

Lecture Notes in Computer Science 5529
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nabil Abdennadher Dana Petcu (Eds.)

Advances in Grid and
Pervasive Computing

4th International Conference, GPC 2009
Geneva, Switzerland, May 4-8, 2009
Proceedings

13

Volume Editors

Nabil Abdennadher
University of Applied Sicences
Western Switzerland (HES-SO)
Geneva, Switzerland
E-mail: nabil.abdennadher@hesge.ch

Dana Petcu
Computer Science Department
West University of Timisoara
Timisoara, Romania
E-mail: petcu@info.uvt.ro

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2, D.1, D.2, F.1, F.2, D.4, C.4, H.4, K.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-01670-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01670-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12662647 06/3180 5 4 3 2 1 0

Preface

Grid and Pervasive Computing (GPC) is an annual international conference
devoted to the promotion and advancement of all aspects of grid and pervasive
computing. The objective of this conference is to provide a forum for researchers
and engineers to present their latest research in the fields of grid and pervasive
computing.

Previous editions of the Grid and Pervasive Computing conference were
held in: Kunming (China) May 25-28, 2008, Paris (France) May 2-4, 2007, and
Taichung (Taiwan) May 3-5, 2006.

The fourth edition took place in Geneva, Switzerland during May 4-8, 2009.
It was organized by members of the University of Applied Sciences Western
Switzerland (Haute Ecole de Paysage, d’Ingénierie et d’Architecture - hepia), in
collaboration with colleagues from various places around the world.

The conference spanned a full week, including a three-day technical program
where the papers contained in these proceedings were presented. The confer-
ence was followed by two tutorial days where attendants had the opportunity
to discuss a variety of topics related to the fields covered at the conference,
at both introductory and advanced levels. The technical program also included
an industrial session, with contributions illustrating challenges faced and solu-
tions devised by industry. Furthermore, the conference offered an opportunity
for vendors and researchers to present their products and projects at an exhi-
bition (Grid Village) where solutions supporting the development of grid and
pervasive computing were displayed.

Three workshops were held in conjunction with the conference:

– The Third International Symposium on Service, Security and Its Data Man-
agement Technologies in Ubi-comp (SSDU 2009)

– The 4th International Workshop on Workflow Management (ICWM 2009)
– The First International Workshop on Grids, Clouds and Virtualization

(IWGCV 2009)

The proceedings of these workshops are not included in this volume but are
published in a separate book.

The conference featured four distinguished invited speakers, who delivered
state-of-the-art information on the conference topics:

– Exa-Scale Volunteer Computing by David P. Anderson (University of
California, Berkeley, USA)

– Towards a Sociology of the Grid by Ian Foster (Computation Institute at
Argonne National Laboratory, USA)

– The Swiss National Grid (SwiNG) project by Heinz Stockinger (Swiss Insti-
tute of Bioinformatics, Switzerland)

VI Preface

– Successful Industry Use of Grid and Cloud Technology by Bernhard Schott
(Platform Computing GmbH, Germany)

We would like to express our sincere gratitude to these distinguished speakers
for sharing their insights with the conference participants.

Exactly 112 papers were submitted, from as many as 34 different countries.
The Program Committee worked hard to review them (at least three reviewers
per paper), and the selection process proved to be difficult, since many papers
had received excellent reviews. The Program Committee finally selected 42 pa-
pers for the conference and these proceedings.

The conference also includes an interesting selection of tutorials, featuring
international experts who presented introductory and advanced material in the
domains of grid and pervasive computing:

– Grid Metadata Management by Sandro Fiore (Euro-Mediterranean Centre
for Climate Change and University of Salento, Lecce, Italy)

– An Introduction to Volunteer Computing Using BOINC, by Nicolas Maire
(Swiss Tropical Institute, Basel, Switzerland)

– Building a Condor Desktop Grid, by Michela Thiémard, Pascal Jermini
(Ecole Polytechnique Fédérale de Lausanne, Domaine IT)

– Trusted Computing for Trusted Infrastructures, by Andrew Boris Balacheff
(HP Labs) and Andrew Martin (University of Oxford, UK)

The first Swiss Grid School (SGS 2009) was also held in conjunction with the
conference. This school, organized by the Swiss National Grid (SwiNG) associ-
ation, aimed at transferring grid knowledge to academia, research and industry.
It provided lectures and practical lab sessions that illustrated the current state
of the art in grid computing in various domains such as grid architecture, se-
curity and middleware, resource management, data management and workflow
management. It also focused on a variety of practical case studies (applications).

The fourth edition of GPC was made possible through the generous support
and diligent work of many individuals and organizations. A number of institu-
tional and industrial sponsors also made important contributions and partici-
pated in the industrial exhibition. Their names and logos appear on the GPC
website (http://gpc09.eig.ch). We gratefully acknowledge their support.

Various Program Committee members were assigned to shepherd some of the
papers. We are grateful to all those who contributed to the technical program
of the conference. We would also like to thank the members of the Organizing
Committee for their valuable effort in taking care of all the organizational details,
which led to a smooth ride of the conference. Finally, we also thank the authors
of the contributions submitted to the conference and to all the participants who
helped achieve the goal of the conference: to provide a forum for researchers and
practitioners for the exchange of information and ideas about grid and pervasive
computing.

May 2009 Nabil Abdennadher
Dana Petcu

Organization

Steering Committee Members

Hai Jin Huazhong University of Science and
Technology, China

Christophe Cérin University of Paris XIII, France
Sajal K. Das University of Texas at Arlington, USA
Jean-Luc Gaudiot University of California - Irvine, USA
Kuan-Ching Li Providence University, Taiwan
Cho-Li Wang University of Hong Kong, China
Chao-Tung Yang Tunghai University, Taiwan
Albert Y. Zomaya University of Sydney, Australia

Conference Chair
Nabil Abdennadher University of Applied Sciences,

Western Switzerland

Program Co-chairs

Nabil Abdennadher University of Applied Sciences,
Western Switzerland

Dana Petcu West University of Timisoara, Romania

Tutorial Chair

Krishna Madhavan Clemson University, USA

Exhibition Chair
Claude Evequoz University of Applied Sciences,

Western Switzerland

Publicity Chairs

Brian Yunes Univa UD USA
Wenbin Jiang Huazhong University of Science and Technology, China
Raphaël Couturier University of Franche Comte, France

Local Chair
Régis Boesch University of Applied Sciences,

Western Switzerland

VIII Organization

Program Committee

Abawajy Jemal Deakin University, Australia
Abdennadher Nabil University of Applied Sciences,

Western Switzerland
Albuquerque Paul University of Applied Sciences,

Western Switzerland
Arabnia Hamid R. University of Georgia, USA
Arantes Luciana LIP6, France
Baker Mark The University of Reading, UK
Banicescu Ioana Mississippi State University, USA
Barker Ken University of Calgary, Canada
Belli Fevzi University of Paderborn, Germany
Cérin Christophe Université de Paris XIII, France
Chang Hsi-Ya Jerry NCHC, Taiwan
Chang Ruay-Shiung National Dong Hwa University, Taiwan
Chung Yeh-Ching National Tsing Hua University, Taiwan
Cirne Walfredo UFCG, Brazil
Couturier Raphaël LIFC, University of Franche Comte, France
Damon Shing-Min Liu National Chung Cheng University, Taiwan
De Mello F. Rodrigo University of Sao Paulo, Brazil
De Roure David University of Southampton, UK
Di Martino Beniamino Second University of Naples, Italy
Du David H.C. University of Minnesota, USA
Evequoz Claude University of Applied Sciences,

Western Switzerland
Foukia Noria University of Otago, New Zealand
Grigoras Dan University College Cork, Ireland
He Xiangjian University of Technology Sydney, Australia
Hobbs Michael Deakin University, Australia
Hsiao Hung-Chang National Cheng Kung University, Taiwan
Hsu Hui-Huang Tamkang University, Taiwan
Hu Bin University of Central England at Birmingham,

UK
Huang Kuo-Chan National Taichung University, Taiwan
Hussain Sajid Acadia University, Canada
Jemni Mohamed ESSTT, Tunisia
Jeong Young-Sik Wonkwang University, South Korea
Jia Weijia City University of Hong Kong, China
Jiang Hai Arkansas State University, USA
Jiannong Cao Hong Kong Polytechnic University, China
Katz Daniel S. Louisiana State University, USA
Kim J. Moon IBM, USA
Lau C.M. Francis University of Hong Kong, China
Li Kuan-Ching Providence University, Taiwan

Organization IX

Liu Hai Hong Kong Baptist University, Hong Kong
Malyshkin Victor Russian Academy of Sciences, Russia
Manneback Pierre Faculty of Engineering, Mons, Belgium
Margalef Burrull Tomás Universitat Autónoma de Barcelona, Spain
Medeiros Pedro New University of Lisbon, Portugal
Müller Henning University of Applied Sciences,

Western Switzerland
Navaux Philippe Federal University of Rio Grande do Sul,

Brazil
Olmedilla Daniel Telefonica R&D, Spain
Omer Rana Cardiff University, UK
Panetta Jairo INPE, Brazil
Paprzycki Marcin IBSPAN, Poland
Pautasso Cesare University of Lugano, Switzerland
Perrott Ronald Queen’s University, UK
Petcu Dana West University of Timişoara, Romania
Pinotti Cristina Universitá degli Studi di Perugia, Italy
Podvinec Michael Biozentrum, University of Basel, Switzerland
Raad Wasim King Fahd University of Petroleum and

Minerals, Saudi Arabia
Ranka Sanjay University of Florida, USA
Ro Won-Woo Yonsei University, Korea
Sadjadi Masoud Florida International University, USA
Sato Matsumoto Liria New University of Lisbon, Portugal
Sato Mitsuhisa University of Tsukuba, Japan
Shi Yuanchun Tsinghua University, China
Stockinger Heinz Swiss Institute of Bioinformatics, Switzerland
Talbi El-Ghazali INRIA Lille - Nord Europe, France
Tcaciuc Sergiu University of Siegen, Germany
Thulasiram K. Ruppa University of Manitoba, Canada
Wang Zhigang Frank Cranfield University, UK
Wendelborn Andrew University of Adelaide, Australia
Wu Jan-Jan Academia Sinica, Taiwan
Wu Song Huazhong University of Science and

Technology, China
Xiao Nong National University of Defense Technology,

China
Xue Jingling University of New South Wales, Australia
Yang Caho-Tung Tunghai University, Taiwan
Yu Zhiwen Kyoto University, Japan
Zeadally Sherali University of the District of Columbia, USA
Zhou Yuezhi Tsinghua University, China
Zhu Yanmin Imperial College London, UK

Table of Contents

Grid Economy

Capacity Planning in Economic Grid Markets . 1
Marcel Risch and Jörn Altmann

A Financial Option Based Grid Resources Pricing Model: Towards
an Equilibrium between Service Quality for User and Profitability for
Service Providers . 13

David Allenotor, Ruppa K. Thulasiram, and Parimala Thulasiraman

Negotiating and Enforcing QoS and SLAs in Grid and Cloud
Computing . 25

Vladimir Stantchev and Christian Schröpfer

Grid Security

Dynamic and Secure Data Access Extensions of Grid Boundaries 36
Yudith Cardinale, Jesús De Oliveira, and Carlos Figueira

Proxy Restrictions for Grid Usage . 48
Joni Hahkala, John White, and Ákos Frohner

An Account Policy Model for Grid Environments . 57
David Aikema, Cameron Kiddle, and Rob Simmonds

Providing Security of Real Time Data Intensive Applications on Grids
Using Dynamic Scheduling . 69

Rafiqul Islam, Toufiq Hasan, and Md. Ashaduzzaman

Grid Applications

Solving a Realistic FAP Using GRASP and Grid Computing 79
José M. Chaves-González, Román Hernando-Carnicero,
Miguel A. Vega-Rodŕıguez, Juan A. Gómez-Pulido, and
Juan M. Sánchez-Pérez

The Swiss ATLAS Grid . 91
Eric Cogneras, Szymon Gadomski, Sigve Haug, Peter Kunszt,
Sergio Maffioletti, Riccardo Murri, and Cyril Topfel

Grid Based Training Environment for Earth Observation 98
Dorian Gorgan, Teodor Stefanut, and Victor Bacu

XII Table of Contents

Middleware

Improving Energy-Efficiency of Grid Computing Clusters 110
Tapio Niemi, Jukka Kommeri, Kalle Happonen, Jukka Klem, and
Ari-Pekka Hameri

GFS: A Distributed File System with Multi-source Data Access and
Replication for Grid Computing . 119

Chun-Ting Chen, Chun-Chen Hsu, Jan-Jan Wu, and Pangfeng Liu

G2G: A Meta-Grid Framework for the Convergence of P2P and
Grids . 131

Wu-Chun Chung, Chin-Jung Hsu, Yi-Shiang Lin,
Kuan-Chou Lai, and Yeh-Ching Chung

Distributed Asynchronous Iterative Algorithms: New Experimentations
with the Jace Environment . 142

Jacques M. Bahi, Raphaël Couturier, David Laiymani, and
Kamel Mazouzi

Predicting Free Computing Capacities on Individual Machines 153
Alek Opitz and Hartmut Koenig

The Deployment and Maintenance of a Condor-Based Campus Grid 165
Dru Sepulveda and Sebastien Goasguen

Scheduling

Bicriteria Service Scheduling with Dynamic Instantiation for Workflow
Execution on Grids . 177

Luiz F. Bittencourt, Carlos R. Senna, and Edmundo R.M. Madeira

Ant Colony Inspired Microeconomic Based Resource Management in
Ad Hoc Grids . 189

Tariq Abdullah, Koen Bertels, and Luc Onana Alima

Dynamic Scheduling Algorithm for Heterogeneous Environments with
Regular Task Input from Multiple Requests . 199

Marc E. Fr̂ıncu

Balanced Scheduling Algorithm Considering Availability in Mobile
Grid . 211

JongHyuk Lee, SungJin Song, JoonMin Gil, KwangSik Chung,
Taeweon Suh, and HeonChang Yu

Bi-objective Optimization: An Online Algorithm for Job Assignment . . . 223
Chien-Min Wang, Xiao-Wei Huang, and Chun-Chen Hsu

Table of Contents XIII

Achieving Co-allocation through Virtualization in Grid Environment . . . 235
Thamarai Selvi Somasundaram, Balachandar R. Amarnath,
Balakrishnan Ponnuram, Kumar Rangasamy, Rajendar Kandan,
Rajiv Rajaian, Rajesh Britto Gnanapragasam,
Mahendran Ellappan, and Madusudhanan Bairappan

Load Balancing

MTS: Multiresolution Thread Selection for Parallel Workload
Distribution . 244

Chonglei Mei, Hai Jiang, and Jeff Jenness

The gLite Workload Management System . 256
Cecchi Marco, Capannini Fabio, Dorigo Alvise, Ghiselli Antonia,
Giacomini Francesco, Maraschini Alessandro, Marzolla Moreno,
Monforte Salvatore, Pacini Fabrizio, Petronzio Luca, and
Prelz Francesco

On the Design of a Performance-Aware Load Balancing Mechanism for
P2P Grid Systems . 269

You-Fu Yu, Po-Jung Huang, Kuan-Chou Lai, Chao-Tung Yang, and
Kuan-Ching Li

Pervasive Computing

A Mediation Framework for the Implementation of Context-Aware
Access Control in Pervasive Grid-Based Healthcare Systems 281

Vassiliki Koufi, Flora Malamateniou, and George Vassilacopoulos

The Tiny Instrument Element . 293
Francesco Lelli and Cesare Pautasso

μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices 305
Safdar Ali and Stephan Kiefer

Sensor Networks

Sensor-Actuator Networks with TBox Snippets . 317
Tomasz Rybicki and Jaros�law Domaszewicz

Prediction Based Mobile Data Aggregation in Wireless Sensor
Network . 328

Sangbin Lee, Songmin Kim, Doohyun Ko, Sungjun Kim, and
Sunshin An

A Distributed Architecture of Sensing Web for Sharing Open Sensor
Nodes . 340

Ryo Kanbayashi and Mitsuhisa Sato

XIV Table of Contents

Peer-to-Peer

Efficient Parallelized Network Coding for P2P File Sharing
Applications . 353

Karam Park, Joon-Sang Park, and Won W. Ro

Scheduling Strategy of P2P Based High Performance Computing
Platform Base on Session Time Prediction . 364

Hao Zhang, Hai Jin, and Qin Zhang

An Activeness-Based Seed Choking Algorithm for Enhancing
BitTorrent’s Robustness . 376

Kun Huang, Dafang Zhang, and Li’e Wang

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 388
Mircea Moca and Gheorghe Cosmin Silaghi

Web Services for Deeply Embedded Extra Low-Cost Devices 400
David Villa, Felix Jesús Villanueva, Francisco Moya,
Fernando Rincón, Jesús Barba, and Juan Carlos López

A Group-Based Reputation Mechanism for Mobile P2P Networks 410
Xu Wu, Jingsha He, and Fei Xu

A Partition-Based Broadcast Algorithm over DHT for Large-Scale
Computing Infrastructures . 422

Kun Huang and Dafang Zhang

Fault Tolerance

Novel Crash Recovery Approach for Concurrent Failures in Cluster
Federation . 434

Bidyut Gupta and Shahram Rahimi

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment
for Executing Parallel Iterative Asynchronous Applications on Volatile
Distributed Architectures . 446

Jean-Claude Charr, Raphaël Couturier, and David Laiymani

Performance Evaluation of Scheduling Mechanism with Checkpoint
Sharing and Task Duplication in P2P-Based PC Grid Computing 459

Joon-Min Gil, Ui-Sung Song, and Heon-Chang Yu

A Probabilistic Fault-Tolerant Recovery Mechanism for Task and
Result Certification of Large-Scale Distributed Applications 471

Rim Chayeh, Christophe Cerin, and Mohamed Jemni

Author Index . 483

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 1–12, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Capacity Planning in Economic Grid Markets

Marcel Risch1 and Jörn Altmann2

1 International University in Germany, School of Information Technology
Campus 3, 76646 Bruchsal, Germany

marcel.risch@i-u.de
2 TEMEP, School of Industrial and Management Engineering

College of Engineering, Seoul National University,
San 56-1, Sillim-Dong, Gwanak-Gu, Seoul, 151-742, South-Korea

jorn.altmann@acm.org

Abstract. Due to the few computing resource planning options currently avail-
able in Grid computing, capacity planning, an old discipline for analyzing re-
source purchases, is simple to perform. However, once a commercial computing
Grid is established, which provides many different resource types at variable
prices, capacity planning will become more complex and the user will require
support for handling this difficult process. The support could come from an
online Grid Capacity Planning Service, which helps users with little IT exper-
tise to make use of the Grid in a cost-effective manner. This Grid Capacity
Planning Service is a stand-alone service, enabling companies to outsource their
capacity planning task. This paper describes the Grid Capacity Planning Service
and demonstrates the workings of the service through simulations.

Keywords: Grid Economics, Grid Capacity Planning, Service-Oriented
Computing, Grid Computing, Resource Allocation, Utility Computing.

1 Introduction

Capacity planning is being applied in many variations in companies. The more the
company depends on capacity planning decisions, the more effort is allocated to it.
For example, in data centers, capacity planning is extensively used to determine the
computing resource needs. To ensure that all applications run with the required QoS
and none of the computing resources becomes overloaded, the IT staff continuously
monitors system data and resource usage, forecasts the future demand of applications
and, thus, predicts their resource requirements. This requirements list can then be
turned into an allocation plan and, if the existing resources are insufficient, into a list
of required resources which need to be purchased.

At present, the computing capacity planning process of companies is fairly simple,
since required computing resources can only be purchased or leased. With the advent
of commercial Grids, however, capacity planning becomes more involved. Any com-
pany that requires additional resources now is offered a new option for satisfying its
computing resource needs: purchasing Grid resources from the commercial Grid. This

2 M. Risch and J. Altmann

additional option adds additional complexity to the resource purchase decision mak-
ing process, since three issues have to be addressed: Firstly, it needs to be decided
which applications are suitable to run on the Grid. Secondly, since a Grid market is
expected to be competitive, prices will fluctuate with changes in supply and demand.
Thus, if the overall cost of Grid usage has to be determined, the price for Grid re-
sources has to be predicted accurately. Finally, the demand fluctuations have to be
predicted accurately, since the benefit from using the Grid comes from selling spare
capacity on the Grid and buying additional resources at times of peak demand times.
From these three issues, it can be seen that, while capacity planning is vital to using
computing resources in an economically efficient manner, it is extremely difficult to
perform it properly.

Because of this difficulty, we propose a new service in the commercial Grid envi-
ronment: the Grid Capacity Planning Service (GCPS). The remainder of the paper is
organized as follows. Section 2 gives an introduction to capacity planning, while
section 3 elaborates on the difference between traditional capacity planning and Grid
capacity planning. Our capacity planning model is introduced in section 4 and ex-
panded in section 5. The workings of the model are then demonstrated with the use of
simulations in section 6.

2 An Introduction to Capacity Planning

The term “capacity planning” is often used but rarely defined. To avoid any ambigu-
ity, we follow the definition given by IBM [1]:“Capacity Planning encompasses the
process of planning for adequate IT resources required to fulfill current and future
resource requirements so that the customer's workload requirements are met and the
service provider's costs are recovered.”

This definition allows us to categorize the users of capacity planning into two
groups: customers and providers. Current research has largely taken the stance that
the provider’s problem in Grids is a resource allocation problem to which economic
mechanisms can be applied [2, 3, 4, 5, 6, 7]. Other researchers have taken a more long-
term view of capacity planning which works with reservations [8] while still others
have applied the problem to specialized fields, such as phased workloads [9].

However, there is, as of yet, no research being done on the customer’s need for ca-
pacity planning in a utility computing environment. We will remedy this situation by
focusing solely on the customer’s capacity planning problem, which is at least as
challenging as the provider’s.

The following three tasks are at the heart of the capacity planning process, accord-
ing to the definition given above: (1) monitoring of the current resource utilization,
(2) estimation of future resource requirements of applications and, finally, (3) cost es-
timation to ensure that a company does not overspend.

2.1 Capacity Planning Tasks

Before the introduction of commercial Grids, capacity planning had only been a long-
term approach. Data center staff had to analyze the current application-to-resource
mapping, the monitoring data, and some economic data, such as the income generated

 Capacity Planning in Economic Grid Markets 3

by certain applications. Using this input, the data center staff then had to determine
whether the resource pool is able to run all applications at the required QoS. If this
had not been the case, the data center staff had to determine which additional
resources have to be purchased or leased and then create a migration plan for the
applications that have to be migrated.

With the advent of commercial Grid offers, capacity planning can also be used to
solve short-term capacity problems. In this case, the data center staff can purchase ad-
ditional Grid resources if the applications no longer run at the required QoS. Since
this decision can be implemented within minutes, the capacity planning process now
takes on a short-term aspect as well. However, as has been shown in [10], using the
Grid excessively is also not to be encouraged, as the Grid becomes more expensive
than in-house resources in the long run.

We can therefore say that the capacity planning process for utility computing con-
sists of two parts: The short-term capacity planning process and the long-term capac-
ity planning process which has been used in datacenters before the introduction of
utility computing environments. This idea is illustrated in the figure below.

Fig. 1. Capacity Planning Structure for Utility Computing

Each of the two capacity planning sub-services, the Short-Term Capacity Planning
Service (STCPS) and the Long-Term Capacity Planning Service (LTCPS), has a
number of tasks to perform. For the STCPS, the main task is the scheduling of appli-
cations to resources that are available. A further subtask of scheduling is load balanc-
ing which ensures that all resources are used evenly. Furthermore, the STCPS has the
capability to perform medium-term mapping of applications to resources (i.e. resource
reservation). This is useful in the case of daily demand peaks which can then be
planned for. Such a module reserves utility computing resources (e.g. on a day-ahead
basis) to ensure that the scheduler has sufficient resources to schedule all applications.
Lastly, the STCPS also has to take the economics of Grid usage into account. Not on-
ly can the Grid usage become expensive over time, it can also be more expensive
than letting an application run slower. To determine whether using the Grid is
economically efficient, the STCPS has to have an economic optimization module.

The LTCPS, on the other hand, is mostly concerned with the economics of re-
source purchases. In other words, its focus lies on the question of which resource pur-
chase is the most economically efficient one. This procedure has to take into account
the current mapping of application to resources, the performance of each application

4 M. Risch and J. Altmann

and the costs incurred by using Grid resources. Furthermore, the user’s budget con-
straints and economic requirements (e.g. importance of applications to the user’s
business, the expected long-term benefits of providing good QoS) have to be consid-
ered when developing a new application mapping.

Especially, the LTCPS also has to consider risks. Some risks are inherent to the
system, such as resource failures or provisioning issues. To avoid these problems, the
Economic Optimization Engine has to take into account the risks inherent to using in-
house and Grid resources and has to determine which course of action (e.g. fault
tolerance mechanisms) can minimize these risks.

2.2 Capacity Planning Inputs and Outputs

To perform their tasks, both capacity planning services require a number of inputs
which are shown together with the outputs of the capacity planners in the following
figure.

Fig. 2. Capacity Planning Inputs and Outputs

The first input parameter is the monitoring information. In this case, monitoring re-
fers to three types of actions: measuring the utilization rates of resources, response
time analysis of applications, and traffic analysis. In the utilization rate measuring
process, the IT staff analyzes to which percentage any given resource is used. Once
the utilization approaches a critical level, the resource is classified as overloaded.

The response time analysis determines the response time of applications. The rise
of the response time over a certain threshold level indicates that the application has
insufficient resources available.

The traffic analysis is used to determine traffic flows within the data center and the
traffic flows into and out of the data center. This data can then be used to determine
whether individual resources need to be connected differently. The traffic flow infor-
mation can also be used to determine whether the infrastructure is able to handle all
data transmissions.

 Capacity Planning in Economic Grid Markets 5

The second type of input is the economic factors which are stated by the user.
These can include requirements (e.g. certain applications have to run in-house) and
restrictions. Restrictions can be categorized into financial restrictions or into purchas-
ing restrictions. Furthermore, the user may have a certain budget which has to be
considered when creating a new capacity plan.

The third type of input is the information about the resource and application pool.
In particular, the capacity planning service has to know which applications are run-
ning and what they are being used for, since the use can have a big impact on the re-
source requirements. For example, a Web server for text-based Web pages has a
different load pattern than a Web server which is used for streaming videos.

Furthermore, the capacity planning service has to know which resources are avail-
able. This includes not only in-house resources but also resources that have been
purchased on the Grid and resources that are available on the Grid.

Based on these inputs, the capacity planning service creates a number of outputs
which can either be used by automated programs or by the data center staff. The for-
mer is the Migration Engine which is responsible for either migrating applications
according to the resource allocation plan generated by the capacity planning service.

The second output consists of a recommendation list for making reservations of
computing capacity on the Grid. These can be either short-term reservation recom-
mendations which come from the STCPS or long-term reservation recommendations
from the LTCPS. The actual reservations, based on the recommendation list, can be
made on behalf of the user by an automated Reservation Engine. Alternatively, the
reservations can also be made by the user.

Lastly, the Long-Term Capacity Planning Service can also create a plan for pur-
chasing in-house resources. Since this task cannot be performed automatically, the
LTCPS only gives out human-readable list of resources that have to be purchased and
the store at which to purchase them.

3 Grid Capacity Planning and Traditional Capacity Planning

There are a number of differences between traditional capacity planning as it is per-
formed today and Grid capacity planning. This section will illustrate these differences
and thereby demonstrate the need for a Grid Capacity Planning Service.

3.1 Resource Selection

The outcomes of traditional capacity planning are fairly limited, since there are only
three courses of action: purchasing in-house resources, renting or leasing in-house re-
sources, or doing nothing. This lack of fine-grained options does not require a long-
winded capacity planning process for small and medium-sized companies. Therefore,
the decisions of those companies that can be made can be made quickly, optimizing
the costs for the capacity planning procedure [11].

While capacity planning is not an attractive tool in non-utility computing environ-
ments, it becomes more important in commercial Grids due to the wider range of op-
tions: purchase Grid resources, purchase in-house resources, lease resources, any
combination of the previous, sell spare computing capacity, or do nothing. This

6 M. Risch and J. Altmann

increased number of options leads to the problem that an optimal capacity planning
solution is not obvious anymore. For example, users willing to sell computing
resources must consider the expected income during the capacity planning process.

Overall, due to the increased complexity, the capacity planning staff requires more
time, which makes the capacity planning process more expensive and, thus, a utility
computing environment less attractive.

3.2 Price Volatility and Demand Fluctuation

The prices of the current computing resource market are static, i.e. resource prices do
not change frequently. Differences only occur because of special offers or economies
of scale. This means that the capacity planning team does not need to rush the process
to avoid rising prices, since even the currently available utility computing resource
prices remain constant (e.g. Amazon [12], Tsunamic Technologies [13]).

With the advent of commercial Grids in which companies can purchase and sell re-
sources according to their needs, the changes in supply and demand will lead to fluc-
tuating prices [14, 15, 16, 17]. These varying prices must be taken into account in the
capacity planning process.

Furthermore, taking fluctuations of demand into account, it becomes necessary to
predict how prices will develop in the future, and thus, the timing of purchases may
become a relevant parameter in the capacity planning process. To achieve a precise
prediction, the capacity planner must consider the past behavior of the market with re-
spect to the available resources. This means that the capacity planner should not only
look at the average demand but also at peak demand times on the utility computing
market, which can occur when many Grid users require additional resources. Further-
more, the own demand must be seen in comparison to the peak demand. If there are
regular demand peaks on the utility computing market and the own demand peaks oc-
cur at the same time, the required Grid resources might only be available at very high
prices, which might cause budget problems. On the other hand, if the own demand is
anti-cyclical to the market demand, Grid resource prices should not be an issue.

3.3 Application Mapping

Optimizing the mapping of applications to resources also becomes more convoluted
in a Grid market environment. In traditional capacity planning scenarios, companies
only have to find a mapping of applications to their in-house resources and, if neces-
sary, purchase additional resources for in-house installation. This approach, while not
trivial, is manageable, since the number of possible mappings and the resource diver-
sity are fairly small. In fact, once a company knows which resources have to be
purchased, the suitable products can be ranked according to their cost.

On the other hand, optimizing the application mapping in a utility computing envi-
ronment is also more involved. The application-to-resource mapping depends on the
resources that could potentially be purchased on the Gird. Therefore, for each applica-
tion, two groups of options have to be considered: running the application on one of
the suitable in-house resources, or running the application on one of the suitable Grid
resources. Each of the Grid options has its own price, since the pricing structures
differ between resource types and resource providers.

 Capacity Planning in Economic Grid Markets 7

Table 1. Comparison of Traditional and Grid Capacity Planning

 Traditional Capacity Planning Grid Capacity Planning
Resource Selection Few courses of action Many courses of action
Price Volatility Small Large
Application Mapping Small Large

Furthermore, applications have to be sorted according to whether they are suitable
to run on the Grid or not. Some applications may not run on the Grid because of sev-
eral reasons, such as applications that require sensitive information for their calcula-
tion which is not allowed to be transmitted to external resources.

3.4 Comparison

Grid capacity planning is more elaborate than traditional capacity planning due to the
additional options available in computing resource markets. These differences are
summarized in Table 1. This increased complexity will mean that companies with lit-
tle or no IT expertise that are new to the Grid will either not use it or overspend.

However, all companies participating in the Grid need to perform the same capac-
ity planning steps and many run similar applications with similar loads. Therefore, it
would be useful if the capacity planning process could be outsourced to an external
entity which specializes in providing a capacity planning service. This service, the
Grid Capacity Planning Service (GCPS), would allow companies to benefit from util-
ity computing by optimizing companies’ Grid resource purchases at low costs. There-
fore, this service would be a Grid market enabler.

4 A Capacity Planner Model

Following the general model introduced in section 2, the GCPS consists of two parts work-
ing in concert. Their workings and interaction is illustrated in more detail in this section.

4.1 The Long-Term Capacity Planning Service

The Long-Term Capacity Planning Service (LTCPS) performs the long-term data
analysis as described in section 2. Since its main task is to analyze the current data cen-
ter computing resource pool and the current application mapping, it must be given this
information, in addition to economic information, such as the budget of customer (both
for Grid and in-house resource purchases), the relative importance of each application
and whether the customer would be willing to sell resources on the Grid market.

The next step of the LTCPS is to analyze how the applications which have to run
in-house (so-called in-house applications) can be mapped to existing resources. The
outcome of this analysis can fall into the following categories: (1) the user has to pur-
chase additional in-house resources, (2) the user has idle in-house resources, (3) the
user has idle in-house resources but also has to purchase additional resources to sat-
isfy the demand, or (4) the user has no idle in-house resources and all applications
have been mapped. In cases 1 and 3, the user has to purchase additional in-house re-
sources. In the remaining cases, the LTCPS can continue the capacity planning proc-
ess. This is illustrated in the following figure.

8 M. Risch and J. Altmann

Fig. 3. Initial Steps of the LTCPS

In the next step, the LTCPS will have to consider the costs and benefits of using
Grid resources. In general, it has to weigh (1) using in-house resources versus using
Grid resources, (2) purchasing new in-house resources versus using Grid resources
and (3) whether the user is willing to sell resources on the Grid and if so, which re-
source configuration would be the best selling option. All these factors then have to
be analyzed with regards to the market issues that have been described previously,
namely demand fluctuation and price fluctuations.

The result of this step will be an optimal or near-optimal mapping of applications
to resources such that all user requirements are met and that the resources are used as
efficiently as possible. The result can fall into one of the following categories: Pur-
chase Grid resources, purchase in-house resource, and purchase both in-house and
Grid resources. The purchase of Grid resources could be implemented in the form of a
purchasing plan. To avoid high prices, such Grid purchases could be done far in ad-
vance by using the Reservation Engine. For regularly occurring demand peaks, peaks
could be covered by using Grid resources in addition to in-house resources.

4.2 The Short-Term Capacity Planning Service

The Short-Term Capacity Planning Service (STCPS) performs measurements on the
in-house resources to determine their load and the response time of applications. To
ensure that these tests do not affect the system adversely, STCPS will only do so peri-
odically. Should it notice that either a resource is being used to maximum capacity or
that an application response time is decreasing, it will determine which Grid resource
can take up the additional demand.

Furthermore, the STCPS will consider the number of times a similar Grid resource
has been purchased in the past. This will allow the STCPS to monitor two important
issues: On one hand, it can determine whether these Grid purchases are necessary at

 Capacity Planning in Economic Grid Markets 9

regular intervals. If so, it can determine when the Grid resources will be required
again and can then suggest reserving Grid resources.

The STCPS will inform the LTCPS of the Grid resource purchase. This allows the
LTCPS to determine whether the total cost for these Grid resources approaches the
costs of an in-house resource. If this is the case, the LTCPS can warn the user, since
this may be a sign that the capacity plan is outdated.

The purchasing information also allows the LTCPS to determine whether Grid re-
source purchases are occurring at regular intervals. If this is the case, the next purchasing
date can be predicted without difficulty and Grid resources can be purchased in advance.

5 Implementation and Validation

An initial test of the performance of both components has been implemented. The
services are expected to function within a continuous double auction (CDA) setting,
which was implemented using Repast [18]. The simulation environment consisted of
500 agents, which traded resources within this market for 500 days. At the beginning
of the day, each agent determines its demand. If the demand is larger than the number
of in-house resources, the agent will bid for resources on the Grid market. Should the
number of required resources be lower than the number of in-house resources, the
agent would attempt to sell the excess resources. The traded resources were made
available the following day.

Using this setup, we developed two scenarios: In the first scenario, the agents used
their current demand level to purchase or sell resources. The result of this simulation
can be seen in Fig. 4, which shows the number of available resources. A negative
value shows that the agent has fewer resources than required, while a positive value
shows that the agent has more resources than it requires.

The spikes in the graph show that the agent rarely has the correct number of re-
sources available. This fact shows that this very basic capacity planning approach is
far from optimal when it comes to predicting the resource.

The second scenario worked with a more complex capacity planning approach: The
agents’ capabilities were expanded to allow predicting their demand based on past resource
requirements. The requirements prediction was implemented using the linear regression
tool of the Apache Commons Math Toolbox [19]. The linear regression used the demand
from the past 30 days to predict the demand for the next day. This information was then
used to buy or sell resources. The result of this simulation is shown in Fig. 5 below.

Table 2. Simulation Parameters Overview

Parameters Value
Number of agents 500
Number of in-house resources (per agent) 20-40
Market mechanism CDA
Number of simulated trading days 500
Offer expiration time 1 day
Demand distribution Normal
Distribution Mean 30
Distribution Variance 30

10 M. Risch and J. Altmann

Fig. 4. Resource Availability with Basic Capacity Planning

Fig. 5. Resource Availability with More Advanced Capacity Planning

Fig. 5 shows that the peaks are no longer as large as before and that the extreme
peaks no longer occur with the agents. While this is not a marked improvement, it
should be noted that the prediction algorithm is still fairly basic.

The simulations demonstrated that the GCPS is indeed a valuable tool in a Grid
market environment in which price volatility and demand fluctuation have to be con-
sidered. The GCPS can ensure that a company will have sufficient resources at its dis-
posal in such an environment. Since these comparisons are also computationally fast,
the entire capacity planning process in this environment took only a few milliseconds
per agent. However, the simulations also showed that much remains to be done to im-
prove the predictive capabilities of this service.

6 Conclusion

In this paper we defined capacity planning for utility computing and placed it in con-
text with load balancing, scheduling, and reservations. Furthermore, we have shown
that capacity planning is more complex in a Grid environment than traditional capac-
ity planning. Due to the complexity, we believe that a Grid Capacity Planning Service
is required for a successful Grid usage, since performing capacity planning using in-
house staff is costly and would negate the benefits of utility computing.

The GCPS described in this paper consists of two distinct parts: the Short-Term
Capacity Planning Service and the Long-Term Capacity Planning Service. This

 Capacity Planning in Economic Grid Markets 11

structure reflects the fact that capacity planning in a commercial Grid environment
has to be used to solve short-term and long-term problems. The first is responsible for
ensuring that all applications and resources are running as required by the user and
will give advice regarding additional resources if necessary. The latter is responsible
for long-term planning of data centers and takes into account the resource require-
ments of all applications, the available in-house resources, prices, demand fluctua-
tions, and the user requirements. Using this information, a mapping of all applications
is found and (if necessary) recommendations for resource purchases are made.

Furthermore, the GCPS has been implemented and initial tests have shown that the
performance overhead is low. Future work will center on refining the capacity plan-
ning algorithms of the two components, since the simulations have also shown that
the demand prediction has to be improved.

References

1. IBM: A Statistical Approach to Capacity Planning for On-Demand Computing Services,
http://domino.watson.ibm.com/comm/research.nsf/pages/
r.statistics.innovation2.html

2. Li, C., Li, L.: Competitive proportional resource allocation policy for computational grid.
Future Generation Computer Systems 20(6), 1041–1054 (2004)

3. Yu, J., Li, M., Ying, L., Hong, F., Gao, M.: A Framework for Price-Based Re-source Allo-
cation on the Grid. In: Liew, K.M., Shen, H., See, S., Cai, W., Fan, P., Horiguchi, S. (eds.)
PDCAT 2004. LNCS, vol. 3320, pp. 341–344. Springer, Heidelberg (2004)

4. Li, C., Li, L.: Dynamic resource allocation for joint grid user and provider opti-misation in
computational grid. International Journal of Computer Applications in Technology 26(4),
242–250 (2006)

5. Wolski, R., Brevik, J., Plank, J.S., Bryan, T.: Grid Resource Allocation and Control Using
Computational Economies. In: Berman, F., Fox, G., Hey, T. (eds.), pp. 747–771. John
Wiley & Sons, Hoboken (2003)

6. Pourebrahimi, B., Bertels, K., Kandru, G.M., Vassiliadis, S.: Market-Based Resource Al-
location in Grids. In: Second IEEE International Conference on e-Science and Grid Com-
puting, pp. 80–88. IEEE Press, New York (2006)

7. Afzal, A., McGough, A.S., Darlington, J.: Capacity planning and scheduling in Grid com-
puting environments. Future Generation Computer Systems 24(5), 404–414 (2008)

8. Siddiqui, M., Villazon, A., Fahringer, T.: Grid Capacity Planning with Negotiation-based
Advance Reservation for Optimized QoS. In: SC 2006, pp. 21–37. IEEE Press, New York
(2006)

9. Borowsky, E., Golding, R., Jacobson, P., Merchant, A., Schreier, L., Spasojevic, M.,
Wilkes, J.: Capacity planning with phased workloads. In: Proceedings of the 1st interna-
tional Workshop on Software and Performance, pp. 199–207. ACM, New York (1998)

10. Risch, M., Altmann, J.: Cost Analysis of Current Grids and its Implications for Future
Grid Markets. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS,
vol. 5206, pp. 13–27. Springer, Heidelberg (2008)

11. Risch, M., Altmann, J., Makrypoulias, Y., Soursos, S.: Economics-Aware Capacity Plan-
ning for Commercial Grids. In: Collaborations and the Knowledge Economy, vol. 5, pp.
1197–1205. IOS Press, Amsterdam (2008)

12. Amazon Elastic Compute Cloud (Amazon EC2),
http://www.amazon.com/gp/browse.html?node=201590011

12 M. Risch and J. Altmann

13. Tsunamic Technologies Inc., http://www.clusterondemand.com/
14. Regev, O., Nisan, N.: The POPCORN market—an online market for computational re-

sources. In: Proceedings of the First international Conference on information and Compu-
tation, pp. 148–157. ACM, New York (1998)

15. Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.: Spawn: A
Distributed Computational Economy. IEEE Transactions on Software Engineering 18(2),
103–117 (1992)

16. Buyya, R., Abramson, D., Giddy, J.: An economy grid architecture for service-oriented
grid computing. In: 10th IEEE International Heterogeneous Computing Workshop. IEEE
Computer Society Press, Los Alamitos (2001)

17. Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.A.: Tycoon: An implementation
of a distributed, market-based resource allocation system. Multiagent and Grid Sys-
tems 1(3), 169–182 (2005)

18. Repast Simulation Environment, http://repast.sourceforge.net/
19. Apache Commons Math Libraries, http://commons.apache.org/math/

A Financial Option Based Grid Resources
Pricing Model: Towards an Equilibrium between

Service Quality for User and Profitability for
Service Providers�

David Allenotor��, Ruppa K. Thulasiram, and Parimala Thulasiraman

Department of Computer Science,
University of Manitoba

Winnipeg, MB R3T 2N2.
Canada

{dallen,tulsi,thulasir}@cs.umanitoba.ca

Abstract. In this paper, we design and develop a financial options-
based model for pricing grid resources. The objective is to strike and
maintain an equilibrium between service satisfaction of grid users and
profitability of service providers. We explain how option theory fits well
to price the grid resources. We price various grid resources such as mem-
ory, storage, software, and compute cycles as individual commodities.
We carried out several experiments and provide a mapping of our re-
search results based on the spot prices to the expected cost of utilizing
the resources from three real grids that reflects their usage pattern. We
further enhance our model to achieve the objective of equilibrium be-
tween Quality of Service (QoS) and profitability from the perspectives
of the users and grid operators respectively.

1 Introduction

Grid computing aims at providing high resource availability [1]. The applica-
tions cut across areas of Science, Engineering, and Business where computational
needs incrementally exceed the available capacity. Some of the advantages of the
grid include free access to compute resources and government funding. As a
result of the government funding, there are little or no efforts towards pricing
the grid resources. Instead, research efforts in recent years have focused mostly
on issues such as security [3], middleware and grid infrastructure [1], and Grid
resource management [4]. Even if the grid users are not charged, to quantify the
services provided in terms of actual money, it is necessary to price these resources
for their use. This is because doing so will justify the government efforts and will

� This research was done with partial financial support from the Natural Sciences and
Engineering Research Council (NSERC) Canada through Discovery Grants and with
the University Research Grants Program (URGP) of the University of Manitoba.

�� Corresponding author.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 13–24, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

14 D. Allenotor, R.K. Thulasiram, and P. Thulasiraman

serve as a mechanism to report to the government agency on the value of the
services provided. The grid resources characteristically exist as compute cycles
(refereed here to as grid compute cycles). We call grid resources grid compute
commodities (gcc). The gcc distribution cuts across wide geographical regions.
They are non-storable, and ownership is by different organization whose rights
and policies vary as widely as the spanned regions. To price the grid resources,
we treat the gcc as real assets. The gcc-s include CPU cycles, memory, network
bandwidths, computing power, disks, processor times, and various visualization
tools, software and specialized instrumentation. Since gcc-s are transient, their
availability for use varies between “now” (that is, life of the contract to use gcc
resources) and “later”1 (contract expiration). The availability variations account
for uncertainty and are measured as a fuzzy quantity (ũ), where gcc : α → [0, 1].
To control the flexibility qualities of the gcc we apply real option (see the next
subsection for the definition of an option) defined in a fuzzy domain [0, · · · , 1]
(also called membership function) [5].

In the current study, to ensure that we capture the users’ varied behavior,
we obtain trace data from three real grids: one commercial grid (Grid3 [6]), one
experimental platform grid Grid5000, and one research grid (SHARCNET [7]).
We evaluate our proposed model and provide a justification by comparing real
grid behavior to simulation results obtained using some base spot prices for the
commodities. In particular, we strive to provide service guarantees measured
as Quality of Service (QoS) and profitability from the perspectives of the users
and grid resource providers respectively. The objective is to strike and keep a
balance between a given service, expected profitability, and satisfaction for using
grid resources.

Financial Options: A financial option is defined (see, for example [9]) as the
right to buy or to sell an underlying asset that is traded in an exchange for
an agreed-on sum. The right to buy or sell an option may expire if the right
is not exercised on or before a specific time and the option buyer loses the
premium paid at the beginning of the contract. The exercise price (strike
price) mentioned in an option contract is the stated price at which the asset
can be bought or sold at a future date. A call option grants the holder the
right (but not obligation) to buy the underlying asset at the specified strike
price. On the other hand, a put option grants the holder the right to sell the
underlying asset at the specified strike price. An American option can be
exercised any time during the life of the option contract; a European option
can only be exercised at expiry. Since options are instruments derived from
some underlying assets, they are also called derivative securities. They are
risky securities because the price of their underlying asset at any future time
may not be predicted with certainty. This means the option holder has no
assurance that the option will bring profit before expiry.

Real Options: To hold a real option means to have a certain possibility for a
given time to either choose for (exercising, deferring), or against (abandon,

1 See Section 3.4 for the notion of “now” and “later”.

A Financial Option Based Grid Resources Pricing Model 15

wait, find other alternative) investment decision. A real option provides a
choice from a set of alternatives.

Fuzzy Logic Concept: We capture these alternatives using fuzzy logic and
express the choices as a fuzzy number. A Fuzzy number is expressed as a
membership function that exists in the range [0, 1] and we apply it for the
development of QoS guarantee for the benefit of the grid users and operators.

The rest of this paper is organized as follows. In Section 2 we review related
work. Section 3 we provide the model theory and architecture, methodology,
assumptions, and the underlying pricing architecture. Section 4 we describe the
simulation environment and the discussion of results of our experiments. We end
the Section 5 with directions for future work.

2 Related Work

Besides the focus on security related issues [3] and middleware and grid infras-
tructure [1], most of the current research in grid resource pricing focus on market
based economy approaches (for example [10] and [23]) and contingent bids in
auctions [11]. The research efforts highlight a common goal that involves the
use of economic principles to decide a fair share of grid resources that involves
resources redistribution and scheduling. Currently, there is no charge for using
grid resources. However, a trend is developing because of large interest in grid for
public computing. Therefore, a sudden explosion of grid use is expected in near
future. Iosup et al. [2] obtain traces of grid resources utilization. Their results
show possibility for a future increase in resources use. They concluded that the
grid resources use will reach a peak value soon and this could lead to one of the
grid problems. To avoid the problem of sudden explosion of computing resource,
Amazon has introduced a Simple Storage Service (S3) [12].

Several other research efforts that explores the possibilities of bringing re-
sources pricing into the grid infrastructure include Sang et al. [14], Tan and
Gurd [15], and Juheng et al. [24]. Researchers under these forums, have followed
two distinct approaches that is, either to extend the existing standardized grid
middleware or to present some novel work with focus on grid economy referenc-
ing resources share and management. In [24], a real option valuation scheme was
developed using Monte Carlo simulation. However, this scheme did not consider
the effects of critical technological changes as considered in [17]. Resources man-
agement is actually not only about scheduling large and compute-intensive ap-
plications (or resources), or some form of advanced reservations. It also involves
the manner of putting compute resources to work for the benefit of the user and
owner [8]; that is, “profitability”. In a similar study Chunlin and Layuan [16]
presented an optimization-based resources pricing algorithm that focus on in-
creasing the grid providers’ effective gain. In another related study, Sulistio et
al., [18] evaluate the effectiveness of grid revenue management using resource
reservations as a focus. They show that by charging customers with differenti-
ated prices will increase the effective total revenue for the resource in question.
They also showed that their scheme guarantees a fare share of the resources

16 D. Allenotor, R.K. Thulasiram, and P. Thulasiraman

applications with highest computing priorities. The focus of the study given
in [14], [15], [18] is on resource sharing and resource scheduling with refer-
ences to market economy. Mutz et al. [13] have some interesting schemes that
points to our current research. Mutz et al. modeled a job priority model using
efficient design mechanism in [19]. They based their proposal on a compensation
function that schedules jobs for a time ti. Their objective realizes a compensa-
tion function d paid by job at tn−1 that wishes to gain access to computation
at tn. The compensation may be disbursed as incentives (say more gcc) to the
waiting jobs.

Bhargava and Sundaresan in [11] model a computing utility and examine the
possibility to extend the pay-as-you-go pricing, using the auction system. In
a recent study [17], we focused on balancing the grid profits as seen from the
perspectives of the grid resources provider. In our current model, we introduce
concepts for such a purpose (i) option with dividend paying underlying asset
and (ii) a penalty function – the price variant factor (pvf) (Section 3.2 provides
details). The work that we present in this paper is the performance evaluation
using real data to test our previously proposed model [17] on grid resources
pricing.

3 Model Assumptions and Theory

Several schemes exist in the literature to price financial options. Some of these
approaches include application of the Black-Scholes (BS) model [20]. The BS
model captures the price movements continuously and requires solution of a
partial differential equation. Binomial lattice captures the underlying asset price
discretely [21] still under BS risk neutral model. The binomial lattice is one
of the most commonly used methods. In our simulation we use the trinomial
model (see [9]) to solve the real option pricing problem to enhance the accuracy.
This is a discrete time approach to calculate the discounted expectations in a
trinomial-tree. We develop the grid resources pricing model using the following
set of assumptions. First, we set some base prices for the gcc-s, as discussed in
Section 4. Second, since the resources exist in nonstorable states, and various
opportunities are presented to the user in exercising the option to use the re-
sources, we value them as real assets. This assumption qualifies them to fit into
the general stream of investment included in the real option valuation approach.
An option in the current context means a holder has the right to use some grid
resources mentioned in the option contract, during the contract period. Consider
a gcc whose price is initially S0 and an option on this gcc. Suppose the option
has a lifetime of T . It can either move up from S0 to a new level S0u with a
payoff value of fu or move down from S0 to a new level, S0d and with a payoff
value of fd where u > 1 and d < 1. This is a one-step binomial model. Splitting
the contract period into various steps leads to multi-step binomial model. We
define a job on the grid as a service that needs one or more of the gcc-s from
start to finish.

A Financial Option Based Grid Resources Pricing Model 17

3.1 Model Architecture

Figure 1 shows an abstract representation of our model architecture (see [8] for
a detailed description). The architecture comprises of a four-level price-based
infrastructure model. Level-0 contains the pools of available grid compute com-
modities gcc. Level-1 Resource modeling: The grid infrastructure provides a
description of the available resources, application capabilities, and defines inter-
component relationships between the various clusters that comprise the grid. The
grid resources modeling approach facilitates resource discovery, provisioning, and
QoS management. Level-2 Monitoring and Notification: At any time during a
grid computation, the infrastructure ensures that it provides updates regarding
the state of use of resources. These include notifications for changes in projected
utilization levels and application notification regarding services changes. The
monitoring capability also helps to maintain resource discovery and maintain
QoS needed to support accounting and billing functions on resources pricing.
Following notification and resources monitoring, resources may be re-deployed
to ensure resource availability using some form of reservation. Level-3 Account-
ing and auditing: The accounting and auditing level of the grid provides a log
for the usage of shared resources. Level-3 also transforms resources usage into
cost for charging resource use by applications and users.

In our model architecture, we focus on Level-3 – the application layer where
a larger part of resource usage and cost transformation is done. For this integra-
tion, we set service classes as immediate, non-immediate, and delay-allowable
computations. An immediate utilization service requires haste and has high pri-
ority. The non-immediate utilization service requests require resources at a rela-
tively lesser priority (computations that can wait for a later time). The delayed
utilization services may take hours, days, or even months to process. In either
of these service classes, we match the requested service with the SLA condi-
tions to obtain the QoS. Consider some user requests such as Ri for resources
ji for i = 1, ·, n waiting to be granted resources. If the requests were made in
sequence, Ri receives service before Ri+1 if all conditions of Service Level Agree-
ment (SLA)-QoS remain equal. However, the reverse could be the case if requests
made by Ri+1 belongs to the immediate service class. In this scenario, a penalty
function computed as pf is applied to Ri+1 and Ri gets a compensation.

3.2 Price Variant Factor

An important functionality of our model is the price variance factor (pf). The
pf is a fuzzy number, a multiplier and based on the fuzziness (or uncertainty in
changes in technology) given as 0 ≤ pf ≤ 1. The value depends on changes in
technological developments such as new and faster algorithms, faster and cheaper
processors, and changes in access rights and policies. The certainty in predicting
the effects caused by these is hard using crisp schemes. As a result, we capture
the resultant changes using fuzzy logic and treat pf as a fuzzy number. For a
use time of (tut), we express a fuzzy value of pf as a fuzzy membership function
that is, μ(pf). For example, the grid resources may become under used if users

18 D. Allenotor, R.K. Thulasiram, and P. Thulasiraman

USER 1 USER 2 . . .USER 3 USER N

SLA:
Monitoring

QoS:
Monitoring

GRID COMPUTE COMMODITIES (gcc)

GRID MIDDLEWARE
(GLOBUS)

GRID RESOURCES
BROKER (GRB)

GRID RESOURCES
BROKER (GRB)

GRID
RESOURCES

GRID
MIDDLEWARE

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

GRID MIDDLEWARE
(NIMROD/G)

META-
SCHEDULER

PRICING MODEL /
ALGORITHMS

USER APPLICATIONS

PRICING
MODEL /
ALGORITHMS

CHARGING &
ACCOUNTING GRID SERVICES

PRICE &
USAGE
OPTIMIZATION
LEVEL

Condor G Condor G

META-
SCHEDULER

Fig. 1. Pricing Infrastructure [8]

find better and faster ways to solve their computing problems. Therefore, to
increase the grid resources usage with more capacity for computations under
same technology, we set the value of pf(ut) to 0.1 and with new technology, the
pf = 1.0. Our model therefore, adjusts the price in the use of grid resources by
(pf (ut))−1 while providing QoS set at the SLA of the contract.

3.3 Discretized Real Option

We apply the trinomial-tree model [22] to price mainly American-style and
European-style options on a single underlying asset. Binomial model is a dis-
cretized approach of BS model [20]. To compute option prices, we build a dis-
crete time and state trinomial model of the asset price and then apply discounted
expectations. Suppose S is current asset price and r is the riskless and contin-
uously compounded interest rate, the risk-neutral Black-Scholes model of an
asset price paying the continuous dividend yield of δ for each year [9] is given
by dS = (r − δ)Sdt − σSdz. For convenience, let x = lnS, this equation can
be written as dx = vdt + σdz, where v = r − δ − σ2/2. Consider a trinomial
model of asset price movement in a small interval δt as shown in Figure 2a. The
price could remain same at x or move up or down by δx with probability pm,
pu, and pd respectively, during a small interval δt. The drift (because of known
reasons) and volatility (σ, because of unknown reasons) parameters of the asset
price can be obtained in the simplified discrete process using δx, pu, pm, and pd.
In a trinomial lattice the price step (with a choice) is given by δx = σ

√
3δt. By

equating the mean and variance over the interval δt and imposing the unitary
sum of the likelihoods, we obtain a relationship between the parameters of the
continuous time and trinomial as

E[δx] = pu(δx) + pm(0) + pd(−δx) = vδt (1)

where E[δx] is the expectation as mentioned before. From Equation (1),

E[δx2] = pu(δx2) + pm(0) + pd(δx2) = σ2δt + v2δt2 (2)

A Financial Option Based Grid Resources Pricing Model 19

up

pm

d
p

xx

x+

x-

S0

S0 S0 S0 S0

S0

d

d2

S0d
3

S0d
4

S0d
3

S0d
2 S0d2

S0dS0d S0d

S0u

2S0u
2S0u

2S0u

3S0u
3S0u

4S0u

S0u
S0u S0u

S0

 (a) (b)

Fig. 2. Trinomial Lattice

where the unitary sum of probabilities pu, pm, and pd equal 1, are probabilities of
the price going up, down or remaining same respectively. Solving Equations (1),
(2), and the summed up probabilities, yields the transitional probabilities;

pu = 0.5 ∗ ((σ2Δt + v2Δt2)/Δx2 + (vΔt)/Δx) (3)

pm = 1 − ((σ2Δt + v2Δt2)/Δx2) (4)

pd = 0.5 ∗ ((σ2Δt + v2Δt2)/Δx2 − (vΔt)/Δx) (5)

The trinomial process of Figure 2(a) could be repeated several times to form
an n-step trinomial tree. Figure 2(c) shows a four-step trinomial. For number of
time steps (horizontal level) n = 4, the number of leaves (height) in such a tree
is given by 2n + 1. We index a node by referencing a pair (i, j) where i points
at the level (row index) and j shows the distance from the top (column index).
Time t is referenced from the level index by i : t = iΔt. From Figure 2(c), node
(i, j) is thus connected to node (i + 1, j) (upward move), to node (i + 1, j + 1)
(steady move), and to node (i + 1, j + 2) (downward move). The option price
and the asset price at node (i, j) are given by C[i, j] = Ci,j and S[i, j] = Si,j

respectively. The number of up and down moves required to reach (i, j) from
(0, 0) estimates the asset price and is given as S[i, j] = S[0, 0](uidj).

3.4 Fuzzy Logic Framework and QoS

To fuzzify the utility of gcc, we express the quality of the gcc availability as
a function of the time when gcc is needed and the time the resources become
available for use as gcc = f(tut, tn), where tn is the life of the contract and is
given as 0 ≤ tn ≤ 1, and tut is the actual utilization time. A best scenario is
when tn = tut i.e., when the resources are available when gcc is needed or tn = 0
(no wait time). If tn = 0, gcc use is “now” otherwise, tn = 1 and usage is in the
future until the end of the contract period (say 6 months). Users often request
and use gcc for computation and expects a best scenario where service provided
meets expectations or when tut−tn ≈ 0 for a high QoS. In this instance, it is hard
to guarantee provision of the gcc on-demand and satisfy the users’ QoS without
additional gcc to satisfy the conditions named in the Service Level Agreements

20 D. Allenotor, R.K. Thulasiram, and P. Thulasiraman

(SLAs) document. To capture the fuzziness of the parameters tn, tut, and QoS, we
express them in terms of their fuzzy membership functions. That is, μ(tn), μ(tut),
and μ(QoS) respectively. If T is a fuzzy set, the membership function is defined
(see for example [5]) as T = (t, μ(t)), μT (t) ∈ [0, 1].

To price one of the grid resources, we consider SHARCNET CPU time be-
cause of its relative higher availability compared to other grids in our study.
Therefore, the 80% availability of CPU cycles in SHARCNET is considered nor-
mal. Using this relationship, in Figure 3, we have a 75% normalized CPU time
availability in Grid5000. Hence, we use CPU time availability index set at 0.75
for SHARCHNET in our simulation. This index (CPU time availability) will
provide a user with an initial idea to select a particular grid, or certain gcc from
certain grid depending on the resource requirement which the user knows best.
To obtain a balance between service and cost for using the grid resources, we ex-
press the generated indices i as a membership function μi(pn) of the prices p. Our
simulation calibrates prices as p1, p2, · · · , pn and the corresponding membership
function μi(pn) using fuzzy values in a range of [0, 1].

4 Experiments and Results

We setup base prices for the various gcc-s using real market and current mar-
ket values and charge $95.89 × 10−6/day/MB for a 2GB storage, $68.49 ×
10−8/day/MB for a 200GB hard disk, and $68.49 × 10−6/day/MHz for CPU
cycles.

4.1 Real Grid Trace Data Collection and Analysis

We collect resources usage pattern from SHARCNET, Grid5000, and Grid-3 be-
tween January 01, 2007 till December 31, 2007 (without any date assigned). The
collected traces include number of processors, memory, CPU time, run time, and
wait time. The collected traces have no cost components, however, we associate
monetary values from the collected usage patterns (more details provided latter).
For instance, Figure 3(a) and (b) shows the used CPU time against number of
jobs for SHARCNET and Grid5000 respectively. Despite SHARCNET supports
a larger part of jobs, it also experiences a sharp drop in the number of jobs it
served in the later part of the year. Similarly, Grid500 supports a larger number
of jobs after the middle of the year. We deduce that these two grids for instance
serves as a better blend to offer resources since they complement each other defi-
ciencies in the possible number of jobs supported. More jobs taking larger CPU
time results in larger wait time especially when the grid job is resource intensive.
We do not rule out the possibility for most number of jobs to take larger CPU
time than required. The early (before middle of the year) part of Grid5000 is a
typical example of waste of compute cycles. It can be said that the times of low
CPU availability which causes the jobs to stay longer is because of either waste,
wait or priority jobs served by the grid or any combination of these.

A Financial Option Based Grid Resources Pricing Model 21

0

100

200

300

400

500

600

700

800

No. of Jobs
(x10 3)

CPU Time (Sec.)

SHARCNET: CPU Time Vs. No. Jobs

0

500

1000

1500

2000

2500

No. of Jobs
(x103)

CPU Time (Sec.)

Grid5000: CPU Time Vs. No. of Jobs

(a) (b)

Fig. 3. CPU Time Vs. Number of Jobs: (a) SHARCNET (b) Grid5000

4.2 Grid Resources Pricing Using Financial Options Theory

We price the gcc-s by running a one-step trinomial using the parameters: strike
price (K = $0.70), resources price (S = $0.80), expiration time (T = 0.5 in
years), interest rate (r = 0.06), volatility (σ = 0.2), and the number of time
steps (Nj = 2N +1). We extend our study by varying the volatility σ in steps of
0.0, 0.1, · · · , 0.7 and N = 4, 8, 16, 24. For a 6 month contract, for example, N = 3
means a 2 months step size and N = 12 mean a 2 weeks step size. For a call
option, we simulate the effects of time of use of one of the gcc-s (memory (RAM)),
hard disk (HD), and CPU. We start with memory (one of the gcc-s) using the
following parameters: S = $6.849.00× 10−7, T = 0.5, r = 0.06, N = 4, 8, 16, 24,
σ = 0.2, and Nj = 2N + 1. We run our experiments with various strike prices.
Figure 4 (a) shows option value for RAM for K = $0.70 while Figure 4 (b) shows
option value for RAM for K = $0.90 call. Over the number of step sizes, the
option value reaches a steady state.

Similarly, we obtain from our simulation the option values for CPU using
the parameters S = $68.49 and K = $68.47 and $80.47 (all values scaled at
(×10−6)) and simulated for a varying time step of 4, 8, 16, 24. Figure 5 (a) shows
the option value for CPU at K = $68.47. The option values for other gccs under
our current study include RAM in Figure 4 (a) and HD in Figure 6. Figure 6
shows the option for HDD which increases with the number of time steps. This
behavior implies that at any given time, a consumers’ cost for using the grid
resources is the base cost and the extra cost which depends on the time of use
of the gcc. Therefore, deciding the exact price of gcc in real life is uncertain
and hard to predict. However to achieve an equilibrium between users-service

(a) (b)

1.518
1.52

1.522
1.524
1.526
1.528
1.53

1.532
1.534

4 8 16 24

Option
Value ($)

Number of Step

Option Value for RAM

0.0034

0.0035

0.0036

0.0037

0.0038

0.0039

4 8 16 24

Option
Value

)$7-01x(

Number of Step

Option Value for RAM

Fig. 4. Option Value for RAM: (a) At K = $0.70 (b) At K = $0.90

22 D. Allenotor, R.K. Thulasiram, and P. Thulasiraman

(a) (b)

6.4

6.5
6.6
6.7

6.8

6.9

4 8 16 24

Option
Value

(x106- $)

Number of Time Step

Option Value for CPU

2

2.1
2.2
2.3

2.4

2.5

4 8 16 24

Option
Value

(x106- $)

Number of Time Step

Option Value for CPU

Fig. 5. Option Value for CPU: (a) At K = $68.47 (b) At K = $80.47

1.518
1.52

1.522
1.524
1.526
1.528
1.53

1.532
1.534

4 8 16 24

Option
Value ($)

Number of Step

Option Value for HD

Fig. 6. Option Value for HD At $74.90

satisfaction and provider-profit opportunities, we have imposed a price modula-
tor called price variant factor pf which depends on changes in the technology
of the grid infrastructure or changes in the grid resources usage requirements.
These variations are unknown before exercising the options to hold the right
to use of grid resource. Hence, to increase gcc utilization (ut) with more com-
puting facilities and with existing technology, we set the value of pf (ut) to 0.1
and with new technology, the pf = 1.0. Fuzzified boundary value of pf is set up
as pf (ut) = [0.1, 1.0] to simplify fuzzification. Our model, therefore, adjusts the
price in the use of grid resources by (pf (ut))−1 while providing quality service
to the user. What was an unfavorable condition initially for the user was turned
into a favorable situation through the pf , with an early exercise. Figure 5 (b)
shows a corresponding option value for option value for CPU at K = $80.47.
We repeat this for various gcc-s of the grid. Figure 7 (a) shows execution time
for HD, CPU, and RAM at various time steps. The option values captured the

(a) (b)

0

01-E1

01-E2

01-E3

01-E4

01-E5

01-E6

01-E7

01-E8

Option
Value

(x 10 4 $)

Option Value for Various Commodities

RAM: K = 6.749 CPU: K = 68.47 HD: K = 6.749

Fig. 7. Various Commodities: (a) Execution Time (b) Option Value

A Financial Option Based Grid Resources Pricing Model 23

experiments show that they converge (error level set at 0.1% for academic pur-
pose) in 24 steps. Increasing the computation beyond 24 steps did not yield
better solution for the option values, instead, it increase the cost of computa-
tion. This is in contrast to the finance market where the stock prices are highly
volatile and for convergence one needs to go for very small step sizes. Since the
time required to achieve a steady state in option value increases with the num-
ber of steps (number of nodes in the trinomial tree) as shown in Figure 7 (a)
without yielding better solution, we stopped at 24 steps. Figure 7 (b) shows our
evaluation for various commodities computed individually.

5 Conclusions

We have analyzed the usage pattern of resources in three grids and fit our pricing
model to compute on these resources. Our two important contributions are: (i)
option value computation for grid resources usage and to select the best time to
exercise an option to utilize grid resources. This helps the user as well as the grid
resources provider to optimize resources for service and profitability respectively;
in other words, we achieve an equilibrium; (ii) our study also incorporate a price
varying function pf which controls the price of the resources and ensures the
grid users get the resources at best prices and the resources provider also make
reasonable revenue at the current base price settings. Future work will focus
on the larger problem of pricing grid resources for applications that use diverse
resources across varied grids simultaneously.

References

1. Ian, F., Kesselman, C., Tuecke, S.: The Anatomy of The Grid: Enabling Scalable
Virtual Organizations. Intl. Journal of Supercomputer Applications 15(3), 200–222
(2001)

2. Iosup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are Real Grids
Used? The Analysis of Four Grid Traces and its Implications. In: Proc. 7th
IEEE/ACM Intl. Conf. on Grid Computing, Barcelona, Spain, pp. 262–269 (2006)

3. Ian, F., Kesselman, C., Tsudik, G., Tuecke, S.: A security Architecture for Com-
putational Grids. In: ACM Conf. on Comp. and Comm. Security, pp. 83–92 (1998)

4. Sim, K.M.: Grid Commerce, Market-Driven G-Negotiation, and Grid Resource
Management. Systems, Man, and Cybernetics 36(6), 1381–1394 (2006)

5. Bojadziew, G., Bojadziew, M.: Fuzzy Logic for Business, Finance, and Management
Modeling, 2nd edn. World Scientific Press, Singapore (1997)

6. GRID3 International (retrieved January 02, 2009), http://www.grid3.com/
7. SHARCNET – Shared Hierarchical Academic Research Computing Network

(SHARCNET) (retrieved January 02, 2009),
http://www.sharcnet.ca/Performance/curperf.php

8. Allenotor, D., Thulasiram, R.K.: G-FRoM: Grid Resources Pricing A Fuzzy Real
Option Model. In: Proc. 3rd Intl. Conf. on e-Science and Grid Computing (eScience
2007), Bangalore, India, December 10-13, pp. 388–395 (2007)

9. Hull, J.C.: Options, Futures, and Other Derivatives, 6th edn. Prentice-Hall, Engle-
wood Cliffs (2006)

http://www.grid3.com/
http://www.sharcnet.ca/Performance/curperf.php

24 D. Allenotor, R.K. Thulasiram, and P. Thulasiraman

10. Buyya, R., Abramson, D., Venugopal, S.: The Grid Economy. IEEE Journal 93(3),
698–714 (2005)

11. Bhargava, H.K., Sundaresan, S.: Contingent Bids in Auctions: Availability, Com-
mitment and Pricing of Computing as Utility. Journal of Management Info. Sys-
tems 21(2), 201–227 (2004)

12. Palankar, M., Onibokun, A., Iamnitchi, A., Ripeanu, M.: Amazon S3 for science
grids: A viable solution? In: DADC 2008: Proceedings of the 2008 Intl. workshop
on Data-aware distributed computing, pp. 55–64 (2008)

13. Mutz, A., Wolski, R., Brevik, J.: Eliciting Honest Value Info. in a Batch-Queue
Environment. In: The 8th IEEE/ACM Intl. Conf. on Grid Computing, Austin,
Texas, USA, September 1921, pp. 291–297 (2007)

14. Kang, W., Huang, H.H., Grimshaw, A.: A highly available job execution service in
computational service market. In: The 8th IEEE/ACM IntI Conf. on Grid Com-
puting, Austin, Texas, USA, September 1921, pp. 275–282 (2007)

15. Zhu, T., Gurd, J.R.: Market-based grid resource allocation using a stable con-
tinuous double auction. In: The 8th IEEE/ACM Intl. Conf. on Grid Computing,
Austin, Texas, USA, September 1921, pp. 283–290 (2007)

16. Chunlin, L., Layuan, L.: Pricing and resource allocation in computational grid
with utility functions. In: Intl. Conf. on Info. Tech.: Coding and Computing (ITCC
2005), vol. II, pp. 175–180 (2005)

17. Allenotor, D., Thulasiram, R.K.: Grid resources pricing: A novel financial
option-based quality of service-profit quasi-static equilibrium model. In: The 9th
IEEE/ACM IntI Conf. on Grid Computing (Grid 2008), Tsukuba, Japan, Septem-
ber 29-October 01, pp. 75–84 (2008)

18. Sulistio, A., Schiffmann, W., Buyya, R.: Using revenue management to determine
pricing of reservations. In: Proc. 3rd Intl. Conf. on e-Science and Grid Computing
(eScience 2007), Bangalore, India, December 10-13, 2007, pp. 396–405 (2007)

19. Krishna, V., Perry, M.: Efficient mechanism Design, 1998 (2007),
http://ratio.huji.ac.il/dp/dp133.pdf

20. Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. Journal
of Political Economy 81(3), 637–654 (1973)

21. Cox, J.C., Ross, S., Rubinstein, M.: Option Pricing: A Simplified Approach. Jour-
nal of Financial Economics 7, 229–263 (1979)

22. Boyle, P.P.: Option Valuing Using a Three Jump Process. Intl. Options Jour-
nal 3(2), 7–12 (1986)

23. Yeo, C.S., Buyya, R.: Integrated Risk Analysis for a Commercial Computing Ser-
vice. In: Proc. of the 21st IEEE Intl. Parallel and Distributed Processing Sympo-
sium (IPDPS 2007), pp. 1–10. IEEE CS Press, Los Alamitos (2007)

24. Juheng, Z., Subhajyoti, B., Selwyn, P.: Real option valuation on grid computing.
Decission Support Systems Journal 46(1), 333–343 (2001)

http://ratio.huji.ac.il/dp/dp133.pdf

Negotiating and Enforcing QoS and SLAs in
Grid and Cloud Computing

Vladimir Stantchev1,2,3 and Christian Schröpfer2

1 International Computer Science Institute, Berkeley CA 94704, USA
vstantch@icsi.berkeley.edu

2 Technische Universität Berlin, Berlin, Germany
3 FOM Fachhochschule fuer Oekonomie und Management, Berlin, Germany

Abstract. Emerging grid computing infrastructures such as cloud com-
puting can only become viable alternatives for the enterprise if they can
provide stable service levels for business processes and SLA-based cost-
ing. In this paper we describe and apply a three-step approach to map
SLA and QoS requirements of business processes to such infrastructures.
We start with formalization of service capabilities and business process
requirements. We compare them and, if we detect a performance or reli-
ability gap, we dynamically improve performance of individual services
deployed in grid and cloud computing environments. Here we employ
translucent replication of services. An experimental evaluation in Ama-
zon EC2 verified our approach.

Keywords: QoS and SLA Negotiation, Assurance, Service-oriented com-
puting.

1 Introduction
Service-oriented architecture (SOA) is an architecture that combines elements of
software architecture and enterprise architecture. It is based on the interaction
with autonomous and interoperable services that offer reusable business function-
ality via standardised interfaces. Services can exist on all layers of an application
system (business process, presentation, business logic, data management). They
may be composed of services from lower layers, wrap parts of legacy applica-
tion systems or be implemented from scratch. Typically, services at the business
process layer are described as business services, while services at the lower im-
plementation level are described as technical services.

1.1 Emerging Grid Computing Infrastructures for Services
Datacenters and cloud computing environments are grid computing infrastruc-
tures that are emerging as platforms for provision of technical services. An
example for such an environment is Amazon EC2, recently evaluated from the
user perspective at Harvard [1]. The development and extension of tools to mon-
itor and control such infrastructures is part of large research projects, e.g., at
Stanford and UC Berkeley [2]. On the other side, the mapping of business process
requirements at the infrastructure level in such environments is rarely addressed.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 25–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

26 V. Stantchev and C. Schröpfer

1.2 Challenges

A successful service offering has two main objectives: to provide the needed func-
tionality and to provide the needed Quality of Service (QoS). QoS parameters are
part of the run-time related nonfunctional properties (NFPs) of a service and
present one of the main research challenges in service-oriented computing [3].
Contrary to design-time related NFPs (e.g., language of service or compliance),
run-time related NFPs are performance oriented (e.g., response time, transaction
rate, availability). They can change during runtime – when times of extensive
concurrent usage by many users are followed by times of rare usage, or when
failures occur.

An approach to measure and dynamically adapt service performance in grid
and cloud computing environments to such changes can ensure continuous meet-
ing of service levels defined at the business level. This is an even more challenging
task in such IT infrastructures that are not owned or controlled directly by the
enterprise. Specifically, such approach should consider service reconfiguration at
runtime, as changes in service implementation are not realistic.

NFPs of services (both technical and human, as well as their combinations)
are typically specified in Service Level Agreements (SLAs). They are typically
defined at the level of a business process but need to be addressed at the level of
IT infrastructures. Thereby several technical services are orchestrated in order
to provide business services for a business process. SLAs are negotiated between
the process owner and the service provider who have to agree upon them.

This work proposes a straightforward way to negotiate business process SLAs
between a process owner and a service provider and to enforce these SLAs at
the level of grid and cloud computing infrastructures – if we formalize both
the service level requirements of the process owner and the capabilities of the
technical services in the grid (cloud) using a similar structure, we can compare
them in an automated way. Based on such comparisons, we can negotiate and
provide optimized service configurations in the grid (cloud) and thereby enforce
the SLAs of the business process in the QoS characteristics and the service levels
of these technical services.

1.3 Work Structure

The remainder of this work is structured as follows: Section 2 gives an overview
of our proposed approach and puts it in the context of related research in the
areas of service-oriented computing, QoS-aware platforms and grid workflow op-
timization. Section 3 describes the formalization of service and QoS levels as
a main precondition for the negotiation of SLAs. Section 4 deals with perfor-
mance and availability as NFPs that are representative for the approach and
their enforcement in grid and cloud computing environments. In Section 5,
we present an experimental evaluation of the approach. Thereby our solution
was deployed in Amazon EC2 and demonstrated the viability and applicabil-
ity of SLA formalization and subsequent QoS enforcement in cloud computing
infrastructures.

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 27

2 An Approach for SLA Mapping

When a company is in control of its internal IT infrastructure, business analysts
and developers can define service level requirements during design time and can
actively select and influence components in order to meet these requirements.
However, in cloud computing environments SLAs are typically provided for basic
platform services (e.g., system uptime, network throughput). Business processes
typically expect service levels for the technical services they integrate (e.g., order
submission in less than 1 second). How can we bring these two worlds together?

This work proposes an approach for SLA mapping between business processes
and IT infrastructures. It is based on a method for the assurance of NFPs and in-
cludes three major tasks (see Figure 1): (i) Formalization of business process re-
quirements at the business side and of service capabilities at the IT infrastructure.
Both are specified in a formal way, using a predefined service level objective struc-
ture and predefined NFP terms. (ii) Negotiation of service capabilities at the IT
infrastructure that correspond to the formalized business process requirements:
Here, we assess whether the aggregatedtechnical services provide the expected ser-
vice levels to meet business process requirements under different load hypotheses.
Within this comparison we also calculate the aggregated service level, using the
performance metrics of the individual technical services. Based on the result of this
comparison we can decide where to apply replication in the next step. A reasoner or
comparing unit must understand both structure of the statements and used NFPs
on the business and the infrastructure side. (iii) Enforcement of business process
SLAs at the IT infrastructure level: Here, we apply translucent parallelization of
service processing using multiple nodes in a datacenter environment [4]. Replica-
tion can be enacted to improve service levels regarding response time, transaction
rate, throughput and availability, respectively reliability.

2.1 Related Work

The SOA-specific aspects of major architectural concerns, such as service vi-
sualization [5], integration [6], and service selection [7] have been consistently

Fig. 1. Approach Overview

28 V. Stantchev and C. Schröpfer

addressed by researchers. The existing standards for specification of QoS char-
acteristics in web service environments can be grouped according to their main
focus: software design/process description (UML Profile for QoS and QML - QoS
Modeling Language [8]), service/component description (WS-Policy) and SLA-
centric approaches (WSLA - Web Service Level Agreements [9], WSOL - Web
Service Offerings Language [10], SLAng - Service Level Agreement definition
language [11] and WS-Agreement [12]).

Much work has been done in the area of QoS-aware web service discov-
ery [13], QoS-aware platforms and middleware [14,15,16,17], and context-aware
services [18]. However, all of these approaches do not address adaptive enforce-
ment of NFPs, but rather deal with the composition of services where the aggre-
gation of predefined NFP levels would satisfy a specific requirement. Of particu-
lar interest are approaches that allow the "gridification" of specific applications,
e.g., in [19] where a set of programs for inferring evolutionary trees is ported to
the grid platform XtremWeb-CH [20]. Approaches such as shared memory have
also been proposed for such tasks [21]. There is ongoing research in the area of
adaptive optimization, more specifically in the areas of grids (e.g., grid workflow
optimization [22]) and parallel database operations [23].

3 Formalization and Negotiation of SLAs

Figure 2 shows the structure we have recently proposed [24,25] for formaliza-
tion of business process service level objectives (SLOs) and technical service
capabilities. The figure also contains sample service level statements about re-
sponse time, throughput and transaction rate. These statements are then stored
with the service description (service capabilities) respectively with the business
process definition (business process SLO) and are the starting point for the nego-
tiation of SLAs. An example for a statement about the service capability is "The
transaction rate of the service is higher than 90 transactions per second in 98%
of the cases as long as throughput is higher than 500 kB/s." An example for a

Fig. 2. Structure of Service Level Objectives (SLOs) and Examples (tps - Transactions
per second)

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 29

requirement business process level is "The transaction rate of the process should
be higher than 50 transactions per second in 97% of the cases while throughput
is higher than 500 kB/s."

In this work we deal with the negotiation and the enforcement of performance-
related NFPs as part of SLAs and therefore focus on their formalization. How-
ever, our scheme can also be used to describe further aspects of SLAs, e.g.,
design-time related NFPs, such as cultural (e.g. language), legal (e.g. Sarbanes-
Oxley-Compliance, Basel-II-Compliance), organizational (partner list), service
usage-related (e.g. GUI simplicity) and trust-related (e.g. Customer rating, ex-
perience of provider).

In our proposed approach, the process owner specifies service level require-
ments as expected from the business perspective. At the IT infrastructure side
we evaluate different replication configurations of technical services in grid and
cloud computing environments such as Amazon EC2. Both requirements and
service capabilities of the different configurations are then formalized and com-
pared. Furthermore, we can start a negotiation between process owner and ser-
vice provider based on this comparison. Thereby, the replication configuration
that meets (or is closest to) the business requirements is selected and is the
starting point for the actual SLA. The transparent cost model of Amazon Web
Services allows us to put different price tags for the required service levels (e.g.,
a business process that needs higher transaction rates has to pay more), thus
allowing for real activity-based IT costing. Furthermore, we can use the SLO
structures in a supply-oriented way, contrary to the demand-oriented approach
we present here. Thereby, we can specify combinations of NFP levels that repre-
sent different generic SLAs (e.g., "Gold", "Standard"’, "Cost-optimized" [26], or
"Time-Critical", "Load-Critical", "Dependability-Critical").

4 QoS Enforcement of SLAs in Grid and Cloud
Computing Environments

In order to satisfy the SLAs of a business process we should look at ways to repre-
sent and control NFPs at the level of a technical service. While cloud computing
environments specify service levels for basic platform operations (e.g., system
uptime), we focus on the improvement of service levels for specific technical ser-
vices that are composed to provide the needed business service. One example is
the composition of the technical services GetOrder() and ClearPayment() to
provide the business service Order Placement. In this work we show exemplary
how we can improve performance-oriented NFPs, particularly response time and
transaction rate, as well as dependability for single and composed technical
services.

4.1 Performance

A general and broadly accepted definition of performance is to observe the sys-
tem output ω(δ) that represents the number of successfully served requests (or
transactions) from a total of input ι(δ) requests during a period of time.

30 V. Stantchev and C. Schröpfer

ω(δ) = f(ι(δ)) (1)
This definition of performance corresponds to transaction rate as NFP – the
system guarantees to process n requests during time period t. The performance
of a serial composed service chain is determined by the performance of the service
with the lowest performance. Let us assume that we compose a service chain from
Service 1, Service 2 and Service 3. If Service 1 and Service 3 are providing high
transaction rate (e.g., 500 requests per second) and Service 2 is providing a much
lower transaction rate (e.g., 50 requests per second), our composed service will
only serve 50 requests (or actually less than 50 requests) per second overall.
We can easily calculate the average response time from the transaction rate by
dividing the time period through the number of requests. Furthermore, we can
also measure further performance metrics, such as worst-case execution time
(WCET) if we need to specify them in the SLA.

When we introduce parallelism through functional replication we can ideally
double the processing performance. The replication of the service with the lowest
transaction rate (Service 2) leads to an overall increase of the transaction rate for
the composed service. Therefore, replication has advantageous effects on service
chain performance when no replica synchronization is required. This includes
transaction rate, throughput and response time as parameters of SLAs.

4.2 Dependability

Dependability integrates several attributes: availability, reliability, safety, in-
tegrity, and maintainability. These are defined as follows [27]:

– availability denotes the readiness to provide a correct service,
– reliability denotes the continuity of service provision,
– safety is an attribute that assures there are no catastrophic consequences on

the user and the environment.
– integrity denotes that there are no improper changes of the system.
– maintainability denotes that a system can undergo changes and repairs.

There are four categories of approaches to attain dependability [27]: fault pre-
vention, fault tolerance, fault removal, and fault forecasting. In the context of
this work we focus on availability as attribute and on fault tolerance as approach
to attain it.

Availability needs to be quantified in the SLAs so that we can negotiate and
enforce it. It has been defined traditionally as a binary metric that describes
whether a system is "up" or "down" at a single point of time. A common extension
of this definition is to compute the average percentage of time that a system is
available during a certain period – this is a typical availability measure that
describes a system as having 99.999% availability, for example.

There are several extended definitions of availability that address the inherent
limitations of the traditional definition – availability should be considered as a
spectrum, rather as a binary metric, as systems can have various degraded, but
operational, states between "up" and "down". Furthermore, the definition does
not consider QoS aspects.

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 31

Fig. 3. Fault Model used in the SLO Structures

One possibility is to measure availability by examining variations in system
QoS metrics over time [28]. The authors state that the particular choice of QoS
metrics depends on the type of system and suggest performance and degree of
fault tolerance as obvious metrics for server systems. In this case, performance
would mean requests satisfied (successfully served) per second. This corresponds
to our definition of performance in the previous subsection. In order to specify
degrees of fault tolerance we need an underlying fault model. We use a model
that was also used in [29] (see Figure 3). The model was originally proposed
in [30] and extended in [31]. It incorporates several aspects that are typical for
technical services in cloud computing environments, as compared to traditional
distributed systems (e.g., trust issues).

