
Negotiating and Enforcing QoS and SLAs in
Grid and Cloud Computing

Vladimir Stantchev1,2,3 and Christian Schröpfer2

1 International Computer Science Institute, Berkeley CA 94704, USA
vstantch@icsi.berkeley.edu

2 Technische Universität Berlin, Berlin, Germany
3 FOM Fachhochschule fuer Oekonomie und Management, Berlin, Germany

Abstract. Emerging grid computing infrastructures such as cloud com-
puting can only become viable alternatives for the enterprise if they can
provide stable service levels for business processes and SLA-based cost-
ing. In this paper we describe and apply a three-step approach to map
SLA and QoS requirements of business processes to such infrastructures.
We start with formalization of service capabilities and business process
requirements. We compare them and, if we detect a performance or reli-
ability gap, we dynamically improve performance of individual services
deployed in grid and cloud computing environments. Here we employ
translucent replication of services. An experimental evaluation in Ama-
zon EC2 verified our approach.

Keywords: QoS and SLA Negotiation, Assurance, Service-oriented com-
puting.

1 Introduction
Service-oriented architecture (SOA) is an architecture that combines elements of
software architecture and enterprise architecture. It is based on the interaction
with autonomous and interoperable services that offer reusable business function-
ality via standardised interfaces. Services can exist on all layers of an application
system (business process, presentation, business logic, data management). They
may be composed of services from lower layers, wrap parts of legacy applica-
tion systems or be implemented from scratch. Typically, services at the business
process layer are described as business services, while services at the lower im-
plementation level are described as technical services.

1.1 Emerging Grid Computing Infrastructures for Services
Datacenters and cloud computing environments are grid computing infrastruc-
tures that are emerging as platforms for provision of technical services. An
example for such an environment is Amazon EC2, recently evaluated from the
user perspective at Harvard [1]. The development and extension of tools to mon-
itor and control such infrastructures is part of large research projects, e.g., at
Stanford and UC Berkeley [2]. On the other side, the mapping of business process
requirements at the infrastructure level in such environments is rarely addressed.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 25–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

26 V. Stantchev and C. Schröpfer

1.2 Challenges

A successful service offering has two main objectives: to provide the needed func-
tionality and to provide the needed Quality of Service (QoS). QoS parameters are
part of the run-time related nonfunctional properties (NFPs) of a service and
present one of the main research challenges in service-oriented computing [3].
Contrary to design-time related NFPs (e.g., language of service or compliance),
run-time related NFPs are performance oriented (e.g., response time, transaction
rate, availability). They can change during runtime – when times of extensive
concurrent usage by many users are followed by times of rare usage, or when
failures occur.

An approach to measure and dynamically adapt service performance in grid
and cloud computing environments to such changes can ensure continuous meet-
ing of service levels defined at the business level. This is an even more challenging
task in such IT infrastructures that are not owned or controlled directly by the
enterprise. Specifically, such approach should consider service reconfiguration at
runtime, as changes in service implementation are not realistic.

NFPs of services (both technical and human, as well as their combinations)
are typically specified in Service Level Agreements (SLAs). They are typically
defined at the level of a business process but need to be addressed at the level of
IT infrastructures. Thereby several technical services are orchestrated in order
to provide business services for a business process. SLAs are negotiated between
the process owner and the service provider who have to agree upon them.

This work proposes a straightforward way to negotiate business process SLAs
between a process owner and a service provider and to enforce these SLAs at
the level of grid and cloud computing infrastructures – if we formalize both
the service level requirements of the process owner and the capabilities of the
technical services in the grid (cloud) using a similar structure, we can compare
them in an automated way. Based on such comparisons, we can negotiate and
provide optimized service configurations in the grid (cloud) and thereby enforce
the SLAs of the business process in the QoS characteristics and the service levels
of these technical services.

1.3 Work Structure

The remainder of this work is structured as follows: Section 2 gives an overview
of our proposed approach and puts it in the context of related research in the
areas of service-oriented computing, QoS-aware platforms and grid workflow op-
timization. Section 3 describes the formalization of service and QoS levels as
a main precondition for the negotiation of SLAs. Section 4 deals with perfor-
mance and availability as NFPs that are representative for the approach and
their enforcement in grid and cloud computing environments. In Section 5,
we present an experimental evaluation of the approach. Thereby our solution
was deployed in Amazon EC2 and demonstrated the viability and applicabil-
ity of SLA formalization and subsequent QoS enforcement in cloud computing
infrastructures.

