was provided to the developers.
This improvement (T1 in figure 2), initially, determined a process instability until the
new reverse engineering process was internalized by developers.

2.4 Pattern 4: Sensibility Tuning Actions

Problem: Process Diversity means that a process performance varies between differ-
ent organizations, different projects and also during the execution of a project [3]. A
typical example is the so called “maturity effect”, i.e. an improvement of human per-
formances due to the experience acquired during process execution: better knowledge
on the techniques in use, better confidence with the development tool etc. Hence,
even though a good initial estimation of the process performance is done, it will not
prevent estimation errors during project execution [10, 32, 33].

Solution: as emerges above it is difficult to correctly characterize process behaviour
from the start to the end in terms of adopted baselines. As so, the SPC control limits
need to be recalibrated according to relevant process performance changes and thus
the sensibility of the monitoring activity has to be tuned continuously. The risk of not
tuning sensibility is to miss anomalies as the result of using larger limits than neces-
sary or having several false alarms due to narrow limits. In both cases it is necessary
to: 1) identify when a relevant process performance change occurs; 2) tune the control
model (i.e. recalibrate control limits) according to performance changes.

The solution follows from our experience and has been generalized in Table 4.
More precisely, we have formalized the ψ that relates “what happens” in the process
with “what to do” in terms of Tuning Actions needed to tune the sensibility of the
monitoring activity.

ψ: {Process Changes} {Tuning Actions}
 “what happens” “what to do”

ψ is defined so that it determines the appropriate tuning actions needed to adapt
the monitoring sensibility. At a glance with respect to the type of observed process
changes, ψ can be explained as follows:

- if the process change is “Occasional”, the process performance: (i) should be the
same as in the past if assignable causes have been detected and removed or, if
this is not the case, further observations are needed to exhibit the new process
performance; (ii) is probably changing due to the fact that assignable causes
were made part of the process. In this case further observations have to be col-
lected. (iii) In both cases the control limits and the observed process characteris-
tics remain the same.

- if the process change is “Occurred”: (i) if process mean or variability are
changed then the control limits should always be recalculated. A new set of data
points that represents the new process performance have to be identified. The

 Statistically Based Process Monitoring: Lessons from the Trench 19

candidate data points are those responsible for the test failure. (ii) if there is a
new source of variability then the different sources must be identified, separated
and tracked on different charts.

- if the process change is “Ongoing” additional observations are needed to deter-
mine reliable limits for the process because the actual observations express an
ongoing change and thus, they cannot be used for determining new control lim-
its. In this case “no action” is advisable.

Let us now apply these concepts to the explanatory case. Given the pattern we can
see that RT1, RT2, and RT3 are classified as “occasional” process changes. They
detect an early alarm, and according to ψ do not require any tuning action. On the
other hand, RT4 and RT5 are classified as “occurred” process changes because the
process mean has changed (RT4) and the process variability, considering the limits in
use, has also increased (RT5) as can clearly be seen in figure 5. Indeed, the observed
data points, from 16 on, no longer fall within the fixed limits. Consequently, in accor-
dance to ψ and to the guidelines in table 4, new control limits must be calculated.
Figure 6 shows the result of the tuning action, i.e. the new control limits calculated
from data points 16-30. These interpretations also reflect what actually happened in
the RE project where, following the improvement T1, described in section 2.3, devel-
oper performances sped up. As so, the limits in use (figure.5) were no longer appro-
priate and therefore recalibrated (figure 6) to reflect the new developer performances.

Table 4. Relationship between Process Changes and Tuning Actions

Process Changes
Type What Happens

Tuning Actions

None Nothing No Action

Occasional Early Alarm No Action

Occurred New Mean Identify new control limits

Occurred Increased Variability Identify new control limits

Occurred Decreased Variability Identify new control limits

Occurred New Sources of Variability Identify a new measurement object

Ongoing Ongoing Phenomena No Action

Fig. 5. RT4 and RT5 suggesting a shift in
process performances

Fig. 6. New control limits calculated from
data points 16-30

20 M.T. Baldassarre et al.

3 Discussion

The four patterns presented in section 2 represent a perspective for overcoming some
non trivial problems related to software process monitoring. They can be seen as a set
of lessons learned to use for guiding software process monitoring activities. Figure 7
summarizes the steps for applying the guidelines: first, process characterization is
carried out, i.e. a process characteristic to monitor is observed over time, and data
points are collected and used to determine upper and lower control limits on a control
chart (Step 1); secondly anomaly detection occurs, i.e. each new data point observed
is plotted on the chart, keeping control limits and central line the same, and the set of
run tests (RT1…RT8) is executed and anomalies are detected each time a test fails
(Step 2); then, causes investigation is carried out, i.e. the cause of the anomaly
pointed out is investigated to provide an interpretation (Step 3). Finally, according to
the process changes occurred and identified in the previous step, appropriate tuning
actions are applied to tune the sensibility of the monitoring activity and adapt it to the
new process performances (Step 4).

Adopting the guidelines during monitoring activities assures various benefits. First,
it is possible to characterize process performances, even without having any previous
knowledge, by deterministically determining a clear set of reference points. Note that
lack of previous knowledge usually occurs for innovative processes, or for processes
that are used in different contexts with different maturity levels, or refer to various
application domains (technical rather than business). Moreover, in the SPC-based
monitoring process, limits are not an expert-based estimation, but an actual expression
of the process itself. Second, they provide a conceptual manner for defining process
anomalies and, at the same time, an operational means for identifying them. Without
such instruments (conceptual and operational) the interpretation of a trend rather than
a single observation would completely rely on the project manager, who may not
necessarily have the previous knowledge needed and thus, may neglect important
events or focus on irrelevant ones resulting in ineffective monitoring. Third, they
allow to adapt monitoring sensibility, not provided by the SPC-theory, to the actual
process performances. Consequently, the guidelines can be used both for identifying
spontaneous process changes (ex. learning effect) not induced by the project manager,
and as means for verifying the validity of improvements accomplished by project
manager. Finally, these guidelines represent a clear reference point, follow from ex-
plicit reasoning and are based on a solid theoretic model (SPC).

In the RE project, the monitored process characteristic was
“PERFORMANCE=NLOC/EFFORT”. By applying the guidelines during monitoring
of the RE project we were able to: (i) characterize the process in use. Since the RE
process had never been used in the industrial context, no past experience or baselines
were available. The control limits represented a clear reference model and a way for
building knowledge on the process in use; (ii) tune monitoring sensibility continu-
ously, i.e. recalibrate the control limits according to process performance changes.
(iii) identify all the known improvements (T1, T2, T3). Given the study was a simula-
tion on legacy data, we were able to verify that the actual improvements occurred
during the project were also identified during the simulation when adopting the moni-
toring guidelines. Similar results were obtained for the Restoration sub-project, not
reported for space reasons.

 Statistically Based Process Monitoring: Lessons from the Trench 21

Fig. 7. SPC based Process Monitoring guidelines

4 Conclusion

In this paper we have synthesized four main issues to software process monitoring
through a pattern based approach (where pattern is intended as a couple problem-
solution) and suggest an SPC-based solution as result of our experience collected over
the past years on industrial project data. Nevertheless, the application of SPC to proc-
ess monitoring still represents an open issue with some limitations to keep in mind.
As discussed in [14], there are many aspects related to software process measurement
such as the difficulty of collecting metrics, their reliability and the selection of moni-
tored process characteristics [16]; the violation of assumptions underlying SPC [19];
predominance of human factors that can impact on the SPC-theory and monitoring
effectiveness [17]. All these aspects leave much space for subjective management
decisions that can influence the success/failure of monitoring activities. Given these
limitations, this paper is not intended as the solution to monitoring problems, nor as a
silver bullet for applying SPC to software processes. Rather, it should be considered
as a perspective on how SPC can contribute to practically solve some monitoring
issues according to our experience from the trench . It can be seen as a first contribu-
tion for guiding practitioners towards a more disciplined use of SPC starting from
understanding how it can really address software process monitoring. In this way
operational, practical issues and pitfalls of SPC can be faced more systematically.

References

1. Florac, W.A., Carleton, A.D.: Measuring the Software Process: Statistical Process Control
for Software Process Improvement. Addison-Wesley, Reading (1999)

2. Shewhart, W.A.: Statistical Method from the Viewpoint of Quality Control. Dover Publi-
cations, Mineola (1939) (republished 1986)

22 M.T. Baldassarre et al.

3. IEEE Software: Process Diversity. IEEE Software 17, 4 (July-August 2000), entire issue
4. IEEE Software: The Global View. IEEE Software (March-April 2001), entire issue
5. Grant, E.L., Leavenworth, R.S.: Statistical quality control. McGraw-Hill, New York

(1980)
6. Wheeler, D.J., Chambers, D.S.: Understanding Statistical Process Control. SPC Press

(1992)
7. Baldassarre, M.T., Boffoli, N., Caivano, D., Visaggio, G.: Managing SPI through SPC. In:

Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 30–46. Springer, Hei-
delberg (2004)

8. Baldassarre, M.T., Caivano, D., Visaggio, G.: Software Renewal Projects Estimation Us-
ing Dynamic Calibration. In: 19th ICSM, pp. 105–115. IEEE Press, Amsterdam (2003)

9. Caivano, D.: Continuous Software Process Improvement through Statistical Process Con-
trol. In: 9th European CSMR, pp. 288–293. IEEE Press, Manchester (2005)

10. Baldassarre, M.T., Boffoli, N., Caivano, D., Visaggio, G.: Improving Dynamic Calibration
through Statistical Process Control. In: 21st ICSM, pp. 273–282. IEEE Press, Budapest
(2005)

11. Caivano, D., Lanubile, F., Visaggio, G.: Software Renewal Process Comprehension using
Dynamic Effort Estimation. In: 17th ICSM, pp. 209–218. IEEE Press, Florence (2001)

12. Boffoli, N.: Non-Intrusive Monitoring of Software Quality. In: 10th European conference
on Software Maintenance and Reengineering, pp. 319–322. IEEE Press, Bari (2006)

13. Baldassarre, M.T., Boffoli, N., Caivano, D., Visaggio, G.: SPEED: Software Project Effort
Evaluator based on Dynamic-calibration. In: 22nd ICSM, pp. 272–273. IEEE Press, Phila-
delphia (2006)

14. Baldassarre, M.T., Caivano, D., Kitchenham, B., Visaggio, G.: Systematic Review of Sta-
tistical Process Control: an Experience Report. In: 11th EASE, pp. 119–129. BCS, Keele
(2007)

15. Card, D.: Statistical Process Control for Software. IEEE Software, 95–97 (1994)
16. Sargut, K.U., Demirors, O.: Utilization of statistical process control in emergent software

organizations: pitfalls and suggestions. Software Quality Journal 14, 135–157 (2006)
17. Eickelmann, N., Anant, A.: Statistical Process Control: What You Don’t Measure Can

Hurt You! IEEE Software, 49–51 (March/April 2003)
18. Weller, E., Card, D.: Applying SPC to Software Development: Where and Why. IEEE

Software, 48–51 (May/June 2008)
19. Raczynski, B., Curtis, B.: Software Data Violate SPC’s Underlying Assumptions. IEEE

Software, 49–51 (May/June 2008)
20. Shewhart, W.A.: The Economic Control of Quality of Manufactured Product. D. Van

Nostrand Company, New York (1931) (reprinted by ASQC Quality Press) (1980)
21. Paulk, M.C.: Applying SPC to the Personal Software Process. In: Proc. 10th ICSQ (2000)
22. Florac, W.A., Carleton, A.D., Bernard, J.R.: Statistical Process Control: Analyzing a Space

Shuttle Onboard Software Process. IEEE Software, 97–106 (July/August 2000)
23. Jalote, P.: CMM in Practice: Processes for Executing Software Projects at Infosys. Addi-

son-Wesley, Reading (1999)
24. Weller, E.: Applying Quantitative Methods to Software Maintenance. ASQ Software Qual-

ity Professional 3(1) (2000)
25. Jacob, A.L., Pillai, S.K.: Statistical Process Control to Improve Coding and Code Review.

IEEE Software, 50–55 (May 2003)
26. Jalote, P.: Optimum Control Limits for Employing Statistical Process Control in Software

Process. IEEE TSE 28(12), 1126–1134 (2002)

 Statistically Based Process Monitoring: Lessons from the Trench 23

27. Nelson, L.: The Shewhart control chart - tests for special causes. Journal of Quality Tech-
nology 15, 237–239 (1984)

28. Nelson, L.: Interpreting Shewart X-bar Control Charts. J.of Quality Technology 17, 114–
116 (1985)

29. Weller, E.F.: Practical Applications of SPC. IEEE Software, 48–55 (May/June 2000)
30. Gardiner, J.S., Montgomery, D.C.: Using Statistical Control Chart for Software Quality

Control. In: Quality and Reliability Eng. Int’l., vol. 3, pp. 40–43. Wiley, Chichester (1987)
31. Park, Y., Choi, H., Baik, J.: A Framework for the Use of Six Sigma Tools in PSP/TSP. In:

5th International Conference SERA, Busan, Korea, pp. 807–814. Springer, Heidelberg
(2007)

32. IEEE Software. Estimation 17(6) (November–December 2000)
33. Bohem, B.W.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood

Cliffs (2000)
34. Florac, W.A., Park, R.E., Carleton, A.D.: Practical Software Measurement: Measuring for

Process Management and Improvement. Carnagie Mellon University (1997)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 24–37, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The How? When? and What? for the Process of
Re-planning for Product Releases

Anas Jadallah1, Ahmed Al-Emran1, Mahmoud Moussavi1, and Guenther Ruhe1,2,3

1 Department of Electrical & Computer Engineering
Schulich School of Engineering, University of Calgary

2 Department of Computer Science, University of Calgary
3 Expert Decisions Inc, Calgary

{agjadall,aalemran,moussam,ruhe}@ucalgary.ca

Abstract. Volatility of features and dynamic change in stakeholders’ needs of-
ten requires re-planning of an existing release plan to accommodate changes.
H2W is a re-planning method that answers the questions of how, when, and
what to re-plan of an existing product release strategy. For HOW, a greedy heu-
ristic based on prioritization of candidate features is applied. A value-based re-
planning approach is proposed for the WHEN question. For WHAT, a trade-off
analysis between the degree of change related to the originally announced re-
lease plan and the improvement achievable by replacing existing features with
more attractive ones is suggested. At each of the re-planning iterations, H2W
either provides a new improved plan or states that an improvement does not ex-
ist. As a proof-of-concept, a case study is conducted.

Keywords: Release planning, Re-planning process, Change request, Volatile
requirements, Decision support, Trade-off analysis.

1 Introduction and Motivation

When developing large scale software systems with hundreds or thousands of fea-
tures, software engineers usually use iterative or incremental development where they
adopt a scheduling and staging strategy, in which various parts of the system are de-
veloped at different times or rates, and integrated as they are completed. In market
driven software development, features or requirements tend to change frequently due
to many factors [8]:

• Requirements errors, conflicts, and inconsistency.
• Evolving customer/end-user knowledge of the system.
• Technical, schedule or cost problems.
• Changing customer priorities.
• Environmental changes.
• Organizational Changes.

Changing features or requirements is considered as one of the major causes for
software product failure. A survey over 8000 projects undertaken by 350 US compa-
nies revealed that one third of the projects were never completed and one half

 The How? When? and What? for the Process of Re-planning for Product Releases 25

succeeded only partially. The third major source of the failure (11%) was changing
requirements [20].

Release planning addresses the problem of assigning features (defined as sets of
bundled requirements) to a sequence of releases such that the technical, resources,
risk, and budget constraints are met [15]. Any need for having a well established
change management process and handling re-planning of release plans is articulated
in [1],[9],[16].

We proposed and evaluate a decision support method called H2W to address the
“when?”, “how?” and “what?” of re-planning. The structure of the paper is as follows.
Section 2 describes related research on handling change requests in release planning.
A formalization of the problem is contained in Section 3. Section 4 provides the nec-
essary concepts for the H2W method proposed in Section 5. The method is illustrated
in Section 6 by case study data. Overall validity of the method and discussion of the
results is studied in Section 7. A summary and an outlook on future research are
given in Section 8.

2 Related Work

A number of known methods and techniques have been proposed for product release
planning (see for example [3],[7],[15],[19]). None of these methods are designed to
address the issue of dynamically changing feature requests. Changing features can
involve the arrival of new features or the change of existing features.

In the context of change request handling, the simplest strategy is to freeze change
requests [21]. It mandates that an organization stop accepting new change requests
after performing the initial activities in the release iteration. These changes are then
introduced at the start of the next release. This approach ignores the fact that some of
the changes may be very urgent and need to be implemented immediately.

Stark et al. [16] explored the relationship between requirements changes and soft-
ware releases by looking at maintenance requirements volatility in a large software
system with more than eight million lines of code spanning multiple languages,
environments, and client organizations. The research tried to answer the following
questions:

• How much volatility do the product releases experience?
• What kind of change is most commonly requested?
• When in the release cycle do requirements changes occur?
• Who requests requirements changes?
• How much effort is associated with implementing each requirement type?
• What schedule impact will a requirements change have?

For each question, data was measured, collected, and analyzed. Finally, a regres-
sion analysis was performed to find a relation between different factors affecting
these change requests and the quality of the release planning problem. This regression
model was used to facilitate communication among the project stakeholders when
discussing requirements changes. The process of re-planning was not studied, though.

In the context of re-planning, AlBourae et al. [1] proposed a lightweight
re-planning process for software product releases where change requests are

26 A. Jadallah et al.

accumulated and categorized during release iterations until we reach a specified level
where resources are estimated for these new features and stakeholders are asked to
vote for them. However, both the “when?” and the “what?” question were not ad-
dressed in this research.

3 Formalization of the Problem

The re-planning problem is based on different types of information related to the
existing plan, the change requests, and the capacities and time interval of the release
under investigation.

3.1 Release Information

The re-planning process happens in a given release period denoted by [T1,T2]. The
implementation process of the planned release starts at t = T1. The planned release
date is t = T2. Each feature has some estimated effort for its implementation and each
release has a limited effort capacity CAP. The capacity limits the number of features
that can be implemented in the proposed plan. The overall capacity CAP equals the
product of (T2-T1)* AvgNDev, where AvgNDev denotes the average number of
developers available over the planning period.

3.2 Existing Plan

At the beginning of the re-planning process, we assume a set F = {f(1)… f(N)} of
features. The actual plan is described by the set of features selected from F for im-
plementation in the given release. We describe the plan by a Boolean vector x with

x(n) = 1 iff feature f(n) is selected from F for implementation (1)

This plan can be determined by any of the existing methods mentioned above. We
will later see that our greedy re-planning method can be used as well to determine an
initial plan.

Each feature f(n) for n = 1..N is characterized by a set of attributes. If attribute ef-
fort(n) describes the (estimated) effort for implementation of feature f(n), then we
have

Σn=1..N x(n) effort(n) ≤ CAP (2)

In addition to effort, other attributes that we consider are risk(n) and value(n) that
represents a risk and a benefit value of the feature, respectively.

3.3 Change Requests

In the process of implementation of a once agreed upon plan, change request might
occur. A change request relates to changing an already accepted feature (some of the
data of its related attributes) or requesting a new feature. The set of change request is
dynamically changing, so we need to describe them in dependence of time.

We define by CR(t) the set of all change requests from the beginning of the release
period (t = T1) until point in time t ∈ (T1, T2]. The change requests themselves are

 The How? When? and What? for the Process of Re-planning for Product Releases 27

denoted by f(N+1), f(N+2), …. f(Nt) where Nt denotes the number of change requests
until point in time t. Each change request f(n), n = N+1 … Nt is characterized by four
attributes called risk(n), value(n), time(n) and effort(n).

Both risk and the feature’s value (from a stakeholder viewpoint) are classified on a
nine-point scale with values as specified in Table 1. A change request f(n) is arriving
at point in time t denoted by t = time(n) and is estimated to consume effort in the
amount of effort(n). Both the risk and the value estimation are assumed to be the
result of stakeholder (and expert) evaluation as described in [10]. Experts can estimate
the level of risk for features from previous project history. For estimation of effort, a
variety of known methods and techniques can potentially be applied. A method for
estimation in consideration of change was studied in [12].

Table 1. Nine point scale for evaluating effort, risk and value of features

risk(n), value(n) Interpretation
1 Extremely low
3 Low
5 Average
7 High
9 Extremely high

4 Key Solution Concepts

4.1 Distance-to-Ideal-Point Minimization

We borrow the concept of “Distance-to-ideal-point minimization” known from multi-
criteria optimization [17] for determining the most attractive features for replacement
of less attractive ones. The ideal solution is an artificial solution defined in the crite-
rion space, each of whose elements is the optimum of a criterion’s value. As this arti-
ficial solution can not be achieved in most of the cases, the goal is to come as close as
possible to the ideal solution. The distance can be measured, for example, by the
Euclidean distance. The solution being closest to the ideal one is considered to be the
best compromise and the most promising one to pursue.

In our case, we apply the concept of “Distance-to-ideal-point minimization” to the
three-dimensional space defined by the feature attributes risk, effort and value. For
simplicity reasons, the three attributes are treated as being defined on an interval
scale. The solutions minimizing the distance to the ideal case of having extremely low
effort, extremely low risk and extremely high value are considered to be the top can-
didates for inclusion into the current release plan.

4.2 Greedy Method for Release Planning

Greedy algorithms are widely applied to iterative solution technique aimed at finding
a good global solution by determining the local optimum choice at each stage [4]. The
key principle of greedy release planning is to elaborate the features top down accord-
ing to their overall priority. In our approach, the priority is higher the lower the dis-
tance is to the ideal point, as defined above.

28 A. Jadallah et al.

The optimization process starts with the feature with the highest overall priority.
This process is continued with the next best feature. Each new feature is assigned to
the current release as long as the resource capacities are not exceeded. If the addition
of any of the new features would violate any of the capacity constraints, then the
feature is dismissed and the next best feature is considered for inclusion. The process
terminates when no further feature can be added to the existing set.

5 H2W Re-planning Method

The method applies the above concepts in an iterative manner and considers the most
recently created plan as a baseline for the next re-planning iteration. The workflow of
the overall method is shown in Figure 1.

Fig. 1. Workflow of the H2W method

The decision about when to re-plan is based on some threshold related to the ac-
cumulated value of all the arriving features. We consider a value based threshold here
which is called V-THRESHOLD. The actual value is project and context specific and
is defined by the product manager, taking into account his or her former experience,
as well as the current business and market conditions.

During the “how to re-plan?” part, candidate features are ranked based on their dis-
tance to the ideal point. Greedy optimization is applied adding the most attractive
features to the capacities remaining. Finally, “what to re-plan?” determines the best
compromise between creating additional value and changing the existing plan. The
relative increase in value is compared to the degree of change of the release plan for a
sequence of exchanges of varying cardinality of the set of removed (from the baseline
plan) features. The point of intersection between these curves determines the number
of features to be exchanged from the given plan. This process is further illustrated in

 The How? When? and What? for the Process of Re-planning for Product Releases 29

the case study example of Section 6. The three key steps of the method are described
in more detail below in a pseudo-code representation.

Step 1: When to re-plan?

Initialize TotalNewValue to 0 // accumulative added values of new change requests.
Initialize DoReplanning to false // determine when we can do re-planning

For n = N+1 to Nt // for each new change request

TotalNewValue = TotalNewValue + value(n)
Endfor
If (TotalNewValue >= V-THRESHOLD)
Then Set DoReplanning = true // start re-planning
Else Set DoReplanning = false // don’t re-plan
Endif

Step 2: How to re-plan?

Initialize CandidateFeatures to empty // list containing the best candidate features
Initialize AvgNDev // Average no. of developers available over the planning period
Initialize Features to empty // containing unimplemented features & change requests

Set RemCAP = (T2-t) * AvgNDev
For n = 1 to Nt

Normalize effort(n) in a scale of {1,..,9} and store it in normEff(n)
If ((f(n) is not implemented) OR (f(n) is change request))
Then Set Dis(n) = Sqrt((value(n)-9)2+(normEff(n)-1)2+(risk(n)-1)2)

Features.add(f(n))
Endif

Endfor
Features.sortBy(Dis)
While (RemCAP > 0)

Set featureFound = false
For n = 1 to Features.Size()
If (effort(Features[n]) < RemCAP)
Then CandidateFeatures.add(f(n))

RemCAP=RemCAP – effort(n)
Features.remove(f(n))
Set featureFound = true
Break // stop the closest for loop

Endif
Endfor
If (featureFound = false)
Then Break // stop the while loop
Endif

Endwhile

Step 3: What to re-plan?

Assumption 1: The current baseline plan includes m features.
Assumption 2: List of features RF = {rf(1) …rf(P)} to be removed from baseline plan as a
result of Step 2.

30 A. Jadallah et al.

Assumption 3: The features of RF are arranged in decreasing order in terms of their distance to
the ideal point.

For p = 1 to P

Determine the best replacement for the set of existing features rf(1)… rf(p) with new
features features nf(1) … nf(q)
Determine added value
AdValue(p) = Σn=1..q value(nf(n)) - Σn=1..p value(rf(n))
Stability (p) = 1 – p/m

Endfor
Determine p* to be the index such that the two points (p*, AdValue(p*)) and (p*, Stability(p*))
are closest to each other.// This represents the best compromise.

H2W applies the three steps in an iterative manner and considers the most recently
created plan as a baseline for the next re-planning iteration. The process of arriving
features with their increasing cumulated value is illustrated in Figure 2. Each step of
the curve corresponds to the arrival of a new feature adding some new value. How-
ever, only a portion of these new features is actually incorporated into the existing
plan. In the illustration, we have assumed two re-planning steps. Their timing within
the release interval [T1,T2] is highlighted by the two black arrows at the x-axis.

Fig. 2. Illustration of the impact of arriving features on additional value

6 Illustration of H2W by a Case Study Example

In this section, we provide a case study based on real-world data coming from plan-
ning a project in the decision support tool ReleasePlanner® [14] and illustrate the
usefulness of this method.

6.1 Release Information and Baseline Plan

The case study includes:
• A set of fifty features, F = {f(1), f(2), ..., f(50)} with their corresponding attrib-

utes shown in Table 3 of the Appendix;
• Effort capacity, CAP = 1500;
• Average number of developers, AvgNDev = 5;

 The How? When? and What? for the Process of Re-planning for Product Releases 31

• Release start time, T1 = 0;
• Release end time, T2 = 300 (i.e., CAP/AvgNDev).

Table 3 also provides step-by-step data for baseline planning. We first prioritized
all features (c.f., Table 3, Column 2) after normalization of effort(n) in a 9 point scale
(denoted by normEff(n)) and application of “Distance-to-Ideal-Point minimization” as
discussed in Section 4.1. Then we apply the greedy planning method (c.f., Section
4.2) that results in 39 features to be accommodated in the next release within given
capacity CAP. A total of 11 features are rejected from the baseline plan: f(3), f(10),
f(12), f(14), f(18), f(25), f(29), f(30), f(34), f(35), and f(39). A release value (i.e.,
stakeholders’ satisfaction) of 236 can be achieved that can be computed by adding up
value(n) for all 39 features that be accommodated in the release.

6.2 Change Requests

We simulate twenty change requests (50% of baseline features): f(51), f(52), ..., f(70)
are arriving at different points in time within the release duration as mentioned in Sec-
tion 3.3. The corresponding attributes are also randomly generated within the same
range (e.g., in a 9 point scale for risk(n) attribute) in the set of features. The arrival time
for the change requests, time(n), is equally distributed over the time period T1 to T2.
Table 4 (see Appendix) provides the information about the simulated data.

6.3 STEP 1: When to Re-plan?

As expressed in Section 4, we consider a value based threshold called V-THESHOLD as a
trigger for re-planning. Once the accumulated value(n) of the incoming change requests (or
new features) reaches or exceeds V-THRESHOLD, the re-planning process is initiated.

For our case study, we decided to set this threshold value to 25% of the baseline re-
lease value. In Section 6.1, we have seen that the release value of the baseline plan is
236. Thus, 25% of this value becomes 59. Thus, whenever the accumulated value(n)
for incoming change requests reaches or exceeds 59, the re-planning event will occur.

The next step is to continually check the time period of 0 to 300 to see if re-
planning is triggered by the threshold. In our case, as soon as change request f(62)
arrives at time 194 (c.f., Table 4; highlighted) the accumulated value(n) becomes 62,
i.e., exceeds V-THRESHOLD and triggers the first re-planning iteration.

6.4 STEP 2: How to Re-plan?

At the 2nd stage, we know “when” to re-plan but the question now becomes how to do
that. The answer lies in applying the same greedy optimization as performed in case
of baseline planning. However, this time we consider a new “candidate list” that in-
cludes the change requests (or new features), features that are planned but have not
been implemented in the release, and the rejected features, while we perform our
baseline planning. Since some time has passed, 29 features have already been imple-
mented as shown in Table 4. They are: f(42), f(33), f(32), f(7), f(23), f(9), f(5), f(17),
f(8), f(16), f(24), f(31), f(44), f(37), f(4), f(48), f(41), f(13), f(21), f(22), f(47), f(50),
f(19), f(49), f(15), f(38), f(2), f(20), and f(26). Since, f(26) is under construction at
time 194, we let it to be finished before selecting features or change requests from the
candidate list for the rest of the release.

32 A. Jadallah et al.

At this re-planning point, the effort capacity (CAP) already consumed by the im-
plemented features is 990 and we have (1500 – 990) = 510 effort capacity remaining
for the rest of the release development. We prepare our candidate list by including the
rest of the 10 features that were planned in the baseline release but not yet imple-
mented, 12 change requests that have arrived so far and 11 features that have been
rejected at the time of baseline planning. We normalize the effort(n) attribute of all
items in the candidate list in a 9 point scale to normEff(n) and apply the concept of
“Distance-to-Ideal-Point” to prioritize each of the candidates. Table 4 shows the pri-
oritized candidate list with each item’s distance Dis(n) from the ideal point.

Then the method takes the most attractive features, one-by-one, from the top of the list
until it is out of available capacity. In our case, the features that are selected from the list for
the rest of the release development are: f(62), f(51), f(59), f(46), f(27), f(45), f(55), f(36),
f(53), and f(57) (see Table 4). The release value of the revised plan becomes 249. If we
compare the revised plan with the baseline then we can see features f(28), f(1), f(11), f(6),
f(43), and f(40) of the baseline plan are exchanged with change requests f(55), f(57), f(51),
f(62), f(59), and f(53) for an overall gain of (249 – 236) = 13, in terms of release value.

6.5 STEP 3: What to Re-plan?

In Step 3, we determine the best compromise between gaining additional value from ex-
changing features and accepting some instability from the same effort. The two extremes in
this respect would be no changes at all (highest degree of stability) and replacing features
f(1), f(6), f(11), f(28), f(40), and f(43) by five new features: f(51), f(53), f(55), f(57), f(59),
and f(62). The results of a more detailed trade-off analysis are summarized in Table 2.

Table 2. Evolution of feature replacements for the five features determined in Step 2

Number of features
eliminated from baseline

Set of eliminated
features

Set of replacement
features

Added value

1 {28} {55} 3
2 {28,1} {55,57} 3+3
3 {28,1,11} {55,57,51} 3+3+3
4 {28,1,11,6} {55,57,51,62} 3+3+3+2
5 {28,1,11,6,43} {55,57,51,62,59} 3+3+3+2+1
6 {28,1,11,6,43,40} {55,57,51,62,59,53} 3+3+3+2+1+1

Fig. 3. Trade-off analysis between added value and stability of the plan

 The How? When? and What? for the Process of Re-planning for Product Releases 33

Based on analysis of the trade-off situation as shown in Figure 3, it was recommended
that the best compromise would be the elimination of three features from the baseline.
The features to be eliminated are f(1), f(11) and f(28). Their recommended replacement
are features f(51), f(55) and f(57) and the added value of this replacement is 9.

7 Discussion of the Results

The re-planning process accommodates a number of essential parameters which have not
been considered yet in the existing literature. We reconsider not only the new change
requests, but also model changes in the features already in consideration for releases. The
reason for this consideration is that all the planning information is time-dependent, and
priorities or effort estimates may need to be corrected at a later point in time.

The illustrative example, partially based on real-world data, served as a “proof-of-
concept” for the proposed re-planning approach. We have performed a more compre-
hensive empirical analysis analyzing a set of 1000 randomly generated scenarios for
re-planning. The detailed results of that under the additional aspect of using predictive
effort and defect models have been studied in [2]. From running the case study, we
have made a number of observations:
• Re-planning is important, as otherwise significant information is not taken into

account and possible gain of value is ignored. For the case study data, an im-
provement (measured as the overall value of the plan) of about 4% would have
been ignored from one re-planning effort.

• In dependence of the frequency of re-planning, substantial changes in the structure
and the overall value of the plans occur. For the case study, just three features have
been exchanged to achieve the 4% gain in customer satisfaction.

• The method allows easy and quick re-planning for problems of at least 50 + 20
features.

• Decisions about re-planning of an existing solution can not just be made by look-
ing at the added value. There is a trade-off situation relating the added value to the
loss of stability.
We do not claim external validity for the observations above. More comprehensive

empirical evaluation is needed for this purpose. There are also limitations with the
internal validity of the results. This is caused by simplifications made on the underly-
ing model. Firstly, we just consider effort as the attribute characterizing the amount of
implementation needed to implement the feature. However, in reality, effort is com-
posed of different types of resources. In a more fine-grained model, different types of
resources would need to be considered.

A second assumption is related to the same issue. In case of any re-planning, we
need information about which features are already finished, which ones are in pro-
gress, and which ones are not yet started. Consequently, some form of operational
planning needs to be in place to track this. We have made the simplifying assumption
that the features are pursued in the order of priority (highest rated feature comes first)
with all effort spent on the feature in progress. In other words, we have the model of
serial implementation of all the features. This again is a simplification which allows
re-planning in a reasonable amount of time and with a reasonable amount of computa-
tional effort.

34 A. Jadallah et al.

Finally, to keep the method reasonably light-weight, we applied greedy optimiza-
tion known to deliver good, but not necessarily optimal results. As part of the dis-
tance-from-ideal-point minimization, effort estimates were mapped to a nine-point
scale when used as part of the distance computation.

8 Summary and Future Research

Software release planning is a problem with significant impact on the success or fail-
ure of software product development. A systematic approach is likely to generate
plans achieving higher business value. Planning of product releases provides informa-
tion to the stakeholders, customers and the development team about which features
are planned to be delivered at which release. As there is dynamic change in the data,
priorities and even objectives of the planning, plans need to be adjusted dynamically
to fit reality. The process of re-planning existing release plans is an important aspect
of responding to change.

The main contribution of this research is the provision of a method called H2W for
re-planning of existing product release plans. The emphasis was the efficiency allow-
ing easy-to-use procedures to support the “how?”, “when?” and “what?” questions of
decision-making. A more comprehensive empirical evaluation and an industrial
evaluation is one of the topics of future research.

A number of other questions need to be addressed in this context. More and more,
planning for product releases takes non-functional requirements into account (see [3]).
Consequently, this aspect also needs to considered for the re-planning process. We
also need to address the issue of balancing effort between creating additional func-
tionality and stabilizing the existing code and fixing detected defects in the context of
re-planning (see [2]).

The threshold value is one of the critical parameters of the method. We plan to in-
vestigate the sensitivity of solutions depending on this value and the use of additional
or other thresholds (e.g., for the cumulative risk, the cumulative effort of the arriving
features, and the defects slippage density).

We do not know exactly the quality of the proposed plan. This refers to the industrial
evaluation, but also to a comparison with a more sophisticated planning (and re-
planning) process looking at optimal solutions at each iteration. Even though this is not
always necessary, the comparison would allow one to better judge the quality of the
H2W re-plans. In this context, more fine-grained resource consumption models (as
studied in [10]), including different types of resources, would be considered as well.

Acknowledgement

Part of the work presented was financially supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada under Discovery Grant no.
250343-07. Ahmed Al-Emran would like to thank iCORE, NSERC, and the Killam
Trust for their postgraduate/pre-doctoral scholarships and to ExtendSim for support-
ing implementation of the research prototype. The authors would also like to thank
Jim McElroy and Kornelia Streb for editorial input on the paper.

 The How? When? and What? for the Process of Re-planning for Product Releases 35

References

1. AlBourae, T., Ruhe, G., Moussavi, M.: Lightweight Re-planning of Software Product Re-
leases. In: 14th IEEE International Requirements Engineering Conference Minneapolis/St.
Paul, Minnesota, USA (2006)

2. Al-Emran, A., Jadallah, A., Moussavi, M., Paikari, E., Pfahl, D., Ruhe, G.: Functionality ver-
sus Quality: Application of Predictive Models for Re-planning of Product Releases. Submis-
sion for International Conference on Predictor Models PROMISE 2009, Vancouver (2009)

3. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The Next Release Problem. Informa-
tion and Software Technology 43, 883–890 (2001)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, Clifford Stein.
MIT Press, Cambridge (2007)

5. Greer, D., Ruhe, G.: Software Release Planning: An Evolutionary and Iterative Approach.
Information and Software Technology 46, 243–253 (2004)

6. Jadallah, A.: http://www.ucalgary.ca/~agjadall/ICSP2009
7. Jung, H.W.: Optimizing Value and Cost in Requirements Analysis. IEEE Software 15, 74–

78 (1998)
8. Kontonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques.

Wiley, Chichester (1998)
9. Loconsole, A.: Empirical Studies on Requirement Management Measures. In: Proceedings

- 26th International Conference on Software Engineering, ICSE 2004, Edinburgh, United
Kingdom (2004)

10. Ngo-The, A., Ruhe, G.: Optimized Resource Allocation for Software Release Planning.
IEEE Transactions on Software Engineering 35, 109–123 (2009)

11. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of Requirements Volatility During Soft-
ware Development Life Cycle, Melbourne, Australia (2004)

12. Ramil, J.F.: Continual Resource Estimation for Evolving Software. In: Proceedings Con-
ference on Software Maintenance, pp. 289–292 (2003)

13. Regnell, B., Svensson, R.B., Olsson, T.: Supporting Road-mapping of Quality Require-
ments. IEEE Software 25, 42–47 (2008)

14. ReleasePlanner, Expert Decisions Inc., http://www.releaseplanner.com
15. Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE Soft-

ware 22, 47–53 (2005)
16. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements

Changes on Software Maintenance Releases. Journal of Software Maintenance: Research
and Practice (1999)

17. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. John
Wiley, New York (1986)

18. Strens, M.R., Sugden, R.C.: Change Analysis: A Step towards Meeting the Challenge of
Changing Requirements. In: Proceedings of the IEEE Symposium and Workshop on Engi-
neering of Computer Based Systems, pp. 278–283 (1996)

19. Van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software Product Re-
lease Planning through Optimization and What-If Analysis. Information and Software
Technology 50, 101–111 (2008)

20. Van Lamsweerde, A.: Requirements Engineering in the Year 2000: a research perspective.
In: Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000), Limerick, Ireland (2000)

21. Wiegers, K.E.: Software Requirements: Practical Techniques for Gathering and Managing
Requirements Throughout the Product Development Cycle, 2nd edn. Microsoft Press (2003)

36 A. Jadallah et al.

Appendix

Table 3. Performing baseline planning

f (n)
effort

(n)
value

(n)
risk
(n)

f (n)
normEff

(n)
value
(n)

risk
(n)

Distance
(n)

f (n)
start
(n)

end
(n)

Occupied
CAP

1 16 5 9 42 1 9 1 0.00 42 0 2 10

2 16 2 3 33 1 9 3 2.00 33 2 3 15

3 17 2 8 32 1 9 4 3.00 32 3 5 25

4 30 6 6 7 1 7 4 3.61 7 5 6 30

5 29 6 3 23 4 7 1 3.61 23 6 14 70

6 23 3 8 9 1 9 5 4.00 9 14 16 80

7 4 7 4 5 3 6 3 4.12 5 16 22 110

8 65 9 2 17 4 6 2 4.36 17 22 30 150

9 9 9 5 8 6 9 2 5.10 8 30 43 215

10 31 3 9 16 2 7 6 5.48 16 43 47 235

11 75 6 7 24 2 4 3 5.48 24 47 51 255

12 45 1 4 31 4 9 6 5.83 31 51 60 300

13 60 6 4 44 4 9 6 5.83 44 60 67 335

14 45 1 5 37 5 7 5 6.00 37 67 77 385

15 45 3 2 4 3 6 6 6.16 4 77 83 415

16 17 7 6 48 7 7 1 6.32 48 83 98 490

17 40 6 2 41 1 5 6 6.40 41 98 100 500

18 85 1 4 13 6 6 4 6.56 13 100 112 560

19 22 2 1 21 3 6 7 7.00 21 112 119 595

20 83 9 4 22 3 3 4 7.00 22 119 125 625

21 31 6 7 47 4 3 3 7.00 47 125 133 665

22 28 3 4 50 1 9 8 7.00 50 133 135 675

23 38 7 1 19 2 2 1 7.07 19 135 140 700

24 20 4 3 49 5 9 7 7.21 49 140 151 755

25 80 1 4 15 5 3 2 7.28 15 151 160 800

26 75 9 6 38 1 2 3 7.28 38 160 162 810

27 27 4 7 2 2 2 3 7.35 2 162 166 830

28 95 6 1 20 8 9 4 7.62 20 166 183 915

29 70 2 9 26 7 9 6 7.81 26 183 198 990

30 55 1 7 46 3 2 4 7.87 46 198 204 1020

31 41 9 6 27 3 4 7 8.06 27 204 210 1050

32 10 9 4 45 5 9 8 8.06 45 210 219 1095

33 5 9 3 36 5 5 7 8.25 36 219 228 1140

34 80 1 2 28 9 6 1 8.54 28 228 247 1235

35 60 9 9 43 4 1 2 8.60 43 247 255 1275

36 45 5 7 40 9 7 4 8.78 40 255 273 1365

37 50 7 5 1 2 5 9 9.00 1 273 277 1385

38 10 2 3 11 7 6 7 9.00 11 277 292 1460

39 100 3 7 6 3 3 8 9.43 6 292 297 1485

40 90 7 4 12 5 1 4 9.43

41 10 5 6 35 6 9 9 9.43

42 10 9 1 14 5 1 5 9.80

43 36 1 2 3 2 2 8 9.95

44 34 9 6 10 3 3 9 10.20

45 45 9 8 34 8 1 2 10.68

46 29 2 4 30 5 1 7 10.77

47 40 3 3 18 8 1 4 11.05

48 75 7 1 25 8 1 4 11.05

49 55 9 7 39 9 3 7 11.66

50 6 9 8 29 7 2 9 12.21

nalP esaeleR enilesaBteS erutaeF laitinI
Prioritized Features based on

“Distance-to-Ideal-Point”

 The How? When? and What? for the Process of Re-planning for Product Releases 37

Table 4. Handling a re-planning scenario

f (n)
effort

(n)
value
(n)

risk
(n)

time
(n)

Cumulative
value (n)

f (n)
start
(n)

end
(n)

Occupied
CAP

f (n)
start
(n)

end (n)

51 83 9 3 10 9 42 0 2 10 62 198 203

52 65 2 4 11 11 33 2 3 15 51 203 220

53 96 8 3 42 19 32 3 5 25 59 220 227

54 96 5 8 43 24 7 5 6 30 46 227 233

55 45 9 8 68 33 23 6 14 70 27 233 239

56 67 2 8 77 35 9 14 16 80 45 239 248

57 70 8 7 105 43 5 16 22 110 55 248 257

58 67 3 7 118 46 17 22 30 150 36 257 266

59 31 2 2 142 48 8 30 43 215 53 266 286

60 71 4 9 150 52 16 43 47 235 57 286 300

61 47 5 8 165 57 24 47 51 255

62 22 5 5 194 62 31 51 60 300

63 73 8 4 204 70 44 60 67 335

64 67 3 2 210 73 37 67 77 385

65 97 4 6 239 77 4 77 83 415

66 77 4 6 248 81 48 83 98 490

67 90 9 6 275 90 41 98 100 500

68 19 4 8 281 94 13 100 112 560

69 83 3 9 288 97 21 112 119 595

70 23 4 6 292 101 22 119 125 625

47 125 133 665

50 133 135 675

19 135 140 700

49 140 151 755

15 151 160 800

38 160 162 810

2 162 166 830

20 166 183 915

26 183 198 990

Change Requests
Completed Baseline Plan at the

Re-planning Point

The rest of the release
plan after re-planning

iteration

f (n) normEff (n) value (n) risk (n)
Distance

(n)
f (n) normEff (n) value (n) risk (n)

Distance
(n)

62 2 5 5 5.74 6 3 3 8 9.43

51 8 9 3 7.28 12 5 1 4 9.43

59 3 2 2 7.35 35 6 9 9 9.43

46 3 2 4 7.87 14 5 1 5 9.80

27 3 4 7 8.06 3 2 2 8 9.95

45 5 9 8 8.06 10 3 3 9 10.20

55 5 9 8 8.06 58 7 3 7 10.39

36 5 5 7 8.25 34 8 1 2 10.68

53 9 8 3 8.31 30 5 1 7 10.77

28 9 6 1 8.54 18 8 1 4 11.05

57 7 8 7 8.54 25 8 1 4 11.05

43 4 1 2 8.60 60 7 4 9 11.18

40 9 7 4 8.78 54 9 5 8 11.36

1 2 5 9 9.00 56 7 2 8 11.58

11 7 6 7 9.00 39 9 3 7 11.66

61 5 5 8 9.00 29 7 2 9 12.21

52 6 2 4 9.11

Prioritized Candidates at Re-planning Point Based
on “Distance-to-Ideal-Point”

Prioritized Candidates at Re-planning Point Based
on “Distance-to-Ideal-Point”

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 38–49, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Overcoming the First Hurdle:
Why Organizations Do Not Adopt CMMI

Nazrina Khurshid, Paul L. Bannerman, and Mark Staples

NICTA, Australian Technology Park, Eveleigh, NSW, Australia
School of Computer Science and Engineering, University of NSW, Australia

{nazrina.khurshid,paul.bannerman,mark.staples}@nicta.com.au

Abstract. This paper further examines why some software development or-
ganizations decide not to adopt CMMI by replicating an earlier Australian study
in another country. The study examines data collected from the efforts of three
consulting firms to sell a CMMI Level 2 program subsidized by the Malaysian
government. The most frequently cited reasons for not adopting CMMI were:
the program was too costly; the companies were unsure of the benefits; the or-
ganization was too small; and/or the organization had other priorities. The Ma-
laysian study extends and generally supports the Australian study (differences
were found in the frequency ordering of reasons and two new reason categories
had to be introduced). It also adds to our understanding of CMMI adoption de-
cisions. Based on the results, we conclude that to achieve broader impact in
practice, software process improvement (SPI) researchers need to develop a
stronger cost-benefit analysis for SPI, recognising it as a business investment
rather than just a product or process quality improvement technique, and pro-
vide flexible entry options to enable more companies of difference sizes to take
the adoption leap.

Keywords: Software Process Improvement, SPI, CMMI, adoption.

1 Introduction

Software development processes have attracted much attention in research and prac-
tice due to quality and reliability concerns, outsourcing opportunities and expanding
complexity resulting from marketplace demands [9]. Software process improvement
offers potential benefits of standardized processes, higher product quality, earlier
detection of defects, reduced time to market, and lower post-release defects [9]. How-
ever, slow adoption of SPI standards and methods is an issue.

Various standards and methods have been published to facilitate software process
improvement and many software developing companies have adopted practices to
improve their processes. Examples include process capability models such as CMMI
[5] and ISO/IEC 15504 (SPICE) that have been developed to assist software develop-
ing companies build processes that subscribe to world’s best practices [1]. There have
been many studies on SPI, but most have examined the experiences of organizations
that have already adopted and successfully implemented SPI models rather than those
that did not overcome the first hurdle of taking the decision to adopt.

 Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI 39

While there is strong interest in SPI, there is a lack of knowledge of the motivators
and de-motivators of SPI adoption, especially at the organizational level. While it is
essential to understand the benefits of SPI, the factors that contribute to the success
and failure of SPI initiatives, and the sustainment of SPI practices, it is also important
to understand why organizations decide to adopt or not adopt SPI in the first place.
This will enable organizations to better understand considerations that might be rele-
vant in taking the decision to adopt SPI and help researchers to improve SPI methods
by making them more relevant and accessible to prospective users [7].

Only one prior study has examined the reasons why organizations decided not to
adopt CMMI [22]. This study found that organization size and SPI cost were signifi-
cant barriers to adoption. This paper reports a study that replicates the earlier study in
a different country (Malaysia rather than Australia). Replication studies play a key
role in the scientific method and in empirical software engineering [20], and help to
build knowledge and establish the external validity of a study’s findings. Our study
also contributes further insight into the problem of SPI adoption and suggests direc-
tions for future progress.

The paper is organized as follows. Section 2 briefly backgrounds prior research on
SPI. Section 3 outlines the research methodology. Section 4 details the data analysis
and study results. Section 5 discusses the limitations of the study and its implications
before conclusions are reached in the last section.

2 Prior Research

Software process improvement has attracted considerable research attention in the
literature. While this research has been dominated by CMM-based methods, it has
been criticized as narrowly prescriptive rather than descriptive or reflective [11].

One stream of this research has focused on developing an understanding of why
SPI adoption has been slow, compared to the perceived potential benefits [12], espe-
cially in small to medium sized organizations (SMEs). In the latter case, some studies
have focused exclusively on SPI adoption success factors in small organizations (for
example, [10], [25]). Curiously, a recent systematic review found that organizations
mostly adopt CMM-based SPI methods to improve project performance and product
quality more than to improve processes [23]. Furthermore, the reasons were unrelated
to size. Another recent study found that SPI methods are implemented reactively and
reluctantly because of their associated costs [6].

Other studies within this stream have focused on the SPI de-motivators of software
practitioners [3], [17]. In a recent retrospective, Humphrey suggests that acceptance
has been slow due to a combination of factors including: people are too busy; they do
not believe SPI will work; they believe that a better tool or method is likely to come
along; management is unwilling to make the investment; and/or SPI is not supported
unless it addresses a current critical issue or business crisis [14].

By contrast, our interest is in understanding why organizations (as opposed to indi-
viduals) do not adopt SPI methods at all (specifically focusing on CMMI adoption).
That is, why do some organizations not get past the first decision hurdle to commit to
a formal SPI program?

40 N. Khurshid, P.L. Bannerman, and M. Staples

Only one prior study has investigated this question. The study examined the rea-
sons given for not adopting CMMI to a company selling CMMI appraisal and im-
provement services to 40 Australian software-developing organizations [22]. The
most frequent reasons were: the organization was small; the services were too costly;
the organization had no time; and the organization was using another SPI method.
Small organizations tended to say that adopting CMMI would be infeasible (termed
‘could not’ reasons by the study), rather than that it would be unbeneficial (termed
‘should not’ reasons). The current study aims to empirically validate these findings by
replicating the prior study in a different country (Malaysia).

Choosing Malaysia enables testing contrasting socio-cultural differences that may
affect adoption of Western turnaround methods. Organizational behaviour varies
between national cultures [21]. Alstrom and Bruton [2] argue that the traditional
Asian characteristics of fear of failure and low risk-taking, together with different
institutional environment and implementation strategies, may impact best practice
adoption. Finding support for the previous study would suggest that these national
differences may not be significant contingencies, as well as strengthen the external
validity and generalizability of the findings.

The study investigates two research questions:
RQ1: Why do organizations decide not to adopt CMMI?
RQ2: How are these reasons related to the size of the organization?

3 Research Method

The study replicates the research questions and analysis method of a prior Australian
study [22] using data from a different country. For each study, data collection was
completed independently of knowledge of the other study. The occasion of the current
study is that, in 2005, the Malaysian government introduced a funding assistance
program to enable local SMEs to adopt and implement CMMI Level 2 to increase
their export competitiveness. The study aims to investigate and understand the reason-
ing of the companies that decided not to participate in the program.

Based on the results of the previous study [22], we hypothesized that organizations
would give organization size, cost and time as the main reasons for not adopting
CMMI. However, we were prepared to find differences in the frequency order of the
reasons provided, due to socio-cultural differences [8], [13]. We also hypothesized
that small and medium sized organizations would differ in their response patterns
compared to large organizations, due to the particular challenges smaller organiza-
tions face [19].

Three consulting firms were appointed to promote the CMMI program. The pro-
gram offered a 50% subsidy of the CMMI Level 2 implementation cost (Class A).
Companies were selected based on program criteria from government cross-agency
databases, industry bodies, and consultants’ personal contacts. During a two month
recruitment period, consultants briefed the companies about the program and provided
a formal overview of the CMMI framework. Consultants were required to note inter-
est and reasons given for non-interest in the program. Data was collected from 85
companies and recorded in a spreadsheet, along with contact notes.

 Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI 41

Based on the contact notes, each organization was categorised as “Interested”, “In
Progress” or “Not Interested” at the end of the recruitment period. Of the 85 compa-
nies contacted, 60 were categorised as “Not interested”. Using only these “Not
Interested” organizations, the text of the consultants’ contact notes was analysed to
identify distinct reasons for each organization. Each organization could give multiple
reasons. Three researchers (the authors) independently classified these reasons based
on the reason classifications from the Australian study [22]. Initially, 23 of the 67
reasons coded (34%) were inconsistent between the researchers due to data and classi-
fication ambiguity. In a joint meeting, 16 of the differences were resolved by clarify-
ing the intent of the reasons provided and the meaning of the categories [22]. The
remaining 7 disagreements were resolved by introducing two new classification cate-
gories, namely, “Want certification for whole company” and “Priorities”. “Want certi-
fication for whole company” refers to an organization that did not want to use the
program because CMMI assesses only the software development component and not
the entire organization. When organizations did not want to use the program because
they had other higher priorities, we classified their reason as “Priorities”. This was
considered to be a different reason to the “No time” reason category from the Austra-
lian study. These reasons were then categorized under “could not” and “should not”
reason groups, according to the previous study (see further following). Table 1 pre-
sents a summary of the categorised reasons and reason groups.

Table 1. Grouping of reasons from all “Not interested” organizations into “could not” and
“should not” categories

Group Group
frequency

(of 60 orgs)

Reason Reason
frequency

N/A 6 Want certification for whole company 1
 No software development 2
 Want higher rating 3
Insubstantive 9 No interest 7
 May consider SPI later 2
Could not 28 Small organization 8
 Too costly 15
 No time 4
 Not applicable to our projects 3
Should not 21 Priorities 6
 Using other SPI 3
 No clear benefit 9
 Potential benefits not wanted 2
 No customer demands 2
 Risk of poor certification damaging busi-

ness
0

Since our research questions concern organizations that decided not to adopt

CMMI, we excluded companies that were simply ‘not interested’ in pursuing CMMI
or provided insubstantial reasons for not adopting (a total of 15 companies). The re-
maining 45 companies provided the data set for subsequent analysis.

42 N. Khurshid, P.L. Bannerman, and M. Staples

The size of each organization was extracted from a government agency database
that determined the organization’s size category (SMALL, MEDIUM or LARGE).
The number of employees recorded in the database was rounded rather than the exact
number of employees. Each organization under analysis was categorized as SMALL,
MEDIUM or LARGE. Organization size was defined as in the previous study [22] to
ensure comparable analysis. This definition is based on the Australian Bureau of Sta-
tistics definition of small and medium enterprises [24]. Organizations with less than
20 employees were considered small organizations, with 20 to 199 employees classi-
fied as medium, and 200 or more employees classified as large. As the study was
based on the Malaysian software sector, we also analysed the data by applying the
Malaysian definition of organization size, as developed by the Malaysian National
SME Development Council (small – from 5-19 employees; medium – from 20 to 50
employees; or annual sales turnover up to MYR$5 million) [16]. We addressed the
size-related validity threats by separate analyses, which are discussed in later sections.
Table 2 provides a summary of the size of the organizations in the study by size cate-
gory, based on the Australian standard.

Table 2. Summary statistics of organization size under analysis

Size category N Min Median Mean Max Std.Dev
Small 11 10 15 13.18 15 2.64
Medium 30 20 35 49.67 150 32.97
Large 4 200 200 200 200 0

4 Results and Data Analysis

This section presents the results of the data analysis with a focus on the reasons given
by organizations and the relationship between these reasons and organization size.

4.1 Non-adoption Reasons

The frequency-ordered list of substantive reasons for not participating in the CMMI
Level 2 program given by the 45 non-adopting organizations is shown in Table 3. For
comparison purposes, the table also shows the frequencies of reasons given in the
earlier Australian study [22]. For organizations that provided a reason of “Using other
SPI”, two claimed that ISO9001 was sufficient to maintain any process management
while another was using Six Sigma as its SPI method. The number of organizations
citing reasons that grouped under “could not”, “should not” or both, is shown in
Table 4, together with comparison figures from the earlier study.

We had hypothesized that size, cost, and time would be the most common reasons
for not adopting CMMI, after the earlier study [22]. We found that the most common
reasons were: being too costly; no clear benefits; being a small organization and
CMMI not being an organizational priority. These reasons are generally consistent
with our hypotheses and the results of the previous study, although the frequency
ordering is different.

 Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI 43

Table 3. Reason classification

Reason This Study
Frequency

(of 45)

Prior Study
Frequency

(of 40)

This Study
%

Prior Study
%

Too costly 15 14 33 35
No clear benefit 9 4 20 10
Small organization 8 17 18 43
Priorities 6 - 13 -
No time 4 10 9 25
Not applicable to our projects 3 2 7 5
Using other SPI 3 8 7 20
No customer demands 2 2 4 5
Potential benefits not wanted 2 3 4 8
Already know gaps - 2 - 5
Risk of poor certification damaging
business

- 1 - 3

Table 4. Number of organizations under analysis giving “could not” reasons, “should not”
reasons, or both types of reason

Reason Group This Study
Frequency

(of 45)

Prior Study
Frequency

(of 40)

This
Study
%

Prior
Study

%
Only could not reason(s) 24 23 53 58
Only should not reason(s) 17 8 38 20
Both could and should not reason(s) 4 9 9 23

Overall, organizations tended not to adopt CMMI because of its perceived infeasi-

bility (that is, “could not” reasons).
One common reason found in our study that did not fit with reasons found in the

earlier study was conflicting priorities with the organization’s current operations.
Organizations citing this reason felt that business as usual operations were a higher
priority than adopting CMMI. This reason may share common antecedents with the
“No time” reason that ranked in the top three reasons in the Australian study.

4.2 Relationships between Size and Reason

To analyse the relationships between organizational size and reasons, we applied
Fisher’s exact test (using FEXACT [15] in the R package, version 2.1.1 [18]). A chart
of the percentage of each organization size category giving each reason is shown in
Fig. 1. We found no statistically significant relationship between size and reason. We
decided to combine the current study data with data from the previous study. We
excluded all organizations with a size that was UNKNOWN, as discussed in the pre-
vious study [22]. We tested the significance between size and each of the reasons
using the combined data. There were no significant associations except for the reason
of being a “small organization” (Fisher’s exact test, p = 0.0003) at the 0.05 level. This
agrees with the findings of the previous study [23] (p-value of 0.022). A total of 22%
of the SMALL organizations gave this reason, compared to 19% of MEDIUM+
LARGE organizations. A summary of significance tests using Fisher’s exact test
using data from this study and combined with previous data is shown in Table 5.

44 N. Khurshid, P.L. Bannerman, and M. Staples

Table 5. Summary of FEXACT test between organization size and reasons

Reasons Current
Study

(p-value)

Previous
Study

(p-value)

Previous study
+ Current study

(p-value)
Too costly 0.2723 0.6593 0.3794
No clear benefit 0.3960 0.2063 0.8870
Small organization 0.0717 0.0217 0.0003
Priorities 0.7834 - -
No time 0.3378 1.0000 0.4741
Not applicable to our
projects

0.2042 - -

Using other SPI 0.2042 0.2318 0.3216
No customer demands 1.000 - -

We then analysed the relationship between organization size and grouped reasons
(could not, should not, or both reasons). The percentage of organizations of each size
category for grouped reasons “should not”, “could not” or “both” is shown in Fig 2.

In the present data, there were no significant results shown for each of the group-
ings. However, when data from the current study was combined with data from the
previous study [22], we found a significant relationship between size of organization
and “should not” only, “could not” only, or “both” reasons (p = 0.0012, Fisher’s exact
test) at the 0.05 level. However, we found no association between organization size
and “should not” and “could not” only reasons in both groups of data. This may be
due to the smaller representation of SMALL and LARGE organizations in the sample.

Fig. 1. Percent of each size group for organization under analysis giving each reason

 SMALL MEDIUM LARGE

 Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI 45

Fig. 2. Percentage of organizations of each size group giving reason(s) in either or both groups

We then re-organized the data using the Malaysian definition of organization size

category within the present study [16]. Using the Fisher’s exact significant test, there
were no differences in results between organization size categories and reason(s)
given. However, significance exists between organization size and grouping reasons
(should not, could not, and both, p = 0.0389). For “could not” reasons, there was a
significant overall relationship to size (p = 0.0012, Fisher’s exact test). A summary of
the Fisher’s test between organization size and grouped reasons is shown in Table 6.

Table 6. Summary of significant test between organization size and grouped reasons

Groups Current
Study

Previous Study
+ Current

Study

Current Study
(revised org.
category)

Could not 0.2876 0.0982 0.0012
Should not 0.2248 0.2901 0.0389
Both 0.4927 0.0432 0.0389

45% of SMALL organizations claimed they could not adopt the program offered

(i.e. adopt CMMI) as opposed to 25% of LARGE organizations. By contrast, 75% of
LARGE organizations cited they “should not” adopt CMMI compared to 36% of
SMALL organizations.

We hypothesized that responses by SMEs may be different from those of large or-
ganizations because of the challenges faced by smaller organizations [19]. Smaller
organizations are often challenged by cost overheads, limited funds, and stretched
resources, that can significantly constrain their ability to innovate. SMALL and ME-
DIUM organizations tended to give “could not” reasons, while LARGE organizations
tended to give “should not” reasons. This result is consistent with the prior Australian
study [22] and a US study that reported that small organizations do not have the re-
sources or funds to implement CMM and perceive that CMM practices are not di-
rectly applicable to them [4].

 SMALL MEDIUM LARGE

46 N. Khurshid, P.L. Bannerman, and M. Staples

5 Discussion

To increase the adoption rate of SPI in organizations, it is necessary to understand
why organizations do not overcome the first hurdle of deciding to initiate a software
process improvement program. This is as important as understanding the factors that
influence SPI implementation success and sustainment of SPI practices. This study
has aimed to replicate a prior study [22] at the organizational (rather than practitioner)
level, in a different country, to validate the earlier findings and add further insight to
the problem. The study found that the most frequently cited reasons for not adopting
CMMI were: the SPI program was too costly; the companies were unsure of the bene-
fits; the organization was too small; and/or the organization had other priorities. The
top two reasons, cost and benefit, suggest that regardless of size, organizations may
face a challenge in justifying SPI from a business perspective. This may also reflect a
perceived limited range of program entry options and/or a lack of understanding of
the process improvement value chain.

Considering size, prior research (such as [4]) and experience have found that or-
ganization size can be a significant barrier to adoption of comprehensive SPI methods
such as CMMI. Both the prior and the current study support this finding. Small or-
ganizations tended not to adopt CMMI for reasons of infeasibility (what we called
“could not” reasons) in contrast to larger organizations, which tended not to adopt
CMMI because it was perceived to be unbeneficial (that is, for “should not” reasons).

The results of this study are generally consistent with the earlier study. Table 3 and
Table 4 provide comparative reasons and reason groupings for both studies. There are
differences in the frequency order of the main reasons provided, but we hypothesized
that this might occur due to socio-cultural differences. Being a replication, the study
does not permit specific conclusions to be drawn about the antecedents of these dif-
ferences, other than to acknowledge that national difference may have influenced
these variations. Socio-cultural differences will require specific investigation in future
studies.

5.1 Limitations

The study involves a group of companies within a government program’s selection
criteria, which does not represent a random sample of the population. The subsidy
program targeted SME ICT companies, selected from a Malaysian government data-
base. As the program targeted organizations between 10 and 50 staff (due mainly to
the Malaysian definition of an SME), there is little representation of either very small
or large organizations in the study. Most of the sample population companies were
medium-sized (20-199 staff). However, this bias is similarly found in the earlier
study.

Organization size may present a threat to the validity of the study. Size categories
were determined based on using rounded figures from a government agency database.
At the margins, a small company with 19 actual staff may have been recorded as 20,
which fits in the medium sized organization category. This may have distorted the
coding. Also, the size represents the size of the entire organization rather than size of
the software development unit. However, this issue is more likely to have had the
effect of over-estimating size, and therefore weakening the findings about the

 Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI 47

relationship between small size and reason, rather than strengthening them. We also con-
ducted a sensitivity analysis to address this threat. We collapsed SMALL + MEDIUM
organizations and tested for any changes in significance. We then collapsed MEDIUM +
LARGE organizations to test if there was any impact on the significance test between
organization size and reasons provided. We recorded no impact of collapsing organization
categories on whether the relationships were statistically significant.

Finally, the data was collected as part of a market research and sales effort rather
than by using a survey instrument designed for scientific study. Using a controlled
survey may have reduced ambiguity in the reasons given and provided a better under-
standing of why the companies decided not to adopt CMMI.

5.2 Implications

The study has implications for research and practice. For research, understanding
organization level barriers to SPI adoption is as critical as identifying implementation
and sustainment success factors. The current paper has replicated and supported the
only prior study on this issue. Further research is necessary, however, to understand
the underlying drivers of the reasons given, especially with respect to how they might
vary with organizational size and national culture.

With respect to size, the majority of software development companies are SMEs,
so there is a need to further explore the unique issues that face these companies’ use
of SPI. SMEs have less capacity to perform SPI tailoring in-house, but currently most
SPI methods require more tailoring and adaptation for SMEs than for large organiza-
tions. To improve SPI adoption, more appropriate and accessible methods are needed
to assist SMEs in the adoption of improved software development processes. Fur-
thermore, as yet, there is no compelling, widely accepted cost-benefit justification for
adopting SPI or defined causal path to track software process improvement through to
business value creation. To achieve broader impact in practice, SPI researchers and
practitioners need to fundamentally recognise SPI as a business investment rather than
just as an incremental product or process quality improvement technique. In addition,
it is important for researchers and practitioners to consider how SPI deployment
strategies can reduce risk and shorten the time required to realise the promised bene-
fits of SPI.

6 Conclusions

This study has replicated the research questions and methodology of a prior study that
focused on understanding the reasons why organisations fail to overcome the first
hurdle along the path to software process improvement by deciding not to adopt
CMMI. The main variable between the two studies was a different country. Replica-
tion studies are fundamental to the scientific method in general and to empirical
software engineering in particular, to build a knowledge base on SPI adoption and
establish the boundaries of the underlying theory. The study supports and is largely
consistent with the results of the earlier study. Our study contributes further insight
into the problem of SPI adoption. It suggests that future progress requires develop-
ments both within adopting organizations, in terms of understanding the

48 N. Khurshid, P.L. Bannerman, and M. Staples

business value that can be generated from SPI, and in SPI methods, to provide im-
proved entry options and a closer fit to a wider range of organizational needs, espe-
cially ones that are size dependent.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. Abrahamsson, P., Iivari, N.: Commitment in Software Process Improvement: In Search of
the Process. In: Proceedings of 35th Hawaii International Conference on System Science
(HICSS 2002), vol. 8. IEEE Computer Society, Washington (2002)

2. Alstrom, D., Bruton, G.: Turnaround in Asia: What do we know? Asia Pac. J. Manage. 21,
5–24 (2004)

3. Baddoo, N., Hall, T.: De-motivators for Software Process Improvement: an Analysis of
Practitioners’ Views. J. Syst. & Softw. 66(1), 23–33 (2003)

4. Brodman, J.G., Johnson, D.L.: What Small Business and Small Organizations Say about
the CMM: Experience Report. In: Proceedings of the 16th International Conference on
Software Engineering (ICSE 1994), pp. 331–340. IEEE Computer Society, Los Alamitos
(1994)

5. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Reading (2003)

6. Coleman, G., O’Connor, R.: Investigating Software Process in Practice: A Grounded The-
ory Perspective. J. Syst. & Softw. 81(5), 772–784 (2008)

7. Conradi, R., Fuggetta, A.: Improving software process improvement. IEEE Softw. 19(4),
92–99 (2002)

8. Fink, D., Laupase, R.: Perceptions of Web Site Design Characteristics: A Malaysian/ Aus-
tralian Comparison. Internet Res. 10(1), 44–55 (2000)

9. Gibson, R.: Software Process Improvement: Innovation and Diffusion. In: Larsen, T.J.,
McGuire, E. (eds.) Information Systems Innovation and Diffusion: Issues and Directions,
pp. 71–87. Idea Group Publishing (1998)

10. Guerrero, F., Eterovic, Y.: Adopting the SW-CMM in Small IT Organizations. IEEE
Softw. 21(4), 29–35 (2004)

11. Hansen, B., Rose, J., Tjørnehøj, G.: Prescription, Description, Reflection: The Shape of the
Software Process Improvement Field. Int. J. Inform. Manage. 24(6), 457–472 (2004)

12. Hersleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-Based Soft-
ware Process Improvement: Initial Results. Software Engineering Institute, CMU/SEI-94-
TR-013 (August 1994)

13. Hofstede, G.J.: Cultures and Organizations: Software of the Mind. McGraw-Hill Profes-
sional, New York (2004)

14. Humphrey, W.S.: Software Process Improvement – A Personal View: How it Started and
Where it is Going. Softw. Process Improv. & Pract. 12(3), 223–227 (2007)

 Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI 49

15. Mehta, C.R., Patel, N.R.: ALGORITHM 643: FEXACT: a FOTRAN Subroutine for
Fisher’s Exact Test on Unordered rxc Contingency Tables. ACM Trans. on Math.
Softw. 12(2), 154–161 (1986)

16. National SME Development Council: Definitions for Small and Medium Enterprises in
Malaysia (2005)

17. Niazi, M., Ali Babar, M., Katugampola, N.M.: Demotivators of Software Process Im-
provement: An Empirical Investigation. Softw. Process Improv. & Pract. 13(3), 249–264
(2008)

18. R Development Core Team, R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna (2005)

19. Richardson, I., von Wangenheim, C.G.: Why Are Small Software Organizations Different.
IEEE Softw. 24(1), 18–22 (2007)

20. Shull, F.J., Carver, J.C., Vegas, S., Juristo, N.: The role of replications in Empirical Soft-
ware Engineering. Empir. Softw. Eng. 13, 211–218 (2008)

21. Smith, P.B.: Organizational Behaviour and National Culture. Br. J Manage. 3(1), 39–50
(1992)

22. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory
study of why organizations do not adopt CMMI. J. Syst. & Softw. 80(6), 883–895 (2007)

23. Staples, M., Niazi, M.: Systematic Review of Organizational Motivations for Adopting
CMM-based SPI. Inform. & Softw. Technol. 50(7/8), 605–620 (2008)

24. Trewin, D.: Small Business in Australia: 2001. Australian Bureau of Statistics, 1321.0
(2002)

25. Wilkie, F.G., Rombach, D., Penn, M.L., Jeffery, R., Herndon, M.A., Konrad, M.: Motivat-
ing Small to Medium Sized Enterprises to Adopt Software Process. In: Proceedings of the
International Process Research Consortium (October 2004)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 50–62, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Value-Based Multiple Software Projects Scheduling with
Genetic Algorithm

Junchao Xiao1, Qing Wang1, Mingshu Li1,2, Qiusong Yang1, Lizi Xie1,
 and Dapeng Liu1

1 Laboratory for Internet Software Technologies, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 Key Laboratory for Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{xiaojunchao,wq,mingshu,qiusong_yang,xielizi,
liudapeng}@itechs.iscas.ac.cn

Abstract. Scheduling human resources to multiple projects under various re-
source requirements, constraints and value objectives is a key problem that
many software organizations struggle with. This paper gives a value-based hu-
man resource scheduling method among multiple software projects by using a
genetic algorithm. The method synthesizes the constraints such as those of
schedule and cost as well as the value objectives among different projects, and
also the construction of comprehensive value function for evaluating the results
of human resource scheduling. Under the guidance of value function, capable
human resources can be scheduled for project activities by using the genetic al-
gorithm and make the near-maximum value for organizations. Case study and
the simulation results show that the method can perform the scheduling and re-
flect the value objectives of different projects effectively, and the results pro-
vide a concrete decision support for project managers.

Keywords: Value; human resource; multi-project scheduling; genetic
algorithm.

1 Introduction

Software organizations often have multiple projects which are developed concur-
rently. Since the projects may have different stakeholders who bear different require-
ments and preferences, each project holds different constraints and different value
objectives. One of the goals of an organization is to achieve the maximum value from
the projects and response to the changing market timely [1].

Human resource scheduling among multiple projects should satisfy the require-
ment of the software development and make organizations obtain the maximum value
[2, 3]. To achieve this goal, it is essential to resolve two problems: (1) Define the
value obtained by scheduling according to constraints, value objectives and possible
scheduling results in projects; (2) Provide a multi-project scheduling method which
can obtain the (near-) maximum value for the organization.

Resource scheduling is proved to be NP-hard [4], and it is more complicated
when concerning different constraints, value objectives, resource capabilities and

 Value-Based Multiple Software Projects Scheduling with Genetic Algorithm 51

availabilities among multiple projects [5, 6]. There are some methods having resolved
the multi-objective release planning under limited resources, which can bring the
organization maximum value [2, 6-8]. However, those methods are either deficient in
descriptions of resources or lack of scheduling them among multiple projects and
project activities. Some researches use a simulation method to provide the strategies
of resource management and scheduling [9, 10], however, they do not focus on the
developers’ characteristics. In the project portfolio management, resource scheduling
usually focuses on the manufacturing industries[4, 11]. Aiming at the resource sched-
uling in software projects, several researchers give the human resource scheduling
methods [5, 12-14].These methods lack a comprehensive consideration of the various
project constraints and optimized scheduling among multiple projects.

This paper proposes a value-based multiple software projects scheduling method
by using a genetic algorithm. In this method, a value function in multi-project envi-
ronments is defined. It takes multiple constraints, value objectives of different pro-
jects and possible scheduling results into consideration, and is used to guide the
scheduling and help software organizations achieve the near-maximum value. To
tackle the problem of high complexity, genetic algorithm (GA) is adopted. GA is an
evolutionary algorithm that can get nearly optimal solutions with high efficiency [15].

Section 2 presents a motivating example. Section 3 gives the value function for
multi-project scheduling. Section 4 realizes the multi-project scheduling by using the
genetic algorithm. Section 5 gives the case study and analysis of the simulation re-
sults. Section 6 provides the conclusions and future work.

2 Motivating Example

Assume there are 3 projects in an organization. Project P1 involves two modules to be
realized, P2 is an upgrading project for a certain product, and P3 includes three mod-
ules. The processes used by these projects are described in Fig. 1.

AD3 COD3b

DD3a

DD3b

TST2IMP2

RA3

URA2

TST1IMP1b

IMP1a

WTC1

AD1
RA1

COD3cDD3c

WTC3

TST3

COD3a

P1

P2

P3

Annotations:
RA – Requirement Analysis;
AD – Architecture Design;
IMP – Implementation;
WTC – Write Test Case;
TST – Testing;
URA– Upgrading
 Requirement Analysis;
DD – Detailed Design;
COD - Coding

Fig. 1. Processes Used by Projects P1, P2 and P3

Each project has its own schedule and cost constraints as well as its preferences. If
the project can be finished save time or below budget, some benefits can be obtained
for the project, such as the increase in customer satisfaction, more money earned by
the organization. If the project is postponed or overspent, there will be some penalty
for it, such as compensation asked for by the customer and the decrease in customer
satisfaction. Furthermore, the importance of projects may be different. The prefer-
ences and the importances which are determined by the negotiations among

52 J. Xiao et al.

stakeholders reflect the value objectives of the projects. The example of these aspects
is described in Table 1. Managers must take all the aspects into consideration and
balance the resource requirements and value objectives among multiple projects dur-
ing scheduling, thus making the organization obtain the maximum value.

Table 1. Constraints, preferences, benefits and penalties in different conditions

 P1 P2 P3

Schedule constraint [2008-03-01,
2008-07-20]

[2008-04-10,
2008-6-30]

[2008-03-01,
2008-10-31]

Cost constraint 2*105 5*104 3.5*105
Preference Cost preference Schedule preference Cost preference

Schedule ahead benefit ($/day) 400 500 500
Schedule postpone penalty ($/day) 400 500 500

Cost saved benefit ($) Equal to saved Equal to saved Equal to saved
Cost exceeded penalty ($) Equal to exceeded Equal to exceeded Equal to exceeded
Project failure penalty($) 106 106 106

Project importance preference 4 1 2

3 Value Function for Multi-project Scheduling

This section describes the projects, human resources and the value function.

3.1 Description of Projects

Suppose there are k projects, P1, P2, ..., Pk. A project is defined as follows:
Pi = (ActSeti, ConSeti, PWSeti).
In this definition, Pi is the ith project of the organization, ActSeti is the activity set

of Pi, ConSeti is the constraint set of Pi, PWSeti is the preferential weight set of Pi.

(1) Activity Set
Through WBS (Work Breakdown Structure), a project process can be divided into

a group of related activities. Suppose there are ni activities in Pi, that is,
},...,,{ 2,1, ii,niii AAAActSet =

Each activity is described by the attributes including identification (ID), type
(TYPE), precedent activity set (PREA), size (SIZE), and required skills for human
resources (SKLR). Details of these attributes are described in [16].

(2) Constraint Set
The constraints of a project may come from the negotiations among stakeholders.

It includes constraints such as the schedule constraint (SCH) and the cost constraint
(CST). It could be expanded according to other demands, such as quality constraint. A
constraint set is defined as follows:

ConSeti = {SCHi, CSTi}
SCHi includes the start date (SD) and due date (DD) constraint of Pi, it is described

as SCHi=[SDi, DDi]. CSTi is the cost constraint for Pi.

(3) Preference Weight Set
It includes the preference weight of the project (PPW), the preference weight of the

schedule (SPW) and the cost (CPW) of the project. Their may also come from the

 Value-Based Multiple Software Projects Scheduling with Genetic Algorithm 53

negotiations among stakeholders. It could also be expanded according to the other
demands. A preference weight set is defined as follows:

PWSeti = {PPWi, SPWi, CPWi}
When PPWi is high, the value influence of project Pi on the organization is re-

markable, so Pi should obtain resources on priority. When SPWi or CPWi is high,
schedule or cost optimization should be taken into consideration for Pi scheduling.

3.2 Description of the Human Resources

The capabilities and availabilities of human resources affect their scheduling. A hu-
man resource is described by identification (ID), the capability attributes such as ex-
ecutable activity type set (EATS), skill set (SKLS), experience data (EXPD), salary
per man-hour (SALR), and the availability attributes such as schedulable time and
workload (STMW). Details of these attributes are described in [16].

If a human resource’s EATS has an element that is the same as the activity type
and SKLS has all the skills that activity requires, then the human resource has the
capabilities to execute the activity and can be scheduled to the activity.

3.3 Multi-project Value Function

The value of an organization is determined by the value of each project in the organi-
zation. The project value is affected by its constraints and value objectives. The value
objectives may include various kinds of preferences. This section explains the compu-
tation of the value by using schedule and cost constraints and preferences.

(1) Project Schedule Value (SValue)
The execution of a project usually begins from its start date (SD). Let AFDi be the

actual finishing date of project Pi. In terms of schedule, let CSBi be the coefficient of
schedule benefit when Pi is ahead of the schedule, that is, every one day ahead of the
schedule will result in more benefits. The benefit ahead of schedule is:

2

)(iiii
ii

AFDDDAFDDD
CSBSBenefit

−+−
∗=

If DDi ≥ AFDi, the AFD is earlier than the due date constraint, then SBenefiti
=)(iii AFDDDCSB −∗ ; if DDi < AFDi, the project is delayed, then SBenefiti = 0.

If Pi is delayed, we define a coefficient CSPi for schedule delay penalty, that is, the
penalty caused by every one day delay of schedule. Then, the penalty for the delay is:

2

)(iiii
ii

DDAFDDDAFD
CSPSPenalty

−+−
∗=

If DDi ≥ AFDi, the AFD is earlier than the due date constraint, then SPenaltyi = 0,
if DDi < AFDi, the project is delayed, then SPenaltyi =)(iii DDAFDCSP −∗ ;

Therefore, the schedule value brought to the Pi is described as follows:

iii - SPenaltySBenefitSValue =

(2) Project Cost Value (CValue)
Suppose the scheduled human resources for a certain activity j in Pi are HRi,j,1, HR

i,j,2, ...,
ijmjiHR ,,

. If the workload that HRi j,r (1≤ r ≤ mij) affords in activity j is Ei,j,r,

54 J. Xiao et al.

then the cost of HRi,j,r in activity j of Pi is Ei,j,r* HRi,j,r.SALR. Thus, the cost of activity
j in Pi is the sum of cost of all the human resources involved in the activity:

()∑
=

∗=
ijm

r
rjirjiji SALRHREAActCST

1
,,,,, .

The cost of Pi is the sum of the cost of all the activities involved in the project:

()∑∑
= =

∗=
i ijn

j

m

r
rjirjii SALRHREAPrjCST

1 1
,,,, .

From the aspect of cost, if the cost of Pi is saved, we define a coefficient CCBi for
cost save benefit. Then, the benefit obtained from the save of the cost is:

2

)(iiii
ii

APrjCSTCSTAPrjCSTCST
CCBCBenefit

−+−
∗=

If CSTi ≥ APrjCSTi, the cost is saved, then CBenefiti =)(iii APrjCSTCSTCCB −∗ ,

if CSTi < APrjCSTi, the cost is overspent, then CBenefiti=0.
If Pi overspends, we define a coefficient CCPi for cost overspent penalty. Then, the

penalty obtained from the overspent is described as follows:

2

)(iiii
ii

CSTAPrjCSTCSTAPrjCST
CCPCPenalty

−+−
∗=

If CSTi ≥ APrjCSTi, that is, the cost is saved, then CPenaltyi = 0, if CSTi <
APrjCSTi, that is, the cost is overspent, then CPenaltyi =)(iii CSTAPrjCSTCCP −∗ .

Therefore, the cost value brought to Pi is described as follows:

iii - CPenaltyCBenefitCValue =

Since every project may have specific schedule and cost preference, schedule and
cost play different importance on value. Therefore, the value of project Pi is:

() ()iiiiiii CPenaltyCBenefitCPWSPenaltySBenefitSPWValue −∗+−∗=

Though the above value only takes the schedule and cost into consideration, it is an
open formula and could be extended according to more value objectives.

If Pi fails because of the scarcity of certain resources, we set the penalty for Pi be
PPi. This penalty may come from the customers. Then the value of Pi is:

ii PPValue −=

In an organization, the importances and preferences of different projects may also
be different, for example, some urgent projects are more important than others. Thus
the total value obtained by the organization is:

()∑
=

∗=
k

i
iimulti ValuePPWValue

1

4 Multi-project Scheduling with Genetic Algorithm (GA)

Scheduling problems are described by means of chromosome and fitness is defined by
value function. Through GA, the scheduling with near-maximum value is realized.
The steps of scheduling are as follows:

 Value-Based Multiple Software Projects Scheduling with Genetic Algorithm 55

(1) Determine the potential capable human resources for the activities on the basis of
the description of activities and human resources. Establish the structure of the
chromosome according to their relationships and generate initial population.

(2) For each generation, decode each chromosome to a multi-project scheduling
scheme according to the chromosome structure. Compute the value for each
chromosome on the basis of the value function.

(3) Select the chromosomes with higher fitness for certain times thus preparing the
population for the next generation.

(4) Crossover and mutate for the new generation.
(5) Evaluate the new generation. If the result satisfies the stopping criterion or a particu-

lar number of generations have been reached, then go to (6). Otherwise, go to (2)
(6) In the last generation, select the chromosome with the highest fitness and generate

the scheduling result accordingly.
Since the chromosomes with higher value will be inherited, after a number of gen-

erations, the value of the scheduling will be increased to the highest or sub-highest.

4.1 Structure of the Chromosome

The basis for resolving the multi-project scheduling with GA is the description of the
scheduling problem with chromosome.

Encode:Suppose there are k projects P1, P2, ..., Pk. Each Pi includes ni activities. Let

the total number of activities be N =∑
=

k

i
in

1

. We construct an activity queue A1, A2, ...,

AN, it ensures that the precedent activities of a activity be in front of that activity in the
queue. On the basis of TYPE and SKLR described in the activity as well as the EATS
and SKLS described in the human resource, the capable human resource for executing
each activity can be determined. Suppose the human resources who have the capabili-
ties to execute Ai are HRi,1, HRi,2, ..., HRi,ti. According to the activity queue, a human
resource queue can be settled:

HR1,1, HR1,2, ..., HR1,t1, HR2,1, HR2,2, ..., HR2,t2, ..., HRN,1, HRN,2, ..., HRN,tN.
Next, a queue of genes can be generated, where a gene represents the correspond-

ing human resource in the human resource queue. This is the first part of the chromo-

some, which is donated in the left part of Fig. 2. The length of this part is T =∑
=

N

i
it

1

.If

a gene is “1”, it means the corresponding human resource is scheduled to the corre-
sponding activity. If a gene is “0”, it means the corresponding human resource is not
scheduled to the corresponding activity.

0/1 0/1...0/10/1...0/10/1......0/10/10/10/1...0/1

HR1,1 HR1,2 ... HR1,t1 HR2,1 HR2,2 ... HR2,t2 HRN,1 HRN,2 ... HRN,tN

A1 ANA2

0/1...0/1

Priority for A1 Priority for AN......

Size = g Size = g

Human resource genes Priority genes

Fig. 2. Structure of the Chromosome

56 J. Xiao et al.

If a human resource has the capabilities and is scheduled to execute several activities
concurrently, there should be some priorities to determine which activity should be
scheduled first. Therefore, we set the priority gene for each activity. Let the priority
gene size for each activity be g (g is an input of GA), then the genes whose size are N*g
construct the second part of the chromosome, which are donated in the right part of
Fig. 2. The priority of each activity is the value of the corresponding g binary code.

Therefore, the length of the chromosome is:

gNtCL
N

i
i *

1

+=∑
=

Decode:Each chromosome encoded by the above method can be decoded as a sched-
uling scheme. The decoding process is described as follows:
(1) Select all the activities that do not have precedent activities or whose precedent

activities have been assigned. If no such activity exists, then decoding is com-
pleted.

(2) Sort all selected activities as a queue according to their priority from high to low.
(3) For each activity “ACT” in this queue, do the following steps:

a) Set the capable human resources whose corresponding gene value is “1” as the
scheduled human resources for ACT.

b) Set the start date of ACT as the current date.
c) Allocate all the schedulable workload of all the scheduled human resources in

the current date to ACT and update the availability state of the resources.
d) If the scheduled workload to ACT can complete ACT, then set current date be

the due date of ACT and update the start date of the activities whose precedent
activity is ACT as the current date. Go to (3).

e) Add one day to the current date, go to (c).
(4) Go to (1).

After the above process, all the activities have the scheduled human resources that
make up the scheduling scheme. Since the activities with higher priority will be
scheduled earlier, they have higher priority for the resources. If some activities do not
have enough scheduled resources, then the scheduling for this activity fails which
further causes the project failure and brings the negative value for the chromosome.

4.2 Fitness Function of the Chromosome

Since the goal of scheduling is to obtain the maximum value for the organization, the
fitness function is set from the value function. For the scheduling scheme generated
from chromosome, let

multiValue be its value. Since this value may be negative, we

use the following formula as the fitness function of the chromosome:

()

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎠
⎞⎜

⎝
⎛

−

=
2

2

1

1

multi

multi

Value

Value

Fitness

if 1>multiValue

if

if 1−<multiValue

]1,1[−∈multiValue

The square is used in the formula to make the difference of the fitness more dis-

tinct for different value, which can accelerate the evolution speed.

 Value-Based Multiple Software Projects Scheduling with Genetic Algorithm 57

4.3 Running the Genetic Algorithm

Before running GA, the following parameters should be set:
(1) Population scale (PS): the number of the chromosomes.
(2) Mutation rate (MR): the possibility of mutation to chromosome.
(3) Maximum generation number: if the generation number arrives at the maximum

generation number, then the running of the GA will be terminated.
(4) Termination condition: when the running of the GA should be terminated. It can

be the obtaining of a value or running GA for maximum generation number times.
After parameter setting, the scheduling will be performed according to GA steps.
Generate the initial population with PS chromosomes. For generating a new gen-

eration, the Roulette Wheele is used for the chromosome selection. Let the fitness of
chromosome K be Fitnessk, the probability of K’s selection is

∑
=

PS

k
k

k

Fitness

Fitness

1

.

Crossover combines the features of two parent chromosomes and generates two
offspring. The two parents are paired and the crossover point is generated randomly.

During mutation, the mutation chromosomes and mutation points are also selected
randomly according to MR. At the mutation point, the gene value will be changed.

When the termination condition is achieved or the generation number arrives at the
maximum generation number, the running of GA is terminated.

5 Case Study

For analyzing the effectiveness of the method proposed in this paper, this section
compares the simulation results of the multi-project scheduling by setting different
coefficients and weight for the example described in section 2.

5.1 Description of the Projects and Human Resources

For the projects described in Section 2, the initial parameters are listed in Table 2.

Table 2. Coefficients and Weight of the projects

 CSB CSP CCB CCP P SPW CPW PPW
P1 400 400 1 1 106 1 2 4
P2 500 500 1 1 106 4 1 1
P3 500 500 1 1 106 1 2 2

For these projects, we assume there is a group of candidate human resources that
can be scheduled are described in Table 3. These human resources have stable pro-
ductivity in each of the executable activity types. They are all available from 2008-
03-01 to 2009-12-31, and the schedulable workload is 8 hours per day. In the SALR
column, the unit is “$/Man-Hour”. The skill requisites of the activities and the skill
set possessed by human resources are omitted because of space considerations.

58 J. Xiao et al.

Table 3. Human resource description

 EATS EXPD(KLOC/Man-Hour) SALR
HR1 RA PRA = 0.05 65
HR2 RA PRA = 0.05 65
HR3 RA PRA = 0.05 70
HR4 RA PRA = 0.04 45
HR5 RA PRA = 0.05 50
HR6 AD, DD PAD = 0.06, PDD = 0.05 65
HR7 AD, DD PAD = 0.055, PDD = 0.05 60
HR8 AD, DD PAD = 0.05, PDD = 0.055 50
HR9 AD, DD PAD = 0.04, PDD = 0.06 65

HR10 IMP, DD, COD PIMP =0.025, PDD=0.05, PCOD=0.03 55
HR11 IMP, DD, COD PIMP = 0.025, PDD= 0.05, PCOD= 0.03 50
HR12 IMP, DD, COD PIMP = 0.02, PDD= 0.05, PCOD= 0.03 45
HR13 IMP, DD, COD PIMP =0.02, PDD=0.03, PCOD=0.03 40
HR14 IMP, DD, COD PIMP =0.02, PDD= 0.03, PCOD= 0.03 40
HR15 COD PCOD = 0.02 20
HR16 COD PCOD = 0.025 20
HR17 COD PCOD = 0.025 20
HR18 WTC, TST PWTC = 0.045, PTST = 0.04 55
HR19 WTC, TST PWTC = 0.04, PTST = 0.04 50
HR20 WTC, TST PWTC = 0.045, PTST = 0.035 45
HR21 TST PTST = 0.035 40
HR22 TST PTST = 0.03 20

The activities are described in Table 4. For convenience, the units of the SIZE col-
umn are represented as “KLOC”. From the capability match, the capable human re-
sources for each activity are also listed in Table 4. From Table 4, there are several
resource competitions such as activity RA1, URA2 and RA3 which all require re-
sources HR1-HR5. The length of the capable human resource gene in the chromo-
some is 85.

Table 4. The attributes and capable human resources of the activity

 TYPE SIZE PREA Capable Human Resource
RA1 RA 25 No element exist HR1, HR2, HR3, HR4, HR5
AD1 AD 25 RA1 HR6, HR7, HR8, HR9

IMP1a IMP 10 AD1 HR10, HR11, HR12, HR13, HR14
IMP1b IMP 15 AD1 HR10, HR11, HR12, HR13, HR14
WTC1 WTC 25 RA1 HR18, HR19, HR20
TST1 TST 25 IMP1a,IMP1b,WTC1 HR18, HR19, HR20, HR21, HR22
URA2 RA 10 No element exist HR1, HR2, HR3, HR4, HR5
IMP2 IMP 10 URA2 HR10, HR11, HR12
TST2 TST 10 IMP2 HR18, HR19, HR20, HR21, HR22
RA3 RA 45 No element exist HR1, HR2, HR3, HR4, HR5
AD3 AD 45 RA3 HR6, HR7, HR8, HR9
DD3a DD 10 AD3 HR6,HR7,HR8,HR9,HR10,HR11,HR12,HR13,HR14
DD3b DD 20 AD3 HR6,HR7,HR8,HR9,HR10,HR11,HR12,HR13,HR14
DD3c DD 15 AD3 HR6,HR7,HR8,HR9,HR10,HR11,HR12,HR13,HR14

COD3a COD 10 DD3a HR10,HR11,HR12,HR13,HR14,HR15, HR16, HR17
COD3b COD 20 DD3b HR10,HR11,HR12,HR13,HR14,HR15, HR16, HR17
COD3c COD 15 DD3c HR10,HR11,HR12,HR13,HR14,HR15, HR16, HR17
WTC3 WTC 45 RA3 HR13, HR14, HR15

TST3 TST 45 COD3a, COD3b,
COD3c, WTC3 HR13, HR14, HR15, HR16, HR17

 Value-Based Multiple Software Projects Scheduling with Genetic Algorithm 59

5.2 Simulating Run of the Scheduling and Analysis

For running the GA, we set the following value for the parameters:
Population scale: 32.
Priority gene size: 3, thus the length of the chromosome is: CL = 85 + 3*19 = 142.
Mutation rate: 0.01.
Maximum generation: 500
Based on the descriptions of projects and human resources in section 5.1, the

scheduling by using GA is per-
formed. Fig.3 shows the organiza-
tion value obtained in each gen-
eration of three simulation runs of
the algorithm. As the number of
generation increases, the value
increases and will obtain the
(near-) maximum value for the
organization.

After the scheduling, the re-
sults of schedule, cost and value
of the projects for one run are
described in Table 5.

Table 5. Scheduling result

 Actual Schedule Actual Cost Value
P1 [2008-3-1, 2008-7-25] 166680 64640
P2 [2008-5-10, 2008-6-26] 46680 11320
P3 [2008-3-1, 2008-10-24] 303600 96300

In order to demonstrate the effectiveness of the value function for the scheduling,
we will change the project and schedule preference weight, simulating the scheduling
on the basis of the values generated by these parameters.

5.2.1 Simulation Results for Different Project Preference Weights
If the preference weight of a project increases, the impact on the organization value of
this project will increase simul-
taneously. Fig. 4 shows the
value of projects (primary axis)
and organization value contrib-
uted by P1 and P2 (secondary
axis) in one simulation run
when P3’s preference weight
increases and other coefficients
and preference weights are
unaltered.

From Fig.4, when P3’s pref-
erence weight increases, P3 has
the increasing priority for the human resources to make its value maximum. Organiza-
tion value contributed by P1 and P2 decreases (donated by the broken line). However,

P3 P3 P3
P3

P3 P3 P3

-150000

-100000

-50000

0

50000

100000

150000

Preference Weight of P3

P
ro

je
ct

 V
al

u
e

-1000000

-800000

-600000

-400000

-200000

0

200000

400000

V
a

lu
e

o
f

4
*P

1+
P

2

Fig. 4. Project value affected by P3’s PPW

Fig. 3. Organization value in each generation

60 J. Xiao et al.

when the project weight of P3 reaches a high value (such as 50 in the figure), this value
will not further increase distinctly. Since the organization only has limited resources, all
the resources are already scheduled to P3 when the weigh reaches the high value.

5.2.2 Simulation Results for Different Schedule Preference Weights
If the schedule preference weight of one project grows, the impact of the schedule on
the project value will increase simultaneously. Fig. 5 shows the precedent number of
dates of three projects (primary axis) and the saved cost of P3 (secondary axis) in one
simulation run when P3’s schedule preference weight increases and other coefficients
and preference weights are unaltered.

From Fig.5, the precedent
number of dates of P3 increases
when the schedule preference
weight grows. On the contrary,
the saved cost of P3 decreases
(donated by the broken line).
However, when the schedule
weight of P3 reaches to a high
value (such as 50 in the figure),
the precedent number of dates
of P3 will not further increase
distinctly for the same reason
we have explained in 5.2.1. When the schedule weight reaches 1000, since the in-
creased value of P3 is higher than the penalty of P2’s failure, the schedule for P2 fails.

5.3 Benefit Discussions

From the scheduling method introduced in this paper and the simulation results gen-
erated under various conditions, the following benefits can be obtained:
(1) A value function is defined: it takes into account the constraints and preferences

of different projects; it can be used to balance the constraints and value objectives
among different projects in the organization.

(2) The scheduling results can reflect the value objectives of the organization: the
coefficients and preference weights in the value function are set by the organiza-
tion according to the value objectives. Through the value function, the scheduling
results will reflect the value objectives of the organization.

(3) Provide the decision support for project managers: by setting different coeffi-
cients and preference weights, project managers can compare the results of the re-
source scheduling easily. Therefore, they can determine whether their project adds
value to their organization.

6 Conclusions and Future Work

From the value-based view, this paper provides a multi-project scheduling method by
using a genetic algorithm. The value function takes full consideration of the essential
elements that affect the optimizing goal of scheduling such as schedule and cost.
Based on this value function, the multi-project human resource scheduling method by

P3

P3
P3

P3 P3 P3 P3 P3

-200

-150

-100

-50

0

50

100

Schedule Weight of P3

P
re

ce
d

e
n

t N
u

m
b

e
r

o
f D

a
te

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

S
a

ve
d

 C
o

st
 o

f P
3

Fig. 5. Precedent number of dates according to P3’s
SPW

 Value-Based Multiple Software Projects Scheduling with Genetic Algorithm 61

using a genetic algorithm is implemented, which allows the organization to obtain a
near-maximum value. Case study shows the method can take into account the value
objectives of the organization that uses this method and effectively reflect the organi-
zation value and provide decision support for managers.

One premise of this paper is that the capabilities of the human resource are stable
and deterministic. In the future, the learning curve will be taken into consideration.
Another premise is that the number of the human resources who participate in one
activity does not reflect the effort for communication. In future, factors related to
communication will be taken into account. Overwork of human resources is another
potential research issue (that is, some people will work more than 8 hours per day).
The comparison of GA with other algorithms as well as analysis and justification of
GA parameters such as population scale and mutation rate are also part of the future
work.

Acknowledgments. Supported by the National Natural Science Foundation of China
under grant Nos. 90718042, the Hi-Tech Research and Development Program (863
Program) of China under grant No.2007AA010303, 2007AA01Z186, as well as the
National Basic Research Program (973 program) under grant No. 2007CB310802.

References

[1] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P.: Value-Based Software
Engineering. Springer, Heidelberg (2005)

[2] Nejmeh, B.A., Thomas, I.: Business-Driven Product Planning Using Feature Vectors and
Increments. IEEE Software, 34–42 (2002)

[3] Amandeep, Ruhe, G., Stanford, M.: Intelligent Support for Software Release Planning.
In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 248–262. Springer,
Heidelberg (2004)

[4] Pinedo, M.: Scheduling: Theory, Algorithms, and System, 2nd edn. Pearson Education,
Inc., London (2005)

[5] Duggan, J., Byrne, J., Lyons, G.J.: Task Allocation Optimizer for Software Construction.
IEEE Software, 76–82 (2004)

[6] Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE Soft-
ware, 47–53 (2005)

[7] Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Informa-
tion and Software Technology 43, 883–890 (2001)

[8] Kapur, P., Ngo-The, A., Ruhe, G., Smith, A.: Optimized Staffing for Product Releases
and Its Application at Chartwell Technology. Journal of Software Maintenance and Evo-
lution: Research and Practice 20, 365–386 (2008)

[9] Abdel-Hamid, T.K.: The Dynamics of Software Project Staffing: A System Dynamics
Based Simulation Approach. IEEE Transactions on Software Engineering 15, 109–119
(1989)

[10] Antoniol, G., Lucca, G.A.D., Penta, M.D.: Assessing Staffing Needs for a Software
Maintenance Project through Queuing Simulation. IEEE Transactions on Software Engi-
neering 30, 43–58 (2004)

62 J. Xiao et al.

[11] Goncalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A Genetic Algorithm for the Resource
Constrained Multi-project Scheduling Problem. European Journal of Operational Re-
search 189, 1171–1190 (2008)

[12] Alba, E., Chicano, J.F.: Software Project Management with GAs. Journal of Information
Sciences 177, 2380–2401 (2007)

[13] Barreto, A., Barros, M.d.O., Werner, C.M.L.: Staffing a software project: A constraint
satisfaction and optimization-based approach. Computer & Operations Research 35,
3073–3089 (2008)

[14] Chang, C.K., Christensen, M.: A Net Practice for Software Project Management. IEEE
Software (November/December 1999)

[15] Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)
[16] Xiao, J., Wang, Q., Li, M., Yang, Y., Zhang, F., Xie, L.: A Constraint-Driven Human Re-

source Scheduling Method in Software Development and Maintenance Process. In: Pro-
ceedings of 24th International Conference on Software Maintenance (ICSM 2008), pp.
17–26 (2008)

Meta Model Based Architecture for Software
Process Instantiation

Peter Killisperger1,2, Markus Stumptner1, Georg Peters3, Georg Grossmann1,
and Thomas Stückl4

1 Advanced Computing Research Centre, University of South Australia, Adelaide,
Australia

2 Competence Center Information Systems, University of Applied Sciences -
München, Germany

3 Department of Computer Science and Mathematics, University of Applied Sciences
- München, Germany

4 System and Software Processes, Siemens Corporate Technology, München, Germany

Abstract. In order to re-use software processes for a spectrum of
projects they are described in a generic way. Due to the uniqueness of
software development, processes have to be adapted to project specific
needs to be effectively applicable in projects. This instantiation still lacks
standardization and tool support making it error prone, time consum-
ing and thus expensive. Siemens AG has started research projects aim-
ing to improve software process related activities. Part of these efforts
has been the development of a New Software Engineering Framework
(NSEF) enabling a more effective and efficient instantiation and applica-
tion of processes. A system supporting project managers in instantiation
of software processes is being developed. It aims to execute instantiation
decision made by humans and to automatically restore correctness of the
resulting process.

1 Introduction

Explicitly defined software processes for the development of software are used
by most large organizations. A software process is defined as ”the process or the
processes used by an organization or project to plan, manage execute, monitor,
control and improve its software related activities” [1].

At Siemens AG, business units define software processes within a company-
wide Siemens Process Framework (SPF) [23] by using semi-formal Event-Driven
Process Chains (EPC) and Function Allocation Diagrams (FAD) [22]. Because
of their size and complexity, they are not defined for projects individually but
in a generic way as reference processes for application in any software project of
the particular business unit.

Due to the individuality of software development, reference processes have
to be instantiated to be applicable in projects. That is, the generic description
of the process is specialized and adapted to the needs of a particular project.
Until now, reference processes are used as general guideline and are instantiated
only minimally by manual creation of project specific plans. A more far reaching

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 63–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 P. Killisperger et al.

instantiation is desirable, because manual instantiation is error-prone, time con-
suming and expensive due to the complexity of processes and due to constraints
of the Siemens Process Framework. A New Software Engineering Framework
(NSEF) [19] has been defined for improving current practice. An integral part of
the NSEF is gradual instantiation of software processes to project specific needs.
Here we define instantiation as tailoring, resource allocation and customization
of artifacts.

– Tailoring is ”the act of adjusting the definitions and/or of particularizing
the terms of a general process description to derive a new process applicable
to an alternative (and probably less general) environment” [15].

– Resource allocation is the assignment of resources to activities to carry them
out [2].

– Customization of artifacts is the individualization of general artifacts for a
project and their association with files implementing them.

The area of project specific composition and adaptation of software pro-
cesses and methods has attracted significant attention in recent years as in,
e.g., Brinkkemper’s Method Engineering (ME) proposal [12] as an approach for
the creation of situational methods. However, no existing approach provides a
thorough solution for instantiating Siemens processes. For example, Brinkkem-
per’s situational method configuration process emphasized bottom-up assembly
of project specific methods from fragments, requiring very detailed fragment
specifications. Contrary to ME, approaches like Bandinelli’s SLANG [6] regard
processes as programs, enacted by machines [13]. Here however, we are concerned
with flexible method engineering in the large and deal with semi-formal process
models offering high level guidance for humans.

Existing tools provide only minimal support for instantiation. Decisions made
by humans have to be executed mostly manually. For example, Rational’s Method
Composer (RMC) [16] allows changes on software processes, but although
approaches have been developed making the user aware of inconsistencies caused
by instantiation operations [17], the actual correction of the process is still left to
humans.

For example, consider an activity a1 connected by an control flow to an activity
a2 which in turn is connected by an control flow to an activity a3 (a1 → a2 → a3).
If a project manager wants to delete a2 he selects a2 and removes it from the
process. Additionally, he has to take care of restoring correctness e.g. establish
the broken control flow between a1 and a3, take care of affected information
flows and resource connections.

In order to noticeably reduce the considerable effort for instantiation, tool sup-
port has to be extended. The goal is to derive a flexible architecture for systems
that execute instantiation decisions made by humans and automatically restore
correctness of the resulting process. We define a process to be correct when it
complies with the restrictions on the process defined in a method manual. A
method manual is a meta model defining permitted elements and constructs, de-
rived from restrictions of the used process definition language and organizational
restrictions (e.g. SPF).

Meta Model Based Architecture for Software Process Instantiation 65

The paper is structured as follows: Section 2 briefly introduces the NSEF and
describes the fundamentals of its instantiation approach. Section 3 describes the
developed architecture for systems implementing these theoretical fundamentals.
A procedure for the actual development of such a system is defined, followed by
an evaluation of our findings. Section 4 discusses related work and in section 5
we draw some conclusions.

2 New Software Engineering Framework

On the basis of information collected in interviews with practitioners at Siemens
AG, a New Software Engineering Framework (NSEF) (Figure 1) for improving
the instantiation and application of software processes has been developed [19].

Fig. 1. Instantiation Stages in the New Software Engineering Framework (NSEF)

The NSEF consists of a Reference Process, gradual instantiation by High Level
and Detailed Instantiation and an Implementation of the Instantiated Process.
High Level Instantiation is a first step towards a project specific software process
by adapting the Reference Process on the basis of project characteristics and
information that can already be defined at the start of a project and are unlikely
to change. Such characteristics can be, e.g., the size of a project (a small project
will only use a subset of the process) or required high reliability of the software
product which requires certain activities to be added.

High Level Instantiation is followed by Detailed Instantiation which is run fre-
quently during the project for the upcoming activities. A step by step approach
is proposed, because it is often unrealistic to completely define a project specific
process already at the start of a project [8].

The resulting instantiated process can be used in projects in different ways
including visualization of the process and management of project artifacts.

Although instantiation in the NSEF is split into two distinct stages, it is
advantageous if both are based on the same principles. A set of elemental Ba-
sic Instantiation Operations have been defined which are used for both stages
[18]. Examples are: ”Deleting an Activity” or ”Associating a Resource with an

66 P. Killisperger et al.

Activity”. In High Level Instantiation, Basic Instantiation Operations are exe-
cuted on process elements as batch (i.e. predefined process adaptations
depending on the project type) and in Detailed Instantiation individually. Us-
ing the same principles enables flexible definition and adaptation of predefined
instantiation-batches. For instance, if a particular adaptation operation is not to
be executed in High Level Instantiation any more, the operation can be easily
shifted to detailed instantiation or vice versa.

Existing tools (as mentioned in the introduction) allow to perform those
changes but they do not restore correctness of the resulting process.

The task of instantiation is further complicated by additional restrictions.
Examples are: ’A ManualActivity is only allowed to be executed by a Human’
or ’an Artifact has to be output of exactly one Activity’.

context ExecutesResourceConnection

inv: (self.source.oclIsKindOf(ManualActivity)

implies self.target.oclIsKindOf(Human))

context Artifact

inv: self.outputInformationFlow->size()=1

The presented framework executes instantiation decisions made by humans
and automatically restores correctness of the resulting process defined in a
method manual.

For ensuring correctness, the framework considers the environment the change
is performed in. For instance, if milestones have restrictions on the type of ele-
ment they can succeed and precede, obviously correctness depends on the pre-
ceding and successive element of the milestone. Thus, when inserting a milestone
every possible combination of preceding and successive elements has to be con-
sidered. A set of entities and relationships outside the actually affected process
step that influence the correctness of a change operation is what we call a con-
text of the operation. The contexts an operation can be executed in can be
automatically derived from the method manual.

In order to guarantee correctness, every context has to be associated with
an particular implementation which executes a basic instantiation operation
in this explicit context. However, not every context requires an individual im-
plementation that is only applicable in this particular context. From this fol-
lows that a number of contexts can be associated with one implementation
(Figure 2).

The approach described above is a general framework for instantiation of
processes and is not restricted to Siemens processes or a particular process def-
inition language. The way the framework is implemented in detail depends on
the requirements of the applying organization and on the method manual of
the process. That means the required basic instantiation operations, their def-
inition (i.e. how the process is adapted by the operations) and the way cor-
rectness is restored depend on the applying organization and on the method
manual.

Meta Model Based Architecture for Software Process Instantiation 67

Fig. 2. 3-layer instantiation approach

3 Instantiation System Architecture

3.1 Architecture Meta Model

An instantiation system implementing the concept described above has to meet
a number of requirements:

– The architecture of an instantiation system has to support differing method
manuals, differing basic instantiation operations and thus differing contexts
and implementations, since instantiation is organization specific and depends
on the method manual of the process.

– An instantiation system has to be flexible to allow adaptations due to changes
in the method manual or changes in the extend an organization wants to
instantiate its processes.

– Contexts have to be modularized in order to avoid multiple implementations
of parts of contexts, since they are likely to be similar for a number of basic
instantiation operations. For example, ”Deleting an Activity” is likely to
have similar contexts to ”Inserting an Activity”.

– Implementations of basic instantiation operations have to be modular in
order to avoid multiple development efforts, since parts or even whole imple-
mentations might be used in several contexts.

By taking into account the requirements defined above, the architecture de-
scribed in Figure 3 has been developed. It consists of the components ProcessIn-
stance, Element, Operation, Implementation, Operator, Condition and Method
Manual. In the following we describe the components of the architecture.