One recent adaptation of traditional methods for better availability to the
world of SOA is proposed in [32]. It involves replication of technical services
across multiple, wide-area sites. Typically, we need to provide strong consis-
tency between the replicas in order to provide better availability. This makes
the application of the approach problematic, particularly in cloud computing
environments - the overhead we introduce to ensure strong consistency generally
has a negative impact on performance.

4.3 Evaluation and Improvement of IT Infrastructure Capabilities

While these general aspects of replication are hardly surprising, there are differ-
ent ways where and how we can replicate technical services in cloud computing

32 V. Stantchev and C. Schröpfer

environments. The concept of architectural translucency [4] defines three levels
for replication in SOA platforms (hardware, operating system, and serviceware)
and proposes replication techniques and mechanisms for the evaluation of their
effects on NFPs [33,34]. Using such concepts we are able to evaluate different
replication configurations at the level of IT infrastructure, formalize the results
of these evaluations as SLOs, and select the configuration that best meets the
requirements of the business process.

5 Experimental Evaluation

For a series of experimental evaluations we deployed WSTest 1.1 [35] as a generic
benchmark in Amazon EC2 [1] as a grid and cloud computing infrastructure. Our
business process requirements were specified in SLO structures similar to the
one in Figure 2. We tested different configurations of translucent replication as
specified in [34,33] with the objective to find settings that best match the SLOs.
Client requests were simulated using the second of the two test methodologies
described in [35] and Mercury LoadRunner’s SOAP client. Specifically, 25 client
machines that closed the connection at the end of each request were used. Each
of these machines (Dell, 2 GHz Core Duo, 2 GB RAM, Gigabit Ethernet) runs
Mercury LoadRunner agents and can generate approx. 2000 concurrent requests.
Every replication setting was tested for 120 minutes with 1 second think time
before a request. This corresponds to some 7200 requests that were sent to
each setting. These 120 minutes tests were automated and repeated 10 times on
21 consecutive days. Figure 4 shows an overview of the results. All replication
settings provided better service levels as the original configuration. Furthermore,
there were two replication settings (3 and 4) that satisfied the requirements of the

Fig. 4. Overview of Results

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 33

business process and thus allowed the mapping of its SLAs at the level of the IT
architecture. These two settings caused only marginally higher costs compared
to the original configuration in Amazon EC2.

6 Conclusion and Outlook

We presented an approach for negotiation of SLAs of business processes and
the corresponding QoS enforcement at the level of IT infrastructure. It consists
of three main tasks. The formalization of NFPs allows us to compare required
and existing service levels. Using translucent replication we can meet expected
service levels by automatically reconfiguring service replicas in cloud comput-
ing environments. The experimental evaluation demonstrated that we could im-
prove service levels by over 50 % under certain load hypotheses. Furthermore, it
demonstrated that we are able to keep business process service levels as specified
in the SLAs continuously. Providers of cloud computing environments typically
offer very flexible and detailed cost accounting, so the costs of providing and en-
forcing different service levels for business processes are transparent. This allows
us to taylor QoS levels to the specific requirements of every business process
and we support concepts such as activity-based costing in an enterprise. We are
currently working on a user interface that will allow process owners to set their
expected preferences regarding NFPs in an easy and convenient way. Thereby, a
predefined set of service levels for response time, availability and other NFPs will
correspond to a simple description (e.g. gold, standard, cost-optimized). Users
will be able to select a setting using a simple user interface such as a slider and
the infrastructure will automatically adapt to this setting. Furthermore, we are
currently investigating ways to derive such preferences from existing processes
and incorporate them in the process model repository as SLOs which will ulti-
mately result in the automatic provision of service compositions that best meet
the functional and nonfunctional requirements of the business process. Further-
more, we also plan to address limitations of distributed replication of services
with respect to availability and particularly the trade-off communication vs.
availability [32].

References

1. Garfinkel, S.: An evaluation of amazon’s grid computing services: Ec2, s3 and sqs.
Technical report tr-08-07, School for Engineering and Applied Sciences, Harvard
University, Cambridge, MA (July 2007)

2. Bodık, P., Fox, A., Jordan, M.I., Patterson, D., Banerjee, A., Jagannathan, R.,
Su, T., Tenginakai, S., Turner, B., Ingalls, J.: Advanced Tools for Operators at
Amazon.com. In: The First Annual Workshop on Autonomic Computing (2006)

3. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: State of the art and research challenges. Computer 40(11), 38–45 (2007)

4. Stantchev, V., Malek, M.: Architectural Translucency in Service-oriented Archi-
tectures. IEE Proceedings - Software 153(1), 31–37 (2006)

34 V. Stantchev and C. Schröpfer

5. Eicker, S., Spies, T., Kahl, C.: Software Visualization in the Context of Service-
Oriented Architectures. In: Proceedings of the 4th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (Vissoft 2007), pp. 108–
111. IEEE, Los Alamitos (2007)

6. Zhang, J., Chang, C.K., Chung, J.-Y., Kim, S.W.: Ws-net: a petri-net based specifi-
cation model for web services. In: IEEE International Conference on Web Services,
2004. Proceedings, July 6-9, 2004, pp. 420–427 (2004)

7. Reinicke, M., Streitberger, W., Eymann, T.: Evaluation of Service Selection Pro-
cedures in Service Oriented Computing Networks. Multi Agent and Grid Sys-
tems 1(4), 271–285 (2005)

8. Frolund, S., Koistinen, J.: Quality of services specification in distributed object
systems design. In: COOTS 1998: Proceedings of the 4th conference on USENIX
Conference on Object-Oriented Technologies and Systems (COOTS), Berkeley, CA,
USA, p. 1. USENIX Association (1998)

9. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification. IBM Corporation (2002)

10. Tosic, V., Patel, K., Pagurek, B.: WSOL-Web Service Offerings Language. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE
2002 and WES 2002. LNCS, vol. 2512, pp. 57–67. Springer, Heidelberg (2002);
(revised papers)

11. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Ser-
vice Level Agreements. In: Proc. of the 9th IEEE Workshop on Future Trends in
Distributed Computing Systems-FTDCS, pp. 100–106 (2003)

12. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Global Grid Forum GRAAP-WG, Draft (August 2004)

13. Makripoulias, Y., Makris, C., Panagis, Y., Sakkopoulos, E., Adamopoulou, P.,
Pontikaki, M., Tsakalidis, A.: Towards Ubiquitous Computing with Quality of
Web Service Support. Upgrade, The European Journal for the Informatics Pro-
fessional VI(5), 29–34 (2005)

14. Yau, S.S., Wang, Y., Huang, D., Hoh, P.: Situation-aware contract specification
language for middleware for ubiquitous computing. In: The Ninth IEEE Work-
shop on Future Trends of Distributed Computing Systems, 2003. FTDCS 2003.
Proceedings, May 28-30, 2003, pp. 93–99 (2003)

15. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for Web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

16. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the 2005
conference on Genetic and evolutionary computation, pp. 1069–1075 (2005)

17. Solberg, A., Amundsen, S., Aagedal, J.Ø., Eliassen, F.: A Framework for QoS-
Aware Service Composition. In: Proceedings of 2nd ACM International Conference
on Service Oriented Computing (2004)

18. Tokairin, Y., Yamanaka, K., Takahashi, H., Suganuma, T., Shiratori, N.: An ef-
fective qos control scheme for ubiquitous services based on context information
management. cec-eee, 619–625 (2007)

19. Abdennadher, N., Boesch, R.: Deploying phylip phylogenetic package on a large
scale distributed system. In: IEEE International Symposium on Cluster Computing
and the Grid, pp. 673–678 (2007)

Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing 35

20. Abdennadher, N., Boesch, R.: A scheduling algorithm for high performance peer-
to-peer platform. In: Lehner, W., Meyer, N., Streit, A., Stewart, C. (eds.) Euro-Par
Workshops 2006. LNCS, vol. 4375, pp. 126–137. Springer, Heidelberg (2007)

21. Ibach, P., Stantchev, V., Keller, C.: Daedalus a peer-to-peer shared memory system
for ubiquitous computing. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-
Par 2006. LNCS, vol. 4128, pp. 961–970. Springer, Heidelberg (2006)

22. Wanek, H., Schikuta, E., Haq, I.U.: Grid workflow optimization regarding dynam-
ically changing resources and conditions. Concurrency and Computation: Practice
and Experience (2008)

23. Schikuta, E., Mach, W.: Optimized workflow orchestration of parallel database
aggregate operations on a heterogenous grid. In: The 37th International Conference
on Parallel Processing (ICPP 2008), Portland, Ohio, USA. IEEE Computer Society,
Los Alamitos (2008)

24. Stantchev, V., Schröpfer, C.: Techniques for service level enforcement in web-
services based systems. In: Proceedings of The 10th International Conference on
Information Integration and Web-based Applications and Services (iiWAS 2008),
pp. 7–14. ACM, New York (2008)

25. Krallmann, H., Schröpfer, C., Stantchev, V., Offermann, P.: Enabling autonomous
self-optimization in service-oriented systems. In: Proceedings of The 8th Interna-
tional Workshop on Autonomous Systems - Self Organisation, Management and
Control, Berlin, New York, pp. 127–134. Springer, Heidelberg (2008)

26. Schropfer, C., Binshtok, M., Shimony, S.E., Dayan, A., Brafman, R., Offermann, P.,
Holschke, O.: Introducing preferences over NFPs into service selection in SOA. In:
International Conference on Service Oriented Computing - International Workshop
on Non Functional Properties and Service Level Agreements in Service Oriented
Computing (2007)

27. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

28. Brown, A., Patterson, D.A.: Towards Availability Benchmarks: A Case Study of
Software RAID Systems. In: Proceedings of the 2000 USENIX Annual Technical
Conference (2000)

29. Polze, A., Schwarz, J., Malek, M.: Automatic generation of fault-tolerant corba-
services. Tools, 205 (2000)

30. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: from simple
message diffusion to byzantine agreement. Inf. Comput. 118(1), 158–179 (1995)

31. Laranjeira, L.A., Malek, M., Jenevein, R.: Nest: a nested-predicate scheme for fault
tolerance. Transactions on Computers 42(11), 1303–1324 (1993)

32. Yu, H., Vahdat, A.: The costs and limits of availability for replicated services. ACM
Trans. Comput. Syst. 24(1), 70–113 (2006)

33. Stantchev, V.: Effects of Replication on Web Service Performance in WebSphere.
Icsi tech report 2008-03, International Computer Science Institute, Berkeley, Cali-
fornia 94704, USA (February 2008)

34. Stantchev, V., Malek, M.: Addressing Web Service Performance by Replication
at the Operating System Level. In: ICIW 2008: Proceedings of the 2008 Third
International Conference on Internet and Web Applications and Services, pp. 696–
701. IEEE Computer Society, Los Alamitos (2008)

35. Microsoft. Comparing Web Service Performance: WS Test 1.1 Benchmark Results
for .NET 2.0, NET 1.1, Sun One/ JWSDP 1.5 and IBM WebSphere 6.0 (2006),
http://www.theserverside.net/tt/articles/content/NET2Benchmarks

http://www.theserverside.net/tt/articles/content/NET2Benchmarks

Dynamic and Secure Data Access Extensions
of Grid Boundaries

Yudith Cardinale, Jesús De Oliveira, and Carlos Figueira

Universidad Simón Boĺıvar,
Departamento de Computación y Tecnoloǵıa de la Información,

Apartado 89000, Caracas 1080-A, Venezuela
{yudith,jdeoliveira,figueira}@ldc.usb.ve

Abstract. Grid technology provides a suitable platform for resource
sharing, offering users the possibility of accessing large-scale controlled
environments across different organizational boundaries through a virtu-
alized single environment. In order to control accesses to those resources,
a unique and global security infrastructure is needed, such as a PKI and
Virtual Organizations. Hence, in order to process data in the grid, it must
be first uploaded to a suitable resource belonging to the grid. We pro-
pose mechanisms to extend the grid data space boundaries by securely
integrating data located in the client local file system or in external repos-
itories. The proposed extensions only take place during execution of an
application on the grid, preserving privacy and other security properties.
We explain their implementation in suma/g, a middleware built on top
of Globus, and show some experiment results.

1 Introduction

Grids [1, 2] provide transparent access to remote resources, secure resource man-
agement through a global safe platform, and access control through Virtual
Organizations (VO) [3–5]. Each VO is granted access to a subset of available
resources in the grid. We call VO Working Space (VOWS) the set of comput-
ing and data resources accessible by members of a particular VO. A VOWS is
mainly composed of the computing platforms that can be used by the VO and
the file systems accessible by that VO. For instance, in gLite, there are Storage
Elements (SE) which can store the files to be processed. These files are usually
directly uploaded by a data provider, or by users from their local host. In the
latter case, the set of file systems in a VOWS is composed of the file systems
directly accessed from computing platforms (Execution Nodes), and the SE’s
accessible to that VO, typically through gridFTP [6] or GFAL [7].

In most Globus-based platforms, when a user wants to process some data files
stored in her/his local workstation, she/he must upload those files into her/his
VOWS before the data can be processed within a grid. In other words, the
data files have to be transferred from the user’s local host into the file systems
accessible by the grid’s Execution Nodes before the execution starts. Storage
Elements can always be used as intermediate data containers in the grid.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 36–47, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic and Secure Data Access Extensions of Grid Boundaries 37

There are contexts in which data sources are not part of the grid, but should
be accessed from grid’s Execution Nodes, during the execution of applications.
Some scenarios require a high level of confidentiality because of business reasons,
sensibility of private information, or even national security. For example, some
data have privacy requirements, such as patient records or data that could be
used for medical and research purposes. In this case, the privacy requirement is
related to the trust factor and legal issues. An alternative for this kind of orga-
nizations could be not to belong to the grid; however, this alternative deprives
organizations of the advantages of using a huge computational power available
in other organizations. Due to the fact that the data could be processed in a dif-
ferent platform from that on which they are located, it is necessary to transfer
files to computing resources, leaving a gap for possible uncontrolled access to
confidential information. Resource access in a grid, including data repositories
access, is typically supported by a Public Key Infrastructure (i.e., X.509 certifi-
cates). However, in these scenarios this basic security mechanism may not be
sufficient. Thus, using the grid could be easier for most users if the file systems
accessible from the local workstation and private repositories were part of the
VOWS, at least during the execution of the application.

In this paper, we propose mechanisms that extend the VOWS by securely
integrating data located on the client local file system or external repositories.
The main advantages of the proposed extensions are: i) preserve the privacy and
other security grid standards; ii) eliminate the necessity of explicitly uploading
the data files to the grid, which helps to meet the grid goal of achieving seamless
access to distributed resources; iii) eliminate the necessity of specifying loca-
tion dependent file accesses into the application, thus, the programs designed
for local file system access do not have to be modified for grid execution; they
are programmed as if all accesses were local, regardless of location, in a secure
way; and iv) Users have better control over their data, even private ones. More-
over, the extensions take place only during execution of an application on the
grid. We explain their implementation in suma/g, a middleware built on top
of Globus for execution of Java applications on the grid. With these extensions,
suma/g execution model allows a user to launch Java applications that will run
on a grid from her/his machine without requiring this machine to be part of
the grid.

2 Related Work

Secure access to remote private data has been the focus of a number of works.
In [8, 9], a secure global network file system with decentralized control, called
Self-certifying secure file system (SFS), is presented. It implements the Network
File System protocol for communicating with the operating system, while also
providing transparent encryption of communications as well as authentication.
SFS uses cryptography to provide security over untrusted networks. Thus, clients
can safely share files across administrative realms without involving administra-
tors or certification authorities. Servers have a public key and clients use the

38 Y. Cardinale, J. De Oliveira, and C. Figueira

server public key to authenticate servers and to establish a secure communica-
tion channel. To allow clients to authenticate unknown servers, SFS introduces
the concept of a self-certifying pathname. A self-certifying pathname contains
a server’s public-key hash, so that the client can verify that she/he is actually
talking to a legitimate server. Once the client has verified a server, a secure
channel is established and the actual file access takes place. This method is ap-
propriate when applications run on specific machines under the user control, but
it is not easily adaptable to grid environments where the application execution
is delegated to some middleware component.

GSI-SFS [10] is a secure distributed file system with a single sign-on function-
ality. GSI-SFS is developed by extending SFS with GSI. It allows users to access
files on the grid as if these files were local. Furthermore, all data transferred
over network are automatically encrypted and verified by SFS. [11] describes an
access control mechanism, called Sygn, implemented on μGrid, an experimental
grid platform specially oriented to medical applications. Because of the sensitiv-
ity of data, Sygn allows fine-grain access control by defining access permissions
to data for authorized users. The OGSA Data Access and Integration Project
(OGSA-DAI) [12] is developing software for integrating different and heteroge-
neous data sources on grids. OGSA-DQP [13] is an extension of OGSA-DAI
that provides a service-based distributed query processor. gLite Secure Storage
Service [14] is a service for storing, in a secure way (encrypted) confidential
data (e.g. medical or financial data) on the grid SE’s. The gLite Secure Storage
Service consists of modified versions of user-space data access tools (including
replica management, transparent I/O APIs and file transfer commands), which
encrypts the data before it leaves the user security perimeter. In this sense, sensi-
ble data is always stored and transferred encrypt, making impossible for a third
party to access it, even if she/he has sufficient privileges on the storage system
where it is located (which is the case of system administrators), or gains access
to the communication network. The data is encrypted using randomly generated
keys. These keys are associated with the user, who is identified by her/his GSI
X.509 certificate, ensuring that she/he will be the only one that can access the
keys used to secure her/his data. All of these platforms consider only scenarios
in which data sources belong to the grid. Additionally, they require establishing
complex additional components to the Grid and specifications from the user. In
contrast, our approaches implemented in suma/g emphasize transparency and
usability at the expense of coping with more complex data access contexts.

3 SUMA/G Architecture Overview

suma/g1 (Scientific Ubiquitous Metacomputing Architecture/Globus) [15, 16]
is a grid middleware that transparently executes both sequential and parallel
Java applications on remote machines. suma/g uses the Globus Security Infras-
tructure (GSI) [17], through the Java CoG Kit [18], to implement security and
resource management. The suma/g architecture is depicted in Figure 1.
1 http://gryds.net/suma

Dynamic and Secure Data Access Extensions of Grid Boundaries 39

Fig. 1. suma/g Architecture

3.1 SUMA/G Components

suma/g services are accessible through local clients as command line and graphic
interfaces, or through a web interface [19]. suma/g components, and their role
in the execution of applications, are shown below.

Client Stub. Creates the application object, retrieves results and performance
profiling data, and serves Execution Agent requests (callbacks) to load classes
and data dynamically. It is executed on the user machine (for command line
and graphic interfaces) or on a suma/g entry server, such as the web server for
GiPS. In any case, the user must have a valid certificate installed on that machine.

Proxy. Receives an object from Client Stub, containing application informa-
tion such as the name of the main class, scheduling constraints (optional), and
number of CPUs. After checking user permissions, the Proxy asks the Scheduler
for a suitable execution platform, then sends the application object to the se-
lected one. In case of off-line jobs submission, the Proxy keeps results until the
user requests them.

Scheduler. Responds to Proxy requests based on the application requirements
and status information obtained from the grid platform. Using the Globus MDS
service, the Scheduler learns of grid resources, obtaining information about
available execution platforms (including memory size, available libraries and
average load), data sets hosted at specific locations, and so on. With this in-
formation, the Scheduler selects a suitable resource satisfying the application
requirements, while looking for load balance in the grid.

User Control. Is in charge of user registration and authentication.

Security Control. Serves all GSI certificates generation and verification
requests.

40 Y. Cardinale, J. De Oliveira, and C. Figueira

Execution Agent. On starting, it registers itself at the Scheduler as a new
available resource. During operation, it receives the application object from the
Proxy and launches execution, loading classes and files dynamically from the
client through the suma/g-Class Loader and I/O subsystem. Once the appli-
cation has finished, the Execution Agent sends the results back to the client.
In a parallel platform, it plays the role of the front-end. Only the front-end of a
parallel platform is registered on suma/g either as a mpiJava enabled platform
or as a farm, for multiple independent job executions.

3.2 Execution Model

The basics of executing Java programs in suma/g are simple. Users can start
the execution of programs through one of these Client: a shell or a graphic
interface running on the client machine, or through GiPS, the suma/g por-
tal. They can invoke either Execute, corresponding to the on-line execution
mode, or Submit, which allows for off-line execution (batch jobs). At this time
a proxy credential is generated (by using GSI) that allows processes created
on behalf of the user to acquire resources, without additional user intervention.
Once the suma/g CORE receives the request from the client machine, it authen-
ticates the user through GSI, transparently finds a platform for execution by
querying the MDS, and sends a request message to that platform. An Execution
Agent at the designated platform receives an object representing the application
and starts, in an independent JVM, an Execution Agent Slave, who actually
executes the application. The suma/g- Class Loader is started in that new
JVM, whose function is to load classes and data during execution.

To execute an application, either on-line or off-line, the user has only to specify
the main class name. In the case of Execute service, the rest of the classes and
data files are loaded at run-time, on demand, without user intervention. Standard
input and output are handled transparently, as if the user were running the
application on the local machine. For the Submit service, suma/g Client Stub
transparently packs all classes together with input files and delivers them to
suma/g CORE; the output is kept in suma/g until the user requests it.

4 Extending Data Access

Access control to grid resources on Globus-based grids is based on VO and the
GSI security infrastructure. Site administrators configure the access control list
to the site’s resources for the relevant VO’s. Whenever a resource access request
arrives to the site, a valid certificate must be provided; then, the VO for that
particular user is resolved and access rights for the VO are granted to the user’s
request. Concerning data access, most Globus-based grids consider two possible
scenarios:

1. A user wants to process some data files stored in her/his local workstation. In
this case, she/he must upload those files into her/his VOWS before the data
can be processed in the grid. For example, in gLite, the data files should be

Dynamic and Secure Data Access Extensions of Grid Boundaries 41

transferred from the User Interface (UI-the entry point to the grid) into the
file systems accessible by the Execution Nodes before execution starts; and

2. A user wants to process some data files already stored inside the grid (e.g. in
the Storage Elements). In this case she/he has to specify the access through
special instructions (such as GridFTP) from her/his application and, if it is
necessary, to manually manage the replicas.

We present mechanisms for incorporating external data sources into the grid
during the execution of a Java application. We consider two kinds of sources:
file systems (local or remote) accessed from the client machine and private data
repositories. In both cases, these data sources are not part of the grid.

4.1 Access to User Local File Systems

In order to avoid the previous uploading of data into the grid, we propose a
mechanism where files are loaded on demand from the user’s machine to the
Execution Node. All data file requests issued by Java applications are transpar-
ently redirected to the client (with callbacks), which in turn connects to local file
systems (i.e., at the client machine) or remote file systems specified by the user
(e.g., at machines in which the user has an account) to serve requests during the
execution. This scheme follows the Java execution model where classes and data
are loaded on demand.

suma/g uses GSI for user authentication, authorization, and delegation, as
well as a mechanism for including all suma/g components into the grid se-
curity space. For privacy, all suma/g components exchange messages through
encrypted channels using SSL. The main suma/g components involved in the
security model are the User Control and the Security Control.

The User Control is in charge of user registration and authentication. su-
ma/g users must have a valid certificate installed on their machines. Certificates
have to be signed by a suma/g Certification Authority. Users must register
with the User Control, providing the VO they belong to. VOs are specially
important for users authorization. One or more VOs for suma/g users should
be registered at the User Control. The User Control authentication relies on
the Security Control certificates verification. The Security Control serves
all GSI certificates generation and verification requests. This module’s design
follows a General Responsibility Assignment Software Patterns (GRASP).

Figure 2 shows the authentication and authorization processes to gain access
to resources. The Client uses the Security Control API to get the Security-
Message signed with the user’s private key, which contains at least a X.509 cre-
dential with a VO attribute assertion (step 1). The SecurityMessage is sent
through CORBA to the User Control (step 2). The User Control verifies the
SecurityMessage with the Security Control API and matches the X.509 cre-
dential to a VO group to authorize access to a subset of grid resources, that
includes the file system of the client machine (step 3). Thus, during the exe-
cution the client machine is in the realm of the GSI security and the remote
accounts are accessed with secure protocol such as scp, sftp or https.

42 Y. Cardinale, J. De Oliveira, and C. Figueira

Fig. 2. suma/g security model to access user local file systems

4.2 Access to External Data Repositories

The grid access control scheme, based on VO’s and GSI, is supported by a grid
common trust domain, which allows for secure user authentication in the grid.
However, when dealing with sensitive data, a more restricted access control could
be enforced by the data keepers. In such scenario, the repository administrators
may not agree to include it as part of the grid’s realm of trust: the grid certificates
are not accepted by the data repositories.

We present a mechanism based on a Session Authentication Key (SAK), which
allows grid users to obtain access rights to the repository for temporarily incor-
porating, into the grid, their data stored on external repositories.

In the following description, we consider three components: i) A data repos-
itory server, not belonging to the grid. The user is entitled an account on this
repository, and access rights to a particular data area in the file system; ii) A
client machine, where the user accesses grid services from, including job submis-
sion; and iii) A grid.

Data repository server and client machines use a Public Key Infrastructure. In
order to submit a job for data processing from the external repository in the grid, a
user must previously send a request to a data repository server in order to obtain a
SAK. Then, the user submits her/his job to the grid, specifying the data repository
URLandtheSAK.TheSchedulerwill selectanExecutionNode inorder to execute
the job. During execution, the application running on the Execution Node requests
data accesses to the repository,presenting the SAK in order to obtain the appropri-
ate permissions. Figure 3 depicts this process. Note the whole external repository
data access process remains in control of the user, who is granted access permis-
sion according to the server administrator policy. Data is moved through a secure
channel established between Execution Node and the repository.

a) SAK components: A SAK is composed by:

– An ID, the user identification at the repository server. It depends on the
authentication mechanism used by the server (e.g., a login name);

– A ticket called Temporary Authentication Number (TAN). It is randomly
generated by the server and stored for later access authentication. The TAN
is locally allocated an expiration time; and

– A Hash, (e.g., SHA-2) of the previous components.

Dynamic and Secure Data Access Extensions of Grid Boundaries 43

Grid Core

Client machine

4. Fetches SAK

 using SAK

Grid´s Execution Node

Repository

2. Submits job

5. Accesses repository data (I/O)

3. Grid selects
 execution node and

assigns job

1. SAK requested
 Stored at the
 Client machine

External Data

Fig. 3. External Repository access from the grid using a SAK

These three components are concatenated and encrypted using the server pub-
lic key to make up a SAK, such that only the server can later process the thus
generated SAK, and validate accesses during execution.

b) Accessing the repository using a SAK:
When the user submits a job to the grid, she/he provides along the SAK, us-
ing a secure connection, as given by GSI. During execution, every application’s
input/output operation to the repository server carries along a SAK, using a
secure channel. The remote repository server then:

– Decrypts the SAK with its private key;
– Verify that the TAN is valid, i.e., it exists in the registry and has not expired;
– If the TAN is valid, verify that the owner (corresponding to the user ID in the

SAK) has permission for the requested operation; and
– If it failed to present a valid SAK or to have permission for the requested oper-

ation, an access denied code is returned. Otherwise, the request is fulfilled.

5 Implementation in SUMA/G

In suma/g, classes and files are loaded on demand from the user’s machines,
which means that it is not necessary either previous installation of the user’s Java
code on the Execution Node nor packing all classes for submission. Bytecode and
data files servers may be located on machines belonging to the grid, or on user
controlled external servers by incorporating local file systems into a VOWS.

Supported classes, input files sources, and output destinations include:

– client machine where the application execution command is run and,
– remote file servers on which the user has an account. A pluggable schema

allows for implementing several protocols for remote files access. Currently,
schemes for CORBA and sftp are available.

44 Y. Cardinale, J. De Oliveira, and C. Figueira

Fig. 4. suma/g I/O Subsystem

Figure 4 shows current suma/g I/O subsystem, which allow the incorporation
of users’ file systems into the grid during the execution of an application. The
remote data and classes access mechanisms are:

1. Dynamic class loading. The Execution Agent in charge of the execution
of an application instantiates a suma/g-Class Loader, which handles the
dynamic class loading from the user’s local machine up to the Execution
Agent at run time by using callbacks to the Client Stub.

2. Standard input, output and error redirection. For interactive applications,
the execution environment is modified such that the standard input, output
and error are connected to the user’s machine issuing the execution request,
thus behaving as if it were a local execution.

3. java.io redirection. A new package, called suma.io, overloads the basic
classes in java.io, such that, at run time, every invocation of a java.io
method made by the application actually uses its modified version in
suma.io. suma.io methods use callbacks to the Client Stub to access data
files at the client machine. If the required data is not present at the user
machine, the Client Stub locates and accesses the remote file system keep-
ing the data. Data is transferred from the remote file system to the user
machine, through a secure channel (by using https or sftp), and then to the
Execution Agent, under GSI realm. Note that files are not transferred as a
whole but in blocks, reducing the risk of obtaining a copy of the file.

4. Buffering and prefetching. Remote file accesses use buffering to improve per-
formance, by reading or writing blocks, hence reducing the number of call-
backs to data sources. The kind of buffering support provided in suma/g is
different from that provided by buffer cache components commonly found
in file system implementations. It rather resembles file prestaging, in the
sense that it consists of a single block, which could actually be the whole

Dynamic and Secure Data Access Extensions of Grid Boundaries 45

file. At execution time a block size is specified and the data transfer is per-
formed on demand, when the application executes a read on a file. The data
block transferred from the remote file system starts at the first byte accessed
by the application. If the application tries to access a byte not contained
in the transferred data block, another data block is transferred, overwriting
the previous block. Prefetching techniques are used for transfer delay mask-
ing, by overlapping class loading with computation. The idea is to prefetch
classes from the client machine to the Execution Agent, as early as possible
to reduce the delay when the actual reference to a class is made [20].

The possibility of accessing external data repositories is an alternative mecha-
nism of suma/g that bypasses the client, by directly connecting applications to
data repositories (only for data files). As explained before, suma/g I/O subsys-
tem provides redirection of I/O to access local file systems. The same mechanism
(redefinition of java.io) was used to implement secure access to external data
repositories. The modifications to the suma/g platform comprise:

– A new set of suma.io redefinition classes to transparently handle accesses
to external data repositories. Every I/O method includes a new parameter,
the SAK. Currently, communication between the Execution Agent and the
repository is implemented using RMI with SSL; and

– The suma/g Client and the intermediate suma/g components accept a new
parameter, the SAK, which travels along with the request.

Additionally, a client-server system for the SAK generation and communication
was developed, as well as the repository server side for the I/O requests. The file
name containing the SAK is passed as an argument of job submission commands.
Next Section presents the SAK details.

6 Experiment Results

The goal of these experiments is to address concerns about performance overhead
incurred by the newly added data handling functionnalities. We selected a simple
application which stresses file transfer mechanisms, by copying (read/write) a
21 MB file. This application is executed in the three scenarios depicted below.

– The file is in the client machine’s file system, the application is executed
with suma/g. The source and destination files are directly accessed from/to
the client’s file system.

– The file is located at a remote repository (i.e., outside the grid), the applica-
tion is executed with suma/g. The source and destination files are accessed
from/to the remote repository.

– The file is in a User Interface machine and the application is executed with
gLite. The gLite job input sandbox mechanisms imply to transfer the
source file to the Execution Node during the job submission, then trans-
fer back the destination file upon job completion.

46 Y. Cardinale, J. De Oliveira, and C. Figueira

Table 1. Wall clock time for three test scenarios, with a 21 MB file copy application

Scenarios Client’s File System Remote Repository Transferred Files
in suma/g in suma/g in gLite

Wall Clock Time 31.06s 590.43s 71.22s

For each scenario, 10 experiments were performed, taking the best case. All
scenarios were run over the same execution platform, namely dedicated nodes
of PC’s dual core 3.4 GHz Pentium-IV, 1 GB RAM, interconnected through a
100 Mbps LAN network, running Debian GNU/Linux etch 4.0r5. All grid com-
ponents (suma/g and gLite components), client machine, and data repository
were each executed on different nodes.

As shown on table 1, the best performance is obtained when files are located
on the client’s machine. This is due to the prefetching and buffering mechanisms
built in suma/g, not present in gLite. However, the flexibility of securely ac-
cessing a remote repository, comes at a considerable penalty; overhead is due to
the SSL handshake and encryption/decryption at both sides of the connection
established between the Execution Agent and the remote repository.

7 Conclusions

Security is the key issue when dealing with resource sharing and collaboration.
While current grid middleware provides a standard common security infrastruc-
ture, which certainly suits many contexts of use, it can not correctly handle some
others where special requirements on confidentiality, for instance, are imposed
by organizations, such as medical or business private data.

The mechanisms introduced in this work offer a solution for using grid power
to process data located on repositories outside the grid. This data is temporarily
accessed by applications on the user behalf. Session keys and block data transfers
helps on preserving the data confidentiality. Together with the middleware I/O
subsystem that includes file systems accessible from the client during application
execution, the grid boundaries are actually extended in a secure and dynamic
way. An implementation of these mechanisms in a grid middleware suma/g, was
also presented. We are currently working on incorporating GlusterFS [21] as an
alternative source to be incorporated into the grid.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG document, Global Grid Forum (2002)

2. Abbas, A.: Grid Computing: A Practical Guide to Technology and Applicactions.
Charles River Media (2004)

3. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int’l. Journal of High Perfor. Computing Apps. 15 (2001)

Dynamic and Secure Data Access Extensions of Grid Boundaries 47

4. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer, Heidelberg (2006)

5. Laurence Field: Getting Grids to work together: interoperation is key to sharing
(2006), http://cerncourier.com/articles/cnl/3/11/10/1

6. Allcock, W., Bresnahan, J., Foster, I., Liming, L., Link, J., Plaszczac, P.: GridFTP
Protocol Specification. Technical report, Global Grid Forum (2002)

7. GFAL: Gfal (2003), http://grid-deployment.web.cern.ch/grid-deployment/

gis/GFAL/gfal.3.html

8. Mazieres, D.: Security and decentralized control in the SFS global file system, MIT
Master’s thesis (1997)

9. Mazières, D.: Self-certifying file system. PhD thesis, Massachusetts Institute of
Technology (2000)

10. Kido, Y., Date, S., Takeda, S., Hatano, S., Ma, J., Shimojo, S., Matsuda, H.:
Architecture of a grid-enabled research platform with location-transparency for
bioinformatics. Genome Informatics 15, 3–12 (2004)

11. Seitz, L., Montagnat, J., Pierson, J.M., Oriol, D., Lingrand, D.: Authentication
and autorisation prototype on the microgrid for medical data management. In:
Health Grid 2005 (2005)

12. OGSA: The OGSA Data Access and Integration Project (2008)
13. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Fernandes, A., Sakel-

lariou, R., Watson, P., Li, P.: Using OGSA-DQP to support scientific applications
for the grid. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS,
vol. 3458, pp. 13–24. Springer, Heidelberg (2005)

14. Scardaci, D., Scuderi, G.: A Secure Stora Service for the gLite Middleware. In:
Proc. of the Third Inter’l. Symp. on Information Assurance and Security (2007)

15. Cardinale, Y., Curiel, M., Figueira, C., Garćıa, P., Hernández, E.: Implementa-
tion of a CORBA-based metacomputing system. In: Hertzberger, B., Hoekstra,
A.G., Williams, R. (eds.) HPCN-Europe 2001. LNCS, vol. 2110, p. 629. Springer,
Heidelberg (2001)

16. Cardinale, Y., Hernández, E.: Parallel Checkpointing on a Grid-enabled Java Plat-
form. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.)
EGC 2005. LNCS, vol. 3470, pp. 741–750. Springer, Heidelberg (2005)

17. The Globus Alliance: The Globus Toolkit (2006), http://www.globus.org/
18. von Laszewski, G., Foster, I., Gawor, J., Smith, W., Tuecke, S.: CoG Kits: A

Bridge between Commodity Distributed Computing and High-Performance Grids.
In: ACM Java Grande 2000 Conf., pp. 97–106 (2000)

19. Cardinale, Y., Figueira, C.: GiPS: A Grid Portal for Executing Java Applications
on Globus-based Grids. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W.,
Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 669–682. Springer,
Heidelberg (2007)

20. Cardinale, Y., De Oliveira, J., Figueira, C.: Remote class prefetching: Improving
performance of java applications on grid platforms. In: Guo, M., Yang, L.T., Di
Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330,
pp. 594–606. Springer, Heidelberg (2006)

21. Z-Research: GlusterFS (2007),
http://www.gluster.org/docs/index.php/GlusterFS

http://cerncourier.com/articles/cnl/3/11/10/1
http://grid-deployment.web.cern.ch/grid-deployment/gis/GFAL/gfal.3.html
http://grid-deployment.web.cern.ch/grid-deployment/gis/GFAL/gfal.3.html
http://www.globus.org/
http://www.gluster.org/docs/index.php/GlusterFS

Proxy Restrictions for Grid Usage

Joni Hahkala1, John White1, and Ákos Frohner2

1 Helsinki Institute of Physics, FIN-00014 Helsingin Yliopisto, Finland
{Joni.Hahkala,John.White}@cern.ch

2 CERN European Organization for Nuclear Research, CH-1211 Geneve 23,
Switzerland

Akos.Frohner@cern.ch

Abstract. The scale and power of Grid infrastructures makes them
an inviting target for attack. Even if the Grid software is secure the
Grid infrastructure is vulnerable via operating system vulnerabilities and
misconfiguration. One of the worst results of the exploit of these vul-
nerabilities is user proxy credential compromise. This paper describes a
pragmatic and simple way, using proxy certificate extensions, to mitigate
the damage in case of credential compromise. The potential damage is
limited by restricting the range of hosts that the credentials can be used
to open connections to and be accepted from. This paper also describes
a way to help investigate credential delegation problems.

1 Background

1.1 Certificates

A user on a Grid must be trusted on all services and resources of the infras-
tructure that he accesses or uses. Therefore some form of credential must be
presented to the Grid services in order for it to authenticate and eventually au-
thorize a user to perform an action. Many of today’s Grid middleware systems
authenticate users with Public Key Infrastructure (PKI) certificates that follow
the X.509 [7] format. This X.509 certificate is used to establish the chain of trust
that is needed for a user to access a remote Grid resource or service.

In this identification scheme a user obtains an X.509 certificate from a rec-
ognized certificate authority (CA). In order to do this the user simultaneously
generates a public and private key pair and puts the public key into a certificate
request. The signed certificate request is sent to the CA and the identity of the
requester is verified using an out of band method such as a telephone call to the
requester’s employer. After the verification, the CA signs the request creating
a certificate that can be used by the user in conjunction with their previously
generated private key to prove that he is the person who requested the certificate
from the CA.

At this stage a trust relationship has been established between the Grid user
and the CA. The Grid user has declared his identity to the CA, the CA has
verified this and it has issued a credential asserting this fact. The services and

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 48–56, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Proxy Restrictions for Grid Usage 49

users that trust the CA in question can now trust the owner of the certificate
if he can prove he has the private key corresponding to the public key in the
certificate.

1.2 Proxy Certificates

In order for a user to allow Grid services to act on his behalf, which is usually
needed, the services must present the user’s credentials to a resource they need
to access in order to be authenticated and authorized as the user. To first order,
this can be accomplished by sending his CA-signed certificate and private key to
the service giving it the power to authenticate as the user. This has an obvious
security flaw in that anyone in possession, through interception, of this pair could
pretend to be the user.

This security problem is avoided by allowing the user to delegate their security
rights to Grid services by using a different type of certificate. This is the proxy
certificate which, as the name indicates, is an authorized credential derived from
the original credential or intermediate proxies that is allowed to act on behalf
of the Grid user. In order to generate a proxy certificate a new public/private
key pair is generated and used to create a request for a proxy certificate. This
request is subsequently signed using the private key of the user’s original CA-
issued certificate or by an intermediate proxy.

Therefore, the proxy certificate is a credential that contains the identity and
provenance of the owner. These certificates usually have a short validity time,
usually 24 or 12 hours as opposed to CA-issued credentials that have a lifetime
of months. As the proxy certificate is generated locally by the owner of the
credential and the private key it is based on and not by a CA, the trust is
provided by the original user and possible intermediate proxy credentials. As the
private key of previous credentials is used for the signing, the chain of trust is
extended from the CA to this proxy credential. In theory this proxy chain can be
extended infinitely, but in practice software implementations and size constraints
limit the number of proxies in a chain. In this document extensions to the basic
proxy certificate, as can be currently used in the EGEE gLite middleware, are
discussed.

2 Problem Definition

The main usage of proxy credentials in a Grid is the authorization of the user’s
rights through the job submission system to the worker node (WN) of the clus-
ter where the user’s actual computation takes place, and the data access from
the WN.

To achieve this without transferring the full credentials with private key over
the network, thus exposing it to attacks, the credentials have to be delegated
through the job submission system. Each move between services entails at least
one delegation and thus one more proxy certificate in the certificate chain.

As the services need to use the credentials for authentication on behalf of the
user, the private key in the proxy credentials has to be in plain text, unencrypted

50 J. Hahkala, J. White, and Á. Frohner

and thus unprotected. This leads to the vulnerability that if any machine or
service in the job submission chain is compromised, the attacker can harvest
these proxies that pass through or are stored on that host. The vulnerability
is especially apparent on the WN where code submitted by the user is run or
at least a program is run with input data provided by the user. A rogue Grid
user has more possibilities to exploit vulnerabilities on that WN host and access
the credentials of other jobs running on that host. Furthermore, if a shared file
system is used, possibly all credentials in the shared file system and thus in the
site can be compromised. Another possibility is to start processes on the WN
that harvest incoming credentials, unless rigorous cleaning of processes is done
after the job ends.

After the attacker has obtained credentials, he can impersonate the owner of
the credentials and e.g. access the owner’s files and run jobs under the owner’s
identity.

These problems are already mitigated through some limitations on proxies.
Firstly, the proxies should have a short lifetime, typically they are limited to 24
hours, but for various reasons this limitation is sometimes ignored and longer
proxies are used e.g. a week or 10 days. Another limitation is to use a limited
proxy. When a proxy is delegated to the WN with the user’s job it is marked in
the process as limited proxy. Subsequent job submissions using limited proxies
are refused at the workload management system (WMS) and computing elements
(CEs). Thus proxies harvested from a WN cannot be used to submit more jobs,
but they can still be used to access data and other services. Limited proxies can
still be used by an attacker by submitting jobs to another site using their own
credentials and then within those jobs use the compromised credentials to access
data and do other damage.

3 Proxy Restrictions

To mitigate the possibilities for causing damage with compromised proxies, the
amount of damage that can be caused by compromised proxies and to control
the compromised proxies two proxy restrictions will be described.

3.1 Source Restriction

This restriction is used to limit the source network address space from which the
proxy can be used for authentication when opening connections. If a proxy is
limited using this extension to an address space, Grid services will only accept
the proxy as authentication credentials when the connection is opened from that
specific address space.

When the address spaces where the proxy will be delegated to in the future are
known this restriction can be used to limit the credentials and the further delega-
tions derived from these credentials to only work from those address spaces. As
the restriction is inherited, meaning that if there is this extension a proxy certifi-
cate in the chain the further proxies derived from this proxy are also restricted.
Therefore, the restriction cannot be bypassed by generating a new sub-proxy.

Proxy Restrictions for Grid Usage 51

This extension should, at least in the beginning be non-critical to allow grad-
ual migration even on the production services. After enough systems support it,
it should be marked critical to make sure the restriction is honored.

Two examples of usage of this type of restriction:

1. A job is submitted by the WMS into a CE in a site. If it is known that the
job runs only in the CE site without needing to delegate rights to any service
to act on behalf if it and that the job will stay in the site, the proxy can be
restricted to the CE site during the delegation of the credentials from the
WMS to the CE. If the CE site is compromised, the credentials harvested
from these hosts can only be used on that site. Thus, if there is a compromise
in a site, isolating the site from the rest of the Grid will ensure that the
problem is isolated. After waiting the maximum allowed proxy lifetime and
after the centre has fixed the damage and cleaned the machines, the site can
be taken back to the Grid with knowledge that the compromised credentials
have expired and are thus unusable.

2. A job is submitted by a CE into the WN. Again, if it is known that the job
only operates from that WN and does not need to delegate rights elsewhere,
this restriction can be put into the credentials during the delegation from
the CE to the WN thus tying the credentials to that specific WN. This way
if the WN is compromised, it can simply be taken offline stopping possibility
of abuse of the credentials. After the vulnerability has been fixed and after
waiting that the compromised credentials have expired, the WN can be safely
returned to use.

Without this restriction, compromised credentials may be used anywhere in the
Grid and thus the only way to recover from the incident is to ban all the users that
had credentials in the compromised machines, which can be hard to determine.
Thus, this restriction greatly eases the recovery from an incident and allows the
users to continue working using other sites.

3.2 Target Restriction

This restriction is used to limit the target network address space where the proxy
can be used to authenticate connections to. If a proxy is limited using this exten-
sion to an address space, the services will only accept the proxy as an authorized
credential when the service resides in that specific address space. As above, when
the address spaces where the proxy will be delegated to and what services need
to be contacted using these credentials are known, this restriction can be used
to limit the further delegations derived from these credentials to only work as
credentials in those address spaces. Also as above the same considerations for
criticality of this extension has to be taken into account.

An example of the usage of the extension: If a CE knows the storage elements
that a user’s job will contact to get the data it needs and the possible storage
elements (SEs) where the job will store the results, it can, during the delegation
to the WN, limit the proxy to be acceptable only when contacting those services.

52 J. Hahkala, J. White, and Á. Frohner

This way if the credentials are compromised, they can only be used to contact
those specific storage elements. The other Grid storage elements and services
outside of the address spaces are protected and the attacker cannot cause dam-
age to them using these credentials. Thus the possibility for damage is greatly
reduced.

3.3 Identifiers

The object identifiers (OID) for these restrictions have been requested from the
International Grid Trust Federation and await approval. The requested OIDs are
iGTFProxyRestrictSource (1.2.840.113612.5.5.1.1.2.1) for the source restriction
and iGTFProxyRestrictDestination (1.2.840.113612.5.5.1.1.2.2) for the target
restriction.

3.4 Data Structure

Both of the extensions need to define a list of 0 to n namespaces containing
a single internet protocol (IP) address or IP address range. RFC 5280 [2] al-
ready defines a data structure with similar properties, the NameConstraints
extension. Instead of defining a new data structure and implementing it the
NameContraints data structure is used and the software implementations for it
are reused. The data structure contains a list of permitted subtrees and a list
of excluded subtrees. The lists consist of GeneralName structures that each de-
fine a single address space. Use of three possible fields of the GeneralName have
been considered: the dNSName, iPAddress and uniformResourceIdentifier. The
iPAddress is a strongly preferred solution as that avoids the interaction with the
DNS system when verifying the IP address with the extension. This way speed is
increased by avoiding the calls to the DNS system, the reliability is increased as
a crashed or slow DNS server does not affect the verification. Also the possibility
to use DNS spoofing attacks is removed.

For example when the WMS submits a computing job into a CE in a site,
it knows that the job will run in that site and that the proxy will not need to
be delegated into another site. Therefore, as the WMS knows that the network
addresses of the site are in the address space e.g. 137.138.0.0/16, it can add
the source restriction using iPAddress field in the GeneralNames structure and
this address space. When a service is contacted and a proxy certificate chain
containing this restriction is presented as credentials, the service can find this
restriction and reject the authentication attempt if the connection was opened
from any other network address than the one allowed in the restriction.

4 Proxy Tracing

The proxy delegation tracing extensions [4] are used to add to the proxies the
information where they were delegated from and where they were delegated to.
Currently, when a proxy is examined, there is no way to tell where the proxy

Proxy Restrictions for Grid Usage 53

has been and how it got here, except looking at all the delegation service logs
and comparing the timestamps of the delegation logs. These extensions make
the tracking of the delegations through the delegation chain a trivial task and
thus help to resolve the problems.

Each time there is a delegation, a new proxy is created. During this process,
the source and target service unified resource identifiers (URIs) [1] are added to
the proxy using these extensions. This way, whenever a proxy is looked at, the
path it has traveled via delegation can be seen. This helps in debugging possible
problems with credentials. It can also be used informally when investigating
compromises. But it is trivial to fake long additional delegation chains that do
not reflect the true delegation path and thus implicate services that have not
been compromised. This can simply be done by generating new proxies locally
and putting the URIs of those services as the source or target service. Thus, the
extensions are not fully useful for auditing and compromise investigations as the
information in them is not trustworthy.

The tracing extensions can be used to reject certificates that have passed
through a compromised site. When a proxy is delegated into a site, the new
delegated proxy contains a trace that was put there by the previous service that
delegated it, and the services in the site that receives it does not have means to
remove it. Thus, assuming a situation where the previous service is not compro-
mised and the site is, the proxy that passed through the site contains the trace
that it has been in the site and can thus be rejected as possibly compromised.
There is, though, the proxy renewal service [8], that can defeat this tracing unless
the renewal service carefully re-applies the trace extensions to the new proxy.

The OIDs for these extensions have been approved by the IGTF. The OIDs
are iGTFProxyTracingIssuerName (1.2.840.113612.5.5.1.1.1.1) that determines
where the delegation came from and the iGTFProxyTracingSubjectName
(1.2.840.113612.5.5.1.1.1.2) that defines where the proxy was delegated to.

The data structure of the extensions is the GeneralNames ASN.1 structure as
used in e.g. RFC 5280 [2]. While iPAddress and dNSName can be used, the URI
field is the most useful of the choices. As there can be several services running
in a host, even in the same TCP port, each with their own delegation system,
the URI can identify the exact service that performed the delegation and thus it
is the only choice that provides the exact and correct information. For the user
client to the service delegation step a special URI format has been proposed.
The URI is formed by using the client program name as the scheme and, as
normally for HTTP URLs, the machine DNS name as the authority. The URI
can then still be further completed by using the user account as the path. But
the user account must be omitted e.g. in case a pseudonymity service [6] is used.

A delegation from a WMS client to a WMS service would add both the
iGTFProxyTracingIssuerName and iGTFProxyTracingSubjectName extensions
to the proxy being generated to identify the client and the service. The
iGTFProxyTracingIssuerName and iGTFProxyTracingSubjectName could have
the URIs, for example, of “WMS-client://clienthost/johndoe” and
“WMS-server://wmshost:8443/examplewms” respectively.

54 J. Hahkala, J. White, and Á. Frohner

To avoid the problem of the possibility to fake delegations locally a solution
has been proposed. This solution would add a signature to this extension made
by the host or service credentials. Adding this signature would prove that the
proxy actually passed by that host. This way the tracing extension could be used
for auditing and investigating compromises. But, so far the increase of proxy
size caused by the additional signature and the performance hit caused by the
signature calculations have been considered too big compared to the advantages
brought by adding it.

Using the signature algorithm and signature structure in RFC 5280 [2], the
signature with 2048 bit RSA key and SHA1 would add 260 bytes without count-
ing the additional data structures needed to include it, while the actual extension
without signature is 27 bytes for the data structure overhead and OID in addi-
tion to the bytes the URI string takes to encode (39 bytes in the WMS client
example above).

5 Discussion

In the current Grids the proxies are limited when they come to the WN. Thus,
the proxies that get compromised in the WN, which is the most vulnerable place
for the proxies, cannot be used to submit jobs. That means that the biggest
possibility of launching a massive number of jobs, which use compromised cre-
dentials to attack some services, is already prevented. But if a CE or WMS is
compromised, the bigger number of credentials in these services can be used to
launch attacks limited only by the capacity of the system.

Even if the proxies are limited as in the WN, they are still usable to access the
SEs, information systems and other services and thus the potential for damage is
great. The most valuable of these vulnerable services are the data management
(DM) systems as the data in the infrastructure is the most valuable part. Thus,
the implementation of these limitations should be started from the DM services
giving the best return for the effort and biggest additional protection.

The RFC 3820 [10] defines an proxyInfoExtension with the possibility to define
own policy languages. But this cannot be used for this work for two reasons. First,
many infrastructures like EGEE still use legacy proxies and do not support the
RFC 3820 proxies yet. Thus they do not understand this extension and adding
this extension, which has to be critical by definition, would make the proxies fail
as they fail the critical extension checks. Second, defining a policy language and
using it would mean that the default inherit-all and limited policies could not
be used. But these policies are the only ones implemented and supported in the
current systems. Thus, using a policy language would break the interoperability
with existing systems.

UNICORE [5] jobs, including input data, are signed by the client’s private
key providing protection from changes in the job description by intermediate
gateways and avoiding the delegation of a proxy certificate at all. In respect of
protection against hijacked credentials UNICORE is clearly in advantage.

Proxy Restrictions for Grid Usage 55

The SAML-based authorization token system [9] preserves the pre-defined
nature of the UNICORE system (the user has to pre-scribe which resources can
be accessed and which actions can be invoked). However it already empowers
the submitted job to act on the user’s behalf, for example to access remote files.

The other end of the palette is the Globus style delegation model [3] with full
identity delegation through proxies. It allows the usage of highly dynamic jobs,
where for example the input and output data does not have to be submitted
with the job but can be dynamically accessed on demand from any convenient
location using the proxy credential.

Our approach tries to find a middle-ground among these models by balancing
security with the ease of usability. It provides protection against the most obvious
credential hijacking problem of full delegation. Furthermore, these restrictions
would be automatically introduced by the job submission and delegation chain,
with no explicit action from the user, but still with almost the same level of
protection that a SAML-based system can provide.

6 Conclusion

The extensions in this paper greatly reduce the damage caused by a compromised
machine, a virtual machine or a site. The extensions also help in management
and recovery from a compromise providing a way to avoid user and Virtual Orga-
nization (VO) banning and thus makes the Grid more resilient to interruptions.
The tracing extension is useful for debugging and a way to make it valid for
auditing and compromise investigation is described.

References

1. Berners-Lee, T., et al.: Uniform Resource Identifier (URI): Generic Syntax. IETF
RFC (January 2005), http://www.ietf.org/rfc/rfc3986.txt

2. Cooper, D., et al.: RFC 5280 Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile, IETF RFC (May 2008),
http://www.ietf.org/rfc/rfc5280.txt

3. Demchenko, Y., Mulmo, O., Gommans, L., de Laat, C., Wan, A.: Dynamic secu-
rity context management in Grid-based application. Future Generation Computer
Systems 24(5) (May 2008)

4. Groep, D.: OID for Proxy Delegation Tracing, International Grid Trust Federation
OID registry (February 28, 2008),
http://www.eugridpma.org/documentation/OIDProxyDelegationTracing.pdf

5. Goss-Walter, T., Letz, R., Kentemich, T., Hoppe, H.-C., Wieder, P.: An Analysis
of the UNICORE Security Model, Open Grid Forum, Grid Final Document (July
18, 2003), http://www.ogf.org/documents/GFD.18.pdf

6. Hahkala, J., Mikkonen, H., Silander, M., White, J.: Requirements and Initial De-
sign of a Grid Pseudonymity System. In: Proceedings of the 2008 High Perfor-
mance Computing & Simulation Conference (HPCS 2008), Nicosia, Cyprus, June
3-6 (2008)

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.eugridpma.org/documentation/OIDProxyDelegationTracing.pdf
http://www.ogf.org/documents/GFD.18.pdf

56 J. Hahkala, J. White, and Á. Frohner

7. ITU-T: X.509 Information Technology - Open Systems Interconnection - The Di-
rectory: Public-key and attribute certificate frameworks (August 2005),
http://www.itu.int/rec/T-REC-X.509-200508-I

8. Kouril, D., Basney, J.: A Credential Renewal Service for Long-Running Jobs. In:
Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing,
November 13-14, 2005, pp. 63–68 (2005)

9. Snelling, D., van den Berge, S., Li, V.: Explicit Trust Delegation: Security for
Dynamic Grids. Fujitsu Scientific & Technical Journal (FSTJ) - Special Issue on
Grid Computing 40(2) (December 2004)

10. Tuecke, S., et al.: RFC 3820 Internet X.509 Public Key Infrastructure (PKI) Proxy
Certificate Profile, IETF RFC (June 2004),
http://www.ietf.org/rfc/rfc3820.txt

http://www.itu.int/rec/T-REC-X.509-200508-I
http://www.ietf.org/rfc/rfc3820.txt

An Account Policy Model for Grid Environments

David Aikema, Cameron Kiddle, and Rob Simmonds

Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, AB, Canada

{aikema,kiddlec,simmonds}@cpsc.ucalgary.ca

Abstract. To manage jobs in multi-institutional grid environments, an automa-
tion tool needs to know not only the characteristics of resources, but also whether
a job’s credentials will be mapped to accounts on them. Credentials may be
mapped to an existing dedicated or shared account on a resource, or a new ac-
count may be created. Existing information models provide little account policy
information, even though the development of virtual organization and account
management tools means that account policies may be increasingly dynamic.
Without automation tools being able to understand account policies, projects are
unable to take full advantage of modern virtual organization and account manage-
ment systems. Using advertised account policies, automation tools could consider
whether the account creation, access, expiry, and cleanup policies of a service
provider make it a good candidate for running particular jobs. Additionally, ac-
count renewals could be managed automatically using information in an expiry
policy model.

1 Introduction

Organizations face many challenges gaining access to sufficient computing resources.
Grid computing [1] addresses this by creating infrastructure to enable the sharing of
heterogeneous resources across institutional boundaries, and models [2, 3] have been
developed to describe the capabilities of grid resources. However, in addition to models
of resource capabilities, it is desirable to have a policy model to make service providers’
account access and lifecycle management policies clear. A model of these policies will
enable automation tools to manage accounts through their entire lifecycle and make
better, more-informed decisions about where to submit particular jobs for execution.

In the past, or in projects where few parties are in a relatively-static relationship, ac-
count policy information could be communicated offline in an informal manner. How-
ever, as projects involve larger numbers of parties, and the relationships between these
parties become more dynamic, there is an increasing need for a formal model of account
policy. A formal, machine-interpretable model also enables the creation of general-
purpose automation tools.

Signed attribute assertions, supplied to users through a service run by a virtual or-
ganization, have been used to enhance the flexibility of the authentication and autho-
rization process [4, 5]. Attribute assertions are short-lived credentials which describe
the membership of a user in a virtual organization, as well as their role(s) and other
properties of their membership. Virtual organizations (VOs) are groups of users united

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 57–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

58 D. Aikema, C. Kiddle, and R. Simmonds

by a common goal or a shared entitlement to access a particular set of resources. VOs
also may recursively include other virtual organizations amongst their membership.
Attribute-based authentication and authorization enables new accounts to be allocated
without requiring manual administrative intervention. It also enables users to be mapped
to differing accounts based on their active role, and aids in the revocation of access to
users leaving a project or organization [6].

This paper introduces an account policy model exposing policies governing the cre-
ation of, access to, expiry of, and cleanup of accounts. The job submission process is
enhanced as the model information may be used to locate service providers offering both
sufficiently powerful resources and satisfactory account policies. This enables more
powerful and flexible resource discovery tools to be developed. Such a model could
be used by an automation tool to create accounts on grid resources in which to run a
user’s jobs. At present, the user would be required to inquire about a service provider’s
policies for establishing accounts prior to being able to employ automation tools.

Before introducing our account policy model, we first set the stage by describing ex-
isting virtual organization and account management systems in Section 2. In the same
section, we also consider existing models designed for grid environments. After intro-
ducing a series of requirements in Section 3, Section 4 then describes the policy model
which we created. This is followed in Section 5 by an example of how this model could
be used. Finally, the paper concludes in Section 6 and suggests areas for future work.

2 Background

Prior work has considered ways to increase the flexibility of account management using
virtual organizations. Useful tools have been developed, and we introduce some of these
in Section 2.1, as examples of the sort of systems whose policies we wish to model.
Then, in Section 2.2, we examine existing models that have been developed for grid
environments to determine whether or not these provide a model of account creation,
access, renewal, and revocation processes.

2.1 Virtual Organization and Account Management Software

Grid environments often use X.509 certificates [7] for authentication without requir-
ing the presenter of the certificate to have a prior relationship with a service provider.
This has resulted in the development of systems which use template accounts. Tem-
plate accounts [6] are accounts that are dynamically assigned to users logging into the
system. It allows groups of users to access the system, without requiring that accounts
be pre-created for all users who might attempt to connect to this system. Tools such as
gridmapdir [8] allow users with certificate distinguished names listed in a configuration
file to gain access to a template account on a system. Other tools integrate with virtual
organization management systems to provide more-generic attribute-based authentica-
tion and authorization. VOMS, the Virtual Organization Membership Service [9], can
be used to administer a virtual organization, adding users, placing them in groups, and
associating them with role and capability information. The Grid User Managment Sys-
tem (GUMS) [4] can be used to provide users access to a system based upon an assertion
signed by a VOMS server, containing VO attributes.

An Account Policy Model for Grid Environments 59

In addition to VOMS and GUMS, other tools have also been developed for attribute-
based authentication and authorization in grid environments. Shibboleth [10] which has
been widely deployed in academic institutions to provide attribute-based access to web
databases has been the target of numerous extensions to grid environments [11]. Of
these, the most promising is GridShib [5]. Other projects including CAS [12], PRIMA
[13], Akenti [14], and PERMIS [15] have also been developed. These software packages
use a variety of techniques to encode attributes, including SAML [16] and XACML [17]
as well as various proprietary mechanisms.

2.2 Existing Models

Creating models for grid environments has been the focus of some prior work. However,
the resulting models focus on resource capabilities rather than authentication and autho-
rization. Nordugrid [18] developed an LDAP-based model providing basic information
such as account names and a fixed lifetime for job session directories. The Japanese
NAREGI project [19] extended DTMF’s Common Information Model (CIM) [2] to
grid environments, but the broad focus of CIM makes it complex to work with. CIM
allows an abstract “Account Management Service” to be assigned as controller of ac-
counts but provides no information about account lifecycles beyond a boolean flag to
indicate whether an idle account might be deactivated. The GLUE schema [3] was de-
veloped specifically for grid environments, and it focuses on describing sites, services,
and computing and storage resources, rather than access control and lifecycle informa-
tion. In earlier work we introduced the GRC model [20] which includes information
about file lifetimes, allowing both rigid and flexible lifetime representations. However,
this model is also lacking information regarding credentials required to access systems.

The Enterprise Grid Alliance (EGA) model [21] is the grid model most focused
on lifecycle information. It focuses on the provisioning of resources, and describes a
number of states in which resources can be, but it does not describe how the transitions
between the states might be initiated. This abstract model is being extended by the
OGF Reference Model Working Group in order to produce a concrete, formal lifecycle
schema. However, this work is in an early stage, and also does not include information
about how to initiate lifecycle transitions or the credentials required to access systems.

3 Requirements

An account policy model addresses a number of challenges. Knowledge of the poli-
cies connected with an account to which a job is mapped may determine whether this
account is suitable for use. At present, account policies must be manually determined
by users of a system. By introducing an account policy model, automation tools may
be built which are able to determine these policies without manual intervention. Thus,
access to resources may be improved while lessening complexity for the end-user.

Many aspects of account policy are relevant to managing job submissions. What
credentials are required to gain access to an account? Will an existing account be used
or a new one created? Will privacy concerns require the use of a dedicated account,
or is an account shared by multiple users and/or projects sufficient? Will tasks, such

60 D. Aikema, C. Kiddle, and R. Simmonds

as renewal or the creation of a backup copy, need to be scheduled? Can the account
renewal process be automated? Will an account be active long enough to complete a
job? These are some of the questions we formalize in the following requirements.

First, it is necessary to know what credentials are needed to create accounts and,
later, to access them. A user may be part of several groups in a VO and may also be
able to assume one of several distinct roles, e.g., production, testing, or postanalysis.
What combination of attributes will map to a particular account?

Second, it must be known whether it is possible to create an account on a new re-
source that is a good candidate for a job. Service providers may own multiple resources
but may provide a particular user with access to only a subset, leaving certain resources
off-limits. As well, the account management system in use must support dynamic ac-
count creation to allow new accounts to be created on the fly. It must be possible to
determine on which of the service provider’s systems accounts may be created, as well
as the properties of such accounts.

Third, the relationships between accounts should be understood. Distinct accounts on
a system may have access to shared storage through membership in a common system
group, thus minimizing duplication of common files. On the other hand, an account
may give a user simultaneous access to multiple systems with no common filesystem.

Fourth, to ensure that a job can be completed and its output be retrieved prior to be-
ing deleted, details of account expiration policies should also be known. An expiration
policy may also provide a means by which accounts can be renewed. Doing so may
require that a renewal service be contacted, or information at a service be updated. This
service may be periodically queried to determine whether to extend account lifetimes.

Finally, knowledge of how account cleanup occurs may determine what tasks will be
performed near an account’s expiry date. An expiration policy may be soft, providing
minimum guarantees, or hard, with a fixed lifetime, and the system may treat each of
these cases differently. The service provider may also take action. For example, it could
create an archival copy of the account’s contents and upload it to a VO-managed data
repository or make it available for download by the former account holder.

In order for effective use to be made of its resources, a service provider should make
available information describing its systems. It must be clear how accounts may be
created and what credentials are required to create and access them. Knowledge of the
relationships between accounts enables efficient resource sharing, and descriptions of
expiry processes ensures that expiry will not unexpectedly occur. When an account
eventually expires, however, a model of the service provider’s cleanup processes will
ensure that appropriate actions may be taken to preserve key data. With a formal model
of these processes, automation tools may be developed which make more effective use
of resources.

4 Model Overview

This section introduces a model created to fulfill the requirements outlined in
Section 3. An overview of the key classes in the model, and their relationships, are found
in Figure 1. The model is intended to act in conjunction with existing resource models,
augmenting them with account policies. It builds on some of our earlier work [22, 23].

An Account Policy Model for Grid Environments 61

Fig. 1. Overview of the account policy model

All figures throughout the paper are presented in the form of UML class diagrams. In
these diagrams classes in the model are represented by boxes. A line joining two boxes
indicates a relationship between the classes which is described by a label. For example,
in Figure 1 a VOAttribute is part of a relationship, being “issuedBy” a VirtualOrga-
nization. Lines with an open triangle at one end indicate a subclass relationship. In
Figure 1, for example, a VOAttribute is a subclass or type of Credential.

The following sections provide more information about many of the classes in
Figure 1. In Section 4.1 we first present a credential model. This credential model is
able to describe attributes that a virtual organization may issue, and we also represent
the virtual organizations themselves. Then, in Section 4.2, we address the question of
how to represent accounts. We also address the issue of how to describe connections
between accounts. Finally, in Section 4.3, we discuss the policies which apply to the
account lifecycle, including creation, access, expiry, and cleanup.

4.1 Credentials and VOs

To gain access to a resource, credentials must be submitted alongside job requests.
These credentials, in combination with other attributes of the job request, may result
in the job being mapped to an existing account. Alternatively, a new account may be
created under which to execute the job.

A variety of types of credentials may be represented in the model. We illustrate our
credential model in Figure 2. The model describes X.509 certificates, signed by a cer-
tificate authority, in an instance of the X509Certificate class. Using an instance of the
VOAttribute class, attributes issued by a virtual organization may also be represented
as credentials. Other types of credentials such as usernames, passwords, as well as cre-
dentials stored in MyProxy [24], or other credentials management services, may also
be represented. Any combination of these credentials may be required.

Attributes signed by a virtual organization are represented as (name, value) pairs and
associated with an explicitly modelled virtual organization, which is responsible for is-
suing the attribute assertion. As mentioned in Section 2, different virtual organization
management systems represent attributes in different ways, but (name, value) pairs are

62 D. Aikema, C. Kiddle, and R. Simmonds

Fig. 2. Credential model, including virtual organizations

a way in which each of these representations may be encoded. The virtual organization
model is presented in Figure 2 alongside the credential model.

The model allows for flexibility in the modelling of virtual organizations. VOs may
be composed hierarchically, as in the case of a Shibboleth federation, or lack such a
structure, as in a virtual organization using a VOMS servers. New VO management
systems may be integrated into the model by extending the serverType enumeration in
the VirtualOrganization class. Properties of these systems, such as the server location
from which attribute assertions may be obtained, are stored in instances of the KeyVal-
uePair class.

4.2 Accounts and Account Grouping

When a job is executed on a system, it may be mapped to a preexisting account. Al-
ternatively, it may execute in a new account if submitted to a system which supports
template accounts. In systems which do not preserve state or usage history in account
form, access to the system may be seen as analogous to having a freshly-created, short-
lived account assigned to each job submitted.

In Figure 3 we present a model of accounts and account grouping. In this model, the
Account class contains basic information about an account. This includes a name as well
as a set of credentials to represent the primary owner of the account. In Section 4.1 we
introduced a credential model to represent these credentials. In order to minimize the
amount of redundant information published, the model associates most account policy

Fig. 3. Account and Account Grouping classes

An Account Policy Model for Grid Environments 63

CreationPolicy

+priority: integer

+dynamicCreation: bool

+availableAccounts: integer

TimeSpec

Account

AccountSet

AccessPolicy

+priority: integer

Credent ia l

+requ i redCredentia l

+requ i redCredentia l

+ava i lab leFrom

+ownerCredent ia l

+has

Fig. 4. Creation and Access Policy classes

information with an account set, rather than with the individual accounts themselves.
We will discuss these policies in greater detail in the next section.

4.3 Account Policies

As mentioned in Section 4.2, our model pushes much of the complexity of account
modelling into an account policy class. In this section we focus on how to describe
the policies relating to key aspects of an account’s lifecycle. First account creation is
discussed, and then the issue of who can access the account is addressed. Following
this, we focus on expiry policies and then on how to describe cleanup actions that a
service provider may initiate when an account is revoked.

Creation. The account creation policy class is illustrated in Figure 4. An account may
be allocated when the set of user credentials specified in an instance of the creation
policy class are presented to the system, possibly by an automation tool. The ordering
with which the account management system used by the service provider evaluates
account creation and access policies may be specified by setting the priority value of
the policies. If a user requires two accounts, e.g. one for production use and another for
development purposes, he or she may be able to override the mapping of a job to an
existing account by explicitly requesting a new account.

This creation policy instance may also specify additional information about the avail-
ability of accounts. It may describe whether accounts can be created dynamically to
meet user demand, whether accounts are drawn from a pool, or, if no accounts are
listed as available, that a new account cannot be automatically assigned. An additional
availableFrom attribute may specify the time at which the agreement that established
this account set begins. Alternatively, a future date may be set if a new account cannot
currently be allocated.

Like several other policy classes, the creation policy employs a model called Time-
Spec [22] which we developed to provide a very flexible, yet comprehensible, means
of describing the timing of events. The model allows event times to be specified both
in absolute terms or relative to the time of some other event. A time may also be com-
puted from the minimum, maximum, or average of other times. Times may be calculated
based upon the end of a renewal policy or the expiry of another account on the system,
optionally padded with an additional time interval. Times may also be calculated based

64 D. Aikema, C. Kiddle, and R. Simmonds

upon statistics or metrics associated with various model elements such as resources or
account sets. Event times, numbers, and time intervals may all be recorded as statistics.

Access. The AccessPolicy class is illustrated in Figure 4. It contains information about
the credentials needed to access an existing account. Based on the credentials found
in the model, an automation tool could determine which of its available credentials to
present to the system in order to gain access. It could also discover whether the account
is a shared account, requiring only that a set of VO attributes be presented to access it, or
if the account is dedicated, requiring an X.509 certificate with a particular distinguished
name to access.

The credentials of an account owner are represented in the Account class as an at-
tribute. A special instance of the Credential class, OwnerCredential, exists which rep-
resents these credentials in access policies. Thus, it is possible for a compact access
policy representation in the access policy class, while retaining significant flexibility.
By using this special OwnerCredential instance when specifying access policies, the
amount of redundant information published is reduced and the consistency of policy
across an account set is indicated.

As mentioned in the previous section, creation and access policies are evaluated in
the specified priority order.

Expiry. The expiration policies, and associated renewal mechanisms, are illustrated in
Figure 5. Soft and hard accounts lifetimes can both be specified indicating, respectively,
minimum and maximum lifetime guarantees. The ability to request account termination
is modelled as a revocation service. This allows behaviours, similar to the immediate
and scheduled termination operations in the WS-ResourceLifetime standard [25], to be
specified.

A large portion of our expiry model addresses ways of renewing accounts. There are
two types of renewal processes which are represented in our model. The first of these,
a ManualRenewal, indicates that a user or automation tool can contact a grid service to
request an extension of a defined length. It also defines a list of input parameters to be

Fig. 5. Account Expiration and Renewal Policies

An Account Policy Model for Grid Environments 65

Fig. 6. Cleanup Policy model

passed to the service to represent the account and the parameters of the extension. We
also model AutomaticRenewals, a second type of renewal mechanism. An Automati-
cRenewal occurs, transparent to the user, as an activity initiated by the service provider.
A service provider could query a grid service, typically operated by the virtual organi-
zation, at a defined interval, as outlined in the model, to determine whether or not the
grid service’s output indicates that the account is still needed.

The renewal policy information published by a service provider may be used by
an automation tool to request account extensions, as described in the ManualRenewal
class. It could also inform an automation tool that it should update the information
published by a grid service to ensure that accounts which are still needed will remain
active when the service provider performs an AutomaticRenewal.

Cleanup. When an account on a system is about to expire, often users perform cer-
tain actions. When users receive notice that their account is about to expire they will
typically login to the system to make a backup of their files or transfer files to an-
other account on the system which still needs them. Rather than requiring that the user
perform these typical actions, a service provider might provide better service by per-
forming such actions themselves and describing these actions using the CleanupPolicy
model.

The cleanup policy model which we propose describes actions which the service
provider will initiate at the time of expiry. We provide three options, although these
may be applied in different combinations to different directories in which the user has
files stored. We include a model to describe ownership change actions, in which a ser-
vice provider may change the ownership of some or all of the files contained in an
account being revoked. This may preserve key files, used by other members of the
virtual organization, when an account is revoked. In addition, we also model how a
service provider may create an archive of the files in the account. This archive may
potentially either be made available to the user for download, or may be uploaded
to a server managed by the user’s virtual organization. A third option which we al-
low for is account suspension. When an account is suspended, files may be retained,
and potentially made available for download, but jobs may no longer be executed in
the account.

66 D. Aikema, C. Kiddle, and R. Simmonds

Fig. 7. Example of a service provider offering “permanent” user accounts

5 Example

One example of a situation in which the model may be used is depicted in Figure 7.
It illustrates how a service provider may use the model to describe its policy wherein
accounts are available to any member of a particular virtual organization but will expire
after a period of inactivity. In the figure, a virtual organization is shown, using a VOMS
server to sign attributes. In order to access the specified resources, an attribute assertion
indicating that the requester is a member of the virtual organization must first be signed
by the specified VOMS server.

When an automation tools uses the credentials of a new user to submit a job to the
system, a new account will be assigned as the creation policy in the lower right of the
diagram indicates that accounts are dynamically created. The resulting account will
inherit account policy from the account set, described at the centre of the diagram. The
user’s credentials will be assigned as the owner of the account and the same credentials
will be required to access the account. When future attempts are made to access the
system using the same credentials supplied with the initial job submission, these will
be mapped to the existing account, as the access priority defined in the access policy is
higher than the creation priority.

Following a week-long period of inactivity, as specified by the TimeSpec instance
[22] in the lower right of the diagram, accounts may be suspended and the files con-
tained within them deleted.As specified in the SuspensionPolicy on the right-hand side
of the diagram, files will not be retained for later retrieval.

6 Conclusion and Future Work

The model presented here facilitates the sharing of information about account policies
and renders the timing of account lifecycle transitions understandable. It also describes

An Account Policy Model for Grid Environments 67

the authentication and authorization mechanisms used to secure access to accounts.
Using the information presented in this model, account creation, access, renewal, and
revocation policies are expressed in such a way that tools can be developed which are
able to parse this information and use it to make better resource selection decisions.
Thus the ability of automation tools to discover suitable resources can be extended.
In addition, automation tools are able to address a larger scope than simply resource
discovery. For example, tools could be developed which automate periodic account
renewals and initiate appropriate actions as an account is nearing expiry.

Future work could expand the model to address virtualization. Explicit modelling of
virtual machine managed environments could be incorporated into the model, as this is
a topic which has gained much attention in the past few years. The use of virtualiza-
tion removes the need for a fixed mapping between accounts and physical resources.
The challenges of modelling policies governing virtual machine provisioning closely
parallel those encountered in account creation and access policies.

In addition, development work could extend the capabilities of existing tools which
perform resource discovery to incorporate the policies described in this model such
that they can make better resource selections. Additionally, incorporating elements in
the model to describe the cost incurred by holding an account may also be worthy of
further exploration.

References

[1] Foster, I., Kesselman, C. (eds.): The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco (1999)

[2] Distributed Management Task Force, Inc. CIM Schema version 2.20 (November 2008),
http://www.dmtf.org/standards/cim

[3] Andreozzi, S. (ed.): GLUE specification v2.0 (revision 4 after public comment) (February
2009), http://forge.ggf.org/sf/projects/glue-wg

[4] Baker, R., Yu, D., Wlodek, T.: A model for grid user management. In: Computing in High
Energy and Nuclear Physics (2003)

[5] Welch, V., Barton, T., Keahey, K., Siebenlist, F.: Attributes, anonymity, and access: Shib-
boleth and globus integration to facilitate grid collaboration. In: 4th Annual PKI R&D
Workshop (2005)

[6] Hacker, T.J., Athey, B.D.: A methodology for account management in grid computing en-
vironments. In: Proceedings of the 2nd International Workshop on Grid Computing, pp.
133–144 (2001)

[7] Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for computational
grids. In: Proceedings of the 5th ACM Conference on Computer and Communications Se-
curity, pp. 83–92 (1998)

[8] gridmapdir (2002), http://www.gridsite.org/gridmapdir/
[9] Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, A., Lorentey, K., Spataro,

F.: From gridmap-file to VOMS: Managing authorization in a grid environment. Future
Generation Computer Systems 21(4), 549–558 (2005)

[10] Scavo, T., Cantor, S.: Shibboleth architecture technical overview (June 2005),
http://shibboleth.internet2.edu/docs/
draft-mace-shibboleth-tech-overview-latest.pdf

http://www.dmtf.org/standards/cim
http://forge.ggf.org/sf/projects/glue-wg
http://www.gridsite.org/gridmapdir/
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf

68 D. Aikema, C. Kiddle, and R. Simmonds

[11] Gietz, P., Grimm, C., Groper, R., Haase, M., Makedanz, S., Pfeiffenberger, H., Schiffers,
M.: IVOM work package 1: Evaluation of international Shibboleth-based VO management
projects (v 1.2) (June 2007), http://www.d-grid.de/

[12] Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A community authoriza-
tion service for group collaboration. In: Proceedings of the 3rd International Workshop on
Policies for Distributed Systems and Networks, pp. 50–59 (2002)

[13] Lorch, M., Adams, D.B., Kafura, D., Koneni, M.S.R., Rathi, A., Shah, S.: The PRIMA
system for privilege management, authorization and enforcement in grid environments. In:
Proceedings of the 4th International Workshop on Grid Computing, pp. 109–116 (2003)

[14] Thompson, M., Essiari, A., Keahey, K., Welch, V., Lang, S., Liu, B.: Fine-Grained Autho-
rization for Job and Resource Management Using Akenti and the Globus Toolkit. ArXiv
Computer Science e-prints (June 2003)

[15] Chadwick, D., Otenko, A.: The PERMIS X.509 role based privilege management infras-
tructure. Future Generation Computer Systems 19(23), 277–289 (2003)

[16] Cantor, S., Kemp, J., Philpott, R., Maler, E. (eds.): Assertions and protocols for the oasis
security assertion markup language. OASIS Standard (March 2005)

[17] Moses, T. (ed.): eXtensible Access Control Markup Language (XACML) Version 2.0. OA-
SIS Standard (2005)

[18] Nordic Testbed for Wide Area Computing and Data Handling. Nordugrid information sys-
tem (September 2002),
http://www.nordugrid.org/documents/ng-infosys.pdf

[19] Hitachi Ltd. NAREGI Resource Description Schema Specification and Relational Data
Model (2007),
http://forge.ogf.org/sf/docman/do/downloadDocument/
projects.glue-wg/docman.root.background.specifications/
doc14300

[20] Kiddle, C., Kivi, D., Simmonds, R.: Model-driven automation in grid environments. In:
Proceedings of the 4th International Symposium on Frontiers in Networking with Applica-
tions (2008)

[21] Enterprise Grid Alliance. Reference Model and Use Cases v1.5 (2006),
http://www.ogf.org/gf/docs/egadocs.php

[22] Aikema, D.: VO-centric account management. M.Sc. thesis, University of Calgary (2007)
[23] Aikema, D.: A model of account access control and lifecycle management. Technical Re-

port 2007-885-37, Department of Computer Science, University of Calgary (December
2007)

[24] Novotny, J., Tuecke, S., Welch, V.: An online credential repository for the grid: MyProxy.
In: Proceedings of the 10th IEEE International Symposium on High Performance Dis-
tributed Computing, pp. 104–111 (2001)

[25] Srinivasan, L., Banks, T.: Web Services Resource Lifetime 1.2 (WS-ResourceLifetime)
(January 2006), http://docs.oasis-open.org/
wsrf/wsrf-ws resource lifetime-1.2-spec-os.pdf

http://www.d-grid.de/
http://www.nordugrid.org/documents/ng-infosys.pdf
http://forge.ogf.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14300
http://forge.ogf.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14300
http://forge.ogf.org/sf/docman/do/downloadDocument/projects.glue-wg/docman.root.background.specifications/doc14300
http://www.ogf.org/gf/docs/egadocs.php
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 69–78, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Providing Security of Real Time Data
Intensive Applications on Grids Using

Dynamic Scheduling

Rafiqul Islam, Toufiq Hasan, and Md. Ashaduzzaman

Computer Science and Engineering Discipline,
Khulna University, Khulna-9208, Bangladesh

{dmri1978,toufiq_riad1045,ashaduzzaman29}@yahoo.com

Abstract. In this paper we have proposed a dynamic real time scheduling algo-
rithm named SARDIG, which is capable of scheduling real time data intensive
applications and provides security for real time data intensive applications run-
ning on grids. We have presented a grid architecture, which describes the sche-
duling framework of the security attentive real time data intensive applications
running on data grids. In addition, we have introduced a mathematical model
for the scheduling policy to provide optimum security for real time data inten-
sive applications. The time complexity of the SARDIG algorithm has been ana-
lyzed to show the efficiency of the algorithm. Simulation result shows that the
SARDIG algorithm provides better performance and security than two existing
scheduling algorithms.

Keywords: Security, algorithm, data grid, scheduling, real time, application.

1 Introduction

A grid is a collection of geographically dispersed computing resources, providing a
large virtual computing system to users [3]. Data Grid is a grid computing system that
deals with the sharing and management of large amounts of heterogeneous data and data
intensive applications are those, which use large data storages distributed on data grids.
Nowadays it becomes crucial to use scheduling strategies to manage and schedule the
real time data intensive applications running on grids because grids are emerging as
future platforms for large-scale computation and solving data intensive problems.

Real time applications are those, which depend on deadlines. In real time systems
each job has a deadline before or at which it should be completed. In this system
completion of a job after its deadline is considered useless. Thus, it is critical to meet
the deadline requirements for real time applications.

Real time data intensive applications with security requirements are emerging in
various fields including government, science, and business. Data grids often deal with
large amount of sensitive data, which requires special protection against unauthorized
access and various security threats. In addition, real time data intensive applications
running on data grids require protection to meet their security needs, so it is highly
important to fulfill security requirements of both data and application. Example of

70 R. Islam, T. Hasan, and Md. Ashaduzzaman

real time data intensive application is the Real-time Observatories, Applications, and
Data management Network (ROADNet) [8].

There had been some previous efforts to ensure security of real time applications
on grids through dynamic scheduling proposed by Xie and Qin [2] and ensuring secu-
rity of the data intensive applications running on data grids [7]. SAHA [7] is designed
to schedule data intensive application but does not consider real time applications.
SAREG [2] provides solutions for real time applications but does not fully consider
data intensive application scheduling. Unfortunately, it is not possible to simply com-
bine these two algorithms to support both data intensive applications and real time
scheduling so there is no way to readily accomplish both tasks by directly extending
either. Furthermore, neither algorithm provides sufficient consideration for security
for real time data intensive applications.

To provide security with proper scheduling for real time data intensive applications
on data grids we have proposed a security attentive real time data intensive scheduling
algorithm for grids called SARDIG, which schedules the real time data intensive
applications and provides security by enhancing the security level. To demonstrate
this, we have introduced a security gain function to measure the security level en-
hancement afforded for a job on a grid site.

The time complexity of our SARDIG algorithm is shown to be bounded by the
product of the number of site (m), the number of jobs (n) , and the log of the number
of possible security levels (k) (i.e. O(mnlogk)). Finally, our simulation result shows
that SARDIG algorithm provides better performance and enhanced security.

2 Other Related Work

Recently grid security services have drawn much attention because security has be-
come a baseline requirement. The task scheduling algorithm MINMIN [2] provides
security by randomly selecting security service levels. Like the MINMIN algorithm,
SUFFERAGE [2] and EDF [5] algorithms randomly choose security service levels.
So security quality cannot be optimized with these algorithms.

Xie and Qin [6] propose a security middleware model for real-time applications on
Grids. The security middleware model creates a platform to exploit various security
services to enhance the grid application security. This middleware model implements
the SAREG algorithm.

Another algorithm named JobRandom [4] is a data grid scheduling algorithm
where security services are not considered. This algorithm only considers random site
selection for job allocation. Another data grid scheduling algorithm named JobData-
Present [4] differs from JobRandom algorithm by submitted each job to the site that
holds the job’s data set.

3 Grid Architecture for Security Attentive Real Time Data
Intensive Jobs

Here we propose a grid architecture that will consist of n sites. Each site is denoted by
Mi, where 1 ≤ i ≤ n. They are connected with a wide area network. Each site consists

 Providing Security of Real Time Data Intensive Applications on Grids 71

Fig. 1. Grid architecture for a data grid

of a job scheduler, job controller, dataset controller, data storage infrastructure, and
computers. Each job scheduler is comprised of an accepted queue, dispatch queue,
and rejected list. Figure 1 shows the architecture of our data grid. To provide security
for the job and data grid’s data sets each site has three security services. The security
services are confidentiality, integrity, and authentication.