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 27

2 An Approach for SLA Mapping

When a company is in control of its internal IT infrastructure, business analysts
and developers can define service level requirements during design time and can
actively select and influence components in order to meet these requirements.
However, in cloud computing environments SLAs are typically provided for basic
platform services (e.g., system uptime, network throughput). Business processes
typically expect service levels for the technical services they integrate (e.g., order
submission in less than 1 second). How can we bring these two worlds together?

This work proposes an approach for SLA mapping between business processes
and IT infrastructures. It is based on a method for the assurance of NFPs and in-
cludes three major tasks (see Figure 1): (i) Formalization of business process re-
quirements at the business side and of service capabilities at the IT infrastructure.
Both are specified in a formal way, using a predefined service level objective struc-
ture and predefined NFP terms. (ii) Negotiation of service capabilities at the IT
infrastructure that correspond to the formalized business process requirements:
Here, we assess whether the aggregatedtechnical services provide the expected ser-
vice levels to meet business process requirements under different load hypotheses.
Within this comparison we also calculate the aggregated service level, using the
performance metrics of the individual technical services. Based on the result of this
comparison we can decide where to apply replication in the next step. A reasoner or
comparing unit must understand both structure of the statements and used NFPs
on the business and the infrastructure side. (iii) Enforcement of business process
SLAs at the IT infrastructure level: Here, we apply translucent parallelization of
service processing using multiple nodes in a datacenter environment [4]. Replica-
tion can be enacted to improve service levels regarding response time, transaction
rate, throughput and availability, respectively reliability.

2.1 Related Work

The SOA-specific aspects of major architectural concerns, such as service vi-
sualization [5], integration [6], and service selection [7] have been consistently

Fig. 1. Approach Overview

28 V. Stantchev and C. Schröpfer

addressed by researchers. The existing standards for specification of QoS char-
acteristics in web service environments can be grouped according to their main
focus: software design/process description (UML Profile for QoS and QML - QoS
Modeling Language [8]), service/component description (WS-Policy) and SLA-
centric approaches (WSLA - Web Service Level Agreements [9], WSOL - Web
Service Offerings Language [10], SLAng - Service Level Agreement definition
language [11] and WS-Agreement [12]).

Much work has been done in the area of QoS-aware web service discov-
ery [13], QoS-aware platforms and middleware [14,15,16,17], and context-aware
services [18]. However, all of these approaches do not address adaptive enforce-
ment of NFPs, but rather deal with the composition of services where the aggre-
gation of predefined NFP levels would satisfy a specific requirement. Of particu-
lar interest are approaches that allow the "gridification" of specific applications,
e.g., in [19] where a set of programs for inferring evolutionary trees is ported to
the grid platform XtremWeb-CH [20]. Approaches such as shared memory have
also been proposed for such tasks [21]. There is ongoing research in the area of
adaptive optimization, more specifically in the areas of grids (e.g., grid workflow
optimization [22]) and parallel database operations [23].

3 Formalization and Negotiation of SLAs

Figure 2 shows the structure we have recently proposed [24,25] for formaliza-
tion of business process service level objectives (SLOs) and technical service
capabilities. The figure also contains sample service level statements about re-
sponse time, throughput and transaction rate. These statements are then stored
with the service description (service capabilities) respectively with the business
process definition (business process SLO) and are the starting point for the nego-
tiation of SLAs. An example for a statement about the service capability is "The
transaction rate of the service is higher than 90 transactions per second in 98%
of the cases as long as throughput is higher than 500 kB/s." An example for a

Fig. 2. Structure of Service Level Objectives (SLOs) and Examples (tps - Transactions
per second)

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 29

requirement business process level is "The transaction rate of the process should
be higher than 50 transactions per second in 97% of the cases while throughput
is higher than 500 kB/s."