The class ProcessInstance corresponds to a project-specific software process,
consisting of a number of elements. A process instance is created by copying the
reference process for a particular project. Before instantiation (i.e. at the start
of a project) the process instance for a project is equal to the reference process.

Instances of the class ProcessElement are the elemental building blocks of a
ProcessInstance. They can be of different types. Examples of the type ”Activity”
are ”Develop Design Specification” or ”Implement Design”. Elements and thus

68 P. Killisperger et al.

O p e r a t i o n

+ n a m e

+ e x e c u t e I m p l e m e n t a t i o n s ()

I m p l e m e n t a t i o n

+ s e q u e n c e O f O p e r a t o r s []

+ c h e c k C o n d i t i o n s ()

+ e x e c u t e O p e r a t o r s ()

O p e r a t o r

+ n a m e

+ e x e c u t e ()

C o n d i t i o n

+ c o n d i t i o n S t a t e m e n t

+ e v a l u a t e C o n d i t i o n S t a t e m e n t ()

*

*

*

+ c o n t e x t

*

1

+ i m p l e m e n t a t i o n s

*

P r o c e s s E l e m e n t

+ n a m e

+ t y p e

+ . . .

P r o c e s s I n s t a n c e

+ n a m e

+ . . .

+ p a r a m e t e r

*

+ e l e m e n t s

*

1

M e t h o d
M a n u a l

Fig. 3. Architecture for Instantiation Systems

process instances are adapted to project specific needs by running instances of
Operation on them.

The class Operation correspond to basic instantiation operations. How a basic
instantiation operation is executed on elements depends on the context in which
the affected elements are nested in the process instance. Therefore instances
of Operation can be associated with more than one instance of Implementation.
When an Operation is executed, the Implementation which relates to the context
at hand is executed. This adapts the ProcessInstance according to the Operation
for the specific context and results in a correct ProcessInstance.

For finding an Implementation that relates to a specific context Operation.
executeImplementations() calls Implementation.checkConditions() for each of its
implementations. If ”true” is returned, the correct implementation has been
found.

The actual process adaptations are carried out by a sequence of operators
(squenceOfOperators[] in Implementation) which execute the actual changes in
the process instance. Operators are elemental actions which create, update and
remove elements of a process instance. Examples are the creation of a new con-
trol flow or the creation of a new activity. The entirety of operators is stored
in a repository. Their number is not fixed but can be further extended if neces-
sary. The use of operators enables encapsulation which fosters re-usability and
information hiding. The former is the use of an instance of Operator by several
implementations. The latter allows experts with limited or no technical knowl-
edge to create or change implementations since technical details are hidden.

As described earlier, the implementation of an operation depends on the con-
text the operation is executed in. A context consists of one or several elemental
Condition-instances. Examples of conditions are <self.source.type = ’activity’>
(type of source element is an activity) or <self.performer.type = ’human’>

Meta Model Based Architecture for Software Process Instantiation 69

(type of performer of the activity is ”human”). In order for a context to be
true, all conditions associated with the context have to be evaluated true. As
with operators, the entirety of conditions is stored in a repository. However,
they do not have to be defined by humans and their number is limited. Condi-
tions are elemental statements about states and relationships of elements. The
method manual defines the set of allowed statements for elements of a pro-
cess instance. Conditions are therefore automatically derived. The use of ele-
mental conditions provides encapsulation enabling re-use and information hid-
ing.

Figure 4 shows a class diagram with the same structure as the one depicted
in Figure 3 but extended by examples. An ProcessInstance-instance has been
created by copying the reference process for a particular project ”xyz”. Since
it is not needed in this project, the project manager wants to delete the Pro-
cessElement ”Check Patent Application”. He runs the Operation ”Delete Activ-
ity” on it by executing executeImplementations(). The method runs through all
implementations of ”Delete Activity” and executes checkConditions() for each
until one of the implementations returns ”true”. checkConditions() runs through
the Condition-instances of the context and executes evaluatedConditionsState-
ment(). If all method calls return ”true” the Implementation-instance at hand
is responsible for executing the deletion of ”Check Patent Application”. It then
calls executeOperators() which in turn calls execute() of all operators. By doing
so the activity is deleted and correctness restored.

O p e r a t i o n

I m p l e m e n t a t i o nO p e r a t o r

C o n d i t i o n

* *

*

+ c o n t e x t

*

1

+ i m p l e m e n t a t i o n s

*

E l e m e n t

P r o c e s s I n s t a n c e

+ p a r a m e t e r

* E x a m p l e - I n s t a n c e o f

P r o c e s s E l e m e n t : e 1

+ e . n a m e : C h e c k P a t e n t

 A p p l i c a t i o n

+ e 1 . t y p e : A c t i v i t y

E x a m p l e - I n s t a n c e o f P r o c e s s I n s t a n c e : p 1

+ p 1 . n a m e : x y z

+ p 1 . e l e m e n t s : E 1 , E 2 5 , . . .

E x a m p l e - I n s t a n c e o f O p e r a t i o n : o 1

+ o 1 . n a m e : D e l e t e A c t i v i t y

+ o 1 . i m p l e m e n t a t i o n s : I 1 , I 4 , . . .

E x a m p l e - I n s t a n c e o f O p e r a t o r : o p 1

+ o p 1 . n a m e : R e m o v e C o n t r o l F l o w

E x a m p l e - I n s t a n c e o f C o n d i t i o n : c 1

+ c 1 . c o n d i t i o n S t a t e m e n t : s e l f . i n c o m i n g C o n t r o l F l o w . s o u r c e . t y p e = ’ A c t i v i t y ’

E x a m p l e - I n s t a n c e o f I m p l e m e n t a t i o n : i 1

+ i 1 . c o n t e x t : C 0 1 , C 1 5 , . . .

+ i 1 . s e q u e n c e O f O p e r a t o r s [] : O p 1 , O p 1 , O p 7 , . .

+ e l e m e n t s

*

1

M e t h o d
M a n u a l

Fig. 4. Example of Implementation of Architecture

70 P. Killisperger et al.

3.2 Implementing the Architecture

The architecture can be used to instantiate a variety of software processes. The
implementation of a system will differ depending on the method manual and on
the extent an organization wants to instantiate its processes. For implementing
an instantiation system for a particular organization or for a particular method
manual the following has to be considered.

1. Definition of operations differ between organizations or might change after
some time within one organization. Implementations (i.e. sequences of oper-
ators) have to be defined executing operations as defined.

2. Organizations use differing method manuals. From this follows that an op-
eration can be executed in different contexts.

3. Differing method manuals affect the way an operation is executed (i.e. the se-
quence of operators has to result in a process that complies with the method
manual).

4. Diversity in sequences of operators may require development of new opera-
tors if they are not in the repository yet.

From this follows that organizations have to be supported in implementing the
architecture for their use. The architecture must therefore provide functionality
to facilitate the development of an organization specific instantiation system.

1. Offer functionality for domain experts to implement new operations and
change the implementation of existing operations.

2. Offer functionality to compute all contexts an operation can be executed in
and for creating instances of Implementation for each context.

3. Offer functionality to domain experts to define and change sequences of
operators. Functionality is required to test whether the developed sequence
of operators results in a correct process when executing the operation in a
particular context.

4. Offer functionality to add new operators to the repository.

For implementing a new instantiation system for an organization the following
procedure is suggested (Figure 5).

In a first step, domain experts have to define the operations required for
instantiation of processes in their organization. Then, for each operation the
scope of its context has to be defined which is the abstraction of all contexts the
operation can be executed in.

For example, the operation ”inserting an activity” might depend on the type
of source element of the selected control flow where the activity is to be inserted
and the type of target element of this control flow. Thus, the scope is the type
of source element and the type of target element of the selected control flow.

Since the scope of each context is described for each context of an operation, all
possible contexts the operation can be executed in can be computed and created.
For each operation a standard sequence of operators is defined by domain experts
and used in all instances of implementations for this operation.

Meta Model Based Architecture for Software Process Instantiation 71

Fig. 5. Procedure for developing an instantiation system

Each implementation is tested by looking up its context in an example process
instance (containing all elements and constructs allowed by the method manual)
and executing its sequence of operators on it. The correctness of the resulting
process instance is checked and all sequences of operators are invalidated which
resulted in an incorrect process. For invalidated implementations an alternative
sequence of operators is defined by domain experts. This procedure is iterated
until there are no implementations which result in an incorrect process when
executed in their context.

3.3 Evaluation

A prototype of a system for instantiating a reference process for a particular
Siemens business has been developed. In order to enable automatic processing,
the reference process has been exported to XPDL 2.0 [24] and from the textual
method manual a machine readable version in XML has been created. Two
exemplary basic instantiation operations namely ”Inserting an Activity” and
”Deleting an Activity” have been chosen for testing and the architecture has
been implemented accordingly.

For the operation ”Inserting an Activity” the system automatically computed
43 possible contexts from the information given in the method manual and cre-
ated for each context an instance of Implementation. Experts at Siemens AG
defined a standard sequence of operators for executing the insertion of an activ-
ity. Each implementation was executed with this sequence. The resulting process
instances were checked by a debugger-class regarding their conformity based on
an extended version of the XPDL standard and on the basis of the XML-based
method manual. The tests showed no violations of the resulting process instances.

For the operation ”Deleting an Activity” the same procedure was chosen.
The system identified 49 contexts and created the corresponding instances of
Implementation. After executing all implementations with a first sequence of
operators, 44 resulted in a correct process. Violations of the remaining imple-
mentations were written with clarifying comments to a text file and solved by
iteratively developing the correct sequences of operators for them.

72 P. Killisperger et al.

4 Related Work

Instantiation of processes to project specific needs has been subject to intensive
research in recent years. However, in early software process approaches it was
thought that a perfect process can be developed which fits all software developing
organizations and all types of projects [10]. It was soon recognized that no such
process exists [7], [20]. This lead to the introduction of reference processes as
general guidelines which are adapted for specific project needs.

Early approaches to overcome this problem have been developed for example
by Boehm and Belz [10] and Alexander and Davis [3]. The former used the
Spiral Model to develop project specific software processes. The latter described
20 criteria for selecting the best suited process model for a project.

Many different adaptation approaches have been proposed since then and the
need for adaptation of processes is recognized in industry which is shown by a
high number of publications about tailoring approaches in practice e.g. Bowers
et al. [11], Fitzgerald et al. [14].

Although much effort has been put into improving the adaption of software
processes to project specific needs, the approaches proposed so far still suffer
from important restrictions and none has evolved into an industry accepted
standard.

An important reason is the variety of meta models for processes used in prac-
tice. For instance, Yoon et al. [25] developed an approach for adapting processes
in the form of Activity-Artifact-Graphs. Since the process is composed of activi-
ties and artifacts, only the operations ”addition” and ”deletion” of activities and
artifacts are supported as well as ”split” and ”merge” of activities. Another exam-
ple is the V-Model [9], a process model developed for the German public sector.
It offers a toolbox of process modules and execution strategies. The approach for
developing a project specific software process is to select required process mod-
ules and an execution strategy. Due to these dependencies on the Meta models,
none of the existing approaches offers a complete and semi-automated method.

Because of the close relationship between Siemens software and business pro-
cesses, adaptation approaches for the latter are also of interest. Approaches for
processes and workflows of higher complexity are often restricted to only a sub-
set of adaptation operations. For instance, Rosemann and van der Aalst [21]
developed configurable EPCs (C-EPCs) enabling the customization of reference
processes. However, the approach only allows activities to be switched on/off,
the replacement of gateways and the definition of dependencies of adaptation
decisions.

Armbrust et al. [5] developed an approach for the management of process
variants. A process is split up in stable and variant parts. The latter depend on
project characteristics and are not allowed to be dependent on each other. The
process is adapted by choosing one variant at the start of a project. Although
the need for further adaptations during the execution of the process has been
identified, no standardization or tool support is provided.

Allerbach et al. [4] developed a similar approach called Provop (Process Vari-
ants by Options). Processes are adapted by using the change operations insert,
delete, move and modify attributes which are grouped in Options. Options have

Meta Model Based Architecture for Software Process Instantiation 73

to be predefined and can be used to adapt processes, but they do not guarantee
correctness.

In conclusion, none of the existing approaches offer a comprehensive, flexi-
ble and semi-automated adaption of processes as required for the diversity of
processes and software development encountered in large enterprises.

5 Conclusion

Siemens is currently undertaking research efforts to improve their software pro-
cess related activities. Part of these efforts is the development of a system that
supports project managers in instantiation of reference processes. The system
aims not only to execute decisions but to restore correctness of the resulting pro-
cess when violated by the execution of the decision. Since the implementation
of such a system is organization-specific and depends on the permitted elements
and constructs in the process, a flexible architecture has been developed and
described. A procedure for implementing the architecture was described and the
feasibility of the developed concepts verified by the implementation of a proto-
type. Future work will include enhancement of the prototype and its evaluation
in software development projects at Siemens AG.

Acknowledgements

This work was partially supported by a DAAD postgraduate scholarship.

References

1. ISO/IEC 15504-9 Tech. Software Process Assessment Part 9: Vocabulary (1998)
2. Aalst, W.v.d., Hee, K.v.: Workflow Management-Models, Methods, and Systems.

The MIT Press, Cambridge (2004)
3. Alexander, L.C., Davis, A.M.: Criteria for Selecting Software Process Mod- els. In:

Proceedings of the Fifteenth Annual International Computer Software and Appli-
cations Conference, pp. 521–528 (1991)

4. Allerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process
Life Cycle. In: Proceedings of the Tenth International Conference on Enterprise
Information Systems. ISAS, vol. 2, pp. 154–161 (2008)

5. Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., Ocampo, A.:
Scoping Software Process Models - Initial Concepts and Experience from Defining
Space Standards. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS,
vol. 5007, pp. 160–172. Springer, Heidelberg (2008)

6. Bandinelli, S., Fuggetta, A.: Computational Reflection in Software Process Model-
ing: The SLANG Approach. In: ICSE, pp. 144–154 (1993)

7. Basili, V.R., Rombach, H.D.: Support for comprehensive reuse. Software Engineer-
ing Journal 6(5), 303–316 (1991)

8. Becker, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software Processes.
In: Proceedings of the Third Conference on Software Process Improvement, SPI
1997 (1997)

74 P. Killisperger et al.

9. BMI. The new V-Modell XT - Development Standard for IT Systems of the Federal
Republic of Germany (2004), http://www.v-modell-xt.de (accessed 01.12.2008)

10. Boehm, B., Belz, F.: Experiences With The Spiral Model As A Process Model
Generator. In: Proceedings of the 5th International Software Process Workshop
Experience with Software Process Models, pp. 43–45 (1990)

11. Bowers, J., May, J., Melander, E., Baarman, M.: Tailoring XP for Large System
Mission Critical Software Development. In: Wells, D., Williams, L. (eds.) XP 2002.
LNCS, vol. 2418, pp. 100–111. Springer, Heidelberg (2002)

12. Brinkkemper, S.: Method engineering: engineering of information systems develop-
ment methods and tools. Information & Software Tech. 38(4), 275–280 (1996)

13. Feiler, P.H., Humphrey, W.S.: Software Process Development and Enactment: Con-
cepts and Definitions. In: ICSP, pp. 28–40 (1993)

14. Fitzgerald, B., Russo, N., O’Kane, T.: An empirical study of system development
method tailoring in practice. In: Proceedings of the Eighth European Conference
on Information Systems, pp. 187–194 (2000)

15. Ginsberg, M., Quinn, L.: Process tailoring and the software Capability Maturity
Model. Technical report, Software Engineering Institute, SEI (1995)

16. IBM. Rational Method Composer (2008),
http://www-01.ibm.com/software/awdtools/rmc/ (accessed 26.11.2008)

17. Kabbaj, M., Lbath, R., Coulette, B.: A Deviation Man- agement System for Han-
dling Software Process Enactment Evolution. In: ICSP, pp. 186–197 (2008)

18. Killisperger, P., Peters, G., Stumptner, M., Stückl, T.: Instantiation of Software
Processes, An Industry Approach. In: Information Systems Development: Towards
a Service Provision Society. Springer, Heidelberg (2008) (forthcoming)

19. Killisperger, P., Stumptner, M., Peters, G., Stückl, T.: Challenges in Software
Design in Large Corporations A Case Study at Siemens AG. In: Proceedings of the
Tenth International Conference on Enterprise Information Systems. ISAS, vol. 2,
pp. 123–128 (2008)

20. Osterweil, L.J.: Software Processes Are Software Too. In: ICSE, pp. 2–13 (1987)
21. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language.

Information Systems 32(1), 1–23 (2007)
22. Scheer, A.-W.: ARIS- business process modelling. Springer, Heidelberg (2000)
23. Schmelzer, H.J., Sesselmann, W.: Geschäftsprozessmanagement in der Praxis: Pro-

duktivität steigern - Wert erhöhen - Kunden zufrieden stellen, 4th edn. Hanser
Verlag, Muenchen (2004)

24. WFMC. WFMC-TC-1025-03-10-05 Specification for XPDL v2.0 (2005),
http://www.wfmc.org (accessed: 28.11.2008)

25. Yoon, I.-C., Min, S.-Y., Bae, D.-H.: Tailoring and Verifying Soft- ware Process. In:
APSEC, pp. 202–209 (2001)

http://www.v-modell-xt.de
http://www-01.ibm.com/software/awdtools/rmc/
http://www.wfmc.org

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 75–86, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributed Orchestration Versus Choreography:
The FOCAS Approach

Gabriel Pedraza and Jacky Estublier

LIG, 220 rue de la Chimie, BP53
38041 Grenoble Cedex 9, France

{Gabriel.Pedraza-Ferreira,Jacky}@imag.fr

Abstract. Web service orchestration is popular because the application logic is
defined from a central and unique point of view, but it suffers from scalability
issues. In choreography, the application is expressed as a direct communication
between services without any central actor, making it scalable but also difficult
to specify and implement. In this paper we present FOCAS, in which the appli-
cation is described as a classic service orchestration extended by annotations
expressing where activities, either atomic or composite, are to be executed.
FOCAS analyzes the orchestration model and its distribution annotations and
transforms the orchestration into a number of sub-orchestrations to be deployed
on a set of distributed choreography servers, and then, deploys and executes the
application. This approach seemingly fills the gap between “pure” orchestration
(a single control server), and “pure” choreography (a server per service). The
paper shows how FOCAS transforms a simple orchestration into a distributed
one, fitting the distribution needs of the company, and also shows how choreog-
raphy servers can be implemented using traditional orchestration engines.

1 Introduction

Web services represent the ultimate evolution towards loose coupling, interoperabil-
ity, distribution and reuse. Among the properties of interest, Web services do not have
explicit dependencies, i.e., from a client’s point of view a Web service does not call
other Web services, therefore Web services are context independent, which greatly
improves their reuse capability [1]. Conversely, building applications based on Web
services is not easy since each Web service is independent and only answers to client
requests [2]. A way to define such an application is to express the set of web service
invocations. Typically, the result returned by a Web service, after transformation (if
required), is fed as input to other Web services.

With the aim of specifying Web service-based applications, orchestration and cho-
reography have been defined roughly at the same time.

In the orchestration approach, the application definition is a workflow model, i.e. a
graph where nodes are web service executions and arcs are data flows. In [3] it has
been defined as “an executable business process that can interact with both internal
and external Web services”. It means that a workflow engine interprets the orchestra-
tion model and calls the web services, with the right parameters at the right moment.
This approach has many strong points, being the major one the availability of

76 G. Pedraza and J. Estublier

standards and implementations. The actual orchestration language definition standard
is WS-BPEL [4]. A number of good implementations are available along with a num-
ber of associated tools like graphical editors, generators, code analyzers, optimizers,
etc. The other main advantage of using an orchestration language is that the whole
application is defined in a single piece of information (the workflow model), which
abstracts away many technical implementation details (like communication protocols,
data formats, and so on). Technically, the fact the model is interpreted by a single
engine on a single machine eases the implementation, administration, and monitoring
of the orchestration. Conversely, it means that a single machine is at the heart of the
system, with all communication going to and coming from that machine, potentially
becoming a bottleneck and a strong limitation to scalability.

Choreography expresses a Web service collaboration, not through a single work-
flow model, but “simply” by the set of messages that are to be exchanged between the
web services [3] [5]. In this view, Web services are directly communicating with each
other, and not through the central machine. This divides by two the number of mes-
sages to be exchanged and also eliminates the central machine. Clearly this approach
has much better scalability properties than orchestration. In opposition, the applica-
tion is defined as a set of messages which is low level and confusing. Since there is no
global view of the application, modeling an application is very difficult, the standards
that have been proposed to do so [6][7] are complex to use and understand. From the
implementation point of view, choreography is problematic. Each machine is respon-
sible for routing messages to the next Web service(s) without any global view. Cho-
reography implicitly requires deploying code to all machines involved in order to
execute message routing, which is not always possible. Among the disadvantages of
this approach, any problem occuring during execution is very difficult to manage, and
dynamic selection of services is not easy to perform. It is therefore not too surprising
that no industrial strength implementations are available, years after being defined.

Obviously the “perfect” system should be a combination of both approaches, i.e. a
service based application described by a centralized model, with a number of optional
centralized services like administration and monitoring, but using an efficient and
scalable execution model like in service choreography.

We believe that “pure” choreography suffers from too many limitations. The major
one being that it is not always possible to install code on the machines running the
involved Web Services, and the second one being that it prohibits dynamic Web ser-
vice selection. We propose instead, a flexible decentralized orchestration execution, in
which a “traditional” orchestration model is executed on an arbitrary number of
nodes, i.e., choreography servers. It is up to an administrator to decide the level of
distribution convenient for the application, and to decide on which machines the ap-
plication should run. This approach seemingly fills the gap between “pure” orchestra-
tion (a single control server), and “pure” choreography (a server per web service). The
paper shows how FOCAS transforms a simple orchestration into a choreography that
fits the distribution needs of the company, and how choreography servers can be im-
plemented using traditional orchestration engines.

The paper is organized as follows. In section 2, a general outline of the FOCAS
approach is presented. Section 3 describes how the logical level for distributed or-
chestration is defined. In section 4, the physical level is presented. Section 5 relates
our work with the existing literature. Finally, section 6 concludes the paper.

 Distributed Orchestration Versus Choreography: The FOCAS Approach 77

2 FOCAS: An Extensible Orchestration Framework

FOCAS (Framework for Orchestration, Composition and Aggregation of Services) is
an environment dedicated to the development and execution of service-based applica-
tions. It is a model-based framework around a basic workflow framework. It is extensi-
ble in the sense that it can support either different functional domains, through model
and metamodel composition [8], or different “non-functional” properties through anno-
tations on orchestration models [9]. The annotation approach has been used, for exam-
ple, to support security in orchestration [10]. FOCAS carefully separates a logical layer,
in which the service based application is defined in abstract terms, and a physical layer
in which the real services are dynamically selected and invoked.

This paper discusses how the FOCAS annotation mechanism has been used to sup-
port “distributed orchestration”.

2.1 FOCAS Architecture and Approach

Following a model driven approach, we believe that the needs are to:
• separately design and specify the application’s business logic, without regard to

the technical and implementation details;
• transform the specification into executable artifacts in order to fit the execution

and administration requirements.
In FOCAS, this separation, between logical aspects and technical aspects of an ap-

plication, is always performed.
Like most orchestration approaches, the logical layer relies on a workflow model.

Unfortunately, current orchestration languages like WS-BPEL lack abstraction [11]
(no decoupling between abstract and concrete services [12]), are not extensible [13],
and are unable to express a number of non-functional concerns (transaction, security,
etc). In FOCAS, the logical definition is made of the composition of different func-
tional models expressing the need on different domains. In the default implementa-
tion, these domains are control (the workflow model), data (the information system)
and service (the abstract services description).

Non-functional aspects of a business model can be expressed as annotations over
the control (APEL) model. Each type of annotation is associated with a specific con-
cern, and is handled by a number of tools and adaptors. In this paper we explain how
we use an annotation technique in order to handle the distribution concern.

Concerning the physical layer, FOCAS allows a flexible mapping between abstract
and concrete services. This allows, for instance, dynamically selecting the actual web
service to be invoked, and transforming the logical data into the parameters required
by that web service.

Because of lack of space, we only present the control model in this paper, i.e. the
APEL formalism used in our choreography approach. More details about our orches-
tration definition can be found in [14].

2.2 FOCAS Logical Layer: APEL and Orchestration Models

APEL (Abstract Process Engine Language [15]) is used to express the control model
in FOCAS. APEL is a high level process definition language containing a minimal set
of concepts that are sufficient to understand the purpose of a process model.

78 G. Pedraza and J. Estublier

The main concept in APEL is activity. An activity is a step in the process and re-
sults in an action being performed. The actual action to be performed is not defined in
the process model and can be either a service invocation (a Web Service, DPWS ser-
vice, an OSGi service), any kind of program execution (legacy, COTS), or even a
human action. Activities in APEL can be composed of sub-activities. Sub-activities
permit dealing with different abstraction levels in a model. Ports are the activity
communication interface; each port specifies a list of expected products.

A Product is an abstract object (records, data, files, documents, etc) that flows be-
tween activities. Products are represented by variables having a name and a type and
are simply symbolic names (e.g., “client” is a product of type “Customer”). This
property does not define nor constrain the actual nature, structure or content of the
real data that will circulate in the process. Dataflows connect output ports to input
ports, specifying which product variables are being transferred between activities.

APEL has a graphical syntax. An activity (from outside) is represented as a rectan-
gle with tiny squares on sides which denotes its ports. Internally an activity is
represented as a rectangle containing sub-activities, and its ports are represented as
triangles. This dual representation is used to navigate across a complex model com-
posed of several levels of embedded activities. Finally, a dataflow is represented as a
line that connects ports, and products are labels on dataflows.

3 Logical Level: Service-Based Application Modeling

We believe that the real issue is not to build an application using orchestration or cho-
reography, but to design, develop and execute service-based applications that fit a
company’s specific requirements. It is currently accepted that a centralized model
describing the business logic, in terms of a workflow of abstract services, is a good
way to design and specify service-based applications. Therefore, we believe that FO-
CAS, which uses a workflow-based and model-driven composition approach, is satis-
factory, from a design point of view, for defining service-based applications.

3.1 Orchestration Annotations

Clearly, if scalability and efficiency are of concern, distributing the application
execution should be addressed. However, being in a logical layer, distribution
should also be addressed in abstract terms. To do so, we have designed a distribu-
tion domain which relies on an abstract server topology model and on orchestra-
tion annotations.

A server topology model takes the form of a graph where nodes are choreography
servers, and arcs are communication links. Annotations are simply an association of a
server identifier with an orchestration activity, either atomic or composite. In FOCAS,
the graphical orchestration editor can be extended by annotations. The right part of Fig.
1 is a screenshot of a choreography extension. It shows when activity B is associated
with node N1. Also shown are the security extensions created using the same mecha-
nism.

 Distributed Orchestration Versus Choreography: The FOCAS Approach 79

N1

X

B

N1 N3

N2 N2

Fig. 1. Annotations on a orchestration model

Fig. 1, left side, shows a simple orchestration model in APEL. The model, called
X, is made of the activity sequence A, B and C. The activity B itself is made of three
sub-activities, B1, B2, B3, where B1 and B2 are executed in parallel while B3 is exe-
cuted after the termination of B2. For clarity, the annotations are indicated on the
schema by the numbered circles; activities A and B must be executed on server N1,
activity C on server N3, activities B2 and B3 are annotated to run on N2. Activity B1
is not annotated at all, in this case it will run on the same server as its parent B: N1.

The orchestration model is independent from its annotations, that is, the same or-
chestration may be associated with different annotations, allowing different execution
topologies of the same application. This property permits an easy adaptation of an
application to a particular infrastructure, and different execution characteristics (secu-
rity, efficiency, scalability and so on). For example, if a large sub-set of an application
is to be executed in the premises of a subcontractor, it may be convenient to delegate
that part to a choreography server running inside that sub-contractor’s local network.

In this way, application designers only have to deal with business concerns and
define the application as a traditional orchestration model. Administrators can then
annotate the orchestration model with information about its logical distribution on
several choreography servers on which the application has to be executed.

3.2 Logical Model Transformation

The transformation from an orchestration model and distribution annotations to a dis-
tributed orchestration is performed in three steps:
• The orchestration model is transformed in a set of sub-models, each one repre-

senting a fragment of the orchestration that has to be executed by a different cho-
reography server.

• Logical routing information is generated, used by choreography controllers (rout-
ing and communication mechanisms) for dynamically connecting the sub-models
at execution time.

• Deployment information is generated, used by the environment for deploying the
models fragments and choreography routing information on the correct choreog-
raphy servers, and to start the application.

80 G. Pedraza and J. Estublier

For example, using the orchestration model shown above, a site model consisting
on three choreography servers (called N1, N2 and N3), and the annotations shown in
Fig. 1, FOCAS generates the following information (Fig. 2):
• Three orchestration models, called X, X_B and X_C,
• A deployment plan, indicating on which server to run each sub-model,
• A routing table for each site running a choreography server.

The algorithm for computing the sub models from the global orchestration and its
annotations is as follows. We start from the top level activity X. For each one of its sub-
activities two cases are possible: it will be executed in the same node or in a different
node. If executed in the same node, it is not modified, that is, it remains defined in the
context of its parent activity (A and B activities in the example). If the sub-activity will
be executed in a different node (C in the example), an artificial parent activity is created
for it (X_C) to give an execution context to all sub-activities that will be performed in
this node. The same process is repeated on each composite sub-activity. Dataflows be-
tween activities spread to different servers become choreography communication links
and are indicated in the routing table of the site origin of the dataflow.

Routing Table Node N1
X/B.end ->X_C/C.begin
X/B.begin->X_B/B2.begin

B Routing Table Node N2
X_B/B3.end -> X/B.end

Routing Table Node N3
X_C/C.end -> X.end

Deployment Plan
PUT X_C in N3
PUT X_B in N2
PUT X in N1 ..

X

X_B
X_C

Fig. 2. Distributed orchestration models

For example in the N1 routing table, the first line X/B.end -> X_C/C.begin states
that when activity B of process X (executing on server node N1) reaches its output port
called end, the data found in that port is to be transferred to node N3, and set in port
begin of activity C of X_C. This choreography data flow is symbolized by the doted
line on the left part of the figure. For the example, four choreography data flows are
generated. The deployment plan simply states that activity X runs on server N1, X_B on
N2, and X_C on N3. It is important to see that, at that level, servers are only known by
their symbolic name, nothing is said about physical localization and characteristics.

4 Physical Layer: Distributed Orchestration Execution

So far, the models we have presented pertain to the logical layer. However when it
comes to execution, these models must be transformed so that the concrete services
can be invoked. The FOCAS physical layer is in charge of this process.

 Distributed Orchestration Versus Choreography: The FOCAS Approach 81

4.1 Service Binding

We call Binding the mechanism which assigns a service implementation (a real func-
tionality) to an abstract service (a functionality definition). The Binding step intro-
duces flexibility because it offers the possibility of selecting, changing and adding
new service implementations, at any time, including execution time if required. If a
service implementation has been defined independently from the abstract service, it is
likely that its interface or technology does not directly fit the abstract service. To
benefit from the full reuse potential of service implementations, it is possible to intro-
duce mediators in an adaptation layer, allowing a service implementation to become a
valid implementation of an abstract service, even in the presence of syntactic incom-
patibilities.

SAM (Service Abstract Machine), our binding tool, actually supports services im-
plemented in various technologies, such as: Web Services, OSGi, EJB and Java. It
also supports an invocation mechanism that hides the physical location of service in-
stances. In this way, an instance in one node can be invoked by a client located in
another node as a local instance. SAM machines are identified by a logical name and
use a discovery mechanism to find each other (peer-to-peer infrastructure). SAM has
also been designed as a deployment machine which provides an API that allows mov-
ing dynamically service implementations (deployment-units to be precise), as well as
meta-data (resources) between two SAM machines,.

4.2 Choreography Servers

A choreography server is present in each node used for executing an application as a
decentralized orchestration. It is composed of a “traditional” orchestration engine ex-
tended by choreography controllers in charge of routing mechanisms.

SAM Machine (ID = N1)

Orchestration
Engine

OCSICS

Event Notification
Interface

Data Management
Interface

OSGi Services

Routing Table Node N1
X/B.end ->N3:X_C.begin
X/B.begin->N2: X_B/B2.begin

Outgoing
messages

Incoming
messages

Choreography
Server

(Generic code)

Process specific
model (abstract

services) and
routing metadata

Concrete
Services

Logical
Layer

Physical
Layer

Infrastructure
Abstract - Concrete Binding

Web Services

Fig. 3. Choreography Server Architecture in N1

82 G. Pedraza and J. Estublier

The orchestration engine is unmodified; it interprets an orchestration model in a
classic way and provides an API allowing to set information in its ports and to start a
process instance. The engine sends messages on relevant events, like when a port is
full and ready to send its data along the dataflows. Based on these two standard inter-
actions with the orchestration engine, we have developed the choreography controllers.

The Output Choreography Server (OCS) receives event notifications about full
ports coming from the orchestration engine. For each event received, it checks in its
routing table if a choreography dataflow is associated with the event. If true, it builds
a message containing the relevant information (also found in the routing table), and
calls the ICS of the destination choreography server along with the process instance
identifier (in order to differentiate several instances of the same process), activity and
port in which the information must be set.

The Input Choreography Server (ICS) receives messages coming from an OCS,
and simply performs the action requested, i.e., it sets the information in the right in-
stance-activity-port, using the engine API.

It is important to see that the three components of a choreography server are totally
generic. In other words, they do not depend on the current orchestration or choreogra-
phy underway. Once installed, a choreography server can simultaneously execute as
many process instances as needed, pertaining to the same or different applications.
The knowledge available in a choreography server is limited to the local orchestration
fragment and the routing table. It minimizes the amount of data to be transferred and,
because it ignores the global process, it suffices to change the routing table dynami-
cally in order to change the application topology at run time. This is particularly im-
portant if load balancing, network failure, and scalability are important issues.

Not discussed in this paper, a Choreography Administration Server (CAS) is
associated to each choreography server. The CAS interprets a configuration file that
indicates what to monitor, where to send monitoring information, where to send in-
formation about exceptions and failures, and has an API that allows administration
and (re)configuration of the server, which is useful in cases such as failure recovery.

4.3 Deployment

The deployment of an application using our approach is achieved using the deploy-
ment plan produced in the transformation phase, and a model of the physical infra-
structure.

First, the deployment agent checks the presence of a choreography server on each
node on which the application will be deployed. If it is not the case, the deployment
agent installs a choreography server (the orchestration engine, ICS and OCS). Being
generic, the choreography server is packaged only once and deployed in the same
manner everywhere. We only need a SAM machine in each node in order to provide
its physical state model (SAM uses runtime models [16]), and the mechanisms (API)
required by the deployment agent to install executable code on the platform.

The application can then be deployed. This means that each choreography server
must receive its specific sub-process (in the form of an xml file) and its routing table
(another xml file). To do so, the deployment agent uses the generated deployment
plan and the physical network topology provided by each SAM machine. Each logical
node is associated with a physical location. The deployment agent sends the relevant

 Distributed Orchestration Versus Choreography: The FOCAS Approach 83

information to the ICS of the correct SAM machines. The ICS uses the engine API to
install the sub-process and the OCS API to merge the routing information. Finally, the
sub-processes are started, the root one being started last.

Being fully automated, application deployment is not (explicitly) modeled. Simi-
larly, service deployment is not explicitly addressed; each SAM machine is supposed
to be able to find and call the relevant services, either because they are web-services,
or because the local service has been previously deployed. In the case of a problem,
an exception is reported, and convenient reaction is expected from the recovery ser-
vice. Exception management is currently being researched.

4.4 Distributed Orchestration Architecture

Fig. 4 presents an overall architecture of applications using the distributed orchestra-
tion execution. Each node contains a SAM and an orchestration server. The ICS and
OCS are themselves SAM compliant services. This characteristic permits the OCS to
“discover” the remote ICS instances it requires in order to send information from one
node to another. Because SAM dynamically creates proxies to services being exe-
cuted in another machine of the peer-to-peer infrastructure, an OCS communicates
with each ICS using simple method invocation. SAM hides the underlying communi-
cation protocol, which can be RPC, a MOM, a SOAP-based communication infra-
structure, or even a mixed approach depending on the specific network.

Underlying
services level

SAM Machine (ID=N3)

Orchestration
Engine ICS OCS

SAM Machine (ID=N2)

Orchestration
Engine

ICS OCS

SAM Machine (ID=N1)

Orchestration
Engine

ICS

OCS

G
eneric Code

Level

X/B.end-
>X_C/C.b
X/B.begin-
>X_B/B2.b

X_B/B3.end -
>X/B.end

X_C/C.end -
>X.end

Application
Specific Level

N1: sub-process, Routing N2: sub-process, Routing N3: sub-process, Routing

Fig. 4. Distributed Platform Architecture

5 Related Work

In [17], a workflow execution architecture for pervasive applications is presented. It
deals with problems as distributed control and assignment of some parts of workflows
to be executed by devices. The architecture considers the implementation of a proto-
col for controlling the communication of different devices participating in the
execution. The protocol is heavyweight, in each communication the complete plan of
execution (workflow model) is passed between the nodes. In addition, all relevant
data is also transferred between devices. Computing the sub-model to be executed in a
device is performed in each interaction degrading the performance of the overall sys-
tem during execution. In comparison, our architecture uses a generic and lightweight

84 G. Pedraza and J. Estublier

protocol; only the relevant data is transferred between nodes and sub-models compu-
tation is performed at deployment time to get optimal performance.

The SELF-SERV system [18] also proposes a peer-to-peer execution of a services
orchestration. The system proposes an IDE for developing compositions using states
charts as description formalism and a runtime for supporting the execution. The de-
ployer in SELF-SERV does not explicitly specify how the orchestration is distributed
between the nodes executing the orchestration. Instead, an algorithm based on physi-
cal node information and services distribution (service selected at design time) is used
to compute it. In our approach the orchestration model is explicitly annotated with
logical node information, and then at deployment time this information is used to
choose the physical nodes for execution. In addition, physical distribution of services
is hidden by our execution runtime; this property permits selection of services at run-
time (and even service replacement). Additionally, our system also permits dynami-
cally changing the distribution information.

In [19] is presented a decentralized execution of an orchestration expressed in
BPEL4WS. In a similar way as in our approach, the responsibility of executing the
composition is shared by a set of controllers distributed in a network, and it uses a set
of communication mechanisms to ensure message distribution (SOAP/HTTP,
SOAP/JMS or JMS). An interesting idea is the use of a monitoring node to receive
notifications from execution nodes in order to handle error propagation and
application recovery. However, this approach focuses only on system performance.
Suppositions about service location are done at the generation phase. In our approach,
distribution criteria is up to the administrator (but an automatic technique can be used
instead), and tools for definition, deployment and mechanisms of selection are pro-
vided by our framework.

6 Conclusion

The construction of applications using the service oriented computing paradigm is
increasingly popular. SOC provides important characteristics like services independ-
ence and late binding, which allow flexible construction of applications by assem-
bling services. However, these properties also make difficult the expression and
execution of service compositions. In order to solve these problems, two paradigms
have been used in SOC: orchestration, which expresses the interaction from a central
point of view, and choreography, which expresses applications as a set messages ex-
changed between services, each one having its advantages and limitations.

Our paper describes an approach which borrows the facility of expression of the
orchestration approach with the scalability and performance offered by choreography,
since execution is fully distributed. The FOCAS framework supports the creation of
this kind of application, proposing an extensible Model-Driven approach around a
workflow domain. FOCAS divides applications into two levels of abstraction; the
logical level in which developers express the business model, without regard of the
technical details of the underlying services or platforms; and the physical level, in
charge of performing the execution on the actual platform, using the actual services.

FOCAS has to deal with a number of challenges: composition of functional con-
cerns (workflow, services, data); composition of non-functional concerns (security,

 Distributed Orchestration Versus Choreography: The FOCAS Approach 85

distribution, transactions); transformation of the artifacts produced in the logical level
into artifacts needed for execution in the physical level; hiding the heterogeneity of
the underlying platforms at execution time; and deploying the application on a net-
work of computers. Our experience has shown that addressing all these challenges by
hand is virtually impossible. The main goal of FOCAS is to provide an environment
and tools that “ease” the development and execution of demanding service-based ap-
plications. To a large extent, this goal is reached.

FOCAS has been in use for the last two years. Nevertheless, many challenging ex-
tensions are still to be clarified, like monitoring policies, strategies for error handling
and dynamic reconfiguration at execution. Other fundamental issues are still to be
addressed, like interaction between different concerns (e.g. security and distribution),
or domain composition semantic interference.

Our approach fills the gap between traditional orchestration (fully centralized) and
choreography (fully distributed), providing the administrator easy means to select the
right compromise, not only at deployment time, but also at execution time. More gen-
erally our work shows how any process model, in any domain (other than service-
based applications), can be transparently executed on a network of computers, still
reusing the original process interpreter. It allows the same process model to be
executed in different contexts, on different networks, and with different execution
characteristics by simply changing annotations, even during execution. We believe
this constitutes an important improvement with regard to traditional approaches.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, H.: Web Services - Concepts, Architectures
and Applications. Springer, Heidelberg (2003)

2. Papazoglou, M., van den Heuvel, W.: Service oriented architectures: approaches,
technologies and research issues. The VLDB Journal 16(3), 389–415 (2007)

3. Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52 (2003)
4. Cubera, F.e.a.: Web Services Business Process Execution Language. Specification (April

2007), http://docs.oasis-open.org/wsbpel/2.0/OS/
 wsbpel-v2.0-OS.pdf

5. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Heidelberg (2007)

6. W3C: Web Services Choreography Interface (WSCI). Specification (August 2002),
 http://www.w3.org/TR/wsci/

7. W3C: Web services choreography description language version (November 2005),
 http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

8. Estublier, J., Ionita, A., Nguyen, T.: Code generation for a bi-dimensional composition
mechanism. In: Central and East European Conference on Software Engineering
Techniques (2008)

9. Pedraza, G., Dieng, I., Estublier, J.: Multi-concerns composition for a process support
framework. In: Proceedings of the ECMDA Workshop on Model Driven Tool and Process
Integration, FOKUS, Berlin (June 2008)

10. Chollet, S., Lalanda, P.: Security specification at process level. In: IEEE International
Conference on Services Computing (SCC 2008) (July 2008)

86 G. Pedraza and J. Estublier

11. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-driven
business process integration. IBM Systems Journal 44(1), 47–65 (2005)

12. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: Bpellight. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 214–229. Springer,
Heidelberg (2007)

13. Charfi, A., Mezini, M.: Hybrid web service composition: business processes meet business
rules. In: ICSOC 2004: Proceedings of the 2nd international conference on Service
oriented computing, pp. 30–38. ACM Press, New York (2004)

14. Pedraza, G., Estublier, J.: An extensible services orchestration framework through concern
composition. In: Proceedings of International Workshop on Non-functional System
Properties in Domain Specific Modeling Languages, Toulouse (September 2008)

15. Estublier, J., Dami, S., Amiour, M.: Apel: A graphical yet executable formalism for
process modeling. Automated Software Engineering: An International Journal 5(1), 61–96
(1998)

16. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering, 2007. FOSE 2007, pp. 37–54 (May 2007)

17. Montagut, F., Molva, R.: Enabling pervasive execution of workflows. In: CollaborateCom
2005, 1st IEEE International Conference on Collaborative Computing:Networking,
Applications and Worksharing, p. 10. IEEE Computer Society Press, Los Alamitos (2005)

18. Benatallah, B., Dumas, M., Sheng, Q.Z.: Facilitating the rapid development and scalable
orchestration of composite web services. Distributed and Parallel Databases 17(1), 5–37
(2005)

19. Chafle, G., Chandra, S., Mann, V., Nanda, M.: Decentralized orchestration of composite
web services. In: WWW Alt 2004: Proceedings of the 13th international World Wide Web
conference, pp. 134–143. ACM, New York (2004)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 87–99, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Architecture for Modeling and Applying Quality
Processes on Evolving Software

Fadrian Sudaman1, Christine Mingins1, and Martin Dick2

1 Faculty of IT, Monash University, Australia
fadrian.sudaman@infotech.monash.edu.au,
christine.mingins@infotech.monash.edu.au

2 School of Business IT, RMIT University, Australia
martin.dick@rmit.edu.au

Abstract. Software process and product views should be closely linked in order
to better manage quality improvement. However until now the two views have
not been effectively synchronized. Current approaches to Software Configura-
tion Management (SCM) are strongly based on files and lacking in logical and
semantic understanding. Some impediments faced when modeling and analyz-
ing software evolution include additional effort for dealing with language de-
pendent source code analysis and continuous mining of the evolving system. By
leveraging features offered by modern VMs and other enabling technologies,
we have developed a language neutral architecture with extensibility mecha-
nisms to support continuous Software Evolution Management (SEM). Our re-
search aims to contribute to an SEM infrastructure where semantic artifacts can
be consistently accessed, tracked and managed for performing software evolu-
tion analytics beyond the file-based model. This paper presents compelling fac-
tors for our infrastructure, the architecture we have developed, and then
sketches a case study to demonstrate its application.

1 Introduction

SCM has been used for decades to manage changes in complex systems over time[6].
It provides a wealth of evolutionary history and change reasoning about software
systems and offers a wide range of tools for managing and controlling the develop-
ment and evolution of software systems [15]. The file based and platform independ-
ent concepts of SCM make it simple, easy to use and give it the flexibility to handle
all kinds of software artifacts. However, many weaknesses also emerge from the same
concepts. Too little knowledge of the underlying software product affects the effec-
tiveness of the SCM in modeling and analyzing the product evolution [17]. Evolu-
tionary information, versioning and differentiation are limited to file units without
considering the deeper meaning of the target artifacts [6][16]. This also does not
match up with the logical abstractions (such as in the object-oriented context) that
software practitioners are familiar with [16], nor with commonly used software archi-
tecture or design models such as UML [17]. The disconnection or isolation of SCM
from product knowledge and other development environments force a one-way con-
nection to the SCM tool. Consequently, SCM cannot leverage the advances made in
other domains to deliver a more targeted service to the product it manages [6].

88 F. Sudaman, C. Mingins, and M. Dick

Modern virtual machines (VM) and new development platforms such as the Java
VM and the Common Language Infrastructure (CLI1) provide language independent
logical models and rich metadata support beyond primitive text and binary files. Se-
mantic gaps between source code and the developer’s intention can be bridged
through the use of custom metadata for defining additional semantic attributes. Lever-
aging on these, we can refine the current state of SCM tools to better support SEM by
bringing together the software product, semantic artifacts and quality process. This
research aims to address some of the weaknesses of SCM for managing software
semantic evolution by contributing to an infrastructure where semantic artifacts can
be continuously interpreted and managed within a SEM context and made accessible
at all times for performing software evolution analytics. We refer to ‘semantic
artifact’ in this paper as the logical structure of the software in terms of the object-
oriented programming model (such as class, field and inheritance) and any other
artifacts of interest to the actor-user that can be modeled and extrapolated from the
underlying model. These artifacts can be defined explicitly via declarative metadata,
or may relate to implicitly available metadata such as product information.

2 Trends in SEM

Software systems continue to evolve overtime due to process improvement and
changing business requirements. The significance of software evolution has been
widely recognized for the last three decades, pioneered by the work of Lehman [9].
According to the laws of software evolution, software structure and quality tends to
degrade over time and make the task of future evolution even more difficult. Empiri-
cal studies have proven that code integrity progressively deteriorate during the course
of modification [9]. Eiks et al. refer to this phenomenon as ‘code decay’ [13].

SEM focuses on extracting and analyzing evolutionary information about software
systems with the aim of better understanding the software changes over time. The
effective use of SEM enables the building of predictive and retrospective models [9].
These models can be used by developers or managers in many areas such as analyzing
the software processes, change reasoning, risk management, project estimation and
evolution patterns. Some major challenges that affect the effectiveness of SEM in-
clude the availability of empirical information and coping with huge amounts of data
that can be complex and unstructured or not consistently defined [8]. These problems
intensify as the size and complexity of the system increases over a lengthy evolution
period. Some of the most successful approaches for managing evolutionary informa-
tion involve the use of SCM, software metrics and visualizations [8][15].

Today, SCM systems are widely accepted to be essential to any real-world soft-
ware project as a means of obtaining team productivity, quality processes and prod-
ucts. It is also important for software projects to demonstrate conformance to the
CMMI Level 2, which requires configuration management processes to be repeatable.
Related work in mainstream SCM development including IDE integration, decentral-
ized repositories, change set management and web engineering are still focusing
strictly on file-based models and neglect the software module abstractions [6][16].

1 CLI is an ISO Standard ISO/IEC 23271. Ms. NET CLR and Mono implement this standard.

 An Architecture for Modeling and Applying Quality Processes on Evolving Software 89

Although recent research projects in SCM offer richer modeling capabilities, their
approaches often rely on source code parsing or require additional effort to extract
and map between the source artifacts and the repositories (see section 6). These reveal
the needs for a refined SEM architecture that offers well defined infrastructure with
rich functionality and yet retains sufficient simplicity.

3 Evolution Analysis beyond Source Code

In the context of SEM, static software analysis is used extensively to gather metrics
ranging from simple counting of LOC to complex coupling between objects for study-
ing software evolution [3][17]. This section explores some of the motivational factors
that make our project compelling as the architecture for continuous SEM.

3.1 Language Neutrality

Modern VMs provide language independent instruction set commonly referred to as
bytecode. It includes a full type system that enables program structure and semantic
attributes to be preserved as OO model with rich metadata that can be extracted
through reflection [3]. Although the richness of bytecode may be compromised when
mapping from high level language, reverse engineering from bytecode using decom-
pilers (e.g. JODE and Lutz’s Reflector) demonstrates minimal loss of program seman-
tics. Today, at least 20-30 languages target the .NET platform, and similarly, many
languages such as Java, Groovy, Jython and JRuby are targeting the Java platform.
Comparing to bytecode analysis, source code analysis will require complex parsers
similar to the language compiler for each language to be developed [3]. This is quite
an alarming effort to support the wide variety of languages supported by modern VMs
in order to achieve the same broader impact as targeting the bytecode directly.

3.2 Systematic Monitoring

The conventional approach of manually taking system snapshots and deriving com-
parison metrics has some drawbacks. The lack of integration and sharing of extracted
information forces the need to reapply the metric analysis for each type of metric
computation performed. The availability of past snapshots becomes the responsibility
of individuals performing the analysis and often the data is limited by the period cap-
tured within the snapshot. Gathering metrics with ad-hoc static analysis may lack
consistency and can be resource consuming [5]. Our approach is continuous and sys-
tematic whereby the build process is automated to produce bytecode snapshots of the
system regularly. Analysis is then performed to identify and automatically store new
and changed artifacts to the repository. These artifacts are available continuously for
applying metrics and further evolution analytics. This approach offers a foundation
that is a consistent, uniform and reliable for continuous SEM.

3.3 Logical Abstractions

Capturing software evolution at the structural level aligns with common practices
such as typical OO methodologies and is crucial for correlating and narrowing the

90 F. Sudaman, C. Mingins, and M. Dick

design-implementation gap and enabling easier detection of architecture drift and
software erosion issues [13][17]. Despite all the strong arguments for needing to use a
logical data model in SCM, we cannot ignore the fact that most widely used SCM
(such as CVS and Subversion) and IDEs (such as Visual Studio and Eclipse) use a
file-based model. Therefore, our approach is not to replace existing file-based SCM;
instead we enrich the model with a parallel logical data model to provide richer views
to suit users in different roles. We retain the use of a file-based SCM for controlling
and recording software evolution as it has been done all along, in parallel with a logi-
cal data model to represent program structure and custom metadata captured in a
relational database for modeling and analyzing software evolution. The two reposito-
ries exist in parallel and interconnect to form a virtual repository that is capable of
providing deeper insights and alternative views of the system it manages.

3.4 Custom Metadata

The support for custom metadata enables extensions to the underlying type system to
seamlessly incorporate user-defined semantic artifacts representing new, project-
oriented perspectives into software analysis. In the CLI, developers can add custom
metadata using syntax like [UnitTest] or @UnitTest for Java developers. We recognize
that it may appear challenging to realize these benefits as it relies on a standardized
set of custom metadata to be defined for easy interpretation, and developers’ diligence
to annotate the source code. However in practice, custom metadata is already being
defined, used and often enforced extensively as part of framework libraries such as
the .NET framework, Web Services and NUnit; hence we can take advantage of it
immediately without imposing any additional effort. Developers can choose to add
their own custom metadata, or use simple toolset such as code generation, editor
plugin or even through an automated code injection to embed additional metadata.
Our approach offers native support for understanding custom metadata, but without
imposing the obligation of defining it or penalties for not having it.

3.5 Preserving Quality Attributes and Conceptual Integrity

Typically, major architectural decisions and design heuristics about the software sys-
tem are decided prior to implementation stage. As the system becomes more complex,
a lack of knowledge and understanding may lead to a poor implementation that devi-
ates from the design intention hence causing software erosion []10[13]. To address
this, our approach introduces an infrastructure for applying quality process whereby a
policy can be defined and applied on any semantic artifact such as a method, a class,
or entire class library and trigger add-in code modules (plugins) for verification and
notification when violation is encountered as the artifact evolves. For example, pro-
ject decisions have identified several security related methods (e.g. method A and B)
in the system as being a sensitive code area and any modifications must trigger an
email alert for code review. A policy can be easily defined to automatically identify
such modifications and act on it accordingly as the system evolved. Other quality
attributes about the system such as complexity, reuse, stability or volatility of a class
or package can also be regulated using the same process. This places quality monitor-
ing process into the development process to facilitate the preservation of the system
integrity and quality systematically evolving system.

 An Architecture for Modeling and Applying Quality Processes on Evolving Software 91

4 OSSEM Architecture

To demonstrate our research ideas presented in section 0 above and to strengthen our
research impact, OSSEM (Object-oriented Software Semantic Evolution Manage-
ment) has been developed. OSSEM offers an infrastructure for modeling, guiding and
managing software evolution while retaining the entire functionality provided by
SVN for recording file-based software evolution.

4.1 High Level Architecture

OSSEM provides automatic monitoring and systematic processing of information
about evolving software artifacts from the source code stored in the SCM into a well-
defined data model and stores them into a relational database. This information is then
accessible at any time for applying analysis, metrics and visualization.

V1

V2

V3

Vn
Source Files

File-based SCM
Repository

RDBMS - Change
Semantic Repository

Data Model

Retrieve Store

Retrieve

Check-in Check-out
Trigger

Use for

Source File
Warning

Analysis

S1

S2

S3

Sn

OSSEM

OSSEM
Studio RAL

SIA

Build Extract

Versioning Apply
Policy

Fig. 1. OSSEM Overview

The architecture of OSSEM consists of three core modules: Semantic Instrumenta-
tion Agent (SIA), Repository Access Library (RAL) and OSSEM Studio. SIA is re-
sponsible for monitoring the file based repository to retrieve and build the source code
into bytecode necessary for extracting semantic artifacts of the evolving system. A
snapshot of the system is captured in the database each time the SIA process is per-
formed. The RAL acts as the data access layer between SIA and the file based reposi-
tory, and for reading and writing data to the change semantic repository (CSR). RAL
also provides higher level repository access functionality to retrieve evolutionary
information on captured and derived artifacts. OSSEM Studio is the client application
providing a UI for configuring the OSSEM infrastructure, querying captured evolu-
tionary information of the system in the form of diff, metrics, diagrams and graphs
(more details in section 4.3). The OSSEM architecture also encompasses the facility
to apply a policy checking process. Any changes on semantic artifacts with precon-
figured policies will activate the policy verification process, which may then trigger
violation notifications. Policy is configured through OSSEM Studio and persisted
through RAL and applied by SIA during execution.

92 F. Sudaman, C. Mingins, and M. Dick

Figure 1 shows the OSSEM high level information flow where V1, V2, V3...Vn
denote the evolving project versioning in the SCM repository and S1, S2, S3...Sn
denote the evolving project snapshots captured.

4.2 Captured Artifacts

Each system evolving in OSSEM has a history that captures one or more project ver-
sions. The logical program structure (such as Namespace, Class and Method) is mod-
eled as entities. Each entity has a corresponding versioning entity. Each entity may
have declarative attributes and their associated fields attached to it. Each version en-
tity points to its previous version for easy navigation. This forms the entity version
history. Figure 2 shows the high level logical model of our semantic artifact version-
ing data store.

EntityEntityVersion

Attribute Field

Attribute

-attach to 1

-declare 0..*

-has0..*

-part of1

-point to

1

-ref by

1..*

ProjectVersion

ProjectHistory

-capture 1..*

-part of 1

-has prev version 0..1

*

Fig. 2. Semantic Artifacts Versioning Meta-model

A new version of an entity is created whenever a change to the entity is detected.
In very simple terms, the change versioning detection algorithm works by comparing
each current entity definition against its last active version in terms of its signature,
body and compositions. Any difference detected is considered as a change that trig-
gers the creation of a new version for this entity. This may also ripple up and cause a
new version to be created for its parent entity. To give a simple illustration: if class
C1 has only one method M1 and only the implementation of M1 changes, a new ver-
sion will be created for M1 and the current version of C1 will now refer to the new
version of M1. If new method M2 is added to class C1 and nothing else, a new ver-
sion of C1 will be created to consist of the latest version of M1 and M2, whilst the
original version of C1 remains unchanged and consists of latest version of M1 only.
Even though each entity can evolve independently, OSSEM always has frozen snap-
shots of all the entity versions for an evolving system at a particular time hence analy-
sis and metrics can be done accurately for each snapshot in isolation.

From a more concrete perspective, we can articulate semantic artifacts in OSSEM
as all the artifacts are captured in the form of evolutionary versions; relationship be-
tween entities such as inheritance and composition; and entity definitions such as
name, type and the bytecode of the evolving system in a well defined relational data-
base. Thus we can access artifacts from the top level down: a project consists of num-
ber of assemblies, each assembly may define a number of namespaces, all the way
down to a method of a class that has a number of parameters, declares a number of
local variables and defines a number of method calls. Custom artifacts defined using
declarative attributes on entities are also captured and versioned and are accessible at

 An Architecture for Modeling and Applying Quality Processes on Evolving Software 93

all times across different snapshots. The full object model to access the semantic
artifacts is also made available by OSSEM through its RAL module. The RAL mod-
ule simplifies programmatic access to these artifacts in a consistent manner without
having to use SQL queries. It also exposes additional semantic artifacts derived by
aggregating or applying intelligence on existing artifacts so that basic metrics can be
easily acquired. Examples of these metrics include number of operations, number of
instructions, method complexity, weighted methods per class (WMC), coupling effer-
ent (Ce), coupling efferent (Ca), relational cohesion ratio (H) and instability ratio (I)
[12]. Because custom defined artifacts are automatically tracked across versions by
OSSEM, they are also readily available to derive richer or bespoke metrics such as
number of unit test classes, number of web services methods on the evolving system.

4.3 Implementation

This section discusses the technical implementation and the enabling technology of
the three core OSSEM modules.

4.3.1 Semantic Instrumentation Agent (SIA)
The SIA extracts, interprets, collects and stores semantic information about changes
made to the system controlled by the SCM. Figure 6 depicts an overview of the sys-
tematic process followed by the SIA. Basically, this agent performs four tasks in se-
quential order: continuous build, software semantic analysis, policy verification and
change semantics persistence of the evolving software. The current implementation of
SIA targets CLI1 and deals with bytecode in the form of CIL. In developing the mod-
ule for performing continuous builds, OSSEM drew on proven concepts and tools:
CruiseControl and Ant as its underlying technologies. The design of the software
change semantic analysis and policy checking modules is very much inspired by the
work of Microsoft FxCop which allows for rich customization and extensibility.

Byte Code

Auto Build

Semantic
Repository

Repository
Access
Library

Change Monitor Establish
Baseline

Acquire Source &
Configuration

Metadata
Extractor and
Introspector

Semantic
Analyser and

Versioning

SCM
Versioning
Repostory

Custom
Semantic
Handler

Fig. 3. Semantic Instrumentation Agent Process

SIA works like an integrated build server and is capable of running on a machine co-
located with the SVN server or on a separate machine. The instrumentation process is
triggered by an automated process that continuously monitors the SVN repository. Ide-
ally, whenever a new change set is committed, the SIA will immediately perform the
processes described above. In practice, such an approach may cause a large build queue
in an active or large development environment and put high pressure on system

94 F. Sudaman, C. Mingins, and M. Dick

resources. To solve this problem, the implementation of the SIA adopts the periodic
monitoring technique whereby the SVN repository is continually monitored for commit-
ted changes at defined intervals. Once a change is detected, the agent will determine if
the last committed change set is longer ago than a user defined period of x minutes. This
determines if the changes are considered stable for SIA to launch the auto build process.
Each project managed by OSSEM must have an accompanying build configuration file
and settings, which are supplied through OSSEM Studio (see 4.3.3). When analyzing
the semantic artifacts, SIA will make default interpretations of known declarative meta-
data, and apply the policy checking mechanism. If a policy is configured for a semantic
artifact, appropriate policy verification will be activated. Policy verification modules are
implemented as plugins to the SIA by conforming to a predefined interface contract.
The extracted semantic artifacts will be compared and analyzed against the latest ver-
sion of the artifacts in the repository using a predefined algorithm. Detected differences
will trigger new versions of the entities to be created and stored in the repository guided
by the OSSEM versioning policy.

4.3.2 Repository Access Library (RAL)
At the core of the OSSEM implementation is the RAL component. The RAL serves
as the entry point for all data access to the OSSEM data store as one virtual repository
that is made up of a physical SVN file versioning repository and a change semantics
repository (CSR) that contains the associated bytecode and extracted metadata of the
systems managed by OSSEM. All semantic evolutionary information gathered by
OSSEM is stored in the CSR implemented as a MySQL relational database. Data
stored in the CSR can be retrieved using RAL programming interfaces or direct query
to the database using SQL. Both the SIA and RAL integrate with the SVN repository
through the client library API and the hook extension mechanism provided by SVN.
This separation allows a high level modularization of OSSEM and SVN hence allow-
ing OSSEM to evolve independently from SVN and target other SCM tools in the
future. RAL exposes a rich set of interfaces necessary for client applications to access
and manage all configuration settings, the evolutionary information captured and all
other aggregated evolutionary information exposed by OSSEM. Given the structured
data model and richness of the semantic artifacts provided by the OSSEM, static
software evolution analysis such as visualizing an entity at a given point in time;
‘diff’-ing versions of a method, class or namespace; and gathering software size,
design and growth metrics are relatively straightforward.

4.3.3 OSSEM Studio
The OSSEM Studio is a rich client application built on top of RAL to demonstrate the
richness, capability and usability of OSSEM in collecting, storing and retrieving se-
mantic artifacts of interest. Basic functionality includes browsing the evolution tree of
the semantic artifacts, performing a diff of two different snapshots of a semantic arti-
fact and drilling down into its children and displaying various static software analysis
metrics in various formats. OSSEM Studio also provides an interface for configuring
OSSEM projects, evolution policies on specific semantic artifacts and adding custom
metadata for a specific artifact such as [OSSEMLabel (“Stage1”)], which in many
instances is more suitable than embedding the metadata in the source code. Because
all logic intelligence is centralized in the RAL, it is possible to build different types of

 An Architecture for Modeling and Applying Quality Processes on Evolving Software 95

client applications with similar capabilities to OSSEM Studio with minimal effort.
IDE plugins to Visual Studio or Eclipse can also be built with ease to integrate
OSSEM to development environments in the future by taking advantage of the rich
interface offered by the RAL.

Fig. 4. ‘Diff’-ing and Design metrics over versions

To showcase this, we have built several visualization functionalities into OSSEM
Studio. Figure 3 shows the ‘version compare’ feature of a class entity in OSSEM
Studio. To implement this ‘diff’-ing feature, OSSEM Studio uses the RAL module to
retrieve the class definition for Version 1 and 4 of the inspected entity. It then uses the
provided EntityTextVisualizer class by RAL to produce the textual stream for both
versions of the entities and feed them to the standard text diff control to show the
differences graphically. To implement the design metric graph, OSSEM Studio uses
the RAL module to retrieve the class definition for all the versions of the inspected
entity. It then uses the provided ClassDesignMetrics class in RAL to automatically
calculate and produce relevant metric values use for plotting the graphs.

4.4 Storage and Performance

It goes without saying that OSSEM needs to be built with performance and storage
optimization in mind in order to be practical for use in a real life evolving system.
Some of the implementation challenges we faced include: dealing with very large
datasets, resource usage for processing, high database hit rates and timely execution.
To overcome these challenges, to date we have adopted strategies such as using sand-
boxes to effectively load and unload data, parallel processing, smart pre-fetching,
compression and caching of data and batching of database operations.

Table 1 shows the physical bytecode size, CSR storage size and execution time
taken by SIA for the first time to collect the semantic artifacts for three different sized
projects. OSSEM takes approximately 5 times the storage space over and above the
physical bytecode size and is capable of processing approximately 400 KB of
bytecode per minute. Subsequent execution of SIA on the project will perform the
incremental change analysis and versioning. Our experiments show that subsequent
execution of SIA on projects with < 10% changes on the artifacts, takes approxi-
mately 25% of the base execution time (about 0.44 minutes for OSSEM SIA and 32.8
minutes for Ms .NET Framework) to execute with the storage space usage growing
consistently to the above statistics (e.g. 5 methods with total of 1 KB bytecode
changed will yield approximately 5 KB of storage in OSSEM repository) to capture

96 F. Sudaman, C. Mingins, and M. Dick

Table 1. Project storage and execution statistics

 OSSEM SIA Ms. WCF Ms. .NET 2.0
Bytecode Size 0.62 MB 7.46 MB 44.5 MB
Storage Size 4.19 MB 41.14 MB 196.31 MB
Execution Time 1.77 mins 21.66 mins 131.2 mins
ADT Count 484 4963 23676

the incremental changes. Because OSSEM only stores the changed artifacts, our ex-
periments of applying SIA on the rapidly evolving OSSEM project itself repeatedly
shows that the storage usage and growth are manageable. All tests above were per-
formed on a Pentium D 3GHz machine with 2GB of RAM running Windows XP
operating system.

Putting the bytecode size into perspective, at the time of writing this paper, the
compiled size of OSSEM SIA is 616 KB, a result of compiling 284 files that contain
484 ADTs with approximately 79000 SLOC. We categorized this as a small size
project and the Ms.NET framework with approximately 23676 ADTs as a large and
very complex project. We categorized the Ms. Workflow Communication Foundation
(WCF) framework as a typical medium to large size project. The number of classes
(NCL) size metrics of WCF is very similar to the Mozilla open source project (ap-
proximately 5000 NCL) and hence we have decided to use this framework as the
performance and storage benchmark test for OSSEM in the future.

5 Illustrative Scenario

The software company, ACE, has a new project that runs over 18 months with stage 1
involving redevelopment of a legacy system and all the new features to be delivered
in stage 2. The client expects ACE to deliver stage 1 in 12 months and thereafter any
changes to the sign off code-base needs to be documented. During the course of the
project, ACE is required to report regularly. OSSEM is configured for this project.

Taking a simple size heuristic, Number of Class (NCL), suppose the project has
1000 classes at a specific time T5, 150 were code generated, 200 were library and 50
were unit test classes, hence only 500 were the actual domain classes. Changes and
growth of these domain classes over time will be of more interest as opposed to the
code generated classes. A crude analysis based on all the classes to derive estimates
may not yield a realistic insight. Utilizing semantic artifacts collected by OSSEM,
project size and change heuristics can be easily derived by isolating classes, name-
spaces or even entire assemblies based on their names or other annotations associated
with them (e.g. Ms. NET Unit Test Framework requires all unit test classes to have
[TestClass] attributes) in the retrieval process to then develop perspectives of the
system based on code categories. Similar reports can also be easily derived such as:
the ratio of test cases to production code; areas of library code have been subject to
redevelopment since last milestone; top ten domain classes in terms of volatility.

From a technical perspective, ACE has identified several project risks: signed-off
code may be changed and not reported; the architectural integrity of the system may
deteriorate over time. To mitigate these risks, a set of OSSEM policies are developed
to guide the project evolution. First, to ensure changes to sign off code are recorded,

 An Architecture for Modeling and Applying Quality Processes on Evolving Software 97

“S1SignOff” tag is added to the project using OSSEM Studio and applied recursively
to all the methods in the project prior to commencing stage 2 development.
“SignOffChanged” policy is defined to trigger a plugin module for inspecting all
methods changed; if the method has a predecessor version with the “S1SignOff” at-
tribute, an email notification is triggered. This ensures that changes made to signed-
off code are always identified and made known to the appropriate person systemati-
cally. To mitigate architecture integrity degradation, a number of design guidelines
are identified and enforced. Here we choose the loose coupling design heuristic as an
example. ACE enforces coupling trends over time by dictating that changes on any
methods within a designated area must add no more than three parameters and three
non system type local variables. A policy “CouplingMonitor” is defined for the pro-
ject and the plugin module is implemented to count the number of parameters and
local variables for the changed method and subtract it against its previous version.
Any method that violates this policy would trigger an alert with details of the method
and violated rules listed. Other examples of design heuristic policy that can be applied
may include monitoring metrics for a class or package such as weighted method per
class, relational cohesion ratio or instability ratio [12] do not fall outside a given range
or change more than allowable range when compared against previous version. This
can help to ensure the architectural integrity is constantly monitored and preserved as
the system evolved.

The use case scenario above illustrates one of the most important contributions of
OSSEM: easy yet disciplined extraction of statistical metrics on evolving systems; the
ability to define generic project level artifacts based on internal software elements,
evolution policies and associated plugins; a reusable policy library that defines a re-
peatable software evolution process for preserving integrity of the evolving system.

6 Related Work

Many software evolution toolsets and research projects have explored the use of
richer and flexible abstraction beyond the file model. NUCM architecture [1] defines
a generic distributed repository model that separates CM artifacts storage and the
policies. Applying NUCM in OO SEM requires programming and mapping of the
policy and logical abstraction to atoms and collections and also faces restriction in
modeling composite objects [1][16]. OSSEM shares the core idea of Molhado infra-
structure [16] and Stellation system [7] of capturing evolutionary information at the
logical abstraction level with well defined data model. However they move away
completely from file-based SCM, whilst OSSEM relies on SVN for source code ver-
sioning control and itself focus on analysis, modeling and guiding the software evolu-
tion. We perceive that divergence from the widely used file-based SCM to be risky
and may impede its adoption in the industry. While the meta-model of OSSEM is
analogous to HISMO [15], OSSEM focuses on the entire systematic process of mod-
eling, obtaining and capturing the data rather than just modeling as in HISMO (im-
plemented in MOOSE).

Another desirable feature of OSSEM that sets itself apart from other related work
SCM system is the policy verification support. The Darwin environment [11], like our
approach also focuses on the continuous detection of violations. It uses rules to

98 F. Sudaman, C. Mingins, and M. Dick

regulate exchanging of messages between object, which is also possible in our ap-
proach (by inspecting called methods). Our work covers many additional aspects such
as regulating entity structure, changes, size and growth overtime and ability to draw
the comparisons against any historical snapshots. This is in a way similar to the work
done by Madhavji and Tasse [10] but different in the fact that OSSEM operation on a
much more fine grained level. OSSEM policy can target specific or an aggregation of
semantic artifacts (such as a method, an attribute or a namespace) which are accessi-
ble natively within its infrastructure. In addition, OSSEM extensibility model based
on plugin architecture allows the leveraging of programming language features and
flexibility.

Fact extractor type projects such as Bloof [2], Kenyon [5], CollabDev [14] and
JDevAn [17] are closest to the OSSEM approach. Although they share many motiva-
tions and goals, they differ considerably in their approaches and applications. JDevAn
is implemented as plugin to Eclipse, hence the availability of snapshots relies on local
code base and the diligence of the developer. Bloof extracts their historical informa-
tion based on file changes and other commit metadata (such as date, author and com-
ment) and is therefore clearly lacking in support for OO SEM. CollabDev strives to
achieve more than just mining evolutionarily information, but also support for docu-
ment management and knowledge sharing facilities. Recent vendors’ products such as
Jazz by IBM and Visual Studio Team System (VSTS) by Microsoft are similar to
CollabDev, which are focusing on collaborative platforms for managing software
development across the lifecycle; nevertheless they have little focus on OO SEM
specifically. Although Kenyon offers more flexibility with its custom fact extractors it
also still focuses on file and code changes, commit and configuration metadata. There
is no evidence to suggest that it supports fact extraction at the logical abstraction
level, or modeling and versioning similar to OSSEM.

7 Conclusions and Future Work

Although the quality of software process greatly influences the quality of the software
product, it does not guarantee the final outcome. Until now, software process and
product views were not effectively synchronized, and often the product quality
evaluation is performed separately from the development process at later phase.
OSSEM bridges this gap by capturing the product view and allowing quality meas-
ures and processes to be applied in parallel with development process, hence quality
trends can be continuously monitored and any deviation from design objectives can
be detected and rectified in a timely manner. OSSEM brings together the product and
process views of the evolving software and facilitate software process improvement.
This can be further illustrated within an outsourced development context, where
OSSEM can elevate the process of project communication, reduce the risks of diverg-
ing visions, offer better project control and support improved relationships by promot-
ing evidence-based reporting and monitoring process [4].

OSSEM offers native support for capturing and retrieving semantic artifacts hence
standard object-oriented size and coupling metrics and design heuristics can be easily
derived and reported. Its extensibility model along with well defined data access and
process allow policy to be developed relatively easily to guide and inform the
software evolution. Compared to OSSEM, design heuristic analysis tools such as

 An Architecture for Modeling and Applying Quality Processes on Evolving Software 99

FxCop are able to police coupling (e.g. methods should have < 7 parameters) based
on absolute heuristics deriving from a single snapshot only while OSSEM is able to
draw comparative heuristics from current and historical snapshots. We believe the
OSSEM architecture facilitates the application of the CMMI Level 2 (Repeatable)
process model where a systematic process is in place for continuously identifying and
analyzing semantic artifacts; Level 3 (Defined) where data models and access mecha-
nisms to the semantic artifacts are standardized; Level 4 (Quantitatively Managed)
where metric models, management process and design policies can be precisely de-
fined based on semantic artifacts. The metrics and policies once defined can be con-
sistently applied for reporting, developing predictive models for future development
tasks or continuously guiding the software evolution process.

References

[1] Hoek, A., Carzaniga, A., Heimbigner, D., Wolf, A.L.: A Testbed for Configuration Man-
agement Policy Programming. IEEE Trans. on Software Eng. 28(1) (January 2002)

[2] Draheim, D., Pekacki, L.: Process-Centric Analytical Processing of Version Control Data.
In: Proc. of the Sixth IWPSE 2003 (2003)

[3] Lance, D., Unteh, R.H., Wahl, N.J.: Bytecode-based Java Program Analysis. In: Proc. of
the 37th Annual Southeast Regional Conf. (1999)

[4] Sudaman, F., Mingins, C.: Evidence-based Management of Outsourced Software Pro-
jects. In: Proc. of the 2nd Conf. on SEAFOOD, Zurich (July 2008)

[5] Bevan, J., et al.: Facilitating Software Evolution Research with Kenyon. In: Proc. of the
10th European Software Eng. Conf., Lisbon, Portugal, September 5-6 (2005)

[6] Estublier, J., et al.: Impact of Software Engineering Research on the Practice of Software
Configuration Management. IEEE TOSEM (2005)

[7] Chu-Carroll, M.C., Wright, J., Shields, D.: Supporting aggregation in fine grained SCM. In:
Proc. of the 10th ACM SIGSOFT Symposium on Foundation of S/w Eng., USA (2002)

[8] Lanza, M.: The Evolution Matrix: Recovering Software Evolution using Software Visu-
alization Techniques. University of Bern, Switzerland (2001)

[9] Lehman, M.M.: Laws of Software Evolution Revisited. In: Proc. of the 5th European
Workshop on Software Process Technology, pp. 108–124 (1996)

[10] Madhavji, N.H., Tasse, T.: Policy-guided Software Evolution. In: 19th IEEE Int’l Conf.
on Software Maintenance (ICSM 2003) (2003)

[11] Minsky, N.H., Rozenshtein, D.: A Software Development Environment for Law-
Governed Systems. In: Proc. of the ACM SIGSOFT/SIGPLAN, vol. 24 (February 1989)

[12] Reißing, R.: Towards a Model for Object-Oriented Design Measurement. In: ECOOP
Workshop on Quantative Approaches in OO Software Eng. (2001)

[13] Eick, S.G., et al.: Does Code Decay? Assessing the Evidence from Change Management
Data. IEEE Trans. on Software Eng. 27(1) (January 2001)

[14] Sarkar, S., Sindhgatta, R., Pooloth, K.: A Collaborative Platform for App. Knowledge Mgmt.
in Software Maintenance Projects. In: 1st Bangalore Annual Compute Conf. (2008)

[15] Girba, T., Ducasse, S.: Modeling History to Analyze Software Evolution. Int’l Journal on
Software Maintenance and Evolution (JSME) (2006)

[16] Nguyen, T.N., Munson, E.V., Boyland, J.T.: An Infrastructure for Development of OO,
Multilevel Configuration Management Services. In: Proc. of the 27th ICSE (2005)

[17] Xing, Z., Stroulia, E.: Analyzing the Evolutionary History of the Logical Design of OO
Software. IEEE Trans. on Software Eng. 31(10) (October 2005)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 100–111, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evaluating the Perceived Effect of Software Engineering
Practices in the Italian Industry

Evgenia Egorova, Marco Torchiano, and Maurizio Morisio

Politecnico di Torino, corso Duca degli Abruzzi 24,
10129 Turin, Italy

{eugenia.egorova,marco.torchiano,maurizio.morisio}@polito.it

Abstract. A common limitation of software engineering research consists in its
detachment from the industrial practice. Researchers have analyzed several
practices and identified their benefits oand drawbacks but little is known about
their dissemination in the industry. For a set of commonly studied practices, this
paper investigates diffusion, perceived usefulness, and effect on the success for
actual industrial projects. We found a match between academia recommenda-
tion and industry perception for more than 3 / 4 of the best practices. But we
also found a few misperceptions of well-known practices.

Keywords: Software Process, Project Factors, Survey, Case-Control Study.

1 Introduction

According to IEEE glossary “Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of
software”. Usually it involves work of a team headed by a project manager and inter-
action with customers in a competitive and volatile environment.

First problems with software development were identified during the NATO Gar-
misch conference in 1968. Since then academic research is focused on defining better
practices for software testing, documenting, etc. However the rate of software project
failures remains high [5].

Researchers identified several software engineering practices – both useful and
harmful – and their expected effects on a software process outcome. Unfortunately the
actual adoption of practices is not driven by scientific empirical knowledge. One
reason for this could be poor communication between academic and industrial worlds.

Among the factors influencing the adoption of software engineering practices an
important role is played by their perceived usefulness. This is one of the main factors
identified in the technology acceptance model (TAM) [6].

The main goal of this work is to assess the perceived effects of several well-known
software engineering practices on the success or failure of the projects. The assess-
ment was performed on the basis of a series of interviews with practitioners working
in the industry. We devised a classification schema for perceived usefulness and ap-
plied it to the survey results. As a result we obtained a deeper understanding of the
practices’ nature, their dissemination and perception among practitioners.

 Evaluating the Perceived Effect of Software Engineering Practices 101

The paper is organized as follows: Section 2 gives an overview of related work. In
Section 3 we describe practices selected for the study. In Section 4 we classify project
factors and formulate hypotheses. Section 5 describes case study and Section 6 pro-
vides data analysis. In Section 7 we discuss the findings of the study. In Section 8 we
address treats to validity. Conclusion and future work are presented in Section 9.

2 Related Work

In this section we describe works related to analysis of software engineering practices
and their industry-wide adoption. We call these practices project factors.

2.1 Project Factors

There are mainly three types of studies focusing on the topic of successful process of
software development: marketing writings that summarize sparse knowledge about
how to make successful software projects; case studies that analyze success or failure
of one or several projects by going into details; and survey studies that carry out
analysis of data collected via questionnaires or interviews.

Papers of the first type present lists of general success factors, i.e. “making smart
decisions” or “building the right team” [15]. Besides, often these studies go over the
main points of why projects fail, mentioning “lack of top management commitment”
[13] or “managers ignore best practices” [8]. Unfortunately appropriate practices
often have poor implementation and even knowing the pitfalls of the bad practices for
some reasons it seems impossible to avoid them in the real life projects.

The case studies analyze individual projects and investigate the reasons why they
failed or the significant issues that led to the success [9], [19]. These studies are very
informative and provide many details. The problem is that often this knowledge is
difficult to apply in another settings.

And finally by analyzing empirical data of many projects, researchers test hypothe-
ses and find the best practices or the biggest perils that are rather general and could be
evaluated in various situations. These studies analyze data collected via question-
naires in order to answer such questions as “key factors for success in software
process improvement” valid for small and large organizations [7], impact of the risk
factors on time to market as one of the key success indicators [22] or best managerial
practices for in-house projects [20]. Some consider only point of view of one group of
stakeholders, i.e. developers in [14], or study different domains as in [1].

Besides there are few works [21], [23] that analyze possibility of prediction for
success or failure of a software project based on the data from other projects.

2.2 Dissemination of Practices

Diffusion of practices is not easy. In 1991 Basili and Musa [2] stated that there was
little success in transferring new knowledge and tools into active practice, explaining
mainly that it is the process not the product that has to be adopted. In the same paper
authors mention existence of the problems in communication between researchers and
practitioners and need for proactive changes. In 1995, 96 two works by Iivari cover
two aspects related to the CASE tools: factors that affected perception of the tools
[11] and reasons why they were not widely used [12]. These results could be

102 E. Egorova, M. Torchiano, and M. Morisio

generalized for the rest of IT technology and summarized in the need for proper train-
ing, demonstration, time investment, management support, etc.

3 Selection of the Factors for the Study

The list of factors that influence project results could be almost unlimited. In order to
perform a feasible study we selected the list of common factors in the recent litera-
ture, e.g. [1], [7] and number of others. We defined a list of 18 factors, divided into 4
sections: customer involvement, requirements engineering, project management and
development process. Summary for all the factors is given in the Table 1.

Table 1. Factors

Customer Involvement
CUST_INV Customer was involved in the project

Requirements Engineering
REQ_INIT Complete and accurate requirements from the start
REQ_AFTER Accurate requirements completed during project
REQ_METH Use of specific method for requirements collection
REQ_TIME Enough allocated time for requirements elicitation

Project management
PROJ_SCHED Good schedule estimations
PM_EXP Experienced PM
PM_INSIGHT PM understood the customer’s problem
PM_LONG PM supported long hours of his/her team
PM_REW_LONG Staff was rewarded for long hours
CHAMPION Commitment and support from sponsor/project champion
PM_CHANGE Project changed PM
RISK_IDENT Risk identification before project start
STAFF_ADD Extra personnel added to meet schedule timetable
TEAM_SPIRIT Having a good team sprit

Development process
METRICS Software process was monitored using metrics
QUALITY_RED Reduction of quality (non-functional requirements, testing, etc)

maintaining the requirements in order to finishing in Time/Budget
ELIM_REQ Elimination of requirements maintaining the quality in order to finish in

Time/Budget

Out of these 18 factors we consider STAFF_ADD, QUALITY_RED and ELIM_REQ
to be dangerous software practices. We are not sure about effect of two factors
(PM_CHANGE, PM_LONG) and will evaluate it empirically. Based on the prior research
we believe that other 13 factors should be beneficial for a software project.

4 Factor Classification and Hypotheses

The research model of the study includes 18 risk factors, presented above. We believe
that these factors could have different frequencies in terms of their occurrence within

 Evaluating the Perceived Effect of Software Engineering Practices 103

the projects. For example, thorough testing was performed in 60% of all projects. In
addition, we argue that the factors could have different effects on the results of the
projects. For instance, having collected all requirements at project beginning could be
more important than working extra hours. In other words, each risk factor could be
present or absent during a software project. Depending on whether each factor was
present or absent, it could be evaluated as positive, negative or of no influence on the
results. As a consequence, we formulate our high-level research questions as follows:

What is the perception of a factor X?

What is the effect of presence (or absence) of a factor X on the outcome?

Here and further on factor X is a general representation of the risk factors summa-
rized in Table 1.

In the section 4.1 we propose classification of these factors. In section 4.2 we for-
mulate a set of null hypotheses that would place each of the factors in its category
according to the classification and help to answer research questions.

4.1 Classification

To the best of our knowledge, most of the existing studies typically addressed the
issue concerning whether some factor has happened or not during project execution.
Usually they correlate level of factor fulfillment (for example, level of PM experi-
ence) with success or failure. However there is a limited knowledge about perceived
effect on the results of the project depending if a factor was present or not.

The perceived effect can be measured both when the factor is present and when it
is absent. To achieve a unique result we classify the factors based on the combination
of the two above. This combination provides a deeper understanding of a factors na-
ture independent of the fact whether project actually failed or succeeded. In Table 2
we present possible combinations of the perceived effects based on whether factor
was absent or present. It should be noted that “no effect” is coded as “0”, “positive
effect” as “+” and “negative effect” as “–”. Obviously, total number of the patterns
would be 9. Out of these 9, we exclude patterns such as [factor present/absent–
negative effect] and [factor present/absent-positive effect], since we hardly imagine
the situation in which any factor played opposite role.

For each of the categories we propose a key name. In order to better understand the
taxonomy we provide a short explanation or an example for each category.

Categories “verified” and “dangerous” are considered as extremes of our classifi-
cation. Having a good project manager is a factor that we expect to be in “verified”
category. On the other hand, we suppose that requirements elimination is a bad prac-
tice, which could be put in “dangerous” category.

Table 2. Taxonomy of factors’ categories based on perceived effect depending on whether
factor was present or absent in project execution

 Factor present
 Perceived effect – 0 +

– underestimated verified
0 bombs irrelevant unrecognized Factor absent
+ dangerous overestimated

104 E. Egorova, M. Torchiano, and M. Morisio

Factors in the “underestimated” category are possibly commodities that are
given for granted by those who posses them while their lack is felt as negative.
For instance, think of a fridge in our houses: we may not consider having some
positive influence on our life-style, but when it is missing or broken we realize
how important it is.

In order to clarify “unrecognized” category we bring an email example. Before
someone starts to use email as a communication media he/she might not see its use-
fulness or necessity. Once a person gets used to email, it is difficult to do without it.
This example is similar to what is happening in some project factors. For instance,
advantages of using certain technologies could be doubtful for non-users. We suppose
metrics could be considered as one of these technologies.

We believe that “bombs” are difficult to be recognized. The difficulty lies in the
fact that certain decisions might seem to be correct by the time they are actually
made. For example, changing project manager seems to be a solution for a problem-
atic project. But in reality changing manager might bring even more instability, which
leads in worsening the situation.

We think that a bad implementation of a good software engineering practice could
be an example of an “overestimated” factor. For instance, those respondents who
have experienced in past an ineffective implementation of quality assurance process
would be skeptical about its usefulness in future.

An example of an “irrelevant” factor could be any technological or human factor
with no positive or negative evaluation in case of presence as well as absence.

4.2 Hypotheses

We formulate a set of high-level hypotheses for each pair of factor and category. We
summarize high-level hypothesis using following generic parameterized formulation:
Hxy : Fx ∈ Cy, where x∈F{1..18}, factors are given in Table 1; y∈C{A..G}, categories
are given in Table 2.

This generic high-level hypothesis is decomposed into 7 detailed high-level hy-
potheses:
HxCA

: factor X belongs to “verified” category.

HxCB
: factor X belongs to “underestimated” category.

HxCC
: factor X belongs to “unrecognized” category.

HxCD
: factor X belongs to “irrelevant” category.

HxCE
: factor X belongs to “bombs” category.

HxCF
: factor X belongs to “overestimated” category.

HxCG
: factor X belongs to “dangerous” category.

By testing these hypotheses we will evaluate perceived effect of each factor. But in
order to test what factors were present in successful projects and absent in the failed
ones (or vice versa) we have to test one more hypothesis:
HxSF : Factor X was equally present in successful vs. failed projects.

 Evaluating the Perceived Effect of Software Engineering Practices 105

5 Research Method

5.1 Population and Sample

Piedmont region is among the most economically active areas of Italy. Different types
of industry are concentrated in and around Turin, from machinery to consulting, from
food industry to mobile phones. For this particular study we considered only compa-
nies whose core business is IT. Though we do understand huge amount of the non IT
sector producing internal software.

We performed initial selection of the companies from the database of the Turin
Commerce Chamber [4], considering those where software development is a core activ-
ity (based on the ATECO code [10]) and number of employees is more then 3 people.
Threshold of 3 people was introduced in order to exclude individual consultants. Total
number was 243 of such companies. Then using random sampling we have selected
companies for the interviewing. Due to rather low response rate (25%) and time limits
we have stopped on 33 responses which covers 13,58% of the Turin ICT sector.

5.2 Variables and Measures

For each of the factors described in Table 1 we have asked 2 types of questions.
Firstly respondents answered if this factor happened or not for a project, and secondly
which effect it had on the project’s run. First question had binary yes/no response
scale. Second one had 7-point Likert scale: from -3 “strong negative” till +3 “strong
positive” with 0 as “no effect”. The respondents evaluated results of each project
subjectively. This outcome was codified on the binary scale as success/failure.

We have one type of independent variable and two types of dependent variables.
Variables are given in Table 3.

Table 3. Independent and dependent variables

Independent variables Dependent variables
Factor happened or not Effect of the fact that factor happened or not on the result
 Outcome of the project

5.3 Hypotheses Refinement

In the light of the measures collected, the detailed high-level hypotheses presented
above can be formulated as a conjunction of low-level hypotheses. We shall attribute
a factor to a category if its relative high-level hypothesis is confirmed. High-level
hypothesis is confirmed if its low-level hypotheses are all alternative. In Table 4 we
provide subset of the null low-level hypotheses for each high-level hypothesis, where
PE stands for perceived effect.

5.4 Data Collection Procedure

We have used case-control type of study design. “Case-control study is a method of
observational epidemiological study. Case-control studies are used to identify factors
that may contribute to a medical condition by comparing subjects who have that con-
dition (the 'cases') with patients who do not have the condition but are otherwise

106 E. Egorova, M. Torchiano, and M. Morisio

Table 4. Subset of the null low-level hypotheses for each of the high-level hypotheses

High-level
hypotheses

 Hypotheses

Category P

E
pr

es
en

t ≤
 0

P
E

ab
se

nt
 ≥

 0

|P
E

pr
es

en
t|
≥

1

|P
E

ab
se

nt
| ≥

 1

P
E

pr
es

en
t ≥

 0

P
E

ab
se

nt
 ≤

 0

HxCA
 Verified R1 R

HxCB
 Underestimated R R

HxCC
 Unrecognized R R

HxCD
 Irrelevant R R

HxCE
 Bombs R R

HxCF
 Overestimated R R

HxCG
 Dangerous R R

similar (the 'controls')” [3]. In another words it is an application of history-taking that
aims to identify the cause(s) of a result. In the terms of our study history is the infor-
mation gathered through questionnaire and result is a successful or failed project.

The questionnaire contained several sections: general information about company
and types of the software they develop, success definition in general, metrics and
context information (type of project, customer, software, etc.) for one successful and
one failed projects. In total there were 80 questions. Responses were collected via
phone or email. Each phone interview lasted around 30 minutes.

5.5 Data Analysis Techniques

We used non-parametric statistics, such as Fisher's exact test for the analysis of bi-
nary-binary data and Mann-Whitney test, for binary-Likert data. For all the tests we
adopted significance level of 5%. All quantitative analysis was made using R-project.

6 Data Analysis

6.1 Descriptive Statistics

We have gathered answers from 33 respondents via phone and email contacts. In total
we have answers for 33 successful and 29 failed projects. Response rate was about
25%. Our respondents were project managers and developers.

6.2 Categorization of Factors

In this section we present the results of testing the low-level hypotheses that were
defined in the 5.3. The results of the Mann-Whitney tests are summarized in terms of
p-values in the Table 5. Significant p-values are printed in bold.

1 R stands for “reject”. Factor is assigned to a category if both related null hypotheses are

rejected.

 Evaluating the Perceived Effect of Software Engineering Practices 107

Table 5. Results of testing hypotheses for factors evaluations

 Hypotheses

Factors

P
E

pr
es

en
t ≤

 0

P
E

ab
se

nt
 ≥

 0

|P
E

pr
es

en
t|
≥

1

|P
E

ab
se

nt
| ≥

 1

P
E

pr
es

en
t ≥

 0

P
E

ab
se

nt
 ≤

 0

Category

REQ_INIT <0,001 <0,001 1 0,4 1 1 Verified
REQ_AFTER2 <0,001 0.016 1 1 1 1 Verified
REQ_METHOD <0,001 <0,001 1 0,07 1 1 Verified
REQ_TIME <0,001 <0,001 1 0,9 1 1 Verified
PROJ_SCHED <0,001 <0,001 1 1 1 1 Verified
PM_EXP <0,001 0,002 1 1 1 1 Verified
PM_INSIGHT <0,001 <0,001 1 1 1 1 Verified
PM_LONG 0,11 0,7 0,4 <0,001 0,9 0,4 NC3
PM_REW_LONG <0,001 0,04 1 <0,001 1 1 Unrecognized
CHAMPION <0,001 0,17 1 <0,001 1 1 Unrecognized
PM_CHANGE 1 0,34 0,8 0,002 0,04 0,7 NC
RISK_IDENT <0,001 <0,001 1 0,9 1 1 Verified
STAFF_ADD 0,04 0,63 1 0,003 1 0,5 NC
CUST_INV <0,001 0,004 1 1 1 1 Verified
TEAM_SPIRIT <0,001 0,015 1 1 1 1 Verified
METRICS <0,001 0,03 1 <0,001 1 1 Unrecognized
QUALITY_RED 1 1 1 <0,001 0,006 1 Bombs
ELIM_REQ 0,2 1 0,8 <0,001 0,8 1 NC

Since we executed multiple significance tests (3 when the factor is present and 3
when it is absent) on the same data, the probability of making Type I errors (i.e. re-
jecting null hypothesis when it is true) increases. To mitigate this issue we apply the
Bonferroni correction [18] to the alpha level (initially 0,05). With this correction
(0,05/3) statistically significant alpha level equals 0,017 ≈ 0,02.

We are able categorize 14 out of 18 factors. With collected data and the factors that
were chosen for this study we covered 3 out of 7 possible proposed categories. We
could not categorize the following four factors: STAFF_ADD, PM_CHANGE,
PM_LONG, ELIM_REQ. Though we shall mention that respondents reported neutral
effect on the absence of those factors. Effect of the factors’ presence varied from
negative to positive so no categorization was possible.

6.3 Factor Frequency

We have tested HxSF for all 18 factors. In the Table 6 we present relative p-values
and odds-ratios. Besides we provide percentages of successful and failed projects
where the factors were present. Alpha level equals to 0,05. Since each test is inde-
pendent, we don’t need to apply Bonferroni correction. Significant p-values are
printed in bold.

2 This factor was evaluated only when REQ_INIT = N.
3 NC stands for Not Categorized.

108 E. Egorova, M. Torchiano, and M. Morisio

Table 6. Test of Hypothesis HxSF

Factor (expressed
as metric)

% of successful
projects where this
factor was present

% of failed projects
where this factor

was present
p-value Odds-

Ratio

REQ_INIT 61 24 0,005 4,7
REQ_AFTER 39 55 0,31 0,53
REQ_METHOD 48 31 0,2 2,1
REQ_TIME 73 52 0,12 2,5
PROJ_SCHED 91 59 0,006 6,8
PM_EXP 94 66 0,008 7,9
PM_INSIGHT 100 45 0,000 INF
PM_LONG 67 48 0,2 2,1
PM_REW_LONG 61 45 0,31 1,9
CHAMPION 42 34 0,61 1,4
PM_CHANGE 9 21 0,28 0,4
RISK_IDENT 76 45 0,019 3,8
STAFF_ADD 42 62 0,14 0,5
CUST_INV 82 59 0,055 3,1
TEAM_SPIRIT 100 59 0,000 INF
METRICS 55 31 0,13 2,3
QUALITY_RED 15 41 0,026 0,3
ELIM_REQ 33 31 1 1

Odds-ratio indicates whether a factor is successful (odds-ratio>1) or failed one (odds-
ratio<1). We reject null hypotheses for the following factors: REQ_INIT,
PROJ_SCHED, PM_EXP, PM_INSIGHT, RISK_IDENT, TEAM_SPIRIT,
QUALITY_RED. This means that theses factors apparently discriminate between
successful and failed projects.

7 Discussion

We have conducted a case-control study and collected quantitative and qualitative
data. We aimed at checking the alignment between academia empirical findings and
industry perception regarding which factors are good or bad for software development
and analyzing level of adoption of software engineering practices in industry.

We found that 10 out of 13 good practices belong to the “verified” category
(Table 5). All these verified factors are considered good practices in the research
community. Therefore we can state that there is an agreement between academia and
industry about the importance of such factors as: collecting requirements from the
beginning or in the initial phases of a project, using appropriate methods and allow
sufficient time to collect requirements, customer involvement, proper project man-
agement, schedule and risk management issues, and team spirit.

Contrary to our expectations, a few factors, namely, PM_REW_LONG,
CHAMPION, and METRICS are in the “unrecognized” category: respondents who
did not apply them reported no negative effect, though those who adopted them agree
on a positive evaluation.

 Evaluating the Perceived Effect of Software Engineering Practices 109

In contrast to the Brooks law and results of several studies, there was no agreement
among practitioners about the negative effects of adding staff to a late project
(STAFF_ADD). Staff was added in significant number of both successful and failed
projects. Evaluated effect varied from strongly negative to strongly positive with no
clear prevalence.

Based on the literature, before analyzing data, we expected such practices as reduc-
ing quality (QUALITY_RED) and eliminating requirements to respect time/budget
constraints (ELIM_REQ) to be in the “dangerous” category. Surprisingly both factors
were perceived as having no effect when absent, i.e. keeping quality and requirements
is not considered particularly important for the project success. Besides, though re-
spondents did agree that quality reduction is dangerous, there was no such agreement
on the requirements elimination.

All seven factors that discriminate between successful and failed projects were
categorizable. This means that there was an agreement between respondents from
different projects, developing various types of software on the perceived effect of
these factors.

We noticed rather low adoption (Table 6) of such engineering practices as using
metrics to monitor process (METRICS) and using a well-defined methodology to
collect requirements (REQ_METHOD). Respondents did report negative effect of not
using any method for requirements elicitation. Not using metrics for monitoring the
process was not evaluated as something negative.

It is important to mention that this is not a stable categorization. We expect that
factors may move from one category to another mainly because of two aspects:

Time: unrecognized factors could become verified or “bombs” move to dangerous
category in the future as academia disseminate its result in the industry. For instance,
we expect METRICS to become a verified factor; among practitioners should grow
knowledge that not collecting metrics is a failure factor.

Context: we believe that some factor’s perception depends on the project context
and type. For example, requirements elimination was evaluated positively as well as
negatively. We believe that for market-driven projects this could be an approach to
reduce the time to market, while for bespoke projects usually it is behavior that is now
appreciated by the customer.

8 Threats to Validity

Although the results we presented are reliable, as in any empirical study, there are a
few threats to their validity.

Conclusion validity concerns the relationship between the treatment and the out-
come. We have used proper non-parametric statistical tests for data analysis and,
when necessary, applied α-level corrections to mitigate the possibility of type I errors.

An important threat to internal validity is represented by the possible lack of accu-
racy in independent variables’ measurement. The independent variables consisted in
determining whether a given set of practices had been applied in a project; we believe
that, for most factors, subjective biases could not influence such an assessment in a
relevant way. We realize that objectiveness for few factors, like manager’s experience
(PM_EXP) or team spirit (TEAM_SPIRIT), could have been affected by the “halo

110 E. Egorova, M. Torchiano, and M. Morisio

effect” [16]. We have tried to address this threat by proper formulation of the ques-
tions. In fact data analysis showed large percent of positive evaluations for these few
sensitive factors in the failed projects.

Construct validity concerns the relationship between theory and observation. In the
classification schema we devised, a few categories were marked as impossible for our
type of the study to make a consistent model. In addition all hypotheses were tested
for all factors, a factor was assigned to a category only as a result of hypothesis test-
ing and we did not force any factor to a category.

External validity concerns generalization of the findings to other settings than the
one studied. We have studied only Italian companies in one of the regions of the
country. The data sample is not very large though we conducted a proper random
sampling of the population. We think our result can be generalized to other areas in
north Italy and central Europe with similar industrialization levels. Clearly only a
replication of this study in other settings could confirm this.

9 Conclusions and Future Work

This paper reported results from case-control study aimed at understanding success
and failure factors in software projects in terms of practitioners perception. We pro-
posed a classification of these perceptions. Our study included 18 factors, very fre-
quent in the literature; we were able to classify 14 of them. We found that 77% (10
out of 13) of the known good practices (e.g. importance of good project schedule or
complete requirements’ list) are perceived correctly by the industry. For a few other
practices (having a champion’s support, using metrics, reducing quality) we noticed a
lack of awareness in the industry. Moreover we observe a surprising confusion on a
few principles, in particular Brook’s law.

For the future work we will need more data points and other factors. For the repli-
cations of our study we would suggest to collect structured context information in
order to better understand different types of software projects and their success driv-
ers. Future work should also improve our knowledge of the effect of context co-
factors on software engineering practices perception.

References

1. Berntsson-Svensson, R., Aurum, A.: Successful software project and products: an empiri-
cal investigation. In: Proceedings of the ACM/IEEE international symposium on Empirical
Software Engineering, pp. 144–153 (2006)

2. Basili, V., Musa, J.: The Future Engineering of Software: A Management Perspective.
IEEE Computer Magazine 24(9), 90–96 (1991)

3. British Medical Association, http://www.bmj.com
4. Camera di commercio di Torino - UNIMATICA di Torino: L’ICT in Provincia di Torino:

La sfida dell’innovazione nel mercato globale. Turin (2006)
5. CHAOS report, http://www.standishgroup.com
6. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of informa-

tion technology. MIS Quarterly 13(3), 319–340 (1989)

 Evaluating the Perceived Effect of Software Engineering Practices 111

7. Dybå, T.: An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Trans. Software Eng. 31(5), 410–424 (2005)

8. Field, T.: When BAD Things Happen to GOOD Projects. CIO Magazine, pp. 55–62 (1997)
9. Holland, C., Light, B.: A critical success factors model for ERP implementation. IEEE

Software 16, 30–36 (1999)
10. Istituto Nazionale di Statistica: Classificazione delle attività economiche Ateco (2007),

 http://www.istat.it/strumenti/definizioni/ateco/
11. Iivari, J.: Factors affecting perceptions of CASE effectiveness. European Journal of Infor-

mation Systems 4(3), 143–158 (1995)
12. Iivari, J.: Why are CASE tools not used? Comm. of the ACM 39(10), 94–103 (1996)
13. Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.: A framework for identifying software

project risks. Commun. ACM 41(11), 76–83 (1998)
14. Linberg, K.R.: Software developer perceptions about software project failure: a case study.

Journal of Systems and Software 49(2-3), 177–192 (1999)
15. Reel, J.S.: Critical Success Factors In Software Projects. IEEE Software 16(3), 18–23

(1999)
16. Rosenzweig, P.: The Halo Effect: And the Eight Other Business Delusions That Deceive

Managers. Free Press (2007)
17. Saridakis, T., Maccari, A.: Software architecture in industry: misuse and non-use. Techni-

cal report HK/R-RES 99/13 SE, University of Karlskrona i Ronneby 1999 (1999)
18. Strassburger, K, Bretz, F.: Compatible simultaneous lower confidence bounds for the

Holm procedure and other Bonferroni-based closed tests. Stat. Med. (2008)
19. Sumner, M.: Critical success factors in enterprise wide information management systems

projects. In: Proceedings of the Americas Conference on Information Systems (AMCIS),
pp. 232–234 (1999)

20. Verner, J.M., Evanco, W.M.: In-House Software Development: What Project Management
Practices Lead to Success? IEEE Software 22(1), 86–93 (2005)

21. Weber, R., Waller, M., Verner, J., Evanco, W.: Predicting Software Development Project
Outcomes. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 595–
609. Springer, Heidelberg (2003)

22. Wohlin, C., Ahlgren, M.: Soft Factors and Their Impact on Time to Market. Software
Quality Journal 4, 189–205 (1995)

23. Wohlin, C., Andrews, A.: Evaluation of Three Methods to Predict Project Success: A Case
Study. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547, pp. 385–
398. Springer, Heidelberg (2005)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 112–123, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evidence-Based Insights about Issue Management
Processes: An Exploratory Study

Vahid Garousi

Software Quality Engineering Research Group (SoftQual)
Department of Electrical and Computer Engineering, Schulich School of Engineering,
University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

vgarousi@ucalgary.ca

Abstract. Issue (e.g., defect) repositories usually contain rich information that
can be used to mine evidence about team dynamics, issue management proc-
esses, and other aspects of software development. The exploratory case study
reported in this paper uses quantitative issue tracking data of three open-source
projects to derive insights into how issues emerge and are handled in open-
source projects. The mined information provides empirical evidence for a few
beliefs in the software engineering and process communities. For example,
depending on their specific context factors, projects show different degrees of
responsiveness to the occurrence of defects. Software engineers can use tech-
niques similar to those presented in this paper to mine the issue repositories of
their in-house development projects. This may serve to better characterize their
issue management processes, to perform self-assessment and evaluation on
them, and also to identify process smells (symptoms) in those processes.

Keywords: Qualitative analysis, evidence report, issue management, issue
processing, issue repositories, open-source projects.

1 Introduction

SourceForge.net is often referred to as the world's largest online repository for Open-
Source Software (OSS) development [1]. SourceForge provides tools that allow open-
source projects to develop, distribute, and support software.

One of these tools is the tracker system which provides issue tracking features and
also development benefits (e.g., streamlining the management of code patches). This
tool is used by many active SourceForge projects to manage four types of issues:
bugs, support requests, feature requests, and source code patches [2].

Issue repositories usually contain rich amount of information which can be used to
perform analyses to mine useful findings about team (group) dynamics, development
processes, issue management processes and so on [3].

The exploratory case study reported in this paper uses quantitative issue tracking
data of three OSS projects to derive insights into how issues emerge and are handled
in OSS projects. Formulated using the Goal-Question-Metric (GQM) approach [4],
the goal of this study is: to analyze and mine OSS issue repositories for the purpose of
characterizing and getting insights into issue processing processes and their related
collaborations with respect to effectiveness, efficiency and also responsiveness in

 Evidence-Based Insights about Issue Management Processes: An Exploratory Study 113

issue handling from the viewpoint of process engineers or project managers. With the
above goal in mind, the following Research Questions (RQs) were posed, and appro-
priate metrics were used (or defined) to investigate them.

RQ 1. What are the trends of submission and handling of different issue types?
RQ 2. How responsiveness different teams are to different issue types? i.e., how

many days does it take to address issues?
RQ 3. How do different issue types pile up and what are the possible negative

consequences of issue pile up on projects in the long run?
While investigating the above RQs, it was also deemed appropriate to mine em-

pirical evidence on a few typical beliefs on the topic in the software engineering
community, e.g., is it true in the context of OSS projects that (1) there are more issues
(mostly bugs) submitted after new releases?, or (2) bug reports are handled more
quickly than other issues (e.g., feature requests) [2]?

It is believed that the findings of this exploratory study can be useful for researchers
and practitioners in the following ways. First and foremost, it is one of the first novel
steps towards characterizing issue processing in OSS projects, and can be adapted as
an approach to analyze the performance and efficiency of such processes. It also acts as
an evidence report that some active OSS projects may have similar reaction to issues as
closed-source (commercial) software projects. Two example typical beliefs that this
study provides evidence for are: (1) Bugs do actually dominate most of the issues, and
(2). More bugs are usually submitted in the beginning of a project.

Practitioners can use techniques similar to those presented in this work to mine the
issue repositories of their in-house development projects to perform self assessment
and evaluation of their issue management processes. This can lead to findings and
insights which can tell useful stories about, e.g., the times when the testing or debug-
ging team was very active or responsive, or not as active or responsive as it was ex-
pected to. In addition, practitioners can also use the information mined from issue
repositories to identify process smells (symptoms) [5] in their issue handling proc-
esses, e.g., not being reactive enough to issues. Once process concerns are identified,
process improvement guidelines can be used to enhance issue handling processes.

The focus of this paper also aligns well with the conference theme this year, since
analyzing issue processing processes and making sure there is a healthy trustful end-
user relationship and support in place (by addressing users’ issues in a timely manner)
are among the major steps towards having a trustworthy software project.

2 Related Works

Mining Software Repositories (MSR) [3] is a very active research area which is gain-
ing increasing popularity in both academia and industry. However, there are only a
handful number of works in the MSR literature relating to software processes in spe-
cific (e.g., [6-8]), while most works rather focus on other subjects such as source code
repositories, and social networks among developers [3].

By analyzing issue repositories, the study in [6] empirically showed that timely
bug fixing is considered as a success factor for OSS projects, and is correlated with
other success factor, e.g., user satisfaction and involvement. One of the findings in [6]
was that the bug fixing time is correlated with activity rank, and number of downloads

114 V. Garousi

of an OSS project. Among the projects studied in [6], projects with more developers
reported more bugs and then fixed those bugs somewhat more quickly, i.e., as one
would expect, there was a negative correlation between the bug fixing time and the
project community size.

The article in [7] mined the coordination practices used for bug fixing in OSS
teams. Based on a codification of the messages recorded in the bug tracking system of
four projects, the authors identified the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both the development team and the open-
source community. The findings revealed that the process is mostly sequential and
composed of few steps, namely: submit (open), analyze, fix and close. The authors
believed that the bug fixing process seems to lack traditional coordination mecha-
nisms such as systematic task assignment. As a consequence, labor is not equally
distributed among process actors. Few people contribute heavily to all tasks whereas
the majority just submit one or two bugs. Also, the organization structure involved in
the process resembles the bazaar metaphor proposed by [9] for the open-source proc-
esses. Few actors (core developers), usually team project managers or administrators,
are mostly involved in bug fixing. No evident association was found among coordina-
tion practices and project success.

The work in [8] presented a novel approach to discovering software processes from
OSS web repositories, combining techniques for text analysis, HTML hyperlink
analysis, and of repository usage and update patterns. The work proposed the use of
text analysis techniques for extracting instances of process meta-model entities from
the content of the community repositories, followed by hyperlink analysis to assert
relationships between the mined entities in the form of process events. It then applied
usage and update patterns to guide integration of the results of text and link analysis
together in the form of a process model. Unfortunately, a real application of the tech-
nique was not presented in the paper [8].