In the grid each site has a local queue, where incoming jobs from local users are
listed and which transfers the jobs to the job scheduler of the local site one by one.
The job scheduler checks whether the incoming job can be completed within its dead-
line while meeting the security requirements at each site on the data grid. If the job’s
deadline can be met, then the job scheduler uses the security gain function to measure
the enhancement of security level achieved by each site that is capable of meeting the
deadline. The job scheduler will schedule the job to the accepted queue of the site,
capable of achieving highest (most enhanced) security level. The job scheduler will
send the job to the rejected list on the job’s submission site, if the job cannot be com-
pleted within its deadline on any site on the data grid. After scheduling the job, the
job scheduler will move it from accepted queue to the dispatch queue. In the dispatch
queue the security level of the accepted job is enhanced and dispatched to the desig-
nated site on the grid. The function of the job controller is to transfer the job to the
remote site or fetch the job from the remote site according to the job scheduler’s poli-
cy. The dataset controller transfers the data to the remote site from the local data sto-
rage or fetches the data from the remote site’s data storage conformant to the job
scheduler's policy.

72 R. Islam, T. Hasan, and Md. Ashaduzzaman

4 Security Services for Real Time Data Intensive Jobs

Security is achieved at the cost of performance degradation [2]. It is necessary to
measure the security level of various security services in such a way that overall secu-
rity is maximized without degrading performance. Xie and Qin [2] proposed the secu-
rity overhead model where security overhead is denoted as a function of security level
and indicates the time required to provide security for a certain amount of data.

Three security services are considered to provide security for real time data inten-
sive applications. They are confidentiality, integrity, and authentication. Confidential-
ity can be provided with cryptographic algorithms. There are nine cryptographic
algorithms considered for each site. These cryptographic algorithms are SEAL, RC4,
Blowfish, Knufu/Khafre, RC5, Rijndael, DES, IDEA, and 3DES [2]. Each crypto-
graphic algorithm is assigned a corresponding security level from 0.1 to 0.9. For ex-
ample security level 0.9 denotes the cryptographic algorithm 3DES, which is defined
to be the maximum security level and provides the strongest security among all the
cryptographic algorithms. Conversely, the security level 0.1 denotes the cryptographic
algorithm SEAL, which is the minimum security level and providing the weakest
security among these algorithms.

To provide integrity related security service for each site on grids, there are ten
hash functions considered. These hash functions are MD4, MD5, RIPEMD, RI-
PEMD-128, SHA-1, RIPEMD-160, Tiger, Snefru-128, MD2, and Snefru-256 [2].
Each hash function is assigned a corresponding security level from 0.1 to 1.0 where
security level 0.1 denotes the weakest hash function (MD4) and security level 1.0
denotes the strongest hash function (Snefru-256).

To provide authentication related security service for each site on grids various au-
thentication methods are considered. These are HMAC-MD5, HMAC-SHA-1, and
CBC-MAC-AES [2]. Corresponding security level for each authentication method are
defined to be at 0.3, 0.6, and 0.9 respectively; where security level 0.3 denotes the
weakest authentication method (HMAC-MD5) and security level 0.9 denotes the
strongest authentication method (CBC-MAC-AES).

The SARDIG algorithm provides optimum security by enhancing the security level
for the real time data intensive applications. The SARDIG algorithm enhances the
security by selecting the optimum security level that will successfully meet the dead-
line. Security services demanding higher security levels requires more time than those
with lower demands. Thus, for real time data intensive applications, it is not always
possible to naively select the maximum security level for each security service with-
out considering its impact on meeting the deadline.

5 Scheduling Strategy of Real Time Data Intensive Jobs for
Security Enhancement

A security attentive real-time data intensive job can be specified as a set of vector para-
meters such as, Ji = (ei , pi , di , li , SCi , SDi), where Ji denotes the ith job, ei is the execu-
tion time, pi is the number of machines required for the job Ji, di is the deadline, and li
denotes the amount of data (measured in KB) to be protected, SCi measures the security
level for job’s application, SDi measures the security level for job’s data set, and 1 ≤ i ≤
n. Fortunately, ei can be estimated by code profiling and statistical prediction [1].

 Providing Security of Real Time Data Intensive Applications on Grids 73

The security level for a job’s application can be expressed by a vector, SCi = (,
, . . .), where q is the number of required security services and denotes the

security level of the vth security service for the ith job. Similarly, the security level for
the job’s data set can be expressed by a vector, SDi = (, , . . .), where

denotes the security level of the vth security service for the ith job.
We introduce the security value function, SV to measure the security level for a job

on a site. The security value function, SV: sci , sdi →R, where R is the set of positive
real numbers can be expressed by the following equation:

, . (1)

 where 0 1, 1, , , .
Here is the weight of the vth security service for the ith job’s application, is
the weight of the vth security service for the ith job’s data set and a, c, g denotes au-
thentication, confidentiality, and integrity. Weights are used to assign relative priori-
ties to the required security services.
 To compute the optimum security level for a job on the site we can use the security
value function in the following form:

 , . (2)

 subject to
 max , max , .

where , denotes the optimum security value function, which calculates
the highest possible security level within the deadline. Here fi is the finish time of job
Ji and max() is the maximum security level of ith job’s application and max()
is the maximum security level of ith job’s data set.
 Each job submitted to a grid site will have its minimum security level requested by
the user for job’s application and its data set. To calculate the requested minimum
security value, , for a job on a site we can use the following equation:

 , . (3)

 subject to
 , , .

where req() is the requested minimum security level of ith job’s application, and
req() is the requested minimum security level of ith job’s data set.

74 R. Islam, T. Hasan, and Md. Ashaduzzaman

To measure the enhancement of security level for a job on a site we devise a secu-
rity gain function, which calculates the difference between optimum security value
provided by the site and the requested minimum security value for the job. The securi-
ty gain function can be expressed as follows: , , – , . (4)

where SGi denotes the security gain function of job Ji.

6 Security Overhead of Real Time Data Intensive Jobs

Xie and Qin [7] propose four conditions when scheduling real time data intensive
jobs. The first condition is that input data is locally available and processing is per-
formed on the local site. The security overhead is calculated as the sum of the time
spent in securing the application code and its data set. The security overhead can be
denoted as . The second condition considered is that locally executed jobs access-
ing a remote data sets via the networks. The security overhead is calculated as the
sum of the time spent in securing the application code, its data set, and transferring
the remote data set to local site. The security overhead is denoted as . The third
condition is to compute the security overhead of a remotely executed job that accesses
its data set on a local site. Thus, the application code needs to be transmitted to the
remote site where the data is stored. The security overhead is calculated as the sum of
the time spent in securing the application code, its data set, and transferring the job to
the remote site. The security overhead is denoted as . Finally, the fourth condition
calculates the security overhead of a job executed on a remote site to which the job’s
data set is moved. Thus, the application code and the data must be transmitted to the
remote site. In this case, the security overhead is calculated as the sum of the time
spent in securing the application code, its data set, and transferring both the data set
and the job to the remote site. The security overhead is denoted as . We can calcu-
late the total security overhead for ith job using the following equation:

 ., , (5)

where , , and are two step functions. = 1 and others = 0 if the first
condition is satisfied. 1 and others = 0 if the second condition is satisfied. 1 and others = 0 if the third condition is satisfied. Finally, 1 and others =
0 if the fourth condition is satisfied.

7 Deadline and Earliest Start Time

Xie and Qin [2] also described how to generate an appropriate randomly selected
deadline. The deadline assignment is controlled by a deadline base or laxity, denoted
as β. The Job’s deadline is generated as follows:

di = + + + β. (6)

 Providing Security of Real Time Data Intensive Applications on Grids 75

where di is the deadline, is the arrival time, is the execution time, is the
maximum security overhead of the job. The maximum security overhead denotes the
time required to provide security using the maximum security level.

The finish time fi is defined as the time required to complete the execution of the
job. The finish time can be calculated as follows:

fi = + + . (7)

where is the arrival time, is the execution time, and is the security overhead of
the job.

The earliest start time si of the job Ji can be calculated as the sum of the finish time fj of
the running job, the overall execution time el and security overhead cl of the waiting jobs
assigned to site Mj prior to the arrival of job Ji. Thus, the earliest start time is calculated as:

 . (8)

where the earliest start time denotes the starting time of a job Ji at site Mj.

8 The SARDIG Scheduling Algorithm

The name SARDIG is derived from the term Security Attentive Real time Data Inten-
sive application on Grids. The SARDIG algorithm schedules the real time data inten-
sive applications and provides the highest possible security level.

1. For each job Ji on site Mj do
2. Compute the earliest start time of job Ji on site Mj
3. Compute the requested security overhead of job Ji
4. If submitted job meets its deadline on site Mj then
5. Compute requested security value of job Ji
6. For each security service do
7. Calculate security overhead of job Ji
8. Find optimum security level using

 binary search within the deadline.
9. End for
10. Use security level obtained from step 8 and

 Calculate security gain for job Ji on site Mj
11. Else job Ji is rejected from site Mj
12. End for
13. For each job Ji do
14. Find the site Mj where security gain function SG is maximum
15. Optimize the security level of the job Ji
16. Dispatch job Ji to the designated site Mj
17. End for

Fig. 2. The SARDIG scheduling algorithm

76 R. Islam, T. Hasan, and Md. Ashaduzzaman

For each submitted job, the SARDIG algorithm checks whether the job meets its
deadline and achieves the requested minimum security level. If the job can be com-
pleted within its deadline at the minimum security level, then the SARDIG algorithm
selects the highest possible security level using binary search for each site on the grid
while ensuring deadlines are met. It then calculates the security level enhancement for
the job using security gain function.

If the job cannot be completed within its deadline, then SARDIG algorithm rejects
the job from that site. The algorithm will apply this procedure to each site. After cal-
culating the security level enhancement for each site for a particular job, the algorithm
identifies the site where the security gain is highest. The algorithm then schedules the
job to that site. After enhancing the security level and finishing the execution of the
scheduled job, the SARDIG algorithm dispatches the job to the designated site. If the
job cannot be completed within its deadline at any site on grid, the SARDIG algo-
rithm rejects the job entirely.

9 The Performance Analysis

We evaluate the performance analysis of the SARDIG algorithm in term of time com-
plexity. The time complexity in step 1 is O(n), where n is the number of sites in the
grid. In step 2 the earliest start time is computed and the time complexity is O(m),
where m is the number of jobs running on a site. In step 3 the security overhead is
computed with a time complexity of O(1). From step 6 to step 9, for each job, the
security level is increased for the three security services using iterative binary search.
Thus, the time complexity is computed as O(3mlogk),where k is the number of possi-
ble security levels for a particular security service. From step 13 to step 17 the time
complexity is calculated as O(n) so the time complexity of the SARDIG algorithm is
as follows:

O(n)(O(m) + O(1) + O(3mlogk)) + O(n)
 = O(nm)+ O(n)+ O(3mnlogk)+ O(n)
 =O(mnlogk)

where n is the number of sites in a grid, m is the number of jobs running on a site, and
k is the number of possible security levels for a particular security service.

The time complexity of SARDIG algorithm is O(mnlogk) as compared to the SA-
REG algorithm [2], which has a time complexity of O(knm) and SAHA algorithm [7],
which has a time complexity of O(knm). Thus, the performance of SARDIG algo-
rithm is better than both SAREG and SAHA algorithms in terms of time complexity.

10 Simulation Results

We have conducted experiments based on the grid simulator GridSim [9]. The grid
simulator is modified based on algorithm described in the previous section. The key
system parameters in the experiment are given in the Table 1.

The performance metrics by which we evaluate system performance include secu-
rity value and average finish time. Here security value is calculated using Equation 1

 Providing Secu

Parameters
Deadline Base or Laxity
Network Bandwidth
Number of sites
Number of jobs
Size of data sets
Job security level
Site security level
Weight of security services

and the finish time is calcul
age value of all jobs’ finish

To demonstrate the stre
gird scheduling algorithms,

Figure 3 shows the simu
The security value is calcu

Fig. 3. Perf

Fig. 4. Perform

0
0.2
0.4
0.6
0.8

1

S
ec

ur
it

y
V

al
ue

20

40

60

A
ve

ra
ge

 f
in

is
h

ti
m

e
(s

ec
on

d)

urity of Real Time Data Intensive Applications on Grids

Table 1. Key System Parameters.

Value
(100 – 900) second
100 MB/Second
(4,8,16)
(1000-)
(100-1000) MB
(0.1-1.0)
(0.1-1.0)

 Authentication=0.2; Confidentiality=0.3; integrity=0.5

lated using Equation 7. The average finish time is the av
times.

ength of SARDIG, we compared it with two well-kno
 namely SAREG [2] and SAHA [7].

ulation results of the security value for the three algorith
ulated as the deadline base or laxity is varied from 100

formance comparison in terms of security value

mance comparison in terms of average finish time

100 300 600 900

Laxity (second)

SARDIG
SAREG
SAHA

0

000

000

000

1000 1500 2000 2500

Number of Jobs

SARDIG
SAREG
SAHA

77

5

ver-

own

hms.
0 to

78 R. Islam, T. Hasan, and Md. Ashaduzzaman

900 seconds. The proposed SARDIG algorithm shows better security values than the
other two algorithms as the deadline base or laxity increases.

Figure 4 shows the simulation result of the average finish time for the three algo-
rithms. Average finish time is calculated as the number of jobs is varied from 1000 to
2500. Small average finish times indicate better performance for a job on a grid site,
as the job can provide quick service to the user. The proposed SARDIG algorithm
shows better performance than the other two as the number of jobs increases.

11 Conclusion

In this paper, we have proposed a data grid architecture that supports real time data
intensive applications. We have devised an algorithm named SARDIG for scheduling
and enhancing the security of real time data intensive applications on data grids. The
proposed algorithm provides three security services, which are authentication, integri-
ty, and confidentiality. We also introduce the security gain function to measure the
security level enhancement achieved by each site for a job. We showed that the
SARDIG algorithm provides better performance than the SAREG and SAHA algo-
rithm in terms of time complexity, schedules the real time data intensive applications
running on data grids, and provides the best achievable security for the jobs. The
simulation results show that the SARDIG algorithm provides better performance and
security than the other two existing algorithms.

References

1. Iverson, M.A., Ozguner, F., Potter, L.C.: Statistical prediction of task execution times
through analytic benchmarking for scheduling in a heterogeneous environment

2. Xie, T., Qin, X.: Enhancing security of real-time applications on grids through dynamic
scheduling. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2005. LNCS, vol. 3834, pp. 219–237. Springer, Heidelberg (2005)

3. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: enabling scalable virtual
organizations. Int. Journal Supercomput. Appl. 15(3), 200–222 (2001)

4. Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in distributed
data intensive applications. In: Proc. IEEE Int. Symp. High Performance Distributed Com-
puting, pp. 352–358 (2002)

5. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling for
Real-Time Systems – EDF and Related Algorithms. Kluwer Academic Publishers, Dor-
drecht (1998)

6. Xie, T., Qin, X.: A Security Middleware Model for Real-Time Applications on Grids. In:
Proc. The Institute of Electronics, Information and Communication Engineers (2006)

7. Xie, T., Qin, X.: Security-driven scheduling for data-intensive applications on grids. Jour-
nal of Cluster Computing (2007)

8. Real-time Observatories, Applications, and Data management Network,
http://roadnet.ucsd.edu/

9. A Grid Simulation Toolkit for Resource Modeling and Application Scheduling for Parallel
and Distributed Computing, http://www.gridbus.org/gridsim/

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 79–90, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Solving a Realistic FAP Using GRASP and
Grid Computing

José M. Chaves-González, Román Hernando-Carnicero,
Miguel A. Vega-Rodríguez, Juan A. Gómez-Pulido, and Juan M. Sánchez-Pérez

Univ. Extremadura. Dept. Technologies of Computers and Communications,
Escuela Politécnica. Campus Universitario s/n. 10071. Cáceres, Spain

jm@unex.es, romanstrat@gmail.com,
{mavega,jangomez,sanperez}@unex.es

Abstract. In this work we describe the methodology and results obtained when
grid computing is applied to resolve a real-world frequency assignment problem
(FAP) in GSM networks. We havJose used a precise mathematical formulation
for this problem, which was developed in previous work, where the frequency
plans are evaluated using accurate interference information taken from a real
GSM network. We propose here a newly approach which lies in the usage of
several versions of the GRASP (Greedy Randomized Adaptive Search Proce-
dure) metaheuristic working together over a grid environment. Our study was
divided into two stages: In the first one, we fixed the parameters of different
GRASP variants using the grid so that each version obtained the best results
possible when solving the FAP; then, in the second step, we developed a mas-
ter-slave model using the grid where the GRASP tuned versions worked to-
gether as a team of evolutionary algorithms. Results show us that this approach
obtains very good frequency plans when solving a real-world FAP.

Keywords: FAP, Frequency Planning, Grid computing, GRASP.

1 Introduction

In this paper we study the usage of grid computing with different versions of GRASP
(Greedy Randomized Adaptive Search Procedure) metaheuristic; first by their own, to
adjust each GRASP version to the problem we deal with, and later working together
over a real grid environment with the objective of solving in an optimum way a realis-
tic-sized real-world frequency assignment problem (FAP). FAP is an NP-hard prob-
lem, so its resolution using metaheuristics has proved to be particularly effective [1].
However, the adjustment of evolutionary algorithms requires a great amount of ex-
periments to fix their multiple parameters. Moreover, these experiments generally
take in their execution from minutes to hours. Therefore, the usage of grid computing
in these first stages is a very interesting option because it allows performing the high
number of experiments which are necessary to obtain optimal solutions in a shorter
period of time (in grid environments, this kind of applications is habitually called
PSAs, Parameter Sweep Applications [2]). Furthermore, after the fine adjustment, we
developed a master-slave approach using the grid and the different versions of the

80 J.M. Chaves-González et al.

evolutionary algorithm tuned in the previous stage. The metaheuristics in this stage
work together like a team of evolutionary algorithms with the aim to obtain the best
frequency plan for a real-world GSM (Global System for Mobile communications)
network. It is important to point that GSM is the most successful mobile communica-
tion technology nowadays. In fact, at the end of 2007 GSM services were in use by
more than 3 billion subscribers [3] across 220 countries, representing approximately
85% of the world’s cellular market. Besides, FAP is one of the most relevant and
significant problems that can be found in the GSM technology, because it is a very
important and critical task for current (and future) mobile communication operators.
In fact, to deal with the realistic problem we work with, we use a complex formula-
tion, proposed in [4], which takes in consideration the requirements of real-world
GSM. FAP deals with many parameters [5], although we can state that the two more
important elements in this problem are the transceivers (TRXs), which give support to
the communication, and the frequencies, which make possible the communication. A
mobile communication antenna includes several TRXs grouped in several sectors of
the antenna and each TRX has to have assigned a specific frequency in the most op-
timum way to provide the widest coverage and minimizing the interferences produced
in the network. The problem is that there are not enough frequencies (there are usually
no more than a few dozens) to give support to each transceiver (there are generally
thousands of them) without causing interferences. It is completely necessary to repeat
frequencies in different TRXs, so, a good planning to minimize the number of inter-
ferences is highly required.

The rest of the paper is structured as follows: In Sect. 2 we present the fundamen-
tals of the FAP solved and the mathematical formulation we use for its resolution.
Section 3 describes the metaheuristic used to solve it: the GRASP algorithm. After
that, our environment of grid computing is explained in Sect. 4. The experiments
performed and the results obtained are detailed in Sect. 5. Finally, conclusions and
future work are discussed in the last section.

2 Frequency Assignment Problem in GSM Networks

The two most relevant components which refer to frequency planning in GSM sys-
tems are the antennas or, as they are more known, base transceiver stations (BTSs)
and the TRX. The TRXs of a network are installed in the BTSs where they are
grouped in sectors, oriented to different points to cover different areas. The instance
we use in our experiments is quite large (it covers the city of Denver, USA, with more
than 500,000 inhabitants) and the GSM network includes 2612 TRXs, grouped in 711
sectors, distributed in 334 BTSs. We are not going to extend the explanation of the
GSM network architecture but the reader interested in it can consult reference [5].

FAP lies in the assignment of a channel (or a frequency) to every TRX in the network.
The optimization problem arises because the usable radio spectrum is very scarce and
frequencies have to be reused for many TRXs in the network (for example, the instance
we have used for this study, includes 2612 TRXs and only 18 available frequencies).
However, the multiple use of a same frequency may cause interferences that can reduce
the quality of service down to unsatisfactory levels. In fact, significant interferences will
occur if the same or adjacent channels are used in near overlapping areas [6].

 Solving a Realistic FAP Using GRASP and Grid Computing 81

Although there are several ways of quantifying the interferences produced in a
telecommunication network, the most extended one is by using what is called the
interference matrix [7], denoted by M. Each element M(i,j) of this matrix contains two
types of interferences: the co-channel interference, which represents the degradation
of the network quality if the cells i and j operate on the same frequency; and the adja-
cent-channel interference, which occurs when two TRXs operate on adjacent chan-
nels (e.g., one TRX operates on channel f and the other on channel f+1 or f–1). An
accurate interference matrix is an essential requirement for frequency planning be-
cause the final goal of any frequency assignment algorithm will be to minimize the
sum of all the interferences. In addition to the requirements described above, fre-
quency planning includes more complicating factors which occur in real life situations
(see [5] for a detailed explanation).

Finally, in the following subsection we give a brief description of the mathematical
model we use (for more information, consult references [4], [6]).

2.1 Mathematical Formulation

We can establish that a solution to the problem is obtained by assigning to each TRX
ti (or ui)∈ T = {t1, t2,…, tn} one of the frequencies from Fi. = {fi1,…, fik} ⊂ N. We will
denote a solution (or frequency plan) by p ∈ F1 x F2 x … x Fn, where p(ti) ∈ Fi is the
frequency assigned to the transceiver ti. The objective, or the plan solution, will be to
find a solution p that minimizes the cost function (C):

∑ ∑
∈ ≠∈

=
Tt tuTu

sig utpCpC
,

),,()(
(1)

The smaller the value of C is, the lower the interference will be, and thus the better
the communication quality. In order to define the function Csig(p,t,u), let st and su be
the sectors (from S = {s1, s2,…, sm}) in which the transceivers t and u are installed,
which are st=s(t) and su=s(u) respectively. Moreover, let μstsu and σstsu be the two
elements of the corresponding matrix entry M(st,su) of the interference matrix with
respect to sectors st and su. Then, Csig(p,t,u) is equal to the following expression:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=−>≠
=−>≠

<−=

otherwise

uptpssifC

uptpssifC

uptpssifK

ututut

ututut

ssutssssadj

ssutssssco

ut

0

1)()(,0,),(

0)()(,0,),(

2)()(,

μσμ
μσμ

(2)

K>>0 is a very large constant defined by the network designer to make undesirable
allocating the same or adjacent frequencies to TRXs serving the same area (e.g., placed
in the same sector). Cco(μ,σ) is the cost due to co-channel interferences, whereas
Cadj(μ,σ) represents the cost in the case of adjacent-channel interferences [6].

3 The GRASP Metaheuristic

The Greedy Randomized Adaptative Search Procedure (GRASP) [8, 9] is an evolu-
tionary algorithm used to solve optimization problems (such as the FAP). GRASP is a

82 J.M. Chaves-González et al.

Fig. 1. Pseudo-code for the GRASP metaheuristic

multi-start metaheuristic in which each iteration basically consists of two stages: first,
construction of a solution, and second, local search over that solution. In our case, at
the end of the first stage, a valid frequency plan which solves the FAP is given,
meanwhile during the second stage, this first approach is improved making a search in
the neighborhood of this initial solution until a local minima is found. The obtained
solution is an improvement of the original one. At the end of the process, the best
overall solution (the best frequency plan) is returned as the final result. The pseudo-
code for the GRASP main blocks can be observed in Fig. 1.

As we can see in Fig. 1, GRASP only works with a single solution –the best one
till that moment– which is randomly generated (line 1) and improved (line 2) at the
beginning of the algorithm. The process continues through an arbitrary number of
iterations (line 3) creating, in each generation, a greedy randomized solution (line 4)
which is improved (line 5) using a local search method carefully adapted to the FAP
[10]. Finally, at the end of each iteration it is checked if the best solution (frequency
plan with the smallest cost) found until that moment was improved by the new one,
and in that case, the best solution is updated (line 6).

There are several variants of the GRASP algorithm, which basically depends on
the method used in the greedy randomized generator (line 4) which is applied in each
iteration to create a new solution (all the rest of the scheme drawn in Fig. 1 is the
same). Moreover, the greedy generator method (line 4) can use as well different bias
functions to create nicer solutions from the beginning. Fig. 2 illustrates the general
structure of the greedy randomized generator method. At each iteration of this
method, let the set of candidate elements be formed by all elements that can be incor-
porated to the partial solution under construction without destroying feasibility (in our

Fig. 2. Pseudo-code of the greedy randomized generator

 Solving a Realistic FAP Using GRASP and Grid Computing 83

case, the candidate elements are frequencies which can be assigned to a specific TRX
within a sector). The selection of the next element for incorporation is determined by
the evaluation of all candidate elements according to a greedy evaluation function
specially adapted to our FAP according to the mathematical description given in
Sect. 2. This function represents the increase in the cost function due to the incorpora-
tion of the specific frequency into the solution under construction. The evaluation of
the elements by this function leads to the creation of a restricted candidate list (RCL)
formed by the best elements, e.g. those whose incorporation to the current partial
solution results in the smallest incremental costs (this is the greedy aspect of the algo-
rithm). The element to be incorporated into the partial solution is randomly selected
from those in the RCL (this is the probabilistic aspect of the heuristic). Once the cho-
sen element is incorporated to the partial solution, the candidate list is updated and the
incremental costs are re-evaluated (this is the adaptive aspect of the heuristic).

GRASP has two main parameters: one related to the stopping criterion (which in
our case is a time limit) and another to the quality of the elements in the restricted
candidate list. The construction of the RCL used in the greedy randomized generator
(line 4, Fig. 2) will give us the different variants of the GRASP algorithm. Basically,
the RCL can be limited either by the number of elements (cardinality-based, which is
the first GRASP variant –type 1–) or their quality (value-based, the second variant –
type 2). In the first case, it is made up of the k elements (in our case, frequencies
which can be assigned in a sector) with the best incremental costs, where k is a pa-
rameter. In the second case, the RCL is associated with a threshold parameter α ∈ [0;
1] which determines the range of the RCL size (and its quality). However, there are
more options for the creation of the RCL which define more GRASP variants. The
third type in our study is the RG construction (first random and later greedy –type 3–)
in which the first k frequencies are taken from the RCL randomly and the rest to com-
plete the sector are chosen greedily (the algorithm selects the best frequencies to build
the best solution possible). Finally, the PG construction (first a perturbation function
changes data and then the frequency is selected greedily from the data obtained after
the perturbation –type 4–) creates a new solution using a perturbation operator (speci-
fied by the k parameter, which is the perturbation grade).

In addition to the 4 variants explained above, it is possible to use a bias operator to
modify the random selection of the elements which are taken from the RCL (line 5,
Fig. 2). Without this parameter, the elements of the RCL have equal probabilities of
being chosen. However, any probability distribution can be used to bias the selection
toward some particular candidates (the ones which obtain better results). There are
several bias functions [9], although we have used 3 variants in our study: random bias
(bias = 0); linear bias (bias = 1) and exponential bias (bias = 2).

With all the information given in this section, we can summarize the variants of the
GRASP metaheuristic according to three parameters which define its behaviour: the
type used (types 1, 2, 3 and 4); the values taken by the k ∈ {1 – 18} or the α ∈ [0; 1]
parameters in each case; and the bias function used (random, linear or exponential).
All these parameters will be referred in Sect. 5 of this paper, where the experiments
and results obtained are explained.

84 J.M. Chaves-González et al.

4 Our Environment of Grid Computing

We have used grid computing to perform all the experiments in our study. The access
to the grid resources has been granted through the EELA [11] virtual organization
(VO), which includes several hundreds of working nodes. It is widely known that a
middleware is necessary to use the resources of the grid and to execute applications.
For this research, gLite 3.0 has been chosen as middleware. gLite is used in the EGEE
project [12] and it allows a simple use of the resources of the grid. Besides, we used
GridWay [13] as metascheduler because the final application we have developed with
the variants of GRASP is based on a master-slave paradigm and this metascheduler
manages in an efficient and easy way complex workflows. Thus, we have developed a
master-slave model with the resources of the grid such as we can see in Fig. 3. The
Preprocessing Job (executed in the UI, User Interface) creates the configuration files
needed by the jobs to be submitted to the CE (Computing Element). These files indi-
cate the arguments that a single job will use to find the best frequency planning possi-
ble with the algorithm used. The configuration files for job submission consist in
commands describing the job, the requirements of the job and the dependencies
among jobs. Some attributes of these files represent request-specific information and
specify in some way actions that have to be performed by the metascheduler (in our
case GridWay) to schedule the job or jobs of a complex request. The Postprocessing
Job waits until all the processes (executing in their corresponding WNs –Working
Nodes–) have ended and computes the results of these jobs, in our case, the best fre-
quency plan found by that node to solve the FAP. More detailed information about
how the master-slave model used works will be given in the next section.

Fig. 3. Diagram of the jobs running in the system and data flows between jobs

5 Experiments and Results

In this section we are going to discuss the experiments performed and the results
obtained with the grid and the GRASP versions. The experiments have been divided
in two parts: first, we have used the grid for doing individual experiments in order to
adjust the parameters of the different variants of the GRASP metaheuristic (see sec-
tion 3) to obtain the best results when solving the FAP; and then we have developed a
distributed master-slave approach (Fig. 3) with a team of evolutionary algorithms (the

 Solving a Realistic FAP Using GRASP and Grid Computing 85

versions of the GRASP metaheuristic adjusted firstly) to improve the results obtained
by the single sequential executions.

All experiments have been performed using the grid environment described in
Sect. 4. It is important to highlight that the usage of the grid has been an essential
requirement for our study, because all the experiments run sequentially would take
over 2500 hours (more than 104 days) without the facilities of the grid.

5.1 Tuning the GRASP Parameters

Tuning the GRASP parameters for the different versions used was the first step in our
study. The objective was that each GRASP variant gave us the best results when it has
to solve our problem. Moreover, to obtain statistical and reliable results, all the ex-
periments were repeated 30 times (so, we performed 30 independent executions using
grid computing for each experiment), limiting each single execution to 1 hour and
taking results every 2 minutes (to study the evolution curve for each experiment). It
was important to study in depth the results obtained in this phase of the research,
because the success in the following stage of our study (which will be described in
Sect. 5.2) depended on the fine adjustment developed here. For this reason, only the
best configurations and variants of the metaheuristic were used in the master-slave
model we developed after tuning the GRASP parameters.

As we have said, we have used the grid resources to perform all our experiments,
so we developed a script for the master job which run the different experiments in the
grid and recovered the results of each single job. We have performed 4 blocks of
experiments (one for each GRASP variant described in section 3 –types 1 to 4–):

− Type 1 tests (cardinality-based variant): It consists of 30 different experiments with
10 different values for the k parameter (k = {1 – 10}) and three possibilities for the
bias function (bias = 0, bias = 1 and bias = 2) –see Sect. 3 for the explanation of
these parameters. All these experiments would have taken 900 hours of execution
if they had been run sequentially (30 experiments × 30 independent executions × 1
hour each independent execution).

− Type 2 tests (value-based variant): It includes 21 different experiments with three
different bias functions (bias = 0, bias = 1 and bias = 2) and the following values
for the α parameter: 0.01, 0.02, 0.05, 0.07, 0.10, 0.25 and 0.50. All these experi-
ments would have taken 630 hours if they had been executed sequentially.

− Type 3 tests (RG variant): 12 different experiments with the three different bias
functions (the same as types 1 and 2) and 4 different values for the k parameter (k =
{1 – 4}). 360 hours are needed to run all these experiments sequentially.

− Type 4 tests (PG variant): 4 different experiments with random bias and 4 different
values for the k parameter (k = {1, 2, 3, 4}). 120 hours would have been necessary
to run all these experiments sequentially.

Due to the limitation in the number of pages of this paper, we are not going to show
the results obtained in all the experiments performed in this phase of our study, but a
summary with the evolution in the mean results (in 30 runs) for the best configuration
found for each of the variants of the algorithm is shown in Fig. 4. In that figure we
can see how the evolution in the cost values (which represents the decrease in the
interferences included in the GSM network) is quite significant for any variant of the

86 J.M. Chaves-González et al.

Fig. 4. Evolution results for the best versions of each GRASP variant

GRASP algorithm (without the metaheuristic, the costs in any frequency plan gener-
ated would be huge –millions of cost units).

The most important conclusion we can get from the study of all the experiments
performed here is that the usage of a bias function in the GRASP metaheuristic pro-
vides a great improvement in all the tests run. This makes sense since the best fre-
quencies have more probability to be taken when a new solution is created if the bias
function is not random. In fact, the best results for types 1, 2 and 3 (type 4 does not
use bias function) are obtained when the bias function is exponential (which provides
the best probability distribution), such as we can see in Fig. 4. On the other hand, we
can observe that for all the variants, the value of the k or α parameter is quite low,
which means that better results are obtained when the algorithm has not present a very
random behaviour –or in case of type 4, there are not a lot of perturbation in the solu-
tions. Therefore, we can state that not very random strategies (and quite greedy) work
very well (they obtain the best results). Finally, we can see how the value-based vari-
ant (type 2) obtains the poorest results (though they are reasonable good as well). All
in all, the four different versions (with its best configuration) were considered for the
next phase of our study, because such as we can see in Fig. 4, all of them have a good
evolution curve and moreover, with the inclusion of one version for each variant of
the algorithm, we give more diversity (an important aspect) to our team of evolution-
ary algorithms.

5.2 Using Grid Computing

Once we had adjusted the different parameters of the GRASP variants that we have
explained in the previous section, the following step was to choose the best candidates
to perform a parallel algorithm in which the different variants work together (as a
team of evolutionary algorithms) in order to improve the sequential results, that is,
obtaining better frequency plans in the same period of time. For doing this, we

 Solving a Realistic FAP Using GRASP and Grid Computing 87

developed a distributed master-slave approach with a selection of the best versions of
the GRASP metaheuristic (the ones shown in Fig. 4), plus a very interesting variant
(type 1, k = 2, bias = 0), because its results were pretty good and it had the particular-
ity of obtaining such good results with a random bias function (which is not very
common). Therefore, we added this fifth variant to include more diversity to the be-
haviour of our parallel team. On the other hand, the study has been performed making
experiments with a different number of jobs in the master-slave model.

We have worked with 5 (the minimum number is one job for each of the 5 different
variants chosen), 10, 15 and 20 jobs (we did not work with a bigger number of jobs,
because the grid we used to do the experiments usually did not have more than 20-25
working nodes free in average). Besides, we want to emphasize that when we made
the experiments with 10, 15 and 20 jobs, we launched versions replicated on the grid
(more than one job for each GRASP variant), and this event created redundancy in the
system, which is a good feature when we work in a real grid environment. Thus, we
do not need that all the jobs have finished when the master job has to evaluate the best
solution. For our master process, if the 40% of the jobs have finished, it considers the
iteration successfully done (and it will kill the unprocessed slave-jobs, which proba-
bly are waiting to execution because the grid does not have enough free resources or
there is some failure in the grid infrastructure). However, we have to point that in all
our experiments, approximately the 90% of the jobs finished correctly their execu-
tions, returning in time their results. Moreover, each experiment has been repeated 30
times to obtain results with statistical confidence (like we did with the sequential
study). Besides, to compare the results with the sequential versions, we have done
experiments up to 1 hour, taking results every 2 minutes, such as we can see in Fig. 5.

Fig. 5. Comparison between the evolution in the results of the different parallel experiments
performed (master-slave model with 5, 10, 15 and 20 jobs) and the best sequential version

88 J.M. Chaves-González et al.

On the other hand, the master-slave application is based on the feedback which is
applied over the slave jobs by using the best solution found every 16 minutes of exe-
cution. Therefore, there are synchronization points every 16 minutes. In those points,
the slave jobs are restarted by the master, but they use the best individual found so far
(by all the jobs in the team) as initial solution. Finally, the algorithm stops when 4
blocks of 16 minutes have been run.

As we can see in Fig. 5, all the parallel versions improve the results obtained by the
best sequential variant. Besides, we can observe how the results are better when the
number of slaves configured grows. In the graph we can also see that a great im-
provement occurs at minute 18. This gap is explained because in the minute 16 the
first synchronization is performed, so all the jobs re-start their execution after minute
16 with the best solution found so far as initial solution, and this causes a great im-
provement in the next result output, which is in the minute 18.

Furthermore, we have studied the evolution of the system in longer executions (as
we can see in Fig. 6). For doing this, we have performed an execution during 10 hours
using the best parallel configuration found, which is the one with 20 jobs, as we can
observe in Fig. 5. According to the obtained results, we can say that our algorithm
does not stagnate its evolution in long executions, although the improvement obtained
after 2 hours is very slow (see Fig. 6).

Moreover, we have studied the contribution that each GRASP variant used in the
parallel model provides to the whole system. For doing this, we have studied which

Fig. 6. Evolution in the mean results for the best parallel version (20 jobs running in parallel)

Fig. 7. Best solution hits for each version in the synchronizations of the parallel model

 Solving a Realistic FAP Using GRASP and Grid Computing 89

Table 1. Empirical results (in cost units) for different metaheuristics. It is shown the best,
average and standard deviation of 30 executions.

120 seconds 600 seconds 1800 seconds

Best Avg. Std. Best Avg. Std. Best Avg. Std
ACO 90736.3 93439.5 1318.9 89946.3 92325.4 1092.8 89305.9 90649.9 727.5

SS 91216.7 94199.6 1172.3 91069.8 93953.9 1178.6 91069.8 93820.4 1192.3
DE 92145.8 95414.2 1080.4 89386.4 90587.2 682.3 87845.9 89116.8 563.8

LSHR 88543.0 92061.7 585.3 88031.0 89430.9 704.2 87743.0 88550.3 497.0
Seq.

GRASP
88857.4 91225.7 1197.2 87368.4 89369.6 1185.1 86908.4 88850.6 1075.2

Parallel
GRASP

85313.0 87256.9 2309.2 85313.0 86772.1 1701.0 85259.4 85855.3 686.9

variant provided the best solution generated in every synchronization of the algo-
rithm. We counted the number of the contributions given by each variant in all the
experiments performed. To summarize this study, we show here the results provided
by the best parallel execution, which is the model which works with 20 jobs. The
results for 30 independent executions can be seen in Fig. 7. In the chart of that figure,
we can see that all variants contribute to make the algorithm evolve, however, the best
variant is the PG version (type 4), with a 71% of hits, meanwhile the rest of versions
share their contribution to the evolution of the algorithm.

Finally, we want to emphasize that thanks to the parallel approach developed here,
the results were significantly improved, mainly if we use more than 15 slaves in our
distributed model. In fact, our results beat (or improve the lowest bound of the best
cost of) other recent results obtained with other approaches (Ant Colony Optimization
–ACO-, Scatter Search –SS–, Differential Evolution –DE–, and Local Search with
Heuristic Restarts –LSHR–) using the same problem instance and measurements [4],
[14], [15] (see Table 1).

6 Conclusions and Future Work

In this paper we study the usage of grid computing when solving a real-world FAP
(2612 transceivers and only 18 frequencies) with several variants of the GRASP algo-
rithm. According to the obtained results, the grid provides a double advantage: first, it
provides a high computational power to perform the great number of experiments
which are necessary to adjust the metaheuristics; and then, if the grid is used to de-
velop a parallel system where the jobs work together, it was proved that the results are
significantly improved.

Besides, our approach includes the combination of other interesting ideas: redun-
dant jobs to compensate the leaks that can be produced in the grid, team of evolution-
ary algorithms, synchronization points in the parallel model, distributed master-slave
model, etc.

Future work includes the development of a team of heterogeneous evolutionary al-
gorithms (GRASP, SS, PBIL, ILS…) to be executed in parallel. Furthermore, we are
working now to obtain more real-world instances, in order to evaluate the algorithms
using different instances.

90 J.M. Chaves-González et al.

Acknowledgments. This work was partially funded by the Spanish Ministry of Edu-
cation and Science and FEDER under contracts TIN2005-08818-C04-03 (the
OPLINK project) and TIN2008-06491-C04-04 (the MSTAR project). José M.
Chaves-González is supported by the research grant PRE06003 from Junta de Extre-
madura (Spain).

References

1. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Concep-
tual Comparison. ACM Computing Surveys 35, 268–308 (2003)

2. Berman, F., Hey, A., Fox, G.C.: Grid Computing. Making the Global Infrastructure a Re-
ality. John Wiley & Sons, Chichester (2003)

3. GSM World, http://www.gsmworld.com/news/statistics/index.shtml
4. Luna, F., Blum, C., Alba, E., Nebro, A.J.: ACO vs EAs for Solving a Real-World Fre-

quency Assignment Problem in GSM Networks. In: GECCO 2007, London, UK, pp. 94–
101 (2007)

5. Eisenblätter, A.: Frequency Assignment in GSM Networks: Models, Heuristics, and
Lower Bounds. PhD thesis, Technische Universität Berlin (2001)

6. Mishra, A.R.: Radio Network Planning and Opt. In: Fundamentals of Cellular Network
Planning and Optimisation: 2G/2.5G/3G... Evolution to 4G, pp. 21–54. Wiley, Chichester
(2004)

7. Kuurne, A.M.J.: On GSM mobile measurement based interference matrix generation. In:
IEEE 55th Vehicular Technology Conference, VTC Spring 2002, pp. 1965–1969 (2002)

8. Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of
Global Optimization 6, 109–134 (1995)

9. Resende, M.G.C., Ribeiro, C.C.: Greedy Randomized Adaptive Search Procedures. AT&T
Labs Research Technical Report, pp: 1–27 (2001)

10. Luna, F., Estébanez, C., et al.: Metaheuristics for solving a real-world frequency assign-
ment problem in GSM networks. In: GECCO 2008, Atlanta, GE, USA, pp. 1579–1586
(2008)

11. EELA Web, http://www.eu-eela.eu
12. EGEE Web, http://www.eu-egee.org
13. GridWay Web, http://www.gridway.org
14. Chaves-González, J.M., Vega-Rodríguez, M.A., et al.: SS vs PBIL to Solve a Real-World

Frequency Assignment Problem in GSM Networks. In: Giacobini, M., Brabazon, A.,
Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M.,
Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş.,
Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 21–30. Springer, Heidelberg
(2008)

15. da Silva Maximiano, M., et al.: A Hybrid Differential Evolution Algorithm to Solve a
Real-World Frequency Assignment Problem. In: Proceedings of the International Multi-
conference on Computer Science and Information Technology, Wisła, Poland, pp. 201–
205 (2008)

The Swiss ATLAS Grid

Eric Cogneras1, Szymon Gadomski2, Sigve Haug1, Peter Kunszt3,
Sergio Maffioletti3, Riccardo Murri3, and Cyril Topfel1

1 Center for Research and Education in Fundamental Physics, Laboratory for High
Energy Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2 DPCN, Geneva University, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4,

Switzerland
3 Swiss National Super Computing Center (CSCS), Galleria 2 - Via Cantonale

CH-6928 Manno, Switzerland

Abstract. In this paper the technical solutions, the usage and the fu-
ture development of the Swiss ATLAS Grid are presented. In 2009 the
Swiss ATLAS Grid consists of four clusters with about 2000 shared com-
puting cores and about 250 TB of disk space. It is based on middlewares
provided by the NorduGrid Collaboration and the EGEE project. It
supports multiple virtual organisations and uses additional middleware,
developed by the ATLAS collaboration, for data management. The Swiss
ATLAS grid is interconnected with both NorduGrid and the Worldwide
LHC Grid. This infrastructure primarly serves Swiss research institutions
working within the ATLAS experiment at LHC, but is open for about
two thousand users on lower priority. The last three years about 80 000
wall clock time days have been processed by ATLAS jobs on the Swiss
ATLAS Grid.

1 Introduction

The Swiss ATLAS Grid (SAG) is a computing infrastructure serving Swiss AT-
LAS physicists. ATLAS is one of four large particle physics experiments at the
Large Hadron Collider (LHC) in Geneva (CERN) [1][2]. The data from its detec-
tor is expected to answer fundamental questions about the universe, e.g. about
the origin of mass and about the physical laws right after the Big Bang. The
LHC will perform its first hadron collisions this year (2009). ATLAS will record,
replicate, simulate and analyze the data from these collisions. Several tens of
petabytes per year will be produced in this process. A large effort has been in-
vested into the world wide distributed computing system, hereinafter called the
ATLAS grid, with the SAG being the Swiss part of this system [3]. The SAG
is realized as a collaboration between the Universities of Bern and Geneva, the
Swiss National Super Computing Center (CSCS) and the Swiss Institute for
Particle Physics (CHIPP).

In 2005 the prototype of the SAG was described in ”The Swiss ATLAS Com-
puting Prototype” [4]. Since then both infrastructure and usage have evolved.
This is the first publication on this evolvement. In Sec. 2 we describe the job pat-
terns and their requirements. Then we proceed in Sec. 3 with the infrastructure

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 91–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

92 E. Cogneras et al.

and the technical solutions which have been chosen in order to meet the require-
ments. This is followed by Sec. 4 on monitoring and accounting, and finally, we
conclude and sketch the prospects for the Swiss ATLAS Grid.

2 ATLAS Job Patterns

Particle physics computing is data-intensive, but naturally parallel. The data,
both simulated and real, comes in fragments called events, which correspond
to different collisions of particles. The data from different events is in general
processed independently, which leads to easy parallelism. However, there are
other challenges. In case of the LHC experiments the sheer data volume is one
challenge. Another is the distribution and the availability of the data to a huge
collaboration.

In ATLAS the computational jobs may be divided into two categories. One
is the simulation of data. The other is the analysis of simulated and measured
data. The simulation of the data is normally divided into four steps. The first
generates the physical event in the LHC proton-proton collisions. The second
takes the particles generated in the first step and simulates the transport in and
the interactions with the detector. In a third step the information from the second
is digitized. In the final step the digitized information is reconstructed. The
reconstruction step in the simulation of the data is the same as the reconstruction
of measured data. The output is then analyzed.

Jobs in both categories may be handled in two different ways, either by the
central production system or by individual grid users. In the central production
system a database is filled with job descriptions. These are picked up by so
called executors, continuously running remote processes. They translate the job
descriptions into the required grid flavor and submit them with the corresponding
grid clients. These executors also supervise the jobs until their output is safely
stored and registered in the respective databases.

When jobs from the executors enter the sites, they are properly designed and
obey the guidelines for ATLAS jobs. These imply that one core takes one job,
one job does not require more than 2 GB memory and last less than 24 hours.
Furthermore the input and output is kept within 10 GB per job. The number
of input and output files are normally not more than some tens and the file
sizes within some GB. The SAG clusters are designed to handle this pattern.
However, for clusters which handle more than 1000 simultaneous ATLAS jobs,
filesystem limitations and non-distributed computing and storage elements tend
to become an issue.

ATLAS jobs designed and submitted by individual users sometimes do not
respect the guidelines above. Experience has shown that this can block various
services. Their presence on the grid is expected to increase significantly, and
sites will have to learn to protect themselves by removing jobs which threaten
the system in time. In ATLAS there are more than 2000 collaborators and the
majority possesses a grid certificate and consequently has access to the resources
on the ATLAS grid.

The Swiss ATLAS Grid 93

3 Infrastructure

The ATLAS grid is described in the ATLAS ”Computing Technical Design Re-
port” [3]. It is a hierarchical grid with a so called four-tier structure. Data from
the tier zero (T0) at CERN in Geneva is pushed through dedicated network
hardware to about ten computing centers, so called ”tier ones” (T1) around
the world. They again replicate and push data to their associated ”tier twos”
(T2), normally national or regional computing centers. The ”tier twos” serve
their ”tier threes” (T3) which typically are clusters owned by single universi-
ties or research groups. The final tier four is the desk- or laptop of an AT-
LAS physicist. The SAG has one T2 at the Swiss Super Computing Center
(CSCS) in Manno which is connected to the T1 at the Forschungszentrum
Karlsruhe, Germany. In Switzerland two T3, in Bern and Geneva respectively,
are being served by CSCS. This hierarchical structure is enforced in order to
avoid the break down which a totally flat and chaotic structure can cause on
the services.1

The SAG sites are connected by the shared SWITCHlan dark fibre network,
i.e. the bandwith can be adjusted by illuminating the optical fibres with multi-
ple frequencies [5]. This shared network is currently operated with one 10 Gb/s
channel, but more bandwidth is possible. The network map is shown in Fig. 1.
The foreseen output from the ATLAS detector is about 2.4 Gb/s, thus the Swiss
capacity of the network meets the estimated ATLAS requirements for connec-
tivity. The international BelWu 1 Gb/s connectivity to the T1 in Karlsruhe may
have to be increased, in particular because this connection is also not dedicated
to ATLAS. However, the redundant topology shown in Fig. 1 does ensure a
stable connectivity at the low level.

A speciality is a direct and dedicated network link between the T0 at CERN
and the Geneva T3. As only a small fraction of the data can be processed in
Geneva, this option is not of interest for final physics analysis of the data, which
will need to start with large datasets at T1 sites. However, the direct line will
enable the users of the Geneva T3 to participate more effectively in the com-
missioning of the ATLAS experiment. During regular data taking the direct line
can be used for data quality monitoring, which can be done by processing of the
order of 1% of the data.

Concerning the computation and storage resources in the SAG, about 2000
worker node cores and 250 TB disk space are comprised by four clusters. The
cluster hardware is summarized in Tab. 1. In 2004 the sites gridified with some 32
bit one core desktop boxes and then evolved to the current, in the Swiss context,
considerable resources made up by 64 bit four and eight core servers. Both Intel
and AMD processors are represented. The storage systems are all disk based.
All clusters use Gigabit ethernet for interconnections, and at least 2 GB RAM

1 Admittedly this hierarchical structure is not fully respected. A considerable amount
of horizontal and vertical data pulling between tiers is tolerated and crucial for the
individual needs of the physicists.

94 E. Cogneras et al.

© 2004, swisstopo

SWITCHlan Backbone: Dark Fiber Topology October 2008
©SWITCH 2008 fk

SWITCHlan backbone node

SWITCHlan node with
external peerings
stub nodes

dark fibers

provider Internet transit provider

peerings

lightpath connections

exchange

provider
global research & education
networks

UniBAS BSSE

IWB

PSI

PHTG

UniSG

FHSG

NTB HLI

HTW

SLF

HSLU

CSCS

VSnet

RERO

EHL

IMD

CERN

IBM

UniGE

UniL

EPFL

UniNE

UniFR

UniBE

EUresearch

HFT-SO

ZHAW

HSR

meteoCH
NAZ

IBM

WSL

Equinix

ETH

UZH

HEIG-VD

GEANT2
lightpaths

BelWü

Swisscom

GLBX

Swisscom

GEANT2

CBF link
DFN

CBF link
GARR

Telia

CIXP

Equinix

SwissixSwissix

Fig. 1. The SWITCHlan backbone. The SAG T2 is located at CSCS, while the T3s at
UniBE and UniGE respectively.

is available per core. The size of the resources will be growing with the needs in
ATLAS, along a timeline exceeding a decade.2

The choice of operating system and middleware has been a compromise be-
tween maintenance minimization and feasibility. The ATLAS software has a size
of several hundred GB of which a so called ”kit” is extracted, validated and
pulled to the tiers. Kits are typically released several times a month and occupy
about 10 GB each. They are developed, compiled and validated on Scientific
Linux Cern (SLC) [6]. Experience has shown that the deployment of this soft-
ware on other operating systems may imply a significant additional workload.
Thus, the SLC has become the preferred operating system on the SAG clus-
ters. However, on a shared cluster like Bern T3 B, which is running Gentoo,
it is not possible for one project to determine the operating system. On such
clusters the additional workload is accepted, e.g. by using change root environ-
ments. Similar is the situation for the choice of middleware. EGEE’s gLite prac-
tically does not support other platforms than SLC or related operating systems
[7]. Further, gLite has historically been quite worker node intrusive and man-
power demanding. These are the reasons for the extended use of the NorduGrid

2 This long timeline gives rise to many challenges, i.e. the transition from the 32 bit
to the 64 bit infrastructure is not trivial. The applications still have to run in a 32
bit compatibility setup. Another example is the bankrupt of hardware suppliers and
the related loss of warranties.

The Swiss ATLAS Grid 95

Table 1. The Swiss ATLAS Grid sites end 2008. The second column shows the worker
node cores, the third the disk storage in terabyte (TB), the fourth the operating system
(OS), the fifth the middleware (MW), the sixth the local resource management system
(LRMS), and the seventh the storage element (SE). The s indicates that the resource is
shared and not used by ATLAS only. The numbers typically undergo a 10% fluctuation
following the actual status of the resources.

Cluster Cores TB OS LRMS MW SE

Bern T3 A 30 30 SLC4 Torque ARC ARC SE
Bern T3 B 1000s 0 Gentoo SGE ARC -
CSCS T2 1000s 150 SLC4 Torque/Maui ARC/gLite dCache
Geneva T3 188 70 SLC4 Torque ARC ARC SE/DPM

Collaboration’s Advanced Resource Connector and for the rapid start up in 2005
as a light weight grid [8]. The only cluster also deploying gLite is the T2 at CSCS
which is serving additional LHC experiments.

The distributed data management (DDM) system on the ATLAS grid requires
some specific storage element features [9]. The system is a set of central databases
at the T0 which organize files on the grid into data containers. Containers have
locations which are file catalogs, gLite’s LFC, deployed at the T1. These again
contain the physical file names of the files stored on storage elements in their
respective T2. The actual movements are issued by Python services at the T1
which in turn issue gLite’s File Transfer Service (FTS) service with SRM end-
points. Virtual splitting of the storage into so called space tokens is extensively
used. Until now this has effectively excluded the ARC SE as an option and the
most used solutions are dCache and EGGE’s DPM [10] [11]. Since the ATLAS
DDM system normally does not contain T3 sites, only the Swiss T2 is connected.
However, a DPM based storage element is now being installed in Geneva.

4 Monitoring and Accounting

The SAG monitoring is locally done with custom made scripts and Ganglia [12].
On the grid level the ARC monitor and the ATLAS dashboard are used. The
ARC and gLite information systems, on which these web applications are based,
provide sufficient data for identifying problems on an hourly basis. Concerning
computational issues these solutions are sufficient. Monitoring of the data trans-
fers still requires a lot of attention due to the immature state of the storage
elements and the middleware services.

The usage is tracked in three ways and shows a non-linear growth. For the T3
clusters the Torque and SGE accounting files are analyzed. For the T2 cluster
the EGEE accounting portal and the ATLAS dashboard are consulted [13] [14].
Both sources rely on EGEE’s APEL database. In 2007 the T2 wall clock time
from these sources were cross checked several times with the analysis of the local
accounting. The numbers were consistent within 5%, which is the estimated
uncertainty for the SAG accounting.

96 E. Cogneras et al.

Fig. 2. Wall clock time days on the Swiss ATLAS Grid. The total wall clock time in
2008 corresponds to 1% of the world wide ATLAS wall clock time as accounted by the
ATLAS dashboard.

Figure 2 shows the ATLAS usage of the clusters in wall clock time days.
Compared to 2006 the usage increased by a factor of five to approximately 48000
wall clock time days in year 2008, i.e. 130 wall clock time years. This corresponds
to more than 1% of all the accounted ATLAS computing [14].3 Of the 220 sites
which contributed to the 11 000 wall clock time years on the ATLAS Grid in
2008, only 10 sites (the number of T1) contributed with more than 2% and no
site contributed with more than 10%. Considering the increase in the available
worker nodes on the SAG the usage in 2009 is expected to double. However, the
prediction is uncertain since the experiment will start recording collider data.
On one hand it is likely that this will increase the usage further. On the other
many more unexperienced users will submit jobs which eventually will cause new
unforeseen challenges for the sites.4

On the SAG there is no automated disk space accounting. The storage is
mostly inspected in an ad hoc and manual manner. An integrated storage element
solution with detailed information of all disk operations down to the level of
distinguished names is very much desired. However, such solutions are not yet
provided by the middleware.

3 Neither on the Swiss ATLAS Grid nor on the world wide ATLAS grid is all usage
accounted, e.g. interactive work and usage by other projects are not contained in
the numbers.

4 Already now jobs with enormous inputs and outputs, i.e. several tens of GBs, output
files with 40 GB size etc have been observed. Such usage may rapidly bring down
the services.

The Swiss ATLAS Grid 97

5 Conclusions and Outlook

In 2009 the Swiss ATLAS Grid (SAG) consists of four clusters with about 2000
worker node cores and about 250 TB of disk storage. The ATLAS share of
the cores is about 700. The sites are connected with the Advanced Resource
Connector (ARC). The tier 2 cluster at CSCS is connected to the worldwide
LHC Grid with gLite and all clusters are connected to NorduGrid with ARC.
The storage elements are ARC SE, DPM and dCache. In 2008 about 130 wall
clock time years were accounted. During the last three years about 210 wall clock
time years have been processed.

The SAG is a hybrid light weight grid with a pioneering status within the
Swiss context. It is recognized by the emerging Swiss national grid initiative
(SwiNG) and will connect with resources and experience to a Swiss national grid
infrastructure [15]. Within the next two years SAG is expected to approximately
double its computing and storage capacity.

Acknowledgments. The indispensable work of the contributing resources’ sys-
tem administrators is highly appreciated. The resources on the Swiss ATLAS
Grid are extensively funded by the Swiss National Science Foundation.

References

1. The ATLAS Collaboration, Aad, G., et al.: The ATLAS Experiment at the CERN
Large Hadron Collider, 2008 JINST 3 S08003 (2008)

2. Evans, L., Bryant, P. (eds.): The LHC Machine, 2008 JINST 3 S08001 (2008)
3. ATLAS Collaboration: Computing Technical Design Report, CERN-LHCC-2005-

022, ATLAS-TDR-017
4. Gadomski, S., et al.: The Swiss ATLAS Computing Prototype, ATL-SOFT-PUB-

2005-03, CERN-ATL-COM-SOFT-2005-07
5. SWITCH, http://www.switch.ch
6. Scientific Linux homepage, https://www.scientificlinux.org
7. Generic Installation and Configuration Guide for gLite 3.1,

https://twiki.cern.ch/twiki/bin/view/LCG/GenericInstallGuide310

8. Ellert, M., et al.: Advanced Resource Connector middleware for lightweight com-
putational Grids. Future Generation Computer Systems 23, 219–240 (2007)

9. Haug, S., et al.: Data Management for the World’s Largest Machine. In: K̊agström,
B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699,
pp. 480–488. Springer, Heidelberg (2007)

10. dCache homepage, http://www.dcache.org
11. Disk Pool Manager,

https://twiki.cern.ch/twiki/bin/view/LCG/DpmGeneralDescription

12. Chun, B.N., et al.: The Ganglia Distributed Monitoring System: Design, Imple-
mentation, and Experience. Parallel Computing 30(7) (July 2004)

13. EGEE Accounting Portal, http://www3.egee.cesga.es
14. ATLAS Collaboration’s Dashboard, http://dashboard.cern.ch/atlas
15. The Swiss National Grid Association, http://www.swing-grid.ch

http://www.switch.ch
https://www.scientificlinux.org
https://twiki.cern.ch/twiki/bin/view/LCG/GenericInstallGuide310
http://www.dcache.org
https://twiki.cern.ch/twiki/bin/view/LCG/DpmGeneralDescription
http://www3.egee.cesga.es
http://dashboard.cern.ch/atlas
http://www.swing-grid.ch

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 98–109, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Grid Based Training Environment for Earth Observation

Dorian Gorgan, Teodor Stefanut, and Victor Bacu

Technical University of Cluj-Napoca, Computer Science Department,
28 G. Baritiu Str., 400027, Cluj-Napoca, Romania

{dorian.gorgan,teodor.stefanut,victor.bacu}@cs.utcluj.ro

Abstract. The content of the satellite images supplies information on the earth
surface, weather, clime, geographic areas, pollution, and natural phenomena.
Unfortunately, the real time supervision and the teaching related techniques re-
quire high computation and massive spatial data storage resources. This paper
presents the Grid oriented GiSHEO eLearning Environment (eGLE) supporting
the training and experimental practice in Earth Observation (EO). eGLE facili-
tates specific access for the academic and scientific community to on-demand
services related to specific EO applications. The teachers have the ability to eas-
ily create lessons for different topics, supporting both the knowledge presenta-
tion and Grid based processing. The eGLE environment is based on the gProc-
ess platform developed through the MedioGrid national project. The gProcess
platform consists of a set of tools supporting the flexible description, instantia-
tion, scheduling and execution of the workflow based Grid processing.

1 Introduction

Satellite images encode information about the earth surface, weather, clime, geo-
graphic areas, pollution, and natural phenomena. The study and the real time supervi-
sion require high computation resources and the storage of massive spatial data.
Meanwhile the Earth Observation (EO) related education needs real time experiments
in order to prototype the real systems and natural phenomena. The main processing
concerning the satellite images consists of segmentations and classifications of data,
which is actually a search of information through combinations of multispectral bands
of the satellite data. Moreover, the data exploration and interpretation depends on
many variables such as satellite image type (e.g. MODIS, Landsat etc), geographical
area, soil composition, vegetation cover, season, context (e.g. clouds, hydrothermal
alterations, terrain configuration), and so on. All these specific and variable condi-
tions require flexible tools and friendly user interfaces to support an optimal research
within the space of solutions.

This papers aims to present an eLearning Platform, developed through the
GiSHEO [1] project (On Demand Grid Services for Higher Education and Training in
Earth Observation) funded through the PECS program of European Space Agency
(ESA). It is a three year project starting in 2008 which intends to create a Web-based
training platform for hands-on experimental practice in Earth Observation (EO). The
overall technical objectives of the GiSHEO project are to: (a) Set-up and organize a
virtual organization (VO) based on Grid technology for education, training and
knowledge dissemination for EO and related activities; (b) Development of specific

 Grid Based Training Environment for Earth Observation 99

instruments dedicated to on-demand services for education activities based on EO
data; (c) Facilitate specific access for the academic and scientific community to on-
demand services related to specific EO applications; and (d) Correlation and harmoni-
zation of resources with national, European and ESA projects dedicated to services
for EO, such as G-POD [2] and GENESI-DR [3].

The GiSHEO eLearning Environment (eGLE) will offer to the teachers the ability
to easily create lessons for different topics, supporting knowledge presentation and
assessment, and Grid based processing both for teachers and students. It is based on
the gProcess [4] platform developed through the MedioGrid [5] national project. The
gProcess platform consists of a set of tools supporting the flexible description, instan-
tiation, scheduling and execution of the workflow based Grid processing.

The research reported by the paper concerns mainly with gProcess based eLearning
Environment architecture, workflow based description and execution of the Grid
processing, different lesson patterns supporting the real time and flexible experiments,
and the developing of different EO related teaching materials.

2 Teaching Materials and Scenarios

eGLE involves three domains of eLearning, Earth Observation and Grid processing.
The great possible number of users attends the lessons by exploring Earth Observa-
tion subjects by intensive computation of the huge spatial data distributed over the
Grid. eGLE makes possible the following scenarios:

1st scenario. The teacher describes visually the processing workflow for some re-
mote sensing data. The workflow considers as inputs three bandwidth channels of the
satellite image and describes in the graph nodes a few specific operators or Grid ser-
vices already available (e.g. provided by GENESI-DR system). The teacher builds up
the content of the lesson, by combining a few available content patterns. He describes
by text some theoretical notions and then visualizes in three figures two initial images
and the resulted image processed through the workflow execution over the Grid. At
runtime the student selects from a list the two input images and executes the work-
flow in order to check the resulted image.

2nd scenario. The teacher adds to the previous scenario a few features. For instance,
the student can edit the workflow and experiments other processing algorithms for
different available input data-sets.

3rd scenario. The teacher completes the text explanation by voice and adds to the
previous scenario a movie about the last ten years evolution of the vegetation in Da-
nube Delta. In order to make it possible, the teacher executes the simulation over the
Grid by using a specialized graphics cluster. He visualizes the simulation remotely on
his Internet-connected workstation and records the animation into a short movie. This
movie is a lesson resource available for the students.

3 Related Works

In [6] Plaza et al. show that the development of fast techniques for transforming mas-
sive amounts of hyperspectral data into scientific understanding is critical for space-
based Earth science and planetary exploration. So far, the Grid capabilities could be
used only by technical trained personnel who conducted research activities based on

100 D. Gorgan, T. Stefanut, and V. Bacu

massive data processing. Most of the efforts towards the eLearning development in
the remote sensing area were focused on creating teaching materials and tutorials that
present implementation techniques used in remote sensing and information about data
acquisition, storage and processing [7].

In the last few years, the international community has become more interested in
EO teaching activities, developing projects such as D4Science [8] – remote sensing
data management on Grid infrastructures, and SEOS [9] – to support the integration
of EO and remote sensing as an element of science education in high schools.

Actually there are only a few numbers of resources involved in educational activi-
ties in EO. One of the most complex projects is EduSpace [10]. Besides the current
existing platforms that provides tutorials and training materials in EO, GiSHEO in-
tents to be a dynamic platform mainly concerning with experimentation and extensi-
bility. Moreover, GiSHEO is oriented towards EO skills, rather than GILDA [11],
promoted and developed in frame of EGEE project [12].

Most of Grid workflow systems are using the direct acyclic graph as a solution for
modeling processes. In the UNICORE [13] and Symphony [14] the DAG based de-
scription solution is chosen, while the Kepler [15] and Triana [16] are using direct cy-
clic graphs solution. Another available solution is related with the usage of Petri nets
[17]. The description language of Grid workflows is using mainly the XML descrip-
tion, like the Grid Service Flow Language (GSFL) and Grid Workflow. Another de-
scription language is BPEL4WS; both BPEL4WS and GSFL allow the defining of
complex workflows and modeling of different input data. Grid Workflow Execution
Language (GWEL) [18] uses some concepts that were defined in the BPEL4WS in
order to describe the interaction between services by using WSDL.

The Grid-Flow [19] system architecture consists of 3 levels: the user interface, the
Grid-Flow engine and the data and process integration platform over the Grid. By inter-
active editing tools the user models the graph that lately is mapped to the Grid Flow De-
scription Language (GFDL). In Pegasus [20] two types of workflows are defined, ab-
stract and concrete workflows that can be executed using the Condor-G or the DAGMan.

4 GiSHEO eLearning Environment Architecture

The eGLE platform lays on gProcess toolset and consists of GiSHEO eLearning Envi-
ronment and eLearning Oriented Level (see Fig.1). The platform implements both the
user interaction tools and the components supporting the development, execution and
the management of the teaching materials. Through eGLE the teacher develops lesson
patterns and resources, and combines them through templates into the lessons. The
teacher may use the Grid based execution both for testing the lesson already created,
and for developing lesson resources such as processed images, and workflows as
graph based process descriptions. The students just execute the lessons. They can also
describe and experiment new workflows and input satellite images.

The gProcess platform defines an intermediate level between the eLearning Ori-
ented Level and the Grid Infrastructure by creating a set of services and tools support-
ing the flexible description, instantiation, scheduling and execution of the workflows.

The databases include conceptual and particular workflow based descriptions,
teaching materials and lesson resources, satellite and spatial data.

 Grid Based Training Environment for Earth Observation 101

5 gProcess Platform

The gProcess platform [4] provides a flexible diagrammatical description solution for
image processing workflows in the EO. At the conceptual level the algorithms are de-
scribed by processing acyclic graphs (Fig.2), in which the nodes represent operators, ser-
vices, sub-graphs and input data (e.g. satellite image bandwidths), and the arcs represent
the execution dependencies between nodes. The development of the processing graphs
implies two steps. The first step describes the conceptual Process Description Graph
(PDG), as pattern processing a satellite image type (i.e. MODIS, Landsat). The second
step describes the Instantiated Process Description Graph (IPDG), by mapping the al-
ready created PDG pattern over a particular satellite image data. The IPDG description
together with the input satellite data are actually the subject of Grid based execution.

5.1 Description of Grid Based Processing

Conceptually the algorithm is described as an acyclic graph (Fig.2). There are four
types of nodes. The first type represents input data or data resources. Input data is an

Input

OP1

S1

SG

Input

Input

Input

OP2

OP3 S2

Output

Fig. 2. Workflow describes the Grid based processing, by satellite image bandwidths (Input),
operators (OP), Grid and Web services (S), sub-graphs (SG), and processed images (Output)

Patterns, Templates,
Lessons, Teaching materials

Image and Spatial Data Process description

Grid Infrastructure

gProcess Platform

eLearning Oriented Level

GiSHEO eLearning Environment (eGLE)

Fig. 1. Functional levels in the eGLE related architecture

102 D. Gorgan, T. Stefanut, and V. Bacu

image (e.g. satellite images or data value – i.e. integer, float, string data types – that is
used by some special operations (e.g. threshold). Another graph node type is the op-
erator node that represents any atomic operation (i.e. processing procedure) related to
the Earth Observation domain. The Grid and web services are integrated in the proc-
essing graph like any other operators; the difference came from the way in which
these nodes are executed over the Grid. The services could be developed in the con-
text of this project, or generally as services available online, which match the required
functionality, and input and output data. Another concern is related with the integra-
tion of sub-graphs in order to develop complex graphs. Actually, any graph could be
included as sub-graph in another one.

5.2 gProcess Architecture

The gProcess architecture (Fig.3) is based on the client-server model. At the server
side the Grid Infrastructure supports the access to computing resources and distributed
databases through a set of services such as EditorWS, ManagerWS, ExecutorWS, and
ViewerWS.

The client side encapsulates Client Java API, User Oriented Application Level, and
Applications. The Web and desktop applications access the gProcess services by the
Client Java API level. A set of user interaction supporting components, such as Edi-
torIC, ManagerIC, and ViewerIC are exposed through the User Oriented Application
Level. It is the higher level of accessing the gProcess services through the Client Java
API level as well. The last level of Applications combines the editor, manager, and
viewer related functionality into complex user interaction tools.

5.3 Service Level

The following functionalities of the gProcess platform are exposed by services:
EditorWS provides relevant information on available resources (e.g. lists of opera-

tions, sub-graphs, satellite image types, data types). This information is then pub-
lished by the EditorIC in some interaction components for designing and developing
the graph editor’s user interface;

Fig. 3. gProcess Platform based architecture

 Grid Based Training Environment for Earth Observation 103

ManagerWS provides information on workflows (i.e. PDG, IPDG), and fetches and
uploads related resources (i.e. workflows, operators, services, sub-graphs, data). This
service supports the main interaction with the gProcess operators, services, resources
available in the database;

ExecutorWS executes the instantiated workflows (IPDG) over the Grid, and moni-
tors the execution of the workflows. The service maps the workflow into an internal
data structure, and analyzes and schedules the operators for sequential and parallel
execution on the Grid;

ViewerWS gets and formats the input and output data (e.g. initial and processed
satellite images). It supports the access and visualization functionality of the satellite
images.

5.4 User Level

The components from the User Oriented Application Level support the complex user
interaction functionality of the applications:

EditorIC provides the user editing operations of the workflow development. It sup-
ports features such as interactive design of the processing graph, specification of dif-
ferent graph node information, and visualization at different levels of details (e.g. auto
expansion of sub-graphs);

ManagerIC instantiates the workflow for particular satellite data and administrates
the model resources such as operators, services, sub-graphs, and satellite data;

ViewerIC displays in the application the input and output data (e.g. initial and
processed satellite images), and gets and displays the monitoring data. The graphical
user components implement specific user interaction techniques for manipulation of
satellite images such as zoom, scroll, area selection etc.

5.5 Process Execution

The Executor service processes the IPDG file in order to accomplish the workflow
processing over the Grid. The service parses the IPDG description and generates the
appropriate internal data structure. The Executor expands the sub-graphs and consid-
ers for execution just atomic nodes such as operators, services and data resources. The
consistency checking is performed at the processing graph editing phase and as well
at the execution phase. The consistency concerns with data, operators and services.
Data consistency is checked by the editor at the creation of links between graph
nodes. The input data of some operator or service must match the output of another
operator, service or resource node. The other type of consistency is related with op-
erator or service accessibility at the execution time. It is possible that at execution
time the operators (e.g. executable ones) or services are not available any more. In
this case the system must look for another operator or service, which matches the re-
quired functionality.

The Condor job manager is responsible with the scheduling and execution of proc-
essing graph nodes, and every atomic node is submitted as a request to the job
manager. The gProcess database stores graph nodes related real time data such as
execution status, output resource location, and starting and final execution time, sup-
porting the visualization of the execution progression in the graphical user interface.

104 D. Gorgan, T. Stefanut, and V. Bacu

5.6 Operators

The gProcess platform goal was to provide a toolset for a flexible description and
execution of the processing graphs. In the EO domain different image processing op-
erators were defined and described in the literature. The main image operations are
common in many other domains. In this category we can include the basic operators
like addition, subtraction, division, and so on. Histogram equalization, blurring, con-
volution, geometric transformations make part from the same category. A special case
of operators are the ones that are related, for example, with the computation of vege-
tation and water indices. This is a special category that receives as input a multispec-
tral satellite image and based on a processing algorithm returns some relevant infor-
mation about the structure of vegetation and water. These operators can be integrated
in gProcess like sub-graphs that are expanded at the execution time or just like atomic
operators, in order to assure the execution of an operator on a single worker.

6 Teaching Material Development and Execution

As it was already mentioned before, eGLE provides tools and functionalities which
support the development of the lessons based on GRID computing technology. The
target community of users includes mainly non-technical users such as teachers spe-
cialized in different domains like Earth Observation, Environmental Studies.

The lesson development process consists of the following phases:

1. Acquire the lesson content
2. Organize and display the lesson content
3. Data binding and user interaction description
4. Lesson execution

6.1 Acquire the Lesson Content

Information that will be included into the lessons (e.g. text, images, videos, and
sounds) through the GiSHEO platform is mostly stored in distributed databases over
the network or is the result of different processing over the Grid (see Fig. 4).

As the acquiring process can thus become very complex, it is imperative that the
interface provides functionalities that will reduce the complexity of operations for the
user, without major restraints on Grid capabilities. The teacher must be able to browse
the available resources without any knowledge about the location or storage mecha-
nism and must have the ability to launch processing jobs over the grid in a non-
technical manner.

6.2 Organize and Display the Lesson Content

After the data acquisition phase, the teacher must organize the information and spec-
ify all the necessary visual formatting (i.e. layout, fonts, colors, image size, video
size) and interaction techniques used in the lesson (i.e. if the student may control a
slideshow, modify data inputs for a processing description graph etc.). The display
structure of a lesson in the GiSHEO platform has the following components:

 Grid Based Training Environment for Earth Observation 105

Fig. 4. Grid based teaching material composition

Fig. 5. Lesson Presentation Structure: different patterns gathered into the lesson template

Lesson Title

Static image Static text

Dynamic text Video

Dynamic image Processing graph editor

Animations = step by step results of complex processing
algorithms

106 D. Gorgan, T. Stefanut, and V. Bacu

Tools. Defined by the programmers previous to the lesson creation time and made
available for the teachers, the tools are atomic elements specialized on a specific data
type (e.g. text, image, slideshow, video, sound etc.). Every tool must implement the
specific interface required for data binding and also the mechanism that will allow the
teacher to control its behavior and display settings.

Patterns. Created by the teachers previous or during the authoring time, the pat-
terns represent general layout containers that logically groups related information
(e.g. image and its label, video and explanatory text etc.) – see Fig.5. Teachers can
create patterns by combining the tools included into the platform and specifying their
relative layout (e.g. the image label is displayed on top/on bottom, the text area is be-
neath the video area, or to the left/right etc.). Using patterns instead of templates as
logical information organizers, the resource reusing percent will increase significantly
as it is more likely to have smaller identical layout areas in different lessons than
global identical layout for these.

Templates are collections of patterns and global display settings (e.g. fonts for
regular text, titles, image labels, paragraph styles, background colors etc.) and are de-
fined at authoring time by the teachers. Using the same template can be created an in-
definite number of lessons.

6.3 Data Binding and Interactions Description

After display definition and data acquisition, the teacher must instantiate the tools in-
cluded into the lesson by specifying the actual data displayed (i.e. specific image,
video file, and sound). At this phase, the information chosen at step 1 and the display
settings established at step 2 are combined having as a result the actual lesson, and all
the general containers (that could be assimilated to classes) are bind to specific data
(instantiated).

Depending on the interaction level allowed by the teacher for the students and on
the ability of the formers to launch data processing on the Grid, the lesson scenarios
can be classified as:

Static, when the students may only consult the data presented by the teacher but
may not modify the information displayed or create new data by modifying different
input parameters.

Dynamic, when the student describes his own processing on the grid by using pre-
defined sets of data (see Fig.6). These data sets must be established by the teacher at
authoring time in order to avoid errors due to the type mismatch between the required
inputs format and selected data.

6.4 Lesson Execution

At execution time the lesson template is compiled and the layout is converted in
HTML format. The display formatting is described in external CSS file or inline style
statements while the interaction techniques established by the teacher will control the
tools behavior.

When a student accesses the lesson, the response must be in real-time. Because
there are situations when execution on the Grid can be a very time consuming opera-
tion, the teacher should include into the lessons materials that are stored into the

 Grid Based Training Environment for Earth Observation 107

database. If any processing is required for some areas of the lesson it should be per-
formed at authoring time and only the result included into the lesson. Nevertheless,
this information preprocessing can be performed mostly for lessons based on static
scenarios.

When comes to dynamic lessons, it can be very difficult to predict all the process-
ing that might occur for all the possible datasets, especially for larger ones. The stu-
dents may be granted the ability to use the same processing description graph with
other input data or even to edit the graph using the operators and information chosen
by the teacher at authoring time (Fig. 6). As the multiple requests of all the students
consulting a dynamic lesson could overload the Grid and generate very big delays in
answers retrieval, a safety mechanism should be adopted. When possible, the teacher
should perform at authoring time all the processing that will be available through the
lesson, having the ability to save also the intermediary results, if any. At runtime, the
results of the processing chosen by the students will be in fact read from the database
and thus the overload of the Grid network can be avoided.

7 Conclusions

The teachers are able to create complex lessons in EO without knowledge on Grid
technologies, and the students may visualize and even execute operations on large
amount of data, using transparently the Grid processing resources and facilities.

The development of training and teaching material based on complex EO services
is an ongoing task. While simple services, as depicted in the paper, are already avail-
able, more complex ones will be built in the near future relying on these simple ones.
The first category of targeted complex services is related to automated natural re-
source monitoring and management. Then the disaster management application ser-
vices, involving more than just remote sensing data will be developed. Finally as main
research challenge, innovative services for archeology will be built involving complex

Fig. 6. Grid processing based lesson execution.

Lesson

This is the con-
tent of the les-
son. It exempli-
fies different

patterns of the
lesson content.
by Grid based
processing. Workflow Output

Input
Input

Input

Executor

Viewer

Scheduler Editor

Manager

gProcess

108 D. Gorgan, T. Stefanut, and V. Bacu

scenarios using not only satellite data and other GIS information, but also human
intervention.

Another challenging activity is the one related to the creation of patterns and tem-
plates for platform usage, for new lessons and tutorials, for new EO experiments and
for different categories of users. Intended to allow flexibility in the development of
new educational services, the design of GiSHEO expresses the desire of its further
development through user intervention.

Tests on the suitability and accessibility of the learning objects will be performed
in the next period in real labs for master students in geography and environment.
Training events open to the public will be organized in the second part of the three
years project. The interest of public bodies for training activities in the field of EO
will be established in parallel with the above described activities.

Acknowledgments. This research is supported by ESA PECS Contract no. 98061
GiSHEO – On Demand Grid Services for High Education and Training in Earth
Observation.

References

1. GiSHEO Consortium. On-demand Grid Services for High education and Training in Earth
Observation (2009), http://gisheo.info.uvt.ro

2. Fusco, L., Cossu, R., Retscher, C.: Open Grid Services for Envisat and Earth observation
applications. In: Plaza, A., Chang, C. (eds.) High Performance Computing in Remote
Sensing, pp. 237–280. Chapman & Hall/CRC, Taylor & Francis Group (2008)

3. GENESI-DR project consortium (2009), http://www.genesi-dr.eu
4. Radu, A., Bacu, V., Gorgan, D.: Diagrammatic Description of Satellite Image Processing

Workflow. In: Proc. Int. Symp. Symbolic and Numeric Algorithms for Scientific Comput-
ing (SYNASC 2007), pp. 341–348. IEEE Press, Los Alamitos (2007)

5. Petcu, D., Zaharie, D., Gorgan, D., Pop, F., Tudor, D.: MedioGrid: a Grid-based Platform
for Satellite Images. In: Procs. IDAACS 2007, pp. 137–142. IEEE Press, Los Alamitos
(2007)

6. Plaza, A.J., Chang, C.-I. (eds.): High Performance Computing in Remote Sensing. Com-
puter and Information Science Series, vol. 16. Chapman & Hall/CRC, Boca Raton (2007)

7. Rees, P., MacKay, L., Martin, D., Durham, H. (eds.): E-Learning for Geographers: Online
Materials, Resources, and Repositories. Idea Group Inc., (IGI) (2008)

8. D4Science Consortium, DIstributed colLaboratories Infrastructure on Grid ENabled Tech-
nology 4 Science (2009), http://www.d4science.org

9. SEOS Project - Science Education through Earth Observation for High Schools (2009),
http://www.seos-project.eu

10. ESA. The European Earth observation Web Site for Secondary Schools (2009),
http://www.eduspace.esa.int

11. Andronico, G., Ardizzone, V., Barbera, R., Catania, R., Carrieri, A., Falzone, A., Giorgio,
E., Rocca, G.L., Monforte, S., Pappalardo, M., Passaro, G., Platania, G.: GILDA: the Grid
INFN Virtual Laboratory for Dissemination Activities. In: Procs. 1st Internat. Conf. on
Testbeds and Research Infrastructures for the Development of Networks and Communi-
ties, pp. 304–305 (2005)

 Grid Based Training Environment for Earth Observation 109

12. EGEE-III Consortium, Enabling Grids for Science (2008),
http://www.eu-egee.org

13. Erwin, D.W., Snelling, D.F.: UNICORE: A Grid Computing Environment. In: Sakellariou,
R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 825–
834. Springer, Heidelberg (2001)

14. Lorch, M., Kafura, D.: Symphony - A Java-based Composition and Manipulation Frame-
work for Computational Grids. In: Proceedings of 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany, May 21-24
(2002)

15. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludaescher, B., Mock, M.: Kepler: Towards
a Grid-Enabled System for Scientific Workflows. In: Proceedings of Workflow in Grid
Systems Workshop in GGF 10, Berlin, Germany (2004)

16. Shields, M., Taylor, I.: Programming Scientific and Distributed Workflow with Triana
Services. In: Proceedings of Workflow in Grid Systems Workshop in GGF 10, Berlin,
Germany (2004)

17. Peterson, J.L.: Petri Nets. ACM Computing Surveys 9(3), 223–252 (1977)
18. Cybok, D.: A Grid Workflow Infrastructure. In: Proceedings of Workflow in Grid Systems

Workshop in GGF 10, Berlin, Germany (2004)
19. Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: GridFlow: Workflow Management for Grid

Computing. In: Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, To-
kyo, Japan, pp. 198–205 (2003)

20. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Laz-
zarini, A., Arbree, A., Cavanaugh, R., Koranda, S.: Mapping Abstract Complex Work-
flows onto Grid Environments. Journal of Grid Computing 1(1), 25–39 (2003)

Improving Energy-Efficiency of Grid
Computing Clusters

Tapio Niemi, Jukka Kommeri, Kalle Happonen, Jukka Klem,
and Ari-Pekka Hameri

Helsinki Institute of Physics, Technology Programme,
CERN, CH-1211 Geneva 23, Switzerland

{tapio.niemi,kommeri,kalle.happonen,jukka.klem,ari-pekka.hameri}@cern.ch

Abstract. Electricity is a significant cost in high performance comput-
ing. It can easily exceed the cost of hardware during hardware lifetime.
We have studied energy efficiency in a grid computing cluster and no-
ticed that optimising the system configuration can both decrease energy
consumption per job and increase throughput. The goal with the pro-
posed saving scheme was that it is easy to implement in normal HPC
clusters. Our tests showed that the savings can be up to 25%. The tests
were done with real-life high-energy physics jobs.

1 Introduction

Computing power is an important resource in many fields from basic science
to industry. In science, high energy-physics heavily depends on the computing
resources. For example the Worldwide LHC Computing Grid (WLCG), to be
used to analyse the data that the Large Hadron Collier will produce, includes
over 50 000 CPU cores. In this scale, even a small system optimisation can offer
noticeably energy savings.

By energy efficiency we mean how many similar jobs can be processed by
using the same amount of electricity. By computing efficiency, i.e. the system
throughput, we mean how many similar jobs can be processed in a time unit.
Optimising one of these two figures can sometimes lead to the other one getting
worse. In our study, the aim was to find the optimal energy efficiency without
decreasing the system throughput. Luckily, the tests indicated that – at least
in our test environment – these two aims are not contradictory, meaning that
optimising system throughput also improves its energy efficiency.

Improving energy efficiency in cluster and grid computing has mostly focused
on infrastructure issues such as cooling and buying energy efficient hardware. As
far as we know, there are not many studies focusing on optimising the system
configuration in grid computing. Basically the problem is similar to production
management in any manufacturing process.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 110–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improving Energy-Efficiency of Grid Computing Clusters 111

2 Background

2.1 Grid Computing Clusters

The common practice in HPC clusters is to configure the batch scheduler to
run a single job per available processor core. As an example, the gLite [18] grid
middleware by default configures the Torque scheduler [21] to have one job slot
per core on the computing nodes (the Torque configuration variable is even called
number of processors). Also, the ARC grid middleware [17] reports the available
job slots as the number of cores in the cluster.