In this work we deal with the negotiation and the enforcement of performance-
related NFPs as part of SLAs and therefore focus on their formalization. How-
ever, our scheme can also be used to describe further aspects of SLAs, e.g.,
design-time related NFPs, such as cultural (e.g. language), legal (e.g. Sarbanes-
Oxley-Compliance, Basel-II-Compliance), organizational (partner list), service
usage-related (e.g. GUI simplicity) and trust-related (e.g. Customer rating, ex-
perience of provider).

In our proposed approach, the process owner specifies service level require-
ments as expected from the business perspective. At the IT infrastructure side
we evaluate different replication configurations of technical services in grid and
cloud computing environments such as Amazon EC2. Both requirements and
service capabilities of the different configurations are then formalized and com-
pared. Furthermore, we can start a negotiation between process owner and ser-
vice provider based on this comparison. Thereby, the replication configuration
that meets (or is closest to) the business requirements is selected and is the
starting point for the actual SLA. The transparent cost model of Amazon Web
Services allows us to put different price tags for the required service levels (e.g.,
a business process that needs higher transaction rates has to pay more), thus
allowing for real activity-based IT costing. Furthermore, we can use the SLO
structures in a supply-oriented way, contrary to the demand-oriented approach
we present here. Thereby, we can specify combinations of NFP levels that repre-
sent different generic SLAs (e.g., "Gold", "Standard"’, "Cost-optimized" [26], or
"Time-Critical", "Load-Critical", "Dependability-Critical").

4 QoS Enforcement of SLAs in Grid and Cloud
Computing Environments

In order to satisfy the SLAs of a business process we should look at ways to repre-
sent and control NFPs at the level of a technical service. While cloud computing
environments specify service levels for basic platform operations (e.g., system
uptime), we focus on the improvement of service levels for specific technical ser-
vices that are composed to provide the needed business service. One example is
the composition of the technical services GetOrder() and ClearPayment() to
provide the business service Order Placement. In this work we show exemplary
how we can improve performance-oriented NFPs, particularly response time and
transaction rate, as well as dependability for single and composed technical
services.

4.1 Performance

A general and broadly accepted definition of performance is to observe the sys-
tem output ω(δ) that represents the number of successfully served requests (or
transactions) from a total of input ι(δ) requests during a period of time.

30 V. Stantchev and C. Schröpfer

ω(δ) = f(ι(δ)) (1)
This definition of performance corresponds to transaction rate as NFP – the
system guarantees to process n requests during time period t. The performance
of a serial composed service chain is determined by the performance of the service
with the lowest performance. Let us assume that we compose a service chain from
Service 1, Service 2 and Service 3. If Service 1 and Service 3 are providing high
transaction rate (e.g., 500 requests per second) and Service 2 is providing a much
lower transaction rate (e.g., 50 requests per second), our composed service will
only serve 50 requests (or actually less than 50 requests) per second overall.
We can easily calculate the average response time from the transaction rate by
dividing the time period through the number of requests. Furthermore, we can
also measure further performance metrics, such as worst-case execution time
(WCET) if we need to specify them in the SLA.

When we introduce parallelism through functional replication we can ideally
double the processing performance. The replication of the service with the lowest
transaction rate (Service 2) leads to an overall increase of the transaction rate for
the composed service. Therefore, replication has advantageous effects on service
chain performance when no replica synchronization is required. This includes
transaction rate, throughput and response time as parameters of SLAs.

4.2 Dependability

Dependability integrates several attributes: availability, reliability, safety, in-
tegrity, and maintainability. These are defined as follows [27]:

– availability denotes the readiness to provide a correct service,
– reliability denotes the continuity of service provision,
– safety is an attribute that assures there are no catastrophic consequences on

the user and the environment.
– integrity denotes that there are no improper changes of the system.
– maintainability denotes that a system can undergo changes and repairs.

There are four categories of approaches to attain dependability [27]: fault pre-
vention, fault tolerance, fault removal, and fault forecasting. In the context of
this work we focus on availability as attribute and on fault tolerance as approach
to attain it.

Availability needs to be quantified in the SLAs so that we can negotiate and
enforce it. It has been defined traditionally as a binary metric that describes
whether a system is "up" or "down" at a single point of time. A common extension
of this definition is to compute the average percentage of time that a system is
available during a certain period – this is a typical availability measure that
describes a system as having 99.999% availability, for example.