A special-issue of “Computers in Industry” journal in 2004 was devoted to process
and workflow mining [10]. However, there were no papers in that special-issue to
focus on mining issue repositories and processes.

To the best of the author’s knowledge, [6, 7] are the only works in this particular
area, but none of them analyze the issue repositories form the perspective of the three
RQs in this study, nor do they provide evidence on the typical beliefs in this area, e.g.,
is it true that more bugs are submitted after new releases? Our case study is “explora-
tory” in that it aims at identifying the most challenging questions in this new (less-
explored) area of research and opening the horizons for more future work.

3 Design of Case Study

For this empirical study, the issue repositories of four SourceForge projects were
analyzed. The flow of different issue types along the issue processing process, sup-
ported by SourceForge, was carefully analyzed. Although SourceForge does not
clearly specify the issue handling process for its projects, it pre-defines the following
status codes for issues: open, closed, pending and deleted. These status codes are
usually used by project administrators to streamline the issue handling process. By
going through a few typical issues, it is possible to construct a typical issue handling
process for SourceForge projects which is shown in Figure 1.

 Evidence-Based Insights about Issue Management Processes: An Exploratory Study 115

Open ClosedAssigned

Deleted

[duplicate | not
the right tracker |

not legitimate]

[issue solved]

Fig. 1. A typical issue handling process for SourceForge projects

When an issue is first submitted, it is open. A project administrator either assigns it
to a developer member of the project to be taken care of, or marks it “deleted” if ei-
ther the issue is a duplicate (was reported in the past), not legitimate (a reported bug is
not really a bug), or if the issue is posted in the wrong tracker. When an assigned
issue is implemented or solved (e.g., via a bug fix), the issue is closed.

There were two sources of data for this study: (1) the tracker statistics from the
SourceForge website, and (2) the SourceForge Research Data Archive (SRDA) [11].
The former provides interesting aggregate issue statistics such as number of issues
opened or closed per month. SRDA [11] is a repository of SourceForge research data
made available by a team of researchers from the North Carolina State University.

Four OSS projects hosted on SourceForge were chosen systematically as objects of
this study. A set of different variability dimensions were used in the systematic sam-
pling, e.g., programming language, LOC, time of registration in SourceForge, number
of developers and popularity. To focus on realistic issue management processes, it
was also desired to filter out inactive or small projects (with small LOCs). It was set
that a minimum 10 KLOC is required. Also, a minimum of 90% SourceForge activity
percentile was required.

It was observed that the majority of projects on SourceForge do not have tracker
systems or their tracker systems are private (accessible to project administrators only),
for instance, the MySQL project. It was also observed that a large number of projects,
with reasonable activity percentiles, had public tracker systems, but they were mostly
empty or had only a few items posted, e.g., the DeveloperEdition project. Thus, the
other criterion was that the project should have at least 10 issues in its tracking system.

As of May 2008, there were 152,489 projects hosted on SourceForge [11]. Applying
the above selection criteria (running the appropriate SQL SELECT statement on the
SRDA source [11]) filtered the above large pool of projects to 2,368. The projects were
then clustered to different programming languages, time of registration, and number of
developers. By limiting our focus to projects written in Java, Assembly, C, C+, and
Python as popular programming languages and applying a random selection, we se-
lected four projects: jEdit, DrPython, FlasKMPEG and JFreeChart. Due to space con-
straints, the analysis based on only the first three projects are presented in this paper.
The key information and statistics about the three projects are shown in Table 1.

jEdit (http://sourceforge.net/projects/jedit) is a source code editor written in Java. It
can be configured as a powerful IDE through the use of its plug-in architecture. DrPy-
thon (http://sourceforge.net/projects/DrPython) is a customizable cross-platform IDE
to aid programming in Python. FlasKMPEG (http://sourceforge.net/projects/
flaskmpeg) is an MPEG trans-coding program.

116 V. Garousi

Table 1. Key information and statistics about the three projects in this study

 jEdit DrPython FlasKMPEG
Programming language Java Python C, C+
KLOC 71 15.4 78.5
Registered in SourceForge Dec. 6, 99 Jan. 1, 05 Apr. 6, 2000
Number of project administrators (as of Sept. 2008) 9 2 2
Number of developers (as of Sept. 2008) 158 4 5
SourceForge activity percentile (as of the week of
Sept. 1, 2008) :

99.98% 97.84% 91.42%

Average number of issues submitted (per month) 52.15 3.21 0.32
Average number of issues closed (per month) 46.28 3.14 0.02
Average number of downloads (per month) 45,112 2,171 58,563
Hits in Google (as of Sept. 2008) 820,000 38,900 164,000

The average numbers shown in Table 1, e.g., issues submitted per month, are cal-

culated from the registration (inception) time of each project until (and including)
June 2008. Apparently, the SourceForge statistics server experienced a few technical
difficulties in July 2008 due to migration of their servers and, consequently, the data
for July and August 2008 do not seem reliable. The two last rows in Table 1 are
meant to provide simple measures for the popularity of each tool.

4 Analysis of Results

4.1 Research Question 1

For RQ1, the trends of issue submission and handling for different projects and
different issue types after their new releases were analyzed. The version (release)
information of the three projects including the release dates were retrieved from
SourceForge. The number of issues opened and closed in each month for each project
since its inception date was also retrieved.

The three stacked charts in Figure 2 present the above information. The x-axis de-
notes the dates. The left-side y-axis are the number of Issues Opened (IO) and Closed
(IC) in each month. The right-side y-axis and the vertical lines inside each chart de-
note the release numbers of each project. For example, version (release) 4.3 of jEdit
was released on April 2008. In this month, there were, respectively, 84 and 52 issues
opened and closed for this project. Minor versions such as 4.3.2 have been converted
to real numbers (e.g., 4.32) to make them representable in the chart. Note that, to
present the results in the most possible effective way, the stacked chart type was cho-
sen. Thus, the left-side y-axis should not be misinterpreted by considering IC values
higher than IO values. The most notable observations based on Fig. 2 follow.

Scale of issues: Average number of issues submitted (per month) for the three pro-
jects (jEdit, DrPython, and FlasKMPEG), in order were: 52.15, 3.21, and 0.32. Also
the average number of issues closed (per month) in order were: 46.28, 3.14, and 0.02.
Thus, one could notice the difference of scale in the number of issues per project.
Such a difference could be interpreted due to different possible reasons, e.g., (1) a
naïve one being that, due to poor quality, jEdit really has more issues (e.g., bugs)

 Evidence-Based Insights about Issue Management Processes: An Exploratory Study 117

0

50

100

150

200

250

Dec-
99

Jun-
00

Dec-
00

Jun-
01

Dec-
01

Jun-
02

Dec-
02

Jun-
03

Dec-
03

Jun-
04

Dec-
04

Jun-
05

Dec-
05

Jun-
06

Dec-
06

Jun-
07

Dec-
07

Jun-
08

1

2

3

4IC

IO

#

R
el

ea
se

 n
um

be
r

jEdit

0

20

40

60

80

100

120

Jun-
03

Dec-
03

Jun-
04

Dec-
04

Jun-
05

Dec-
05

Jun-
06

Dec-
06

Jun-
07

Dec-
07

Jun-
08

1

2

3
IC

IO

#

R
el

ea
se

 n
um

be
r

DrPython

0

1

2

3

4

5

6

7

Apr-
00

Oct-
00

Apr-
01

Oct-
01

Apr-
02

Oct-
02

Apr-
03

Oct-
03

Apr-
04

Oct-
04

Apr-
05

Oct-
05

Apr-
06

Oct-
06

Apr-
07

Oct-
07

Apr-
08

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

IC
IO

#

R
el

ea
se

 n
um

be
r

FlasKMPEG

Fig. 2. (stacked chart) Trends of opened and closed issues vs.
project versions

compared to the two other systems, (2) jEdit has more users and since more people
are using it, more people find bugs or suggest more feature requests. For the high rate
of issue closing, one possible factor might be the high number of (active) community
members (developers) and/or more proactive project administrators. Determination of
the exact root cause(s) of the above observation would certainly require more investi-
gations on the above possibilities.

Continuous flow of issues: There are steady numbers of opened and closed issues
(IO and IC) in jEdit, e.g., there is no single month with zero IO or IC. However, those
measures are quite sparse in DrPython and FlasKMPEG. This shows that, unlike the
two other projects, the users of jEdit have kept submitting issues continuously since
June 2000 (a few months after its inception in Dec. 1999).

It also seems that the developers of jEdit have actively processed and closed the is-
sues. To compare the three projects in term of variations in IO and IC, the standard

deviation of the values
could not be used since the
scales of the measures in
three projects are different.
Alternatively, the coeffi-
cient of variation metric
was used (defined as the
standard deviation divided
by the mean value). The
coefficients of variations
are shown in Table 2.

The coefficients indicate
that statistically jEdit had
the lowest variation (thus
the highest stability) in
terms of in- and out-flow
issues. For DrPython and
FlasKMPEG, issues are
opened and closed in dif-
ferent months. This seems
to indicate that their users
and developers (issue han-
dlers) did not find (and
report) issues continuously.

Issues in and around re-
leases: Issues for DrPython
are not a continuous flow
and they are rather submit-
ted on or shortly after each
of its releases. The situa-
tion for FlasKMPEG also
seems similar. The new
issues of jEdit seem to
have been submitted in a

118 V. Garousi

0

20

40

60

80

100

120

140

160

180

Dec-99 Dec-00 Dec-01 Dec-02 Dec-03 Dec-04 Dec-05 Dec-06 Dec-07

BO BC PO
PC FO FC

Fig. 3. (stacked chart) Trends of opened and closed issues per
issue types for jEdit

Table 2. The coefficients of variation

Projects under study
Coefficient of variation

jEdit DrPython FlasKMPEG
The number of issues opened 46% 222% 322%
The number of issues closed 62% 278% 1260%

burst pattern upon its
releases.

Continuous efforts
on opening and
closing issues: The
allocations of effort
to open and close
issues are different among the three projects. In JEdit, continuous efforts are devoted
to open and close (handle) issues. For DrPython, the two efforts somewhat appear
together, e.g., more issues are opened around Feb. 05, and most issues are also closed
in that time period. However, the situation for FlasKMPEG is different as more issues
were opened in the middle of the period under study, while there is not much effort to
address them. Such a trend, i.e., having left-over pending issues, might lead to nega-
tive symptoms in the long run, e.g., users will find their issues not addressed and
might lose interest in the project, and issues will pile up in large numbers, requiring
more and more efforts to handle them all. Assessing whether and to what extent those
negative symptoms would occur in the down-stream of the process requires further
investigations.

The trends of opened and closed issues per issue type were also investigated in the
study. Due to space constraints, only the trends for three of the four default issue
types of jEdit are presented in Figure 3 Support requests are not enabled in jEdit (the
feature is turned off). Data series BO, PO and FO in Figure 3 denote, respectively, the
number of bugs (B), patches (P), and feature requests (F) opened in each month. Simi-
larly, BC, PC, and FC indicate the number of closed issues of the above types. The
most notable observations based on Figure 3 follow.

Bugs dominate the issues: It seems a large proportion of all issues are bugs. Quan-
titatively speaking, about 60% (3,249 of 5,372) of all issues in jEdit as of July 1, 2008
were bugs.

Only bugs until March 2006: As the chart shows, all issues submitted before this
date were only bugs. Patches and feature requests started to appear in the tracker af-
terwards. A naïve reasoning might conclude that no one submitted those issues until
that particular date. But another more possible reason might be that the trackers for
those issues were turned
off before that date.
Since the dates of such
changes are not available
to outsiders of a project,
we could not determine
what really the main
reason was.

More bugs in the be-
ginning: It seems that
more bugs were submit-
ted (opened) in the be-
ginning of the jEdit
project compared to the
later time frames. For a

 Evidence-Based Insights about Issue Management Processes: An Exploratory Study 119

deeper analysis, the trend lines of BO and BC series were investigated (not shown
here due to space constraints). It was observed that the data series of jEdit’s opened
bugs have had two major peaks; the highest one occurring around early-2002 (about 2
years after the project inception), and the second pick around late 2006. The first peak
is usually normal in the initial releases of new projects, and it is considered healthy if
the bug submissions do not keep a steady or a rising trend (which is the case in jEdit).

The second peak in bug submissions actually coincides with introducing a new ma-
jor feature in jEdit, i.e., support for plug-ins. This brought in a wave of new bugs and
was continued steadily for a few months.

The trend of closing bugs has some delay after they are opened: By an analysis on
the trend lines of BO and BC, we found out that the BC trend almost follows BO with
a slight delay, especially in the beginning of the timeline. This is an interesting obser-
vation and is an evidence that the bug closing efforts usually started after a pile of
bugs were opened in this project.

Sharp rises in closed bugs: Variation coefficients of BO and BC for jEdit in
Figure 3 are about 59% and 76%, respectively. This means that the rate of bug clos-
ings changes more sharply compared to the rate of bug openings. One possible justifi-
cation for this phenomenon is that the jEdit developers (debuggers) perhaps wait for a
while for bugs to pile up and then fix (close) them in one short period of time. Such
an approach to bug fixing is often called bug days in the software industry.

4.2 Research Question 2

To study how responsive different teams are to different issue types, a new metric was
defined for closed issues, referred to as: Days To Close (DTC)=The closing date of a
closed issue – Its opening date. For example, if a bug is opened on Jan. 1, 2005 and is
closed on Feb. 1, 2006, its DTC would be 396 days.

Figure 4 shows the histograms of DTC for different issue types for jEdit and DrPy-
thon. The DTC measures for FlasKMPEG are not shown since only 2 of all 32 open
FlasKMPEG issues were closed as of July 2008 and the only two DTC measures are
not representative for the purpose of this study.

Critical issues are handled fast: It is interesting to observe that in both projects, the
issues which are closed, are closed soon after they were opened (in less than 10 days
in most of the cases). Although high average item ages were observed in these pro-
jects, it seems that the team members prioritize the issues and process those which are
more important (critical). By manually looking at the issue priorities for a few issues
which were closed fast, this hypothesis was confirmed.

Bugs are handled faster than the other issue types: There are more bugs fixed in
the same day (point 0 in the histograms) than the other two issue types (i.e., feature
requests and patches) in Figure 4 Detailed statistics for closings of bugs, feature re-
quests and patches are shown in Table 3. As of Sept. 2008, 90.4% of jEdit bugs are
closed, 23% of which are closed bugs in the same day they were submitted. This is
quite amazing as 677 jEdit bugs received a prompt same-day response (they were
either fixed, marked as duplicate, etc.). 40% of DrPython’s closed bugs were proc-
essed on the same day. By looking at the statistics in this table, one can observe that
bugs were handled faster than the other issue types, in general. This situation is ex-
pected as bugs are considered the most serious type of issues.

120 V. Garousi

0

200

400

600

800

0 10 20 30 40 50 60 70

DTC

Bugs
Feature requests

Patches

jEdit

0

10

20

30

40

50

0 10 20 30 40 50 60 70

DTC

Bugs

Feature requests

Patches

DrPython

Fig. 4. Histogram of Days To Close (DTC) for different issue types

Table 3. Statistics for handling different issue types (from the project inception time to July
2008)

Project
Issue Type Metrics

jEdit DrPython
Numbers of submitted bugs 3235 126
Numbers of closed bugs 2926 118
% of closed bugs 90.4% 93.6%
% of closed bugs in the same day 23% 40%

Bugs

% of closed bugs in one day 8% 10%
Numbers of submitted feature requests 270 51
Numbers of closed feature requests 99 51
% of closed feature requests 36.6% 100%
% of closed feature requests in the same day 21% 18%

Feature requests

% of closed feature requests in one day 9% 12%
Numbers of submitted patches 153 18
Numbers of closed patches 148 18
% of closed patches 96.7% 100%
% of closed patches in the same day 13% 11%

Patches

% of closed patches in one day 7% 11%

4.3 Research Question 3

To investigate how different issue types pile up and what the possible negative conse-
quences of issue pile up are on projects in the long run, the average issue age metric
provided by SourceForge (for each issue type) was used. This metric denotes the
average wait time of an issue in the queue until it is processed (closed).

Figure 5 visualizes the average ages of issues (in days) per issue type in each of the
three projects. The following acronyms are used in this figure:

 ABA: Average Bug Age
 APA: Average Patch Age
 AFA: Average Feature request Age
 AIA: Average Issue Age (an issue can be either a bug, a patch, or a feature

request)

For example, if the first issue is submitted on July 1st, and the second one on Au-
gust 1st of the same year, the AIA on September 1st will be: (31+62)/2=46.5 days. The
most notable observations based on Figure 5 follow.

 Evidence-Based Insights about Issue Management Processes: An Exploratory Study 121

jEdit

0

500

1000

1500

2000

Jan-
00

Jul-
00

Jan-
01

Jul-
01

Jan-
02

Jul-
02

Jan-
03

Jul-
03

Jan-
04

Jul-
04

Jan-
05

Jul-
05

Jan-
06

Jul-
06

Jan-
07

Jul-
07

Jan-
08

ABA

AIA

APA

AFA
D

ay
s

DrPython

0

200

400

600

800

Jun-03 Dec-03 Jun-04 Dec-04 Jun-05 Dec-05 Jun-06 Dec-06 Jun-07 Dec-07 Jun-08

ABA
AIA
APA
AFAD

ay
s

FlasKMPEG

0

500

1000

1500

2000

Apr-
00

Oct-
00

Apr-
01

Oct-
01

Apr-
02

Oct-
02

Apr-
03

Oct-
03

Apr-
04

Oct-
04

Apr-
05

Oct-
05

Apr-
06

Oct-
06

Apr-
07

Oct-
07

Apr-
08

ABA

AIA

APA

AFA

D
ay

s

Comparison of three projects

0

200

400

600

800

1000

1200

Jan-
00

Jul-
00

Jan-
01

Jul-
01

Jan-
02

Jul-
02

Jan-
03

Jul-
03

Jan-
04

Jul-
04

Jan-
05

Jul-
05

Jan-
06

Jul-
06

Jan-
07

Jul-
07

Jan-
08

D
ay

s

jEdit - ABA jEdit - AIA
JFreeChart - ABA JFreeChart - AIA
DrPython - ABA DrPython - AIA

jEdit

JFreeChart

DrPython

Fig. 5. The average age of different issue types

ABA follows AIA: In all three projects, the ABA mostly follows the trend of the
AIA. This is mainly since bugs constitute most of the issues in all projects, and thus
opening and closing bugs affects both ABA and AIA.

ABA is usually less than AIA: In all three projects, ABA is less than AIA in most
months. This seems to indicate that bugs are given the highest priority among all issue
types while the average age of other issue types is generally larger than that of bugs.

Different scales: As Figure 5-(d) shows, the three projects have different scales in
terms of ABA and AIA. For jEdit, being the earliest project to start and with more
issues submission per month, the AIA was 692.5 days (as of June 2008) and
ABA=569.4 days. At the same month, for DrPython, AIA=223 and ABA=223, and
for FlasKMPEG, AIA=1607.1 and ABA=1420.6.

Different approaches to process issues: One can also see that there are not drastic
falls in AIA and ABA for jEdit or FlasKMPEG. However, the measures for DrPython
have a sudden fall in April 2007. A closer look at the number of bugs and issues

122 V. Garousi

closed in this month for DrPython reveals that all the 40 open issues at the time (18
bugs, 10 patches and 12 feature requests) were closed in one month period. This
might be an indicator of a somewhat extraordinary (brave!) move by a few project
members to close all the pending (open) issues. Such drastic moves in AIA and ABA
are not observable in jEdit or FlasKMPEG. Although one could see that there are
slight falls in AIA and ABA in both of these projects which denotes the proactive
intent to process open issues. There is a sudden fall in AFA in jEdit starting in April
2005 and ending in April 2006 (making AFA=0). A closer look at the AFA in this
case reveals that the AFA was constantly growing until April 2005 (since there were
only open 2 requests as of that date and they were aging on a constant rate). In the
few months after April 2005, three new feature requests were submitted (thus lower-
ing the AFA). All the 5 open requests were handled and closed on April 2006.

Different slopes (reactiveness to issues): According to the chart in the bottom of
Figure 5, ABA and AIA have the lowest (growth) slopes in jEdit compared to the two
other projects (except the sudden falls). This might be an indication of the jEdit team
being more reactive to issues. Low responsiveness in handling issues can have various
implications for the project, e.g., if a project team is not too reactive to issues, open
issues can get older and older, which in turn can give the imprecision that the issues
are not paid attention to (or perhaps, ignored). On the other hand, being more reactive
can help control the queue of issues from getting very long. For example, imagine the
possible queue size, AIA and ABA of jEdit issues if its issue pile-up curve had a simi-
lar slope as DrPython and FlasKMPEG.

Low responsiveness to issues, as a process smell (symptom), might lead to many
negative results in the long run for a project, e.g., users (clients) will find their issues
not addressed on-time and might lose interest in the project, or (in the case of indus-
trial projects), they may decide to cancel their contract with the software company.

5 Conclusions and Future Works

This case study used the quantitative issue tracking data of three OSS projects and
helped us get qualitative insights into the process of how issues are piled up and ad-
dressed. This in turn provided the evidence on a few typical beliefs on the topic in the
community, e.g., (1) Bugs dominate the issues, (2) More bugs are usually submitted
in the beginning of a project, and (3) Depending on other success or activity factors,
different projects show different responsiveness to bugs and other issues.

Also, it was observed that a reasonable percentage of bugs were fixed in the same
day or in just few days after they were opened. Such an observation seems to spe-
cially be the case for bugs with higher priorities. This is an evidence confirming that
(critical) bugs are also usually taken seriously in more active (and successful) OSS
projects similar to critical industrial projects.

Note that, due to space constraints, only a small part of the findings of our case
study was reported in this paper. More results are expected to be published in other
papers in the near future, e.g., the study findings for JFreeChart, and investigation of
existing correlations between the trends of issue opening and closing, and other pro-
ject success metrics, e.g., the number of downloads.

 Evidence-Based Insights about Issue Management Processes: An Exploratory Study 123

To take further steps in studying issues pile up in OSS projects, it is planned to ap-
ply the queuing theory and software process simulation on issue processing queues.
Parameters such as issue arrival rate and issue processing rate can be used to model
and analyze the behavior of the process. Also, there are plans to use the data mined in
this work to systematically identify process smells (symptoms) in issue handling
processes. For example, if the slope of the ABA curve in a time step is greater than a
defined slope threshold, we could say that the process suffers from the following
process smell: “not being reactive enough to issues” [5].

Acknowledgements

This work was supported by the Discovery Grant no. 341511-07 from the Natural
Sciences and Engineering Research Council of Canada (NSERC). The author ac-
knowledges the access he was granted to the SourceForge Research Data Archive
(SRDA) [11]. The author would also like to thank Jonathan Sillito, Guenther Ruhe
and Dietmar Pfahl for their valuable comments and suggestions on the early drafts of
this article.

References

1. Mayer-Schönberger, V., Lazer, D.: Governance and Information Technology: From Elec-
tronic Government to Information Government. MIT Press, Cambridge (2007)

2. http://alexandria.wiki.sourceforge.net (last accessed, August 2008)
3. Xie, T., Pei, J., Hassan, A.E.: Mining Software Engineering Data. In: Companion of the In-

ternational Conference on Software Engineering, pp. 172–173 (2007)
4. Basili, V., Caldeira, G., Rombach, H.D.: The Goal Question Metric Approach. In: Mar-

ciniak, J. (ed.) Encyclopedia of Software Engineering. Wiley, Chichester (1994)
5. Ambler, S.: Model Reviews: Best Practice or Process Smell?,

 http://www.agilemodeling.com/essays/modelReviews.htm
 (last accessed, August 2008)

6. Crowston, K., et al.: Towards a Portfolio of FLOSS Project Success Measures. In: Work-
shop on Open Source Software Engineering, International Conference on Software Engi-
neering, pp. 29–33 (2004)

7. Crowston, K., Scozzi, B.: Coordination Practices for Bug Fixing within FLOSS Develop-
ment Teams. In: Proc. of the Int. Workshop on Computer-Supported Activity Coordination
(2004)

8. Jensen, C., Scacchi, W.: Data Mining for Software Process Discovery in Open Source
Software Development Communities. In: Proc. Workshop on Mining Software Reposito-
ries, pp. 96–100 (2004)

9. Raymond, E.S.: The Cathedral and the Bazaar. First Monday Journal 3(3) (1998)
10. v. d. Aalst, W.M.P., Weijters, A.J.M.M.: Process mining- a research agenda. Computers in

Industry, Special issue on Process / Workflow Mining 53(3), 231–244 (2004)
11. Madey, G. (ed.): The SourceForge Research Data Archive (SRDA). University of Notre

Dame (2008), http://zerlot.cse.nd.edu (last accessed: September 2008)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 124–135, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Process Aspect: Handling Crosscutting Concerns
during Software Process Improvement

Jia-kuan Ma, Lei Shi, Ya-sha Wang∗, and Hong Mei

Key Laboratory of High Confidence Software Technologies, Ministry of Education
School of Electronics Engineering and Computer Science, Peking University, Beijing,

100871, China
{majk06,shilei07,wangys}@sei.pku.edu.cn, meih@pku.edu.cn

Abstract. A frequently emerging situation in process improvement is adding
new concerns into existing processes. Implementing these concerns calls for
changes over a series of tasks, roles, work products and tools, which usually
crosscut different modules of existing process models. Lacking systematic
modeling of these crosscutting concerns may raise difficulties in understanding,
managing, and reusing their implementations. Aiming at such problems, in this
paper we propose leveraging Process Aspect to handle these crosscutting
concerns. Modeling and weaving process aspects into SPEM2.0-based
processes are presented. Finally, an example is provided as a case study.

Keywords: Software Process Improvement, Process Aspect, Crosscutting Con-
cern, SPEM 2.0.

1 Introduction

According to ISO/IEC 15504 [2], software process improvement is defined as “ac-
tions taken to change an organization’s processes, so that they meet the organization’s
business needs and achieve its business goals more effectively”. To advance with
continuous evolving business needs and goals, adding new concerns into existing
processes becomes a frequently emerging situation during process improvement.

On the other hand, to better understand and manage the rich information of soft-
ware process, commonly a process model is organized as a hierarchy of modules,
following the “Separation of Concerns” principle. For example, OpenUP [3] divides
its content into 6 disciplines: Requirements, Architecture, Development, Test, Project
Management, and Configuration Management. Each discipline further contains a set
of tasks, roles, work products and tools.

Some new concerns during process improvement focus on only one discipline. For
example, reduce code defect rate via improving test discipline. Still, there are
numbers of concerns that crosscut many tasks, roles, work products and tools from
different disciplines. In [4], security, accounting, resource management are proposed
as examples of crosscutting concerns. Moreover, intellectual property, customer

∗ Contract Author.

 Process Aspect: Handling Crosscutting Concerns 125

involvement, systematic reuse are also common crosscutting concerns emerging in
software process improvement.

As an example, let’s consider the Intellectual Property (IP) concern. With reuse be-
ing widely accepted, more and more developers begin to use third-party code in their
projects. However, many third-party codes are published under certain licenses, e.g.
GNU, MIT. Improper usage of such codes can lead to severe technical and commer-
cial risks. To avoid this, IP as a new concern should be incorporated into existing
process models. According to our study in 10 Chinese software companies over Bei-
jing, Qing-Dao and Kun-Ming, implementation of the IP concern will at least crosscut
two different disciplines (taking OpenUP as an example): project management and
development, involving a number of activities, roles, work products and tools, as
illustrated in Fig. 1.

Fig. 1. A schematic implementation of the IP concern in OpenUP. Elements inside the red
rectangles are new tasks, roles, work products and tools added for IP.

In order to provide support for IP management, a series of elements (tasks, roles,
work products and tools) should be added. These “add” operations aim at solving the
same concern, but spread over different disciplines. Without systematic modeling
these operations as a whole, several problems may arise:

1. It is by no means easy to understand a crosscutting concern and its implementa-
tion. The collection of change operations actually constitutes certain knowledge on
dealing with a concern. If there is no place where all the changes are formally mod-
eled, such knowledge will scatter over the improved process, making it hard to
understand.

126 J.-k. Ma et al.

2. With further process improvement, implementation of a crosscutting concern
may also be placed in continuous evolution. Heavy workload is called to modify an
implementation which has already spread over process model.

3. An organization usually has several similar processes in use (e.g. variants of
OpenUP), forming the so called process family [5]. For many crosscutting concerns
deriving from organizational consideration, they are intended to apply in several simi-
lar processes. Without systematic modeling, implementations of such concerns can
not be reused among these processes.

Aiming at these problems, in this paper we introduce Process Aspect to handle
crosscutting concerns during process improvement. Applying process aspect can be
divided into two steps. First, model the implementation of a crosscutting concern as a
process aspect. Second, weave the process aspect into existing process model.

The rest of this paper is structured as follows: section 2 provides the process aspect
model and a corresponding XML schema for describing process aspect; section 3
presents the mechanism for weaving a process aspect into SPEM2.0-based[1] proc-
esses; section 4 is an example of applying process aspect on the IP concern. Finally,
we discuss related work in Section 5 and conclude in Section 6.

2 Process Aspect

Similar to the case in software aspect (e.g. AspectJ [6]), definition model and weaving
mechanism of process aspect are greatly influenced by the target process language
(e.g. Little/JIL [7], SPEM2.0). In this paper, we choose SPEM2.0 as the target process
language. SPEM2.0 is a software process engineering meta-model standard, released
by OMG in April 2008. Currently, SPEM 2.0 is supported by most mainstream proc-
ess modeling tools such as EPF [8], Fujitsu DMR Macroscope [9], etc.

Two major features of SPEM2.0 are:
a) Explicitly distinguish reusable method content from its application in process.

For example, a role’s definition and its multiple usages in different contexts are re-
spectively separated into method content and process use. Since our work can apply
both on method content and process use, we do not distinguish the naming difference
between definition and usage. For example, we use Role instead of RoleDefinition (in
method content) or RoleUse (in process use).

b) Provide flexible variability and expansibility via method plugin package.
SPEM2.0 provides comprehensive semantic specifications for method plugin ele-
ments. Tools supporting SPEM2.0 with ‘SPEM Complete’ compliance point all im-
plement such semantics. Later in section 3, we will leverage method plugin package
to implement the weaving of process aspect. The result is a method plugin package,
which can be further integrated with existing process models by tools like EPF, Fu-
jitsu DMR Microscope, etc.

2.1 Process Aspect Model

Just like it was in software aspect, we start with defining the join point, and then the
two parts of an aspect: pointcut and advice.

 Process Aspect: Handling Crosscutting Concerns 127

Join Point. A join point specifies one possibly changed element in an existing proc-
ess model when applying a process aspect. In this paper, every task, role, work
product and tool in SPEM2.0 process models can be a join point. This is quite
different from software aspect, where points in program execution, e.g. calling a
function, setting a field, etc. We define join points as elements in software process
models, instead of certain time points in process execution. The reason is that our
work aims at applying process aspect to cast a series of changes onto existing proc-
ess models, so that they can be transformed to new models, meeting the given
crosscutting concern.
Pointcut. Pointcut is simply a set of join points, on which a certain advice should
apply. A pointcut results from certain filtering among join points, therefore it’s impor-
tant to define the filtering mechanisms, namely pointcut designators.

As our work is based on SPEM2.0 process models, we provide 4 different pointcut
designators corresponding to the 4 types of join points: find_tasks, find_roles,
find_workproducts, and find_tools.

Distinguishing pointcut designators by types means in our model, a pointcut actu-
ally consists of join points with the same type. This is meaningful because it’s gener-
ally very rare that join points with different types can share one same advice, which
will be further discussed when introducing Advice. Also, for sake of later discussion,
we define pointcut type to be the type of join points it consist of. Thus, we have 4
different pointcut types, namely Task, Role, WorkProduct, Tool.

A designator returns all the elements that satisfy the given criteria. Criteria for lo-
cating different types of pointcut vary from one to another, as elements with a type
generally have their own features according to SPEM2.0. For example, we can
specify “find all tasks taking x as an input work product”. But specify “find all roles
taking x as an input work product” is meaningless, which should be “find all roles
responsible for work product x”.

Therefore, formally we define each designator as a function, which accepts given
criteria as input parameters, and returns a set of join points which satisfy the input
criteria as the result pointcut. Criteria are represented by a group of two-tuple (f,v).
For every (f,v), f denotes one certain field of a join point, and v specifies the target
value to match. Fields of a join point are specified according to corresponding defini-
tion in SPEM2.0. We also constrain the type of v by presenting the set of (f, v.type) in
each criteria definition.

tasks_ designators: tasks_criteria → {e | e.type = Task}
 tasks_criteria = {(f,v) | (f, v.type) ∈ {(name, string), (description, string), (step, Step),
(performer, Role), (input, WorkProduct), (output, WorkProduct), (used tool, Tool)}}

roles_designators: roles_criteria → {e | e.type = Role}
roles_criteria = {(f,v) | (f, v.type) ∈{(name, string), (description, string), (skill, string),

(perform, Task), (responsible for, WorkProduct)}}
workproducts_designators: workproducts_criteria → {e | e.type = WorkProduct}
workproducts_criteria = {(f,v) | (f, v.type) ∈{(name, string), (description, string), (au-

thor, Role), (source, WorkProduct) ,(target, WorkProduct)}}

128 J.-k. Ma et al.

tools_designators: tools_criteria → {e | e.type = WorkProduct}
tools_criteria = {(f,v) | (f, v.type) ∈{(name, string), (description, string)}}
For the locating logic, we define:
For ∀d ∈ {tasks_designators, roles_designators, workproducts_designators,

tools_designators },
 n][1, i , v e.f have we)),v,),...(fv,(f),v,d((f e iinn2211 ∈=∈∀

For instance, find_tasks((performer,OpenUP::developer), (input,OpenUP::usecase)) re-
turns all the tasks performed by the role developer and leverage usecase as an input
work product.

Advice. Advice defines which operations should be taken. An operation is repre-
sented as (a,p), where a denotes the action to be taken, and p denotes the parameter
for the action. Formally, we can define Advice as:

Advice = {(a,p) | (a, p.type) ∈ {(add_attribute, string), (add_role, Role),
(add_workproduct, WorkProduct), (add_tool, Tool), (add_task_before, Task), (add_task_after,
Task), (add_unordered_task,Task)}}

It is notable that each operation has its corresponding types of join points on which
it can work. For example, casting add_workproduct on a task is reasonable, while
casting add_workproduct on a tool is meaningless in SPEM2.0. Such an observation
suggests that there exist inherent correspondence constrains between a pointcut and its
advice. We summarize the 19 meaningful correspondence cases in Table 1.

Table 1. Meaningful correspondence cases between a pointcut type and operations in its
advice

Pointcut Type Operation Meaning
Task (add_attribute,x) Add a new attribute x for an existing task
Task (add_role,x) Relate a new role x with anexisting task
Task (add_workproduct, x) Relate a new work product x with an existing task
Task (add_tool, x) Relate a new tool x with an existing task
Task (add_task_before, x) Add a new task x before an existing task
Task (add_task_after, x) Add a new task x after an existing task
Task (add_unordered_task, x) Add a new unordered task x into an existing task
Role (add_attribute,x) Add a new attribute x for an existing role
Role (add_task, x) Relate a new role x with an existing role
Role (add_workproduct, x) Relate a new work product x with an existing role
WorkProduct (add_attribute,x) Add a new attribute x for an existing work product
WorkProduct (add_task, x) Relate a new task x with an existing work product
WorkProduct (add_role, x) Relate a new role x with existing work product
WorkProduct (add_ workproduct, x) Relate a new work product x with an existing work product
Tool (add_attribute,x) Add a new attribute x for an existing tool
Tool (add_task, x) Relate a new task x with an existing tool

2.2 Describing a Process Aspect

Until now, we have process aspect formally defined. However, in practice, users need
an easy and clear way of describing a process aspect. Therefore, we provide a XML
Schema for process aspect defined above. Users can use labels defined in our schema
to describe a process aspect. We present part of the schema in Fig. 2. (A complete
schema is available at http://process.seforge.org/aspect/schema.xml)

 Process Aspect: Handling Crosscutting Concerns 129

Fig. 2. An abstract object diagram for mapping pattern P1. Note plugin element A’ has an extra
attributeX compared to based process element A.

3 Weaving Process Aspect into SPEM-Based Processes

We choose to leverage the VariabilityElement class (in the method plugin package of
SPEM2.0) to serve as the infrastructure for weaving process aspect. In Fig.3., based
process element A and plugin element A’ are both objects of class VariabilityElement.
The link from plugin element A’ to based process element A is established by the
attribute varialibilityBasedOnElement of plugin element A’, the attribute varialibili-
tyType of plugin element A’ specifies using the <<contribute>> semantic to cast
appending changes on based process element A. In such a relation, based process
element A corresponds to a pointcut in process aspect，while for plugin element A’,
its extra attributes and relations to other elements in the same method plugin package
constitute the advice.

In particular, in order to map the 19 meaningful correspondence cases (summarized
in section 2) to SPEM2.0’s method plugin mechanism, we classify them into two
categories, and provide each category with a mapping pattern.

Fig. 3. Leverage VariabilityElement in SPEM2.0 to express the weaving semantics

130 J.-k. Ma et al.

Mapping Pattern 1 (MP1): adding new attribute x for a task, role, work product
or tool in the existing process. Implementing MP1 via SPEM2.0 Method Plugin
mechanism can be done as follows:

1) Create an element A’ in the method-plugin package for advice, A’ have an ex-
tra attributeX, A and A’ have the same type.

2) Create a <<contribute>> relation from A’ to A.

Fig. 4. An abstract object diagram for MP1. Note plugin element A’ has an extra attributeX
compared to based process element A.

MP1 can be used to implement 4 correspondence cases in Table 1, depicted as
follows:

Add new attribute for
existing task

Add new attribute for
existing role

Add new attribute for
existing work product

Add new attribute for
existing tool

Fig. 5. Map 4 correspondence cases to SPEM2.0 by pattern MP1

Mapping Pattern (MP2): relate new element B with an existing element A in the
existing process. Implementing MP2 via SPEM2.0 Method Plugin mechanism can be
done as follows:

1) Create element A’ and element B in the method-plugin package for advice, A
and A’ have the same type.

2) Relate A’ and B.
3) Create a <<contribute>> relation from A’ to A.

Fig. 6. An abstract object diagram for MP2. Note plugin element A’ has no extra attribute but
an extra relation to element B compared to based process element A.

 Process Aspect: Handling Crosscutting Concerns 131

Relate new role with existing task Relate new work product with existing task Relate new tool with existing task

Relate new task with existing role Relate new task with existing work product Relate task with existing tool

Relate new role with existing work
product

Relate new work product with existing role Relate new work product with existing
work product

Add task after existing task Add task before existing task Add task in existing activity

Fig. 7. Map 12 correspondence cases to SPEM2.0 by MP2

Following MP1 and MP2, we can map actions in an advice to standard SPEM2.0
method-plugin infrastructure, which can be understood and interpreted by tools
supporting SPEM2.0. In such a way, an aspect can be weaved into existing
processes.

However, the resulting model is redundant. We can see a simple example as follows:

Fig. 8. The model to the left results from applying mapping pattern MP2 for 4 different actions
in an advice. It can be simplified as the model to the right, with the same semantics.

Such redundancies cause unnecessary complexity in the result model, making it
hard to understand, especially when the content of an aspect is relatively complex.
Therefore, we further simplify the implementation result by merging redundant ele-
ments. The merge algorithm is presented as follow:

132 J.-k. Ma et al.

Let E': list of elements in the aspect-method-plugin-package after Merge.

Proof 1: Semantics of E equal Semantics of E'
For ∀ property p contributed from E to M, let p � x, x is an element

of E.During Merge,
(a) If x acts as e1 in s3, obviously s4 to s8 do not touch p;

 (b) If x acts as e2 in s3, s5 will add p into e1 and e1.contributee
M, p is still contributed from E' to M;

 (c) If x does not satisfy s3, obviously there is no other place in
Merge that changes p

So, p is still contributed from E' to M
In the same way, we can have:
for ∀ related element re contributed from E to M, re is still

contributed from E' to M
Meanwhile, E’ does not introduce any new property or related element

that does not belong to E
As a result, Semantics of E equal Semantics of E'

There are two types of elements in E: some that directly contribute to the original
process (let they be contributors), and others that act as related elements of con-
tributors (let they be related_elements). If we define the simplicity of E as number
of contributors + number of related elements, we can proof that E' has the least
simplicity.

Proof 2: E' has the least simplicity
Proof 2: E' has the least simplicity
In E', the number of contributor = the number of contributee, which

is the possible least. Otherwise there will exist one contribute
without any contributor, which will change the semantics of the whole
Aspect.
Meanwhile, s7 and s8 do not change the number of related_elements,

so the number of related_elements stays unchanged after Merge.
Therefore, we can get that the sum of contributor number and

related_elements number, which is the simplicity defined above, has
the least possible value in E'.
That is to say, E' has the least simplicity

Merge Algorithm
Let E: list of elements in the aspect-method-plugin-package
Let e.contributee: the element pointed by e with a 'contribute' relation
Let e.addProperty(p): adding property p into e
Let relation(e1,e2): relation between e1 and e2
Let e1.addRelatedElement(e2,r): adding relation r between e1 and e2
Let E.deleteElement(e): deleting element e itself and all the links from e or to e
1 For each e1 of E
2 For each e2 of E
3 If (e1 ≠ e2) and (e1.contributee ＝ e2.contributee)
4 For each p of e2.properties
5 e1.addProperty(p)
6 For each re of e2.relatedElements
7 e1.addRelatedElement(re, relation(e2,re))
8 E.deleteElement(e2)

 Process Aspect: Handling Crosscutting Concerns 133

4 An example

In this section, we take IP concern which has been discussed in section 1, as an exam-
ple to illustrate how to model IP concern as an aspect, and weave it into OpenUP.

First, consider and extract changes introduced by adding IP concern. As is depicted
in section 1, we group changes as follows:

Fig. 9. A snippet of resulting model, illustrating change 1. The complete version is available at
http://process.seforge.org/aspect/ip.xml

Fig. 10. Final implementation of IP aspect

134 J.-k. Ma et al.

a) Add two new steps add IP problems to iteration plan and determine IP problem,
two new work products problem_list and potential_problem_list and a new role law-
yer to corresponding tasks performed by existing role project_manager.

b) Add a new step detect potential IP problems, two new work products
risk_pattern and potential_problem_list and a new tool code_scanner to correspond-
ing tasks producing existing work product implementation.

c) Add a new section ip_problem_list into the existing work product problem_list.
Then, use aspect to model these changes. A snippet of resulting model is presented

in Fig, 9.
Finally, after leveraging the two mapping patterns and merge redundant elements,

we can get final implementation the for IP aspect, as depicted in Fig. 10. Now, the IP
concern has been handled.

5 Related Work

There have been efforts on applying aspect in software processes. In [3], a general
analysis on aspect-orientation’s implications for software process is presented. Our
work can be seen as a concrete step towards the direction proposed by [3].

There are also other concrete steps aiming at applying aspect to better support
software processes [10] [11]. In [10], certain policies are defined as aspects, and
weaved into a process-centered software engineering environment (PCE), so that
conformance of these policies is ensured during execution of a process. [11] treats the
12 practices proposed by XP as aspects, and weave them into Eclipse to embody XP
during development. Unlike these works, we focus on using aspect to handle concerns
crosscutting different modules of process models, as a way of better structuring the
rich content in process models.

Aspects are applied in business process as well. In [12] and [13], business rules are
modeled as aspects. [14] and [15] propose aspect-oriented modeling of business proc-
esses. Moreover, an aspect-oriented workflow language, AO4BEPL, is defined in [16].

6 Conclusion

In this paper, we propose introducing process aspect to handle crosscutting concerns
during process improvement. Applying process aspect facilitates understanding,
managing, and reusing implementations of crosscutting concerns in process model.
Then, we propose an aspect model and its weaving method in SPEM-based processes.
The model together with weaving method, bridge the gap from concerns to SPEM
infrastructures.

Our next step will be providing strong tool support for process aspect, allowing us-
ers to define an aspect in a visual way and automatically weave into SPEM-based
processes. Currently, the development is ongoing, and we plan to contribute the tool
as an open source plug-in for Eclipse Process Framework.

We have been collecting and organizing crosscutting concerns and their implemen-
tations for a long time, aiming to set up a process aspect library. According to process
aspects in hand, most of them ask for adding operation, while some requires deleting

 Process Aspect: Handling Crosscutting Concerns 135

and replacing elements in existing process models, which may cause confliction
among several concerns. We will study these open issues in the future.

Acknowledgement

This work is funded by the National Basic Research Program of China (973) under
Grant No. 2009CB320703, the High-Tech Research and Development Program of
China under Grant No. 2007AA010301 and the Science Fund for Creative Research
Groups of China under Grant No. 60821003.

References

1. Object Management Group, Inc. Software Process Engineering Metamodel (SPEM) 2.0
(April 2008)

2. ISO/IEC TR 15504–2:1998 Information technology – Software process assessment– Part2:
A reference model for processes and process capability

3. http://epf.eclipse.org/wikis/openup/
4. Sutton Jr., S.M.: Aspect-Oriented Software Development and Software Process. In: ISPW

2005, pp. 177–191 (2005)
5. Sutton, O.L.J.: Product families and process families. In: SPW 1996 (1996)
6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An over-

view of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, p. 327. Springer,
Heidelberg (2001)

7. Cass, A.G., Lerner, B.S., Sutton Jr., S.M., McCall, E.K., Wise, A., Osterweil, L.J.: Little-
JIL/Juliette: a process definition language and interpreter. In: ICSE 2000, Limerick, Ire-
land (2000)

8. http://www.eclipse.org/epf/
9. http://www.dmrconseil.ca/en/Products/Macroscope/

10. Reis, R.Q., Lima Reis, C.A.: Towards an Aspect-Oriented Approach to Improve the Reus-
ability of Software Process Models. In: Proceedings of the IWEA, New York

11. Mishali, O., Katz, S.: Using aspects to support the software process: XP over Eclipse. In:
Proceedings of the 5th international conference on Aspect-oriented software development,
March 20-24, 2006, Bonn, Germany (2006)

12. Tarr, P., Ossher, H., Sutton Jr., S.: Hyper/J: Multi-Dimensional Separation of Concerns for
Java, Tutorial (2001)

13. AOP for Business Rules (2003), http://ssel.vub.ac.be/br/index.php
14. Odgers, B., Thompson, S.: Aspect-Oriented Process Engineering (ASOPE). In: Moreira,

M.D, Demeyer, S. (eds.) ECOOP 1999 Workshops. LNCS, vol. 1743. Springer, Heidel-
berg (1999)

15. Zhu, J.: Personnel communication. IBM Research (2005)
16. Charfi, A., Mezini, M.: Aspect-oriented workflow languages. In: Meersman, R., Tari, Z.

(eds.) OTM 2006. LNCS, vol. 4275, pp. 183–200. Springer, Heidelberg (2006)

Stochastic Process Algebra Based Software Process
Simulation Modeling�

Jian Zhai1,3, Qiusong Yang1, Feng Su1,3, Junchao Xiao1,
Qing Wang1, and Mingshu Li1,2

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing, China, 100190

2 Key Laboratory for Computer Science, The Chinese Academy of Sciences,
Beijing, China, 100190

3 Graduate University of Chinese Academy of Science,
Beijing, China, 100049

{zhaijian,qiusong yang,sufeng,xiaojunchao,wq,
mingshu}@itechs.iscas.ac.cn

Abstract. In recent years, simulation techniques that have been widely used in
many other disciplines are being increasingly used in analyzing software pro-
cesses. However, researchers from software process simulation community tend
to build a separate new model with various technologies from traditional software
models. This is partially because that software process simulation might take a
completely different approach to describe a process under certain circumstances,
for instance, a process being modeled as an overall system. Another reason is
that traditional software process modeling methods can not provide simulation
functions. The gap between traditional software process modeling and software
process simulation modeling confined a wider application of simulation approach
in the software engineering community. In this paper, we show the possibility of a
simulation model being automatically derived from a traditional descriptive pro-
cess model and thus one does not necessarily need to build a separate simulation
model. By doing so, all information in the descriptive models can be reused.

1 Introduction

Over the past few decades, software organizations have always been facing the problem
that the cost and schedule of software projects are often overrun and the quality of
software product does not meet consumers’ expectation. A lot of research has been
conducted by people from both the industry and academia to solve the problem. Among
those attempts, the research based on software process techniques, such as software
process modeling and software process simulation, is one of the most viable approaches.

The principle that the quality of a software product highly depends on the quality
of the software development process has been widely accepted. Software process is

� Supported by the National Natural Science Foundation of China under grant Nos. 90718042,
the Hi-Tech Research and Development Program (863 Program) of China under grant
No.2007AA010303, 2007AA01Z186, as well as the National Basic Research Program (973
program) under grant No. 2007CB310802.

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 136–147, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Stochastic Process Algebra Based Software Process Simulation Modeling 137

defined as a set of partially ordered process steps, with sets of related artifacts, hu-
man and computerized resources, organizational structures and constraints, intended
to produce and maintain the requested software deliverables [1]. In order to enhance
understanding on performed processes and provide direct guidance on actual software
development, software process modeling has been focused on the representation, anal-
ysis and automatic execution of processes, which has become an active research area of
the academia.

Software process modeling is an extensive and complex domain and many languages
and technologies have their roots in computer science and related domains [2]. For in-
stance, dozens of modeling methods have been developed based on various technolo-
gies, ranging from software design notations and methodologies, formal methods or
languages, to multi-agents or rules-based intelligent systems [3,4]. Besides document-
ing processes, another goal of software process modeling is to provide process design-
ers with a leverage to analyze process models and thus enhance understanding of such
process being modeled.

In recent years, simulation techniques that have been widely used in many other
disciplines are being increasingly used in analyzing software processes. It is mainly
because the validation of a research initiative on software process in real context can
hardly be realized, due to the ever changing external environment and cost concerns.
Compared with traditional analysis approaches, both qualitative and quantitative results
can be achieved by simulation techniques. In addition, a process designer or project
manager can see the impact of different alternatives. As a result, simulation techniques
have been used to address a variety of issues in software process modeling ranging
from the strategic management of software development, supporting process improve-
ments to software project management training [5]. A summary of the state-of-the-art
of software process simulation modeling can be found in [6].

However, researchers from software process simulation community tend to build a
totally new model based on various technologies such as system dynamics (SD) and
discrete event simulation (DES), rather than reusing traditional descriptive models, i.e.
stating how a software should be developed. It is partially because that software process
simulation might need to take a different approach to describe the software process un-
der certain circumstances. For instance, a process is described as an overall system and
its behaviors are described by a set of external parameters that continuously vary over
time [6]. Another dimension of the problem is that traditional software process mod-
eling methods can not provide analysis on software process simulation. The gap be-
tween traditional software process modeling and software process simulation modeling
confined a wider application of the modeling and simulation approach in the software
engineering community.

In this paper, we demonstrate the possibility that a simulation model can be au-
tomatically derived from a traditional descriptive process model. The strength of the
approach is that one does not need to build a separate simulation model and all the in-
formation in the descriptive models can be reused. The basic approach is to introduce
random variables into the language TRISO/ML [7] to describe the uncertainties of a
software development project. The extended language s-TRISO/ML is a graphical pro-
cess modeling language with rigorous semantics in π-calculus [8]. Thus a simulation

138 J. Zhai et al.

model in stochastic process algebras can be produced from a graphical process model in
TRISO/ML. Various kinds of analysis can then be conducted on the simulation model.

The rest of this paper is organized as follows: Section 2 introduces s-TRISO/ML as
well as a general introduction of stochastic polyadic π-calculus. Section 3 provides an
experiment on the modeling and the simulation in s-TRISO/ML. Section 4 and Section
5 review the related work and make a conclusion respectively.

2 s-TRISO/ML: A Modeling Language with Stochastic
Information

To describe the stochastic attributes of a software process and simulate the performance
of a process model, a new software process simulation modeling language named s-
TRISO/ML is used. The language includes two main parts: the definition and the map-
ping rules. The foundation of s-TRISO/ML is stochastic polyadic π-calculus. Software
process modeled by s-TRISO/ML can be used to govern as well as to simulate the actual
software process execution.

2.1 Stochastic Polyadic π-Calculus

Stochastic process algebra (SPA) was first proposed as a tool for performance and de-
pendability modeling in 1990 [9]. It was introduced as an extension of classical process
algebra, such as CCS [10], CSP [11] or π-calculus [8], with timing information aimed
at facilitating the integration of functional design and quantitative analysis of computer
systems. In fact, stochastic π-calculus is popular in biological or biochemical system
modeling and simulation [12,13].

Definition 1 (Stochastic Polyadic π-calculus). The syntax of the stochastic polyadic
π-calculus is given in the following BNF equations:

P := M | P |P ′ | (νz)P | !P
M := 0 | π.P | M + M ′

π := x〈ỹ〉 | x(z̃) | (τ, r) | [x = y]π

Briefly, 0 is inaction that represents a process which can do nothing; the prefix π.P
can perform the output, input, unobserved action or match action, thereby evolving into
P ; the sum M + M ′ offers the choice of M or M ′; the composition P |P ′ – “P par
Q” – places the two processes together and they will be concurrently activated and act
independently, but they can also communicate; the (νx)P – “new x in P”– restricts the
use of the name x to P and it declares a new unique name x, distinct from all external
names, for use in P . As for the output and input prefixes, the intended interpretations
of them are that x〈ỹ〉.P can send the tuple ỹ via the co-name of x and continue as
P , and x(z̃).Q can receive a tuple ỹ via the name x and continue as Q{ỹ/z̃}. The
unobserved prefix (τ, r).P can evolve invisibly to P . In (τ, r), τ is the internal action
of a process and invisible to the external viewer; r ∈ (0, +∞) is a parameter of the
negative exponential distribution governing its duration, and it specifies how long it

Stochastic Process Algebra Based Software Process Simulation Modeling 139

will take to complete the action. +∞ can be expressed by the notation �, which means
the activity can be finished instantaneously, and 0 means that it would be finished in a
large enough time, or it cannot be finished. The match prefix [x = y]π.P can evolve as
π.P if x and y have the same name, otherwise the process will act as 0.

2.2 s-TRISO/ML

The software process simulation model s-TRISO/ML (stochastic-TRidimensional Inte-
grated SOftware development model/Modelling Language) is an extension of TRISO/
ML [7], which is a polyadic π-calculus based graphical software process modeling
language, and is proposed for supporting the TRISO Model advocated in [14]. The pri-
mary element of s-TRISO/ML is the process activity, connected by the temporal rela-
tion operators. The language describes a process as an activity hierarchy and it provides
powerful abstractions of control flow, data dependency, and resource usage in software
processes. More importantly, this language provides a group of mapping rules in or-
der to transform every graphical process model in s-TRISO/ML to a series of stochastic
polyadic π-calculus expressions in a mechanical way. The mapping rules ensure that the
semantics of the graphical model and the stochastic polyadic π-calculus expressions be
consistent. The definition of a software process in s-TRISO/ML is the same as that in
TRISO/ML, which can be found in [7].

In s-TRISO/ML, non-terminal activities, which are divided into sub-activities in a
model, and terminal activities, which are leaf nodes in a model, are separated strictly.
In a s-TRISO/ML model, only terminal activities are actual activities executed by hu-
man resource or other agents, and they are operated in a certain duration. Terminal ac-
tivities can be finished on scheduled time or can be delayed. These activities need to
be expressed in a stochastic way. In opposite, the non-terminal activities in the model
does not happen in actual software processes. The function of these activities is to indi-
cate the execution sequence or the relationship among the actual activities or terminal
activities.

Nonterminal
Activity

Parallel Sequencial Choice Terminal
Activity

Fig. 1. Graphical elements of s-TRISO/ML

Fig. 1 is the graphical elements of s-TRISO/ML. The diamonds stand for the exe-
cution sequence of activities, which include sequential, parallel and choice. The ellipse
stands for the non-terminal activities. The ellipse with rectangle inside stands for the
terminal activities. The caption of an activity can be labeled inside the frame. For a
non-terminal activity, the caption should be its identifier, and for a terminal activity, its
caption should be a couple (ID,r), where ID is the identifier of the activity and r im-
plies for the possible time that the activity may last. The graphical elements in a model
connect each other by links. Attributes can be labeled besides the graphical elements,
including nodes and links.

140 J. Zhai et al.

2.3 Mapping Rules

In this section, the rules for mapping a software process modeled in s-TRISO/ML onto
the stochastic polyadic π-calculus processes are provided. All elements of s-TRISO/ML
defined above are covered by the mapping rules. With these rules, the interpreting pro-
cedure becomes rather straightforward and mechanical. Furthermore, the transformed
s-TRISO/ML can be simulated in stochastic process algebra tools as the input.

Rule 1. For an actor with the unique identifier ac, the stochastic polyadic π-calculus
process for it has the following form:

Aac
def
= assignac(start, end).start.end.Aac|Aac

The process Aac waits on channel assignac for channels start and end. When the actor
wants to begin to perform the activity, the process will send an empty message through
the received start channel. The actor will receive an empty message from the end
channel when all the sub-activities of the assigned activity have been finished. Having
accomplished an activity, the actor will be ready for another task.

Rule 2. For an activity a ∈ A, it receives {b11, · · · , b1m}, · · · , {bl1, · · · , bln} from the
channels {chi1, · · · , chil} and {p1, · · · , pu} from the channel exap a, sends {c11, · · · ,
c1s}, · · · , {cr1, · · · , crt} through the channels {cho1, · · · , chor}, and returns {q1, · · · ,
qv} to its parent ap through the channel exa ap . Then, the stochastic polyadic π-calculus
process Aa for the activity is:

Aa
def
= (ν i1, · · · , il, io)(Ias〈i1, · · · , il〉 |Ea〈i1, · · · , il, io〉 | Oa〈io〉)

Ia
def
= (i1, · · · , il).chi1(b11, · · · , b1m).̄i1〈b11, · · · , b1m〉| · · · |

chil(bl1, · · · , bln).̄il〈bl1, · · · , bln〉.exap a(p1, · · · , pv)

Oa
def
= (io).io(c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv).cho1〈cr1, · · · , crs〉.

· · · .chor〈cr1, · · · , crt〉.exa ap〈q1, · · · , qv〉

The process Aa is the concurrent combination of Ia, Ea, and Oa. The process Ia re-
ceives data from prescribed channels and the channel connecting to its parent activity
then sends the received data to the process Ea through private channels. Acting as a
relay station, Ia ensures that the communication on any input channel can be carried
out immediately and deadlocks will not arise as a result of the mismatch between the
order of input and the order of manipulation. When an activity and its sub-activities
are completed, it will output data to other activities and its parent activity, as shown
by the process Oa. The execution of the activity is modeled by the process Ea, whose
definition is given by the following rules.

Rule 3. For a non-terminal activity a ∈ A, it is refined to w sequential activities,
a1, · · · , aw. Each sub-activity may specify the information exchanges with its parent.
For example, the wth sub-activity will receive {pw1, · · · , pwj} from the activity a and

Stochastic Process Algebra Based Software Process Simulation Modeling 141

returns {qw1, · · · , qwk}. The activity will be assigned to the actor with the unique iden-
tifier ac. Then the Ea process for the activity a is:

Ea = (i1, · · · , il, io).i1(b11, · · · , b1m). · · · .il(bl1, · · · , bln).exap a(p1, · · · , pu).

triggera.assignac〈starta, enda〉.starta.exa a1〈p11, · · · , p1h〉.triggera1.

exa1 a(q11, · · · , q1i).triggereda1. · · · .exa aw〈pw1, · · · , pwj〉.triggeraw.

exaw a(qw1, · · · , qwk).triggeredaw.triggereda.enda.

io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

In this rule, each output variable must be bounded by certain input prefix. As an ex-
ample, for ∀t, 1 ≤ t ≤ w: {pt1, · · · , pt.} is a subset of {b11, · · · , b1m} ∪ · · · ∪
{bl1, · · · , bln} ∪ {p1, · · · , pu} ∪ {q11, · · · , q1i} ∪ · · · ∪ {q(t−1)1, · · · , q(t−1).}. All of
the following rules are also subject to this constraint. Firstly, the process Ea withdraws
the relayed input from the process Ia. Then, the activity a is assigned to the prescribed
actor when the activity is triggered by its parent activity. The actual execution of the ac-
tivity will not begin until the actor decides to do so. As the activity a is a non-terminal
node, the process Ea then sequentially triggers the execution of its sub-activities. When
the activity is completed, it will notify its parent and release the assigned actor. At last,
the obtained data will be sent to the process Oa for output.

Rule 4. For a non-terminal activity a ∈ A, it is decomposed into w concurrently com-
bined activities. Then the Ea process for the activity a is:

Ea = (i, q, i1, · · · , il, io).(νka1, · · · , kaw)i1(b11, · · · , b1m). · · · .il(bl1, · · · , bln).
exap a(p1, · · · , pu).triggera.assignac〈starta, enda〉.starta.(E1|E2)

E1 =(exa a1〈p11, · · · , p1h〉.triggera1.exa1 a(q11, · · · , q1i).triggereda1.ka1.

ka1〈q11,· · ·, q1i〉) |· · ·|(exa aw〈pw1,· · ·, pwj〉.triggeraw.exaw a(qw1,· · ·, qwk).
triggeredaw.kaw.kaw〈qw1, · · · , qwk〉)

E2 = ka1.ka1(q11, · · · , q1i). · · · .ka1.kwa(qw1, · · · , qwk).triggereda.enda.

io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

The process E1 triggers the sub-activities concurrently and the E2 process collects re-
sults from sub-activities and output them to the process Oa. The enforced synchroniza-
tion on channels ka1, · · · , kaw ensures that the process E2 be executed after the process
E1 even under the condition that there is no activity passing data back to the activity a.

Rule 5. For a non-terminal activity a ∈ A, it is decomposed into w sub-activities,
which are combined together through the choice operator. Then the Ea process for the
activity a is:

Ea = (i, q, i1, · · · , il, io).(νk)i1(b11, · · · , b1m). · · · .il(bl1, · · · , bln).
exap a(p1, · · · , pu).triggera.assignac〈starta, enda〉.starta.(E1|E2)

E1 = (exa a1〈p1, · · · , ph〉.triggera1.exa1 a(q1, · · · , qj).triggereda1.k.k〈q1, · · · , qj〉)
+ · · · + (exa aw〈p1, · · · , ph〉.triggeraw.exaw a(q1, · · · , qj).triggeredaw.k.

142 J. Zhai et al.

k〈q1, · · · , qj〉)
E2 = k.k〈q1, · · · , qj〉.triggereda.enda.io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

Rule 6. For a terminal activity a ∈ A, it is not decomposed further. Then the process
Ea for the activity a is:

Ea = (i, q, i1, · · · , il, io).i1(x11, · · · , x1m). · · · il(xl1, · · · , xln).exap a(p1, · · · , pu).

triggera.assignac〈starta, enda〉.starta.(τ, r).exa ap〈p1, · · · , ph〉.triggereda.

enda.io〈c11, · · · , c1s, · · · , cr1, · · · , crt, q1, · · · , qv〉

In the expression above, the invisible behavior (τ, r) is extremely important for this
modeling approach. τ stands for the invisible behavior itself and r implies its possi-
ble operation time. This element reflects the stochastic attribute of a software process
model. It’s worth mentioning that there is no stochastic behavior in the mapping rules
that refers to non-terminal activities, because only terminal activities are real activities
in actual software process. In opposite, the non-terminal activities are all fictitious ac-
tivities for indicating the execution sequence of real activities. We assume all of the
non-terminal activities can be definitely finished instantaneously.

Rule 7. The software process is defined as the concurrent combination of activities and
actors:

SP = Aa1 | · · · |Aam | Aac1 | · · · | Aacn

To analyze or simulate the software process, sometimes an additional process modelling
the environment is needed to make the system closed. The process is named Env and
it is concurrently combined with the process SP . It can be simply defined as:

Env = triggerroot.triggeredroot

where root denotes the root activity of a software process.

3 Experiment

In a model defined by s-TRISO/ML, we give r-value to each terminal activity, and
transform the model into stochastic polyadic π-calculus expressions. Then, the expres-
sions are inputted to PEPA [15], a stochastic process algebra simulation system, to be
simulated. Different r-value of terminal activities would lead to dramatically different
simulation results. If all of the r-values of terminal activities are �, which means all
of the activities are finished instantaneously, the model would degenerate back into a
primary TRISO/ML model without any uncertainty. In software engineering domain, a
r-value will be affected by many practical factors, such as the activity scale, complex-
ity, the productivity of the operator and so on. Different software organizations may use
different practical factors to compute r-value. In this experiment, the following formula
is used to generate r-value of activities:

r = P × C−1 × S−1

Stochastic Process Algebra Based Software Process Simulation Modeling 143

where, P stands for the operator’s productivity, which indicates how much work can be
done in a day by the operator, and S stands for the scale of the activity and C stands for
the complexity of the activity. For example, if the scale of a coding activity is 5KLOC
and the productivity of the operator who is going to be assigned is 0.5KLOC per day,
and if the complexity of the activity is 1, then the corresponding r-value should be 0.1.
In practice, the factors would be calculated based on historical project experiences or
expert knowledge.

TA1 TA2

TA3

TA4 TA5

Fig. 2. A simple software process in workflow graph

Fig. 2 is a simple software process in a generic workflow graph form. In this graph,
activities TA1, TA2 are sequentially executed, and so do activities TA4, TA5. Activity
TA3 is parallelly executed with the branch of TA4 and TA5. TA3 and TA4 are all exe-
cuted after TA2. In fact, the graph illustrates a specific waterfall development process.
TA1, TA2, TA4 and TA5 are requirement, design, coding, and testing activity respec-
tively, and they are sequentially executed. Meanwhile, TA3 is an combined activity with
coding and testing activities, and it can be parallelly executed with the other coding and
testing activities.

Root

(TA1,r1) (TA2,r2)

(TA5,r5)

NTA1

(TA3,r3)

(TA4,r4)

NTA2

Fig. 3. The process model in s-TRISO/ML corresponding to Fig. 2

Further, the process in Fig. 2 can be expressed by an s-TRISO/ML process model,
which is shown in Fig. 3. The process model starts with a non-terminal activity Root,
and all the activities in Fig. 2 are transformed into terminal activities in the model.
Along with the terminal activities, there are two non-terminal activities, NTA1 and
NTA2, added in the model, and they imply the execution relationship among the ter-
minal activities.

To simulate the process, the factors of each activity and its r-value should be instan-
tiated. The factors used in this paper are shown in Table 1. The scale is decided by the

144 J. Zhai et al.

Table 1. The factors of each activity and the r-value of them

Activity Type Scale Complexity Productivity r-value

TA1 requirement 20 pages 1 2 pages 0.1
TA2 design 5 pages 2 1 pages 0.1
TA3 coding/testing 10 KLOC 0.5 0.5 KLOC 0.1
TA4 coding 2 KLOC 0.5 0.5 KLOC 0.5
TA5 testing 1 KLOC 1 1 KLOC 1

activity itself, and the productivity depends on the assigned operator’s ability. The type
of an activity is considered in order to adjust the complexity.

This model is transformed into stochastic π-calculus expressions and simulated by
PEPA for 110 times. Fig. 4 shows the operational duration of each activity in the sim-
ulation. The horizontal coordinate axis indicates the simulation times, which is from 0
to 110, and the vertical coordinate axis indicates the lasting duration of each activity.
Each curve in the figure indicates an activity, and one activity’s lasting duration in each
simulation can be found in the figure. To average the value of each activity’s duration
during the simulation, the expected operational duration under the assigned r-value can
be generated. Further, the result of the average value can be transformed into a Gantt
Chart as an expected schedule of the process. Fig. 5 is the expected Gantt Chart, and it
shows the operational duration of the whole process would be 31 days.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90
TA1
TA2
TA3
TA4
TA5

0 5 10 15 20 25 30 35

TA1

TA2

TA3

TA4

TA5

A
c
t
i
v
i
t
y

Time

Start Time

Duration

Fig. 4. The lasting duration of each activity Fig. 5. The expected Gantt chart

Then, we assume that the assigned operator of TA2 is substituted by a new staff,
whose productivity is half of the primary one. So the r-value of TA2 should be adjusted
according to the new factor of productivity, and the new value would be 0.05. In this
case, the model should be simulated again. Since the total simulation duration is fixed,
the simulation time may be changed. In this new simulation, the simulation time is
reduced to 88. The result is shown by Fig. 6, and the expected Gantt Chart is shown by
Fig. 7. The two figures above share the same meaning with Fig 4 and Fig 5. From the
Gantt Chart, it can be found that the lasting duration of TA2 improves to 24, and that in
Fig. 5 is only 10. It is clear that the simulation result is sensitive to the assigned r-value.

From the simulation results, the delay probability of software process in a certain
executor assignment can be detected. Fig. 8 and Fig. 9 show the total process execution
duration of each simulation. The data in these figures are re-arranged to be a monotone

Stochastic Process Algebra Based Software Process Simulation Modeling 145

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

00

20

40

60

80
TA1
TA2
TA3
TA4
TA5

0 10 20 30 40 50

TA1

TA2

TA3

TA4

TA5

A
c
t
i
v
i
t
y

Time

Start Date

Duration

Fig. 6. The lasting duration of each activity
when TA2 is reassigned

Fig. 7. The expected Gantt chart of the pro-
cess when TA2 is reassigned

0 20 40 60 80 100 120
0

20

40

60

80

00

20

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

Fig. 8. The duration of each times of simu-
lation corresponding to Fig. 4

Fig. 9. The duration of each times of simu-
lation corresponding to Fig. 6

increasing sequence. The figures are based on the two groups of data indicated by Fig. 4
and Fig. 6 respectively. If the requirement is to finish the project in 40 days, then the
delay probability of the process in the two assignments are 22% and 64%. To synthesize
all of the results, an interesting finding can be uncovered: in the first assignment, the
expected finishing time would be 31 days, but there is still 22% probability for the pro-
cess to be delayed; by contrast, in the second assignment, though the expected finishing
time would be 50 days, there is still 36% probability for the process to be finished on
the scheduled time.

4 Related Work

Software process simulation model is first introduced by Abdel-Hamid [16]. In 1998,
a famous paper was published in the domain of software process simulation model
[5], which is widely considered as a milestone in this field. Kellner et al. systemically
discussed the foundational problems in software process simulation model. In the last
ten years, software process simulation model receives wide attention. More than 80%
researches use system dynamics approach or discrete-event simulation approach to sim-
ulate software process. System dynamics integrates quantitative dynamic models with
quantitative and qualitative static models in a natural way. In contrast, discrete event

146 J. Zhai et al.

models easily represent queues and capture the variation in several attributes, which
can be assigned to each entity individually.

IMMoS is one of the most famous system dynamics simulation approaches, intro-
duced by Pfahl et al. [17]. IMMoS enhances the traditional system dynamic approach by
adding a component that enforces goal-orientation, and by providing a refined model.
Unfortunately, the useful information learned from empirical studies is hard to be com-
bined into the simulation result generated by this approach. In addition, it is hard for this
approach to build a system dynamic model in practice. As for discrete-event simulation
approach, Schriber et al. gave a general introduction [18], and Raffo et al. made further
research on this approach [19]. However these researches failed to accurately capture
the continuously changing variables or to elegantly represent simultaneous activities.
To combine the positive aspects of the two approaches, some hybrid approaches are
also proposed [20].

Stochastic process algebra based simulation is widely used in biological or chemi-
cal process simulation. Clark et al. introduced the stochastic process algebras and the
well-known simulation tools PEPA [15]. As applications of this simulation approach,
Bradley et al. used it to model a complex electronic voting process [21], and Clark et
al. showed how the approach works in an interacted battle process [15]. It seems there
is still no influential research on this simulation approach in software process modeling
and predicting area.

5 Conclusion

Both of the software process modeling and the software process simulation are key
techniques in software process research. Proper use of the techniques may well guide an
actual software process and predict the possible performance and outcome of a software
process. Unfortunately, the software process model and software process simulation
model are totally separated in most situations. Software organization has to build two
models for different aims in practice, which may cost extra resource. In this paper, a
new software process simulation model is proposed. The model uniforms the software
process model and the software process simulation model. Only one process model will
be built in order to govern the actual software process execution and to simulate the
software process simultaneously.

A new software process simulation model named s-TRISO/ML is introduced in the
paper. Since the modeling language is a graphical language, it is easy to use for common
process modeler. At same time, it has a strict formal foundation. Various process alge-
bra simulation tools, such as PEPA in this paper, can be used to simulate the modeled
process. The experiment shows that the approach may successfully simulate a modeled
process and give the expected simulation result.

For the future work, an appropriate simulation tool is needed for the approach to
substitute PEPA, which is not optimized for software process simulation and cannot
afford the complex process model. Besides, the empirical research on the r-value in the
model is needed. Many factors may affect the value. To analyze the effect of the factors
and integrate them into the formula would greatly benefit the accuracy of the simulation
approach.

Stochastic Process Algebra Based Software Process Simulation Modeling 147

References

1. Lonchamp, J.: A structured conceptual and terminological framework for software process
engineering. In: Proceedings of the Second International Conference on the Software Pro-
cess, pp. 41–53. IEEE Computer Society Press, Los Alamitos (1993)

2. Conradi, R., Jaccheri, M.L.: Process modelling languages. In: Derniame, J.C., Kaba, B.A.,
Wastell, D.G. (eds.) Promoter-2 1998. LNCS, vol. 1500, pp. 27–52. Springer, Heidelberg
(1999)

3. Zamli, K.Z., Lee, P.A.: Taxonomy of process modeling languages. In: AICCSA 2001: Pro-
ceedings of the ACS/IEEE International Conference on Computer Systems and Applications,
Washington, DC, USA, p. 435. IEEE Computer Society Press, Los Alamitos (2001)

4. Arbaoui, S., Derniame, J.-C., Oquendo, F., Verjus, H.: A comparative review of process-
centered software engineering environments. Ann. Softw. Eng. 14(1-4), 311–340 (2002)

5. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling: Why?
what? how? Journal of Systems and Software 46(2), 91–105 (1999)

6. Zhang, H., Kitchenham, B.A., Pfahl, D.: Reflections on 10 years of software process simula-
tion modeling: A systematic review. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008.
LNCS, vol. 5007, pp. 345–356. Springer, Heidelberg (2008)

7. Yang, Q., Li, M., Wang, Q., Yang, G., Zhai, J., Li, J., Hou, L., Yang, Y.: An Algebraic Ap-
proach for Managing Inconsistencies in Software Processes. In: Wang, Q., Pfahl, D., Raffo,
D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 121–133. Springer, Heidelberg (2007)

8. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes – part I and II. Journal of
Information and Computation 100, 1–77 (1992)

9. Herzog, U.: Formal description, time and performance analysis: A framework. Technical
Report 15/90, IMMD VII, Friedrich-Alexander-Universität (1990)

10. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
11. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677

(1978)
12. Lecca, P., Priami, C.: Cell cycle control in eukaryotes: A biospi model. Electron. Notes Theor.

Comput. Sci. 180(3), 51–63 (2007)
13. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing

calculus to representation and simulation of molecular processes. Information Processing
Letters 80(1), 25–31 (2001)

14. Li, M.: Expanding the horizons of software development processes: A 3-D integrated
methodology. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) ISPW 2005. LNCS, vol. 3840,
pp. 54–67. Springer, Heidelberg (2006)

15. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: Bernardo,
M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007)

16. Abdel-Hamid, T., Madnick, S.E.: Software project dynamics: an integrated approach.
Prentice-Hall, Inc., Upper Saddle River (1991)

17. Pfahl, D., Ruhe, G.: Immos. a methodology for integrated measurement, modelling, and
simulation (2003)

18. Schriber, T.J., Brunner, D.T.: Inside discrete-event simulation software: how it works and
why it matters. In: WSC 2005: Proceedings of the 37th conference on Winter simulation,
Winter Simulation Conference, pp. 167–177 (2005)

19. Raffo, D.: Combining process feedback with discrete event simulation models to support. In:
Software Project Management. International Software Process Simulation Modeling Work-
shop (ProSim 2004), pp. 24–25 (2004)

20. Choi, K., Bae, D.-H., Kim, T.: An approach to a hybrid software process simulation using
the devs formalism. Software Process: Improvement and Practice 11(4), 373–383 (2006)

21. Bradley, J.T., Gilmore, S.T.: Stochastic simulation methods applied to a secure electronic
voting model. Electronic Notes in Theoretical Computer Science 151, 5–25 (2006)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 148–160, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Combining Aspect and Model-Driven Engineering
Approaches for Software Process Modeling and

Execution∗

Reda Bendraou1, Jean-Marc Jezéquél2,3, and Franck Fleurey4

1 University Pierre & Marie Curie
4, Place Jussieu, Paris F-75005, France
{firstname.lastname@lip6.fr}

2 INRIA-Rennes Bretagne Atlantique, Campus de Beaulieu
F-35042 Rennes Cedex, France

{firstname.lastname@inria.fr}
3 IRISA, Université Rennes 1

Campus de Beaulieu
F-35042 Rennes Cedex, France

4 SINTEF, Oslo Franck
Fleurey@Sintef.no

Abstract. One major advantage of executable software process models is that
once defined, they can be simulated, checked and validated in short incremental
and iterative cycles. This also makes them a powerful asset for important proc-
ess improvement decisions such as resource allocation, deadlock identification
and process management. In this paper, we propose a framework that combines
Aspect and Model-Driven Engineering approaches in order to ensure process
modeling, simulation and execution. This framework is based upon
UML4SPM, a UML2.0-based language for Software Process Modeling and
Kermeta, an executable metaprogramming language.

Keywords: Executable models, process modeling and execution, UML.

1 Introduction

Executable process models are process models that can be used not only for docu-
menting processes and methods but also for the support of their execution. Indeed,
executable process models can be used to coordinate between agents, to enforce arti-
facts routing between process’s steps, to ensure rules and constraints integrity and
process deadlines. They can also be of an effective aid since they can be used for
simulation and testing. Simulation results can be used as a basis for important im-
provement decisions such as resource allocation, deadlock identification, estimation
of the project duration and many other aspects that have a direct impact on the process
and thus on the quality of the delivered software.

∗
 This work is supported in part by the IST European project "MODELPLEX" (contract no
IST-3408).

 Combining Aspect and Model-Driven Engineering Approaches 149

During the last two decades, the need for executable Software Process Modeling Lan-
guages (SPML) has been widely recognized. Osterweil opened the way with its seminal
work "Software Processes are Software Too" [12]. He introduced the notion of Process
Programming, which consisted in representing software processes in terms of computer-
readable programs. The main goal behind this was to ensure agent coordination and the
automation of process's repetitive and non-interactive tasks through the execution of
process programs. The process programming trend stimulated many research works and
had as an impact, the emergence of a multitude of SPMLs. These SPMLs were based on
some well-known programming languages (e.g., Ada, LISP) or formal formalisms such
as Petri Nets and put a strong emphasis on the executability aspect.

One of the lessons learned from these first-generation languages is that compre-
hensibility and communication of process's agents around process models is at least as
important as their degree of formality [4]. The use of low-level formalisms by some
process description languages, the lack of flexibility and the impossibility for non-
programmers to use them, were among the main causes of their limited adoption.

Another fact that became manifest to the software process modeling community
was the critical need of having a standard formalism for representing and exchanging
software processes. Instead of reinventing the wheel, many industrial and research
teams were attracted by the success of UML (Unified Modeling Language) and ex-
plored the possibility of using it as a process modeling language [2] [3] [10] [15].
UML is standard, provides a rich set of notations and diagrams, extension mecha-
nisms and whatever its advantages and drawbacks, it is undeniably one of the most
adopted modeling languages of this decade. Experiences with UML were not re-
stricted to the software process community but covered other areas such as the busi-
ness process and the workflow domains [9]. However, these experiences faced in their
turn a major barrier. Despite the expressiveness of the language, UML models are not
executable. Process models were used as contemplative rather than productive assets.
An example of such propositions in the industry is the OMG's SPEM standard (Soft-
ware Process Engineering Metamodel) [10]. While execution was out of the scope of
the first version of SPEM (i.e. SPEM1.1), it has been established as a mandatory
requirement in its second revision (i.e. SPEM2.0). Unfortunately, the recently adopted
standard fails in ensuring this requirement.

In this paper we propose to deal with the executability issue in the context of
UML-based process modeling languages. At this aim, we propose a framework and
an approach for modeling and executing software processes. The proposed framework
is based on our dedicated language for software process modeling called UML4SPM
(UML-based Language for Software Process Modeling) [1] and a metaprogramming
language called Kermeta [7]. UML4SPM comes in form of a MOF (Meta Object
Facility)-compliant metamodel [11], a notation and semantics that extend the UML2.0
standard. To make UML4SPM process models executable, the semantics of the
metamodel is implemented in terms of operations and instructions using Kermeta.
This implementation is then woven into the UML4SPM metamodel using aspect
techniques. It is worth noting that the approach described in this paper for building an
executable environment for UML4SPM models can be generalised to any other MOF-
instance language and is not restricted to UML-based languages.

The paper is organized as follows. Section 2 discusses how UML 2.0 Activities can
be extended to build a software process modeling language and details the

150 R. Bendraou, J.-M. Jezéquél, and F. Fleurey

UML4SPM language. Section 3 presents the executable semantics of UML4SPM and
shows how it is implemented using Kermeta. An example is used to illustrate our
approach. Related work is addressed in Section 4. Finally, in section 5 we discuss this
work and we conclude the paper.

2 UML as a Basis for Software Process Modeling

In UML2.0, Activities have changed radically from UML1.x. Indeed, in the last ver-
sion of the standard, Activities are not only suitable for modeling processes; they also
have some features to support their automation. This is made possible thanks to Ac-
tion packages, which now allow expressing the semantics of most executable instruc-
tions that one can find in common programming languages.

UML2.0 Activities also provide coordination mechanisms in order to ensure proac-
tive control1 and reactive control2. The first kind of coordination mechanism is en-
sured using concepts such as Control Flow, Object Flow and Invocation Actions (e.g.,
CallBehaviorAction). Reactive control is ensured thanks to the use of UML2.0
Events, AcceptEventAction and SendSignalAction constructs. For more sophisticated
coordination mechanisms like concurrency, synchronization, merge, etc., Control
Nodes can be employed. For instance, a Fork Node combined with a CallBehaviorAc-
tion can be used for modeling multiple and parallel activity calls. Furthermore, some
experiences have been realised in order to evaluate the ability of UML2.0 Activities to
support some well-known and complex Workflow patterns [13]. These experiences
revealed that UML2.0 supports more than thirty control flow patterns of forty-three,
which makes it more expressive than most business process formalisms such as BPEL
(Business Process Execution Language) [14]. UML2.0 also offers some advanced
constructs such as Loop, Conditional Nodes, and concepts to deal with exception
handling, which is lacking in most current SPML propositions. All these facilities
offered by UML2.0 added to the fact that it is a standard, that many people are
already familiar with its notation and diagrams, and that a wide bunch of tooling sup-
port is provided, make UML a good candidate as a software process modeling lan-
guage [1]. However, apart from the notion of Activity, UML lacks of some primary
process elements, which constitute the vocabulary necessary for modeling software
processes. This set of concepts was identified by many initiatives in the literature and
regroups elements such as Role, WorkProduct, Agent, Tool, Guidance, Team, etc. [6].

In our proposition UML4SPM, we propose to deal with this issue by introducing these
primary process elements into UML2.0. This is obtained by extending the UML meta-
model and more precisely, the Activity and Artifact metaclasses. This extension comes in
form of a MOF-compliant metamodel and is presented in fig. 1. White boxes represent
the UML metaclasses we extended, i.e. UML2.0 Activity and Artifact metaclasses.

The UML4SPM metamodel aims at defining the minimal subset of concepts for
software process modeling while relying on the advanced constructs and activity
coordination mechanisms offered by UML2.0. Since the aim of this paper is to

1 An imperative specification of the order in which activities (actions) are to be executed -

direct invocation.
2 A reactive specification of the conditions or events in response to which activities (actions)

are to be executed - indirect invocation.

 Combining Aspect and Model-Driven Engineering Approaches 151

ActivityExecutionKind

machineExecution
humanExecution

<<enumeration>>

complexityKind

easy
Medium
Difficult

<<enumeration>>
priorityKind

Low
Medium
High

<<enumeration>>

Agent

skills : String
isAvailable : Boolean

ProcessElemen
tKind

name : String

ProcessElement
description : String 0..11

+kind

0..1

+processElement

1

Tool

description : String
isBatch : Boolean
version : String

Team
TimeLimit

milestone : String Guidance

RolePerformer
name : String

1..n

+performers

1..n

SoftwareActivity

isInial : Boolean = false
executionKind : ActivityExecutionKind
priority : priorityKind
complexity : complexityKind
duration : String

0..1

+endsAt

0..1 0..1

+startsAt

0..1
0..n

+guidance

0..n

WorkProduct

idWorkProduct : String
isDeliverable : Boolean
created : String
lastTimeModified : String
uriLocalization : String
version : String

0..n

+impacts

0..n

ResponsibleRole

responsability : String
qualifications : String
rights : String

1..n

0..n

+rolePerformer 1..n

+Role 0..n

1..n

0..n

+responsibleRoles

1..n

+activities

0..n

0..n

0..n

+workProducts
0..n

+performer

0..n
SoftwareActivityKind

WorkProductKind

ResponsibleRoleKind

Activity
(from IntermediateActivi ties)

Artifact

fileName : String

isInitial : Boolean = false

Fig. 1. UML4SPM Metamodel

present the executability aspect of UML4SPM and not the language itself, the inter-
ested reader can refer to [1] for more details on the metamodel.

By making UML4SPM Software Activity extending the UML2.0 Activity meta-
class, we take advantage of all its properties and associations. Thus, a Software Activ-
ity can be composed of other Software Activities and may contain Actions. An
UML2.0 Activity being indirectly a Classifier, the ability to specify new properties
and new operations, as well as pre and post conditions on the execution of a Software
Activity is also made possible.

The UML4SPM WorkProduct element extends UML2.0 Artifact. It represents any
physical piece of information consumed, produced or modified during the software
development process. An Artifact being a Classifier, WorkProducts can be defined as
InputPins and OutputPins of Software Activities and Actions. It is also possible to
specify composite WorkProducts thanks to the reflexive "nested artifact" association
(not presented in the figure).

We also enriched the UML2.0 activity diagram notations in order to take into ac-
count some new properties and aspects specific to software process modeling that we
introduced by our extension. It is important to note that this extension do not affect
neither the comprehensibility of people already familiar with the UML2.0 Activity
constructs nor their semantics. One that makes use of Activity diagrams can easily use
the UML4SPM notations. This notation is given in fig. 2. Looking to the figure, one
can identify the activity's name, its input and output parameters (and possibly their
current state), its priority in the process, its duration, the assigned roles, the tools used
for performing the activity, accepted and triggered events, if it's machine or human-
oriented, etc. Post and pre conditions can be expressed using OCL2.0 constraints
(Object Constraint Language). These constraints have to be expressed upon process's
constituents (i.e., properties and states of WorkProducts, activities, roles, etc.). Of

152 R. Bendraou, J.-M. Jezéquél, and F. Fleurey

Fig. 3. Software Process Example

course, it is not mandatory that all these features appear on the activity representation.
Fig. 3, gives a simple yet representative example of a portion of a software process
modelled using the UML4SPM notation. This process example was provided by our
industrial partners within the IST European Project MODELPLEX3. We will use it
throughout the paper to demonstrate our approach.

The "Inception Phase" activity represents the context of this process (i.e., container
for all process's activities). This is indicated by the start-blob in the top-left corner. It
is used to coordinate between different process's activities and WorkProducts. The
"M" letter is to indicate that the activity is machine-executable (H for Human execu-
tion). One important aspect is the use of CallBehaviorActions in order to initiate/call
process's activities (e.g., "Elaborate Analysis Model" call). In the call, one has to
precise 1) whether the call is synchronous (use of a complete arrow in the top-left
corner) or asynchronous (half arrow, e.g., "Construction Phase" call); 2) the parame-
ters of the call, which represent WorkProducts inputs/outputs of the activity. Another
aspect is the use of Decision and Merge nodes. The decision node allows for the ex-
pression of a choice of actions to perform depending on a condition (in this case, if
the analysis model is valid or not). Conditions have to be expressed on activity edges
(i.e., object flows) and will be evaluated at runtime. The merge node here is used to
express that the "Elaborate Analysis model" activity may be triggered by one of the

3 Modelplex, IST European Project contract IST-3408, at http://www.modelplex-ist.org/

 Combining Aspect and Model-Driven Engineering Approaches 153

two possibilities. The first one is when the "Inception Phase" activity is launched.
The second one is when the analysis model validation fails.

At this level, UML4SPM is used only for modeling purposes. Since it is
UML-based, there is no direct support for executing UML models. Even if UML2.0
provides execution semantics for each activity's constructs and actions, no implemen-
tation or virtual machine is provided. In the next section, we will see how to deal with
this issue by introducing what we call Execution Model. That latter specifies the op-
erational semantics of each element of the UML4SPM metamodel and particularly of
UML2.0 Activity and Action elements. The Execution Model is then implemented
using Kermeta, our metaprogramming language. The running example described
above will be used to explain the approach.

3 Weaving Executability into Metamodels

The approach we propose for defining executable models requires two main steps.
The first one consists in defining the Execution Model, which aims at specifying the
operational semantics of the metamodel. It defines how each element of the
metamodel should react at runtime and the set of operations it has to perform. In the
context of UML4SPM for instance, this means to specify how the activity starts its
execution, how roles are assigned to activities, how WorkProducts are automatically
routed between activity's actions, how activities react to events, etc.

The second step is to formalise this semantics at the metamodel level. In
UML4SPM, the operational semantics was implemented using Kermeta and inte-
grated to the metamodel. The following sub-sections present the UML4SPM Execu-
tion Model and its implementation using Kermeta.

3.1 Definition of the Execution Model

The idea of the Execution Model is inspired from the RFP (Request For Proposal) issued
by the OMG called: Executable UML Foundation [8]. The objective of this initiative is
the definition of a compact subset of UML 2.0 to be known as “Executable UML Foun-
dation”, along with a full definition of its execution semantics. Since that the building
blocks of UML4SPM are UML2.0 Activity and Action packages, we found it interesting
to take advantage of this specification, while focusing on UML2.0 elements we reused
in our SPML. In UML4SPM, Activity and Action elements are used for sequencing the
process's flow of work and data, for expressing actions, events, decisions, concurrency,
exceptions, and so on. Thus, the implementation of the execution behavior of these
concepts will be used as the core engine of UML4SPM.

The UML4SPM Execution Model introduces the execution model in form of class
diagrams; each class represents the executable class of a UML4SPM element. An
executable class is a class having a set of operations aiming at describing the execu-
tion behavior of the UML4SPM element at runtime. If the element is an UML ele-
ment reused by UML4SPM, then its semantics is implemented according to the one
given by the UML2.0 standard in natural language. The implementation of the UML
Execution Model was restricted to Activity and Action elements that we reused within
UML4SPM, and which respects the UML2.0 semantics.

154 R. Bendraou, J.-M. Jezéquél, and F. Fleurey

Fig. 4. gives an example of the operations and features required for an Activity
Node to execute. In UML, Activity Nodes regroup Actions, Object Nodes (pins), and
Control Nodes metaclasses. The execution semantics adopted by UML2.0 activities is
quite similar to Petri Nets one and is based on offering and consuming tokens be-
tween the different activity's constituents (i.e., Activity Nodes and Activity Edges).

To illustrate this, let's go back to the example we defined in figure 3. When the
"Elaborate Analysis Model" action ends, it produces an output, which is the "UML
Analysis Model" document. This document is placed in the action's OutputPin. In
UML, an OutputPin represents a container that holds action's output values (i.e., To-
kens). An action has an OutputPin for each type of output it produces. The same ap-
plies for InputPin. This output has then to be consumed by the "Validate Analysis
Model" action. Prior to this, the output has to be first put in the action's OutputPin,
offered by the OutputPin to all its out coming edges, checked against guards or condi-
tions, if any, which may be specified between the first action's outputpin and the sec-
ond action's inputpin. In the example, we can figure out a guard specifying that the
"UML Analysis Model" document's state should be set at "created" when passing
from the source action into the target action, otherwise, the target action will not start.
If the guard is satisfied and the target action is ready to execute, then the output is
transferred from the source action's OutputPin into the target action's InputPin, which
would then fire the execution of the action.

Fig. 4. Specification of the ActivityNode's Behavior

Although the example looks very simple in the figure, in order to execute, many
actions have to be carried out. Each concept has a precise behaviour to perform.
Fig. 5. shows a sequence diagram that generalizes all the operations that need to be
executed in order to ensure such interactions between any kind of Activity Nodes. To
refer to the example, it represents the interactions between the source action's output-
pin, the activity edge and the target action's inputpin.

Thus, once all metamodel element's behaviours defined in terms of operations, the
next step consist in implementing them using Kermeta and to weave them as aspects
into the UML4SPM metamodel. Of course, these two steps have to be carried only
once and are completely transparent to the UML4SPM process modeller, who just
instantiates the metamodel (from a graphical editor for instance).

 Combining Aspect and Model-Driven Engineering Approaches 155

sourceActNode: ActivityNode targetActNode: ActivityNodeactEdgeInstance: ActivityEdgetargetActNode: ActivityNode

Fig. 5. ActivityNode and ActivityEdge Interactions

3.2 Implementation of the Execution Model Using Kermeta

Kermeta is an MDE platform designed to specify constraints and operational seman-
tics of metamodels [7]. The MOF [11] supports the definition of metamodels in terms
of packages, classes, properties and operations but it does not include concepts for the
definition of constraints or operational semantics. Kermeta extends MOF with an
imperative action language for specifying constraints and operation bodies at the
metamodel level.

One of the key features of Kermeta is the static composition operator, which allows
extending an existing metamodel with new elements such as properties, operations,
constraints or classes. This operator allows defining various aspects in separate units
and weaving them automatically into the metamodel. The weaving is done statically
and the composed model is typed-checked to ensure the safe integration of all aspects.
This mechanism makes it easy to reuse existing metamodels or to split metamodels in
reusable pieces. It also provides flexibility. For example, several operational seman-
tics can be defined in separate units for a single metamodel and then alternatively
woven depending on a particular need. This is the case for instance in the UML
metamodel where several semantics variation points are defined.

156 R. Bendraou, J.-M. Jezéquél, and F. Fleurey

The purpose of Kermeta is to remain a core platform for safely integrating all the
aspects around a metamodel. For instance, metamodels can be expressed using MOF
and constraints using the OCL. Kermeta also allows importing Java classes in order to
use services such as file input/output or network communications, which are not
available in the Kermeta standard framework. This is very useful for instance to allow
interactions between models and existing Java applications. In the case of
UML4SPM, this allows processes to interact with business applications, the enterprise
workflow, to call distant web services and so on.

Fig. 6 presents an overview of the architecture of the UML4SPM implementation
using Kermeta. The diagram shows the units to be composed in order to build the
UML4SPM environment and simulator. Ecore files (UML.ecore and uml4spm.ecore)
are metamodels expressed using the Eclipse Modeling Framework (EMF). Because
the EMF is compliant with the EMOF standard, these metamodels can be used di-
rectly in the implementation. UML.ecore corresponds to the standardized UML 2
metamodel provided by the Eclipse/UML project. The uml4spm.ecore metamodel
corresponds to the extension of UML for software process modeling given in Fig. 1.

The *.kmt files on Fig. 6 correspond to Kermeta source files. The UML.kmt is an
implementation of the UML semantics in Kermeta. This file especially implements
the semantics of UML 2 activity diagrams, which is reused in the context of the
UML4SPM extension. The file Semantics.kmt corresponds to the implementation of
the UML4SPM Execution Model. An excerpt of the source code of this file is shown
on the right hand side of Fig. 6. The first line of the listing specifies the containing
package for the definition contained in the file. Then the “require” directives are used
to declare dependencies with other units. In the example, the uml4spm metamodel
defines a metaclass named uml4spm::SoftwareActivity. The piece of code shown on
the listing adds an operation named “execute” in this metaclass.

Adding new elements to a metaclass of the metamodel is achieved using the keyword
“aspect” before the declaration of the class. The body of the operation “execute” pre-
sented in Figure 6 implements how a software activity can be executed. The execution
of an activity consists of initializing actions and initial nodes of the activity. In the code,
we first search for actions having input pins without incoming edges in order to initial-
ize them with WorkProducts of the same type and then we look for initial nodes and
initialize them by calling the operation “fire”. In order to fully implement the execution
model of the UML4SPM metamodel, all required operations are implemented in the
same way as for the “execute” operation detailed on the listing.

The file Constraints.ocl shown in Figure 6 encapsulates constraints on the
UML4SPM metamodel. These constrains are written in standard OCL. Figure 6
presents the listing of a simple constraint as an example. In the metamodel given in
Figure 1 there is an aggregation called “performers” from the Team metaclass to Ro-
lePerformer metaclass. In practice, the performers of a team can be either teams or
agents but not tools. The constraint presented is an invariant for the metaclass Team
that ensures that no tools can be added as performers.

Finally, the Kermeta source file SPMSimulator.kmt contains the entry point for a
simulator, which can load process models (i.e. instances of the uml4spm Ecore meta-
model), check the constraints on these models thanks to the OCL constraints and
execute these models using operations that were weaved into it.

 Combining Aspect and Model-Driven Engineering Approaches 157

UML.ecore

uml4spm.ecore

Constraints.ocl Semantics.kmt

UML.kmt

SPMSimulator.kmt

requires

package uml4spm;

require kermeta

require "uml4spm.ecore"

require "UML.kmt"

aspect class SoftwareActivity
{

 operation execute(): Void is do

 // Initialize actions having InputPins without incomming edges

 self.node.select{e|e.isInstanceOf(Action)}.each{ action |
 action.asType(Action).getInputPins().select{ pin |
 pin.incoming.empty }.each { pin |
 loadWorkProductToInputPins(pin)
 }
 }

 //Intialize Activity's Intial Nodes

 self.node.select{e|e.isInstanceOf(InitialNode)}.each { inode |
 inode.asType(InitialNode).fire()
 }

 end

 [...]

}

Context Team inv:

 self.performers->forAll (roleperformer |

 not roleperformer.isKindOf (Tool)

)

Standard UML 2 metamodel provided by the Eclipse / UML project.

Implemenation of UML 2 semantics in Kermeta. This is provided
by the UML Model Development Kits which is part of the Kermeta
project.

Main of the simulator

Fig. 6. Weaving Executability to The UML4SPM Metamodel

4 Related Work

In this section we only deal with UML-based process modeling languages, taxonomy
of first-generation PMLs can be found in [16].

In the industrial side, SPEM1.0 was the first standard SPML based on UML
(UML1.4) [10]. However SPEM1.0 has had a limited success within the industry
since SPEM1.0 did not offer any execution support. Process models were only con-
templative models. In SPEM2.0, the main advance was the proposition of a clear
separation between the content of a method of its possible use within a specific proc-
ess. SPEM2.0 extends the UML2.0 Infrastructure and does not use any concept from
the UML2.0 Superstructure (i.e. Activities, Actions, etc.). Regarding executability,
SPEM2.0 does provide neither concepts nor formalisms for executing process models.
Instead, the standard proposes to either map process definitions into some project
planning tools (e.g. MS. Project) which is not considered as process execution but a
process planning activity or to define transformation rules into some business process
execution languages (e.g. BPEL). Unfortunately, the standard does not define any of
these rules.

In Di Nitto's et al. approach [3], authors aim at assessing the possibility of employ-
ing a subset of UML1.3 as an executable PML. It comprises two main phases. The
first one consists in describing processes using UML diagrams. The second phase
consists in translating these UML diagrams into code that can be enacted by the
team's events-based workflow engine called OPSS. Process constituents can be

158 R. Bendraou, J.-M. Jezéquél, and F. Fleurey

defined by simply specializing a set of predefined classes provided by the approach in
form of a UML class diagram. The flow of work is given in activity diagrams and the
lifecycle of each entity is defined by a state machine. However, the activity and class
diagrams have no links with each other. The approach does not extend the UML lan-
guage nor introduces new concepts. Process elements are simply instances of the
UML Class metaclass, which means that they all have the same semantics and nota-
tion as the UML Class metaclass. Regarding execution, it is essentially based on how
state diagrams defined by the user are precise enough and sound in order to enable a
complete code generation and to allow process execution within OPSS. Otherwise,
code has to be added manually. The weak point in the executability aspect remains
how information defined in activity diagrams (i.e., precedence between activities),
state machines and class diagrams are integrated to generate each of the Java classes
needed for the execution. Authors did not detail how this integration is realized.

Another approach, called Promenade [15], basically follows the same principle as
DiNitto's. To model a process, one has to specialize the set of predefined classes pro-
vided by the approach. To define precedence between process's tasks, one has to de-
fine a precedence graph, which defines the order between all tasks of the process.
However, authors do not specify how the precedence graph (including precedence
rules) is to be integrated with the class diagram to form a complete process descrip-
tion. The approach does not provide any mechanism or way to execute Promenade
process models. No tool or prototype was provided.

In [2], Chou proposed a software process modeling language consisting of high-
level UML1.4-Based diagrams and a low-level process language. While UML dia-
grams are used for process's participants understanding, the process language is used
to represent the process - from UML diagrams – in a machine-readable format i.e., a
program. The principal obstacle of this approach is the lack of an automatic genera-
tion of process programs from UML diagrams, which imposes the rewriting of the
process by developers mastering the proprietary OO language provided by the author.

5 Discussion and Conclusion

Contrarily to traditional process model execution approaches, one key feature of our
approach is the ability to execute process models without any transformation or com-
pilation step. Indeed, current propositions require a compilation phase towards some
execution languages, sometimes proprietary, in order to execute them (cf. section 4).
This step is most often followed by a manual coding step for configuring some as-
pects of the process execution, which is error prone and may induce some traceability
issues between process models and their execution. Using Kermeta, the execution
behavior is defined once in the metamodel and can then be instantiated many times.
Process modelers do not have to deal with code. It is completely transparent for them.
Process models are directly enclosing an execution behavior and can be executed and
simulated straightforwardly without any compilation or transformation phase.

It is also worth noting that the operational semantics we defined respects the one
given by the UML2.0 specification. The fact that that latter is weaved into the
UML2.0 metamodel makes it possible to simulate UML2.0 activity diagrams. Since
UML4SPM extends UML2.0, this semantics is used as the building block of the

 Combining Aspect and Model-Driven Engineering Approaches 159

UML4SPM simulator. Kermeta also offers features that allow triggering actions out-
side the Kermeta virtual machine. This would allow the process execution to interop-
erate with enterprise's applications or external services.

Regarding the expressiveness of UML4SPM, we evaluated it with the well-known
ISPW-6 Software Process Example [5], a standard benchmark software process prob-
lem developed by experts in the field of software process modeling. The description
of the benchmark process by UML4SPM was not just limited to the eight activities of
the core problem but it also succeeded to express most optional extensions. Tool in-
vocation actions, communication mechanisms, exception handling, WorkProduct
versioning and management features and other constructs offered by UML4SPM were
used at this aim. This evaluation is presented in more details in 4 .

Finally, in this paper we introduced Executability of models in the context of
UML4SPM, however, it can be generalized to any MOF-instance language. An im-
portant perspective of this work is the definition of the set of activities and constraints
that would allow a process definition to be modified at runtime and without restarting
the process execution. This work is ongoing using Kermeta and aspect oriented mod-
eling techniques.

References

1. Bendraou, R., Gervais, M.-P., Blanc, X.: UML4SPM: A UML2.0-based metamodel for
software process modelling. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 17–38. Springer, Heidelberg (2005)

2. Chou, S.C., Chen, J.Y.J.: Process Program Development Based on UML and Action
Cases, Part 1: the Model. Journal of Object-Oriented Programming 13(2), 21–27 (2000)

3. Di Nitto, E., et al.: Deriving executable process descriptions from UML. In: Proc. of the
24th International Conference on Software Engineering (ICSE), Orlando, Fl. ACM Press,
New York (2002)

4. Fuggetta, A.: Software Process: A Roadmap. In: 22nd International Conference on Soft-
ware Engineering (ICSE), Limerick (Ireland), June 4–11. ACM, New York (2000)

5. Kellner, M.I., Feiler, P.H., Finklestein, A., Katayama, T., Osterweil, L.J., Penedo, M.H.,
Rombach, H.D.: ISPW-6 software process example. In: Proc. of the first Intern. Conf. on
the Software Process, pp. 176–186. IEEE Computer Society, Washington (1991)

6. Lonchamp, J.: A structured conceptual and terminological framework for software process
engineering. In: Proceedings of the 2nd International Conference on the Software Process
(ICSP 2), Berlin, Germany. IEEE Computer Society Press, Los Alamitos (1993)

7. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented meta-
languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp.
264–278. Springer, Heidelberg (2005)

8. OMG, Semantics of a Foundational Subset for Executable UML Models RFP, OMG
document ad/05-04-02 (April 2005), http://www.omg.org/docs/ad/05-04-
02.pdf

9. OMG, Workflow Management Facility Specification v1.2, OMG document formal/00-05-
02 (April 2000), http://www.omg.org

4 UML4SPM evolution using ISPW6: http://pagesperso-systeme.lip6.fr/Reda.Bendraou/Documents/

UML4SPMEvaluation_ISPW6.pdf

160 R. Bendraou, J.-M. Jezéquél, and F. Fleurey

10. OMG SPEM1.0, Software Process Engineering Metamodel, OMG document formal/02-
11/14 (November 2002), http://www.omg.org

11. OMG MOF, Meta Object Facility version 2.0, adopted specification, OMG document for-
mal/06-01-01 (January 2006), http://www.omg.org

12. Osterweil, L.: Software Processes Are Software Too. In: Proceedings of the 9th Interna-
tional Conference on Software Engineering (ICSE 9). ACM Press, New York (1987)

13. Van der Aalst, W.M.P., et al.: Workflow Patterns. Journal of Distributed and Parallel Da-
tabases 14(3), 5–51 (2003)

14. Wohed, P., et al.: Pattern-based Analysis of the Control-Flow Perspective of UML Activity
Diagrams. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.)
ER 2005. LNCS, vol. 3716, pp. 63–78. Springer, Heidelberg (2005)

15. Franch, X., Rib, J.: A Structured Approach to Software Process Modelling. In: Proceedings
of the 24th Conference on EUROMICRO, vol. 2 (1998)

16. Zameli, K.Z., Lee, P.A.: Taxonomy of Process Modelling Languages. In: Proc. of the
ACS/IEEE Inter. Conf. on Computer Systems and Applications (AICCSA 2001), Beirut,
Lebanon (June 2001)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 161–172, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dynamic COQUALMO: Defect Profiling over
Development Cycles

Dan Houston, Douglas Buettner, and Myron Hecht

The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009
{daniel.x.houston,douglas.j.buettner,myron.j.hecht}@aero.org

Abstract. Various techniques have been used for managing software quality,
including those that predict defect counts over time. This paper introduces a
simulation model based on COQUALMO, which can be calibrated to organiza-
tional process performance for estimating counts of residual defects. This
simulator has the additional benefit of producing a set of estimated defectivity
profiles over a software development cycle. Such a set of profiles can be used to
support quality management decisions regarding the amount and level of defect
removal activities to be applied during a development cycle.

Keywords: Defect profile, COQUALMO, defect introduction and removal.

1 Complementarity in Software Quality Management

Managing software quality requires information on both key product qualities as well
as defectivity. These involve complementary views of a product, illustrated in
Figure 1. The former are usually specific to a product or product line, for example,
usability and response time measures. The latter are generic, based on error and defect
counts, and may be analyzed through profiling over time or by categorization (sever-
ity, type, origin, and so forth). In both quality views, actual values are measured:
product quality measures are compared to goals; defect counts are tracked to expected
values. Also, in both product quality and defectivity views, early tracking, rather than
tracking only later in product or system testing, provides information that can be used
to reduce both risk and cost of development. For product qualities, this early quality
management is epitomized in the predictive modeling approach of Design for Six
Sigma, also called critical parameter management [5]. For product defectivity, early
quality management is exemplified by defect severity profiles, defect leakage matri-
ces, reliability growth curves, and defect discovery profiles.

This paper describes a defectivity estimation tool, Dynamic COQUALMO (DC)
that falls into the last category, defect discovery profiles. DC is based on the COn-
structive QUALity MOdel (COQUALMO)1, described in the next section. Subse-
quent sections discuss defect profiling over time and how profiling can be combined
with COQUALMO, resulting in a simulation method for defectivity estimation. Fi-
nally, an application of the method is described.

1 COCOMO II and COQUALMO were developed at the Center for Systems and Software En-

gineering of the University of Southern California.

162 D. Houston, D. Buettner, and M. Hecht

Fig. 1. Complementarity in Software Quality Management and the Positions of COQUALMO
and Dynamic COQUALMO

2 COQUALMO

In an effort to produce a software quality prediction tool that relates defectivity to cost
and schedule, Devnani-Chulani [7,8] extended COCOMO II1 with two sub-models,
one each for defect introduction and defect removal. The defect introduction and re-
moval process is illustrated in Figure 2.

Requirements
Defects

Design Defects

Code Defects Residual Defects
Defect

Introduction

Defect Removal
Peer Reviews , Automated Analysis , Execution Testing and Tools

Fig. 2. COQUALMO Software Defect Introduction and Removal Model [7]

The extension treats the COCOMO II factors as quality drivers as well as cost
drivers. Quality is measured in counts of non-trivial defects. These include those
defects classified as critical (causes a system crash or unrecoverable data loss or jeop-
ardizes personnel), high (causes impairment of critical system functions and no work-
around solution exists), or medium (causes impairment of critical system function,
though a workaround solution does exist).

For each source of defects (requirements, design and coding), the rate of defects in-
troduced is a nominal value (DIRnom) modified by a quality adjustment factor, which

 Dynamic COQUALMO: Defect Profiling over Development Cycles 163

is a product of defect driver values assigned to COCOMO II factor scales. The defect
driver values were assigned to the factor scales in a two-round Delphi exercise [6].
For example, the number of defects introduced during requirements development, DI-
req, is calculated by (1).

∏
=

∗∗=
21

1
,,

i
reqi

B
nomreqreq erDefectDrivSizeDIRDI req

(1)

The defect removal sub-model is based on three activities: peer reviews, automated
analysis, and execution testing and tools. The process quality of each of these activi-
ties is scaled from Very Low (little or no defect removal) to Extra High (best defect
removal using best process technology and tools).