Common schedulers like Torque and Sun Grid Engine [6] have configuration
options to specify how many CPUs/cores there are per machine. These numbers
are used to calculate how many jobs are allowed to run at one time on that
machine. These numbers can be overridden, but this is not often the case.

2.2 LHC Computing

The WLCG computing grid that is used for analysis of CERN LHC data has
more than 140 computing centres around the world and each centre operates
clusters typically with thousands of CPUs and storage devices that can store up
to Petabytes of data.

In LHC computing there are centralised production teams that send up to
millions of similar long simulation jobs. There are also thousands of scientists
who will send analysis jobs in a more chaotic way. The two different applications
used in our energy efficiency tests are based on these two use cases (simulation
and analysis).

The production and analysis jobs are typically submitted as large sets of
similar kinds of jobs and the execution time of an individual job can be estimated
quite well. Especially in the case of centralised production, the execution time
of one job is not as important as the total throughput of the system.

As conclusion the following special features of the WLCG computing can be
taken into account when developing methos for optimising energy efficiency:

1. jobs are foreknown simulations or analysis jobs,
2. jobs are submitted as large sets of similar kinds of computing jobs,
3. the execution time of an individual job can be estimated quite well, and
4. the execution time of an individual job is not as important as the total

throughput of the system.

3 Related Work

Ge et al. [11] have studied methods to decrease power consumption in HPC
clusters. The method is based on Dynamic Voltage Scaling technology of micro-
processors. The authors created a software framework to implement and evaluate
their method. While, Kappiah et al. [14] have developed a method to decrease

112 T. Niemi et al.

power consumption of parallel computation in power-scalable clusters. And Yuan
and Nahrstedt [23] studied the same issues in mobile devices.

Venkatachalam and Franz [22] give a detailed overview on techniques that
can be used to reduce energy consumption of computer systems. Essary and
Amer [7] have studied how disk arm movements can be optimised and in this
way save energy, while Zhu et al. [26] proposed a disk array energy management
system. Li et al. [15] studied performance guaranteed control algorithms for
energy management of disk and main memory. Conner et al. [5] studied how
energy consumption can be reduced by dynamically disabling network links in
super computing clusters. Zhang et al. [25] give compiler-based strategies to
optimise cache energy consumption of microprocessors.

There are several studies on power saving in mobile devices and sensor net-
works (for example, [13,20,24,19]. Zhang et al. [24] studied cache architectures
in embedded systems. Li et al. [16] studied how hand-held devices can be con-
nected to a server as thin clients using WLAN and in this way save energy.
Further, Chen et al. [4] have presented a method for saving energy in mobile
devices by tuning garbage collection of Java systems, while An et al. [1] have
studied a similar problem in spatial database applications. Barr and Asanovic
[2] have studied energy saving in data compression for wireless transmission. Fei
et al. [10] proposed four types of source code transformations to save energy in
embedded software.

4 Method

We used a test cluster including one front-end and three computing nodes run-
ning Sun Grid Engine [6]. The nodes had single core Intel Xeon 2.8 GHz pro-
cessors (Supermicro X6DVL-EG2 motherboard, 2048 kB L2 cache, 800 MHz
front side bus) with 2 gigabytes of memory and 160 gigabytes of disk space.
The operating system was Linux with the kernel version 2.6.24.4 and the cluster
management system Rocks 5.0. The electricity consumption of the computing
nodes was measured with the Watts Up Pro electricity meter.

We tested the accuracy of our test environment by running the heavy CRAFT
analysis test several times with exactly the same settings. The differences be-
tween the runs were around +-1% both in time and electricity consumption.

The energy consumption of our test cluster (the computing nodes) was 0.46
kW when being idle and 0.77 kW with full power. The electricity consumption
of a cluster can be presented: P = idle power + work power. In our case, the
maximum work power was 0.77-0.46=0.31 kW. Since the power consumption of
the idle state is 60% compared to running the system at the full power, it is
straightforward to conclude that the system should be fully powered (but not
over loaded) – or turned off – to get the best energy-efficiency. Therefore we fo-
cused on optimising the maximum throughput of the system, that is, minimising
the average processing time of the job in a large set of jobs processed in parallel.
This is not the same as minimising the processing time of a single job, which is
a common practice in grid computing clusters.

Improving Energy-Efficiency of Grid Computing Clusters 113

Based on the observations explained above we made a hypothesis that run-
ning multiple jobs in parallel can increase both energy efficiency and system
throughput.

5 Tests

We used two different real-world applications related to the CERN LHC accel-
erator and experiments. Our method was to run the set of identical jobs with
different configurations of the test cluster and measure the consumed electricity
and used time. In this way we were able to measure both the energy consumption
and system throughput. The setting we changed was the amount of simultaneous
jobs per processor. This setting was chosen since changing it would not require
any software or hardware changes in computing clusters.

Our two test applications were:

– Beam-beam simulation: The executable used in the tests is a simulation
that has been used in the design of the LHC collider. It simulates the beam-
beam effect, i.e. the forces that act on the beam particles when bunches
cross in the LHC interaction points. These simulations are important because
beam-beam effect is one the major limitations to LHC collider performance
[3,12].

– CRAFT analysis: CRAFT (CMS Running At Four Tesla) analysis uses
cosmic ray data recorded with CMS detector at the LHC during 2008 [8].
During these measurements the CMS magnet was operated at four Tesla
field and the detector was close to its final configuration. This analysis uses
CMSSW software [9] and it is very close to the final data analysis which will
be carried out when the LHC collision data is available.

Both of these programs were tested with two different size data sets. The tests
with Beam-beam software used only a small input file that was stored on the
local disk. The CRAFT analysis tests were done using two different input files:
98 MB and 360 MB. A part of these tests were done transfering input data from
the front-end node of the cluster using encryption (Linux scp command) and
the other part using only local disks of the computing nodes. To eliminate the
influence of disk buffers, the input file was recreated for each job by copying it
using the standard Linux cp command. The output files of the test applications
were small. We performed, in total, five different test sets shown in Table 1.

Table 1. Summary of test executed

Program Input file size Jobs run Mem. usage Output
Beam-beam simulation heavy less than 1MB 12-50 some MBs 1KB
Beam-beam simulation light less than 1MB 500 some MBs 1KB
CRAFT analysis heavy network disk 360MB 82 368MB 1.6MB
CRAFT analysis heavy local disk 360MB 246 368MB 1.6MB
CRAFT analysis light local disk 98MB 246 271MB 60KB

114 T. Niemi et al.

6 Results

The results, shown in Table 2 and Figures 1, 2 4, indicated that it is more ef-
ficient to run more than one simultaneous jobs in a processor. This improved

Table 2. Test results

Description Jobs/CPU Jobs Jobs/hour Wh/job Avg. kW
Beam-beam simulation heavy

1 12 323 2.0 0.65
2 12 246 2.8 0.69
3 50 244 2.9 0.69
4 50 263 2.6 0.68

Beam-beam simulation light
1 500 1433 0.343 0.49
2 500 2894 0.177 0.51
3 500 4255 0.126 0.54
4 500 5806 0.097 0.56

CRAFT analysis 360MB network disk
1 246 119 5.92 0.704
2 246 123 5.79 0.712
3 246 123 5.83 0.716
4 246 122 5.82 0.712

CRAFT analysis 360MB local disk
1 246 127 5.50 0.701
2 246 127 5.49 0.699
3 246 112 6.07 0.683
4 246 100 6.60 0.663

CRAFT analysis 98MB local disk
1 246 239 2.89 0.691
2 246 339 2.24 0.760
3 246 351 2.19 0.768
4 246 310 2.38 0.736

1 2 3 4

0

50

100

150

200

250

300

350

Beam-beam simulation heavy

Jobs/CPU

W
h/

jo
b

1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Beam-beam simulation light

Jobs/CPU

W
h/

jo
b

Fig. 1. Results of Beam-beam tests

Improving Energy-Efficiency of Grid Computing Clusters 115

1 2 3 4

0

1

2

3

4

5

6

7

CRAFT 360MB local disk

Jobs/CPU

W
h/

jo
b

1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

CRAFT 98MB local disk

Jobs/CPU

W
h/

jo
b

1 2 3 4

5.7

5.75

5.8

5.85

5.9

5.95

CRAFT 360MB network disk

Jobs/CPU

W
h/

jo
b

Fig. 2. Results of CRAFT tests

2 3 4

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Improvement compared to 1 job/CPU
Beam-beam heavy

Electricity

Throughput

Jobs/CPU

2 3 4

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Improvement compared to 1 job/CPU
CRAFT 98MB

Electricity

Throughput

Jobs/CPU

Fig. 3. Relative improvement compared to 1 job/CPU setting

both energy efficiency and system throughput. The amount of memory and I/O
traffic seem to be the limiting factor, since with memory intensive jobs two or
three jobs per CPU settings were most efficient. I/O was probably also the rea-
son for the small unexpected peek in CRAFT 360MB tests. In the case of the less

116 T. Niemi et al.

1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

Beam-beam simulation heavy

Jobs/CPU

Jo
bs

/h
ou

r

1 2 3 4

0

20

40

60

80

100

120

140

CRAFT 350MB local disk

Jobs/CPU

Jo
b/

sh
ou

r

1 2 3 4

0

50

100

150

200

250

300

350

400

CRAFT 98MB local disk

Jobs/CPU

Jo
bs

/h
ou

r

Fig. 4. System throughput in some tests

memory intensive Beam-beam light job even four jobs per CPU increased the
efficiency.

Figure 3 shows percentual improvements compared to the one job per proces-
sor setting. The improvement is relatively bigger in throughput than in electricity
consumption in these two test cases. In CRAFT analysis with 360 MB input file
similar improvement did not happen. The obvious reason for this was the limited
amount memory of the test cluster.

7 Conclusions and Future Work

We tested whether running in parallel multiple simultaneous computing jobs in
one processor could have effect on energy efficiency and system throughput. We
ran our tests in a dedicated test cluster and measured the used electricity and
time. Our tests showed that the energy efficiency and system throughput increased
when more than one job per processor were run simultaneously. Depending on the
jobs, the optimal efficiency was two, three, or even four simultaneous jobs.

Our future plans include continuing testing with different applications and
with different system settings. On the software side we are planning to test e.g.
different Linux schedulers and on the hardware side large memory sizes, modern
energy efficient processors and their energy optimisation possibilities.

Improving Energy-Efficiency of Grid Computing Clusters 117

References

1. An, N., Gurumurthi, S., Sivasubramaniam, A., Vijaykrishnan, N., Kandemir, M.,
Irwin, M.J.: Energy-performance trade-offs for spatial access methods on memory-
resident data. The VLDB Journal 11(3), 179–197 (2002)

2. Barr, K.C., Asanović, K.: Energy-aware lossless data compression. ACM Trans.
Comput. Syst. 24(3), 250–291 (2006)

3. CERN. LHC Beam-beam Studies,
http://lhc-beam-beam.web.cern.ch/lhc-beam-beam

4. Chen, G., Shetty, R., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Wolczko, M.:
Tuning garbage collection for reducing memory system energy in an embedded java
environment. Trans. on Embedded Computing Sys. 1(1), 27–55 (2002)

5. Conner, S., Link, G.M., Tobita, S., Irwin, M.J., Raghavan, P.: Energy/performance
modeling for collective communication in 3-d torus cluster networks. In: SC 2006:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, p. 138. ACM,
New York (2006)

6. Sun Grid Engine. Gridengine - project home (2009),
http://gridengine.sunsource.net

7. Essary, D., Amer, A.: Predictive data grouping: Defining the bounds of energy
and latency reduction through predictive data grouping and replication. Trans.
Storage 4(1), 1–23 (2008)

8. CMS Collaboration, Adolphi, R., et al.: The CMS experiment at the CERN LHC.
Journal of Instrumentatio 3 (2008)

9. CMS Experiment. CMSSW Application Framework,
https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookCMSSWFramework

10. Fei, Y., Ravi, S., Raghunathan, A., Jha, N.K.: Energy-optimizing source code trans-
formations for operating system-driven embedded software. Trans. on Embedded
Computing Sys. 7(1), 1–26 (2007)

11. Ge, R., Feng, X., Cameron, K.W.: Performance-constrained distributed dvs
scheduling for scientific applications on power-aware clusters. In: SC 2005: Pro-
ceedings of the 2005 ACM/IEEE conference on Supercomputing, Washington, DC,
USA, p. 34. IEEE Computer Society, Los Alamitos (2005)

12. Herr, W., Zorzano, M.P.: Coherent dipole modes for multiple interaction regions.
Technical report, LHC Project Report 461 (2001)

13. Jiang, C., Chen, G.: Convergent sparsedt topology control protocol in dense sensor
networks. In: InfoScale 2007: Proceedings of the 2nd international conference on
Scalable information systems, Brussels, Belgium, pp. 1–8. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering) (2007)

14. Kappiah, N., Freeh, V.W., Lowenthal, D.K.: Just in time dynamic voltage scaling:
Exploiting inter-node slack to save energy in mpi programs. In: SC 2005: Proceed-
ings of the 2005 ACM/IEEE conference on Supercomputing, Washington, DC,
USA, p. 33. IEEE Computer Society, Los Alamitos (2005)

15. Li, X., Li, Z., Zhou, Y., Adve, S.: Performance directed energy management for
main memory and disks. Trans. Storage 1(3), 346–380 (2005)

16. Li, Z., Wang, C., Xu, R.: Computation offloading to save energy on handheld
devices: a partition scheme. In: CASES 2001: Proceedings of the 2001 international
conference on Compilers, architecture, and synthesis for embedded systems, pp.
238–246. ACM, New York (2001)

17. NorduGrid (2009), http://www.nordugrid.org/middleware
18. EGEE project (2009), http://www.glite.org

http://lhc-beam-beam.web.cern.ch/lhc-beam-beam
http://gridengine.sunsource.net
https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookCMSSWFramework
http://www.nordugrid.org/middleware
http://www.glite.org

118 T. Niemi et al.

19. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained
devices in delay tolerant networks. In: SenSys 2006: Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems, pp. 265–278. ACM,
New York (2006)

20. Schiele, G., Becker, C., Rothermel, K.: Energy-efficient cluster-based service dis-
covery for ubiquitous computing. In: EW11: Proceedings of the 11th workshop on
ACM SIGOPS European workshop, p. 14. ACM, New York (2004)

21. Torque. Torque resource manager (2009), http://www.clusterresources.com/
pages/products/torque-resource-manager.php

22. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor sys-
tems. ACM Comput. Surv. 37(3), 195–237 (2005)

23. Yuan, W., Nahrstedt, K.: Integration of dynamic voltage scaling and soft real-time
scheduling for open mobile systems. In: NOSSDAV 2002: Proceedings of the 12th
international workshop on Network and operating systems support for digital audio
and video, pp. 105–114. ACM, New York (2002)

24. Zhang, C., Vahid, F., Najjar, W.: A highly configurable cache architecture for
embedded systems. SIGARCH Comput. Archit. News 31(2), 136–146 (2003)

25. Zhang, W., Hu, J.S., Degalahal, V., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.:
Reducing instruction cache energy consumption using a compiler-based strategy.
ACM Trans. Archit. Code Optim. 1(1), 3–33 (2004)

26. Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., Wilkes, J.: Hibernator: helping
disk arrays sleep through the winter. In: SOSP 2005: Proceedings of the twentieth
ACM symposium on Operating systems principles, pp. 177–190. ACM, New York
(2005)

http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php

GFS: A Distributed File System with
Multi-source Data Access and Replication for

Grid Computing

Chun-Ting Chen1, Chun-Chen Hsu12, Jan-Jan Wu2, and Pangfeng Liu13

1 Department of Computer Science and Information Engineering National Taiwan
University, Taipei, Taiwan

{r94006,d95006,pangfeng}@csie.ntu.edu.tw
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan

wuj@iis.sinica.edu.tw
3 Graduated Institute of Networking and Multimedia National Taiwan University,

Taipei, Taiwan

Abstract. In this paper, we design and implement a distributed file sys-
tem with multi-source data replication ability, called Grid File System
(GFS), for Unix-based grid systems. Traditional distributed file system
technologies designed for local and campus area networks do not adapt
well to wide area grid computing environments. Therefore, we design GFS
file system that meets the needs of grid computing. With GFS, existing
applications are able to access remote files without any modification, and
jobs submitted in grid systems can access data transparently with GFS.
GFS can be easily deployed and can be easily accessed without special ac-
counts. Our system also provides strong security mechanisms and a multi-
source data transfer method to increase communication throughput.

1 Introduction

Large-scale computing grids give ordinary users access to enormous computing
power. Production systems such as Taiwan UniGrid [1] regularly provide CPUs
to cycle-hungry researchers in a wide variety of domains. However, it is not easy
to run data-intensive jobs in a computational grid. In most grid systems, a user
must specify in advance the precise set of files to be used by the jobs before
submitting jobs. In some cases this may not be possible because the set of files
or the fragments of file to be accessed may be determined only by the program at
runtime, rather than given as command line arguments. In other cases, the user
may wish to delay the assignment of data items to batch jobs until the moment
of execution, so as to better schedule the processing of data items.

To cope with the difficulties in running data-intensive applications with
runtime-dependent data requirements, we propose a distributed file system that
supports Unix-like run-time file access. The distributed file system provides the
same namespace and semantics as if the files are stored on a local machine. Al-
though a number of distributed file systems have been developed in the past

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 119–130, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

120 C.-T. Chen et al.

decade, none of them are well suited for deployment on a computational grid.
Even some distributed file systems such as the Andrew File System [2] are not
appropriate for use in grid computing systems because of the following reasons:

1. They cannot be deployed without intervention by the administrator at both
client and server

2. They do not provide security mechanisms needed for grid computing.

To address this problem, we have designed a distributed file system for cluster
and grid computing, called Grid File System (GFS). GFS allows a grid user
to easily deploy and harness distributed storage without any operating system
kernel changes, special privileges, or attention from the system administrator at
either client or server. This important property allows an end user to rapidly
deploy GFS into an existing grid (or several grids simultaneously) and use the
file system to access data transparently and securely from multiple sources.

The rest of this paper is organized as follows. Section 2 describes the system
architecture of GFS. Section 3 describes our security mechanisms for file access.
Section 4 presents GFS’s multi-source data transfer. Section 5 describes our
implementation of GFS on Taiwan Unigrid, as well as experiment results on the
improvement of communication throughput and system performance. Section 6
gives some concluding remarks.

2 Architecture of Grid File System

This section describes the functionality of the components of Grid File System
(GFS), and how GFS utilizes theses components to construct a grid-enabled
distributed file system. The Grid File System consists of three major components
– a directory server, file servers, and GFS clients. The directory server manages
all metadata for GFS. File servers are responsible for the underlying file transfers
between sites, and a GFS client serves as an interface between a user and GFS;
users manipulate and access files in the GFS via GFS clients.

2.1 Directory Server

The directory server contains five services – File control service that receives
requests from GFS clients and relays requests to appropriate services, Host man-
agement service that manages host information, File management service that
maps a physical file to a logical file and locates a logical file, Metadata ser-
vice that manages metadata of files and searches a registered file, and Replica
placement service that decides where to create a replica of a logical file.

File Control Service. The file control service is responsible for receiving re-
quests from GFS clients and relaying them to appropriate services of the di-
rectory server. The file control service also updates the information in the host
management service.

Host Management Service. The host management service maintains the
available space and the status of the hosts. Each GFS host record contains the

GFS: A Distributed File System with Multi-source Data Access 121

following information: the host name, available/total disk space and the status
which indicates whether a host is on-line or not.

A participant host will update its host information periodically. The file con-
trol service marks the status of a host as off-line if it does not update its host
information over a certain period of time.

File Management Service. The file management service manages files as log-
ical GFS files. For each logical GFS file, the file management service records the
following information: the logical file number, the physical file information, the
owner tag, the modifier tag and the status.

The logical file number is a globally unique identifier for a logical GFS file,
which is determined by the metadata service. The physical file information helps
GFS clients to locate a logical file. It contains a physical file name, physical file
location, physical file tag, and a physical file status. The physical file name consists
of the logical file name and a version number. The physical file location is the
host name of the node where the physical file is stored. The physical file tag
indicates whether this physical file is the master copy or a replica. With these
information the file management service allows a GFS client to register, locate,
modify and delete physical files within GFS.

The File Management Service also maintains the owner tag, the modifier
tag, and the status of a logical file. The owner tag of a logical file is the name
of the user who owns the file. We identify a GFS user by a GFS user name,
which consists of the local user account name and the local host name, e.g.,
user@grid01. In this way, each user has a unique identity in the Grid File System.
The modifier tag of a logical file records the name of the last user who has
modified this file. The status of a logical file indicates whether this physical file
is the latest version of the logical file.

Metadata Service. The metadata service creates and manages the metadata
of GFS files. For each GFS file, the metadata service records the following in-
formation: logical file path name, logical file name, file size, mode, creation time,
modified time and status.

The logical file path name is the global space file path. The file size is the
size of the logical file. The mode follows the traditional Unix access permissions
mechanism, which contains information such as the type of this file, e.g., a regular
file or a directory, and the file access permission for users. The creation time and
the modified time are the times at which the logical file is created and latest
modified. The status indicates the availability of the logical file.

Replica Service. The replica service determines where to place the replica of
a logical file when it is created. The replica service may use the information
provided by the host management service to decide the appropriate location.

2.2 GFS Clients and File Servers

GFS Clients. The GFS client on a host serves as an interface between user
programs and the Grid File System. The GFS client follows the standard Unix

122 C.-T. Chen et al.

file system interface. With this interface, users are able to transparently access
files in the Grid File System as if they are accessing files from a local file system.
The GFS client performs host registration and the users manipulate GFS files
through the GFS client.

As we pointed out in Section 1, in most grid systems, users must specify in
advance the precise set of files to be used by the jobs before submitting jobs,
which makes it difficult to run data-intensive jobs in grid systems. Therefore,
we want to deploy Grid File System with ease in existing Unix-like distributed
systems, and ensure that the access to GFS files must be transparent. GFS
achieves these two goals by following the standard Unix file system interface.

Another important function of GFS client is to notify the directory server
when a host joins GFS. When a user mounts GFS on a local host, the GFS
client first communicates with the directory server. The GFS client will send the
host information, such as the available space of the host and the host location,
to the directory server. The GFS client then updates the local host information
with the directory server periodically.

File Server. The file server is responsible for reading and writing physical files
at local hosts, and transferring them to/from remote hosts. Each file server is
configured to store physical files in a specified local directory. The file server
accesses files based on the requests from the local GFS client. The GFS client
will pass the information of physical files of the logical file to the file server. The
file server then looks up the specified local directory to see whether the requested
physical file is available in the local host. If it is, the file server reads/writes data
from/to the physical file and sends the acknowledgment back to the user through
the GFS client. On the other hand, if the requested file is at remote hosts, the
file server then sends requests to GFS file servers at those remote hosts that own
the data, and then receives the data from those remote servers simultaneously.

2.3 A Usage Scenario

We use a usage scenario to demonstrate the interaction among GFS client, GFS
directory server, and GFS file server. The scenario is illustrated in Fig. 1a and
Fig. 1b. We assume that the user mounts a Grid File System at the directory
“/gfs”, and the file server is configured so as to store files in “/.gfs”. We also
assume that a user “John” at the host “grid01” wants to copy a file “fileA” from
the local file system to GFS. i.e., John at grid01 issues a command, “cp fileA
/gfs/dirA/fileA”.

After receiving the command from John, the GFS client first sends a LOOKUP
query to the directory server asking whether the logical file “/dirA/fileA” exists
or not. Then the metadata service of the directory server processes this query. If
the answer is no, the GFS client then sends a CREATE request to the metadata
service to create a logical file record with the logical path set to “/dirA”, and
the logical name set to “fileA”. Then the GFS client asks the file server to
create a physical file in /.gfs/dirA/fileA, and writes the content of fileA into
/.gfs/dirA/fileA, as illustrated in steps 1 ∼ 12 in Fig. 1a.

GFS: A Distributed File System with Multi-source Data Access 123

VFS

cp fileA /gfs/dirA/fileA

GFS client

cp fileA /gfs/fileA

local storge

file server

4. send a LOOKUP request

5. send a CREAT request

13. send a REGISTER request

user

1. open fileA
2. open /gfs/dirA/fileA

1. open fileA
9. read fileA

3. open /gfs/dirA/fileA

8. loop(read source, write target)

local host

File control service

File management service Metadata service Host management service

13.3 update host information

directory server

11. close fileA

4.1 lookup /dirA/fileA
5.1 creat /dirA/fileA metadata
13.1 update /dirA/fileA matedata

13.2 create physical information

10. write /.gfs/dirA/fileA

6. create /.gfs/dirA/fileA
7. open /.gfs/dirA/fileA

12. close /.gfs/dirA/fileA
14. rename to /.gfs/dirA/1196085478,fileA

(a) Create a file at the local host.

GFS client GFS client

File server File server

Replica service

2. get a host information

6.2 update a host information

directory server

local host remote host

File control service

Host management serviceFile managment service

1. send a cteat replica request 3. reply a host name

4. pass replica placement
information

5. creat a replica to
the remote host

6. send a REGISTER request

6.1 creat a phyical information for the replica

1.1 pass a cteat replica request

(b) Place a replica to the remote host.

Fig. 1. The process of creating a file in GFS

After completing the creation, the GFS client sends a REGISTER request to
the directory server. The metadata service updates the metadata information of
fileA and the file management service creates a record for the new file such as
the logical file number and the physical file information, as illustrated in steps
13 ∼ 14 in Fig. 1a.

Finally the GFS client sends a request for creating replicas of this logical file.
The purpose of replication is to enhance fault tolerance and improve performance
of GFS. The replica placement service decides where to put those replicas based
on the information provided by the host management service. After receiving the
locations of replicas, the GFS client passes this information to the file server,
which is responsible for communicating with the remote file servers and creating
replicas at those remote hosts. After successful replication, the GFS client sends
a request to register those replicas with the file management service, which then
adds the metadata of these replicas into physical file information database as
the primary replicas of the physical file, as illustrated in Fig. 1b.

There are some notes about GFS naming convention. The first rule of GFS
naming convention is that all GFS hosts must have the same mount point for

global view

fileC
dirC

fileB

fileA
/gfs

1234567891,fileB

1234567890,fileA
/hostA

dirC

/hostB
1234567890,fileA

1941114355,fileC

host A

host B

Fig. 2. The global view of GFS namespace

124 C.-T. Chen et al.

GFS. This restriction is due to compatibility issues with Unix file system inter-
face. All GFS hosts can share the same logical namespace by this convention.
The root of physical files, however, can be different in different hosts. The second
rule of GFS naming convention is that logical and physical files share the same
directory structure as shown in Fig. 2.

3 Security

We now describe the security mechanism of GFS. A user only needs to have a
user account at any single host of a grid system in order to access GFS files.
Therefore, a user who already has an account in a host of the grid system does
not need to create new accounts on other machines in order to use GFS. This
feature helps us deploy GFS to grid systems with ease since every user in a grid
system can use GFS without extra effort from the system administrator.

3.1 Access Control

For each file, whether a user can access it or not depends on the identity of that
user. The identity of a user is the concatenation of his/her user account and the
hostname of local machine. For example, “john@grid01” is the identity of the
user “john” at the host “grid01”. In GFS, the owner of the logical file can modify
the mode of the logical file.

GFS follows traditional UNIX permission mechanism with minor modifica-
tion. We now discuss execution permission and read/write permission separately
as follows. For execution permission we consider two cases. First, if the account
that the system uses to run the executable is the user of the owner tag of the
executable, i.e. “john@grid01” in our scenario, then the GFS client simply checks
the GFS access permission of owner to determine whether it can run this ex-
ecutable or not. Second, if the account is not the user of the owner tag of the
executable, the GFS client first checks the GFS access permission of others. If
the permission is granted for others, the GFS client loads the executable for
execution. If the execution permission by others is denied, then the GFS client
will not load this executable file.

For read/write permission, we classify access to a file into two categories from
the point of view of a GFS user:

– Direct. The permission is determined according to the GFS owner/others
permission.

– Indirect. The permission is determined according to the GFS group
permission.

This classification is motivated by the following usage scenario. We assume that
John at grid01 wants to execute his program “progA” at two remote sites,
“host1” and “host2”, and “progA” will read his file “file1” as the input data.
These two files, progA, and file1, are all created in GFS by John.

GFS: A Distributed File System with Multi-source Data Access 125

Now John wishes that “file1” can only be accessed by “progA”. However,
when a program is executed in a grid environment, it is usually executed by a
temporary account in the remote host. That is, it is the administrators of the
remote hosts that decide which account to use to execute the program and that
decision is usually not predictable. The decision depends on the administration
policies of the remote hosts. Thus, it is not possible to have “file1” accessible
only to “progA” with the traditional UNIX permission mechanism.

Our solution is based on the fact that the program and the input files have
the same owner tag, i.e., john@grid01, in GFS. When a user runs an executable
file, “progA” in our scenario, as a process, the local GFS client will record the
owner tag of this executable file and the process ID (PID) of this process. Note
that here we assume that each process is associated with an executable file, and
the process will not invoke other executables.

Now, when this process attempts to access a GFS file, the GFS client first gets
the owner tag and the GFS access mode of this file from the directory server.
If the user identity of this process is the owner of this GFS file, the GFS client
simply checks the GFS owner permission to determine whether this process
can directly access this file. Otherwise, the GFS client checks the other permis-
sion. If the permission is granted for others, this process can also directly access
this file.

Next, we consider the case in which the permission by others is denied. In this
case, the GFS client checks whether the GFS executable of that process has the
same owner tag as the GFS file. The GFS client can simply check the PID and
owner tag pair recorded when the process is created. If they have the same owner
tag, the GFS client checks the GFS group permission to determine whether this
process can indirectly access this file. If they do not have the same owner tag,
the permission is denied.

4 Multiple Source Data Transfer Mechanism

In this section, we introduce the multiple source data transfer mechanism among
GFS hosts. This mechanism improves both efficiency and reliability of file trans-
fer by downloading a file from multiple GFS hosts simultaneously.

The data transfer mechanism works as follows. When a GFS client receives
a user request for a logical GFS file, it sends a LOOKUP request to the file
management service to find out where the physical files are. The file management
service then returns the replica list to the GFS client, which contains “on-line”
replicas of the requested file.

Then the GFS client passes the list to the file server at the local host. The
file server first checks the list to find out whether a replica is available at the
local host. If the local host is in the list, then GFS simply use the local replica.
Otherwise, the file server sends a request to each of the hosts in the list to
download the file simultaneously from those data sources. A GFS file is divided
into blocks of equal size, and the file server requests/receives only blocks that
are within the region requested by the user to/from the hosts in the replica list.

126 C.-T. Chen et al.

Note that data transfer can also improve the correctness of GFS host meta-
data. If a replica is not available, the GFS client will report it back to the
file management service. The file management service then marks that replica
as “off-line”, to indicate that the replica is not functioning. Note that if the
downloaded fragments constitute a complete file, the GFS client will register
this physical file with the file management service as a secondary replica so that
other file server can download the file from this host.

5 Performance Evaluation

We conduct experiments to evaluate the performance of GFS. We implemented
a prototype GFS on Taiwan UniGrid system [1], a grid testbed developed among
universities and academic institutes in Taiwan. The participating institutes of
Taiwan UniGrid are connected by wide area network. The first set of experiments
compare the performance of GFS with two file transfer approaches – SCP and
GridFtp [3,4], both are widely used for data transfer among grid hosts.

The second set of experiments compare the performance of job execution
with/without GFS. The third set of experiments test autodock [5], a suite of
automated docking tools that predict how small molecules, such as substrates
or drug candidates, bind to a receptor of known 3D structure.

5.1 Experiment Settings

Fig. 3 illustrates the system configuration in our experiments. Table 1 lists the
hardware parameters of the machines.

Our prototype GFS implementation uses SQLite version 3.5.1 [6] and FUSE
version 2.7.1 [7] without any grid middleware. SQLite is a database tool that
GFS directory server management uses to keep track of metadata. FUSE is a
free Unix kernel module that allows users to create their own file systems without
changing the UNIX kernel code. The FUSE kernel module was officially merged

Primergy

uniblade02
uniblade03

iisgrid01~iisgrid08

NTHU

grid01
grid02

NTU

IIS

directory server

srbn01

CHU

100Mbps

1Gbps

E
thernet

Ethernet
Switch

S
w

itch

Ethernet
Switch

E
th

er
ne

t
S

w
itc

h

Fig. 3. An Illustration of the environment of our experiments. We use four sites in
Taiwan UniGrid system. The directory server resides in host grid01 at National Taiwan
University.

GFS: A Distributed File System with Multi-source Data Access 127

Table 1. Hardware configurations in GFS experiments

Machine(s) grid01 grid02 iisgrid01˜08 uniblade02,03 srbn01
CPU Intel Core2 Intel P4 Intel Xeon Intel Xeon Intel P4

1.86GHz 2.00GHz 3.4GHz 3.20GHz 3.00GHz
Cache 4M 512K 2M 2M 1M
RAM 2G 1G 2G 1G 1G

into the mainstream Linux kernel tree in kernel version 2.6.14. We used FUSE
to implement GFS as a user-level grid file system.

The directory server was deployed on “grid01” (a machine located at National
Taiwan University), which manages all metadata in our prototype GFS. Each
of the other GFS hosts runs a GFS client and a GFS file server. File servers are
responsible for the underlying file transfers between GFS sites, and GFS clients
are interfaces between users (programs) and GFS, i.e., users manipulate and
access GFS files via GFS clients.

5.2 Experiment Results

We now describe the experimental results from the three sets of experiments.
The first set of experiments examine the effects of file length on the performance.
The second set of experiments examine the performance of GFS file transfer. The
final set of experiments examine the job success rate using GFS.

Effects of File Length. In the first set of experiments we perform a number of
file copies from a remote site to a local site under different environment settings.
Each experiment copies 100 files with size ranging from 5MB to 1GB, on the
different Fast Ethernet switches. These file sizes are common in grid computing,
e.g., the autodock tasks that we tested. Although it is possible to transfer task
to where the data is located, it will be more efficient to transfer data to multiple
sites so that a large number of tasks can run in parallel. This is particularly
useful in running multiple tasks with different parameter setting.

The file transfer commands are different in SCP, GridFTP, and GFS. In
GridFTP/SCP environment, one special command is invoked for each file in
order to transfer data from a remote GridFTP/SSH FTP server to the local
disk. On the other hand, after mounting GFS on the directory /gfs in each
machine, we use the Unix copy command “cp” to transfer files. Each file has a
master copy and a primary replica in the system. Each file is downloaded from its
master copy and its primary replica simultaneously since GFS uses the multiple
source data transfer mechanism to transfer files.

Table 2 shows that results from the first set of experiments. For files ranging
from 100M to 1G, all three methods have about the same performance since
the network overhead is not significant when compared to disk I/O overhead.
However, when the size of files ranges from 5M to 50M, our approach has about
the same performance with the SCP approach, and is 26%∼43% faster than the
popular GridFTP.

128 C.-T. Chen et al.

Table 2. Performance comparisons of SCP, GridFTP, and GFS. The numbers in the
table are performance ratios compared to the transferring time of GFS.

5M 10M 50M 100M 500M 1G
SCP 1.10 1.13 0.93 0.98 0.99 0.98
GridFTP 1.26 1.39 1.43 1.02 1.03 1.02
GFS 1 1 1 1 1 1

GFS File Transfer. The second set of experiments compare the performance
of job execution with and without GFS multiple data file transfer mechanism.
We run an MPI program StringCount that counts the number of occurrence of
a given string in a file. The size of all input files are 1 GB. StringCount divides
the input file into equal size segments and each computing machine is assigned
one segment to count the occurrence of a given string in that segment.

In the first setting, we use the GFS file transfer mechanism. We put the
executable file and its input files into GFS and execute the string counting MPI
program. GFS file servers transfer these GFS files automatically. Note that the
computing machines only receive the necessary segments of the input file from
multiple file replicas simultaneously.

In the second setting, we do not useGFS file transfermechanism. Instead, we fol-
low the job submissionmechanismof theGlobus [3] system.UnderGlobus, the local
machine transfers the executable and the entire input file to the computing ma-
chines before execution. Users need to specify the location of the input files and the
executable file in a script file. GridFTP transfers the files according to the script.

The master copies of the executable file and its input files are in the host
“iisgrid01” and the primary replicas are in the host “grid02”. For the experiments
that do not use GFS file transfer, the executable file and the input files are
initially stored at the host “iisgrid01”. The number of worker machines ranges
from 2 to 10.

Fig. 4a shows the experimental results. The vertical axis is the execution time
and the horizontal axis is the number of worker machines. From Fig. 4a we can
see that the execution time of Globus increases as the number of hosts increases.
This overhead is due to transferring the entire input file under Globus between
worker machines and “iisgrid01”, which has the input files. On the other hand,
the execution time of GFS is much shorter because the worker machines only
need to get the necessary segments of the input file rather than the entire file,
which greatly reduces the communication cost.

Although it is possible for a programmer to use GridFTP API to transfer only
the necessary parts of a input file, it takes extraordinary efforts for a programmer
to learn the API and to modify the existing MPI programs. Another drawback is
that once the program is modified, it cannot run in grid systems that do not have
GridFTP, such as a cluster system without Globus. In contrast our GFS approach
does not require a user to change his program since GFS is at the file system level.

Job Success Rate. The third set of experiments use autodock [5] to illustrate
that GFS improves the success rate of submitted job under Taiwan Unigrid.

GFS: A Distributed File System with Multi-source Data Access 129

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2 4 6 8 10

E
la

p
s
e
d
 t
im

e
 (

S
e
c
)

Number of hosts

GFS Method
GridFTP Method

(a) Execution time comparison un-
der Globus and GFS.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

N
u
m

b
e
r

o
f
c
o
m

p
le

te
d
 s

u
c
c
e
s
s
fu

lly
 s

u
b
m

it
te

d
 t
a
s
k
s

Elapsed time (min)

GFS Method
100 tasks

(b) The number of completed jobs
with respect to elapsed time.

Fig. 4. Fig. 4a shows results of the second set of experiments and Fig. 4b shows results
of the third set of experiments

When we submit a job into Taiwan UniGrid, the job may not be able to complete
because jobs assigned to the same host may request input data or executable
simultaneously. As a result the amount of simultaneous traffic may exceed the
capacity of GridFTP at that site, and job fails to execute. In our experience, fail-
ure rate is about 18.44% when we submit 100 jobs with two GridFTP servers [8].
GFS solve this I/O bottleneck problem by bypassing GridFTP and using a more
efficient mechanism to transfer data, so that job will execute successfully.

In a previous paper Ho et al. [8] reported that under the current Taiwan Unigrid
Globus setting, the failure rate of an autoduck task is about 52.94% to 18.44%, de-
pending on the methods of arranging executables and input files. The main reason
of this high failure rate is the I/O bottleneck due to capacity limitation of GridFTP.
Consequently, Globus GRAM jobs cannot stage in the executable program prop-
erly. This problem also occurred when tasks read the input files.

When we use GFS, the GRAM resource file “file.rsl” only specifies the ex-
ecutable and arguments, since the other information are implicitly implied by
GFS file system. For example, the value of the executable is a local file path such
as “/gfs/autodock” since GFS is treated as a local file system. The arguments
of the executable file are specified as usual. The input data and the output data
are accessible by GFS, so it is not required in “file.rsl”.

Fig. 4b shows the results of virtual screening (a core computation of autoduck)
by screening a 100 ligands database to avian influenza virus (H5N1) [9]. The job
success rate is 100%, which means every task submitted completes successfully.
In other words, GFS overcomes the I/O bottleneck problem while submitting
multiple GRAM jobs, which cannot stage in the executable program due to the
capacity limit of GridFTP.

6 Conclusion

To cope with the difficulties in running data-intensive applications with unknown
data requirements and potential I/O bottleneck in Grid environment, we design

130 C.-T. Chen et al.

Grid File System (GFS) that provides UNIX-like API, and provides the same
namespace and semantics as if the files are stored on a local machine.

GFS has the following advantages. First, GFS uses standard file I/O libraries
that are available in every UNIX system; therefore, applications do not need
modification to access remote GFS files. Second, GFS supports partial file ac-
cess and replication mechanism for fault tolerance. Third, GFS accesses remote
files with a multi-source data transfer mechanism, which improves data transfer
rate by 26%∼43% compared with GridFTP, which in turn enhances the overall
system performance. Fourth, GFS is a user space file system that do not re-
quire kernel modification; therefore, it can be easily deployed in any Unix-like
environments without the help of system administrators.

We also plan to integrate the authentication mechanisms such as GSI or PKI
into our further release of GFS, and conduct more experiments to compare GFS
with other grid-enabled distributed file systems, such as XtreemFS [10].

Acknowledgement

The authors would like to acknowledge the anonymous reviewers for their valu-
able advises. This research is supported in part by the National Science Council,
Republic of China, under Grant NSC 97-2221-E-002-128, and by Excellent Re-
search Projects of National Taiwan University, 97R0062-06.

References

1. Taiwan unigrid project, http://www.unigrid.org.tw
2. Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham,

R., West, M.: Scale and performance in a distributed file system. ACM Transactions
on Computer Systems (TOCS) 6(1), 51–81 (1988)

3. Globus toolkit, http://www.globus.org
4. Allcock, W., Foster, I., Tuecke, S., Chervenak, A., Kesselman, C.: Protocols and

services for distributed data-intensive science. Advanced computing and analysis
techniques in physics research 583, 161–163 (2001)

5. Autodock docking tools, http://autodock.scripps.edu/
6. Sqlite, http://www.sqlite.org/
7. Filesystem in userspace–fuse, http://fuse.sourceforge.net/
8. Ho, L.-Y., Liu, P., Wang, C.-M., Wu, J.-J.: The development of a drug discovery vir-

tual screening application on taiwan unigrid. In: The 4th Workshop on Grid Tech-
nologies and Application (WoGTA 2007), Providence University, Taichung,Taiwan
(2007)

9. Russell, R., Haire, L., Stevens, D., Collins, P., Lin, Y., Blackburn, G., Hay, A.,
Gamblin, S., Skehel, J.: Structural biology: antiviral drugs fit for a purpose. Na-
ture 443, 37–38 (2006)

10. Xtreemfs, http://www.xtreemfs.org

http://www.unigrid.org.tw
http://www.globus.org
http://autodock.scripps.edu/
http://www.sqlite.org/
http://fuse.sourceforge.net/
http://www.xtreemfs.org

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 131–141, 2009.
© Springer-Verlag Berlin Heidelberg 2009

G2G: A Meta-Grid Framework for the Convergence of
P2P and Grids

Wu-Chun Chung1, Chin-Jung Hsu1, Yi-Shiang Lin1, Kuan-Chou Lai2,
and Yeh-Ching Chung1,*

1 Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

{wcchung,oxhead,yslin}@sslab.cs.nthu.edu.tw,
ychung@cs.nthu.edu.tw

2 Department of Computer and Information Science
National Taichung University, Taichung, Taiwan, R.O.C.

kclai@ntcu.edu.tw

Abstract. Grid systems integrate distributed resources to form self-organization
and self-management autonomies. Recently, for large-scale computation re-
quirement, the collaboration of different grid systems is one of the hot research
topics. In this paper, we propose a meta-grid framework, called G2G frame-
work, to harmonize autonomic grids for realizing the federation of different
grids. The G2G framework is a decentralized management framework on top of
existing autonomic grid systems. It adopts a super-peer network to coordinate
distributed grid systems. A super-peer overlay network is constructed for the
communication among super-peers in different grid systems. The contribution
of this study is to propose a G2G framework for the Grid-to-Grid federation and
to implement a preliminary system. Experimental results show that the pro-
posed meta-grid framework could improve the system performance in the G2G
system.

Keywords: Convergence, Peer-to-Peer (P2P), Super-peer, Grid Computing,
Grid-to-Grid (G2G).

1 Introduction

The grid computing system is a distributed computing system for solving complex or
high-performance computing problems, e.g., bioinformatics, medicare/healthcare,
natural environment, large Hadron collider, and so on. The grid middleware enables
the grid system to integrate large-scale distributed computing resources and to provide
an abstract interface for system development. Then, the performance of distributed
computing and data accessing could be improved by geographical distributed
resources.

Many efforts adopt centralized or hierarchical architectures to develop grid systems
based on the open grid service architecture (OGSA) [8]. In grid computing, a virtual

* The corresponding author.

132 W.-C. Chung et al.

organization is a self-organization and self-management group which shares the same
computing resources [7]. Recently, for large-scale computation requirement, the collabora-
tion of different grid systems (G2G grid system or meta-grid system) is one of hot research
topics. The prospective cooperation is to integrate multiple autonomic virtual organiza-
tions through the federation of distinct grid systems. However, it is a challenge to harmo-
nize grid systems without bringing a heavy burden on existing grid infrastructure.

In order to coordinate multiple grid systems, a grid system requires a middleware
for the cross-grid convergence of diversely autonomic grid communities. This bur-
dens a grid system with lots of efforts to harmonize with other grid systems; and
moreover, there is no mature cross-grid middleware for integrating with distinct grid
systems. In this paper, we present a meta-grid framework, called G2G framework, to
federate with multiple institutional grid systems. The G2G framework could harmo-
nize distributed grid systems over the Internet with seamless modification for existing
grid systems.

The proposed decentralized G2G framework could realize the synergy between
P2P networks and existing grid systems. This study utilizes a super-peer network [14]
to develop our G2G framework for the coordination of multiple autonomic grid sys-
tems. To achieve the decentralization of G2G framework, the super-peer network
adopts an overlay network for the communication among super-peers in different grid
systems through the federation of wide area grids. Our contributions in this paper are
to introduce a conceptual framework of the G2G system based on a super-peer net-
work. We also present a preliminary implementation of the proposed G2G framework
and develop a Grid-to-Grid network based on an overlay network in which each grid
system communicates and negotiates with other grid systems.

The remaining of this paper is organized as follows. Section 2 discusses the related
work. In Section 3, we present a conceptual overview of G2G framework and the
implementation of G2G prototype. The experiment results of G2G system are shown
in Section 4. We conclude this paper with future work in Section 5.

2 Related Work

As the grid size increases, the scalability of the large-scale grid systems becomes one
of the challenges. There are some works that have discussed the practices adopting
the P2P technique to improve the scalability of the grid system. Some similarities and
differences between P2P computing and grid computing have been presented in [5],
[13]. Several previous works are aimed to improve the centralized-based infrastruc-
ture using the P2P technique. These related works are introduced in this section.

The integration of a distributed event brokering system with the JXTA technology
[16] to enable Peer-to-Peer Grids has been proposed in [9]. The authors utilize Na-
radaBrokering [12] based on the hierarchical structure in the broker network. By the
integration of NaradaBrokering and JXTA, services are mediated by the broker mid-
dleware or the P2P interactions between machines on the edge. The main idea of Na-
radaBrokering aims to present a unified environment for grid computing with a P2P
interaction. In addition, the overhead would be costly for NaradaBrokering to maintain
the broker network of the hierarchical topology in a dynamically changed network.

A P2PGrid platform based on a two-layer model for integrating P2P computing
into the Grid is presented in [1]. All grid services are provided within the grid layer in

 G2G: A Meta-Grid Framework for the Convergence of P2P and Grids 133

a standard manner while the P2P layer is used for grid services or ordinary PCs to
participate in the grid activities. In this study, JXTA is adopted to develop JXTA
Agents to create peers, deal with dynamics of peer groups, and communicate with
peers on the underlying P2P network. By the implementation of the P2PGrid
platform, resources on the edge of Internet are able to provide or consume services
without the hassles of maintaining grid middleware packages. A separate layer from
existing grid system is benefit since the original behaves of grid layer could be pre-
served without modifications, and the modification of the P2P manner would not
affect the efficiency of the grid layer. The main idea of the P2PGrid is to provide a
possible solution for integrating P2P computing with the grid environment. Peers in
the P2P layer are created by the grid entities or common PCs without any grid system
installed. Jobs are requested and dispatched to workers organized by created peers in
the underlying P2P computing network.

In this study, we present a decentralized meta-grid framework on the top of exist-
ing autonomic grid systems from another perspective. The autonomic grids are
coordinated based on the super-peer network to form a Grid-to-Grid collaborative
computing environment. A super-peer in the G2G system stands for a grid system. In
this study, a super-peer is able to provide/consume the grid services to/from other
super-peers in remote grid systems. The autonomic grids are coordinated based on a
unstructured super-peer overlay network to form a Grid-to-Grid collaborative comput-
ing environment. By adopting a separated layer, the G2G framework could integrate
with existing grid systems without modifying the original mechanisms and policies.
On the other hand, we not only concern the support of computation services and data
services, but also propose a possible solution for the verification of accessing remote
resources because of considering the security issues in the Grid-to-Grid environment.

3 G2G Framework and Prototype

Currently, most of the grid systems are deployed according to centralized or hierar-
chical management approaches. However, these approaches have poor performance in
terms of scalability, resiliency, and load-balancing for managing distributed resources
[11]. Centralization and hierarchy are the weaknesses of deploying large multi-
institutional grid systems, let alone in the widely inter-networking G2G system. Some
research work showed that the performance with adopting the super-peer model is
generally more efficient and convenient than that without adopting the super-peer
model in large-scale computing environments.

In our G2G framework, we utilize the super-peer network to coordinate the exist-
ing grid systems and adopt the P2P technique to coordinate grid systems. In this sec-
tion, we describe the design concept for G2G system at first; and then, we introduce a
basic conceptual overview of meta-grid framework. At the end of this section, we
present a preliminary G2G prototype for the development of the G2G system.

3.1 Super-Peer Based G2G System

The super-peer network is proposed to combine the efficiency of centralized search as
well as the features in terms of autonomy, load balance, and robustness of distributed

134 W.-C. Chung et al.

search. A super-peer is a node that acts both as a centralized server to a set of ordinary
nodes and as a coequality to negotiate with other super-peers.

Each super-peer in our G2G system acts a coordinator for a single grid system
which is built in self-organization and self-management with the autonomy. A super-
peer in the G2G system is responsible for coordinating a local autonomic Grid system
and negotiating with other super-peers in remote Grid systems. For example, after
obtaining a request for task execution, the super-peer firstly checks whether the re-
quest could be processed locally; otherwise, the request would be forwarded to other
grid systems by cooperating with other super-peers.

Since there are multiple autonomic grid systems in the G2G system, we set up a
P2P network on the grid systems to federate the super-peer in each grid system. In
this way, the Grid-to-Grid interactions among distinct grid systems are by way of the
P2P network. Based on P2P overlay networks, each grid in the G2G system could
supply its resources and services to other grid systems and improve the resource utili-
zation in the wide-area grids when some of the grids are overloaded and some of them
are under-loaded.

In order to achieve the seamless integration of the grids in the G2G system, this
study adopts the super-peer network on top of the existing grid systems, and harmo-
nizes existing autonomous grids with each other without rebuilding/modifying any
grid system. Each existent grid system could easily join the G2G system based on the
super-peer network. The concept of the G2G system is shown in Fig. 1.

The G2G system consists of the Cross-Grid part, the Local-Grid part and the Meta-
Grid interface. In the Local-Grid part, it consists of some autonomic grid systems
which are built by the grid middleware to collaborate distributed resources. In the
Cross-Grid part, the super-peers are deployed and the G2G layer is responsible to
coordinate the super-peers in autonomic grids. These super-peers not only take charge
of integrating the autonomic grids by the developed common interfaces but also han-
dle the negotiation between grid systems in the G2G layer. The Meta-Grid interface is
responsible to integrate the Cross-Grid part and the Local-Grid part. Using these
common interfaces, the Cross-Grid part could acquire the resources and services from

Fig. 1. Conception of the G2G system based on a super-peer network

 G2G: A Meta-Grid Framework for the Convergence of P2P and Grids 135

the Local-Grid part without knowing the policies, mechanisms, or algorithms in the
Local-Grid part. Since the Cross-Grid part and the Local-Grid part are independent,
the Cross-Grid part doesn’t need to be modified when the mechanisms in the Local-
Grid part are modified or replaced.

3.2 G2G Framework

The G2G framework aims to support the seamless integration of the computing ser-
vices and the data accessing services in the autonomous grids. Therefore, the super-
peer in the Cross-Grid part consists of seven components: the Interactive interface, the
security management, the network management, the task management, the data man-
agement, the resource management and the information service. The task management
component takes care of the job computation, and the data management component is
responsible for integrating the storage systems in the data grid [2]. The network man-
agement component handles the network topology and the G2G interaction between
distinct grids. The resource management manages the distributed resources in grid
systems according to the resource status supported by the information service compo-
nent. The interactive interface component deals with the login process for users and the
security management component is in charge of the authorization of using grids.

In this study, a meta-grid framework of the G2G system is proposed for federating
multiple autonomic grid systems, as shown in Fig. 2. By cooperating these compo-
nents in the G2G framework, we can apply grid applications on this framework. The
detail notions of developing a G2G prototype are shown in the following.

3.3 G2G Prototype

This study uses JAVA to develop the proposed G2G framework in which the super-
peers are connected by an unstructured overlay network. The developed components
of the super-peer are deployed on top of each autonomic grid system to form the

Fig. 2. Conceptual framework of components in the Cross-Grid part

136 W.-C. Chung et al.

federation environment. In this subsection, we describe the implementation and the
cooperation of all components in the G2G computing system.

3.3.1 Portal and Single Sign-On
In general, a friendly interactive interface is important for users while using the grids.
Therefore, this study develops a uniform web portal for users to easily enter a grid
system and to utilize the authorized resources and services. There are two important
functions for developing a uniform web portal: Single Sign-On (SSO), and workflow
operation.

Single Sign-On (SSO) is adopted for users to access the grids with only-once login.
Each user could utilize grid resources/services after the successful verification
through the proxy server and the security management. This study proposes a uniform
web portal on top of each autonomous grid system. A redirection mechanism is also
developed in the uniform web portal.

When a user logins the G2G system from this uniform web portal, the portal would
determine which grid system the user should be entered according to the user’s login
information. The candidate grid system would verify whether the user’s login infor-
mation is valid or not. If the login is successful, the portal would deliver the user’s
login information to the local security service through the Meta-Grid interface. If the
certificate of the user is also valid, the login process is successful and complete. Oth-
erwise, it would be a failure one. Since the login process is accomplished through the
integration of originally grid systems, the SSO in the G2G layer could be subsisted if
the local grid supports the SSO mechanism.

The workflow operation in the G2G system supports the task submission. A work-
flow is composed of multiple stages and each stage is composed of multiple jobs. Jobs
between distinct stages may be dependent. But jobs in the same stage are all inde-
pendent, that is, all jobs within the same stage could be scheduled and allocated for
simultaneous execution.

This study also develops a workflow editor in the uniform web portal. According to
the resource status obtained from the information service component, users could not
only edit the tasks on the portal, but also specify desired resource requirements. This
study adopts an XML-based structure language to describe the task information and
supports the resource discovery by multiple attributes with range query. After the task
submission, the edited workflow would be transformed into the XML-based form and
be stored in the database for users to lookup, cancel, or refine their tasks at anytime.

3.3.2 Security Service
Grid authentication and authorization are key services in the grid security manage-
ment. Grid Security Infrastructure (GSI) [6] has defined the standard for the legal
utilization of grid services. In the G2G system, the security management component
deals with not only the certificate authorization locally, but also the admission request
from remote grid systems. The issues of the secrecy and privacy in the G2G system
have to guarantee the original legal services in the local grid systems and accept the
permission of utilizing local resources/services for other remote grid systems. The
security management component includes two primary parts: the passport manager
for the authorized privilege and the account manager for the account management.

 G2G: A Meta-Grid Framework for the Convergence of P2P and Grids 137

Passport manager takes care of the passport registration and the verification in the
G2G system. A passport stands for the admission or verification of the request from
remote grid systems. If one grid system wants to access resources in another grid
system, it must get a visaed passport from the target grid system before accessing the
resources. This study develops a distributed passport-interchange-mechanism in the
G2G system. According to the maintenance of neighborhood relationship, each grid
system could request a remote resource/service from its neighbors or neighbors’
neighbors by forwarding the resource/service request along the overlay network.
After discovering the available resource/service in remote grids, the requester would
receive the visaed passports from the granted grid system; and then, the requester
could submit tasks to the granted remote grids with legal permission.

Account manager is responsible for the account management. In this study, the
function of the account authentication is used for a “local account” to login the grids.
A local account indicates an originally user account in the local grid system. Once an
account requests for a login from the portal, the portal would ask the account manager
to verify its identification. Another important issue of the account manager is the
account mapping mechanism. Account mapping is used to deal with requests issued
by foreign users from remote grid systems. Every grid system which wants to use the
resources in other grids must register to the granted grid system before accessing
those resources. The register process acquires a passport and gets a temporary ac-
count. Once the register process is completed, every request with the visaed passport
from remote grid systems would be treated as a local user account through the ac-
count mapping mechanism.

3.3.3 Data Service
In this study, the G2G system supports specific APIs for the transparent accesses of
existent data storage in each local grid system and for the data transmission among
different autonomic grid systems.

In the G2G system, the abstract APIs is responsible to contact a storage system in a
local grid system or a general file system. Data accesses between the Cross-Grid layer
and the Local-Grid layer adopt the general-defined data operations; otherwise, the
data accesses from one grid to another grid adopt the G2G communication through
super-peers. When a data transmission is necessary to communicate with remote
grids, the super-peer takes care of the negotiation and communication with other su-
per-peers in the G2G layer. We use the account manager to manage the foreign data
files in this case. When the data files are accessed from remote grid systems, these
data files could be stored in the storage system and then be mapped to local owners.
After the data mapping and the account handling, the foreign data file could be acces-
sible for local users.

3.3.4 Information Service
The main responsibilities of the information service include the resource indexing and
monitoring for capturing the resource status in a grid system. Traditional Grid Infor-
mation Service (GIS) generally adopts the centralized or hierarchical organization [3],
[4]. Such architectures for the information service are hard to directly apply to the
G2G system because of the single point of failure problem. To alleviate the failure
problem, this study develops an information service for crossing the inter-grid

138 W.-C. Chung et al.

systems on top of the existent information monitoring system. Our information ser-
vice consists of two mechanisms: the information monitor and the information
convertor.

This study also proposes an Information Description Language (IDL) in the form
of the XML-based structure for describing the grid information in the Cross-Grid
layer. The IDL is composed of many kinds of information such as task submission,
task requirement, resource status, system utilization, and so on. Since the XML-based
structure is wide used for information monitoring systems to record resource informa-
tion, we also develop the information convertor to inter-transform other XML-based
resource information into our IDL format.

3.3.5 Network Management
This study proposes a Grid-to-Grid overlay network based on the super-peer network.
In the G2G system, the super-peer in each autonomic grid system takes responsible
for the negotiation and communication with other super-peers over the G2G overlay
network. The decentralized overlay network is adopted to construct the neighborhood
relationship and to forward a request between super-peers.

In the cross-grid network management, we introduce the topology manager to
maintain the overlay network with an adaptable mechanism for the neighborhood
relationship or routing information. On the other hand, we also present the G2G
communicator to take care of the network communication and message negotiation.
In order to communicate with different autonomic systems, we not only apply IDL to
describe the exchanged information but also design an application-level request for-
mat for message transmission. Every communication is accomplished by using the
socket connection. The communication in-between two grid systems could be divided
into sender- and receiver-modules. For the sender module, all the requests would be
transformed into a predefined request format, and then the requests are sent to remote
super-peers in serial. For the receiver module, remote super-peer de-serializes all the
received requests and forwards to the corresponding components.

3.3.6 Task Management with Resource Discovery
The task management is in charge of the task submission through the interactive inter-
face. A task would be a number of jobs executed in sequential or in parallel. In the
G2G system, tasks are not only submitted from local users, but probably are requested
from remote grid systems. The G2G scheduler and G2G allocator need to consider the
job execution among the intra-grid submission as well as the inter-grid submission.

In the task management module, we adopt a workflow structure to organize jobs in
a predefined order for execution. The workflow structure is constructed by stages and
jobs. Those jobs in next stage must be waiting for execution until all jobs in current
stage are finished because of considering the relations between stages are dependent.
We also develop the workflow manager and the job manager to handle requested
tasks. After a task is submitted to workflow manager, the manager schedules the order
of jobs and decides where to execute these jobs. The decision of migrating the execu-
table jobs to a local grid or a remote grid depends on the system performance or the
current resource condition. Each job has its basic requirements of desired resources or
the computing environment for execution. This study also applies a resource discov-
ery mechanism [10] to explore distributed resources status over the Grid-to-Grid

 G2G: A Meta-Grid Framework for the Convergence of P2P and Grids 139

overlay network, and supports a matchmaking policy to provide candidate resources
satisfied the specified requirements.

After a task is submitted to the waiting queue for execution, the G2G scheduler
picks one of queuing jobs according to the First-Come-First-Served (FCFS) policy,
and then checks whether local resources are sufficient or under loading at first. The
decision of where to execute a job depends on not only checking whether local grid
system is over loading, but also discovering whether local resources are satisfied with
requirements through information service. If the local grid system is not busy and
there are sufficiently available resources, the job would be migrated to the local grid
system to be executed. Otherwise, the job manager would ask the distributed resource
discovery module to search available resources over the overlay network. If there are
sufficient resources in other super-peers, the job would be migrated to the remote grid
system for execution. Otherwise, this job would be queued in the waiting queue for
available resources.

4 Experimental Results

To evaluate the proposed G2G framework, two autonomic grid systems based on the
framework of Taiwan UniGrid [15] are used. One autonomic grid system contains a
cluster with 8 higher computational power CPUs. The other autonomic grid system
contains a cluster with 32 lower computing power CPUs. We deploy the proposed
super-peer network on top of each autonomic grid system to form a Grid-to-Grid
federation environment. Each super-peer is responsible for coordinating the local
autonomic grid system and for communicating with other super-peers over the Inter-
net. By using the information converter, each grid system in the G2G system could
extract resource information from the Information Service module. By using the IDL,
the Cross-Grid layer could negotiate with the Local-Grid layer; and then the message
could be exchanged between distinct grid systems.

We use a matrix multiplication program as the benchmark. Each job we used in
the experiment is a parallel program written by MPI with C. The matrix size is
2048x2048. The number of required processors for each job is set to 2. The ratio of
communication to computation of the test program is about 1 to 100. The task we
used for performance evaluation is composed of five independent jobs. We estimate
the average turnaround time for finishing all the jobs in three cases. The turnaround
time of a task is defined as the time when a task is submitted to the waiting queue for
processing in the Cross-Grid layer to the time when all the jobs are finished in the
Local-Grid layer. In case 1, the task is submitted to the grid system with rich re-
sources but lower computing power. In case 2, the same task is submitted to the grid
system with fewer resources but higher computational power. For cases 1 and 2, all
the jobs are only executed in the local grid system. In case 3, the same task is submit-
ted to the G2G system that contains both grid systems. In this case, jobs will be exe-
cuted in the local grid or the remote grid according to the decision made by the G2G
scheduler and G2G allocator that we described in Section 3.3.6.

Fig. 3 shows the experimental results of three cases. The experimental results show
that the proposed meta-grid framework could improve the system performance in the
G2G system. In general, a grid system with rich resources could finish a task with less

140 W.-C. Chung et al.

Fig. 3. Experimental results for finishing executing a task in three cases

turnaround time than that with higher computational power. The reason is that a job
would be queued for a long time if local resources are all busy in a grid system with
fewer resources. The longer time a job is queued, the more time the turnaround time
would be consumed. When there are no available resources in a local grid system, the job
would be migrated to a remote grid system with available resources for execution. Hence,
a task in the G2G system would be finished with the least average turnaround time.

5 Conclusions and Future Work

Integrating the P2P technique with grid computing could improve the scalability of
the large-scale grid system. This study proposes a meta-grid framework, named G2G
framework, for the Grid-to-Grid federation of autonomic grid systems without modi-
fying the original mechanisms and policies. Based on the super-peer network, we
adopt a separated layer on top of existing grid systems to develop the Grid-to-Grid
collaborative computing environment. A super-peer in the G2G system is responsible
for coordinating an internally autonomic grid system and for communicating with
other super-peers. The overlay network among super-peers is constructed by the un-
structured approach.

A grid system is deployed with the capacity of the super-peer for coordinating the
G2G system. With the well-defined APIs, the G2G system looks like an abstract layer
separated from the existing grid systems. In our G2G system, an existing grid system
could upgrade its G2G capability without upsetting original mechanisms. We not only
take care of the support of computation services and data services, but also consider a
possible solution for the grid security across different grid systems. To evaluate the
performance of the G2G system, we implemented a preliminary system to show that
the proposed system not only is workable but also improves the system performance.

We will continue to integrate with more autonomic grid systems and study on the
efficiency of grid security across diverse grid systems. We also intend to integrate the
G2G framework with the Service-Oriented Architecture (SOA) to develop a service-
oriented G2G computing system in the future.

Acknowledgments. The work of this paper is partially supported by National Science
Council, Ministry of Economic Affairs of the Republic of China under contract NSC
96-2221-E-007-129-MY3 and NSC 96-2221-E-007-130-MY3. We also thank all of
the people for comments and advices.

 G2G: A Meta-Grid Framework for the Convergence of P2P and Grids 141

References

1. Cao, J., Liu, F.B., Xu, C.-Z.: P2PGrid: Integrating P2P Networks into the Grid Environ-
ment: Research Articles. Concurr. Comput.: Pract. Exper. 19, 1023–1046 (2007)

2. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: To-
wards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets. Journal of Network and Computer Applications 23, 187–200 (2000)

3. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for
Distributed Resource Sharing. In: 10th IEEE International Symposium on High Perform-
ance Distributed Computing, pp. 181–194. IEEE Press, New York (2001)

4. Fitzgerald, S., Foster, I., Kesselman, C., von Laszewski, G., Smith, W., Tuecke, S.: A Di-
rectory Service for Configuring High-Performance Distributed Computations. In: Sixth
IEEE International Symposium on High Performance Distributed Computing, pp. 365–
375. IEEE Press, Los Alamitos (1997)

5. Foster, I., Iamnitchi, A.: On Death, Taxes, and the Convergence of Peer-to-Peer and Grid
Computing. In: Peer-to-Peer Systems II, pp. 118–128 (2003)

6. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A Security Architecture for Computa-
tional Grids. In: 5th ACM Conference on Computer and Communications Security, pp.
83–92. ACM, San Francisco (1998)

7. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of High Performance Computing Applications 15,
200–222 (2001)

8. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Technical Report. Global
Grid Forum (2002),
http://www.globus.org/alliance/publications/papers/ogsa.pdf

9. Fox, G., Pallickara, S., Rao, X.: Towards Enabling Peer-to-Peer Grids. Concurr. Comput.:
Pract. Exper. 17, 1109–1131 (2005)

10. Mastroianni, C., Talia, D., Verta, O.: A Super-Peer Model for Resource Discovery Ser-
vices in Large-Scale Grids. Future Generation Computer Systems 21, 1235–1248 (2005)

11. Mastroianni, C., Talia, D., Verta, O.: Evaluating Resource Discovery Protocols for Hierar-
chical and Super-Peer Grid Information Systems. In: 15th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Processing, pp. 147–154. IEEE Press,
Los Alamitos (2007)

12. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and Ar-
chitecture for Enabling Durable Peer-to-Peer Grids. In: Endler, M., Schmidt, D.C. (eds.)
Middleware 2003. LNCS, vol. 2672, pp. 998–999. Springer, Heidelberg (2003)

13. Talia, D., Trunfio, P.: Toward a Synergy between P2P and Grids. Internet Computing 7,
96–95 (2003)

14. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: 19th International Con-
ference on Data Engineering, pp. 49–60 (2003)

15. Po-Chi, S., Hsi-Min, C., Yeh-Ching, C., Chien-Min, W., Ruay-Shiung, C., Ching-Hsien,
H., Kuo-Chan, H., Chao-Tung, Y.: Middleware of Taiwan UniGrid. In: 2008 ACM sym-
posium on Applied computing, pp. 489–493. ACM, Fortaleza (2008)

16. JXTA Community Projects, https://jxta.dev.java.net/

Distributed Asynchronous Iterative Algorithms:
New Experimentations with the

Jace Environment

Jacques M. Bahi, Raphaël Couturier, David Laiymani, and Kamel Mazouzi

Laboratoire d’Informatique de l’université de Franche-Comté
IUT Belfort-Montbéliard, Rue Engel Gros, 90016 Belfort - France

{bahi,couturier,laiymani,mazouzi}@univ-fcomte.fr

Abstract. Jace is a Multi-threaded Java environment that permits to
implement and execute distributed asynchronous iterative algorithms.
This class of algorithm is very suitable in a grid computing context
because it suppresses all synchronizations between computation nodes,
tolerates the loss of messages and enables the overlapping of communica-
tions by computation. The aim of this paper is to present new results ob-
tained with the new improved version of Jace. This version is a complete
rewriting of the environment. Several functionalities have been added to
achieve better performances. In particular, the communication and the
task management layers have been completely redesigned. Our evalua-
tion is based on solving scientific applications using the french Grid’5000
platform and shows that the new version of Jace performs better than
the old one.

1 Introduction

Many scientific programs require the solving of very large numerical problems.
Due to their size, these problems cannot be processed by a single machine be-
cause of the lack of memory and computing power. So the use of a distributed
architecture seems to be mandatory. In recent years, these architectures have
greatly evolved. The development of fast and reliable networks coupled with the
emergence of cheap and relatively powerful desktop computers have led to a
wild use of new distributed platforms. These platforms are often almost as ef-
ficient as supercomputers and for a much smaller cost. Nevertheless, physicians
define themselves as “gaseous users” which means that being given x computing
nodes at time t, they require x + 1 nodes at time t + 1. In this way, it appears
that the local cluster architecture, composed of homogeneous computing nodes
interconnected by a very fast local network, is no longer sufficient. Numerical
computations need larger architectures composed of hundreds or thousands of
heterogeneous nodes geographically distributed. We speak here of distributed
clusters (when the architecture is composed of several interconnected remote
clusters) or of volunteer computing architecture (when the architecture is com-
posed of public unused stations connected to the Internet). Both architectures

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 142–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Asynchronous Iterative Algorithms 143

provide large scale computing platforms able to (partially) tackle the size and the
power requirements of many numerical applications. Unfortunately, the efficient
parallelization of these applications on these platforms is not an easy task.

Indeed, there exist two main classes to solve numerical problems. The first
is the class of direct methods which compute the exact solution of a numerical
problem after a finite number of operations (we can cite here, LU or Cholesky
algorithms). The second is the class of iterative methods which iterate many
times the same instructions until reaching a good approximation of the solu-
tion. We say here that the algorithm has converged to the solution (we can cite
here, the Jacobi or the Conjugate Gradient algorithms). In this paper we only
focus on iterative methods since they are generally preferred over direct methods
for large problems. Now, when studying the paralellization of iterative methods
we can exhibit two main execution model: the synchronous iteration model and
the asynchronous iteration model. In the synchronous iteration model all nodes
are synchronized after each iteration in order to receive data dependencies from
their neighbors. In this model, the number of required iterations is the same
as in the sequential case. But the main drawback here are the numerous syn-
chronizations which occur between iterations and during communications. These
synchronizations can drastically reduce the overall performances especially in a
large scale context with heterogeneous computing nodes (the slowest node slows
down the overall platform). Now, the asynchronous iteration model [10], does
not require any synchronization between each iteration. The computing nodes
do not have to wait for data dependencies and can begin a new iteration using
the last received data. The main drawback of this model is that the number
of required iterations is generally greater than in the sequential case (and than
in the synchronous iteration case also). Furthermore, this model is not suitable
for all kind of iterative methods. Nevertheless, by suppressing synchronizations,
this model allows to completely overlap communications by computations and is
less sensitive to heterogeneity problems. Several works [5,6] have shown that the
asynchronous iteration model is a very interesting execution model for the par-
allelization of iterative methods. These works underline the advantages of this
model on large heterogeneous platforms with (medium to) high communication
cost i.e. distributed clusters or volunteer computing platforms.

Unfortunately, the development and the deployment of asynchronous itera-
tion applications is not straightforward. In [9], the authors show that the use
of a dedicated middleware is almost mandatory for developers. To our knowl-
edge, there exists only one development and execution environment dedicated
to the asynchronous iteration model : Jace (Java Asynchronous Computing En-
vironment) [8]. To tackle the heterogeneity of distributed clusters and to ensure
an easy deployment over the computing nodes, Jace is a pure Java environment.
It provides a message passing API (MPI-like style) allowing to use either RMI,
NIO or Sockets. The actual version of Jace is 2.0.

The aim of this paper is to present the new developments and the new version of
the Jace environment. We have rewritten Jace from scratch with a better objects
model. This rewriting has allowed us to better apprehend the fundamental issues

144 J.M. Bahi et al.

induced by the asynchronous iteration model. In particular, we have improved the
communication layer and the threads management of the environment. We have
also conducted an important new set of large scale experiments on the Grid’5000
testbed [1]. The experimental results show that ournew developments allow to out-
perform the old version of Jace.

This paper is organized as follows. In section 2 we present the motivations and
the context of our work. In particular, we present the actual version of the Jace
environment. In section 3 we detail the improvements brought to Jace. We focus
here on the communication layer and on the thread management layer. Section 4
presents the experimental results we obtain on the Grid’5000 platform. We end
this paper in section 5 by some concluding remarks and future works.

2 Motivations and Context

As exposed in the introduction, the asynchronous iteration model seems to be
a good execution model candidate for parallel numerical applications (especially
when target architectures are distributed clusters or volunteer computing plat-
forms). Nevertheless, the easy deployment of this model requires the use of a
dedicated middleware. In this section we present the main features of the asyn-
chronous iteration model and the Jace environment. We particularly point out
the weaknesses of the actual version of Jace.

2.1 The Asynchronous Iterations Model

We focus here on the following kind of problems:

x = f(x) (1)

Where x is a n dimension vector and f is a Rn → Rn function. A sequential
iterative algorithm can be expressed in the following way:

Algorithm 1. Sequential iterative algorithm model
Given x0

for k = 0, 1, . . . , until convergence do
xk+1 = f(xk)

end for

Algorithm 1 assumes the definition of a stopping threshold in order to stop
computations. This threshold, also called convergence criterion, is generally de-
fined from a norm computation. In the remainder we use the following norm
criterion: maxh∈1..n |xk+1

h − xk
h| < ε where ε is the convergence criterion and xk

h

is the hth component of vector x at iteration k.
The parallelization of iterative algorithms have been extensively studied. An

easy way to parallelize iterative algorithms is to decompose xk into m blocks
Xk

i (for i ∈ 1 . . .m). In the same way, f can be partitioned into m parts Fi (for
i ∈ 1 . . .m). In this way: xk = (xk

1 , xk
2 , . . . xk

n) ≡ Xk = (Xk
1 , Xk

2 , . . .Xk
m).

Distributed Asynchronous Iterative Algorithms 145

Algorithm 2. Parallel iterative algorithm model
Given (X0

1 , . . . X0
m)

for k = 0, 1, . . . , until convergence do
for i = 0, 1, . . . , m do

Xk+1
i = Fi(Xk

1 , Xk
2 , . . . Xk

m)
end for

end for

Now, if each component Xk
i is assigned to a computing node, each of them

computes Xk+1
i and sends it to all the other computing nodes in order for them

to compute the next iteration. As mentioned in the introduction, the way these
communications are performed can greatly influence the efficiency of the paral-
lel algorithm. Indeed, synchronizations which occur during communication and
between iterations can drastically decrease the overall performances of the al-
gorithms. In this way, we can classify parallel iterative algorithms in two main
classes (see [4] for more details):

– The synchronous iterations model. In this model, the iteration scheme is syn-
chronous (as shown in Figure 1). The global behavior of the algorithm is the
same as the sequential case. This strategy can be implemented by performing
several asynchronous communications (data required on another processor
are sent without stopping current computations) during the same iteration.
We speak here of the Synchronous Iterations Asynchronous Communications
(SIAC) model. Figure 1 illustrates this strategy with two processors. Here,
the first half of data are sent as soon as updated (dashed arrows) while the
second half is sent at the end of each iteration. Even if this model allows
a partial overlapping of communications by computations, its performances
can be poor, especially in a distributed clusters context. Indeed, as mentioned
in the introduction, these architectures are composed of thousands of het-
erogeneous computing nodes interconnected with a generally high latency
network (long distance links). In this context communications and inter-
processors synchronization can drastically decrease the overall performances
of the algorithm.

Processor 2

Time

Processor 1

Fig. 1. The Synchronous Iterations - Asynchronous Communications model

146 J.M. Bahi et al.

Processor 1

Processor 2

Time

Fig. 2. The Asynchronous Iterations - Asynchronous Communications model

– The asynchronous iterations model. Here, communications and iterations are
performed asynchronously. We speak here of the Asynchronous Iterations
Asynchronous Communications (AIAC) model. In this way, at step k, each
processor updates its components by using their most recent values and not
necessary the ones of iteration k − 1. With this model, communications and
computations are well overlapped and there are no idle times anymore, due
to inter-processor synchronizations between iterations (see figure 2). Unfor-
tunately, in this model, the global iteration scheme is not the same as the
sequential one. As a consequence, the number of iterations required before
the convergence is generally greater than for the SIAC model. Nevertheless,
in a distributed cluster context, the removal of inter-processors synchroniza-
tions allows to tackle the heterogeneity and long distance communications
issues and thus to considerably improve the overall performances [5,4].

2.2 The Jace Environment

The implementation of AIAC algorithms is not a straightforward task [8,9]. Since
this model relies on a full asynchronism paradigm, it is mandatory to be able
to dissociate communications and computations. This property implies the use
of multi-threaded environments and of dedicated message managers. In the re-
mainder of this section we present Jace [8] a Java programming and executing
environment especially designed to implement efficient AIAC algorithms. The
choice of Java is an interesting point. Indeed, an important issue that must be
addressed in a distributed clusters or volunteer computing context is the hetero-
geneity and the portability issue. In this way, and due to its execution model we
think that the Java language is an interesting solution for developing distributed
clusters applications [16,13] (even if its performances are not comparable to those
of the C language for example).

Architecture. Jace builds a virtual machine composed of distributed intercon-
nected nodes. Its programming interface is based on the message passing model
(MPI-like style). Jace also provides primitives to implement algorithms based
on the SIAC model. The Jace architecture is composed of the three following
components: the Daemon, the Spawner and the Worker.

Distributed Asynchronous Iterative Algorithms 147

The Daemon. Daemons are launched on each node of the architecture and
manage the whole Jace environment. They initialize the workers by continuously
waiting for spawner requests (via TCP sockets). To achieve good scalability
and efficient deployments, daemons are organized as a binomial tree [12]. This
hierarchical organization allows to also optimize global communications inside
the platform.

The Spawner. The spawner is the entity that starts the user application or
task. A task is a computing unit which is executed as a thread. The spawner
accepts a list of parameters: the number of tasks to be executed, the URL of the
task byte-code, the parameters of the application, the list of target daemons, the
mapping algorithm (round robin, best effort), the communication protocol etc.
Daemons process spawner messages, by forwarding them to their neighbors (in
the binomial tree) which starts workers to load and execute the user’s tasks.

The Worker. Workers are structured into two layers (see figure 3): the appli-
cation layer and the communication layer

– The Application Layer
This layer allows tasks execution and global convergence detection. Jace is
designed to control the global convergence process in a transparent way.
Tasks only compute their local convergence state and call the Jace API
to retrieve the global state. The application layer is also able to manage
multiple tasks in order to reduce distant communications and to exploit new
multi-core architectures.

– The Communication Layer
This layer manages the inter-tasks communications. For this, waiting queues
are created and managed by dedicated threads. For an execution in the SIAC

User’s Task

Grid Infrastructure

Message Manager

NIO RMI

Tasks Manager

Socket TCP/IP

Communication layer

Application layer

Fig. 3. The Jace worker architecture

148 J.M. Bahi et al.

mode, all messages sent by a task must be received by the other tasks. In the
AIAC mode only the most recent version of a message is kept in the queue
(the older ones must be deleted).

As exposed in the previous sections, it is very important that the com-
munication layer provides an efficient device to transfer data. Jace allows to
choose from the three following communication protocols: TCP/IP Sockets,
NIO (New Input/Output) [3,15] and RMI (Remote Method Invocation). In
[7] different series of tests have been conducted to evaluate the most efficient
communication protocol. The socket protocol is generally the best protocol
but the socket connections management of the NIO protocol allows it to be
sometimes more efficient in a large scale context.

3 Improving Performances of the Jace Environment

3.1 Limitations of the Actual Version

In its actual version, the Jace environment suffers from two main drawbacks.
First, it relies on the Java object serialization (rather than raw data) to trans-
parently send objects. Second, its threads management layer may force implicit
synchronizations and so may remove an important level of asynchronism.

The use of the Java serialization by Jace provides more flexibility but decreases
overall performances. Many works [11] have shown that the object serialization
is an important overhead added to communications. In a context of distributed
clusters, where communications can rapidly become an important bottleneck,
this serialization process must be avoided.

As exposed before, as Jace relies on a full asynchronism paradigm, it is manda-
tory to dissociate communications and computations through the use of a multi-
threaded architecture. Unfortunately, the management of these threads can be
difficult, particularly during the convergence detection phase. But a bad threads
management during this process can be really problematic since it may introduce
(again) an important level of synchronism.

These important limitations forced us to rewrite Jace from scratch with a
better object model and with improved communication and threads management
levels.

3.2 The Communication Management Level

In its actual version Jace performs the sending of an array of double in the
following way. First, it encapsulates the array into a serializable Message object.
Then data are extracted and the sending routines are called. On the reception
side, data are extracted again and then copied into an appropriate data structure.
With this simple example it is clear that many memory copies are unnecessarily
performed. Furthermore, some of them are in charge of the developer. In its new
version Jace does not use the serialization anymore for the Java standard types
(float, double . . .). Messages are now typed (JACE.FLOAT, JACE.DOUBLE...)
and data copies are suppressed both on the sending and receiving sides. From

Distributed Asynchronous Iterative Algorithms 149

an API point of view, the sending and receiving procedures are now very sim-
ilar to the MPI ones i.e.JACE.send(Object, offset, lenght, DataType, re-
ceiver, Tag) and JACE.receive(Object, offset, length, DataType,
sender, Tag, mode).

3.3 The Threads Management Level

Jace is a multi-threaded environment which runs three threads in parallel: the
computation thread, the sender thread and the receiver thread. The new ver-
sion of Jace totally redefines the threads management policy, in particular when
several tasks runs on the same processor. This case becomes more and more rel-
evant due to the generalization of multi-cores processors. So, to avoid synchro-
nizations between the computation and the communications threads a unique
sending queue is used. So, when n tasks are running on a processor we get 1
sending queue and n receiving queues.

The threads scheduling is also modified. Indeed, according to several experi-
mentations it appears that AIAC algorithms are more efficient when the sender
thread is of high priority. This can be explained by the fact that in this case,
messages are more frequently updated and so the algorithm converges more
quickly.

These optimisations have been implemented through the use of the java.util.
concurrent package of the 1.5 Java JDK.

4 Experimentations

In this section, we report the experiments we have performed on the French
Grid’5000 platform [1] (see figure 4). This platform is currently composed of
about 5000 cores (mono-core bi-processors and bi-core bi-processors) that are
located on 9 sites in France. Sites have Gigabit Ethernet Networks for local ma-
chines and links between the different sites range from 2.5 Gbps up to 10Gbps.
Most processors are AMD Opteron and INTEL Xeon running the Linux oper-
ating system. For more details on the Grid’5000 architecture, interested readers
are invited to visit the website: www.grid5000.fr.

4.1 The Test Application: The 3D Advection-Diffusion

The test application solves a three-dimensional advection-diffusion equation with
a numerical parallel iterative algorithm. This system modeled the transport pro-
cesses of pollutants, salinity, and so on, combined with their bio-chemical
interactions can be mathematically formulated as a system of advection-diffusion-
reaction equations. It follows an initial boundary value problem for a nonlinear
system of PDEs, in which nonlinearity only comes from the bio-chemical inter-
species reactions.

A system of 3D advection-diffusion-reaction equations has the following form:

∂c

∂t
+ A (c, a) = D (c, d) + R (c, t) , (2)

150 J.M. Bahi et al.

Fig. 4. Grid’5000 map

where c denotes the vector of unknown species concentrations, of length m, and
the two vectors

A (c, a) = [J (c)] × aT , (3)
D (c, d) = [J (c)] × d ×∇T , (4)

define respectively the advection and diffusion processes (J (c) denotes the Ja-
cobian of c with respect to (x, y, z)). For more details on the application readers
can refer to [14].

4.2 Experimental Results

The experimentations have been performed on 60 nodes distributed over 4 clus-
ters geographically located in three computer sciences Labs (Rennes, Bordeaux
and Nancy). Nodes are quite heterogeneous (16 bi-processors AMD Opteron 246
2.0GHz, 20 bi-processors bi-core AMD Opteron 2218 2.6 GHz, 4 bi-processors
bi-core Intel Xeon 5148 LV 2.33 Ghz, 20 bi-processors bi-core Intel Xeon 5110 1.6
GHz). The instance of the problem produces a sparse matrix of size 6, 750, 000×
6, 750, 000. The number of non-zero elements is equal to 14 per row. The method
we use, called the multisplitting method [5], allows us to execute the problem
using either the synchronous or the asynchronous iteration model. It is an it-
erative method. Moreover, the multisplitting with non-linear problem has the
particularity that each processor involved in the computation need to solve a
local linear system at each iteration of the multisplitting process. In these ex-
periments, we have used the MTJ library (Matrix Toolkit for Java) [2] with the

Distributed Asynchronous Iterative Algorithms 151

Mode Protocol Old version New version
Synchronous rmi 855 710
Asynchronous rmi 656 446
Synchronous socket 631 555
Asynchronous socket 457 352

Fig. 5. Comparison of the new and the old versions of Jace (time in s)

multi-threaded GMRES method. Consequently, each machine depending on its
numbers of processors and cores and processing characteristics can solve more
or less quickly a sparse linear system.