There are several extended definitions of availability that address the inherent
limitations of the traditional definition – availability should be considered as a
spectrum, rather as a binary metric, as systems can have various degraded, but
operational, states between "up" and "down". Furthermore, the definition does
not consider QoS aspects.

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 31

Fig. 3. Fault Model used in the SLO Structures

One possibility is to measure availability by examining variations in system
QoS metrics over time [28]. The authors state that the particular choice of QoS
metrics depends on the type of system and suggest performance and degree of
fault tolerance as obvious metrics for server systems. In this case, performance
would mean requests satisfied (successfully served) per second. This corresponds
to our definition of performance in the previous subsection. In order to specify
degrees of fault tolerance we need an underlying fault model. We use a model
that was also used in [29] (see Figure 3). The model was originally proposed
in [30] and extended in [31]. It incorporates several aspects that are typical for
technical services in cloud computing environments, as compared to traditional
distributed systems (e.g., trust issues).

One recent adaptation of traditional methods for better availability to the
world of SOA is proposed in [32]. It involves replication of technical services
across multiple, wide-area sites. Typically, we need to provide strong consis-
tency between the replicas in order to provide better availability. This makes
the application of the approach problematic, particularly in cloud computing
environments - the overhead we introduce to ensure strong consistency generally
has a negative impact on performance.

4.3 Evaluation and Improvement of IT Infrastructure Capabilities

While these general aspects of replication are hardly surprising, there are differ-
ent ways where and how we can replicate technical services in cloud computing

32 V. Stantchev and C. Schröpfer

environments. The concept of architectural translucency [4] defines three levels
for replication in SOA platforms (hardware, operating system, and serviceware)
and proposes replication techniques and mechanisms for the evaluation of their
effects on NFPs [33,34]. Using such concepts we are able to evaluate different
replication configurations at the level of IT infrastructure, formalize the results
of these evaluations as SLOs, and select the configuration that best meets the
requirements of the business process.

5 Experimental Evaluation

For a series of experimental evaluations we deployed WSTest 1.1 [35] as a generic
benchmark in Amazon EC2 [1] as a grid and cloud computing infrastructure. Our
business process requirements were specified in SLO structures similar to the
one in Figure 2. We tested different configurations of translucent replication as
specified in [34,33] with the objective to find settings that best match the SLOs.
Client requests were simulated using the second of the two test methodologies
described in [35] and Mercury LoadRunner’s SOAP client. Specifically, 25 client
machines that closed the connection at the end of each request were used. Each
of these machines (Dell, 2 GHz Core Duo, 2 GB RAM, Gigabit Ethernet) runs
Mercury LoadRunner agents and can generate approx. 2000 concurrent requests.
Every replication setting was tested for 120 minutes with 1 second think time
before a request. This corresponds to some 7200 requests that were sent to
each setting. These 120 minutes tests were automated and repeated 10 times on
21 consecutive days. Figure 4 shows an overview of the results. All replication
settings provided better service levels as the original configuration. Furthermore,
there were two replication settings (3 and 4) that satisfied the requirements of the

Fig. 4. Overview of Results

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 33

business process and thus allowed the mapping of its SLAs at the level of the IT
architecture. These two settings caused only marginally higher costs compared
to the original configuration in Amazon EC2.

6 Conclusion and Outlook

We presented an approach for negotiation of SLAs of business processes and
the corresponding QoS enforcement at the level of IT infrastructure. It consists
of three main tasks. The formalization of NFPs allows us to compare required
and existing service levels. Using translucent replication we can meet expected
service levels by automatically reconfiguring service replicas in cloud comput-
ing environments. The experimental evaluation demonstrated that we could im-
prove service levels by over 50 % under certain load hypotheses. Furthermore, it
demonstrated that we are able to keep business process service levels as specified
in the SLAs continuously. Providers of cloud computing environments typically
offer very flexible and detailed cost accounting, so the costs of providing and en-
forcing different service levels for business processes are transparent. This allows
us to taylor QoS levels to the specific requirements of every business process
and we support concepts such as activity-based costing in an enterprise. We are
currently working on a user interface that will allow process owners to set their
expected preferences regarding NFPs in an easy and convenient way. Thereby, a
predefined set of service levels for response time, availability and other NFPs will
correspond to a simple description (e.g. gold, standard, cost-optimized). Users
will be able to select a setting using a simple user interface such as a slider and
the infrastructure will automatically adapt to this setting. Furthermore, we are
currently investigating ways to derive such preferences from existing processes
and incorporate them in the process model repository as SLOs which will ulti-
mately result in the automatic provision of service compositions that best meet
the functional and nonfunctional requirements of the business process. Further-
more, we also plan to address limitations of distributed replication of services
with respect to availability and particularly the trade-off communication vs.
availability [32].