Table 1. Levels of Defect Removal Activities (abbreviated from [7])

Rating Peer Reviews Automated Analysis Execution Testing
Very
Low

None Simple compiler checking None

Low Ad hoc Static module code analysis Ad hoc

Nominal
Informal roles
and procedures

Static code analysis; Require-
ments/design checking

Basic test process

High
Formal roles
and procedures

Intermediate semantic analysis;
Requirements/design checking

Organizat’l test process;
Basic test coverage tools

Very
High

Formality plus
use of data

Temporal analysis & symbolic
execution

Advanced test tools;
Quantitative test process

Extra
High

Review process
improvement

Formal specification and veri-
fication

Highly advanced tools;
Model-based test mgmt

Using a two-round Delphi exercise, a defect removal fraction (DRF) was assigned

to each quality level of each activity. Residual defects for an artifact j, DRj, are calcu-
lated as a product of the defects introduced into the artifact, DIj, and the product of the
residual defect fractions for each artifact j and defect removal activity i, (1-DRFij).
For example, the number of residual requirements defects can be calculated as (2).

∏
=

−∗=
3

1
,)1(

i
reqireqreq DRFDIDR

(2)

Using COQUALMO, then, requires estimated software size, nominal defect intro-
duction values, project characteristics as COCOMO factor selections, and quality ac-
tivity characteristics as a level selection for each activity.

3 COQUALMO and Simulation Models

COQUALMO is a static model that offers a means of estimating defect introduction
and removal by artifact. However, it also provides a basis for dynamic modeling.
Three research groups have employed COQUALMO in simulation models.

Choi and Bae [4] produced a software development simulation model based on
COCOMO II and COQUALMO. Taking advantage of the quantitative relationships
embodied in these two methods, the authors decomposed the time-aggregated effort,

164 D. Houston, D. Buettner, and M. Hecht

schedule, and defect estimates into product development and defect flows. The
product flow is controlled by sectors for calculating productivity and effort-schedule
distribution. The defect flows are controlled by a sector dedicated to COQUALMO
calculations. To this model, they prepended sectors representing an end user produc-
ing requirements creep and an acquirer choosing trade-offs between cost, quality, and
schedule. The model was used to illustrate results of several policies, including two
ways of treating cost as an independent variable.

Tawileh et al. [16] modified Abdel-Hamid and Madnick’s [1] model to incorporate
a COQUALMO sector for calculating defect injection and removal rates. This model,
which retains the highly aggregated representation of the software development flow,
was used to study residual defect counts under various levels of peer reviews. The au-
thors conclude that peer reviews offered the most effective method of defect removal
compared to automated analysis and to testing.

Madachy and Boehm [12] developed a model of defect flows based on Orthogonal
Defect Classification (ODC) categories and the COQUALMO defect generation and
removal rates. The model was calibrated with NASA software defect data supporting
identification of different detection efficiencies for pairings of defect removal tech-
niques and defect types. For example, peer reviews are successful in finding require-
ments completeness defects but not timing errors. The ODC COQUALMO model
provides insights into defect trends by type over time.

4 Defectivity Profiling over Time

Many researchers and practitioners have sought to establish expected values for defect
profiles over time by fitting distributions to defect discovery data. For system test
data, the resulting curves have been used to estimate latent defects and support test
progress and readiness-for-release decisions. But over the last four decades, quality
experts have sought to exert more influence in the early stages of product develop-
ment to reduce the cost of product quality. The challenge of defectivity profiling has
been obtaining defect-rate data spread over the course of a development cycle [13].
Fortunately, increased use of software inspections has provided data for time-based
defectivity profiling tools such as the defect leakage matrix [3,15].

This investigation seeks to advance defectivity profiling by utilizing the quantita-
tive relationships developed and refined in COCOMO II and COQUALMO.
COCOMO II is used to estimate project duration, then the user of Dynamic
COQUALMO (DC) may specify the duration of each phase. DC then provides a de-
composition of defect estimates across phases so as to achieve a project defectivity
profile. Figure 1 illustrates the conceptual role of COQUALMO and DC in software
quality management.

5 Model Description

To translate COQUALMO into a simulation model, it was necessary to decompose
some of its components. First, peer reviews were separated into requirements, design,
and code reviews by decomposing and allocating the peer review DRFs, under the

 Dynamic COQUALMO: Defect Profiling over Development Cycles 165

constraint that they aggregate to those specified in COQUALMO. Also, COQUALMO
assumes the same quality of practice for each type of quality activity, for example, all
peer reviews at performed at a nominal level. Realistically, quality activities are per-
formed to varying degrees within a project. The model accommodates this variation by
weighting the quality levels of each activity and taking a weighted average.

Testing is also decomposed to distinguish software development testing from sys-
tem testing, in which software reliability is usually measured. This decomposition was
also accomplished by weighting the two sets of testing DRFs under the constraint that
they aggregate to COQUALMO values. Due to the many differences in testing proc-
esses across software types and organization, the two testing phases are simply called
Testing 1 and Testing 2, thereby allowing a user to define the differences between
them and weight their effectiveness accordingly.

Dynamic COQUALMO has six defect flows, an inflow and an outflow for each ar-
tifact type: requirements, design, and code. Each of these flows has a single source,
but multiple outflows, one for each quality-inducing activity. For example, the re-
quirements defect flow is fed by requirements defect generation, but drained by re-
quirements reviews, automated analysis, design reviews, code reviews, testing 1, and
testing 2 (Figure 3).

Fig. 3. Requirements Defects Flows

5.1 Inputs and Outputs

DC inputs include the following.
• Estimated job size in KSLOC.
• Settings for COCOMO II factors, including effort multipliers and scale factors.
• Estimated phase durations and degrees of phase concurrency such that they sum to

the project duration.

166 D. Houston, D. Buettner, and M. Hecht

• Usage profile of quality levels for each defect removal activity.
• Relative effectiveness estimates:

o Relative effectiveness of requirements, design, and code reviews in finding
requirements defects.

o Relative effectiveness of design and code reviews in finding design defects.
o Relative effectiveness of the two test phases in finding defects (requires defi-

nition of the differences between the two phases).

The DC model is designed to include changes of inputs resulting from significant
changes during the course of a project. For example, such changes could include the
effects of funding cuts, redeployment of very experienced personnel, or a redesign of
a project for a greater degree of process discipline. These changes in project condi-
tions can be reflected in COCOMO II factors and the usage profiles of defect removal
activities. To accommodate a discrete project change, DC is implemented as an array
of flows governed by input vectors for different time intervals. At any given simula-
tion time, either the set of flows before a major change or the set following a major
change dominates.

The COCOMO II scales for defect introduction and COQUALMO scales for DRFs
place constraints on defect profiling that reflect project conditions. However, CO-
QUALMO provides several parameters that may be used to calibrate profiles to or-
ganizational circumstances. These include the three nominal defect introduction rates,
the three Size exponents representing economy/diseconomy of scale in defect intro-
duction, and a multiplier to each of the defect removal rates.

The DC model produces a project defect profile and component profiles for genera-
tion and removal, both aggregated and by defect origin. Figure 4 is a particularly in-
teresting example. The curve running the length of the project represents the project’s
defect profile. The upper right line indicates the number of defects after Test 1; the
lower right line, the “reliability growth” curve typically plotted during a system test.

5.2 Composing Defect Profiles with Rayleigh Curves

Following Madachy’s [12] example, Rayleigh distributions are used to model both
defect introduction and removal at lower levels. Madachy modeled defects by ODC
type, whereas this model uses a separate curve for defects introduced in each produc-
tion activity (requirements, design, coding) and for defects removed in each combina-
tion of production activity and detection activity (requirements peer reviews, design
peer reviews, and so forth). Rayleigh curves were used to model defect rates “in the
small” for several reasons. First, they have the intuitive appeal of an early rapidly in-
creasing rate and a long tail. Second, they are easy to implement as a function of time
and amount flowing. Third, the Rayleigh distribution assumptions are often true “in
the small” and violations can be mitigated in the model by timing offsets. (Assump-
tions are discussed further in the Appendix).

Rayleigh distributions have long been used to model project effort loading. Be-
cause defect generation can be considered as proportional to effort for a given set of
project conditions, these distributions have also been used to model defect discovery
rates. A consensus has emerged that a Rayleigh distribution can characterize defect
discovery well over the course of a project. In an early analysis, Schick and Wolver-
ton [14] used a hazard function to derive a software reliability model in the form of a

 Dynamic COQUALMO: Defect Profiling over Development Cycles 167

0

100

200

300

400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Time (Month)

M
aj

o
r

D
ef

ec
t

C
o

u
n

t

project defect profile
project defect profile through testing 1
testing 2 defect removal

Fig. 4. Project Defect Profile

Rayleigh distribution. Trachtenberg [18] was one of the first to observe a pattern of
defect occurrence like a Rayleigh curve. He later published a derivation of the
Rayleigh distribution for defect discovery [19]. Following Trachtenberg’s suggestion,
Putnam and Myers [13] used a Rayleigh distribution to develop a defect rate equation
and calibrated its parameters using data from many software development organiza-
tions. Gaffney’s model [9] is a Rayleigh distribution based on data he analyzed.
Thangarajan and Biswas [17] provided another example of development cycle defect
discovery data that corresponds to a Rayleigh curve. Kan [10] treats the use of
Rayleigh distributions for project defect profiles extensively, distinguishing between
their uses for reliability assessment and for in-process quality management.2

The forgoing examples all considered the distribution of defect discovery over a
development cycle. Their use for modeling defect discovery in phases has precedents.
Kan [10] applied a Rayleigh distribution to defect discovery of field defects and found
a good fit. Similarly, Modroiu and Schieferdecker [11] reported that defect discovery
in each testing phase of communication network software was correlated highly with
Rayleigh curves.

5.3 Rayleigh Curve Implementation

The Rayleigh distribution, a specific case of the Weibull distribution with shape pa-
rameter = 2, has one parameter describing its dispersion. A system dynamics model
implements a rate described by a Rayleigh curve as (3).

(Total amount to be processed – amount processed) * Time * buildup parameter

(3)

2 Interestingly, Kan has found that a Rayleigh curve over a development cycle consistently un-

derestimate field defect rates. Thus, he recommends a Weibull distribution with m = 1.8 when
estimation accuracy at the tail is important. It is not important for this model.

168 D. Houston, D. Buettner, and M. Hecht

COQUALMO provides Total amount to be processed, in this case, the total num-
ber of defects to be introduced or to be removed. A downstream stock accumulates
the amount processed, in this case, the number of defects that have been introduced or
removed). Therefore, the only parameter to be provided for rate calculation is the
buildup parameter. This parameter can be formulated as a function of project duration
and the desired duration of the activity represented by the curve described by (4).

(coefficient * fractional duration^exponent) / planned development duration

(4)

Fortunately, the values of coefficient and exponent can be derived empirically. A
Rayleigh curve generator was used to calculate coefficient and exponent values for
various combinations of planned development duration (3 – 60 months) and frac-
tional durations (.05 – 1.0) of the planned development schedule. The exponent for
95% Rayleigh curve completion is calculated by (5).

-0.01*ln(planned development duration)-2.0377

(5)

Similarly, the coefficient for 95% Rayleigh curve completion is calculated by (6).

6.3889*planned development duration^(-1.0564)

(6)

Using these expressions, Dynamic COQUALMO can produce a buildup parameter
for a Rayleigh curve that fits any portion of any development schedule.

6 Model Testing and Usage

The model has been subjected to a modest amount of sensitivity analysis and replica-
tion testing. It has been found to be most sensitive to the parameters controlling defect
introduction: the product size, nominal defect introduction values, and the 23 Defect
Rate Multipliers (DRMs). A larger set of parameters controls defect removal and in-
dividually these are less influential than the defect introduction parameters.

Size is by far the dominant parameter. The next most influential are the nominal
defect introduction values. Individually the DRMs are far less influential; however,
when taken together as a set of QAF values, they are very influential. The 23 DRMs
can produce 1.7496x1016 values for each QAF with a wide range for each (Table 2).

The distributions of the QAFs were found by producing random sets of DRM val-
ues and calculating the three QAFs. The QAF distributions were found to be lognor-
mally distributed with means between 1.3 and 1.7 and standard deviations between
1.1 and 1.7.

Table 2. QAF value ranges

 QAFReq QAFDes QAFCod
Lowest value 0.02 0.01 0.01
Highest value 67.71 136.06 152.78
Geometric Range 3921.98 12922.82 16160.13

 Dynamic COQUALMO: Defect Profiling over Development Cycles 169

The model was tested for its ability to replicate defect discovery curves of two projects,
referred to as Project A and Project C. These are space system flight software projects that
produced 68 KSLOC (Ada) and 99 KSLOC (50 Ada, 49 assembly), respectively. The
defect data was collected from peer review records and defect record repositories by
Buettner [2]. Though it has a much larger number of defects, Project C’s better use of peer
reviews and testing produced a mature product in a much shorter time than did Project A.
(Figure 5 includes major defects from both peer reviews and testing.) Each project experi-
enced a major change during its course. Project C was redesigned during its third year (fol-
lowing initial defect discovery) and Project A was revised in its eighth year during testing.
The change was much more dramatic for Project C (average QAF change from 11.4 to
0.31) than for Project A (average QAF change from 3.2 to 1.5).

To replicate the defect discovery curves, DC was calibrated to the projects by two
people very familiar with them: they set the values of size, of DRMs, of major change
time, and of the removal activity profiles. Further adjustments were made to the usage
profiles and to the nominal defect introduction values to produce Figure 5.

Several lessons were learned from the replication exercise.
• COQUALMO values for nominal defects introduced (10, 20, and 30 defects

/KSLOC for requirements, design, and code) appear to be high. Values between
.5 (Project C requirements) and 6.1 (Project C code) were used to produce the
modeled curves, loosely constrained by limited knowledge of the ratios of the ac-
tual defect sources.

• The need to adjust the usage profiles suggests that either COQUALMO’s DRF
values require adjustment, or the usage of defect removal activities was reported
inaccurately, or both.

• Software development projects seem to have characteristic defect discovery pro-
files. DC can replicate a discovery profile and, by inference, produce a realistic
defect profiles for use in managing quality effort in future projects.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

Project Time (month)

C
u

m
u

la
ti

ve
 D

ef
ec

t
C

o
u

n
t

Project C

Project A

Actual

Modeled

Fig. 5. Major Defect Discovery Profiles for Projects A & C, actual and modeled

170 D. Houston, D. Buettner, and M. Hecht

7 Further Research and Usage

Work with DC is ongoing. It is being used by a software reliability expert to estimate
the defect load that a project carries into system testing and field acceptance. We also
plan to use it as part of a toolset for assessing the health of a project and the likely ef-
fects of introducing major changes, either desired or undesired. Application to more
projects is expected to produce more facility with the tool, better understanding of
software quality factors, and more accurate estimation of defect removal values.

References

1. Abdel-Hamid, T.K., Madnick, S.E.: Software Project Dynamics. Prentice Hall, Englewood
Cliffs (1991)

2. Buettner, D.J.: Designing an Optimal Software Intensive System Acquisition: A Game
Theoretic Approach. Doctoral Dissertation, University of Southern California (2008)

3. Card, D.N.: Managing Software Quality with Defects. Crosstalk 16(3), 4–7 (2003),
http://www.stsc.hill.af.mil/crosstalk/2003/03/mar03.pdf
(accessed July 22, 2008)

4. Choi, K.S., Bae, D.H.: COCOMO II-based dynamic software process simulation modeling
method. Technical report CS-TR-2006-261, Computer Science Department, Korea Ad-
vanced Institute of Science and Technology, Daejeon, Korea (2006)

5. Creveling, C.M., Slutsky, J., Antis, D.: Design for Six Sigma in Technology and Product
Development. Prentice Hall PTR, Upper Saddle River (2003)

6. Devnani-Chulani, S.: Results of Delphi for the Defect Introduction Model - Sub-Model of
the Cost/Quality Model Extension to COCOMO II. Technical Report USC-CSE-97-504,
University of Southern California (1997),

 http://sunset.usc.edu/publications/TECHRPTS/1997/
 usccse97-505/usccse97-505.pdf (accessed July 24, 2008)

7. Devnani-Chulani, S.: Modeling Software Defect Introduction and Removal: COQUALMO
(COnstructive QUALity MOdel). Technical Report USC-CSE-99-510, University of
Southern California (1999), http://sunset.usc.edu/publications/
TECHRPTS/1999/usccse99-510/usccse99-510.pdf (accessed July 23, 2008)

8. Devnani-Chulani, S.: Bayesian Analysis of Software Cost and Quality Models. Doctoral
Dissertation, University of Southern California (May 1999)

9. Gaffney, J.: Some Models for Software Defect Analysis. In: Lockheed Martin Software
Engineering Workshop, Gaithersburg, Maryland (November 1996)

10. Kan, S.H.: Models and Metrics in Software Quality Engineering, 2nd edn. Addison-
Wesley, New York (2003)

11. Modroiu, E.R., Schieferdecker, I.: Defect Rate Profile in Large Software-Systems. In:
Tyugu, E., Yamaguchi, T. (eds.) Proc. of the 7th Joint Conference on Knowledge-Based
Software Engineering. IOS Press, Amsterdam (2006)

12. Madachy, R., Boehm, B.: Assessing Quality Processes with ODC COQUALMO. In:
Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 198–209.
Springer, Heidelberg (2008); R. Madachy also discusses the ODC COQUALMO model in
Software Process Dynamics. Wiley & Sons, New Jersey (2008)

13. Putnam, L.H., Myers, W.: Familiar Metric Management—Reliability (1995),
http://www.qsm.com/fmm_03.pdf (accessed July 21, 2008)

 Dynamic COQUALMO: Defect Profiling over Development Cycles 171

14. Schick, G.J., Wolverton, R.W.: An Analysis of Competing Software Reliability Models.
IEEE Transactions on Software Engineering 4(2), 104–120 (1978)

15. Seider, R.: Implementing Phase Containment Effectiveness Metrics at Motorola.
Crosstalk 19(11), 12–14 (2006),

 http://www.stsc.hill.af.mil/crosstalk/2006/11/index.html
 (accessed July 22, 2008)

16. Tawileh, A., McIntosh, S., Work, B., Ivins, W.: The Dynamics of Software Testing. In: Pro-
ceedings of the 25th System Dynamics Conference, July 29- August 2. MIT, Boston (2007),
http://systemdynamics.org/conferences/2007/proceed/papers/
TAWIL320.pdf (accessed October 7, 2008)

17. Thangarajan, M., Biswas, B.: Mathematical Model for Defect Prediction across Software
Development Life Cycle (2000), http://www.qaiindia.com/conferences/
SEPG2000/Selected/Best%20Practices/M%20Thangarajan%20&%20Bis
wajit%20Biswas.doc (accessed July 22, 2008)

18. Trachtenberg, M.: Discovering how to ensure software reliability. RCA Engineer, 53–57
(January–February 1982)

19. Trachtenberg, M.: A General Theory of Software-Reliability Modeling. IEEE Transactions
of Reliability 39(1), 92–96 (1990)

Appendix

Trachtenberg (1990) lists the assumptions underlying use of the Rayleigh distribution:
1. The workload is constant; it is neither increasing nor decreasing during the

time covered by the distribution.
2. Processing is uniformly distributed across the workload. For defect genera-

tion, this implies creation of a uniform error density; for error removal, uni-
form opportunity for error discovery.

3. Average-errors “size” increases linearly with time. That is, the probability of
introducing the “remaining” errors increases during defect generation, and
the probability of finding remaining errors increases during defect removal.

4. Discovered defects are removed immediately and no additional defects are
introduced (negligible bad fix rate).

At a project level, these may be violated to varying degrees. Examples are:
1. Workload continually grows due to scope creep, or functionality is signifi-

cantly cut after the project is partially completed.
2. A significant proportion of development is reused software, or testing either

targets or avoids risky functional areas.
3. Neither product complexity nor schedule pressure increase during generation

activities. Defect removal efficiency decreases over time.
4. A substantial portion of major defects are not fixed in the phase found, or the

fixes either don’t work or produce undesirable side effects.

Similar activity-level conditions can be listed as reasons that a Rayleigh distribu-
tion may not adequately characterize defect generation or defect removal activities.

1. Workload fluctuates significantly during the phase, for example required
functional capability grows 50% during the requirements definition phase.

172 D. Houston, D. Buettner, and M. Hecht

2. The workload is not processed uniformly, for example some design work is
performed in great detail while other parts of design are left at a high level
relative to implementation.

3. The probabilities of introducing and removing remaining errors decrease, for
example a high turnover in testing staff produces inefficient testing.

4. Each product generation or defect removal activity is not distinct but is inter-
leaved with other activities, for example code is integrated as it is produced.

5. Defect generation and removal rates are distorted by high rates of bad fixes.

To the degree that the foregoing conditions are can be avoided in a project,
Rayleigh curves provide better models of defect introduction and removal. However,
some conditions that undermine Rayleigh assumptions are desirable, for example con-
tinuous integration with daily builds, or incremental deliveries. For such cases, Dy-
namic COQUALMO provides currency parameters for modifying curve offset.

A Hybrid Model for Dynamic Simulation of
Custom Software Projects in a Multiproject

Environment

Javier Navascués1, Isabel Ramos2, and Miguel Toro2

1 Universidad de Sevilla,
Departamento de Organización Industrial y Gestión de Empresas,

Av. Descubrimientos s/n, 41092 Sevilla, Spain
jnavascues@us.es

http://io.us.es
2 Universidad de Sevilla,

Departamento de Lenguajes y Sistemas Informáticos,
Av. Reina Mercedes s/n, 41011 Sevilla, Spain

iramos@us.es, mtoro@us.es

Abstract. This paper describes SimHiProS, a hybrid simulation
model of software production. The goal is to gain insight on the dynam-
ics induced by resource sharing in multiproject management. In order
to achieve it the hierarchy of decisions in a multiproject organization is
modeled and some resource allocation methods based on algorithms from
the OR/AI domain are used. Other critical issues such as the hybrid na-
ture of software production and the effects of measurement and control
are also incorporated in the model. Some first results are presented.

Keywords: Hybrid simulation, multiproject resource management, hi-
erarchical decision making.

1 Introduction

Dynamic simulation of software projects is a well established field of research
and application. Software project simulation models have been able to provide
significant insight on many characteristics of the software production process.
Nevertheless some real-world settings do not lend themselves easily to existing
models. One particular question is the problem of resource allocation to projects
in the case of software developed by multiproject organizations, i.e. software
built by organizations working simultaneously in several projects for different
customers with shared resources. Depending on the circumstances, this kind of
software projects can become extremely risky as the intrinsic uncertainty of each
particular project compounds with the mutual dependency between projects.

The research work presented here aims to develop modeling tools adequate
to one of these cases: a medium-sized software engineering company whose busi-
ness consists in developing custom software projects for State agencies with a

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 173–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

174 J. Navascués, I. Ramos, and M. Toro

relatively stable set of human resources. The work adapts state-of-the-art mod-
els and methods both from the field of Software Engineering and from Project
Management. In particular it builds on dynamic models aimed at the simulation
of software production on one hand, and constrained resource project scheduling
algorithms on the other.

The rest of this paper is organized as follows: Section 2 presents the critical
issues this research tries to address. Section 3 comments on previous work carried
by the academic community which has been revised and, when appropriate, used
to build the model. Section 4 introduces the model, its main features and its
operation. Section 5 presents some of the first results, draws conclusions and
presents the limitations of the model in its current state. Section 6 announces
future work.

2 Critical Issues in Custom Software Projects

The aim of this research is to gain understanding in resource allocation methods
to software development in a multiproject context. Although it is focused on a
concrete software company the class of problems studied are relevant for some
branches within the software industry. Four are the issues that have been judged
as being critical for the case under study:

1. Uncertainty owing to the combined effect of individual project risk and re-
source sharing

2. Coexistence of different levels of decision in a multiproject environment
3. The need to account both for continuous and discrete features in software

production simulation
4. The trade-offs of implementing more or less tight measurement and control

processes and SPI programmes in this context.

2.1 Resource Allocation and Uncertainty

Custom software developed for governmental agencies consists mostly in appli-
cations and functionalities which run on top of or interface with large existing
legacy systems. This means that the developers must know and understand not
only the project they are involved in but also the system or systems with which
it will interact. Additionally in these cases the development model is usually in-
cremental and evolutionary as opposed to waterfall models. Another particular
feature of this kind of projects is what can be termed as volatility of require-
ments meaning that requirements are a source of uncertainty through the whole
development cycle due to the complexity of the larger systems involved and of
interactions which cannot easily be forecast in advance.

All these circumstances call for development teams composed by (at least
a core of) experienced personnel who must remain committed to the project
throughout the whole development cycle. To make things worse, these projects
are prone to waiting periods owing to the number of stakeholders concerned
and the complexity of decision making involved. Ideally the development team

A Hybrid Model for Dynamic Simulation of Custom Software Projects 175

should not remain idle during these periods but this could affect productivity
by switching between tasks.

This are the kind of circumstances which determine the real difficulties of
managing this kind of projects, both at the single project level when coping
with the perturbations inherent to its development or induced by other projects,
and at the company level when facing the problem of dynamically assigning
and reassigning staff to meet delivery dates while minimizing the idle periods,
keeping a check on multitasking and - of course - avoiding excesses of personnel.

2.2 Multiple Decision Levels in a Multiproject Environment

In [9] the multiproject management problem is viewed under two different op-
tics: the first focuses on the decision scope traditionally classified as strategical,
tactical or operational. The second framework views multiproject environment
in terms of variability and dependency. An organization specializing in custom
software development faces a significant degree of variability at the project level.
If resources are shared across projects, then a great dependency appears at is
has been described in the previous paragraph. A rational management strategy
typically will try to reduce dependency between projects at the operational level
coping with it at the tactical one.

Accepting a project is an strategical decision and is left out of the problem un-
der consideration. So projects appear earmarked with their intermediate and final
deadlines conceptualized in terms of time windows. The problem then becomes:

– At the tactical level; allocate resources to each project so that delivery dates
are respected. This should be attained using the existing capacity in the
most economic possible way within quality standards. It is then a tactical
capacity planning problem minimizing costs and respecting both temporal
constraints and previous allocations.

– At the operational level; schedule each project within the margins imposed
by the tactical planning providing for the intrinsic variability affecting each
one. It is then a resource constrained project scheduling problem with gen-
eral precedence relations(GRP-RCPSP) [4,6] under uncertainty where the
objective function is minimizing makespan.

2.3 Projects and Processes: The Hybrid Nature of Software
Production

The life-cycle of a software project is populated by concrete artifacts built, veri-
fied and validated by concrete agents. These entities are discrete in number and
different from each other even if they can be grouped in categories. On the other
hand the concept of process embodies the idea of commonalities among entities
within categories. This allows for the possibility of aggregation into continuous
magnitudes of some quantifiable features of software development. To account
for both views, the discrete and the continuous one, using a hybrid approach to
modeling is needed.

176 J. Navascués, I. Ramos, and M. Toro

When the issue is the production of custom software in a multiproject envi-
ronment the need for hybrid modeling becomes even greater. Custom software
projects are essentially distinct from each other so many product metrics cannot
accumulate nor average; but custom software projects developed in a multipro-
ject environment draw the workforce used from a common manpower stock and
on the other hand the current quality improvement paradigm relies on the notion
of process associated to the idea of repeatability end, thus, akin to continuity.

2.4 Software Process Management and Improvement

A difficulty arising when facing a poorly structured or inmature process is that
it does not lend itself easily to formal modeling. The mechanisms which can
explain the performance remain hidden behind a conglomerate of informal and
opaque practices. The very effort of modeling becomes a sort of diagnosis of the
current state and can actuate as a first step toward process improvement. When
simulating it seems reasonable, instead of taking for granted the existence of
formal metrics and procedures to acquire them, try to model how this is done.

3 Previous Work

Software project simulation is an active research field originating in the seminal
work by Abdel-Hamid and Madnick [2] based on System Dynamics which has
been refined and enriched with many contributions and integrated with other
lines of research and simulation paradigms.

From a professional and academic point of view the major reference consists in
the series of PROSIM workshops (Workshop of Software Process Simulation and
Modeling) starting in 1998 which became in 2006 the SPW (Software Process
Workshop), and later a special track of ICSP, an ICSE (International Conference
on Software Engineering) co-located event. A recent review by [21] provides
a comprehensive outline of the kind of problems that are researched and the
methodological approaches used. When the research here presented was in its
final stage, a book by Madachy [12] was published in which the state of the art
of continuous simulation of the software process is thoroughly presented.

3.1 Multiproject and Incremental Models

It is worthwhile mentioning that even though as soon as 1993 Abdel-Hamid [1]
pointed out that estimation models and, by extension, simulation models would
be of little use if the implications of staffing at the whole organization level are
not taken into account, the amount of work produced relating to multiproject set-
tings is quite scarce. Recently published work [21] shows that this gap in research
remains to be filled. In a review of the proceedings of the before mentioned work-
shops between 1998 and 2007 only one out of 61 papers is classified as multi-project
in scope. Another paper from the 2008 edition [7] focused entirely on multiproject
resource allocation literature, points only six cases of simulation models.

A Hybrid Model for Dynamic Simulation of Custom Software Projects 177

Most published multiproject models, on the other hand, explicitly model a
particular instance of a multiproject or incremental setting but they are not
intended to model any configuration nor superposition of projects. An interest-
ing exception is constituted by Powell et al. [16], a System Dynamics model of
concurrent development. The authors propose an abstracted model connecting
resources, time and effort defined in a modular way at several hierarchical levels:
work package, phase, deliverable, project and the organization.

3.2 Simulation and Advanced Methods for Resource Allocation

Most approaches combining simulation and advanced methods for resource al-
location between several projects are oriented either to assessing Operation Re-
search based solutions using Monte Carlo simulation or simulating the state
space where a heuristic method is used to find a ‘good enough’ solution.

The first approach, as shown in [3,13], requires statistical chraracterizing of
the problem and it is oriented basically toward risk assessment. Lee and Miller
[11] is another example combining dynamic simulation with project management
techniques. Padberg [15] presents a line of work in which schedules are gener-
ated through an approximate dynamic programming algorithm optimized over
a subspace of the whole solution space. Neither of the two approaches consider
dynamic reallocation policies so in fact decision making is not simulated.

To simulate decision making resource allocation should change dynamically in
respisne to certain events. This is implementeted by Özdamar [19] who employs
priority rules in projects defined in fuzzy terms. Another interesting example is
Joslin and Poole [10] who present an agent-based model which simulates dynam-
ically the assignment of staff to a project with several functionalities that must
be delivered within previously fixed deadlines.

3.3 Hybrid Models

During the last decade, hybrid simulation has been one of the most frequent
research themes. Most of the work is based on the combination of continuous
(System Dynamics) and discrete-event simulation.

Rus et al. [18] and Martin and Raffo [17] are examples where the work en-
vironment, productivity and resources are treated as continuous variables while
the dynamics of the work products and artifacts is presented as essentially dis-
crete. The model presented in [14] follows the same scheme although it also
implements a hierarchical approach when representing global software develop-
ment.The model presented by Donzelli and Iazolla [8] treats the work process as
basically continuous and resources as queue servers which obviously are discrete.

The DEVS formalism established by Ziegler [20] is used by Choi et al. [5] in
what seems the more methodologically consistent proposal for hybrid modeling
at least as far as the authors of this paper have been able to identify. Based on this
formalism the cited authors formulate a model obviously inspired in the classical
one by Abdel-Hamid and Madnick [2] in which the usage of an adequately small
time step and the so called QSS - quantized-state system - as an alternative to

178 J. Navascués, I. Ramos, and M. Toro

interpolation for numerical integration provides at least theoretically a natural
way to hybrid simulation.

4 The SimHiPros Model

SimHiProS is an hybrid model which simulates the production of software in a
multiproject environment through a hierarchy starting from the most elementary
work processes up to the wohle organization. The first version has been coded
in Modelica simulation language and implemented in a MathModelica1 simula-
tion environment. The hierarchy is instantiated through a modular architecture
comprising three levels: package, project and multiproject. Apart from these hier-
archically encapsulated modules which represent the hierarchy of the production
process the model comprises a module of environment which allows to simulate
the dynamics of the workforce in the organization and a functional module which
implements functions and algorithms and is called by the former modules. Each
of the three hierarchically ordered modules has got three components: activity,
allocation and measure and control. The block diagrams presented in figures 1
and 2 represent these components as blue, orange and green boxes respectively.

Fig. 1. Block diagram of the general architecture of SimHiProS

4.1 The Basic Level: Package Module

The package module simulates the work process as a number of elementary work
units, tasks, which must be carried out to obtain a certain artifact. The pack-
age size is the number of tasks that must be completed. The activity compo-
nent within the package simulates the continuous work process as tasks moving
1 MathModelica is a Trademark of MathCore Engineering AB.

A Hybrid Model for Dynamic Simulation of Custom Software Projects 179

Fig. 2. The package module

through four consecutive backlogs : initial tasks, tasks to build, tasks to verify
and eventually tasks to iterate and accumulating in a finished tasks level. The
rates represent the actual work in preparation, construction, verification, error
detection and correction and are determined by the resources allocated and the
productivity of these resources. The productivity and the fraction of tasks (error
production) to iterate is fixed in the current implementation although both are
typically modeled as non-linear phenomena in state-of-the-art models. These non
linearities have been intentionally set aside because the emphasis in the current
model has been set upon the dynamic effects of the allocation policies.

The allocation component at the package level distributes the resources avail-
able to the package, which are themselves assigned at the project level, to the
different rates acting upon the backlogs. Several elementary intra-package al-
location methods have been implemented such as a FIFO dispatching rule or
allocating personnel in proportion to pending backlogs. The assigned resources
to each rate vary in a discrete manner in a double sense: the assignments do
not change continuously but at fixed time intervals and the number of resources
(developers, engineers, ...) assigned is always integer.

The measurement component of this module samples at fixed intervals the
levels (backlogs) and records the resource usage. These data are used by the
allocation component and are also passed to the project module to be used as is
described in the following paragraph.

4.2 The Operational Level: The Project Module

At the operational level, the activity component is a network of packages (see fig-
ure 3) logically connected through precedence relations representing the sequence

180 J. Navascués, I. Ramos, and M. Toro

Fig. 3. Activity component of the project module

of artifacts in which the whole development process is organized. A package is ac-
tivated when the logically preceding artifacts are complete. This gives the model
enough flexibility to represent different WBS (work breakdown structures) and
even different development cycle models.

The measurement component gathers the output of the corresponding compo-
nents at the package level and calculates project metrics designed following an
Earned Value Management framework. This metrics are passed on to the tacti-
cal (multiproject) level and are also used to activate the reallocation algorithms if
necessary. In order to trigger the reassignment procedures, the measurement com-
ponent makes estimates of the finish dates and compares them to the planned val-
ues. In case the deviation grows bigger than a previously set value, resources are
reassigned.

The allocation component distributes between packages the resources allo-
cated to the current project following a squeaky wheel optimization algorithm
aiming to reduce makespan subject to time-window constraints. If this algorithm
is not able to find a solution respecting the due dates, a message is passed to the
tactical level to allow for resource reallocation across projects. The non-linear
effects of schedule pressure on productivity and error generation which have been
laid apart in the initial implementation of the model would naturally be modeled
within this module as the relevant factors pertain to the project level.

4.3 The Tactical Level: Multiproject Module

At the tactical level, the activity component is made up of the projects currently
active in the organization. The measurement component keeps track of the met-
rics of each individual project and their deviations and provides signals to the
allocation component which reassigns resources between projects.

4.4 The Environment and the Functional Modules

The environment module models in a traditional System Dynamics fashion the
evolution of human resources in terms of new personnel hiring, dismissals,holiday

A Hybrid Model for Dynamic Simulation of Custom Software Projects 181

or illness leaves, or resources temporarily unavailable due to infrastructural tasks,
training schemes, etc. Although effective personnel is modeled in an homoge-
neous category it is possible to divide this into several career levels accounting
for different degrees of experience and maturity.

The functional module contains the different functions called by the alloca-
tion components thus implementing the resource allocation algorithms and other
auxiliary routines such as extrapolation of forecast values, precedence rules main-
tenance, WBS network topology description, etc.

4.5 Operation of the Model

The model is initialized with the projects under study, their WBS and size;
the initial resource allocation provided by the tactical planning; and a fore-
cast for staff demography (new contracts, people on leave, ...). In absence of
any disruption, the model will follow the planned course allocating resources to
projects following the tactical plan, and to work packages within projects fol-
lowing the operational model. In this sense, each project (itself an instantiation
of the project module) actuates as an autonomous agent. All this is constrained
by the dynamics of available staff simulated by the environment module.

Once the model has completed a base run, the results translate into planned
time profiles for the metrics of each individual project. These values are recorded
and experiments of disruptions can be carried out. These experiments consist
in unexpected events affecting staff (such as people leaving in the middle of
a project) of affecting projects (new requirements, errors discovered, ...). The
operational agent will try to mend the schedule within the corresponding project
initially by expediting all feasible resources to the affected tasks and subsequently
exploring better alternatives with the randomized squeaky wheel algorithm. In
case it is not enough, a message will be passed to the tactical level. In this case,
the tactical plan is repaired with a simple neighborhood heuristics.

5 First Results, Conclusions and Limitations of the
Model

5.1 First Results

The model’s parameters have been estimated with data obtained from a sample
of projects carried out by a middle sized company working for public agencies in
Spain. In fact the model was developed to gain insight in the production man-
agement problems of this company. With this parameters and a set of ‘stylized’
events representative of the kind of disruptions the projects are liable to, a series
of simulation experiments has been carried out.

Figures 5 and 6 show the responses of the model in a simplified case concerning
two projects (whose activity networks are depicted in figure 4). In the first case
there is a reassignment between activities within the first project. The second fig-
ure shows what happens when the resources assigned to the first project are not
enough to repair the schedule and they must be borrowed from the second project.

182 J. Navascués, I. Ramos, and M. Toro

Fig. 4. Two sample projects on activity on node notation

Fig. 5. Resource reassignment between activities of the first sample project

Fig. 6. Resource reassignment between the two sample projects

A Hybrid Model for Dynamic Simulation of Custom Software Projects 183

5.2 Preliminary Conclusions

Although the model is still in a first version, some conclusions can be drawn in
the sense that the features which were conceptualized as critical for the kind of
software projects under study have been successfully incorporated to the model.
In particular the model represents, to the best of our knowledge, a step forward
in the state of the art of dynamic simulation of the software process at least in
the following issues:

– It is a naturally hybrid model based on DAE differential algebraic equations
with a numerical solver which manages the integration step dynamically
allowing for very short intervals in the vicinity of discrete events

– It has got a modular architecture allowing for simulation of various life-cycle
models (waterfall, incremental, evolutionary, ...) and capable of representing
hierarchies

– It implements three levels of hierarchically differentiated decision making
levels (work package, project and multiproject)

– The resource allocation decisions at project and multiproject level are dy-
namically activated by the results of the simulation and are based on algo-
rithms and models from the OR/AI community

– Measurement effort is explicitly modeled and associated costs are recorded
and accumulated as a first step towards assessing the trade-offs of control
policies.

5.3 Limitations of the Model

In its current version, the model has got the following limitations:

– The programming language is a declarative one and its algorithmic possibil-
ities are not very reaching so the model implements relatively simple allo-
cation algorithms; at the operational level serial generation schemes based
on priority rules and SWO, at the tactical level a very simple neighborhood
heuristic.

– Many state-of-the-art non linearities have not been implemented: such as
the impact of schedule pressure on productivity and percentage of errors,
communication overheads, These effects have intentionally been laid apart
because the research interest was focused on dynamics provoked by resource
sharing, but the model is prepared to incorporate them.

– The WBS of the projects remain static during the simulation although the
work contents of any particular task can change; this way a change in the
structure of a project which can be the outcome of a decision by the project
manager in response to some disruption cannot be simulated.

6 Further Developments

Further developments planned consist basically in overcoming some of the lim-
itations stated above and exploiting the model’s features and capabilities as a

184 J. Navascués, I. Ramos, and M. Toro

support tool for the concrete project management problems under consideration
in incumbent company.

In the first strand, the immediate tasks will be incorporating the results of
previous work concerning non-linearities in relation to productivity, quality, ...
to the model. Secondly, implementing more sophisticated algorithms of resource
scheduling. The Modelica language is oriented toward scientific simulation of
models of physical and/or technical systems and lacks powerful algorithmic fea-
tures. The only possibility to employ more sophisticated procedures is through
calls to C++ or FORTRAN coded functions.

A more ambitious goal is developing the possibility of dynamical reconfig-
uration of the WBS of projects as response to disruptions, something that is
consistent with rational management practices but it is very difficult to imple-
ment with the tools used up to now. Both this and the afore mentioned issue of
the algorithmic power calls for a reconsideration of the modeling language.

Concerning the usage of the model as a tool for production management a
debate is currently under way with the incumbent company on how to evolve
the model to integrate it with the current project control system to use it in a
Decision Support Tool for project management.

Acknowledgments

The work here presented has been supported by the Spanish Ministry of Science
and Innovation grants no. TIN2004-06689-C03-03 and TIN2007-67843-C06-03.
The authors wish to thank the useful remarks and suggestions received from
three anonymous reviewers of a previous version of this paper.

References

1. Abdel-Hamid, T.K.: A multiproject perspective of single-project dynamics. Journal
of Systems and Software 22(3), 151–165 (1993)

2. Abdel-Hamid, T.K., Madnick, S.E.: Software Project Dynamics An Integrated Ap-
proach. Prentice-Hall, Englewood Cliffs (1991)

3. Antoniol, G., Cimitile, A., Di Lucca, G.A., Di Penta, M.: Assessing staffing needs
for a software maintenance project through queuing simulation. IEEE Transactions
on Software Engineering 30(1), 43–58 (2004)

4. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: Notation, classification, models, and methods. European Jour-
nal of Operational Research 112(1), 3–41 (1999)

5. Choi, K., Bae, D., Kim, T.: An approach to a hybrid software process simulation
using the DEVS formalism. Software Process: Improvement and Practice 11(4),
373–383 (2006)

6. Demeulemeester, E.L., Herroelen, W.: Project scheduling, vol. 49. Kluwer Aca-
demic Publishers, Boston (2002)

7. Dong, F., Li, M., Zhao, Y., Li, J., Yang, Y.: Software Multi-project Resource
Scheduling: A Comparative Analysis. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.)
ICSP 2008. LNCS, vol. 5007, pp. 63–75. Springer, Heidelberg (2008)

A Hybrid Model for Dynamic Simulation of Custom Software Projects 185

8. Donzelli, P., Iazeolla, G.: Hybrid simulation modelling of the software process. The
Journal of Systems and Software 59(3), 227–235 (2001)

9. Herroelen, W.: Project scheduling-theory and practice. Production and Operations
Management 14(4), 413 (Winter 2005)

10. Joslin, D., Poole, W.: Agent-based simulation for software project planning. In:
Winter Simulation Conference, pp. 1059–1066 (2005)

11. Lee, B., Miller, J.: Multi-project management in software engineering using simu-
lation modelling. Software Quality Journal 12, 59–82 (2004)

12. Madachy, R.J.: Software process dynamics. Wiley, IEEE Press, Hoboken, Piscat-
away (2008)

13. Meier, C., Yassine, A.A., Browning, T.R.: Design process sequencing with compe-
tent genetic algorithms. Transactions of the ASME 129, 566 (2007)

14. Setamanit, S., Wakeland, W., Raffo, D.: Planning and improving global software
development process using simulation. In: GSD (2006)

15. Padberg, F.: On the potential of process simulation in software project schedule
optimization. In: 29th Annual International Computer Software and Applications
Conference, 2005. COMPSAC 2005, vol. 2, pp. 127–130 (2005)

16. Powell, A., Mander, K., Brown, D.: Strategies for lifecycle concurrency and iter-
ation â a system dynamics approach. Journal of Systems and Software 46(2-3),
151–161 (1999)

17. Raffo, D., Martin, R.H.: A model of the software development process using both
continous and discrete models. Software Process Improvement and Practice 5, 147–
157 (2000)

18. Rus, I., Collofello, J., Lakey, P.: Software process simulation for reliability man-
agement. The Journal of Systems and Software 46(2–3), 173–182 (1999)

19. Özdamar, L., Alanya, E.: Uncertainty modelling in software development projects
(with case study). Annals of Operations Research 102(1-4), 157–178 (2001)

20. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory and practice of modeling and
simulation. Academic Press, New York (2000)

21. Zhang, H., Kitchenham, B., Pfahl, D.: Reflections on 10 Years of Software Process
Simulation Modeling: A Systematic Review. In: Wang, Q., Pfahl, D., Raffo, D.M.
(eds.) ICSP 2008. LNCS, vol. 5007, pp. 345–356. Springer, Heidelberg (2008)

On the Relative Merits of Software Reuse

Andres Orrego1,2, Tim Menzies2, and Oussama El-Rawas2

1 Global Science & Technology, Inc., Fairmont, WV, USA
andres.orrego@gst.com

2 West Virginia University, Morgantown, WV, USA
tim@menzies.us, oelrawas@mix.wvu.edu

Abstract. Using process simulation and AI search methods, we compare soft-
ware reuse against other possible changes to a project. such as reducing func-
tionality or improving the skills of the programmer population. In one case, two
generations of reuse were as good or better than any other project change (but
a third and fourth generation of reuse was not useful). In another case, applying
reuse to a project was demonstrable worse than several other possible changes to
a project.

Our conclusion is that the general claims regarding the benefits of software
reuse do not hold for specific projects. We argue that the merits of software reuse
need to be evaluated in a project by project basis. AI search over process models
is useful for such an assessment, particularly when there is not sufficient data for
precisely tuning a simulation model.

Keywords: Software Reuse, COCOMO, COQUALMO, AI search.

1 Introduction

We need to better understand software reuse. In theory, reuse can lower development
cost, increase productivity, improve maintainability, boost quality, reduce risk, shorten
life cycle time, lower training costs, and achieve better software interoperability [1, 2].
However, in practice, studies have shown that reuse is not always the best choice: it may
be hard to implement, and the benefits of reuse cannot be reliably quantified [1]. Also,
in some cases, reuse has resulted in economic loses [3] and even personal injury and
loss of life [4].

Process simulations can be used to assess the value of reuse in a particular project.
Traditionally, such simulators are commissioned using using data collected from a par-
ticular organization (e.g. [5]). Often, such local data is hard to collect. Accordingly, we
have been been exploring an AI method called STAR that reduce the need for calibra-
tion from local data. To understand STAR, note that project estimates are some function
of the project options and the internal model calibration variables. Conceptually, we can
write this as:

estimate = project ∗ calibration

The estimate variance is hence a function of variance in the project options and the
space of possible calibrations. Traditional approaches use historical data to reduce the

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 186–197, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Relative Merits of Software Reuse 187

Reuse Iteration Description
First reuse Using software from a previous project for the first time.
Second reuse Reusing software from a previous project for the second time
Third reuse Reusing the same software in a new project for the third time.
Fourth reuse Reusing software using a mature reuse approach, tools, and

personnel.

Fig. 1. Process changes imposed by implementing reuse incrementally

Drastic change Possible undesirable impact
1 Improve personnel Firing and re-hiring personnel leading to wide-spread union

unrest.
2 Improve tools, techniques, or development plat-

form
Changing operating systems, IDEs, coding languages

3 Improve precedentness /
development flexibility

Changing the goals of the project and the development
method.

4 Increase architectural
analysis / risk resolution

Far more elaborate early life cycle analysis.

5 Relax schedule Delivering the system later.
6 Improve process maturity May be expensive in the short term.
7 Reduce functionality Delivering less than expected.
8 Improve the team Requires effort on team building.
9 Reduce quality Less user approval, smaller market.

Fig. 2. Nine drastic changes from [9]

space of possible calibrations (e.g. using regression). In our approach, we leave the cali-
bration variables unconstrained and instead use an AI search engine to reduce the space
of possibilities in the project options. In numerous studies (including one reported last
year at ICSP’08 and elsewhere [6,7,8]) we showed that this methods can yield estimates
close to those seem using traditional methods, without requiring a time consuming data
collection exercise.

In this paper, we use STAR to comparatively assess 13 possible changes to a project.
Figure 1 shows four changes to a project based on reuse while Figure 2 defines some
alternatives. These alternatives are drastic changes a project manager could implement
in an effort to reduce effort, schedule and defects in a particular project [9]. Our results
will show that some projects gain the most benefit from applying reuse, while there
are often other changes (such as those listed in Figure 2) that can be more effective.
Hence, we recommend assessing the value of reuse on a project-by-project basis. Pro-
cess simulation tools are useful for making such an assessment and tools like STAR are
especially useful when there is insufficient data for local calibration.

In the remainder of this paper, we present background information about software
reuse and process estimation models. Then we document the simulation approach uti-
lized to evaluate the effects of adopting software reuse compared to alternative strategies
for two NASA case studies.

2 The Models: COCOMO and COQUALMO

For this study we use two USC software process models. The COQUALMO software
defect predictor [10, p254-268] models two processes (defect introduction and defect
removal) for three phases (requirements, design, and coding). Also, the COCOMO soft-
ware effort and development time predictor [10, p29-57] estimates development months

188 A. Orrego, T. Menzies, and O. El-Rawas

Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}
Defect removal features
execution-
based testing
and tools
(etat)

all procedures and tools
used for testing

none basic testing at unit/ inte-
gration/ systems level; ba-
sic test data management

advanced test oracles, as-
sertion checking, model-
based testing

automated
analysis (aa)

e.g. code analyzers, con-
sistency and traceability
checkers, etc

syntax checking with
compiler

Compiler extensions for
static code analysis, Ba-
sic requirements and de-
sign consistency, trace-
ability checking.

formalized specification
and verification, model
checking, symbolic exe-
cution, pre/post condition
checks

peer reviews
(pr)

all peer group review ac-
tivities

none well-defined sequence
of preparation, informal
assignment of reviewer
roles, minimal follow-up

formal roles plus exten-
sive review checklists/
root cause analysis, con-
tinual reviews, statistical
process control, user
involvement integrated
with life cycle

Scale factors:
flex development flexibility development process rig-

orously defined
some guidelines, which
can be relaxed

only general goals de-
fined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this

kind of software before
somewhat new thoroughly familiar

resl architecture or risk reso-
lution

few interfaces defined or
few risks eliminated

most interfaces defined or
most risks eliminated

all interfaces defined or
all risks eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions
Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write

statements
e.g. use of simple inter-
face widgets

e.g. performance-critical
embedded systems

data database size (DB
bytes/SLOC)

10 100 1000

docu documentation many life-cycle phases
not documented

extensive reporting for
each life-cycle phase

ltex language and tool-set ex-
perience

2 months 1 year 6 years

pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

(frequency of major changes
frequency of minor changes)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight inconve-
nience

errors are easily recover-
able

errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to 75%
of the original estimate

no change deadlines moved back to
160% of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor required % of available

RAM
N/A 50% 95%

time required % of available
CPU

N/A 50% 95%

tool use of software tools edit,code,debug integrated with life cycle

Fig. 3. Features of the COCOMO and COQUALMO models used in this study

(225 hours) and calendar months and includes all coding, debugging, and management
activities. COCOMO assumes that effort is exponentially proportional to some scale
factors and linearly proportional to some effort multipliers.

From our perspective, these models have several useful features. Unlike other mod-
els such as PRICE-S [11], SLIM [12], or SEER-SEM [13], the COCOMO family of

On the Relative Merits of Software Reuse 189

models is fully described in the literature. Also, at least for the effort model, there ex-
ist baseline results [14]. Also, we work extensively with government agencies writing
software. Amongst those agencies, these models are frequently used to generate and jus-
tify budgets. Further, The space of possible tunings within COCOMO & COQUALMO
is well defined. Hence, it is possible to explore the space of possible tunings.

The process simulation community (e.g., Raffo [15]) studies models far more elab-
orate than COCOMO or COQUALMO. For example, COCOMO & COQUALMO as-
sume linear parametric equations while other researchers explore other forms:

– discrete-event models [16];
– system dynamics models [17];
– state-based models [18];
– rule-based programs [19];
– standard programming constructs such as those used in Little-JIL [20].

These rich modeling frameworks allow the representation of detailed insights into an
organization. However, the effort required to tune them is non-trivial. For example,
Raffo spent two years tuning and validating one of such models to one particular site [5].
Also, we have found that the estimation variance of COCOMO can be reduced via
intelligent selection of input variables, even allowing for full variance in the tuning
parameters. We would consider switching to other models if it could be shown that the
variance of these other models could be controlled just as easily.

Our models use the features presented in Figure 3. This figure lists a variety of project
features with the range {very low, low, nominal, high, very high, extremely high} or
{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}. For specific projects, not all features
are known with certainty. For example, until software is completed, the exact size of
a program may be unknown. Hence, exploring our effort, schedule, and defect models
requires exploring a large trade-space of possible model inputs.

2.1 Effect of Reuse on Model Parameters

The effects of ad-hoc software reuse can be mapped to changes to settings to the CO-
COMO parameters. For instance, programmers capability (pcap) inherently increases
every time a piece of software is reused given that in the process the same programmer
is employed. This is the case with NASA spacecraft software, where reuse can be found
within the same software development company and where the software modules are
signed by the same developers [21]. Similarly, we can assume direct inherent effects
to the analyst capability (acap), the application experience (apex), the analyst capabil-
ity (acap), the precedence of the software (prec), the process maturity (pmat), and the
language and tool experience (ltex). On the other hand, the software platform must re-
main fairly unchanged throughout reuses so software pieces can be reused with ease.
For this reason we assume that platform volatility has to decrease as a piece of software
is reused from project to project.

A final assumption on the size of the software comes from the observation that the
progressive reuse of software components allows the construction of more sizeable sys-
tems. For instance, when looking at NASA Space fligh software, new systems com-
monly result in bigger and more complex software, usually about 50% more lines of

190 A. Orrego, T. Menzies, and O. El-Rawas

Incremental Reuse Effects on Projects
1 First Reuse acap = ACAPL ; apex = APEXL ; pcap = PCAPL; prec = PRECL

pmat = PMATL ; ltex = LTEXL ; pvol = PVOLH ; kloc = KLOCL

2 Second Reuse acap = ACAPL+1 ; apex = APEXL+1 ; pcap = PCAPL+1 ; prec = PRECL+1
pmat = PMATL+1 ; ltex = LTEXL+1 ; pvol = PVOLH -1 ; kloc = KLOCL*1.25

3 Third Reuse acap = ACAPL+2 ; apex = APEXL+2 ; pcap = PCAPL+2 ; prec = PRECL+2
pmat = PMATL+2 ; ltex = LTEXL+2 ; pvol = PVOLH -2 ; kloc = KLOCL ∗ (1.25)2

4 Fourth Reuse acap = ACAPL+3 ; apex = APEXL+3 ; pcap = PCAPL+3 ; prec = PRECL+3
pmat = PMATL+3 ; ltex = LTEXL+3 ; pvol = PVOLH -3 ; kloc = KLOCL ∗ (1.25)3

Fig. 4. Implementing software reuse incrementally

code [22]. Of this kloc increase NASA developers may only be able to save a small per-
centage of the size of the code base by reusing components due to their ad-hoc, white-
box reuse approach, which results in sizeable modification of the original code [23]. In
our simulations we therefore assume that the code base increases from system to system
by 25%.

Figure 4 shows the constraints we claim software reuse imposes on model parameters
for a given project. In the figure the variable XL represents the lowest value in the
range of the model variable X. Similarly, XH represents the highest value for the X
variable. In order to impose the constraint of reuse in a particular project we increase
the XL and lower the XH for the particular variable X according to the logic above.
For instance, let’s say that for a particular project P , pcap ranges between 2 and 4, and
pvol ranges between 3 and 5. In this case, PCAPL = 2, PCAPH = 4, PVOLL = 3,
and PVOLH = 5. if we imposed a “Second Reuse” strategy, pcap would be set to 3
(PCAPL + 1), and pvol would be set to 4 (PVOLH − 1).

2.2 Defining the Alternatives to Reuse

Similarly to the constraints imposed by the incremental software reuse strategies, Fig-
ure 5 defines the values we imposed on each case study as part of each drastic change.
Most of the values in Figure 5 are self-explanatory with two exceptions. Firstly, the
kloc ∗ 0.5 in “reduce functionality” means that, when imposing this drastic change,
we only implement half the system. Secondly, most of the features fall in the range
one to five. However, some have minimum values of 2 or higher (e.g., pvol in “im-
prove tools/tech/dev”), and some have maximum values of 6 (e.g., site in “improve
tools/tech/dev”). This explains why some of the drastic changes result in values other
than one or five.

To impose a drastic change on a case study, if that change refers to feature X (in the
right-hand column of Figure 5), then we first (a) removed X from the values and ranges
of the case study (if it was present); then (b) added the changes of Figure 5 as fixed
values for that case study.

3 Case Studies

Recall that the goal of our study is to analyze simulations of process estimation using
COCOMO and COQUALMO models on typical NASA projects. Our purpose is to eval-
uate the relative merits of adopting software reuse compared to other project improve-
ment strategies. The comparison is based on effort, quality, and schedule measured in

On the Relative Merits of Software Reuse 191

Drastic change Effects on Projects
1 Improve personnel acap = 5; pcap = 5; pcon = 5

apex = 5 ; plex = 5 ; ltex = 5
2 Improve tools, techniques, or development platform time = 3; stor = 3

pvol = 2; tool = 5
site = 6

3 Improve precedentness / development flexibility prec = 5; flex = 5
4 Increase architectural analysis / risk resolution resl = 5
5 Relax schedule sced = 5
6 Improve process maturity pmat = 5
7 Reduce

functionality
data = 2; kloc * 0.5

8 Improve the team team = 5
9 Reduce quality rely = 1 ; docu = 1

time = 3 ; cplx = 1

Fig. 5. Implementing drastic changes

ranges values
project feature low high feature setting

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

ranges values
project feature low high feature setting

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 6. Two case studies. Numeric values {1, 2, 3, 4, 5, 6} map to
{verylow, low, nominal, high, veryhigh, extrahigh}

person-months, defects per KSLOC, and months, respectively. In this study we explore
the perspective of the Project Manager in the context of NASA software development.

Figure 6 partially describes the two NASA case studies we explore in terms of the
COCOMO and COQUALMO input parameters. Both case studies reflect typical ranges
seen at NASA’s Jet Propulsion Laboratory [7].

Inside our model, project choices typically range from 1 to 5 where “3” is the nom-
inal value that offers no change to the default estimate. Some of the project choices
in Figure 6 are known precisely (see all the choices with single values). But many of
the features in Figure 6 do not have precise values (see all the features that range from
some low to high value).

We evaluate the effects of the project improvement strategies on the case studies
above using STAR: a Monte Carlo engine augmented by a simulated annealer.

STAR runs as follows. First, a project P is specified as a set of min/max ranges to
the input variables of STAR’s models:

– If a variable is known to be exactly x, then then min = max = x.
– Else, if a variable’s exact value is not known but the range of possible values is

known, then min/max is set to the smallest and largest value in that range of possi-
bilities.

– Else, if a variable’s value is completely unknown then min/min is set to the full
range of that variable in Figure 3.

192 A. Orrego, T. Menzies, and O. El-Rawas

Second, STAR’s simulated annealer1 seeks constraints on P that most improve the
model’s score. A particular subset of P ′ ⊆ P is scored by using P ′ as inputs to the
COCOMO and COQUALMO. When those models run, variables are selected at ran-
dom from the min/max range of possible tunings T and project options P . In practice,
the majority of the variables in P ′ can be removed without effecting the score; i.e. our
models exhibit a keys effect where a small number of variables control the rest [25].
Finding that minimal set of variables is very useful for management since it reveals
the least they need to change in order to most improve the outcome. Hence, simulated
annealing, STAR takes a third step.

In this third step, a Bayesian sensitivity analysis finds the smallest subset of P ′ that
most effects the output. The scores seen during simulated annealing are sorted into the
(10,90)% (best,rest) results. Members of P ′ are then ranked by their Bayesian proba-
bility of appearing in best.

After ranking members of P ′, STAR then imposes the top i-th ranked items of P ′

on the model inputs, then running the models 100 times. This continues until the scores
seen using i + 1 items is not statistically different to those seen using i (t-tests, 95%
confidence). STAR returns items 1..i of P ′ as the least set of project decisions that most
reduce effort, defects, and development time. We call these returned items the policy.

Note that STAR constraints the project options P but never the tuning options T .
That is, the policy generated by STAR contains parts of the project options P that most
improve the score, despite variations in the tunings T . This approach has the advantage
that it can reuse COCOMO models without requiring local tuning data.

Previously [7] we have shown that this approach, that does not use local tuning,
generates estimates very similar to those generated after using local tuning via the “LC”
method proposed by Boehm and in widespread use in the COCOMO community [26].
We have explained this effect as follows. Uncertainty in the project options P and the
tuning options T contribute to uncertainty in the estimates generated by STAR’s models.
However, at least for the COCOMO and COQUALMO models used by STAR, the
uncertainty created by P dominates that of T . Hence, any uncertainty in the output can
be tamed by constraining P and not T .

The reader may wonder why we use an stochastic method like STAR: would not
a simpler method suffice? For example, Many of the relationships inside COCOMO
model are linear and a simple linear extrapolation across the space of possibilities could
assess the relative effectiveness of different changes. In reply, we note that:

– Even after tuning the gradient of the relationships may not be known with certainty.
For example, in the COCOMO effort model, predictions are affected linearly and
exponentially by two types of input parameters; the new project data and the his-
torical dataset. In COCOMO this results in the coefficients, a and b, which define
the relationship between size and effort. Baker [27] tuned these a, b values using

1 Simulated annealers randomly alter part of the some current solution. If this new solution
scores better than the current solution, then current = new. Else, at some probability de-
termined by a temperature variable, the simulated annealer may jump to a sub-optimal new
solution. Initially the temperature is “hot” so the annealer jumps all over the solution space.
Later, the temperature “cools” and the annealer reverts to a simple hill climbing search that
only jumps to new better solutions. For more details, see [24].

On the Relative Merits of Software Reuse 193

data from NASA systems. After thirty 90% random samples of that data, the a, b
ranges were surprisingly large: (2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09). Baker’s re-
sults forced a rethinking of much our prior work in this area. Instead of exploring
better learners for local calibration, now we use tools like STAR to search models
for conclusions that persist across the space of possible calibrations.

– Simplistic linear extrapolation may be inappropriate when optimizing for effort
and time and defects, there may be contradictory effects. For example, we have
results where reducing effort leads to a dramatic increase in defects [8]. Hence,
optimizing our models is not a simple matter of moving fixed distances over some
linear effect: there are also some trade-offs to be considered (e.g. using a tool that
considers combinations of effects, like STAR).

4 Results

For each case study of Figure 6, STAR searches within the ranges to find constraints
that most reduce development effort, development time, and defects. The results are
shown in Figure 7, Figure 8, and Figure 9. In those figures:

– All results are normalized to run 0..100, min..max.
– Each row shows the 25% to 75% quartile range of the normalized scores collected

during the simulation.
– The median result is shown as a black dot.
– All the performance scores get better when the observed scores get smaller.
– The “none” row comes from Monte Carlo simulations of the current ranges, without

any changes.

In each figure, the rows are sorted by the number of times a drastic change scores
below (looses to) other drastic changes. In order to assess number of losses, we used
the Mann-Whitney test at 95% confidence (this test was chosen due to (a) the random
nature of Monte Carlo simulations which results in non-paired tests; and (b) ranked
tests make no assumption about the normality of the results). Two rows have the same
rank if there is no statistical difference in their distributions.

Flight
Rank Change 50%

1 flight2reuse,
�

2 improveteam,
�

2 none,
�

3 reducefunc,
�

3 improveprecflex,
�

3 flight4reuse,
�

4 relaxschedule,
�

4 archriskresl,
�

5 improvepmat,
�

6 flight3reuse,
�

7 reducequality,
�

8 improvepcap,
�

9 improvetooltechplat,
�

10 flight1reuse,
�

Ground
Rank Change 50%

1 ground1reuse,
�

2 ground4reuse,
�

2 ground3reuse,
�

2 improvepmat,
�

2 improveteam,
�

3 archriskresl,
�

4 none,
�

4 relaxschedule,
�

4 improveprecflex,
�

4 improvepcap,
�

5 reducefunc,
�

6 reducequality,
�

7 ground2reuse,
�

8 improvetooltechplat,
�

Fig. 7. EFFORT: staff months (normalized 0..100%): top-ranked changes are shaded

194 A. Orrego, T. Menzies, and O. El-Rawas

Flight
Rank Change 50%

1 flight2reuse,
�

2 improveteam,
�

2 none,
�

3 reducefunc,
�

3 relaxschedule,
�

3 flight4reuse,
�

3 flight3reuse,
�

4 improveprecflex,
�

5 improvepmat,
�

6 archriskresl,
�

7 reducequality,
�

7 improvepcap,
�

8 improvetooltechplat,
�

9 flight1reuse,
�

Ground
Rank Change 50%

1 ground1reuse,
�

2 ground4reuse,
�

2 ground3reuse,
�

3 improveteam,
�

3 improvepmat,
�

3 none,
�

3 relaxschedule,
�

3 reducefunc,
�

3 improvepcap,
�

3 ground2reuse,
�

4 archriskresl,
�

5 improveprecflex,
�

6 reducequality,
�

7 improvetooltechplat,
�

Fig. 8. MONTHS: calendar (normalized 0..100%): top-ranked changes are shaded.

Flight
Rank Change Defects

1 relaxschedule,
�

1 none,
�

1 improveteam,
�

1 reducefunc,
�

2 improveprecflex,
�

3 improvepcap,
�

3 archriskresl,
�

3 improvetooltechplat,
�

3 flight2reuse,
�

4 flight4reuse,
�

5 improvepmat,
�

5 reducequality,
�

5 flight3reuse,
�

6 flight1reuse,
�

Ground
Rank Change 50%

1 improveteam,
�

1 improveprecflex,
�

1 archriskresl,
�

1 improvepcap,
�

1 reducefunc,
�

1 improvepmat,
�

2 ground4reuse,
�

2 ground3reuse,
�

3 ground1reuse,
�

4 none,
�

4 reducequality,
�

4 improvetooltechplat,
�

5 relaxschedule,
�

6 ground2reuse,
�

Fig. 9. Defect / KLOC (normalized 0..100%): top-ranked changes are shaded

The shaded rows in Figures 7, 8, and 9 mark the top ranked changes. Observe how,
with Ground systems, first and second generation reuse always appears in the top rank
for effort, months, and defects. That is, for these systems, two generations of reuse is
as good, or better, than other proposed changes to a project. That is, for NASA ground
software a case can be made in support of software reuse as it is shown to be as good or
better than the other strategies.

The results are quite different for Flight systems where all reuse methods are absent
from the top ranked changes. In fact, no reuse change appears in the Flight results till
rank three or above and all reuse strategies rank below ”none” (meaning that adopting
no strategy could yield better results). For NASA flight software, no case can be made
for adopting software reuse.

What is surprising is how different the strategies work for similar projects such as
the ones presented in this study. The only difference between NASA ground and flight
systems lies in size (KLOC), reliability (rely), and complexity(cplx). Ground tends to
have lower values for these ranges. Other than that, both case studies have the same ranges
and values.

Another finding worth mentioning is how ”improve team” consistently ranks top
along side with reuse for ground systems. This might be related to the notion that ”so-
ciology beats technology in terms of successfully completing projects,” [28] or it might
be at least comparable.

On the Relative Merits of Software Reuse 195

5 External Validity

Our results make no use of local calibration data. That is, our results are not biased
by the historical record of different sites. Hence, in this respect, our results score very
highly in terms of external validity.

However, in another respect, the external validity of our results is highly biased by
the choice of underlying model (COCOMO, COQUALMO); and the range of changes
and projects we have explored:

– Biases from the model: While the above results hold over the entire space of cal-
ibration possibilities of COCOMO/COQUALMO, then may not hold for different
models. One reason we are staying with COCOMO/COQUALMO (at least for the
time being) is that we have shown that STAR can control these models without re-
quiring local calibration data. We find this to be a compelling reason to prefer these
models.

– Biased from the range of cases explored: Another threat to the external validity
of our models is the range of changes explored in this study. This paper has only
ranked reuse against the changes listed in Figure 2. Our changes may do better than
and we will explore those in future work.

– Biases from our selected case studies: Lastly, we have only explored the projects
listed in Figure 6. We are currently working towards a more extensive study where
we explore more projects, including projects that do not come from NASA.

6 Conclusion

Our reading of the literature is that much prior assessment of reuse has focused on a very
narrow range of of issues. Here, we have tried broadening the debate by assessing reuse
with respect to the broader context of minimizing effort and defects and development
time.

This paper has explored the case of (a) ranking reuse against different effort, sched-
ule, and defect reduction strategies using (b) models with competing influences that (c)
have not been precisely tuned using local data. In this case, we avoided the need for
local data to calibrate the models via using the STAR tool. STAR leaves the calibration
variables of a model unconstrained, then uses AI search to find project options that most
reduces effort, development time, and defects.

STAR was applied here to a study of four incremental reuse strategies and the eight
drastic changes. These 13 project changes were applied to two NASA case studies. We
found that reuse strategies in general performed as well or better than drastic change
strategies on ground software, but did worse than adopting no strategy in the case of
flight software systems.

These results suggest that project managers looking for implementing software reuse
into their projects may find worthwhile checking the relative merits of reuse against
other project improvement options. That is, the relative merits of software reuse should
be evaluated in a project-by-project basis. reuse strategies against other project improve-
ment strategies.

196 A. Orrego, T. Menzies, and O. El-Rawas

In conclusion, in theory, software reuse is an attractive approach to any software
project capable of adopting it. However, in practice, reuse might not be the most useful
strategy and changing something else (or changing nothing at all) could be more bene-
ficial. AI search over process simulation models is useful for finding the best changes,
particularly when there is not sufficient data for precisely tuning a simulation model.

References

1. Trauter, R.: Design-related reuse problems – an experience report. In: Proceedings of the
International Conference on Software Reuse (1998)

2. Poulin, J.S.: Measuring Software Reuse. Addison-Wesley, Reading (1997)
3. Lions, J.: Ariane 5 flight 501 failure (July 1996),

http://www.ima.umn.edu/˜arnold/disasters/ariane5rep.html
4. Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. IEEE Com-

puter 26(7), 18–41 (1993)
5. Raffo, D.: Modeling software processes quantitatively and assessing the impact of poten-

tial process changes of process performance, Ph.D. thesis, Manufacturing and Operations
Systems (May 1996)

6. Menzies, T., Elwaras, O., Hihn, J., Feathear, M., Boehm, B., Madachy, R.: The business case
for automated software engineerng. In: IEEE ASE (2007),
http://menzies.us/pdf/07casease-v0.pdf

7. Menzies, T., Elrawas, O., Barry, B., Madachy, R., Hihn, J., Baker, D., Lum, K.: Accurate
estiamtes without calibration. In: International Conference on Software Process (2008),
http://menzies.us/pdf/08icsp.pdf

8. Menzies, T., Williams, S., El-waras, O., Boehm, B., Hihn, J.: How to avoid drastic software
process change (using stochastic statbility). In: ICSE 2009 (2009)

9. Boehm, B., In, H.: Conflict analysis and negotiation aids for cost-quality requirements. Soft-
ware Quality Professional 1(2), 38–50 (1999)

10. Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K., Steece, B., Brown, A.W.,
Chulani, S., Abts, C.: Software Cost Estimation with Cocomo II. Prentice-Hall, Englewood
Cliffs (2000)

11. Park, R.: The central equations of the price software cost model. In: 4th COCOMO Users
(November 1988)

12. Putnam, L., Myers, W.: Measures for Excellence. Yourdon Press Computing Series (1992)
13. Jensen, R.: An improved macrolevel software development resource estimation model. In:

5th ISPA Conference, pp. 88–92 (April 1983)
14. Chulani, S., Boehm, B., Steece, B.: Bayesian analysis of empirical software engineering cost

models. IEEE Transaction on Software Engineerining 25(4) (July/August 1999)
15. Raffo, D., Menzies, T.: Evaluating the impact of a new technology using simulation: The

case for mining software repositories. In: Proceedings of the 6th International Workshop on
Software Process Simulation Modeling (ProSim 2005) (2005)

16. Kelton, D., Sadowski, R., Sadowski, D.: Simulation with Arena, 2nd edn. McGraw-Hill, New
York (2002)

17. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics: An Integrated Approach.
Prentice-Hall Software Series (1991)

18. Martin, R., Raffo, D.M.: A model of the software development process using both continuous
and discrete models. International Journal of Software Process Improvement and Practice
(June/July 2000)

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://menzies.us/pdf/07casease-v0.pdf
http://menzies.us/pdf/08icsp.pdf

On the Relative Merits of Software Reuse 197

19. Mi, P., Scacchi, W.: A knowledge-based environment for modeling and simulation software
engineering processes. IEEE Transactions on Knowledge and Data Engineering, 283–294
(September 1990)

20. Cass, A., Lerner, B.S., McCall, E., Osterweil, L., Sutton Jr., S.M., Wise, A.: Little-jil/juliette:
A process definition language and interpreter. In: Proceedings of the 22nd International Con-
ference on Software Engineering (ICSE 2000), pp. 754–757 (June 2000)

21. Orrego, A.: Software reuse study report. Technical report, NASA IV&V Facility, Fairmont,
WV, USA (April 2005)

22. Orrego, A., Mundy, G.: A study of software reuse in nasa legacy systems. Innovations in
Systems and Software Engineering 3(2) (2007)

23. Orrego, A.: Impact of using legacy software on nasa spacecraft. Technical report, NASA
IV&V Facility, Fairmont, WV, USA (June 2006)

24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

25. Menzies, T., Owen, D., Richardson, J.: The strangest thing about software. IEEE Computer
(2007), http://menzies.us/pdf/07strange.pdf

26. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
27. Baker, D.: A hybrid approach to expert and model-based effort estimation. Master’s thesis,

Lane Department of Computer Science and Electrical Engineering, West Virginia University
(2007),
https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443

28. DeMarco, T., Lister, T.: Peopleware: productive projects and teams. Dorset House Publishing
Co., Inc, New York (1987)

http://menzies.us/pdf/07strange.pdf
https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443

Investigating the Gap between Quantitative and
Qualitative/Semi-quantitative Software Process

Simulation Models: An Explorative Study

He Zhang

Lero - The Irish Software Engineering Research Centre
Department of Computer Science and Information Systems

University of Limerick, Ireland
he.zhang@lero.ie

Abstract. Software Process Simulation Modeling (SPSM) research has
increased in the past two decades. However, most of process models for
simulation are quantitative, which require detailed understanding and
accurate measurement. As the follow-up work to the previous studies
in qualitative/semi-quantitative modeling of software process, this paper
aims to investigate the equivalence and gap between quantitative and
qualitative/semi-quantitative process modeling, to compare the charac-
teristics and performance of these approaches by modeling and simulat-
ing a software evolution process, and further to establish the substantial
linkage between them. Following the enhanced model conversion scheme
developed in this paper, the reference quantitative continuous model and
its counterpart models become comparable. The results present their dif-
ferent capabilities and interesting perspectives.

1 Introduction

In the last two decades, Software Process Simulation Modeling (SPSM) has
been emerging as an effective tool to help evaluate and manage changes made to
software projects and organizations. However, most of software process models
for simulation are purely quantitative, and require detailed understanding and
accurate measurement of software processes, which relies on reliable and precise
history data. Unfortunately, in many cases these data are not readily available,
which limits its adoption in practice.

As the counterparts of quantitative modeling, qualitative/semi-quantitative
approaches are able to cope with the lack of precise knowledge by modeling at
a more abstract level than quantitative modeling. Our previous work explored
qualitative/semi-quantitative modeling and simulation of software process at dif-
ferent scales [1,2,3], and justified their values in software process research. In [4],
we developed a model conversion scheme for transforming a quantitative con-
tinuous process model into an equivalent qualitative model. This paper further
enhances this scheme by introducing more quantitative characteristics in sup-
port of semi-quantitative model transformation, and reports an explorative study

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 198–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Software Process Simulation Models: An Explorative Study 199

of comparing the characteristics and performance between these approaches by
modeling and simulating a software evolution process.

The model conversion scheme is introduced and enhanced in Section 2. Sec-
tion 3 describes software evolution process and replicates a simplified SD evo-
lution model. In Section 4, the counterpart models of software evolution are
developed by applying the conversion scheme. A comparison between these ap-
proaches is presented in Section 5, which is followed by conclusions in Section 6.

2 Model Transformation

The selection of quantitative modeling paradigms for conversion and compari-
son is the first and important step in this study. According to the systematic
review [5], system dynamics (SD) and discrete-event simulation (DES) are the
two most widely used techniques out of ten simulation paradigms in SPSM, and
both quantitative. On the other hand, qualitative/semi-quantitative approaches
can be classified as one type of continuous modeling with the incomplete features
of discrete transition. For an effective comparison, SD is selected as the quanti-
tative approach due to its wide use in SPSM and continuous characteristics.

In [4], we discussed the structure equivalence between causal loop diagram
(CLD) and abstract structure diagram (ASD), as well as the relationships be-
tween the elements of quantitative and qualitative modeling. An initial model
conversion scheme was also proposed. Since time is treated qualitatively in qual-
itative modeling and simulation, there is no need to handle a delay in a ‘qual-
itative’ length. Thus the scheme only transforms level and rate between the
approaches in [4]. This section further discusses delay in continuous modeling
and describes how to effectively transform it for semi-quantitative modeling.

2.1 Delay

Forrester identified two characteristics of a delay [6]. One is the length of time
expressing the average delay D, which fully determines the “steady-state” effect
of the delay. In steady state the flow rate multiplied by the average delay gives
the quantity in transit in the delay. The other describes its “transient response”,
which tells how the time shape of the outflow is related to the time shape of
the inflow when the inflow rate is changing over time. The delays with the same
average delay time (D) can have quite different transient responses to changes
in input rate (like plot a and b in Fig. 1).

Exponential delay is the most frequently used delay in SD. Fig. 1 shows two
common types of exponential delay used in SPSM: first-order delay (a) and
third-order delay (b). Mathematically speaking, an nth-order delay is equivalent
to n cascaded single-order delays, with each having a delay time of D

n [6].
Since time is treated qualitatively in qualitative simulation, QSIM algorithm

[7] does not explicitly consider delay phenomenon, and neither include built-in
delay function. However, as semi-quantitative simulation offers the capability

200 H. Zhang

(a) first-order delay (b) third-order delay

Fig. 1. Exponential delay curves

of handling numeric values, the delay function is necessary to maintain the in-
tegrity in model transformation. Unfortunately, in terms of the author’s knowl-
edge so far, there is no such function built in any available qualitative simulation
packages. This section intends to implement the (exponential) ‘delay’ in QSIM
framework.

First-Order Delay. First-order and third-order exponential delays are two of
the most common delays used in the SD models of software process. Fig. 2 is
a first-order delay presented in SD diagraming. Given an exogenous inflow rate
(IN from other part of system), a first-order delay consists of a simple level
(LEV) and a rate of outflow (OUT) that depends on the level and on the delay
time (DEL). Table 1 shows the mathematical equations of fist-order delay. The
outflow rate (OUT) is equal to the level (LEV) divided by the average delay
(DEL).

Fig. 2. First-order exponential delay in SD

Table 1. First-order exponential delay

OUT[i, i+1] = DELAY1 (IN[i, i+1], DEL)
OUT[i, i+1] = LEV[i] / DEL
LEV[i] = LEV[i-1] + (DT)(IN[i-1, i] - OUT[i-1, i])

OUT[i, i+1] the outflow rate between time i and i+1
LEV[i] the level stored for delay at time i
DEL the average delay time
DT the time step between successive evaluations of equation
IN the inflow rate between time i-1 and i

A first-order delay is composed of four model elements (Fig. 2): one level, two
rates, and one auxiliary variable (delay). Following the model element conversion
described in [4], the structure of first-order delay is converted and represented
with ASD notations (Fig. 3-a). A new ASD notation (Fig. 3-b), with two inputs
(inflow and delay) and one output (outflow), is created to abstract this structure
and avoid the redundant complexity of qualitative model. The detailed qualita-
tive constraints implemented in QDE can be found in [8].

Software Process Simulation Models: An Explorative Study 201

(a) implementation (b) notation

Fig. 3. Implementation of first-order delay in ASD

Third-Order Delay. A third-order delay is the equivalent of three first-order
delays cascaded on one after another, so that the output of the first is the input
to the second, and the output of the second is the input to the third. Fig. 4
illustrates the structure of a third-order delay in SD format. Table 2 shows the
equations for calculating a third-order delay. The outflow rate (OUT) is equal to
the level (LEV) divided by the average delay (DEL).

Fig. 4. Third-order exponential delay in SD

Table 2. Third-order exponential delay

OUT[i, i+1] = DELAY3 (IN[i, i+1], DEL)
R1[i, i+1] = LEV1[i] / (1

3DEL)
LEV1[i] = LEV1[i-1] + (DT)(IN[i-1, i] - R1[i-1, i])
R2[i, i+1] = LEV2[i] / (1

3DEL)
LEV2[i] = LEV2[i-1] + (DT)(R1[i-1, i] - R2[i-1, i])
OUT[i, i+1] = LEV3[i] / (1

3DEL)
LEV3[i] = LEV3[i-1] + (DT)(R2[i-1, i] - OUT[i-1, i])
LEV[i] = LEV1[i] + LEV2[i] + LEV3[i]

By applying the new ASD notation created for first-order delay (Fig. 3-b), the
structure of a third-order delay can be represented in Fig. 5-a. Again, another
new ASD notation (Fig. 5-b), with two inputs and one output, is created to
abstract this more complicated structure. Here, the implemented third-order
delay also demonstrates how to construct an nth-order delay using the basic
first-order delay in QDE (based on QSIM algorithm framework).

(a) implementation (b) notation

Fig. 5. Implementation of third-order delay in ASD

202 H. Zhang

3 Reference Quantitative Model

This section introduces the selection and background of the reference software
process modeled and replicates this evolution model for further comparison.

3.1 Reference Model Selection

In 2007, we undertook a systematic literature review of SPSM research in the
past decade (1998-2007) [5,9]. This review found phase, project, and product evo-
lution as the most modeled software process scales; as well as identified generic
development, software evolution, software process improvement, and incremental
development as the top four in the most interesting topics in SPSM research.
As we previously investigated qualitative modeling of generic development [1,2]
(software staffing process) and incremental development [3] at project and phase
scales, this paper compares these modeling approaches with focus on software
evolution. Moreover, the successful modeling and simulating software processes
at all these scales and topics derived from the systematic review provide evidence
for justifying their values in software process research.

The reference model also needs to contain most common elements and relations
of the chosen evolutionprocess. Nevertheless, the model’s structure should be clear
and simple enough to ensure the emphasis of this researchon model transformation
and comparison, rather than construction of a complicated model.

According to the above criteria of the reference quantitative model, an SDmodel
of software evolution process is selected for this study. There are several candi-
date models published in the last decade, some of them appear in [10,11,12,13,14].
Among them, Wernick and Hall’s model [14] consists of a single module, which is
simpler than others’. Moreover, their model is the most recent SD model of evolu-
tion process found in the primary studies of the systematic review.

3.2 Software Evolution Process

Software evolution process is one of the most investigated software processes
in SPSM [5]. The insights obtained from the previous studies indicated that
software evolution could be systematically studied and exploited using SPSM
approaches. They also suggested that to some extent software evolution is a dis-
ciplined phenomenon as illustrated, for example, by the regularity of functional
growth patterns [15]. Models of such patterns permitted the forecasting of fu-
ture overall system growth and growth rates. Moreover, the observed patterns
of behavior appearing yielded common phenomenological interpretations.

Basically, four important feedback structures, identified by the previous re-
lated work, are used in model construction of software evolution processes:

Inertia-like (anti-regressive) effect due to system growth. The first hypothesis
is that increasing the size of a software system and changes in unanticipated
directions will over time reduce the enhancement and modification of that sys-
tem [13]. These changes may result in a decay in software architecture. Mean-
while, new changes also have to be fitted into an existing system structure, and

Software Process Simulation Models: An Explorative Study 203

as the software grows, there are more existing components into which each new
change needs to be fitted. Thereby, software developers are occupied on tasks
specifically intended to maintain the system structure, and to compensate for
the software aging effects, which are referred to as ‘anti-regressive’ activities [12].

Effects of decreasing knowledge coverage. The increasing complexity of a soft-
ware system also reduces the developer’s ability to change the system because
of a decrease in coverage of developer’s knowledge of the system components,
their composition and interactions [13]. As the software grows, the amount of
knowledge needed to support future changes grows as well, but at a faster rate,
as the implementation of each new component needs to be seen in the context of
all of the existing system [16,17]. If the developer’s knowledge does not grow at
this rate, it may fall behind the knowledge needed to support further changes.

Generation (progressive effect) of new requirements. The release of upgraded
software with new functionalities enables users to exploit opportunities for novel
or extended system use, which in turn result in demand for further function-
alities [11]. This positive feedback is recognized as ‘progressive’ type of work,
which represents the evolution activities that enhance software functionality by
modification of or addition to the code and/or the documentation [12].

Correction of fault implementation. After the release and adoption of soft-
ware, a small proportion of units (requirements) is gradually found not to be
implemented as originally or correctly specified. They are eliminated from the
specification, but may be replaced in the requirements by new or changed equiv-
alents [10]. The rate of completion of successful implementation can be reflected
by a success or failure percentage.

Some or all of these hypothetical drivers of specification change is reflected
in (positive or negative) feedback loops in SD modeling, again calculated as
portions of the successful implementation flow.

3.3 A Simplified Quantitative Model

Model Description and Calibration. The reference quantitative model
(shown in Fig. 7) was developed using Vensim simulation environment (Ventana
Systems, Inc.). Though it is a simplified model, it incorporates and reflects three of
the typical feedback loops described above that are indicated by the loop numbers.
They are feedback structures representing the inertia effect (anti-regressive activ-
ities, Loop 1), the generation of new requirements (progressive activities, Loop 2),
and the correction of faults in previous implementation (Loop 3).

The ‘size’ of software system has been abstracted into a number of arbitrary-
sized ‘units ’ of requirements, since it is a more informative reflection of software
evolution, which is more likely driven by changes in functionality than by low-
level thinking with ‘code’ [16]. Plus, it avoids issues related to specific metric.

The delay used in this model is a third-order delay, which fits the technical
software process [10]. It represents the time delays caused by some entity passing
through the phases of a process made up of a sequence of sub-processes, each of
which depends for its input on the output of the previous one.

204 H. Zhang

Fig. 6. Simulation of implemented requirements over time

Fig. 7. Reference Quantitative model of software evolution

The calibration inputs to the reference model are based on actual data for the
evolution of the ICL VME mainframe system described in [11]. To guarantee the
replication of the reference model, most of these variable inputs are kept here.

Note that the replicated reference model in this section is based on the SD
flow graphs, inputs, outputs, and relation equations published in [11,12,13,14]
(no full version models published). As result of this divergence, the output of the
replicated model is slightly different from the originals. Fig. 6 shows the overall
evolution trends are similar to each other, and the only difference on simulated
system sizes, which can be regarded as the scaling effect of inertia factor.

Sensitivity to Policy Change. The reference model has been subjected to
a further sensitivity analysis to investigate the effects of changes in policy in-
puts. Wernick and Hall introduced five policy factors to the reference model,
which are underlined in Fig. 7. Each of the policy input varies from its default
value of 1, using a normal distribution with a standard deviation of 0.25. For

Software Process Simulation Models: An Explorative Study 205

(a) Simp by inertia (c) Simp by new requirement (e) Simp by fault generation

(b) Sreq by inertia (d) Sreq by new requirement (f) Sreq by fault generation

Fig. 8. Sensitivity of policy change for reference model

instance, the values greater than 1 of ‘inertia scaling policy’ indicates the higher
maintainability and evolvability of the system.

A similar sensitivity analysis design was applied to the replicated model. To
simplify the discussion, three of their policy factors are selected to investigate
the policy sensitivity of three feedback loops respectively. Fig. 8 shows the dis-
tributions of simulated system size growth and volume of requirements over time
for 1000 runs for each parameter varied separately. The solid line in each plot
indicates the mean result, and the regions either side of it contain 50%, 75%,
95%, and 100% of the simulated results respectively.

4 Corresponding Qualitative/Semi-quantitative Model

4.1 Qualitative Model

In qualitative modeling, the qualitative assumptions need to be abstracted from
the real world system [18]. Here, the reference SD model should be converted into
the corresponding qualitative model based on the discussion in [4]. The follows
are the inherent qualitative assumptions extracted. Note that the qualitative
model does not explicitly include the three delay relations in the reference model.
More description of the qualitative model can be found in [8].

1. Requirements to implement (SReq) come from exogenous requirements, new
requirements feedback and incorrect requirements feedback ;

2. SReq is transferred to requirements implemented (SImp) at developing rate (RSD);
3. The incorrectly implemented requirements, as a small portion of SImp is re-

turned to SReq for rework;
4. Increasing existing system size (SImp) incurs more effort needed for ’anti-

regressive activities’, and decreases RSD;

206 H. Zhang

5. The input effort (REft) has linear relationship with RSD;
6. The new requirement feedback (RNew) has linear relationship with RSD;
7. The incorrectly implementation (RInc) has linear relationship with RSD;
8. The development team size doesnot change (neither recruitmentnor turnover)

during the evolution process;
9. There is no exogenous requirements (RExo = 0) during the evolution process.

4.2 Semi-quantitative Model

Fig. 9 shows the semi-quantitative model based upon th graph of qualitative
model and more constraints (delays) introduced. To be noticed, the newly intro-
duced notations representing the exponential delays (Section 2.1) are included
in semi-quantitative constraints.

SReq: Requirements to implement SImp: Requirements implemented
RReq: Requirement generation rate RImp: Requirement implementation rate
RNew: New requirement feedback rate RInc: Incorrect implementation rate
RSD: Software development rate RGen: Requirement generation rate
RIn: Requirement input rate RExo: Exogenous requirement rate
REft: Effective effort rate fie: inertia factor
fnew: new requirement feedback factor finc: fault generation factor
Ddev: Development delay time Dnew: New requirement feedback delay
Dinc: Incorrect requirement feedback delay pie: inertia scaling policy factor
pnew: new requirement feedback policy factor pinc: implementation fault feedback policy factor

Fig. 9. Corresponding semi-quantitative model of software evolution

One monotonic function (M-, between fie and SImp) is included in the qualita-
tive model. This nonlinear relation needs to be quantified at this stage. Never-
theless, the inertia factor was quantified as a multiple of the inverse square [13]
or inverse cube [14] of existing system size respectively. Therefore, an envelop
function (Equation 1) is constructed for this case.

fie =

[(

λ

S3
imp

)

,

(

λ

S2
imp

)]

(1)

where λ is a suitable constant, and determined from historic data.

5 Simulation and Comparison

The qualitative simulation generates a diversity of behaviors of the evolution
process, most of which are the combinations of varying patterns of important

Software Process Simulation Models: An Explorative Study 207

variables, including requirements implemented, requirements implemented, re-
quirement implementation rate, and requirement generation rate. The oscillation
phenomenon is observed and consistent with the qualitative behaviors reported
by Ramil and Smith in [19], which constructed qualitative simulation model
based on analytic models, instead of continuous casual model. More detailed
results from qualitative simulation can be found in [4].

5.1 Single-Point Value Simulation

The comparison between quantitative simulation (SD) and semi-quantitative
simulation (SQSIM) can be conducted from two aspects: simulation with single-
point value and value range. Traditionally, purely quantitative simulation always
assign a single-point (numeric) value for each input variable during each run of
simulation. In contrast, SQSIM treats single-point values as value ranges without
interval, i.e. the upper and lower bounds are set as the same. Hence, the inputs
to semi-quantitative model are set with the same values as in the reference model
(Section 3) for comparison.

On the other hand, the envelop function should be also replaced with the exact
function to eliminate the uncertainty. Here the exact function (Equation 2) is
used to replace the envelop function (Equation 1) for comparison.

fie =

[(

λ

S3
imp

)

,

(

λ

S3
imp

)]

(2)

Different from purely quantitative simulation, the SQSIM generates nine be-
haviors, even with single-point settings. Although the simulation is preset to
terminate at the 156th month [14], Q2 algorithm also includes some behaviors
that may terminate in a range between [29.6, 156] months. It is because SQSIM
is inherently based on value range, rather than single-point value. Any behaviors
covering this condition are generated by algorithm. For comparison, this study
is only interested in the behaviors exactly terminated at the preset time point.
By removing the ‘invalid ’ behaviors, there are two behaviors consistent to the
reference model. Fig. 10 depicts the varying trends of some important variables.

Fig. 10. Behavior of semi-quantitative simulation with single-point values

208 H. Zhang

The only difference between these two behaviors is that SReq may finish at 0
or in the rang [0, 50] units when the simulation terminates. The simulation in
Section 3 predicts that the system size may grows up to 433.75 units at the
156th month. Both the valid behaviors from SQSIM produce the close value
range, [433, 434] units, for SImp. Moreover, it is interesting that SQSIM presents
other variables (e.g. fie, RSD, RNew and RInc) in its inherent format (value range) as
well. It is possibly caused by the slim deviation between the functions and their
inverse versions, which are required for describing envelop functions.

Compared to the simulation result of system dynamics (presented in Fig. 6),
the graphic result of semi-quantitative simulation only depicts the monotonic
trend of SImp, but lacks detailed shape, which depends on the number of landmark
created in the course of simulation. It can be enriched by Q3 algorithm.

5.2 Value-Range Simulation

In Section 3, several policy factors are introduced for sensitivity analysis (Fig. 7).
This subsection emphasizes on the value range comparison, between the Monte
Carlo simulations of these inputs in terms of probability distributions and semi-
quantitative simulations with the corresponding value ranges. Fig. 9 shows the
semi-quantitative model with the policy factors (pie, pnew, and pinc). Note that
their probability distributions are not necessary in this form of simulation.

The results of SQSIM are summarized in Table 3. Although the value ranges
generated by normal QSIM+Q2 algorithm (the second row) are consistent with
SD results (covering the intervals on the first row), it is easy to observe that
they remain very coarse. It is mainly because the evolution behaviors (SImp)
are monotonic and smooth, which, unlike the models reported in our previous
studies, include no transition points and few critical time points. As a result,
the landmarks inserted into qualitative intervals are not sufficient to generate
finer ranges to reduce the uncertainty.

Table 3. Value range comparison

SImp by fie SImp by RNew SImp by RInc

SD [270, 601] [434, 434] [424, 443]
SQSIM (Q2) [220, 627] [423, 525] [410, 527]
SQSIM (Q3) [263, 610] [430, 455] [420, 471]

To improve the performance of SQSIM, Q3 algorithm, which extends Q2
with ‘step-size refinement ’ [18], is further employed to obtain finer-grained value
ranges. The simulation results (with step-size of 10) are listed on the bottom row
in Table 3. It demonstrates that the accuracy of SQSIM can be improved signifi-
cantly by adaptively introducing additional landmarks. The remaining difference
between these approaches is probably caused by 1) the unique reasoning mech-
anism of SQSIM that is based on the behavior chattering instead of single-point
calculation; 2) the sampling and assumed probability distribution (in quanti-
tative simulation) cause some missing points; 3) step-size of Q3 has yet been

Software Process Simulation Models: An Explorative Study 209

completely optimized. Along with Q3 and other advanced refinement techniques
(e.g. dynamic envelopes), SQSIM can smoothly span the gap from qualitative
simulation on one hand to purely quantitative simulation on the other [18].

Overall, both qualitative/semi-quantitative simulation and purely quantita-
tive simulation (SD) compared here have their strength and weakness. In mod-
eling, compared with CLD, the qualitative approach starts at explicitly stated
qualitative assumptions, and then converts them into more specific and clearer
constraints. Thus, it provides a more rigorous approach. Moreover, a CLD model
does not offer simulation capability, but an ASD model does. Both of them can
be quantified to become their quantitative/semi-quantitative counterpart.

In simulation, both of SD and SQSIM can produce similar results in single-
point simulation. SD can present the variable’s varying trend with more details
during the course. Whereas, the SQSIM approach reflects trends more qual-
itatively through QSIM, which shares the same plotting mechanism with the
qualitative simulation engine. When dealing with uncertainty, the value range
and its associated probability distribution is required for any stochastic (quanti-
tative) simulation. In contrast, SQSIM handles uncertainty with value range and
envelop function, which is able to omit their probability. In some cases, results
of SQSIM are coarse and need to be further refined and optimized.

6 Conclusions

Our previous studies investigated the use of qualitative/semi-quantitative mod-
eling in software engineering research, and constructed the process models at
a variety of process scales. In [4], we initially developed a model conversion
scheme between qualitative and quantitative process models based on a struc-
ture and element level mapping. As the follow-up work, this paper first enhances
this scheme by introducing and handling delay in qualitative/semi-quantitative
model, and then developed the corresponding semi-quantitative model of the
reference quantitative (SD) model using the scheme. The characteristics and
performance of these approaches are further compared. The major contributions
of this paper are highlighted as the follows:

1. A model conversion scheme between quantitative (SD) and qualitative/semi-
quantitative modeling is developed and enhanced by implementing the struc-
ture and element level mapping. From a given qualitative model and quan-
tification, it is possible to transform and construct its equivalent SD model
as well.

2. The nth-order delay is introduced into semi-quantitative modeling and sim-
ulation, and implemented in QSIM algorithm framework.

3. The software evolution processes are revisited by using qualitative/semi-
quantitative modeling and simulation.

4. The modeling characteristics are compared between system dynamics and
qualitative/semi-quantitative modeling; and further the comparison of sim-
ulation capability and results between SD and SQSIM are presented.

210 H. Zhang

The quantitative and qualitative/semi-quantitative modeling approaches com-
pared in this paper offer a number of different capabilities and interesting per-
spectives in software process research. This research establishes a preliminary
foundation for bridging these approaches, and provides the modelers an easily
transformable alternative. However, as an explorative study, this paper cannot
investigate all aspects of them at current stage. The future work in this direction
can be continued to achieve a more holistic understanding.

References

1. Zhang, H., Huo, M., Kitchenham, B., Jeffery, R.: Qualitative simulation model for
software engineering process. In: 17th Australian Software Engineering Conference
(ASWEC 2006), Sydney, Australia, pp. 391–400. IEEE Computer Society Press,
Los Alamitos (2006)

2. Zhang, H., Kitchenham, B.: Semi-quantitative simulation modeling of software
engineering process. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW
2006 and ProSim 2006. LNCS, vol. 3966, pp. 242–253. Springer, Heidelberg (2006)

3. Zhang, H., Keung, J., Kitchenham, B., Jeffery, R.: Semi-quantitative modeling
for managing software development processes. In: 19th Australian Software Engi-
neering Conference (ASWEC 2008), Perth, Australia, pp. 66–75. IEEE Computer
Society Press, Los Alamitos (2008)

4. Zhang, H., Kitchenham, B., Jeffery, R.: Qualitative vs. quantitative software pro-
cess simulation modeling: Conversion and comparison. In: 20th Australian Software
Engineering Conference (ASWE 2009), Gold Coast, Australia. IEEE Computer So-
ciety Press, Los Alamitos (2009)

5. Zhang, H., Kitchenham, B., Pfahl, D.: Reflections on 10 years of software process
simulation modeling: A systematic review. In: Wang, Q., Pfahl, D., Raffo, D.M.
(eds.) ICSP 2008. LNCS, vol. 5007, pp. 345–356. Springer, Heidelberg (2008)

6. Forrester, J.W.: Industrial Dynamics. System Dynamics Series. Pegasus Commu-
nications (1969)

7. UT Qualitative Reasoning Group: Qsim version 4.0-alpha-4, University of Texas,
http://www.cs.utexas.edu/users/qr/QR-software.html

8. Zhang, H.: Qualitative and Semi-quantitative Modelling and Simulation of Soft-
ware Engineering Processes. PhD thesis, University of New South Wales, Australia
(2008)

9. Zhang, H., Kitchenham, B., Pfahl, D.: Software process simulation modeling:
Facts, trends, and directions. In: 15th Asia-Pacific Software Engineering Conference
(APSEC 2008), Beijing, China, pp. 59–66. IEEE Computer Society, Los Alamitos
(2008)

10. Wernick, P., Lehman, M.: Software process white box modelling for feast/1. Journal
of Systems and Software 46(2-3) (1999)

11. Chatters, B.W., Lehman, M., Ramil, J.F., Wernick, P.: Modelling a software evo-
lution process: A long-term case study. Software Process: Improvement and Prac-
tice 5(2-3) (2000)

12. Kahen, G., Lehman, M., Ramil, J.F., Wernick, P.: System dynamics modeling
of software evolution processes for policy investigation: Approach and example.
Journal of Systems and Software 59(3) (2001)

http://www.cs.utexas.edu/users/qr/QR-software.html

Software Process Simulation Models: An Explorative Study 211

13. Wernick, P., Hall, T.: Simulating global software evolution processes by combining
simple models: An initial study. Software Process: Improvement and Practice 7(3-4)
(2002)

14. Wernick, P., Hall, T.: A policy investigation model for long-term software evo-
lution processes. In: 5th International Workshop on Software Process Simulation
Modeling (ProSim 2004), Edinburgh, Scotland, pp. 206–214 (2004)

15. Lehman, M., Ramil, J.F.: Software evolution - background, theory, practice. Infor-
mation Processing Letters 88 (2003)

16. Turski, W.M.: The reference model for smooth growth of software systems. IEEE
Transactions on Software Engineering 22(8) (1996)

17. Turski, W.M.: The reference model for smooth growth of software systems revisi-
tied. IEEE Transactions on Software Engineering 28(8) (2002)

18. Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge. MIT Press, Cambridge (1994)

19. Ramil, J.F., Smith, N.: Qualitative simulation of models of software evolution.
Software Process: Improvement and Practice 7(3-4) (2002)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 212–223, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Bridge the Gap between Software Test Process and
Business Value: A Case Study

Qi Li1, Mingshu Li2, Ye Yang2, Qing Wang2, Thomas Tan1, Barry Boehm1,
 and Chenyong Hu2

1 University of Southern California
{qli1,thomast,boehm}@usc.edu

2 Institute of Software, Chinese Academy of Sciences
{mingshu,ye,wq,huchenyong}@itechs.iscas.ac.cn

Abstract. For a software project to succeed, acceptable quality must be
achieved within an acceptable cost, providing business value to the customers,
and keeping delivery time short. Software testing is a strenuous and expensive
process and is often not organized to maximize business value. In this article,
we propose a practical value based software testing method which aligns the in-
ternal test process with the value objectives coming from the customers and the
market. Our case study in a real-life business project shows that this method
helps manage testing process effectively and efficiently.

Keywords: value, business importance, risk, cost, testing, AHP.

1 Introduction

Cost, schedule and quality are highly correlated factors in trustworthy software
development. They basically form three sides of an under-resourced triangle [1].
Companies are often faced with time and resource constraints that limit their ability to
effectively complete testing efforts. This situation can often be improved by regarding
the testing activity as an investment during the software life cycle [2]. Maximizing the
value contribution of software testing can help us maximize the return on investment
during the software testing phase. Managing software testing based on value consid-
erations promises to deal with increasing testing costs and required effort [3].

Testing is one of the most labor-intensive activities in software development life
cycle and consumes between 30% and 50% of total development costs according to
many studies [3, 4]. Traditional testing methodologies such as: path, branch, instruc-
tion, mutation, scenario, or requirement testing usually treat all aspects of software as
equally important [5], however, in practice 80% of the value often comes from 20%
of the software [2, 6, 7], like a Pareto distribution. As Rudolf Ramler mentioned in
[3], testing’s indirect contribution to product value leads to a value-neutral perception
of testing. The common separation of concerns between development and testing
exacerbates the problem. Testing is often reduced to a purely technical issue leaving
the close relationship between testing and business decisions unlinked and the poten-
tial value contribution of testing unexploited. He also points out that the key challenge
in value-based testing is to integrate two dimensions: aligning the internal test process
with the value objectives coming from the customers and the market [3].

 Bridge the Gap between Software Test Process and Business Value: A Case Study 213

The objective of this research is to apply value-based test management at the sys-
tem level of trustworthy software development. We propose a value-based software
testing method to better align investments with project objectives and business value.
This method can provide decision support for test managers to deal with resource
allocation, tradeoff and risk analysis, and time to market initiatives and software qual-
ity improvement and investment analysis. We also conducted a case study in a real-
life project.

2 Related Work

Our work is primarily relevant to the research areas of Value Based Software Engi-
neering, and Software Testing Methodology. The initial theory of Value Based Soft-
ware Engineering unveils the fact that successful quality should be achieved at a level
that makes all key stakeholders winners[8]. [8]introduces the “4+1” theory of VBSE.
The center of the theory is the success-critical stakeholder (SCS) win-win Theory W
[9, 10], which addresses what values are important and how success is assured for a
given software engineering organization. The four supporting theories that it draws
upon are utility theory, decision theory, dependency theory, and control theory, respec-
tively dealing with how important are the values, how do stakeholders’ values deter-
mine decisions, how do dependencies affect value realization, and how to adapt to
change and control value realization. The basic idea of value-based testing is a branch
of value-based Verification & Validation (V&V) which is to treat each V&V activity
(analysis, review, test) as a candidate investment in improving the software develop-
ment process and ensuring that a software solution satisfies its value objectives [11].

Risk-based testing [12, 13], value-based testing [3] and value-based quality analy-
sis [14, 15] are process strategies that are the most related with our research objective.
Stale Amland introduces a risk-based testing approach [12] in which resources should
be focused on those areas representing the highest risk exposure. However, this
method doesn’t consider the testing cost which is also an essential factor during test-
ing process. Besides we enhance its business importance calculation by Karl
Wiegers’s method [16], incorporate risk analysis and improve it by introducing AHP
(The Analytic Hierarchy Process) Method [17] to determine risk factors weights and
reduce expert estimation bias. Rudolf Ramler outlines a framework for value-based
test management [3], however, his outline doesn’t provide the implementation in
details. Based on the COCOMO II cost-estimation model [18] and the COQUALMO
quality estimation model [19], Liguo Huang proposes a quantitative risk analysis [20]
which helps determine when to stop testing software and release the product. How-
ever, her method is more macroscopic and doesn’t consider any controlling and moni-
toring metrics of the testing process.

For adoption by industrial test teams, a prioritization technique with the following
attributes would be beneficial [21]: 1) economical, not adding significant overhead or
burden to the testing team; 2) improving customer-perceived software quality by
decreasing field defects; 3) increasing business value for the customers. Our method
is simple to follow and able to align software quality improvement with business
value achievements from customers.

214 Q. Li et al.

3 Method Overview

Fig 1 illustrates the whole process of this value-based software testing method. This
method helps test manager enact the testing plan and adjust it during testing execu-
tion. This method has three main steps:

1). In Identifying SCSs and their win conditions, section 4 of this paper will con-
sider three main factors for priority: 1). Key customers calculate the relative business
importance of the
features using a
method first pro-
posed by Karl
Wiegers [16] (sec-
tion 4.1.1). 2). De-
velopers, the project
manager and the test
manager calculate
the quality risk
probability of each
feature.(section 4.1.2). 3). The test manager estimates the testing cost of each feature
(section 4.1.3).

This step brings the stakeholders together to consolidate their value models and to
negotiate testing objectives. They are according to the Dependency and Utility Theory
in VBSE which help to identify all of the SCSs and understand how the SCSs want to
win.

2). We put value, risk and cost together and calculate a value priority number for
each feature (section 4.2). This is like a multi-attribute decision and negotiation proc-
ess which follows the Decision Theory in VBSE. Features’ value priority helps us
enact the testing plan, and resources should be focused on those areas representing the
most important business value, the lowest testing cost and highest quality risk.

3). During the testing process, we adjust each feature’s value priority according to
the feedback of quality risk indicators, and updated testing cost estimation (section
4.3). This step assists to control progress toward SCS win-win realization which is
according to the Control Theory of VBSE.

Finally, the case study result analysis in section 5 shows that this method is espe-
cially effective when the market pressure is very high.

4 Method with a Case Study

Our case study is based on a real-life business project in a software organization. This
organization is a research and development organization in China which is appraised
and rated at CMMI maturity level 4 in 2005. There is a research group in it focusing
on the software process improvement and quantitative process management, which

 d n
 d 2

Business
Importance

Quality
Risk

Testing
Cost

Testing
Priority

Market
Pressure

Decision
Theory

Dependency
/Utility Theory

Feedback for
prioritization

update

Control Theory

Testing Plan
Testing

Testing
Testing

Round 1

Testing
Execution

Decision
Support

Fig. 1. Method Overview

 Bridge the Gap between Software Test Process and Business Value: A Case Study 215

has established some quantitative management methods [22, 23]. The group also
developed a toolkit called SoftPM which is used to manage software project and has
been deployed to many software organizations in China. Our case study is based on
one of its web-based system development projects with a whole size of 553 KLOC. It
employs iterative development method and CMMI process management. The recent
iterative development covers 9 new features with an overall size of 32.6 KLOC Java
codes. The features are mostly independent amendments or patches of some existing
modules. We use F1,F2…F9 to denote these 9 features for short. We apply this
method in its system testing process, and we manage and control our process of test-
ing with the help of SoftPM.

4.1 Identify SCSs and Win Conditions

To provide a more practical set of guidelines for prioritizing, the first thing is to iden-
tify SCSs and their win conditions. Direct stakeholders of testing are developers and
project managers, who directly interact with the testing team. However, in the spirit of
value-based software engineering important parties for testing are customers. Cus-
tomers are the source of value objectives, which set the context and scope of testing.
Marketing and product managers assist in testing for planning releases, pricing, pro-
motion, and distribution[3].

We will look at three factors that must be considered when prioritizing the testing
order of new features, and they represent SCSs’s win conditions:

1).The business importance of having the features. It gives information as to what
extent mutually agreed requirements are satisfied and to what extent the software
meets their value propositions.

2).The quality risk of each feature. For project managers it supports risk manage-
ment and progress estimation. The focus is on identifying and eliminating risks that
are potential value breakers and inhibit value achievements.

3).The cost estimation for testing each feature. Testing managers are interested in
the identification of problems particularly the problem trends that helps to estimate
and control testing process.

Because most projects are undertaken either to save or to make money, the first
and third factors often dominate prioritization discussions. However, proper consid-
eration of the influence of risk on the project is critical if we are to prioritize opti-
mally. We will discuss them respectively in the subsequent three sections. They are
according to the Dependency and Utility Theory in VBSE which help to identify all
of the SCSs and understand how the SCSs want to win.