Results are presented in figure 5. From this table, several remarks can be
made. First, it appears that for both versions i.e. old and new, synchronous and
asynchronous, the socket protocol is clearly better than the RMI protocol. This
is not surprising and confirms some previous works [7]. Second, we can see that
in a distributed clusters context the AIAC model performs better than the SIAC
model for both protocols i.e. RMI and socket. Again, these results are not sur-
prising and confirm some previous works (see the introduction section). Finally,
and most importantly, we can see that the new version of Jace outperforms the
old one for both protocols and modes. The gain is important and varies from
12% (SIAC with Socket) to 32% (AIAC with RMI). As previously exposed, this
can be easily explained by the optimizations brought to the communication and
threads management layers.

In order to have a more precise idea of how the new version performs, we
are currently running a new series of tests with more nodes and with various
scientific applications.

5 Conclusion and Future Works

In this paper we have presented a new version of the Jace environment. This envi-
ronment is dedicated to Asynchronous Iterations Asynchronous Communications
algorithms and has proven its efficiency especially on a distributed clusters con-
text. The new version of Jace is a complete rewriting of the environment (with a
better object model). For this version, we have especially improved the threads
and the communication management levels. Experimental results conducted on
the Grid’5000 testbed, show that the new version performs better than the old
one both in local and distributed clusters context.

Our future work include to test Jace in a large scale context (with more than
300 nodes) and with some other scientific applications. These tests will allow
us to better characterised the behavior of Jace. Another interesting research
track is to mix the asynchronous and synchronous models. In our idea, it seems
to be interesting to study the use of synchronous solvers on local cluster and
asynchronous solvers between distant sites. This approach seems to be able to
gather the advantages of the both models.

152 J.M. Bahi et al.

References

1. Grid’5000, http://www.grid5000.fr
2. MTJ: Matrix Toolkit for Java, http://mtj.dev.java.net/
3. New I/O API, http://java.sun.com/j2se/1.4.2/docs/guide/nio
4. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Performance comparison of par-

allel programming environments for implementing AIAC algorithms. Journal of
Supercomputing 35(3), 227–244 (2006)

5. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Parallel Iterative Algorithms; From
Sequential to Grid Computing. Chapman and Hall/CRC, Boca Raton (2007)

6. Bahi, J.M., Couturier, R., Laiymani, D.: Comparison of conjugate gradient and
multisplitting algorithms of nas benchmark with the jace environment. In: IPDPS
2008. IEEE Computer Society Press, Los Alamitos (2008)

7. Bahi, J.M., Couturier, R., Laiymani, D., Mazouzi, K.: Java and asynchronous it-
erative applications: large scale experiments. In: IPDPS 2007, pp. 195–203. IEEE
Computer Society Press, Los Alamitos (2007)

8. Bahi, J.M., Domas, S., Mazouzi, K.: More on jace: New functionalities, new exper-
iments. In: IPDPS 2006, pp. 231–239. IEEE Computer Society Press, Los Alamitos
(2006)

9. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Performance comparison of parallel
programming environments for implementing AIAC algorithms. Journal of Super-
computing. Special Issue on Performance Modelling and Evaluation of Parallel and
Distributed Systems 35(3), 227–244 (2006)

10. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, Englewood Cliffs (1989)

11. Carpenter, B., Fox, G., Ko, S.H., Lim, S.: Object serialization for marshaling data
in a java interface to mpi. Concurrency: Practice and Experience 12(18), 539–553
(2000)

12. Gerbessiotis, A.V.: Architecture independent parallel binomial tree option price
valuations. Parallel Computing 30(2), 301–316 (2004)

13. Huet, F., Caromel, D., Bal, H.E.: A High Performance Java Middleware with a
Real Application. In: Proceedings of the Supercomputing Conference, Pittsburgh,
Pensylvania, USA (November 2004)

14. Blom, J.G., Verwer, J.G., Hundsdorfer, W.: An implicit-explicit approach for at-
mospheric transport-chemistry problems. Applied Numerical Mathematics: Trans-
actions of IMACS 20(1-2), 191–209 (1996)

15. Pugh, B., Spaccol, J.: MPJava: High Performance Message Passing in Java using
Java.nio. In: Proceedings of the Workshop on Languages and Compilers for Parallel
Computing, College Station, Texas, USA (October 2003)

16. van Nieuwpoort, R.V., Maassen, J., Kielmann, T., Bal, H.E.: Satin: Simple and
efficient Java-based grid programming. Scalable Computing: Practice and Experi-
ence 6(3), 19–32 (2005)

http://www.grid5000.fr
http://mtj.dev.java.net/
http://java.sun.com/j2se/1.4.2/docs/guide/nio

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 153–164, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Predicting Free Computing Capacities on Individual
Machines

Alek Opitz and Hartmut Koenig

Brandenburg Technical University Cottbus, Germany
{ao,koenig}@informatik.tu-cottbus.de

Abstract. The basic idea of grid computing is a better use of underutilized re-
sources. Following this idea, desktop grids target ordinary workstations, which
are very powerful today. However, due to the priority of the local users, it is
impossible to exclusively reserve computing time for grid jobs on these ma-
chines. Consequently, an already running grid job might be delayed or even
canceled. A forecast of future available computing capacities could alleviate
this problem. Such a prediction would be especially useful for the allocation of
the most appropriate machines and for making stochastic assertions on the com-
pletion of submitted jobs. In this paper we discuss suitable approaches for pre-
dicting the availability of computer resources. We develop measures to finally
make a comparison of the approaches, which is based on empirical data from
available workstations.

Keywords: grid computing, desktop grids, prediction, measures.

1 Introduction

In recent years a lot of work has been done to use idle computing resources distrib-
uted over the Internet. The idea of grid computing was born. It gives users the possi-
bility to submit compute-intensive jobs to a grid that provides the required resources,
whereas resource providers and users may belong to different organizations. The ob-
vious motivation behind this idea is a possible reduction of the costs by achieving a
substantial increase of the resource utilization, which is usually quite low for comput-
ing systems today [1].

The resources themselves can be resources dedicated to grid computing or, on the
contrary, for instance ordinary workstations. Due to their permanently increasing ca-
pabilities the latter are becoming more and more important for the processing of even
complex calculations. The development of new chips, for example, requires a lot of
simulation runs to check the correctness of the logic and the performance of a new de-
sign [7]. The use of workstations is beneficial here because of the sheer mass of simu-
lation runs, which are independent from each other. The runtimes of the simulations
range from a few minutes to several days, sometimes even several weeks. Other ex-
amples for the possible use of ordinary workstations include simulations for the de-
velopment of new drugs [2,5], the rendering of animation movies [5], or in-silico
crash tests in the design of new automobiles [2].

154 A. Opitz and H. Koenig

Despite the impressive computing power of today’s workstations their use for grid
computing is a challenging task, if the workstations are not exclusively dedicated to
the grid. In case of using non-dedicated workstations the local users are usually priori-
tized. Hence, they can dramatically influence the availability of idle CPU cycles by
starting new processes or by shutting down the machines. Thus, starting a job with a
runtime of several hours on a desktop machine is a kind of a gamble without knowing
the chances to win, i.e. without knowing the probability whether the job will be fin-
ished by a defined deadline. To alleviate this problem a prediction of the future avail-
able computing capacities might be useful. Such a prediction is the focus of the paper
at hand. To specify precisely the measurement goal we use the following definitions:

Definition 1. The quantity Ccum is defined for a single machine as the cumulated
amount of unused computing capacity from now to the next shutdown or crash.

Definition 2. The quantity Ccum,h is basically the same as Ccum, but considers only the
next h hours for the accumulation of the computing capacity.

The quantity Ccum indicates, whether a job with a certain computational complexity
can be finished on a given machine before it goes down (assuming that all the com-
puting capacity not used by the local user can be consumed). Unfortunately Ccum does
not provide any information about an upper limit of the execution time. This moti-
vates the introduction of Ccum,h, which sets the upper limit for the execution time to h
hours. In our experimental evaluations we scaled Ccum,h to always achieve a value
range from 0 to 100. For the usage of the values (or estimates) it is obviously neces-
sary to incorporate the relative speeds of the considered machines.

We are interested in predictions for Ccum,h to enable a reasonable selection of an
appropriate machine for a given job (i.e. we want to select a machine capable to finish
the job within the next h hours). But, for this selection a single prediction value for
Ccum,h (e.g. the expectation value) is not a real aid because this single value can be
very misleading. Actually, we are more interested in the machine with the highest
probability to finish the job in the given time. Therefore, in this paper we concentrate
on the prediction of the probability distribution for Ccum,h.

A discussion of conceivable prediction methods for probability distributions is use-
less without a reasonable empirical comparison. For this comparison we need suitable
measures. Their derivation is not trivial at all, but has not been discussed in the litera-
ture up to now. Hence, the first contribution of this paper is the presentation of
suitable measures to assess the accuracy of predicted probability distributions. The in-
troduced measures are then applied to compare different methods for the prediction of
available computing capacities. Based on empirical data from available workstations
we are able to give indications for the relative accuracy of different approaches. These
results are the second contribution of the paper.

The remainder of the paper is structured as follows. First, we give an overview of
related work in Section 2. Thereafter, we introduce complementary measures for the
assessment of different prediction methods. The subsequent Sections 4 and 5 discuss
possible approaches for the prediction of available computing capacities. A summary
of our empirical comparison is given in Section 6. Final remarks with an outlook on
future work conclude the paper.

 Predicting Free Computing Capacities on Individual Machines 155

2 Related Work

The literature already contains quite a few papers about the prediction of the availabil-
ity of computing resources. In this section we cover only the work most similar to
ours. We do not discuss papers concentrating on the usage of predictions, since this is
not the focus of the paper at hand.

The first category of possible availability prediction approaches models the behav-
ior of groups of machines. For example, Nurmi et al. try to determine the statistical
distributions for the idle times of workstations [10]. The authors conclude that Wei-
bull and hyperexponential distributions fit the empirically determined distributions
well. Mutka [8] attempts to predict the available computing power of ordinary work-
stations to enable the schedulers to meet given deadlines for individual jobs. The ba-
sic approach is the use of empirical distributions for a group of machines. Different
distributions are constructed from values belonging to different times of the week.
The author distinguishes weekdays from weekends and also several phases of a day.
The main problem with both approaches is the aggregated consideration of different
machines, which makes a sound selection of an individual machine for a certain job
impossible. The application of the mentioned distributions for individual machines
does not deliver reasonable results (comp. Section 6).

Approaches forecasting the availability of individual machines are closer to our
prediction goal. One of these approaches is the Network Weather Service (NWS, see
[10,15,16]). It predicts the availability of individual machines as well as the load of
the network. A possible improvement of the NWS is discussed in [18]. The most im-
portant difference of these two approaches to our approach is the fact that they give
predictions for only a few seconds in advance, whereas the methods discussed in the
paper at hand aim at predictions for several hours in advance to support long-running
jobs. Furthermore, the predictions deliver only point estimates, but no probabilities.

The approach closest to ours is that of Wyckoff et al. [17] who tries to determine
the probability distributions for the idle times of workstations. The authors use one
empirical distribution per machine derived from the results from one month. Based on
this distribution they calculate the probability distribution for a machine in idle state
by using conditional probabilities based on the current idle time of the machine. Al-
though the basic approach is relatively similar to ours (comp. Section 4), there are
some important differences. The first one is the item of the prediction itself. Whereas
in [17] the length of the times is considered during that the local user does not ac-
tively use the machines, we consider the cumulated free computing power for the next
hours. Consequently, the results from [17] cannot be simply assumed to be true for
our analysis, especially because the forecast horizons in our investigation are much
longer. Furthermore, Wyckoff et al. use a test for their proposed method that assumes
the time series containing the idle times of a workstation to be stationary. That means,
in their assessment they assume a probability distribution for the idle times that stays
constant for at least one month. We do not see a justification for this assumption.
Therefore we had to develop our own, more appropriate measures (Section 3). Last
but not least, [17] mainly ignores the question of how to transform the empirical fre-
quency distribution into the prediction distribution. As we will see in this paper, an
appropriate transformation method has considerable consequences for the accuracy of
the predictions (comp. Sections 5 and 6).

156 A. Opitz and H. Koenig

3 Measures for the Accuracy of Predictions

To compare various prediction methods we use empirical data observed on several
workstations. For this comparison it is essential to use appropriate measures. This
seemingly minor requirement is far from being trivial to fulfill. The problem becomes
clearer when we consider the approach chosen in [10]. In this approach the empirical
frequency distribution (EFD) of one time period is used for the predictions in the sub-
sequent period. The accuracy of the predictions during this second period is assessed
by comparing the EFDs of the two time periods. Obviously this assessment ignores
varying probabilities, i.e. it is implicitly assumed that the probability distribution is
constant during the chosen period. Similar consequences result from using standard
fitting tests like the Chi-Square-Test or the Kolmogorov-Smirnov d-Test [7,12]. Since
the mentioned stationarity assumption cannot be justified, we had to develop new
measures for assessing prediction methods. Such measures are discussed next.

3.1 Accuracy on Average

The scenario behind the discussion in this paper is the use of computers provided by
other organizations. In this case it seems appropriate to assume the existence of ser-
vice level agreements (SLAs). Such an SLA usually contains some assertion about the
availability of the resources. That means a user of the resources should get the asser-
tion that she can submit a job with a certain computational complexity and this job
will be finished by a certain deadline with a probability of p. To fulfill such stochastic
assertions, the service provider needs an appropriate prediction method. For example,
if this method makes x predictions that a certain resource can finish the submitted job
in the given time with a probability of 90 %, then the resource should really be able to
finish the given jobs in 0.9·x cases. A prediction method having this property for each
p from the interval [0,1] is called to be accurate on average in the rest of this paper.

To assess the accuracy on average of a method, which gives estimations Fi of the
cumulated distribution functions (CDFs) for different times ti, we exploit an interest-
ing consequence of being accurate on average: It can be shown that for the finally
measurable free computing capacities Ccum,h(ti) the values Fi(Ccum,h(ti)) should be uni-
formly distributed between 0 and 1 – even if the underlying distribution of the ob-
served values changes over time. (We omit the proof here due space constraints.)

Obviously, this property will not be exactly fulfilled by a real prediction method.
Hence, we have to assess how close a prediction method comes to this property. For
doing so, we proceed as follows. For each point in time ti we use the considered
method to predict the probability distribution of Ccum,h. After measuring the corre-
sponding observable value (the measurement is possible h hours after ti) we determine
the least percentile containing this value. For example, in Fig. 1 we have the observed
value 9, which corresponds to the least percentile 36 %. Using the percentiles for the
observed values (5, 9 (twice), and 16) we get the cumulated frequency distribution of
the percentiles (the (red) step function in the right part of Fig. 1). Ideally, this function
would match f(x) = x in the interval [0,1] (the (green) dotted line in Fig. 1). Now we
define the measure Mavg as the deviation between the two functions, i.e. the (yellow)
shaded area in Fig. 1. Obviously, bigger values are worse than smaller values. The op-
timal value is 0. It should be noted that this measure does premise neither a constant
distribution prediction nor the stationarity of the underlying time series.

 Predicting Free Computing Capacities on Individual Machines 157

Fig. 1. Illustration of the measure Mavg

Mavg gives a single assessment of the accuracy for all percentiles. Sometimes it might
be more interesting to assess the accuracy for certain important percentiles. This leads
to the more specific measure Δ(p), which considers only the percentile p:

{ }{ }
p

n

nipxFxF
pΔ iiii −

∈≤
=

,...,1,)()(
)(

For instance, if a resource provider assured n times that the desired computing capac-
ity will be available with at least 80% probability, then we could use Δ(20%) to check
the appropriateness of a given prediction method regarding the given promises.

3.2 Accuracy of Individual Predictions

The measure Mavg gives an assessment of the accuracy on average, which is needed
for the compliance with SLAs. Unfortunately, Mavg does not assess the accuracy of
individual predictions, i.e. it does not assess the ability of a prediction method to
predict varying probabilities. The problem is depicted in Fig. 2 for an example with
an alternating real distribution, but an unchanged prediction. Obviously, this predic-
tion is far from being optimal, but it matches exactly the average distribution of the
values. Therefore we need a further desirable property of a prediction method, the
accuracy per prediction, whereas a method is said to be accurate per prediction,
iff the predicted distributions match the real distributions of the corresponding
points in time.1

Fig. 2. Unchanged prediction for an alternating distribution

1 With “real distributions” we mean the distributions chosen by a machine that knows all the

data from the past and all existing relations between these data. Even such a hypothetical ma-
chine will not be able to predict the future values deterministically.

a b

c
predicted distribution

a b

2c

(a+b)/2

real distribution for 1st half

real distribution for
2nd half

18%, 36%,
36%, 97%

100%

50%

0%
18% 36% 97%

97%

18%
0%

5 16 9

CDF Fi EFD of Fi(Ccum,h(ti))

36%

158 A. Opitz and H. Koenig

Fig. 3. Cumulated distribution functions with n different classes

Again, it is practically impossible that a real prediction method fulfills this prop-
erty. Consequently, we are not interested, whether this property is fulfilled, but how
“far away” the prediction method is from fulfilling this property. For the assessment
we use a measure, whose main idea is the use of intrinsically stochastic results, i.e. we
propose a measure whose expectation value decreases with an improvement of the
prediction. Hence, the measure applied on a single prediction is not significant but the
sum of the measure values for different points of a long time series is.2 The exact defi-
nition of this second measure (finally denoted by Mexp) is explained in the following.

Discretization of Values
Our measure requires a discretization of the value range into n different classes (i.e.
intervals) I1 to In. Consequently, we have (n–1) unknown probability values q1 to qn–1,
where qi is the probability that a real value falls into a class Ik with k ≤ i (see Fig. 3).
The corresponding estimations for these probabilities are p1 to pn–1. For concise iden-
tifications, we introduce the two vectors q = (q1,…,qn–1)

T and p = (p1,…,pn–1)
T.

We are now looking for a function fq(p) that is minimal for p = q, and that increases
with increasing difference between p and q. To create such a function we start with
possible partial derivatives:

ii
i

q qp
p

f
22 −=

∂
∂

 with 2
2

2

=
∂

∂

i

q

p

f

An antiderivative for these partial derivatives is the following function fq(p), which is
minimal for pi = qi (if only pi is varied):

∑∑
−

=

−

=

⋅−+=
1

1

1

1

2 2)(
n

i
ii

n

i
iqq pqpCpf

Obviously, we cannot calculate this function without the knowledge of q, but we can
construct a stochastic function whose expectation value is equal to fq(p). It is straight-
forward to show that the following function sf(p) is such an unbiased estimator for fq(p):

2 Alternative assessment methods (compare the beginning of Section 3) collect the predictions

and also the measured values to finally compare both sets. Hence there is no information
about the accuracy per prediction. The method proposed here, on the contrary, evaluates the
individual predictions at different points in time and finally averages the evaluations. This
gives the desired information about the (average) accuracy per prediction.

P = q1

1 n

P = qn–1

Cumulated real distribution Cumulated estimated distribution

3

P = 1 P = p1

1 n

P = pn–1

3

P = 1

 Predicting Free Computing Capacities on Individual Machines 159

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+−

<≤
−+−

=

∑

∑∑
−

=

−

=

−

=

otherwise)(

)1(class to

belongs valuemeasured theif
2)(

)(
1

1

2

11

1

2

n

i
i

n

ki
i

n

i
i

f

pkn

nkk
ppkn

ps

Since a single value of sf(p) is not significant, we intend to add the values obtained for
different points in time. To justify this summation, the expectation values of sf(p)
must lie on an interval scale, whereas we have to define an appropriate scale for the
deviations of the predictions in relation to the real distributions. For these deviations,
we consider the sum of the quadratic deviations (pi – qi)

2 as a ratio scale, since such a
scale is often (implicitly) used in similar cases, especially in regression methods based
on the least square approach. Based on this view it can be shown that the expectation
values of sf(p) lie on an interval scale, since the difference between fq(p) and fq(q) is
simply this sum of the quadratic deviations (pi – qi)

2. Unfortunately, we do not have a
ratio scale, because usually fq(q) is not equal to zero. Therefore we are not able to
judge the percentage of the improvement of one prediction method in relation to an-
other. But it should be clear that we cannot construct such a measure with a ratio
scale. If we could, then we also could search for a p with fq(p) = 0 and thus we could
exactly determine the real distribution q, which is impossible.

The Measure Mexp
We define the measure Mexp as the average of the values of sf(p) calculated for the
points of a time series, whereas we did not yet mention the choice of n. The introduc-
tion of any classification of the values is a simplification, as the actual distribution is
continuous, but the consequences get more dramatic if the value of n decreases. On
the other hand, the complexity of the measure calculation increases with n. To trade-
off these potential problems we chose the value n = 100 for our measurements.

3.3 Recapitulation of Proposed Measures

The discussion of desirable properties of a prediction method led to the introduction
of the measures Mavg, Δ(p), and Mexp. The first two are used for the assessment of the
average accuracy of the prediction method. This property is important for a service
provider to avoid contract penalties. Mexp assesses the ability of the method to predict
the real distributions exactly on time. This property is desirable for a service provider
to choose the most suitable machine for a certain job. A prediction method should be
close to both properties, i.e. all measures should give good results.

4 Usage of Empirical Frequency Distributions (EFDs)

In our experiments we compared different approaches to make predictions. They all
have in common to rely on empirical frequency distributions (EFDs) constructed from
the (locally!) logged values of free computing capacities from the last time.

160 A. Opitz and H. Koenig

Table 1. Variants for the distinction of different EFDs

Distinction
criterion

Description

Dsimple This variant uses only a single EFD.

Duptime In this variant the uptime of the machine is used to distinguish between dif-
ferent distributions. There are 50 different EFDs, whereas the first one is
used for uptimes less than an hour, the next one for less than two hours
(but at least one hour), and so on. The last EFD contains the values of up-
times greater than 49 hours.

DtimeOfWeek This variant distinguishes the 168 different hours of the week. That means,
for each of these hours a different EFD is used.

The simplest model following this basic approach is the use of a single EFD per
machine. A possibly better alternative is the distinction between different EFDs. For
example, it might be useful to have separate distributions for different days of the
week. In this case the values for Mondays are put into one EFD, the values for Tues-
days into a different one, and so on. For the prediction of Ccum,h that EFD is used that
corresponds to the current day of the week. The disadvantage of such a distinction is
the lower count of values per EFD. This increases the influence of individual outliers,
which might outweigh the advantage of the more specific EFDs (comp. Section 6).

The idea of a distinction between different EFDs is not new. The question is which
distinction criterion is the most suitable one. Up to now, the literature does not com-
pare possible alternatives. In this paper we give in Section 6 results for the three alter-
natives defined in Table 1. Originally, we experimented also with other alternatives,
with slight variations, and with mixtures of the given three alternatives, but we could
not gain further improvements.

5 Transformation of the EFD into the Prediction

Having the appropriate EFD for a certain machine is only the first step to get a predic-
tion. The second is the transformation of the EFD into the prediction. In the literature
several methods for this transformation can be found; the most important of these
methods are described in the following subsection. Our own method to improve this
derivation step is explained subsequently.

5.1 Transformation Methods Proposed in Literature

A very often applied transformation method is based on the construction of histo-
grams [13]. The method divides the range of possible values into a certain number of
intervals. For each of them the frequency of the values is counted. Then for an inter-
val with frequency f a probability of f/n is assumed, where n is the total number of
values. Inside the intervals uniform distributions are assumed. This method is called
Thisto in the rest of the paper.

 Predicting Free Computing Capacities on Individual Machines 161

An alternative to Thisto is the method to simply transform the EFD into a distribu-
tion of relative frequencies [13], i.e. for the empirically determined n values v1, v2, …,
vn the predicted distribution function Fpred(x) is constructed as follows:

{ }
n

xvi
xF i ≤

=
:#

)(pred

We denote this approach T1:1 here.
A further often used variant is the assumption of a certain standard distribution. In

this case the values from the EFD are used to fit a parameterized distribution function
of a certain type. The surveys indicating the existence of such a distribution consider
always the aggregated values from groups of machines. In our opinion, these results
cannot be used for individual machines. Nevertheless, the approach of fitting hyper-
exponential distributions was proposed in [11]. For this reason we included such a
transformation method called Thyperexp in our experiments.

5.2 Transformation Method Tinterval

Additionally to the approaches described so far, which are taken from literature, we
introduce a further possible approach for the estimation of the real CDF. This ap-
proach, denoted here as Tinterval, assumes uniform distributions in the intervals that are
marked by neighboring values from the EDF.

Formally speaking, we consider the ascendingly sorted list of the n observed values
vi. There are (n+1) possible positions, where a new value v could be inserted into this
list. Without further information about the probability distribution the following as-
sumption is the most reasonable one:3

)1(
1

1
)()()(11 ni

n
vvPvvvPvvP nii <≤

+
=>=<<=< +

Thus we actually have (n+1) intervals, but only one limit for the leftmost and only
one limit for the rightmost interval. For the missing limits, we use the theoretical lim-
its of the value range. Consequently, naming the lower limit v0 and the upper limit vn+1
we assume for each interval (vi,vi+1) a uniform distribution with probability 1/(n+1)
for 0 ≤ i ≤ n.

5.3 Adaptive Correction of Predictions

There is a possibility to correct the predictions created by the previously described
transformation method Tinterval using the predicted percentiles for the finally measur-
able values of Ccum,h (Fig. 4). For each point in time t there is a prediction, which is
essentially a CDF (F in the figure). Not later than h hours after t the value of Ccum,h at
time t can be determined and consequently also the percentile p for this value, i.e. the
predicted probability that Ccum,h is not greater than this value v. The determination of
these percentiles can be done for each measured value. Similarly to the discussion in
Section 3.1 the percentiles should be uniformly distributed between 0 and 1.

3 We simplify the discussion by assuming all the values to be different.

162 A. Opitz and H. Koenig

Fig. 4. Determination of predicted percentiles

Consequently, the prediction could be corrected depending on the deviation of the
measured distribution of the percentiles and the uniform distribution. Having a distri-
bution FP of the predicted percentiles (whereas we consider the predictions from all
EFDs, i.e. ignoring the chosen distinction criterion) the original prediction F can be
corrected in the following way:

())()(Pcorr xFFxF =

6 Experimental Results

To compare the discussed prediction methods we logged the use of CPU and main
memory on different workstations for periods from several months to over a year.4
We considered the unused CPU cycles only available if a certain minimum amount of
main memory was free. We chose an exemplary limit at 256 MB.5 Based on the log
data we were able to test different prediction methods with exactly the same data.

We divided the logs into the disjoint sets A and B. Set A was quite small and only
used for initial experiments with quite a lot of possible prediction approaches. The
most promising of them have been described in Sections 4 and 5. The results of the
experiments indicated that there is no clearly best classification criterion. However,
the newly developed method Tinterval in conjunction with the adaptive correction Afull
delivered clearly better results than the transformation methods from the literature.

To verify the results regarding the transformation step we conducted measurements
with the logs from set B. Despite the fact that such a separation between data for the
development of new approaches and the assessment of new approaches is rarely done,
it is very important to avoid an over-fitting to the given data by simply choosing the
approach with the best results on the given data set.

4 This does not mean that data from several months or even from a whole year are necessary to

make a prediction. Instead we have chosen a sliding window of 10 weeks to construct the
EFDs, whereas on a new machine predictions are also possible before the completion of the
first 10 weeks. The long log periods have the sole purpose to get for each machine a lot of
predictions. Hence, the assessment of the prediction quality on a certain machines does not
depend on only a single prediction.

5
 For the application of the proposed predictions we consider the existence of several classes
necessary that differ by the minimum amount of free memory. Then there are separate predic-
tions needed for the different classes, whereas in dependence of the total amount of main
memory on each machine only few classes should be supported.

Ccum,h

prediction F at time t

100%

predicted percentile p

measured value v

 Predicting Free Computing Capacities on Individual Machines 163

Fig. 5. Results of the different transformation methods

The mentioned set B consisted of 51 different machines. Roughly one-half of these
are used as desktop machines in computer pools, offices, or at home. The other half
are used as servers (for example as web servers). We examined the available com-
puter capacity for 6, 12, and 24 hours (Ccum,6, Ccum,12, and Ccum,24). The results for the
different transformation methods are depicted in Fig. 5.

According to theses results the recommended transformation method Tinterval in con-
junction with the adaptive correction Afull improves the accuracy of the predictions
considerably. The significance tests of these results were done in two ways. First, the
group of 51 machines was divided into four different homogenous sets, i.e. sets with
machines with similar usage patterns. The advantage of the recommended combi-
nation could be observed for all four sets. Second, using the Bootstrap method [3] for
the whole group the results could be confirmed at a significance level of 95%.

7 Conclusions

In this paper we have analyzed approaches to predict probabilities for the available
computing capacities of individual machines within the next hours to support the se-
lection of a suitable machine for a submitted grid job, whereas we focused on nonpar-
allel jobs.

We first considered approaches for the assessment of potential prediction methods.
The main problem with approaches found in the literature was the implicit assumption
of stationary distributions. We introduced three complementary measures. Mavg and
Δ(p) are useful to assess the accuracy on average. As motivated in Section 3.1, this
property is probably referenced in SLAs. The third measure, Mexp, is intended to as-
sess the capability to predict the real distribution on time. This capability is needed to
select a machine with a high probability to finish a given job.

Using the proposed measures we compared possible prediction methods. We focused
on methods based on EFDs. Following this approach we identified two different
problems. The first one is the selection of appropriate distinction criteria when using dif-
ferent EFDs for different points in time. Here we could not identify a clearly superior
criterion. The second problem is the transformation of an EFD into a prediction. We in-
troduced the new method Tinterval, which delivered consistently better results than meth-
ods proposed in the literature. By enhancing this method with the newly developed
adaptive correction Afull we could even further improve the accuracy of the predictions.

Our next planned step is to test our prediction methods in running systems. So far
our tests are based on log files. They contain real data and have the advantage to ease

LangerName Reihe2 Reihe3 Reihe4 Reihe6

10

12

14

16

18

20

0,00

0,04

0,08

0,12

0,16

0,20

0%

4%

8%

12%

16%

20%
Mexp Mavg Δ(1%) Δ(5%) Δ(20%)

 Thyperexp T1:1 Thisto Tinterval Tinterval + Afull

164 A. Opitz and H. Koenig

the analysis of different methods under exactly the same conditions. But to ensure not
to miss an important detail of the real world, we plan to measure the effect of our pro-
posed predictions in the allocation of workstations.

References

1. Andrzejak, A., Arlitt, M., Rolia, J.: Bounding the Resource Savings of Utility Computing
Models, Hewlett-Packard Company (2002),
http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html

2. Blumhardt, R.: Numerical optimization of the crash behaviour of automotive structures
and components, Ph.D thesis. Shaker Verlag, Aachen (2002) (in German)

3. Good, P.I.: Resampling Methods. A Practical Guide to Data Analysis. Birkhäuser, Boston
(1999)

4. Distributed Desktop Grid, PC Refresh Help Novartis Enhance Innovation, White Paper,
Intel (2003), http://www.intel.com/ca/business/
casestudies/pdf/novartis.pdf

5. Servicing the Animation Industry. HP’s Utility Rendering Service Provides On-Demand
Computing Resources, Hewlett-Packard (2004),
http://www.hpl.hp.com/SE3D/whitepaper-urs.pdf

6. Keating, S.: No Processor Cycle Need Go to Waste, Drug Discovery & Development,
03/2004, Reed Business Information, Rockaway, NJ, USA, http://www.dddmag.com/
PRArchivebyIssue.aspx?RELTYPE=INFE&YEAR=2004&MONTH=03

7. Mann, P.S.: Introductory Statistics, 4th edn. John Wiley & Sons, Chichester (2001)
8. Mutka, M.W.: An Examination of Strategies for Estimating Capacity to Share Among Pri-

vate Workstations. ACM SIGSMALL/PC Notes 18(1-2), 53–61 (1992)
9. Nimmagadda, S., LeVasseur, J., Zahir, R.: High-End Workstation Compute Farms Using

Windows NT. In: 3rd USENIX Windows NT Symposium, Seattle, Washington, July 12-
13 (1999)

10. Nurmi, D., Brevik, J., Wolski, R.: Modeling Machine Availability in Enterprise and Wide-
area Distributed Computing Environments. Technical Report CS2003-28, U.C. Santa Bar-
bara, Computer Science Department (October 2003)

11. Nurmi, D., Wolski, R., Brevik, J.: Model-Based Checkpoint Scheduling for Volatile Re-
source Environments, University of California, Santa Barbara, Computer Science, Tech.
Rep. TR-2004-25, November 6 (2004)

12. Pham, H.: Springer Handbook of Engineering Statistics. Springer, London (2006)
13. Rinne, H.: Handbook of Statistics, 3rd edn. Verlag Harri Deutsch, Frankfurt (2003) (in

German)
14. Wolski, R.: Dynamically Forecasting Network Performance Using the Network Weather

Service. Cluster Computing 1, 1 (1998)
15. Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: A Distributed Re-

source Performance Forecasting Service for Metacomputing. Future Generation Computer
Systems 15(5-6), 757–768 (1999)

16. Wolski, R., Spring, N., Hayes, J.: Predicting the CPU Availability of Time-shared Unix
Systems on the Computational Grid. Cluster Computing 3 4, 293–301 (2000)

17. Wyckoff, P., Johnson, T., Jeong, K.: Finding Idle Periods on Networks of Workstations.
Technical Report: TR1998-761, New York University New York, NY, USA (1998)

18. Yang, L., Foster, I., Schopf, J.M.: Homeostatic and Tendency-based CPU Load Predictions.
In: International Parallel and Distributed Processing Symposium (IPDPS 2003) (2003)

The Deployment and Maintenance of a
Condor-Based Campus Grid

Dru Sepulveda and Sebastien Goasguen

Clemson University, Clemson SC 29634, USA
{dsepulv,sebgoa}@cs.clemson.edu

Abstract. Many institutions have all the tools needed to create a lo-
cal grid that aggregates commodity compute resources into an accessible
grid service, while simultaneously maintaining user satisfaction and sys-
tem security. In this paper, we present the strategy used at Clemson Uni-
versity to deploy and maintain a grid infrastructure by making resources
available to both local and federated remote users for scientific research.
Virtually no compute cycles are wasted. Usage trends and power con-
sumption statistics collected from the Clemson campus grid are used as
a reference for best-practices. After several years of cyber-evolution, the
loosely-coupled components that comprise the campus grid work together
to form a highly cohesive infrastructure that not only meets the comput-
ing needs of local users, but also helps to fill the needs of the scientific
community at large. Experience gained from the deployment and man-
agement of this system may be adapted to other grid sites, allowing for
the development of campus-wide, grid-connected cyberinfrastructures.

1 Introduction

The act of pooling resources and sharing the computational weight of research
around the word is central to the idea of cyberinfrastructure (CI) [1] and is the
motivation for many grid programs at academic institutions [2]. Condor [4], a
high throughput batch system, provides a way of pooling resources into a usable
service without the cost of new machines and has the added benefit of being
well-maintained and well-documented by the Condor Research Group at the
University of Wisconsin at Madison. Condor provided more than enough com-
putational power for research at Clemson University during its first year of use,
but due to excess computational power, machine cycles were left unused. To ad-
dress the aforementioned idle time, Condor has been combined with the Berkley
Open Infrastructure for Networked Computing (BOINC) by using Condor Back-
fill, which donates the compute cycles that Condor does not used to projects
such as World Community Grid (WCG), Einstein@home and LHC@home. In
under six months Clemson University has become one of the top contributors
to BOINC projects in the world. As faculty and students at Clemson University
learned about the benefits of using High Throughput Computing (HTC) to ac-
complish their research goals the pools usage increased, but sometimes exceeded
the capacity of the Clemson Condor pool. A Condor Job Router and Globus

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 165–176, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 D. Sepulveda and S. Goasguen

Fig. 1. The Anatomy of the Campus Grid at Clemson University

gatekeeper were deployed on the Condor pool to send overflow to other Condor
pools on the Open Science Grid (OSG), and to better share our resources with
others, respectively. Figure 1 shows how all of the middleware components work
together at Clemson University to form the campus grid. The remainder of this
paper is organized as follows: section 2 is a brief overview of Condor, section 3
presents Condor as a platform for a Campus Grid, section 4 presents challenges
and solutions of deploying a Campus Grid, section 5 reviews the experiments
that were conducted on the Clemson Campus Grid, section 6 explains future
expansion, and section 7 concludes.

2 Condor

Condor is a high throughput batch system that provides job management and
data handling for distributed compute resources. Condor was developed at the
University of Wisconsin at Madison nearly thirty years ago with the goal of
recovering idle cycles from commodity machines such as lab machines and work-
stations. Condor centers its computing philosophy around high throughput com-
puting versus high performance computing, which means that Condor is designed
to reliably manage many computations over a long period of time [6]. Condor
has been widely adopted by diverse Virtual Organizations (VO) in the grid com-
munity such as the Open Science Grid [7] and the Teragrid [8] and is capable
of integrating with grid technologies. Clemson University is using the Condor
Job Router daemon and the Backfill function in Condor to meet its computa-
tional needs. The Job Router allows for Condor jobs to be sent out to other

The Deployment and Maintenance of a Condor-Based Campus Grid 167

Condor pools that support a common VO, such as Engagement. The participat-
ing pools can be found by querying the Resource Selection Service (ReSS) for
the Open Science Grid (OSG) [9]. Condor’s Backfill function allows other dis-
tributed batch systems to run under Condor’s management; currently the only
supported Backfill system is BOINC. The following sections explain the moti-
vation for creating the Clemson Condor Pool, the problems we encountered as
well as the solutions we developed during setup and after deployment, discuss
some statistics about Condor usage, and present the results from experiments
that we have run on the Clemson Campus Grid.

3 Condor as a Way to Build a Campus Grid

Condor provides a comprehensive system for creating a Campus Grid, by manag-
ing distributed compute resources and providing remote Input/Output handling
for staged jobs, as well as integrating with BOINC and OSG. Condor can only
be a viable solution if there is some non-trivial amount of idle time. This key
concern is discussed in the next section.

3.1 Motivation for the Clemson Condor Pool

Condor is only applicable if the amount of idle time on the machines is suf-
ficiently great, so we took an informal survey in early 2007. All the labs that
were visited were Windows machines, so it was reasonable to assume that if no
one was sitting at the computer, then it was idle. We found from this study
that the labs were unused after midnight and over the weekends, indicating that
the public lab machines were idle nearly 45% of the time. In addition to the
informal study of public labs, we reviewed the schedule for teaching labs and
found that those machines were idle more than 90% of the time, on average,
justifying a system that would make use of these unused cycles. The amount
of backfill shown in Figure 2 below supports our original hypothesis concerning
unused cycles.

Total Owner Claimed Unclaimed Backfill

INTEL/LINUX 4 0 0 4 0

INTEL/WINNT51 946 280 3 375 288

INTEL/WINNT60 1357 193 0 4 1160

SUN4u/SOLARIS5.10 17 0 0 17 0

X86_64/LINUX 26 3 1 22 0

Total 2350 476 4 422 1448

Fig. 2. The output of Condor status from a worker node on the Clemson Condor pool
at 3:00pm on a class day

168 D. Sepulveda and S. Goasguen

3.2 BOINC and Condor Backfill

“Berkeley Open Infrastructure for Network Computing (BOINC) is a platform
for projects...that use millions of volunteer computers as a parallel supercom-
puter.” [12] Institutions and individuals who use BOINC volunteer their free
CPU cycles by joining BOINC projects. While we found the server side of BOINC
to be complex, the client software is easy to install and will run with minimum
administrative effort. Institutions abroad have successfully used BOINC to cre-
ate a institutional cyberinfrastructure [3], but Clemson had three requirements:
a system that has more fine grained control over how idle CPU cycles were do-
nated, was already known by some of the faculty at Clemson, and uses a less
complex API. Creating new BOINC projects involved using an API [5] that we
felt would be restrictive given the lack of formal BOINC training among the
Clemson faculty.

In early 2007, Condor version 6.7 [11] added a feature called Backfill to Condor
that allowed it to schedule a secondary job scheduler which would utilize the idle
time that Condor could not use. BOINC was the first and, at the time of this
writing, only officially supported backfill program that Condor could schedule.
The addition of the backfill functionality allowed Clemson to use Condor to
manage both itself and BOINC with no negative interactions, essentially giving
Clemson the ability to provide a usable resource for its faculty and students
while donating CPU cycles to humanitarian causes.

3.3 Open Science Grid Expands Campus Grids

For the grid model of HTC to survive the ever growing demand for more com-
putational power, there must be a concerted effort made to expand federated
Condor pools through Embedded Immersive Engagement for Cyberinfrastruc-
ture (EIE-4CI), a NSF grant awarded to The Renaissance Computing Institute
(RENCI) and Clemson University. EIE-4CI has created a ciTeam which helps
to train future CI professionals on how to install and maintain grid middleware
such as Condor and the OSG Virtual Data Toolkit (VDT), with the end goal of
having the new virtual Organization join the Engagement VO until they mature
as a grid site and move on to a VO that is tailored to their needs. Through
this program, a half dozen new grid sites have been added to the Open Science
Grid in the Engagement VO, which has not only increased the total number
of machines available for HTC with Condor at Clemson, but has also allowed
Clemson to share its Condor pool with others.

4 Campus Grid Implementation Challenges

While implementing and maintaining a Campus Grid at Clemson University
several issues had to be resolved. Challenges included: deploying Condor to a
heterogeneous set of lab machines, which created a Condor pool with indepen-
dent administrative domains, discovering that the backfill system did not have

The Deployment and Maintenance of a Condor-Based Campus Grid 169

dynamic control over which project BOINC joined and implementing a secure
solution, deploying a Job Router to the pool and finding a work around for a
bug in the routing config, and reviewing the effectiveness of the Job Router to
relieve congestion in the pool.

4.1 Deployment

After determining that Clemson would benefit from a Campus Grid, the next
step was to create a campus wide Condor pool with the involvement of the local
administrators and the central IT organization. Involving all of the stakeholders
early in the process helped to alleviate future confusion and build group confi-
dence. A small Condor pool was deployed on the lab computers in the computer
science department and allowed to run for several weeks to show that Condor,
when properly configured and managed, could be used to further scientific re-
search, without imposing undue operational burden or compromising security
[11]. After the testing period had expired, Clemson Computing and Information
Technology (CCIT) agreed to install Condor to the public lab machines, and the
Clemson Condor pool was created.

New versions of Condor are deployed to a test lab before being added to a
new machine image that is pushed out to all of the labs. In our experience, the
process of deploying grid technology can be divided into three sections: 60%
human interaction, 35% software integration, and 5% luck, because most grid
middleware is comprised of experimental technologies that follow the ebb and
flow of scientific research. The very nature of grid technology [1] requires human
to human interaction to establish trust, which can help to bring a department
together for a common goal, or in the case of Clemson bring the historically
separated computer science department and CCIT together to work on a joint
project for the benefit of the University.

4.2 Backfill Configuration

Clemson donates CPU time to WCG through backfill, but wants the ability to
change BOINC’s project using Condor. A simple solution that securely updates
the condor config.local on each Windows machine and restarts Condor was engi-
neered. A Linux Apache server with mod ssl was configured to host a copy of the
condor config.dyn.local (a secondary local configuration file) file for each type of
machine in the pool. Configuration based on machine type not only separated
the machines into logical partitions, but also isolated configuration problems to
a manageable subset of the pool. Each Windows machine in the pool has a con-
figuration client, written in Python, that is run by the Windows scheduler every
30-35 minutes. The client is configured to use a X509 client certificate and base
64 encoded user name and password that allows it to run a secure HTTP GET
for the configuration file hosted on the Linux server. If a change has been made
to the configuration file on the Linux server, the client replaces the local con-
dor config with the new configuration file pulled from the server and restarts
Condor. If no changes have been made, the new unchanged file is dropped, and

170 D. Sepulveda and S. Goasguen

Fig. 3. Remote Configuration of Condor Backfill

the client waits another 30-35 minutes to poll the configuration server. This up-
date system allows Clemson to change projects securely or alter other aspects of
Condor quickly with little effort. Figure 3 shows how the individual components
work together to form a secure polling update system.

4.3 Condor Job Router

As use of Condor Pool spread, Clemson decided to expand the resources avail-
able through Condor to pools outside of the campus by adding a job router to
the central manager. The Condor job router is a second “grid aware“ scheduler,
which has the ability to copy jobs from a local job queue to a federated off-site
Condor pool with a Globus gatekeeper. The job router at Clemson has been con-
figured so that Engagement users can use their grid credentials to authenticate
to the job router. Clemson is a member of the Engage VO and obtaining a cre-
dential is a straight-forward process, which promote use of the job router. Early
tests with the job router were not successful due to a bug in the configuration
file format which caused the job router to read the routing file in an loop. This
issues was temporarily solved by the addition of static routes.

5 Results and Statistics

The cyberinfrastructure at Clemson has been successful at providing a compute
resource for university research as well as giving back to the scientific community

The Deployment and Maintenance of a Condor-Based Campus Grid 171

abroad. The following sections discuss collected statistics about the Clemson CI
and present experiments which show a marked improvement in throughput with
the job router. We will also review the power consumption that Condor creates
and what can be done to mitigate Condor’s impact on the environment.

5.1 Condor Pool Usage and Administration

The Clemson Condor pool started with a single dual core Windows XP machine
two years ago and now consists of nearly a thousand dual and quad core Win-
dows XP and Vista SP2 machines. The increase in size and use of the Condor
pool made it necessary to have a researcher monitoring the Condor pool and
preparing updates, as well as added part-time administrators to train and pro-
vide assistance to users. The Condor pool is open to the faculty and students by
allowing them to create and submit their own code with no oversite procedure.
This was taken to be an acceptable risk to promote the Condor pool’s user.
Figure 4 shows Condor use during the month of May, and clearly shows the
bursty use of Condor when over 40000 jobs were queued onto the pool by a sin-
gle user on the first of the month. The user who submitted these jobs happened
to be a industrial engineer, but jobs come from a diverse group of domains that
range from business process simulations to deconvolution algorithms in biology.
The largest number of jobs ever successfully submitted to Condor at one time
is three hundred thousand. Job scaling problems occurred when five hundred
thousand jobs were submitted to the pool and crashed the central manager.
The central manager was rebooted and its scratch directory was deleted to rec-
tify the problem. Node scaling problems occurred when the dual core machines
were replaced with quad core machines last summer. The actual number of

Fig. 4. Output From Condor View for the month of May 2008

172 D. Sepulveda and S. Goasguen

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000

Time

N
u

m
b

er
 o

f
S

u
b

m
it

te
d

 J
o

b
s

Stock Submit Throughput Optomized Submit Throughput

Fig. 5. Stock vs Optimized Condor Job Router

machines remained the same, but the number of cores and thus the number of
slots screen by the collector daemon increased from 700 to over 2600. To tem-
porarily fix this problem, a larger port range has been opened on the central
manager which roughly gives Condor two ports per slot; more machines have
been requested to house collector daemons, which will lighten the load on the
one collector/negotiator for the pool.

5.2 Condor Job Router Speedup

We found that simple changes to the job router routing table can make a large
difference in throughput. The algorithm that the job router uses to schedule the
jobs begins with very high throughput but ends with a long tail of idle jobs.
This asymptotic behavior makes sending a few small jobs impractical, so it is
most useful for many long running jobs. The figure 5 solid line was created from
information gathered by the Condor Router Log Parser (CROP) and shows the
Condor job router using the unaltered ReSS routing table to be unpredictable
and ultimately resulting in a crash of the job router daemon. We were able to test
each site by submitting Condor jobs through the job router and reviewing the
job logs to see which sites never ran jobs. After we removed the sites that would
not run jobs and the sites that were slow, we increased the number increase of
idle jobs that could be at each site and resent the jobs, the result was a uniform
graph (figure 5, broken line) that showed a marked improvement in submitted job
throughput time as compared to other tests. ReSS returns some non-functional
sites because when the OSG software stack is installed on a submit machine
it automatically joins ReSS regardless of whether Condor has been properly
configured. The process of testing and removing faulty sites from ReSS could be
automated into a QoS system that runs test jobs from time to time and then

The Deployment and Maintenance of a Condor-Based Campus Grid 173

Statistics Date Total Run Time Results Returned

11/11/08 2:283:21:19:32 3,661

10/19/08 3:150:17:17:06 4,612

Split Proj. -> 9/11/08 3:138:01:40:35 5,200

All Labs -> 8/25/08 4:191:01:58:08 7,446 <- Summer

7/15/08 1:002:03:45:11 894

6/16/08 1:282:06:44:46 1,832

5/14/08 0:162:17:01:21 565

4/13/08 0:015:12:48:36 29

Day One -> 3/29/08 0:000:13:06:38 1

Fig. 6. Sample Results for WCG, One Day A Month

updates the routing table with good sites, thus ensuring that new sites were
added to the table when they were properly configured.

5.3 BOINC Time Donated

Clemson University has donated over 450 years to humanitarian projects through
the World Community Grid (WCG) and has expanded project support to Ein-
stein@home and LHC@home. Figure 6 shows how the backfill system has grown
over the past year, starting from one test machine in March and moving to
the entire university by August, then slowly splitting more time between WCG,
Einstein@home, and LHC. The impact of users returning from Summer break
is noticeable from August to September, but is a good indicator that Condor is
correctly preempting BOINC for users. Clemson has been recognized in several
national and international venues such as International Science Grid This Week
[13] and the WCG News and Reports [15] as a top contributor to humanitarian
projects as a college, for both the United States and the world.

5.4 Power Consumed by the Pool

Conserving power has become a top environmental concern due to rising fuel
prices and a declining world economy. In response to the growing concern over
power conservation and cost, we monitored the power usage of a teaching lab with
stock Dell Optiplex 755’s to determine how much extra power was being used by
the systems running Condor and BOINC as opposed to the control systems that
are not running either. We attached three randomly selected computers in the
teaching lab to Kill-A-Watt power monitoring strips and ran each in the following
states for approximately one week: idle with no operating system, Windows
Vista SP1 with Condor and BOINC, Windows Vista SP1 without Condor and
BOINC, and Windows Vista SP1 isolated with no lab user contact. The results,
which can been seen in Table 1, were disappointing but not unexpected when
we considered that an unused machine without Condor and BOINC goes into
sleep mode, which uses almost no power at all. Condor can be configured so

174 D. Sepulveda and S. Goasguen

Table 1. Power Usage and Cost in a Teaching Lab at Clemson University per Computer

State Avg. KwH/Day Cost per year (at $0.43/KH)

BOINC&Condor 2.0534 $322.38
User Only 0.4116 $64.60

Machine Isolated 0.0552 $8.66

that it only runs at particular times, which would limit power usage by BOINC,
however we believe that the cost of running the backfill system in its current
state is offset by the cross cultural impact of the humanitarian projects that
benefit from the time Clemson donates to their causes. The following section
will discuss several possible strategies that Clemson is considering to offset both
the cost to the environment and the cost to the school.

5.5 Offsetting the Cost

The costs of running a backfill system can be measured in two ways: cost per
kilowatt hour of backfill time minus cost per kilowatt hour of user time, and cost
in carbon. We would like to address the cost in carbon. There have been studies
that indicate storing carbon in trees may not be the best decision in the long
run [10], but it can buy us time for now and is a viable way to offset the carbon
generated by the production of electricity needed to run and cool the machines.
We have estimated that the carbon generated by the backfill system at Clemson
University could be offset by planting 19 trees [14] per year.

6 Future Expansion

The Windows Condor pool at Clemson University will soon be joined by the
6000-core Palmetto Cluster, composed of racked Linux machines. This pool has
a separate Condor Collector and Central Manager, which will be connected to
the Clemson University Condor pool via Condor flocking. This new expansion
will give Clemson faculty and students a large Linux Condor pool along with the
existing Windows Condor pool on the campus proper, creating new opportunities
for research and education.

7 Conclusion

In this paper we discussed how to use Condor with BOINC Backfill to aggre-
gate commodity machines into a usable grid service and make sure that almost
no CPU cycles are wasted. A job router was added to the pool to give us a
computational cushion during peek need bursts. Statistics and experiments were
presented to show where the Clemson Campus Grid is strong and where and how
it can be improved. We identified ways that private institutions and companies

The Deployment and Maintenance of a Condor-Based Campus Grid 175

as well as public institutions can help offset the cost of using a backfill system.
With the proper motivation and social networking a institution can use preex-
isting technologies to create a fully functional Campus Grid that will not only
meet the needs of the local users, but also provide a overhead of CPU time that
can be donated to humanitarian projects around the world for the advancement
of science and the benefit of man kind.

Acknowledgments

The authors would like to acknowledge Nell Beaty Kennedy, Matt Rector and
John Mark Smotherman for help and technical support with software deploy-
ment for the Clemson School of Computing and the university public labs, re-
spectively. The authors would also like to thank Mike Murphy for Apache server
administration. Our main Condor Team contact for troubleshooting Condor was
Ben Burnett. This project was partially funded by an IBM Faculty Award and
NSF grant OCI-753335 and in part by an NSF and DOE award to the Open
Science Grid.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications 15(3), 200–222 (2001)

2. Smith, P., Hacker, T., Song, C.X.: Implementing and Industrial-Strength Academic
Cyberinfrastructure at Purdue University. In: Proc. IEEE International Sympo-
sium on Parallel and Distributed Processing IPDPS, pp. 1–7 (2008)

3. Gonzéalez, D., de Vega, F., Gil, G., Segal, B.: Centralized BOINC Resources Man-
ager for Institutional Networks. In: Proc. IEEE International Symposium on Par-
allel and Distributed Processing IPDPS, vol. 14(18), pp. 1–8 (2008)

4. Litxkow, M.J., Livny, M., Mutka, M.W.: Condor: A Hunter of Idle Workstations.
In: Proc. The International Conference on Distributed Computing Systems, pp.
104–111 (1988)

5. Anderson, D.P.: BOINC: A System For Public-Resource Computing and Storage.
In: Proc. Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10
(2004)

6. Livny, M., Basney, J., Raman, R., Tannenbaum, T.: Mechanisms for High Through-
put Computing. SPEEDUP 11(1) (1997)

7. Sfiligoi, I., Quinn, G., Green, C., Thain, G.: Pilot Job Accounting and Auditing
in Open Science Grid. In: Proc. 9th IEEE/ACM International Conference on Grid
Computing, pp. 112–117 (2008)

8. Reed, D.A.: Grids, The TeraGrid and Beyond. Computer 36, 62–68 (2003)
9. Garzoglio, G., Levshina, T., Mhashilkar, P., Timm, S.: ReSS: A Resource Selection

Service for the Open Science Grid. In: Grid Computing International Symposium
on Grid Computing (ISGC) (2007)

10. Marland, G., Marland, S.: Should We Store Carbon In Trees? Water, Air, and Soil
Pollution 64(18), l-195 (1992)

176 D. Sepulveda and S. Goasguen

11. The Condor Team, The Condor Manual version 6.8/7.0 (2008),
http://www.cs.wisc.edu/Condor/manual/

12. Community, The Boinc Manual Wiki (2008),
http://boinc.berkeley.edu/wiki/User_manual

13. Polowczuk, S., Heavey, A.: No Excuse For Under-Utilization: Clemson Back-Fills
With BOINC, http://www.isgtw.org/?pid=1001404

14. Non-profit Community, Carbon Calculator,
http://www.treefolks.org/prog_calculator.asp

15. News and Media, World Community Grid Interviews the Clemson School of Com-
puting’s Dr. Sebastien Goasguen,
http://www.worldcommunitygrid.org/newsletter/08Q4/viewClemson.do

http://www.cs.wisc.edu/Condor/manual/
http://boinc.berkeley.edu/wiki/User_manual
http://www.isgtw.org/?pid=1001404
http://www.treefolks.org/prog_calculator.asp
http://www.worldcommunitygrid.org/newsletter/08Q4/viewClemson.do

Bicriteria Service Scheduling with Dynamic
Instantiation for Workflow Execution on Grids

Luiz F. Bittencourt, Carlos R. Senna, and Edmundo R.M. Madeira

Institute of Computing - University of Campinas - UNICAMP
P.O. 6176, Campinas - São Paulo - Brazil
�{bit,crsenna,edmundo}@ic.unicamp.br

Abstract. Nowadays the grid is turning into a service-oriented environ-
ment. In this context, there exist solutions to the execution of workflows
and most of them are web-service based. Additionally, services are con-
sidered to exist on a fixed host, limiting the resource alternatives when
scheduling the workflow tasks. In this paper we address the problem of
dynamic instantiation of grid services to schedule workflow applications.
We propose an algorithm to select the best resources available to exe-
cute each task of the workflow on the already instantiated services or on
services dynamically instantiated when necessary. The algorithm relies
on the existence of a grid infrastructure which could provide dynamic
service instantiation. Simulation results show that the scheduling algo-
rithm associated with the dynamic service instantiation can bring more
efficient workflow execution on the grid.

1 Introduction

A computational grid is a computing environment where heterogeneous resources
are located on different administrative domains. The Open Grid Service Archi-
tecture (OGSA) [1] has moved grids to service-oriented computing (SOC) [2]
based on Internet standards. Nevertheless, most grid solutions focus on the exe-
cution of task-based workflows [3], and only a few service-oriented grid environ-
ments provide dynamic service instantiation [4,5].

In a task-oriented grid environment, the workflow tasks can potentially be
executed on any available resource. This led to the development of scheduling
heuristics to distribute tasks over heterogeneous computing platforms [6,7]. On
the other hand, in a service-oriented grid environment, the workflow execution is
strongly dependent on the set of resources where services are already deployed.
This can lead to overload on such resources, limiting the use of the grid resources
according to the frequency of submissions of workflows using one or other type
of service. Thus, powerful resources can be less used than middle-power ones,
resulting in higher workflow execution times. To overcome this issue, we pro-
pose an algorithm to schedule services according to the incoming workflows.

� The authors would like to thank CAPES, FAPESP (05/59706-3) and CNPq
(472810/2006-5 and 142574/2007-4) for the financial support.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 177–188, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

178 L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira

The algorithm relies on the existence of an infrastructure which provides both
the execution of workflows composed of service-tasks and the dynamic instanti-
ation of grid services [8]. The proposed algorithm considers service instantiation
costs when selecting the resources to execute tasks of the submitted workflow.
Therefore, we focus on the bicriteria scheduling problem of minimizing both the
number of created services and the workflow execution time (makespan).

This paper is organized as follows. Section 2 shows a background on scheduling
anddefines the problem. Section 3presents the proposed algorithm, whileSection 4
shows the simulation results. Related works are overviewed in Section 5. Section 6
concludes the paper and presents a couple of future directions.

2 Service Scheduling

The task scheduling problem is NP-Complete in general [9]. In the traditional
one-criterion scheduling problem, usually the goal is to minimize tasks execution
time, consequently minimizing the overall workflow execution time (makespan).
In the multicriteria scheduling the objective is to minimize (or maximize) more
than one criterion at the same time, generally considering the execution time
as the most important criterion [10]. With the emergence of utility computing,
economic costs are also being considered as an optimization criterion [11].

In the multicriteria optimization problem the optimality definition depends on
how we compare two possible solutions. Actually, more than one optimal solution
can exist considering that two solutions cannot be compared straightforwardly
when one solution is better than the other in a set of criteria, but worse in
another one. In this sense, when optimizing a multicriteria objective function,
we want to find the Pareto set of solutions, which is the set composed of all
non-dominated solutions. A solution is said non-dominated if there is no other
solution which optimizes one criterion without worsening another one.

In this paper we address the bicriteria scheduling problem where the two
criteria to be optimized are the makespan and the number of created services.
We approach this problem with a heuristic algorithm which uses the as late
as possible (ALAP) concept [12]. Usually, heuristics are simple to implement,
have low complexity and execution time, and give good results. There are other
ways of dealing with bicriteria optimization. One way is to optimize only one
criterion, maintaining the other one between fixed thresholds [11]. Building an
aggregate objective function (AOF) is another technique, where both objectives
are combined in only one function to be optimized [10]. A common AOF is the
weighted linear sum of the objectives: f(obj1, obj2) = α × obj1 + (1 − α) × obj2,
α ∈ [0, 1]. Another technique, among others, is the Multiobjective Optimization
Evolutionary Algorithms (MOEA) [13].

2.1 Problem Definition

We consider a set of heterogeneous autonomous resources R = {r1, r2, ..., rk},
with associated processing capacities pri ∈ R+, connected by heterogeneous net-
work links. Each resource ri has a set of links Li = {li,1, li,2, ..., li,m}, 1 ≤ m ≤ k,

Bicriteria Service Scheduling with Dynamic Instantiation 179

Fig. 1. Example of groups in the infrastructure

where li,j ∈ R+ is the available bandwidth in the link between resources ri and
rj , with li,i = ∞. The resources are arranged in groups, where each group can
be a LAN or a cluster, for instance. Each group is autonomous, and all groups
are connected by heterogeneous links. Resources inside the same group are con-
sidered to have links with the same bandwidth between them. Figure 1 shows
an example of a resources pool. Nodes are resources and edges are communica-
tion links. Edges thickness represents bandwidth, while nodes radium represents
processing capacities and gray tones represent different operating systems.

Let S be the set of all services instantiated on all resources. Each resource ri

has a set of already instantiated services Si = {si,1, ..., si,p} ∈ S, p ≥ 0.
A workflow is represented by a directed acyclic graph (DAG) G = (V , E)

with n nodes (or tasks), where ta ∈ V is a workflow task with an associated
computation cost (weight) wta ∈ R+, and ea,b ∈ E , 1 ≤ a ≤ n, 1 ≤ b ≤ n,
a = b, is a dependency between ta and tb with an associated communication
cost ca,b ∈ R

+. Each task ta has a set of candidate services ζa ⊆ S, ζa = ∅,
which implement task ta. Therefore, a task ta can be scheduled to a resource ri

iff ∃ si,p | si,p ∈ ζa.
The task scheduling is a function scheduleDAG : V �→ S. Thus, each task

ta ∈ V is mapped to a service s ∈ S.

3 Service Scheduling Algorithm

In order to minimize the workflow’s makespan, we developed a scheduling al-
gorithm which considers the instantiation (or creation) of new services in the
resources set when scheduling tasks, instead of using only existing services. This
way, the workflow execution time can be minimized by creating the necessary ser-
vices on resources with high processing power. But, there are some issues which
must be considered when developing such an algorithm. First, the algorithm must
consider how much it costs to send and deploy a service into a new host. Note
that, in a utility grid, the creation of a new service may have monetary costs,
thus creating too many services can lead to an expensive workflow execution.
Second, neglectfully creating services can lead to resources wastefulness, such as
waste of bandwidth and processing. Furthermore, this can delay the execution
of workflows already running, since processing time and bandwidth would be in

180 L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira

constant use for transferring and creating new services abroad. Third, not creat-
ing services (or creating too less services) can lead to high workflow completion
times. Thus, there is a clear trade-off between creating more services to speedup
the execution, or creating less services to not waste resources (or money).

Our approach to this problem is to create services when necessary. This means
that the algorithm will create new services only when not creating them would
delay the workflow execution. To achieve this, it is mandatory to schedule tasks
which are in the critical path on the best resources by creating services for them.
For tasks which are not in the critical path, the algorithm uses the ALAP (as
late as possible) to determine whether a service must be created. The scheduling
is performed in a list-scheduling manner. At a glance, the steps of the algorithm
are: select which task is the next to be scheduled; determine whether a service
must be created for the selected task; and schedule the selected task on the best
resource, given the service creation conditions. These three steps are repeated
until all tasks are scheduled.

In the first step, the next task to be scheduled is the not scheduled one with
the highest blevel. The blevel of a task ta is the length of the longest path from
ta to a task with no successors (an exit node). We can assume, without loss
of generality, that every workflow has one, and only one, exit task. This can
be achieved by adding a costless task texit and adding a set of costless edges
{ea,exit ∀ ta ∈ V | ta has no successors}. On the other hand, the tlevel of a
task ta is the length of the longest path from the entry node to ta. These two
attributes are known in the scheduling literature [14], and they are computed
based on the costs of tasks and edges, on the capacity of the resources where
they are scheduled, and on the links capacities. All these costs and capacities
are previously known, as in most scheduling heuristics. For example, they can
be obtained from a service repository with average costs and output sizes of
the past executions, and from a resource repository, which can maintain the
resources characteristics obtained from a resource monitor/discovery service.

The second step uses the ALAP of the task selected in the first step. Intu-
itively, the ALAP of a task is how much it can be delayed without increasing
the schedule length, or by how much its tlevel can be increased. The ALAP of
ta is computed by subtracting the blevel of ta from the length of the critical
path. Thus, a task tcp in the critical path cannot be delayed, since its ALAP
time is always equal to its tlevel. Therefore, tasks on the critical path will always
be scheduled on the best available resource, and the necessary services will be
created at that resource.

To determine if a service must be created to execute a task ta, for each resource
ri which already has the service to execute ta, ta is inserted on ri’s schedule, and
ta’s tlevel is computed. Let tlevelta,ri be the tlevel of task ta on the schedule of
resource ri. If ∃ si,p | si,p ∈ ζa, ALAPta ≤ tlevelta,ri , then it is not necessary to
create a new service for ta, and ta is scheduled on the ri which has the smallest
tlevel plus its execution time in that resource. Otherwise, ta is scheduled on the
resource which has the smallest tlevel plus its execution time plus the costs of

Bicriteria Service Scheduling with Dynamic Instantiation 181

Algorithm 1. Algorithm Overview
1: compute blevel, tlevel and ALAP for each task
2: while there are not scheduled tasks do
3: t ← not scheduled task with highest blevel
4: best resourcet ← NULL
5: best timet ← ∞
6: Rt ← resources with services in ζt

7: for all ri ∈ Rt do
8: calculate tlevelt of ri

9: if (tlevelt ≤ ALAPt) AND (tlevelt + exec timet < best timet) then
10: best resourcet ← ri

11: best timet ← tlevelt + exec timet

12: end if
13: end for
14: if best resourcet == NULL then
15: R ← all available resources
16: for all ri ∈ R do
17: calculate tlevelt of ri

18: if ri does not have services in ζt then
19: costs create servicet ← cost send codet + cost deployt

20: tlevelt ← tlevelt + costs create servicet

21: end if
22: if tlevelt + exec timet ≤ best timet then
23: best resourcet ← ri

24: best timet ← tlevelt + exec timet

25: end if
26: end for
27: end if
28: schedule t in best resourcet

29: recompute tlevel and ALAP for each task
30: end while

creating the new service on the resources where it does not exist. Algorithm 1
gives an overview of these steps.

The first line of Algorithm 1 computes the task attributes (blevel, tlevel, and
ALAP). This pre-calculation is done by assuming a homogeneous virtual system
with unbounded number of resources, where each resource has the best capacity
available on the real system. This is done to estimate the ALAP of each task on
an ideal system, which will reflect in the flexibility when searching for a resource
by reducing the acceptable delay for tasks not in the critical path. After that,
an iteration to schedule each task is started (line 2). The next line selects the
not scheduled task with the highest blevel to be scheduled, while lines 4 and 5
initialize two variables used through the algorithm. The set Rt, which contains
the resources having a service able to execute task t, is created in line 6. After
that, the iteration comprising lines 7 to 13 searches for the best resource that
can execute task t without surpassing the ALAP time of t. If none is found (line
14), then the algorithm starts the search for the best resource in the whole set of
resources (line 15). If the current resource ri does not have the necessary service

182 L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira

(line 18), the algorithm adds to the tlevel of t both the inherent costs of creating a
new service and of executing the task (lines 19, 20). Then, the algorithm verifies if
the current resource has the best tlevel + task’s execution time of every resource
already tested (line 22). If so, it is elected as the current best resource (lines
23, 24). Before the outer loop iterates, the current task is scheduled on the best
resource found (line 28), and the attributes are recomputed (line 29), since the
new schedule can change the tlevel and ALAP values.

Note that the critical path is dynamically updated on every iteration of the
outer loop. If a task t not in the critical path can only be scheduled on a resource
which has a tlevel bigger than its ALAP, then t will be in the critical path in the
next iteration. Also, the creation of new services can be biased by introducing a
multiplier to the ALAP in line 9, which would give a control over the trade-off
between service creation and makespan according to the target environment.

At execution time, the creation of a new service for a task t is performed
after all its predecessors finish. This policy aims at not using resources before
the start of the task t and its workflow, since it can delay the execution of other
workflows running. Additionally, the creation of services at scheduling time can
waste processing time and bandwidth if a target resource leaves the grid. Besides,
if we consider the situation where creating a new service or using a resource has
a monetary cost, creating too many services would lead to high costs.

4 Experimental Results

We compared the proposed algorithm with a HEFT-like (Heterogeneous Earliest
Finish Time [6]) version, differing only in that, for each task, it only considers
the set of resources which have the necessary service to execute it.

Scenarios. We varied the number of groups from 2 to 25, each with 2 to 10
resources with randomly generated capacities. Links between groups were ran-
domly generated, as well as links between resources in the same group. For
simulation purposes, links between groups never exceeded the capacities of links
inside groups, since a machine inside a group cannot transmit faster than its
link inside its group. Sixteen DAGs were taken for the simulations, where fifteen
were randomly generated with number of nodes varying from 7 to 82, and the
other one was a CSTEM DAG (Coupled Structural Thermal Electromagnetic
Analysis and Tailoring of Graded Composite Structures), which weights were
randomly generated but values proportional to those encountered in the original
workflow [15]. All random numbers were taken from a uniform distribution.

One main parameter can influence the performance of the algorithm that
does not create services: the number of services already in the resources. Let
Pst,ri = δ

|R| be the probability of a service st, which can execute a task t from
the DAG, to exist in the resource ri. We simulated δ varying from 1 to 5. A
simulation with δ = 3, for instance, means that ∀ t ∈ V : E(|ζt|) = 3, i.e., it
is expected that, for each task t of the DAG, the number of resources which
can execute t is 3. We also simulated a hypothetical situation where all services

Bicriteria Service Scheduling with Dynamic Instantiation 183

existed in all resources, thus with δ = |R|. This aimed at evaluating if the ALAP
policy would restrict the resources usage in a manner that would increase the
makespan. Another characteristic that can influence the results is the capacity of
the resources where the already existing services are on. Assuming that services
are generally deployed on resources with good capacity, we also simulated sce-
narios where the already running services could only exist on a set of resources
R50% = {ri ∈ R|pri ≥ median} where median is the median of the set of pro-
cessing capacities of all resources in R. In other words, services could only exist
on resources which have processing capacities higher or equal than the median
of the capacities of all resources. On these scenarios, Pst,ri = δ

|R50%| .
Each algorithm was executed 2000 times for each number of groups. On each

execution a DAG was randomly chosen and costs of nodes and edges were ran-
domly taken, both in the same interval. The costs of transferring and deploying
a new service were randomly generated from a normal distribution according
to the average size (250Kb) and standard deviation (120Kb) of the .gar files
measured in our laboratory and file sizes found in the literature [16]. These files
are called grid archives and each file has the source codes to deploy a service in
the well known Globus Toolkit 4. The results show a confidence interval of 99%.

We compared the average makespan, average speedup and average schedule
length ratio (SLR). The speedup means how many times faster is the achieved
makespan when compared to the schedule of all tasks sequentially on the best re-
source (higher is better). The SLR means how many times larger is the makespan
when compared to the execution of the critical path on the best resource (less
is better). We also measured what was the percentage of services used by the
proposed algorithm which were already existing services, represented by bars in
the graphics (right axis). In the graphics, δ is the expected number of existing
services for each task of the workflow. Labels Exist are for the algorithm which
does not create services (the HEFT-like approach), labels Prop. are for the pro-
posed algorithm, and labels with 50% are for simulations where existing services
could exist only on the 50% best resources.

Schedule Length Ratio. Figure 2 shows the average SLR for δ = 1. Con-
sidering that existing services could be on all resources, the proposed algorithm
outperforms the HEFT-like approach by around 43%, with 2 groups, and by
around 53% when there are 25 groups. This is achieved with the proposed algo-
rithm using existing services for 34% of the tasks for 2 groups and around 21%
for 10 or more groups. When considering that existing services could be only on
the 50% best resources, for 2 groups the SLR is decreased by around 34%, while
for 25 groups the decrease is around 49%, respectively using existing services for
39% and around 21% of the tasks. Therefore, using the ALAP to decide when
create new services improves the scheduling quality and allows the workflow to
use many existing services, while creating the necessary ones.

We can observe the same pattern for δ = 2 in the SLR results (Fig. 3), as well
as in the speedup (Fig. 6) and makespan (Fig. 9) results, with a slightly better
performance than for δ = 1 when not creating new services. This is because
the scheduler had more options for each task, improving the probability that a

184 L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 5 10 15 20 25
0%

25%

50%

75%

100%

Number of groups

Prop.
Prop. 50%

Exist.
Exist. 50%

Prop.
Prop. 50%

Fig. 2. Average SLR for δ = 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 5 10 15 20 25
0%

25%

50%

75%

100%

Number of groups

Prop.
Prop. 50%

Exist.
Exist. 50%

Prop.
Prop. 50%

Fig. 3. Average SLR for δ = 2

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20 25
0%

25%

50%

75%

100%

Number of groups

Prop. Exist. Prop.

Fig. 4. Average SLR for δ = |R|

good resource would be chosen. When existing services were on any resource,
the SLR for the proposed algorithm is 34% lower for 2 groups and 48% lower
for 25 groups. This improvement was achieved using existing services for 44%
and 23% of the tasks, respectively. When the existing services were only on the
50% best resources, the improvement varied from 27% for 2 groups, to 41% for
25 groups, using existing services for 49% and 24% of the tasks, respectively.

When δ = |R| we can observe that the proposed algorithm is slightly worse
than HEFT1. The SLR difference ranges from 3% to 5% (Fig. 4). Note that this
is a hypotetical situation, and having all services on all resources could lead to
expensive workflow execution and resource squandering.

Speedup. For the average speedup with δ = 1 (Fig. 5), the improvement is in a
range from 74%, for 2 groups, to 113%, for 25 groups, with existing services on
any resource. In the scenario where existing services could be only on the 50%
best resources, these numbers are 50% and 92%, respectively. The speedup for
δ = 2 (Fig. 6) was improved by 48% for 2 groups and by 91% for 25 groups for
existing services on any resource. These numbers are 32% and 68%, respectively,
1 In this case the tasks could be scheduled on any resource, thus the algorithm used

as comparison is the HEFT algorithm.

Bicriteria Service Scheduling with Dynamic Instantiation 185

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 0 5 10 15 20 25

Number of groups

Exist.
Exist. 50%

Prop.
Prop. 50%

Fig. 5. Speedup for δ = 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 5 10 15 20 25

Number of groups

Exist.
Exist. 50%

Prop.
Prop. 50%

Fig. 6. Speedup for δ = 2

when the existing services were only on the 50% best resources. When δ = |R|
(Fig. 7) the proposed algorithm is slightly worse than HEFT, and the difference
between them ranges from 3% to 6%. Note that the higher the number of groups,
the higher the difference between the proposed algorithm and the HEFT-like one.
This is also observed in the SLR results, and it can be explained by the fact that
the higher the number of resources, the higher the probability of good resources
being not used by the workflow. Therefore, instantiating new services can use
these resources, improving the workflow execution.

Makespan. Figure 8 shows the average makespan for δ = 1. The average for
the proposed algorithm was 44% lower for 2 groups and 55% lower for 25 groups
in executions with existing services on any resource. For existing services only
on the 50% best resources, the improvement was of 35% for 2 groups and 49%
for 25 groups. The average makespan for δ = 2 (Fig. 9) shows similar results.
The improvement varies from 35% to 50% when existing services were on any
resource, and it varies from 28% to 42% when existing services were on the 50%
best resources. For δ = |R| we can observe that the proposed algorithm is slightly
worse than HEFT, with the difference ranging from 3% to 6%.

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0 5 10 15 20 25

Number of groups

Exist. Prop.

Fig. 7. Speedup for δ = |R|

 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400

 0 5 10 15 20 25

Number of groups

Exist.
Exist. 50%

Prop.
Prop. 50%

Fig. 8. Makespan for δ = 1

186 L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25

Number of groups

Exist.
Exist. 50%

Prop.
Prop. 50%

Fig. 9. Makespan for δ = 2

 480

 500

 520

 540

 560

 580

 600

 620

 640

 660

 0 5 10 15 20 25

Number of groups

Exist. Prop.

Fig. 10. Makespan for δ = |R|

The results for δ = 1 and δ = 2 show that the proposed algorithm can
significantly improve the performance of the workflow scheduling on service-
based grids. Simulations for δ varying from 3 to 5 suggests that the HEFT-like
algorithm gives better results as higher is the δ, however even for δ = 5 the results
of the proposed algorithm are still better than the results for the algorithm which
does not create new services.

Remarks. The presented results show that the proposed algorithm can provide
faster workflow execution by scheduling new services on resources with better
performance. This is achieved by using many already existing services through
the ALAP concept, determining which tasks need a new service to not delay
the workflow execution. When compared to the usual execution of tasks on the
existing services, the proposed strategy shows an improvement in the workflow
execution by making better use of the best resources.

5 Related Work

While many grid middlewares focus on task-based workflows [3], others provide
mechanisms for execution of workflows composed of tasks which execute on grid
services [8]. The execution of workflows on grid services can be improved using
dynamic service instantiation. The work described in [5] focus on mechanisms
for provisioning dynamic instantiation of community services based on a highly
available dynamic deployment infrastructure. However there is no mention to the
necessity of a service scheduler to choose the best resources. The DynaGrid [4] is
a framework for building large-scale Grid for WSRF-compliant applications that
provides mechanisms to dynamic service deployment, but there is no mention to
workflow support.

In the scheduling field there are works dealing with bicriteria scheduling, but
none of them addresses the problem of dynamic instantiation of services, thus, to
the best of our knowledge, the problem of minimizing the number of services cre-
ated and the makespan was untouched. Additionally, in [11] there is no mention
to approaches to this problem.

Bicriteria Service Scheduling with Dynamic Instantiation 187

In [10] the authors deal with the bicriteria scheduling of workflows on grids
by modeling it as an extension of the multiple-choice knapsack problem, giving
good results when compared with algorithms that consider makespan and budget
constraints. In [17] the authors address the multicriteria optimization problem
using an integer programming model focusing on price, duration, availability
and success rate. Robustness and makespan are the two criteria addressed in
[13], while [15] deals with the trade-off between time and reliability. Also, many
works focus on economic costs [11], which can also be extended to this work if
we consider monetary costs on the creation of new services.

6 Conclusion

In this paper we propose an algorithm to schedule workflows on service-oriented
grids. The proposed bicriteria scheduling algorithm relies on the existence of
dynamic service instantiation to create new services, aiming at minimizing the
final execution time (makespan). Additionally, the algorithm tries to minimize
the number of created services by using the ALAP (as late as possible) concept,
thus creating new services only when not creating them would delay the workflow
execution. The minimization of the number of created services is important to
avoid wasting resources as bandwidth and processing time, as well as to avoid
high budgets when considering economic costs. The shown simulations suggest
that the proposed algorithm can improve the workflows speedup by up to 113%
using already existing services to execute around 25% of the tasks when there
are 25 groups of resources, and can improve it by 74% using existing services
to execute around 35% of the tasks when there are 2 groups of resources, thus
complying with the biobjective minimization aims. Also, the instantiation of
new services scheduled by the proposed algorithm can maximize the resources
usage while balancing the load over the available resources when there are many
requests to the same service.

As ongoing work, we are integrating the algorithm within a grid infrastructure
which supports workflow orchestration [8]. This infrastructure can handle exe-
cution failures by raising exceptions. Thus, as future work, we plan to develop a
task and service rescheduling algorithm integrated with the exception handling
mechanism.

References

1. Forum, G.G.: Open grid service architecture, version 1.0 (2002),
http://www.gridforum.org/documents/gwd-i-e/gfd-i.030.pdf

2. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing 9(1), 75–81 (2005)

3. Dasgupta, G.B., Viswanathan, B.: Inform: integrated flow orchestration and meta-
scheduling for managed grid systems. In: Middleware 2007: Proceedings of the
8th ACM/IFIP/USENIX international conference on Middleware, Newport Beach,
California, USA, pp. 1–20 (2007)

http://www.gridforum.org/documents/gwd-i-e/gfd-i.030.pdf

188 L.F. Bittencourt, C.R. Senna, and E.R.M. Madeira

4. Byun, E.K., Kim, J.S.: Dynagrid: A dynamic service deployment and resource
migration framework for WSRF-compliant applications. Parallel Computing 33(4-
5), 328–338 (2007)

5. Qi, L., Jin, H., Foster, I., Gawor, J.: Provisioning for dynamic instantiation of
community services. IEEE Internet Computing 12(2), 29–36 (2008)

6. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel and Distributed
Systems 13(3), 260–274 (2002)

7. Bittencourt, L.F., Madeira, E.R.M.: A performance oriented adaptive scheduler
for dependent tasks on grids. Concurrency and Computation: Practice and Expe-
rience 20(9), 1029–1049 (2008)

8. Senna, C.R., Madeira, E.R.M.: A middleware for instrument and service orchestra-
tion in computational grids. In: Seventh IEEE International Symposium on Cluster
Computing and the Grid (CCGRID 2007), Rio de Janeiro, Brazil. IEEE Computer
Society Press, Los Alamitos (2007)

9. El-Rewini, H., Ali, H.H., Lewis, T.G.: Task scheduling in multiprocessing systems.
IEEE Computer 28(12), 27–37 (1995)

10. Wieczorek, M., Podlipnig, S., Prodan, R., Fahringer, T.: Bi-criteria scheduling of
scientific workflows for the grid. In: 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2008), Lyon, France, pp. 9–16. IEEE Computer
Society, Los Alamitos (2008)

11. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
SIGMOD Records 34(3), 44–49 (2005)

12. Simion, B., Leordeanu, C., Pop, F., Cristea, V.: A hybrid algorithm for scheduling
workflow applications in grid environments (ICPDP). In: Meersman, R., Tari, Z.
(eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1331–1348. Springer, Heidelberg
(2007)

13. Canon, L.C., Jeannot, E.: Scheduling strategies for the bicriteria optimization of
the robustness and makespan. In: 11th International Workshop on Nature Inspired
Distributed Computing (NIDISC 2008), Miami, Florida, USA (April 2008)

14. Yang, T., Gerasoulis, A.: Dsc: Scheduling parallel tasks on an unbounded number
of processors. IEEE Trans. Parallel and Distributed Systems 5(9), 951–967 (1994)

15. Dogan, A., Özgüner, F.: Biobjective scheduling algorithms for execution time-
reliability trade-off in heterogeneous computing systems. Computer Journal 48(3),
300–314 (2005)

16. Qi, L., Jin, H., Foster, I.T., Gawor, J.: Hand: Highly available dynamic deployment
infrastructure for globus toolkit 4. In: 15th Euromicro IPDP, Naples, Italy, pp.
155–162. IEEE Computer Society, Los Alamitos (2007)

17. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

Ant Colony Inspired Microeconomic Based Resource
Management in Ad Hoc Grids

Tariq Abdullah1, Koen Bertels1, and Luc Onana Alima2

1Computer Engineering Laboratory, EEMCS, Delft University of Technology,
Mekelweg 4, 2624 CD, Delft, The Netherlands

���������		�
���	������	������	����	
2Distributed Systems Laboratory, University of Mons, Belgium

	�����������
�����

Abstract. Ad hoc grids are inherently complex and are dynamic systems. This
is due to decentralized control, heterogeneity in resources of the participating
nodes, variations in resource availability and user defined access and use polices
for the resources. On the other hand, the universe is full of complex adaptive
systems such as the immune system, sand dune ripples, and ant foraging etc. The
participants in these systems apply simple local rules, resulting in robustness and
self-organization. In this paper, we present an ant colony inspired, microeconomic
based resource management system for ad hoc grids. The mechanism is based on
the emergent behavior of the participating nodes and adapts itself to changes in
the ad hoc grid environment. The mechanism enables the ad hoc grid to self-
organize itself under varying workload of the participating nodes. Experiments
are executed on PlanetLab to test the scalability and robustness of the proposed
mechanism.

1 Introduction

The universe is full of Complex Adaptive Systems (CAS). The CAS are dynamic, highly
decentralized networks and consist of many participating agents. The immune system,
sand dune ripples and ant foraging are some examples of the natural CAS. These sys-
tems are characterized by decentralized control, emergent behavior, robustness and self-
organization. The participating agents in these systems interact according to simple
local rules which result in self-organization and complex behavior. Ad hoc grids and
similar computational distributed systems are inherently dynamic and complex sys-
tems. Resource availability fluctuates over time in ad hoc grids. These changes require
adaptation of the system to the new system state by applying some self-organization
mechanism. Current scientific problems, like protein folding, weather prediction, parti-
cle physics experiments are complex, require huge computing power and storage space.
These scientific problems can be solved by using ad hoc grids.

Ant Colony Systems (ACS) [1] are inspired by the colony of artificial ants co-
operating in foraging behavior. Ant Colony Optimization (ACO) [2] is a heuristic al-
gorithm that imitates the behavior of real ant colonies in nature. In ACO algorithms,
ants drop a chemical, called pheromone, on their way from nest to the food source and
vice versa, while they search for food source. Ants choose the path, from food source

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 189–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

190 T. Abdullah, K. Bertels, and L.O. Alima

to their nest, with higher pheromone concentrations. The ant colony self-organizes by
the local interactions of the individual ants.