References

1. Garfinkel, S.: An evaluation of amazon’s grid computing services: Ec2, s3 and sqs.
Technical report tr-08-07, School for Engineering and Applied Sciences, Harvard
University, Cambridge, MA (July 2007)

2. Bodık, P., Fox, A., Jordan, M.I., Patterson, D., Banerjee, A., Jagannathan, R.,
Su, T., Tenginakai, S., Turner, B., Ingalls, J.: Advanced Tools for Operators at
Amazon.com. In: The First Annual Workshop on Autonomic Computing (2006)

3. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. Computer 40(11), 38–45 (2007)

4. Stantchev, V., Malek, M.: Architectural Translucency in Service-oriented Archi-
tectures. IEE Proceedings - Software 153(1), 31–37 (2006)

34 V. Stantchev and C. Schröpfer

5. Eicker, S., Spies, T., Kahl, C.: Software Visualization in the Context of Service-
Oriented Architectures. In: Proceedings of the 4th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (Vissoft 2007), pp. 108–
111. IEEE, Los Alamitos (2007)

6. Zhang, J., Chang, C.K., Chung, J.-Y., Kim, S.W.: Ws-net: a petri-net based specifi-
cation model for web services. In: IEEE International Conference on Web Services,
2004. Proceedings, July 6-9, 2004, pp. 420–427 (2004)

7. Reinicke, M., Streitberger, W., Eymann, T.: Evaluation of Service Selection Pro-
cedures in Service Oriented Computing Networks. Multi Agent and Grid Sys-
tems 1(4), 271–285 (2005)

8. Frolund, S., Koistinen, J.: Quality of services specification in distributed object
systems design. In: COOTS 1998: Proceedings of the 4th conference on USENIX
Conference on Object-Oriented Technologies and Systems (COOTS), Berkeley, CA,
USA, p. 1. USENIX Association (1998)

9. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification. IBM Corporation (2002)

10. Tosic, V., Patel, K., Pagurek, B.: WSOL-Web Service Offerings Language. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE
2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002);
(revised papers)

11. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Ser-
vice Level Agreements. In: Proc. of the 9th IEEE Workshop on Future Trends in
Distributed Computing Systems-FTDCS, pp. 100–106 (2003)

12. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Global Grid Forum GRAAP-WG, Draft (August 2004)

13. Makripoulias, Y., Makris, C., Panagis, Y., Sakkopoulos, E., Adamopoulou, P.,
Pontikaki, M., Tsakalidis, A.: Towards Ubiquitous Computing with Quality of
Web Service Support. Upgrade, The European Journal for the Informatics Pro-
fessional VI(5), 29–34 (2005)

14. Yau, S.S., Wang, Y., Huang, D., Hoh, P.: Situation-aware contract specification
language for middleware for ubiquitous computing. In: The Ninth IEEE Work-
shop on Future Trends of Distributed Computing Systems, 2003. FTDCS 2003.
Proceedings, May 28-30, 2003, pp. 93–99 (2003)

15. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for Web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

16. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the 2005
conference on Genetic and evolutionary computation, pp. 1069–1075 (2005)

17. Solberg, A., Amundsen, S., Aagedal, J.Ø., Eliassen, F.: A Framework for QoS-
Aware Service Composition. In: Proceedings of 2nd ACM International Conference
on Service Oriented Computing (2004)

18. Tokairin, Y., Yamanaka, K., Takahashi, H., Suganuma, T., Shiratori, N.: An ef-
fective qos control scheme for ubiquitous services based on context information
management. cec-eee, 619–625 (2007)