4.1.1 Business Importance
To determine business importance of each feature, we apply Karl Wiegers’ ap-
proach [16] to our case study. This approach considers both the positive benefit of
the presence of a feature and the negative impact of its absence and this approach
relies on expert judgment by representative customers. Each feature is assessed in

216 Q. Li et al.

terms of the benefits it will bring if
implemented, as well as the penalty that
will be incurred if it is not imple-
mented. The estimates of benefits and
penalties are relative. A scale of 1 to 9
is used. The importance of including
relative penalty should not be ne-
glected. For example, failing to comply
with a government regulation could
incur a high penalty even if the cus-
tomer benefit is low, as would omitting
a feature that any reasonable customer
would expect, whether or not they ex-
plicitly requested it. For each feature,
the relative benefit and penalty are
summed up and entered in the Total BI
(Business Importance) column in
Table 1. Fi’s Total BI can be calculated
by the following formula.

iPenaltyiBenefit PenaltyWBenefitW **BI Total i +=

The sum of the Total BI column represents the total BI of delivering all features.
To calculate the relative contribution of each feature, divide its total BI by the sum of
the Total BI column.

In our case study, we asked our key customers to determine each feature’s BI ac-
cording to the above approach. They emphasize business benefit rather than penalty,
and came to the agreement that weights the relative benefit as twice as important as
the relative penalty. They gave the explanation that the 9 new features are amend-
ments and updated functions for former version which has implemented the main
functions ordered by customers and implementing these 9 features will bring more
benefit to customers, while not implementing them will not greatly influence regular
use. So in Table 1 they multiply the Relative Benefit by 2 before adding it to Relative
Penalty to get the Total BI. Fig 2 shows the BI distribution of the 9 features. As we
can see, there is an approximate Pareto distribution in which F1 and F2 contribute
22.2% of the features and 59.2% of the total BI.

4.1.2 Quality Risk
The risk analysis was performed prior to system test start, but was continuously up-
dated during test execution. It aims to calculate the risk probability for each feature.
There are three steps in quality risk analysis: the first is listing all risk factors based
on history projects and experiences. Then use AHP (The Analytic Hierarchy Process)
Method [17]to determine the weight for each risk factor and AHP consistency testing.
The third is calculating the risk probability for each feature.

Step 1: Set up the n risks in the rows and columns of an n*n matrix. In our case
study, according to Company A’s historical projects of the same type, we have six

Table 1. Relative Business Importance Calcula-
tion

Fig. 2. Business Importance Distribution

 Bridge the Gap between Software Test Process and Business Value: A Case Study 217

main quality risks: Personnel Proficiency, Size, Complexity, Design Quality, Defects
Proportion, and Defects Density.

Step 2: The test manager collaborated with the developing manager determine the
weights of each quality risk using AHP method. The Analytical Hierarchy Process
(AHP) is a powerful and flexible multi-criteria decision-making method that has been
applied to solve unstruc-
tured problems in a vari-
ety of decision-making
situations, ranging from
the simple personal deci-
sions to the complex capi-
tal intensive decisions.

In this case study, the
calculation of quality risks
weights is illustrated in
Table 2. The number in
each cell represents the value pair-wise relative importance: number of 1, 3, 5, 7, or 9
in row i and column j stands for that the stakeholder value in row i is equally,
moderately, strongly, very strongly, and extremely strongly more important than the
stakeholder value in column j, respectively. In order to calculate weight, each cell is
divided by the sum of its column, and then averaged by each row. The results of the
final averaged weight are listed in the bolded Weights column in Table 2. The sum of
weights equals 1.

If we were able to determine precisely the relative value of all risks, the values
would be perfectly consistent. For instance, if we determine that Risk1 is much more
important than Risk2, Risk2 is somewhat more important than Risk3, and Risk3 is
slightly more important than Risk1, an inconsistency has occurred and the result’s
accuracy is decreased. The redundancy of the pairwise comparisons makes the AHP
much less sensitive to judgment errors; it also lets you measure judgment errors by
calculating the consistency index (CI) of the comparison matrix, and then calculating
the consistency ratio (CR). As a general rule, CR of 0.10 or less is considered accept-
able[17]. In the case study, we calculated CR according to the steps in [17],the CR is 0.01,
which means that our result is acceptable.

Step 3: The test
manager’s in collabora-
tion with the develop-
ers, estimates the rela-
tive degree of risk
factors associated with
each feature on a scale
from 1 to 9. An esti-
mate of 1 means the
risk factor influences
the feature very little,
while 9 indicates
serious concerns should be paid about this risk factor. Initial Risks are risk factors we
use to calculate the risk probability before the system testing and Feedback Risks such

Table 2. Risk Factors’ Weights Calculation-AHP
g

Table 3. Quality Risk Probability Calculation (Before System
Test)

218 Q. Li et al.

Table 4. Relative Testing Cost
Estimation

as defects proportion and defects density are risk factors displayed during the testing
process and serve to monitor and control the testing process. Qualitative risks such as
Personnel Proficiency, Complexity, Design quality etc. are scored by the developing
manager. Quantitative risks such as Size, Defects Proportion, Defects Density are
scored based on project data, for example, if a feature’s size is 6KLOC and the largest
feature’s size is 10KLOC, so the feature’s size risk is scored as 9*(6/10) ≈ 5. The risk

probability of Fi is
9

*
1

,∑
==

n

j
jji

i

WR

P []1,0∈ . jiR , is Fi’s risk value of jth risk factor,
jW

denotes the weight of jth risk factor. Table 3 will calculate the Probability of the total
initial risks that comes from each feature before system test.

4.1.3 Testing Cost
The test manager estimates the relative cost of testing each feature, again on a scale
ranging from a low of 1 to a high of 9. The test manager estimates the cost ratings
based on factors such as the developing effort of the feature, the feature complexity,
and the quality risks. Table 4 will calculate the percentage of total cost for each fea-
ture. In our case study, the estimating result is displayed in Table 4 and Fig 3 .

4.2 Put BI, Risk and Cost Together

This step is a multi-attribute decision and negotiation processing which is confirmed
with the Decision Theory in VBSE. Once you enter the BI%, Probability and Cost%
estimates into the spreadsheet (Table 5), it calculates a value priority number for each
feature. The formula for the Value Priority column is:

Cost

obabilityBI
iorityValue

Pr*
Pr = .

Sort the list of features in descending
order by calculated priority. The fea-
tures at the top of the list have the most
favorable balance of BI, cost, and risk.
Features with high BI, high quality risk
and low cost have high testing priority
and should be tested first. The key cus-
tomer and developer representatives
should review the completed
spreadsheet to agree on the ratings and the resulting sequence. As we can see in Table

Table 5. Value Priority Calculation

Fig. 3. Testing Cost Estimation Distribution

 Bridge the Gap between Software Test Process and Business Value: A Case Study 219

5, F1 and F2 have the highest Value Priority and should be tested first. They also have
a stronger Pareto value, with 22% of the functions contributing 77% of the value.

4.3 Adjust Priority According to Feedback during Testing Process

Features’ testing value priority provides the decision support for the test manager to
enact the testing plan and adjust it according to the feedback of quality risk indicators,
such as defects numbers and defects density and updated cost estimation. Usually, we
collect defects data, re-estimate cost after one testing round and provide feedback to
adjust the next testing round plan. Features with higher priority should be tested to
satisfy the stop-test criteria first. When the features with highest priority satisfy the
stop-test criteria, delete
them from the spread-
sheet, update feedback
risk and cost estimation
for features left and
resort features accord-
ing to the updated
priority, continue this
process when all fea-
tures satisfy the stop-
test criteria or it’s the
time to market. As the planning uncertainty is high for the first test round, the test
manager decides to schedule the most valuable tests first so less important ones can
easily be deferred if running out of time at the end of the cycle. This step helps to
control progress toward SCS win-win realization which is according to the Control
Theory of VBSE.

Table 6 shows the quality probability calculation after testing round 1 when F1, F2
have satisfied stop-test criteria, so we delete them from the spreadsheet and re-sort the
remaining features.

Each organization has its own stop-test criteria. In our case study, the company has
4 criteria, and they are: test cases coverage rate is 100%, all planned test cases exe-
cuted and passed; no defects with impact equal to, or below severity level 3 are de-
tected during at least one day of continuous testing, and to satisfy the quality goal of
0.2 defects/KLOC when released.

5 Performance Evaluation

In our case study, the test manger plans to execute 4 rounds of testing. During each
round, test groups focus on 2-3 features with the highest current priority, and the other
features are tested by automated tools. The testing result is when the first round is
over, F1 and F2 satisfy the stop-test criteria, when the second round is over, F3, F6,
F7 satisfied the stop-criteria, when the third round is over, F4, F8 satisfied the stop-
test criteria, and the last round is F5 and F9. And initial estimating testing cost and
actual testing cost comparison can be shown in Fig 4.

Table 6. Quality Risk Probability Calculation (After Round 1)

220 Q. Li et al.

If we regard the testing activity as an in-
vestment, its value is realized when fea-
tures satisfy the stop-test criteria. As we
can see in Fig 5 and Fig 6 , when we fin-
ished the Round 1 testing, we earned
59.2% BI of all features, at a cost of only
19.8% of the all testing process, the ROI is
as high as 1.99. During the Round 2, we
earned 22.2% BI, cost 25.3% effort, and
the ROI became negative as -0.12. We also
can see, from Round 1 to Round 4, both the
BI earned line and the ROI line is descending. Round 3 and Round 4 earn only 18.5%
BI but cost 54.9% effort. This shows that the Round 1 testing is the most cost effec-
tive. Testing the features with higher value priority first is especially useful when the
market pressure is very high. In such cases, one could stop testing after finding a
negative ROI in Round 1. However, in some cases, continuing to test may be worth-
while in terms of customer-perceived quality.

0

14

28

42

56

70

-1

-0.5

0

0.5

1

1.5

2

BI Earned 0 59.2 22.2 11.1 7.4

Cost 0 19.8 25.3 30.3 24.6

ROI 0 1.99 -0.12 -0.63 -0.70

Start Round 1 Round 2 Round 3 Round 4

Fig. 5. BI, Cost and ROI between Testing
Rounds

Fig. 6. Accumulated BI Earned During
Testing Rounds

In our case study, we use a simple
function as follows to display the market
pressure’s influence to BI:

()TimeRateessureBIInitialBIesent Pr1Pr +=
. Time represents the number of unit time
cycle. A unit time cycle might be a year,
a month, a week even a day. For simplic-
ity, in our case study, the unit time cycle
is a testing round. Pressure Rate is esti-
mated and provided by market or product
managers, with the help of customers. It
represents during a unit time cycle, what
is the percentage initial value of the soft-
ware will depreciated. The more furious
the market competition is, the larger the
Pressure Rate is. As we can see from the
formula above, the longer the time is, the
larger the Pressure Rate is, the smaller is

Fig. 7. BI Loss (Pressure Rate=1%)

Fig. 8. BI Loss (Pressure Rate=4%)

Fig. 4. Initial Estimating Testing Cost and
Actual Testing Cost

 Bridge the Gap between Software Test Process and Business Value: A Case Study 221

the present BI, and the larger the loss BI
caused by market erosion. In our case
study, Due to we calculate the relative
business importance, the initial total BI
is 100(%). When the Round n testing is
over, the loss BI caused by market ero-
sion is ()nessureRatePr1100100 +− . On the

other hand, the earlier the product enters
the market, the larger the loss caused by
poor quality. Finally, we can find a sweet
spot (the minimum) from the combined
risk exposure due to both unacceptable software quality and market erosion.

We assume three Pressure Rates 1%, 4% and 16% standing for low, median and
high market pressure respectively in Fig 7,8,9. When market pressure is as low as 1%
in Fig7, the total loss caused by quality and market erosion reaches the lowest point
(sweet spot) at the end of the Round 4.When the Pressure Rate is 4%, the lowest point
of total loss is at the end of Round 3 in Fig 8, which means we should stop testing and
release this product even F5 and F9 haven’t reached the stop-test criteria at the end of
Round 3; this would ensure the minimum loss. When the market pressure rate is as
high as 16% in Fig 9, we should stop testing at the end of Round 1.

6 Discussion of Limitation

 This method is based on the assumption that the features for prioritization are
independent and the absentness of any features doesn’t influence the testing and re-
leasing of others. If the prioritization has already been done in the implementation
stage, testing is just a process that ensures the software satisfies customers’ needs,
instead of a process of trade-offs between quality and time-to-market pressures,
and our method becomes meaningless for this situation.

 This method is applicable for business critical projects, not suitable for safety
critical domains. In safety critical domains, software organizations follow strict
guidelines for testing. Sacrifice of quality to satisfy the business goal might be un-
ethical and unprofessional in such situations.
 This method depends highly on accurate cost estimation to enact testing

plans and testing rounds, however, as practical experiences show, it is often not
possible to anticipate all influence factors at the beginning of a test cycle. Re-
estimation during the testing process gives a solution to this problem. Updated test-
ing cost estimation during the testing process produces more accurate testing pri-
orities.

 About the method validation, we used a simple function to display the mar-
ket pressure’s influence to BI in our case study; however, this form of market pres-
sure may not fit the real life situation. There are other types of market pressure
functions as well[20]. The choice of which function to use depends on different
project business cases.

Fig. 9. BI Loss (Pressure Rate=16%)

222 Q. Li et al.

7 Conclusion and Future Work

Software testing is a very resource-intensive activity in software development and not
always organized to maximize business value. This paper has demonstrated a
value-based approach for prioritizing features for testing which aligns the internal test
process with the value objectives coming from the customers and the market. This
involves prioritizing features based on their business importance, quality risk, and
testing cost of each feature; adjusting feature’s value priority during the testing proc-
ess; and providing stop-testing decision criteria based on the market pressure. In the
organization’s case study, this method helps the test manager to identify features with
high business importance, high quality risk and low cost, to focus testing effort on
these features and to control and adjust testing plan toward SCSs win-win realization.
The result shows that this method can help to improve ROI of testing investment at
the early stage, especially when the market pressure is high.

In 2009, we plan to apply this testing approach to a set of e-Services projects at
USC to get more empirical validation.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
Grant Nos. 60573082, 60873072, and 60803023; the National Hi-Tech R&D Plan of
China under Grant Nos. 2006AA01Z182 and 2007AA010303; the National Basic
Research Program (973 program) under Grant No. 2007CB310802.

References

1. Boehm, B., Basili, V.R.: Software Defect Reduction Top10 List. IEEE Computer 34(1),
135–137 (2001)

2. Boehm, B.: Value-Based Software Engineering: Overview and Agenda. In: Value-Based
Software Engineering. Springer, Heidelberg (2005)

3. Ramler, R., Biffl, S., Grunbacher, P.: Value-Based Management of Software Testing. In:
Value-Based Software Engineering, pp. 226–244. Springer, Heidelberg (2005)

4. Beizer, B.: Software Testing Techniques, 2nd edn. International Thomson Computer Press,
New York (1990)

5. Boehm, B.: Value-Based Software Engineering. ACM Software Engineering Notes, 28(2)
(2003)

6. Bullock, J.: Calculating the Value of Testing. Software Testing and Quality Engineer-
ing 2(3), 56–62 (2000)

7. Pyster, A.B., Thayer, R.H.: Software Engineering Project Management 20 Years Later.
IEEE Software 22(5), 18–21 (2005)

8. Boehm, B., Jain, A.: An Initial Theory of Value-Based Software Engineering. In: Value-
Based Software Engineering, pp. 16–37. Springer, Heidelberg (2005)

9. Boehm, B., et al.: Using the WinWin spiral model: a case study. IEEE Computer 31(7),
33–44 (1998)

10. Boehm, B.: A Spiral Model of Software Development and Enhancement. IEEE Com-
puter 21(5), 61–72 (1988)

 Bridge the Gap between Software Test Process and Business Value: A Case Study 223

11. Boehm, B., Huang, L.G.: Value-Based Software Engineering: A Case Study. IEEE Com-
puter 36(3), 33–41 (2003)

12. Amland, S.: Risk Based Testing and Metrics. In: 5th International Conference EuroSTAR
1999, Barcelona, Spain (1999)

13. Raz, O., Shaw, M.: Software Risk Management and Insurance. In: Proceedings of the 23rd
International Conference on Software Engineering (Workshop on Economics-Driven
Software Engineering Research) (2001)

14. Lee, K., Boehm, B.: Empirical Results from an Experiment on Value-Based Review
(VBR) Processes. In: International Symposium on Empirical Software Engineering (2005)

15. Boehm, B., et al.: The ROI of Software Dependability: The iDAVE Model. IEEE Soft-
ware 21(3), 54–61 (2004)

16. Wiegers, E.K.: First Things First: Prioritizing Requirements. Software Development 7(10),
24–30 (1999)

17. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
18. Boehm, B., et al.: Software Cost Estimation with COCOMOII, Har/Cdr th edn. Prentice-

Hall, Englewood Cliffs (2000)
19. Chulani, S., Boehm, B.: Modeling Software Defect Introduction and Removal: CO-

QUALMO (COnstructive QUALity MOdel),Technical Report, University of Southern
California (2002)

20. Huang, L., Boehm, B.: How Much Software Quality Investment Is Enough: A Value-
Based Approach. IEEE Software 23(5), 88–95 (2006)

21. Srikanth, H., Williams, L.: On the Economics of Requirements-Based Test Case Prioritiza-
tion. In: EDSER 2005, St. Louis, Missouri, USA (2005)

22. Wang, Q., et al.: BSR: A Statistic-based Approach for Establishing and Refining Software
Process Performance Baseline. In: Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China (2006)

23. Wang, Q., et al.: An Empirical Study on Establishing Quantitative Management Model for
Testing Process. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470,
pp. 233–245. Springer, Heidelberg (2007)

Subcontracting Processes in Software Service
Organisations - An Experience Report

Jakub Rudzki1, Tarja Systä2, and Karri Mustonen1

1 Solita Oy, Satakunnankatu 18 A, 33210 Tampere, Finland
firstname.lastname@solita.fi

2 Tampere University of Technology, Korkeakoulunkatu 1, 33101 Tampere, Finland
tarja.systa@tut.fi

Abstract. Software systems and projects have become more and more
distributed. This emphasises the need for ensured software quality, which
impacts e.g. customer satisfaction, development costs, and delivery
schedules. Concerns about the software quality become even more im-
portant in the case of subcontracted software projects, and in the case
of multi-site projects in particular. In this paper we describe a practise-
derived process to assess the potential subcontractors at their selection
stage and later to evaluate the cooperation with them. For both pur-
poses, particular criteria suites and frameworks are proposed. The cri-
teria include software-specific and productivity metrics, but also more
qualitative criteria. We report initial observations from usage of the pro-
cess in industry. The assessment results are expected to help in making
decisions about subcontractor selection, and later on assigning specific
types of projects to specific subcontractors based on their suitability.

1 Introduction

The usage of subcontractors in software development is not a new concept. Com-
panies decide to introduce subcontracting in their projects for various reasons.
Often the main reason is the cheaper labour, also a lack of qualified special-
ists may be a reason. Additionally, plans for expansion in another country can
start from establishing an off-shore centre [1,2]. Subcontracting partners are of-
ten used in product development, but rarely in software companies that offer
software services themselves. In such an organisation the subcontracting partner
must be extremely reliable and able to provide high quality services, so that the
software service company can provide services transparent for the end customer,
who in most of the cases, is not interested in internal organisation of the of-
fered projects. A correctly selected subcontracting partner can increase chances
of successful relationship with software service customer, which is often based
on trust [3]. In this paper we are presenting a case study of subcontracting selec-
tion and evaluation process that is based on the case of software service provider
company Solita 1.

1 www.solita.fi

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 224–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Subcontracting Processes in Software Service Organisations 225

Solita is a software service company offering its customers customised solu-
tions. Those solutions are developed in projects where to some extent subcon-
tracting partners are used. In order to find the most suitable subcontracting
partners we have developed and successfully used a process for selection of sub-
contractors. The process as such is based on best practises of subcontracting.
However, it is adjusted to specific needs of software service company. We also
present a cooperation process that we have used for projects developed together
with the subcontracting partners. Together the selection and cooperation pro-
cesses create a general process of subcontracting in software service companies.

The rest of this paper is structures as follows, in Sect. 2 we discuss the most
relevant research related to presented process. In Sect. 3 we present the overview
of the cooperation process with subcontracting partners. In Sect. 4 selection
process is presented. Ways of everyday cooperation with subcontracting partners
are presented in Sect. 5. Then in Sect. 6 we present our experiences in Solita
with using the processes. Finally, we present our conclusions in Sect. 7.

2 Related Works

Software development subcontracting has been discussed for some time already
in the literature. There are different strategies presented, including outsourc-
ing based on cooperation and competition of subcontracting partners [4]. The
strategy based on a good relationship with the subcontracting partners is one of
the aims of the subcontracting process discussed in this paper. Also the process
to be discussed is in line with good practises of outsourcing [5,6]. For exam-
ple, the outsourcing process can be assessed using the Outsourcing Management
Maturity Model [5]. Also most of the seven outsourcing practises presented by
Reifer [6] can be found in the subcontracting process discussed in this paper.
One part of the subcontractor cooperation process is the subcontractor selection.
Subcontractor selection methods have been analysed by Assmann and Punter,
which resulted in formulating Method for Assessing Software Subcontractors
(MASS) [7]. MASS has elements of subcontractor selection that are also utilised
at the general level in the described subcontractor selection process. However,
while MASS focuses on particular projects, subcontracting selection process we
discuss focuses on long-term cooperation that should result in multiple projects.
This different goal results in different assessment criteria that are more general
and technology-related, rather then specific for a particular project.

Also high level frameworks for acquisition of services CMMI [8,9], CMMI for
Acquisition [10], EuroMethod [11] / ISPL [12], or models focusing on social and
cultural aspects of subcontracting eSCM-SP / SQM-CODE [13] are a good base
for company-specific processes. The process described in this paper contains main
elements of those frameworks (i.e. selection, monitoring, termination); however,
we present details of a process specific to software service organisation. Also
we do not focus explicitly on risk factors, e.g. legal risks, as those should be ad-
dressed in contracts, while quality related risks are addressed by careful selection
and cooperation processes that are described in the following sections.

226 J. Rudzki, T. Systä, and K. Mustonen

3 Process Overview

We see the cooperation with subcontractors as a process that starts from the
search of a suitable company and then evolves into a long-lasting cooperation.
The concept of this process is depicted in Fig. 1

In the selection phase, which consists of the active search through different
means and the selection of the companies that will be chosen as potential sub-
contractors, we use a number of criteria that are aiming at selecting the most
suitable subcontracting partner. The criteria are to reveal the general ’health’
of the company, e.g., from the financial point of view [14], but also their compe-
tence in a given technological field. The subcontractor quality can be understood
in many ways. Here we will focus on attributes that help to identify whether a
particular company will be a suitable subcontracting partner or not. Such as-
sessment is not easy. Therefore the process does not aim at providing a definite
answer in the style ’Yes, that company will be a good partner for us’ or ’No, that
company certainly will fail in cooperation with us’. The process should be used as
additional help when decisions are made. There are many other factors that are
used to select a new business partner [14], including location, culture, or political
context. However, we concentrate on the quality aspects of such cooperation as
for a software service company software quality is a very important factor in
maintaining a good relationship with end customers. The selection phase results
in a list of subcontractors that have been selected for cooperation. The subcon-
tractors can be categorised based on their technical capabilities, prices, size etc.
Categorisation may help especially in the case of large number of subcontractors.

In the evaluation phase, the work done with certain subcontractors is con-
stantly evaluated. In order to develop good cooperation and mutual under-
standing with the subcontractor the projects using subcontractors should be
continuously evaluated, which is in line with general good practises in outsourc-
ing [6,5] and aiming at partnership with the subcontractor [15]. The criteria used
for evaluation are reduced to minimum in order to reduce the costs of the mea-
surements in the business settings. The evaluation results can be used to give
feedback to the subcontractor and adjust project arrangements in the ordering
company. Projects utilising subcontractors can be arranged in various ways; the
project can be carried out entirely by the subcontractor, only with supervision
from the ordering company, or with mixed teams of subcontractors and ordering
company employees. The work evaluation should help both sides to better meet
their expectations. Also based on the classification the subcontractors can be
used more efficiently in the future projects.

Fig. 1. Subcontractor cooperation process

Subcontracting Processes in Software Service Organisations 227

4 Selection Phase

The aim of the selection phase is to find as many potential subcontractors as
possible, then through multi-step selection process choose subcontractors the
most suitable for cooperation. This phase results in a list of subcontractors who
can be categorised based on their suitability for software service projects. The
details of the selection phase are depicted in Fig. 2. Many potential companies
are rejected, but it only means that they are not suitable at given time for specific
needs. It is possible that they can be suitable in the future if the cooperation
context changes, e.g., their size or competence change.

Fig. 2. Subcontractor selection phase

4.1 Selection Phase Walkthrough

The selection phase starts from initial search, which can be done through Internet
search engines, personal recommendations, social network portals and any other
means allowing to find potential suppliers of subcontracting services. Next, in
first competence check the companies are checked initially for their competences.
The check is done mostly based on the information provided by the company
in their publicly available promotional materials, particularly web-pages. That
check allows, for example, to filter out recommended companies that changed

228 J. Rudzki, T. Systä, and K. Mustonen

their profile, for instance, from software supplier to hardware. After the com-
pany list is narrowed down, sending initial offer requests can start. In the offer
request the company is expected to state whether they are interested in pro-
viding subcontracting services, give basic information on their operations and
provide price range for their services. Companies that express their interest in
cooperation on acceptable conditions are selected for further negotiations.

The next step is arranging interview when details of possible cooperation are
discussed. The interview is typically organised as a teleconference, because of the
distance between the parties. As a preparation for the interview the company
is asked to fill in a questionnaire with questions allowing to gather detailed
information on their competences and assess their quality. The details of the
questions are discusses in Sect. 4.2. During the teleconference main objectives of
the subcontracting are discussed and both parties can gather more information
about each other. Subsequently the interview analysis is performed. The analysis
is done based on the material gathered before and during the interview. The
answers collected from the questionnaire are analysed and used as a supportive
tool to further select the companies.

Finally, meetings in suppliers’ premises are organised. Those meetings are
used to get to know better by the parties as well as negotiate the details of
cooperation. Subsequently analysis of meetings are performed to select final
companies with whom contracts are signed. Signing a contract ends the selection
phase and starts the evaluation phase with new subcontractors.

4.2 Criteria

The questions used to assess the potential subcontractor quality are based on
information that should be easily available, at least at the stage of considering
the given company as a subcontractor. No information is asked that would be too
business-specific. Thus, obtaining that details should not be a problem. In fact,
if the potential subcontractor was reluctant to provide such information, that
would also provide some picture of the company policies and culture. However,
we assume that the potential subcontractor is willing to provide answers to the
questions collected in the questionnaire.

Assessing the subcontractor quality can be done based on well established
standards, e.g., CMMI-ACQ [10], MASS [7], eSCM-SP / SQM-CODE [13], or
others as described in Sect. 2. The use of any quality standards by the potential
subcontractor also allows assessing the potential quality of their work, as specific
quality attributes relate more to certain processes [16]. For assessing a general
quality level of the subcontractor, before any project is carried out by that
subcontractor, we suggest the following selected criteria:

1. Number of qualified engineers, which provides information of the potential
talent pool available for the ordering company. That number can also be
used to make other attributes relative, which helps to compare results of
companies of different sizes.

2. Median number of years of experience, which provides general information
on the experience level that can be expected from the available engineers.

Subcontracting Processes in Software Service Organisations 229

3. Number of customers, which allows for assessing how active is the company
with winning contracts from customers.

4. Percentage of long-lasting customers, which allows for finding out whether
the subcontractor aims at good relationship with their customers.

5. Number of projects done per year to the number of specialists, which provides
information on typical projects done in the company concerned. A high level
of this metric indicates that the company has many small projects. That,
in turn, can indicate flexibility in changing the projects but shows that the
potential subcontractor does not have experience with long-lasting projects,
e.g., a new product development. On the other hand low value of the metric
indicates the opposite. The actual values and their distinction between high
and low values depends on what the ordering company expects.

6. Average length of a project, which also provides information on the type
of projects done in the subcontractor company. That information must be
evaluated in the context of the prosperous projects that are planned to be
subcontracted.

7. Average size of the project, which allows finding out what kind of size projects
the company is able to carry out. Also that measure may indicate in what
kind of teams the professionals concerned are typically working.

8. Expertise in evaluated technology, which provides directly information on
the experience in given technology. That category should be adjusted and
possibly fine-grained to the level suitable for the project(s) that are to be
subcontracted.

9. Processes used for software development, which allows to asses the awareness
of the prosperous subcontractor about software development methodologies.
If a company follows certain processes, it indicates that they thought through
their practises and want to improve them. The process maturity can also
be characterised at different levels [17]. In that case complete lack of any
processes can be seen as a negative factor during the selection phase.

10. Number of projects fully coordinated, which provides information on the
project specialisation of the given company. That metric shows whether the
company provides people to work in teams (maybe virtual teams) coordi-
nated by the customer ordering the project, or the potential subcontractor is
able to deliver a product based on requirements given by the customer. Also
this metric should be evaluated in the context of the prosperous projects to
be subcontracted.

11. Change management practises, which allows to assess whether the company
has internal processes defined and whether they are consistent with the de-
velopment processes used by the potential subcontractor.

5 Evaluation Phase

When a relationship with a subcontracting company (or a group of companies)
is established and projects are done by those companies, it should be possible to
assess the actual quality of those subcontractors based on their work. Having in

230 J. Rudzki, T. Systä, and K. Mustonen

mind that we discuss the subcontracting of software service projects, we should
define software-specific criteria for subcontractor quality measurement. The work
evaluation process is depicted in Fig. 3.

The list of subcontractors that are cooperating with the contractor results
from the selection process. The subcontractors can be also categorised based on
their competences, prices etc. But later during the cooperation, the subcontrac-
tors can additionally be categorised based on the quality of their work. That
information can be used by the managers to select a better suitable subcontrac-
tor for specific projects. Also it can happen that the actual performance of a
subcontractor is found not sufficient and the cooperation with such company
will be terminated.

Before a new project is started, a team is selected from personnel available
from certain subcontractor. That stage is similar to any project team selection
with the difference that some or all team members are from the subcontrac-
tor organisation. When the project is ongoing the project team can internally
evaluate project progress and adjust internal practises to improve the project
performance. The internal project feedback can be easily done for projects fol-
lowing the Scrum/Agile methodology [18], where such feedback sessions are part
of the process. Finally, after the project has completed its results can be eval-
uated. The project can be evaluated in multiple dimensions. Naturally software
quality metrics can be used to assess the quality of the produced software. How-
ever, additionally other criteria can be used to determine whether project was
successful and to what extent the subcontractor work influenced the success or
failure.

The most general and straightforward metric of the project performance is
the profit. It is difficult to measure the project performance based on the num-
ber of lines of code, as it can promote lengthy difficult to maintain code (as
pointed out by Martin Fowler [19]). But the profitability of the project does
not necessary tell much about the quality of the produced software. To measure
the software quality it is possible to select a few software metrics [20] and pro-
cess metrics [21]. Also specific set of metrics for outsourcing has been proposed,
for example POMADO [22]. However, POMADO consists very detailed level of

Fig. 3. Subcontractor evaluation phase

Subcontracting Processes in Software Service Organisations 231

metrics, mostly focusing on communication, which as such is very important,
however in this work we approach the subcontractor evaluation from different
angles. We have selected metrics that can be easily gathered from the produced
code, faults statistics, cost of the project (measured in hours or actual amount
of money). The measures must be generic for any type of the projects and sub-
contractors, they also do not require any input from the subcontractor as the
data is readily available in the ordering company. Also more qualitative criteria
should be used reflecting, for example, customer satisfaction.

The primarily objective of these metrics is to compare the work of different
subcontractors and categorise them better. That information should be used to
more consciously choose subcontractors for specific projects. The measurements
are not meant to create a ranking of the subcontractors as their specific compe-
tences may differ greatly and comparing them directly would not be reasonable.
In addition to finding out the quality of work of particular subcontractors such
measurements can provide additional information on specific projects. For exam-
ple, comparison of the results for projects that were done entirely by one subcon-
tractor (single-site projects) with multi-site projects can provide information on
the impact of the multi-site setting on the project quality. That information will
in turn allow for more conscious choice of the project setting, or the influence
of the setting on the project in the case when the setting cannot be altered. It
is possible to imagine that based on comparative data it can be recognised that
projects with profitability margins below certain threshold should not be taken
in certain settings. For example, if multi-site projects turn out to have much
different profitability comparing to one-site projects, some projects should not
be done in multi-site arrangements.

5.1 Quality Monitoring Metrics

There are numbers of software and productivity metrics that can be used for
measuring different aspects of the software quality, however, in the context of
commercial projects only most useful metrics should be calculated. Therefore
we suggest a set of metrics that we see as preferred and they should be used
for all projects. But we also specify optional metrics that can be used in order
to gather more detailed information on specific projects or subcontractors. The
preferred metrics that we suggest to measure project quality include:

1. Profit margin of a project measures the value of a project from the business
point of view, regardless of the project technical quality. Also this metric can
be used to determine well performing projects and possibly identify project
specifics, e.g., size, number of sites, length, etc., that influence projects prof-
itability.

2. The ratio of hours spent for communication to the total work hours. That
metric should indicate differences in communication patterns between
projects. Especially multi-site projects are assumed to require much more
communication than single-site projects [23,24]. By measuring the number
of hours spent for communication it should be possible to compare results

232 J. Rudzki, T. Systä, and K. Mustonen

between single- and multi-site projects, as well as well performing projects
and badly performing ones. For example, if a multi-site project starts per-
forming badly and it is also seen that there is not much communication
in the project, preventive measures can be taken. Also it should be noted
that communication is understood as any forms of communication, including
face-to-face meetings, teleconferences, and also virtual chats in any instant
messengers (IM).

3. The percentage of project team members from a subcontractor company.
That metric reflects the team organisation and extend to which the subcon-
tractor had contributed in the work.

The optional metrics that we suggest include:

1. Number of implemented required features to the total number of required
features for specified time. Each project has a number of features which are
recognised as required, so features that if not implemented, the final product
will be significantly less valuable for the end customer. This metric allows
for measuring what is the percentage of implemented features. The number
indicates how well the team managed to fulfil the agreed requirements.

2. Percentage of the agreed performance target achieved. The performance tar-
get differs from product to product, but for a web application it can be
the number of users served in specified time period. The percentage of the
achieved performance target tells how well the project managed to realise
important goal from the user point of view. Additionally, as the performance
goal should be agreed beforehand, this metric also tells how good is the team
in the goals estimation.

3. Number of faults per 1000 lines of code; where faults are gathered through
the whole life-cycle of the software development. Providing that compared
projects use the same technology (programming language), the metric will
give a general picture whether the created code follows the defined require-
ments.

4. Number of fault fixes delivered. That metric can be used to monitor fault
handling pattern in the project, i.e., to see whether the newly reported faults
are resolved promptly.

Additional qualitative criteria include:

1. Project methodology, which may allow to link correct practises with certain
types of projects.

2. Customer satisfaction, which in software service project is very important,
yet difficult to measure. The satisfaction level usually can be obtained from
the customer when the project work is done and the end customer is asked
for feedback.

6 Process Applicability - Experiences to Date

The described process derives from our real-life experiences of subcontractor
selection and later cooperation with them. The process version presented in this

Subcontracting Processes in Software Service Organisations 233

work refines areas, which should be addressed during the selection phase. The
subcontractor cooperation evaluation is an ongoing process and the set of used
criteria may change in the future.

The selection process has been used for two years now since its initial version.
We are able to distinguish two different cycles of using the selection process with
different business and technological requirements. One requirement valid in all
cycles was the location of the potential subcontractor partner. From our point
of view the partner should be in a ’nearshore’ [25] location understood as in
distance allowing business trips in one day, similar time zone and culture. In
the first selection cycle we initially selected 26 companies from about 200, from
which we contacted 12 companies, then for final visits were selected 5 companies.
That process resulted in cooperation with a few partners. The second selection
cycle is still ongoing, but so far we have initially selected 77 out of about 150
companies, then contacted 38 companies, then interviewed 8 companies and vis-
ited 6 different companies. As it can be seen the selection process greatly reduces
the number of companies at each stage. The selection is based on the collected
data as well as experience and judgement of the decision makers, that’s why
we don’t use a point system where potential subcontractors collect points. That
approach does not seem feasible in a selection process that is more qualitative
than quantitative. The process is used whenever there is a need for new subcon-
tracting partners, also already collected company profiles are re-evaluated if the
cooperation context changes

The evaluation of cooperation with existing subcontracting partners is ongo-
ing and data is collected. Currently the collected data is not enough to draw any
general conclusions or recognise new patterns. We believe that the selected crite-
ria are enough for evaluating the cooperation with subcontractors and improve
the cooperation when needed. So far there have not been noticed any significant
correlation in particular criteria levels and project success, however, we also
have not obtained data for any extreme project cases of failure or significant
success. Such extreme cases should provide more information and possible cor-
relation with particular criteria. Even with initial results we are able to observe
some patterns in specific criteria. For example, the time spent for communica-
tion reflects the changes in the project arrangement. In one project, the ratio of
time used for communication to the total project time was typically about 10%.
However, the ratio increased (to about 13%) when the team was dislocated to
different sites.

Additionally, the results show that during absence of the project manager the
communication related to the coordination has lowered (to about 5%). It is not
possible to draw any general conclusions based on this data, but it shows some
correlation to the events in that particular project. Also differences between
the few analysed projects have been observed. The communication needs in
projects differed from 9% of overall time, to 25%. The lower communication effort
was noticed in smaller projects, while the higher in the bigger ones and more
distributed. However, all of those projects were otherwise moderately successful,
so no general conclusions can be drown at this point. When data for many

234 J. Rudzki, T. Systä, and K. Mustonen

projects and many subcontractors is collected, then it should be possible to
conclude more generally and possibly recognise certain patterns.

7 Conclusions

We have presented a process and criteria allowing for assessing subcontractor
performance through the whole cooperation cycle. Starting from selection of the
subcontractor where particular criteria can be used to perform better selection,
to end with continuous evaluation of cooperation with a subcontractor. The
presented processes are aiming at the needs of software service companies that
particularly strive to establish trustful relationships with their customers regard-
less of usage of the subcontractors in projects. Therefore processes helping to
build quality-based cooperation with subcontracting partners directly reflect in
relationships with the end customers of the software service company. The pre-
sented processes use multiple criteria of different kinds in order to cover different
aspects of selection and cooperation with subcontracting partners.

Based on the experiences from subcontractor selection we refined previously-
used metrics and created a set that will be used in the future selection processes.
The evaluation process using the defined mandatory criteria is currently being
done. The initial results indicate their relevance to monitoring the project work
and when generalised also the subcontractor work. As the cooperation with
subcontracting partners has been successful in several completed projects, we
believe that the selection and cooperation process is correct. But still the selected
criteria and processes should improve this cooperation even more. As future
work, we will analyse results obtained from industrial usage of the process and
possibly improve it. Additionally, we would consider creating a tool providing
automatically the needed reports using data from different IT systems of the
company.

References

1. Bardhan, A.: Managing globalization of R&D: Organizing for offshoring innovation.
Human Systems Management 25(2) (2006)

2. Harvey, M.G., Griffith, D.A.: The role of globalization, time acceleration, and vir-
tual global teams in fostering successful global product launches. Journal of Prod-
uct Innovation Management 24(5), 486–501 (2007)

3. Hoch, D.J., Roeding, C.R., Purkert, G., Lindner, S.K.: Secrets of Software Suc-
cess: Management Insights from 100 Software Firms Around the World. Harvard
Business Press (2000)

4. Timothy, M.: Laster. Balanced Sourcing – Cooperation and Competition in Sup-
plier Relationships. Jossey-Bass (1998)

5. Power, M.J., Desouza, K.C., Bonifazi, C.: Developing superior outsourcing pro-
grams. IT Professional 7(4), 32–38 (2005)

6. Reifer, D.J.: Seven hot outsourcing practices. IEEE Softw. 21(1), 14–16 (2004)
7. Assmann, D., Punter, T.: Towards partnership in software subcontracting. Com-

put. Ind. 54(2), 137–150 (2004)

Subcontracting Processes in Software Service Organisations 235

8. Software Engineering Institute, Carnegie Mellon University. Capability maturity
model integration (CMMI) (2007), http://www.sei.cmu.edu/cmmi/index.html

9. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration
and Product Improvement. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

10. Software Engineering Institute, Carnegie Mellon University. Cmmi for acquisition,
version 1.2. Technical Report CMU/SEI-2007-TR-017, SEI (2007)

11. Euromethod Project. Euromethod version 1 reference manual (July 1996),
http://projekte.fast.de/Euromethod

12. ISPL Project. Ispl - information services procurement library,
http://projekte.fast.de/ISPL/

13. Siakas, K.V., Balstrup, B.: Software outsourcing quality achieved by global virtual
collaboration. Software Process: Improvement and Practice 11(3), 319–328 (2006)

14. Östring, P.: Profit-Focused Supplier Management: How to Identify Risks and Rec-
ognize Opportunities. Amacom (2003)

15. Lee, J.-N., Huynh, M.Q., Kwok, R.C.-W., Pi, S.-M.: It outsourcing evolution—:
past, present, and future. Commun. ACM 46(5), 84–89 (2003)

16. Ashrafi, N.: The impact of software process improvement on quality: in theory and
practice. Inf. Manage. 40(7), 677–690 (2003)

17. Humphrey, W.S.: Characterizing the software process: A maturity framework.
IEEE Softw. 5(2), 73–79 (1988)

18. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using scrum in a globally dis-
tributed project: a case study. Software Process: Improvement and Practice 13(6),
527–544 (2008)

19. Fowler, M.: Cannot measure productivity (August 2003),
http://martinfowler.com/bliki/CannotMeasureProductivity.html

20. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley
Longman Publishing Co., Inc., Boston (2002)

21. Humphrey, W.S.: The software quality profile,
http://www.sei.cmu.edu/publications/articles/quality-profile (accessed
in 02.2008)

22. Radoiu, D., Vajda, A.: Process-oriented metrics for application development
outsourcing. a practitioner’s approach. Studia Univ. Babes-Bolyai, Informat-
ica XLIX(1) (2004)

23. Paasivaara, M.: Communication needs, practices, and supporting structures in
global inter-organizational software development projects. In: Proceedings of the
IWGSD at the 25th ICSE, Portland, Oregon, pp. 59–63 (2003)

24. Mockus, A., Herbsleb, J.: Challenges of global software development. In: METRICS
2001, Washington, DC, USA, p. 182. IEEE Computer Society Press, Los Alamitos
(2001)

25. Carmel, E., Abbott, P.: Why ’nearshore’ means that distance matters. Commun.
ACM 50(10), 40–46 (2007)

http://www.sei.cmu.edu/cmmi/index.html
http://projekte.fast.de/Euromethod
http://projekte.fast.de/ISPL/
http://martinfowler.com/bliki/CannotMeasureProductivity.html
http://www.sei.cmu.edu/publications/articles/quality-profile

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 236–245, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On Reducing the Pre-release Failures of Web Plug-In on
Social Networking Site

Xingliang Yu, Jing Li, and Hua Zhong

Institute of Software, Chinese Academy of Sciences
Graduate University of Chinese Academy of Sciences

P.O.Box 8718, Beijing 100190, China
yuxl@otcaix.iscas.ac.cn

Abstract. In recent years, web plug-ins have been flourishing social networking
sites. Web plug-in is successful since it results in unique user experience, and
promotes the fast-pace innovation of web technologies. However, the plug-ins
developed by end users also introduces many new problems to both networking
and software engineering fields. One of the key problems is pre-release failure.
In other words, the failures that we can avoid before software release are
usually found after the release. However, existing methods fail to avoid the pre-
release failures of web plug-ins. To do this, this paper introduces an experimen-
tal technology, namely release-waiting farm. It not only maintains the free and
creative environment of end user development, encouraging them to deliver
plug-ins, but effectively formalizes their development process, thus provide
long-term benefit to both end users and social networking sites.

Keywords: end user development, pre-release failure, social networking site,
web plug-in.

1 Introduction

Social networking site (SNS) is virtual community that connects people with friends
and others who work, study, and live around them. In very recent years, SNS has
experienced periods of growth with participation expanding at rates 20% a month
[16], and thus become an exciting member among all web sites. A typical example is
Facebook [6], which allows millions of users to create online profiles and share per-
sonal information with vast networks of friends. A step further, a growing number of
SNSs, including Facebook, also encourage end users to develop web plug-ins, and
shares these plug-ins across the whole site. For example, in Xiaonei [7], Friend Trade
is a web plug-in developed by five college students, which has been installed by more
than three millions of Chinese users in 42 days.

Web plug-in attaches tremendous end users since they result in extremely unique user
experience, and promote user’s networking circles. However, they also introduce many
new problems to both networking and software engineering fields. One key problem is
pre-release failure. In general, software failure refers to an observable error in the program
behavior [1]. Pre-release failures occur before software release, typically during software
testing, while, post-release failures are found by users after the software is release.

 On Reducing the Pre-release Failures of Web Plug-In on SNS 237

Unlike software engineers in companies, web plug-in developers are free to release
their plug-ins at any time without required to pass formal testing. As a result, most of
the failures we found are post-release failures, instead of pre-release ones. This in turn
leads to a vast number of performance, security, and privacy problems. For example,
a careless developer may release a plug-in that fetches Bill’s user profiles in an end-
less loop. As users install and run this plug-in, web server would significantly slow
down, or even leads to DDoS. In another example, a controversial plug-in may collect
e-mail addresses from a user’s profile to forward spam.

To ensure the quality of plug-in, both industry and research communities have pre-
sented various methods. Facebook outlines a list of prohibited plug-in categories and
seek for law protection [6]. John introduced ISN technique that only allows a user’s
friends to view his privacy information [8]. Meanwhile, Leon proposed a complex
access-matrix, as well as a long list of checking rules [9]. Along another thread, Ohls-
son et al. suggests CVS-based source code verification, and presented an automatic
method [10]. While Ostrand et al. have been trying to introducing a formal quality
assurance methodology customized for end user development [11].

However, all these methods fail to avoid the pre-release failures of plug-ins, or mix
pre-release failures with post-release ones. In this paper, we present a release-waiting
farm method, which extends the state of the art in three points. First, it highly ensures
the freedom and creativity of plug-in developers. Second, it allows a plug-in to release
only after systematic testing in SNS snapshot environment. Third, it formalizes the
web plug-in development process, thus provides benefit to both SNS and developers.

The remainder of this paper is organized as follows. Section 2 summaries the re-
lated work on pre-releasing failure detection, as well as end user development. Sec-
tion 3 defines the release-waiting farm, and then Section 4 presents the details design
and our system realization. Finally, Section 5 discusses our findings with the analysis
from a three-month experiment, and Section 6 concludes the paper.

2 Related Works

In this paper, we use the term defect to refer to an error in the source code, and the
term failure to refer to an observable error in the program behavior. In other words,
every failure can be traced back to some defects, but a defect need not result in a fail-
ure [2]. Pre-release failures generally occur before a software release, in the course of
testing; post-release failures are found by users after the release. Therefore, pre-
release failures, if undetected in time, will definitely become post-release failures.

To avoid post-release failures, a number of software metrics and techniques have
been proposed [11]. In particular, Chidamber and Kemerer suggested eight metrics to
cover the properties of object-oriented programs; Mockus used them in an industrial
software development process to explore what driving software quality [8]. After that,
Nachiappan [3] were among the first to validate these metrics, and found that these
metrics appeared to be useful for predicting defect density. But these metrics and
methods all assume that formal test phase is the key step to discover pre-release fail-
ures, and can’t be as casual as the one in SNS.

Participation in SNS has dramatically increased in recent years, and thus has at-
tracted the attention of the media and researchers. The latter have often built upon the
existing literature on social network theory like [11] to discuss its online incarnations,

238 X. Yu, J. Li, and H. Zhong

or focus on profile to explore privacy and security problems [9], or collect data from
SNS site like Flickr to study the phenomenon of social networks [4], or even predict
the future trends through complicated survey [5].

In very recent years, as more and more SNSs enable users to develop web plug-ins
themselves, and share the plug-ins inside the whole web site. Moreover, industrial
companies have also paid much attention to this, e.g., Borland ported its applications
to Facebook [6]. Starting from the perspective of end user development (EUD), and
experimental system on exploring the test methodology on SNS, we proposed a re-
lease-waiting farm technology [14]. With release-waiting farm, SNS users are able to
join formal, while customized for SNS, test activities, figuring out pre-release fail-
ures, and thus improve the quality of the web plug-ins they develop.

3 Release-Waiting Farm

The process of developing a web plug-in on SNS is significantly different from tradi-
tional software process. As shown in Fig. 1, the key difference of web plug-in devel-
opment process lies in testing phase.

Unlike industrial software development, end user tends to test his plug-in by using
it himself, but find no way to systematically test the plug-in. After using it himself,
end user quickly believes that the plug-in can work. What he can do next is to release
it, and wait for bug feedbacks from his friends. If there is bug feedback, in most cases
there must be, he then iterates through the development process, re-enter requirement
analysis, or design, or construction to fix a bug. SNS simply fails to provide effective
support to end user developers, thus suffers from many failure-prone plug-ins.

To reduce the number of pre-release failures, we provide release-waiting farm
technology, which is built on a modified iterative development process (Fig. 1). Here,
after testing the plug-in himself, developer passes his newly constructed plug-in to a
release-waiting farm. The farm is a small but compact web site provided by SNS, and
supports four kinds of functions.

First, the farm is a mini world. The world not only consists of a medium-size, co-
hesive set of users that are taken from the latest snapshot of the database of SNS, but
also owns the latest set of stable plug-ins that have already become popular in the
SNS. Therefore, plug-ins that fully tested in the farm are safe to release.

Second, brainstorm usage and testing. SNS strongly encourages all end user develop-
ers to test new plug-ins. The scenario seems like many unknown users sit down around
each plug-in, using it and trying to figure out the possible failures with their experience.

Third, invited senior users and developers. When a new plug-in enters the farm, it
is tagged with a category. Generally, the senior users or developers who have exten-
sive usage of that category of plug-ins can serve as field experts and perform valuable
testing. Like brainstorm testing, SNS has established attaching bonus to compensate
the time of the senior.

Finally, SNS needs debugging toolset. For example, SNS must provide API
watcher for developers to view the formal output of its API. And it should run online
bug-tracing system to record a bug opened by others, and fixed by corresponding
developers. Moreover, it also needs to provide friendly functions for users to view and
manipulate failure-related information like image, short description, and bonus.

 On Reducing the Pre-release Failures of Web Plug-In on SNS 239

Fig. 1. A modified iterative development process for high quality web plug-in
applications

4 Experiment

To verify the usability of release-waiting farm, we carried out an experiment in our
software engineering course from Feb. 15, 2008 to Jul. 10, 2008. First, we constructed
a web plug-in develop environment, including REST-like Java APIs, user manuals,
sample code, and online bug-tracing system. Second, we set up two web servers, one
for SNS, and the other for release-waiting farm. Third, we advertised our SNS
exp.gucas.ac.cn (EXP for short) among the graduate students of Chinese Academy of
Sciences. Until Jun. 12, 2008, EXP has attached 547 users, 36 active users are se-
lected as senior ones, totally 73 plug-ins were released until Jul. 2008.

Like many other SNSs, EXP provides JSP develop environment, which is com-
posed of three key parts: Java API, URL callback mechanism, and Apache Tomcat
5.5. As a popular web development technology, JSP enables users to develop various
plug-ins with enormous support. In particular, our Java API borrows the same inter-
faces from Facebook.com, and is enough to build diverse plug-ins [7]. Note that the
APIs have evolved several versions and many small improvements, so Table I lists
only a partial snapshot.

Unlike other SNSs, we don’t expect EXP to attach too many users since that re-
quires much budget to support. Basically, EXP is an experimental SNS with simple
UI, and lots of web plug-ins released by college students. In the course of experiment,
the number of registered users raised up steadily. In particular, most users are Master
candidates since EXP was mostly oriented from a graduate lesson. Finally, over 55%
percent users are involved in developing at lest one plug-in.

As shown in Fig. 1, the plug-in development process in EXP is simple. End user
first develops a beta plug-in on his local web server, and access the plug-in through
URL callback mechanism. He tests the plug-in himself, and then submits it to

Design

Construction

Use-it-myself
Testing

Release

Brainstorm

Mini World

Web Toolset

Invited Senior

Requirement
Analysis Starting Point

Release-waiting farm

240 X. Yu, J. Li, and H. Zhong

release-waiting farm. After fixing the bugs submitted by other users in the farm,
owner can then release the plug-in to main EXP server.

To enable release-waiting farm, we set up another web server
(rwf.exp.gucas.ac.cn), and run the following program at 3:00 PM everyday, as shown
in Fig. 2. Here, we arbitrarily choose top 10% active users and top 50% plug-ins, so
as to build a snapshot of EXP. Note that there would be better tradeoff than ours.
Finding satisfied tradeoffs under various conditions is regarded as our future work.
But now, this is enough for us to build a medium-size snapshot.

Table 1. A snapshot of EXP APIs, taken at Jun. 12, 2008

Class Function Description
startAppSession start an app after system checking

auth
appLogin only register app can login
getInfo get open info of a user with his ID

user
isAppInstalled check if the user install this app
getAllFriendID get all friends’ ID of a user

getOnlineFriends get all online friends’ ID of a user
areFriends are two users friends?

friend

getAppUsers all users who install this app
addOutsite invite outside friends to SNS

invite
addBonus give bonus to a user for invitation

notify sendMsg send notification to a user

Table 2. Registered users summarized at Jun. 12, 2008

Type Sub-type No. Senior
Master 210 12
PhD 38 2 CS-related

major student
Post-Doc 9 0
Master 80 8
PhD 23 2

other major
student

Post-Doc 3 0
Age 23-26 70 5
Age 27-30 45 1 campus staff

Age 30- 23 1
Age 23-26 18 3
Age 27-30 22 1

outside campus
friend

Age 30+ 6 1
All 547 36

Table 3. Top 10 EXP plug-ins at Jun. 12, 2008

Rank Plug-In Description
1 Buy-Sell Friends Buy a friend, and punish him
2 Pick Music to Friend Pick a music for you
3 Vote You like football, tennis, or…
4 Footmark I have been to Shanghai…
5 Name-Matching Our name match?
6 Touch You Give you a kiss, embrace…
7 Give You a Gift Give my friend a gift
8 Movie Review I have watched this movie…
9 Friend Impression Bill is a strong handsome boy

10 Daily Account I pay 10$ for breakfast…

 On Reducing the Pre-release Failures of Web Plug-In on SNS 241

During this five-month experiment, we have been strongly impressed by the enthu-
siasm of end users. To open more effective functions for end user developers, our
APIs have been pushed to evolve several versions, and hundreds of improvements.
Finally, 42 plug-ins are released by student teams in the software engineering course;
25 plug-ins are released by individual students for fun; six plug-ins developed by staff
and friends outside campus. As a result, our small SNS surprisingly attached more
than 500 users; many of them even require us continue to run both the main server
and farm server after experiment and course.

#1 //stop receiving new pre-release plug-ins
#2 stop_receive_newcomer();
#3 //store existing plug-ins and bug info into database
#4 store_beta_plugin();
#5
#6 // top 10% active users
#7 // users who install top 50% plug-ins
#8 users = top10pActiveUsers() && usersInstall50pApp()
#9 loadInfo(users);
#10 loadPlugin(users);
#11
#12 //since not all users will be in farm,
#13 //delete bad connections from to other users
#14 DelBadConnection(users);
#15
#16 load_beta_plugin();
#17 start_receive_newcomer();

Fig. 2. Building the mini world of farm

5 Analysis

We analyze the data collected during the experiment, and try to answer four ques-
tions. Does the farm big enough to test plug-ins? Do brainstorm and invited senior
methods work? Is it worthy to build the farm? Can plug-in developers and SNS bene-
fit from release-waiting farm?

From Table 4, we notice that almost all failures found in the farm can be revisited
in main server if we don’t have the farm, i.e. restore the server status to the point
when plug-in enters the farm. It is encouraging that for the top 10 plug-ins, 752 out of
772 failures found in the farm re-appear in the main server. So it is safe to claim that
release-waiting farm technology can significantly uncover the pre-release failures.

However, there is still 20 failures we found in farm don’t reappear in the main
server. Failures found in farm, but can’t appear in main server, simply means wasted
effort. To explore the reason, we check the log file of plug-in Vote, and find that tim-
ing is the critical factor. Since a vote opens and ends in a fixed interval, typically
several days. But in the farm, testing users simply want to finish the testing in sec-
onds. This result in a significant difference usage scenarios, thus leads to 10 failures
not found in main server. This indicates that the farm needs more effort to ensure that
every failure found here, must appear in main server. We regard this as one of our
future work.

242 X. Yu, J. Li, and H. Zhong

What we do not show in Table 4 is the number of failures found in main server, but
not in the farm. We can’t do this since SNS can only encourage, instead of forcing a
user to submit bug report.

A step further, it is satisfying that most failures found and fixed in the farm, won’t
appear in the main server. Of course, solving failures found in the farm but not in
main server will delay the release time. We perform a online questionnaire to check
this, and find that developers agree to test their plug-ins in the farm, and deem it wor-
thy since it indeed improves the quality of plug-in. We also find from the question-
naire that, our farm is big enough to uncover enough pre-release failures due to poor
design and programming skills.

Table 4. The failure analysis of top 10 plug-ins

Plug-In Found in
farm

Found in
main server

Not found in
main Server

Buy-Sell Friends 122 120 2
Pick Music to Friend 104 100 4

Vote 133 123 10
Footmark 67 67 0

Name-Matching 45 45 0
Touch You 44 44 0

Give You a Gift 59 56 3
Movie Review 65 65 0

Friend Impression 77 76 1
Daily Account 56 56 0

All 772 752 20

In the experiment, we also evaluate the testing methods, brainstorm and invited

senior, through the analysis of the bug records in detail. Here, we regard a failure as
effective failure (EF) only if it results in code change. Therefore, the number of EFs
must be smaller than that of all open bugs. As reported in Table 5, it is easy to note
that both brainstorm and invited senior methods give a solid number of failures,
which result in code change.

Table 5. Bug status of top 10 plug-ins

Brainstorm Invited Senior
Plug-in

Open EF Open EF

Buy-Sell Friends 190 50 97 72
Pick Music to Friend 145 55 99 49

Vote 233 65 131 67
Footmark 80 17 69 50

Name-Matching 90 35 41 20
Touch You 66 18 37 26

Give You a Gift 98 35 31 24
Movie Review 79 34 30 21

Friend Impression 104 22 87 55
Daily Account 120 30 29 26

All 1205 308 651 410

 On Reducing the Pre-release Failures of Web Plug-In on SNS 243

Brainstorm and invited senior methods are different in that failures opened by the
latter, are more likely to trigger code changes. As a result, data collected in bug-
tracing system reveal that developer tends to solve the failure found by invited senior
first. This tendency is reasonable since most failures (or bugs) opened by brainstorm
are redundancy. In brainstorm, each tester opens a bug when he finds a failure, with-
out reviewing the existing bug list. Finally, it is also safe to summarize that both
brainstorm and invited senior methods work effectively.

To apply the release-waiting farm, we need to run an additional server, which in-
troduces extra cost. So it is natural to ask “Is it worthy to use farm?” As shown in
Table 6, the cost of running a stable and fast main server, is typically 3 times of run-
ning its farm. From hardware requirement, monthly bandwidth cost, to the needed
number of maintenance staff, main server all present a tight demand on cost. While
the farm costs 25% of the main server since it operates on a small-scale size of data
set. We also claim that the percentage of farm cost tends to lower down as the size of
main server grows.

Table 6. Comparison of main server and the farm

Parameter Main Server Farm

CPU Intel Core 2 E4600 Intel P4 2.4 GHz
Memory 2G, 800MHz 512M, 400MHz

Hard Disk SCSI 72G SCSI 8G
NIC Intel 8492 1000Mbps Intel 8391 100Mbps

Peak Bandwidth 58.9Mbps 22.3Mbps
Network Cost $150/m $30/m

Maintainer Needed 3 1

A step further, we found the extra cost is strongly tight to the number of users
loaded from main server. Note that in our experiment, the users automatically selected
from the main server by our program are mostly come from the software engineering
course. As homework, they are required to login the farm and test plug-in. As a result,
commercial SNS must adapt the user-selecting method to make sure that users in the
farm also like to contribute.

The source code of 30 teams in our class is managed through a CVS repository.
Each time when a team releases a plug-in, they are required to add a version tag to the
source. And code changes due to bugs found in the farm are finished by many small
commits. We randomly selected five teams, and analyzed their CVS records with the
technique presented in [8].

Fig. 3 shows the modification requests of these five teams in CVS. Note that be-
fore starting the course, 83% students haven’t version control experience showed by a
named questionnaire. After the course, we conduct another questionnaire, as well as
coffee interview, and found that all involved students have already tend to use CVS-
like systems to control their code, and like to release their software after other users’
test. This shows that, although, more than half of the users participate in the develop-
ment of plug-ins come from the non-computer professional[14], programming and
submitting plug-ins is purely for fun, but for the pursuit of better results, they can
accept the software engineering disciplines, and benefit from it. Or we can say that
our Release Waiting Farm technology can help users to study and master the software

244 X. Yu, J. Li, and H. Zhong

Fig. 3. Modification request of teams

engineering methods, standardize the development process of end-user, thereby en-
hancing the end-user developed software quality.

6 Conclusions

As a surprisingly growing number of web plug-ins have been installed by users in
social networking site, many software failures, especially the pre-releasing ones, lead
to significant performance, security, privacy problems, as well as research directions.

On the journey of reducing the pre-release failures, we present a release-waiting
farm method, which extends the state of the art in three points. Our experiment re-
veals that the farm is big enough to test plug-ins, brainstorm and invited senior meth-
ods work effectively, the farm costs low when compared with the main server, and it
is worthy to build a farm. We also found from both developers and general users that,
SNS armed with this method can formalize the development process of end user, raise
plug-in quality, and thus gain long-term benefit.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under
Grant No. 60773028; and the National Hi-Tech Research and Development 863 Pro-
gram of China under Grant No. 2006AA01Z180.

References

1. Humphrey, W.S.: The Personal Software Process. Technical Report, CMU/SEI-2000-TR-
022 (2000)

2. Li, P.L., Herbsleb, J., Shaw, M.: Finding Predictors of Field Failure for Open Source
Software Systems in Commonly Available Data Sources: A Case Study of OpenBSD. In:
Proceedings of the 11th IEEE International Software Metrics Symposium (METRICS
2005), pp. 32–52 (2005)

 On Reducing the Pre-release Failures of Web Plug-In on SNS 245

3. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Pro-
ceedings of the 28th international conference on Software engineering, pp. 452–461 (2006)

4. Subramanyam, R., Krishnan, M.S.: Empirical analysis of ck metrics for object-oriented de-
sign complexity: Implications for software failure. IEEE Trans. Software Eng. 29(4), 297–
310 (2003)

5. Zimmermann, T., WeiBgerber, P.: Preprocessing CVS data for fine-grained analysis. In:
Proceedings of International Workshop on Mining Software Repositories, pp. 2–6 (2004)

6. Facebook Inc., http://www.facebook.com
7. Xiaonei Inc., http://www.xiaonei.com
8. Mockus, A., Zhang, P., Li, P.: Drivers for customer perceived software quality. In: Pro-

ceedings of International Conference on Software Engineering (ICSE), St. Louis, MO, pp.
225–233 (2005)

9. Nagappan, N., Ball, T.: Use of Relative Code Churn Measures to Predict System Defect
Density. In: Proceedings of International Conference on Software Engineering (ICSE), St.
Louis, MO, pp. 284–292 (2005)

10. Ohlsson, N., Alberg, H.: Predicting fault-prone software modules in telephone switches.
IEEE Transactions in Software Engineering 22(12), 886–894 (1996)

11. Ostrand, T., Weyuker, E., Bell, R.M.: Predicting the location and number of faults in large
software systems. IEEE Transactions in Software Engineering 31(4), 340–355 (2005)

12. Sliwerski, J., Zimmermann, T., Zeller, A.: When Do Changes Induce Fixes? In: Proceed-
ings of Mining Software Repositories (MSR) Workshop (2005)

13. Subramanyam, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-Oriented
Design Complexity: Implications for Software Defects. IEEE Transactions on Software
Engineering 29(4), 297–310 (2003)

14. Yu, X., Li, J., Zhong, H.: Release-waiting Farm: An Original Framework for Reducing the
Pre-release Failures of Web Plug-in on Social Networking Site. In: Proceedings of CSIE
2009 (2009)

15. Zimmermann, T., Weigerber, P., Diehl, S., Zeller, A.: Mining Version Histories to Guide
Software Changes. IEEE Transactions in Software Engineering 31(6), 429–445 (2005)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 246–255, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Technical Software Development Process in the XML
Domain

Liming Zhu, Tu Tak Tran, Mark Staples, and Ross Jeffery

NICTA, Australian Technology Park, Eveleigh, NSW, Australia
School of Computer Science and Engineering, University of New South Wales, Australia

{Liming.Zhu,Tutak.Tran,Mark.Staples,Ross.Jeffery}@nicta.com.au

Abstract. Background: A Technical Development Process (TDP) is a devel-
opment process for a particular technology, such as XML, service orientation,
object orientation or a programming language. Unlike software development
life-cycle processes, TDPs provide concrete and detailed guidance to software
engineers working in a particular technology domain. TDPs are currently not
well understood in terms of description, modelling and interactions with life-
cycle processes. Aim: In this paper, we investigate what are TDPs in the XML
domain and how can TDPs be modelled using existing development process
modelling notations and tools. Method: We extracted XML specific TDPs from
literatures, interviews and internal documentation within software development
organizations and conducted systematic verifications and validations. Results:
We identify different types of TDPs in the XML domain and propose mecha-
nisms to model TDPs using Software Process Engineering Meta-models
(SPEM) in the Eclipse Modelling Framework (EPF). Conclusion: The results
demonstrate the feasibility of explicitly identifying and modelling of TDPs in
the context of software process modelling and how they are used in software
development. The results help further bridge the gap between macro-processes
(life-cycle and management-centred processes) and micro-processes (e.g. de-
veloper-centred TDPs).

1 Introduction

A technical development process is a development process for a particular technol-
ogy, such as XML, service orientation, object orientation or a programming language.
Technical development processes are micro-processes [1] composed of technical
steps, best practices, and checklists for different types of technology-specific compo-
nents at different stages[2, 3]. These processes aim to provide concrete and detailed
guidance to software engineers during development. This is in contrast to macro-
level software development lifecycles such as waterfall, RUP and the V-model which
provide high-level guidance for general software development. Micro-processes are
important in two aspects:
• They help understand the causal relationships better in software development

through looking into precise specification of the detailed processes.
• They are more amenable to software engineers who do not find macro-processes

useful for their immediate needs at a micro-level during day to day development.

 Technical Software Development Process in the XML Domain 247

There are calls from both industry [4]and academia [1, 2, 5] for better understand-
ing of technical development processes. This paper answers two research questions:

• RQ1: What are the technical development processes within an XML development
context?

• RQ2: How can XML technical development processes be represented in the
Eclipse Process Framework (a SPEM implementation)?

We explored different sources and discovered a range of technical processes within
the XML domain. We identified different types of technical development processes
and verified them with developers. We further validated the technical development
processes against different intended uses including development, training and man-
agement. These technical development processes are initially captured as textual
process descriptions. We then investigated representational approaches of technical
development processes. The Software Process Engineering Meta-Model (SPEM)
[6]and the Eclipse Process Framework (EPF)[7] were used to model and store these
technical development processes. We propose several mechanisms of process model-
ling. The contribution of work is as follows:

• It helps better understand what technical development processes are from the view
point of practitioners and process engineering. This enables further systematic use
of technical development processes for planning, cost estimation training and man-
agement in addition to development.

• It proposes representational mechanisms for modelling technical development
processes using existing process meta-models and modelling tools. This enables
technical development processes to be used and analysed along with other types of
process models including life cycle models (e.g. RUP or Spiral models) and prac-
tice driven models (e.g. Agile methods).

In the rest of the paper, section 2 discusses the background and existing work. Sec-
tion 3 illustrates the methodology and data collection. Section 4 presents the results.
Section 5 provides a discussion of the results, and lastly, section 6 concludes the paper.

2 Related Work

Osterweil [1] considers macro-process research to be an examination of external be-
haviours of process, researching topics such as speed of execution, characteristics of
produced software products and the processes themselves. These are often carried out
through empirical studies as we have limited understanding of the internals. There is a
need to further investigate the internals of the macro-process activities (micro-
processes) and better understand the causal relationships between micro-processes
and other entities, such as life cycle models, product quality, cost estimation and pro-
ject management. Current connections between macro-processes and micro-processes
are usually created through organization- or project-specific process tailoring [8-11].
The factors investigated are limited to project context rather than technology-driven
fire-grained processes. Micro-process research should be an examination of the “pre-
cise specification of the details of software processes, for the purpose of inferring how
those details affect the external behaviours of the processes” [1]. One way of shifting

248 L. Zhu et al.

from macro-process to micro-process research is to move from statistics-based inves-
tigations to ones based on process models.

Life-cycle driven process models are fairly abstract and can be represented in many
different process modelling notations. They are more suitable for high level generic
processes that apply to software development in general. Technical development
processes lack this generality and straight-forward sequential flows (with only coarse-
grained iterations), a life-cycle model style representation may not be appropriate. In
this research, we adapt some of the ideas in life-cycle model representations. For ex-
ample, the iterative representation of the spiral model may be applicable to modelling
repeated refinement of XML schemas.

Various meta-models exist for systematic model representations. The meta-models
generally fits into a 3 layered view of process engineering [12, 13]. Examples of
meta-modelling languages include Software Process Engineering Metamodel (SPEM)
, OPEN Process Framework (OPF), OOSPICE, LiveNet and the Standard Meta-model
for Software Development Methodologies (SMSDM) [12]. We choose SPEM in this
research because its relative better tool support through Eclipse Process Framework
(EPF), which enables the possibility of interaction analysis with other types of proc-
esses through existing EPF method plug-ins (e.g. Open RUP, XP and Scrum). EPF
implements the SPEM model.

Fig. 1. Structure of EPF

As shown in Figure 1, method content refers to the content in processes, including
tasks, roles, work products and guidance. The process section of the framework adds
a temporal element, allowing the creation of ordered sequences of methods or proc-
esses. There are two main types of process in EPF: capability patterns and delivery
processes. Capability patterns represent short term reusable clusters of processes,
while delivery processes represent to end lifecycle processes.

An electronic process guides (EPG) is another example of using process models for
day to day development. EPGs are “web applications structured according to the
process with process descriptions, navigation and searching tools and electronic links

 Technical Software Development Process in the XML Domain 249

to extra information like templates, examples, tools and project databases” [14] [15].
They allow process models to be tailored and instantiated into project models,
whereby software improvement techniques can be applied to improve the process
model layer. However, the process models used, including project-specific models,
are still high-level models that do not take technology-driven practices into more sys-
tematic process consideration.

Technical development processes have been identified as one of the main internal
factors affecting micro-processes [2]. In this paper, we investigate what technical de-
velopment processes are in the XML domain and how to represent them in process
models. The reason for choosing the XML domain is due to the observation that cer-
tain technologies (such as XML) have bigger impact on development processes at the
micro-level [2].

3 Methodologies and Data Collection

The organisation involved is a small to medium sized software development com-
pany focused on building and integrating publishing systems which create, manage
and disseminate information. They also conduct training courses in using XML
technologies such as XSD, XSLT and XPath. The organisation was selected due to
their extensive experience in the XML domain. XML technical development proc-
esses were gathered from the organization using semi-structured interviews and min-
ing internal documents, described in detail below. From these sources a list of candi-
date XML TDPs were compiled and briefly described. Fifteen candidate XML techni-
cal development processes were found. We conducted semi-structured interviews,
mined internal documentation and cross-verified with other sources.

Semi-structured interview
Senior developers were selected to do an initial semi-structured open-ended interview.
They were chosen because of their extensive experience in XML development. This
questionnaire was piloted with a research engineer to estimate the time required to
complete the questionnaire, and find any initial problems with the questions. On aver-
age, the interview with developers took about two and half hours. Notes were taken
during the interview, and interviews were recorded and transcribed for review. Upon
completion of the initial interview, seven candidate XML technical development
processes were found. A second-round interviews were conducted with the developers
to gather further details to clarify details for some of the other candidate processes.
More technical development processes were identified.

Internal documentation
Internal documents within the company were also used to extract XML technical de-
velopment processes. Internal documents include email conversations and internal
development documents. The authors had unrestricted access to the intranet for gen-
eral information and project related information.

250 L. Zhu et al.

Other sources
Other sources include a number of XML development books, online resources and
developer blogs. They were mainly used to cross-verify the identified processes.

A similar approach was taken the representation (modelling) which was used to
confirm that SPEM-based EPF representations are sufficiently accurate. Verification
also ascertained whether any improvements could be made if there were deficiencies
in the mechanisms of the representation.

We also conducted validation against two purposes in addition to development
purposes. The purposes used in the validation include:

• Educational benefits: whether the model is helpful for learning XML development
processes

• Usefulness to management: whether the model is useful in supporting managerial
tasks

4 Results

4.1 Documenting Technical Development Processes

Table 1 provides an overview of the candidate XML technical development processes
extracted from the company.

There were several general ways of mapping technical development processes to
an EPF repository:
• Task extend
• Task contribute
• Extra tasks
• Disciplines and capability patterns
• Extension of life-cycle or practice driven development processes

Table 1. Example Technical Development Processes

ID Category Short description
Use a standard
schema

Schema
design

When using a standard schema, no schema design is
required but additional activities have to be performed.

Use a three-tiered
transformation
architecture

Data
transformation

Build an additional layer between input and output to
buffer changes that occur with the input and output
structures

Make a choice of
data validation
techniques

Technology
selection

Grammar-based or rule based validation should be
selected

Merge different
data structures

Data
transformation

Combine and reconcile two or more different XML
schema structures

Transform a
linear structure to
a tree structure

Data
transformation

Develop a data transformation engine that transforms a
linear structure XML (flat hierarchy) to a tree structure
(deep hierarchy)

 Technical Software Development Process in the XML Domain 251

Using task extend
In some technical processes, the generic process was represented as a task, while the
more specific section was added using “task extend” as shown in Figure 2.

Fig. 2. Task Extend

Extended tasks inherit all the sections of their base classes except for the sections
that are filled in the extension task. In which case, the extended task section com-
pletely replaces the base task’s section. This can be seen in where the purpose is the
only section that gets replaced in the project specific task. However, a disadvantage of
this is that if there are parts of the generic process that you want to use in the descrip-
tions of the project specific task, there needs to be manual duplication of the content.

Using task contribute
In “task contribute”, the contributing task appends to the content as shown in
Figure 3. Also both contributing and contributed-to tasks become one task in the final
composition. Hence, any links that refer to the generic task or the specific task refer to
the same task, with the base content and contributed content appended. This is a dis-
advantage if there is a need to show generic and project specific tasks separately.

Fig. 3. Task Contribute

Extra tasks
Adding extra tasks is another technique used to represent more specific processes.
The process is represented as a separate task because there was no real generic task
that could be extended or contributed to, to represent it. However, if there was a ge-
neric task that was relevant, creating an extra task would entail needless dupli-
cation, where task extensions or contributions could otherwise be used.

Disciplines and capability patterns
Using a discipline and a capability pattern was another way to model generic and pro-
ject specific technical processes. This was applied to some processes, as an alternative

252 L. Zhu et al.

to the “task contribute” approach. Several disciplines were created whereby the
generic tasks were added along with the extra tasks with a capability pattern as a ref-
erence workflow. Within the capability patterns, generic tasks were added, and ex-
tended using the process properties documentation. Using the process documentation,
the method content task could be replaced with new information. Replacing the in-
formation from the process documentation was exactly like extending a task, in that if
a section was empty, the base task content would be used. There were instances that
replacing the section was appropriate, for example the key considerations in a data
validation process needed to be replaced completely, as the list of potential considera-
tions of the generic task became irrelevant in some cases.

Linking back to the generic process was also used for more contextual information
about the key considerations. An advantage of having a capability pattern for the pro-
ject specific processes was that it gave an indication of the flow of tasks, and allow
for an activity diagram to be created. A disadvantage of extending the task using
process documentation is that it is not reusable. Only method content can be reused
within EPF.

Extension of life cycle or practice driven development processes
The extension of development processes is very similar to representing generic and
specific processes. In our case, we extended OpenUP (a tailored version of RUP) for
the XML domain in some instances.

4.2 Representing Technical Development Processes

Representing technical development processes using workflow-based process models
poses challenges as workflow-based approach limits the way of modelling. These
limitations have been identified [16]and the alternative is to use a more flexible and
advanced process modelling language, such as Little-JIL [17]. However, as one of the
primary goals of this research is to model technical development processes along with
life-cycle and practice driven development processes, we chose EPF and SPEM as the
platform and notation. The authors are currently exploring the features of Little-JIL
for modelling.

There were several general ways of modelling technical development processes in
EPF as shown in Figure 4 and Figure 5:

Fig. 4. Use a three-tired transformation architecture

 Technical Software Development Process in the XML Domain 253

Fig. 5. Develop Web services using industry schema standards

Iterative tasks
Iterative tasks or tasks that constantly repeat were represented in an activity diagram
with synchronisation bars. This allowed the tasks represented in parallel to be shown
to repeat amongst each other, without having to specify the order of the repeats.

Using steps to represent various outcomes
Steps were not limited to just representing a sequence of events. We used steps to
indicate the various outcomes of a technical process. The list form feature in EPF was
useful as it allows each outcome to be separated without having to create a separate
task. The list of steps is also extended using “task contribute” when there was new
techniques involved.

Representing technical examples
Technical examples (e.g. how to use Schematron in an Ant task) were represented
using a tool mentor and a template. The tool mentor presents a starting point in how
to use a particular process. Rather than copying the documentation provided into the
contents of the template, the documentation file is able to be included in EPF and
linked to from the template file. Both the tool mentor and the template are forms of
guidance in EPF, which can be reused by other tasks and processes.

5 Discussion

Project specific processes
During the interview, some practices are project specific and can not be easily general-
ized. These are documented as project practices with their specific contexts. Generic
processes provide a baseline for comparison amongst all the XML technical develop-
ment processes. Also, the project specific aspects were helpful in the interviews as they
provided a context for the development process and assisted the developer in

254 L. Zhu et al.

remembering the intricacies of the process. In terms of using the process, project specific
representations also help by providing examples of how the process can be applied.

Technology/Technique selection
We found technology/technique selection is an important aspect of XML technical de-
velopment processes. Most of these include information such as a range of technologies
to choose from, situations in which the technology would be used, and advantages and
disadvantages in their use and the associated technical processes and activities. The cho-
sen techniques can drastically influence the software development processes that occur.
For example, among data validation techniques, choosing a rule based schema and vali-
dation means completely different processes in the requirements elicitation stage to ac-
quire business rules that could be represented in the schema.

Validity of the results
One external validity threat of this research is the number of developers being inter-
viewed and the fact that one company is the primary source. This is remedied through
cross validating cross other sources including external sources.

These technical development processes are also contributed back to the company in
the form of EFP repositories. They will be applied in more projects to validate and
improve the existing processes.

6 Conclusion

In this research, we extracted technical development processes for the XML domain
from a development organisation and cross-verified from other external sources.
These technical development processes are documented in SPEM using EPF. We
propose a number of mechanisms for documenting such processes both in textual
formats and workflow based representations. These representations were further vali-
dated against their use through interviews.

The research further bridges the gap between macro-processes and micro-processes
through better understanding of what technical development processes are from the view
point of practitioners and process engineering. This may allow further systematic use of
technical development processes for planning, cost estimation training and management
in addition to development. The representational mechanisms for modelling technical
development using SPEM and EPF also enables technical development processes to be
used and analysed along with other types of process models including life cycle models
(e.g. RUP or Spiral models) and practice driven models (e.g. Agile methods).

We are currently analysing process interactions among different type of processes
and exploring the possibilities of using a more advanced process modelling language
for technical processes.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

 Technical Software Development Process in the XML Domain 255

References

1. Osterweil, L.J.: Unifying Microprocess and Macroprocess Research. In: Li, M., Boehm,
B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 68–74. Springer, Heidelberg
(2006)

2. Zhu, L., Jeffery, R., Huo, M., Tran, T.T.: Effects of Architecture and Technical Develop-
ment Process on Micro-Process. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007.
LNCS, vol. 4470, pp. 49–60. Springer, Heidelberg (2007)

3. Zhu, L., Staples, M., Jeffery, R.: Scaling Up Software Architecture Evaluation Processes.
In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 112–122.
Springer, Heidelberg (2008)

4. Waldt, D.: The extensibility manifesto: A blueprint for XML implementation. In: XML
(2005)

5. Bhuta, J., Boehm, B., Meyers, S.: Process Elements: Components of Software Process Ar-
chitectures (2005)

6. OMG: Software Process Engineering Metamodel (SPEM) v2.0 Draft (2005)
7. Eclipse Process Framework (EPF), http://www.eclipse.org/epf/
8. Münch, J.: Transformation-based Creation of Custom-tailored Software Process Models.

In: International Workshop on Software Process Simulation and Modeling (ProSim), pp.
50–56. Institution of Electrical Engineers (IEE) (2004)

9. Johansson, E., Nedstam, J., Wartenberg, F., Host, M.: A Qualitative Methodology for Tai-
loring SPE Activities in Embedded Platform Development. In: Bomarius, F., Komi-Sirviö,
S. (eds.) PROFES 2005. LNCS, vol. 3547, pp. 39–53. Springer, Heidelberg (2005)

10. Jaufman, O., Munch, J.: Acquisition of a Project-Specific Process. In: Bomarius, F., Komi-
Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547, pp. 328–342. Springer, Heidelberg
(2005)

11. Hanssen, G.K., Westerheim, H., Bjornson, F.O.: Tailoring RUP to a Defined Project Type:
A Case Study. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547,
pp. 314–327. Springer, Heidelberg (2005)

12. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamodels and
the creation of a new generic standard. Information and Software Technology 47, 49–65
(2005)

13. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling Software Development Methodolo-
gies: A Conceptual Foundation. Journal of Systems and Software 18, 1778–1796 (2007)

14. Kurniawati, F., Jeffery, R.: The use and effects of an electronic process guide and experi-
ence repository: a longitudinal study. Information and Software Technology 48, 566–577
(2006)

15. Scott, L., Carvalho, L., Jeffery, R., Ambra, J., Becher-Kornstaedt, U.: Understanding the
use of an electronic process guide. Information and Software Technology 44, 601–616
(2002)

16. Zhu, L., Osterweil, L., Staples, M., Kannengiesser, U., Simidchieva, B.I.: Desiderata for
Languages to be Used in the Definition of Reference Business Processes. International
Journal of Software and Informatics 1, 37–66 (2008)

17. Wise, A.: Little-JIL 1.5 Language Report. Department of Computer Science, University of
Massachusetts, Amherst, MA (2006)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 256–267, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software Product Quality: Ensuring a Common Goal

Sebastian Barney and Claes Wohlin

School of Engineering
Blekinge Institute of Technology

sebastian.barney@bth.se, claes.wohlin@bth.se

Abstract. Software qualities are in many cases tacit and hard to measure. Thus,
there is a potential risk that they get lower priority than deadlines, cost and
functionality. Yet software qualities impact customers, profits and even devel-
oper efficiency. This paper presents a method to evaluate the priority of soft-
ware qualities in an industrial context. The method is applied in a case study,
where the ISO 9126 model for software quality is combined with Theory-W to
create a process for evaluating the alignment between success-critical stake-
holder groups in the area of software product quality. The results of an explora-
tory case study using this tool is then presented and discussed. It is shown that
the method provides valuable information about software qualities.

1 Introduction

Software quality forms an important part of a product offering. But what qualities are
valuable is a very context dependant problem, changing with both the product and per-
spective you bring. Maximising the value of a product’s quality involves reconciling
any conflicts between the key stakeholder groups – including customer, business and
technical perspectives – so that these groups can work together effectively towards a
common goal. However, there is always a risk that qualities get a lower priority than
delivery date, cost and functionality. This risk comes from the fact the qualities are
most difficult to measure in relation to delivery date, cost and functionality. The bal-
ance between delivery time, cost, scope and quality is discussed as part of XP [1].

This obvious risk forms the starting point of the research presented in this paper.
The main objective is to understand priorities of software qualities in an industrial
context so that any improvements can be focused on the most important aspects of
product development. It is also key that any improvements can be made in the context
of the development environment. The paper makes two main contributions; first, a
method for analysing qualities in an industrial organisation is presented; second, the
method is applied and the paper presents an industrial study exploring the alignment
priority given to various software qualities between the groups involved in the soft-
ware development process.

Asking what defines an adequate level of quality in a software system is a highly
context dependent question [2]. Software quality affects more than just the user of the
software and each group involved with a software product brings its own perspective
on quality [2]. Customers, developers, product managers, project managers and testers
can all value the same qualities of the same product in different ways. Looking at the

 Software Product Quality: Ensuring a Common Goal 257

software supporting a social networking site, one could reasonably expect that cus-
tomers would value usability higher than the other groups, developers value maintain-
ability due to the dynamic nature of the product and management values efficiency
due to the scale and resources required of the application. But ultimately these value
stances need to be reconciled.

The qualities each group values will also change depending on the product. Func-
tionality is becoming increasingly important for mobile phones, reliability is more im-
portant in financial and medical domains, and portability for web-based applications.

Understanding both (a) the groups impacted by a software product and (b) the
value provided to each group by the various software product qualities is useful in-
formation for companies developing software. As any development project will have
time, resource and financial constraints, this information will allow the development
effort to be focused in the most critical areas.

The remainder of the paper is outlined as follows. Section 2 presents some back-
ground in terms of related work, objectives and the context of the case study. In Sec-
tion 3, the method for studying qualities with respect to priorities and management in
an industrial context is presented. The results of the case study are presented in Sec-
tion 4. In Section 5, the applicability of the method and the findings from the case
study are discussed. Finally, Section 6 presents the conclusions.

2 Background

In the software development process there are four variables that need to be controlled
– cost, time, quality and scope [1]. Further there is an axiom that states that external
forces can set at most three of these variables with the remainder being set by the de-
velopment team.

Time, cost and scope can all operate within acceptable ranges, but quality is a ter-
rible control variable as it only allows very short term gains at a very high cost to all
parties involved [1]. That said, quality does not need to be perfect [3] but the devel-
opment process is much simpler when the success-critical stakeholders agree on what
action should be taken [4].

This section examines different perspectives of quality, processes to manage qual-
ity in a software engineering context, and the research objectives.

2.1 What Is Quality?

The definitions of quality are both many and conflicting, even when only examining
the topic in relation to software engineering. Looking across different disciplines it is
possible to see a complex multifaceted concept of quality that can be described from
five different perspectives [5]:
• The transcendental perspective defines quality as something that can be recognized

but not defined in advance.
• The user perspective defines quality as fit for purpose.
• The manufacturing perspective defines quality as conformance to specification.
• The product view defines quality in terms of essential characteristics of the product

in question.

258 S. Barney and C. Wohlin

• The value-based view defines quality in terms of the amount a customer is willing
to pay for it.
By far the most common perspectives taken in the software development industry

are that of the user and manufacturer. [2,6]. However, there is an increasing body of
literature that recognises the importance of taking advantage of all of the perspectives
involved in software development. Theory-W states that success requires all of the
success-critical stakeholders to compromise [4], while requirement specification read-
ing techniques that take advantage of different perspectives have been found to catch
35% more defects than non-directed alternatives [7,8], and value-based software en-
gineering now recognises the value brought by different perspectives into the devel-
opment process [2].

Software quality is not only defined by the relevant perspectives, but also by the
context in which it exists [2]. Just as each line of cars has a target market, software
quality must be planned to allow a development company to meet its business objec-
tives. Less than perfect software quality can in fact be ideal [3], but deciding how
much less than perfect can only be decided in a given business context [2].

2.2 Quality Models for Software Development

Numerous models have been developed to support software quality. Examples of
these models include McCall’s quality model, Boehm’s quality model, Dromey’s
quality model and ISO 9126.

McCall’s quality model is the first of the modern software product quality models
[2]. The model uses a hierarchy of factors, criteria and metrics to address internal and
external product quality. Eleven factors define an external or user perspective of qual-
ity. Each of these factors is linked to between two and five of 23 criteria that define an
internal or development perspective of quality. Further metrics are associated with the
factors allowing quality to be measured and managed.

McCall’s quality model was followed by Boehm’s quality model [2]. Like
McCall’s model, Boehm’s model presents product quality in a hierarchy with three
high level characteristics linked to seven intermediate factors, which are in turn linked
to 15 primitive characteristics. Boehm’s model has a wider scope than that of
McCall’s, with more emphasis on the cost-effectiveness of maintenance [9].

More recently work has been done to create an international standard for software
product quality measurement – ISO 9126 [10]. This standard is again organised in a
hierarchy with six characteristics at the top level and 20 sub-characteristics with indi-
cators used to measure the sub-characteristics. In addition to aspects of internal and
external quality, covered by McCall and Boehm’s models, ISO 9126 includes quality
characteristics of functionality [9]. Internal, external and functional qualities are also
mixed at all levels of the hierarchy. However, ISO 9126 does not clearly state how
quality should be measured [2].

None of these three models present a rationale for the selection of characteristics to
be included in the quality model and it is not possible to tell if a model presents a
complete or consistent definition of quality [2]. Further the placement of items ap-
pears arbitrary in ISO 9126, with no justification as to why Interoperability is not re-
lated to Portability.

 Software Product Quality: Ensuring a Common Goal 259

Dromey presents a different type of model that attempts to address some of the is-
sues presented and support developers build product quality [11]. Dromey believes
that it is impossible to build high-level quality attributes like reliability or maintain-
ability into a product, but developers must instead build properties that manifest in
achieving these goals. The distinction this model makes is important, as using it will
verify that it allows the quality required to be achieved [2]. Before Dromey’s model
can be successfully applied, the various groups involved in the development of a
software product must agree on what quality attributes should be achieved and to
what level. This process can be supported using other models.

2.3 Merging Perspectives on Software Quality

Software product quality can easily become an area of problems and conflict, as each
stakeholder group has its own perspective on what is important. A number of methods
can be applied to help reconcile this situation and select the best way forward. These
methods include expert judgement, the NFR Framework, Quality Functional Deploy-
ment and Theory-W.

Expert judgement involves one or more experienced professionals using their ex-
periences and knowledge to make a decision on an issue. The decisions are not neces-
sarily supported by modelling or numerical assessment.

The NFR Framework uses diagrams to relate non-functional requirement goals
with different decisions that can be made in the design and operation of a system that
affect it positively or negatively, allowing trade-offs to be identified and made [12].
While this method makes the results of a choice to be made more explicit, it requires a
set of common priorities to be identified to allow effective decisions to be made.

Quality function deployment (QFD) considers the priority of customer and techni-
cal requirements in achieving the goals of the system to help prioritize the require-
ments [13]. However, the other perspectives involved in the development of the soft-
ware product are not considered.

Value-based software engineering (VBSE) recognises the problems created by
conflicting perspectives in the software development process [14]. Central to resolv-
ing conflict in VBSE is Theory-W, which requires [4]:

1. Success-critical stakeholder groups to be identified;
2. The requirements of these groups to be elicited;
3. Negotiation between the groups to create a win-win situation; and
4. A control process to support success-critical stakeholder win-win realisation and

adaption to a changing environment.

The key advantage of Theory-W is that it explicitly brings all of the parties on
whom success lies together to understand each other’s needs, compromise and agree.
But in order to be successful Theory-W must be managed to ensure the plans are
achieved and any deviations from the plans are corrected [4]. Management requires an
understanding of why the goals are being pursued, what is the required result, who is
responsible for the result, how the result will be achieved and at what cost the result
can be achieved. The answer to these questions will be specific to the context in
which they are answered.

260 S. Barney and C. Wohlin

2.4 Research Objectives

The objective of the research presented in this paper is to create and validate a method
capable of determining the level of alignment between the internal success-critical
stakeholder groups. The method should be able to identify the degree to which the
groups are aligned in how they perceive operations today with respect to quality.

This method should be evaluated in an industrial case, answering the research
questions presented in this section.

RQ1: Is the method proposed in this paper capable of identifying the degree to
which the internal success-critical stakeholder groups are aligned in how they per-
ceive the priorities on software product quality today?

However, alignment itself only ensures that the success-critical stakeholder groups
have a common understanding of what is happening today, it does not mean the
groups agree this is what should be happening today. As each group represents a dif-
ferent, and potentially conflicting, perspective on software product quality it is impor-
tant to discover what each of these groups perceive should be happening the situation
today, in a hypothesised ideal situation. This is addressed by the second research
question:

RQ2: Is the method proposed in this paper capable of identifying what the differ-
ent internal success-critical stakeholder groups perceive as the ideal set of priorities
on software product qualities in the situation today? And to what degree are the
groups aligned?

3 Methodology

To address the research questions, a method, using Theory-W as a starting point, is
developed. By exploiting the early phases of Theory-W it is possible to determine the
level of alignment between the internal success-critical stakeholder groups. This in-
volves identifying the internal success-critical stakeholder groups and eliciting their
value propositions with respect to quality.

The results should support the continued application of Theory-W, to negotiate be-
tween the success-critical stakeholders to achieve a better situation and realize this
goal through clearer management.

3.1 Quality Model

The literature on software product quality recognizes that quality depends both on the
perspective of the observer and the actual software product in question. As such, us-
ing any model as it appears in the literature risks not adequately defining quality in
the context being studied. To use one of the quality models briefly introduced in Sec-
tion 2 is a good starting, but company specific needs have to be taken into account, as
illustrated in the case study in Section 4.

3.2 Questionnaire

This method proposes the cumulative voting (CV) [15] technique to elicit (a) how
important each quality is today, and then repeated the exercise to show (b) how

 Software Product Quality: Ensuring a Common Goal 261

important they perceived each quality should be today in a perceived ideal situation.
CV asks participants to spend 1000 points across all of the qualities previously identi-
fied, to represent their relative influence. For example, if a participant thought test-
ability does not at all matter today and security was twice as important as scalability
they might award these qualities zero, 200 and 100 respectively.

3.3 Analysis

CV allows participants’ responses to be grouped logically for analysis – for this
method into the success-critical stakeholder groups. The results of each participant in
the group can be averaged for each quality, ultimately producing a list that shows
each quality and the averaged notion of its importance.

From here it is possible to rank the qualities from most to least influential for each
success-critical stakeholder group. The degree to which the groups are aligned can
then be calculated pairwise using a Spearman rank correlation matrix.

4 Case Study

The case study was conducted during Autumn 2007 for two products at Ericsson.
Ericsson is a world leading company in telecommunication, providing a wide range of
products and solutions. Products are developed and sold as generic solutions offered
to an open market, although customized versions of the products are also developed
for key customers.

4.1 Success-Critical Stakeholder Groups

High-level R&D management supported the authors to identify internal success-
critical stakeholder groups for this case study. Participants in the case study represent:
• Strategic Product Management (SPM): This group has the strategic product re-

sponsibility and decides the overall product development direction.
• Project Management (PM): This group is responsible for planning and executing

projects aligned with the priorities of the strategic product management.
• Tactical Product Management (TPM): This group supports the strategic product

management with expert knowledge of the systems and their architecture. It is also
responsible for providing analysis of pre-project requirements in the form of feasi-
bility, impact and technical dependencies.

• Development and Testing (R&D): These groups are responsible for the implemen-
tation, verification and validation of requirements.
The high-level management further recommended that the results of SPM and PM

be combined when determining the priorities given to the software product qualities,
the first research question. These groups work closely together; with SPM prioritising
the development activities that PM is responsible for planning.

A description of this case study was sent out to the managers of the identified suc-
cess-critical stakeholder groups requesting volunteers from their teams to take part in
the case study.

262 S. Barney and C. Wohlin

In total 44 potential participants were identified to take part in this case study, with
31 usable results being obtained. A breakdown of the participants can be seen in
Table 1. Two of the participants identified felt they were not appropriate and identi-
fied other people in their team to replace themselves, two people declined to partici-
pate, one questionnaire result was lost in an Excel crash and nine people could not
find time to complete the questionnaire.

Table 1. Study response rate

Group Candidates Replacements Complete Responses
Strategic Product Management 15 1 6
Project Management 6 4
Tactical Product Management 9 0 9
Development and Testing 14 1 12
Total 44 2 31

The low response rate for Strategic Product Managers was anticipated, so extra

participants for this role were selected to ensure a sufficient number of responses.
The questionnaire was conducted as a one-on-one structured interview, which each

participant taking between 30 and 75 minutes. The interviews were conducted over
two-month period.

4.2 Software Product Qualities

The process of defining a model of software product qualities was a collaborative
exercise involving the academic and industrial perspectives. The list of qualities was
defined specifically for the products studied at Ericsson, maximizing the relevance for
this industrial partner and possibilities for using the results to support improvements
within the company.

However, just as some qualities can be more important than others, there are other
aspects of the development process that compete with the implementation of software
product quality. To understand the important of software product quality it must be
placed in the context of all aspects of software product development that are con-
trolled. These are time, cost, quality and scope [1].

These four control variables have been complemented with ISO 9126, the interna-
tional standard for software product quality, providing more detail on the components
of quality and scope. The authors then wrote preliminary definitions for these terms.

A workshop was held within Ericsson to review and refine the terms defining
software product quality. The aim was to ensure the final list of terms and definitions
would be complete, meaningful and useful to Ericsson. The model was split into three
categories – the ISO 9126 qualities relating to functionality, the ISO 9126 qualities
relating to system properties and project management to cover time and cost. More-
over, security was moved from functionality to system properties. Two new qualities
were identified and added to system properties; these are scalability and performance
management/statistics. Finally, five of the quality terms were complemented with
alternative names used in Ericsson.

The terms and definitions used in the case study presented in this paper are avail-
able online [16].

 Software Product Quality: Ensuring a Common Goal 263

 4.3 Pilot Study

A questionnaire was developed using the methodology described in Section 3 and
piloted. The participants in the pilot had trouble making comparisons between quali-
ties related to features, system properties and aspects of project management. An ex-
ample of such a comparison could include accuracy of features, resource behaviour of
the system and development cost. In order to address this issue the authors modified
the questionnaire to use a hierarchical cumulative voting (HCV) method as described
by Berander and Jönsson [17]. This effectively split the questionnaire up into four
independent CV exercises; one parent list that included the three category terms –
features, system properties and project management – and one list for each of the
categories, each containing the relevant qualities. A pilot of the new questionnaire
found the participants’ capacity to respond much improved.

In order to conduct the analysis each participant’s response needs to be changed
from HCV to CV, converting the four cumulating voting lists into one that covers all
of the qualities.

Remember that one of the four lists includes the categories features, system prop-
erties and project management, while the remaining lists each detail the qualities that
make up one of the categories. This allows the number of points awarded to each
quality to be multiplied with the category from which it came [17]. It is also necessary
to muliply each of these results by the number of qualities from the same category as
the resultant value. Finally the set of number for each quality can be scaled so that the
sum is 1000.

For example, if 200 points are awarded to project management and 600 points are
awarded to time, then category × quality × number of qualities = 200×600×2 =
240,000. The scaling of this result then depends on the other values, but if the other
values were to sum to 4,800,000 then the number would be scaled to result ÷ total
sum × 1000 = 240,000 ÷ 4,800,000 × 1000 = 50.

It is necessary to multiply each value by the number of qualities in the same cate-
gory to ensure that qualities with many categories are not underrepresented and that
categories with few qualities are not overrepresented.

The individual responses can now be grouped and averaged, allowing ranks to be
determined and the Spearman rank correlation can then be calculated.

The final version of the questionnaire is available online [16].

4.4 Software Product Quality Priorities

The first objective of this case study is to determine the degree to which the key
stakeholders are aligned regarding how they see software product quality today. The
results show the groups are very aligned, with Spearman's rank correlation values
between 0.80 and 0.90 indicating each group ranked the qualities in a very similar
order. The full results are presented in Table 2.

Similarly the key stakeholder groups are aligned how they ranked the software
qualities should be today, in their perceived ideal situation. The results in Table 3
show correlation values between 0.65 and 0.74 between the groups.

264 S. Barney and C. Wohlin

Table 2. Correlation matrix showing the degree to which the groups are aligned in how they
perceive the priorities today

 SPM & PM TPM R&D
SPM & PM 1.00 0.80 0.90
TPM 1.00 0.86
R&D 1.00

Table 3. Correlation matrix showing the degree to which the groups are aligned in how they
perceive the priorities should be today (ideal)

 SPM & PM TPM R&D
SPM & PM 1.00 0.74 0.71
TPM 1.00 0.65
R&D 1.00

The similarities between the perceived situation today and the perceived ideal situa-

tion were striking. Looking at all responses the correlation between the two situations is
0.82. However, each group individually saw the need for more changes. The results in
Table 4 show, for example, a correlation of 0.62 comparing what R&D perceived as the
priorities today against what they thought the priorities should ideally be today.

Table 4. Correlation between perceived situation today and perceived ideal situation today

Group Correlation
All groups 0.82
SPM & PM 0.72
TPM 0.77
R&D 0.62

While there was variation between participants of the same perspective, there was

no individual that stood out as being consistently different in their results to the other
members of their group.

Looking at the underlying data it is possible to further understand the differences
and similarities between the groups. The remainder of this section highlights key as-
pects of similarity and difference.

The qualities studied have been grouped into three categories – features, project
management and system properties. All of the groups today ranked these groupings in
the same order, with features as the most important category, followed by project
management and finally system properties. Interestingly all groups would like to see
system properties overtake project management in their perception of the ideal situa-
tion. This helps explain the high correlation values attained.

However, looking at the individual qualities it is possible to explain why the col-
lective results from all participants shows less need for change than the result of any
of the groups individually. While confidentiality does not allow the ranked qualities to
be published in this paper, some groups are more affected by some of the qualities
than other groups; so they perceive these qualities as more important, while the other
groups perceive the same quality as less important. For example, Time Behaviour is

 Software Product Quality: Ensuring a Common Goal 265

ranked seventh today, with all groups placing it in the seventh or eighth position to-
day. In the perceived ideal situation the overall rank is only increased one place to
sixth, but the same criterion is ranked second most important by R&D, sixth most
important by TPM and tenth most important by SPM & PM. This situation acts to
reduce the correlation coefficients for the individual groups, but still keeps it high
when examining all results together.

There was a high level of agreement in the ranks given to qualities relating to fea-
tures and project management both today and in the ideal situation. The area of great-
est contention between the groups concerns qualities relating to system properties.
SPM differs the most when examining the results of the three groups. The results
highlight which qualities the groups agree on as important – such as Scaleability,
Time Behaviour, Robustness/Stability, Configurability/Product Customisabil-
ity/Adaptability and Resource Behaviour – and which qualities for which there are
differing priorities – Recoverability, Operability, Performance Manage-
ment/Statistics, Upgradeability/Replaceability, Analysability, Testability, Contain-
ment/ ISP/Fault Tolerance and Security.

5 Discussion

The methodology proposed in Section 3 has been applied to identify the level of
alignment between internal success-critical stakeholders with the modification made
after the pilot study described in Section 4.3. While the results from the case pre-
sented in this paper are not generalisable, it highlights what situations can be detected
by the method and acts as a reference point for future applications of the method.

While in the case study some changes to the priorities given to the software product
qualities would be perceived beneficial by each of the internal success-critical stakeholder
groups, the extent of the changes required is reduced when considering all perspectives
together. This can be seen most clearly with a number of qualities where the groups agree
on their importance today, but some of the groups think some should be more important
while other groups think they should be less important and it ends up in almost the same
place. This result shows Theory-W in action, with the organisation having to balance con-
flicting stakeholder perspectives in order to achieve the optimal balance.

While the current processes seem to have done a reasonable job to balance the
various concerns of software product quality, this is not explicitly visible to all of the
stakeholders who felt that their needs were not being adequately addressed. One of
the ongoing aims within Ericsson is to use these results to foster a greater understand-
ing and dialogue between the internal success-critical stakeholders in terms of each
other’s needs.

6 Conclusion

This paper presents a methodology and results of a case study for examining the
alignment between the internal success-critical stakeholder groups in software product
quality. The results obtained by the method were interesting, valuable and very posi-
tive from the perspective of the industrial partner, Ericsson, with:

266 S. Barney and C. Wohlin

• The groups found to be aligned in perceived the priorities placed on different soft-
ware product quality today; and

• Overall the participants in the case study perceive few changes necessary to im-
prove the current situation.
The case study results highlight that different stakeholder groups have different

priorities, and companies must be able to balance these differing opinions in order to
achieve an optimal outcome. Key to achieving this outcome appears to be open and
transparent dialogue and cross group communication and understanding. The results
also provide an understanding of the context of software product quality for future
work within the case setting.

The case study presented in this paper may not be representative of the software
development industry, only involving two products from one company. Still, it
provides some insights into how qualities are handled in an industrial context. Fur-
thermore, the method can be applied in other situations to support the alignment of
success-critical stakeholders in issues of software product quality. In turn, these addi-
tional results can help determine which of the results, if any, can be generalised.

This research will be used in three ways:
• This work is the first in a series of studies examining, with the intention to help

improve, the alignment of company strategy, product strategy, product manage-
ment and development efforts.

• This work is also the first in another series that is looking at different investment
options and trade-offs in software development – like features, quality and staff
training. Going forward the aim of this work is to support organisations improve
the investment choices they make.

• The authors are also hoping to replicate parts of this study at different organisa-
tions to help achieve greater alignment in issues of software product quality and
draw more general conclusions in this topic area.

Acknowledgments

We would like to thank Ericsson for their active involvement in and support of this
research.

This work was partly funded by The Knowledge Foundation in Sweden under a re-
search grant for the project Blekinge Engineering Software Qualities (BESQ)
(http://www.bth. se/besq).

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(2000)

2. Kitchenham, B., Pfleeger, S.: Software quality: The elusive target. IEEE Software 13(1),
12–21 (1996)

3. Yourdon, E.: When good enough software is best. IEEE Software 12(3), 79–81 (1995)
4. Boehm, B., Ross, R.: Theory-w software project management principles and examples.

IEEE Transactions on Software Engineering 15(7), 902–916 (1989)

 Software Product Quality: Ensuring a Common Goal 267

5. Garvin, D.A.: What does “product quality” really mean? Sloan Management
Review 26(1), 25–43 (1984)

6. Hoyer, R.W., Hoyer, B.B.Y.: What is quality? Quality Progress 34(7), 53–62 (2001)
7. Basili, V.R.: Evolving and packaging reading technologies. Journal of Systems and

Software, Achieving Quality in Software 38(1), 3–12 (1997)
8. Boehm, B., Basili, V.: Software defect reduction top 10 list. Computer 34(1), 135–137

(2001)
9. Milicic, D.: Software Quality Models and Philosophies. In: Software Quality Attributes

and Trade-Offs, pp. 3–19. Blekinge Institute of Technology (2005)
10. ISO9126: Software engineering – product quality – part 1: Quality model. International

Standards Organization (2001)
11. Dromey, R.: Concerning the chimera. Software, IEEE 13(1), 33–43 (1996)
12. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Kluwer Academic, Dordrecht (2000)
13. Herzwurm, G., Schockert, S., Pietsch, W.: Qfd for customer-focused requirements

engineering. In: 11th IEEE International Requirements Engineering Conference, 2003, pp.
330–338 (September 2003)

14. Boehm, B., Jain, A.: An initial theory of value-based software engineering. Value-Based
Software Engineering, 15–37 (2006)

15. Leffingwell, D., Widrig, D.: Managing software requirements: a unified approach.
Addison-Wesley, Reading (1999)

16. Barney, S., Wohlin, C.: Software product quality questionnaire (2008),
 http://www.bth.se/tek/aps/sba

17. Berander, P., Jönsson, P.: A goal question metric based approach for efficient
measurement framework definition. In: Proceedings of the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering (ISESE 2006), pp. 316–325. ACM, New
York (2006)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 268–279, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Predicting Upgrade Project Defects Based on
Enhancement Requirements: An Empirical Study

Lei He1,2, Juan Li1, Qing Wang1, and Ye Yang1

1 Institute of Software, Chinese Academy of Sciences
2 Graduate University of Chinese Academy of Sciences

{helei,lijuan,wq,ye}@ itechs.iscas.ac.cn

Abstract. In upgrade project development, Enhancement Requirements (ER,
e.g. requirement additions and modifications) introduce new defects to the
project. We need to evaluate this impact to help plan later project schedule and
resources. Typically, many of the existing prediction technologies estimate de-
fects based on software size or process performance baselines. However, they
are limited in estimating the impact of ER on product quality. This paper pro-
poses a novel ER-based defect prediction method using information retrieval
(IR) technique and support vector machines (SVM). We analyze the historical
data of defects and requirement specifications of actual upgrade projects to es-
tablish multiple prediction models to estimate new defects introduced by ER.
Then we design two experiments to validate the method and report some pre-
liminary results. The results indicate that our method can provide useful support
for impact analysis of requirement evolution in upgrade projects.

Keywords: Defect Prediction, Enhancement Requirement, Information Re-
trieval, Support Vector Machines.

1 Introduction

Software upgrade project is responsible for delivering an updated release or version of
the software product. In these upgrade projects, changes to the existing software are
requested, including modifications to some current functionality and additions of new
functionality, in this paper, these changes are named as Enhancement Requirements
(ER). Studies have shown that these functional enhancement activities have a close
bearing on the reliability of the software product [1]. Typically, ER injects new
defects to the upgrade project [1]. It is necessary to analyze the impacts of ER to
evaluate and guide our software enhancement activities. One way is to estimate char-
acteristics of the defects introduced by ER, for example, the type of the defects (user
interface or functional defects), and the workload to fix these defects. Based on the
estimated information the project manager can plan project schedule and resources
more effectively.

Technologies for the identification and prediction of defects have been developed
rapidly. These technologies have been applied successfully in actual software pro-
jects. Traditional prediction methods are usually based on the design or developing
period of the software lifecycle. For example, several approaches predict defects by

 Predicting Upgrade Project Defects Based on Enhancement Requirements 269

Fig. 1. Basic Idea of Our Approach

analyzing the characteristics of the source code [2, 3]. And several researches solve
the prediction problem by the metrics of software architecting [4, 5]. But there are
still difficulties if we want to know the influences and consequences caused by ER.