In this paper, we apply ACO algorithm for micro-economic based resource man-
agement and self-organization in the local ad hoc grid. We assume that each con-
sumer/producer is an ant and the resource manager (matchmaker) represents the food
source. The proposed algorithm sends ants in search of resources/tasks to the match-
maker. All the experiments are executed on PlanetLab to test the scalability and robust-
ness of the proposed algorithm.

The proposed system from user’s point of view, can be viewed as a combination of
centralized such as, Condor -for submitting and running arbitrary jobs- and a system
such as BOINC or SETI@Home for distributing jobs from a server to a potentially very
large collection of machines in a completely decentralized environment.

2 Related Work

Recently, some efforts have been invested in applying ACO for resource management
and self-organization of large scale distributed systems. Cao [3] used simple ant-like
self-organization mechanism to achieve overall load balancing in grids. The mecha-
nism distributed jobs evenly among the available resources by a collection of simple
local interactions. The number of ants and their (ants) steps are defined by the user and
don’t change during the load balancing process. This restriction is impractical for grid
like environments. Messor [4] used Anthill framework [5]. In Messor, the ants can be
in Search-Max or Search-Min states. An ant in Search-Max state wanders randomly
in the environment until it finds an overloaded node. The same ant, then, changes its
state to Search-Min and wanders randomly again in the environment, while looking
for an underloaded node. After these state changes, the ant balances the underloaded
and the overloaded node. However, considering the dynamism of grid environments,
this information may cause erroneous load balancing decisions. Ritchie et al. [6] pro-
posed a hybrid ant colony optimization algorithm to select the appropriate scheduler
in a heterogeneous computing environment. The proposed approach was tested only
for a scheduling problem in a static environment for independent jobs. Andrzejak et
al. [7] compared different algorithms, including ant colony optimization algorithms, for
self-organization and adaptive service placement in dynamic distributed environments.
Fidanova et al. [8] attempted searching a best task scheduling for grid computing using
ACO algorithm.

The main contributions of this paper are that it proposes an ant colony inspired,
micro-economic based resource discovery mechanism in ad hoc grids. The results are
compared with and without the load balancing factor on the proposed model. The pro-
posed mechanism is tested on a planetary scale testbed, PlanetLab, to obtain results as
closer to the real ad hoc grid environment as possible. We apply the following simpli-
fying assumptions:

– The tasks are atomic and can’t be sub-divided
– A participating node submits only one request/offer at any given time.
– The consumer, producer and the matchmaker agents are honest

Ant Colony Inspired Microeconomic Based Resource Management in Ad Hoc Grids 191

The rest of the paper is organized as follows. Section-3 briefs about the necessary back-
ground knowledge to understand the proposed model. Section-4 describes the proposed
architecture by describing our modified Ant Colony Optimization (ACO) algorithm.
Experimental setup and discussion of experimental results is in Section-5. Whereas,
Section-6 concludes the paper with some future research directions.

3 Background Knowledge

Before explaining the proposed model, first we explain the required necessary concepts
to understand the proposed model and the experimental results.

3.1 Continuous Double Auction Based Resource Discovery

Double auctions are one of the many-to-many types of auctions. Continuous Double
Auction (CDA) supports simultaneous participation of producer/consumer, observes
resource/request deadlines and can accommodate the variations in resource availabil-
ity. Consumer, Producer and Matchmaker are the three agents in each node of our ad
hoc grid. A node can be a consumer or producer of resources at any given time. The
consumers submit their computational needs in form of a resource request, called bid,
to the matchmaker. A bid is represented by requested computational resource quan-
tity, execution duration, validity period or Time-to-Live (TTL), and bid price. Whereas,
producers submit their available resources in form of resource offers, called ask, to the
matchmaker. An ask is represented by offered computational resource quantity, validity
period (TTL), and ask price. The computational resource is expressed in terms of CPU
cycles.

Auctioneer (matchmaker) collects bids/asks and matches them immediately on de-
tecting a compatible bid/ask pair. A compatible bid/ask pair is a pair of a resource
request and resource offer, where resource request constraints (such as resource quan-
tity, time deadline, price) are satisfied. The auctioneer finds a match between buyer
and seller by matching offers with requests. The matchmaker stores requests (bids) in
descending order of bid prices and offers (asks) in ascending order of ask prices in
its request/offer repositories respectively. When a task query is received by the match-
maker, the matchmaker searches all available resource offers and returns the best match.
If no match is found, the bid/ask is stored in matchmaker repositories till the TTL for
bids/asks is expired or a match is found. The consumers/producers do not have any
global information about the supply and are not aware of the others’ bids or asks. They
submit their asks/bids based on their local knowledge. We refer to [9] for the details of
our CDA based resource discovery approach.

3.2 Bid/Ask Price Calculation

The bid/ask price is the reflection of the value of each resource unit which the consumer
or producer is willing to buy or sell. The consumer/producer joins the ad hoc grid with
an initial bid/ask price and dynamically update the bid/ask price over time by using a
history based dynamic pricing strategy. The pricing function is explained in our previ-
ous work [10]. An overview of the pricing function is given here. The agents perceive

192 T. Abdullah, K. Bertels, and L.O. Alima

the demand and supply of the resources through their previous experiences and update
their prices accordingly. Based on this strategy, ask and bid price at time interval t are
defined as:

P(t2) = P(t1)+�P

Where P(t2) is the new bid/ask price at time t2 and P(t1) denotes the previous bid/ask
price at time t1. �P represents the price change between time interval t1 and t2,
such that t2 > t1. �P for seller and buyer is defined according to their resource/task
utilization history. �P for seller:

�P = α ∗ (μ(t)− μthR)∗ p(t1)

�P for buyer:

�P = β ∗ (μthT − μ(t))∗ p(t1)

Where α and β are the coefficients to control the price drift rate. In this paper α = β =
0.8 is used. Whereas, μthT and μthR are task and resource utilization thresholds and μt

is task/resource utilization of the individual node. μt is defined as:

μt =
t2

∑
i=t1

x(i)/
t2

∑
i=t1

N(i)

Where
t

∑
i=t0

x(i) is the sum of sold/purchased resources in time period [t1,t2] and
t2

∑
i=t1

N(i)

is the total number of offered/requested resources in time period [t1,t2]. The match-
maker calculates the transaction price as the average of the bid price and ask price of
the matched pair. Note that the transaction price is the amount that a consumer will pay
to the producer for consuming the producer’s resources.

4 Proposed Architecture

In order to map ACS to ad hoc grid, first we explain their relationship. Each con-
sumer/producer agent is considered as an ant and the matchmaker(s) are treated as
food sources. The pheromone value indicates the weight of the matchmaker in the
ant system. A matchmaker with higher pheromone value indicates that it has higher
probability of finding a compatible resource offer for a submitted resource request and
vice versa.

Each joining node, in our ad hoc grid, is under the responsibility of a matchmaker and
sends its resource request/offer to its responsible matchmaker. The joining node gets
the pheromone value(s) of the matchmaker(s) from its responsible matchmaker. The
pheromone value of a matchmaker is updated for each received resource request/offer
from a consumer/producer agent. The pheromone value of a matchmaker is computed
according to the equations given in Section-4.1. All the matchmaker agents periodi-
cally exchange the pheromone value with each other. The updated pheromone value is

Ant Colony Inspired Microeconomic Based Resource Management in Ad Hoc Grids 193

sent to the consumer/producer node. Each consumer/producer maintains the pheromone
values of the matchmakers and updates these pheromone values after receiving the
updated pheromone values from its responsible matchmaker. The consumer/producer
node uses the pheromone value as an indicator of matchmaker’s matchmaking perfor-
mance and send its next bid/ask message to the matchmaker with highest pheromone
value. In this way, the matchmakers with low pheromone value are dropped out from
matchmaker’s list.

4.1 Ant Colony Optimization Algorithm

In this section, we describe our modified ant colony optimization algorithm for
pheromone calculation. As mentioned earlier, consumer/producer agents represents
ants, matchmakers are the food sources and pheromone value indicates the weight of a
matchmaker. The pheromone value of a matchmaker is calculated periodically accord-
ing to the following formula.

τnew =
{

α ∗ τold +(1−α)∗�τ i f �τ > 0
(1−α)∗ τold + α ∗�τ i f �τ < 0

(1)

The parameter α represents the pheromone evaporation rate. The value of α varies
between 0 and 1. τold represents the pheromone value during time interval T 1 = [ts1 , te1].
Whereas, �τ is the change in pheromone value between time interval T 1 = [ts1 , te1] &
T 2 = [ts2 , te2]. The start time of both intervals is represented by ts1 & ts2 and te1 & te2

represent the end time of both time intervals, such that T 2 > T1 & ts2 = te1 . �τ is
calculated as:

�τ =
n

∑
i=1

τ(i)/N (2)

N is the total number of messages received by the matchmaker and τ(i) is the
pheromone value contributed by an individual ant. The τ(i) for a consumer agent is
calculated as:

τ(i) = Per f orm(MM)∗UPriceconsumer (3)

τ(i) for a producer agent is calculated as:

τ(i) = Per f orm(MM)∗UPriceproducer (4)

Per f orm(MM) represents the performance of a matchmaker and UPrice represents the
unit price of a requested or offered computational resource by an ant. Per f orm(MM) is
periodically calculated as:

Per f orm(MM) = Matched/N (5)

Matched represents the number of matched pairs and N is the total number of messages
processed by a matchmaker in time interval T = [tstart , tend]. tstart & tend represents the

194 T. Abdullah, K. Bertels, and L.O. Alima

Producer

Communication

Job Manager

Resource
Manager

Consumer

Communication

Job Manager

Task Manager

Underlying Structured Overlay Network

MatchMaker

MatchMake

Segmenter

Communication

Repository
Manager

Fig. 1. System Architecture

start and end time, respectively, of time interval T . The UPrice for each requested or
offered computational resource by an ant is calculated as:

UPricerequest = (
RQuantityrequest

BPrice
)∗ SMachine (6)

UPriceo f f er = (
RQuantityo f f er

APrice
)∗ SMachine (7)

RQuantityrequest & RQuantityo f f er represent the computational resource quantity of re-
quest and offer, respectively. BPrice and APrice represent the bid and ask price of the
requested and offered computational resource, respectively. SMachine represents a ref-
erence machine. The computational power of the reference machine is considered as
1GHz. Figure-1 depicts different components and their interaction for our ant colony
inspired, CDA based resource management approach. The Segmenter module in Figure-
1 implements our ant colony optimization algorithm. We refer to [11] for the detailed
description of the system architecture components.

4.2 Load Balancing Factor

In second set of experiments, we applied a load balancing factor to balance the work
load among the participating matchmakers. This factor is required for distributing the
resource discovery load among all the participating matchmakers. The load balanc-
ing factor ensures a minimum level of matchmaking efficiency and response time of a
matchmaker. As soon as a matchmaker reaches the threshold of matchmaking efficiency
and response time, the overloaded matchmaker transfers its excess workload to the clos-
est matchmaker. In this way the overloaded matchmaker can maintain its minimum level
of matchmaking. The overload threshold calculation details and excess workload shar-
ing is described in [12], whereas, algorithms for locating the closest matchmaker and

Ant Colony Inspired Microeconomic Based Resource Management in Ad Hoc Grids 195

for redirecting nodes to other matchmaker(s) are described in [11]. We would like to
point out that overload threshold calculation and matchmaker promotion and demotion
mechanism proposed in [11,12], are not used to promote/demote matchmakers in this
work. We used the overload threshold calculation mechanism only for load balancing
among the matchmakers in this paper.

5 Experimental Setup and Results

The proposed model is implemented on top of Pastry [13] structured overlay network,
for which an open source implementation (FreePastry) is available. However, in princi-
ple any other structured overlay network like Chord [14] or DKS [15] could have been
applied. PlanetLab [16,17] is used as the experimental testbed.

The experiments are executed to evaluate the proposed model. The effecitveness of
our microeconomic based resource discovery approach against a non microeconomic
approach was studied in [9]. The matchmaking efficiency and the response time of the
ad hoc grid for consumer requests and producer offers is computed and analyzed for
analyzing the proposed model presented in this paper. The matchmaking efficiency is
calculated as:

(
MatchedMessage

N
)∗ 100

MatchedMessage represents the count of matched messages and N denotes the total
number of messages processed by the matchmaker(s) in a unit time interval. The re-
sponse time represents the time interval between receiving a request/offer message and
finding a matching offer/request by the matchmaker. The experiments are executed in
a balanced network condition, which means that the consumer-producer ratio is ap-
proximately 50− 50. The number of participating nodes is varied from 15− 650. The
number of matchmakers is 5. The resource request and resource offer parameters like
task execution time and resource quantity are randomly generated from a pre-specified
range. The validity period (TTL) of request/offer message is set to 10000 milliseconds
for accommodating delays observed in PlanetLab. The value of α (rate of pheromone
evaporation) is set to 0.8 in these experiments.

5.1 Experimental Results

Figure-2 depicts matchmaking efficiency in different sets of experiments and Figure-3
represents the response time. The X-axis represents the work load (messages processed
by the ad hoc grid per minute) in Figure-2 & 3, whereas, Y-axis represents the match-
making efficiency in Figure-2 and response time in Figure-3.

The first set of experiments focused on pheromone calculation. It is observed that
the matchmaker with the highest pheromone value, out of all participating matchmak-
ers, received and processed all request and offer messages from all the participating
consumer/producer nodes. This phenomenon is expected for an ant colony inspired re-
source management system. The higher pheromone of a matchmaker attracts more ants
towards that matchmaker, which result in more workload for that matchmaker out of all
participating matchmakers. Ultimately the matchmaker with highest pheromone value

196 T. Abdullah, K. Bertels, and L.O. Alima

Fig. 2. Matchmaking Efficiency of the Ad Hoc Grid

Fig. 3. Response Time of the Ad Hoc Grid

receives and processes the whole workload of the ad hoc grid. At the same time it is
also observed that the matchmaking efficiency decreases and the response time of the
system increases (Dotted line in Figure-2 & 3) with increasing workload of the match-
maker having highest pheromone value. However, the drop in matchmaking efficiency
and increase in response time to the consumer/producer nodes is not desired. The drop
in matchmaking efficiency means that the matchmaker is unable to find compatible
request/offer pairs and the request/offer messages are being discarded by the match-
maker. The increased response time, with increasing workload of the matchmaker, de-
picts the increased processing time of the matchmaker. It is observed that the response
time becomes higher than the validity period (TTL) of the request/offer messages with
increased workload of a matchmaker.

In order to increase the matchmaking efficiency of the matchmaker(s) and to reduce
the response time of request/offer message, due to increased workload of a matchmaker,
we introduced a load balancing factor. The affects of load balancing factor is explained
in the the next set of experiments. The load balancing factor is applied when the work-
load of a matchmaker approaches the threshold value. When a matchmaker reaches

Ant Colony Inspired Microeconomic Based Resource Management in Ad Hoc Grids 197

its threshold values for matchmaking efficiency, the excess workload is processed by
the matchmaker with second highest pheromone value. We refer to [11,12] for the
details of distributing excess workload among different matchmakers and threshold
calculation, respectively. The load balancing factor results in increased matchmaking
efficiency and decreased response time (Represented by the continuous line in Figure-2
& 3) for the same workload. It can be concluded from the above discussion that an ant
colony inspired, microeconomic based approach to resource discovery in ad hoc grids
the proposed approach gives a stable behavior of the system in resource management
and shows a better load balancing.

6 Conclusion and Future Work

An ant colony inspired, microeconomic based resource management approach for ad
hoc grids is presented in this paper. We used matchmaking performance as the ba-
sic factor for calculating the pheromone value. The pheromone value is periodically
updated and communicated to consumer/producer nodes accordingly. We also applied
load balancing factor for distributing work load among all participating matchmakers
and for maintaining a minimum level of matchmaking efficiency. Experimental results
indicate that the proposed mechanism gives a stable behavior of the system in resource
management and shows a better load balancing. In future, we will look into associated
issues with the resource management of multiple resources (such as disk storage, mem-
ory, network bandwidth, etc) demanded/offered by consumer/producer nodes in our ant
colony inspired, CDA based resource management approach for ad hoc grids.

References

1. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man and Cybernetics-Part B 26(1), 29–41 (1996)

2. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Sci-
ence 344, 243–278 (2005)

3. Cao, J.: Self-organizing agents for grid load balancing. In: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, GRID, pp. 388–395 (2004)

4. Montresor, A., Meling, H., Montresor, A.: Messor: Load-balancing through a swarm of au-
tonomous agents. Technical report, University of Bologna (2002)

5. Babaoglu, Ö., Meling, H., Montresor, A.: Anthill: A framework for the development of agent-
based peer-to-peer systems. In: Proceedings of the 22nd IEEE International Conference on
Distributed Computing Systems, ICDCS 2002, pp. 15–22 (2002)

6. Ritchie, G., Levine, J.: A hybrid ant algorithm for scheduling independent jobs in hetero-
geneous computing environments. In: The Proceedings of the 23rd Workshop of the UK
Planning and Scheduling Special Interest Group (2004)

7. Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Algorithms for self-organization and
adaptive service placement in dynamic distributed systems. Technical Report HPL-2002-
259, HP laboratories Palo Alto (2002)

8. Fidanova, S., Durchova, M.: Ant algorithm for grid scheduling problem. In: Lirkov, I.,
Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 405–412. Springer,
Heidelberg (2006)

198 T. Abdullah, K. Bertels, and L.O. Alima

9. Pourebrahimi, B., Bertels, K., Kandru, G., Vassiliadis, S.: Market-based resource allocation
in grids. In: 2nd IEEE International Conference on e-Science & Grid Computing (2006)

10. Pourebrahimi, B., Bertels, K., Vassiliadis, S., Alima, L.O.: A dynamic pricing and bidding
strategy for autonomous agents in grids. In: 6th International Workshop on Agents and P2P
Computing (2007)

11. Abdullah, T., Alima, L.O., Sokolov, V., Calomme, D., Bertels, K.: Hybrid resource discovery
mechanism in ad hoc grid using strucutred overlay. In: 22nd International Conference on
Architecture of Computing Systems (March 2009)

12. Abdullah, T., Sokolov, V., Pourebrahimi, B., Bertels, K.: Self-organizing dynamic ad hoc
grids. In: 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops (October 2008)

13. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
pp. 329–350. Springer, Heidelberg (2001)

14. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of the ACM SIGCOMM
Conference, pp. 149–160 (2001)

15. Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: DKS(N, k, f): A family of low-
communication, scalable and fault-tolerant infrastructures for P2P applications. In: Proceed-
ings of the 3rd International workshop on Global and P2P Computing on Large Scale Dis-
tributed Systems, CCGRID (2003)

16. PlanetLab Online,
������������	����	�������
17. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing disruptive

technology into the internet. In: 1st ACM Workshop on Hot Topics in Networks (2002)

https://www.planet-lab.org/

Dynamic Scheduling Algorithm for
Heterogeneous Environments with Regular Task

Input from Multiple Requests

Marc E. Fr̂ıncu

Institute e-Austria, Blvd. V. Parvan, Timisoara, 300223, Romania
mfrincu@info.uvt.ro

Abstract. Grids are very dynamic and their workload is impossible to
predict. As a result systems using them need to offer mechanisms for
adapting to the new configurations. To address this issue many schedul-
ing policies have been created. In a Grid environment in which tasks
needing to be scheduled arrive constantly it is costly to lend some com-
puting resources to only one request consisting of jobs and postpone all
others as long as the current one is executing. As a result a schedul-
ing algorithm which minimizes each task’s estimated execution time by
considering the total waiting time of a task, the relocation to a faster
resource once a threshold has been reached and the fact that it should
not be physically relocated at each reassignment should be considered.
This paper tries to offer a solution based on the above. To validate the
model a comparison with other scheduling algorithms is performed.

1 Introduction

Due to the dynamic and unpredictable nature of the Grid, systems are required
to implement and offer mechanisms for adapting themselves to the new config-
uration at any given moment. Most of the changes which could influence the
execution time of a particular job appear either from changes in the workload
or from availability of nodes or of network traffic. These problems are usually
solved by implementing efficient Scheduling Algorithms (SAs). However many
of these algorithms are static and do not take into account the unpredictable
nature of the Grid. Dynamic algorithms on the other hand aim at providing
solutions by periodically reschedule tasks based on future predictictions or past
configurations.

Resources are usually located on different nodes of a cluster or even on differ-
ent clusters situated in different geographical areas. Therefore the time needed to
transport the data from one resource to another needs to be optimized as much
as possible. This is not an easy problem because the data packets are routed
at the network level by routing algorithms. Besides transferring task data from
one computing node to another, we need to choose the best possible solution for
the destination of the data which exists at that particular point in time. This
requires knowledge on current node workload, number of tasks waiting to be
executing on that node, node resources in terms of memory, flops, disk, required

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 199–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

200 M.E. Fr̂ıncu

software etc. Overall the aim of any good scheduling policy is to solve the prob-
lem of minimizing the time from the submission of the new task and the time it
begins to execute. Also if possible it should maximize resource utilization such
that no resource gets overused while others remain relatively free.

SAs usually handle jobs coming from batches of independent [9][1] tasks or
workflows [16]. However in a Grid environment it is costly to lend some com-
puting resources to only one request consisting of workflow or batch of jobs and
postpone all others as long as this one is executing. Such a behaviour could
lead to an unnecessary delay in the scheduling and execution of newer requests.
As a result a dynamic SA in which all requests are given the same chance of
competing for resources and every one of them has the smallest possible waiting
time prior to the actual execution would be prefered. Other issues which should
not be neglected are both the possibility of earlier completion by moving the
job to another resource queue when the time spent on the current one reaches
a given threshold and the fact that resources become available and unavailable
in an unpredictable way. In order to reduce network traffic jobs should not be
physically transported to new queues during rescheduling. Instead they should
be only marked (assigned) as belonging to a new resource queue. The actual
transport would take place at a moment depending on the time required for the
transfer and the estimated start time of the task on the new resource. This is
necessary as migrating tasks each time they get rescheduled on new resources
would produce an undesired traffic overhead in the network.

This paper presents a dynamic SA based on the above and compares it with
several classic SAs. The SA is studied in terms of convergence and existence of
solution. The results show that while the overall makespan can be dramatically
decreased using such an approach we can also obtain a good overall node work-
load and keep the execution time from increasing dramatically with the number
of tasks to be scheduled as many of the studied SAs do.

As a whole the paper is structured as follows: Section 2 gives a brief overview
on other SAs, Section 3 presents the proposed dynamic SA by defining the math-
ematical model and general characteristics, Section 4 details the main results of
several tests and finally Section 5 outlines some conclusions and possible future
directions of study.

2 Overview of Existing SAs

The problem of scheduling tasks in a Distributed Environment has been already
addressed many times. Consequently, efficient SAs have been proposed. Many of
the proposed SA are either static [1], [16], [9] or dynamic [6], [11], [7]. The first
approach assumes that all the information about resources is priory known and
that resources do not change over time, while the second takes into consideration
the dynamics of the Grid. Since the cost for an assignment when dealing with
dynamic scheduling is not available, a natural way to keep the whole system
health is by balancing the loads of its resources. The advantage of dynamic
load balancing over static scheduling is that the system does not need to be

Dynamic Scheduling Algorithm for Heterogeneous Environments 201

aware of the run-time behavior of the application before execution. It is useful
in cases where the primary performance goal is maximizing resource utilization,
rather than minimizing runtime for individual jobs. SAs [3] are usually heuristic
or meta-heuristic based. Heuristic based algorithms include Myopic, Min-Min,
Max-Min [9], Suffrage, XSuffrage [1], Minimum Execution Time, Backfilling [13],
HEFT [16], etc. Meta-heuristic based algorithms comprise Genetic Algorithms,
Simulated Annealing [15] and Greedy Randomized Adaptive Search Procedure
(GRASP) [4].

Scheduling policies can try to provide a good schedule by working either at
a macroscopic level where they seek to minimize the overall batch makespan or
at microscopic level by minimizing the time until execution of each independent
task in a dynamic manner everytime a reschedule is executed. The dynamic SA
discussed in this paper combines both when building up the schedule.

3 A Dynamic Scheduling Policy with Regular Task Input
from Multiple Requests

In what follows a scheduling policy for dynamically assigning tasks to resources
will be discussed. The algorithm is based on a heuristic which aims at minimizing
the total waiting time of each task in the schedule list by periodically reasigning
tasks to new queues where they have a better chance of completing earlier. The
decision to move the task is based on whether their waiting times on the currently
assigned queue have reached or not certain thresholds. The algorithm’s heuristic
basically revolves around three main rules: time (when to move), position
(where to move) and force (give priority to older tasks). Moreover it is assumed
that tasks that need to be scheduled arrive periodically and are not restricted to
the initial set. Each time a reschedule is started, there might be some new tasks
which need to be scheduled for the first time. Tests that we have conducted have
shown that it does not matter how these tasks are initially distributed on queues
as it does not have an impact on the overall results of the schedule (as seen in
Section 4).

3.1 Terms and Notion

The introduction of a couple of required terms is mandatory before proceeding
with the description of the algorithm.

The estimated completion time (ect) is the estimated time when the task is
completed. It is defined as in Equation (1):

ect = max(itt, ewt, ist) + eet (1)

where itt represents the input transfer time in seconds, ewt is the estimated
waiting time until all tasks in front of the new one get executed, ist means the
time needed for the start of the solver and eet stands for the estimated execution
time of the task on the chosen resource. The reason for using max instead of
sum is that the operations listed as arguments are supposed to start at the

202 M.E. Fr̂ıncu

same moment rather than in a sequential manner. The eet is usually computed
either by using previously known information related to tasks similar to the
one in discussion or by using user given estimes. It may involve extrapolation
functions, Genetic Algorithms or Neural Networks combined with a correction
factor. Ideally however we could calculate the eet ’s value exactly if we knew the
number of instructions in each task and the current speed of the processors. In
this case the eet becomes execution time (et). Unfortunately even though we
can determine the processor speed, the number of instructions in a task is very
hard to delineate. The transfer cost (tc) from one waiting queue to another is
represented by Equation (2) and represents the time required by a task to move
from the current queue to the new one. The SA which will be described in what
follows relies rather on computational intensive than on data intensive tasks and
as a result transfer costs are expected to be minimized as possible.

tc =
n∑
i

(lati +
taskSize

bwi
) (2)

where n represents the number of links in the route between the old and new
computing node, bwi and lati stand for the latency and bandwidth offered by
linki in the route. Their values can be determined by using either topology
mapping tools or data extracted from an online platform catalogue.

Apart from these terms SAs also use some metrics which help establish their
efficiency. The makespan is defined as the time required for all tasks to complete
their execution. Generally the schedule refers to a single job composed of multiple
tasks. Ordinarily, the goal of SAs is to find a good compromise between makespan
and node workload. Still, when using this criterion we cannot find an optimal
algorithm for scheduling, because of the fact the computing power of a grid
varies over time depending on the workload. In contrast we can use the Total
Processor Cycle Consumption (TPCC) [5] which represents the total computing
power consumed by an application. Its advantage is that it can be little affected
by the variance of resource performance. A schedule with a good TPCC is also
a schedule with a good makespan.

The compactness of a SA is defined as the ratio between the queue with the
smallest ect and the one with the largest one. As a result a SA is said to be ideal
in terms of node workload if its compactness ↗ 1.

Given two SAs SA1 and SA2 the gain of SA2 with respect to SA1 is given
by the ratio makespanSA1

makespanSA2
> 1. The bigger the ratio the better the algorithm.

3.2 The Mathematical Model

Let Q be the set of queues, R the set of computing resources and T the set of
tasks (jobs). Every q ∈ Q belongs to one r ∈ R and is an ordered set (Remark
1) containing tasks. A schedule is a function f : T → R which maps every task
task ∈ T on a resource r ∈ R.

Given a T k
i ∈ qk we define lwtki and twti as the local waiting time of that

task on qk respectively the total waiting time of the same task (the time since its

Dynamic Scheduling Algorithm for Heterogeneous Environments 203

submission). Furthermore ectki and eetki are defined as the estimated completion
time respectively the estimated execution time of T k

i on qk.

Remark 1. Queues are ordered sets such that ∀qk ∈ Q∀ti, tj ∈ qk(i > j ⇒ twti ≤
twtj).

The previous remark does not allow for younger tasks to be scheduled ahead of
older ones. Its aim is not to allow the starvation of older tasks due to constant
insertion of younger tasks with smaller ect ahead of them. In case of batch jobs
arriving at the same moment this remark will not influence in any way the
scheduling decisions as all twti would be equal. The three rules imposed on the
algorithm and listed in Section 3 are as follows:

Rule 1. The time when a T j
i can be moved from qj is given by Equation (3):

eσ−lwtj
i ∈

{
[0, 1) , move
[1,∞) , keep

(3)

where the value of σ depends on how it is chosen. The previous equation simply
sets a time threshold on the moment when a decision for moving a T j

i from queue
qj to a new one should be made. There is no rule for chosing a proper value for
σ but tests (Section 4) have shown that the makespan is directly influenced by
it. For example in the case in which we want to move Ti to a new queue when
its lwt exceeded its ect in the assumption that all tasks have the same eet as it,
we have a condition like the one in Relation 4:

σ =
{

eetji · (i − 1) , i > 0
lwtji , i = 0

(4)

Variants of σ could use the smallest eet, the actual ect, a priority based approach
(Relation 5) or simply reschedule tasks at each time interval equal with one time
unit (σ = 1).

σ =
{

a ∈(1,∞) , pi = 1
twti

pi
, pi > 1 (5)

where pi is initially equal with 0 and increases with one unit each time the task
is logically moved on another queue.

Rule 2. Let ectqj =
∑l<|qj |

l=0 eetjl be the estimated completion time of qj and

θk = ectj
i

ectk
i

1
tcjk

i

. Choosing which is the new qk where to move T j
i means finding

k = {i : ∀0≤j<n,j �=i (θj ≤ θi)} and satisfying the Relation (6):[
ectqj − eetj

T j
i

≥ ectqk
+ eetk

T j
i

]
∧ ectji

ectki
≥ 1 (6)

where the first term ensures that the resulting ectqk
will be smaller than the

remaining ectqj . The second term of the condition restricts us from moving a
task to a queue qk where ectki ≥ ectji . This situation may occur when ∀qk ∈
Q \ {qj}(ectki ≥ ectji) and θk is defined as follows:

204 M.E. Fr̂ıncu

Remark 2. Before computing the ect on a new queue a task is considered as
being inserted at the position given by the ordering in Remark 1. Based on this
position the ect value is then calculated.

Remark 3. New incomming tasks will be placed on a waiting queue. They will
be moved on a queue assigned to a resource only if ‖T ‖ (Definitions 1 and 2)
is smaller or equal with ‖T ‖ at the previous step. This is necessary to obey
Definition 3.

Rule 3. The condition for executing tasks is given by fi = twti. It is chosen such
that in each qk tasks are executed in the descending order of their twt.

3.3 Convergence of the Solution

In order to establish whether our algorithm always produces augmented solutions
or not, we need to study if its makespan always decreasingly converges to a limit.
In this direction we introduce the following definitions:

Definition 1. Given Q the set of queues and T the set of tasks we define a
transition inside a schedule as the process of moving one task from a queue
to another. More formally we can say that if ∃qj , qk ∈ Q∃Ti ∈ qj(e

σ−lwtj
Ti <

1 ∧ ectj
i

ectk
i

≥ 1) ∧
[
ectqj − eetj

T j
i

≥ ectqk
+ eetk

T j
i

]
where k = {i : ∀0 ≤ j < n, j =

i (θj ≤ θi)}, a transition T (Ti) : qj → qk is defined by the following set of
operations:

T =
{

qj = qj \ {Ti}
qk = qk ∪ {Ti}

(7)

where T (Ti) simply means taking Ti from queue qj and placing it on queue qk.

Definition 2. Let sm = ‖Tm‖ = max(
∑l<|q1|

l=0 eet1l ,
∑l<|q2|

l=0 eet2l , . . . ,∑l<|qn|
l=0 eetnl).

Definition 3. We say that the iterative process described by a dynamic SA is
convergent if sm decreasingly converges to a limit.

Proposition 1. The SA presented in Section 3.2 is convergent.

Proof (of proposition). From the rules defined in Section 3.2 we have that the
sequence sm from Definition 2 is bounded by ‖T0‖ and 0. Furthermore it is
a descending monotonic sequence. As a result the sequence has a limit and
according to Definition 3 the SA is convergent.

Proposition 1 sustains that the envisioned SA always converges to a limit. Nev-
ertheless there is an open issue concerning its stability. In order to find an answer
to it we still need to solve two more problems concerning the experimental de-
duction of the σ value which produces the best makespan and the study of that
makespan’s error with regard to the best possible one. These studies require
however a large amount of space and time and will be dealt with in a future
paper.

Dynamic Scheduling Algorithm for Heterogeneous Environments 205

3.4 Physical Movement Condition for Tasks on New Queues

As mentioned in Section 1 physically moving tasks between queues as they get
rescheduled implies an overhead in bandwidth usage and may lead to bottleneck
problems. This is why tasks should be kept on their initial allocated queues until
a certain threshold is reached and only then actually moved to the new queue.
Each time a task is assigned to a new queue during rescheduling it is only logically
marked as belonging to it without truly moving it there. The threshold should
be chosen such that the chances of the task being executed on the new queue
after movement is maximized. In this way we can assume that after a task has
been moved it will not be rescheduled on a new queue before being executed.
For this to happen no other task that could cause the task in discussion to delay
its execution so that it gets rescheduled must exist after its physical relocation.
Likewise the ect of the task at the moment of the physical relocation should be
as close as possible to its tc. Formally this can be expressed as in Definition 4
and the interval which bounds it is defined in Proposition 2.

Definition 4. We define the threshold value, φ, for physically moving a Ti to
qk where it will execute as the moment lwtki when the following conditions are
met: eσ−lwtk

i ↘ 1, (ectki − eetki) ↘ tci and ∀qj ∈ Q \ {qk} ∃task ∈ qj(twttask >

twtTi ∧ eσ−lwtj
task < 1 ∧ qk = maxqk∈Q\{qj}(θk) ∧ ectj

i

ectk
i

≥ 1) ∧
[
ectqj − eetj

T j
i

≥

ectqk
+ eetk

T j
i

]
.

Proposition 2. The only admissible threshold values are located inside the in-
terval φ ∈ (σ − δ, σ) ∀δ > 0 such that the relations in Definition 4 hold and φ is
positive.

Proof (of proposition). In what follows we will assume that we have a threshold
φ as defined in Definition 4.

Let f(x) = eg(x), where g(x) = σ − x and x = φ. From Definition 4 we have
that lim

x→σ
f(x) = 1 and f(x) ↘ 1. These imply that lim

x→σ
g(x) = 0 and x < σ.

From the ε-δ definition of the limit we obtain σ − δ < x < σ + δ. As a result
we can conclude that the threshold φ ∈ (σ − δ, σ), ∀δ ∈ [0, σ] and the conditions
from Definition 4 are met.

More generally Proposition 2 states two main facts. Firstly that a Ti can be
physically moved to its designated queue at any time between its assignment
and the moment we need to relocate it again, if and only if there are no more
tasks which could be added ahead of it; secondly, the time remaining until the
start of its execution is almost equal with its transfer time.

3.5 Algorithm

Given the model described in Section 3.2 we can create an algorithm for a cen-
tralized dynamic SA. The algorithm will be based on user estimates for the value

206 M.E. Fr̂ıncu

of eet which will be used when taking decisions to move one task from a queue
to another. The envisioned algorithm was called Dynamic Minimization of the
Estimated Completion Time (DMECT) and tries at each reschedule to minimize
the ect of each task which violates the time condition expressed in Relation (3).
As stated in the beginning of Section 3 the decision on where to assign new in-
coming tasks does not affect the overall schedule result. Therefore all new tasks
will be assigned to random queues. This has no influence on the SA as all tasks
which do not obbey the time condition will be reassigned according to the posi-
tion condition expressed in Relation (6). Each time a processor/core on a queue
is available the task with the smallest index value will be scheduled to run on it
non-preemtively. The algorithm is described in the following lines:

while (exist tasks in T_list) do {
foreach (task in T_list) do
if (task is new) then
assign task to random queue;

foreach (queue in queue_list) do
if (queue not sorted)
sort tasks in current queue descending by twt;

repeat {
foreach (queue in queue_list) do
foreach (task in current queue) do

if (task exceeds time constraint) then {
find new queue based on condition;
find position to insert such that tasks
remain ordered descending by twt;
place task on new queue at the found position;

}
} until (not task has been moved)

}

3.6 Impact of the Value of EET in the SAs Overall Behaviour

Most of the SAs require some time execution estimates to be known prior to the
actual scheduling. This information can be obtained either by using historical
information and applying some learning mechanisms [12] or by using user given
estimates. These estimates mostly concern the eet and, based on them, the SA
takes decisions on how and where to schedule the task. Yet there are times when
it is hard to predict them, as it is in the case of jobs which choose the algorithm
for solving depending on the input data without the user’s knowledge. These
algorithms might have different complexities and run an unpredictable amount
of time before producing any results. Consequently user estimates are not always
useful as they could influence in a negative way the outcome of the applied
heuristic [8]. However conclusions are divided as depending on various studies
some SA might perform better [10] than when using exact run times, or even
worse [2].

Dynamic Scheduling Algorithm for Heterogeneous Environments 207

4 Test Results

Simulations conducted on DMECT using a value for σ as described in Rela-
tion 4 have been accomplished on a sub-platform belonging to the Grid’50001

Grid consisting of 5 clusters (2 powerfull and 3 less powerfull) [14] with 10/272
(used/available) processors and a heterogeneity factor [14] of 100. Also four ad-
ditional variations on σ (based on those listed in Rule 1 of the SA described in
Section 3.2) have been tested in order to show how it influences the resulting
makespan. DMECT2 sets σ = 1, DMECT3 uses a priority approach (Relation
5), DMECT4 takes into consideration the minimum eet found in the current
queue and DMECT5 sets σ to be equal with the tasks current ect. As stated in
Section 3.6 the user estimate might influence in a smaller or greater amount the
outcome of the SA. Thus a testing scenario in which tasks are divided into classes
with each class having an average value for eet and a standard deviation which
will be used for generating normalized random values has been envisioned. Each
generated task will belong to a class Cn and have an eet value corresponding
to a normal distribution N(μCn , σCn). To further refine the results tests were
repeated for a number of 100 times and the average of their output was taken
as the final result.

Table 1. Gain of DMECT with regard to other SAs

No. tasks Round Robin Suffrage Min-Min Max-Min MinQL
10 1.19 0.90 0.93 1.10 1.09
50 1.84 1.59 1.75 1.89 1.81
100 2.44 1.93 2.33 2.44 2.40
150 2.47 1.92 2.40 2.51 2.44
200 2.60 1.93 2.54 2.59 2.58
250 2.68 1.86 2.61 2.65 2.63
300 2.98 2.00 2.94 2.99 2.95
350 3.22 2.07 3.16 3.20 3.18
400 3.19 1.94 3.14 3.16 3.14
450 2.91 1.70 2.87 2.89 2.88
500 3.27 1.81 3.23 3.25 3.22

For testing several characteristics of the SA such as makespan (Figure 1),
gain (Table 1), compactness (Figure 2) and schedule runtime (Figure 3) were
of interest. The five DMECT flavours were tested against dynamic versions of
Min-Min, Max-Min, Suffrage, and Round Robin SAs. For makespan we also
considered a dynamic SA (MinQL) which periodically rebalances the queues by
moving tasks to faster resources and which does not consider the eet when taking
decisions. The DMECT flavour performed better in all cases offering an average
gain of 1.79 (Table 1) against the second best dynamic SA Suffrage. Regarding
compactness (Figure 2) an average value of 0.6 was obtained for DMECT during

1 https://www.grid5000.fr/

https://www.grid5000.fr/

208 M.E. Fr̂ıncu

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300 350 400 450 500

M
ak

es
pa

n

No. tasks

DMECT
DMECT2
DMECT3
DMECT4
DMECT5

MinQL
Round Robin

Suffrage
Min-Min

Max-Min

Fig. 1. Makespan of various DMECT flavours compared with other SAs

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

C
om

pa
ct

ne
ss

No. tasks

DMECT
DMECT2
DMECT3
DMECT4
DMECT5

MinQL
Round Robin

Suffrage
Min-Min

Max-Min

Fig. 2. Compactness of various DMECT flavours compared with other SAs

tests. This shows that the DMECT flavour tends to offer a solution at a time
when its largest queue has an ect of almost the double size of its smallest queue in
terms of ect. Out of all the DMECT flavours DMECT3 performed best at these
tests and offered an average value of 0.81. However this behavior still needs to be
investigated as it may be connected to the threshold value used when deciding
whether to move or not a task to a new queue. DMECT also performed well
with regard to the overall time required for assigning all the tasks (Figure 3) as
it gave the best schedule build time out of Suffrage, Min-Min and Max-Min.

Dynamic Scheduling Algorithm for Heterogeneous Environments 209

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400 450 500

R
un

tim
e

No. tasks

DMECT
Round Robin

MinQL
Suffrage
Min-Min
Max-Min

Fig. 3. Avg. schedule runtime of DMECT compared with other SAs

5 Conclusions and Future Work

In this paper we have presented a SA which reassigns periodically incoming tasks
when their waiting time on a queue reaches a threshold and tries to relocate them
on a queue with the best chance of completing them at the earliest possible
time. Moreover due to the threshold existence tasks assigned to queues whose
resources become unavailable will be reassigned. As tests have shown the SA
which has been called DMECT gives good makespan and average compactness
for batches consisting of large number of tasks. Also it has been outlined that the
improvement of the makespan is related with the moment σ chosen as threshold
for moving the task to a new queue. The time needed to build a schedule is also
smaller compared to other SAs.

As future enhancements more tests using different platforms with a wider
range of heterogeneity are taken into consideration. Also scenarios in which tasks
have a wider range of eet need to be considered. The purpose of these tests is
to determine if the schedule is similar in all scenarios or is dependent on the
platform configuration and task properties. The limit defined in Definition 3 and
the makespan error related with it need to be tested experimentally. Moreover
a value for σ which produces the best schedule makespan needs, if possible,
to be experimentally determined. Also a descentralized and parallel approach
based on the fact that the SA is easily representable by using rules is under
consideration.

Acknowledgments. This research is partially supported by European Union
Framework 6 grant RII3-CT-2005-026133 SCIEnce: Symbolic Computing Infras-
tructure in Europe.

210 M.E. Fr̂ıncu

References

1. Casanova, H., et al.: Heuristics for Scheduling Parameter Sweep Applications
in Grid Environments. In: The 9th Heterogeneous Computing Workshop (HCW
2000), pp. 349–363. IEEE Press, Los Alamitos (2000)

2. Chiang, S., Arpaci-Dusseau, A.C., Vernon, M.K.: The Impact of More Accurate
Requested Runtimes on Production Job Scheduling Performance. In: Feitelson,
D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp.
103–127. Springer, Heidelberg (2002)

3. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: State of the art
and open problems. Technical report, Queen’s University (2006)

4. Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization 6, 109–133 (1995)

5. Fujimoto, N., Hagihara, K.: A comparison among grid scheduling algorithms for
independent coarse-grained tasks. In: International Symposium on Applications
and the Internet Workshops, pp. 674–680. IEEE Press, Los Alamitos (2004)

6. Gao, Y., Rong, H., Huang, J.: Adaptive grid job scheduling with genetic algorithms.
Future Gener. Comput. Syst. 21, 151–161 (2005)

7. Kurowski, K., et al.: Improving Grid Level Throughput Using Job Migration And
Rescheduling. Scientific Programming 12(4), 263–273 (2004)

8. Lee, C., Schartzman, Y., Hardy, J., Snavely, A.: Are User Runtime Estimates
Inherently Inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

9. Maheswaran, M., et al.: Dynamic Matching and Scheduling of a Class of Indepen-
dent Tasks onto Heterogeneous Computing Systems. In: The 8th Heterogeneous
Computing Workshop (HCW 1999), pp. 30–44. IEEE Press, Los Alamitos (1999)

10. Mu’alem, A.W., Feitelson, D.G.: Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Transactions
in Parallel Distributed Systems 12(6), 529–543 (2001)

11. Sakellariou, R., Zhao, H.: A Low-Cost Rescheduling Policy for Efficient Mapping
of Workflows on Grid Systems. Scientific Programming 12(4), 253–262 (2004)

12. Smith, W., Foster, I.T., Taylor, V.E.: Predicting Application Run Times Using His-
torical Information. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-
WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 122–142. Springer, Heidelberg
(1998)

13. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization
of Backfilling Strategies for Parallel Job Scheduling. In: Proceedings of the 2002
International Conference on Parallel Processing Workshops, pp. 514–519. IEEE
Press, Los Alamitos (2002)

14. Suter, F., Casanova, H.: Extracting Synthetic Multi-Cluster Platform Configura-
tions from Grid 5000 for Driving Simulation Experiments, Tech. Rep. RT-0341,
INRIA (2007)

15. YarKhan, A., Dongarra, J.J.: Experiments with Scheduling Using Simulated An-
nealing in a Grid Environment. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536,
pp. 232–242. Springer, Heidelberg (2002)

16. Zhao, H., Sakellariou, R.: An Experimental Investigation Into the Rank Function
of the Heterogeneous Earliest Finish Time Scheduling Algorithm. In: Kosch, H.,
Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 189–
194. Springer, Heidelberg (2003)

Balanced Scheduling Algorithm Considering
Availability in Mobile Grid�

JongHyuk Lee1, SungJin Song1, JoonMin Gil2, KwangSik Chung3,
Taeweon Suh1, and HeonChang Yu1,��

1 Dept. of Computer Science Education, Korea University
{spurt,white}@comedu.korea.ac.kr, {suhtw,yuhc}@korea.ac.kr

2 Dept. of Computer Science Education, Catholic University of Dague
jmgil@cu.ac.kr

3 Dept. of Computer Science, Korea National Open University
kchung0825@knou.ac.kr

Abstract. The emerging Grid is extending the scope of resources to
mobile devices and sensors that are connected through unreliable net-
works. Nowadays the number of mobile device users is increasing dra-
matically and the mobile devices provide various capabilities such as
location awareness that are not normally incorporated in fixed Grid re-
sources. Nevertheless, mobile devices exhibit inferior characteristics such
as poor performance, limited battery life, and unreliable communication,
compared to fixed Grid resources. Therefore, the job scheduling and the
load balancing are more challenging and sophisticated in mobile Grid en-
vironment. This paper presents a novel balanced scheduling algorithm in
mobile Grid, taking into account the mobility and availability in schedul-
ing. We analyzed users’ mobility patterns to quantitatively measure the
resource availability that is classified into three types: full availability,
partial availability, and unavailability. We also propose a load balanc-
ing technique by classifying mobile devices into nine groups depending
on availability. The experimental results show that our scheduling algo-
rithm provides a superior performance in terms of execution times to one
without considering availability and load-balancing.

Keywords: scheduling, load balancing, availability, mobile grid.

1 Introduction

Grid [1] is a large-scale virtual computing environment where geographically dis-
tributed resources collaboratively provide a computing infrastructure. It is used
for solving computing-intensive and data-intensive problems that are not prac-
tically feasible to run in traditional distributed computing environments. The

� This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (MOEHRD) (KRF-2006-311-D00173).

�� Corresponding author.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 211–222, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 J. Lee et al.

early Grid was implemented mostly with physically fixed resources with high-
performance, and the resources are connected through high speed and reliable
networks.Emerging Grids [2] are extending a scope of resources to mobile devices
and sensors that are connected through unreliable networks. Especially, a mobile
Grid focuses on incorporating mobile devices by supporting new functionalities
such as mobility.

A mobile device in mobile Grid can play roles as both a consumer and a
provider. As a consumer it requests service to a Grid, and as a provider it ac-
tively participates in processing service requests. Compared to physically fixed
Grid resources such as desktop computers, mobile devices tend to provide a rela-
tively inferior performance in terms of CPU capability, amount of main memory,
and storage capacity. They also have a limited battery life and are commonly
connected to wireless networks that are not as reliable as wired networks. Due
to the availability and reliability issues, it is not straightforward to use a mobile
device as a Grid resource and there are skepticisms on using a mobile device as a
provider. Nevertheless, mobile devices offer various capabilities such as location
awareness that are not normally incorporated in fixed Grid resources. Nowa-
days the number of mobile device users is exploding and devices are rolled out
equipped with a processor and large memory with advanced technology at an
ever-faster pace. Considering the devices’ capabilities and enormous number of
gadgets, mobile devices have immense potential to serve as resource providers
in mobile Grid environment.

The challenges in mobile Grid are job scheduling and load balancing issues
under the unreliable communication environment. For example, the network link
in mobile Grid could be broken while executing a job that may require data
communication. Then, the job should wait until the connection is reestablished.
This leads to performance degradation of the job. Without proper load balancing,
all jobs may be allocated only to the stable resources such as physically fixed Grid
components. It results in discriminating mobile devices with less performance
but with the enormous number of population. It incurs not only the decrease of
the Grid resources’ utilization, but also the performance degradation due to the
improper load-balancing.

This paper presents a novel balanced scheduling algorithm taking into account
the mobility and availability in scheduling. We analyzed users’ mobility patterns
to quantitatively measure the resource availability that is classified into three
types. We also propose a load balancing technique by dividing mobile devices
into nine groups depending on availability and job type (computing-intensive
and data-intensive).

The rest of the paper is organized as follows. Section 2 presents related work on
scheduling algorithms in mobile Grid. Section 3 discusses challenges introduced
by the mobile device’s mobility. Section 4 demonstrates the system architecture
of a mobile Grid and describes characteristics of users’ mobility patterns, which
are used to propose our load balancing algorithm in Section 5. Experimental
results are presented in Section 6. Finally, we conclude our paper with future
works in Section 7.

Balanced Scheduling Algorithm Considering Availability in Mobile Grid 213

2 Related Work

Several studies have researched on scheduling issues in mobile Grid focusing on
power efficiency, communication availability due to mobility, and job replication.
From the power efficiency point of view, Chang-Qin Huang et al. [3] proposed
a proxy based hierarchical scheduling model that takes into account mobility
and power management in wireless environment. In this model, the scheduler is
comprised of two levels (top level and proxy level) to efficiently utilize the energy
of wireless node and to guarantee QoS at the same time.

There are several studies on the communication availability. Park et al. [4] pro-
posed a scheduling algorithm with the processor and the communication avail-
abilities. This algorithm confined communication scope and thus can be useable
even when the network link is broken due to the mobile device’s mobility. How-
ever, this algorithm has a shortcoming in that it is applicable to specific job
types with no communication during a job execution. Farooq et al. [5] devised a
generic mobility model to predict a time duration for which a user (and thus a
device) will remain in a specific domain. It is based on learning from the user’s
behavior in the past. This model computes the average mobility and the time in
range based on the user range parameter. Then, it calculates how many jobs a
mobile device can execute. Ghosh et al. [6] proposed a scheduling algorithm that
applies a pricing strategy to the job allocation problem and optimizes a total
system cost. Since these algorithms do not consider the processor availability
and load balancing, they have limitations on the scheduling optimization.

In job replication aspect, Litke et al. [7] proposed a method that estimates a
number of job replications using the Weibull reliability function and maximizes
the resource utilization for workloads caused by replication with the knapsack
formulation.

3 Problem Statement

As opposed to a traditional Grid, the mobile Grid has a characteristic that
Grid resources are changing their physical positions according to users’ move-
ment. When a mobile device crosses domains in wireless network, a mobile
user demands the terminal mobility to maintain a session. Even when a mobile
user opens a session on one device and moves to another device, the user still
demands both user mobility and session mobility for the continuation of the
service. Present mobile computing guarantees the terminal mobility and the ses-
sion mobility through MIP and SIP. It is implemented in either network layer
or its upper layer. When the network condition is stable, resource and job man-
agement techniques in traditional Grid are directly applicable to the mobile
Grid. Nonetheless resources in mobile Grid may actively participate in a Grid
or may be separated from the Grid, depending primarily on the network health.
Therefore, the traditional techniques on resource and job managements are not
pertinent to the mobile Grid environment. Especially a fault tolerance feature
withstanding unstable network links should be incorporated in mobile Grid to
achieve the performance goal.

214 J. Lee et al.

The availability and reliability of the system is greatly influenced by device’s
mobility. Availability is defined as whether the user can use a system immediately
at a specific time. On the other hand, Reliability is whether the user can utilize
a resource without a failure. Thus the availability in mobile Grid can be defined
as a ratio of the expected uptime (e.g. system power is on) to the sum of the
expected values of uptime and downtime (e.g. system power is off).

Availability =
Tup

Tup + Tdown
(1)

where Tup is uptime and Tdown is downtime.
The downtime is classified into a planned downtime and an unplanned down-

time. For example, the rebooting caused by system configuration changes belong
to the planned downtime. Unhandled exceptions and physical problems such as
hardware failure belong to the unplanned downtime. Since the planned down-
time is inevitable, we focus on reducing the unplanned downtime caused by power
supply shortage and network link failure. There are four different combinations
depending on power status and network link status. Especially, we pay a special
attention to the case where the system power is on, but the network link is down.
This case is an uptime from a job point of view if it does not require communication
during execution via the network link. However, this case becomes a downtime in
the opposite situation where the job does require communication. It means that
the system availability becomes different according to the job characteristic.When
a job should be executed for a relatively long time without suspension, the relia-
bility plays an important role and the communication failure caused by device’s
mobility should be taken into account in the formula.

4 System Model

4.1 System Architecture

Mobile Grid is a convergence of wired and wireless computing environment to ef-
ficiently utilize fixed and mobile Grid resources. It typically consists of physically
fixed devices, mobile devices, and proxies. Fig. 1 shows the system architecture
of a mobile Grid. The proxy is a delegation system that delivers job requests
to a Grid, so mobile devices requesting jobs do not have to be online all the
time. The main functionalities of proxy are information service and job schedul-
ing. The information service collects resource information through information
providers such as Network Weather Service (NWS). The job scheduler chooses a
suitable resource to execute a requested job according to a scheduling algorithm.
Our scheduling algorithm takes into account user mobility and load balancing
described in Section 4.2 and Section 5.

4.2 Characteristics of User Mobility

This section investigates characteristics of users’ mobility patterns. We first dis-
cuss mobility parameters investigated in the prior research, and introduce new
parameters suitable for the mobile Grid environment.

Balanced Scheduling Algorithm Considering Availability in Mobile Grid 215

Fig. 1. System architecture of a mobile Grid

In computer networks, an Access Point (AP) is a device that allows wireless
devices to connect to a wireless network. The mobile device user may freely move
around APs and has access to a network. In a mobile environment with APs,
all time (Tall) of a mobile device is divided into an uptime and a downtime.
The uptime is further divided into a time duration (Tconnected) during which a
network is connected and a time duration (Tdisconnected) during which a network
is disconnected. In [8], two metrics are introduced to model the user mobility:
AP prevalence and user persistence. These two metrics are defined as follows:

Definition 1. AP Prevalence: a ratio of the time duration (Tij) during which
the ith user spends in the jth AP to the time duration (Tconnected) during which
the network is connected.

Previj =
Tij

T i
connected

(2)

The more a user visits an AP and/or spends time at the AP, the AP prevalence
becomes higher. In [8], each user is classified into one of five groups (stationary,
occasionally mobile, regular, somewhat mobile, and highly mobile) based on
the maximum prevalence and the median prevalence. Since the AP prevalence
does not take into account users’ mobility pattern of how a user maintains a
session in AP, it is not able to represent the communication instability caused
by user’s frequent movements among APs. The user persistence complements
this shortcoming.

Definition 2. User Persistence: a time duration during which the ith user stays
at the jth AP until the user moves to another AP or the network link is down.

n∑
k=1

Presijk = Tij (3)

where n is the number of sessions.

If the terminal mobility of mobile devices is guaranteed, a mobile device can
continuously interact with a job requestor and the user persistence does not

216 J. Lee et al.

contribute to reliability. In mobile Grid, however, a network link could be down
unexpectedly. In such a situation, mobile devices are not able to communicate
with the requestor. It poses an important factor for job allocation.

As mentioned, there are four possible combinations depending on power status
(on and off) and network link status (connection and disconnection). Since the
network link cannot be established without power supply, the remaining three
combinations are considered in our paper. The probabilities Pc, Pp, and Pd of
each case are given by Equations (4), (5), and (6), respectively. Pc is a probability
that the power is on and the network is connected. Pp is a probability that the
power is on and the network is disconnected. Finally, Pd is a probability that
the power is off and the network is disconnected.

P i
c =

∑n
k=1 Persijk

T i
all

=
Tij

T i
all

(4)

P i
p =

T i
up

T i
all

− P i
c (5)

P i
d = 1 − (P i

c + P i
p) =

T i
down

T i
all

(6)

Using the above three equations, we classify availability into three types: full
availability, partial availability, and unavailability.

Definition 3. Full Availability: a probability that a mobile device fully executes
jobs and returns outcome via network link.

Ac =
Pc

Pc + Pp + Pd
(7)

Definition 4. Partial Availability: a probability that a mobile device fully exe-
cutes jobs but does not return outcome due to the network failure.

Ap =
Pp

Pc + Pp + Pd
(8)

Definition 5. Unavailability: a probability that a mobile device does not execute
jobs at all because the device is off.

Ad = 1 − (Ac + Ap) (9)

The job execution in a Grid consists of three phases: input transmission, compu-
tation, and outcome transmission. Data transmission may occur in the middle of
computation, which is obviously possible only when a mobile device is connected
to a network. We present the data transmission time in terms of the full avail-
ability and define communication unit time (ucm) as a time to transmit data
when the network condition is healthy. The expected transmission time Ecm in
terms of ucm is given by Eq. (10). A condition of whether the network link is
established at the beginning of transmission is included in the formula.

Ecm = Ac ∗ ucm + (1 − Ac) ∗ (ucm +
1

Ac
) = ucm +

1
Ac

− 1 (10)

Balanced Scheduling Algorithm Considering Availability in Mobile Grid 217

We define computation unit time (ucp) as a time for computation when the com-
puting resource is completely available. If an amount of communication (mucm)
is required for the c number of times during the job execution, the expected
computation time Ecp in terms of ucp and ucm is given by

Ecp = (Ac + Ap) ∗ ucp + (1 − Ac − Ap) ∗ (ucp +
1

Ac + Ap
) +

c∑
i=1

Ecm(mui
cm)

= ucp + mucm +
1

Ac + Ap
+

c

Ac
− c − 1 (11)

Therefore, the expected execution time E is expressed as follows.

E = (sucm + mucm + eucm) + ucp +
1

Ac + Ap
+

c + 2
Ac

− c − 3 (12)

where sucm is a time to transfer input data at the beginning and eucm is a time
for outcome transmission at the end of a job execution.

The first four terms (sucm, mucm, eucm, ucp) in Eq. (12) represent communi-
cation times spent in reliable wired network. The rest (1/(Ac + Ap), (c + 2)/Ac,
c, 3) is mobile-computing specific factors. In other words, the expected execution
time is increased by these three terms. Therefore, the parameters (Ac, Ap, c)
should be used as criteria for choosing mobile devices as target Grid resources
to minimize the overall execution time of workloads. Under a full availability
condition like a traditional Grid, the expected computation time (Ecp) and the
expected execution time (E) are reduced to Eqs (13) and (14) since Ap becomes
zero.

Ecp = Ac ∗ ucp + (1 − Ac) ∗ (ucp +
1

Ac
) +

c∑
i=1

Ecm(mui
cm)

= ucp + mucm +
1 + c

Ac
− c − 1 (13)

E = (sucm + mucm + eucm) + ucp +
3 + c

Ac
− c − 3 (14)

The Eq. (14) is always higher than the Eq. (12). In other words, by means of
utilizing devices of partial availability (Ap) in mobile Grid, the expected exe-
cution time is decreased at a maximum by 1/Ac − 1/(Ac + Ap). Therefore, to
increase the performance in execution of workload, it is imperative for scheduling
algorithm to consider both the full availability and the partial availability of the
computing resources.

5 Balanced Scheduling Algorithm Considering
Availability

In a Grid, a job is commonly classified into two types: computing-intensive job
and communication-intensive job. Those have different resource requirements. In

218 J. Lee et al.

Table 1. Nine groups based on the full availability and the partial availability

�����������Ac

Ap Low Medium High
Ap ∈ [0, ωAp) Ap ∈ [ωAp , oAp) Ap ∈ [oAp , 1]

Low Ac ∈ [0, ωAc) LL LM LH
Medium Ac ∈ [ωAp , oAc) ML MM MH
High Ac ∈ [oAc , 1] HL HM HH

mobile Grid, it tends to provide a superior performance when a scheduler first
assigns a job with a large amount of communication to a stable mobile device
under healthy network condition. It is because the job execution could be de-
layed by unexpected network breakdowns in the middle of execution. Especially
in mobile Grid, it is imperative to assign a job to a pertinent mobile device
according to a job type. For the job allocation, we propose a multi-level queue
scheduling algorithm with priority. The priority is determined based on the full
availability and the partial availability.

Mobile devices are classified into nine groups based on the full availability and
the partial availability as shown in Table 1, where o and ω represent an upper
bound and a lower bound, respectively, for the classification.

In practice, communication reliability of the groups HH, HM, and HL is prefer-
able for executing jobs since the computing resource and network condition are
relatively stable and healthy. However, it is wasteful to assign all jobs to devices
from just three groups in terms of execution time and resource utilization. A
job with no communication may be executed in a resource with a full and a
partial availability (Ac and Ap), resulting in a superior performance in overall
execution. In the opposite case where communication is involved in execution,
the number of transmissions (c) should be additionally considered. We propose
the following scheduling algorithm according to the job type.

– A job with long communication interval is assigned to a mobile device with
a higher Ap even if Ac is not high.

– A job with a large amount of communication is assigned to a mobile device
with a higher Ac.

– Determine a priority level (high, middle, low) according to the communica-
tion interval of a job and select a queue corresponding to the level of Ap.

– Determine a priority level (high, middle, low) according to the amount of
communication and select a queue corresponding to the level of Ac.

6 Experiments

6.1 Experimental Environment

We evaluated our scheduling algorithm using SimGrid toolkit [9] with a real-
life trace: WLAN trace [10] of Dartmouth campus. After analyzing the trace,
network information was extracted and it is supplied to the SimGrid platform.
The trace is composed of the syslog records produced by APs from September 1,

Balanced Scheduling Algorithm Considering Availability in Mobile Grid 219

Fig. 2. Histogram of the number of ses-
sions lasting less than 2 hours

Fig. 3. Cumulative density function of the
number of sessions

2005 to October 4, 2006. The trace as of June 6, 2006 is chosen to create network
information to provide input to the SimGrid platform. Fig. 2 shows a histogram
of the number of sessions lasting less than 2 hours. Fig. 3 shows a cumulative
density function of the number of sessions. The data shown in Fig. 3 includes
sessions maintained for more than 24 hours. Due to the unstable communication
environment, the number of the sessions maintained for less than 2 hours is
about 80% of the trace. After fitting the probability density function to various
statistic distributions, we found that the Pareto distribution fits best with the
shape parameter 1.2602 and the scale parameter 3018.0. To provide the processor
status information to SimGrid platform, we used the Weibull distribution since
it effectively represents the machine availability [11]. We randomly extracted
time durations by the inverse function of the Weibull distribution.

Based on the network information and the time durations, we created testvec-
tors for full and partial availabilities. The network information from the WLAN
trace is used as time slots for full availability. The time durations are used as
the time slots for partial availability. Then the processor start time is calculated
by padding time duration from the network information in front of processor
time duration, and the processor completion time is calculated by padding time
duration from the network information behind the processor time duration. In
this way, the processor information is synchronized with network information.
Fig. 4 shows a distribution of Ac and Ap for mobile devices. The dotted lines on
the x and y axes indicate upper and lower bounds of Ac and Ap, so it is classified
into nine groups. Then we randomly created jobs with various computation and
communication sizes and limited a number of data transmissions during the job
execution to two.

6.2 Experimental Results

Our experiments investigated effects of two factors (i.e. user mobility and load
balancing) on execution time. First, we experimented the effect of user mobil-
ity. Four methods are used as shown in Table 2. The method I-1 in Table 2,

220 J. Lee et al.

Fig. 4. Distribution of Ac and Ap for mobile devices

Table 2. Four methods to evaluate effects of user mobility on performance

considerations
Methods

I-1 I-2 I-3 I-4
full availability X O O O

partial availability X X O O
data transmission in executing a job X X X O

for example, means that it allocates jobs to resources without considering full
availability, partial availability, and data transmission during job execution.

Fig. 5 shows average execution time of each method when 4,000 jobs are
executed. As shown, the method I-4 reports the shortest execution time. Our
algorithm provides a 10% performance improvement compared to a prior work
[4], of which condition is reflected in the method I-3. Currently, our dynamic
scheduling algorithm is not directly applicable to batch jobs. However, we expect
that the performance of batch jobs would be greatly enhanced by applying min-
min and max-min according to the job type.

Second, we investigated effects of the load balancing on execution time. Based
on the method I-4, we experimented with the following three methods.

Fig. 5. Average execution time of Methods I-1, I-2, I-3, and I-4

Balanced Scheduling Algorithm Considering Availability in Mobile Grid 221

Fig. 6. Average execution time of Meth-
ods II-1, II-2, and II-3

Fig. 7. Standard deviation of load for
Methods II-1, II-2, and II-3

– Method II-1: jobs are evenly allocated to mobile devices in a round robin
fashion.

– Method II-2: mobile devices are classified into three groups according to the
full availability, and a job is allocated to a group corresponding to a job type.

– Method II-3: mobile devices are classified into nine groups according to full
availability and partial availability, and a job is allocated to a group corre-
sponding to a job type.

Fig. 6 shows average execution time of each method and Fig. 7 shows standard
deviations of the number of loads on Grid resources. We found that the method
II-2 provides the best performance, yet marginally better than the method II-3.
However, the method II-2 reports the worst load balancing. The method II-1
provides the best load balancing but the worst execution time. The method II-3
reports a medium standard deviation of loads and comparable execution time to
the best. Consequently, it is not unreasonable to state that the method II-3 is
suitable for job scheduling because it is satisfactory in terms of execution time
and at the same time it provides a relatively low standard deviation of load
distribution.

The average execution time and the degree of load balancing are influenced
by the upper and the lower bounds. Because our scheduler determines a group
according to job type, if many mobile devices belong to a group with a fewer jobs,
the average execution time and the load balancing would get worsen. Therefore,
it is imperative to determine the upper and the lower bounds dynamically.

7 Conclusions and Future Work

This paper presents a novel balanced scheduling algorithm in mobile Grid, con-
sidering mobility patterns of mobile device users. Our algorithm takes into ac-
count mobility and load balancing in scheduling. We analyzed user’s mobility
patterns to quantitatively measure the resource availability that is classified
into three types: full availability, partial availability, unavailability. An adaptive
load balancing technique is also proposed by classifying mobile devices into nine

222 J. Lee et al.

groups depending on the full and the partial availabilities. The experimental re-
sults show that our scheduling algorithm provides a superior performance to the
one without considering the partial availability. Throughout the experiments, we
found that the partial availability and the grouping are crucial factors for the
performance and the load balancing. Overall, our study provides effective algo-
rithms to allocate mobile resource according to the job type. In the future, we
are planning to conduct a wider variety of experiments to study additional fac-
tors that contribute to performance and load balancing in mobile Grid. We also
have a plan to apply methods such as batch scheduling and dynamic selection
of the upper and the lower bounds to a mobile Grid.

References

1. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, San Francisco (2004)

2. Kurdi, H., Li, M., Al-Raweshidy, H.: A Classification of Emerging and Traditional
Grid Systems. IEEE Distributed Systems Online 9(3) (2008)

3. Huang, C., Zhu, Z.T., Wu, Y.H., Xiao, Z.H.: Power-Aware Hierarchical Scheduling
with Respect to Resource Intermittence in Wireless Grids. In: Proc. of the Fifth
Int. Conf. on Machine Learning and Cybernetics (2006)

4. Park, S.M., Ko, Y.B., Kim, J.H.: Disconnected Operation Service in Mobile Grid
Computing. In: Proc. of the Int. Conf. on Service Oriented Computing (2003)

5. Farooq, U., Khalil, W.: A Generic Mobility Model for Resource Prediction in Mo-
bile Grids. In: Proc. of the Int. Symp. on Collaborative Technologies and Systems
(2006)

6. Ghosh, P., Roy, N., Das, S.K.: Mobility-Aware Efficient Job Scheduling in Mobile
Grids. In: Proc. of Cluster Computing and Grid (2007)

7. Litke, A., Skoutas, D., Tserpes, K., Varvarigou, T.: Efficient task replication and
management for adaptive fault tolerance in Mobile Grid environments. Future Gen-
eration Computer Systems 23, 163–178 (2007)

8. Balazinska, M., Castro, P.: Characterizing Mobility and Network Usage in a Cor-
porate Wireless Local-Area Network. In: ACM MobiSys. (2003)

9. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In:
Proc. of 1st IEEE/ACM Int. Symp. on Cluster Computing and the Grid (2001)

10. Henderson, T., Kotz, D.: CRAWDAD trace dartmouth/campus/syslog/05 06 (v.
2007-02-08),
http://crawdad.cs.dartmouth.edu/dartmouth/campus/syslog/05_06

11. Nurmi, D., Brevik, J., Wolski, R.: Modeling machine availability in enterprise and
wide-area distributed computing environments, UCSB Computer Science Technical
Report Number CS2003-28

http://crawdad.cs.dartmouth.edu/dartmouth/campus/syslog/05_06

Bi-objective Optimization: An Online Algorithm
for Job Assignment

Chien-Min Wang1, Xiao-Wei Huang1, and Chun-Chen Hsu1,2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
{cmwang,xwhuang,tk}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

d95006@csie.ntu.edu.tw

Abstract. We study an online problem that occurs when the capacities
of machines are heterogeneous and all jobs are identical. Each job is asso-
ciated with a subset, called feasible set, of the machines that can be used
to process it. The problem involves assigning each job to a single machine
in its feasible set, i.e., to find a feasible assignment. The objective is to
maximize the throughput, which is the sum of the bandwidths of the
jobs; and minimize the total load, which is the sum of the loads of the
machines. In the online setting, the jobs arrive one-by-one and an algo-
rithm must make decisions based on the current state without knowledge
of future states. By contrast, in the offline setting, all the jobs with their
feasible sets are known in advance to an algorithm. Let m denote the
total number of machines, α denote the competitive ratio with respect
to the throughput and β denote the competitive ratio with respect to the
total load. In this paper, our contribution is that we propose an online al-
gorithm that finds a feasible assignment with a throughput-competitive
upper bound α = O(

√
m), and a total-load-competitive upper bound

β = O(
√

m). We also show a lower bound αβ = Ω(
√

m) of the problem
in the offline setting, which implies a lower bound αβ = Ω(

√
m) of the

problem in the online setting.

Keywords: Online algorithms, job assignment, bi-objective optimiza-
tion, throughput, load.

1 Introduction

In the scenario where a number of machines with different positive capacities are
ready to provide services for a set of jobs, each job is associated with one non-
negative unit weight and a subset, called the feasible set, of the machines that
can be used to process it. The problem involves assigning each job to a single
machine in its feasible set, i.e., to find a feasible assignment. The objective is
to maximize the throughput, which is the sum of the bandwidths of the jobs;
and minimize the total load, which is the sum of the loads of the machines. We
consider the online problem in the following model. There are m machines with
different capacities, and n jobs. Each job i has the same weight and a feasible

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 223–234, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

224 C.-M. Wang, X.-W. Huang, and C.-C. Hsu

set Fi. In the online setting, the job arrives with its weight and its feasible set.
An online algorithm must assign the job to a single machine in its feasible set
without knowledge of future states and the decision cannot be revoked at a later
stage. By contrast, in the offline setting, all the jobs and their feasible sets are
known in advance to an algorithm.

Given a feasible assignment, which is a mapping from the jobs to the machines,
the load on a machine in the assignment is the sum of the number of the jobs
assigned to it divided by its capacity [1]. The amount of bandwidth allocated
to a job in an assignment, which represents the quality of service, depends on
the total weight of jobs that share the resource with it [6, 11]. Specifically, in
our model, if l jobs are assigned to the same machine with capacity c, then each
one will be allocated a bandwidth of c/l, since all jobs have the same weight.
We measure the assignment by the throughput as the utility, defined as the sum
of the bandwidths of all jobs, and the total load as the congestion, defined as
the sum of the loads of all machines. As mentioned earlier, our goal is to find
a feasible assignment in order to simultaneously maximize the throughput and
minimize the total load.

Our contribution in this paper is twofold. First we present an online algorithm
for the online job assignment problem when considering the throughput and the
total load. The algorithm has the throughput-competitive ratio α = O(

√
m) and

the total-load-competitive ratio β = O(
√

m), which will be equal to the ratio
with respect to the average of the loads. Our second contribution is that we show
a lower bound of this problem in the offline setting with αβ = Ω(

√
m), where α

is the competitive ratio with respect to the throughput and β is the competitive
ratio with respect to the total load. Note that the problem in the offline setting
must be easier than or equivalent to the problem in the online setting.

The remainder of this paper is organized as follows. Section 2 contains a
literature review. In Section 3, we define the problem formally. Section 4 presents
the proposed online algorithm and its properties, and Section 5 shows a lower
bound of the offline problem.

2 Related Work

Many approaches for measuring the quality of a job assignment have been pro-
posed. For example, a popular measure that minimizes the maximum load [1, 3],
measures for minimizing the l2-norm or any other lp-norm of the machine load
vector [2, 8], measures that consider both fairness and balancing issues [6, 11],
and some other quality measures are discussed in [16]. However, it is not always
clear how to properly measure the quality of an assignment in general. Hence,
it is desirable to find a solution that can approximate several measures simul-
taneously [2, 4, 6, 7, 9–11, 13, 18]. In this work, we focus on a measure that
maximizes the throughput and minimizes the total load simultaneously.

In [1, 3], the authors studied the load balancing problem with the objec-
tive of minimizing the maximum load. The restricted assignment model was
studied with respect to this measure in [3]. In the restricted assignment model,

Bi-objective Optimization: An Online Algorithm for Job Assignment 225

there are m identical machines and n jobs. Each job is associated with a non-
negative weight and a feasible set of machines to which it can be assigned. It
was showed that the maximum load generated by the greedy online strategy is
within O(log m) factor of the optimal load.

Kleinberg et al. [14] studied fairness issues in several routing and load balanc-
ing models in an offline setting. They defined the notion of prefix competitiveness
and a stronger notion of coordinate-wise competitiveness and considered several
offline problems in terms of these measures.

In [11], the authors studied the 1 − ∞ model in an online setting from the
fairness and load balancing perspective. Under the 1 − ∞ model, there are m
identical machines and n jobs. Each job is associated with the same weight and
with a feasible set of machines to which it can be assigned. The 1−∞ model is
a special case of the restricted model; the only difference is that in the 1 − ∞
model, all jobs have the same (one unit) weight. Goel et al. [11] proved that the
greedy strategy, which always assigns a job to the machine with the smallest
load in its feasible set based on the current state is globally O(log n)-fair and
globally O(log m)-balanced, where m is the number of machines and n is the
number of jobs. They also showed that any online algorithm must be globally
Ω(log m)-fair as well as globally Ω(log m)-balanced in [11]. Buchbinder and Naor
[6] solved the open problem in [11] and proved that the greedy strategy is globally
O(log m)-fair and globally O(log m)-balanced in the 1 −∞ model.

It is important to note that our model is different from the 1 − ∞ model
in [6, 11], since the machines in the 1 − ∞ model must be identical and the
machines in our model have different positive capacities. Clearly, the greedy
strategy proposed in [6, 11], which always assigns a job to the least loaded
machine in the feasible set, can not work well in our model. To illustrate this
point, consider a simple setting with only two machines with capacities c1 and c2,
where c1 � c2, and two jobs that can be processed by the both machines. After
assigning the first job to one machine, the greedy strategy assigns the second
job to the other machine whose loaded is zero and results in an assignment such
that the total load is 1

c1
+ 1

c2
. Since there exists another assignment such that

the total load is 2
c1

, we can see that the ratio is 1
2 + c1

2c2
and may be greater than

any given constant if c1 � c2.

3 The Problem Definition

In this section, we formally define our job assignment problem.

Definition 1 (A feasible assignment). Given the machines’ index set M =
{1, · · · , m}, the jobs’ index set J = {1, · · · , n} and the non-empty feasible set
Fi ⊂ M of job i for all i ∈ J , a feasible assignment φ : J → M is a mapping
from J = {1, · · · , n} to M = {1, · · · , m} subject to φ(i) ∈ Fi for all i ∈ J .

Given a feasible assignment, the bandwidth allocated to a job in the assignment
is the quality of service it gets depends on the total weight of jobs that share
the resource together with it [6, 11]. In our model, there are m machines with

226 C.-M. Wang, X.-W. Huang, and C.-C. Hsu

different capacities and n jobs with the same (one unit) weight. Hence, the
amount of bandwidth allocated to a job depends on the number of jobs that share
the resource with it. We define the bandwidth vector of the feasible assignment
as follows:

Definition 2 (The bandwidth vector of a feasible assignment). Given
m machines with capacities c1, c2, · · · , cm, n jobs with their feasible sets, and a
feasible assignment φ : J → M, where J is the jobs’ index set and M is the
machines’ index set, the bandwidth of job i in the assignment is bi = cφ(i)

|Aφ(φ(i))| ,
where Aφ(k) is the set of jobs assigned to machine k in the assignment φ. The
bandwidth vector of the assignment Bφ = (b1, b2, · · · , bn).

The load on a machine in a feasible assignment is the sum of the number of jobs
assigned to it divided by its capacity [1]. We define the load vector of the feasible
assignment as follows:

Definition 3 (The load vector of a feasible assignment). Given m ma-
chines with capacities c1, c2, · · · , cm, n jobs with their feasible sets, and a feasible
assignment φ : J → M, where J is the jobs’ index set and M is the machines’
index set, the load of machine j in the assignment is lj = |Aφ(j)|

cj
, where Aφ(k)

is the set of jobs assigned to machine k in the assignment φ. The load vector of
the assignment Lφ = (l1, l2, · · · , lm).

We measure a feasible assignment φ of the job assignment problem by taking the
throughput as the utility function U(Bφ) =

∑n
i=1 bi and the total load as the

congestion function C(Lφ) =
∑m

i=1 li in the following model. Our goal is to find
a feasible assignment in order to simultaneously maximize the throughput and
minimize the total load. In multi-objective optimization problems, it is unlikely
that the different objectives could be optimized simultaneously by the same
alternative parameter choices, especially for some conflicting objectives. Hence,
to ensure that a design is satisfactory, there must be a trade-off between the
criteria.

Definition 4. [The job assignment problem envloves maximize the throughput
and minimize the total load in an offline setting] Given m machines with capac-
ities c1, c2, · · · , cm and n jobs with their feasible sets, the problem is to find a
feasible assignment φ : J → M such that

αU(Bφ) ≥ U(Bφ′) for all other feasible assignmets φ′,

and
C(Lφ) ≤ βC(Lφ′′) for all other feasible assignmets φ′′,

where the competitive ratio α, β are as small as possible simultaneously.

In the online setting, jobs arrive with their feasible sets one-by-one and the
algorithm must immediately assign job i to machine φ(i) when job i arrives.
This contrasts with the offline setting, where all the jobs and feasible sets are
given initially.

Bi-objective Optimization: An Online Algorithm for Job Assignment 227

4 The Proposed Online Algorithm and Its Properties

In this section, we introduce the proposed online algorithm and its properties.
We begin by introducing notations. Let A(i, j) denote the set of the jobs assigned
to machine j when job i arrives, and A(i, j) ⊆ {1, 2, . . . , i−1}. Let Si denote the
index set of machines which no job is assigned to when job i arrives. Let max(i)
denote the index of the machine with the most capacity in the feasible set Fi

of job i, and un(i) denote the index of the machine with the most capacity in
Fi ∩ Si. In addition, let γk,i denote the number of times that the machine k is
regarded as the most powerful machine in the feasible sets of the first i jobs,
i.e., γk,i = |{j|max(j) = k, 1 ≤ j ≤ i}|. Observing the problem, assigning jobs
to the machine un(i) can increase the throughput of the assignment. However,
the total load objective provides a tradeoff to this. Hence, in order to maximize
the throughput and minimize the total load simultaneously, the proposed online
algorithm must avoid assigning jobs to the machine with low capacity. We find
a threshold for the design of Algorithm 1 and analysis its performance. The
proposed online algorithm is detailed in Algorithm 1.

Algorithm 1. The proposed online algorithm: When a job i arrives, the algo-
rithm assigns the job to a machine in its feasible set Fi.

Si := {j||A(i, j)| = 0, 1 ≤ j ≤ m}
if max(i) ∈ Si then

assign job i to machine max(i)
else if max(i) /∈ Si and Si ∩ Fi = ∅ then

assign job i to machine max(i)
else if max(i) /∈ Si and Si ∩ Fi 	= ∅ then

if
√

γmax(i),icun(i) ≤ cmax(i) then
assign job i to machine max(i)

else if
√

γmax(i),icun(i) > cmax(i) then
assign job i to machine un(i)

end if
end if

Now, we give a simple example to explain how Algorithm 1 works. Consider
2 machines with capacity c1 =

√
5, c2 =

√
2 and 3 jobs arrive sequentially:

1. When job 1 arrives with F1 = {1, 2}, Algorithm 1 will assign job 1 to the
machine max(1) = 1 since S1 = {1, 2} and max(1) = 1 ∈ S1.

2. When job 2 arrives with F2 = {1, 2}, Algorithm 1 will compute γmax(2),2 =
γ1,2 = |{j|max(j) = 1, 1 ≤ j ≤ 2}| = 2 since max(2) = 1 /∈ S2 and
S2∩F2 = {2} = ∅. Then Algorithm 1 assigns job 2 to the machine max(2) =
1 according to √

γmax(2),2
√

2 =
√

2
√

2 ≤
√

5.
3. When job 3 arrives with F3 = {1, 2}, Algorithm 1 will compute γmax(3),3 =

γ1,3 = |{j|max(j) = 1, 1 ≤ j ≤ 3}| = 3 since max(3) /∈ S3 and S3 ∩ F3 =
{2} = ∅. Then Algorithm 1 assigns job 3 to the machine un(3) = 2 according
to √

γmax(3),3
√

2 =
√

3
√

2 >
√

5.

228 C.-M. Wang, X.-W. Huang, and C.-C. Hsu

4.1 The O(
√

m)-Competitive Ratio for the Total Load

Lemma 1. Given a feasible assignment φ, the total load is

C(Lφ) =
m∑

k=1

lk =
m∑

k=1

∑
i∈Aφ(k)

1
cφ(i)

=
n∑

i=1

1
cφ(i)

.

Proof. Since the load of machine k is lk = |Aφ(k)|
ck

=
∑

i∈Aφ(k)
1
ck

, we have

C(Lφ) =
m∑

k=1

lk =
m∑

k=1

∑
i∈Aφ(k)

1
ck

.

Note that i ∈ Aφ(k) means job i is assigned to machine k in the assignment φ,
i.e., φ(i) = k. Hence,

C(Lφ) =
m∑

k=1

∑
i∈Aφ(k)

1
ck

=
m∑

k=1

∑
i∈Aφ(k)

1
cφ(i)

=
∑

i∈⋃
m
k=1 Aφ(k)

1
cφ(i)

.

Moreover, all jobs in J = {1, 2, · · · , n} must be assigned to some machine k ∈ M
in the assignment φ; thus, we can see that

⋃m
k=1 Aφ(k) = J and

C(Lφ) =
∑

i∈⋃m
k=1 Aφ(k)

1
cφ(i)

=
∑
i∈J

1
cφ(i)

=
n∑

i=1

1
cφ(i)

. ��

According to Lemma 1, we can find an optimal assignment φL for the total load
by assigning each job i to machine max(i). It is easy to see that φL has β = 1-
competitive ratio for the total load. We refer to φL as the optimal assignment for
the total load. In the following, Lemma 2 shows the proposed online algorithm
has β = O(

√
m)-competitive ratio for the total load.

Lemma 2. The proposed online algorithm results in a feasible assignment φ
with β = O(

√
m) such that C(Lφ) ≤ βC(LφL), where Lφ is the load vector of

the assignment φ derived by the proposed algorithm and LφL is the load vector
of the optimal assignment φL for the total load.

Proof. First of all, we evaluate the total load of the assignment φL. By Lemma 1,
we calculate the total load of the assignment φL as follows:

C(LφL) =
m∑

k=1

∑
i∈AφL (k)

1
cφL(i)

=
m∑

k=1

|AφL

(k)|
ck

.

Then, we evaluate the total load of the assignment φ derived by the proposed
online algorithm. Observe the load, which is |Aφ(k)|

ck
, on the machine k in the

assignment φ, we have that |Aφ(k)| − |AφL

(k)| ≤ 1 for all k according to the
algorithm. Consider the upper bound of the ratio of the load on the machine k

for all k in the cases of |Aφ(k)| − |AφL

(k)| ≤ 0 and |Aφ(k)| − |AφL

(k)| = 1:

Bi-objective Optimization: An Online Algorithm for Job Assignment 229

1. If |Aφ(k)| − |AφL

(k)| ≤ 0, the load on the machine k in the assignment φ is
equal to or less than the load on the machine k in the assignment φL, i.e.
|Aφ(k)|

ck
≤ |AφL

(k)|
ck

.

2. If |Aφ(k)| − |AφL

(k)| = 1 and |AφL

(k)| ≥ 1, we have the ratio

|Aφ(k)|
ck

|AφL (k)|
ck

= 1 +
1

|AφL(k)|
≤ 2.