19. Abdennadher, N., Boesch, R.: Deploying phylip phylogenetic package on a large
scale distributed system. In: IEEE International Symposium on Cluster Computing
and the Grid, pp. 673–678 (2007)

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 35

20. Abdennadher, N., Boesch, R.: A scheduling algorithm for high performance peer-
to-peer platform. In: Lehner, W., Meyer, N., Streit, A., Stewart, C. (eds.) Euro-Par
Workshops 2006. LNCS, vol. 4375, pp. 126–137. Springer, Heidelberg (2007)

21. Ibach, P., Stantchev, V., Keller, C.: Daedalus a peer-to-peer shared memory system
for ubiquitous computing. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-
Par 2006. LNCS, vol. 4128, pp. 961–970. Springer, Heidelberg (2006)

22. Wanek, H., Schikuta, E., Haq, I.U.: Grid workflow optimization regarding dynam-
ically changing resources and conditions. Concurrency and Computation: Practice
and Experience (2008)

23. Schikuta, E., Mach, W.: Optimized workflow orchestration of parallel database
aggregate operations on a heterogenous grid. In: The 37th International Conference
on Parallel Processing (ICPP 2008), Portland, Ohio, USA. IEEE Computer Society,
Los Alamitos (2008)

24. Stantchev, V., Schröpfer, C.: Techniques for service level enforcement in web-
services based systems. In: Proceedings of The 10th International Conference on
Information Integration and Web-based Applications and Services (iiWAS 2008),
pp. 7–14. ACM, New York (2008)

25. Krallmann, H., Schröpfer, C., Stantchev, V., Offermann, P.: Enabling autonomous
self-optimization in service-oriented systems. In: Proceedings of The 8th Interna-
tional Workshop on Autonomous Systems - Self Organisation, Management and
Control, Berlin, New York, pp. 127–134. Springer, Heidelberg (2008)

26. Schropfer, C., Binshtok, M., Shimony, S.E., Dayan, A., Brafman, R., Offermann, P.,
Holschke, O.: Introducing preferences over NFPs into service selection in SOA. In:
International Conference on Service Oriented Computing - International Workshop
on Non Functional Properties and Service Level Agreements in Service Oriented
Computing (2007)

27. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

28. Brown, A., Patterson, D.A.: Towards Availability Benchmarks: A Case Study of
Software RAID Systems. In: Proceedings of the 2000 USENIX Annual Technical
Conference (2000)

29. Polze, A., Schwarz, J., Malek, M.: Automatic generation of fault-tolerant corba-
services. Tools, 205 (2000)

30. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: from simple
message diffusion to byzantine agreement. Inf. Comput. 118(1), 158–179 (1995)

31. Laranjeira, L.A., Malek, M., Jenevein, R.: Nest: a nested-predicate scheme for fault
tolerance. Transactions on Computers 42(11), 1303–1324 (1993)

32. Yu, H., Vahdat, A.: The costs and limits of availability for replicated services. ACM
Trans. Comput. Syst. 24(1), 70–113 (2006)

33. Stantchev, V.: Effects of Replication on Web Service Performance in WebSphere.
Icsi tech report 2008-03, International Computer Science Institute, Berkeley, Cali-
fornia 94704, USA (February 2008)

34. Stantchev, V., Malek, M.: Addressing Web Service Performance by Replication
at the Operating System Level. In: ICIW 2008: Proceedings of the 2008 Third
International Conference on Internet and Web Applications and Services, pp. 696–
701. IEEE Computer Society, Los Alamitos (2008)

35. Microsoft. Comparing Web Service Performance: WS Test 1.1 Benchmark Results
for .NET 2.0, NET 1.1, Sun One/ JWSDP 1.5 and IBM WebSphere 6.0 (2006),
http://www.theserverside.net/tt/articles/content/NET2Benchmarks

http://www.theserverside.net/tt/articles/content/NET2Benchmarks

	Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing
	Introduction
	Emerging Grid Computing Infrastructures for Services
	Challenges
	Work Structure

	An Approach for SLA Mapping
	Related Work

	Formalization and Negotiation of SLAs
	QoS Enforcement of SLAs in Grid and Cloud Computing Environments
	Performance
	Dependability
	Evaluation and Improvement of IT Infrastructure Capabilities

	Experimental Evaluation
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