This paper proposes a defect prediction method based on ER. ER is modified re-
quirement or newly added requirement in the upgrade software project. We did an
empirical study to investigate this
predicting problem. Our basic idea
is shown in figure 1. We associate
historical defects with require-
ments. And when ER happens, we
analyze the new requirement to
find out the most similar old re-
quirement. So according to the
defects related to the old require-
ment, we can predict the most
possible defects that will be intro-
duced by this specific ER.

Actually, we classify the old requirements based on the properties of defects related
to find out the similar requirements first. In our study, we consider four different
properties of defects: number, workload, priority and type. The prediction results
contain these four kinds of defect properties. IR technique is applied to establish asso-
ciations of historical requirements and defects, and SVM is applied to establish pre-
diction models. We did experiments to evaluate the performance of our methodology.
The results show that this methodology can provide significant defect-predicting
information to analyze the impact of requirement changes in the upgrade projects, and
help the project manager to allocate the resources to reduce the costs and risks at the
early stages of the software process.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 describes the detail steps of our prediction method. In section 4, we present
the process and results of applying our method to an actual project. We analyze the
limitations and drawbacks of the predicting model in section 5. Finally, we give our
conclusion in section 6.

2 Related Work

Software defect prediction techniques have been developed rapidly, which can be
divided into dynamic and static approaches [6]. Basically, our defect prediction model
is a static one which is based on defect-related data metrics. Static defect prediction
approaches are based on different phases of software process. Malaiya et al. proposed
a mathematic methodology on calculating defect density due to requirements volatil-
ity during different time of software process [8]. COQUALMO (COnstructive
QUALity MOdel) [4] introduced by Boehm is a quality model extension to CO-
COMO II [4], which can be used to estimate defects injected in different activities,
and defects removed by defect removal activities. Gou et al. proposed the BiDefect
(process-performance Baselines based iteration Defect management) method [5] to
support quantitative defect management in iterative development. Our defect predic-
tion method is focusing on the requirement phase of the software lifecycle.

270 L. He et al.

Static predicting approaches using machine learning (ML) techniques have been
applied to empirical studies recently. Fenton at al. did an experiment to develop a
causal model based on Bayesian net for predicting the number of residual defects that
are likely to be found during independent testing or operational usage [7]. Their
model incorporates a set of quantitative and qualitative factors describing a project
and its development process, and it can be applied very early in the software lifecycle.
SVM is a supervised ML model for classification and regression. It has shown its
capability in solving quality-analyze and defect-predict problems. Xing proposed a
technique to predict software quality by adopting SVM in the classification of soft-
ware modules based on complexity metrics [9]. And Elish did an empirical study in
predicting defect-prone software modules using SVM and compared its prediction
performance against eight statistical and machine learning models [12]. The results
indicate that the prediction performance of SVM is generally better than the compared
models. SVM also performs well in our defect prediction methodology.

3 Defect Prediction Method Based on Enhancement Requirements

The prediction process of our method includes three steps: associating requirements
and defects, classifying requirements and extracting features, modeling and predicting
using SVM. Figure 2 shows the process of this approach. These three steps are dis-
cussed in sections 3.1 through 3.3.

Fig. 2. Overview of the Prediction Process

3.1 Associating Requirements and Defects

First, we establish association between defects and requirements. In our study, the
defects and the requirements are both described in natural language, so we use IR
techniques to associate the two parts. The association process is described in figure 3.

Fig. 3. The Associating Process

 Predicting Upgrade Project Defects Based on Enhancement Requirements 271

Defect descriptions are usually brief instructions, for example: “System crashes
when clicked the ‘submit’ button”. Requirements are comparatively complete specifi-
cations. In our study, we generally analyze the requirement specifications and split
them into requirement items of use cases. These use cases are of the same format, for
example:

·Name: Submit Work Plan;

·Description: To save and submit work plan in the work space;

·Pre-conditions: User logged in;

·Basic Work Flow: 1. Enter the work space, open the work plan table. 2. Input work
plan. 3. Click ‘submit’ Button; Additional Work Flow: None;

·Post-conditions: A new plan added in project window. ……

We convert the associating problem into a text searching problem, by considering
the defect description as the query, and the requirement item as the target document.
And we parse the requirement documents by splitting them into requirement items,
which are use cases. We build up an inverted index and use the formula below to get
the matching scores of every defect to requirement items [10]:

()* ()* (.)* (.)

t in d

TF t in r IDF t Boost t field in r LengthNorm t field in r

 ∑ (1)

In the formula, “r” stands for requirement item, “d” stands for the defect descrip-
tion, and “t” is the term of the context. Table 1 lists instructions of the factors in the
formula.

Table 1. Factors in Scoring Formula

Factors Description
TF(t in r) Term frequency factor for the term t in the requirement r.
IDF (t) Inverse document frequency of the term t.
Boost (t.field in r) Field boost, as set during indexing, default value is 1.0.
LengthNorm(t.field

in r)
Normalization value of a field, given the number of terms
within the field.

We use this scoring formula to calculate the relevance of every defect to require-

ment item. By setting up threshold value for the resulting scores, the associated cou-
ples whose scores are lower than the threshold are abandoned. Usually the threshold
is adjusted for a few times to get the appropriate result set.

We also need manual intervention to raise the accuracy of the association. For ex-
ample, it is helpful to ask the requirement engineer to filter the result set of the asso-
ciation. Then, feed-back work like re-weighting some factors in the formula is
adopted after we filter the associated result.

At the end of this step, we can get a comparatively accurate association set with re-
lated requirement items and defects.

272 L. He et al.

3.2 Classifying Requirements and Extracting Features

It is important to classify the original requirement items to get our SVM training data.
We have to make our classification significant, meaning that the requirement items in
the same class must have common features. These features will be the dimensions in
the vectors of the SVM. However, it is nontrivial to discover and extract features of
the requirement. Here is the method we adopt in this empirical study. Firstly, we try
to classify the requirements by the standards we are interested in, that is, the proper-
ties of defects we are hoping to get in the prediction results. For example, the number
and the work load of the defects related to one requirement item. Secondly, after di-
viding the requirement items into classes, we examine items in every class to analyze
whether the classification is reasonable and whether the items have implicated fea-
tures. Based on the analysis, we check and modify the classification standards repeat-
edly until we have satisfactory classification sets. Thirdly, we analyze the features of
the requirements and determine their dimensions by experimental methods. Here the
goal is to identify which factors influence the classification, which are the peculiar
factors of requirement items inside every class, and their weights of influence.
 We can divide the features into two types by their different effects for classification:
the common ones and the special ones. The common features are the main parameters
for all classification standards. And they are the basic and natural properties of the
requirements, such as the context statistic features of the requirement item, including
the “TF”, “IDF” and “DF” values of terms, which can be calculated to CHI values (a
common feature of text property) [11]. The special features are the ones that act dis-
tinguishingly on different classification standards. For example, the text length of one
requirement item is a special feature, because it influences the number of defects the
item brings in, but it has no business of the type of the defects. Common features and
special features used in our study are listed below.
 Common Features: TF, IDF, DF. (calculated to CHI values of terms)
 Special Features: Module of the requirement (MoR), text length of the requirement
item (LoR), Number of items in event flow (NEF), Description in UI design (DUI),
pre-conditions of the requirement (PCR), required data properties (RDP).

We may use different combinations of features according to different classification
standards and characteristics of the projects.

Following the three steps mentioned earlier in this section, we get several classi-
fication sets according to the defect properties. After we analyze and select features
of every classification set, we need to quantify the features of each requirement
item to generate inputs to Support Vector Machines. Some features are naturally
numeric, such as the TF, IDF values of the terms. We just need a unitary processing
on these features for later use. However, some features are not initially quantitative,
so we must map them by the definitions. For example, the module of the require-
ment, if there are 10 modules in the project, we mark the item according to the
module it belongs to, from 1 to 10. Then normalize these numbers by 10 to get the
feature data.

Now we have the classifications and the features with numeric values of the his-
toric data, so we can format them to generate input files of Support Vector Machines.

 Predicting Upgrade Project Defects Based on Enhancement Requirements 273

3.3 Modeling and Predicting Using SVM

Support Vector Machines are a set of related supervised learning methods used for
classification and regression [13]. SVM has the characteristics below to make it per-
form well in solving classification problems [12]. These characteristics matches quite
well with our requirements data.

I. It can be generalized well even in high-dimensional spaces under small training
sample conditions. This means that the ability of SVM to learn can be independent of
the feature space dimensionality.

II. It gives a global optimum solution, since SVM is formulated as a quadratic pro-
gramming problem.

III. It is robust to outliers. It prevents the effect of outliers by using the margin pa-
rameter to control the misclassification error.

IV. It can model nonlinear functional relationships that are difficult to model with
other techniques.

Here, we adopt classifications and features of requirement items generated in sec-
tion 3.2 as the input to SVM. For each classification set, the features build up the
dimensions of SVM classification hyperspace. We scale dimensionality of each fea-
ture to represent its weight. Each requirement item is one point in the hyperspace. We
train SVM models according to the input data to get classification margins. When
new requirement comes, by extracting the same kinds of features as the input data and
importing them into the trained SVM model, we can find out what class exactly the
requirement belongs to. According to the property of the class, we get the property of
the defects predicted.

SVM models need to be amended according to the characteristics of the targeting
project before actual prediction work. We modify parameters of the SVM model,
types and weights of requirement features by going through testing processes, which
are analysis between prediction results and testing data. Testing data are acquired
from parts of the original classification data.

4 Experiment

4.1 Background

Our study is based on the “SoftPM” project. This “SoftPM” project is a software
quality management platform, targeting to facilitate the process improvement initia-
tives in many small and medium software organizations. The first version was re-
leased in 2002 and 9 versions have been released until now. We have items of defect
records of the 9 versions stored in the project database. These defects are all intro-
duced or related by the ER. Table 2 shows main characteristics of the defects in the
database.

The requirements of every version of project “SoftPM” are stored in software re-
quirements specification including Use Case specification and non functional re-
quirements specification. In our study, we mainly use Use Case specification. The
specification is of the standard format, including name, description, actor, event flow
pre-condition and post-condition of use cases.

274 L. He et al.

Table 2. Detailed Information of Historical Defects

Name Description
Title Title of the defect.
Description Brief description of the defect.
Submitter Submitter of the defect.
Module Module of project the defect belongs to
Workload Workload to fix the defect (man-hour).
Priority Priority of the defect: Normal, Serious and Critical.
Type Type of the defect: UI, Internal or Integrated.
Step Steps to re-appear the defect.

4.2 Experiment Design

We design two experiments on the historical data of “SoftPM” project to establish and
evaluate the performance of our predicting model. We acquire 4,893 defects and 581
use cases of the project. Then we get classification data of these defects and use cases
through step 1 and 2 of our methodology. The first experiment is to evaluate the accu-
racy of prediction in the four separated defect properties (as table 3 lists). We use
80% of the classification data as the training data and the rest as the test data to calcu-
late the prediction accuracy. The second experiment is to predict defects introduced
by a specific upgrade version of the project. By comparing the predicted defects with
the actual ones recorded in the project database, we evaluate the performance of our
prediction model.

We predict properties of defects introduced by ER as table 3 shows.

Table 3. Defect Properties

Property of Defects Description
Number The number of the defects introduced by the requirement
Average Workload The average workload (man-hour) to fix the defects
Priority The priority of the defects, based on the majority defects

related to the specific requirement item.
Type The type of the defects, based on the majority defects

related to the specific requirement item.

Based on the above four kinds of properties to predict, we define four classification

standards and their class boundaries to classify the original requirement items. Class
boundaries and requirement features, including their weights, are modified through
the prediction process of experiments to match the characteristics of the “SoftPM”
data. Table 4 shows the final class boundaries and features of each requirement class.
The numbers in the brackets of the features are the final dimensionalities of features.

Based on the table above, we can divide the 581 items of requirements into classes
by four standards. So with the features, we can train four different models of SVM to
predict four kinds of defect properties introduced by ER.

 Predicting Upgrade Project Defects Based on Enhancement Requirements 275

Table 4. Classification Information of Original Requirements

Classification
Standard

Classes Boundary
(Range)

Requirement
Features

Extra Few 0~5
Few 6~10
Medium 11~29
High 30~49

By Number of
Related Defects

Extra High More than 50

CHI (1000)
MoR (50)
LoR (100)
NEF (100)
PCR (50)

Extra Low 0~24 (man-hour)
Low 25~48
Medium 49~144
High 145~288

By Average
Workload of
Related Defects

Extra High More than 289

CHI (1000)
MoR (100)
LoR (50)
NEF (150)

Normal
Serious

By Priority of
related Defects

Critical

Regarding to the
defect properties
recorded in the
database

CHI (1000)
MoR (200)
NEF (100)
PCR (50)

UI

Internal

By Type of
related Defects

Integrated

Regarding to the
 defect properties
 recorded in the
 database

CHI (1000)
MoR (100)
NEF (100)
DUI (50)
RDP (50)

4.3 Experiment 1

In the first experiment, we randomly select 80% of the requirements with their fea-
tures as the training data. These requirements are divided into classes according to
the four standards listed in table 4. Then we input the training data to SVM to train
four prediction models. After these SVM models have been trained, the rest 20% of
the requirement items (116 items) are input as the test data. We calculate the accu-
racy by divide the hits of the predicted requirement classifications by the total ones.
Recall rate is calculated as: considering each classification standard, divide the sum
of the smaller one of the predicted and actual classification number by the total
testing number. Table 5 shows the input data distribution and the classification
results of Experiment 1.

We can tell from the predicting results that we get higher accuracy when the class-
number is smaller. The accuracy of three-class predicting is higher than the five-class
one. This makes sense, because the more class number we have, the more detailed
information we will get, and that will cause decrease of accuracy (Prediction based
only one classification will sure be 100% accuracy but brings no information). We
should find a balance of information provided and accuracy of results during the ac-
tual predicting process.

276 L. He et al.

Table 5. Predicting Results of Experiment 1

Test Requirements
Distribution

Standard Classes Overall
Requirements
Distribution Predicted

Class.
Actual
Class.

Recall
(predicts/total)

Accuracy
(hits/total)

Ex-Few 113 25 21
Few 91 20 23
Medium 183 47 35
High 134 15 26

Number

Ex-High 60 9 11

86.2%

(100/116)

65.5%

(76/116)

Ex-Low 76 25 33
Low 146 40 21
Medium 157 31 30
High 114 12 13

Average
Workload

Ex-High 88 8 19

82.8%

(96/116)

62.1%

(72/116)

Normal 252 51 58
Serious 187 29 27

Priority

Critical 142 36 31

94.0%
(109/116)

73.3%
(85/116)

UI 170 30 38
Internal 133 36 34

Type

Integrated 278 50 44

93.1%
(108/116)

78.4%
(91/116)

4.4 Experiment 2

In the second experiment, we analyze the data by project versions. Prediction proc-
esses and results of the upgrade versions are similar. Here we just analyze the 7th
version of the “SoftPM” project as an example. According to the release instructions
of version 7, it has 20% functional enhancements upon version 6. Version 7 is a typi-
cal upgrade project. We analyze requirements specification of version 7 by comparing
it with the specification of version 6. ER in version 7 can be divided into two parts:
the “newly added” requirements and the “modified” requirements. For those “modi-
fied” ones, we need to calculate the correlation of the requirement item in version 7
and the former one in version 6 to get the coefficient “C” (0<C<1, if C=1 there is no
difference between two items). Classification process of version 6 requirement items
is same as Experiment 1. We import the version 6 requirement items with their fea-
tures into SVM as the training data, and the ER items introduced by version 7 as the
test data. The predicted classification results of ER items are listed in table 6. There
are totally 48 ER items in version 7 of “SoftPM” project.

Table 6. Predicted Classification Results of Experiment 2

Classification Standard Number of Requirement Items In Each Class
By Number of Related Defects Extra Few:19; Few:21; Medium:7;

High: 1; Extra High: 0
By Average Workload of
Related Defects

Extra Low: 7; Low: 16; Medium: 15;
High: 8; Extra High: 2

By Priority of Related Defects Normal: 29; Serious: 13; Critical: 6

By Type of Related Defects UI: 17; Internal: 13; Integrated: 18

 Predicting Upgrade Project Defects Based on Enhancement Requirements 277

Now we quantify these classification results to get an intuitive predicting statement
of defects properties. We assign actual value for each class in the first two classifica-
tion standards according to the distribution of the training data. So we can calculate
how many defects exactly introduced by the change of requirement, then the total
workload and the distribution of defects’ priorities and types. For these “modified”
requirement items in experiment 2, when we estimate the number and workload of the
predicted defects, the coefficient “1-C” is required to be multiple to get the final re-
sults. We analyze the actual statistic properties of defects which introduced by version
7 requirements, and compare them to the predicted ones to evaluate the results.
Figure 4 shows the detail results of the compares.

277

99.87

154

59
64 80

95 102

320

120.36

190

73
57

103
92

125

0

50

100

150

200

250

300

350
Actual Defects

Predicted Defects

Fig. 4. Compare of Actual and Predicted Defects

We can tell that in experiment 2, the results are more meaningful and the gap be-
tween the actual and predicted data is smaller. This phenomenon is because that the
errors of the predicting results are offset with each other so the holistic performance
of the statistic results is much better.

We can also see from the results that most predicted numbers of defects are larger
than the actual ones. This is because when we convert the predicted classification
results into the quantified prediction reports, we calculating the numbers of each class
by assigning a specific value standing for the class using the average value of the
input data. Obviously this value assignment is larger than the actual one in the ex-
periment. Deeper statistic analysis is required on the input data to reduce the error.

From the results and analysis of the two experiments, our approach shows that its
predicting results are very helpful in analyzing impacts on requirement enhancement.

5 Threat to Validity

The results of the experiments prove that our defect prediction approach is meaningful in
estimating impacts on ER. However, we can also find some limitations and threats.

278 L. He et al.

(1)Our defect-predicting model can only be applied on upgrade projects and must
have got sufficient and continuous historical information of defects and requirements.
We can do nothing with newly started projects using this prediction method. And we
have to go through the whole analysis and modeling process again when we apply the
prediction method to a different project.

(2)Our model works well with requirement addition or modification, but the defini-
tion of the prediction process is lack for requirement deletion. The reason is that it is
hard to connect historical defect information to the deleted requirement items. We
tried to consider the deleting activities as the inverted process of the adding ones, but
the predicting results are really unsatisfactory. Some new associating techniques must
be brought in to solve this problem.

(3)Features of requirements are hard to distinguish and extract, and to evaluate the
weight of each feature accurately is difficult. Now we just give them initial values and
modify the values through the test experiments to get better prediction results. Future
work is required to ensure the completeness of the features and to reevaluate the im-
portance of each feature to the classification standard.

(4)The prediction accuracy is fine when we divide the original requirement items into
3 or 5 classes. But if we want more detailed characteristics of predicted defects, we have
to divide the requirements into more classes. And this will decrease the accuracy a lot.
There is space for us to optimize our prediction model to improve the accuracy.

6 Conclusion

In this paper, we propose an empirical methodology to predict defects based on en-
hancement requirements. A novel framework of defect prediction is put forward. It
implements a new method for evaluating and analyzing the impact of requirement
enhancement in upgrade project. It also provides considerable and convincing predic-
tion results to estimate the costs and risks of requirement evolution.

We establish connections between defects and requirements to acquire basic stan-
dards of requirements classification. This association process provides the inspiration
of our methodology. And in this prediction model, SVM has shown that it is adaptive
to modeling nonlinear functional relationships of requirement data which are difficult
to model with other techniques [9]. The results of experiments reveal the effectiveness
of SVM in this specific prediction problem.

Although there are some limitations and drawbacks in the model, it provides a very
promising and significant method for defect-predicting and requirement management.
Our future work will focus on optimizing the algorithm of the methodology to en-
hance the accuracy of the results. We will conduct additional empirical studies with
other datasets to further support the theories of this paper. We believe that this defect-
predicting frame has a rather bright future and its value will be testified.

Acknowledgements

This research is supported by the National Natural Science Foundation of China under
grant No. 90718042 and No. 60803023, the National Basic Research Program (973

 Predicting Upgrade Project Defects Based on Enhancement Requirements 279

program) under grant No. 2007CB310802, the Hi-Tech Research and Development
Program of China (863 Program) under grant No. 2007AA010303.

Special thanks to Jian Gao, Fei Dong, Yin Li, Hao Jia, LingJun Kong, ZhongPeng
Lin and Jing Du for their great support to our research work.

References

1. Lanning, D.L., Khoshgoftaar, T.M.: The Impact of Software Enhancement on Software
Reliability. IEEE Transactions on Reliability 44(4), 677–682 (1995)

2. Koru, A.G., Liu, H.: Building Effective Defect-prediction Models in Practice. Software,
IEEE 22(6), 23–29 (2005)

3. Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Transactions on Software Engineering 33(1), 2–13 (2007)

4. Boehm, B.W., Horowitz, E., Madachy, R., et al.: Software Cost Estimation with CO-
COMO II. Prentice Hall PTR, Upper Saddle River (2000)

5. Gou, L., Wang, Q., Yuan, J., Yang, Y., Li, M., Jiang, N.: Quantitative Managing Defects
for Iterative Projects: An Industrial Experience Report in China. In: Wang, Q., Pfahl, D.,
Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 369–380. Springer, Heidelberg
(2008)

6. Wang, Q., Wu, S.J., Li, M.S.: Software Defect Prediction. Journal of Software 19(7),
1565–1580 (2008)

7. Fenton, N., Neil, M., Marsh, W., Hearty, P., Radlinski, Ł.: On the Effectiveness of Early
Life Cycle Defect Prediction with Bayesian Nets. mpir Software Eng. 13, 499–537 (2008)

8. Malaiya, Y.K., Denton, J.: Requirements Volatility and Defect Density. In: 10th Interna-
tional Symposium on Software Reliability Engineering, p. 285 (1999)

9. Xing, F., Guo, P., Lyu, M.: A novel method for early software quality prediction based on
support vector machine. In: Proc. of the 16th IEEE Int’l Symp. on Software Reliability
Engineering (ISSRE 2005), pp. 213–222 (2005)

10. Gospodnetic, O., Hatcher, E.: Lucene in Action. Maning Publication (2006)
11. Qin, J., Lu, R.Z.: Feature Extraction in Text Categorization. Journal of Computer Applica-

tions 23(2), 45–46 (2003)
12. Elish, K.O., Elish, M.O.: Predicting Defect-prone Software Modules using Support Vector

Machines. The Journal of Systems and Software 81, 49–660 (2008)
13. Gunn, S.R.: Support Vector Machines for Classification and Regression, Technical Report.

Faculty of Engineering, Science and Mathematics School of Electronics and Computer
Science, University of Southampton (1998)

Incremental Process Modeling through
Stakeholder-Based Hybrid Process Simulation

Xu Bai1, Liguo Huang1, and Supannika Koolmanojwong2

1 Southern Methodist University, Dallas TX 75205, USA
{bxu,lghuang}@engr.smu.edu

2 Center for Systems and Software Engineering, University of Southern California, Los
Angeles, CA 90089, USA
koolmanu@usc.edu

Abstract. Both the process modeling and process simulation are necessary com-
ponents of process automation. A Process Modeling Language (PML) is a set
of description tools that define processes attributes and constrains in a specific
domain. Process modeling stakeholders may have different levels of dependen-
cies on different types of PMLs. They also have various perspectives for
modeling a process. Discrete and continuous PMLs are complimentary in
modeling the process at different levels of abstraction and to address different
stakeholders’ perspectives. The hybrid process simulation combines micro-level
discrete process models with the macro-level continuous process models to cap-
ture process dynamics and deploy process optimization. This paper proposes an
incremental approach based on the hybrid simulation in modeling a software pro-
cess at different levels of abstraction in order to address different stakeholders’
perspectives. By addressing stakeholders’ concerns in hybrid simulation at each
process segment, this approach incrementally integrates internal process dynam-
ics and modifications due to external changes into process model that cannot
be easily achieved by individually using discrete or continuous modeling ap-
proaches.

Keywords: Process Modeling, Process Simulation, Process Automation, Process
Modeling Language, Hybrid Process Simulation Model.

1 Introduction

1.1 Motivation

The process is defined as a logical ordering of people, procedures, technologies and
work activities designed to transform information, materials and energy into a spe-
cific result [1]. Resources and activities are two basic elements of software process.
Process Modeling Language (PML) is used to describe the process and capture the es-
sential properties of process by linguistic abstraction. Most latest PMLs support the
process visualization and formalization. Process formalization always leads to pro-
grammable languages and simulation/interpretation tools that automate the process
execution.

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 280–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation 281

One of the main goals of process automation is to provide computer-based real-time
support and guidance for process enactment. The PMLs play key roles in the process
automation. There are many PMLs proposed in the literatures, however, no single ap-
proach becomes dominant in practice. Various PMLs provide different process mod-
eling capabilities, based on their design intuitive and linguistic properties. In addition,
various stakeholders are involved in the process modeling activities, such as process
managers and process engineers, etc. Different stakeholders may have different per-
spectives and concerns in process modeling. Based on these observations, we did a
comprehensive survey and analysis of several widely used PMLs including Little-JIL
[2,3], Petri Nets and its variants [4], System Dynamics [5], etc., and categorized them
into discrete and continuous PMLs [6]. We found that the modeling capabilities of dis-
crete and continuous PMLs are complementary at different levels of abstraction and in
addressing different stakeholders’ perspectives. Thus we propose a stakeholder-based
approach to build the process model by incrementally integrating discrete and continu-
ous PMLs from different stakehoilders’ perspectives, which emphasizes the stakehold-
ers’ involvement during process modeling activities.

Hybrid process simulation has become an increasingly active research area in soft-
ware process automation in the last decades. By combining continuous and discrete
model simulation approaches, the hybrid process simulation model is able to break the
limitations of applying any individual simulation method and sensitively capture the
dynamics of software processes. In this paper, we summarize the current hybrid simula-
tion approaches and extend the capability of hybrid simulation to address stakeholder’s
perspectives with inevitable changes of process evolution.

1.2 Major Contribution

Process modeling stakeholders’ roles are seldom identified during process modeling
and simulation activities, as most of them are not directly involved in building the pro-
cess models. However, in practice, different modeling and simulation approaches are
chosen based upon their capabilities to address stakeholders’ concerns at different soft-
ware development and maintenance phases, where stakeholder classes and phases are
two dimensions of stakeholders’ perspectives.

In this paper, we propose a stakeholder-based approach to model process by
incrementally integrating discrete and continuous PMLs with hybrid simulations. Our
incremental process modeling approach 1) addresses two dimensions of concerns,i.e.,
stakeholder classes and software development phases; 2) investigates the information
flow of hybrid process simulation and tailors the hybrid modeling method to be adap-
tive to environment changes. Our case study shows that our approach can efficiently
adjust the process model attributes in response to these changes.

The rest of this paper is organized as follows: Section 2 summarizes related works
on software process modeling and simulation. Section 3 elaborates our incremental pro-
cess modeling approach through stakeholder-based hybrid process simulation. Section
4 presents a case study to illustrate our method and then analyzes the results. Section 5
summarizes our research and envisions the future research directions.

282 X. Bai, L. Huang, and S. Koolmanojwong

2 Related Works

2.1 Software Process Modeling Languages

There have been a number of PMLs proposed during the last two decades. These PMLs
can be classified into discrete PMLs and continuous PMLs based on their modeling
perspectives [6].

Discrete PMLs. E3 [7] provides an early object oriented approach to process model-
ing, which uses pre-defined classes and relations denoted by graphical symbols. DYNA-
MITE is formally defined in PROGRESS, which is an executable specification language
that uses UML in early implementation[8].

Melmac [9], Slang [10] and Object Petri-Net (OPN) [4] extended the traditional Petri
Nets to represent the software process. In particular, OPN is capable of supporting the
separation of concerns among different process modeling perspectives using the object
oriented approach.

Little-JIL [2,3] is a subset of JIL [11] with visualization support. Software process
is modeled as a tree of steps, whose leaves represent the units of work: steps. The
structure of step tree represents the way in which the work will be coordinated [12].
Little-JIL uses non-leaf steps to capture step ordering. Little-JIL also employs late-
binding techniques in resource management.

Continuous PMLs. System dynamics (SD) is an approach to model the behaviors of
complex systems over time, e.g. the defect generation flow in a software development
process. It has been applied to business/software process modeling to deal with internal
feedback loops and time delays that affect the behaviors of the entire process at the
system level [5,13]. SD provides a systematic view of software process, which can
capture the process dynamics and interactions among project attributes thus to probe
process improvement solution by conducting sensitivity analysis on process attributes.

2.2 Software Process Simulation

Process models implemented in Little-JIL and OPN can be simulated based on state
transition, and the results of modeled process can be predicted [14]. Discrete event sim-
ulation (DES) interprets process as a series of entities flowing through event sequences
and captures the effects of variation in the entities on activities and the dependencies
among activities [15]. Simulating the discrete process model can also help validate and
verify constrains between discrete events, especially constrains in resource allocation.
The limitation of discrete model simulation is that the changes inside each event can-
not be captured since the activity is the minimum process advancing unit. The process
attributes that keep changing during the entire life cycle of software development can
only be approximated at each event advance, which is considered problematic [15].

SD was first applied in process simulation in late 80’s [16] and then has been devel-
oped in [17] [18] [19]. In comparison to discrete process simulation, continuous process
simulation is ideal to address the dynamic factors in process. However, it does not easily
to represent the individual activities in process and the constraints among these activ-
ities. For example, the process work flow structure can not be modeled by continuous

Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation 283

models. Moreover, the continuous model is frequently used in sensitivity analysis, as
the quality of model outputs relies heavily on the quality of model inputs.

As an integration of discrete and continuous process simulations, hybrid process sim-
ulation can address both the micro-level and macro-level process dynamics. However,
integrating these two simulation approaches faces the issues of compatibility of process
attribute forms and synchronization of executing simulation. Most hybrid approaches
falls in vertical integration [20], in which discrete model was first built at a lower level,
and then continuously calculates the process factors and incorporates the feedback loop
at the system level [21]. [20] proposed a horizontal approach to integrating discrete and
continuous process simulations at different phases of software development. However,
none of these approaches tried to combine vertical and horizontal integration in order
to address the stakeholders’ concerns in process modeling and simulation.

3 A Stakeholder-Based Approach in Incremental Process
Modeling

3.1 Stakeholders’ Dependencies on Process Modeling Languages

The stakeholder classes involved in process modeling and simulation include process
performer (PP), process engineer (PE), process manager (PM), customer (CU), end
user (EU), educator (ED), tool provider (TP), researcher (RS), union representative
(UR), regulator (RG), standardizer (SD) and domain specific stakeholder (DS). Based
on their responsibilities and activities in process modeling and simulation, stakeholders
may have different levels of dependencies on discrete and continuous PMLs, as shown
in Table 1 [6]. We use low, medium or high to indicate various levels of dependencies.
For example, process performers are assigned tasks by the process manager, motivate
to complete tasks at the deadline, provide feedback to the process manager and ad-
just tasks if necessary. They focus on tasks at the activity level and depend on discrete
PMLs for modeling task related attributes. However, they are not much concerned about
process attributes above the activity level. Process engineers play the most active roles
in process modeling and simulation. Their responsibilities include designing the pro-
cess, choosing the PML, building and verifying the process model, simulating process
execution and optimizing the process. Thus they highly depend on both discrete and
continuous PMLs to help in achieving their goals (e.g., optimizing resource allocation,
minimize system defect density) at the activity level, sub-process level and system level.

3.2 Stakeholder’s Perspectives in Continuous Process Modeling

Different process modeling stakeholders also have different perspectives in software
process dynamics. These perspectives include workforce modeling, earned value eval-
uation, software evolution, software reuse, quality and defects, requirement volatility
[22] and other process-specific perspectives. Based on the analysis of stakeholders’
roles in process modeling activities [6], Table 2 summarizes their perspectives and their
associated stakeholders classes. The acronyms for stakeholders are identical to those

284 X. Bai, L. Huang, and S. Koolmanojwong

Table 1. Levels of Dependencies on Discrete and Continuous PMLs

Stakeholder Classes Discrete PMLs Continuous PMLs

Process Performer (PP) High Low
Process Engineer (PE) High High
Process Manager (PM) High High
Customer (CU) Medium High
End User (EU) High High
Educator (ED) High High
Tool Provider (TP) High High
Researcher (RS) High High
Union Representative (UR) Medium Medium
Regulator (RG) Low Low
Standardizer (SD) High High
Domain Specific stakeholder (DS) High High

Table 2. Continuous Process Modeling Perspectives and Their Associated Stakeholder Classes

Continuous Process Modeling Perspectives Associated Stakeholder Classes
PP PE PM CU EU ED TP RS

People

Workforce Modeling X X X X X X X
Exhaustion and Burnout X X X X X X X X
Learning X X X X X X X
Team Composition X X X X X X X

Process/Product

Inspection X X X X X X
Software Evolution X X X X
Software Reuse X X X X X X
COTS X X X X X X X
Software Architecting X X X X X X X
Quality and Defect X X X X X X X
Requirement Volatility X X X X X X
Process Improvement X X X X X X X

Project

Integrated Project Modeling X X X X X X
Business Case Analysis X X X X X X X
Personnel Resource Allocation X X X X X X
Staffing X X X X X X X
Earned Value X X X X X X

defined in section 3.1. The perspectives are classified into three categories: People, Pro-
cess/Product and Project. The ”X” mark indicates the stakeholder class and its con-
cerned perspectives in continuous process modeling.

3.3 Incremental Process Modeling Based on Stakeholders’ Perspectives

The primary objective of our incremental process modeling is to improve the quality
of the process model and optimize the process via the hybrid simulation of both dis-
crete and continuous PMLs based upon stakeholders’ perspectives. Our approach im-
proves the process adaptability to internal (process dynamics) or external (environment)
changes by incrementally integrating affected process attributes into the process model
at different levels of abstraction determined by various stakeholders’ perspectives. Hy-
brid process simulation uses the continuous PML to model the changes in the affected
process attributes and provide feedbacks to adjust the corresponding attributes in the
discrete process model based on different stakeholders’ perspectives [20].

Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation 285

Our incremental process modeling method models the process at several levels of
process abstraction. At the activity level, we model each process activity with both
discrete and continuous PMLs, and then perform the discrete and continuous simula-
tion synchronously. By comparing the process simulation results from both the discrete
and continuous models on specific process attributes of each activity, we can adjust the
corresponding process attributes in the discrete model to obtain desired optimal results.
At the sub-process level, where stakeholder’s perspectives may cover several phases,
the hybrid process simulation results provide the feedback loop to the involved process
activities in those phases, so that the related process attributes in the activity can be
adjusted. Also, the hybrid process simulation results can be used as the inputs to model
process activities in subsequent phases. At the system level, the overall process per-
formance can also be measured and optimized using the similar approach. Our hybrid
process simulation approach combines and improves these horizontal and vertical [20]
hybrid simulation approaches by addressing different stakeholders’ perspectives and
improving the overall quality of process model by incrementally adjusting affected pro-
cess attributes, integrating environment changes and optimizing process at three levels
of abstraction as shown in Fig.1.

In Fig. 1, the horizontal axis represents the process time line and the vertical layers
represent different level of abstraction based on different stakeholders’ perspectives.
Discrete process model is built for all activities in the process.

In the activity level, multiple continuous models can be constructed for different
activities based on various stakeholders’ perspectives. For example, stakeholder A in
Fig. 1 concerns with activity a, while B concerns with activity b. We simulate the built
discrete and continuous models synchronously in the activity level and evaluate the re-
sults. When the continuous process simulation results do not satisfy the expected results
from the discrete process simulation, we identify and adjust the corresponding process
attributes, and then evaluate the adjusted process attributes by simulating the hybrid
model again. The adjusted attributes are accepted until the simulation results show the
consistency between the discrete process simulation and continuous simulation. Such
local optimization improves the process model by verifying and adjusting process at-
tributes of each activity.

At the sub-process level, certain stakeholder class may concern with a set of activi-
ties across different phases based on its perspectives (see Table 2 and 3). For example,
stakeholder C is interested in phase 2 and 3 in Fig. 1. A sub-process level hybrid simu-
lation can be executed on the combined phase 2 and 3 using the continuous model based
on C’s perspective and discrete model covering involved activities in these phases. The
dependencies among activities from the discrete process model are used in simulating
the continuous process model. The simulation results are evaluated and the process at-
tributes in the discrete model are adjusted to yield desired or optimized results. Finally,
the adjusted attribute values are fed back into the continuous model for the next round
of simulation.

A system-level hybrid simulation is similar to the sub-process level simulation except
that it is based on the perspectives of stakeholders who concern about the entire process.
This is illustrated as stakeholder D’s perspective in Fig. 1.

286 X. Bai, L. Huang, and S. Koolmanojwong

Activity a
D iscrete
M odel

D iscrete
M odel

D iscrete
M odel

C ontinuous M odel

C ontinuous M odel

P hase 1 P hase 2 P hase 3 P hase n

Process Time Line

System Level

Sub-Process Level

Activity Level

Info rmatio n F lo w F ro m Disc rete Mo d el to C o ntinuo us Mo d el

F eed b ack Lo o p F ro m C o ntinuo us Mo d el to Disc rete Mo d el
Hyb rid S imulatio n

S takeho ld er A©s
P ersp ec tive

S takeho ld er B©s
P ersp ec tive

S takeho ld er C ©s
P ersp ec tive

S takeho ld er D©s
P ersp ec tive

Disc rete
Mo d el

C o ntinuo us
Mo d el

Continuou
s M odel

Activity b

Fig. 1. Overview of Incremental Process Modeling with Hybrid Simulation from Different Stake-
holders’ Perspectives

3.4 Information Flow between the Discrete Model and Continuous Model

In order to integrate the discrete and continuous process models at the same perspec-
tive, we need to identify and model the information flow between them. We define
AttributeDM as process attributes modeled by the discrete model and AttributeCM as
process attributes modeled by the continuous model. AttributeInterested is defined as
the process attributes that a specific stakeholder is interested in. Then we have

AttributeInterested ⊆ (AttributeDM ∩ AttributeCM),

where AttributeInterested includes both numeric and constraint attributes. these
attributes are represented in different forms in discrete and continuous models. For in-
stance, a numeric attribute can be a discrete value in discrete models while being a
continuous distribution in continuous model. The constraint attributes define the mod-
eling scope of a stakeholder’s perspective, such as design review, defect detection etc.

In discrete models, the numeric attributes of a process activity usually have a fixed
values during the execution of the activity. It is impossible for us to change these at-
tributes, as discrete models treat each activity as the smallest advancing unit. For exam-
ple, the manpower allocation and total workload are always defined as a fixed number
for a process activity in discrete models during each simulation. In continuous models,
the values of an attribute can be modeled as a statistical distribution. Process attributes
such as the productivity are always modeled as a continuous distribution over time.

To implement hybrid process model simulation, first we need to first identify those
attributes that are semantically same but in different forms in both discrete and con-
tinuous models. We define AttributeIC as attributes having the identical forms in both
discrete and continuous model. Attributes having different forms in either models are
respectively defined as AttributeDMC in the discrete model and AttributeCMC in the
continuous model. Thus, we have

AttributeInterested = AttributeIC ∪ AttributeDMC ∪ AttributeCMC

Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation 287

Given the relationships (R) between these attributes, we can build simulation equa-
tions for the discrete model (DM) and continuous model (CM), where EDM is the
discrete simulation equation and ECM is the continuous simulation equation. Thus,

EDM = R(t, AttributeIC , AttributeDMC) and ECM = R(t, AttributeIC , AttributeCMC)

EDM and ECM are simulated synchronously on time t. Usually one attribute is mod-
eled in each hybrid simulation.

4 Case Study

4.1 Baseline Project and Process Models

The ISPW-6 software development process is a standard software process modeling ex-
ample, where the core problem is a relatively confined portion of the software change
process, focusing on the designing, coding, unit testing, and management of a localized
change to a software system [23]. We will use this model to illustrate how to use our
stakeholder-based approach to incrementally model the process by integrating the dis-
crete and continuous PMLs to perform hybrid simulation. In this case study, we will
focus on schedule and defect dynamics of the software process. We use the empirical
data as shown in Table 3 from [19]. The baseline project core has 80,000 lines of code
(LOC) in COBOL and 10,667 LOC as the increment overheads. The project was sched-
uled for one calendar year with 15 full-time engineers. A moderate change occurred
late in the development phase due to the requirement volatility, an additional 5000 LOC
workload need to be modeled to verify the schedule and quality constraints. Table 4
shows the planned schedule and 10 engineers are allocated to the rework tasks.

In this scenario, the process performer needs to follow the schedule assigned by
the process manager. The process manager wants to verify and maintain the planned
deadlines for each activity and the entire process. And the process engineer tries to
estimate the residual defect density in the delivered product to ensure overall system
quality is satisfied. The results from Table 1 indicate that the process performer is highly
dependent on the discrete PMLs to obtain detailed task information but not much on
the continuous PMLs, while the process manager and the process engineer require both
discrete and continuous PMLs to satisfy their sub-process level goals.

Table 3. Baseline Project Attributes

Attributes Value

Project Size 90,667 LOC
Increment 1 22,667 LOC
Increment 2 32,000 LOC
Increment 3 32,000 LOC
Schedule 250 Days
Team Size 15 Engineers
Estimated Budget 3750 Man-Days
Nominal Development Productivity 40 LOC/Man-Day
Nominal Defect Generation Rate 33 errors/KLOC
Nominal Defect Regeneration Rate 4:1
Nominal Defect Detection Rate 0.84
Nominal Review Productivity 220 - 1100 LOC/Man-Day
Nominal Test Productivity 40 LOC/Man-Day

288 X. Bai, L. Huang, and S. Koolmanojwong

Table 4. Planned schedule for Change

Activity Man Power Days

Schedule and Assign Tasks 1 Project Manager 1
Modify Design 6 Design Engineers 8
Review Design 4(1 DE, 1 QA, 2 Other) 1
Modify Code 6 Design Engineers 10
Modify Test Plans 4 QA Engineers 3
Modify Unit Test Package 4 QA Engineers 8
Test Unit 10 (6 DE, 4 QA) 10

We used Little-JIL to build the discrete model of the ISPW-6 process [23] as shown
in Fig. 2(a). Little-JIL enforces the critical path interdependencies among activities.
And we applied SD for continuous modeling. Fig. 2(b) shows the SD model for each
activity, to help the process manager to verify the planned deadlines from earned value
perspective after the change occurred. Fig. 2(c) shows the process engineer’s perspec-
tive on defect dynamics, which is at the sub-process level covering Modify design,
Review design, Modify code, Modify unit test plan and Test unit activities of the
process.

4.2 Deadline Verification and Adjustment

The process manager intends to verify if each activity and the entire process can meet
the planned deadline in Table 4, and make adjustment to meet the deadline if neces-
sary. He/She depends on both discrete and continuous PMLs to verify and maintain the
deadline of this project from the earned value perspective in Table 2.

Activity Level Hybrid Simulation. At the activity level, the discrete PML Little-JIL
is used to model dependencies among activities and the planned process attributes. The
continuous PML SD is used to model the cumulative workload along the time line for
each activity. We input the planned manpower and work duration from the discrete pro-
cess model to the continuous process model as they are in the identical form. Fig. 3(a)
shows the productivity distribution over time from the SD process model. We simu-
late both models for each activity to compare the cumulative workload at the deadline
t. Fig. 3(b) and Fig. 3(c) show that the simulated Modify design and Modify test plan
activities (the solid line) are behind planned schedule (the dash line).

Thus, the process manager decides to adjust planned process attributes in the dis-
crete process model. In this case, as the Modify design activity is on the process critical
path, its deadline has to be kept unchanged. Since its manpower allocation has been
fixed, increasing the designers’ productivity is the only option. For Modify test plan
activity, as it is an non-critical path activity, we can either extend the deadline within
its slack days or increase productivity by postponing the activity close to the dead-
line on the critical path. Assuming we choose the latter solution due to limit budget.
The cumulative workload of Modify test plan is recalculated by using hybrid simula-
tions, as if the Modify test plan were postponed up to 6 days while keeping its planned
work duration. Fig. 3(d) shows the adjusted cumulative workload (the solid line) satisfy
the planned cumulative workload (the dash line) when postponed 4 days from planned
schedule.

Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation 289

(a) Discrete Model of ISPW-6 Using Little-JIL

(b) Earned Value (c) Defect Dynamics

Fig. 2. (a) Discrete Model, and Continuous Models in (b) Earned Value, (c) in Defect Dynamics

In the above scenario, the process critical path is unchanged. However, when extend-
ing activity deadline is the only option to complete the planned workload, the process
critical path will be changed due to the interdependencies among activities. For exam-
ple, if the deadline of Modify test plan activity has to be extended, the Modify unit test
package activity also has to be postponed. Thus, activity level adjustment only cannot
guarantee this sub-process to meet its overall deadline. In this condition, we need to
simulate in the sub-process level to satisfy the process manager’s needs.

Sub-process Level Hybrid Simulation. To verify the overall deadline at sub-process
level, a hybrid simulation can be performed, where the discrete process simulation pro-
vides the manpower allocation and activity dependencies to the continuous process sim-
ulation. The continuous process model is used to calculate the cumulative work along
the time line for the entire sub-process. Based on our simulation result, the planned
deadline of this process segment can still be met after the change is made.

However, in the above situation, the quality factors are not taken into account. The
process manager needs help from the process engineer to estimate the actual defect
number and to verify the deadline can be met while maintaining an acceptable defect
density in the product delivery.

290 X. Bai, L. Huang, and S. Koolmanojwong

4.3 Defect Dynamics: Generation, Detection and Density Control

The process engineer investigates the quality factors of the ISPW-6 process to help pro-
cess manager verify whether the residual defect density is within the acceptable range,
while the original deadline is maintained. His/Her concern is from defect dynamics per-
spective as shown in Table 2. Modify design activity and Modify code activity generate
defects, while Design review activity and Test unit activity detect defects.

Sub-process Level Hybrid Simulation. The discrete PML Little-JIL has been used in
modeling manpower, workload and the dependencies among activities. The number of
residual defects from Design review activity is amplified 4 times when they escape into
Modify code activity due to defect regeneration effect. The review productivity (220-
1100 LOC/Man-Day), test productivity (40 LOC/Man-Day), defect generation rate (33
defects/KLOC) and defect detection rate (0.84) are obtained from empirical data. Using
these process attributes and time as input to sub-process level SD model as shown in
Fig. 2(c), Fig. 3(e) shows the defect distribution (the solid line) along the time line, and
there are 14 residual defects (the dash line) at the 30th day deadline. The calculated
residual defect density is 2.8 defects/KLOC. Assuming the acceptable residual defect
density is 3 defects/KLOC, this hybrid process simulation result verified that the quality
of product is acceptable while the planned deadline is met. However, if the acceptable
residual defect density is 2.5 defects/KLOC, the quality requirement is not satisfied
based on the simulation result. In this case, adjustments to process attributes at the
activity level in Little-JIL model is needed to maintain the planned deadline.

0 10 20 30
30

35

40

45

50

55

60

th Day

LO
C

(a) Productivity Distribution

2 4 6 8 10
0

500

1000

1500

2000

t

th Day

LO
C

(b) Modify Design Simula-
tion

2 2.5 3 3.5 4
0

100

200

300

400

500

t

th Day

LO
C

(c) Modify Test Plan Simula-
tion

0 2 4 6
400

450

500

550

600

Day(s) Later

LO
C

(d) Modify Test Plan
Reschedule Simulation

0 10 20 30
0

50

100

150

th Day

N
um

be
r

of
 D

ef
ec

ts

14.0112

125.96

(e) Residual Defect Number
over Time

0.96 0.98 1 1.02

52

52.5

53

53.5

54

th Day

N
um

be
r

of
 D

ef
ec

ts

53.32

53.545

(f) Detected Defects via De-
sign Review

Fig. 3. Hybrid Simulation Results

Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation 291

Activity Level Hybrid Simulation. To decrease the number of residual defects and
maintain the planned deadline, we can either reallocate manpower resource to increase
defect detection rate in Design review activity and Test unit activity or decrease defect
generation rate in Modify design activity and Modify code activity. As the manpower in
this project is fully used in Modify design, Modify code, Modify test plan and Test unit,
we could only adjust resource allocation in the Design review team to increase the defect
detection rate. To satisfy the quality requirement of 2.5 defects/KLOC, additional 0.325
defects have to be detected in Design review, which account for additional 1.5 escaped
defects at the deadline. By simulating the hybrid model of Design review activity with
planned defect detection rate and review productivity, the number of detected defects
is calculated as 53.22 defects shown in Fig. 3(f) by the solid line at the deadline. Thus,
the adjusted Design review activity should detects 53.545 defects (the dash line) to
meet the overall quality requirement. Feed this into the hybrid process model for the
Design review activity at the activity level, we found the defect detection rate should
be increased to 0.845. Using this as the criteria to reallocate the resources, the project
manager can ensure that the overall deadline and quality requirement are both satisfied.

5 Conclusions and Future Work

In this paper, we present a stakeholder-based hybrid process modeling approach to in-
crementally model a software process using discrete and continuous models. In the case
study, we applied this model for validating deadline, adjusting schedule and estimating
defect successfully at activity and sub-process level. The hybrid simulation model pro-
vides powerful analysis capability by investigating both the static process attributes and
process dynamics, especially addressing the different perspectives of stakeholders dur-
ing the process model life cycle.

The future research can be carried out in two directions: 1) to improve this hybrid
modeling scheme at other perspectives, such as software reuse and evolution; 2) to
enhance the automation of the hybrid modeling method by automatically identifying
the information flow.

References

1. Pall, G.A.: Quality Process Management. Prentice-Hall, Englewood Cliffs (1987)
2. Cass, A.G., Lerner, B.S., Sutton Jr., S.M., McCall, E.K., Wise, A., Osterweil, L.J.: Little-

jil/juliette: a process definition language and interpreter. In: ICSE 2000: Proceedings of the
22nd international conference on Software Engineering, pp. 754–757. ACM Press, New York
(2000)

3. Osterweil, L.J.: Jil and little-jil process programming languages. In: Gruhn, V. (ed.) EWSPT
1998. LNCS, vol. 1487, p. 152. Springer, Heidelberg (1998)

4. Huang, L., Boehm, B., Hu, H., Ge, J., Lü, J., Qian, C.: Applying the value/petri process to
erp software development in china. In: ICSE 2006: Proceedings of the 28th international
conference on Software engineering, pp. 502–511. ACM Press, New York (2006)

5. Madachy, R.J., Boehm, B.W.: Software Process Modeling With System Dynamics.
John Wiley & Sons, Chichester (2004)

292 X. Bai, L. Huang, and S. Koolmanojwong

6. Bai, X., Huang, L.: A stakeholder perspective in evaluating process modeling languages and
hybrid process simulation. Technical Report (2008)

7. Baldi, M., Gai, S., Jaccheri, M.L., Lago, P.: E3: object-oriented software process model de-
sign, pp. 279–292 (1994)

8. Jäger, D., Schleicher, A., Westfechtel, B.: Using uml for software process modeling.
SIGSOFT Softw. Eng. Notes 24(6), 91–108 (1999)

9. Gruhn, V.: Managing software processes in the environment melmac. In: SDE 4: Proceedings
of the fourth ACM SIGSOFT symposium on Software development environments, pp. 193–
205. ACM Press, New York (1990)

10. Bandinelli, S., Fuggetta, A., Ghezzi, C., Lavazza, L.: Spade: an environment for software
process analysis, design, and enactment, pp. 223–247 (1994)

11. Sutton Jr., S.M., Osterweil, L.J.: The design of a next-generation process language. SIGSOFT
Softw. Eng. Notes 22(6), 142–158 (1997)

12. Zamli, K.Z.: Process modeling languages: A literature review. Malaysian Journal of Com-
puter Science 14(2), 26–37 (2001)

13. An, L., Jeng, J.J.: On developing system dynamics model for business process simulation.
In: WSC 2005: Proceedings of the 37th conference on Winter simulation, Winter Simulation
Conference, pp. 2068–2077 (2005)

14. Raffo, D.M., Kellner, M.I.: Predicting the impact of potential process changes: A quantitative
approach to process modeling. Elements of Software Process Assessment and Improvement
(1999)

15. Wakeland, W.W., Martin, R.H., Raffo, D.: Using design of experiments, sensitivity analysis,
and hybrid simulation to evaluate changes to a software development process: a case study.
Software Process: Improvement and Practice 9(2) (2004)

16. Abdel-Hamid, T., Madnick, S.E.: Software project dynamics: an integrated approach.
Prentice-Hall, Inc., Upper Saddle River (1991)

17. Lehman, M., Ramil, J.F.: The impact of feedback in the global software process. Journal of
Systems and Software 46, 123–134 (1999)

18. Powell, A., Mander, K., Brown, D.: Strategies for lifecycle concurrency and iteration - a
system dynamics approach. Journal of Systems and Software 46(2-3), 151–161 (1999)

19. Tvedt, J.D.: An extensible model for evaluating the impact of process improvements on soft-
ware development cycle time. PhD thesis, Tempe, AZ, USA (1996)

20. Zhang, H., Jeffery, R., Zhu, L.: Investigating test-and-fix processes of incremental develop-
ment using hybrid process simulation. In: WoSQ 2008: Proceedings of the 6th international
workshop on Software quality, pp. 23–28. ACM Press, New York (2008)

21. Martin, R.H., Raffo, D.: A model of the software development process using both continuous
and discrete models. In: Software Process: Improvement and Practice, vol. 5(2-3), pp. 147–
157. John Wiley Sons, Chichester (2000)

22. Madachy, R.J.: Software Process Dynamics. Wiley, IEEE Press (2008)
23. Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama, T., Osterweil, L.J., Penedo, M.H.,

Rombach, H.D.: Ispw-6 software process example. In: Proceedings of the First International
Conference on the Software Process, 1991, pp. 176–186 (1991)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 293–304, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Process-Oriented Approach for the Optimal
Satisficing of Non-Functional Requirements

Christopher Burgess and Aneesh Krishna

School of Computer Science and Software Engineering
University of Wollongong

Northfields Avenue
NSW, 2522, Australia

{cgb06,aneesh}@uow.edu.au

Abstract. In an ever more competitive world, the need for software systems to
meet specific quality characteristics becomes increasingly apparent. These qual-
ity characteristics, or non-functional requirements, are often contradictory and
ambiguous, making them difficult to manage during software development
processes. This paper presents a modification of the NFR framework that facili-
tates the automated discovery of optimal system designs for the satisfaction of
non-functional requirements. Just as with the NFR framework, this method can
be used at any stage during the software development process in order to aid
design decisions. The proposed method introduces the capacity to incorporate
both qualitative and quantitative non-functional requirements, as well as the po-
tential to include various cost factors into the optimisation process.

Keywords: Requirements engineering, non-functional requirements, NFR
framework, softgoal interdependency ruleset graphs.

1 Introduction

Managing quality characteristics, or in other words non-functional requirements
(NFR’s), of a software system during the development process is often a difficult
challenge. NFR's are often conflicting. In other words, functionalities that help satisfy
one NFR may also prevent or damage the satisfying of another. For example, an in-
formation system that sends data update logs via email to a system manager may help
to improve the accuracy of the system, but obviously quite significantly at the
expense of security. NFR's are also often subjective in nature, resulting in different
understandings of their meaning. System developers may consider a complex infor-
mation management system to be efficient if updates are made between 1-2 seconds,
however users of that system unaware of technical limitations may not consider such
a delay to be very efficient at all.

For these reasons, the need for dedicated tools and methodologies for the manage-
ment of NFR's becomes apparent. In spite of this, relatively little research has been
conducted in the area, perhaps due to the inherent complexities involved. Glinz [7]
provides an interesting discussion on the various understandings of NFR's in the RE
community, and some of the difficulties involved in managing them. Most proposed

294 C. Burgess and A. Krishna

methods have taken a quantitative, product-oriented approach, where the satisfying of
the NFR’s is measured quantitatively after analysing a functional version of the sys-
tem. In [8], NFR’s are handled by the creation of independent teams who carry out
separate inspection tasks, while in [9], independent teams carry out the same inspec-
tion task in order to attain a more thorough detection of faults. On the other hand, in
[1], a management perspective is taken, whereby the software development process
itself is evaluated through various models and metrics in order that quality software
products may result.

In what is perhaps the most comprehensive method for the management of NFR’s,
Chung et al. [2], [5] have developed the NFR framework. The NFR framework builds
on ideas from goal-based AI problem solving techniques and qualitative reasoning to
deliver a qualitative, process-driven method for the management of NFR's, able to be
used at any stage during the development process to aid design decisions. The NFR
framework is qualitative in the sense that the satisfaction of NFR’s is spoken of in
natural language terms. As such, NFR’s are represented as softgoals, rather than
goals, in order to denote the notion that NFR’s often do not have clearly defined satis-
faction criteria. These softgoals are said to be satisficed [10] if they are considered to
have been met to an acceptable level, rather than saying that they are satisfied with
full certainty.

The basic idea behind the NFR framework is the "incremental and interactive con-
struction, elaboration, analysis, and revision of a softgoal interdependency graph
(SIG)" [5, p.17], which displays the NFR softgoals to be satisficed, as well as opera-
tionalizing softgoals, representing potential system functionalities. NFR softgoals and
operationalizing softgoals can be refined and decomposed into more fine-grained
softgoals in order to remove ambiguity. The nature and level to which operationaliz-
ing softgoals contribute to the satisficing of NFR softgoals are denoted via interde-
pendency links. An example of a SIG can be seen in Figure 1.

The developer may then use the SIG to aid in system design by labelling
bottom-level operationalizing softgoals as being either satisficed or denied, and then
following a semi-automated label propagation procedure following the defined inter-
dependencies and decomposition relationships, until all the top-level NFR softgoals
have been assigned labels denoting the degree to which the selected operationalizing
softgoals satisfice them. This label propagation procedure is guided by assigning la-
bels to the interdependency links; which are one of EQUAL, MAKES, SOME+,
HELPS, UNKNOWN, HURTS, SOME-, or BREAKS. MAKES is used whenever
satisficing an operationalizing softgoal also results in the satisficing of an NFR soft-
goal. The HELPS label indicates that satisficing the operationalizing softgoal helps to
satisfice an NFR softgoal, but is insufficient to fully satisfice the NFR softgoal alone.
SOME+ is used whenever it is unclear if the interdependency ought to be MAKES or
HELPS. The NFR softgoals themselves may be labelled as either Satisficed (S),
Weakly Satisficed (W+), Unknown (U), Conflict (C), Weakly Denied (W-), or Denied
(D). A full listing of the label to propagate to an NFR softgoal given a label for the
operationalizing softgoal that contributes to it, as well as the connecting interdepen-
dency link label, is given in Table 1.

 A Process-Oriented Approach for the Optimal Satisficing of NFR’s 295

Fig. 1. An example SIG for a credit card system. The Secure Accounts NFR softgoal is decom-
posed into three softgoals for Max. Integrity, Max. Confidentiality, and Max. Availability. In-
terdependencies are shown between the Validate access against elibility rules operationalizing
softgoal and the Min. response time and Accurate account NFR softgoals.

Table 1. Label to be propagated to a softgoal given a contributing softgoal label and a connect-
ing interdependency link label

 BREAKS SOME+ HURTS UNKNOWN

D W+ W+ W+ U
C C C C U
U U U U U
S D W- W- U

 HELPS SOME+ MAKES EQUAL
D W- W- D X
C C C C C
U U U U U
S W+ W+ S S

A single propagation of a label from one softgoal to the next via an interdepen-
dency can be done automatically according to the rules in Table 1. This, however,
may result in conflicts whenever multiple interdependencies propagate opposing la-
bels to the same NFR softgoal. These conflicts are resolved by the developer manu-
ally, by selecting the appropriate label after taking into consideration all the labels
that have been propagated to it.

The NFR framework also includes a catalogue of methods, which defines decom-
position templates to aid developers in the process of refining softgoals into more

296 C. Burgess and A. Krishna

refined softgoals. Known interdependencies are also stored in a catalogue of correla-
tion rules, which can aid the developer in constructing the SIG, whereby the addition
of an NFR or operationalizing softgoal triggers the detection of interdependencies
between the newly added softgoal and existing softgoals in the SIG. Both of these
catalogues help to reduce SIG development time, making the NFR framework a con-
venient tool to use for the management of NFR’s.

The proposed method in this paper defines a new structure for SIG’s, called
Softgoal Interdependency Ruleset Graphs (SIRG’s), which no longer requires de-
veloper intervention for the propagation of labels. This introduces the capacity for
determining optimal sets of operationalizing softgoals automatically, rather than by
trial-and-error at the hand of the developer. NFR goals have also been introduced,
which allow for NFR’s to be labelled quantitatively, rather than qualitatively as in
the case of NFR softgoals. Both NFR softgoals and goals can be combined within
the same SIRG. There is also the potential for various cost factors to be included in
the optimisation procedure, such as development time and cost, maintenance cost,
and development difficulty or risk. A tool, the NFR Optimiser, has also been cre-
ated which implements the proposed method, of which a small illustration has been
outlined.

In Section 2 of the paper, SIRG’s and their features are explained, outlining the
methods by which labels are propagated in order to allow for automated analysis.
In Section 3, optimisation of SIRG’s is discussed, principally in relation to the
evaluation of a SIRG given particular labels for the top-level NFR softgoals. The
NFR Optimiser is introduced in Section 4, including a brief example of its use.
Section 5 gives a brief comparison of SIG’s and SIRG’s and their relative advan-
tages and disadvantages, while Section 6 concludes the paper, and outlines some
areas for further work.

2 Softgoal Interdependency Ruleset Graphs

Softgoal Interdependency Ruleset Graphs (SIRG’s) are a new graph structure that has
been developed which may lead to automated propagation of labels, thereby creating
the possibility for their optimisation without developer input. SIRG’s keep many of
the same concepts as those that are found in SIG’s and the NFR framework. The main
difference is the introduction of a new node type, called Interdependency Rulesets
(IR’s), which contain all the information necessary to propagate labels throughout the
graph, removing the need for developer input during label propagation. The core fea-
tures of SIRG’s are as follows.

Softgoals. Just as with SIG’s, NFR’s, as well as potential system functionalities, are
represented as softgoals to be achieved. In SIRG’s however, NFR’s may also repre-
sented as goals in situations where the satisfaction of the NFR may be denoted in
quantitative terms (i.e. percentages).

Labels. All softgoals can be assigned labels indicating the degree to which they are
satisficed. NFR softgoals can be given one of the labels Strongly Satisficed,

 A Process-Oriented Approach for the Optimal Satisficing of NFR’s 297

Moderately Satisficed, Weakly Satisficed, Indeterminate, Weakly Denied, Moder-
ately Denied, or Strongly Denied, while NFR goals are given percentages rather
than labels, ranging from 100% to -100%. Operationalizing softgoals, on the other
hand, can be labelled as either Satisficed or Denied, where satisficed operationaliz-
ing softgoals correspond to accepted functionalities for the software system in
question.

Relationships. Softgoals are connected by different types of relationships, which de-
scribe the effect that softgoals have on the satisficing of other softgoals in the graph.
These relationships fall into two main types: decompositions and interdependencies.
Decompositions occur between softgoals of the same type, ie. between NFR softgoals
or goals and other NFR softgoals and goals, and between operationalizing softgoals
and other operationalizing softgoals. These are useful for refining softgoals into more
fine-grained softgoals, which is particularly helpful for reducing the ambiguity that
often surrounds NFR’s. Examples of this can be seen in Figure 1, such as the refine-
ment of ‘Good performance’ into ‘Min. space’ and ‘Min. response time’. Interde-
pendencies occur between operationalizing softgoals and NFR softgoals and goals,
and are used to denote the impact that an operationalizing softgoal has on the satis-
ficing of the NFR softgoal or goal.

Decompositions themselves come in two forms; AND and OR decompositions.
AND decompositions are used whenever the satisficing of the parent softgoal gener-
ally requires the satisficing of all the child softgoals. Whereas OR decompositions are
used when the satisficing of the parent softgoal only requires that one of the child
softgoals is satisficed.

Interdependency Rulesets (IR’s). The main feature of SIRG’s that allows for
automated propagation of labels (to some extent) is the introduction of a new node
type: Interdependency Rulesets (IR’s). IR’s contain all the information required to
propagate labels throughout the SIRG, removing the need for developer
intervention.

IR’s may be used in two separate scenarios. They are primarily used to deter-
mine the label to propagate amongst interdependencies between a set of operation-
alizing softgoals and a single NFR softgoal or goal, although they may also be
used to create custom decompositions, when the standard AND or OR decomposi-
tions do not suffice.

Each NFR softgoal or goal that receives contributions from operationalizing
softgoals via interdependency links has a single IR. The IR contains simple, if-then
rules, where each rule defines the label to be propagated to the NFR softgoal,
given a particular combination of operationalizing softgoal labels. To illustrate,
Figure 2 shows an NFR softgoal for the accuracy of high-spending Gold Accounts
in a credit card system. Beneath this softgoal is its associated IR, displayed with
the double square icon, which stores all the rules for propagating labels to the NFR
softgoal. Two operationalizing softgoals are also shown, with interdependency
links drawn to the IR.

298 C. Burgess and A. Krishna

Fig. 2. Example of an Interdependency Ruleset (IR)

The if-then rules in the IR may be represented in table form, an example of
which is shown in Table 2. Given these rules, the required label for the accuracy
NFR softgoal can be determined regardless of the labelling of the operationalizing
softgoals.

Table 2. Example rules for IR in Figure 2

Auditing Label Validation Label Accuracy Label
Satisficed Satisficed Strongly Satisficed
Satisficed Denied Weakly Denied
Denied Satisficed Weakly Satisficed
Denied Denied Strongly Denied

IR’s may also be used to define custom decompositions where the standard AND

or OR decomposition relationship does not suffice. An example of a custom decom-
position is given in Figure 3.

Fig. 3. Example custom decomposition for a system modifiability softgoal

 A Process-Oriented Approach for the Optimal Satisficing of NFR’s 299

Note that unlike with SIG’s, interdependency links are not themselves assigned any
label, as all the information required for propagating labels is contained within the IR
itself. It is permissible, however, to display a small positive or negative sign alongside
links to indicate the general nature of the interdependency to aid visualisation.

Label Propagation. Given the structure for SIRG’s outlined thus far, there are sev-
eral possible scenarios for label propagation. Firstly, the standard AND and OR de-
composition relationships are governed by simple rules. For AND decompositions,
the minimum (least satisficed) label amongst the child softgoals is assigned to the
parent, while for the OR decomposition, the maximum (most satisficed) label is as-
signed to the parent. Note that it is possible to have NFR goals as children to NFR
softgoals. In this case, NFR goal percentages are first mapped to an NFR softgoal
label according to the thresholds outlined in Table 3, before the minimum or maxi-
mum rule is applied. At this stage, these thresholds have been chosen purely on an
intuitive basis. Further experimentation and case study analysis may result in future
adjustment of these thresholds.

Table 3. Mappings of NFR goal percentages to NFR softgoal labels

NFR goal percentage NFR softgoal label
>= 80% Strongly Satisficed
50 - 79% Moderately Satisficed
20 - 49% Weakly Satisficed
-19 - 19% Indeterminate
-49 - -20% Weakly Denied
-79 - -50% Moderately Denied
<= -80% Strongly Denied

In all other situations, softgoal relationships, whether they are interdependencies or

custom decompositions, are governed by an IR node which specifies the label to
propagate given any possible combination of child softgoal labels.

3 SIRG Optimisation

Given that the required information and rules for label propagation are contained
completely within the SIRG itself, the possibility arises for finding the optimal set of
bottom-level operationalizing softgoals automatically. Various combinations of satis-
ficed and denied labels for the bottom-level operationalizing softgoals may be tried,
and an overall evaluation score of the satisficing of the top-level NFR softgoals de-
termined for each. Thus, the set of satisficed operationalizing softgoals which pro-
duces the best evaluation score corresponds to an optimal system design that most
satisfices the system’s NFR’s.

The actual optimisation method used is open to question. An exhaustive search,
which tests all possible combinations, may certainly be plausible if the number of
softgoals remains sufficiently small, however further experimentation is required in
order to determine at what point the size of the SIRG becomes too large for an

300 C. Burgess and A. Krishna

exhaustive search to be feasible. Obviously, if an exhaustive search is feasible, then
the optimal solution is guaranteed to be found. Early tests have shown that genetic
algorithms may also be an effective and efficient method for optimising SIRG’s.

SIRG Evaluation. In order to determine an evaluation score given a particular set of
top-level NFR softgoal labels and NFR goal percentages, combining both the qualita-
tive and quantitative information contained therein, the following method is proposed.

The evaluation method involves the construction of a histogram, where each top-
level NFR softgoal and goal contributes an equal volume, v. The histogram ranges
from -100 to 100 to match the percentage range of NFR goals, and for each top-level
NFR goal, a bar v high is added to the histogram bin at its percentage value. NFR
softgoals also contribute the volume v to the histogram, but over a range of histogram
bins that correspond to the mappings in Table 3 for the softgoals label n. Thus, a bar
v/rn high is added to each bin within the range corresponding to the label n, where rn
is the number of bins within that range.

Once the histogram has been constructed for all the top-level NFR softgoals and
goals, an overall evaluation score, s, for the histogram can be calculated using (1),
where hi is the histogram value at bin i, and k is a proportionality factor that controls
the weight of the histogram value as a function of i. If k = 1, the weights are linearly
proportional to i, while higher values result in greater weight being given to values at
either end of the histogram.

∑ ∑
=

−

−=

−−=
100

1

1

100

)
100

()
100

(
i i

k
i

k
i

i
h

i
hs . (1)

4 The NFR Optimiser

To test the use of SIRG’s in analysing NFR’s, a tool has built, simply called NFR
Optimiser. This tool provides the ability to create SIRG’s, define IR’s, and determine
optimal sets of operationalizing softgoals accordingly. The NFR Optimiser uses an
exhaustive search procedure in order to optimise the SIRG. To help illustrate, a sim-
ple example of a KWIC (Keyword in Context) system, analysed in [5, ch.13], was
optimised using the NFR Optimiser. This example considers four main NFR’s: com-
prehensibility, modifiability, performance, and reusability. Potential system designs
fall into four main categories: Shared Data, Abstract Data Type, Implicit Invocation,
and Pipes and Filters. The SIRG representation of this problem domain, taken from
the NFR Optimiser, including abbreviations for all softgoal labels, is given in Appen-
dix A. Note that the NFR Optimiser also allows for priority levels to be set for NFR
softgoals, and these are denoted by the single and double exclamation marks.

Given the IR rules defined for this example, the Abstract Data Type system was se-
lected as the best solution for the KWIC problem. In this case, given that the set of
operationalizing softgoals are mutually exclusive, all IR rules where more than one of
the operationalizing softgoals are satisficed were given the Strongly Denied label in
order to prevent multiple operationalizing softgoals from being selected. In future, it
is intended that an option to specifically create sets of mutually exclusive operational-
izing softgoals will be included.

 A Process-Oriented Approach for the Optimal Satisficing of NFR’s 301

Fig. 4. Screenshot of the rules defined for the Updatability[Function] IR

An example set of rules for an IR is given in Figure 4, where the NFR softgoal Up-
datability[Function] receives interdependency links from both Abstract Data Type and
Pipes and Filter.

5 SIG’s and SIRG’s: A Comparison

Procedurally, the use of SIRG’s in the management of NFR’s differs little to that of
SIG’s in the NFR framework. It remains process-driven, and the capacity for the crea-
tion of catalogues of decomposition templates and correlation rules for automatically
detecting interdependencies remains valid. Just as with SIG’s, SIRG’s may be devel-
oped and edited throughout the development process to model NFR’s and aid in mak-
ing design decisions to help ensure that NFR’s are being met.

The use of SIRG’s provides a means to automatically determine the optimal system
design for meeting NFR’s, while on the other hand, determining optimal system de-
signs using SIG’s is largely a manual process. Performing this analysis manually may
be sufficient for small systems, where the number of NFR’s and the range of system
functionalities considered are relatively small. As such, using SIRG’s for small sys-
tems may provide little benefit. However, as the size and complexity of the system
increases, and consequently the number of softgoals and interdependencies, the auto-
mated optimisation of SIRG’s may prove advantageous. We need further experimen-
tation to test effectiveness of SIRG’s on larger case studies though.

One advantage that SIRG’s do have is the ability to combine both qualitative and
quantitative information. As the software system evolves during the development
process, it may be possible to convert NFR softgoals to NFR goals as more quantifi-
able information is gained as a result of system testing, further improving the accu-
racy of the analysis.

302 C. Burgess and A. Krishna

6 Conclusions and Further Work

This paper has presented an adaptation of the NFR framework, including an im-
plementation of the method within the tool NFR Optimiser. Softgoal Interdepen-
dency Ruleset Graphs (SIRG’s) have been introduced, which is a new method for
graphically representing NFR’s, system functionalities, and the relationships be-
tween them, designed to facilitate automated optimisation. Use of the NFR Opti-
miser during the software development process has the potential to aid developers
in managing NFR’s, intended as a process-driven method for automatically de-
termining the optimal set of system functionalities that best meet a given set of
NFR’s. More case study analysis is required, however, in order to more ade-
quately determine the tools usefulness.

The proposed method, and the tool NFR Optimiser, are in its early stages, and there
are still significant areas of improvement possible. While briefly introduced in the
NFR Optimiser illustration, applying priority levels to NFR softgoals is an area re-
quiring further attention. In terms of SIRG evaluation, in essence priority levels are
handled by weighting the total volume v applied to the histogram, however the most
appropriate number of priority levels to be used, and their relative weights remains an
open question. Another significant area for future work is the introduction of various
cost factors, such as development time and cost, maintenance cost, and development
difficulty or risk, for each operationalizing softgoal. This would then turn SIRG opti-
misation into a multi-objective optimisation problem, and would allow for the consid-
eration of both the satisficing of NFR’s and the minimisation of system costs to be
considered simultaneously.

One major benefit of the NFR framework is the inclusion of catalogues of
known interdependencies, and decomposition templates, which aid the developer
in creating SIG’s efficiently and accurately. There is also the potential for SIRG’s
to be augmented by similar catalogues. In fact, it may very well be possible for
SIRG’s to utilise exactly the same catalogues as those included with the NFR
framework, though that remains to be seen. Further to this, common IR’s, where
the required rules for a given set of operationalizing softgoals are already speci-
fied, potentially may also be added to the interdependency catalogue to aid the
developer further.

References

1. Basili, V.R., Musa, J.D.: The Future Engineering of Software: A Management Perspective.
IEEE Computer 24(9), 90–96 (1991)

2. Chung, L.: Representing and Using Non-Functional Requirements: A Process Oriented
Approach. Ph.D. Thesis, Dept. of Comp. Sci., Univ. of Toronto (1993)

3. Chung, L., Nixon, B.A.: Dealing with Non-Functional Requirements: Three Experimental
Studies of a Process-Oriented Approach. In: 17th IEEE International Conference on
Software Engineering, Seattle, pp. 25–37 (1995)

 A Process-Oriented Approach for the Optimal Satisficing of NFR’s 303

4. Chung, L., Nixon, B.A., Yu, E.: Using Quality Requirements to Systematically Develop
Quality Software. In: Proc. 4th International Conference on Software Quality, McLean, VA,
USA (1994)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishing, Dordrecht (2000)

6. Glinz, M.: On Non-Functional Requirements. In: 15th IEEE International Requirements
Engineering Conference (2007)

7. Linger, R.C.: Cleanroom Software Engineering for Zero-Defect Software. In: Proc. 15th
International Conference on Software Engineering, Baltimore, MD, USA, pp. 2–13 (1993)

8. Schneider, G.M., Martin, J., Tsai, W.T.: An Experimental Study of Fault Detection in User
Requirements Documents. ACM Transactions on Software Engineering and
Methodology 1(2), 188–204 (1992)

9. Simon, H.A.: The Sciences of the Artificial, 2nd edn. MIT Press, Cambridge (1981)

304 C. Burgess and A. Krishna

Appendix A: NFR Optimiser’s SIRG for KWIC Example

A Pattern for Modeling Rework
in Software Development Processes

Aaron G. Cass1, Leon J. Osterweil2, and Alexander Wise2

1 Department of Computer Science
Union College

Schenectady, NY 12308
cassa@union.edu

2 Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003
{ljo,wise}@cs.umass.edu

Abstract. It is usual for work completed at one point in a software development
process to be revisited, or reworked, at a later point. Such rework is informally
understood, but if we hope to support reasoning about, and partial automation
of, software development processes, rework be more formally understood. In
our experience in designing formalized processes in software development and
other domains, we have noticed a recurring process pattern that can be used to
model rework quite successfully. This paper presents that pattern, which mod-
els rework as procedure invocation in a context that is carefully constructed and
managed. We present some scenarios drawn from software engineering in which
rework occurs. The paper presents rigorously defined models of these scenarios,
and demonstrates the applicability of the pattern in constructing these models.

1 Introduction

Rework, the activity of reconsidering and modifying an earlier decision, is a feature
common in software engineering and other creative processes. While reconsideration
may be relatively straightforward, modifying earlier choices can be far more compli-
cated, as it typically entails reconsidering and modifying other choices that had been
made subsequent to the choice being modified. These subsequent modifications can
then lead to still further reconsiderations and modifications, potentially creating a daunt-
ing collection of reconsiderations and modifications that can leave the participants con-
fused and increasingly incapable of keeping the rework activity under control.

In software development, for example, it is not uncommon to find that a design under
consideration is becoming unduly complicated because of requirements or architectural
decisions that had been made previously. Often this causes the designer to revisit the
requirements, for example, to see if they are needlessly restrictive, and to revisit either
the requirements or architecture to see if they are, for example, inadventently incon-
sistent either internally or with each other. These revisitations often lead to changes,
which in turn lead to others. Requirements changes then cause reconsideration of archi-
tecture decisions, which can cause the architecture to be inconsistent with the changed

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 305–316, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

306 A.G. Cass, L.J. Osterweil, and A. Wise

requirements. Architecture changes can then require revisiting design and requirements
decisions. The full effect of a single change is often referred to as the “ripple effect”,
and it can be highly disruptive to development processes that might otherwise seem to
be orderly and systematic. Thus, the simplicity of a pure “waterfall” process is typically
augmented by back-edges that denote iteration. But these iterations are typically driven
by changes and cause other changes. Thus what may appear to be simple iterations are
actually iterations needed to effect rework changes. Indeed it has been estimated that a
very large percentage of the total effort in a complex development project is devoted to
rework.

Because of the prevalence of rework, it seems important to better understand it.
A clear understanding of the nature of rework could lead to stronger support for the
activity, through carefully tailored tools and automated aids. Such an understanding
might also help control the propagation of the ripple effect of modifications result-
ing from rework. It might also lead to better understanding of the relationship
between rework and traditional development, perhaps helping to identify common sub-
activities and a smoother integration of these two dominant components of creative
work.

In earlier work [1] we suggested that rework can be modeled as re-invocation of
one or more development activities that had been carried out previously, but now must
be carried out in a context different from the original execution, where a context is
any aspect of the process step’s dynamic, run-time environment (e.g. input param-
eters, resources, or personnel employed) that can cause the step to be carried out
differently or produce a different result. In that approach, we used procedure invo-
cation semantics to view rework as the invocation of a procedure in a context. So,
instead of simply saying that rework is “going back” to a previously-executed devel-
opment stage, we say that rework is a re-invocation of some activity, activities, or sub-
phase(s) of that previously-executed stage. Invocation semantics make it clear where
the rework activity gets its data from and where any output data is passed – down
and up (respectively) the procedure invocation trace. This earlier work left largely
unexplored, however, the specific details of how this rework context information was
gathered, passed to, and used by the rework activity itself. In this paper we present
examples of rework, define a rework process pattern based on re-invocation in a man-
aged context, and use this pattern to specify rework in some software development
activities.

2 Motivating Examples of Rework

As suggested above, rework happens when it becomes clear that a previous decision
has become problematic, often because it has come into conflict with subsequent de-
cisions. In such cases, rework is undertaken to resolve the conflict. In this section we
present several concrete examples of rework that we have encountered, and which seem
amenable to solution using the pattern presented later in this paper. Though we have
found rework in dispute resolution [2], scientific data processing [3,4], health care de-
livery [5], and other domains, the examples here are drawn from software engineering.

Although there is a lack of agreement about the exact way to develop software,
there is little disagreement that a finished product consists of a set of different types

A Pattern for Modeling Rework in Software Development Processes 307

of artifacts, usually including a specification of requirements, a design meeting those
requirements, executable code, and evidence that the code satisfies the requirements.
Ultimately, these artifacts must be acceptably consistent, both internally and with each
other. For example, the design should be shown to specify an approach that enables
the requirements to be met, and the executable code should be shown to be a correct
implementation of the design.

While all of these dimensions of consistency should be achieved by the end of a
development project, there is no expectation that all of these consistencies will be
achieved easily or straightforwardly. For example, developers expect that initial de-
sign decisions will be inconsistent with requirements, initial code might not correctly
implement designs, and that executing code may make clear the unreasonableness of
requirements specifications. Indeed, the process of developing a finished product inher-
ently entails the more or less continuous reevaluation and reconsideration of all prior
decisions.

For example, a requirements specification may be reconsidered because it is appar-
ently inconsistent with other requirements, because subsequent design efforts are com-
plicated by the requirement, or because code seems unable to satisfy the requirement.
Identifying the inconsistency is what we will call a triggering event. In such cases, the
nature of the conflict is a key part of the context under which developers re-evaluate
and possibly re-produce the problematic requirement. We view this re-evaluation and
re-production as re-instantiation of the activity that produced the faulty requirement
in a new context, with different input parameters. Re-instantiation in the new context
leads to what we will call re-invocation of the decision process, resulting in rebinding
of the results of the execution. The re-invocation may or may not result in a modifica-
tion of the requirement. In either case, execution resumes where it left off, at the site
of the triggering event. This may entail re-evaluating the triggering condition, and that
might trigger further rework. In software development, a modification of an artifact can
wind up triggering a long sequence of rework activities, which can entail multiple re-
considerations of a decision about a single artifact. The fact that there are additions and
changes to the context for subsequent reconsiderations of the same artifact improves the
chance that previous experiences will inhibit making the same decision multiple times,
reducing the chances of unproductive loops in the process.

3 A Pattern of Managed Rework

The previous examples suggest a pattern of rework, which we will now define using the
vocabulary of Gamma et al. [6]. Fig. 1 shows the structure of the pattern using a UML
activity diagram [7].

3.1 Applicability

– Use the pattern if internal consistency of work products must be maintained and
one wants to handle the inconsistencies that arise before continuing.

– Use the pattern if rework will trigger a long, complex sequence of consequences,
whose management will be facilitated by an at least semi-automated process.

308 A.G. Cass, L.J. Osterweil, and A. Wise

Context
Construction1 (C1)

Re-Invocation
(R1)

Work Task (WT)

Work Task (WT)

Rework Task (RT)

Evaluation
(E)

Context
Constructionn (Cn)

Re-Invocation
(Rn)

Trigger (t)

Plan (p)

Context (c1)

Context (c1)Context (cn)

...

Work Context
(cw)

Fig. 1. Structure of the pattern

3.2 Participants

Work task (WT). The process activity in progress when the need for rework is no-
ticed.

Trigger (t = {e, i}). The trigger is a message that is sent in response to the identifica-
tion of an inconsistency that seems to require rework. The trigger should identify
the entity to be reworked e, and the inconsistency detected i.

Rework task (RT = {E, {(C1, R1), . . . (Cn, Rn)}}). The process model must spec-
ify how to respond to each trigger by specifying the following parts:

Evaluation (E(t) → p). An activity to be carried out to evaluate the trigger t in
order to create a plan p that specifies what, if any, response is required as a
response to the trigger. Process models can omit an explicit evaluation activity
if there is only a single possible plan that could result from a trigger, in which
case p = t.

Context Construction (Cj(p) → cj). An activity to create an appropriate calling
context cj for the re-invocation.

Re-invocation (Rj(cj)). The re-invocation of a previously executed activity.

3.3 Collaborations

– A process model using to the pattern must define a triggering mechanism. Typically,
the trigger is the result of a checking activity and the trigger is represented as an
exception object – e.g., a design review might check the internal consistency of a
design and throw an exception if the review fails.

– When trigger t is fired, work task WT is suspended and the rework task RT begins.
– Rework begins with the evaluation of trigger t by E to determine whether re-

invocation of a previously-executed activity is needed. Based on the trigger, Eval-
uation will create plan p, which may consist of a choice among several different
re-invocations to address the trigger. Evaluation may involve human effort, or the

A Pattern for Modeling Rework in Software Development Processes 309

activity may be (at least partially) automated. If re-invocation is needed, an appro-
priate context cj for re-invocation Rj is constructed by context construction Cj .
Re-invocation Rj can then be undertaken, using parameters provided by context
cj . Once re-invocation is complete, rework task RT is complete, and the process
proceeds where it left off by re-invoking work task WT in its original context cw

(i.e. with its original parameters).

3.4 Consequences

– A precise model describes both the context in which rework occurs and how to
proceed after the rework has been completed.

– Processes using rework implemented with this pattern may be executable. Because
rework is explicit in the process model, such executable processes could be used to
monitor how well an activity is progressing.

– Activities that may be carried out in rework contexts must be designed to be carried
out in all possible re-invocation contexts. For example, a requirements specification
activity within a development process must be designed to allow for modification
of the requirements during phases other than the initial requirement specification.

3.5 Related Patterns

– When the immediate reworking of an entity is not desired, the exception handling
pattern Deferred Compensation may be used [8]. This pattern breaks rework tasks
into two disjoint activities – one contains the evaluation activity, while the other,
the deferred activity, contains context construction and re-invocation activities.

– Object Derivation [9] offers an approach in which requests for inconsistent objects
serves as a trigger for backward chaining.

– Observer [6] may be used as a vehicle for creating triggers when reworking an item
can result in the need for forward chaining.

– Task Deferral [10] is another mechanism for triggering rework. In this pattern, the
availability of data is itself a trigger for the forward chain.

4 Managing the Context

It is the context in which the re-invocation occurs that differentiates rework from simple
procedure invocation. The context defines the entities to be modified, the information
available to support this modification, and the constraints placed on the re-invoked ac-
tivity. Therefore, the re-invocation context must define the binding of objects to both
the in- and out-parameters of the re-invocation, ensure that any appropriate constraints
are enforced during the re-invocation, and specify the response to any events that arise
while the re-invocation is in progress. Formally, we define the context as:

– a clear designation of the entity that is to be the subject of the rework activity.
– a set of bindings between the formal parameters to Rj and the actual arguments in

the plan p : {(f1, a1), . . . (fn, an)}.
– a set of constraints B that are in force during the re-invocation.
– a set of handlers H for any signals s that may occur during the re-invocation.

310 A.G. Cass, L.J. Osterweil, and A. Wise

Declare Requirement
Element

Define Requirement
Element

Check Requirement
Element (WT)

Develop Requirements

Create Define
Requirement Context

(C1)

Define Requirement
Element (R1)

Check Requirement
Element (WT)

*

Reqt. Check Failed (t)

Rework Requirement (RT)

Fig. 2. Control flow in the requirements development process

try
element ← Declare Requirement Element

(informal requirements) 1©
Define Requirement Element (element) 2©
Check Requirement Element (work context) 3©

catch failure : Reqt. Check Failed
context ← Create Define Requirement

Context (failure) 4©
Define Requirement Element (context) 5©
Check Requirement Element (work context) 6©

end try

Fig. 3. Pseudo-code for the requirements de-
velopment process. Step numbers correspond
to those in Fig. 2.

The set of bindings in the context speci-
fies the information available, and the desti-
nation of entities that are created during the
re-invocation. When creating this binding,
the difference between pass-by-reference
and pass-by-value is particularly important.
Since rework often involves the modifica-
tion of existing entities, is is usual to pass
these entities by reference. We note, how-
ever, that the derivation history [9,3,4] of
these entities is often particularly important
in the creation of a rework plan as that his-
tory is often necessary in order to guide
the re-invocation away from repetition of
choices that have previously been shown to have led to later problems.

In our experience, exceptions are often used as triggers of rework, and as seen in
the examples provided in Section 5, changes made in later phases of a larger activ-
ity often create inconsistencies or problems that are detected as the violations of con-
straints that then generate exceptions that in turn initiate rework sequences that “ripple”
through the larger activity. The pattern we define here allows the set of handlers H
to control this rippling by treating re-invocations as “work tasks” from which triggers
may be emitted, each of which associates a set of parameter bindings, specifications
of which entities are to be reworked, and other components of the context for the re-
invocation.

5 Examples Using the Pattern

We begin with rework in requirements specification, shown in Figures 2 and 3. This ac-
tivity consists of the parallel creation of a set of Requirement Elements, each of which
consists of a Requirement Specification Declaration (created by Declare Requirement
Element) and a Requirement Specification Definition (created by Define Requirement

Element). Each Requirement Element is reviewed in Check Requirement Element, and
reworked if the review indicates any deficiencies.

A Pattern for Modeling Rework in Software Development Processes 311

Declare Design
Element

Define Design
Element

Check Design
Element (WT)

Create Define
Element Context (C1)

Define Design
Element (R1)

Check Design
Element (WT)

Evaluate
Failure (E) Create Develop

Requirements Context
(C2)

Develop
Requirements (R2)

*

Design Check Failed (t)

Rework Based on Design Error (RT)

Create Design

Fig. 4. Control flow in the design process

try
element ← Declare Design Element

(requirement)
Define Design Element (element)
Check Design Element (work context)

catch failure : Design Check Failed
plan ← EvaluateFailure(failure) 1©
if plan is rework the design then

context1 ← Create Define Element
Context(plan) 2©

Define Design Element (context1) 3©
else rework the requirements

context2 ← Create Develop Requirements
Context(plan) 4©

Develop Requirements(context2) 5©
end if
Check Design Element(work context) 6©

end try

Fig. 5. Pseudo-code for the design process. Step
numbers correspond to those in Fig. 4.

The failure of Check Requirement

Element serves as the trigger. As the Re-
quirement Element must always be re-
worked if its review fails, this use of
the rework pattern contains no evaluation
activity – responding to the trigger imme-
diately results in the creation of an ap-
propriate context. In this example, we as-
sume that the failure indicates the need to
rework a specific Requirement Specifica-
tion Definition whose identity is passed as
part of the trigger. The rework then begins
with creation of the appropriate context
by Create Define Requirement Context, then
proceeds with the re-invocation of Define
Requirements Element, and then resump-
tion of the execution of Check Requirement

Element in the context from which the ini-
tiating trigger occurred.

In reinvoking Define Requirements Element as the response to the detection of a diffi-
culty with the result of a prior invocation, this process definition demonstrates our view
of how rework can be defined accurately. In order to explain this approach to defin-
ing rework adequately it is necessary to elaborate upon the way in which this process
definition manages its artifacts and their flow. Develop Requirements takes as input an
informal set of requirements and produces a set of Requirement Elements as output.
When, as described above, Check Requirement Element fails it fires a trigger t this results
in an instance of the rework pattern. As there is only a single response to the failure, the
evaluation activity E(t) has been left out, and no plan is created, and the re-invocation
context is created using information from Reqt. Check Failed directly. While the context
should include a range of information to support the modification of the element such
as the reason the check failed, of particular interest to us is the requirement element to
be defined. In the original work task Check Requirement Element (WT), the element is

312 A.G. Cass, L.J. Osterweil, and A. Wise

defined by the normal flow of Develop Requirements but here is defined to be the element
e that is part of the trigger Reqt. Check Failed. Because the context binds the formal pa-
rameters in an activity to the actuals in the calling context, the changes to the element
are reflected in the set of requirement elements.

As previously noted, Develop Requirements takes an informal requirements descrip-
tion and produces requirement elements by, in parallel, defining individual elements by
creating a requirement element for part of the informal requirements 1©, defining the
requirement 2©, and finally reviewing the defined requirement 3©.

In the event that the requirement is inadequate, Check Requirement Element signals
this by throwing failure, an instance of the trigger Reqt. Check Failed that includes the
failed element. The trigger is the input to Create Define Requirement Context which cre-
ates a context including the element to be passed 4© to the re-instantiation of Define

Requirement Element 5© and finally, control is returned to Check Requirement Element 6©.
We now use the pattern to specify a more complicated form of rework. Figures 4

and 5 present a design activity, the overall structure of which is similar to that of the
Develop Requirements activity presented above. Specifically, after the design elements
are declared and defined, there is a review activity, Check Design Element that may trigger
rework. In Create Design however this review activity incorporates a determination of
whether or not the design element should be revised (by the re-invocation of Define
Design Element) or if the requirements must be reworked by Develop Requirements to
accommodate discoveries about Requirement Elements that have been made during
design. This is an example of the not-uncommon situation where detecting the existence
of a problem is only the first step in a process that leads to a re-invocation.

Before re-invocation can take place, participants must determine an appropriate so-
lution to the problem. The pattern represents this as evaluation activity Evaluate Failure
1© that takes the failure and produces a plan to assess the problem (E(t) → p). In this

example, in response to the Design Check Failed trigger, Evaluate Failure creates one of
two possible plans: one that requires reworking the design element in much the same
way as the requirement element was reworked above 2© 3©, and a second in which new
requirement elements are created in response to new informal requirements created as
part of the plan by re-invocation of Develop Requirements 5© in a context created by Cre-

ate Develop Requirements Context 4© that includes the new informal requirements, and
then finally returning to the work context Check Design Element 6©.

6 Related Work

Others have studied process patterns, notably Russell et al., who have specifically stud-
ied workflow structures that can be used for exception handling [11]. They derive sev-
eral patterns that can be used to handle exceptions caused by a single work item. While
our pattern is rightly seen as one way of handling a kind of exception – namely those
exceptions that cause a previous decision to come under suspision – our work differs
from that of Russell et al. in that we observe a pattern in existing process models instead
of deriving possible patterns from low-level considerations.

The pattern presented in this paper helps to describe rework in formal process mod-
els. As such, it aims to help solve a long-standing problem in process improvement.

A Pattern for Modeling Rework in Software Development Processes 313

It is generally accepted that rework is a feature (or a bug) in real-world software de-
velopment, and that modelling processes therefore requires modeling rework carefully
[12,13]. And yet, most life-cycle models do not formally model rework and rework is
not formally treated in popular software engineering texts (for example, [14,15,16]).
Many life-cycle models (e.g. the Spiral Model [17]) assume that steps are repeated
many times with different contexts, but do not formally model how context is
managed.

In order to implement the pattern described here in a process or workflow model, the
modelling language must support a trigger mechanism and a mechanism for managing
the parameter binding needed for a re-invocation context. Some modelling languages
support this approach more directly than others. For example HFSP’s [18] redo clause
allows reinstantiation of a step with different parameters. With other languages, es-
pecially those with semantics similar to general-purpose programming languages, this
pattern can be implemented using exception handling and scopes.

6.1 Implementing Triggers as Exceptions

Because triggers are seen as devices for initiating activities that are considered to be
outside the normal flow of control, it seems natural to implement a trigger with an ex-
ception handling mechanism. Several languages provide such a mechanism, borrowing
from general purpose programming-language semantics [19,20,21]. Other languages
allow the specification of consistency conditions that produce exceptions when violated
(for example, AP5 [22], Marvel [23], Merlin [24], EPOS [25], and ALF [26]).

Wang and Kumar [10] propose a different approach to exception handling that could
also be used to support rework. Their approach assumes a data-flow based workflow
system, in which control flow is inferred from data dependencies between activities –
if an activity B must occur after activity A, even with no data flow between A and
B, a soft data dependency is added. Then, if A should fail, the soft dependency can
be relaxed and activity A can be deferred to such a time as it can be safely executed
(reworked). However, their approach does not seem to allow specifying a change in the
invoking context of A – the source of A’s data is fixed. Therefore, it seems that some
kinds of rework could be modelled in this approach but it is not flexible in managing
the context for rework.

6.2 Implementing Context with Scope

An invocation context must bind parameters and exceptions and provide an environ-
ment in which the re-invocation is carried out. It seems natural to use a scope to de-
fine such an environment. Any inputs an activity needs or outputs it produces can be
found by searching within a scope. Therefore, by providing a different scope through
re-invocation, we provide a different environment in which the activity can be
performed.

Little-JIL [19] supports hierarchical scoping for parameter binding and exception
handling. Also, several languages based on flow graphs and Petri-nets allow nesting of
activities, where each nesting provides a scope [27,28,29].

314 A.G. Cass, L.J. Osterweil, and A. Wise

7 Conclusions and Future Work

The examples provided in this paper fit nicely into the pattern that we have presented.
Moreover the examples seem to us to provide elegant representations of the actual na-
ture of rework. The pattern makes it clear that rework does indeed entail repeating activ-
ities and steps that had been executed previously, but it also shows that the re-execution
is not exactly a repetition, but is a revisitation of previous work now with new knowl-
edge, as contained in context information such as calling arguments. The pattern makes
clear how the new knowledge is created and brought to bear.

The pattern makes it clear that rework does not entail “returning to a previous phase”.
In an important sense it has always been obvious that reworking a requirement because
of a problem found in design did not cause a “return to the requirements phase”, but
rather a pause in the activities involved in design while activities involved in require-
ments were revisited. This intuition now seems to be very well represented in the pattern
of “re-execution in a managed context”, expressed precisely and elegantly through the
semantics of procedure invocation. In short, the rework examples we have shown are
some form of carefully managed, potentially recursive, procedure invocation.

The pattern presented here suggests opportunities to improve development environ-
ments. In recognizing that rework often entails creating new contexts for previously
executed process steps, this work seems to highlight the importance of maintaining the
information basis for constructing such contexts. This information basis may consist
of specific instances of types of software development artifacts such as design com-
ponents and design decisions, or of large and elaborate structures of such instances
that have arisen during extensive development and rework activities. This suggests to
us that future work aimed at creating powerful development support systems might do
well to focus on how to maintain precise and articulate information about these arti-
fact instances, and the histories of their development. As most of our previous work
has focused on defining process steps, the work indicated here suggests a complemen-
tary focus on the artifact instances that they require and generate. Such complemen-
tary work might then focus on how to store, structure, and present artifact structures
in ways that enable tools to better support development, which inevitably includes re-
work. Such tools would not simply present a developer with the need to revisit a pre-
viously executed step, but would supplement that with an articulate description of the
circumstances under which the step had previously been carried out. This would en-
able the developer to make better informed decisions about how to address the needed
rework.

The modest number of examples provided in this paper are only a representative
sample of a larger number of examples that seem to fit into the pattern that has been
presented here. These examples all seem to be cleanly and clearly represented as in-
stances of the pattern that we have presented. It is our conjecture that this pattern will
suffice to describe many other instances of rework, found both in software engineering
and in other disciplines. We remain interested in examining other instances in order to
explore our hypothesis that this pattern might well serve as a definition of the term “re-
work”. Should our conjecture prove to be correct, then we expect that this work could
lead to more effective support for rework as is needed in many of the varied domains in
which it is a central feature of how work is carried out.

A Pattern for Modeling Rework in Software Development Processes 315

Acknowledgements

The authors wish to express gratitude to Stanley M. Sutton, Jr, Reda Bendraou, Barbara
Staudt Lerner, Stefan Christov, Lori A. Clarke, and members of the Laboratory for
Advanced Software Engineering Research at the University of Massachusetts Amherst
who have participated in this research, and clarified the points made in this paper.

This material is based upon work supported by the US National Science Founda-
tion under Award Nos. CCR-0427071, CCR-0204321 and CCR-0205575. The views
and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of The National Science Foundation, or the U.S. Government.

References

1. Cass, A.G., Sutton Jr., S.M., Osterweil, L.J.: Formalizing rework in software processes. In:
Proc. of the 9th European Workshop on Soft. Proc. Technology, Helsinki, Finland, September
1–2 (2003)

2. Clarke, L.A., Gaitenby, A., Gyllstom, D., Katsh, E., Marzilli, M., Osterweil, L.J., Sondeimer,
N.K., Wing, L., Wise, A., Rainey, D.: A process-driven tool to support online dispute resolu-
tion. In: Intl. Conf. on Digital Government Research, San Diego, CA. ACM Press, New York
(2006)

3. Osterweil, L.J., Wise, A., Clarke, L.A., Ellison, A.M., Hadley, J.L., Boose, E., Foster, D.R.:
Process technology to facilitate the conduct of science. In: Li, M., Boehm, B., Osterweil, L.J.
(eds.) SPW 2005. LNCS, vol. 3840, pp. 403–415. Springer, Heidelberg (2006)

4. Osterweil, L.J., Clarke, L.A., Podorozhny, R., Wise, A., Boose, E., Ellison, A.M., Hadley,
J.: Experience in using a process language to define scientific workflow and generate dataset
provenance. In: Proc. of the 16th ACM SIGSOFT Intl. Symp. on Foundations of Soft. Engi-
neering (FSE16), Atlanta, GA. ACM Press, New York (2008)

5. Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Brown, D., Cassells, L.,
Metens, W.: Rigorously defining and analyzing medical processes: An experience report. In:
Giese, H. (ed.) MoDELS Workshops 2007. LNCS, vol. 5002. Springer, Heidelberg (2008)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

7. Object Management Group: OMG Unified Modeling Language (OMG UML) Super-
structure. Technical Report formal/2007-11-02, Object Management Group, Version 2.1.2
(November 2007)

8. Lerner, B.S., Christov, S., Wise, A., Osterweil, L.J.: Exception handling patterns for pro-
cesses. Technical Report 08-06, UMass Dept. of Comp. Sci. (March 2008)

9. Clemm, G., Osterweil, L.: A mechanism for environment integration. ACM Trans. on Prog.
Lang. and Systems (TOPLAS) 12(1) (1990)

10. Wang, J., Kumar, A.: Exception handling using task deferral in document-driven workflow
systems. In: Proc. of the Annual Workshop on Information Technology and Systems (WITS)
(2005)

11. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception handling patterns in
process-aware information systems. Technical report, BPM Center (2006)

12. Haley, T., Ireland, B., Wojtaszek, E., Nash, D., Dion, R.: Raytheon Electronic Systems expe-
rience in software process improvement. Technical Report CMU/SEI-95-TR-017, Carnegie-
Mellon Software Engineering Institute (November 1995)

316 A.G. Cass, L.J. Osterweil, and A. Wise

13. Butler, K., Lipke, W.: Software process achievement at Tinker Air Force Base. Technical Re-
port CMU/SEI-2000-TR-014, Carnegie-Mellon Software Engineering Institute (September
2000)

14. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice
Hall, Englewood Cliffs (1991)

15. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 4th edn. McGraw-Hill,
New York (1997)

16. Sommerville, I.: Software Engineering, 5th edn. Addison-Wesley, Reading (1996)
17. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Com-

puter 21(5), 61–72 (1988)
18. Suzuki, M., Iwai, A., Katayama, T.: A formal model of re-execution in software process. In:

Proc. of the 2nd Intl. Conf. on the Soft. Process, Berlin, Germany, pp. 84–99. IEEE Press,
Los Alamitos (1993)

19. Wise, A.: Little-JIL 1.0 Language Report. Technical Report 98-24, UMass Dept. of Comp.
Sci. (April 1998)

20. Sutton Jr., S.M., Osterweil, L.J.: The design of a next-generation process language. In: Jaza-
yeri, M. (ed.) ESEC 1997 and ESEC-FSE 1997. LNCS, vol. 1301, pp. 142–158. Springer,
Heidelberg (1997)

21. Sutton Jr., S.M., Heimbigner, D., Osterweil, L.J.: APPL/A: A language for software-process
programming. ACM Trans. on Soft. Engineering and Methodology (TOSEM) 4(3), 221–286
(1995)

22. Cohen, D.: AP5 Manual. USC, Info. Sci. Institute (March 1988)
23. Kaiser, G.E., Barghouti, N.S., Sokolsky, M.H.: Experience with process modeling in the

MARVEL software development environment kernel. In: Shriver, B. (ed.) 23rd Annual Hawaii
Intl. Conf. on System Sci., Kona HI, vol. II, pp. 131–140 (January 1990)

24. Junkermann, G., Peuschel, B., Schäfer, W., Wolf, S.: MERLIN: Supporting cooperation in
software development through a knowledge-based environment. In: Finkelstein, A., Kramer,
J., Nuseibeh, B. (eds.) Soft. Process Modelling and Technology, pp. 103–129. Wiley, Chich-
ester (1994)

25. Conradi, R., Hagaseth, M., Larsen, J.O., Nguyên, M.N., Munch, B.P., Westby, P.H., Zhu, W.,
Jaccheri, M.L., Liu, C.: EPOS: Object-oriented cooperative process modelling. In: Finkel-
stein, A., Kramer, J., Nuseibeh, B. (eds.) Soft. Process Modelling and Technology, pp. 33–70.
Wiley, Chichester (1994)

26. Canals, G., Boudjlida, N., Derniame, J.C., Godart, C., Lonchamp, J.: ALF: A framework for
building process-centred software engineering environments. In: Finkelstein, A., Kramer, J.,
Nuseibeh, B. (eds.) Soft. Process Modelling and Technology, pp. 153–185. Wiley, Chichester
(1994)

27. Bandinelli, S., Fuggetta, A., Grigolli, S.: Process modeling in-the-large with SLANG. In:
Proc. of the 2nd Intl. Conf. on the Soft. Process, pp. 75–83. IEEE Computer Society Press,
Los Alamitos (1993)

28. Deiters, W., Gruhn, V.: Managing software processes in the environment melmac. In: Proc.
of the 4th ACM SIGSSOFT/SIGPLAN Symp. on Practical Soft. Dev. Environments, Irvine,
CA, pp. 193–205. ACM Press, New York (1990)

29. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of exceptions
in workflow management systems. ACM Trans. on Database Systems (TADS) 24(3), 405–
451 (1999)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 317–329, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Achieving On-Time Delivery: A Two-Stage Probabilistic
Scheduling Strategy for Software Projects

Xiao Liu1, Yun Yang1, Jinjun Chen1, Qing Wang2, and Mingshu Li2

1 Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Melbourne, Australia 3122

{xliu,yyang,jchen}@swin.edu.au
2 Laboratory for Internet Software Technologies, Institute of Software

Chinese Academy of Sciences
Beijing, 100080 P.R. China

{wq,mingshu}@itechs.iscas.ac.cn

Abstract. Due to the uncertainty of software processes, statistic based schedule
estimation and stochastic project scheduling both play significant roles in soft-
ware project management. However, most current work investigates them
independently without an integrated process to achieve on-time delivery for
software development organisations. For such an issue, this paper proposes a
two-stage probabilistic scheduling strategy which aims to decrease schedule
overruns. Specifically, a probability based temporal consistency model is
employed at the first pre-scheduling stage to support a negotiation between cus-
tomers and project managers for setting balanced deadlines of individual soft-
ware processes. At the second scheduling stage, an innovative genetic algorithm
based scheduling strategy is proposed to minimise the overall completion time
of multiple software processes with individual deadlines. The effectiveness of
our strategy in achieving on-time delivery is verified with large scale simulation
experiments.

Keywords: Software Process, Schedule Estimation, Project Scheduling, Prob-
abilistic Strategy, Genetic Algorithm.

1 Introduction

A software project is typically characterised by dynamic changes of the development
environment and variant decisions of human stakeholders [13, 15]. Therefore, the
estimation of software development schedule (and cost) with uncertainty as well as
project scheduling under uncertainty are widely investigated and applied in software
projects [6, 8]. But still, they are considered to be challenging issues for software de-
velopment organisations of all sizes.

It has been witnessed that for a majority of software projects, on-time delivery of
core capabilities is increasingly become the main focus of software processes in the
dynamic business world nowadays [13]. Meanwhile, for many software development
organisations, especially of small and medium sizes, their main business targets are
short-term contracts from a relatively fixed group of customers in the market. These

318 X. Liu et al.

customers usually require the development of small scale software components within
hard deadlines so as to meet their dynamic and urgent business needs. The competi-
tive strength of these software development organisations critically relies on the abil-
ity of on-time delivery. Therefore, instead of pursuing multiple objectives such as
reducing project schedule, budget and staff overload at the same time, this paper fo-
cuses on achieving on-time delivery. For software development organisations, an es-
timated software schedule serves as the guideline for project bidding and planning
given specific customer needs and software process performance [14]. Furthermore,
project scheduling is to decide “who does what” and optimise specific objectives, e.g.
minimum schedule and budget. In recent years, great efforts have been dedicated to
statistic based schedule estimation and stochastic project scheduling in software pro-
ject management [6, 9]. However, most current work investigates schedule estimation
and project scheduling independently without an integrated process. On one hand,
estimated schedules for specific software processes cannot be realised without project
scheduling to assign proper employees with proper tasks. On the other hand, without
schedule estimation, project scheduling will not be effectively guided and probably
result in frequent schedule overruns.

To achieve on-time delivery, this paper proposes a two-stage probabilistic project
scheduling strategy to address the above issues. Specifically, at the first pre-
scheduling stage for individual software processes, a probability based temporal con-
sistency model is presented to facilitate a win-win negotiation between customers and
project managers. This negotiation, namely pre-scheduling, supports the setting of
balanced deadlines based on the process performance baseline. At the second schedul-
ing stage for multiple software processes, an innovative genetic algorithm (GA) [1]
based scheduling strategy which utilises a two-phase searching algorithm and a pack-
age based initialisation approach is proposed. The objective for the scheduling stage is
to minimise the overall completion time of multiple software processes given that all
individual software processes can be completed ahead of the deadlines as set at the
pre-scheduling stage.

The remainder of the paper is organised as follows. Section 2 presents the related
work and problem analysis. Section 3 gives the overview of our two-stage probabilis-
tic project scheduling strategy. Section 4 presents the pre-scheduling stage and
Section 5 proposes the scheduling stage. Section 6 describes large scale simulation
experiments to verify the effectiveness of our strategy in achieving on-time delivery.
Finally, Section 7 addresses our conclusions and future work.

2 Related Work and Problem Analysis

2.1 Related Work

With the dynamic nature of software development environments, various uncertainty
and inconsistencies arise and thus bring challenges for schedule (and cost) estimation
in software processes [15]. Jørgensen and Shepperd present a systematic review of
software development schedule/cost estimation studies in [9]. For the 9 categories of
research topics, estimation methods account for 61% of the samples and rank the first
place. In recent years, various strategies such as feature prioritisation, core capability

 Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy 319

determination, risk driven strategies, earned value management, statistical process
control and so forth, are presented to deal with uncertainty assessment and uncertainty
control for software schedule (and cost) [13]. For schedule estimation of a specific
software process, one of the most important concepts is Process Performance Baseline
(PPB) [6]. PPB utilises two indicators, i.e. process performance and process capabil-
ity. Here, process performance is “a measure of actual results achieved by following a
process” and process capability is “the range of expected results that can be achieved
by following a process”. In [14], a statistic based approach is proposed to establish
and refine software process performance baseline where the average value μ and the
standard deviation σ of data samples are defined as process performance and capabil-
ity respectively. Specifically, process performance baseline is normally controlled
under the limits of σμ 3± .