3. If |Aφ(k)| − |AφL

(k)| = 1 and |AφL

(k)| = 0, we can see that the unique job
i, assigned to the machine k, in the set Aφ(k) must be assigned to some
machine k′ such that √

γk′,i
1

ck′ > 1
ck

in the assignment φL. Hence, the ratio
will be bounded by the load of the machine k′, i.e.

|Aφ(k)|
ck

|AφL (k′)|
ck′

=
1
ck

|AφL (k′)|
ck′

<

√
γk′,i

1
ck′

|AφL(k′)|
ck′

=
√

γk′,i

|AφL(k′)|
.

Note that there are at most m − 1 jobs in this case since there are at most
m machines. Therefore, the ratio of the load of these machines in this case

will be bounded by
1

ck

∑ |AφL(k)|
i=|AφL(k)|−m+1

√
i

|AφL (k)|
ck

, for some machine k.

Let k∗ denote the machine’s index with

max
1≤k≤m

{
|AφL

(k)|
ck

+ |AφL
(k)|+1
ck

+ 1
ck

∑|AφL(k)|
i=|AφL(k)|−m+1

√
i

|AφL (k)|
ck

}.

We obtain that

β ≤ C(Lφ)
C(LφL)

=

∑m
k=1

|Aφ(k)|
ck∑m

k=1
|AφL

(k)|
ck

≤
|AφL

(k∗)|
ck∗ + |AφL

(k∗)|+1
ck∗ + 1

ck∗
∑|AφL(k∗)|

i=|AφL(k∗)|−m+1

√
i

|AφL
(k∗)|

ck∗

≤ 3 +
1

|AφL(k∗)|
|AφL(k∗)|∑

i=|AφL(k∗)|−m+1

√
i.

Consider the cases of that |AφL

(k∗)| ≤ m and |AφL

(k∗)| > m:

1. If |AφL

(k∗)| ≤ m, it follows that

β ≤ 3 +
1

|AφL(k∗)|

|AφL(k∗)|∑
i=1

√
i ≤ 3 + c

|AφL(k∗)| 32
|AφL(k∗)|

≤ 3 + c
√

m = O(
√

m),

where c is a constant.

230 C.-M. Wang, X.-W. Huang, and C.-C. Hsu

2. If |AφL

(k∗)| > m, it follows that

β ≤ 3+
1

|AφL(k∗)|

|AφL(k∗)|∑
i=|AφL(k∗)|−m+1

√
i ≤ 3+

m
√
|AφL(k∗)|

|AφL(k∗)| ≤ 3+
√

m = O(
√

m).

��

4.2 The O(
√

m)-Competitive Ratio for the throughput

In this subsection, we show our proposed algorithm has a O(
√

m)-competitive ra-
tio for the throughput by exploring the relation between our proposed algorithm
and an online greedy assignment algorithm.

The online greedy assignment algorithm works as follows. It assigns job i to
machine un(i) when Fi ∩ Si = ∅ and assigns job i to machine max(i) when
Fi ∩ Si = ∅. We will show that the online greedy assignment algorithm has a 2-
competitive ratio for the throughput in Lemma 4. Before introducing Lemma 4,
we first introduce Lemma 3 used in Lemma 4.

Lemma 3 states that the throughput of an assignment φ can be calculated
as the sum of the capacities of those machines which there is at least one job
assigned to in the assignment φ.

Lemma 3. Given a feasible assignment φ, we can calculate the throughput of φ
as follows.

U(Bφ) =
n∑

i=1

bi =
∑
k∈T

ck,

where T denotes the set of machines with at least one job in the assignment φ,
i.e., T = {k||Aφ(k)| > 0, 1 ≤ k ≤ m},

Due to lack of space, the proofs of Lemma 3 and Lemma 4 will be given in the
full version of this paper [17].

Lemma 4 shows that the online greedy assignment algorithm results in a
feasible assignment with a 2-competitive ratio for the throughput.

Lemma 4. The online greedy assignment algorithm results in an assignment
with α1 = 2 such that α1U(Bg) ≥ U(Bφ∗), where Bg is the bandwidth vector of
the assignment g derived by the online greedy assignment algorithm and Bφ∗ is
the bandwidth vector of the optimal assignment.

In Lemma 5, we show our proposed algorithm has a O(
√

m)-competitive ratio
with respect to the throughput by exploring the relation between the proposed
online algorithm and the online greedy assignment algorithm since the online
greedy assignment algorithm results in a feasible assignment with a constant
competitive ratio α1 = 2 with respect to the throughput.

Lemma 5. The proposed online algorithm results in a feasible assignment φ with
α2 = O(

√
m) such that α2U(Bφ) ≥ U(Bg), where Bφ is the bandwidth vector

of the assignment φ derived by the proposed algorithm and Bg is the bandwidth
vector derived by the online greedy assignment algorithm.

Bi-objective Optimization: An Online Algorithm for Job Assignment 231

Proof. We begin by introducing notations. Let φ be the assignment derived by
the proposed algorithm, and g be the assignment derived by the online greedy
assignment algorithm. Let T denote the set of machines with at least one job in
the assignment φ, and U denote the set of machines with at least one job in the
assignment g. Let V = {max(i)|1 ≤ i ≤ n}. By Lemma 3, we have

U(Bg)
U(Bφ)

=

∑n
i=1

cg(i)

|Ag(g(i))|∑n
i=1

cφ(i)

|Aφ(φ(i))|
=

∑
p∈U cp∑
k∈T ck

.

Note that V ⊂ T and U ⊂ T ∪ (U\T),

U(Bg)
U(Bφ)

=

∑
p∈U cp∑
k∈T ck

≤
∑

p∈T cp +
∑

p∈U\T cp∑
k∈T ck

= 1 +

∑
p∈U\T cp∑

k∈T ck
.

For each job p ∈ U\T , the proposed algorithm assigns no job to p while the
greedy assigns at least one job to p. Let p be a machine in the set U\T , and ip
be a job in the set Ag(p). Job ip is assigned to p = un(ip) = max(ip) in the online
greedy assignment algorithm due to Fip ∩Sip = ∅ while ip is assigned to max(ip)
in the proposed algorithm due to √

γmax(ip),ip
cp ≤ cmax(ip). Hence, cp ≤ 1√γk,ip

ck

where k = max(ip) for some job ip ∈ Ag(p). Note that γmax(ip),ip
≥ 2 since

p = un(ip) = max(ip), which implies that machine max(ip) has been regarded
as the most powerful machine in the feasible sets of at least two jobs when job
ip arrives. We have

U(Bg)
U(Bφ)

≤ 1 +

∑
p∈U\T cp∑

k∈T ck
≤ 1 +

∑
p∈U\T cp∑

k∈V ck
≤ 1 +

∑
p∈U\T

1√
γmax(ip),ip

Cmax(ip)∑
k∈V ck

≤ 1 +

∑
k∈V

∑γk,n

i=2
1√
i
ck∑

k∈V ck
=

∑
k∈V

∑γk,n

i=1
1√
i
ck∑

k∈V ck
.

Since there are only m machines,

U(Bg)
U(Bφ)

≤=

∑
k∈V

∑γk,n

i=1
1√
i
ck∑

k∈V ck
≤

∑
k∈V

∑m
i=1

1√
i
ck∑

k∈V ck
.

Furthermore, ∑m
i=1

1√
i
ck

ck
=

m∑
i=1

1√
i

= O(
√

m), for all k ∈ V.

That is, for all k ∈ V , there exist constant δ, n0 such that
∑γk,n

i=1
1√
i
ck ≤ δ

√
mck

for m ≥ m0. It follows that there exist constant δ′ = δ, m′
0 = m0 such that

U(Bg)
U(Bφ)

≤
∑

k∈V

∑γk,n

i=1
1√
i
ck∑

k∈V ck
≤

∑
k∈V δ

√
mck∑

k∈V ck
= δ′

√
m for m ≥ m′

0.

Therefore, we conclude that U(Bg)
U(Bφ) = O(

√
m). ��

Finally, we can obtain Theorem 1.

232 C.-M. Wang, X.-W. Huang, and C.-C. Hsu

Theorem 1. The proposed online algorithm for our problem results in a fea-
sible assignment φ with the bandwidth vector Bφ and the load vector Lφ such
that αU(Bφ) ≥ U(Bφ′) for the bandwidth vector Bφ′ of all other feasible as-
signments φ′ and C(Lφ) ≤ βC(Lφ′′) for the load vector Lφ′′ of all other feasible
assignments φ′′, where α = O(

√
m) and β = O(

√
m).

Proof. By Lemma 2, Lemma 4 and Lemma 5, we obtain Theorem 1. ��

5 Lower Bounds

We now show a lower bound of our problem in the offline setting , where an
algorithm knows all the jobs with their feasible sets in advance. The problem in
the offline setting must be easier than or equivalent to the problem in the online
setting.

Theorem 2. If an algorithm for this problem in the offline setting results in
a feasible assignment φ with the bandwidth vector Bφ and the load vector Lφ,
such that αU(Bφ) ≥ U(Bφ′) for the bandwidth vector Bφ′ of all other feasible
assignments φ′, and C(Lφ) ≤ βC(Lφ′′) for the load vector Lφ′′ of all other
feasible assignments φ′′, then αβ = Ω(

√
m).

Proof. We first construct a problem instance P as follows:

1. There are n = m jobs with feasible sets F1 = {1} and Fi = {1, i} for
2 ≤ i ≤ n.

2. There are m machines with capacity c1 =
√

m and ci = 1 for 2 ≤ i ≤ m.

Given an algorithm D with α-competitive ratio for throughput and
β-competitive ratio for total load, let φD denote the assignment generated by
algorithm D for the constructed problem instance P , and x denote the num-
ber of machines that are assigned at least one job in the assignment φD, i.e.,
x = |{k||AφD (k)| > 0, 1 ≤ k ≤ m}|.

We obtain the throughput U(BφD) and total load C(LφD) of φD as follows:

U(BφD) =
√

m + (x − 1) and C(LφD) ≥ m − x + 1√
m

+ (x − 1).

We also construct two assignments, φ′ and φ′′ as follows:

1. In φ′, each job i is assigned to machine i.
2. In φ′′, all jobs is assigned to machine 1.

The throughput U(Bφ′) of φ′ and the total load C(Lφ′′) of φ′′ are as follows:

U(Bφ′) =
n∑

i=1

ci =
√

m + (m − 1) and C(Lφ′′) =
m√
m

=
√

m.

It follows that

α ≥ U(Bφ′)
U(BφD)

=
√

m + (m − 1)√
m + (x − 1)

Bi-objective Optimization: An Online Algorithm for Job Assignment 233

and

β ≥ C(LφD)
C(Lφ′′)

≥
m−x+1√

m
+ (x − 1)
√

m

=
m − x + 1

m
+

(x − 1)√
m

= 1 − x

m
+

1
m

+
√

m(x − 1)
m

= 1 +
√

mx + 1 − x −√
m

m
.

Since 1 ≤ x ≤ m = n, we consider two cases where 1 ≤ x <
√

m and
√

m ≤ x ≤
m.

1. if 1 ≤ x <
√

m, we have

α ≥
√

m + (m − 1)√
m + (x − 1)

≥
√

m + (m − 1)
2
√

m − 1
≥ m

2
√

m
=

√
m

2

and

β ≥ 1 +
√

mx + 1 − x −
√

m

m
≥ 1,

which implies that αβ = Ω(
√

m).
2. if

√
m ≤ x ≤ m, we have

α ≥
√

m + (m − 1)√
m + (x − 1)

≥
√

m + (m − 1)
2x − 1

≥ m

2x

and

β ≥ 1 +
√

mx + 1 − x −
√

m

m
≥ 1 +

√
mx + 1 − m −

√
m

m
≥

√
mx −

√
m

m
.

Then

αβ ≥ m

2x

√
mx −

√
m

m
=

√
m

2
−

√
m

2x
≥

√
m

2
− 1

2
,

which implies αβ = Ω(
√

m) also. ��

Note that Theorem 2 also implies a lower bound αβ = Ω(
√

m) of the problem
in the online setting.

Acknowledgements. The authors would like to thank the anonymous refer-
ees for their helpful suggestions. This research was supported in part by Na-
tional Science Council under Contract No. NSC97-2221-E-001-001-MY3 and No.
NSC97-2221-E-001-002-MY3.

References

1. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of the
ACM 44(3), 486–504 (1997)

234 C.-M. Wang, X.-W. Huang, and C.-C. Hsu

2. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algo-
rithms. Journal of Algorithms 52(2), 120–133 (2004)

3. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. Journal
of Algorithms 18(2), 221–237 (1995)

4. Aslam, J.A., Rasala, A., Stein, C., Young, N.: Improved bicriteria existence theo-
rems for scheduling. In: Proceedings of the 10th annual ACM-SIAM Symposium
on Discrete Algorithms, January 1999, pp. 846–847 (1999)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier North-
Holland, Amsterdam (1976)

6. Buchbinder, N., Naor, J.: Fair online load balancing. In: Proceedings of the 18th
annual ACM Symposium on Parallelism in Algorithms and Architectures (2006)

7. Buchbinder, N., Naor, J.: Improved Bounds for Online Routing and Packing Via
a Primal-Dual Approach. In: 47th Annual IEEE Symposium on Foundations of
Computer Science (2006)

8. Caragiannis, I.: Better bounds for online load balancing on unrelated machines. In:
Proceedings of the 19th annual ACM-SIAM Symposium on Discrete Algorithms
(2008)

9. Cho, S., Goel, A.: Pricing for fairness: distributed resource allocation for multiple
objectives. In: Proceedings of the 38th ACM Symposium on Theory of Computing,
May 2006, pp. 197–204 (2006)

10. Goel, A., Meyerson, A.: Simultaneous optimization via approximate majorization
for concave profits or convex costs. Algorithmica 44(4), 301–323 (2006)

11. Goel, A., Meyerson, A., Plotkin, S.: Approximate majorization and fair online load
balancing. ACM Transactions on Algorithms 1(2), 338–349 (2005)

12. Goel, A., Meyerson, A., Plotkin, S.: Combining fairness with throughput: online
routing with multiple objectives. Journal of Computer and System Sciences 63(1),
62–79 (2001)

13. Goel, A., Nazerzadeh, H.: Price based protocols for fair resource allocation: con-
vergence time analysis and extension to Leontief utilities. In: Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms (2008)

14. Kleinberg, J., Tardos, E., Rabani, Y.: Fairness in routing and load balancing. In:
Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(October 1999)

15. Kumar, A., Kleinberg, J.: Fairness measures for resource allocation. In: Proceedings
of the 41st Annual Symposium on Foundations of Computer Science (November
2000)

16. Lain, R.K., Chiu, D.-M., Howe, W.: A quantitative measure of fairness and discrim-
ination for resource allocation in shared systems. DEC Res. Rep. TR-301 (1984)

17. Wang, C.-M., Huang, X.-W., Hsu, C.-C.: Bi-objective Optimization: An Online
Algorithm for Job Assignment. Technical Report TR-IIS-08-011, Institute of
Information Science, Academia Sinica (2008),
http://www.iis.sinica.edu.tw/page/library/TechReport/tr2008/tr08011.pdf

18. Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both
makespan and total weighted completion time. Technical Report TR96-295 (1996)

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2008/tr08011.pdf

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 235–243, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Achieving Co-allocation through Virtualization
in Grid Environment

Thamarai Selvi Somasundaram, Balachandar R. Amarnath, Balakrishnan Ponnuram,
Kumar Rangasamy, Rajendar Kandan, Rajiv Rajaian, Rajesh Britto Gnanapragasam,

Mahendran Ellappan, and Madusudhanan Bairappan

CARE, Department of Information Technology,
Madras Institute of Technology,
Anna University, Chennai, India

{thamaraiselvis,balachandar.ra,baskrish1977,rangasamykumarme,
k.rajendar,rajivece,briittoraj,mahendran.e,madhusona}@gmail.com

Abstract. A typical grid application requires several processors for execution
that may not be fulfilled by single cluster at times. Co-allocation is the concept
of aggregating computing resources from more than one cluster to facilitate ap-
plication execution. It poses great difficulty in implementing as these resources
are distributed and managed locally. In this paper, we propose a metascheduling
framework that achieves co-allocation using the concept of virtualization. Our
approach differs from earlier ones as we create virtual machines to meet the re-
quirements of application thereby utilizing the resources to the fullest possible
extent while preserving their autonomy. We used Deviation Based Resource
Scheduling algorithm to initiate SLA negotiation with other resources for par-
ticipating in resource co-allocation. It also supports SLA monitoring and en-
forcement. Our preliminary results show that this approach achieves greater
throughput against conventional scheduling.

Keywords: Grid Computing, Virtualization, Resource Co-allocation.

1 Introduction

A computational grid is a parallel and distributed system with a collection of com-
puters that enables the dynamic sharing, selection, aggregation and management of
resources for collaborative problem solving [1]. The grid middleware provides proto-
cols and functionalities to the customers and providers for grid computing. Recent
developments in grid technologies resulted in large number of participating resources
making grid resource management a difficult task. In such an environment, the role of
grid metascheduler is very important for discovery of suitable resource for application
execution, resource management and monitoring, and load balancing across grid re-
sources. However, if a single cluster could not provide the required number of nodes
for the application execution, there would be a need to aggregate resources from other
clusters and it is called as resource co-allocation. The concept of resource co-
allocation poses special challenges in implementing using existing resource brokers as
the resource spans across organizational boundaries and managed locally. Further,

236 T.S. Somasundaram et al.

co-allocation typically requires that each of a set of resources be able to deliver a
specified level of service at a specified time. In this situation, it is mandatory for ad-
vance booking of resources from several clusters to reduce the probability of resource
unavailability while negotiating co-allocation with another cluster.

We address this issue with the concept of “resource leasing” proposed in [2] with
the help of virtualization. Virtualization allows addressing multiple problems in grid
systems, like coping with the heterogeneity of grid resources, the difference in soft-
ware stacks, enhanced features in resource management like a more general check
pointing or migration models. Further, it relieves the resource providers from select-
ing a fixed and limited execution environment and therefore increases the flexibility
and system utilization. We argue that this technology also address the difficulty of
implementing co-allocation of different cluster resources by creating virtual machines
in one cluster and connecting it to another. The main contributions of this paper are:

• Proposing a scheduling strategy for virtualized grid environment.
• Aggregation of virtual machines from different clusters for meeting the

requirement of application execution.

We also adopt Deviation based Resource Scheduling algorithm proposed in our ear-
lier work to initiate SLA negotiation with remote clusters towards co-allocation. We
compare our scheduling approach with conventional scheduling and the experimental
results shows that our approach achieves greater throughput and schedules more
number of jobs in a given time.

The rest of the paper is organized as follows:- Section 2 highlights some of related
works from which we took inspiration. Section 3 describes co-allocation in our con-
text and the architecture we propose to achieve our objective. We describe the imple-
mentation of the architecture and its various other components in section 4. We also
present our experimental results in that section itself. We conclude our paper high-
lighting the advantages of our approach and further works in section 5.

2 Related Work

There have been many attempts to integrate the Virtualization technology with Grid.
We took inspiration from the following research works in this field and identified
their potential shortcomings which we overcome with our proposal in this paper.

K. Keahey et al [2] they integrated virtual machine provisioning models into the
current site resource management infrastructure as seamlessly as possible. The au-
thors proposed a two-level scheduling to integrate VM provisioning into existing job
schedulers.

K. Keahey et al [3, 4] introduced the concept virtual workspace (VW). Virtual
workspace aims to provide a customizable and controllable remote job execution envi-
ronment for Grid. Virtual Workspaces supports unmanned installation of legacy appli-
cations, which can effectively reduce the deployment time. By allocating and enforcing
resources required by jobs with different priorities, virtual machine can realize fine-
grained resource provision, including CPU, memory and network bandwidth. T. Free-
man et al [5] addressed the management issues arising from division of labor. The
abstractions and tools that allow clients to dynamically configure deploy and manage

 Achieving Co-allocation through Virtualization in Grid Environment 237

required execution environments in application-independent ways as well as to negoti-
ate enforceable resource allocations for the execution of these environments.

Xuehai Zhang et al [6] extended the virtual workspace to encompass the notation
of a cluster. In this paper they described the extensions needed for workspace defini-
tion, architecture extensions and changes to grid services supporting workspace defi-
nition and deployment.

Borja Sotomayor et al [7] developed a model, in which a virtual workspace associ-
ated with a well-defined resource allocation, in particular its availability, can be pro-
cured by negotiating an agreement with the resource provider using WS-Agreement.

Rodrigo et al [8] developed RouteGA algorithm which mainly focus on load bal-
ancing with the help of neighboring resources. It used Genetic algorithm approaches
while considering historical information on parallel application behavior.

Grid MPI [9] and DUROC [10] are various libraries that supports physical resource
co-allocation but does not support advance reservation.

Our approach in this paper differs with these works as we concentrate on creating
virtual machines (VMs) in a different cluster after establishing SLA towards co-
allocation in order to meet application requirements. We make these virtual machines
as a part of the target cluster and enable the scheduler to submit the job in it.

3 Co-allocation through Virtualization

Co-allocation is the terminology used in Cluster / Grid computing community to de-
fine the process of aggregating computing powers such as CPUs, electronic devices
from different resources that spans across organizational and geographical bounda-
ries. This is because of the fact that a typical grid application may require computa-
tional power to be aggregated from different resources to meet the requirements. In
such situation, negotiating with other resources is a complex process as they are gov-
erned by their own local resource manager policies. Further, while negotiating co-
allocation with another cluster, it is mandatory to “reserve” the available CPUs so that
they shall not be considered for another job scheduling. Hence, a generic co-
allocation architecture must include mechanisms for negotiation, advance reservation
and resource co-allocation. Also, this component should be integrated with grid me-
tascheduler. However, most of the existing metaschedulers does not posses this capa-
bility due to the complexity involved in managing co-allocated resources.

In this paper, we argue that the concept of virtual machines eases the implementa-
tion of resource co-allocation. To support our argument, we consider a scenario where
an application requires 8 CPUs for execution while the grid has currently two free
clusters (Cluster A and Cluster B) each with 5 CPUs in it. In such situation, most of
the schedulers will not schedule jobs as the requirements are not met by both the clus-
ters. However, with co-allocation it is possible to aggregate the computing powers of
both the clusters with Cluster A contribute all its 5 CPUs while Cluster B give up 3
CPUs in order to meet the application requirement. The complexity of implementing
this is that being in the different administrative domain, the clusters will have com-
pletely different software environment that may not allow the successful execution of
the application.

238 T.S. Somasundaram et al.

Fig. 1. Co-Allocation Architecture

We overcome this issue with the help of virtualization technology. Instead of leas-
ing up 3 physical CPUs from cluster B, we create Virtual Machines in all the three
CPUs, make necessary configuration as the target head node, that is, head node of the
cluster A, and connecting to it with proper IP address assignment. Thus, three Virtual
Machines will become execution nodes of the cluster A. Though the physical cluster
B is managed locally, the VMs in it will be managed by Cluster A. At this point, the
scheduler schedules the application to cluster A. Once the execution is completed, the
VMs will be released to the cluster B. In this approach, the advance reservation must
be done for the cluster A and not for cluster B since only a partition of it is going to
be used for application execution. In addition to this, the malfunctioning of the virtual
machine created in it will not affect the physical host characteristics. We developed a
metascheduler (figure 1) that facilitates negotiation of co-allocation and supports
creation of virtual machines in remote clusters for application execution.

The scheduler component receives application requirements from the user and dis-
covers suitable resources matching the requirements and schedules the application to
the selected resource. If the required number of nodes for application execution is not
met by a single cluster, the scheduler refers the information manager and identifies
free CPUs from other clusters participating in the grid.

The SLA Negotiator is invoked by the scheduler when resources are to be co-
allocated. SLA negotiator is responsible to contact different clusters and establish an

Scheduler

Requirements

Cluster A Cluster N

……..

User

Information
Manager Co-Allocator

VMSVMS

VMC

SLA Negotiator

Scheduler

Requirements

Cluster A Cluster N

……..

User

Information
Manager Co-Allocator

VMSVMS

VMC

SLA Negotiator

 Achieving Co-allocation through Virtualization in Grid Environment 239

agreement for participating in resource co-allocation. It communicates the agreed
resources to the scheduler to co-allocate those resources to meet the application
requirements.

Co-allocator manages the process of virtual machine creation in the remote cluster
and resource co-allocation. It receives remote resource ID and number of CPUs still
required to meet the application requirement. It then invokes negotiator to initiate
SLA negotiation with the remote resource and requesting it to participate in resource
co-allocation. Once an agreement is formed, it invokes a component called Virtual
Machine Creator (VMC). VMC is a client software that invokes Virtual Machine
Service (VMS) running in remote cluster that creates virtual machines in it to increase
the number of nodes to meet the application requirements. This component is invoked
as soon as a contract is established with the remote resource. At this point, it contacts
the information manager for determining the IP address to be assigned for the virtual
machines. This IP address will be in line with that of the target cluster so that the
newly created VMs are in the same network as that of the target cluster. The VMC
then invokes the VMS running in the head node of the remote cluster and sends the IP
addresses, and number of CPUs to be created in it. VMC communicates the IP ad-
dresses to be assigned for the virtual machines to both the clusters. This information is
needed by the target cluster’s head node to configure the VMs as its execution nodes.
Further, it monitors the job execution in the remote virtual machines and as soon as
the execution finishes, it releases the virtual machines.

The information manager component contacts the available resources and aggre-
gates physical resource information and stores in a database. It maintains a monitoring
interval so that changes in the infrastructure are updated. It also keeps track of the
application execution in a cluster and updates its status. It maintains a list of remote
cluster resources in which virtual machines are created for application execution.

4 Implementation

We considered two clusters each with 4 CPUs and globus middlware was installed.
The PBS resource manager was installed in both the clusters while operating system
in them is RHEL 4.0. All the components of the architecture such as information
manager, scheduler and virtual resource manager have been implemented in java. We
took inspiration from Gridway Metascheduler [13] to implement portion of our archi-
tecture. The Middleware Access Driver modules of gridway are used for communicat-
ing with the underlying globus based grid resources while request handler of gridway
was used to receive the application request. These modules were integrated with
gridway metascheduler appropriately. However, the scheduling module of gridway
does not support co-allocation, we have implemented our own scheduling strategy
namely Deviation based Resource Scheduling which we proposed in our earlier work
[11]. Hence, the flow of gridway has been slightly modified to suit our requirement.

4.1 Scheduler

In this paper, in order to determine whether an application requirement needs co-
allocation, the Deviation based Resource Scheduling (DRS) algorithm is implemented.

240 T.S. Somasundaram et al.

The QoS requested by the application such as CPU_count, Free_memory and
CPU_speed is matched with available resources and DRS algorithm determines three
degrees of match viz exact, plug_in and subsume.

Exact Match: Here the QoS of the available resource (A) are exactly matches with
that of request(R).

Plug-in match: This match occurs if A has greater capability than R requires.

Subsume match: This match occurs if A has lesser capability than R requires.

In exact and plug-in matches, single resource provider is sufficient to execute a job
request. So there is no need of negotiation in these cases. But in the case of subsume
match, it needs more than one resource provider in order to execute a job that leads to
the formation of the VO on the fly by negotiating with the potential resource provid-
ers that have high matching percentage with job requirements. Such negotiations
automatically lead to the agreement that specifies the terms and conditions imposed
by each resource provider while executing a user job such as violation of this agree-
ment, penalty and enforcement action.

In this paper, the subsume match will occur when the number of CPU requested by
the application is not available in a singe cluster. Hence, this match leads to co-
allocation of multiple resources. At this point, the scheduler figures out the target
cluster (A) that provides maximum number of CPUs for application execution but still
not enough to meet the requirement, say for instance, still two more CPUs are needed.
Hence, the scheduler interacts with the information manager and determines free
CPUs in other clusters to initiate SLA negotiation with them for co-allocation. For
more information about DRS algorithm, refer [11].

4.2 SLA Negotiator

In order to co-allocate and co-ordinate multiple resources in grid environment to meet
the application requirements it is mandatory to establish a contract between the users
and the resource providers that clearly states the QoS required, restrictions on re-
source utilization and penalties while violation of the contract. In [12], we described
an SLA management architecture shown in figure 2 that supports entire operations in
SLA lifecycle such as negotiation, creation, monitoring, violation and enforcement.

We use this architecture for negotiation with remote resource to establish an SLA
towards using a portion of that resource for creation of virtual machines in it. During
SLA creation phase, the negotiator component contacts the selected remote resource
and requests the number of virtual machines to be created in it. Once the remote re-
source agrees, the negotiator establishes a contract with it and invokes co-allocator
component of the scheduler for creating VMs.

The co-allocation contract will be monitored by the SLA monitoring engine that
notifies any violation of the contract to the enforcement engine to take appropriate
actions.

4.3 Virtual Machine Service (VMS)

This service is to create virtual machines followed by necessary configuration and
installation of required software running in the head node of every cluster. It is

 Achieving Co-allocation through Virtualization in Grid Environment 241

Fig. 2. SLA Negotiator

invoked by the VMC component of co-allocator with number of CPUs / VMs still
required to meet the application requirement as input. It implements a script that auto-
matically creates Xen based virtual machines in the execution nodes. In our imple-
mentation, the service assumes the number of CPUs corresponds to number of Virtual
Machines to be created and hence assigns one CPU to each Virtual Machine. The
creation of virtual machines is followed by the proper configuration of execution
nodes to connect to target head node. For instance, if the target head node uses torque
as its local resource manger, the VMS initiates appropriate script to assign the speci-
fied IP address and performs compute node configuration in the virtual machines. It
then boots the virtual machines so as to connect to the target head node and sends a
message to the VMC component of the metascheduler to initiate application schedul-
ing. Further, in order to transfer required VM images to the selected node, NFS has
been used in our experimentation. Currently, the concept of advance reservation is not
implemented but it has been considered that the scheduler will consider an application
scheduling only after the previous application has been scheduled. Hence, synchroni-
zation between arrivals of jobs to the scheduler is achieved and requirement of ad-
vance reservation is by-passed.

In our experimental setup, global IP addresses have been given to the clusters and
it is 192.168.100.*. Hence, for five nodes, we used the address range 192.168.100.1 to
192.168.100.5. When this cluster is selected as target cluster, then the IP addresses for
the VMs may start from 192.168.100.6 and one has to be careful in assigning this IP
address to ensure all the nodes, both physical and virtual machines has been assigned
unique IP address. This will be taken care by the co-allocator component.

The VMs have been created in the remote selected cluster on the fly by VMS pro-
vided the host machine possesses required RAM capacity. Then, the service does the
client node configuration so that the VM becomes one of the client node of target
cluster. This will be followed by LRM configuration in order to accept the job from
the target cluster’s head node. As soon as these processes are finished, it will return a

242 T.S. Somasundaram et al.

0

10

20

30

40

50

60

70

80

90

Number of
Requests

100 200 300 400 500

Number of Jobs submitted and its
Success Rate

Conventional Scheduling

Co-allocation based Scheduling

Fig. 3. Experimental Results showing ‘throughput’ when same number of job requests submit-
ted to both conventional and co-allocation based scheduling approach

message to VMC which in turn enables the scheduler to submit job to the target clus-
ter. With this approach, the scheduling process does not require to worry about the
software environment but only the capability of the host resource to run a virtual
machine in it.

The performance of co-allocation components such as negotiator, VMC and VMS
integrated with gridway is being analyzed. There will be obvious overhead due to the
invocation of these components and creation of virtual machines. However, this ap-
proach results in high throughput as application will be executed through co-
allocation of different resources. Our preliminary simulation results shows that the
application scheduling based on the proposed co-allocation approach is doing better
as shown in figure 3 with respect to throughput against conventional scheduling ap-
proach found in gridway metascheduler.

4.4 Discussion

In our implementation of co-allocation, we create virtual machines in cluster B and
adding it to cluster A as their execution nodes in order to deliver the number of CPUs
requested by application. In this case, the virtual machines, though present in cluster
B, will be managed by cluster A. Instead we shall also follow another approach that
is, creating virtual machines in cluster B and let cluster B be their owner or using the
free CPUs as it is in the cluster B, and using a traditional co-allocation tools such as
GridMPI or DUROC to schedule application to them. This approach requires han-
dling of resources that spans in two different domains leading to chaos in manage-
ment. Our approach eliminates this drawback, makes management of co-allocated
resources easy as it treats the resources spanning different clusters as a single cluster.
Currently, we are in the verge of investigating the overhead of our approach against
the conventional physical resource co-allocation.

 Achieving Co-allocation through Virtualization in Grid Environment 243

5 Conclusion

In this paper, we proposed a scheduling architecture that supports resource co-
allocation with the help of virtualization. It enables isolation of application execution
and provides greater security to the participating resources. The SLA Negotiation
component supports WS-Agreement based SLA negotiation and also it supports SLA
enforcement and monitoring. Currently, the architecture is implemented such that the
scheduler does not accept a new job until scheduling of first job finishes. However,
since, advance reservation and co-allocation go hand in hand, the architecture still
lack a mechanism for advance reservation which will be our concentration in future.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Open Grid Service Infrastruc-
ture WG, Global Grid Forum (2002)

2. Freeman, T., Keahey, K.: Flying Low: Simple Leases with Workspace Pilot. In: Luque, E.,
Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 499–509. Springer,
Heidelberg (2008)

3. Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual Workspaces in the
Grid. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 421–
431. Springer, Heidelberg (2005)

4. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of
Service and Quality of Life in the Grid. Scientific Programming Journal (2005)

5. Freeman, T., et al.: Division of Labor: Tools for Growing and Scaling Grids. In: SciDAC
2005 Conference, Boston, MA (June 2005)

6. Zhang, X., Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B.: Virtual Clus-
ters for Grid Communities. In: CCGRID 2006, Singapore (2006)

7. Sotomayor, B., et al.: A Resource Management Model for VM-Based Virtual Workspaces,
Masters paper, University of Chicago (February 2007)

8. Rodrigo, et al.: Grid Job Scheduling using Route with Genetic Algorithm Support. Journal
of Telecommunications, 147–160 (May 2008)

9. http://www.gridmpi.org
10. http://www.globus.org/toolkit/docs/2.4/duroc/
11. Thamarai Selvi, S., et al.: Service Level Agreement based Grid Scheduling. In: IEEE In-

ternational Conference on Web Services (2008)
12. Thamarai Selvi, S., et al.: GSMA based Automated Negotiation Model for Grid Schedul-

ing. In: IEEE International Conference on Services Computing (2008)
13. http://www.gridway.org

MTS: Multiresolution Thread Selection for Parallel
Workload Distribution

Chonglei Mei, Hai Jiang, and Jeff Jenness

Department of Computer Science, Arkansas State University,
Jonesboro, Arkansas 72467, USA

{chonglei.mei,hjiang,jeffj}@csm.astate.edu

Abstract. Computing workload distribution is indispensable for resource shar-
ing, cycle stealing and other modes of interaction in distributed systems/Grids.
Computations should be arranged to adapt the capacity variation of system re-
sources. Although computation migration is the essential mechanism to move
computing tasks around, the decision making of which task should be relocated is
even more critical, especially when multithreaded parallel programs are involved.
Multiple threads might be treated as partial workload and moved together. Based
on thread similarity, this paper proposes a novel Multiresolution Thread Group-
ing algorithm (MTG) to classify threads into hierarchical Thread Bundles (TB)
some of which can be picked by Multiresolution Thread Selection scheme (MTS)
for load distribution. During the process of MTG, global variables are reorded
so that one-time migration cost and post-migration communication volume and
frequency can be reduced. Experimental results demonstrate the effectiveness of
MTS for parallel workload distribution.

1 Introduction

From cluster computing to Internet computing and Grid computing, current computa-
tion technologies have caused more on collaboration, data sharing, cycle stealing, and
other modes of interaction among dynamic and geographically distributed organiza-
tions [1]. Distributed computing enables to spread workload across multiple machines.
Within each individual machine, parallel programming paradigm is employed to take
advantage of multicore/many-core or multiprocessor architectures. Local parallel work-
load should be able to be adjusted for load balancing, load sharing, fault resilience, and
data access locality. Thus, parallel workload scheduling is essential to application per-
formance gain and system utilization efficiency.

As multithreading has been adopted by many applications, threads become the fine-
grained computation and migration units and thread migration approach is expected to
be widely adopted in the future. MigThread, a heterogeneous application-level thread
migration package is adopted for computation movement [2]. This paper intends to de-
ploy the strategy to utilize the information collected by MigThread at compile time and
select proper threads for migration at run-time. The deployed migration policy strategy
is transparent to users so that programmers can write their code in parallel programming
mode whereas run-time systems dispatch threads to other machines for distributed/Grid
computing.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 244–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MTS: Multiresolution Thread Selection for Parallel Workload Distribution 245

Since possibly multiple threads are considered for migration, thread relationship
plays a key role here. If closely related threads are separated, future interaction be-
tween them might slow down the overall execution. The cause of the interaction might
be synchronization or data sharing activities which can be detected by analyzing the
global data collected by MigThread’s preprocessor at compile time. The ideal sce-
nario is that migrating threads have no or few further interactions after migration
and load re-distribution. Therefore, future communication volume and frequency will
be reduced.

This paper makes three contributions. First, the Multiresolution Thread Grouping
(MTG) algorithm is proposed based on thread similarity and data access pattern to
group threads into Thread Bundles (TBs). The zoom-in/zoom-out feature with maps
has been employed to identify TBs at multiple resolution-levels. Second, with sup-
port of MigThread, a data alignment scheme is applied during MTG process to place
related global variables together to reduce possible synchronization volume and fre-
quency when threads are separated. Third, the run-time scheduler adopts a Multires-
olution Thread Selection (MTS) to detect proper combination of thread bundles from
multiple resolution-layers so that one-time migration overhead and post-migration com-
munication cost will be minimized.

The remainder of this paper is organized as follows: Section 2 gives an overview of
related technologies for parallel workload distribution. Section 3 describes the design
and implementation of MTS. In Section 4, performance analysis and experiment results
are provided. Section 5 mentions some related work. Finally, our conclusion and future
work are described in Section 6.

2 Techniques for Parallel Workload Distribution

In Grid and clusters environments, load imbalance is not only caused by the dy-
namic nature of applications, but also caused by the availability fluctuation of com-
puting resources [3]. Whole or proper partial parallel computing workload needs to be
relocated.

For computation mobility, a heterogeneous application-level thread migration pack-
age, MigThread [2], is adopted. MigThread consists of two parts: a preprocessor and
a run-time support module. The preprocessor transforms user’s source code, move
the thread state out of its original location (libraries or kernels) and abstracts it up
to the language level for platform-independence. All related information with regards
to stack variables, function parameters, program counters, and dynamically allocated
memory regions, is collected into certain pre-defined data structure so that the run-
time support module can construct, transfer, and restore thread state promptly and
dynamically [2].

Schedulers are employed to orchestrate computing parts distributed across multiple
machines and decide when, where and who to migrate. For the migrating task, its run-
time support module needs to decide how to split local parallel workload. Multithreaded
applications have to determine a group of migrating threads whose associated data sets
are small enough to minimize the one-time migration cost and post-migration com-
munication cost for data sharing across machines. Both static and dynamic scheduling

246 C. Mei, H. Jiang, and J. Jenness

strategies can be applied to collect information and make decision at compile time or
run-time.

Cluster algorithms aim to find natural groups in the unlabeled data of certain set
and can be used to detect partial parallel workload. A general definition of clustering
could be “the process to organize objects into groups whose members are similar.”
Members in one cluster are similar with respect to certain feature whereas the ones
from different clusters might look quite different. Clustering can be based on object
distance or difference between descriptive concepts.

3 Multiresolution Thread Grouping and Selection

In multithreaded parallel applications, threads are the basic computing units. Similar-
ity is defined so that identical or similar threads can be grouped together for parallel
workload distribution.

3.1 Multiresolution Thread Grouping (MTG)

At compile time, thread similarity can be defined by the sharing of global variables and
used by runtime schedulers.

Definition 1. Thread weight: the amount of data and synchronization variables the
thread accesses.

MigThread’s preprocessor collects all global variables in predefined structures. Starting
from the thread creation primitive, all functions referenced by the thread can be iden-
tified. By scanning these functions, the preprocessor can calculate the thread weight
which should be considered for migration.

Definition 2. Thread similarity: the rate of common (shared) data and synchronization
variables among multiple threads.

Assuming that two threads, T1 and T2, access data sets {a1, a2, a3, ..., an1} and
{b1, b2, b3, ..., bn2}, respectively, if the amount of common data accessed by both
threads is Ncomm, the similarity will be Ncomm/(n1 + n2 − Ncomm) where n1 and
n2 are the numbers of data items.

Thread similarity defines how similar two threads are. The higher the similarity, the
more global variables they share. On the same machine, threads can share variables
through the shared virtual address space whereas on different machines, communication
has to be involved. Therefore, it is more efficient to keep highly similar threads on same
machine to reduce communication overhead.

If there are n threads, {T1, T2, T3, ..., Tn}, in a program, the pair-wise thread similar-
ity values can be represented as an n x n similarity matrix S where each entry, S(i, j),
stands for the similarity of certain pair of threads, Ti and Tj . Along the diagonal, the
values are always zeros since threads are not supposed to compare against themselves.
One example of similarity matrix could be as follows:

MTS: Multiresolution Thread Selection for Parallel Workload Distribution 247

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.20 0.00 0.00 0.00 0.11 0.11 0.25 0.11 0.11
0.20 0.00 0.00 0.00 0.00 0.23 0.33 0.23 0.23 0.23
0.00 0.00 0.00 1.00 1.00 0.11 0.11 0.11 0.11 0.11
0.00 0.00 1.00 0.00 1.00 0.11 0.11 0.11 0.11 0.11
0.00 0.00 1.00 1.00 0.00 0.11 0.11 0.11 0.11 0.11
0.11 0.00 0.11 0.11 0.11 0.00 0.75 0.75 0.75 0.75
0.11 0.33 0.11 0.11 0.11 0.75 0.00 0.75 0.75 0.75
0.25 0.23 0.11 0.11 0.11 0.75 0.75 0.00 0.75 0.75
0.11 0.23 0.11 0.11 0.11 0.75 0.75 0.75 0.00 0.75
0.11 0.23 0.11 0.11 0.11 0.75 0.75 0.75 0.75 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Definition 3. Thread Bundle (TB): a group of identical or similar threads with respect
to certain feature.

During a finite period of time [0,T], there are N threads {T0, T1, T2, ..., TN−1} run-
ning in a specific parallel or distributed system. Each thread Ti(0 ≤ i < N) has a finite
life time [ti,start, ti,end]. A thread bundle B is a set of M threads {L0, L1, ..., LM−1},
Lj ∈ {T0, T1, T2, ..., TN−1}, which have some common properties.

The shared common data between any threads Ti and Tj in bundle Bk can be expressed
as Cin(Bk, i, j). which is caused by the sharing of variables between. The shared data
set between threads in bundles BK1 and BK2 can be Cout(Bk1, Bk2). Since normally
threads in one bundle share more data than the ones from different bundles, there ex-
ists Cin � Cout. In other words, if some threads share more common variables than
others, they are defined to be similar and should be put into one bundle which has few
connections with other bundles.

Thread bundles are migration units since their threads share more common data.
Most existing clustering algorithms use predefined distance or similarity thresholds to
group items. Therefore, the clustering results are fixed. Multiresolution Thread Group-
ing (MTG) intends to loosely define the similarity thresholds and the whole grouping
process is recorded. Without too high storage overhead, thread bundles can be defined,
adjusted and retrieved. Thread bundles can merge and split until a proper combination
is achieved. These bundles can be mapped onto different machines with minimized
communication between them.

Multiresolution Thread Grouping is inspired by the zoom technology in maps. In
distance, objects on maps might look together. When we get closer or zoom in, we
can see their differences and objects are separate apart. When we zoom in/zoom out at
different resolution levels, objects can be grouped in different ways. One extreme case
is that we zoom in to the lowest level, we can see each individual object unless some of
them are totally identical. Another extreme case is we zoom out to the infinite distance
and all objects are blur and stay together.

With this multiresolution strategy, MTG initially treat each individual threads as bun-
dles and then pull back/zoom out gradually. At each step, the most similar bundles are
merged. Obviously, all identical threads will merge at the first step. By repeating this
process, eventually only one bundle will be left. However, all bundle results at different
resolution levels are kept with their corresponding data structures, called layers. Un-
like most existing clustering algorithms whose results are normally on the same layer

248 C. Mei, H. Jiang, and J. Jenness

Main grouping (S) //S is original similarity matrix

1: begin:

2: While (number of bundles NB>1)

3: max=FindMax(S) //find maximum value in S

4: SubGroup(max,S) //establish new layer of grouping tree

5: UpdateBundle(S) //UpdateBunlde updates the similarity

 //matrix and grouping tree

6: end while

7: end

Fig. 1. Main grouping process

[4], MTG can achieve the final result across multiple layers. So the results of MTG are
hierarchical thread bundles.

The grouping process is shown in Fig. 1 where NB is the number of bundles for
the current resolution and its original value is n, the number of threads. The parameter
S is the current thread similarity matrix whose elements are meta-threads, i.e., thread
bundles. As bundles merge, corresponding rows and columns combine and the new
ones are defined based on data sharing. Function FindMax is called to find out the
entries with the maximum value in the current similarity matrix. Function SubGroup,
shown in Fig. 2, is used to merge thread bundles with the maximum value into bundles
on a newly created layer. Function UpdateGroup is to update the similarity matrix to
match the situation on the new layer. The updating process treats threads in one bundle
as one meta-thread and then calculates the similarity of all meta-thread pairs. Thus, the
size of the similarity matrix S is shrinking step by step until it turns into a 1 x 1 matrix.

Through this grouping process, identical or the most similar threads are glued to-
gether on the bottom layer first and eventually all thread bundles converge into one large
bundle on the top layer. The convergence speed depends on how similar the threads
are. With the above-mentioned similarity matrix, the convergence process can be rep-
resented by a grouping tree, shown in Fig. 3. Layers indicate resolution levels. Initially
there are ten thread bundles staying on the bottom layer. As resolution decreases (zoom
out), the number of bundles decreases and the sizes of some bundles increases. In the

SubGroup(max, S)

1: begin:

2: while(!endof(S))

 3: threadpair = find(max, S) // threadpair is the founded pair of

 // threads with similarity max

4: if(only one of this pair is in one bundle)

5: add the other one into this bundle

6: else if (the two threads in separate bundles)

7: join the two bundles

8: else if (neither of the pair is in a bundle)

9: establish a new bundle using this pair of threads

10: end if

11: end while

12: end

Fig. 2. The SubGroup function to create new layers

MTS: Multiresolution Thread Selection for Parallel Workload Distribution 249

Layer 6:

Layer 5:

Layer 4:

Layer 3:

Layer 2:

Layer 1:

Z
o
o
n

i
n

(
H
i
g
h
e
r

R
e
s
o
l
u
t
i
o
n
)
 Z

o
o
n

o
u
t

(
L
o
w
e
r

r
e
s
o
l
u
t
i
o
n
)

Fig. 3. Grouping tree of 10 threads

above example, there are two actual bundles, one with three threads and the other with
five threads. As grouping process proceeds from bottom up, thread similarity becomes
blur and the number of bundles is reduced .

3.2 Multiresolution Thread Selection (MTS)

Thread Selection Criteria. To distribute multithreaded parallel workload, two associ-
ated overheads are identified:

– Migration cost: To migrate a selected thread bundle, the weight summation of all
thread members should be considered. If cut-through routing [5] is applied, the
migration cost of the thread weight can be expressed as:

Cmig(n) = ts + lth + tw

N−1∑
i=0

mi (1)

where N is the number of data to be transferred, ts is the startup time, l is the maximum
number of hops, th is the per-hop time for the message header to travel, tw is the per-
word transfer time, and miis the size of datum i. Migration cost is a one-time issue and
only happens during thread bundle migration unless this bundle needs to move again.

– Communication cost: After one thread bundle is migrated to a remote machine,
it might still need to share global variables with other thread bundles on the

250 C. Mei, H. Jiang, and J. Jenness

original machine. Such post-migration sharing causes severe communication cost
for synchronization at run-time. It can be expressed as:

Ccomm(n) =
N−1∑
i=0

Fi∑
j=0

(tsij + thij lij + twij mi) (2)

where N is the number of global variables shared, Fi is the communication frequency
of datum i, tsij is the startup time of datum i for the jth communication, thij is the per-
hop time of datum i for the jth communication, lij is the number of links for datum i of
the jthcommunication, twij is per-word transfer time for jthcommunication of datum i,
and miis the size of datum i. If the channel bandwidth is r words per second, then each
word takes time tw = 1/r to traverse the link.

Obviously, the post-migration communication cost is a dynamic issue and domi-
nant factor. Its actual value depends on both data volume and sharing frequency during
the synchronization of different data copies distributed across multiple machines. Such
communication is incurred by both data access and synchronization primitive use, such
as barriers and locks. Since such frequency is always higher, i.e., Fi ≥ 1, Ccomm could
be much greater than Cmig .

The ideal selection of thread bundles is the ones with both minimum migration and
communication costs. However, usually the thread bundles with least communication
cost and ones with least migration cost do not overlap with each other. At most time,
communication cost will be considered first. If migration cost complies the selection,
the perfect solution is achieved. Otherwise, a relatively smaller migration cost selection
will be taken.

MTG-Based Thread Selection
The proposed thread selection scheme is based on hierarchical thread bundles acquired
from MTG’s Grouping Tree which indicates two pieces of significant information. One
is that the threads are grouped based on similarity and on the same layers, threads in
same bundles shares more global variables than those from different bundles. The other
one is that during the top-down traversal of the grouping tree, the earlier the thread
bundles are split apart, the less similar their thread members are.

To migration a certain number of threads, the idea of splitting a thread bundle is
unacceptable since the communication between newly created bundles might not be
clear. MTS adopts the hierarchical strategy to combine some bundles from different
layers for the number of threads for migration. The grouping tree is traversed in top-
down manner to detect the best thread bundle combination with possibly minimum
communication overhead. The traversal stops on one layer i where a bundle contains
the closest number of threads, m, with m ≤ n (n is the number of migrating threads
provided by schedulers). The reason to stop at layer i is that threads in bundles on upper
layers have less similarity than the ones on layer i or below. Then the m threads from
the selected bundle and n-m threads from other bundles on the ith layer or lower layers
form the bundle combination with the possibly least communication cost. This phase 1
of selection process is showed in Fig. 4.

MTS: Multiresolution Thread Selection for Parallel Workload Distribution 251

Selection1(n, Gtree) //Gtree is grouping tree

 //n is number of threads to select

1: begin:

2: K = findLayer(n,Gtree) //find layer k from top of Gtree on which there

 //is a bundle B meeting (n-sizeof(B)) 0 and

 //is minimum

3: for i=k to 1

4: candidate = NULL //candidate used to store bundles whose

 //size is smaller than n on layer i

5: for j=0 to NBk-1 //NBk is number of thread bundles on layer i

6: if (sizeof(bundle(j)) n)

7: insert bundle(j) into candidate;

8: end if;

9: end for;

10: if (existing n threads formed by the sizes of groups

 in candidate)

11: return Result=FindLComm(n,candidate);

 //FindLComm is to find n threads from

 //candidate with lowest communication cost

12: end if

13: end for

14: end

Fig. 4. Multiresolution Thread Selection - phase 1

However, sometimes the greedy algorithm in phase 1 of MTS cannot achieve the
best results since it does not consider other combinations. Further tuning is provided
by phase 2 as shown in Fig. 5. Some larger bundles might derive better results if their
threads share few global variables. Therefore, their post-migration communication cost
might be lower than the bundle combination based on the closest bundle acquired from
MTS phase 1. However, although there are more larger bundles on upper layers, their
thread similarity might be much lower. Therefore, the optimization in phase 2 only
consider those larger bundles (≥ n) on the layer with the closest bundle (kth layer) or
those layers below. Our experiments demonstrate the effectiveness of such optimization.

3.3 Data Realignment with Grouping Tree

There are two main costs in the threads migration: communication cost and migration
cost. MTS intends to ensure that the communication cost is acceptably small. Since
MigThread has collected global variables in predefined structures, variables shared by

Selection2(n, Gtree, result1) //result is result of selecton1

1: begin:

2: result = result1;

3: k = findLayer(n,Gtree)

4: for i=k to 1

5: for j = 0 to NBk-1

6: if(sizeof(bundle(j))> n)

7: result2 = FindLComm(bundle(j))

8: if(CommCost(result2)<CommCost(result))

9: result = result2

10: end if

11: end if;

12: end for;

13: end for;

14: return result;

15: end

Fig. 5. Tuning of MTS - phase 2

252 C. Mei, H. Jiang, and J. Jenness

threads in the same bundles should be placed together to reduce possible migration and
communication costs.

If shared data is distributed across multiple machines, future sharing will incur com-
munication overhead. Normally, Distributed Shared Memory (DSM) systems are used
widely to synchronize multiple copies distributed across several machines. Since most
DSM systems [2] are page-based, it is better to reduce the total number of pages hosting
the shared variables.

In MTS, threads are selected through bundles sitting on different layers in the group-
ing tree. Bundles on lower layers have more opportunities to be migrated to remote
machines. If their shared global variables are stored continuously, the number of mi-
grated or synchronized pages will decrease. MTS adopts the approach of realigning
shared variables of threads in bundles from the penultimate layer up to the top layer
until all the global data are realigned. Experimental results show that this method is
effective.

4 Experimental Results

The experiment is conducted through a simulator which generates 20 threads and 25
global data variables with randomly assigned data types. Each thread can randomly
access 5 to 12 variables to distinguish each other. To simulate a real situation, we assume
that there are 5 bundles with single thread , one bundle with 3 threads, one bundle with
5 threads and one bundle with 7 threads. Within each bundle, 3/4 of data variables
accessed by local threads are the same and the rests are different.

To evaluate MTS, up to half threads will be selected for migration because the sym-
metric case makes the other half exhibit the same performance. The MTS results will
be compared against the optimal result acquired by checking all possibilities of thread
selection. The ranking of MTS results indicates its effectiveness. With respect to dif-
ferent numbers of requested migrating threads, the simulation will be conducted 1000
times for the average ranks.

Naive Thread Selection scheme (NTS) is used for comparison. NTS selects threads
with smallest communication cost one by one. To demonstrate the effectiveness of data
realignment in MTS, we assume that the size of one page is 64, and the size of data can
be 1, 2, 4, 8 and 32.

If three threads are selected for migration, the simulation results of MTS and NTS
are showed in Fig.6. Part A shows that about 90% of MTS results rank top 10 of all the
possible results in term of communication cost, and over 600 cases rank 1st (with the
least overhead). The vertical bars indicate all instances whereas the curve line dispicts
the accumulation result. Part B shows that more than 80% of MTS results rank top 10 in
term of migration cost, over 600 cases rank 1st. Part C illustrates that only 60% of NTS
results rank top 10 and fewer than 400 cases rank 1st. Obviously, MTS outperforms
NTS and most time MTS can select the optimal choices. Part D indicates that more than
60% of MTS results have reduced the number of data pages through data realignment.

For different numbers of migrating threads, the ranking results compared against the
optimal solutions are shown in Fig.7. If only one thread needs to be selected, NTS out-
performs MTS in term of communication cost because NTS always selects the ones

MTS: Multiresolution Thread Selection for Parallel Workload Distribution 253

 1 2 11 36 3 6 4 5 46 8
0

200

400

600

800

1000
C: Communication cost of NTS

The rank of results

T
he

 a
m

ou
nt

 o
f r

es
ul

ts
 b

y
ra

nk

0%

20%

40%

60%

80%

100%

 1 2 3 5 6 4 12 7 8 11
0

200

400

600

800

1000
A: Communication cost of MTS

 The rank of results

T
he

 a
m

ou
nt

 o
f r

es
ul

ts
 b

y
ra

nk

0%

20%

40%

60%

80%

100%

 1 2 5 3 4 6 7 8 11 17
0

200

400

600

800

1000
B: Migration cost of MTS

The rank of results

0%

20%

40%

60%

80%

100%

−4 −3 −2 −1 0 1 2 3 4
0

100

200

300

400
D: Page saving of MTS

Number of saved pages

Fig. 6. Simulation results for three-thread migration

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Number of selected threads

R
an

k
of

 th
e

re
su

lt

comm. cost of MTS
migratin cost of MTS
comm. cost of NTS

%

Fig. 7. Average ranking results with different numbers of migrating threads

with least communication overhead. As the number of selected threads increases, MTS
performs much better than NTS in term of communication cost. From the migration
cost line, it is clear that MTS performs well when the migrating number is between 2
and 7. However, when it is increased to 8, 9 and 10, the migration cost increases dra-
matically. This is because MTS gives communication cost higher priority. As communi-
cation frequency increases, the communication cost will dominate one-time migration
time easily.

The effectiveness of data alignment in terms of the number of saved pages is shown
in Fig. 8. When the number of selected threads is relatively small, less data will be
accessed because of the simulation setting. Thus there are relatively more chances to

254 C. Mei, H. Jiang, and J. Jenness

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of selected threads

N
um

be
r

of
 s

av
ed

 p
ag

es

number of saved pages

Fig. 8. Effectiveness of data alignment in MTS

save pages for better performance. As the number of threads increases, the number of
data variable they access also increases. When the number is increased to 8, 9 or 10,
the selected threads access almost all of the data. Thus, the number of saved pages
decreases. The reason is that our simulation fixes the data access rate. This is not the
actual scenario in the real world where the rate might be quite low. Then significant
performance improvement in term of saved pages is expected. Without any negative
results and much overhead, data alignment strategy is definitely effective.

5 Related Work

Computation migration has been implemented with variant granularity. Process migra-
tion can be deployed at application level as in the Tui system [6]. MigThread [2] sup-
ports both process and thread migration.

Job scheduling in distributed environments has been an active research topic for a
long time. Cu et al. proposed a running time scheduling based on migration cost [3]. The
scheduling strategy in Condor [8] is based on the match of the users’ specification of
their job requirements and preferences with the machines’ characteristics, availabilities,
and conditions.

Among clustering methods, K-means uses an iterative method to distributed n points
into k (fixed number) clusters on a 2D plane. The Markov Cluster algorithm (MCL) [4]
assumes that there are natural clusters in the given data set and intends to elaborate the
data relations.

6 Conclusion and Future Work

This paper proposes a novel Multiresolution Thread Selection algorithm (MTS) to
pick certain number of threads for parallel workload distribution. MTS defines thread
bundles at different resolution levels and make a selection across them. Shared
global variables are re-aligned in the process of MTS to reduce the possible migra-
tion/communication cost. Simulation results have demonstrated the effectiveness. The
future work includes applying MTS on full-fledged dynamic schedulers and conducting
experiments with real applications.

MTS: Multiresolution Thread Selection for Parallel Workload Distribution 255

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid services for distributed system intergration.
Computer 35(6), 37–46 (2002)

2. Jiang, H., Chaudhary, V.: Thread migration and checkpointing in heterogeneous distributed
systems. In: Proceedings of the 37th Annual Hawaii International Conference on System Sci-
ence (2004)

3. Du, C., Sun, X., Wu, M.: Dynamic scheduling with process migration. In: Proceedings of the
seventh IEEE International Symposium on Cluster Computing and the Grid, pp. 92–99 (2007)

4. van Dongen, S.: A cluster algorithm for graphs. PhD thesis, National Research Institute for
Mathematics and Computer Science (CWI) (2000)

5. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Addison-
Wesley, Reading (2003)

6. Smith, P., Hutchinson, N.: Heterogeneous process migration: the tui system. Technical Re-
port 4, University of British Columbia (1996)

7. Dimitrov, B., Rego, V.: Arachne: A portable threads system supporting migrant threads on
heterogeneous network farms. IEEE Transactions on Parallel and Distributed Systems, 459–
469 (1998)

8. Lizkow, M., Livny, M., Tannenbaum, T.: Checkpointing and migraion of unix processes in the
condor distributed environment. Technical Report 1346, Univ. of Wisconsin-Madision (1997)

The gLite Workload Management System

Cecchi Marco1, Capannini Fabio1, Dorigo Alvise1, Ghiselli Antonia1,
Giacomini Francesco1, Maraschini Alessandro2, Marzolla Moreno1,

Monforte Salvatore1, Pacini Fabrizio2, Petronzio Luca2, and Prelz Francesco1

1 I.N.F.N. - National Institute for Nuclear Physics - Viale Berti Pichat, 6/2 - Bologna, Italy
2 Elsag-Datamat s.p.a. - Via Laurentina, 760 - Rome, Italy

Abstract. The gLite Workload Management System represents a key entry point
to high-end services available on a Grid. Being designed as part of the european
Grid within the six years long EU-funded EGEE project, now at its third phase,
the WMS is meant to provide reliable and efficient distribution and management
of end-user requests. This service basically translates user requirements and pref-
erences into specific operations and decisions - dictated by the general status of
all other Grid services - while taking responsibility to bring requests to success-
ful completion. The WMS has become a reference implementation of the "early
binding" approach to meta-scheduling as a neat, Grid-aware solution, able to op-
timise resource access and to satisfy requests for computation together with data.
Several added value features are provided for job submission, different job types
are supported from simple batch to a variety of compounds. In this paper we
outline what has been achieved to provide adequate workload and management
components, suitable to be deployed in a production-quality Grid, while covering
the design and development of the gLite WMS and focusing on the most recently
achieved results.

1 Introduction

Resource management and scheduling of distributed, data-driven applications in pro-
duction Grid environments are challenging problems. The interested domains include
workload management, resource discovery, brokering, accounting, authorization and
authentication, resource access, reliability and dependability. Although significant re-
sults were achieved in the past few years, the development and the proper deployment
of generic, robust, reliable and standard components involving such huge scales and
factors as the ones a production Grid has to deal with, has brought out non trivial issues
requiring joint efforts with a strong degree of cooperation to be attained.

Grid computing technologies have been developed over the last decade to provide a
computing infrastructure for a disparate and ever growing number of e-Science appli-
cations. A first large scale production Grid infrastructure was deployed by the Enabling
Grids for E-SciencE (EGEE) [1] EU-funded project. Its operation was then further con-
solidated during its second phase (EGEE-II). The EGEE Grid infrastructure consists
of a set of middleware services deployed on a worldwide collection of computational
resources, with an extensive programme of middleware re-engineering that has resulted
in a consolidated software stack, gLite [2]. This long-standing project, now at its third

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 256–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The gLite Workload Management System 257

phase (EGEE-III), will take further steps in moving Grids to dependable and sustain-
able production infrastructure while providing a continuous service to its expanding
user base. EGEE-III will continue to develop gLite as its reference open-source mid-
dleware distribution.

In this paper we outline what has been achieved to provide adequate workload and
management components, suitable to be deployed in a production-quality Grid, while
covering the design and development of the gLite WMS, with particular respect to func-
tionality and interoperability, focusing on the most recently achieved results.

2 The gLite WMS in a Nutshell

The gLite WMS represents a key entry point to high-end services available on a Grid. It
has been designed with some fundamental principles in mind: first of all aiming at pro-
viding a dependable and reliable service, where primary importance is given to never
losing track of jobs to be processed and always providing a prompt, responsive quality
of service, yet keeping up with huge and even growing factors of scale. It is designed
as part of a Service Oriented Architecture (SOA) complying with Web-Service Interop-
erability (WS-I) [3] specifications and strives to implement recommendations on web
service foundations made by the Open Grid Forum (OGF) [4].

Fundamental to any Grid environment is the ability to discover, allocate and monitor
the use of resources. The term "workload management" is commonly used to describe
all those aspects that involve discovering the resources and selecting the most suitable
ones, arranging for submission, monitoring and information gathering. In this respect,
the WMS has to deal with a heterogeneous computing environment that in general en-
compasses different architectures and loss of centralized control, all this in presence
of potential faults due to the distributed and diverse nature of the Grid environment,
computers, networks and storage devices.

3 Functionality at Various Levels

The gLite Workload Management System (WMS) provides a service responsible for the
distribution and management of tasks across resources available on a Grid, in such a way
that applications are conveniently, efficiently and effectively executed. These tasks, which
basically consist in execution requests, are usually referred to as "jobs". In a Grid environ-
ment the scope of such tasks/jobs needs to be extended to take into account other kinds of
resources, such as storage or network capacity. The need for such a broader definition is
basically due to the move from typical batch-like activity to applications with ever more
demanding requirements in areas like data access or interactivity, both with the user and
with other tasks. In this respect, the WMS does support different types of jobs:

– Single batch jobs.
– Work-flows: jobs with dependencies expressed as a direct acyclic graph (DAG).
– Collections: sets of jobs without dependencies grouped together and identified by

a single handler.

258 C. Marco et al.

– MPI: based on message passing interface - a widely-used library to allow for par-
allel programming within a single cluster (intra-cluster).

– Interactive: establishing a synchronous two way communication with the user on a
socket stream.

– Parametric: allowing multiple jobs to be defined by a single description with at-
tributes varying with a parameter.

The characteristics of a job are defined using a flexible and expressive formalism called
Job Description Language (JDL) [5]. The JDL is based on Classified Advertisements
or ClassAds [6], developed within the Condor project [7], which basically consist of
a list of key/value pairs that represent the various characteristics of a job (input files,
arguments, executable, etc.) as well as its requirements, constraints and preferences
(physical and virtual memory, CPU, operating system, etc.). The user can then specify
whatever attribute for the description of a request without incurring in formal errors,
as ClassAds are not bound by any particular schema. Only a certain set of attributes
are directly taken into account by the WMS on the base of documented semantics, the
others will simply be passed on without specific processing. Also, the attributes used
for describing high-end resources come from a common schema, the so called GLUE
schema [8], born from a joint effort to standardize and facilitate interoperation between
Grid infrastructures, e.g. the attribute "GlueCEStateFreeCPUs" will always indicate the
number of free CPUs in all the resources making part of such a joint infrastructure.

Jobs are always associated with user proxy credentials and all job-dependent opera-
tions are performed on behalf of the user. gLite in general and the WMS in particular
exploit experience and existing components from the Virtual Data Toolkit from Condor
and Globus [9] (VDT). While Condor plays a significant role in the present architecture
as a job submission and tracking layer (see later), the Globus Security Infrastructure
(GSI) is used throughout for enabling secure authentication and communication. GSI
provides in fact libraries and tools for authentication and message protection that use
standard X.509 public key certificates, public key infrastructure (PKI), the SSL/TLS
protocol, and X.509 Proxy Certificates, an extension defined for GSI to meet the dy-
namic delegation requirements of Grid communities. A specific service, called Proxy
Renewal and conceived as be part of the WMS, is devoted to renewing credentials, auto-
matically and securely, for long-running jobs. This is a desired feature not to propagate
throughout the Grid proxy certificates of a significant duration, since they need to be
reasonably longer than the expected duration of jobs, which in some cases can last for
weeks, they are associated to. This scenario would obviously represent a security threat,
but, on the other hand, working with short-lived certificates will cause long jobs to out-
live the validity of their proxy and be consequentially aborted. To avoid this the WMS
allows proxy certificates to be renewed automatically, when close to expiry, if the user
allows the Proxy Renewal service to be enabled, this is done by specifying a MyProxy
[10] server (the long-lived proxy keystore) in the job JDL. Another similar mechanism,
implemented by the Job Submission Service (see later), is in place to forward freshly
renewed certificates in the WMS instance to the Computing Element (CE, i.e. the Grid
abstraction for a computing resource) where they will finally reach the Worker Node
(WN, i.e. the machine where the job is actually executed).

The gLite Workload Management System 259

The Grid is a complex system and things can go wrong at various stages of the so
called submission chain. The WMS has been designed with the ability to recover from
failures of the infrastructure by automatically resubmitting failed jobs, this is done at
two levels. "Shallow" resubmission is utilized in those cases where an error occurs
before the CE has started executing the job, in which case another CE can be tried im-
mediately without any worry to compromise the results. This will also reduce the prob-
ability to have multiple instances of the same job over the Grid due to temporary loss
of network contact. "Deep" resubmission happens whenever a job fails after it started
running; this situation can be more problematic as the job may well have done a consid-
erable amount of processing, producing output files or making other state changes, and
may also have consumed a significant amount of (precious) CPU time. Users can there-
fore choose the number of times they will allow the job to be resubmitted in these two
ways with two parameters of the JDL. If a job fails after having reached the maximum
number of retries it will be terminally aborted.

Submitting a job actually means passing its responsibility to the WMS whose pur-
pose is then finding the appropriate resource(s) matching user requirements, watching
and directing the job on its way to completion, with particular attention to infrastruc-
ture failures requiring resubmission. The WMS will in the end forward the job to the
selected set of CEs for execution. The decision about which resource is adequate to
run the job is the outcome of a so called match-making process between the "demand",
represented by the submission requirements and preferences, and the "offer", repre-
sented by the characteristics of the available resources. The availability of resources
for a particular task depends not only on the actual state of the resources, but also on
the utilization policies that the resource administrators and/or the administrator of the
Virtual Organization (VO) the user belongs to have defined for each of their users. It
can happen, not rarely, that none of the resources available on the Grid at a given time
is able to satisfy some job’s requirements, in suchcase the submission request is kept
pending by the WMS and periodically retried, the retry period being a configuration
parameter, until the request expires.

Besides request submission, the WMS also implements request management and
control functionality such as cancellation and output retrieval. Another feature exists
to list all the available resources matching a given job so that if a user (which can,
by the way, also be represented by an automatic system) has no matching resources it
can temporarily stop submitting. Request status follow-up can be achieved through the
Logging&Bookeeping service (L&B) [11], another key service responsible for tracking
jobs in terms of events (important points of job life, e.g. submission, transfer from a
WMS component to another one, finding a matching CE, starting execution etc.) gath-
ered from various WMS components as well as other Grid services. Each event type
carries its specific attributes. The entire architecture is specialized for this purpose and
is job-centric: any event is assigned to a unique Grid job identifier. The events are gath-
ered from various WMS components by the L&B producer library, and passed on to the
locallogger daemon, running physically close to avoid any sort of network problems in
a store&forward fashion.

All the various job management tasks mentioned so far are accomplished by different
components basically implemented (mostly in C++, with extensive usage of the Boost

260 C. Marco et al.

Fig. 1. A schetch of the gLite WMS internal architecture showing its interactions with other Grid
Services

[12] libraries) as different processes or threads, all communicating via persistent data
structures [Figure 1]. As anticipated, one core component is the Match-Maker which
sorts out a list of resources satisfying the given requirements. These resources might
even include Storage Elements (SE, i.e. the Grid abstraction for a storage resource) if
the user requested to need manipulate data. Such returned list of suitable resources is
ordered, given that more than one resource could match the specified requirements. The
highest-ranked resource will typically be used. The ranking function is provided by the
user in the JDL. Just a trivial example how a ranking expression would look like in
the JDL:

Rank = −other.GlueCEEstimatedResponseT ime; (1)

will indicate to send the job to the resource with the lowest estimated queue traversal
time.

To avoid the top-ranked resource to be repeatedly chosen upon successively close in
time requests, so becoming overrated, before the Local Batch System and the Informa-
tion Systems could in turn update such dynamic information, a stochastic algorithm can
be used to perform a smoothed selection among all the matching resources - weighted
according to their actual rank - in such a way to prevent congestion for the initially best
ranked resources.

Proper handling of massive data volumes is a very important aspect in production
quality Grids (it is maybe worth noting that one of the projects from which EGEE orig-
inates was called "DataGrid"). The JDL allows the definition of requirements based on
data through an attribute called "DataRequirements" which is structured in such a way
to allow users to target experiment-specific catalogs for their jobs and to mix different
input data types supported by different data catalogs in the same job description. Logi-
cal File Names (LFN), Grid Unique ID-entifiers (GUID), Logical Dataset (LDS) and/or

The gLite Workload Management System 261

generic queries can be used to retrieve data from SEs. All of them are used by the WMS
to query the related Data Catalog for getting back a list of Physical File names (PFN)
that are needed by the job as input for processing ([13] for more information). Output
data can then be stored to a specified SE and registered to a catalog. While match-
making is made between two entities - typically the job and the computing resource,
another interesting feature relating data management, called gang-matching allows to
take into account, besides CE information, also SEs in the process. A typical use case
for gangmatching might be: a job has to run on a CE close to a SE with at least 300 Mb
of available space. This translates into a JDL statement like the following:

Requirements = anyMatch(other.storage.CloseSEs, target.GlueSAStateAvailableSpace > 300); (2)

Getting closer to the core business, one of the most important tasks performed by the
WMS is, needless to say, scheduling (some would prefer call it planning, or meta-
scheduling). More or less "eager" or "lazy" policies can be supported in this respect. At
one extreme, eager scheduling dictates that a job is bound to a resource as soon as pos-
sible and, once the decision has been taken, the job is passed to the selected resource(s)
for execution, where, very likely, it will end up in some queue. This mechanism is usu-
ally referred to as "push mode". At the other extreme, lazy scheduling foresees that
the job is held by the WMS until a resource becomes available (hence requiring asyn-
cronous communication with the Information Provider), at which point that resource is
matched against the submitted jobs and the job that fits best is passed to the resource;
this is called "pull mode". These two approaches are quite symmetrical indeed: eager
scheduling implies matching a job against multiple resources, whereas lazy scheduling
implies matching a resource against multiple jobs.

The WMS is potentially able, by design, to work with each of these two opposite
modes. They both represent a neat grid-aware solution for job scheduling even if, in the
course of time, the ’push-mode’ emerged as the one and only method actually utilised
in the production infrastructure (maybe due to the fact that pull-mode requires asyn-
chronous Information Providers and that some care would be needed to handle noti-
fications to more than just one WMS instance to allow for scalability and to prevent
working with a single point of failure). For the record, other Grid meta-scheduling sys-
tems are able to enable late binding, apparently much like the pull-mode would behave.
Actually such systems, sometimes referred to as "pilot-jobs" frameworks, implement
sort of shortcut where a single VO-level scheduler submits "neutral" placeholder jobs -
so keeping a constant pressure onto all the available resources - which, once running on
the WN, are able to finally call forth end-user jobs. Of course such pilot jobs are seen
(and accounted) by the Grid infrastructure as any other user job. A thorough analysis
of the pro et contra of such emerging scheduling models would be out of the scope of
this paper, nevertheless, other than being affected by security implications, they can-
not really be considered as an alternative to the pull-mode, in any case, being just a
custom layer built on top of the very same infrastructure. Apart from serious security
implications which will not be addressed here, one way or the other pilots need to be
scheduled within the Grid services and protocols, i.e. a Grid meta-scheduler (direct job
submission cannot be considered at this level a Grid-aware solution).

Back to the WMS, the mechanism that allows for a flexible application of such dif-
ferent policies as the push or the pull mode is the decoupling between the collection of

262 C. Marco et al.

information about resources and its usage. This is enabled by a repository of cached re-
source information collected from the various supported Information Providers, called
Information Super-market (ISM), which is available in read-only mode to the match-
making engine and whose update can be the result of either the arrival of notifications or
active polling on resources or some arbitrary combination of both from different source
of Information Providers. The ISM represents one notable improvement in the WMS as
inherited from the EDG and LCG projects where the information was collected in real-
time - so contacting Information Providers for each single request, in a less efficient and
reliable fashion.

Reflecting the demand-offer/job-resource symmetry, each single job request is kept
in a event based priority queue (different request types have in fact different priority),
which recently replaced a data structure called task-queue (TQ, inherited from Alien
[14]). This allowed us to remove several locks throughout, once needed to keep the TQ
synchronised, and now requests (coded as functors to be executed by a thread pool)
line up as soon as they arrive waiting to be processed as stateless as possible, accord-
ing to the specific situation and/or error condition, while preserving the ability to hold
a submission request if no matching resources are immediately found. Such periodic
activities (timed events) will in fact re-schedule themselves to show-up at a programmed
later time in the priority queue.

Another interesting feature, which has been added quite recently, is represented by
the so called "bulk match-making". This optimisation, enabled for collections, allows to
perform the match-making for each subset of jobs sharing same characteristics instead
of matching each single job. The original collection is partitioned into such subsets
according to some significant attributes (JDL attribute "SignificantAttributes") which
will identify by the equivalence classes. A typical use-case for specifying significant
attributes could be, as an example, parting the original set on "Requirements", "DataRe-
quirements" and "Rank".

Here is a summary of the more relevant functionalities implemented in the gLite
WMS:

– Resubmission: shallow or deep
– Stochastic ranking
– Bulk-submission and bulk match-making
– Proxy renewal
– Support for MPI jobs even if the file system is not shared between CE and Worker

Nodes (WN)
– Support for execution of all DAG nodes within a single CE - chosen by either user

or by the WMS match-maker
– Support for file peeking to access files during job execution
– Load limiting mechanism to prevent system congestion based on machine’s vital

parameters
– Automatic sandbox files archiving/compression and sharing between jobs
– Match-making with data
– Gang-matching

The gLite Workload Management System 263

4 Interoperability and Interfacing

Given the typically large number of different parties involved in a Grid infrastructure,
interoperability plays a key role to facilitate establishing and coordinating agreements
and interactions between all the involved entities. In this respect, the WMS, especially
by virtue of his central, mediating role, has to deal with a wide variety of people, ser-
vices, protocols and more, ranging from users - belonging to different VOs - to other
services of the EGEE/gLite infrastructure and to other Grids as well.

For what concerns users, to be able to allow interaction adhering to the SOA model,
a Simple Object Access Protocol (SOAP) Web Service has been implemented, its in-
terface being described through a Web Service Description Language (WSDL) specifi-
cation written in accordance to the WS-I profile, which defines a set of Web Services
specifications to promote interoperability. This newly introduced Web Service based
implementation replaced a legacy network interface based on a proprietary protocol.It
manages user authentication/authorization and operation requests. It runs in an Apache
[15] container extended with FastCGI [16] and Grid Site [17] modules. The Fast CGI
module implements Common Gateway Interface (CGI) functionality along with some
other specific features. The most important advantages of using FastCGI are its per-
formance and persistence. FastCGI applications, in fact, are able to serve, in a mul-
tiprocessing fashion, multiple requests, where instances can be dynamically spawned
or terminated according to the demand. In particular, an additional control mechanism
over unpredictable error conditions such as undefinite hanging has been implemented
to automatically terminate a serving process of the pool after a given configurable num-
ber of requests. Moreover, the Grid Site module provides an extension to the Apache
Web Server for use within Grid frameworks by adding support for Grid Security In-
frastructure (GSI), the Virtual Organization Membership Service (VOMS) [18] and file
transfer over secure HTTP. It also provides a library for handling Grid Access Control
Lists (GACL). The Web Service hosting framework provided by Apache, Grid Site and
gSOAP has allowed the development of this front-end interoperable service in C++,
giving continuity and consistency with the rest of the coding.

About interoperation with other Grid services, we need to describe in more detail
how job management is accomplished by the WMS. A service called Job Submission
Service (JSS) is responsible to actually establish an authenticated communication with
the selected resource to forward the job and to monitor its execution. To implement
such lower level layer Condor-G has been always adopted. A monitoring service, part
of the JSS, is also responsible for watching the Condor log files intercepting interesting
events concerning active jobs which affect the job state machine and trigger appropriate
actions. Every CE supported by Condor-G is then implicitly supported by the WMS as
well, in particular the LCG CE (pre-Web-Service Condor-G plus GRAM on the CE)
and the gLite CE (pre-WS Condor-G plus Condor-C on the CE). Recently, with the
advent of the newest WS-I/BES [19] CE called CREAM [20], a new component of the
WMS suite, called Inteface to CREAM Environment (ICE), has been introduced as part
of JSS for job management towards CREAM. ICE is a gSOAP/C++ layer which will
securely manage job operations to CREAM CEs. In doing so, it subscribes to the gLite
CEMon information system [21] in order to asynchronously receive notifications about

264 C. Marco et al.

job status changes. ICE also performs synchronous status polling for unresponsive jobs,
in case some notifications are lost.

Interoperation with Information Providers is achieved either syncronously or asyn-
cronously for those providers who support it. We actually do provide interfacing with
the Berkely Database Information Index (BDII), support for other providers has been
recently dismissed due to lack of use.

About formalisms for defining jobs, the WMS fully endorses the Job Submission
Description Language (JSDL). This is an emerging OGF standard which aims at fa-
cilitating interoperability in heterogeneous environments, through the use of an XML
based job description language that is free of platform and language bindings. JSDL
contains a vocabulary and normative XML Schema that facilitate the expression of job
requirements and preferences as a set of XML items. What happened in the past and
still can happen is that several different organizations accommodate a variety of job
management systems, where each system has its own language for describing job sub-
mission. This represents a severe obstacle for interoperability. In order to utilize such
different systems altogether the involved organizations would have to prepare and main-
tain a number of different job submission documents, one for each system, basically all
describing the same operations. The JSDL represent a significant effort toward unifica-
tion and has semantics comparable to the current ClassAd-based JDL, its adoption as
an OGF approved standard makes it a good candidate for support by the WMS.

On the front of Grid interoperability, having already set up a long-standing interac-
tion with OSG, recent work has been done to enable interoperability with both Nor-
duGrid [22], and its ARC CE, and UNICORE [23], with a contribution to the writing of
the Grid Interoperation Now (GIN) [24] profile. More pragmatically, much of the issues
concerning interoperability reflects in the way the WMS job-wrapper (the shell script
generated by the WMS which surrounds the user job execution and performs basic
setup and cleanup operations, downloading/uploading the sandbox, setting the execu-
tion environment, logging etc.) is engineered. Due to the diverse nature of resources
belonging to one or more Grids, such script must be kept as simple and as robust as
possible. The job-wrapper may in fact be running in an unfriendly WN environment
where no or little assumption can be made on what is available. Again, due to the piv-
otal role of this script, a significant work has also been done to extend it in order to
encompass all the different requirements expressed by the involved parties (users, VOs
and resources) without losing functionality nor generality. To achieve this, a series of
hooks is provided in the jobwrapper generation procedure, allowing specific customi-
sations to be inserted by users, VO managers and site administrators. This approach
reduces hard-coding, by decoupling general and specific operations, without limiting
functionality. For users, prologue and epilogue scripts have been included - to be run
before and after the job is executed - basically with the intent of setting and cleaning
up the proper environment for "real" jobs; for VOs, a customisation point is foreseen
mostly used to hook up the proper middleware version; for similar purposes resource
managers are allowed to hook up their scripts throughout several strategic points of the
job-wrapper.

Here is a summarized view of the functionality provided in the areas of integration
with other services and interoperability:

The gLite Workload Management System 265

– Backwards compatibility with LCG-2
– Automatic renewal of credentials
– GridFTP and HTTPS to handle secure file transfer for the sandbox
– Service Discovery for obtaining new serivice endpoints to be contacted
– Support of different mechanisms to populate the ISM from several sources (BDII,

R-GMA, CeMon)
– Support for submission and monitoring for the LCG, gLite and CREAM CEs
– Support for Data management interfaces (DLI and StorageIndex)
– Support for JSDL
– Support for Grid Site delegation 2.0
– Interoperability with the american Open Science Grid (OSG), Nordugrid and

UNICORE
– Integration with Grid accounting and autorization frameworks
– User prologue/epilogue scripts accompanying the job, more custom scripts allowed

to be hooked for use by resource and VO administrators

5 Results and Future Developments

As of late 2008, the WMS has been deployed in a large number of multi-user and multi-
VO scenarios. Thorough testing and intense troubleshooting have been accomplished
during all these years, of course driven by the compelling needs of the LHC experi-
ments. This has led to a significant level of service stability for the current production
release. Much of this effort was accomplished using the development test-bed and the
preview test-bed, which also includes new components not yet ready to be deployed in
production, as it was the case for ICE. In addition, the concept of Experimental Service
proved to be very effective: a development instance, attached to the production infras-
tructure, to be accessed by a selected number of users and immediately installed with
the latest available patches.

Now that an acceptable level of sustained stability has been reached, work is being
done to further target performance. In particular, after the (effective) introduction of
collections, the average match-making time, performed on the full production BDII,
has room to improve, especially for single jobs. The next to come release will be able
to perform the match-making in parallel thanks to a re-design of the ISM that will be
doubled in order to remove some locks with a huge scope at the moment necessary to
keep the structure synchronised with readers and writers insisting on it. A read-only
copy will be available for readers, the request handlers needing to perform the match-
making, while another one will be created in background while purchasing. A pseudo-
atomic swap between these two copies will occur periodically and timedly so that the
ISM at the moment accessed by reader threads is disabled while, in the mean-time, the
freshly purchased one, since then only accessed for writing, will then become avail-
able to the readers only. Two ISM instances will be contemporarily present in memory
only for limited period - the time needed to carry out purchasing and to wait for the
older threads, still pointing to that very copy, to complete - after which such instance
can be definitely cleared. Such a design has already been stress tested in a prototypal

266 C. Marco et al.

Fig. 2. Throughput of about 90.000 jobs/day (>1 Hertz rate as shown by the plot) over a period
of more than two days on a stress test by CMS

instance installed as an experimental service, with the collaboration of the CMS exper-
iment; a peak performance of about 100.000 jobs/day were reached for more than two
consecutive days [Figure 2].

Also, one of the plus points of pilot-based job scheduling is the ability to match jobs
to resources very quickly, as compared to our present gLite WMS. This can basically
be done by virtue of the fact that the VO decides user prioritization in advance in such
a way that as soon as a pilot on a resource signals its availabiliy to get new jobs, the
VO scheduler just scans the job requests list, which is ordered according to a VO-wide
policy, so that it can simply stop to the first job matching the requirements. Nothing
prevents the gLite WMS to act in a similar way; in fact, the WMS allows each single
user to specify a rank function to apply to his jobs, as we have already seen. This is
a nice feature, nevertheless it requires matching against the whole ISM, not simply
stopping to the first one. Provided a fixed rank (i. e. VO-based, much like pilot jobs
frameworks work), the WMS could instead keep the ISM indexed accordingly so that
the match-making could just stop to the first matching resource, which at that point
will be also the highest ranked one. This will dramatically reduce the time for match-
making (stochastic ranking could be done in any case truncating at the first n matching
resources). This new model will represent a further step toward providing added value
in such a way that, in a future scenario, the WMS will be even able to automatically find
the best effective rank for its jobs, using some feed-back mechanism to rate resources
according to their performance measured over the entire job’s life-cycle (i.e. there is
no feed-back at the moment about the quality of status information as published by the
Information Provider).