Project scheduling is to allocate proper tasks to proper employees or subcontractors
in order to result in successful projects. Due to the uncertainty of software projects,
most project scheduling strategies aim to generate a feasible schedule within given
constraints, such as schedule and budget, to serve as a baseline schedule for real pro-
ject execution. Five fundamental approaches for scheduling under uncertainty are
identified in [6], i.e. reactive scheduling, stochastic project scheduling, fuzzy project
scheduling, proactive scheduling and sensitivity analysis. Specifically, stochastic pro-
ject scheduling strategies mainly concern about scheduling project tasks with uncer-
tain durations in order to minimise the expected project schedule [3, 16]. Among
them, genetic algorithm, as a commonly applied heuristic method, is often employed
to solve complicated optimisation problems in resource constrained scheduling
problems [12]. An empirical study in [7] demonstrates that the evolution algorithm is
capable of finding the best-known solutions in 68% of the 2370 instances with an
average overall error rate of 0.95%. [3] proposes a time-line based model as well as 8
heuristic rules to simulate real-world situations to enhance the ability of GA. In [1],
structured studies have shown that GA is flexible and accurate for many different
software project scenarios.

2.2 Problem Analysis

For a specific software project, schedule estimation and project scheduling are two
fundamental issues for achieving on-time delivery. In practice, for project bidding and
negotiation, project managers usually need to estimate project schedules based the
statistic performance of software development organisations. During this period of
time, project deadlines are set based on estimated schedules. However, practical data
show that about one-third of the projects exceed their estimated schedules by 25%
[13]. Two of the critical problems cause schedule overruns are as follows.

1) A project schedule is not well balanced between the software process perform-
ance baseline and customer needs. If project deadlines are far beyond the software
process performance baseline, schedule overruns are highly expected. Therefore, in
practice, some robust project scheduling strategies such as temporal protection inten-
tionally extends the statistic task durations to protect the baseline schedule from re-
source breakdowns [6]. Meanwhile, most work only emphasises the role of project
managers to estimate schedules and set project deadlines for individual software proc-
esses. However, the deadlines may often be set unrealistically tight due to customers’

320 X. Liu et al.

pressure and thus results in frequent schedule overruns. Therefore, compromised pro-
ject schedules which achieve proper balance between the software process perform-
ance baseline and customer needs are certainly more desirable.

2) An individual baseline schedule does not consider the situation of multiple soft-
ware processes [3]. One of its priorities for project scheduling is to ensure that soft-
ware processes can be completed within specific deadlines. However, since software
process performance is heavily dependent on the people who execute the process
rather than the device of the product line, one of the major reasons deteriorates the
performance and causes significant delays is the competition of employees among
multiple software processes. In fact, this problem frequently occurs in a software de-
velopment organisation and causes serious overruns even though project schedules
are estimated based on the performance baseline. In another word, without consider-
ing the situation of multiple software processes, baseline schedules for individual
software processes cannot guarantee the success of on-time delivery.

To tackle the above two problems, joint efforts need to be dedicated by schedule
estimation and project scheduling as an integrated project scheduling strategy.

3 A Two-Stage Probabilistic Project Scheduling Strategy

In this section, we present the overview of our two-stage probabilistic project schedul-
ing strategy. As depicted in Table 1, our project scheduling strategy consists of two
stages, i.e. the pre-scheduling stage and the scheduling stage.

Table 1. Project Scheduling Strategy

At the pre-scheduling stage, the main objective is to set balanced deadlines for in-
dividual software processes. At this stage, Step 1.1 is to model software processes
with Stochastic Petri Nets [2] which will be introduced later in this section as the
specification tool. Step 1.2 is to set balanced deadlines for individual software proc-
esses with a probability based temporal consistency model which is to support a win-
win negotiation between customers and project managers. At the scheduling stage, the
main objective is to generate a scheduling plan which assigns proper tasks to proper
employees in order to achieve on-time delivery. At this stage, an innovative GA based
scheduling strategy is conducted as Step 2.1 to minimise the overall completion time
of multiple software processes. Step 2.2 is to search for the optimal or near optimal

 Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy 321

solution (i.e. the best or near best project scheduling plan) which meets the deadlines
for individual software processes set at the pre-scheduling stage.

Technical details of pre-scheduling and scheduling will be presented in Section 4
and Section 5 respectively. Here, we introduce Stochastic Petri Nets (SPN) to specify
software processes. SPN can provide powerful abstractions of such as control flows,
underlying resources, stochastic temporal information. Besides conventional Petri
Nets notations of place, transition and arc, an additional new notation of task weight
is employed for specifying statistic task durations. As proposed in [11], task weight is
defined with the probability and statistic iteration times of each task based on four
fundamental control flow patterns, i.e. sequence, choice, parallelism and iteration.
Specifically, for a sequence process, the task weight is specified as 1. For a choice
process, the task weight is equal to the probability of the path to be chosen. For a par-
allelism process, the task weight of the path with largest expected duration is defined
as 1 while others are defined as 0 since they do not dominate the overall execution
time. For an iteration process, the task weight is defined as the statistic iteration times.
The duration distribution is associated with each task based on the statistic perform-
ance. The purpose of modelling software processes with SPN is to reflect the stochas-
tic temporal information to support the schedule estimation and project scheduling.

4 Pre-scheduling for Individual Software Processes

The temporal consistency model is defined to quantitatively measure the state of spe-
cific processes given specified temporal constraints [4, 5]. In this paper, we employ a
probability based temporal consistency model to support deadline setting. The prob-
ability based temporal consistency model is defined based on the concept of weighted
joint normal distribution [11]. Weighted joint normal distribution can be used to ana-
lyse the distribution of the overall completion time, namely the performance baseline
for a specific process based on the distribution of individual task durations. Here, we
first define some notations. For a specific task it , its maximum duration and mini-

mum duration are defined as)(itD and)(itd respectively. In addition, we employ the

“ σ3 ” rule which has been widely used in statistical analysis [10]. The “ σ3 ” rule de-
picts that for any sample coming from normal distribution model, it has a probability
of 99.73% to fall into the range of []σμσμ 3,3 +− where μ is the average value and σ
is the standard deviation. In this paper, we define the maximum duration as

iiitD σμ 3)(+= and the minimum duration as iiitd σμ 3)(−= . Meanwhile, for a software

process SP which consists of n tasks, its deadline is denoted as)(SPF and its start
time is denoted as)(SPS . A deadline of)(SPF is a fixed time by which the process
SP must be completed [5]. Now, based on [11], we present the definition of probabil-
ity based temporal consistency model on fixed time temporal constraints (deadlines)
as follows.

Definition: (Probability based temporal consistency model)

For a software process SP with a deadline of)(SPF that starts at)(SPS ,)(SPF is
said to be of:

322 X. Liu et al.

1) Absolute Consistency (AC), if)()()3(
1

SPSSPFw
n

i
iii −<+∑

=
σμ ;

2) Absolute Inconsistency (AI), if)()()3(
1

SPSSPFw
n

i
iii −>−∑

=
σμ ;

3) %α Consistency (%α C), if)()()(
1

SPSSPFw
n

i
iii −=+∑

=
λσμ .

Here, iw stands for the weight of task it , λ (33 ≤≤− λ) is defined as the %α confi-

dence percentile with the cumulative normal distribution function of

%
2

1
)(22

2)(
α

πσ
λσμ σ

μ
λσμ =•=+

−−
∫ +

∞− dxf
i

ix
iiii l (1000 << α).

Fig. 1. Probability Based Temporal Consistency

With the above model, different states of the software process towards a specific
deadline are described with continuous probability values. As shown in Figure 1,
these values form a continuous Gaussian curve. According to the probability based
temporal consistency model, the basic performance baseline (average activity dura-
tion) can only guarantee a probability consistency state of 50% which is normally
much lower than the customer’s minimal confidence. Therefore, a more realistic
deadline acceptable to all stakeholders needs to be negotiated [11].

Now we demonstrate the win-win negotiation for setting balanced deadlines. Here,
we denote the obtained weighted joint distribution of the target software process SP

as),(2
spspN σμ and assume the minimum threshold to be %β for the probability consis-

tency which implies the customer’s acceptable bottom-line probability for on-time
delivery. The actual negotiation starts with the customer’s initial suggestion of a dead-
line of)(SPF and the evaluation of the corresponding temporal consistency state by
the project manager. If spspSPSSPF λσμ +=−)()(with λ as the %α percentile, and

%α is below the threshold of %β , then the deadline needs to be adjusted, otherwise
the negotiation terminates. For the negotiation, the subsequent process is the iteration
that the customer proposes a new deadline which is less restricted as the previous one
and the project manager re-evaluates the consistency states, until it reaches or is
above the minimum probability threshold [11]. This win-win negotiation, i.e. pre-
scheduling process, facilitates the setting of balanced project deadlines.

 Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy 323

5 Scheduling for Multiple Software Processes

To achieve on-time delivery, our scheduling objective is to minimise the overall com-
pletion time of multiple software processes given their individual deadlines set at the
pre-scheduling stage can be met. For such an objective, we propose an innovative GA
based project scheduling strategy. GA is a class of evolutionary algorithms inspired
by evolutionary biology [1, 16]. In GA, three basic GA operations, i.e. selection,
crossover and mutation, are conducted to imitate the evolution process in nature. Af-
ter the stopping condition is met, the solution with the best fitness value which repre-
sents the optimal or near-optimal solution is returned [3].

Here, in order to enhance the performance and satisfy real-world situations, we
first identify two critical aspects which should be tackled in GA based project
scheduling.

(1) How to achieve on-time delivery for individual software processes while mini-
mising the overall completion time for multiple software processes.

As discussed in Sections 1 and 2, it is a priority to ensure on-time delivery. How-
ever, for software development organisations, it is also important to minimise the
overall completion time for multiple software processes in order to reduce the project
cost. Therefore, how to effectively balance these two objectives is a critical aspect.

(2) How to implement heuristic rules in GA for practical restrictions.
In real-world software projects, there are many restrictions which affect the tasks-

to-employees assignment. Therefore, in order to support decision making under more
realistic conditions, many heuristic rules such as resource continuity (e.g. assigning a
group of highly related tasks to a fixed employee so as to reduce the overhead of task
transfer), adjustment of workload and overstaffed projects, are supplemented [3].
However, how to implement these heuristic rules in GA is a challenging issue.

ii allocsched ,

+
=

−

=
)(:1)(

1

1

1

j

m
m

j

m
mi SPsizeSPsizesched

;)(:1)(
1

1

1
+=

=

−

=

j

m
m

j

m
m SPsizetaskSPsizetask

+
=

−

=
)(:1)(

1

1

1

j

m
m

j

m
mi SPsizeSPsizealloc

{});''(EPrandom=

)}1({ kiSPSP i ≤≤
)}1({ piEPEP i ≤≤

{}),({}' EPPackageCheckEP =

{})'{},({}'' EPRCheckEP =

{}'EP

{}''EP{}R

(a) GA Based Project Scheduling Strategy (b) Package Based Initialisation

Fig. 2. Pseudo-code for GA based Project Scheduling Strategy

324 X. Liu et al.

In our GA based scheduling strategy, we propose a two-phase searching algorithm
to address the first aspect and a package based initialisation approach to address the
second aspect. The pseudo-code for our GA based project scheduling strategy is pre-
sented in Figure 2 where Figure 2(a) presents the scheduling strategy and Figure 2(b)
presents the package based initialisation approach. As shown in Figure 2(a), our
scheduling strategy has two main input parameters, i.e. software process models and
the employee models. Here, software processes models are specified with SPN as
introduced in Section 3. Each software process model describes the control flows,
namely the precedence relationships between tasks. Meanwhile, based on the results
of the pre-scheduling stage, stochastic temporal information such as process deadlines
and the statistics of task durations are also provided. The employee models mainly
define the specific skills possessed by individual employees and some other informa-
tion related to the decisions on task assignment such as his/her proficiency level
(measured in execution speed), payment rate, workload, project experience and so on.
Our strategy starts with the encoding of an empty task-employee list and generation of
initial population with package based initialisation (line 1 and line 2). Line 3 to line
14 is the GA based two-phase searching algorithm to find the best solution. Finally,
the best solution is decoded (line 15) and the task-employee list is updated (line 16).
After this scheduling process, the task-employee list which represents the optimal or
near-optimal scheduling plan is generated.

Two-phase searching algorithm. To address the first aspect identified, our GA based
scheduling strategy adopts a two-phase searching algorithm as depicted in Figure
2(a). The first phase (line 3 to line 10) is to optimise the overall completion time of
multiple software processes. Based on genetic operations, e.g. selection, crossover
and mutation (line 4 to line 6), the searching space is expanded and solutions with
higher fitness values are found. Here, the fitness value is defined according to the
overall completion time of all the software processes. The smaller the overall comple-
tion time, the higher the fitness value is. The function of validation (line 7) is to check
the generated solutions if they are correct with restrictions, e.g. the precedence rela-
tionships and other heuristic rules. During each generation, the best child is stored in a
solution set (line 8) and the worst child is replaced by the best one (line 9). The sec-
ond phase (line 11 to line 14) is to search for the best solution from the whole solution
set composed of the best child in each generation produced in the first searching
phase. The best solution found should meet the deadlines of individual software proc-
esses while having the minimum overall completion time. Our two-phase searching
algorithm guarantees the return of balanced solutions. The reason is that on one hand,
a vast number of possible solutions are generated and evaluated in the first searching
phase. On the other hand, the best child with the minimum overall completion time of
each generation is recorded in the solution set. Therefore, if a balanced solution can-
not be found, especially after huge numbers of generations, we are able to claim that it
is not possible to find a valid solution which can achieve on-time delivery for all
software processes. Otherwise, a balanced scheduling plan which meets the deadlines
of individual software processes should be found in the solution set. However, to
support decision making, highly ranked solutions in the solution set will be returned
instead in this case where no best solution exists. The project managers can make fur-
ther decisions, e.g. recruitment of more employees or outsource to subcontractors, to
ensure the success of on-time delivery.

 Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy 325

Package based initialisation approach. As the second aspect identified, practical
restrictions in the real-world software projects should be considered in the schedul-
ing strategy so as to support and satisfy realistic conditions. For such a purpose, we
propose an innovative package based initialisation approach based on two
dimensional encoding. As depicted in Figure 3, the first dimension iSched denotes
scheduled tasks and the second dimension ialloc denotes the allocated resources
(employees or subcontractors). As discussed in many literatures, GA initialisation
for the initial population is critical towards the outcomes of GA [16]. Basically, the
initial population should be valid and effective. In our scenario, to be valid, the ini-
tial population should assign specific tasks to valid employees who possess the abil-
ity to fulfil these tasks. Meanwhile, for a specific employee, the tasks assigned to
him/her should be conformed to their precedence relationships defined in software
process models. To be effective, more restrictions, e.g. resource continuity and the
8 heuristic rules proposed in [3], should be applied for practical project manage-
ment. For such an issue, a package based random initialisation approach is to sup-
port the generation of population which is both valid and effective. ‘Package’ here
denotes a group of highly related tasks in the same software process, which can be
defined by experienced project managers, with correct precedence relationships.
Meanwhile, these tasks share the same employees allocated to each package with
the enforcement of restrictions. The design of a package here not only ensures the
correct task flows for a software process since tasks with correct precedence rela-
tionships are assigned to the same employees, but also is capable of facilitating re-
source continuity and other heuristics. For a specific package, a set of employees
are formed first by checking required abilities (line 5 of Figure 2(b)). Afterwards, a
further checking process is applied to select valid employees based on enforced
heuristics (line 6 of Figure 2(b)). Finally, one of the valid employees is randomly
assigned to this package (line 7 of Figure 2(b)). As shown in Figure 3, for the em-
ployee assignment of n tasks, an employee set, say { }pRRRR ,...,, 321 is first formed.
After that, specific heuristic rules are applied. For example, one of the employees,
say 2R , which currently has the lowest workload, is assigned to Package 1. Follow-
ing a similar way, a valid and effective solution comprised of Packages 1, 2, …, k
(Figure 3) is automatically generated (loop of line 2 of Figure 2(b)). The initial
population is formed by a fixed size of automatically generated solutions (loop of
line 1 of Figure 2(b)).

Fig. 3. Package Based Initialisation Approach

326 X. Liu et al.

6 Evaluation

In this section, we evaluate the effectiveness of our two-stage probabilistic project
scheduling strategy through large scale simulation experiments where the simulation
results are independent of specific platforms. The settings for simulation experiments
are presented in Table 2. We manually generate stochastic Petri Nets with a random
size of 10 to 20 tasks. To simplify our simulation scenario so as to focus on the objec-
tive of on-time delivery, we only set two attributes for employee models, i.e. the exe-
cution speed (measured for proficiency level) and the workload. The execution speed
of each employee is randomly specified from a range of 1 to 3 where 1 denotes that
the mean execution time equals to the expected duration while 3 denotes that the
mean execution time equals to the expected duration divided by 3. The workload of
each employee is a random value from 0 to 1 where 0 means the employee has not
been assigned with any tasks and 1 means the employee is fully occupied and cannot
be assigned with more tasks. For each task assignment to a specific employee, his/her
workload increases by 0.1 so an employee can take up to 10 tasks. Accordingly, we
adopt one simple heuristic rule that is assigning the current task to the employee with
minimum workload. As for the settings of GA operations, maximum generation is
used as the stopping condition and its value is 1000. The initial population size is set
as 100. The crossover rate and mutation rate are set as 0.7 and 0.1 respectively as
common practice. To evaluate our strategy with large scale simulation experiments,
we conducted 3 rounds, i.e. COM(1.00), COM(1.15) and COM(1.28) with different
λ as 1.00, 1.15 and 1.28 to reflect different pre-scheduling results with 84.1%, 87.5%
and 90.0% consistency respectively. As depicted in Table 3, within each round, we
conducted 10 experiments with different settings of number of tasks (T) with a range
of 30-320 in total whilst 10-20 for each process, the number of processes (P) with a
range of 2-20, and the number of resources (R) with a range of 3-36.

Table 2. Settings for Simulation Experiments

Two attributes, i.e. the improvedPercent (the difference of the overall completion

time before and after our GA based scheduling strategy divided by the one before)
and the overrunRate (the number of processes which fails to be completed within
deadlines divided by the number of total processes), are investigated. Here, for

 Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy 327

fairness, the overall completion time before our scheduling strategy is specified as the
average completion time of all valid solutions generated in the GA based searching
phase. Meanwhile, we also investigate the overrunRate of the initial project schedul-
ing plans generated by package based initialisation but without the GA based search-
ing phase, namely a NIL strategy, for the purpose of comparison. To investigate the
statistic performance, each experiment is executed for 100 times. Therefore, in our
simulation, 3 rounds, 10 experiments and 100 execution times, namely a large scale of
3000 independent experiments, have been executed.

The simulation results are presented in Figure 6. As can be seen from the left sub-
plot in Figure 6, the mean improvedPercent and the number of tasks are roughly on
the same trend. This verifies the effectiveness of our strategy in scheduling multiple
software processes and optimising their overall completion time. Furthermore, our
strategy performs even better when the scheduling scenario becomes more compli-
cated as shown by increasing improvedPercent. We also note that despite the increase
of probability consistency, i.e. from 84.1%, 87.5% to 90.0%, which means less re-
stricted deadlines, the mean improvedPercent does not vary much. Hence, a larger
probability consistency does not guarantee a better improvedPercent. As for the over-
runRate depicted in the right subplot of Figure 6, the simulation results show that if
without GA based searching phase, i.e. the NIL strategy, the average overrunRate is
high with a growing trend based on the increase of the number of software processes.
However, with our scheduling strategy, the overrunRate is much lower as depicted. In
this case, the increase of probability consistency results in the lower mean overrun-
Rate. To conclude, we can claim that our two-stage probabilistic scheduling strategy
is effective for achieving on-time delivery.

Fig. 6. Simulation Results

7 Conclusions and Future Work

In this paper, we have proposed a two-stage probabilistic scheduling strategy which
integrates statistic based schedule estimation and stochastic project scheduling in or-
der to achieve on-time delivery of software projects. Our strategy aims to generate the
best scheduling plan which can meet the deadlines of individual software processes
while having the minimum overall completion time of multiple software processes.

328 X. Liu et al.

Hence, at the first pre-scheduling stage, a probability based temporal consistency
model has been presented to facilitate a win-win negotiation between customers and
project managers for setting balanced project deadlines based on individual software
process performance baselines. Given these deadlines, at the second scheduling stage,
an innovative GA based project scheduling strategy which utilises a two-phase
searching algorithm and a package based initialisation approach has been proposed to
search for the best scheduling plan under the resource constraint of the current soft-
ware development organisations. Based on the results of large scale simulation ex-
periments, it has been verified that the best scheduling plan can be found in most
cases with our project scheduling strategy. However, even in the case where such so-
lution does not exist due to the resource constraint, the generated solutions can still
support the project manager to make further decisions such as recruitment of employ-
ees or outsourcing to ensure the success of on-time delivery.

In the future, to tackle the case where the best scheduling plan can not be found,
we will try to identify the key software processes where on-time delivery can be
achieved with minimum increase of extra cost.

References

1. Alba, E., Chicano, J.F.: Software Project Management with GAs. Information Sci-
ences 177, 2380–2401 (2007)

2. Bucci, G., Sassoli, L., Vicario, E.: Correctness Verification and Performance Analysis of
Real-Time Systems Using Stochastic Preemptive Time Petri Nets. IEEE Transaction on
Software Engineering 31(11), 913–927 (2005)

3. Chang, C.K., Jiang, H., Di, Y.: Time-line Based Model for Software Project Scheduling
with Genetic Algorithms. Information and Software Technology 50, 1142–1154 (2008)

4. Chen, J., Yang, Y.: Adaptive Selection of Necessary and Sufficient Checkpoints for Dy-
namic Verification of Temporal Constraints in Grid Workflow Systems. ACM Transac-
tion on Autonomous and Adaptive Systems 2(2) Article 6 (2007)

5. Chen, J., Yang, Y.: Temporal Dependency based Checkpoint Selection for Dynamic Veri-
fication of Fixed-time Constraints in Grid Workflow Systems. In: Proceedings of 30th In-
ternational Conference on Software Engineering, Leipzig, Germany, pp. 141–150 (2008)

6. Herroelen, W., Leus, R.: Project Scheduling Under Uncertainty: Survey and Research Po-
tentials. European Journal of Operational Research 165, 289–306 (2005)

7. Hindi, K.S., Yang, H., Fleszar, K.: An Evolutionary Algorithm for Resource-Constrained
Project Scheduling. IEEE Transaction on Evolutionary Computation 6(5), 512–518 (2002)

8. Jørgensen, M.: Evidence-Based Guidelines for Assessment of Software Development Cost
Uncertainty. IEEE Transaction on Software Engineering 31(11), 942–954 (2005)

9. Jørgensen, M., Shepperd, M.: Systematic Review of Software Development Cost Estima-
tion Studies. IEEE Transaction on Software Engineering 33(1), 33–53 (2007)

10. Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis, 4th edn. McGraw-Hill,
New York (2007)

11. Liu, X., Chen, J., Yang, Y.: A Probabilistic Strategy for Setting Temporal Constraints in
Scientific Workflows. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 180–195. Springer, Heidelberg (2008)

 Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy 329

12. Tracy, D.B., Howard, J.S., Noah, B.: Comparison of Eleven Static Heuristics for Mapping
a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal
of Parallel and Distributed Computing 61(6), 810–837 (2001)

13. Wang, Q., Jiang, N.: Practical Experience of Cost/Schedule Measure through Earner Value
Management and Statistical Process Control. In: Proceedings of 2006 International Soft-
ware Process Workshop, Shanghai, China (2006)

14. Wang, Q., Jiang, N., Gou, L., Liu, X., Li, M., Wang, Y.: BSR: A Statistic-based Approach
for Establishing and Refining Software Process Performance Baseline. In: Proceedings of
28th International Conference on Software Engineering, Shanghai, China, pp. 584–594
(2006)

15. Yang, Q., Li, M., Wang, Q.: An Algebraic Approach for Managing Inconsistencies in
Software Processes. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS,
vol. 4470, pp. 121–133. Springer, Heidelberg (2007)

16. Zhang, D., Tsai, J.P.: Machine Learning Applications in Software Engineering. World Sci-
entific, Singapore (2005)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 330–341, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Incrementally Introducing Process Model Rationale
Support in an Organization

Alexis Ocampo1, Jürgen Münch1, and William E. Riddle2

1 Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{ocampo,muench}@iese.fraunhofer.de

2 Solution Deployment Affiliates
223 N Guadalupe #313, Santa Fe, New Mexico, USA 87501

riddle@WmERiddle.com

Abstract. Popular process models such as the Rational Unified Process or the
V-Modell XT are by nature large and complex. Each time that a new release is
published software development organizations are confronted with the big chal-
lenge of understanding the rationale behind the new release and the extent to
which it affects them. Usually, there is no information about what has changed
or most importantly why. This is because of the lack of a flexible approach that
supports organizations responsible for evolving such large process models in
documenting their decisions and that reflects the extent of the capabilities to
which they can provide this information. This paper describes an approach to
incrementally deploying rationale support as needed to match an organization's
needs, the capabilities and interests of the organization's process engineering
teams, and the organization's willingness to support the effort required for the
collection and application of the rationale information.

Keywords: rationale conceptual models, rationale capture and application
methods, incremental method deployment, REMIS.

1 Introduction

Software process models support software engineers in systematically performing the
engineering processes needed to develop and maintain software products. As these
processes are enacted, suggestions and needs for adjustment or refinement arise,
which, in turn, demands an evolution of the models. Changing these models in an or-
ganization is typically a complex and expensive task. In many cases, due to budget and
time constraints, arbitrary decisions are made, and process models are evolved without
storing or keeping track of the justification behind such changes. This frequently re-
sults in inconsistencies or ambiguity being introduced into the process models.

The work presented in this paper responds to the need for systematically perform-
ing changes to a process model by contributing an approach for rationale support of
process model evolution called “REMIS”. REMIS guides process engineers in the
tasks of capturing the reasoning (i.e., rationale) behind such changes and analyzing
the evolution. REMIS has been developed in a bottom-up fashion based on observa-
tions and experience from different case studies (industrial projects). The main

 Incrementally Introducing Process Model Rationale Support in an Organization 331

contribution of REMIS to current research in the field of process model evolution
consists of transferring and adapting design rationale concepts in order to support
systematic process model evolution. Fig. 1 shows the specific contributions which are:
a) a conceptual model for describing the rationale for software process model
changes, b) a method for capturing and analyzing the rationale for software process
model changes, c) a classification of common situations for process model change, d)
a tool that supports the method and e) an incremental deployment strategy. Previous
publications describe in detail the contents of a), b), c) and d). This paper describes e),
the method-deployment strategy.

REMIS Approach

Conceptual Model
[12],[13]

Common Situations for
Process Model Change

[11]

Method
[12], [13]

Tool
[19]

Introduction Strategy
[this paper]

is used by

Fig. 1. The REMIS Approach

Why is a strategy so important and necessary for introducing the REMIS approach
into an organization? One special characteristic of rationale approaches is their degree
of intrusiveness in the modeling process. That is, the extent to which the approach
interferes with the modeling process. Such interference can happen not only during
the capture of rationale but also during the retrieval of this rationale. The reason to
highlight this characteristic is based on a long-term discussion about the costs and
cultural implications of capturing rationale information in the rationale research and
practitioner communities [5]. Although the approaches are in constant maturation, the
resistance of practitioners to capture rationale information has been associated with
intrusiveness. More intrusive approaches need a stronger accompanying process in
order to be successful than less intrusive ones [17]. Therefore the deployment strategy
presented in this paper is oriented toward mitigating this intrusiveness risk based on
the assumption that a process engineering team must capture and apply information
about process modeling decisions and their rationale according to the team's needs,
capabilities and allocated-effort.

Two case studies used as input for the definition of the deployment strategy – the
central part of this paper – are presented in the Section 2. This is followed, in Section 3,
with a brief accounting of the requirements for a conceptual model, an associated ra-
tionale documentation method, and a deployment strategy addressing the problems
revealed by the case study. Section 4 then discusses in brief the conceptual model and
the method. Section 5 describes in detail the strategy for incrementally deploying the
REMIS approach as needed by a process engineering team and as allowed by their
capabilities. The paper ends first – in Section 6 – with a discussion of how the concep-
tual model, the method and deployment strategy satisfies the requirements given in
Section 3, and then – in Section 7 – a summary of the work presented in this paper and a
discussion of how the REMIS approach, its underlying conceptual model, and the de-
ployment strategy might be improved through further research and development.

332 A. Ocampo, J. Münch, and W.E. Riddle

2 Case Studies for Eliciting Requirements on Rationale for
Process Model Evolution

This section presents in brief, the experience captured in two different case studies in
which rationale information was collected while evolving large and complex process
models. A more detailed description of each case study, i.e., the study’s definition,
design and results can be found at [20]. The observations of the first case study served
as inputs for its application in the second case study. The conceptual models used in
both iterations and observations on the feasibility of their use, constituted the basis for
the requirements of the REMIS approach and the deployment strategy.

2.1 ESA Case Study

For the European Space Agency (ESA), the relevant standards applicable for develop-
ing software are: ECSS-E-40B Space Engineering - Software [6] (mostly based on the
ISO 12207 standard [8]), and ECSS-Q80-B: Space Product Assurance - Software [7].
Organizations or projects that are part of ESA are required to develop and use specific
tailorings of the ECSS standards suited to their work. This is a particularly complex
task because it requires detailed understanding of the whole standard, something that
an average software developer or project manager usually does not have [16]. At the
ESA Space Operations Center ESOC (the ESA organization where this project took
place), this tailoring was called the Software Engineering and Management Guide
(SEMG) [9] and was used for all their major projects.

After several years of experience with the ECSS standards, these were revised by
ESA, and a new version was published. This also meant that the SEMG had to be
revised, in order to be compliant with the revised ECSS standard. This compliance
had to be proven by means of traceability of every ECSS requirement to its imple-
mentation and by providing a tailoring rationale for every tailored requirement.

The goal of this study was to analyze the feasibility of the conceptual model and
the approach for documenting and analyzing the rationale for process model change.

justification

Change
invariant id
name

Process Entity

date

Versionbelongs to ►inserts/deletes/modifies ►

Fig. 2. Conceptual Model - ESA Case Study

Fig. 2 shows the conceptual model. Changes result from decisions captured in the
justification and are performed on Process Entities. Some examples of Changes per-
formed to Process Entities are: Entity x has been inserted; Entity y has been deleted;
and Entity x has been modified. A Process Entity reflects a concept defined by a vo-
cabulary/notation for modeling/describing process models, e.g., SPEM [14], V-
Modell XT [10], SPEARMINT [4] and BPML [15].

The data about the changes to the SEMG were collected in meta-information tables
attached to each section. Process engineers provided information about the rationale
for a change each time a change was performed to the SEMG standard. Then they
used an automated mechanism for storing this information in a database [12].

 Incrementally Introducing Process Model Rationale Support in an Organization 333

Observations: The tables that were used by process engineers for describing what
changed and why were very useful for systematic reviews. However, sometimes the
provided information about what changed was too detailed, sometimes too abstract.
This might be due to the fact that the conceptual model did not anticipate a difference
between finely granular changes (e.g., grammar errors or misspellings) and larger
ones (e.g., wrong control flow). The lack of structure of a justification influenced the
understandability of the collected information. The ESA reviewers commented on
confusing justifications that identified what was performed instead of information on
why. ESA reviewers also missed information concerning the alternatives taken into
account by process engineers before performing the change. That information could
have help reviewers understand faster the rationale and avoid unnecessary discus-
sions. These findings motivated the need to change the conceptual model and the
instrumentation and to use it in a second case study.

2.2 ASG Case Study

In this case study, process engineers were in charge of defining, establishing, evaluat-
ing, and systematically evolving the development process model applied in the project
to develop a platform for Adaptive Services Grid (ASG) [1].

In general, the main idea behind the systematic evolution approach followed was to
start with commonly accepted process knowledge, refine it with information gathered
from the practitioners, and therewith improve the textual descriptions and diagrams of
the process according to the real project needs. The conceptual model and the method
developed in the ESA case study [2] were extended as well as the tool-assisted way of
editing and storing the process model and its rationale information.

The goal of this study was to analyze the feasibility of the refined conceptual model
and the refined approach for documenting and analyzing the rationale for process
model changes.

As in the previous case study, meta-information tables were used as a means for
realizing the conceptual model or the rationale for process model changes [12]. In
practice, the process engineer discussed and resolved the issue while introducing the
corresponding rationale information, then performed the changes to the respective
process entities, and finally established a reference to the corresponding rationale
concept.

IssueEvent

Alternative

Resolution ChangeProcess Entity

Version
belongs to ►

triggers ►

causes ►
has ►

◄ triggers causes ►

◄ resolves

chooses ►

inserts/deletes/affects ►

Fig. 3. Conceptual Model - ASG Case Study

In the extended conceptual model (shown in Fig. 3), an Event is a trigger of issues.
Events may be characterized by a name and a short description (i.e., two of its attrib-
utes may be name and short_description). Events may also be characterized by their

334 A. Ocampo, J. Münch, and W.E. Riddle

type. At least two types of events are possible: internal (e.g., new/updated corporate
policies, e.g., policy changes stemming from changes to an organization’s business
goals) and external (e.g., new/updated software engineering technology, e.g., new
testing support tools and techniques). Issues are situations that arise as a consequence
of an Event, that need to be addressed, and that are related to a part of the described
system. Additionally, an Issue may be categorized by its type. This type may be se-
lected from a classification of issues pertinent to an organization. At this point, RE-
MIS reflects a general, organization-independent classification of issues resulting
from the ESA case study (i.e., imprecision; verbosity; inaccuracies; non-compliance;
inconsistency).

Issues are often stated as questions. The question has the purpose of forcing soft-
ware engineers to reason about the situation (the problem) they are facing before
starting to think about or providing resolutions (the potential solutions). Some of the
characteristics of an issue are a synoptic_description, a status (e.g., open, closed), and
a detailed_discussion. The detailed_discussion may be used to capture the minutes of
a meeting, E-mails, memos, letters, etc. in which the issue was discussed by software
engineers or stakeholders.

Alternatives are assigned to an Issue; at least one Alternative might be proposed to
resolve an Issue. Alternatives are described at least by a subject, and more comprehen-
sively in a description. The assessment describes the acceptance of the alternative with
respect to the characteristics pertinent to evaluating its achievement, e.g., its feasibility,
cost and required-effort. Usual values are positive or negative. A Resolution changes the
process model. A Resolution might lead to opening more Issues. Every Resolution is
characterized by a short_description, a long_description, a justification, and a status (for
example, open or closed). The justification is included to be able to capture a summary
of the analysis of the different alternatives as well as a short note.

Observations: The extended conceptual model played an important role, because it
allowed structuring better the reasoning behind a decision compared to the previous
study. Especially concerning the alternatives taken into account. Having this informa-
tion motivated self-reflection about the real need for changing the process model.
Equally, the structure of the conceptual model allowed reusing this information in a
straightforward way, before performing future changes. The types of events and is-
sues provided a means for starting up a classification of common situations for proc-
ess model change.

3 Requirements for a Rationale for Process Model Changes

The case studies revealed that the fundamental need is to collect rationale information
which facilitates making and justifying design decisions underlying the process
model’s evolution in response to changes to its requirements or its operational con-
text. This includes information about the alternatives which were considered and the
rationale underlying the adoption or rejection of the various alternatives. Further, the
case studies indicate that it is important that this information not merely captures low-
level, "micro" details but that it be possible to integrate over the detailed information
to provide information at the higher, "macro" pertinent to process model issues.
Therefore, the basic requirement is:

 Incrementally Introducing Process Model Rationale Support in an Organization 335

• R1: Support the collection of information which may be directly used, or may be
interpreted and analyzed, to understand alternatives, choose among them and jus-
tify their choice or rejection as necessary.
The case studies also indicate that the effort required to collect the information

should be acceptable, as "minimal" as possible. Partially, this means that the planning
of process model evolution activities account for the fact that some effort will be
needed; an evolution plan must include an allocation of effort for collecting and ap-
plying rationale information. The information collection and application effort must
be an acceptable increase over the effort needed for the evolution activities. Doubling
the effort would obviously be unacceptable. Based on the authors' experiences, a 33%
increase is probably an upper-bound, with the increase normally being in the range
15-20% with larger increases only when justifiable, for example when the system will
undergo extensive independent review.

Accommodating a restriction such as this upon the information collection and
application effort requires supporting the effort with at least guidelines – and, even
better, guideline-implementing tools and techniques – that enhance the software engi-
neers' abilities. It also requires the ability to customize the guidelines, tools and tech-
niques to both enhance the pertinence, and therefore value, of the information and
eliminate effort 'wasted on' the collection of unnecessary information.
This leads to two additional requirements:
• R2: Provide guidelines helping software engineers efficiently as well as effectively

carry out rationale information collection and application tasks. When possible,
provide tools (e.g., information templates) and techniques (e.g., decision making-
support approaches) which implement the guidelines and reduce the effort needed
to follow the guidelines.

• R3: Allow customization of a 'default' set of guidelines, tools and techniques serv-
ing to match the needs for specific process model evolution activities.
The final requirement is not directly revealed by the case studies. Rather, it comes

from further considering the issue of customization. Requirement R3 reflects the need
to customize with respect to the nature of the process model being evolved. The final
requirement reflects a need to customize the guidelines, tools and techniques to match
the abilities of an organization's software engineering, their tolerance for carrying out
'overhead' tasks, and the organization's willingness to support the extra effort needed
to collect and apply rationale information (i.e., the organization's tolerance for effort
increases needed to collect and apply the information). This requirement is:
• R4: Allow the incremental adoption of the guidelines, tools and techniques in steps

of increasing scope, depth, difficulty, effort and value.

4 The REMIS Approach

The final conceptual model underlying REMIS, shown in Fig. 4, results from the in-
cremental, iteration-driven research strategy (based on the previously described case
studies) aimed at understanding the information needs for capturing the rationale
underlying change to a process model.

336 A. Ocampo, J. Münch, and W.E. Riddle

IssueEvent

Alternative

Resolution ChangeProcess Entity

Version
belongs to ►

triggers ►

causes ►
has ►

◄ triggers causes ►

◄ resolves

chooses ►

inserts/deletes/affects ►

Assessment

is given an ►

Criterionbased on ►

Fig. 4. REMIS Conceptual Model

It can be seen in Fig. 4 that compared to the conceptual model described in the ASG
case study, that the following additional concepts have been introduced. An Alterna-
tive's Assessment is based on criteria. A Criterion is an influencing factor pertaining
to a given organization in a certain context. A set of Criteria characterize the context
in which changes are made. Criteria are important not only for comparatively assess-
ing Alternatives, but also for recording evidence of the most influential factors that
affect a decision. In the software design domain there is a noticeable lack of research
regarding the Criteria affecting the assessment of design alternatives. For lack of a
better approach, at this point in time the REMIS approach relies up the GQM para-
digm [3] to dynamically, case-by-case, define the Criteria that affect an organization's
software process modeling evolution efforts. This paradigm explicitly includes
weights reflecting the importance of Criteria for an organization in a given evolution
context with respect to other Criteria. Finally, every Resolution identifies changes
which satisfy the various Criteria.

The method provided by REMIS (see Fig. 5) is also based on experiences from the
case studies and well supported by the conceptual model.

The following paragraphs discuss briefly the purpose and description of the
method’s product flow (for a more detailed discussion, please refer to [12]).

The purpose of the activity Analyze change request is to understand, assess, and
prioritize the feedback provided by engineers or practitioners concerning the process
model. Rationale visualization can be useful at this point for answering different types
of questions relevant to process engineers. Examples of such questions are:
• Which still-open issues may conflict with the change/improvement proposal being

analyzed?
• Which process model entities are affected by a previous resolution that conflicts

with the new change/improvement proposal being analyzed?
The proposals are then prioritized. The process engineer selects those improvement

proposals that should be considered according to the prioritization. Additionally, the
process engineer decides whether the rationale should be elicited synchronously (i.e.,
while performing the changes) or rather asynchronously (i.e., after performing the
changes). The decision should normally be based on factors such as (a) relevance of
the change/improvement proposal; (b) available resources; (c) available infrastruc-
ture; and (d) degree of maturity in eliciting the rationale.

 Incrementally Introducing Process Model Rationale Support in an Organization 337

Analyze change requestAnalyze change request

Elicit rationaleElicit rationale

Perform changes
to process model
Perform changes
to process model

Connect rationale
to process model changes

Store process model x+1 and
rationale for changes

Extract process model x and
rationale for changes

Tool supported activity

Manual activity

Fig. 5. REMIS Method

The activity Elicit rationale consists of the process engineer analyzing and discussing
with other stakeholders (e.g., project manager, quality manager) the change improve-
ment proposals and deciding on a strategy for implementing the resulting changes. The
reasoning behind the decision is captured during the analysis and/or discussions. Exist-
ing rationale information (that explains the evolution of the process model up to that
moment) can support the process engineer in this activity. Rationale visualization can be
useful again at this point for answering different types of questions.

Once the process engineer is sure about what changes to perform, she/he proceeds
to the activities Perform changes to model entities and Connect rationale to process
model changes. The process engineer then will implement the agreed-upon changes to
the set of process model entities by using the specific process modeling tool used in
his/her organization. In order to connect the rationale to the just performed process
model changes, the process engineer can use two different techniques: one that mim-
ics the technique used in the case studies and proposes inserting references to the
rationale information directly into the process model entity being altered [12]. A sec-
ond one that consists of after performing the changes (i.e., asynchronously) identify-
ing the set of changed process model entities (by means of an special technique for
comparing models called Delta-P [18]) and inserting a reference to the respective
rationale for each one of those changes [13].

The purpose of the activity Store new process model version x+1 and rationale for
changes is to make persistent the changes performed to a model and to annotate the
model with a new version identifier. The process model evolution repository consists
of a body of content formed by process model entity instances of a well-defined meta-
model and the rationale information. The activities Connect rationale to process
model changes and Store new process model version x+1 and rationale for changes
are supported by the REMIS tool [19] in order to systematically keep the consistency
between the different versions of the process models and its rationale.

338 A. Ocampo, J. Münch, and W.E. Riddle

5 The Incremental Introduction Strategy

The capture and visualization of the rationale for process model evolution must be
accomplished in a systematic manner. Convincing an organization to change the way it
works or to adapt to a new mechanism is a complicated task. Therefore – and based on
the experiences of the case studies reported in [2], [12] and [13] – a staged incremental
method, which facilitates the institutionalization of rationale and visualization into a
software development organization, is proposed. This means that organizations have to
incrementally learn how to collect rationale, what to collect, how to use it, and, espe-
cially, they have to identify which level of “maturity” in rationale-driven evolution
they want to achieve. Fig. 6 presents the different steps defined for incrementally
introducing and institutionalizing rationale support for process model evolution. One
advantage of using the RDF notation [21] as a basis for the specification of the concep-
tual model is the possibility of incrementally adding concepts to the rationale vocabu-
lary. This facilitates gradual introduction as well as the design and implementation of
tool support. The following paragraphs provide a more detailed description of the ac-
tivity for eliciting process model rationale, highlighting the differences for different
levels of deployment - i.e., REMIS 0, 1, 2 and 3 - identified in Fig. 6.

REMIS 0

Change
Process Entity

Version

REMIS 1

Change
Process Entity

Version
Issue

Resolution

REMIS 2

Change
Process Entity

Version
Issue

Resolution
Event

Alternatives

REMIS 3

Change
Process Entity

Version
Issue

Resolution
Event

Alternatives
Assessment

Criterion

Fig. 6. Incremental Strategy

The purpose of the REMIS 0 level is to capture the basic justification for changes
to process model entities that belong to a given model version. At this level, rationale
information only consists of the justification for a change. This can be a short descrip-
tion of the reason for performing a change.

The purpose of the REMIS 1 level is to capture the basic structuring of the reason-
ing behind a decision. At this level, rationale information consists of the issues and
the respective resolutions that generate changes. This information can be found in
organizations that use any sort of problem/resolution management process. Usually
such processes are supported by a bug tracking systems where this information is
captured [13].

 Incrementally Introducing Process Model Rationale Support in an Organization 339

The purpose of the REMIS 2 level is to capture the elaborated reasoning of a deci-
sion. At this level, rationale information consists of the events, the issues and their
respective alternatives, and the resolutions that generate changes. Information about
the alternatives cannot be found in organizations that use typical problem/resolution
processes/tools, because they are not equipped to collect this kind of information. This
is the reason why collection of this information is optional. However, the collection of
alternatives is important for organizations because they reveal the style or preferences
of the teams in charge of evolving the model. Alternatives that were not taken into
account are especially important in those cases where knowledge about the application
domain is minimal because the description of these alternatives offers the opportunity
to retrospectively consider what should be or what should not be done in the future.

The purpose of the REMIS 3 level consists of understanding the influence of crite-
ria on a decision. This is the highest level. In it, the most comprehensive rationale
information is collected. Rationale information consists of the events, the issues, the
respective alternatives, the criteria taken into account for assessing alternatives, and,
finally, the resolutions that generate changes. Eliciting criteria and assessing them are
optional activities.

Definition of the criteria varies from project to project. External definitions of cri-
teria can also be incorporated into the project definition.

6 Fulfillment of the Requirements

The focus – its underlying rationale – for the REMIS approach is upon satisfying
requirement R4 (Allow incremental adoption of the guidelines, tools and techniques).
Four levels of change information capture and application are described in Section 5.
These allow organizations to initially make a minimal investment in, and incur a
minimal impact for, tracking changes to a system so that the purpose of individual
changes may be explained and argued, and previously considered, but rejected,
changes may be effectively and efficiently re-considered. As an organization's needs
and capabilities to track changes increase, and its willingness to incur the impacts
increases, the organization may move to more expansive 'levels' of the REMIS ap-
proach. The levels are defined to support the gradual and smooth introduction of ca-
pability as it has been observed in practice.

Unlike previous rationale conceptual models [5], the REMIS conceptual model is
defined to allow incremental expansion of attention to information from, first, basic
information regarding the changes made at level REMIS 0 to, ultimately at level RE-
MIS 3, information regarding not only the changes but also the events precipitating
them, the alternative changes that were considered, and the rationale underlying the
choice of the change that was made. This depiction emphasizes the fact that the un-
derlying conceptual model allows 'expansion upon demand', in other words: expan-
sion of the conceptual model as needed to meet an organization's needs for the capture
and application of change rationale information and its tolerance for the impact upon
its system development efforts. The underlying conceptual model therefore not only
satisfies requirement R1 but also satisfies this requirement with a conceptual model
which is considerably better – more flexible and incremental – than previously-
developed models.

340 A. Ocampo, J. Münch, and W.E. Riddle

The REMIS approach also satisfies requirements R2 and R3. It provides techniques
and supporting tools that support an organization's capture and application of process
model rationale information. These techniques and tools have been defined as a result of
several exercises in a variety of industrial projects. They are available to organizations
which have an interest in applying the REMIS approach to rationale capture and appli-
cation. And they will evolve through their future application to various situations.

7 Summary and Outlook

This article presents an approach - based on requirements that were derived from
observing development and maintenance practices in industry - to incrementally de-
ploying process model rationale support. In addition, the underlying REMIS approach
is described that consists of a flexible conceptual model and an associated method,
both supporting the effective and efficient collection and application of information
about a process model’s design alternatives and their selection rationale. REMIS is
based on several extensive software process change exercises in industry.

Summarizing our experience with deploying rationale support we have observed
that organizations should deploy rationale concepts incrementally and that this de-
ployment process might take quite long (up to several years). The approach described
in this article can be seen as a good basis and applications of the approach indicate
that rationale support provides significant contributions to the expected higher-level
benefits (such as reduction of evolution cost).

Based on experience with developing the method and introducing it in industry.
several open questions and research directions have been identified. A selection of
these topics that might be subject to future work is the following:
− What are suitable techniques for integrating and aggregating rationales to provide

support for higher-level understanding and decision making?
− How to visualize the history of process models in a way that the history can be

easily explained with the help of the rationale?
− How to demonstrate the value of rationale support to the higher-level goals of an

organization?

Acknowledgments. We would to thank Sonnhild Namingha from Fraunhofer IESE
for proofreading this paper.

References

[1] Adaptive Services Grid Project, “ASG”, http://asg-platform.org/cgi-bin/
twiki/view/Public

[2] Armbrust, O., Ocampo, A., Soto, M.: Tracing Process Model Evolution: A Semi-Formal
Process Modeling Approach. In: Oldevik, J., Aagedal, J. (eds.) ECMDA - TW 2005, pp.
57–66 (2005)

[3] Basili, V., Weiss, D.: A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on Software Engineering 1984, 728–738 (1984)

 Incrementally Introducing Process Model Rationale Support in an Organization 341

[4] Haman, D., Kempkens, R., Rösch, P., Verlage, M., Webby, R., Zettel, J., Becker-
Kornstaedt, U.: Support for the Process Engineer: The Spearmint Approach to Software
Process Definition and Process Guidance. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999.
LNCS, vol. 1626, p. 119. Springer, Heidelberg (1999)

[5] Dutoit, A.H., McCall, R., Mistrík, I., Paech, B.: Rationale Management in Software En-
gineering, http://dx.doi.org/10.1007/978-3-540-30998-7

[6] Space engineering Software - Part 1: Principles and requirements. ESTEC, P.O. Box 299,
2200 AG Noordwijk, The Netherlands: ESA Publications Division, November 28 (2003)

[7] Space product assurance - Software product assurance. ESTEC, P.O. Box 299, 2200 AG
Noordwijk, The Netherlands: ESA Publications Division, October 10 (2003)

[8] Systems and software engineering – Software life cycle processes: ISO, March 18 (2008)
[9] Jones, M., Gomez, E., Mantineo, A., Mortensen U.K.: Introducing ECSS Software-

Engineering Standards within ESA. Practical approaches for space- and ground-segment
software, ESA bulletin 111 (August 2002), http://www.esa.int/esapub/
bulletin/bullet111/chapter21_bul111.pdf

[10] V-Modell XT, http://www.kbst.bund.de/cln_012/nn_999710/Content/
Standards/V__Modell__xt/v__modell__xt__node.html

[11] Ocampo, A., Münch, J.: Process evolution supported by rationale: An empirical investi-
gation of process changes. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.)
SPW/ProSim 2006. LNCS, vol. 3966. Springer, Heidelberg (2006)

[12] Ocampo, A., Münch, J.: Rationale modeling for software process evolution. In: Software
Process: Improvement and Practice, June 12, pp. 1077–4866 (2008),

 http://dx.doi.org/10.1002/spip.387
[13] Ocampo, A., Soto, M.: Connecting the Rationale for Changes to the Evolution of a Proc-

ess. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034. Springer, Hei-
delberg (2006)

[14] Software Process Engineering Metamodel Specification, 2nd edn. (January 2005),
 http://www.omg.org/technology/documents/formal/spem.htm

[15] Business Process Modeling Notation Specification (February 2006), http://
www.omg.org/technology/documents/br_pm_spec_catalog.htm#BPMN

[16] Ponz, D., Spada, M.: Three Years of ECSS Software Standards: An Appraisal and Out-
look: OPS-G Forum, January 20 (2006)

[17] Shum, S., Selvin, A., Sierhuis, M., Conklin, J., Haley, C., Nuseibeh, B.: Hypermedia Sup-
port for Argumentation-Based Rationale. Rationale Management in Software Engineer-
ing, pp. 111–132

[18] Soto, M., Münch, J.: Focused identification of process model changes. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 182–194. Springer, Hei-
delberg (2007)

[19] Ocampo, A., Münch, J.: The REMIS approach for rationale-driven process model evolu-
tion. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 12–24.
Springer, Heidelberg (2007)

[20] Ocampo, A.: The REMIS Approach to Rationale-based Support for Process Model Evo-
lution. PhD thesis, University of Kaiserslautern, PhD Thesis in Experimental Software
Engineering, vol. 25 (2009)

[21] Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004),
 http://www.w3.org/TR/rdf-primer/ (last checked 2009-02-20)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 342–353, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Process for Driving Process Improvement in VSEs

Francisco J. Pino1,3, Julio Ariel Hurtado Alegría1, Juan Carlos Vidal2, Félix García3,
and Mario Piattini3

1 IDIS Research Group – Electronic and Telecommunications Engineering Faculty
University of Cauca, Street 5 # 4 – 70 Popayán, Colombia
{fjpino,ahurtado}@unicauca.edu.co

2 Faculty of Engineering and Business
University of Ciencias de la Informática, Pedro de Valdivia 450, Santiago, Chile

jcvidal@ucinf.cl
3 Alarcos Research Group – Institute of Information Technologies & Systems

University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071, Ciudad Real, Spain
{Felix.Garcia,Mario.Piattini}@uclm.es

Abstract. A success factor in Software Process Improvement –SPI- in very
small enterprises –VSEs- is that improvement effort must be guided and man-
aged by means of specific process. Nonetheless, many proposals related to this
issue have not considered that type of process explicitly. So, aiming to establish
SPI in VSEs systematically and coherently, we have defined a light process for
managing and leading the improvement process step-by-step, called PmCOM-
PETISOFT. This paper introduces that process, which guides the implantation
of an improvement cycle in an iterative and incremental manner. It also de-
scribes our experience of the application of the proposed process in four VSEs,
through case studies. The results of the case studies show that the companies
increased the capability of their processes, and that it is feasible to implement
this process in this type of organizations, by investing an effort which corre-
sponds to the particular characteristics of each.

Keywords: SPI, VSEs, improvement process, case studies.

1 Introduction

If we are to carry out a software process improvement –SPI- initiative in an organiza-
tion, it is necessary to take several proposals into account (models, methods or stan-
dards) so that we may: (i) have good and available practices for software development
(processes reference model), (ii) determine the state of the processes and discover
opportunities for improvement (process assessment method) and (iii) direct the proc-
ess improvement activities towards the innermost part of the organization (model to
guide SPI). Although SPI proposals are available to all enterprises, many very small
software enterprises –VSEs- (firms with fewer than 25 employees, according to [1])
do not use these proposals. Some of the reasons for this phenomenon include the
following: the organizations remain unaware of these methodologies [2] and the pro-
posals are difficult to apply to these organizations due to the large investment of time,
money, and resources involved in an improvement project [3].

 A Process for Driving Process Improvement in VSEs 343

According to [4], in those small companies which use process improvement mod-
els, the one which model to guide SPI is that which is used least. It is also the case
that many national and international proposals related to SPI in small software or-
ganizations have not given explicit consideration to model to guide SPI. This is a
great drawback, since this type of model for guiding SPI provides the guidelines that
are needed to organize all the activities related to process improvement (including the
process reference model and the process assessment method). We should also point
out that one success factor for SPI in VSEs is that the improvement effort be guided
by means of specific procedures and the combination of different approaches, follow-
ing a systematic and coherent initiative [4].

In response to the situation outlined above, in the methodological framework for
SPI in VSEs created in the COMPETISOFT Ibero-American project [5], great impor-
tance is given to the model for guiding SPI activities. This is due to the fact that this
project maintains that if we are to help small companies set up and pursue the path
towards process improvement, then a guideline of this type is needed (including
greater depth of detail, the way in which the process becomes integrated into other
components of the methodological framework, and its suitability with regard to the
company’s particular characteristics and needs). Given all this, one of the components
of the methodological framework is a specific framework for guiding activities of SPI
(improvement framework), see Fig. 1. This improvement framework defines four
components, but this article focuses on a presentation of PmCOMPETISOFT, which
is a process for the establishment of process improvement in small software organiza-
tions. It aims to improve the processes in the organization in a systematic and coher-
ent way, in line with the company’s own specific business goals. A description of the
application of this process in four case studies is also given in this paper.

The paper is structured as follows. The next section presents related works. The
COMPETISOFT improvement framework and its PmCOMPETISOFT process are
then described. Section 4 describes the application of this process in four case studies.
Finally, conclusions and future work are set out.

2 Related Work

Several proposals exist which present a set of processes that small companies could
use to attain significant benefit from process improvement. These include MoProSoft
[6] (which proposes 6 processes based on ISO 12207, CMM, ISO 9001), MPS.BR [7]
(which proposes 23 processes based on ISO 12207 and CMMI), Adept [8] (which
proposes 12 processes based on CMMI), Rapid [9] (which proposes 8 processes based
on ISO 15504:1998), among others. All of these proposals are related to assessment
methods or process reference models and all of them define a group of processes that
should be taken into account by small companies in their improvement efforts.

With regard to research on models that direct improvement implementation for
small companies, several proposals have emerged in recent years. These include,
amongst others: (i) IMPACT [10], which is based on the idea that the process is an
abstraction of the practices carried out in many different projects by many different
people; (ii) MESOPyME [11], which has as its focal point the reduction of time and
effort in the implementation of SPI by using the concept of action packages as a base;
(iii) The application of the IDEAL model to small and medium enterprises such as

344 F.J. Pino et al.

[12] and [13]; and (iv) PROCESSUS [14], based on the process modeling paradigm,
in which each procedure is dealt with as a process, which is defined, established,
implemented and maintained.

The contribution of the proposal described in this paper is to present an explicit
process which will be a step-by-step guide to the implementation of process improve-
ment, and which small software organizations will be capable of taking on. This proc-
ess constitutes the backbone of the improvement framework. The improvement
framework describes four components which have been defined by taking into ac-
count: (i) widely recognized frameworks, such as ISO/IEC 15504-4 [15], IDEAL and
SCRUM; and (ii) special characteristics of the VSEs, as presented in [2] and [4]. These
components describe tailored and integrated improvement practices, aiming to offer to
the VSEs a framework which is useful and practical for addressing SPI. Furthermore,
according to [4] the strategies that have been used to SPI on VSEs are diverse and
include: adaptation and use of SPI models, establishment of software processes to
guide the SPI efforts, prioritization of the SPI efforts and evaluation of a SPI pro-
gramme. Only the improvement framework addresses these improvement strategies in
an integrated manner, and the component integrator is PmCOMPETISOFT.

3 Improvement Framework

Fig. 1 shows the three elements of the COMPETISOFT methodological framework
and displays the four components of its improvement framework.

Diagnosing

Im
p
ro

ve
m

en
t
Fr

am
ew

o
rk

Activities

Roles

Work
products

Strategy for processes selection and prioritization

Initiating

Formulating

Executing

Revising

Improvement
process -
PmCOMPETISOFT

Assessment methodology - METvalCOMPETISOFT

Agile process for improvement introduction

Fig. 1. Methodological framework of COMPETISOFT

The COMPETISOFT improvement framework defines: (i) A process, called PmCOM-
PETISOFT, with which to manage and lead the software improvement process step-by-
step; (ii) An agile process for improvement introduction, which uses the SCRUM agile
method to support the managing and carrying out of the activities of the formulation and
execution of improvement; (iii) A strategy for process selection and prioritization, which
presents the selection of a set of processes that are considered critical to the implementa-
tion of a process improvement project in small companies [16]; and (iv) A methodology
for software process assessment, called METvalCOMPETISOFT, which supports the
activity of diagnosing the software processes in small organizations.

The agile process, the strategy for process selection and prioritization, and meth-
odology for software process assessment are outside the scope of this article, which is
focused on the description of the PmCOMPETISOFT process.

 A Process for Driving Process Improvement in VSEs 345

3.1 The PmCOMPETISOFT Process

This section provides a detailed description of PmCOMPETISOFT, which plans to
satisfy the following principles: (i) Early and continuous achievement of improve-
ments, (ii) Continuous and rapid process diagnosis, (iii) Elemental process measure-
ment, (iv) Effective group collaboration and communication, and (v) Continuous
learning. This process is influenced by the ISO/IEC 15504-4, IDEAL and SCRUM
models. From these, we have analyzed, integrated and tailored several improvement
practices, in order to offer a specialized and suitable guide which will meet the needs
of the VSEs when leading SPI. In this sense, PmCOMPETISOFT is described in
terms of purpose, objectives, roles, activity diagram, activities, work products, and
tools support, according to the process pattern established by COMPETISOFT. Due
to space restrictions, we have described only some of these elements, but in [17] a
complete description of PmCOMPETISOFT is presented.

Activity diagram. Fig. 2 shows the PmCOMPETISOFT activity diagram, which uses
SPEM 2.0 notation and includes roles, activities and work products.

<<Improvement
requirement>>

<<Output>>

<<Input>>

Initiating
the cycle
Initiating
the cycle

Diagnosing
the process
Diagnosing
the process

Formulating
improvements
Formulating
improvements

Executing
improvements
Executing
improvements

Revising
the cycle
Revising
the cycle

General
improvement
plan

General
improvement
plan

<<Input>>

<<Output>>

Strategic planStrategic plan

Assessment reportAssessment report

Preliminary improvement planPreliminary improvement plan

<<Input>>

Improvement
implementation
plan

Improvement
implementation
plan

<<Output>>

<<Input>>

Improvement
iteration
report

Improvement
iteration
report

<<Output>>

Improvement
report
Improvement
report<<Output>>

[Another iteration]

[No more iterations]

Supported by a Agile process
for improvement introduction

RPIRPI PIGPIG

RPRP

EVEV

MIGMIG RPIRPI

RPRP

RPIRPI

MIGMIG

Improvement
proposal
Improvement
proposal

Supported by
METvalCOMPETISOFT

[No more cycles]

[One more cycle]

Fig. 2. PmCOMPETISOFT Activity Diagram

Roles. The roles involved in PmCOMPETISOFT are: Management Improvement
Group (MIG), Responsible for process improvement (RPI), Process Improvement
Group (PIG), Responsible for process or Participant (RP), Evaluator (EV). It is impor-
tant to consider both that one employee may play various roles and that a single role
can be played by several employees.

Activities. The continuous improvement process is made up of one or more im-
provement cycles. Each improvement cycle consists of 5 activities: Initiating the

346 F.J. Pino et al.

cycle, Diagnosing the process, Formulating improvements, Executing improvements
and Revising the cycle. These activities are presented below:
• Initiating the cycle: the person Responsible for the process improvement and the

Management Improvement Group create an Improvement Proposal which is
aligned to the organization’s strategic planning as laid out in the Strategic Plan.
This proposal guides the organization through each of the following activities of
the cycle. The proposal must be approved by the Improvement Management Group
(MIG) if the assignation of the necessary resources is to be guaranteed.

• Diagnosing the process: the Evaluator and the person Responsible for process
improvement carry out the process assessment activity (internal evaluation) in or-
der to discover the general state of the organization’s processes and to analyze the
results. The objective is both to establish opportunities to improve a process
(improvement cases) and to define their improvement priority. The improvement
priority permits them to define the order in which the iterations will take place.
Preliminary and general planning for the improvement cycle is carried out. The in-
formation related to this activity is registered in the General Improvement Plan.

• Formulating improvements: the Process Improvement Group validates the General
improvement plan. This group plans and designs the improvement cycle’s current
iterations (based on the process improvement cases) and defines the strategy to be
followed to improve the process which has been selected. The effort required in the
first iteration is used as a basis for, amongst other things, the estimation of effort,
cost, time and resources in the other iterations of the improvement cycle. The in-
formation related to this activity is registered in the Improvement Implementation
Plan. This activity can be executed in the cycle once or various times.

• Executing improvements: the Process Improvement Group manages and executes
the improvement cases which correspond with the current iteration, in accordance
with the established plans. If the plan of the iteration has been satisfactorily devel-
oped, it is accepted and the new processes or changes are established within the or-
ganization. The information related to this activity is registered in the Improvement
iteration report, which is part of the Improvement Report. This report describes the
performance and evaluation of the current iteration and also analyzes the improve-
ments introduced into the organization’s processes. This activity can be executed
once or several times in the improvement cycle.

• Revising the cycle: all the elements related to the execution of each of the im-
provement cycles are corrected or adjusted. Finally, a post-mortem analysis of the
work carried out in the entire improvement cycle takes place. The person Respon-
sible for Process Improvement (RPI) reinforces the improvement cycle which has
been carried out before reinitiating the installation phase of a new cycle. The les-
sons learnt, measurements developed to measure the fulfillment of the objectives,
the processes improved, etc. are registered in the Improvement Report.

When more explicit guidelines are required to support the Diagnosing the process
activity, VSEs can use the Assessment methodology – METvalCOMPETISOFT. The
Agile process for improvement introduction can similarly be used to guide the Formu-
lating and Executing improvements activities (see Fig. 1 and Fig. 2).

Work Products. A concrete self-contained template has been developed for each of
PmCOMPETISOFT’s work products, to make its construction easier. These work

 A Process for Driving Process Improvement in VSEs 347

products are: Improvement proposal, General improvement plan (make up of the
Assessment report and Preliminary improvement plan), Improvement implementa-
tion plan, and Improvement report. The effort of carrying out the tasks associated
with each activity and related to said products is registered in each of the work
products.

PmCOMPETISOFT has been described with the standard SPEM 2.0 and edited
with the EPF Composer, in order to generate documentation in a standard format
which is updated and is available to organizations through the Web. We also have
developed a tool called GENESIS [18], which is used to support the person Responsi-
ble for process improvement in the management and implementation of an SPI project
and in the administration of generated knowledge.

4 Case Studies

The definition, refinement and application of COMPETISOFT’s components have
been carried out through the use of the Action-Research investigation method (A-
R), which divides the project participants into two groups: the first is made up of
researchers from different universities and the second, called the critical reference
group, includes computer professionals from small software organizations. In order
to validate the proposed process we have conducted four case studies by following
the protocol template for case studies presented in [19] (Fig. 3). The following sub-
section describes the case studies in terms of design, subjects, field procedures and
analysis.

4.1 Design

The main research question addressed by this study is: Is the PmCOMPETISOFT
process suitable for carrying out Software Process Improvement efforts in small soft-
ware enterprises? Additional research questions addressed by these case studies are:
(i) Is the effort of applying the proposed process suitable for the small companies?
and (ii) Does the PmCOMPETISOFT process enable small companies to increase
their process capabilities? Taking into account the focus presented by [20], the design
type of the case study in this work is multiple cases – holistic, since the strategy has
been applied in the context of four small companies. The objet of study is a new proc-
ess through which to establish SPI in VSEs (PmCOMPETISOFT). The measures used
to investigate the research questions are: (i) the effort of carrying out the tasks associ-
ated with each PmCOMPETISOFT activity, and (ii) the capability level of the proc-
esses under analysis (which need to be improved) of each company.

4.2 Subjects and Analysis Unit

The Participating companies in the case studies are from Argentina, Chile y Spain
(called in this work E1, E2, E3 and E4), and they are part of the COMPETISOFT
project critical reference group. The analysis units are the PmCOMPETISOFT activi-
ties and the processes to be improved within each company.

348 F.J. Pino et al.

Research group participating in
the COMPETISOFT project

(Researchers)

Research group participating in
the COMPETISOFT project

(Researchers)

Companies and organizations participating in
the COMPETISOFT project

(Critical reference group)

Companies and organizations participating in
the COMPETISOFT project

(Critical reference group) Latin American
SMEs

(Stakeholders)

Latin American
SMEs

(Stakeholders)

Case studies of the proposal
PmCOMPETISOFT

Research results

Results application

Refine results from
case studies

Software Process
Improvement for Latin

American SMEs
(Object of research)

Software Process
Improvement for Latin

American SMEs
(Object of research)

Deliverables
(norms, models,
methods, tools,
handbooks, etc)

Advisers
A1, A2, A3

Companies
E1, E2, E3, E4

Activities of the Case study Ei Design Subjects Field procedure Analysis

A3
A1 to E1
A2 to E2
A3 to E3, E4

A1 to E1
A2 to E2
A3 to E3, E4

A3 Responsible of activities

time

Case study E4

Case study E3

Case study E1

Case study E2

Supported by

A3

A3

A1

A2

Activities, responsible and time line of the case studies

Activities of the Case study Ei Design Subjects Field procedure Analysis

A3
A1 to E1
A2 to E2
A3 to E3, E4

A1 to E1
A2 to E2
A3 to E3, E4

A3 Responsible of activities

Activities of the Case study Ei Design Subjects Field procedure Analysis

A3
A1 to E1
A2 to E2
A3 to E3, E4

A1 to E1
A2 to E2
A3 to E3, E4

A3 Responsible of activities

time

Case study E4

Case study E3

Case study E1

Case study E2

Supported by

A3

A3

A1

A2

time

Case study E4

Case study E3

Case study E1

Case study E2

Supported by

A3

A3

A1

A2

Activities, responsible and time line of the case studies

Fig. 3. Application of A-R and Case studies to the COMPETISOFT project

All of these organizations started the first process improvement cycle with the support
of an adviser in improvement processes who is part of the COMPETISOFT project re-
searchers group. Table 1 describes the properties of the participant enterprises in the case
studies carried out to observe and analyze the application of PmCOMPETISOFT in a real
managerial context. It was suggested to the companies taking part in the case study that in
the first improvement cycle they should incorporate the processes related to Profile 1 of
the Process Reference Model of COMPETISOFT, which includes the processes of: Soft-
ware development - SD, Software maintenance – MS, and Specific project administration
- SPA. A further recommendation was that the PmCOMPETISOFT process should be
used to perform the improvement activities in each organization.

Table 1. Characteristics of organizations involved in the case studies

Company Country Employees Path Main areas of professional activity
E1 Argentina 8 (7) 15 years /

N&I
Development of new tailored information systems
with ongoing integration of new technology

E2 Chile 18 (12) 9 years / N&I Computer Engineering projects for the agricultural
(wine and food) industry.

E3 Spain 7 (6) 4 years / N Software development on WEB.
E4 Spain 21 (15) 12 years / N Software development through contracts and agree-

ments with public organizations.
Employees: Number of employees in the enterprise (People in software development and maintenance).
Path: Number of years of existence of the company / scope of the market for its products (National–N / International–I).

4.3 Field Procedure and Data Collection

The procedure governing field procedure and the data collection of the case studies is
closely related to the PmCOMPETISOFT process activities, roles and work products.
A description of this procedure is presented in the following subsection.

 A Process for Driving Process Improvement in VSEs 349

Initiating. A formal agreement in working towards process improvement was signed
between each of the companies and the advisor. For the improvement cycle, E1, E3
and E4 assigned a person to the role RPI, and permitted them 4 hours/week. E2 also
assigned a person to this role with 16 hours/week. A weekly meeting with the advisor
and the MIG to monitor the progress of the project was also agreed on.

Each company took the processes that it was particularly interested in improving
from Profile 1 of COMPETISOFT, based on its own needs and business objectives. In
addition, a development project of the company was chosen, into which improve-
ments were introduced (pilot project). The objective set out in the Improvement pro-
posal of the first improvement cycle for the E1 enterprise was to improve the SPA
process. For the companies E2, E3 and E4 it was to improve the SD and SPA proc-
esses. As well as these goals, the different companies too set as objective for the first
cycle to increase by one level the capability of the processes chosen for improvement,
taking as their starting point the value of the capability of the processes, which was
established by means of an initial assessment.

Diagnosing. The process attributes of level 2 of the assessment method were used to
carry out the initial assessment of the companies’ processes as well as to determine
the capability of the chosen processes. These attributes are PA1.1 Process perform-
ance, PA2.1 Performance management, PA2.2 Work product management and the
process capability level ratings defined by assessment methodology – METvalCOM-
PETISOFT (which conforms to ISO/IEC 15504-2). The COMPETISOFT advisor
played the role EV. The advisor evaluated the processes by applying the technique of
evidence gathering: interviews and surveys, using the information-gathering tools
developed for this purpose. The initial assessment was reported and published in each
one of the firms by means of its respective Assessment report. Table 2 shows the
initial capability of the processes in each of the enterprises.

The information concerning these processes, which was registered in the Assess-
ment report, was analyzed by the RPI and the advisor, in order to determinate specific
opportunities for improvement in each organization. For instance, apart from the im-
provement opportunities for the chosen processes, E1 took the decision to customize
the software tool which is used to support management (Visual Studio Team System-
VSTM) with regard to the COMPETISOFT reference model, in order to support its
process improvement efforts. It was established that this tool would give support to
the activities, documents and roles of the 9 processes of the reference model (apart
from those of Profile 1, the Business Management -BM, Process Management- PM,
Project Management-PjM, Human Resources Management- HRM, Infrastructure,
Goods and Service Management- IM and Knowledge Management-KM). E1 put one
person to work on this for 20 hours/week throughout a 2 month period. Likewise, E2
also decided to improve the formulation of proposals along with establishing the
scope of software projects, which are activities that are specific to the BM process. A
Preliminary improvement plan was generated for each VSE.

Formulating. In order to set out a general plan (establishing the improvement itera-
tions) for carrying on with the tasks of formulation and execution of improvements,
the MIG analyzed the Improvement proposal and the General Improvement plan. The
aim of this was to refine and validate the scope of the improvement cycle, by consid-
ering the state of the processes, the company’s requirements and the resources avail-
able, amongst other things. E3 and E4 therefore refined their improvement objective

350 F.J. Pino et al.

for the SPA process in terms of implanting some base practices only. That was due to
the fact that the initial evaluation reported that no practice related to this process was
being carried out. Enterprise E1 planned two iterations, while E2, E3 and E4 planned
three. For each iteration the PIG (made up of advisor and RPI) used the improvement
opportunities found to plan and design the corresponding improvements which were
registered in the Improvements implementation plan. The definition of processes was
based on the activities and work products of level 1 established by the COMPETI-
SOFT reference model.

Execution. The proposed improvement activities were given to the RPI of each or-
ganization who, along with the person RP, was in charge of introducing the activities
into the organization. In all the companies the employees related to the processes to
be improved were given an active part to play. This was done to involve them in car-
rying out the improvement, thus optimizing this success factor. For instance the em-
ployees were involved in defining techniques, specific activities and templates of
processes, the object being to promote the bottom-up improvement strategy. A meet-
ing that took place at least once a week was programmed between the advisor, the
RPI and the RP, in an effort to work on how to carry out the improvement activities
that had been designed. The information relating to executing the improvement was
registered in the Improvement iteration report.

Revising. We performed a post-mortem analysis of the work which took place
throughout the improvement cycle, the object being to obtain a knowledge base for
future improvement cycles. At the end of the improvement cycle a final assessment
was carried out, and we also established how much effort was used to carry out this
cycle (see Table 2). An Improvement Report was generated for each VSE.

Table 2. Initial and final capability of the organization´s process and cycle effort

Capability of Processes Effort (hours)

C
om

.

A
ss

es
s-

m
en

t

SD

SP
A

SM

B
M

PM

Pj
M

H

R
M

K
M

IM

Cycle
length

(months)
Adviser

(A)
Comp.

(C)
Total

E1 Initial - 2 - - - - - - -
 Final 1 2 * 1 1 1 1 1 1

6 40 264 304

E2 Initial 0 1 0 - - - - - -
 Final 1 2 * * - - - - -

5 89 255 344

E3 Initial 0 0 - - - - - - -
 Final 1 * - - - - - - -

3 15 39 54

E4 Initial 0 0 - - - - - - -
 Final 1 * - - - - - - -

3 41 47 88

* Base practices of this process have been implanted.

4.4 Analysis and Discussion

Table 2 shows that the four VSEs have increased the capability level of their SD and
SPA processes, among others. It is important to highlight that other processes such as
SM and BM have also increased the capabilities of enterprises E1 and E2. This in-
crease can be observed in the established base practices, which have been reported in
the Improvement Reports. The table shows that E1 was the company which increased
its level of capability in the greatest number of processes. We consider that

 A Process for Driving Process Improvement in VSEs 351

personalization and the use of the software management tool were decisive factors in
fostering and accelerating the development of the improvement cycle. Through the
application of the PmCOMPETISOFT the small companies have introduced new base
practices to their processes, thus allowing them to increase their capability. Based on
the collected data, there is evidence that the PmCOMPETISOFT process has enabled
these small companies to increase the capability of their processes.

Table 2 also shows that E2 was the firm which invested the largest amount of ef-
fort in the improvement cycle. At the same time, the mean effort per improved proc-
ess is the highest of the four companies (172 hours per process). This is due to the fact
that the improvement was, to a great extent, held up by the high turn-over of staff in
the organization. This has made the company give priority to the management of
Human Resources and to Knowledge management with regard to their next improve-
ment cycle. Note that the effort involved on the part of companies E3 and E4 is simi-
lar (39h and 47h). However, the advisor’s effort (each of the companies had the same
advisor) is greater (almost triple) in the case of E4. This is because the gathering and
analysis of information relating to the activities of initiating, diagnosing and formulat-
ing were performed first for E4, and then for E3. That is, this effort is related to the
learning and experience acquired by the advisor in the tasks and products that had to
be carried out in order to perform the process improvement activities.

From Table 2 we may can also draw the conclusion that the effort spent on improving
processes per week for each organization is E1 12.7 h, E2 17.2 h, E3 4.5 h and E4 7.3 h
(including the advisor’s time). So the average effort spent on improvement initiatives is
approximately one person taking ten hours per week. We observed that employees of
each organization involved in the improvement cycle were able to take on this effort in
improvement activities with no detriment to their daily activities. The percentage of effort
taken with regard to each of the PmCOMPETISOFT activities for the four firms were:
Initiating 4.2% (2.2% Adviser -A- and 2.0% Company -C-), Diagnosing 10.5% (6.9% A
and 3.6% C), Formulating and Executing 79 % (11.2% A and 67.8% C) and Revising
6.3% (3.15% A and 3.15% C). The analysis described above offers evidence that the
effort of applying the proposed process is suitable for small companies.

The main benefits which the firms have reported are the following:
• The companies have moved from a chaotic and unpredictable software process to a

tangible one, which is currently being used on development projects. Both the
management and the employees of the companies have seen the benefits of this re-
sult and, most importantly, they have realized the need to maintain continuous and
ongoing improvement, following this same approach for future cycles.

• The firms now keep a registry of the work products related to the improved proc-
esses, together with the instancing in the projects applied (for example, E3 and E4
are using collaborative Web applications to support this information). This has al-
lowed them to begin to generate a knowledge base which makes historic data
available when decisions are being taken.

• According to E1, the implementation of COMPETISOFT has provided them with
an ordered process setting. It has also meant the incorporation of good practices
which are progressively implanted, together with the personalization and adapta-
tion of a robust management tool. This has allowed them to systematically
implement the activities, work products and level 1 capability responsibilities in 8
processes of the reference model.

352 F.J. Pino et al.

• Company E2 has now allotted more man-hours to the RPI, designating him/her as
the person in charge of institutional Quality. The quest is to continue improving
processes and to implement other strategies to ensure the quality of the company’s
product and processes.

• The companies have a more specific vision of the organization itself which has
helped and motivated it to set out on the road to quality certification. For instance,
currently the E1 is conducting an ISO 9001:2000 certification, and the E3 has
started to work towards a formal assessment CMMI level 2.

Based on the case studies carried out, the increase of the capability of the processes
to be improved, the effort of applying the proposed process and the described benefits
we consider that the PmCOMPETISOFT process is suitable to lead the projects of
Software Process Improvement in small software enterprises. The results, in terms of
effort, increase of capability and benefits, are an indicator that PmCOMPETISOFT
can be a practical and useful strategy when facing the difficulty of carrying out SPI in
VSEs. Furthermore, from the case studies we have been able to confirm that the pro-
posed process was established and executed properly by the VSEs involved.

5 Conclusions and Future Work

The interpretation and adaptation of COMPETISOFT’s methodological framework to
fit in with the reality of the four VSEs has opened the way towards a rapid improve-
ment in the chosen processes. Similarly, as in all processes of change, the process of
learning and getting to know the system has been necessary, so as to make it fit in
with the work style of the whole firm. The VSEs using PmCOMPETISOFT defined
certain processes, thus allowing them to have an overview of the way in which they
are developing their software. This has meant that VSEs are able to have clear vision
of their process, seeing into which of them they should incorporate good practices and
pointing the way towards a definition of specific work products and to the designation
of the people to be responsible for such tasks. The overall goal for the VSEs is to have
tangible processes for software development, with all the advantages that this brings
with it. What is being sought is for firms to produce software that has a process-
oriented focus, thereby decreasing the high dependence on people that the enterprises
have hitherto had. We should emphasize that these VSEs have seen in the improve-
ment work carried out thus far an option that would permit them to take their first
steps towards ongoing process improvement. This has, moreover, allowed them to
believe that the improvement of software processes, along with the benefits brought
with it, can actually become a reality in their companies.

Given that the results of the case studies are encouraging, new improvement cycles
are planned for the four organizations, which will take into account the aspects dis-
covered in the first cycles. We shall conduct a follow-up in the companies in order to
attempt to determine whether this strategy has made an impact on the companies’
success in terms of market attributes.

Acknowledgements. This work has been funded by the projects: INGENIO (PAC08-
0154-9262, JCCM of Spain), ESFINGE (TIN2006-15175-C05-05, MEC of Spain).
Research fellowships funded by European Regional Development Fund (ERDF).

 A Process for Driving Process Improvement in VSEs 353

References

1. Laporte, C., Alexandre, S., Renault, A.: Developing International Standards for Very
Small Enterprises. IEEE Computer 41(3), 98–101 (2008)

2. Richardson, I., Wangenheim, C.G.v.: Why are Small Software Organizations Different?
IEEE Software 24(1), 18–22 (2007)

3. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory
study of why organizations do not adopt CMMI. Journal of Systems and Software 80(6),
883–895 (2007)

4. Pino, F., Garcia, F., Piattini, M.: Software Process Improvement in Small and Medium
Software Enterprises: A Systematic Review. Soft. Quality Journal 16(2), 237–261 (2008)

5. Oktaba, H., Garcia, F., Piattini, M., Pino, F., Alquicira, C., Ruiz, F.: Software Process Im-
provement: The COMPETISOFT Project. IEEE Computer 40(10), 21–28 (2007)

6. Oktaba, H.: MoProSoft®: A Software Process Model for Small Enterprises. In: Proceed-
ings of the First International Research Workshop for Process Improvement in Small Set-
tings, pp. 93–101. Carnegie Mellon University, Pittsburgh (2006)

7. Weber, K., Araújo, E., Rocha, A., Machado, C., Scalet, D., Salviano, C.: Brazilian Soft-
ware Process Reference Model and Assessment Method. In: Yolum, p., Güngör, T., Gür-
gen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 402–411. Springer, Heidel-
berg (2005)

8. McCaffery, F., Taylor, P., Coleman, G.: Adept: A Unified Assessment Method for Small
Software Companies. IEEE Software 24(1), 24–31 (2007)

9. Cater-Steel, A.P., Toleman, M., Rout, T.: Process improvement for small firms: An
evaluation of the RAPID assessment-based method. Inf. and Soft. Tech., pp. 1–12 (2005)

10. Scott, L., Jeffery, R., Carvalho, L., D’Ambra, J., Rutherford, P.: Practical Software Process
Improvement -The IMPACT Project. In: Proceedings of the Australian Software Engineer-
ing Conference, pp. 182–189 (2001)

11. Calvo-Manzano, J.A., Cuevas, G., San Feliu, T., De Amescua, A., Pérez, M.: Experiences
in the Application of Software Process Improvement in SMES. Software Quality Jour-
nal 10(3), 261–273 (2002)

12. Casey, V., Richardson, I.: A practical application of the IDEAL model. Software Process:
Improvement and Practice 9(3), 123–132 (2004)

13. Kautz, K., Hansen, H.W., Thaysen, K.: Applying and adjusting a software process im-
provement model in practice: the use of the IDEAL model in a small software enterprise.
In: ICSE 2000, Limerick, Ireland, pp. 626–633 (2000)

14. Horvat, R.V., Rozman, I., Györkös, J.: Managing the complexity of SPI in small compa-
nies. Software Process: Improvement and Practice 5(1), 45–54 (2000)

15. ISO, ISO/IEC 15504-4:2004 Information technology - Process assessment - Part 4: Guid-
ance on use for process improvement and process capability determination (2004)

16. Pino, F., Garcia, F., Piattini, M.: Key processes to start software process improvement in
small companies. In: SAC 2009, Honolulu, Hawaii, U.S.A, pp. 1694–1701 (2009)

17. CYTED, COMPETISOFT Methodological Framework (in Spanish) (2008)
18. Hernández, M., Florez, A., Pino, F., Garcia, F., Piattini, M., Ibargüengoitia, G., Oktaba,

H.: Supporting the Improvement Process for Small Software Enterprises through a soft-
ware tool. In: SES during ENC 2008, Mexicali, México (2008) (in press)

19. Brereton, P., Kitchenham, B., Budgen, D., Li, Z.: Using a protocol template for case study
planning. In: EASE 2008, Bari, Italia, pp. 1–8 (2008)

20. Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2003)

Modeling Software Evolution with Game Theory

Vibha Sazawal and Nikita Sudan

UM Institute for Advanced Computing Studies (UMIACS)
University of Maryland

College Park, MD, 20742 USA
{vibha,nsudan}@umd.edu

Abstract. A wrong design decision at any point in the software lifecy-
cle can lead to cost overruns and competitive disadvantage. We describe
how lightweight game theory can help software engineering teams plan
for future design and maintenance decisions. To demonstrate our ap-
proach, we model the real-world evolution of java.util.Calendar using
our lightweight Basic Software Evolution Game. The game expressively
models both what actually happened as well as circumstances when al-
ternate design decisions would be optimal.

Keywords: Software evolution, game theory, software design decisions.

1 Introduction

Software has a long lifespan. A wrong design decision at any point in the software
lifecycle can lead to cost overruns and competitive disadvantage. Unfortunately,
complete knowledge of whether a design decision is right or wrong is often pos-
sible only in hindsight, after the customer requests changes or a competitor’s
future product changes the landscape of the market.

To guide software design decision-making, many have proposed using eco-
nomic theories. Sullivan et al. [1], for example, proposes the use of real options
theory. Boehm’s seminal book Software Engineering Economics [2] explains clas-
sic techniques such as net present value (NPV) and value of information (VOI),
among others. Denne and Cleland-Huang [3] describe how to sequence design
steps to maximize return on investment (ROI). In this paper, we present a com-
plementary approach: game theory. We hypothesize that game theory can model
software design decision-making because (1) games naturally model the sequence
of design decisions that must be made throughout the lifecycle, and (2) changes
in requirements and customer interest are easily described because customers
can be explicit players in a game. However, if game-theoretic approaches are
too complex, software engineering teams will not be able to spare time to their
adoption. In this paper, we contribute a lightweight application of game theory
to software evolution called the Basic Software Evolution Game.

To support our hypothesis that lightweight game theory can model software
evolution, we present an example of design decision-making based on the real-
world scenario of Sun’s java.util.Calendar class. We model the alternating

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 354–365, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modeling Software Evolution with Game Theory 355

sequence of design decisions and customer requests as an instantiation of the
Basic Software Evolution Game, an extensive-form sequential game with per-
fect information. We discuss this case study to demonstrate the potential of
lightweight game-theoretic models to align software design and maintenance de-
cisions with business objectives. In the case of java.util.Calendar, we found
that the Basic Software Evolution Game expressively models what has really
happened as well as circumstances when alternate design decisions would be
optimal.

In Section 2, we provide a brief primer to game theory. Section 3 introduces
our application of game theory to software evolution, called the Basic Software
Evolution Game. Section 4 presents the java.util.Calendar case study as an
instantiation of the Basic Software Evolution Game. In Section 5, we discuss
some of the choices we made in the case study. Section 6 presents related work,
and Section 7 concludes.

2 Introduction to Game Theory

Game theory describes and prescribes rational behavior for interactive decision
problems. An extensive-form sequential game is a tree of decisions. The root node
is player A, who acts (moves) first, and her possible decision choices (moves) are
edges that emanate from the root. The children of the root represent the player
who acts second (player B), and edges emanating from these nodes represent the
possible decision choices that B has given the first move of A. In a two-player
game, the grandchildren of the root represent the options A has for her second
move. Games with more than two players are represented analogously.

The leaves of the tree represent when no more decisions are to be made.
Associated with each leaf is a payoff value for each player that represents the
value they obtain from the sequence of moves described by the path from root
to leaf. An example is shown in Figure 1.

A sequential game is one in which players make decisions following a prede-
termined order. A game with perfect information occurs when the sequence of
past moves is always known by any player about to move. To solve a sequential
game with perfect information, we follow backwards induction [4]. The process
of backwards induction is described below:

1. Start at the parents of the leaves. This is the last decision to be made in the
game. For each leaf parent, select the edge that leads to the highest payoff
for the last player to move.

2. Back up to the grandparents of the leaves. Select the optimal edge (move)
for that player given the moves selected in Step One.

3. Continue up the tree in this manner until the root is reached. A set of
selected edges that forms a path from root to leaf is considered a solution to
the backwards induction.

The solution to a backwards induction is sequentially rational. Rationality in
a game theory context means that each player always chooses the decision that

356 V. Sazawal and N. Sudan

A

B
choice A1

B

choice A2

A

choice B1

Achoice B2

Achoice B1

A

choice B2

Aís payoff: 5
B’s payoff: 1choice A3

A’s payoff: 3
B’s payoff: 4

choice A4

A’s payoff: 0
B’s payoff: 2choice A3

A’s payoff: 1
B’s payoff: 5

choice A4

A’s payoff: 1
B’s payoff: 5choice A3

A’s payoff: 3
B’s payoff: 3

choice A4

A’s payoff: 2
B’s payoff: 4

choice A3

A’s payoff: 0
B’s payoff: 0

choice A4

Fig. 1. An example of a two-player game. Edges in bold are selected using backwards
induction. The solution to the game is {A2, B2, A3}.

is best for them in terms of personal payoff. Sequential rationality occurs when
every player knows that all the other players are rational and takes that fact
into account.

Game theory can also accommodate simultaneous moves, incomplete knowl-
edge, and uncertain payoffs. In this paper, we focus on the simplest subset of
game theory that can be useful to software teams; incorporating additional com-
plexity while remaining accessible to non-economists is future work.

3 Applying Game Theory to Software Evolution

There are many ways to model decision-making performed throughout the soft-
ware process as an extensive-form game. Multiple companies, customers, and all
sorts of other stakeholders can all be players. Unfortunately, games with large
quantities of players can become very complex. In this paper, we present a basic
two-player game that we believe can describe an interesting subset of software
process scenarios. Just as small formal models can help users with complex re-
quirements issues, the risky portions of a complex software process can often be
fruitfully described with one or more small games.

3.1 Basic Software Evolution Game

In our Basic Software Evolution Game, there are two players: (1) the Software
Engineering Team (SE Team) that is responsible for constructing and maintain-
ing the software, and (2) the World, who uses the software, buys the software,
etc. The game is essentially played between two roles: producer and consumer.

Who makes the first move in the game? It is definitely feasible for the World to
make the first move, such as choosing among a set of different initial requirements
or choosing among a set of vendors. However, in our Basic Software Evolution

Modeling Software Evolution with Game Theory 357

SETeam

World
design 1

World

design n

SETeam

change 1

SETeamchange m

SETeam
no change

SETeamchange 1

SETeam

change m

SETeam

no change

accomodate

restructure
 and accommodate

accomodate

restructure
 and accommodate

do nothing

restructure

accomodate

restructure
 and accommodate

accomodate

restructure
 and accommodate

do nothing

restructure

Fig. 2. Basic Software Evolution Game with 2 initial candidate designs and 2 possible
change requests

Game, we assume the initial requirements are fixed. Thus, the SE Team has the
first move. It is very straightforward, however, to prepend requirements-oriented
moves to our basic game.

The SE Team’s first move is a choice between n initial design options. What
should the second move be? As with the first move, there are many candidate
second moves. We can model whether the multiple customers within the World
each choose to buy or not buy the product produced by the SE Team. It is also
possible for the SE Team to initially choose an incomplete design and then make
later moves to finalize the design as additional information arrives. We again
simplify the scenario and propose that the second move is a change request
by the World. This change can be a modification to the functional or non-
functional requirements of the software. The World can choose among m possible
requirements changes, and also it can ask for no change.

In response to the change request from the World, the SE Team’s options
for its next move (the third move overall) are to (1) modify the code minimally
in response to the change request or (2..n) accommodate the change and re-
structure the design to any of the n-1 designs not initially chosen. We model
options (2..n) as a requirements-preserving restructuring followed by a modifi-
cation/extension to accommodate the requirements change request. A restruc-
turing might be motivated by the desire to reduce the cost of accommodating
future changes.

The fourth move is another change request by the World, and the fifth move
is another accommodation and/or restructuring by the SE Team. The game
can continue in this manner indefinitely. If an SE Team is using the game to
plan for the future, then the game “ends” when the SE Team can no longer
realistically predict a candidate set of possible future moves for the World or
itself. Figure 2 describes the Basic Software Evolution Game where n=2 and
m=2.

358 V. Sazawal and N. Sudan

We can define the payoffs for the SE Team and the World for each possible
path as follows. Let π be payoff, U be utility, P be payment, and C be cost.
Let base be the implementation of the initial design and Δ be a world-requested
change or a requirements-preserving restructuring. For a given Δj , PΔj is likely
to be zero if Δj is a requirements-preserving restructuring, but PΔj may be
nonzero for a World-requested change. Similarly, the utility gained by the World
from a requirements-preserving restructuring is likely to be zero, but the utility
gained from a World-requested change should be nonzero. We assume that prices
are not affected by previous deltas. However, the cost to complete a delta does
depend on previous deltas made. totΔ is the total number of deltas, and since
all moves after the first move are delta-related, totΔ = (|moves| − 1)/2.

The general formula for the payoff of the SE Team is:

πSETeam = U(Pbase) +
totΔ
∑

i=1

U(PΔi) − U(Cbase) −
totΔ
∑

i=0

U(CΔi |Δ1 . . . Δi−1) (1)

The general formula for the payoff of the World is:

πWorld = U(base) +
totΔ
∑

i=1

U(Δi|Δ1 . . . Δi−1) − U(Pbase) −
totΔ
∑

i=1

U(PΔi) (2)

How can the utilities in Equations 1 and 2 be estimated? Precise approaches
for estimating utility are well described by Keeney [5]. Cost estimation can be
performed using techniques such as COCOMO II [6]. Pricing of products can be
estimated using existing market prices for similar products and/or input from
marketing.

In this paper, we use a lightweight approach that defines utilities relation-
ally. There can be a base utility of the product for the world UWorld(base) and
a base utility of selling the product for the SE Team USETeam(Pbase). These
utilities are the same regardless of the initial design selected.1 The utilities asso-
ciated with changes can be described as fractional amounts of USETeam(Pbase)
and UWorld(base). With this expedient approach, SE teams can easily plug in
different fractional estimates and study how the game’s solution changes.

3.2 Example of the Basic Game: KWIC

As an example of the expressiveness of the Basic Software Evolution game, con-
sider the canonical KWIC example. In Parnas’ seminal paper [7], he proposes
an information hiding-based modularization for a key-word-in-context (KWIC)
program. Parnas’ modularization can accommodate several data representation
changes at very low cost. Garlan et al. [8] present an alternative modulariza-
tion based on tool abstraction or “toolies.” A toolie-based modularization can

1 This is a simplification. For example, the time to build an initial implementation
can affect the World’s utility. Our approach emphasize the effects of future changes.

Modeling Software Evolution with Game Theory 359

accommodate a different set of changes at low cost, such as functional exten-
sions. Given the task to implement KWIC, should an SE team choose Parnas’
modularization (PM) or toolies (T)?

Obviously the selection of PM vs. T should be based on which changes are
expected to occur in the future. But what if some likely changes are easier to
accommodate with PM and some are easier to accommodate with T? Would it
ever make sense to start with PM and later evolve to T? Or start with T and
later evolve to PM? How would intermediate changes affect a later restructuring
decision? All of these potential scenarios can be modeled with the Basic Software
Evolution Game.

4 Case Study: Sun’s Support for World Calendars

In Java 1.1, Sun offered the class java.util.Calendar. Calendar interprets
Date objects according to the rules of a calendaring system. In Java 1.1, the
only calendar supported was the Gregorian calendar. However, many parts of
the world use non-Gregorian calendars. In Java 1.4, Java added support for
the Thai Buddhist calendar. This support consists of adding 543 to the year.
Sun acknowledges that their Thai calendar does not support historical calendar
system transitions [9]. Other sources report other easy-to-produce bugs with
Sun’s Thai calendar [10].

In Java 6 (beta released February 14th, 2006), Sun added support for the
Japanese Imperial calendar [9]. This support consists of replacing the Gregorian
year with an imperial-era based number. Sun acknowledges that the Japanese
calendar does not correctly define the first day of the Meiji era.

A review of Java’s Bug ID 4609228 [11] reveals many requests for alternate cal-
endar support, including support for the Japanese, Arabic, Persian, and Hebrew
calendars. This bug was submitted on December 14th, 2001. While support for
the Japanese Imperial calendar was added to Java 6, all other requested calen-
dars remain unsupported. Comments in the bug report describe many challenges
in accommodating world calendars with the current codebase.

On February 2005, a commenter to the bug report announced that a Per-
sian calendar was now supported by an open source project that is based on
IBM’s ICU4J [12] set of calendar-related classes. IBM’s ICU4J codebase was
first started by Taligent (which was acquired by IBM), and Taligent’s calen-
dar code formed part of Java 1.1. Since then, however, IBM and its partners
have dramatically improved their support for world calendars. Support for the
Japanese Imperial calendar became stable in ICU4J 2.8, which has a times-
tamp in the ICU4J repository of February 8th, 2005. As of December 5th 2008,
com.ibm.icu.util.Calendar has support for the Chinese, Coptic, Ethiopic,
Gregorian, Hebrew, Indian, Islamic, Thai Buddhist, Japanese Imperial, and Tai-
wanese calendars. The open-source Persian calendar project mentioned above
also extends the ICU4J calendar support. Both Java’s and IBM’s Calendar sup-
port is open-source and available free of cost.

360 V. Sazawal and N. Sudan

We present this case study to describe how design decisions (such as the de-
sign of the java.util.Calendar API and implementation) can have significant
business implications. Since Java 1.1, Sun has only made minor modifications
to its Gregorian calendar support, possibly because support for other Calen-
dars would be too costly. However, in the meantime IBM identified a business
opportunity and is filling the need for Java world calendar support. Comments
from Sun bug report 4609228 suggest that IBM has gained considerable goodwill
from this gesture. A business disadvantage for Sun is thus obtained from poor
software evolution choices.

We can model this scenario with the Basic Software Evolution Game. At
the start of Java 1.1, Sun faced a decision about whether to build in support
for multiple calendars or just implement the Gregorian calendar. Sun chose to
only support the Gregorian calendar. The World then clamored for additional
calendar support. Sun then faced the choice of offering incremental support for
one calendar at a time, or restructuring to support multiple calendars. So far,
Sun has chosen twice to add incremental support for an additional Gregorian-like
calendar.

We assume that Sun is rational; thus, Sun makes its design decisions to max-
imize its expected payoff. However, modeling the scenario as a game allows us
to understand under what circumstances Sun’s payoff would be higher with a
different evolutionary path.

The players in our game are Sun and the World. Sun begins the game by
choosing between two design options: support for only the Gregorian Calendar
(GC), or support for multiple world calendars (MC). We define MC as a system
that only supports GC at the start but can easily accommodate other calen-
dars at low cost if needed. The World can then choose to request support for
additional calendars. In response, Sun can make incremental changes to a GC
solution, restructure from GC to MC, or quickly update its MC implementation
at low-cost.

The extensive-form game that models the Calendar scenario appears in Figure
3. There are fifteen possible paths in the tree. Nodes have only one child when
there is only one decision that makes sense. For example, we assume it would
never make sense to restructure code from MC to GC.2 With regard to edge
labels, “GC to GC+1” represents adding one calendar system to the existing
GC implementation. Other edge labels are analogous.

Since java.util.Calendar is provided free of cost, the monetary payment
received for supporting a country’s calendar might appear to be zero. However,
Sun considers the entire Java language to be strategically valuable despite its
free distribution, and the same holds for Calendar classes. In particular, we can
measure the goodwill obtained from adding support for a country’s classes.

To compute the payoffs for each of the fifteen paths, we consider the bene-
fits and costs for both Sun and the World. Sun obtains goodwill for providing
java.util.Calendar; in addition, it obtains additional goodwill for supporting

2 It’s possible that there is a performance difference between MC and GC but we have
found no evidence of this.

Modeling Software Evolution with Game Theory 361

Sun

Worldonly support
 Gregorian Calendar (GC)

World

build in support
 for Multiple Calendars (MC)

Sun
request Thai

 calendar

Sunno request

Sun

request Thai
 calendar

Sun

no request

World
GC to GC+1

WorldGC to MC+1

WorldGC to MC

World

no change

WorldMC to MC+1

World

no change

Sunrequest Japanese
 calendar

Sunno request

Sun
request Japanese

 calendar

Sun

no request

Sun
request Japanese

 calendar

Sunno request

Sun

request Japanese
 calendar

Sun

no request

Sun
request Japanese

 calendar

Sun

no request

Sun

request Japanese
 calendar

Sun

no request

Path
1GC+1 to GC+2

2GC+1 to MC+2

3no change

4GC+1 to MC+1

5MC+1 to MC+2

6no change

7MC to MC+1

8no change

9GC to MC+1

10

GC to GC+1

11
no change

12
MC+1 to MC+2

13no change

14MC to MC+1

15no change

Fig. 3. Two-person game between Sun and the world regarding the design and mainte-
nance of java.util.Calendar. Payoffs are listed in Table 1. The solution to the game
depends on the utility values used to compute payoffs. Path 1 is the path actually taken
by Sun; Table 3 shows some utility estimations where Path 12 is a better choice.

other calendars. However, if IBM comes out with support for a particular cal-
endar before Sun, then Sun’s goodwill obtained from supporting that particular
calendar is reduced. We model this loss of goodwill using the fractional value
α, with α < 1. Sun incurs costs for building the Calendar code, and initial sup-
port for multiple calendars (MC) costs more than initial support for only the
Gregorian Calendar (GC).

Similarly, the world obtains utility from java.util.Calendar and any ex-
tensions to it. However, the World’s utility is reduced if they can already get
alternate calendar support from IBM. We represent this loss of utility with the
fractional value β, beta < 1.

Using these heuristics, we can define payoffs entirely in terms of utility vari-
ables. We can assume that the values of these variables have been normalized
to the same utility scale and thus can be added together. Let G be the utility
obtained from goodwill, C be the utility lost from spending money (cost), and
U be the utility obtained by the world from having calendar support available.

The payoffs for each of the 15 paths can then be described in Table 1. To find a
solution to backwards induction, we need to simplify the payoffs. Table 2 presents
some reasonable assumptions. With these simplifying assumptions all payoffs
can be expressed in terms of the goodwill for producing java.util.Calendar

362 V. Sazawal and N. Sudan

Table 1. Payoffs for Sun and the World for each of the 15 paths in Figure 3

Payoff
Sun chooses GC, World then requests support for the Thai calendar

1
Sun: (Gbase + Gthai + αGjapanese) − (CGC+1|GC + CGC+2|GC+1 + CGC)

World: Ubase + Uthai + βUjapanese)

2 Sun: (Gbase + Gthai + αGjapanese) − (CGC+1|GC + CMC+2|GC+1 + CGC)
World: Ubase + Uthai + βUjapanese

3 Sun: (Gbase + Gthai) − (CGC+1|GC + CGC), World: Ubase + Uthai

4 Sun: (Gbase + Gthai) − (CMC+1|GC+1 + CGC+1|GC + CGC)
World: Ubase + Uthai

5
Sun: (Gbase + Gthai + Gjapanese) − (CMC+1|GC + CMC+2|MC+1 + CGC)

World: Ubase + Uthai + Ujapanese

6 Sun: (Gbase + Gthai) − (CMC+1|GC + CGC), World: Ubase + Uthai

Sun chooses GC, World then gives Sun time to restructure if desired

7
Sun: (Gbase + Gjapanese) − (CMC|GC + CMC+1|MC + CGC)

World: Ubase + Ujapanese

8 Sun: Gbase − (CMC|GC + CGC), World: Ubase

9 Sun: (Gbase + αGjapanese) − (CMC+1|GC + CGC), World: Ubase + βUjapanese

10 Sun: (Gbase + αGjapanese) − (CGC+1|GC + CGC), World: Ubase + βUjapanese

Sun chooses MC
11 Sun: Gbase − CGC , World: Ubase

12
Sun: (Gbase + Gthai + Gjapanese) − (CMC+1|MC + CMC+2|MC+1 + CMC)

World: Ubase + Uthai + Ujapanese

13 Sun: (Gbase + Gthai) − (CMC+1|MC + CMC), World: Ubase + Uthai

14 Sun: (Gbase + Gjapanese) − (CMC+1|MC + CMC), World: Ubase + Ujapanese

15 Sun: Gbase − CMC , World: Ubase

(Gbase), the goodwill for supporting the Thai Buddhist and the Japanese Impe-
rial calendars (Gthai and Gjapanese), and the utility gained by the world from
java.util.Calendar (Ubase) and support for Thai Buddhist and Japanese Im-
perial calendars (Uthai and Ujapanese).

We solved the game with different values for these goodwill and utility met-
rics to see how varying estimates of goodwill and utility affect the solution
to the game. Once the payoffs are known, solving a game is straightforward
using existing software. We used the freely available applet [13] on
http://www.gametheory.net. We show the solution to our game in Table 3.
The values we used for goodwill obtained by Sun and utility obtained by the
world are arbitrary and intend to represent a small sample of many possible
values. Accurately assessing these utilities is beyond the scope of this paper.

As Table 3 shows, the optimal choice of initial design is heavily affected by
Sun’s estimation of goodwill. If Sun perceives a large gain from supporting non-
Gregorian calendars, then the most cost-effective way to receive that gain is to
plan for multiple calendars from the start. If Sun feels that the added value it
would receive from supporting non-Gregorian calendars is small, then they would
choose to incrementally tack on alternate calendars to their Gregorian base.

There are alternate ways to compute these payoffs. For example, the cost to
add an incremental change could increase over time. A switch from GC to MC

http://www.gametheory.net

Modeling Software Evolution with Game Theory 363

Table 2. Simplifying assumptions that support back-of-the-envelope payoff calcula-
tions in the java.util.Calendar case study

Assumption Rationale
CMC+1|MC = 0 additions of new calendars are
CMC+2|MC+1 = 0 trivial when MC is the base design

CMC = 2CGC

design support for multiple calendars
takes more time and expense then
designing only for the Gregorian calendar

α = 1
8
, β = 1

4

β > α because legacy code using
Sun’s classes won’t need to be
converted to a competitor’s class

CGC+1|GC = 1
8
CGC incremental changes are

CGC+2|GC+1 = 1
8
CGC expensive to add to GC

CMC|GC = 3
2
CGC expensive to restructure

CMC+1|GC = 3
2
CGC from GC to MC

CMC+1|GC+1 = CMC|GC + 1
8
CGC cost of restructuring change is higher

CMC+2|GC+1 = CMC|GC + 1
8
CGC because of previous incremental change

Table 3. Solutions to backwards induction for different utility values

Goodwill obtained from World’s utility from
Solution to gameThai Japanese Thai Japanese

Calendar Calendar Calendar Calendar

0.01 × Gbase 0.125 × Gbase 0.01 × Ubase 0.125 × Ubase
Path 1: build GC,

incrementally extend

1 × Gbase 1 × Gbase 0.01 × Ubase 0.125 × Ubase
Path 12:

build MC initially

1 × Gbase 1 × Gbase 1 × Ubase 1 × Ubase
Path 12:

build MC initially

could involve API changes that dramatically increase the costs for many parties.
We limit our presentation of optimal paths to the three variations in Table 3
because we want to emphasize the approach and not our estimations of variables.
We feel an SE Team with some knowledge of their customer can provide good-
enough estimates of these variables for back-of-the-envelope computations. Put
another way, software engineering organizations are regularly making judgment
calls about which change requests are important; game theory makes the effects
of those judgments more explicit. Using an extensive game, we can see how
assumptions affect our choices and can make more informed decisions.

5 Discussion

How well does the Basic Software Evolution Game scale up to more complex
scenarios? As the quantity of design choices and change requests increase, the
game can grow dramatically in size. In addition, legacy projects may have mul-
tiple versions in active use at one time, and all of them may be undergoing

364 V. Sazawal and N. Sudan

multiple restructurings. We see the Basic Software Evolution Game as a tool for
modeling the highest-risk portions of a software project at low cost. Certainly
game theory supports complex games with more branches, more players, and
less certainty, but we believe a lightweight approach will be most appealing to
software engineering teams, at least initially.

In the java.util.Calendar case study, we chose to model the effect of IBM’s
competitive offering as a decrease in utility for Sun and the World when Sun
lagged behind. We modeled competition in this way because it is a lightweight
approach that is straightforward for software engineering teams to estimate.
However, there are times when modeling competitors explicitly will provide more
accurate decision-making support. This is especially true if a competitor’s entry
into the market is dependent on a sequence of decisions the software engineering
team may make.

6 Related Work

Economic approaches to software process engineering are numerous. A well-
known software process approach that is very similar to game theory is Theory
W; indeed, Boehm and Ross state that “Theory W also has fruitful connections
to game theory” [14, p.907]. Theory W emphasizes software processes in which
all stakeholders come out a winner [15]. The primary difference between Theory
W and classic game theory is that Theory W encourages negotiation to find a
sequence of process steps where everyone wins. In classic game theory, rational
actors only look out for themselves. Nonetheless, game theory can be used by
negotiating parties to understand if any paths in the game lead to high payoffs
for all. Such a spirit of negotiation, however, cannot occur without cooperation
from all stakeholders.

Zagal et al. present maintenance-oriented design, which views the software
lifecycle as an initial design followed by maintenance changes [16]. We use the
same model to form our games. Zagal et al. describe a case study where they
essentially follow one path of our Basic Software Evolution Game. They provide
excellent arguments for an up-front investment that eases future changes.

Game theory is a well-known component of business strategy. For example,
Brandenberger and Nalebuff present a number of real-world business cases that
illustrate the benefits of game theory [17]. In the domain of software engineering,
Oza applies game theory to client-vendor relationships in outsourcing [18]. We
believe software engineering teams need specialized, understandable models to
apply game theory to their technical design decision-making. In this paper, we
present a specific game, the Basic Software Evolution Game, as a possible model
for software engineering teams to use as they plan.

7 Conclusion

Design and maintenance decisions made throughout the software lifecycle can
have significant business implications. Lightweight game theory can help soft-
ware engineering teams plan throughout the software process. To demonstrate

Modeling Software Evolution with Game Theory 365

our approach, we present the evolution of java.util.Calendar as a an instan-
tiation of our Basic Software Evolution Game. The game expressively models
both what actually happened as well as circumstances when alternate design
decisions would be optimal. We intend to encourage software engineering teams
to consider lightweight game theory as a means to explicitly understand the
tradeoffs between their various design and maintenance options.

References

1. Sullivan, K., Griswold, W., Cai, Y., Hallen, B.: The structure and value of modu-
larity in software design. In: ESEC/FSE (2001)

2. Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR, Englewood
Cliffs (1981)

3. Denne, M., Cleland-Huang, J.: Software By Numbers. Prentice Hall PTR, Engle-
wood Cliffs (2003)

4. Dutta, P.K.: Strategies and Games: theory and practice. MIT Press, Cambridge
(1999)

5. Keeney, R.L.: Value-Focused Thinking. Harvard University Press (1996)
6. Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E.,

Madachy, R., Reifer, D.J., Steece, B.: Software Cost Estimation with Cocomo II.
Prentice Hall PTR, Englewood Cliffs (2000)

7. Parnas, D.: On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM (1972)

8. Garlan, D., Kaiser, G., Notkin, D.: Using tool abstraction to compose systems.
IEEE Computer (1992)

9. Sun Microsystems: Supported calendars (2005), http://java.sun.com/javase/6/
docs/technotes/guides/intl/calendar.doc.html

10. Phillips, A.: It’s about time (2005),
http://www.inter-locale.com/demos/about-time/about-time-ext.xml

11. Sun Developer Network: Bug ID: 4609228 (cal) RFE: Provide additional local
calendars in Java (2001-2005), http://bugs.sun.com

12. ICU Project: International components for unicode (2000-2008),
http://icu-project.org

13. Shor, M.: Extensive form game applet (2001-2006),
http://www.gametheory.net/Mike/applets/ExtensiveForm/

14. Boehm, B.W.: Theory-W software project management: Principles and examples.
IEEE Transitions on Software Engineering (1989)

15. Boehm, B.W., Bose, P.: A collaborative spiral software process model based on
theory W. In: ICSP (1994)

16. Zagal, J.P., Ahués, R.S., Voehl, M.N.: Maintenance-oriented design and develop-
ment: A case study. IEEE Software (2002)

17. Brandenburger, A.M., Nalebuff, B.J.: The right game: Use game theory to shape
strategy. Harvard Business Review (1995)

18. Oza, N.V.: Game theory perspectives on client - vendor relationships in offshore
software outsourcing. In: EDSER (2006)

http://java.sun.com/javase/6/docs/technotes/guides/intl/calendar.doc.html
http://java.sun.com/javase/6/docs/technotes/guides/intl/calendar.doc.html
http://www.inter-locale.com/demos/about-time/about-time-ext.xml
http://bugs.sun.com
http://icu-project.org
http://www.gametheory.net/Mike/applets/ExtensiveForm/

Structural Considerations in Defining Executable
Process Models

Borislava I. Simidchieva, Leon J. Osterweil, and Alexander Wise

Laboratory for Advanced Software Engineering Research (LASER)
Department of Computer Science

University of Massachusetts Amherst
Amherst MA, 01003 USA

{bis,ljo,wise}@cs.umass.edu

Abstract. This paper examines the question of how to structure the representa-
tion of a process in order to assure that the representation is effective in supporting
such diverse activities as process understanding, communication among process
participants, and process execution. The paper uses the example of a negotia-
tion process to demonstrate that one process structure (which we refer to as the
narrative form) seems to be quite effective in supporting understanding and com-
munication, but then indicates that this structure seems problematic in supporting
process execution. The paper indicates that a different structure (which we refer
to as the role-oriented form) seems much more appropriate and effective in sup-
porting execution, but may be lacking at supporting communication. In addition
to serving different purposes, the two structures seem to represent different under-
lying models–a static process model, and a similar, but more complex, execution
model. The properties of these two complementary structures are then analyzed
and evaluated. The paper then uses these observations to raise questions about
the underlying needs for effective process representation, suggesting in particular
that a single process representation may not be a suitable basis for supporting the
range of needs that process representations are expected to address.

1 Introduction

In other papers we have noted that there are many uses to which people wish to put
representations of processes [1,2]. Among these uses are the facilitation of communi-
cation and coordination, the identification of defects and deficiencies in processes, and
the automation of processes. We have previously noted that these differences in motiva-
tion have given rise to different notations with which to model and represent processes.
Thus, for example, box and arrow diagrams have been popular and successful as devices
for facilitating coordination of the efforts of process participants by communicating to
them a sense of the juxtaposition of the various roles of process performers. On the other
hand, there is growing evidence that the more formal process modeling notations could
be effective as bases for supporting process defect detection and process automation
[3,4].

Our recent experience indicates that different motivations and prospective uses for
process representations seem to suggest not only the value of different process

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 366–376, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Structural Considerations in Defining Executable Process Models 367

representation notations, but also the value of using different process representation
architectures, even when one process representation notation may seem suitable for
meeting multiple uses. In particular, this paper describes our experiences in discovering
that a process representation architecture that seemed quite suitable for supporting pro-
cess communication posed problems for supporting desirable infusions of automated
support into the performance of the process.

To be specific, the paper will describe the development of a “narrative model” of a
specific dispute resolution process, and summarize our experience in using it to help
process participants understand their roles and consider improvements. The narrative
model emphasizes the intermixing of the activities of the various process participants,
thereby elucidating various coordination issues. The paper then goes on to describe the
difficulties that we encountered when we attempted to use this representation as a guide
in inserting the use of automation in order to address some of the coordination issues.
The difficulties we encountered caused us to completely refactor our process model in
order to structure it around specifications of the different roles played by different types
of process performers. The “role-based model” of the dispute resolution process has
been effective as the basis for supporting the desired automated support. On the other
hand, the role-based model seems significantly less useful than the narrative model in
supporting communication among the process participants.

The paper begins by presenting a summary of the process to be modeled and the
initial narrative model used to describe it. The paper then indicates the problems we
encountered when we attempted to use this model as the basis for automation. The
paper then presents the role-based model resulting from the refactoring of the narrative
model. Finally, the paper ponders various issues raised by this experience, some of
which indicate the possibility of an inherent need for different process languages and
architectures in order to effectively meet various user needs.

2 The Process—Online Dispute Resolution

In earlier papers we have described our efforts to use process definition and analysis
technology to facilitate the resolution of disputes [5,6]. In those efforts, we collaborated
with the US National Mediation Board (NMB) to develop a process definition of the ap-
proach that NMB uses to mediate disputes in the US transportation industries. Our goals
in doing this were various, and included 1. helping the NMB to understand their process
so that they might improve it, 2. enabling the NMB to involve disputants in arriving at
mutually agreeable approaches to the mediation of their disputes, 3. helping the NMB
to train new mediators, and 4. supporting NMB’s process with automation in order both
to create efficiencies and to create novel mediation approaches made possible through
automated support. In pursuing this last goal we were aiming at the development of sys-
tems that are commonly described as Online Dispute Resolution (ODR) systems. This
term is used to describe systems that exploit computer and communication technologies
to facilitate the resolution of disputes.

The vehicle we used for defining NMB’s dispute resolution process was the Little-
JIL process definition language [7]. The features of this language are addressed in nu-
merous other papers, and for that reason (and because of space limitations) we omit

368 B.I. Simidchieva, L.J. Osterweil, and A. Wise

Conduct Mediation Session

Present Issue and Interests Option Solicitation Phase Display Categories To Participants Identify Common Set of Acceptable Options

Fig. 1. Narrative flow of process

descriptions of most of those features here. A central feature of Little-JIL is that it sup-
ports the definition of processes as steps (represented as black bars in Figures 1-4) that
are organized hierarchically (with child steps connected to the left half of their parent’s
step by edges), and where each step is annotated with a specification of the type of agent
that is responsible for the step’s performance. In the case of the NMB’s dispute resolu-
tion process, some steps are annotated as being the responsibility of the mediator, while
other steps are annotated as being the responsibility of a disputant. The NMB’s process
assumes that there are two sides in every dispute, and that each side may be represented
by more than one disputant. In some cases a step may be annotated to mandate that it
is to be performed by a disputant from a side that is either the same, or opposite, of the
side of a disputant that performed some other step.

As is often the case in creating a model of a process, elicitation of the process became
an issue of central importance. Experience in several domains [3,8] has suggested to us
that one coherent overarching view of the process is often unavailable, and must be
synthesized by putting together different views of the process, each being elicited from
a different participant in the process. In the case of the NMB dispute resolution process,
however, our elicitation efforts were considerably aided by a domain expert who was a
very senior, very experienced mediator. This domain expert was the source of both the
high level view of this process, and many of the details needed to support formulation
of a coherent view of the process. Our domain expert also indicated places and ways in
which different mediators and mediation situations dictated the desirability of creating
variants from the baseline mediation process.

From a very high level point of view the process definition that emerged can be
viewed as the orchestration of a carefully structured multi-person conversation. The
structure specifies first the elucidation of the issues underlying a dispute by the medi-
ator, then the injection of ideas and views by the disputants, then the summarization
of these by the mediator, and then the iteration of suggestions for a resolution by the
mediator, with responses by the disputants. The process is defined to iterate either until
agreement on a resolution has been reached, or until it is agreed that agreement cannot
be found. This description of the process strongly suggests that showing the interactions
of the mediator and the participants (both individual disputants and their parties) would
seem to capture of essence of this process.

Figure 1, for example, shows a small portion of the Little-JIL definition of this pro-
cess in which the mediator and disputant activities are interleaved (note that the right
arrow in the root step’s step bar indicates sequential execution of its child steps), with
the mediator presenting the issue and interests, the disputants contributing possible op-
tions that might address the issue, the mediator then categorizing and presenting the
contributed options, and the disputants identifying a common set of acceptable options.
Figure 2 shows another portion of the process in which the mediator, after having the

Structural Considerations in Defining Executable Process Models 369

Identify Common Set of Acceptable Options

Identify Acceptable Solution

No Acceptable Options to Either Party

No Acceptable Options to One Party

No Mutually Acceptable Options

Fig. 2. Interruption of normative flow

disputants attempt to identify a common set of acceptable options, decides that it is
necessary to interrupt the interactions among the disputants in order to deal with the
fact that the process has not identified any mutually acceptable options. Our experi-
ence suggests that the process model depicting these interactions helped the mediator
to gain a better understanding of the nature of the process, and was indeed useful to him
and to the NMB in the training of new mediators. Further, preliminary experience has
suggested that disputants should be better able to accept the process because this view
helped them to understand why they were being asked to structure their participation as
mandated (e.g. why from time to time it is desirable for the mediator to interrupt ongo-
ing discussions). Thus this experience suggested that this model of the process was of
considerable value in addressing goals 1, 2 and 3, outlined above.

When we moved on to address goal 4, the provision of automated support for the
process, difficulties became apparent.

3 Supporting Execution of the ODR Process

Little-JIL’s semantics are rigorously defined by means of finite state machines. The se-
mantics define the behavior of a step to be quite similar to the behavior of a procedure
invocation. Thus, each step definition includes a specification of input and output pa-
rameters that function in a way that is similar to that of the formal parameters of a
procedure. The edge that connects a Little-JIL step to its parent can carry arguments
that are bound to the child step’s formal parameters at run time. As noted above, each
step is annotated with a specification of the type of agent that is to be responsible for
the performance of the step, and at runtime a resource manager searches a repository of
available resources to identify and then bind a resource instance that matches the step’s
agent type. After this has been done, the step is ready to be executed.

All that being the case, the execution of a Little-JIL step is left to the resource in-
stance that has been bound as the step’s agent. Little-JIL’s runtime system allocates to
each agent an agenda, which is a list of the steps to which the agent has been assigned.
The step’s input arguments are passed to the agent by placing them in the agenda item
that corresponds to the step. Similarly, once the step has been executed, the resulting
output arguments are placed by the agent into the agenda item that corresponds to the
completed step, and execution then proceeds.

From this point of view it can be seen that execution of a process defined in Little-JIL
is centered largely upon the manipulation of the agendas of the various agents that are
participating in the process. It is particularly important to note that there may be many

370 B.I. Simidchieva, L.J. Osterweil, and A. Wise

Option Solicitation Phase

Contribute Options
Allow Questions

Ask Questions
Participant+ Participant+

Fig. 3. Option solicitation phase

resource instances of the same type participating in the execution of a process. Thus,
for example, there will be many resource instances of type participant (disputant) in an
ODR process. Each of these resource instances must have its own agenda, containing
agenda items that are the specific steps to be executed by that resource instance. Thus,
for example, when a specific resource instance, say Participant1 is assigned the task
of submitting a comment, only Participant1 can carry out that task. Moreover, a reply
intended for Participant1 must be delivered only to Participant1, not to any participant
who might be available.

The need to treat each resource instance individually raised problems in our efforts
to use the narrative version of our ODR process as the basis for execution of the pro-
cess, as the narrative version of the process is essentially a static structure of step types
(e.g. steps that are to be bound to any resource instances of a specified type), but the
execution of the process results in a more complicated, dynamic structure that requires
the management of individual step instances (i.e., the specific steps that each of the
resource instances is charged with carrying out).

To be specific, note that Figure 3 defines the way in which the option solicitation
phase, one of the bottom level steps referenced in Figure 1, is to be carried out. First,
the disputants are asked to contribute options (the Participant+ notation on the step’s
incoming edge indicates that the subprocess Contribute Options, whose details are not
shown here, is to instantiated once for each agent of type Participant), then, after a certain
number of options have been suggested, the mediator can choose to allow participants to
ask questions by executing the Allow Questions step, after which participants can submit
clarifying questions about identified options in the Ask Questions subprocess.

Difficulties with the narrative architecture become clearer when considering the case
when only some participants who have submitted options are allowed to ask questions.
Since the two subprocesses that are executed by disputants, Contribute Options and Ask

Questions, are instantiated once per each participant separately, there is no way of know-
ing whether a participant for whom Ask Questions is instantiated has actually submitted
any options. In order to solve this problem and also to be able to account for disputants
on a per-instance basis, the process could be restructured so that the entire Option Solicita-

tion Phase subprocess is instantiated once for each participant. Although this addresses
the original concern, it would also result in the mediator having to execute the Allow
Questions step multiple times, to allow each single disputant to proceed. This is highly
undesirable because it introduces unnecessary work for the mediator and is, moreover,
error-prone since it might result in a disputant being overlooked inadvertently.

Structural Considerations in Defining Executable Process Models 371

Conduct Mediation Session

Iterate
Change Phase

Contribute Options Ask Questions

MediateParticipate

Participant+

[contributionsAllowed]

*

[questionsAllowed]

Fig. 4. Role-based architecture

This difficulty is only one example of the way in which the narrative form of the
process turned out to be quite unsuitable for specifying important forms of agent in-
teractions clearly, precisely, and tersely. As indicated above, an obvious way in which
to address this sort of difficulty is to define such a process in such a way that there is
a separate process subtree defining this interaction for each resource instance of type
Participant at every point in the process where an interaction between mediator and par-
ticipants was defined. Ultimately, as noted above, the process definition structured in
this way must become large, complex, and increasingly difficult to understand.

Our solution to this problem was to refactor the process definition as a role-based
process, in which each of the activities of each of the resource instances was modeled
as a separate Little-JIL process tree, with all such trees defined to be executing in par-
allel with each other. Figure 4 shows the portion of the process needed to represent the
process structure from Figure 3 (note that the parallel execution of these trees is denoted
by the = sign in the step bar for the step that is the parent of all of these instances). In
this process, the left branch (Participate) is performed by each participant, and the right
branch (Mediate)–by the mediator. Participation in this process is an iterative activity in
which for each iteration, the predicates associated with Contribute Options and Ask Ques-

tions consult the process state, which is specified by the mediator’s use of Change Phase

(and in the case of Ask Questions by the participant’s previous actions) to determine
which actions can be performed currently.

This role-based process architecture made it straightforward to define the actions of
each resource instance, and to separate the actions of the different agents of the same
type because this architecture mimics the dynamic execution model closely, unlike the
narrative process architecture, which is based on the static model. On the other hand, the
role-based process made it correspondingly difficult to indicate the necessary coordina-
tion of the activities of the different agents. In the role-based process, a message-passing
channel construct in Little-JIL is used to define the transfer of messages and information

372 B.I. Simidchieva, L.J. Osterweil, and A. Wise

between the mediator (for example) and each of the separate participants (for example).
This use of channels is effective in defining appropriate coordination, but at the expense
of the clarity that is a feature of the narrative form of the process definition. Thus we see
that the need for executability (goal 4) has given rise to the need for a process defini-
tion architecture that does indeed support executability, but at the expense of goals 1, 2,
and 3.

4 Discussion

Our experience in developing the executable form of our ODR process has called into
question our previous belief that there was a single representation of a process that was
equally effective in supporting all of the many desired uses for process representations.
Previously, we had believed that it was essential to identify a process definition lan-
guage that was sufficiently clear, precise, and broad in semantic scope. Although we
still believe that this is essential, we now also believe that even such a process defini-
tion language may need to be used in different ways in order to represent a process in
ways that are effective in supporting different process uses.

This experience highlights particularly clearly that the need to actually execute a
process definition raises a set of issues and requirements that are different from the is-
sues and requirements that seem to be foremost in supporting process understanding
and communication. One key difference seems to be that process execution requires the
creation and maintenance of the dynamic state of the executing process. One particu-
larly important aspect of the dynamic state of a process is its specification of the precise
activities that each of the performers of the process is engaged in at any time, and which
precise artifacts and other resources are being used in order to carry out these activities.
This dynamic model can become very different from the static process definition. Espe-
cially in cases where resource instances of the same type are performing activities at the
same time as each other, it becomes clear that a structure such as the narrative process,
which is a structure of types of resources, lacks an important dimension, namely facil-
ities for specifying the different items of information relevant to each of the different
instances. This need to address the different characteristics, activities, and artifact uti-
lization for each different resource instance is met far more successfully and effectively
by the role-based process structure exemplified by Figure 4. As noted above, however,
this process structure seems notably less clear for the purposes of understanding than
the narrative form.

Interestingly, the desire to gain process understanding and communication through
process elicitation leads to a similar conclusion. The case described above was unusual
in our experience in that a single domain expert had a clear understanding of the role of
all involved in the process being described. It is far more usual to find that in processes
involving multiple types of agents, each contributer has a clear view of his or her own
participation, but a less clear view of what others contribute. Thus each contributor
group (corresponding to a type of agent) can be helpful in contributing information
needed to define a different parallel branch of the process structure. The role-based
process structure is often the logical starting point in dealing with such processes, and
it then becomes important to refactor this role-based structure to synthesize a narrative
structure from it for communication purposes.

Structural Considerations in Defining Executable Process Models 373

In retrospect, our view that processes are a type of software should have suggested
far sooner the need for these types of structures. If a process definition is analogous to
the text of an executable program, then the structure of an executing process should be
expected to be analogous to the internal structure of an executing program, which is
clearly very different from its source text. Indeed a process that integrates and coordi-
nates the actions of different types of participants–and multiple instances of different
participant types–seems quite analogous to a software system composed out of compo-
nents each of which supports multiple execution threads. A visualization of such com-
plex parallel, multi-threaded systems should not be expected to bear much resemblance
to the source text of such systems, thus presaging the situation described here.

Indeed, as in the case of complex software systems, different needs dictate the need
for two representations. A narrative structure–a static representation that is a structure
of types of activities, artifacts, and resources–seems necessary to aid understanding.
A role-based structure–a dynamic representation, which is necessarily a structure of
instances–however, serves a different set of needs. Although our initial expectation was
that the instance structure needed to support representation of the process dynamic state
might be patterned closely after the static structure, the experiences in this paper now
strongly suggest that this may not be a realistic expectation. The analogy of processes
to programs further suggests that this expectation is probably unrealistic.

4.1 Future Directions

The preceding discussion suggests a number of directions for future research. Most
immediately, we note that the role-based structure of a process is not itself an actual
representation of the dynamic state of an executing process, but rather a suggestion
of at least part of its underlying structure. We propose to take the suggestion and use
it as the basis for creating just such a clear representation of the dynamic state of a
process. We will do this with a recognition of the probable analogy to the problem of
representing the state of an executing concurrent, multi-threaded program. Accordingly,
we expect to draw upon work from that domain, while also expecting that our work
in the process domain might have applicability to the domain of concurrent program
visualization.

In previous work [9], we discussed the benefits of considering closely-related pro-
cesses as variants of one another, and proposed an approach for reasoning about a
collection of such variants by defining process families. We described a process fam-
ily as a group of processes that are the same, or sufficiently similar, at a high level
of abstraction, but may exhibit differences, or variations, at lower levels of abstrac-
tion. This definition rested on the assumption that all variants within a family share
a common process core, and the variations are different elaborations of this common
core.

According to this definition, the narrative and the role-based process architectures
described in this paper are not members of the same process family because they are
not elaborations of a common process core. It is apparent, however, that these two
architectures have a lot in common. Contrary to our previous experience with pro-
cess variants, these two process architectures share low-level functionality (e.g. a dis-
putant contributing an option, or the mediator presenting an issue statement), but have

374 B.I. Simidchieva, L.J. Osterweil, and A. Wise

completely different orchestration of events at the high level. They might even be con-
sidered to be different projections of the same underlying model since, ultimately, they
both define the same process functionality. If these two process architectures can be
construed as different views of the same model, they must be members of the same
process family.

This clearly indicates that further investigation is needed to determine if the narra-
tive and role-based versions of the negotiation process are variants of one another, and
whether our initial definition of a process family needs to be reassessed to accommodate
architecture differences.

Finally, in undermining the expectation that there should be only one form of a pro-
cess representation that supports all possible uses, this work also raises the question of
how many different process representation structures may be needed in order to support
all of the many varied uses of processes. Indeed, such an understanding of the basic
structures needed to support different uses may lead to clearer understandings of the
notations best suited to supporting these different representations. This may in turn,
then, help to shed new light on the ongoing question of which process representation
notations are best suited for which needs.

5 Related Work

There are many approaches to representing processes, and moreover, many of the ap-
proaches to representing software systems are also quite applicable to representing
processes as well [10,11]. Most approaches, such as UML module interaction dia-
grams [12] and IDEF diagrams [13] are similar in goals and design to the narrative
form described in this paper. Others, such as UML message sequence diagrams (or
“ladder charts”) [12] are more similar in goals and design to the role-based form de-
scribed here. It is also interesting to note that scientific workflow systems such as Ke-
pler [14] are more in the style of the narrative form of description, but it has been
noted that this form is increasingly inadequate as the scientific processes that it de-
scribes are to be used to support process execution [8]. Finally, we note that work
on Viewpoints [15] also recognizes the value of representing a system as a collection
of the different views of the system by the different participants and observers of the
system.

Thus the observations described in this paper are not inconsistent with work that
has been done previously in the area of software systems. Our paper, however, indicates
that the need for these two different structural approaches is also present in representing
processes. Moreover, our work suggests that the desired application may have a particu-
larly important role to play in deciding which structural approach to use. The role-based
structure seems particularly useful and necessary in supporting execution, while clear
communication of coordination issues seems to indicate the use of the narrative form.
Our ongoing work is attempting to determine whether a process family approach may
indicate how the two structures may be considered views of a more fundamental form.
If so, then this work should also be interesting and applicable in the domain of software
system modeling and representation.

Structural Considerations in Defining Executable Process Models 375

Acknowledgments

The authors wish to express gratitude to Stanley M. Sutton, Jr, Barbara Staudt Lerner,
Lori A. Clarke, and members of the Laboratory for Advanced Software Engineering
Research at the University of Massachusetts Amherst who have participated in this
research, and clarified the points made in this paper.

This material is based upon work supported by the US National Science Founda-
tion under Award Nos. CCR-0427071, CCR-0204321 and CCR-0205575. The views
and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of The National Science Foundation, or the U.S. Government.

References

1. Zhu, L., Osterweil, L.J., Staples, M., Kannengiesser, U., Simidchieva, B.I.: Desiderata for
languages to be used in the definition of reference business processes. International Journal
of Software and Informatics 1(1), 37–65 (2007)

2. Osterweil, L.J.: Unifying microprocess and macroprocess research. In: Li, M., Boehm, B.,
Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 68–74. Springer, Heidelberg (2005)

3. Clarke, L.A., Avrunin, G.S., Osterweil, L.J.: Using software engineering technology to im-
prove the quality of medical processes. In: ACM SIGSOFT/IEEE 30th International Con-
ference on Software Engineering (ICSE 2008), pp. 889–898 (May 2008); Invited keynote
address by Lori A. Clarke

4. Chen, B., Clarke, L.A., Avrunin, G.S., Osterweil, L.J., Henneman, E.A., Henneman, P.L.:
Analyzing medical processes. In: ACM SIGSOFT/IEEE 30th International Conference on
Software Engineering (ICSE 2008), pp. 623–632 (May 2008)

5. Osteweil, L.J., Katsh, E., Sondheimer, N.K., Rainey, D.: Early lessons from the application of
process technology to online grievance mediation. In: 2006 National Conference on DIgital
Government Research (2005)

6. Osterweil, L.J., Clarke, L.A., Gaitenby, A., Gyllstom, D., Katsh, E., Marzilli, M., Sond-
heimer, N.K., WIng, L., Wise, A., Rainey, D.: A process-driven tool to support online dis-
pute resolution. In: International Conference on Digital Government Research, pp. 356–357.
ACM Press, New York (2006)

7. Wise, A.: Little-JIL 1.5 Language Report. Technical report, Department of Computer Sci-
ence, University of Massachusetts, Amherst, MA (2006)

8. Osterweil, L.J., Clarke, L.A., Podorozhny, R., Wise, A., Boose, E., Ellison, A.M., Hadley,
J.: Experience in using a process language to define scientific workflow and generate dataset
provenance. In: ACM SIGSOFT 16th International Symposium on Foundations of Software
Engineering (FSE16), pp. 319–329 (2008)

9. Simidchieva, B.I., Clarke, L.A., Osterweil, L.J.: Representing process variation with a pro-
cess family. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp.
109–120. Springer, Heidelberg (2007)

10. Osterweil, L.J.: Software processes are software too. In: 9th International Conference on
Software Engineering (ICSE 1987), pp. 2–13 (March 1987)

11. Osterweil, L.J.: Software processes are software too, revisited. In: 19th International Confer-
ence on Software Engineering (ICSE 1997), pp. 540–548 (September 1997)

376 B.I. Simidchieva, L.J. Osterweil, and A. Wise

12. Object Management Group: OMG Unified Modeling Language (OMG UML) Super-
structure. Technical Report formal/2007-11-02, Object Management Group, Version 2.1.2
(November 2007)

13. US Air Force: ICAM architecture. part II, functional modeling manual (IDEF0). Technical
Report AFWAL-TR-81-4023, Materials Laboratory, Wright-Patterson Air Force Base (1981)

14. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y.: Scientific workflow management and the kepler system. Concurrency and
Computation: Practice & Experience 18(10), 1039–1065 (2006)

15. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between multiple
views in requirements specification. In: Proceedings of the 15th International Conference
on Software Engineering, pp. 187–196 (May 1993)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 377–388, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Analyzing a Software Process Model Repository for
Understanding Model Evolution

Martín Soto, Alexis Ocampo, and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
{soto,ocampo,muench}@iese.fraunhofer.de

Abstract. Process models play a central role in the process improvement cycle.
Often, large process models evolve in an ad-hoc manner, a fact that may easily
have critical implications such as increased maintenance effort. This highlights
the need for supporting the control and management of process model evolu-
tion, a kind of support that is currently widely missing. Analyzing existing
model repositories in order to better understand model evolution can be seen as
a first step towards identifying requirements for process model evolution sup-
port. This article presents a study that analyzes the evolution history of a large
process model with the purpose of understanding model changes and their con-
sequences. Besides the study description, the article provides an overview of re-
lated work, and suggests open questions for future work.

Keywords: process modeling, process model change, process model evolution,
model comparison, V-Modell XT, Evolyzer.

1 Introduction

Process models play a central role in the process improvement cycle. On the one
hand, process analysis activities intended to identify improvement opportunities use
models as one of their main inputs. On the other hand, the process model (usually in
the form of a process guide) constitutes the main support process actors have in order
to enact the process accurately. For this reason, any proposed process improvements
will only be enacted if they are added to the model first. The consequence is that
process models must be maintained in lockstep with the process itself, in order for
controlled process improvement to happen in a sustained fashion.

Given its importance for process improvement, as well as the large size and complex-
ity of many industrial process models, it comes as a surprise that support for managing
model evolution is still widely missing. Standard version management tools are gener-
ally barely adequate for the task of storing a model's version history, or observing and
analyzing the changes that have happened to it. This is in stark contrast to the situation
in code evolution, where version management has been practiced for decades, and
countless research efforts have been devoted to analyzing the resulting version histories.

It it this lack of proper evolution support for process models that motivated us to
perform the empirical study presented in this article. In the study, which is a

378 M. Soto, A. Ocampo, and J. Münch

follow-up to previously published work by the authors [1], we analyzed a set of 604
development versions of a large process model with the purpose of identifying change
patterns and understanding their effect over time. The underlying assumption is that,
given the size and complexity of the studied model, its development process will have
a behavior similar to that of a standard software development process over time. In
order to perform the study, we used our Evolyzer model comparison system to com-
pare versions along the history pairwise, and produced a database of detailed changes
that was, in turn, the subject of graphical and statistical analysis.

We see the main contributions of this work at two different levels. At the level of
the concrete study, our results provide some further evidence of the similarity be-
tween the evolution of large models and that of industrial software systems. These
similarities suggest, in turn, that in order for model-based development to succeed,
support for model evolution must be improved until it is at least as good as support
for code evolution is now. Furthermore, at a more general level, our study can be seen
as a demonstration of the practical feasibility of observing and analyzing the evolu-
tion of complex process models, as well as of the suitability of our model comparison
tools for this purpose. In this sense, we expect our work to provide a basis for more
advanced empirical work on process model evolution in the future.

The rest of the paper is organized as follows: Section 2 describes the execution of
the empirical study and analyzes its results, Section 3 briefly surveys related research
work, and Section 4 presents the main conclusions of the work and discusses a num-
ber of research questions resulting from the present work that we would like to ad-
dress in the future.

2 An Empirical Study on Model Follow-Up Change

As stated above, the assumption underlying our empirical work on process model
evolution is that there exists a strong parallel between model evolution and general
software evolution. For this study, we concentrated on one particular aspect, namely,
the effect of changes on stability. Our central research question was whether changes
made to a model are likely to introduce problems that must be corrected in follow-up
changes. A positive answer to this general question would imply that, similar to the
case of code development, projects dealing with the development and maintenance of
complex models have to plan for a stabilization period when doing extensive changes.

2.1 The German V-Modell XT

We investigated this main research question in the context of a large software process
model, the German V-Modell® XT. The V-Modell XT [2] (not to be confused with
Royce’s V-Model [3]) is a high-level process description that is currently being
adopted as the software development standard for the German public administration.
It covers such aspects of software development as project management, configuration
management, software system development, and change management, among others.
In printed form, the latest English version at the time of this writing (version 1.2.1) is
765 pages long and describes about 1500 different process entities. Internally, the V-
Modell XT is structured as a hierarchy of process entities interconnected by a

 Analyzing a Software Process Model Repository for Understanding Model Evolution 379

complex graph of relationships. This structure is completely formalized, and suitable
for automated processing. The actual text of the model is attached to the formalized
structure, mainly in the form of entity and relationship descriptions, although a num-
ber of documentation items (including a tutorial introduction to the model) are also
integrated into the structure in the form of so-called text module entities.

Actual editing of the model is performed with a software tool set created specifi-
cally for this purpose. The printed form of the V-Modell XT (a process guide) is gen-
erated automatically by traversing the structure in a predefined order and extracting
the text from the entities found along the way. The V-Modell XT contents are
maintained by a multidisciplinary team of experts, who work, often concurrently, on
various parts of the model. In order to provide some measure of support to this
collaborative work, the model is stored as a single XML file in a standard code ver-
sioning system (CVS). As changes are made by the team members, new versions are
created in this system. Being a standard versioning system intended for code, CVS is
able to store a version history and maintain a simple change log, but can hardly pro-
vide useful information about the actual changes done in each version. In particular,
the output of the diff program used by CVS to compare versions cannot easily tell
which entities were affected by a version or in which way they were changed.

The change logs show that, since its initial inception, the model has been changed
often and for a wide variety of reasons. Changes may be as simple as individual spell-
ing or grammar corrections, or as complex as the introduction of a whole set of proc-
esses for hardware development and software/hardware integration. The richness and
complexity of this change history makes the V-Modell XT a very interesting target for
evolution analysis.

The descriptive analysis we performed in our exploratory study [1] showed that
much of the changing activity concentrated around public releases of the model and
affected some process modules much more than others. While looking at the changes
that happened to model entities, both at the aggregated process module level and at
the detailed single entity level, one phenomenon was apparent in the graphs, namely,
that “bursts” of activity could be observed that tended to calm down after a few ver-
sions. The present study concentrates on these bursts, with the aim of determining if
they constitute a significant evolution pattern for the V-Modell XT.

2.2 Hypotheses

One possible way to explain the activity bursts (and probably one that would be rather
obvious to anyone familiar with software development) is that primary changes, that
is, changes intended to introduce new features or to restructure the model, often intro-
duce defects that have to be corrected later on, by doing a number of secondary or
follow-up changes. So, one activity burst would actually consist of a primary change,
maybe split into a few versions, and a number of follow-up changes intended to rees-
tablish model correctness. Proving this conjecture is difficult, however, since it would
require an objective classification of changes into primary and secondary ones, a task
that would most probably require human judgment in many cases.

Still, we can target a weaker form of the conjecture, namely, that changing an area
of the model increases the probability of changes happening to the same area in the
near future. This would mean that activity bursts observed by visual inspection of the

380 M. Soto, A. Ocampo, and J. Münch

graphs have statistical significance, that is, they cannot be simply explained by
chance, or by artifacts of the graphical representation used.

One difficulty that arises here is that of defining what exactly an “area” of the
model is. Actually, given the complex structure of the V-Modell XT, there would be a
number of potential, reasonable definitions, covering various levels of granularity. As
an initial step, we decided to work at a fine level of granularity, and analyze changes
at the entity level. The main rationale for this decision is that if we can observe the
phenomenon at the entity level, it holds also at least for the larger entity containers,
whereas the opposite cannot be stated.

The previous considerations led us to the following two hypotheses:
H1: Changing a process model entity in a particular version increases the probabil-

ity of changing it again in subsequent versions.
H2: Changing a process model entity at a given date increases the probability of

changing it again in the following days.
In the hypotheses, we are not making any statements about the particular way in

which the probability of further changes should increase after a change. Our current
knowledge of the evolution of this and other models is still too limited to provide a
more detailed mathematical model of how a change affects the probability of future
changes to the same area.

One conclusion that would immediately follow from the hypotheses above is that
changes to an entity in the various versions in the history are not independent events:
that is, changes to an entity affect the likelihood of future changes to the same entity.
Based on this observation, we formulate our null hypotheses as follows:

H10: Changes to a process model entity in a particular version are independent
from changes to the same entity in all other versions. Moreover, there is a fixed prob-
ability pv of changes occurring to an entity in a particular version, for all versions and
for all entities present in each version.

H20: Changes to a process model entity on a particular day are independent from
other changes to the same entity. Moreover, there is a fixed probability pd of changes
occurring to an entity on a particular day, for all days in the studied period and for all
entities present in the model during that period.

Notice that, if falsified, these null hypotheses are weaker than the negation of the
alternative hypotheses, namely, they would show that there exists a dependency be-
tween changes in different versions and at different points in time, but they would not
guarantee that the probability of follow-up changes actually increases. We will ad-
dress this point later.

2.3 Data Preparation

As for the initial study, the first step we took in order to make it possible to analyze
the V-Modell's change history statistically was to read a sizable portion of the V-
Modell XT's versioning history into our Evolyzer model comparison system. Al-
though a description of the internal operation of Evolyzer is beyond the scope of this
paper (see [4] for details), a short explanation of its workings is in order. The basis of
the system is a model database that can contain an arbitrary number of versions of a
model. Model versions in the database are represented using the RDF notation [5],

 Analyzing a Software Process Model Repository for Understanding Model Evolution 381

and the whole model database can be queried using a subset of the SPARQL [6] query
language for RDF.

The main purpose of Evolyzer is to allow for comparing model versions from the
database. Given two arbitrary versions, the system computes a so-called comparison
model, which contains all model elements (RDF statements, actually) present in the
compared versions, marked with labels indicating whether they are common to both
versions or are only present in one of them and, in the latter case, which of the ver-
sions they come from. Given the high level of granularity of this comparison, identi-
fying changes in it by direct inspection is generally a difficult task. For this reason,
change identification is performed by defining special change patterns (see [4] for a
detailed explanation) that match particular types of changes in the comparison model.
Evolyzer provides an efficient interpreter for the pattern language, which can identify
instances of a particular pattern in the comparison model of two arbitrary versions.

For the present study, we attempted to read 604 versions from the original version-
ing repository into our system. These versions were created in a little more than two
years' time, with three major and one minor public releases happening during that
period. Since Evolyzer uses the RDF notation for model representation (this is neces-
sary in order for our comparison technique to work at all), each V-Modell version was
mechanically converted from its original XML representation into an RDF model
before reading it into the system. This conversion did not add or remove information,
nor did it change the level of formalization of the original process description. The
conversion process was successful for all but 4 of the 604 analyzed versions. These
four versions could not be read into our repository because their corresponding XML
files contained syntax errors, and they were replaced by copies of the previous version
in order to prevent our system from reporting spurious changes.

After importing the version history, we proceeded to compare the versions pairwise
to identify individual changes happening from one version to the next. As changes, we
considered the addition or deletion of entities, the addition or deletion of relations
between entities, and the alteration of text properties. We identified these changes by
defining corresponding change patterns and searching for them in the version compari-
sons. Information about each of the identified changes, including type, version number,
and affected process entities, was encoded in RDF and stored in the repository together
with the model versions. This allowed us to easily go from the change information to
the actual model contents and back from the models to the changes as necessary for our
analysis (see [7] for the details of how this cross-referencing works).

2.4 Data Analysis and Interpretation

In order to test our first hypothesis, we proceeded to look for pairs of consecutive
changes in the model history. A pair of consecutive changes is defined as a triple (e,
v1, v2), with e a model entity, and v1, v2 version numbers, such that

1. v1 < v2.
2. v1 and v2 contain changes that affect e.
3. no version v, with v1 < v < v2, contains changes affecting e.
In other words, these are pairs of versions that change the same entity, with none of

the versions lying between them affecting the entity.

382 M. Soto, A. Ocampo, and J. Münch

If our first null hypothesis H10 holds, the probability of an entity being changed by
a particular version has a fixed value pv. This, in turn, implies that the process of
changing an entity over its history can be modeled as a Bernoulli process with prob-
ability pv, where each new version containing the entity is seen as a Bernoulli trial and
the trial succeeds if the corresponding version actually changes the entity.

Let us now consider the length v2 – v1 of a pair of consecutive changes. If the
change process is actually a Bernoulli process, the probability P(l) of the pair having a
particular length l would be given by the geometric distribution, that is

This formula is easily understood as the probability of making l – 1 unsuccessful

trials followed by one final, successful trial.
In order to determine if this is actually the case in the V-Modell history, we queried

our model evolution database to find all text changes (changes to text attributes) affect-
ing entities in the model during the observed period, and, with the help of some simple
postprocessing of the query results, identified all pairs of consecutive changes in the
history as defined above. We found 2835 individual pairs during the period studied.

Figure 1 is a histogram of the lengths of these pairs, with categories of width 10.
47.3% of the pairs have a length of 10 versions or less, 71% of 50 versions or less,
and 90.2% of 170 or less.

As explained above, if the null hypothesis holds, this observed distribution should
correspond to the geometric distribution for the probability pv. In order for a good-
ness-of-fit test to be possible, it is necessary to estimate a reasonable value for pv. We
tried two different methods for estimating this value.

The first method is based directly on the null hypothesis. If the probability of mak-
ing changes to any particular entity in any particular version is always the same, we
can look at the complete history as a single Bernoulli process in which the individual
histories of the various process entities are placed in a single row in some arbitrary
order. The total number of trials in that process would then correspond to the sum of
the lengths of the individual histories of the entities in the model. Since entities are
introduced and deleted along the history, the length history varies from one entity to

Fig. 1. Distance in versions for consecutive entity changes

 Analyzing a Software Process Model Repository for Understanding Model Evolution 383

the next. Using database queries for the creation and deletion points of entities, we
calculated the total number of trials to be approximately 1.150.000 and the total num-
ber of changes to be 4248, producing a value of 0.0037 for pv. The curve for the re-
sulting geometric distribution is compared with the original histogram in Figure 1,
where it is shown as a dashed line. A chi-square goodness-of-fit test for this case
yielded a p-value smaller than 0.0001.

The second method we tried in order to determine the value of pv was to use a
standard optimization procedure to find a value of pv that minimizes the chi-square
value with respect to the actual data. The pv value obtained was 0.0133, with a
p-value for the goodness-of-fit that is still below 0.0001. The curve for this prob-
ability value is shown in Figure 1 as a solid line. Given the very low probability
obtained in both cases for the chi-square tests, we can reasonably reject our first
null hypothesis, H10.

The direct implication of rejecting the null hypothesis is that we are observing a
certain level of dependency among changes. Still, it is not clear if this dependency
really implies a higher probability of subsequent changes after a change. The com-
parison in Figure 1, however, shows that the first categories are much higher than
those predicted by the estimated geometric distributions. This means that there is a
high number of short pairs (indicating changes that are very close to each other) that
could not be explained if changes were assumed to happen with a fixed probability.
This supports our alternative hypothesis H1.

For the second hypothesis, we extended the previous analysis to also consider the
time when changes were made. For each of the identified pairs of consecutive
changes, we measured the distance in days between the check-in operations corre-
sponding to the versions v1 and v2 in the pair, and discarded those pairs where the
changes happened on the same day. This left us with 2324 of the original 2835. Fig-
ure 2 contains a histogram of the distances obtained, with the categories correspond-
ing to 10-day intervals.

Fig. 2. Distance in days for consecutive entity changes

384 M. Soto, A. Ocampo, and J. Münch

The first approach used in the previous case to estimate the value of pv cannot be
used here as easily, because the number of entities in the model can vary in the course
of a single day. For this reason, we used only the chi-square optimization method to
estimate the value of the probability pd of an entity being changed (at least once) on a
particular day. The resulting curve can be seen as a solid line in Figure 2. The actual
resulting value was 0.0133 with a goodness-of-fit p-value also below 0.0001. The
conclusion is analog to the one for the previous case: The null hypothesis H20 can also
be rejected in this case. Similarly, the pronounced peak in the first category observed
in the graph over the theoretical distribution contributes the remaining support to our
alternative hypothesis H2.

2.5 Threats to Validity and Limitations

Although the high significance of the previous results clearly shows that the null hy-
potheses can be rejected, at least in the stated form, the question remains of whether
the assumption of a constant change probability over all entities in the model, and for
all model versions (or days in the studied period) actually holds in practice. For the
time case, for instance, activity increases around releases, which would lead to shorter
consecutive change distances in days for the time periods around releases. This effect,
however, would be only observable when measuring change distances in days, but not
when measuring them in versions, so the fact that the effect is observed in both of
them actually speaks against this risk.

It is also quite possible that certain entity types may have higher change probabili-
ties, and this may explain at least some instances of the short change distances we are
observing. In particular, certain entity types contain more text attributes, or tend to
have longer text attribute contents, thus increasing the probability of changes to them.
One option for looking into this in more detail is to identify consecutive changes to
the individual attribute instances. If change distances are still short for this case, we
can more safely assert that the effect observed at the entity level is not only explained
through differences among entity types.

Figure 3 presents the version and time histograms for pairs of consecutive changes
to individual text attributes in the model. These pairs are defined in a similar way as
for the entity case, with the exception of versions in the pair having to affect both the
same entity and the same attribute in the entity. 2749 pairs were found for the version-
based analysis, and 2225 for the time-based analysis. The best-fit geometric distribu-
tions have probabilities of 0.0182 and 0.0134 respectively. Both of them yielded
p-values for the chi-square test below 0.0001. These results are consistent with our
analysis for the entity case, namely, that changes to single attributes also increase the
probability of future changes to the same attribute.

A larger, much more difficult question is related to external validity. Since model
evolution is just starting to be studied, it is premature to say that the results observed
for the V-Modell XT can be generalized to other similar models. However, one can
assume that the results would apply, at least to some extent, to models such as the
Rational Unified Process (RUP) [8], which have a similar purpose and level of com-
plexity. Further studies in this direction would be very valuable.

 Analyzing a Software Process Model Repository for Understanding Model Evolution 385

Fig. 3. Distance in versions and days for consecutive text attribute changes

3 Related Work

Much support and several studies have been dedicated to understanding software evo-
lution. Many examples of such work can be found in recent workshops and confer-
ences [9-11]. Most of these studies have concentrated on confirming Lehman’s [12]
and Parnas’ [13] findings, by examining successive source code releases, or examin-
ing change data stored in source code control systems. Such studies are frequently
performed with the support of advanced data mining techniques [14, 15], as is the
case for both the product and process communities. In the product community, studies
are performed for purposes such as understanding the evolution of programs and the
programs themselves [16], detecting evolutionary coupling between files [17] and
model elements (e.g., classes) [18], suggesting and predicting likely changes, prevent-
ing errors due to incomplete changes, or detecting coupling undetectable by program
analysis [19].

386 M. Soto, A. Ocampo, and J. Münch

Jazayeri [20] stated that “Individual software products age while our understanding
of them and, as a result, their models (and meta-models) evolve”, and encouraged the
community to move the focus of studies towards the evolution of models and meta-
models. As mentioned in the introduction of this paper, we currently observe a lack of
empirical studies on the evolution of large models. In addition to the preliminary
study that gave rise to the present work [1], two of the authors performed an explora-
tory study [21] with the goal of understanding the nature of process model changes in
the context of the aerospace industry. That study presented the most important issues
that motivated process engineers to change an aerospace software process standard.

4 Conclusions and Outlook

The empirical study presented in this paper had the purpose of determining whether
changes to entities in the German V-Modell XT software process standard increased
the probability of subsequent changes to the same entities, both in time and in the
version sequence. The basic conjecture giving rise to this research question is that
certain changes to the model introduce defects that have to be corrected in a number
of follow-up changes, thus producing “bursts” of activity that are observable in the
model history.

The data used for the study corresponded to a set of 604 consecutive versions, con-
taining changes performed to the V-Modell XT from October 2004 to October 2006.
The differences from one version to the next were calculated automatically by means
of the focused identification of changes supported by our Evolyzer tool. The detailed
description of this change identification process, as well as the definition of the
change types used here, can be found in [4] and [7], respectively.

The descriptive analyses and the statistical tests presented in this article confirm
the hypothesis that changes to an entity increase the probability of further changes in
the future. Although this does not prove that our underlying model of primary and
follow-up changes holds, it is a first step towards providing evidence in this direction.

In this sense, also, the results of the present study support our assumption that there
are clear behavior similarities between code and model evolution (see [22] for an ex-
ample of a study that yields similar results for software systems). This assumption has
a number of consequences. On the one hand, it suggests that existing mechanisms that
facilitate code maintenance can be potentially applied to model maintenance. For in-
stance, encapsulation mechanisms help to isolate stable code parts from constantly
changing parts and, therefore, help to gain better control of maintenance activities. In
the case of models, the same encapsulation can be applied by (re-)structuring them in
such a way that the contents of stable model entities are reused without change. There
are also implications for project planning, since, as in the case of code, complex
changes seem to be very likely to “destabilize” the model by introducing defects of
various types. This would mean that project managers must plan for a stabilization
period after introducing complex changes.

We see model evolution studies as valuable input for better support of model main-
tenance in the future. Particularly in the area of version management, which is clearly
related to our work on model comparison, we believe that models can benefit to a
large extent from existing code version management techniques and tools. However,

 Analyzing a Software Process Model Repository for Understanding Model Evolution 387

the implementation of such techniques for models presents a number of theoretical
and technical challenges that are not present in standard code version management.
Our techniques for focused change identification, and the Evolyzer tool that realizes
them, constitute a new proposal for this kind of support. The viability of this proposal
can be seen in the fact that these techniques and tools provided us with the capabilities
to perform the study presented in this paper.

The similarities observed between model and code evolution are also a motivation
for performing future studies based on research questions already posed in the latter
area. For example, in a recent code evolution study [19], Zimmermann et al. attempted
to find hidden dependencies in a large software system by looking for pairs of program
elements that have a strong tendency to be changed simultaneously, e.g., when one of
them is changed in a given version, there is a high probability that the other one is also
changed in the same version. In our opinion, a similar study could be viably extended to
models, with the goal of discovering hidden evolution connections between entities that
could not be found using the techniques that we have applied so far.

Acknowledgments

We especially thank our colleagues Marcus Ciolkowski and Jens Heidrich from
Fraunhofer IESE, who provided many valuable ideas and enriching discussions dur-
ing the preparation of this paper. We would also like to thank Sonnhild Namingha,
also from Fraunhofer IESE, for proofreading the paper.

During our work with the V-Modell XT, we had support from several members of
the V-Modell development team. We would particularly like to mention Professor
Andreas Rausch, Christian Bartelt, Michael Deynet, and Thomas Ternité, all currently
at the Technical University of Clausthal, Germany.

This work was supported in part by SoftDiff, a project financed by the Fraunhofer
Challenge Program. This work was also partially supported by the Stiftung Rheinland-
Pfalz für Innovation through the Q-VISIT project (Qualitätsorientierte Visuelle Soft-
ware Inspektion).

References

1. Soto, M., Ocampo, A., Münch, J.: The secret life of a process description: A look into the
evolution of a large process model. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008.
LNCS, vol. 5007, pp. 257–268. Springer, Heidelberg (2008)

2. V-Modell® XT, http://www.v-modell.iabg.de/ (last checked 2007-12-20)
3. Royce, W.W.: Managing the development of large software systems: concepts and tech-

niques. In: Proceedings of the 9th International Conference on Software Engineering.
IEEE Computer Society Press, Los Alamitos (1987)

4. Soto, M., Münch, J.: Focused Identification of Process Model Changes. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, Springer, Heidelberg (2007)

5. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004),
 http://www.w3.org/TR/rdf-primer/ (last checked 2007-12-20)

388 M. Soto, A. Ocampo, and J. Münch

6. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C
Working Draft (2006), http://www.w3.org/TR/rdf-sparql-query/ (last
checked 2006-10-22)

7. Ocampo, A., Soto, M.: Connecting the Rationale for Changes to the Evolution of a Proc-
ess. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 160–174.
Springer, Heidelberg (2007)

8. RUP. Rationale Unified Process, http://www-306.ibm.com/software/
awdtools/rup/ (last checked 2008-08-06)

9. Di Penta, M., Lanza, M.: Ninth international workshop on Principles of software evolution
(IWPSE) (2007) ISBN:978-1-59593-722-3

10. 8th International Workshop on Principles of Software Evolution (IWPSE 2005), Lisbon,
Portugal, September 5-7, 2005. IEEE Computer Society, Los Alamitos (2005) ISBN 0-
7695-2349-8

11. 7th international Workshop Principles of Software Evolution. IWPSE, September 06 - 07,
2004, vol. 8. IEEE Computer Society, Washington, http://dx.doi.org/10.1109/
IWPSE.2004.15

12. Lehman, M.M., Belady, L.A. (eds.): Program Evolution: Processes of Software Change.
Academic Press Professional, Inc., London (1985)

13. Parnas, D.L.: Software Aging. In: Proceedings of the 16th International Conference on
Software Engineering (ICSE 1994), Sorrento, Italy, pp. 279–287 (1994)

14. van der Aalst, W.W.T., Maruster, L.: Workflow Mining: Discovering Process Models
from Event Logs. IEEE Transactions on Knowledge and Data Engineering 2004 16(9),
1128–1142 (2004)

15. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. In: Natural Computing.
Springer, Berlin (2003)

16. Ball, T., Kim, J.M., Porter, A.A., Siy, H.P.: If Your Version Control System Could Talk.
In: Proc. ICSE Workshop Process Modelling and Empirical Studies of Software Eng.
(1997)

17. Gall, H., Hajek, K., Jazayeri, M.: Detection of Logical Coupling Based on Product Release
History. In: Proc. Int’l Conf. Software Maintenance (ICSM 1998), pp. 190–198 (Novem-
ber 1998)

18. Bieman, J.M., Andrews, A.A., Yang, H.J.: Understanding Change-Pronenes. In: OO Soft-
ware through Visualization. In: Proc. 11th Int’l Workshop Program Comprehension, pp.
44–53 (May 2003)

19. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to guide
software changes. IEEE Transactions on Software Engineering 31(6), 429–445 (2005)
Digital Object Identifier 10.1109/TSE.2005.72

20. Jazayeri, M.: Species evolve, individuals age Invited Keynote Talk. In: 8th International
Workshop on Principles of Software Evolution (IWPSE 2005), Lisbon, Portugal, Septem-
ber 5-7, 2005. IEEE Computer Society, Los Alamitos (2005)

21. Ocampo, A., Münch, J.: Process Evolution Supported by Rationale: An Empirical Investi-
gation of Process Changes. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.)
SPW/ProSim 2006. LNCS, vol. 3966, pp. 334–341. Springer, Heidelberg (2006)

22. Burd, E., Munro, M.: Evaluating the evolution of a C application. In: proceedings Interna-
tional Workshop on Principles of Software Evolution,

 http://dontaku.csce.kyushu.ac.jp/IWPSE99/Proceedings

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 389–401, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Process Trustworthiness as a Capability Indicator for
Measuring and Improving Software Trustworthiness

Ye Yang, Qing Wang, and Mingshu Li

Lab for Internet Software Technology,
Institute of Software Chinese Academy of Sciences

#4 South 4th Street, ZhongGuanCun, Beijing 100190, China
{ye,wq,mingshu}@itechs.iscas.ac.cn

Abstract. Due to increasing system decentralization, component heterogeneity,
and interface complexities, many trustworthiness challenges become more and
more complicated and intertwined. Moreover, there is a lack of common under-
standing of software trustworthiness and its related development methodology.
This paper reports preliminary results from an ongoing collaborative research
project among 6 international research units, which aims at exploring theories
and methods for enhancing existing software process techniques for trustworthy
software development. The results consist in two parts: 1) the proposal of a new
concept of Process Trustworthiness, as a capability indicator to measure the
relative degree of confidence for certain software processes to deliver trustwor-
thy software; and 2) the introduction of the architecture of a Trustworthy Proc-
ess Management Framework (TPMF) toolkit for process runtime support in
measuring and improving process trustworthiness in order to assess and assure
software trustworthiness.

Keywords: Software Trustworthiness, Process Trustworthiness, Process Trust-
worthiness Model, Measurement Model, Risk Management.

1 Introduction

In his ICSE 2006 Keynote speech [1], Boehm pointed out the increasing trend of soft-
ware criticality and dependability as one of the eight surprise-free software trends. Over
the past 50 years, different strategies such as formal methods, security assurance
techniques, defect prediction, failure mode and effects analysis, testing methods, and
software assurance techniques have been proposed to address different aspects of trust-
worthy challenges. Based on these studies, numerous quality categories and attributes
have been studied as major factors influencing on software trustworthiness. Among
them are included functionality, reliability, safety, usability, security, portability, and
maintainability, etc. Though there is a growing consensus that a “Trustworthy” software
system is characterized as one that satisfies a collection of critical quality attributes,
there is a lack of common understanding of software trustworthiness.

As software has been playing an ever-increasing role in many domains and sys-
tems, assessing and improving software trustworthiness becomes more and more
complicated and difficult. For example, Nelson et. al. [2] reported the increasing trend

390 Y. Yang, Q. Wang, and M. Li

of US weapon system’s software dependencies from less than 10% in 1960’s to 80%
in 2000, and consequently the projects experienced seriously challenges in delivering
trustworthy software. The author concluded that two areas of research are of major
importance: requirement engineering and cost estimation, which demand for en-
hanced theory and methods.

In January 2008, a collaborative research project among 6 international research
units was initiated to develop of a Trustworthy Software Development Methodology
with enhanced theories and methods to support trustworthy software development,
and the implementation of a management supporting toolkit. This paper reports pre-
liminary results from this ongoing collaborative research project. First, it examines
trustworthiness-related definitions in existing literature and proposes the concept of
Process Trustworthiness as a capability indicator to measure the relative degree of
confidence for certain software process to deliver a trustworthy product. Second, a
Trustworthy Process Management Framework is introduced to demonstrate the
conceptual structure in establishing and managing the process trustworthiness for
assessing and improving software trustworthiness.

The paper is organized as follows: Section 2 discusses related work; Section 3 in-
troduces the context and basic working definitions of our study; Section 4 presents the
process trustworthiness model; Section 5 presents the major components in the
Trustworthiness Process Management Framework from our ongoing work; and Sec-
tion 6 is the conclusions.

2 Related Work

Over the past few decades, many studies mentioned aspects like security, reliability,
safety, maintainability, usability, etc. Some of the discussions also included meas-
urement and evaluation on a particular aspect along with support technologies to
ensure implementation. Several works discuss the use of formal methods and model
validation techniques to enhance the trustworthiness about a particular aspect. How-
ever, the understanding of the concept of software trustworthiness is not uniform
among researchers.

For instances, Trusted Computer National Evaluation Criteria (TCSEC) restricted
trustworthiness to security as the only attribute to consider [3]. Parnas et al. defines
software trustworthiness as level of appropriateness of using software engineering
techniques to reduce failure rates, including techniques to enhance testing, reviews,
and inspections [4]. Common Criteria [7] provides a complete framework of evaluat-
ing software with a mere focus on security.

Inspired by traditional manufacturing industry, software process-oriented method-
ologies such as Trusted Software Methodology (TSM) [5], CMMI [6], SSE-CMM
[11], and ISO 9001[14] all focus on the enhancement of software processes as a
means for enhancing resultant software. TSM was developed and evolved by US
National Security Agency and three other organizations, to define a note for software
trustworthiness and provide a means for assessing and improving it. It provides 44
generally-accepted trust principles and practical process guidance in examining and
evaluating trustworthiness threats during the development process. CMMI is the most
widely adopted process management framework with accumulated body of

 Process Trustworthiness as a Capability Indicator 391

knowledge on various development disciplines. However, neither CMMI nor ISO
9001 do explicitly address any security or trustworthiness related issues. While SSE-
CMM [11] extends the original CMM to support process improvement, capability
evaluation and assurance in any organization involving security engineering, it does
not address other aspects of software trustworthiness.

3 Context and Basic Definitions

3.1 Motivations and Objectives

There are a number of issues that motivated our study, including:
 Currently there is lack of common understanding on the definitive scope of

software trustworthiness;
 Quality attributes such as security, reliability, and dependability etc., are stud-

ies individually;
 Development guidelines are related to single quality attributes and few in-

structions are available when multiple attributes are considered;
 Few studies have been conducted towards better understanding of trustworthy

software development.
Our collaborative research project aims at exploring theories and methods for

enhancing, improving, and innovating software process techniques, supporting the
development and production of large-scale complex trustworthy software. As the
preliminary working progress from this project, the work reported in this paper
mainly addresses the following objectives:

 Investigate different aspects of trustworthy software methodologies;
 Propose common definition for trustworthiness of software development;
 Try to provide an overall scale of process trustworthiness as an indicator for

assuring software trustworthiness;
 Stimulate discussions from both researchers and practitioners on related topics.

3.2 Previous Work

We have conducted a literature review to determine major trustworthiness influencing
factors from existing literature on software trustworthiness or software assurance.
There were three aspects that we inspected in a particular research study: 1) focused
quality attributes; 2) process or product related guidelines; and 3) metrics used to help
in providing a complete analysis on the corresponding trustworthiness attributes.
Table 1 summarizes the evaluation results from 8 major resources including [15]:

 Trusted Software Methodologies (TSM)[5]
 Common Criteria (CC)[7]
 Software Assurance for Project Management (SA-PM)[8]
 Software Security Assurance (SSA)[9].
 DoD/FAA Security & Safety Extension to CMMI and iCMM (SSE-FAA)[10]
 System Security Engineering for CMM (SSE-CMM)[11]
 ISO 9126 [12]
 ISO 27000 [13]

392 Y. Yang, Q. Wang, and M. Li

Table 1. Summary of results from our literature review

Name Attribute(s) Process/Products Metrics/Evaluation
TSM All possible quality

attributes
44 Trust Principles 6 Trust Classes

CC Security Target of Evaluation, Security
Requirements to Classes & Families

7 Evaluated Assurance
Level (EAL1-7)

SA-PM No clearly identified
attribute

Activities needed to maintain a trusted
workflow, such as risk management and
configuration management

COSECMO for security
cost estimation

SSA Security Many security enhanced methodology such
as MS Trustworthy Computing SDL and
Seven Touchpoints.

Different metrics & models
such as Practical Security
Measurement

SSE-FAA Security and Safety Extension of Application Area on Security
and Safety: 4 Application Practice Goals

Use the same evaluation as
in iCMM or CMMI

SSE-CMM Security 22 Security Process Areas 6 Capability Levels (0-5)

ISO 9126 All possible quality
attributes

6 Major Characteristics Part 2, 3, and 4 define
internal, external, and
quality in user metrics

ISO 27000 Security 6 different sets of standards,, only the first
two are established

Not available

As introduced in Section 2 and summarized in Table 1, TSM defines trust princi-
ples and provides guidance in evaluating trustworthiness threats in the development
process, however, it does not provide a runtime management framework for assuring
software trustworthiness. SSE-CMM raises a similar idea of “Capability-based assur-
ance, that is, trustworthiness based on confidence in the maturity of an engineering
group’s security practices and process” [11]. However, with an intensive focus on
security and/or safety, CC, SSE-CMM, SSA, SSE-FAA, ISO 27000 do not address
the evaluation and assurance of any other quality attributes.

Based on our analysis in [15], we concluded that TSM is in the closest alignment
with our research objectives. It provides the basis for us to build our working defini-
tions for software trustworthiness. And we believe that there is an opportunity in
integrating the trust principles into process management methodologies such as
CMMI to enable software managers to make reasonable decisions that have positive
impact on their development approaches.

3.3 Basic Definitions

3.3.1 Software Trustworthiness and Trustworthy Software
We adapted our first working definitions of trustworthiness as “level of confidence or
degree of confidence”, and Software Trustworthiness as “degree of confidence that
the software satisfies its requirements” from TSM [5]. Furthermore, we refer to ISO
9126 for a complete list of quality characteristics/attributes which should be taken
into consideration when planning and managing for a specific set of trustworthiness
attributes for a particular trustworthy software development project.

In other words, software trustworthiness is a circumstance-dependent measure of
how the delivered product satisfies the stakeholders’ set of expectations. This defini-
tion emphasizes that software trustworthiness is highly dependent on the prescribed,
yet evolving, set of requirements, technical decisions, and management decisions
throughout the development process life cycle. It may include functionality, reliabil-
ity, safety, usability, security, portability, and maintainability etc. according to

 Process Trustworthiness as a Capability Indicator 393

stakeholder’s value propositions and negotiation results [1]. Each of these abilities
represents a dimension of trustworthy software and also introduces a source of vul-
nerabilities that can threaten the normal functions of a software product.

Additionally, we define a Trustworthy Product (i.e. work product, software) as
a product (i.e. work product, software) that satisfies a range of its trustworthiness
objectives established based on its requirements.

3.3.2 Process Trustworthiness and Trustworthy Process
In CMMI [6], a widely recognized notion of process capability has been defined as
“the range of expected results that can be achieved by following a process.” This term
is a means to quantitatively denote and compare the performance of software proc-
esses in satisfying product quality and process performance objectives with respect to
the 22 process areas. While CMMI assembles the best practices on what to do to as-
sure the delivered product quality, it does not tell how to do. Nor does it emphasize
trustworthy software development.

To that end, we extend the concept of process capability and propose the term of
Process Trustworthiness as an overall scale to measure process capability in devel-
oping trustworthy software. It is defined as: Process trustworthiness is the degree of
confidence that the software process produces expected trustworthy work products
that satisfy their requirements.

Meanwhile, our working definition for a Trustworthy Process is a capable proc-
ess that produces a range of trustworthy products.

By arriving at these definitions, we set a common point of view for us to continue
with our research in drafting the scope that guides us to gather sufficient information
to help design a software trustworthiness framework. However, we do believe that
this draft version will be refined many times as we find out more about the different
aspects related to this subject.

4 Modeling Process Trustworthiness

4.1 Meta-model of a Trustworthy Process

Fig.1 illustrates the meta-model of a trustworthy process based on the terms proposed
in Section 3. As shown in the Fig.1, a trustworthy process is modeled as a capable
process that demonstrates certain level of process trustworthiness in producing a
trustworthy product. The “Depends on” association between a trustworthy work
product/software and its requirements indicates that, to assess the trustworthiness of
certain product, the evaluation criteria should be established based on software re-
quirements or work product requirements.

As our research goal is to develop a process-oriented Trustworthy Process
Management Framework, there are two key issues for elaborating and assessing the
applicability and effectiveness of existing process technologies: 1) how to model the
dependencies among trustworthy software, trustworthy work product, and trustworthy
process, and 2) how to model the dependencies between requirements and trustworthy
product.

394 Y. Yang, Q. Wang, and M. Li

+Software Trustworthiness
Trustworthy Software

+Process Trustworthiness
Trustworthy Process

Requirements Workproduct Requirements

+Trustworthiness
Trustworthy Product

Trustworthy Workproduct

Capable Process +Depends on

*

+Produces

*

Extends

Extends
Extends

+Depends on1

+Satisfies 1

Depends on

+Depends on1

+Satisfies

1

Depends on

Fig. 1. Meta-model of a trustworthy process

The rest of this paper will focus on the introduction of our proposal in addressing
the first issue, and the solution to address the second issue is planned as in-progress
study and is not in the scope of this paper.

4.2 Modeling Software Trustworthiness

As depicted in Fig.1, requirements are the basis to establish criteria for evaluating the
level of satisfaction of software trustworthiness. In particular, the establishment of
software trustworthiness objectives may consist of understanding stakeholders’ ex-
pectations, selecting critical trustworthy attributes, and setting appropriate target pro-
files for the trustworthiness objectives. We model software trustworthiness as follows:

Software trustworthiness = ({Attribute}, {Traceability}, {Objective}, {Priority}),
where

 Attribute set is a subset of critical quality attributes extracted from software
requirements, e.g. a subset tailored from the list of characteristics or sub-
characteristics defined in ISO 9126;

 Traceability set reflects the mapping between an attribute and the originating
requirements;

 Objective set is a target profile of trustworthiness level(either qualitative or
quantitative) for each attribute defined in {Attribute};

 Priority set captures the relative degree of importance for each attribute of the
end product meeting its trustworthiness objective.

This software trustworthiness model can be applied to both end software product
and intermediate work products in order to set trustworthiness objectives based on
software requirements and work product requirements. Also as indicated by Fig.1,
whether software can be evaluated as trustworthy depends on requirements, process
trustworthiness, and work product requirements.

 Process Trustworthiness as a Capability Indicator 395

4.3 Modeling Processes Trustworthiness

We extend the Process Area (PA) concept from CMMI, defined as “a cluster of re-
lated practices that, when implemented collectively, satisfy a set of goals considered
important for making improvement in that area [6]”, to integrate trust principles, trust
levels, and evaluation methods from TSM [5] into Trustworthy Process Area. The
benefits of this integration are two-fold: 1) to include provision for a specific devel-
opment process to deal with untrustworthy process factors, e.g. less capable or mali-
cious developers; and 2) to provide an organizational improvement infrastructure for
process trustworthiness.

Trust principles are a collection of familiar, generally accepted software engineer-
ing and security principles summarized in [5]. We match these trust principles with
relevant process areas defined in CMMI. Each identified PA is attached with a rele-
vant set of trust principles and extended into a corresponding Trustworthy Process
Area (TPA). Moreover, we create new TPA to include some important trust principles
that can not be easily mapped to any PAs in CMMI. With this extension the Process
trustworthiness of an instantiated TPA can then be evaluated according to definitions,
selection and evaluation criteria of 6 trust classes (i.e. T0-T5) defined in [5]. Fig.2
(A) shows the structure of a TPA.

 Typically, there are three dimensions to be taken into consideration when planning
and managing for a trustworthy process, each introducing certain major threats to the
software trustworthiness during the development life cycle [30]. These include:

 Process Entities: An entity of the process is the person responsible to perform
the process or any organization assets used in performing the process;

 Process Behaviors: Process behaviors are those manners which plan, monitor,
measure, review, evaluate and execute the process; and

 Process Products: A process product is an artifact produced during the devel-
opment process. It could be either a work product (e.g. document, checklist,
record, etc.) or a component (e.g. source file, executable package).

+Trust Evaluation()
-Trust Principle

TPA

PA

Trust Class

+Trust Evaluation()
-Trust Principle

TPA

TAPA TEPA TMPA

(A) (B)

Fig. 2. Trustworthy Process Area Structure

Therefore, as shown in Fig.2 (B), we further model the TPAs into three categories
with a focus on addressing threats from each of above mentioned dimensions:

 Trustworthiness Assurance Process Area (TAPA): The purpose of TAPA is to
assure the organization to have the proper process entities to execute tasks in

396 Y. Yang, Q. Wang, and M. Li

the proper way with the proper infrastructure support. This process area pro-
vides necessary trustworthy goals, which describes characteristics of a trusted
work environment, effective policy, and capable personnel as well as other
assurance measures in setting up the organization for its trustworthy process
[29].

 Trustworthiness Monitoring Process Areas (TMPAs): Management and sup-
porting-related process areas from CMMI are further extended into TMPAs,
including project management, risk management, configuration management,
etc., with necessary extension to ensure the trustworthiness of process behav-
iors and trustworthy process execution, e.g. to monitor the progress of the
project, cost, quality and other attributes; to confirm the correct realization
and evolution of the planned trustworthy attributes; to control project risks,
etc.

 Trustworthiness Engineering Process Areas (TEPAs): TEPAs are proposed to
involve more rigid activities to ensure work products satisfying trustworthi-
ness requirements. An example set of TEPAs include trustworthy require-
ments, trustworthy design, trustworthy code, trustworthy test, and so on.
These enhancements embody additional content and amount of engineering
activities, as well as corresponding restrictive conditions. For example, a
higher security requirement level will dramatically increase the scale (re-
quirement, design, code, and test) of software product compared to a lower
level. Frequently, formal methods will be applied to verify requirement, de-
sign, and code to ensure trustworthiness.

4.4 Trustworthiness Measurement Model

To serve as the basis for planning and managing a software process targeting at cer-
tain trustworthiness level, the measurement model provides an infrastructure to facili-
tate the composition of process measures as valid indicators for trustworthy evidence
and performance objectives established in the Process Trustworthiness Model, as well
as the collection and analysis of metrics data for assessing and improving process
trustworthiness and software trustworthiness. The structure of the Trustworthiness
Measurement Model is shown in Fig. 3.

The Evidence Model in Fig.3 establishes and maintains the relationship between a
set of process measures and a valid indicator, provided as basis for analyzing whether
valid evidences exist for assessing the implementation of a particular trust principle.
While the Performance Model establishes and maintains the quantitative performance
baselines and control limits for selected processes with respect to the selected trust-
worthiness requirements.

We have also developed a set of direct and derived metrics to measure software
trustworthiness from process entity, process behavior, and process product dimen-
sions [16], as summarized in Table 2. It does not mean to be a comprehensive list, but
integrates our previous work and results from a thorough literature review on software
measurement [17, 18] and trustworthy quality characteristics [12].

 Process Trustworthiness as a Capability Indicator 397

Measurement Model
Measurement Layer

Analysis Layer

Evidence Model

+Trust Evaluation()
-Trust Principle

TAPA

+Trust Evaluation()
-Trust Principle

TEPA

+Trust Evaluation()
-Trust Principle

TMPA

-Metrics
Process Entity

-Metrics
Process Behavior

-Metrics
Process Product

Performance ModelAnalysis Model

Fig. 3. Structure of Trustworthy Measurement Model

Analysis Models captures the relationships between different combinations of met-
rics from the Measurement Layer and the evidence indicators or performance indica-
tors established in the Analysis Layer. Our previous work has led to the development
of a series of Analysis Models, e.g. quantitative testing process management models
[19, 20] and personnel process and ability management [21]. These methods can be
extended in appropriate ways to support software organizations to establish their
process quantitative management models based on historic data and use these models
to measure and assess their process trustworthiness and software trustworthiness.

Table 2. Summary of trustworthiness measures in the Trustworthiness Measurement Model

Dimensions Quality Cost Schedule Example Measures

Process Entity
8 25 0

Capability, experience, defect detection

efficiency

Process Behavior
33 25 12

For each phase/activity: defect injection

ratio, defect elimination ratio, productivity

Process Product 37 14 0 Complexity, reliability, number of defects

5 Towards a Trustworthy Process Management Framework

This section, we will present the initial architecture of a Trustworthy Process Man-
agement Framework (TPMF), to facilitate the management and assurance for trust-
worthy software development. This reflects part of results from our in-progress work.
TPMF extends a previous toolkit called SoftPM [22], which a platform for software
process management, to incorporate the Software Trustworthiness Model, Process
Trustworthiness Model and Measurement Model introduced in Section 3. Fig.4

398 Y. Yang, Q. Wang, and M. Li

Process
Trustworthiness

Model

Measurement
Model

Software
Trustworthi
ness Model

Risk
Management

Model

Process
Simulation

Model

Process
Management

Model

Requirement
Management

Model

Fig. 4. Trustworthy Process Management Framework

illustrates the dependencies among them and four other infrastructural modules in
TPMF. Next, we will briefly introduce these infrastructural modules (as shown in the
shaded area) and their functions in supporting software organizations for assuring
trustworthy software development.

5.1 Requirement Management Model

In TPMF, Requirement Management Model is the basis for establishing software
trustworthiness, and process management model also depends on it in establishing
and managing project development plans.

Our research is focused on requirement evolution management to support the defi-
nition and maintenance of the software trustworthiness model. Different technologies
such as WikiWinWin [23], dynamic requirements traceability [24], and empirically-
based requirement quality assessment method [25] are being developed and evolving
to facilitate the requirement negotiation, requirement traceability, and requirement
change impact analysis.

5.2 Process Management Model

Any process models would need to be appropriately assembled and instantiated with
more detail information before they can be followed for execution. Such information
includes resource, schedule, work products, constraint condition and trustworthy
requirement and related quality criteria. The purpose of Process Management Model
is to provide such runtime instantiation and management support in order to enable
the process trustworthiness model meaningful and applicable.

Our work in this direction is to study and develop mechanisms and methods to
extend SoftPM [22] to support the assembly, tailoring, integration of the specific
instantiation from the trustworthy process model with respect to particular project
circumstance.

 Process Trustworthiness as a Capability Indicator 399

5.3 Risk Management Model

A proactive risk management strategy is a key component in the Trustworthy
Process Management Framework. Early identification of key risks and their rela-
tionships has a very crucial role ensuring the trustworthy realization of the project
objectives. Through studying the mechanisms behind risk transfers and risk accu-
mulation, we can establish a set of key risk and corresponding rules in support of
decision-making.

In our study, we are developing mechanisms to identify key risk indicators and ma-
jor risk patterns based on the measurement model, through data mining techniques
such as feature selection and support vector machines to reveal patterns and interrela-
tionships between certain risk and process/product metrics [28].

5.4 Process Simulation Model

Process simulation model is another critical component. On the one hand, we intend
to integrate existing software process simulation modeling techniques, and develop
methods and tools to support the change impact analysis given certain process condi-
tions and trustworthiness objectives [26]. On the other hand, we investigate the proc-
ess optimization methods as risk mitigation strategies with respect to actual situation
and status, in recognition of the key risk factors measured on the basis of the project
life cycle and the key risk control point [27].

6 Conclusions

Nowadays, software has been widely applied and plays an increasingly key role in
almost every business domain. Trustworthiness requires a process-oriented view as
first noted in TSM, where the behavior and state of software products to be predict-
able and controllable in its life cycle.

This paper proposed a set of trustworthiness-related definitions, and a Trustworthy
Process Management framework as preliminary results from an ongoing international
collaborative project. The definitions are adopted and derived from a literature review
on a number of related studies; and the TPMF aims at, from a software process-
oriented viewpoint, better supporting the measurement and assurance of software
trustworthiness through the measurement and assessment of process trustworthiness
of the development process.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
Grant No. 90718042; the National Hi-Tech R&D Plan of China under Grant Nos.
2007AA010303; the National Basic Research Program (973 program) under Grant
No. 2007CB310802.

400 Y. Yang, Q. Wang, and M. Li

References

1. Boehm, B.: A view of 20th and 21st century software engineering. In: International Con-
ference on Software Engineering. Proceedings of the 28th international conference on
Software Engineering, pp., 12–29 (2006)

2. Nelson, M., Clark, J., Spurlock, M.A.: Curing the Software Requirements and Cost Esti-
mating Blues. PM: November/December (1999)

3. Department of Defense, National Computer Security Center: Trusted Computer System
Evaluation Criteria. DoD 5200.28-STD (1985)

4. Parnas, D., et al.: Evaluation of Safety-Critical Software. CACM 33(6), 636–648 (1990)
5. Amoroso, E.C.T., Watson, J., Weiss, J.: A process-oriented methodology for assessing and

improving software trustworthiness. In: Proceedings of the 2nd ACM Conference on
Computer and communications security, Virginia, USA, pp. 39–50 (1994)

6. Capability Maturity Model Integration Version 1.2 Overview,
 http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview07.pdf

7. Common Criteria Portal, http://www.commoncriteriaportal.org/
8. DACS, Software Project Management for Software Assurance: A State-of-the-Art-Report,

September 30 (2007)
9. DACS and IATAC, Software Security Assurance: A State-of-the-Art-Report, July 31

(2007)
10. United States Federal Aviation Administration, Safety and Security Extension for inte-

grated Capability Maturity Model (September 2004)
11. CMU, Systems Security Engineering Capability Maturity Model SSE-CMM: Model De-

scription Document, Version 3.0, June 15 (2003)
12. International Standards Organization, ISO 9126, Ist edn. (2001)
13. International Standards Organization, ISO 27000, Ist edn. (2005)
14. International Standards Organization, ISO 9001, 2nd edn. (2005)
15. Tan, T., He, M., et al.: An Analysis to Understand Software Trustworthiness. Accepted by

the 2008 International Symposium on Trusted Computing, China (November 2008)
16. Shu, F., Jiang, N., Gou, L.: Technical Report: A Trustworthiness Measurement Model. IS-

CAS/iTechs Technical Report #106 (November 2008)
17. Jones, C.: Applied Software Measurement: Assuring Productivity and Quality. McGraw-

Hill, New York (1997)
18. Boehm, B.W., et al.: Software Cost Estimation with COCOMO II. Prentice-Hall, NY

(2000)
19. Wang, Q., Gou, L., et al.: An Empirical Study on Establishing Quantitative Management

Model for Testing Process. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS,
vol. 4470, pp. 233–245. Springer, Heidelberg (2007)

20. Gou, L., Wang, Q., et al.: Quantitatively Managing Defects for Iterative Projects: An In-
dustrial Experience Report in China. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP
2008. LNCS, vol. 5007, pp. 369–380. Springer, Heidelberg (2008)

21. Zhang, S., Wang, Y., et al.: Capability Assessment of Individual Software Development
Processes Using Software Repositories and DEA. In: Wang, Q., Pfahl, D., Raffo, D.M.
(eds.) ICSP 2008. LNCS, vol. 5007, pp. 147–159. Springer, Heidelberg (2008)

22. Wang, Q., Li, M.: Measuring and improving software process in China. In: 2005 Interna-
tional Symposium on Empirical Software Engineering (2005)

23. Yang, D., Wu, D., et al.: WikiWinWin: A Wiki Based System for Collaborative Require-
ments Negotiation. In: HICSS (2008)

 Process Trustworthiness as a Capability Indicator 401

24. Li, Y., Li, J., et al.: Requirement-Centric Traceability for Change Impact Analysis: A Case
Study. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 100–
111. Springer, Heidelberg (2008)

25. Li, J., Hou, L., et al.: An Empirically-Based Process to Improve the Practice of Require-
ment Review. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp.
135–146. Springer, Heidelberg (2008)

26. Liu, D., Wang, Q., Xiao, J., Li, J., Li, H.: RVSim: A Simulation Approach to Predict the
Impact of Requirements Volatility on Software Project Plans. In: Wang, Q., Pfahl, D.,
Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 307–315. Springer, Heidelberg (2008)

27. Dai, J., Xiao, J., Wang, Q., Li, M., Li, H.: Dynamically Optimize Process Execution Based
on Process Agent. Accepted by 2008 International Conference on Software Engineering
and Knowledge Engineering (SEKE 2008) (2008)

28. Li, J., Chen, Z., Wei, L., Xu, W.: Feather Selection via Least Squares Support Feature Ma-
chine. International Journal of Information Technology & Decision Making 6(4) (2007)

29. Du, J., Tan, T., He, M., et al.: Technical Report: A Process-Centric Approach to Assure
Software Trustworthiness. ISCAS/iTechs Technical Report #106 (September 2008)

30. Wang, Q., Yang, Y.: Technical Report: A Process-Centric Methodology to Software
Trustworthiness Assurance. ISCAS/iTechs Technical Report #105 (June 2008)

Q. Wang et al. (Eds.): ICSP 2009, LNCS 5543, pp. 402–410, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A System Dynamics Model That Simulates a
Significant Late Life Cycle Manpower Increase

Phenomenon

Douglas Buettner

The Aerospace Corporation, 2350 E. El Segundo, El Segundo, CA USA
Douglas.J.Buettner@aero.org

Abstract. Available software metrics data from an initially schedule and cost-
driven satellite flight software project contains a late life cycle staff spike from
a lack of initial rigor in inspection and unit testing. In order to study the effects
on the number of staff from varying the degree of inspection and unit test rigor,
Madachy’s inspection-based system dynamics model was modified to add unit
testing and an integration test feedback loop. This modified Madachy model
generated a similar late life cycle manpower rate increase from a parametric
lack of up-front rigor in these same defect removal techniques.

Keywords: system dynamics, inspections, peer reviews, unit testing, software
defects, feedback loops, satellite software.

1 Introduction

We describe research performed at The Aerospace Corporation (Aerospace) to fun-
damentally understand inadequate inspection and unit test rigor issues uncovered on
one of our mission critical flight software projects. A summary with examples of the
case study research from the author’s Ph.D. dissertation (reference [1]) showing the
inadequacy in these defect discovery methods is provided. Further, the paper will
include a high-level overview of a model derived from Madachy’s inspection-based
system dynamics model that simulates this phenomenon.

The paper will conclude with a discussion of threats to the validity of the model
and will suggest avenues for further research for confirmation of the phenomenon and
the proposed model.

2 Case Study Research

Aerospace has recently (in the past 5 years) started to maintain a software reliability
research database containing information from flight and ground software projects. To
date, the database contains seven flight software projects, five of which have provided
text files with data extracted from their project’s defect report (DR) database. Addi-
tional supporting information about the projects came from interviews of Aerospace
employees involved in the technical oversight of the flight software projects found in

 A System Dynamics Model That Simulates a Significant Late Life Cycle 403

the database, supporting comments from contractor employees involved in the devel-
opment and testing of those products, and the author’s personal observations from his
six years of support to the various projects and while on staff as a systems director
responsible for overseeing all the flight software in a program office supported by
Aerospace. Fig. 1 (below) provides a summary of the kinds of information available
in the database, or where the researcher had personal observations, interviews with
other Aerospace staff supporting these projects, or had performed informal interviews
with contractor staff.

Fig. 1. The figure contains a description of the data available from seven flight software pro-
jects in The Aerospace Corporation’s Software Reliability Research Database as of the Summer
of 2008

While, qualitative and quantitative case study results for the projects in Fig. 1
are reported in detail in reference [1], a summary of the qualitative and quantita-
tive research results for the five projects where defect data are available is pro-
vided here:

• Project-A had no initial government oversight and was initially severely
cost and schedule constrained forcing personnel, and test equipment cut-
backs. Developers reverse engineered the structural design from the code,
did not maintain algorithm documents, and cut quality corners under
schedule pressure by discontinuing peer reviews and not doing 100% unit
testing. The software qualification test team (a team of independent

404 D. Buettner

testers charged with verifying the software’s requirements) spent a sig-
nificant amount of time attempting to just get the software to work in the
hardware in the loop test facility. The contractor’s first attempt at qualify-
ing the software in front of government technical witnesses failed this ma-
turity gate. Following which, significant unit test thoroughness issues
were subsequently uncovered from a review of the contractor’s attempt at
re-unit testing functionality. A third attempt at re-unit testing all of the
software consisted of significant government oversight and team retrain-
ing. This third attempt found an additional 141 defects, 18 of which
required procedural or database changes to avoid the newly identified is-
sues in operation. The second more thorough attempt at qualifying the
software identified numerous functionality disconnect issues with the re-
quirements, design, and algorithm documents and uncovered additional is-
sues that needed to be operationally worked around. Project-A’s ability to
perform in parallel development and test was limited by the cost decision
to build only a single hardware in the loop test system. An effort to build a
software in the loop simulator had been discontinued, but then reconsti-
tuted after the software test issues were uncovered. The software quality
assurance representative in this case was embedded within the team.

• Project-B transferred lessons learned from project-A, and designed their code
using the software development plan required Unified Modeling Language
(UML), with significant contractor and customer visibility. Software peer re-
views were superior to those in project-A as the government funded inde-
pendent technical support to attend these reviews. The contractor used third
party unit testing and performed thorough integration testing to vastly
improve the quality of the software for qualification and system testing. Pro-
ject-B used two hardware in the loop test systems for development and test-
ing. Ultimately few defects were found by the qualification test team
members.

• Project-C had no initial government oversight and eventually suffered
from the early discovery of fundamental design flaws, following which
significant government oversight and a corporate commitment to building
a quality product led to a thorough design, and a rigorous defect preven-
tion process. Government technical oversight was embedded with the
contractor’s software developers effectively keeping them from doing
code while the project was still in the re-design phase. The project used
two hardware in the loop systems. However, there were cost constraints
that kept them from building a comprehensive test system that could pro-
actively identify all of the errors. As a consequence, there were issues
that were found later on in system testing on the flight hardware. The
team effectively used a commercial unit test tool to achieve a high level
of branch and path test coverage.

 A System Dynamics Model That Simulates a Significant Late Life Cycle 405

• Project-D began as a project with no government oversight and did not use
requirements engineering or a design process that included UML use cases
or sequence diagrams. The product had to be re-unit tested and reached cov-
erage close to 100%. The lack of an up front design process included no
design for functionality like the fault detection and management system and
eventually led to the discovery of four significant design flaws and numerous
minor ones during system testing and subsequent analysis. The result was the
need to completely rewrite significant portions of the flight software. The
rewriting effort did not follow a design then code approach. Instead they
used the approach of modifying software from another program and then re-
verse engineering the design from the resulting product. The second effort
utilized a software development team with significant years of experience
writing space flight software.

• Project-E used a significant amount of re-use software and an incremental
development approach that did not use thorough UML design products. One
example of corner cutting in the limited amount of defect database available
to the researcher indicated that the system tester had found a defect which
proved to him that the software developer had obviously not done any unit
testing at all.

Additionally, reported management strategies (for schedules that were unattainable)
included; recommending less effort colleague reviews for mission critical software
instead of the more rigorous inspections, providing the government over-parallelized
schedules with no detail and overloaded personnel (tasking beyond 200% or more in
some cases), schedules that lacked detail and assigned resources, dismissing1 the
results of widely used parametric modeling tools that indicated the contractor’s
schedules were to short, and provided schedule completions that used coding rates
that exceeded anything the contractor had ever executed at in the past, or used overly
optimistic integration and qualification test efforts. Finally, they suggested that soft-
ware testing could be completed with little effort, while management simultaneously
instructed testers to reduce integration testing (by a factor of 10 in one case) because
it did not fit into the schedule.

Cumulative defect distributions from four of the case study projects in the Aero-
space research database are provided below in Fig. 2.

1 “Dismissing” was the contractor’s management claim that the parametric modeling tools did

not apply in “this case”, among other claims that these tools were insufficiently capturing
“their software development situation”, or that these tools were just plain wrong. Neverthe-
less, in all of the situations in this case study research, the parametric modeling tools provided
estimates that were more pessimistic than the optimistic schedules used by the contractor’s
management; ultimately, the parametric modeling tools provided schedules that were more
accurate. Furthermore, these tools slightly underestimated the actual schedules by a few
months as we usually tried to give the contractors the benefit of the doubt when setting pa-
rameters.

406 D. Buettner

Fig. 2. Cumulative plots of all the reported defects covering software documentation, test prod-
ucts and flight code for the case study data that were included in ASCII text data dumps from
project defect databases found in Aerospace’s database

Buettner’s research goal (see reference [2]) was to understand the fundamental rea-
sons driving defect removal issues uncovered on project-A. He decided to compare
project-A with project-C, which had better defect removal characteristics. Recall that
even though project-C had initially begun as a troubled project, a corporate commit-
ment to fix the situation in addition to significant government oversight provided a
significantly better schedule and superior defect discovery dynamics than was seen on
project-A. Thus, project-C provided a counter example for modeling.

Peer review findings (co-plotted in Fig. 3) from projects-A and C show a significant
disparity between the total numbers of findings identified. Review of the archived
information from project-A also indicated that at some point peer reviews had been
dropped all together due to schedule pressure, which was substantiated from inter-
views of project and Aerospace personnel. Not plotted on Fig. 3 for project-A are the
peer review findings from the second staff spike (seen in Fig. 4).

Staffing data for project’s A and C (co-plotted in Fig. 4 above) were extracted from
available monthly status reports and organization charts. Project management task
data identifying exactly what the development team’s tasks were, would have been
preferred however this information was not available in the team’s software develop-
ment folders (SDFs). In addition, data gaps are from not keeping up the data in the
project’s SDFs. Furthermore, these two specific projects appeared to not use project
management tools to manage and coordinate the software development tasks. (The
archive contains an exact snapshot for all of the appropriate files in the project’s com-
pleted SDF, where evidence of managements’ use of these tools should have been
found. It is possible, that the detailed software development project plans were main-
tained by somebody outside of the immediate software development team.)

 A System Dynamics Model That Simulates a Significant Late Life Cycle 407

Fig. 3. Co-plotted peer review data from projects A and C

Fig. 4. Co-plotted available project staffing data from projects A and C

Hence, project-A provides an example where both inspections and unit testing were
initially cut to some degree during the development, while project-C (despite the
initial design issues) provides us with a counter example of the application of a more
rigorous approach towards inspections and unit testing.

3 System Dynamics Modeling

Our modeling situation requires a temporal dependency on the effort that is expended
on inspections and unit testing, allowing this effort to be ‘pushed down stream’ when

408 D. Buettner

it is not performed in the appropriate software development phase. System dynamics
modeling provides a temporal modeling capability, and furthermore, Commercial-
Off-The-Shelf (COTS) tools are readily available with easy to learn integrated devel-
opment environments. In addition, system dynamicists are using these tools to provide
an ever increasing wealth of models of software process dynamics, and thus is a tes-
tament to the popularity of the method.

An existing model, Madachy’s inspection-based model (reference [3]), provides
one that has been thoroughly tested and already includes a task and error sequence
that is based on the COCOMO (reference [4]) calibrated effort expended during the
software development process. Our goal is to create a modified model to determine if
we can simulate the observed late life cycle increase in staff. Furthermore, the form of
the inspection model in Madachy’s work allows for the straightforward addition of a
unit-testing sub-model. Moreover, an integration test feedback loop implementation,
which is a representation of the methodology described in the software development
plans for these two projects, was incorporated with a modest amount of effort by the
author.

The interested reader is directed to reference [5] for the modified Madachy model’s
details, while the model’s extent makes it difficult to properly document here, Fig. 5
is included below to provide an example of one of the sub-models.

Fig. 5. A full view of the modified version of Madachy’s Task sub-model is shown. This modi-
fied model contains additions for unit testing and the integration testing task feedback loop to
account for failing tasks.

4 Modeling Results

We show in Fig. 6 (below) the differences between Madachy’s baseline model with and
without unit testing for a 100 KSLOC embedded mode project using his method to ac-
centuate the difference in the manpower rate (or staffing) results with only this addition.

 A System Dynamics Model That Simulates a Significant Late Life Cycle 409

Fig. 6. The bold black line is Madachy’s baseline model without unit testing, while the light
black line is Madachy’s model with unit testing for a 100 KSLOC embedded mode project

The addition of unit testing increases the staff’s effort prior to staff day 300, while
decreasing slightly the effort after staff day 310. The minimal baseline integration
effort at staff day 310 is removed, and both lines merge with minimal differences
following staff day 330.

Results from adding in the integration test feedback loop with various parametric
levels of inspection and unit testing for a 64 KSLOC embedded mode project are
provided below in Fig. 7. These results simulate the existence of a late life cycle effort
increase from lax early life cycle inspection and unit testing processes.

Fig. 7. Varying levels of inspection and unit testing with an integration test feedback loop
added to Madachy’s model for a 64 KSLOC embedded mode project demonstrate a shift in
development effort to a late in the life cycle find and fix effort from the discovery of defects

410 D. Buettner

The models validity of course needs to be verified and validated against similar ex-
amples. In our case, the customer chose to expend additional funds to redo the life
cycle quality steps usually completed early in the project, thus allowing the manpower
increase. Projects with insufficient funds or un-informed oversight likely would not
have redone the important unit tests, inspections of those unit tests and the require-
ments qualification tests which would have resulted in a higher risk for the late dis-
covery of defects on orbit.

5 Conclusions

An implementation of a late life cycle error discovery feedback loop using a modified
version of Madachy’s inspection-based system dynamics model demonstrates a shift
in effort resulting from parametrically reduced early life cycle inspection and unit
testing defect discovery and removal processes. These results simulate a similar late
life cycle staff increase that was found in one of the space flight software projects
overseen by Aerospace Corporation personnel.

References

1. Buettner, D.J.: Designing An Optimal Software Intensive System Acquisition: A Game
Theoretic Approach, Ph.D. Dissertation, Astronautics and Space Technology Division,
Viterbi School of Engineering, USC, 60–100 (September 2008)

2. Buettner, D.J.: 4–5
3. Madachy, R.J.: A Software Project Dynamics Model For Process Cost, Schedule And Risk

Assessment, Ph.D. Dissertation, Department of Industrial and Systems Engineering, USC,
53–58 (December 1994)

4. Boehm, B.W.: Software Engineering Economics, pp. 35–39. Prentice-Hall, Inc., Englewood
Cliffs (1981)

5. Buettner, D.J.: 106–125, 289–305

Author Index

Al-Emran, Ahmed 24

Bai, Xu 280
Baldassarre, Maria Teresa 11
Bannerman, Paul L. 38
Barney, Sebastian 256
Bendraou, Reda 148
Boehm, Barry 212
Boffoli, Nicola 11
Briand, Lionel 1
Bruno, Giovanni 11
Buettner, Douglas 161, 402
Burgess, Christopher 293

Caivano, Danilo 11
Cass, Aaron G. 305
Chen, Jinjun 317

Dick, Martin 87

Egorova, Evgenia 100
El-Rawas, Oussama 186
Estublier, Jacky 75

Fleurey, Franck 148

Garćıa, Félix 342
Garousi, Vahid 112
Grossmann, Georg 63

He, Lei 268
Hecht, Myron 161
Houston, Dan 161
Hu, Chenyong 212
Huang, Liguo 280
Hurtado Alegŕıa, Julio Ariel 342

Jadallah, Anas 24
Jeffery, Ross 246
Jezéquél, Jean-Marc 148

Khurshid, Nazrina 38
Killisperger, Peter 63
Koolmanojwong, Supannika 280
Krishna, Aneesh 293

Li, Jing 236
Li, Juan 268
Li, Mingshu 50, 136, 212, 317, 389
Li, Qi 212
Liu, Dapeng 50
Liu, Xiao 317

Ma, Jia-kuan 124
Mei, Hong 124
Menzies, Tim 186
Mingins, Christine 87
Morisio, Maurizio 100
Moussavi, Mahmoud 24
Münch, Jürgen 330, 377
Mustonen, Karri 224

Navascués, Javier 173

Ocampo, Alexis 330, 377
Orrego, Andres 186
Osterweil, Leon J. 305, 366

Pedraza, Gabriel 75
Peters, Georg 63
Piattini, Mario 342
Pino, Francisco J. 342

Ramos, Isabel 173
Riddle, William E. 330
Rudzki, Jakub 224
Ruhe, Guenther 2, 24

Sazawal, Vibha 354
Selby, Richard W. 3
Shi, Lei 124
Simidchieva, Borislava I. 366
Soto, Mart́ın 377
Staples, Mark 38, 246
Stückl, Thomas 63
Stumptner, Markus 63
Su, Feng 136
Sudaman, Fadrian 87
Sudan, Nikita 354
Systä, Tarja 224

Tan, Thomas 212
Torchiano, Marco 100

412 Author Index

Toro, Miguel 173
Tran, Tu Tak 246

Vidal, Juan Carlos 342

Wang, Qing 50, 136, 212, 268,
317, 389

Wang, Ya-sha 124
Wise, Alexander 305, 366
Wohlin, Claes 256

Xiao, Junchao 50, 136
Xie, Lizi 50

Yang, Qiusong 50, 136
Yang, Ye 212, 268, 389
Yang, Yun 317
Yu, Xingliang 236

Zhai, Jian 136
Zhang, He 198
Zhong, Hua 236
Zhu, Liming 246

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	System Engineering in the Energy and Maritime Sectors: Towards a Solution Based on Model-Centric Processes
	Decision Processes for Trustworthy Software
	Synthesis, Analysis, and Modeling of Large-Scale Mission-Critical Embedded Software Systems
	Introduction
	Example Embedded Software System
	Embedded Software Design Principles
	Embedded Software Design Principles for Strategies
	Embedded Software Design Principles for Techniques

	Future Research
	References

	Process Management
	Statistically Based Process Monitoring: Lessons from the Trench
	Introduction
	Software Process Monitoring and Statistical Process Control: Identified Patterns
	Pattern 1: Baselines Definition \rightarrow SPC Theory
	Pattern 2: Anomalies Detection \rightarrow Run-Test Set
	Pattern 3: Causes Investigation \rightarrow Run-Test Interpretation
	Pattern 4: Sensibility \rightarrow Tuning Actions

	Discussion
	Conclusion
	References

	The How? When? and What? for the Process of Re-planning for Product Releases
	Introduction and Motivation
	Related Work
	Formalization of the Problem
	Release Information
	Existing Plan
	Change Requests

	Key Solution Concepts
	Distance-to-Ideal-Point Minimization
	Greedy Method for Release Planning

	H2W Re-planning Method
	Illustration of H2W by a Case Study Example
	Release Information and Baseline Plan
	Change Requests
	STEP 1: When to Re-plan?
	STEP 2: How to Re-plan?
	STEP 3: What to Re-plan?

	Discussion of the Results
	Summary and Future Research
	References
	Appendix

	Overcoming the First Hurdle: Why Organizations Do Not Adopt CMMI
	Introduction
	Prior Research
	Research Method
	Results and Data Analysis
	Non-adoption Reasons
	Relationships between Size and Reason

	Discussion
	Limitations
	Implications

	Conclusions
	References

	Value-Based Multiple Software Projects Scheduling with Genetic Algorithm
	Introduction
	Motivating Example
	Value Function for Multi-project Scheduling
	Description of Projects
	Description of the Human Resources
	Multi-project Value Function

	Multi-project Scheduling with Genetic Algorithm (GA)
	Structure of the Chromosome
	Fitness Function of the Chromosome
	Running the Genetic Algorithm

	Case Study
	Description of the Projects and Human Resources
	Simulating Run of the Scheduling and Analysis
	Benefit Discussions

	Conclusions and Future Work
	References

	Process Tools
	Meta Model Based Architecture for Software Process Instantiation
	Introduction
	New Software Engineering Framework
	Instantiation System Architecture
	Architecture Meta Model
	Implementing the Architecture
	Evaluation

	Related Work
	Conclusion
	References

	Distributed Orchestration Versus Choreography: The FOCAS Approach
	Introduction
	FOCAS: An Extensible Orchestration Framework
	FOCAS Architecture and Approach
	FOCAS Logical Layer: APEL and Orchestration Models

	Logical Level: Service-Based Application Modeling
	Orchestration Annotations
	Logical Model Transformation

	Physical Layer: Distributed Orchestration Execution
	Service Binding
	Choreography Servers
	Deployment
	Distributed Orchestration Architecture

	Related Work
	Conclusion
	References

	An Architecture for Modeling and Applying Quality Processes on Evolving Software
	Introduction
	Trends in SEM
	Evolution Analysis beyond Source Code
	Language Neutrality
	Systematic Monitoring
	Logical Abstractions
	Custom Metadata
	Preserving Quality Attributes and Conceptual Integrity

	OSSEM Architecture
	High Level Architecture
	Captured Artifacts
	Implementation
	Storage and Performance

	Illustrative Scenario
	Related Work
	Conclusions and Future Work
	References

	Process Analysis
	Evaluating the Perceived Effect of Software Engineering Practices in the Italian Industry
	Introduction
	Related Work
	Project Factors
	Dissemination of Practices

	Selection of the Factors for the Study
	Factor Classification and Hypotheses
	Classification
	Hypotheses

	Research Method
	Population and Sample
	Variables and Measures
	Hypotheses Refinement
	Data Collection Procedure
	Data Analysis Techniques

	Data Analysis
	Descriptive Statistics
	Categorization of Factors
	Factor Frequency

	Discussion
	Threats to Validity
	Conclusions and Future Work
	References

	Evidence-Based Insights about Issue Management Processes: An Exploratory Study
	Introduction
	Related Works
	Design of Case Study
	Analysis of Results
	Research Question 1
	Research Question 2
	Research Question 3

	Conclusions and Future Works
	References

	Process Aspect: Handling Crosscutting Concerns during Software Process Improvement
	Introduction
	Process Aspect
	Process Aspect Model
	Describing a Process Aspect

	Weaving Process Aspect into SPEM-Based Processes
	An example
	Related Work
	Conclusion
	References

	Stochastic Process Algebra Based Software Process Simulation Modeling
	Introduction
	s-TRISO/ML: A Modeling Language with Stochastic Information
	Stochastic Polyadic π-Calculus
	s-TRISO/ML
	Mapping Rules

	Experiment
	Related Work
	Conclusion
	References

	Process Simulation Modeling
	Combining Aspect and Model-Driven Engineering Approaches for Software Process Modeling and Execution
	Introduction
	UML as a Basis for Software Process Modeling
	Weaving Executability into Metamodels
	Definition of the Execution Model
	Implementation of the Execution Model Using Kermeta

	Related Work
	Discussion and Conclusion
	References

	Dynamic COQUALMO: Defect Profiling over Development Cycles
	Complementarity in Software Quality Management
	COQUALMO
	COQUALMO and Simulation Models
	Defectivity Profiling over Time
	Model Description
	Inputs and Outputs
	Composing Defect Profiles with Rayleigh Curves
	Rayleigh Curve Implementation

	Model Testing and Usage
	Further Research and Usage
	References
	Appendix

	A Hybrid Model for Dynamic Simulation of Custom Software Projects in a Multiproject Environment
	Introduction
	Critical Issues in Custom Software Projects
	Resource Allocation and Uncertainty
	Multiple Decision Levels in a Multiproject Environment
	Projects and Processes: The Hybrid Nature of Software Production
	Software Process Management and Improvement

	Previous Work
	Multiproject and Incremental Models
	Simulation and Advanced Methods for Resource Allocation
	Hybrid Models

	The SimHiPros Model
	The Basic Level: Package Module
	The Operational Level: The Project Module
	The Tactical Level: Multiproject Module
	The Environment and the Functional Modules
	Operation of the Model

	First Results, Conclusions and Limitations of the Model
	First Results
	Preliminary Conclusions
	Limitations of the Model

	Further Developments
	References

	On the Relative Merits of Software Reuse
	Introduction
	The Models: COCOMO and COQUALMO
	Effect of Reuse on Model Parameters
	Defining the Alternatives to Reuse

	Case Studies
	Results
	External Validity
	Conclusion
	References

	Investigating the Gap between Quantitative and Qualitative/Semi-quantitative Software Process Simulation Models: An Explorative Study
	Introduction
	Model Transformation
	Delay

	Reference Quantitative Model
	Reference Model Selection
	Software Evolution Process
	A Simplified Quantitative Model

	Corresponding Qualitative/Semi-quantitative Model
	Qualitative Model
	Semi-quantitative Model

	Simulation and Comparison
	Single-Point Value Simulation
	Value-Range Simulation

	Conclusions
	References

	Experience Report
	Bridge the Gap between Software Test Process and Business Value: A Case Study
	Introduction
	Related Work
	Method Overview
	Method with a Case Study
	Identify SCSs and Win Conditions
	Put BI, Risk and Cost Together
	Adjust Priority According to Feedback during Testing Process

	Performance Evaluation
	Discussion of Limitation
	Conclusion and Future Work
	References

	Subcontracting Processes in Software Service Organisations - An Experience Report
	Introduction
	Related Works
	Process Overview
	Selection Phase
	Selection Phase Walkthrough
	Criteria

	Evaluation Phase
	Quality Monitoring Metrics

	Process Applicability - Experiences to Date
	Conclusions
	References

	On Reducing the Pre-release Failures of Web Plug-In on Social Networking Site
	Introduction
	Related Works
	Release-Waiting Farm
	Experiment
	Analysis
	Conclusions
	References

	Technical Software Development Process in the XML Domain
	Introduction
	Related Work
	Methodologies and Data Collection
	Results
	Documenting Technical Development Processes
	Representing Technical Development Processes

	Discussion
	Conclusion
	References

	Process Metrics
	Software Product Quality: Ensuring a Common Goal
	Introduction
	Background
	What Is Quality?
	Quality Models for Software Development
	Merging Perspectives on Software Quality
	Research Objectives

	Methodology
	Quality Model
	Questionnaire
	Analysis

	Case Study
	Success-Critical Stakeholder Groups
	Software Product Qualities
	Pilot Study
	Software Product Quality Priorities

	Discussion
	Conclusion
	References

	Predicting Upgrade Project Defects Based on Enhancement Requirements: An Empirical Study
	Introduction
	Related Work
	Defect Prediction Method Based on Enhancement Requirements
	Associating Requirements and Defects
	Classifying Requirements and Extracting Features
	Modeling and Predicting Using SVM

	Experiment
	Background
	Experiment Design
	Experiment 1
	Experiment 2

	Threat to Validity
	Conclusion
	References

	Process Modeling and Representation
	Incremental Process Modeling through Stakeholder-Based Hybrid Process Simulation
	Introduction
	Motivation
	Major Contribution

	Related Works
	Software Process Modeling Languages
	Software Process Simulation

	A Stakeholder-Based Approach in Incremental Process Modeling
	Stakeholders’ Dependencies on Process Modeling Languages
	Stakeholder’s Perspectives in Continuous Process Modeling
	Incremental Process Modeling Based on Stakeholders’ Perspectives
	Information Flow between the DiscreteModel and Continuous Model

	Case Study
	Baseline Project and ProcessModels
	Deadline Verification and Adjustment
	Defect Dynamics: Generation, Detection and Density Control

	Conclusions and Future Work
	References

	A Process-Oriented Approach for the Optimal Satisficing of Non-Functional Requirements
	Introduction
	Softgoal Interdependency Ruleset Graphs
	SIRG Optimisation
	The NFR Optimiser
	SIG’s and SIRG’s: A Comparison
	Conclusions and Further Work
	References
	Appendix

	A Pattern for Modeling Rework in Software Development Processes
	Introduction
	Motivating Examples of Rework
	A Pattern of Managed Rework
	Applicability
	Participants
	Collaborations
	Consequences
	Related Patterns

	Managing the Context
	Examples Using the Pattern
	Related Work
	Implementing Triggers as Exceptions
	Implementing Context with Scope

	Conclusions and Future Work
	References

	Achieving On-Time Delivery: A Two-Stage Probabilistic Scheduling Strategy for Software Projects
	Introduction
	Related Work and Problem Analysis
	Related Work
	Problem Analysis

	A Two-Stage Probabilistic Project Scheduling Strategy
	Pre-scheduling for Individual Software Processes
	Scheduling for Multiple Software Processes
	Evaluation
	Conclusions and Future Work
	References

	Incrementally Introducing Process Model Rationale Support in an Organization
	Introduction
	Case Studies for Eliciting Requirements on Rationale for Process Model Evolution
	ESA Case Study
	ASG Case Study

	Requirements for a Rationale for Process Model Changes
	The REMIS Approach
	The Incremental Introduction Strategy
	Fulfillment of the Requirements
	Summary and Outlook
	References

	A Process for Driving Process Improvement in VSEs
	Introduction
	Related Work
	Improvement Framework
	The PmCOMPETISOFT Process

	Case Studies
	Design
	Subjects and Analysis Unit
	Field Procedure and Data Collection
	Analysis and Discussion

	Conclusions and Future Work
	References

	Modeling Software Evolution with Game Theory
	Introduction
	Introduction to Game Theory
	Applying Game Theory to Software Evolution
	Basic Software Evolution Game
	Example of the Basic Game: KWIC

	Case Study: Sun’s Support for World Calendars
	Discussion
	Related Work
	Conclusion
	References

	Structural Considerations in Defining Executable Process Models
	Introduction
	The Process—Online Dispute Resolution
	Supporting Execution of the ODR Process
	Discussion
	Future Directions

	Related Work
	References

	Analyzing a Software Process Model Repository for Understanding Model Evolution
	Introduction
	An Empirical Study on Model Follow-Up Change
	The German V-Modell XT
	Hypotheses
	Data Preparation
	Data Analysis and Interpretation
	Threats to Validity and Limitations

	Related Work
	Conclusions and Outlook
	References

	Process Trustworthiness as a Capability Indicator for Measuring and Improving Software Trustworthiness
	Introduction
	Related Work
	Context and Basic Definitions
	Motivations and Objectives
	Previous Work
	Basic Definitions

	Modeling Process Trustworthiness
	Meta-model of a Trustworthy Process
	Modeling Software Trustworthiness
	Modeling Processes Trustworthiness
	Trustworthiness Measurement Model

	Towards a Trustworthy Process Management Framework
	Requirement Management Model
	Process Management Model
	Risk Management Model
	Process Simulation Model

	Conclusions
	References

	A System Dynamics Model That Simulates a Significant Late Life Cycle Manpower Increase Phenomenon
	Introduction
	Case Study Research
	System Dynamics Modeling
	Modeling Results
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