Nonetheless, thanks to the modularity of its design, the present WMS architecture
allows for scalability in a more flexible way than pilot submission frameworks. The VO
pilot scheduler, in fact, other than being a single point of failure, needs to be able to
manage the resource domain space in its entirety. Two different pilot schedulers would
require parting the resource domain space to work together, with the consequence of
fragmenting the computing offer into two separate sets. On the contrary, several gLite
WMS instances can work together over the whole production infrastructure, the total
throughput scaling up in an almost linear fashion. Stochastic ranking could be even-
tually utilised to minimise latencies coming from the Information System update rate.

The gLite Workload Management System 267

In fact, this can be done, as compared to the pilot-based approach, right because each
WMS instance would get status information by interoperating with a specific Grid ser-
vice (the Information System, as said) and not directly from pilot jobs.

The next gLite WMS release (3.2), under preparation at the time of writing, will
contain several improvements, as the result of the intense restructuring activity which
took place during EGEE-II, not yet fully ported into the release branches. Among other
things, this new release, aimed at providing a more lightweight and responsive service
thanks to a significant redesign of its core component, will be instrumented with all the
aforementioned parallel match-making, IPv6 compliancy, support for Grid Site delega-
tion 2.0 and it will be Scientific Linux 5 ready. An official Web Site [25] and Twiki
pages have been set up, being kept readily updated, for documentation and support
about all the activity concerning the WMS.

6 Conclusions

The gLite WMS is designed and implemented to provide a dependable, robust and
reliable service for efficient distribution and management of end-user requests for com-
putation, storage, network, instruments and whatever resource may be shared across a
production quality Grid. It comes with a fully-fledged set of added-value features to en-
hance low-level job submission. Thanks to the flexibility of a scalable, fault-tolerant and
service-oriented architecture it has been deployed in a number of layouts and scenarios.

After seveal years of operation the WMS has reached sustained stability and a per-
formance targeted at covering the current needs, coming in particular way from High
Energy Physics and Bioinformatics. Development continues by supporting enhance-
ments requests expressed by the increasing number of experiments and users of the
EGEE community, keeping up with the standardization and definition of Grid services,
compliancy to emerging formal and de-facto standards and protocols. We will also con-
tinue facing the challenge of reaching even higher levels of performance, scalability and
reliability to find us prepared to meet the growing demand of the EGEE infrastructure.

References

1. http://www.eu-egee.org/
2. http://glite.web.cern.ch/glite/
3. http://www.ws-i.org/
4. http://www.ogf.org/
5. JDL Attributes Specification, EGEE-JRA1-TEC-590869-JDL-Attributes-v0-4,

https://edms.cern.ch/document/590869/1
6. http://www.cs.wisc.edu/condor/classad/
7. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor-A hunter of idle workstations. In: Proceed-

ings of the 8th International Conf. On Distributed Computing, San Jose, CA USA, pp. 104–
111 (1988)

8. http://forge.gridforum.org/sf/projects/glue-wg
9. http://www.globus.org

10. Novotny, J., Tuecke, S., Welch, V.: An Online Credential Repository for the Grid: MyProxy.
In: Proceedings of the Tenth International Symposium on High Performance Distributed
Computing (HPDC-10). IEEE, Los Alamitos (2001)

http://www.eu-egee.org/
http://glite.web.cern.ch/glite/
http://www.ws-i.org/
http://www.ogf.org/
https://edms.cern.ch/document/590869/1
http://www.cs.wisc.edu/condor/classad/
http://forge.gridforum.org/sf/projects/glue-wg
http://www.globus.org

268 C. Marco et al.

11. Dvorak, F., Kouril, D., Krenek, A., Matyska, L., Mulac, M., Pospisil, J., Ruda, M., Salvet,
Z., Sitera, J., Skrabal, J., Vocu, M., et al.: Services for Tracking and Archival of Grid Job
Information. In: CGW 2005, Cracow - Poland, November 20 - 23 (2005)

12. http://www.boost.org
13. https://edms.cern.ch/document/487871
14. Bagnasco, S., Cerello, P., Barbera, R., Buncic, P., Carminati, F., Saiz, P.: AliEn - EDG inter-

operability in ALICE, CHEP-2003-TUCP005, p. 3 (June 2003)
15. http://www.apache.org
16. http://www.fastcgi.com
17. http://www.gridsite.org
18. Chiaschini, V., et al.: An Integrated Framework for VO-oriented Authorization, Policy-based

Management and Accounting. In: Computing in High Energy and Nuclear Physics (CHEP
2006), T.I.F.R. Mumbai, India, February 13-17 (2006)

19. http://grid.pd.infn.it/NA5/bes-wg.html
20. Andreetto, P., Borgia, S.A., Dorigo, A., Gianelle, A., Marzolla, M., Mordacchini, M., Sgar-

avatto, M., Zangrando, L., et al.: CREAM: a simple, Grid-accessible, job management sys-
tem for local computational resources. In: Computing in High Energy and Nuclear Physics
(CHEP 2006), T.I.F.R. Mumbai, India, February 13-17 (2006)

21. CEMon, http://grid.pd.infn.it/cemon/field.php
22. http://www.nordugrid.org/
23. http://www.unicore.eu/
24. http://forge.ogf.org/sf/projects/gin
25. http://web.infn.it/gLiteWMS/

http://www.boost.org
https://edms.cern.ch/document/487871
http://www.apache.org
http://www.fastcgi.com
http://www.gridsite.org
http://grid.pd.infn.it/NA5/bes-wg.html
http://grid.pd.infn.it/cemon/field.php
http://www.nordugrid.org/
http://www.unicore.eu/
http://forge.ogf.org/sf/projects/gin
http://web.infn.it/gLiteWMS/

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 269–280, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On the Design of a Performance-Aware Load Balancing
Mechanism for P2P Grid Systems

You-Fu Yu1, Po-Jung Huang1, Kuan-Chou Lai1,
Chao-Tung Yang2, and Kuan-Ching Li3

1 Department of Computer and Information Science, National Taichung University,
Taichung, Taiwan, R.O.C.

kclai@mail.ntcu.edu.tw
2 Department of Computer Science and Information Engineering, Tunghai University,

Taichung, Taiwan, R.O.C.
ctyang@thu.edu.tw

3 Department of Computer Science and Information Engineering, Providence University,
Taichung, Taiwan, R.O.C.
kuancli@pu.edu.tw

Abstract. P2P grid computing systems integrate geographical computing re-
sources across multiple administrative domains. In P2P grid systems, one of the
most important challenges is how to efficiently exploit the load balancing of
distributed computing resources. This paper proposes a performance-aware load
balancing mechanism in order to exploit distributed computing resources in P2P
grid computing systems. The performance-aware load balancing mechanism
supports the capabilities of resource information gathering, job migration and
load balancing. The resource information gathering uses the P2P technique to
collect distributed resource information; the job migration mechanism adopts
the P2P technique to improve the utilization of idle computing resources; and
the decentralized load balancing policy could dynamically adjust the load ac-
cording to the system performance. We quantify the performance of our per-
formance-aware load balancing mechanism. Experimental results show that our
proposed mechanism could efficiently distribute load in P2P Grid systems.

Keywords: Grid, P2P, Job Migration, Load Balancing.

1 Introduction

P2P networks and Grids share the same focus on harnessing distributed resources
across multiple administrative domains. Grid computing systems integrate distributed
resources into high-performance computing platforms for supporting transparent
services in virtual organizations; the P2P computing system has the similar objective
of the Grid system to coordinate large sets of distributed resources. Therefore, many
projects attempt to integrate these two complementary technologies to form an ideal
distributed computing system. A P2P Grid [13] is a grid system in which peers handle
the message exchange and the sharing of the distributed resources; and then, the P2P
model could help to ensure Grid scalability. The prototype of a P2P grid is shown in

270 Y.-F. Yu et al.

Fig. 1. Prototype of a P2P grid

Figure 1. With a multitude of distributed resources, an efficient load balancing across
the P2P grid is required for improving the system performance. Due to uneven job
arrival patterns and heterogeneous computing capabilities, the computing nodes in
one site may be overloaded while others in different sites may be under-loaded. The
dramatic load imbalances often waste system resources and cause poor system per-
formance. Therefore, in these P2P grid systems, load balancing mechanism plays a
critical role in achieving high utilization of distributed resources.

Load balancing algorithms could be classified as either static or dynamic. In gener-
al, dynamic load balancing outperforms static load balancing on the performance of
improving load distribution with additional communication and computation over-
heads; and these additional overheads may be large for large heterogeneous distri-
buted computing systems. Many research works in the literature focused on centra-
lized dynamic load balancing strategies. However, the centralized strategy limits the
scalability of the distributed computing systems. Therefore, we focus on the distri-
buted dynamic load balancing approach in this paper.

The important issues in distributed dynamic load balancing mechanisms include
the design of load migration mechanisms, the gathering of resource information, and
the selection of dynamic load balancing policy. When a job is assigned to a compu-
ting node for execution, this job could not be re-scheduled to other computing nodes
except that the load balancing mechanism supports the capability of job migration.
Job migration represents transferring jobs between two computing nodes. When a job
is considered to be migrated from one node to another node, the migration decision of
the load balancing mechanism depends on the resource information of each candidate
node. To understand the type and availability of distributed resources, the monitoring
system collects some status of each node, such as system load, status of job queue,
usage rate of CPU, usage status of memory, bandwidth of data transferring, and so on.
Lack of knowledge about resources will hamper system performance. Therefore, after

Grid site 1

Grid site 2 Grid site 3

P2P overlay

 On the Design of a Performance-Aware Load Balancing Mechanism 271

deciding the need to initiate load balancing across the system, the load balancing
policy determines a suitably under-loaded node to receive load for improving the
overall system performance. An effective load balancing policy ensures optimal use
of the distributed resources whereby no node remains in an idle state while any other
node is being utilized.

In this paper, we present a load balancing mechanism. Basing on the Globus Tool-
kits (http://www.globus.org), we develop a prototype of the load balancing mechan-
ism with JXTA technology. The load balancing mechanism consists of the resource
monitoring, load balancing and job migration modules. Through the job migration
mechanism, this study integrates distributed computing resources across virtual or-
ganizations, and improves the utilization of distributed computing resources. We also
conduct experiments using a P2P grid environment to analyze the performance of the
proposed mechanism. Experimental results confirm that our load balancing mechan-
ism could achieve better performance.

The rest of the paper is organized as follows. In the section that follows, related
works in the literature are briefly reviewed. Section 3 describes the load balancing
mechanism. Section 4 evaluates the performance of the proposed mechanism. The
paper concludes with Section 5.

2 Related Works

There are some projects which combine P2P technology with Grid systems. P-Grid
[14] makes use of DHT overlays to perform lookups for tasks with an acceptable
number of CPU cycles; and P3 [15] makes use of the concept of super-peers. The
peers are responsible for mapping jobs to idle peers. Others include Jalapeno [11],
SP2A [1], JNGI (http://jngi.jxta.org), and so on.

In this paper, we adopt JXTA technology (http://www.jxta.org) to implement the
P2P functions for resource discovering. The JXTA is an open source platform devel-
oped by SUN. This platform defines the XML-based framework for message ex-
change and the network topology integration. JXTA framework could be divided into
three layers: core layer, service layer and application layer. JXTA supports the fol-
lowing P2P services: peer discovery protocol, peer information protocol, peer resolver
protocol, peer endpoint protocol, pipe binding protocol and rendezvous protocol.

Several research efforts have been focused on the design of dynamic load balanc-
ing techniques [6, 8] to optimize the performance of distributed computing systems.
The load balancing policies could be broadly classified as sender initiated, receiver
initiated, or symmetrically initiated [3, 9]. The dynamic load balancing policy uses the
system information to make decision at run time. The general dynamic load balancing
policies include Shortest Queue Policy, Never Queue Policy, Maximum Throughput
Policy, and Adaptive Separable Policy [5].

Job migration is also an important issue on designing the load balancing mechan-
ism. However, the process of job migration will incur extra system overhead for re-
serving resources for collecting and maintaining the information of system states [8].
In [9], the authors made the decisions of load balancing depending on the job arrival
rates and the job response time. In [7], the authors only considered the CPU and
memory state as the influence factors in load balancing. In [12], the author

272 Y.-F. Yu et al.

considered the deadline and the job migration cost to adjust load. There are many load
indices explicitly or implicitly used in the literature [2, 4] to express the load, e.g., the
CPU utilization, the job queue length, and more complicated equations consisting of
these simple factors.

There are many resource monitoring systems to aggregate and index resource in-
formation. R-GMA[16] use a centralized server to monitor all resource information.
Globus MDS2[17] and Ganglia[18] employ the hierarchical approach. Several P2P
approaches, e.g., NodeWiz[19], also have been proposed to index and discover re-
sources in a structured P2P network.

3 Performance-Aware Load Balancing Mechanism

In this section, we present the performance-aware load balancing mechanism for P2P
grids in which each grid site consists of a superpeer and several general peers. Super-
peers interact with other superpeers and exchange site information and load characte-
ristics. When a certain site becomes overloaded, job migration can be used to utilize
idle resources in remote sites.

To prevent from the disadvantage of the centralized system, our proposed mechan-
ism adopts a loose decision-making approach to decide the job migration. The decen-
tralized information discovery system in each superpeer gathers the resource informa-
tion of all peers in the same site; and then the load balancing module in each super-
peer makes the job migration decisions according to the resource information.

In this paper, we apply the sender-initiated policy to migrate jobs, which waiting in
the job queue, from overloaded computing nodes to under-loaded computing nodes
for reducing the job waiting time and improving the utilization of the computing
resources.

We have implemented a preliminary prototype of our load balancing mechanism.
Our system architecture follows the OSGA standard to be implemented by the JXTA
environment. The components of the load balancing mechanism can be organized in a
layered architecture as shown in Figure 2. The upper layer builds on the services of-
fered by the lower layer in addition to interacting and cooperating with components
on the same level. The upper layer consists of resource monitoring, load balancing
and job migration; and the lower layer consists of configure service, file transfer,
information service and execution management. The configure service module confi-
gures the basic setting and initialization of peers and peer-groups. The file transfer

Fig. 2. Prototype of the load balancing mechanism

Grid site

Configure
service File transfer

Information
service

JXTA

Load balancing Job migration Resource Monitoring

Execution
management

Applications

Grid site Grid site Grid site Grid site Grid site

 On the Design of a Performance-Aware Load Balancing Mechanism 273

Fig. 3. Resource monitoring module

module adopts sockets to implement communication pipes for data, files and messag-
es. The information service module supports the functions of computing resources
discovery and integration. The execution management module handles the job execu-
tion and Condor job queues (http://www.cs.wisc.edu/condor/) by Condor Java APIs;
and this module also supports the functions of the job status handling, job removing,
and job submission.

In the upper layer, the resource monitoring module could gather information, for
example, CPU speed, CPU type, memory size, memory free space, network band-
width, and job queue length, across virtual organizations by using a decentralized
approach, as shown in Figure 3. The superpeers in a site are responsible for the site
resource collection periodically; and the general peers are responsible for supplying
themselves information status to superpeers.

Security is an important issue in grid systems. Different virtual organizations re-
quire different certifications to ensure the system security. However, since the focus
of this study is on the load balancing mechanism, we omit the security issue here.

In this paper, we propose a new load balancing policy: the modified minimal job
turnaround time (MJRT) policy. The MJRT policy constructs the neighboring over-
lays according to the site’s performance at first. The sites with the similar system
performance would be contained in the same overlay. When the MJRT policy tries to
migrate jobs, this policy searches the sites in the neighboring overlay. If there is a
neighboring site with sufficient resources, the MJRT policy would migrate the jobs to
this neighboring site. However, if there is no neighboring site with sufficient re-
sources, the MJRT policy tries to find the site out of the neighboring overlay. If there
is a site with sufficient resources, the MJRT policy would migrate the jobs to this site.

Let LoadL be defined as the average load of the current local site, and LoadR the
average load of the current remote site. Let BarrierL be defined as the load barrier of
the local site, and BarrierR the load barrier of remote sites. BarrierL and BarrierR are
pre-set by the configure service in each grid site. The MJRT policy takes into account
the resource heterogeneity, network bandwidth, job transfer cost, CPU capability and

274 Y.-F. Yu et al.

job queue length. When LoadL≧BarrierL, the load balancing mechanism starts to
check the job queue for finding idle jobs. If there is any idle job, the load balancing
mechanism would try to find a remote site where LoadR is less than BarrierR, and
migrate this idle job to this remote site.

In this policy, the job response time (JRT) of each site is recorded. Assume that
there are n jobs scheduled in the site, and then the average job response time is de-
fined as follows: JRT ∑ job inish time job start time . (1)

This policy also considers the transmission cost which is defined as the follows: Transmission cost code volume data volume average bandwidth⁄ . (2)

Here, we define the average job response time in local site as JRTL, the number of
idle jobs in the local job queue as IdleL, and the number of running jobs in the local
job queue as RunL. Then, the time period of jobs waiting in the queue could be calcu-
lated as IdleL* JRTL, and the time period of finishing the execution of jobs in the CPU
could be calculated as RunL*1/2*JRTL. Therefore, Finish_TimeL is defined as the
time to finish the execution of a job waiting in the local queue. Finish_Time JRT Idle JRT Run JRT . (3)

We also define the time finishing the execution of a job which is migrated to a remote
site as Finish_TimeR: Finish_Time Transmission cost JRT Idle JRT Run JRT . (4)

This MJRT policy would choose the remote site which has the minimal value of
Finish_TimeR as the candidate site.

In the initial phase, the load balancing mechanism would set the load barrier of
each site and setup the overlays of the neighboring sites. The steps of this MJRT poli-
cy are described as follows:

1. Set the load barrier (BarrierL and BarrierR) of each site.
2. Construct the overlays of the neighboring sites.
3. When LoadL ≧ BarrierL, this site is overloaded; then, the load balancing me-

chanism starts to activate the job queue checking process.
4. The job migration mechanism checks whether there is any idle job waiting in

the local job queue or not. If there is any idle job in the job queue, then step 5
is executed; else stop this policy.

5. The job migration mechanism starts to find the remote site in the neighboring
sites, in which LoadR is less than BarrierR. If this site exists, then step 6 is ex-
ecuted; else go to step 7.

6. If there is a remote neighboring site whose Finish_TimeR is less than
Finish_TimeL, then the MJRT policy migrates this idle job to this remote site
and stop this policy.

7. The job migration mechanism starts to find the remote site out of the neighbor-
ing sites, in which LoadR is less than BarrierR. If this site exists, then step 8 is
executed; else stop this policy.

 On the Design of a Performance-Aware Load Balancing Mechanism 275

8. If there is a remote site whose Finish_TimeR is less than Finish_TimeL, then
the MJRT policy migrates this idle job to this remote site; else stop this policy.

The pseudo codes of the MJRT policy are described as follows.

Set the load barrier of each site and construct the overlay of the neighboring sites
if (LoadL ≧ BarrierL)
{

Checking job queue
 if (exist.Job_idle)
{
 if (LoadR in the neighboring sites < BarrierR)

{
 if (Finish_TimeR in the neighboring sites < Finish_TimeL)

 {
Migrating the idle job to the site with the minimal Finish_TimeR

 }
 }
 else
 {
 if (Finish_TimeR out of the neighboring sites < Finish_TimeL)

 {
Migrating the idle job to the site with the minimal Finish_TimeR

 }
 }
}

}

4 Preliminary Experimental Results

In the preliminary experiment, we adopt JXTA 2.5.1, Java 1.6.0, and Condor 6.7.20 to
implement our load balancing mechanism in Taiwan Unigrid (www.unigrid.org.tw)
for performance evaluation. In order to simplify the experimental environment, we
assume that there are three sites, and that each site consists of one superpeer and 2
general peers. However, our approach could be extended to more complex systems. In
this experiment, we assume that the sites 1 and 2 have better performance, and the site
3 has the worst performance. Table 1 shows the specification of our experimental
platform, and host201 is in charge of job submission. Due to that site 1 and site 2 have
the similar CPU speed and memory size, site 1 and site 2 are in the same neighboring
overlay. However, we could elaborate the concept of the neighboring overlay on more
performance indexes.

For the comparison of the performance of the MJRT policy, we also implement 2
policies: FIFO (First In First Out) and JRT (Job Turnaround Time) [10] policies. The

276 Y.-F. Yu et al.

Table 1. Specification of our experimental platform

Site Hosts Peer
type

CPU
Speed

Memory
size

execution time
per job

1 host201 superpeer Intel Pentium 4 3.40GHz X 2 512M about 8 minutes
1 host204 general peer Intel Pentium D 2.80GHz X2 512M about 9 minutes
1 host205 general peer Intel Pentium 4 3.40GHz X 2 512M about 8 minutes
2 host206 superpeer Intel Pentium 4 3.40GHz X 2 512M about 8 minutes
2 host207 general peer Intel Pentium 4 3.40GHz X 2 512M about 8 minutes
2 host208 general peer Intel Pentium 4 3.40GHz X 2 512M about 8 minutes
3 host221 superpeer Intel Pentium 4 2.00GHz 256M about 11 minutes
3 host222 general peer Intel Pentium 4 2.00GHz 256M about 11 minutes
3 host223 general peer Intel Pentium 4 2.00GHz 256M about 11 minutes

FIFO policy migrates jobs whenever there is an under-load site, i.e., when a site is
overloaded, it will try to find an under-loaded site to be the target site of job migra-
tion. In the FIFO policy, one overloaded site makes the migration decision only ac-
cording to the load barrier. The JRT policy extends the FIFO policy by taking into
account the resource heterogeneity, network bandwidth, job transfer cost, CPU capa-
bility and job queue length. In this policy, the job response time (JRT) of each site is
recorded. This policy would choose the remote site which has the minimal value of
Finish_TimeR as the candidate site.

In this study, we focus on the efficiency of the load balancing mechanism. There-
fore, in order to evaluate the performance influence by different load balancing poli-
cies, we adopt the jobs with similar execution time and transmission time behaviors.
However, the heterogeneous jobs could be applied in this mechanism. All jobs are
submitted from one site at the same time, and record the experimental data every 20
seconds. After submitting 50, 100, 150, and 200 jobs from host201, we record the
total job response time and the status of the CPU loads. The experimental results are
shown in Figure 4.

Figure 4 shows the experimental results for different numbers of jobs by three load
balancing policies. We could observe that the FIFO policy wastes more time on wait-
ing job migration. When the number of jobs increases, the performance decay be-
comes obvious by applying the FIFO policy. In general, MJRT policy outperforms

Fig. 4. Completion time by applying different policies

0

20

40

60

80

100

120

140

160

180

50 100 150 200

C
om

pl
et

io
n

T
im

e

Jobs

FIFO JRT MJRT

 On the Design of a Performance-Aware Load Balancing Mechanism 277

(a) FIFO policy

(b) JRT policy

(c) MJRT policy

Fig. 5. CPU loads for executing 200 jobs

FIFO and JRT policies. It is reasonable that the MJRT policy would migrate the idle
jobs to the neighboring sites in under-load. Due to that the FIFO policy migrates idle
jobs from overloaded site to light-loaded sites depending on the CPU load; it is possi-
ble that jobs may be migrated to the site with poor computing ability. The FIFO poli-
cy could not ensure that the job migration will improve the system performance.
However, the MJRT policy considers not only the load barrier but also the communi-
cation bandwidth and the computing capability. Therefore, the MJRT policy not only
reduces the system idle time but also migrates jobs to the sites which have better ex-
ecution performance.

Figure 5 shows that CPU loads for executing 200 jobs in three sites by different
policies. When the system load of site 1 reaches to the maximal bound after submit-
ting 200 jobs, the idle jobs are migrated from the site 1 to site 2 or site 3 by FIFO or

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

C
P

U
 lo

ad

time
units

FIFO

site 1

site 2

site 3

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

C
P

U
 lo

ad

time
units

JRT

site 1

site 2

site 3

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

C
P

U
 lo

ad

time
units

MJRT

site 1

site 2

site 3

278 Y.-F. Yu et al.

(a) CPU load of site 1

(b) CPU load of site 2

(c) CPU load of site 3

Fig. 6. CPU loads by applying three policies in distinct sites

JRT policies. However, due to that site 1 and site 2 are in the same neighboring over-
lay, the MJRT policy would migrate the idle jobs from site 1 to site 2 at first till the
CPU load of site 2 reaches the threshold, and then start to migrate the idle jobs from
site 1 to site 3. In general, the finish time of 200 jobs’ execution by adopting the
MJRT policy is shorter than those by adopting the FIFO and JRT policies.

Figure 5(a) shows that CPU loads for executing 200 jobs in three sites by FIFO
policy. When the site 2 or site 3 is idle, site 1 would migrate jobs to site 2 or site 3.
Therefore, the status of the surges of CPU loads by applying the FIFO policy is more
obvious than that by applying the JRT policy, i.e., the variation of the CPU load by
applying JRT policy is more stable than that by applying FIFO policy, as shown in
Figure 5(b).

Figure 6 shows that the CPU loads by applying three policies in distinct sites. From
observing Figure 6, the MJRT policy outperforms FIFO and JRT policies. It is

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

C
P

U
 lo

ad

time
units

site 1

FIFO

JRT

MJRT

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

C
P

U
 lo

ad

time
units

site 2

FIFO

JRT

MJRT

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

C
P

U
 lo

ad

time
units

site 3

FIFO

JRT

MJRT

 On the Design of a Performance-Aware Load Balancing Mechanism 279

reasonable that the search burden of finding the target site for the overloaded job
migration in the MJRT policy is less than that in the FIFO/JRT policies. Therefore,
the site adopting the MJRT policy could spend more computing resources in the job
execution. In Figure 6(a), the experimental results show that the occurrence of job
migration in site 1 is comparatively less than that in site 2 or site 3. It is reasonable
that the job submission starts from site 1; therefore, the site 1 would keep busy almost
before finishing all jobs. The reason that the occurrence of job migration in site 2
appears more frequently is that the site 2 has the better performance, so that site 2 has
a higher priority to receive jobs from other sites.

5 Conclusions

In this paper, we propose an efficient decentralized load balancing mechanism for the
P2P Grid systems. In our experiment, there are two kinds of computing nodes: one is
called the super-node and the other is called the general node. The super-peers are
responsible for supporting the site information to the job migration mechanism, and
the general peers are responsible for supporting the resource information of them-
selves to the super-peers. Therefore, the resource information system could be distri-
buted efficiently. This proposed load balancing mechanism consists of resource
monitoring, load balancing and job migration. It could use the decentralized resource
monitoring system to gather the resource information. After obtaining the resource
information of each site, the load balancing module could make the job migration
decision according to the system performance.

The experimental results show that the load balancing mechanism indeed could
balance the load of executing jobs. Therefore, the proposed load balancing mechan-
ism is seen to be efficient and practical for the dynamic load balancing systems.

Acknowledgments. This study was sponsored by the National Science Council, Tai-
wan, Republic of China under contract number: NSC 97-2221-E-142 -001 -MY3.

References

1. Amoretti, M., Zanichelli, F., Conte, G.: SP2A: a service-oriented framework for P2P-based
Grids. In: Proceedings of the 3rd international workshop on Middleware for Grid compu-
ting (November 2005)

2. Ferrari, D., Zhou, S.: A load index for dynamic load balancing. In: Proceedings of 1986
ACM Fall Joint Computer Conference, pp. 684–690 (1986)

3. Eager, D.L., Lazowska, E.D., Zahorjan, J.: A comparison of receiver initiated and sender
initiated adaptive load sharing. In: Performance Evaluation 1986, pp. 53–68 (1986)

4. Bosque Orero, J.L., Gil Marcos, D., Pastor, L.: Dynamic Load Balancing in Heterogeneous
Clusters. In: Parallel and Distributed Computing and Networks (2004)

5. Koyama, K., Shimizu, K., Ashihara, H., Zhang, Y., Kameda, H.: Performance Evaluation
of Adaptive Load Balancing Policies in Distributed Systems. In: Proceedings of the Singa-
pore International Conference on Networks/ International Conference on Information En-
gineering 1993, pp. 606–611 (1993)

6. Yan, K.Q., Wang, S.C., Chang, C.P., Lin, J.S.: A hybrid load balancing policy underlying
grid computing environment. Computer Standards & Interfaces 29, 161–173 (2007)

280 Y.-F. Yu et al.

7. Lei, S., Yuyan, S., Lin, W.: Effect of Scheduling Discipline on CPU-MEM Load Sharing
System. In: Sixth International Conference on Grid and Cooperative Computing, August
2007, pp. 242–249 (2007)

8. Dandamudi, S.P.: Sensitivity evaluation of dynamic load sharing in distributed systems.
IEEE Concurrency 6(3), 62–72 (1998)

9. Shah, R., Veeravalli, B., Misra, M.: On the design of adaptive and decentralized load ba-
lancing algorithms with load estimation for computational Grid Environments. IEEE
Transactions on Parallel and Distributed Systems (December 2007)

10. Lin, S.-J., Huang, M.-C., Lai, K.-C., Huang, K.-C.: Design and Implementation of Job Mi-
gration Policies in P2P Grid Systems. In: IEEE Asia-Pacific Services Computing Confe-
rence (2008)

11. Therning, N., Bengtsson, L.: Jalapeno: secentralized Grid computing using peer-to-peer
technology. In: CF 2005: Proceedings of the 2nd conference on Computing Frontiers (May
2005)

12. Yang, C.T., Li, K.C., Chiang, W.C., Shih, P.C.: Design and Implementation of TIGER
Grid: an Integrated Metropolitan-Scale Grid Environment, National Science Council, Tai-
wan (R.O.C.), under grants no. NSC93-2213-E-126-010 and NSC92-2218-E- 164-002

13. Briquet, C., et al.: Scheduling data-intensive bags of tasks in P2P grids with bittorrent-
enabled data distribution. In: ACM Proceedings of the second workshop on Use of P2P,
GRID and agents for the development of content networks, pp. 39–48 (2007)

14. Hauswirth, M., Schmidt, R.: An overlay network for resource discovery in Grids. In:
Second International Workshop on Grid and Peer-to-Peer Computing Impacts on Large
Scale Heterogeneous Distributed Database Systems (GLOBE 2005) (2005)

15. Oliveira, L., Lopes, L., Silva, F.: P3: Parallel peer to peer: An internet parallel program-
ming environment. In: Proceedings of the International Workshop on Peer-to-Peer Compu-
ting; A workshop co-located with Networking 2002 (2002)

16. Cooke, A.W., et al.: The Relational Grid Monitoring Architecture: Mediating Information
about the Grid. Journal of Grid Computing 2(4) (December 2004)

17. Czajkowski, S., Fitzgerald, K., Foster, I., Kesselman, C.: Grid Information Services for
Distributed Resource Sharing. In: Proc. of HPDC (2001)

18. Massie, M.L., Chun, B.N., Culler, D.E.: Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. In: Parallel Computing, vol. 30, pp. 817–840 (2004)

19. Basu, S., Banerjee, S., Sharma, P., Lee, S.-J.: NodeWiz: Peer-to-Peer Resource Discovery
for Grids. In: Proc. of Cluster Computing and the Grid (CCGrid) (2005)

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 281–292, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Mediation Framework for the Implementation of
Context-Aware Access Control in Pervasive Grid-Based

Healthcare Systems

Vassiliki Koufi, Flora Malamateniou, and George Vassilacopoulos

University of Piraeus, Department of Digital Systems, 80, Karaoli & Dimitriou Str.,
18534 Piraeus, Greece

{vassok,flora,gvass}@unipi.gr

Abstract. Healthcare is an increasingly collaborative enterprise involving many
individuals and organizations that coordinate their efforts toward promoting
quality and efficient delivery of healthcare through the use of pervasive health-
care systems. In such systems, interoperability is highly demanded in all the
levels including the service and data levels. This paper presents a distributed
context-aware access control mechanism for pervasive process-based healthcare
systems built on a Grid infrastructure. The system uses the Business Process
Execution Language (BPEL) to automate healthcare processes on a Grid infra-
structure. Client applications are portal-based, operate on mobile devices and
can use radio frequency identification (RFID) technology for wireless capture
of identification data. The proposed access control mechanism acts as a media-
tor between the clients and the underlying system and adheres to the least privi-
lege principle by allowing authorized access to integrated data in a ubiquitous
and pervasive manner. The mechanism is built on a software platform that ex-
ploits agent and workflow technology, thus providing robustness, high flexibil-
ity and fault tolerance in authorization procedures.

Keywords: Grid portal application, Business Process Execution Language,
context-awareness, role-based access control, software agents, workflows.

1 Introduction

Healthcare delivery involves a broad range of in-patient, out-patient and emergency
healthcare services, typically performed by a number of geographically distributed
and organizationally disparate healthcare providers requiring increased collaboration
and coordination of their activities in order to provide shared and integrated care
when and where needed [1]. As healthcare providers are mostly hosting diverse in-
formation systems, promoting quality and efficient delivery of healthcare requires the
use of interoperable healthcare information systems (HIS). With the advent of perva-
sive and ubiquitous computing technologies, the requirements for information tech-
nology to healthcare process alignment can be met with the least possible intervention
from the participating parties. For example, an HIS architecture that places emphasis
on supporting collaboration and coordination among various healthcare services can

282 V. Koufi, F. Malamateniou, and G. Vassilacopoulos

also fulfil the requirements to support internal mobility of healthcare professionals
(e.g. during ward rounds) that may lead to a pervasive computing infrastructure. Thus,
patient information which is scattered around disparate and geographically dispersed
systems should be readily accessed in a pervasive manner by authorized users at the
point of care. On these grounds, this paper describes a healthcare information system
which is based on a service-oriented architecture (SOA) and is implemented in a Grid
environment.

In the aforementioned system, healthcare processes are modeled using the Business
Process Execution Language (BPEL) and are expressed as web services to enable in-
tegrated access to healthcare information which is scattered around disparate and geo-
graphically dispersed systems. These web services are high-level services that are
created using Grid database services as the basic primitives. Grid database services
offer capabilities such as data federation and distributed query processing and are
generated by using Open Grid Services Architecture - Data Access and Integration
(OGSA-DAI) [2], a middleware product which is part of the Globus Toolkit [3]. They
are built as an extension to Web services and deliver added-value, high level data
management functionality. For example, unlike traditional Web service solutions,
OGSA-DAI supports dynamic creation of services which may combine and transform
data from multiple distributed data resources (e.g. via a Distributed Query Processing
service) in order to present an integrated or even derived view of the data [4]. In the
remainder of this paper, we refer to web services that are defined, deployed and exe-
cuted using these service-oriented Grid computing infrastructures as Grid services [5].
The healthcare processes modeled can be executed through personal digital assistants
(PDAs) by means of a customized Grid portal application that complies with the re-
strictions imposed by PDA technology (e.g. limited display size). Moreover, radio
frequency identification (RFID) technology is used for user identification and for ac-
cessing healthcare processes in a pervasive manner.

One important consideration during the development of such an HIS is fulfilling the
requirement of protecting patient privacy by guaranteeing that patients fully control
who sees any portion of their records, and to safeguard their information by adhering to
the least privilege principle which requires a tight matching of permissions to actual
usage and need. Hence, the enforcement of the least privilege principle requires con-
tinuous adjustments of the sets of user permissions to ensure that, at any time, users
assume the minimum sets of permissions required for the execution of each task of a
healthcare process. As access to patient information must be provided in a timely man-
ner, the security framework employed in the HIS should meet the most stringent re-
quirements for scalability, flexibility, performance and reliability.

Workflows and Agents Development Environment (WADE) is a common software
platform suitable for the development of mission critical applications by exploiting
agent and workflow technologies [6]. In this context, WADE constitutes a suitable
platform for the development of an access control framework to be incorporated in the
system described above. This framework is based on the role-based access control
(RBAC) paradigm and is context-aware. As such, it incorporates the advantages of
broad, role-based permission assignment and administration across object types, as in
role-based access control (RBAC) [7], and yet provides the flexibility for adjusting
role permissions on individual objects during a BPEL process enactment in
accordance with the current context. During the execution of a process instance,

 A Mediation Framework for the Implementation of Context-Aware Access Control 283

changes in contextual information are sensed and user permissions are adapted to the
minimum required for completing a job. Relevant access control policies are enforced
at both the BPEL task level and the Grid database service level.

2 Using Agent and Workflow Technology for Access Control

During the last few years there has been a growing interest in the utilization of agent-
based systems in a wide range of applications. Moreover, there has been a trend to-
wards using agent technology in conjunction with workflow technology in the context
of service-oriented architectures implemented in a grid environment [8][9][10][11]
[12][13].

Healthcare applications often have life-or-death dimensions as a patient's life can
hinge on the instant availability and accuracy of information. At the same time, data
privacy and security issues are of paramount importance. Thus, appropriate safe-
guards of a technical nature should be used to secure personal information against un-
authorized access, collection, use, disclosure or disposal. To this end, effective access
control mechanisms should be employed that meet the most stringent security re-
quirements while they comply with the requirements of high performance, reliability,
robustness, high flexibility and fault tolerance. Making authorization decisions in
such a distributed environment is a fairly complex task involving more than one
healthcare provider of the health district. The conjunction of agent and workflow
technologies provides the ability to execute such complex tasks and helps managing
the complexity of the distribution in terms of both administration and fault tolerance.
Hence, it can offer great benefits to the development of the aforementioned access
control mechanisms.

WADE is essentially a middleware for the development of distributed agent-based
applications exploiting the workflow metaphor for system logics definition. In WADE
each workflow is expressed as a Java class with a well defined structure, thus combin-
ing the advantages of workflow technology with the power and flexibility of an actual
programming language like Java. Although WADE can be used to target high level
orchestration of services provided by different systems, it primarily targets at the im-
plementation of the internal behavior of each single system. Thus, it is particularly
suitable for applications that imply the execution of possibly long and fairly complex
tasks such as those concerned with access control policy enforcement.

WADE is the main evolution of JADE, a popular Open Source framework that fa-
cilitates the development of interoperable multi-agent systems [14]. Furthermore,
unlike the majority of existing workflow systems that provide a powerful centralized
engine, in WADE each agent can embed a “micro workflow engine” and a complex
process can be carried out by a set of cooperating agents each one executing a piece
of the process [6].

3 Related Work

The trend towards an agent-oriented architectural approach to dealing with communi-
cations, system and application-level security is evident in the last few years [15][16]

284 V. Koufi, F. Malamateniou, and G. Vassilacopoulos

[17][18]. However, they are not concerned with access control in the context of a per-
vasive, process-based healthcare system built on a Grid infrastructure. Such systems
require a customized access control mechanism that will address the access control
issues arising during BPEL process enactment. In particular, it will address the defi-
ciencies of the access control mechanisms of the system’s main components, namely
BPEL and OGSA-DAI.

Security aspects, such as authentication and access control, are not standardized
through BPEL, but are left to the implementation of BPEL compliant process engine
[19][20][21]. In turn, grid middleware, namely Open Grid Services Architecture -
Data Access and Integration (OGSA-DAI) [2], that facilitate data federation and dis-
tributed query processing through the use of grid database services provides relatively
simple and static mechanisms regarding authorization and access control [22]. Hence,
several studies have been conducted regarding both the enforcement of access control
in BPEL [19][20][21][22] and the enhancement of access control mechanisms used by
Grid middleware services [23][24]. Most of these studies argue that both BPEL and
Grid middleware services can benefit from incorporating properly enhanced RBAC
mechanisms [7].

In this paper a WADE based security mechanism is proposed for the realization of
authorized access both to BPEL tasks and to Grid database services invoked by them
at run time. The mechanism acts as a mediator between the clients and the underlying
system and adheres to the least privilege principle by allowing authorized access to
integrated data in a ubiquitous and pervasive manner.

4 Motivating Scenario

The basic motivation for this research stems from our involvement in a recent project
concerned with defining and automating cross-organizational healthcare processes
spanning a health district in order to implement a district-wide, process-oriented
healthcare information system. The interoperability requirements and the stringent
security needs of the system, where sensitive patient information is used, motivated
this work and provided some of the background supportive information for develop-
ing the prototype presented in this paper.

Typically, a health district consists of one district general hospital (DGH) and a
number of peripheral hospitals and health centers. As patient information is scattered
around disparate and geographically dispersed systems and patient referrals are usu-
ally made among various healthcare providers within a district (e.g. for hospitaliza-
tion, for outpatient consultation or for performing specialized medical procedures),
there is a need to ensure that an interoperable environment is created and that author-
ized access to healthcare process tasks and to patient information required through the
execution of these tasks is provided.

Suppose a healthcare process which is composed of the medical activities that may
be performed during a physician’s clinical ward round. Among others, this process
involves assessing patient’s condition, accessing the patient’s medical record and is-
suing medical orders. As an example, consider the case where a patient’s physician
wishes to issue a radiological request for one of his/her patients. The request is sent to
the radiology department of the hospital which schedules the radiological procedure

 A Mediation Framework for the Implementation of Context-Aware Access Control 285

Fig. 1. Radiological request process model using IBM WebSphere Workflow

requested and sends a message to the requesting physician notifying him/her on the
date and time scheduled. After performing the radiological procedure requested, the
radiologist accesses the relevant part of the patient record, writes a radiological report
and sends it to the requesting physician.

Figure 1 shows a high-level view of the healthcare sub-process concerned with ra-
diology orders using the IBM WebSphere Workflow build-time tool [25]. In this
business process two organizational units of the hospital are involved: the clinical de-
partment and the radiology department of a hospital. Two of the roles participating in
the healthcare process are: clinical physician and radiologist. Table 1 shows an extract
of authorization requirements regarding task execution and related data access privi-
leges assigned to these roles, respectively. Similar requirements exist in many health-
care application fields where request-service situations occur [26].

From an authorization perspective, the healthcare process of Figure 1 surfaces sev-
eral higher-level requirements with regard to task execution and, consequential, Grid
database services invocation. These requirements include the following:

• Task execution – In certain circumstances the candidates for a task instance
execution should be dynamically determined and be either a sub-group of the au-
thorized users or only one, specific authorized user. For example, a certain radio-
logical request (issued by a physician) should be routed only to the sub-group of
radiologists who hold the relevant sub-specialty (e.g. CT or MRI) and the radio-
logical report (issued by a radiologist) should be routed only to the requesting
physician.

• Data access - Given that each role holder can execute certain tasks, he/she
should be allowed to exercise a dynamically determined set of permissions on
data objects, accrued from these tasks, under certain circumstances. For exam-
ple, during the execution of the “IssueRadRequest” task, a physician is allowed
to read patient record data and to issue (write, edit and send) radiological re-
quests only for his/her patients while on duty and within the hospital premises.

• Permission propagation - Some role holders should receive additional permis-
sions on certain data objects in order to effectively execute a task but these

286 V. Koufi, F. Malamateniou, and G. Vassilacopoulos

permissions should be revoked upon successful execution of the task. For exam-
ple, for an effective execution of the “IssueRadReport” task with regard to a
patient, in response to a request submitted by a physician, a radiologist should
receive the permission to read the patient’s record but he/she should not be al-
lowed to retain this permission after successful task execution (i.e. after writing
and sending the report).

The above requirements suggest that certain data access permissions of the healthcare
process participants depend on the process execution context. In particular, contextual
information available at access time, such as user-to-patient proximity, location of at-
tempted access and time of attempted access, can influence the authorization decision
regarding task execution and, given this permission, associated Grid database service
invocation to access the relevant data objects. This enables a more flexible and pre-
cise access control policy specification that satisfies the least privilege principle by
incorporating the advantages of having broad, role-based permissions across BPEL
tasks and data object types, like RBAC, yet enhanced with the ability to simultane-
ously support the following features: (a) predicate-based access control, limiting user

Table 1. Extract of authorization requirements for the healthcare process of Figure 1 (Task
execution and data access permissions)

 Authorization Requirement
1 PHYSs may issue requests for radiological procedures on patients

while on duty and within the hospital premises (IssueRadRequest).
1.1 PHYSs may write radiological requests for their current patients.
1.2 PHYSs may edit radiological requests for their current patients before

sent.
1.3 PHYSs may send radiological requests for their current patients.
1.4 PHYSs may cancel radiological requests for their current patients after

sent.
1.5 PHYSs may read patient records of their current patients.
2 RDDs holding a specific sub-specialty may perform only relevant ra-

diological procedures on patients (PerformRadProcedure).
3 RDDs may issue patient-oriented radiological reports on request by

physicians (IssueRadReport).
3.1 RDDs may read patient record data before sending their radiological

reports.
3.2 RDDs may write patient-oriented radiological reports for their current

patients.
3.3 RDDs may edit patient-oriented radiological reports for their current

patients before sent.
3.4 RDDs may send patient-oriented radiological requests for their current

patients.
3.5 RDDs may cancel patient-oriented radiological reports after sent.
3.6 RDDs may read past patient radiological reports prepared by them.
4 PHYSs may receive patient radiological reports issued by radiologists

only if requested by them (ReceiveRadReport).
4.1 PHYSs may read the requested radiological reports on their patients.
4.2 PHYSs may read patient records of their patients.

 A Mediation Framework for the Implementation of Context-Aware Access Control 287

access to specific data objects, (b) a permission propagation function from one role
holder to another in certain circumstances, and (c) determining qualified task per-
formers during a process instance based not only on the role-to-task permission pol-
icy, specified at process build time, but also on application data processed during the
process instance. In addition, the model should not incur any significant administra-
tive overhead, should be self-administering to a great extent and meet strong require-
ments in terms of scalability, flexibility, high performance and fault tolerance.

5 Security Mediation Framework

Figure 2 illustrates a high-level view of the system architecture, which is described by
a three-tier model, comprising the PDA client, the server site of the DGH and the Grid
which, in turn, comprises remote data resources. The latter are heterogeneous and re-
side in geographically distributed and organizationally disparate healthcare providers
within a health district.

Figure 3 illustrates a high-level view of the security mechanism incorporated into
the system with the objective to enhance security of patient information by focusing
on authorization and access control over the tasks comprising the BPEL processes and
the underlying Grid database services. In essence, the mechanism is a distributed mul-
ti-agent security framework which serves as a mediation layer that handles access re-
quests during client interactions with the underlying system. In particular, it mediates
between subjects (healthcare professionals) and objects (BPEL tasks and Grid data-
base services) to decide whether access of a given subject to given object should be
permitted or denied by taking into account the current context.

In this mediation framework, agents are held in containers running on different
servers which are distributed across healthcare organizations of a health district. In

Grid Service

Grid Service

Grid Service
Data Grid

G
lo

ba
l S

ec
ur

ity
 S

er
ve

r

BPEL Process

...

Existing
Information

System

 PDA Client dirGlatipsoHlareneGtcirtsiD

Local Authorization Server

Passive RFID
Reader

Fig. 2. Architecture of a pervasive process-based healthcare system

288 V. Koufi, F. Malamateniou, and G. Vassilacopoulos

Fig. 3. Security architecture

this way, a distributed runtime environment is formed where agents process access
requests and determine the requestors’ access rights. Agents’ tasks involved in this
procedure are defined according to the workflow metaphor. The set of the aforemen-
tioned containers is called a platform. There is one main container which is deployed
in a server at the DGH site and a number of peripheral containers deployed in servers
residing at the healthcare organizations of the health district. The main container is
the first one to start and all other containers register to it at bootstrap time. In each
server, containers are activated by a BootDaemon process.

The main container holds three special agents, the Agent Management System
(AMS), the Directory Facilitator (DF) and the Configuration Agent (CFA). The AMS
represents the authority in the platform, namely it is the only agent that can activate
platform management actions such as creating/killing other agents, killing containers
and shutting down the platform [14]. The DF implements the yellow pages service by
means of which the other agents advertise their services and find other agents offering
services they need [14]. The CFA is responsible for interacting with the boot daemons
and controlling the application lifecycle. A Gateway Agent (GA) also held at the main
container, handles the communication between the client portal and the multi-agent
system implementing the security mediator.

Each peripheral container holds a WADE-specific agent, namely Controller Agent
(CA), and a number of application-specific agents. The CA is responsible for super-
vising activities in the local container and for all the fault tolerance mechanisms pro-
vided by WADE. Application-specific agents undertake the enforcement of access
control policies on both the BPEL tasks and the Grid database services invoked by
them. The logics of interactions that need to be carried out by the agents in order to
ensure authorized access to the target objects are described as workflows. Thus, ap-
plication-specific agents are designed to include a light workflow engine that will

 A Mediation Framework for the Implementation of Context-Aware Access Control 289

execute these workflows. In our environment, there are two kinds of application-
specific agents, developed in WADE:

• Service Integration Agent (SIA): It is held in a container deployed on a server at
the DGH site and manages user permissions on BPEL tasks.

• Grid Resource Agent (GRA): It is held in a container on a server at the site of
each healthcare organization participating in a healthcare process and manages
user permissions on Grid database services.

During user interaction with the system, application specific agents sense the context,
collect contextual information and take appropriate actions according to the underly-
ing security policies. The contextual information influencing authorization decisions
is determined by a pre-defined set of attributes that may relate to the user (e.g. user
roles, user/patient relationship), to the environment (e.g. client location and time of
attempted access) and to the data resource provider (e.g. the healthcare organization’s
security policy). For example, the permissions of a physician accessing the system via
his/her PDA, are adapted depending on his/her identity (included in his/her Commu-
nity Authorization Service - CAS certificate), location and time of access as well as
the security policy of each healthcare organization where a portion of the requested
information is stored. Changes in user and environment context are sensed by both
agents, whereas changes in resource context are sensed and dealt with by the GRA
lying at each Grid node.

In order to validate the proposed architecture, an experimental, proof-of-concept
system prototype has been developed that provides part of the functionality presented
in the aforementioned motivating scenario. In the system prototype, CAS certificates
are issued to healthcare professionals by a Community Authorization Service (CAS)
server which has been set up at the DGH site. This server constitutes the Certificate
Authority of the health district and is capable of managing policies and governing ac-
cess to the health district’s resources. However, for our purposes, its responsibility is
confined to managing the users’ role memberships. In particular, the CAS certificates
issued to healthcare professionals specify only user-to-role assignments in the form of
security assertions, expressed in Security Assertion Markup Language (SAML)
[27][28]. The CAS certificate accompanies every request (either for task execution or
Grid database service invocation) issued through the system front-end (i.e. the portal).
The roles used in the certificate are functional and, hence, they remain unchanged un-
til the certificate expires as they are independent of the constraints held at the time of
attempted access.

The mapping of the aforementioned roles to the relevant permissions is performed
by means of access control policies expressed by using the RBAC profile of eXtensi-
ble Access Control Markup Language (XACML) [28]. These policies are specified at
the site where the target object (task or Grid database service) resides (tasks are
hosted on the BPEL engine at the DGH site and Grid database services are hosted on
the web servers at the hospital sites) and assist in the derivation of the exact permis-
sions a subject should acquire for performing a task.

In particular, each time a request is issued for a task execution, the enforcement of
a fine-grained, context-dependent access control policy involves a set of activities
which are coordinated via a workflow. These are the following:

290 V. Koufi, F. Malamateniou, and G. Vassilacopoulos

i. CAS certificate processing - It involves extracting the user’s roles from CAS
certificate that accompanies the request.

ii. Context acquisition - It involves collecting the relevant context information.
iii. Task-related policy retrieval - It involves specifying the relevant permissions

regarding access to BPEL tasks using the file(s) where the XACML policies
are stored. This file resides on the same server of the DGH site with the BPEL
engine.

iv. Permission derivation (on BPEL tasks) - It involves refining the policies re-
trieved during activity (iii) in order to adjust to the current state. Thus, task ex-
ecution is initiated and the associated Grid service is invoked.

v. Permission derivation (on database services) - It involves the derivation of
permissions on the Grid database services, associated with the Grid service,
that need to be executed in order to obtain the medical information requested.
After the Grid database services have been identified, a request for their invo-
cation is issued which is accompanied by the same CAS certificate. This trig-
gers the execution of a fairly complex task that involves the concurrent execu-
tion of a number of workflow task instances distributed on the healthcare set-
tings that hold portions of the medical information requested. The workflow
from which the instances are generated consists of activities similar to the ac-
tivities (i)-(iv) described above and aims at deriving the permissions a subject
should acquire for the invocation of the relevant Grid database services. In par-
ticular, the roles extracted from this certificate are used in order to specify the
relevant permissions regarding Grid database services using XACML policies
stored in one file at each Grid node (i.e. healthcare organization) providing the
portion of medical information requested. These permissions are also dynami-
cally adapted by the constraints imposed by the current context.

Figure 4 illustrates a schematic view of the workflow coordinating the five activities
using Workflow Lifecycle Management Environment (WOLF), a development envi-
ronment for WADE-based applications [28].

Every workflow is implemented as a Java class and is executed by the relevant mi-
cro workflow engine which executes the workflow by just executing the compiled Ja-
va code implementing it rather than by using an interpreter of a workflow definition

Fig. 4. Authorization workflow using Wolf

 A Mediation Framework for the Implementation of Context-Aware Access Control 291

language. This improves significantly its performance which is a matter of prominent
importance in the healthcare field.

6 Concluding Remarks

The development of pervasive, process-based systems that provide readily access to
integrated healthcare information at the point of care contributes greatly to improving
both the quality and safety of health care. Efficiency would also increase through, for
example, the elimination of unnecessary duplicate tests and imaging procedures. Of
course, any system of electronic medical records requires stringent privacy
protections to prevent unauthorized access or use. In particular, the security risks with
regard to authorization and access control which is introduced by the use of Grid
technology to provide shared and coordinated use of diverse data resources should be
confronted. Hence, relevant mechanisms must be in place that can conveniently regu-
late user access to information while providing confidence that security policies are
faithfully and consistently enforced within and across organizations residing in a
health district. To this end, a mediation framework has been developed to ensure au-
thorized execution of BPEL tasks and invocation of relevant Grid database services in
accordance with the current context. Thus, a tight matching of permissions to actual
usage and need is ensured. To meet the requirements of scalability, flexibility, high
performance and fault tolerance, the mediation framework presented in this paper is
based on agent technology and describes the logics of the authorization procedures as
workflows. Both the basic agent-related features and the ability to execute possibly
long and complex tasks defined according to the workflow metaphor are provided to
our framework by the WADE software platform.

References

1. Malamateniou, F., Vassilacopoulos, G.: Developing a virtual patient record using XML
and web-based workflow technologies. Int. J. Med. Inform. 70(2-3), 131–139 (2003)

2. Open Grid Services Architecture - Data Access and Integration (OGSA-DAI),
http://www.ogsadai.org.uk/

3. The Globus Toolkit, http://www.globus.org/
4. Antonioletti, M., Hong, N.C., Hume, A., Jackson, M., Krause, A., Nowell, J.: Experiences

designing and implementing Grid database services in the OGSA-DAI project. In: Design-
ing and Building Grid Services Workshop, Global Grid Forum (2003)

5. Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.: Grid Service Orchestra-
tion Using the Business Process Execution Language (BPEL). J. Grid Comp. 3, 283–304
(2006)

6. Caire, G., Gotta, D., Banzi, M.: WADE: A Software Platform to Develop Mission Critical
Applications Exploiting Agents and Workflows. In: 7th International Conference on
Autonomous Agents and Multiagent Systems - Industry and Applications Track, Estoril,
Portugal, pp. 29–36 (2008)

7. National Institute of Standards and Technology (NIST) RBAC,
http://csrc.nist.gov/groups/SNS/rbac/

8. Buhler, P.A., Vidal, J.M.: Towards Adaptive Workflow Enactment Using Multiagent Sys-
tems. J. Inf. Technol. Manag. 6(1), 61–87 (2005)

292 V. Koufi, F. Malamateniou, and G. Vassilacopoulos

9. Poggi, A., Tomaiuolo, M., Turci, P.: An Agent-Based Service Oriented Architecture. In:
WOA 2007, Genova (2007)

10. Foster, I., Jennings, N.R., Kesselman, C.: Brain Meets Brawn: Why Grid and Agents Need
Each Other. In: Autonomous Agents and Multi Agent Systems, pp. 8–15 (2004)

11. Greenwood, D., Callisti, M.: Engineering Web Service-Agent Integration. In: IEEE Con-
ference of Systems, Man and Cybernetics, The Hague (2004)

12. Savarimuthu, B.T.R., Purvis, M., Purvis, M., Cranefield, S.: Integrating Web services with
agent based workflow management system (WfMS). In: 2005 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, France (2005)

13. Negri, A., Poggi, A., Tomaiuolo, M., Turci, P.: Dynamic Grid Tasks Composition and Dis-
tribution through Agents. Concurr. Comp. - Pract. E 18(8), 875–885 (2006)

14. Java Agent Development Framework, http://jade.tilab.com/
15. Liu, Z., Naldurg, P., Yi, S., Qian, T., Campbell, R.H., Mickunas, M.D.: An Agent Based

Architecture for Supporting Application Level Security. In: DARPA Information Surviv-
ability Conference and Exposition, Hilton Head Island, S.C. (2000)

16. Zhang, G., Parashar, M.: Context-aware Dynamic Access Control for Pervasive Applica-
tions. In: Communication Networks and Distributed Systems Modeling and Simulation
Conference, San Diego (2004)

17. Pimentao, J.P., Sousal, P.A.C., Amaral, P., Steiger-Garcao, A.: Agent-based communica-
tion security. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES
2004. LNCS, vol. 3187, pp. 73–84. Springer, Heidelberg (2004)

18. Altiris Security Expressions Technology Overview: Agent-based and Agentless Vulner-
ability Management. Technical Report (2005)

19. Mendling, J., Strembeck, M., Stermsek, G., Neumann, G.: An Approach to Extract RBAC
Models for BPEL4WS Processes. In: 13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Modena (2004)

20. Thomas, J., Paci, F., Bertino, E., Eugster, P.: User Tasks and Access Control over Web
Services. In: IEEE International Conference on Web Services, Utah (2007)

21. Bertino, E., Crampton, J., Paci, F.: Access Control and Authorization Constraints for WS-
BPEL. In: IEEE International Conference on Web Services, Chicago (2006)

22. Dou, W., Cheung, S.C., Chen, G., Cai, S.: Certificate-Driven Grid Workflow Paradigm
Based on Service Computing. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS,
vol. 3795, pp. 155–160. Springer, Heidelberg (2005)

23. Adamski, M., Kulczewski, M., Kurowski, K., Nabrzyski, J., Hume, A.: Security and Per-
formance Enhancements to OGSA-DAI for Grid Data Virtualization. Concurr. Comp. -
Pract. E 19(16), 2171–2182 (2007)

24. Power, D., Slaymaker, M., Politou, E., Simpson, A.: A Secure Wrapper for OGSA-DAI.
In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005.
LNCS, vol. 3470, pp. 485–494. Springer, Heidelberg (2005)

25. IBM Corporation: IBM Websphere Workflow-Getting Started with Buildtime V. 3.6
(2005)

26. Polymenopoulou, M., Malamateniou, F., Vassilacopoulos, G.: Emergency Healthcare
Process Automation using Workflow Technology and Web Services. Int. J. Med. In-
form. 28(3), 195–207 (2005)

27. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A Community Authoriza-
tion Service for Group Collaboration. In: 3rd IEEE International Workshop on Policies for
Distributed Systems and Networks (2002)

28. OASIS Standards, http://www.oasis-open.org/
29. Caire, G., Porta, M., Quarantotto, M., Sacchi, G.: Wolf - an Eclipse Plug-In for WADE. In:

ACEC, Canberra (2008)

The Tiny Instrument Element

Francesco Lelli and Cesare Pautasso

Faculty of Informatics
University of Lugano

via Buffi 13
6900 Lugano, Switzerland

{firstname.lastname}@lu.unisi.ch

Abstract. In the past few years, the idea of extending the Grid to
cover also the remote access, control, management of instrument devices
has been explored in a few initiatives. Existing tools lack in general-
ity and require advanced specialized computer science knowledge, thus
making them difficult to be broadly adopted in the scientific community.
In this paper we present a new open source initiative that is designed
to overcome these problems. The Tiny Instrument Element project de-
fines a high level architecture for plugging instruments into the Grid and
provides the corresponding skeleton implementation. This lightweight
approach, as opposed to existing middleware-based solutions, reduces
the effort required to Gridify existing instruments. The paper evaluates
the proposed abstraction with a case study from a pervasive computing
scenario.

1 Introduction

The term Grid refers to a set of technologies for sharing and accessing storage
space and computational power. Additionally, the desire to access, control, and
acquire data from pervasive, widely-networked and distributed instruments re-
flects the need to include such scientific equipment as sensors and probes directly
into the Grid. In previous works ([1], [2]) we defined the term Instrument Ele-
ment (IE) as a set of services that provide the remote control and monitoring
of physical instruments. In Grid terminology the words “instrument”, “sensor”,
“actuator”, and “device” are synonyms used to identify any piece of equipment
that needs to be initialized, configured, calibrated, operated (with commands
such as start, stop, standby, resume, reset), and monitored. Unlike the classical
computing infrastructure composed of the Computing Element (CE) and the
Storage Element (SE), the IE must be accessed using interactive computational
job execution and usually requires a tightly coupled interaction with the users.
In the past few years, the concept of Instrument Element and its definition
has been adopted by few international cooperations (GridCC [3], RINGrid [4],
DORII [5]). Not only complex instruments such as High Energy Physics experi-
ments require a direct access to computational infrastructure. In this paper we
consider additional use case scenarios where instruments:

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 293–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

294 F. Lelli and C. Pautasso

– are large in number.
– are widely distributed.
– have a highly dynamic behavior: for instance they often go on and off or can

appear and disappear in a working net of sensors or probes.
– operate in embedded systems with low resources: for example FPGA based

instrumentation.

Some example application domains that would require such widely sparse instru-
mentation are: (i) power grids, (ii) territory monitoring: to prevent geo-hazardous
situations and detect forest fires, (iii) sea monitoring: for tsunami surveillance
for example, (iv) distributed laboratories, (v) transportation remote control and
monitoring.

Whereas in these applications a single device may not produce an amount
of data comparable with the one produced by high-energy physics experiments,
including such large collection of devices in the Grid can be very useful to run
complex data processing and leverage the available distributed storage facilities.
This way, the data produced by the sensor equipment may be directly and con-
tinuosly stored in a distributed storage system, making it possible to submit
analysis jobs on the Grid as new data arrives.

In order to address the requirements of these usage scenarios, a new version
of the Instrument Element is needed, since the complexity of the current mid-
dleware makes it very expensive and difficult to adopt by third party scientific
institutions, end-users or programmers that have expressed an interested to use
it for these applications. In this paper we present the Tiny Instrument Element
project [6], which aims a developing a light-weight implementation of similar
concepts. However, it uses a template-based approach based on widely adopted
technology as opposed to a plug-in based middleware. Moreover, the project
iself is developed according to the Web 2.0 open colleboration paradigm, in or-
der to provide transparent access to the development and spur the growth of a
large user and developer community. The Tiny Instrument Element Project [6]
has started as a simplification of the code for the Run Control of the Compact
Muon Solenoid (CMS) experiment at CERN [7] and now the first stable release
is available for download. The rest of this paper is structured as follows: Sec-
tion 2 presents a classification of related work and discusses its main limitations.
Section 3 outlines the principles guiding the design of the Tiny Instrument El-
ement. Section 4 introduces the architecture of the Tiny Instrument Element
from a technical point of view. The case study presented in Section 5 is used
to validate the present implementation. Section 6 concludes the paper with a
discussion of the project roadmap.

2 Related Work

The goal is to produce a middleware that can act as glue between devices allowing
their abstraction for making them accessible on the Grid. If we try to classify
these efforts we can distinguish two levels of abstraction:

The Tiny Instrument Element 295

– Low Level: these provide general interfaces and mechanisms therefore they
are very flexible but incomplete. A significant effort by developers is required
in order to build an artifact design for a particular kind of instrument.

– High Level: these give management interfaces more specific to the domain
of instrument control. However, they are less applicable to a large variety of
instruments and they may require complex configuration. Still, less develop-
ment effort is required in order to support a specific instrument.

In the first category (low level) we find the following: A WS-* based standard,
WS-Notification [8], describes asynchronous publish/subscribe notification pro-
tocols that can be used for listening to remote service data element updates rep-
resenting the state of a Grid-enabled instrument. The WSRF framework such
as OGSA [9], [10], Apache-WSRF [11] and WSRF.NET [12] implement this
standard. The Java Management Extensions (JMX) [13] technology is an open
system for management and monitoring. Via its Instrumentation, Agent, and
Distributed Services layers, this standard can be used for implementing manage-
ment tools, and providing monitoring solutions. Jini [14] provides mechanisms to
enable adding, removing, and locating devices and services on the network. The
Java Message Service (JMS) define a common set of publish/subscribe APIs [15]
that allow different peers of a distributed system to communicate using messages
or data streams.

In category ”high level” we find CIMA [16] and the Instrument Element (IE)
[1], [2]. CIMA proposes a common instrument middleware based on Web Services
using SOAP over HTTP as a communication layer and specific WSDL interfaces.
The first reliable implementation of the IE has been provided by the GridCC
project [3] and then few additional implementations have followed [17], [5]. Built
on high level middleware that can fit in all possible use case, the integration
of IE require not trivial efforts because each specific use case is not perfectly
covered by the middleware itself.

In this paper we present another implementation of the Instrument Element
concept. In the design of this version we tried to take the benefits of both high
and low abstraction levels in order to create a transparent, open source project,
independent from any particular initiative. As we will describe in the next sec-
tion, instead of building yet another middleware framework, we propose to use
a semi-finite artifact (i.e., a skeleton software) that can be extended, tailored,
and customized in order meet the requirements of a specific use case. As we will
show in our case study, this approach grants more flexibility and reusability than
existing high level solutions. Also, it does not suffer from the generality of low
level solutions, as it is designed around the instrument abstraction.

3 Design Principles

In this section we present how to integrate pervasive devices in the classical
grid computing infrastructure. As outlined in the related work section many
solutions have been proposed at a high and low level of abstraction, which require
specialized expertise. In proposing this solution to a new community we can

296 F. Lelli and C. Pautasso

encounter a natural resistance from the people that have to learn how to use
it. Moreover, high level solutions usually require the development of a plug-in
and a deep knowledge of a complex and specialized middleware. Therefore even
if some of the proposed solutions appear to be of general applicability they are
hard to apply in practice due to the amount of time that has to be spent in
learning how to use and extend them. Low level solutions instead require non-
trivial computer programming expertise, because they are not designed targeting
the Gridification of scientific instruments. Therefore solutions built starting from
this abstraction level may be quite advanced but hard to reuse: customization
to similar or other instruments may be performed only by experts.

To introduce our model for instruments Gridification, we take inspiration from
modern Web development practices. For example, many Web 2.0 services, such
as blogs, wikis, and social networking sites, target a variety of user categories:

– End User: definitely not a computer expert user, it has no understanding
about the technology that he is using but he is able to use the functionality
of a tool. For example, a blog writer may post his ideas on Web pages; a
scientist may retrieve data from a pre-configured instrument.

– Advanced User: with some basic computer science knowledge, she is ca-
pable of following the instructions for the installation of the tool and for
performing some simple customization. Advanced blog writers can create
and customize the layout and appearance of their blog. Advanced scientists
can setup and calibrate their instrument as they share it on the Grid.

– API Developer: thanks to their programming skills, these developers know
how to develop applications using the API offered by the tool. Developer
may write programs to retrieve and aggregate posts using the API of their
favourite blogs. Scientist developers may extend the Tiny Instrument Ele-
ment to support new kinds of instruments, as discussed in the case study.

– Tool Programmer: the builder of the tool itself, he has the ultimate knowl-
edge on how to use, customize, and extend it for any application. Once the
user community starts to grow, programmers should provide support to the
users of the other categories and use their feedback to improve the tool.

From this classification we notice how many different groups of people can con-
tribute to the success of a tool. We can also notice that non-specialized know-how
is enough for performing simple adjustments. Therefore users may become fa-
miliar with the technology incrementally. This will foster the establishment of
a community that will support the tool, contribute to its development, testing,
extension, and application at the best of their knowledge. Interested users (and
scientists in our case) will progress from simple user to more advanced ones as
their familiarity of the tool increases, thus becoming able to apply a tool to more
advanced and specialized use cases.

The Tiny Instrument Element project is centered around the previously de-
scribed “gentle learning curve” principle. Additionally, the following guidelines
are at the foundation of its design.

The Tiny Instrument Element 297

– Skeleton Architecture: the Tiny Instrument Element is a semifinal arti-
fact that – used as a skeleton – can simplify and homogenize the construction
of the final solution.

– Technology Reuse: we prefer to reuse existing and adopted technology as
opposed to develop new middleware frameworks. This way, potential new de-
velopers may quickly contribute to the project by leveraging existing knowl-
edge and skills.

– Standard Packaging: the project packaging follows a standard structure
(e.g., the one of Maven) in order to be easy to understand by its users.

– Template Customization: several examples are given for common use
cases to guide developers as they customize and extend the skeleton archi-
tecture to their needs.

– Transparent Development: the Tiny Instrument Element is an open
source project driven by its user and developer community. Recent studies
have shown that the adoption of these methodologies improves the quality
of the software and reduces its development time [18].

Instead of presenting yet another complex middleware framework and showing
how to develop a new plug-in, we are focusing our attention on how the cus-
tomization of existing code can be integrated in the given target application.
In [1] we showed with empirical evidence that different devices have different
needs even if they share similar functionalities. Therefore the development of a
single middleware for all the instruments results in a complex solution, which
is difficult to maintain and customize. This also hinders the creation of a large
user community.

In order to overcome such limitations we provide a well-defined modular ar-
chitecture and we reduce the dependencies with external libraries. The goal is
to have new programmers become familiar with the project in a short time. In
addition, the adoption of Web based software deployment simplifies the installa-
tion procedure of the tool making it easy and convenient for scientists to access
its functionality through a Web-based interface.

4 Architecture and API Design

A Web service interface (WS) acts as front-end between external components
and the tiny Instrument Element (IE) itself. Using the Proxy/Wrapper pattern,
inside the IE one or more Control Manager (or Instrument Manager) map the
exposed WS to the actual devices. In the simplest scenario only one instrument
is controlled and the control manager acts just as a proxy for the information
contained in the device. Depending on the controlled equipment the control
manager could also perform fault tolerant and or autonomic control functionality.
A detailed technical documentation for the API can be found in the project Web
site [19]. Figure 1 summarizes the overall architecture of the system.

We describe the object-oriented design of the Tiny Instrument Architecture
following two common use cases. The first (detailed in Section 4.1) is about tailor-
ing the framework to new kinds of instruments. The integration of an instrument

298 F. Lelli and C. Pautasso

Fig. 1. Architecture of the Tiny Instrument Element

consists in the implementation of one or more interfaces that take care of the
communication with the device. One or more instruments can be controlled us-
ing an object that implements the Parameter Listener interface. These objects
present new events to the Control Manager using the Instrument Functional-
ity interface. The proposed interfaces can support both stateless and stateful
instruments, which can communicate both in a synchronous or asynchronous
way.

The second use case concerns the remote access to the real instruments us-
ing the aforementioned Web service APIs (Section 4.2). External components
like a control room or a workflow engine can access the controlled instrument(s)
through the Web Service that retrieves the requested information via the instru-
ment control interface.

4.1 How to Plug a New Instrument

From a conceptual point of view an Instrument Manager (IM) (i.e., an imple-
mentation of your control manager) is completely described by its parameters,
attributes, commands, and a finite state machine:

– Parameters hold configuration information of the instrument.
– Attributes hold instrument variables (inputs and outputs).
– Commands hold actions that the device should perform.
– Finite State Machine specifies a state transition automata, used to con-

strain in which states can commands be executed.

This model is general enough to be applicable to different classes of instruments,
since some of the elements are optional. Therefore we can have devices that, for
instance, do not use the Finite State Machine because they only support one
command, or that do not have input attributes.

The Tiny Instrument Element 299

As an example, consider an instrument manager for a simple Voltmeter (i.e., an
instrument for measuring the voltage between two points in an electric circuit).
Parameter are: Maximum Voltage, Minimum voltage. These characterize the in-
strument and do not change unless the given voltmeter provides the possibility
to tune its measurement scale. Attributes: measured Voltage or set of measures.
Commands: Perform a measure or Perform a set of measures. Finite State Ma-
chine: IM-Linked (the IM is connected the instrument), IM-Unlinked, Error.

From an practical point of view, developing a controller for a new kind
of instrument involves implementing from 1 to 3 interfaces, depending on
the control features supported by the device. In the simplest case, the in-
strument can be controlled by implementing the InstrumentControl in-
terface, shown in Figure 2. This interface represents the abstraction of
a generic instrument, and includes methods used for its remote control
(such as create(), destroy(), get/setParameters(), get/setAttributes(),
executeCommand(), getStateMachine()) and should be implemented by a con-
troller that acts as a protocol adapter between the APIs and the actual instru-
ment. In the UML diagram of Figure 2 the class Command represents a command
while the class Parameter holds information about both attributes and parame-
ters. Note also that commands can contain parameters and that parameters may
contain arbitrarly typed objects. This design enables the instrument manager to
execute complex command scripts to manage the instruments.

In more complex scenarios, additional interfaces InstrumentFunctionality
and ParameterListener come into play, when the following assumptions do not
hold:

– There is one controller for each instrument.
– The instrument does not send asynchronous messages.

<interface>
InstrumentControl

create()

get/setParameters()

get/setAttributes()

getStateMachine()

executeCommand()

destroy()

……….

StateMachineDescription Command

Parameter

Value

Type

isReadOnly()

MyController

W
eb

Service
A

PI

Fig. 2. How to Plug a New Instrument: Basic Functionality

300 F. Lelli and C. Pautasso

Parameter

<interface>
ParameterListener

init()

destroy()

start()

getParameters()

<interface>
InstrumentFunctionality

init()

destroy()

onMessage()

MyController

Fig. 3. How to Plug a New Instrument: Advanced Functionality

– The instrument can process commands in a short amount of time (less than
one second).

Like the majority of control systems, the design supports instrument aggregation
and grouping, as an Instrument Manager (IM) can bee also seen as an instru-
ment. This is a very important feature for controlling a collection of instruments
of similar kind through the same control instance.

More complex instruments require handling asynchronous inputs coming from
other devices or subcomponents. The UML diagram in Figure 3 shows the ad-
ditional interface that has to be implemented by a controller. Generic input like
State changes or Errors from the equipment may be presented to the IM imple-
menting the InstrumentFunctionality interface and the ParameterListener
interface.

These two objects collaborate following the Observer pattern and add a
method onMessage() to the InstrumentControl interface to support asyn-
chronous communication. Both the method init() and destroy() come from
the interface intrumentControl itself. Therefore only the method onMessage()
has to be implemented in order to update the logic of the controller when an
asynchronous message coming from the equipment has to be handled. On the
other side of the observer pattern a ParameterListener interface can receive in
synchronous or asynchronous way messages coming from the controlled devices
and can call back the onMessage() method of the instrumentFunctionality
interface.

4.2 How to Share Instruments on the Grid

Instruments are included in the Grid through a service-oriented API, providing
the following operations:

The Tiny Instrument Element 301

<interface>
WebServiceAPI

executeCommand()

getParameter()

…………

getInstrumentManager()

getInstrumentManagerInContext()

…………

executeGridUI()

moveFile()

executeJob()

……….

StateMachineDescription Command

Parameter

Value

Type

isReadOnly()

Fig. 4. Grid API design of an instrument element

– Monitor and control of one or more instruments.
– Access and retrieve an instrument configuration parameters and topology.
– Collect the current measurements performed by the instrument.
– Provide a set of APIs for the integration between instrument and Computa-

tional Infrastructure.

The API (shown in Figure 4) exposes a subset of the design elements introduced
in the previous section. Following the principe presented in section 3, most of
the Objects presented in section 4.1 have been reused in the Web Service APIs
In in order to minimize the knowledge that potential new programmers should
have in order to master the overall software.

The APIs take into account that more that an Instrument Element may
contain more than one Instrument Manager and that IMs may be organized
in certain topologies. Therefore graph navigation APIs have been provided
like getInstrumentManager() and getInstrumentManagerInContext(). The
Access to the computational infrastructure is provided by a wrapper around
the Grid User Interface. Therefore the produced data can then be moved to
a storage element using familiar commands sent to the instrument service
via the executeGridUI() method or simplified methods like moveFile() or
submitjob(). In the current stable release of Tiny Instrument Element, the Grid
interface is only implemented using SOAP calls. We are currently extending it
also to support a RESTful design to make it easier to invoke it from JavaScript
applications.

302 F. Lelli and C. Pautasso

5 Case Study

Instead of using a quantitative approach for the validation of the project, we
present a case study that helps to evaluate the efforts needed for applying the tiny
Instrument Element in a pervasive computing scenario. Our aim is to understand
the reusability of the software where classical Grid middleware can encounter
difficulties.

The case study is tracking a large collection of instruments, which are widely
distributed in the environment. These instruments perform various kinds of mea-
surements and data aquisition (GPS location, CPU usage, available memory,
QoS properties, availability status, data traffic) and can be deployed by scien-
tists at their location with minimal effort. The collected information can be then
conveyed to dedicated instruments that act as information providers enabling the
display, the geo-tagging and consulting of the aggregated data coming from dif-
ferent remote sources. An important requirement of the case study is that the
instrument control software should run on Linux/Windows operating systems,
but also in FPGA based embedded systems. The distribution of the software is
handled in 3 different ways:

– Web Start Application (click a web link an the instrument element is installed
to monitor your local machine).

– WAR Based Deployment (copy a file in the webapps folder of a Web appli-
cation server and the instrument element service is ready to be invoked).

– Cross compilation and deployment script (run the instrument element on
low resource systems such as FPGA).

Following the classification given in section 3 we can classify the people involved
in the development as follow:

– End User: any user that want to perform the demo that is availlable at the
web site.

– Advanced User: a small number of system administrators that deployed
the software one expert that knows how to deploy application on FPGAs.

– API Developers: two expert programmers that have no previous knowl-
edge of the given technology

– Tool Programmer: One of the people directly involved in the tiny IE
project that was giving mail assistance in case of problems.

The result of this case study helps to support the claim that the Tiny Instrument
Element can be extended in order to cover this pervasive computing application
scenario with minimal effort. Also, it is important to point out that the case
study demo [20] was built by two members of the project user community and
not by its original authors. Using the Tiny Instrument Element as a starting
point, the two programmers were able to apply it to 6 different kinds of instru-
ments [21], extend it with a distributed index for data aggregation and complete
it with a graphical user interface in less than two months. The feedback that
was provided by these users was very positive, thus showing the potential of the

The Tiny Instrument Element 303

Tiny Instrument Element to cater for the needs of its user community. More in
detail, the majority of the time was spent implementing a controller compatible
with the InstrumentControl interface.

6 Conclusion

In this paper we present the Tiny Instrument Element project showing our pro-
posed novel approach to the integration between instruments and the Grid. In-
stead of building a new middleware we propose to use a semifinite artifact (i.e.,
a skeleton software) that can be tailored to meet the requirements of a specific
instrument characteristics. This approach not only provides an uniform access
to the Gridified instruments but also leaves the flexibility to customize and tune
the Tiny Instrument Element for optimal monitoring and control of the instru-
ments. From the case study we have seen that none of the code included in the
Tiny Instrument Element release was redundant and that the time required in
order to gain a good understanding of the API and the corresponding skeleton
was quite small. This supports the idea of template-based software development.

The Project has started full open source activities in September 2008. If we
exclude our personal activity and the one performed by the case study partic-
ipants, until the end of 2008, the project website attracted 304 unique visitors
(7 Returning many times). The source code was downloaded 40 times and the
authors were contacted with positive feedback by 2 users of the community.
Whereas the project has been running for a relatively short time, these num-
bers are promising and show the benefit of a transparent development process
to achieve wider dissemination of our research ideas.

In the future road map of the project, we plan to begin investigating a REST
API for the remote access to the instruments, and the ability to publish in-
struments on different Grid/Cloud Middleware frameworks such as ARC [22]
and Amazon EC2 [23] in order to prove the reusability of our proposed solution
across different middleware. We also plan to embed the instrument control API
into a scientific workflow system [24,25]

Acknowledgements

We would like to thank Pietro Molini, Eric Frizziero and Silvano Squizzato for
their participation in the Case Study.

References

1. Lelli, F., Frizziero, E., Gulmini, M., Maron, G., Orlando, S., Petrucci, A., Squizzato,
S.: The many faces of the integration of instruments and the grid. Int. J. Web Grid
Serv. 3(3), 239–266 (2007)

2. Frizziero, E., Gulmini, M., Lelli, F., Maron, G., Oh, A., Orlando, S., Petrucci, A.,
Squizzato, S., Traldi, S.: Instrument Element: A New Grid component that Enables
the Control of Remote Instrumentation. In: CCGRID 2006 (2006)

304 F. Lelli and C. Pautasso

3. GridCC Project Web Site, http://www.gridcc.org/
4. RINGrid Project web site, http://www.ringrid.eu/
5. DORII Project web site, http://www.dorii.eu/
6. Tiny Instrument Element Project, http://instrumentelem.sourceforge.net/
7. The CMS Collaboration: The CMS experiment at the CERN LHC. Int. Journal of

Instrumentation 3 (2008)
8. WS Notification specification, http://www-128.ibm.com/developerworks/

webservices/library/specification/ws-notification/

9. Globus Open Grid Services Architecture, http://www.globus.org/ogsa/
10. Foster, I., Kesselman, C.: The Globus Toolkit. In: The Grid: Blueprint for a New

Computing Infrastructure, pp. 259–278. Morgan Kaufmann Publishers, San Fran-
cisco (1999)

11. Apache WSRF Project, http://ws.apache.org/wsrf/
12. WSRF.NET Project, http://www.cs.virginia.edu/~gsw2c/wsrf.net.html
13. McManus, E.: JSR 160: JavaTM Management Extensions (JMX) Remote API 1.0

(2003)
14. Jini project, http://www.jini.org/
15. JMS standard API, http://java.sun.com/products/jms/
16. McMullen, D., Devadithya, T., Chiu, K.: Integrating Instruments and Sensors into

the Grid with CIMA Web Services. In: Proc. of the 3rd APAC Conference on
Advanced Computing, Grid Applications and e-Research (APAC 2005) (September
2005)

17. Vuerli, C., Taffoni, G., Coretti, I., Pasian, F., Santin, P., Pucillov, M.: Instruments
in grid: The new instrument element. In: Grid Enabled Remote Instrumentation.
Signals and Communication Technology. Springer, US (2008)

18. Jantunen, S., Smolander, K., Malinen, S., Virtanen, T., Kujala, S.: Utilizing Firm-
Hosted Online Communities: Research Challenges and Needs. In: Proc. of 1st Int’l.
Workshop on Social Software Engineering and Applications (September 2008)

19. InstrumentElement User Guide, http://instrumentelem.sourceforge.net/

wiki/index.php/User_Guide

20. Case Study Demo, http://sadgw.lnl.infn.it:2002/MapsMonitor/
21. Released Instruments, http://sadgw.lnl.infn.it:2002/MapsMonitor/marker_

guide.htm

22. Advanced Resource Connector ARC, http://www.nordugrid.org/middleware/
23. Amazon Elastic Compute Cloud EC2, http://aws.amazon.com/ec2/
24. Pautasso, C., Bausch, W., Alonso, G.: Autonomic computing for virtual laborato-

ries. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Systems: Software,
Computing, Networks. LNCS, vol. 4028, pp. 211–230. Springer, Heidelberg (2006)

25. Stirling, D., Welch, I., Komisarczuk, P.: Designing workflows for grid enabled in-
ternet instruments. In: CCGRID 2008, pp. 218–225 (2008)

http://www.gridcc.org/
http://www.ringrid.eu/
http://www.dorii.eu/
http://instrumentelem.sourceforge.net/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-notification/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-notification/
http://www.globus.org/ogsa/
http://ws.apache.org/wsrf/
http://www.cs.virginia.edu/~gsw2c/wsrf.net.html
http://www.jini.org/
http://java.sun.com/products/jms/
http://instrumentelem.sourceforge.net/wiki/index.php/User_Guide
http://instrumentelem.sourceforge.net/wiki/index.php/User_Guide
http://sadgw.lnl.infn.it:2002/MapsMonitor/
http://sadgw.lnl.infn.it:2002/MapsMonitor/marker_guide.htm
http://sadgw.lnl.infn.it:2002/MapsMonitor/marker_guide.htm
http://www.nordugrid.org/middleware/
http://aws.amazon.com/ec2/

μOR – A Micro OWL DL Reasoner for
Ambient Intelligent Devices�

Safdar Ali and Stephan Kiefer

Fraunhofer Institute for Biomedical Engineering,
Ensheimerstr. 48, 66386, St. Ingbert, Germany

{safdar.ali,stephan.kiefer}@ibmt.fraunhofer.de

http://www.ibmt.fraunhofer.de

Abstract. This paper describes the design, implementation and appli-
cation of μOR, a lightweight micro OWL Description Logic Reasoning
system developed for the resource-constrained devices to enrich them
with integrated knowledge processing and reasoning capabilities, and
leveraging them to the next generation Ambient Intelligent devices. We
have investigated the most commonly used reasoning systems and found
most of them infeasible to be used solely on the devices. μOR is based
on a subset of OWL-Lite entailments and the SCENTRA algorithm,
a simple resolution and patterns matching algorithm that we have
developed for resolving the queries and matching the knowledge base
triples.

Keywords: Semantic Web, Mobile Reasoning, Pervasive Computing,
Description Logics, Ambient Intelligent Devices.

1 Introduction and Related Work

The Semantic Web [1] initiative suggests standards, tools and languages to ex-
ploit the current Web to its full extent in different areas by annotating the
information through well-defined semantics and enabling it processable by ma-
chines. To achieve this goal, ontologies [2] play a key role as they are widely
used to represent knowledge by describing data in a formal way. The processing
of the knowledge represented through an ontology requires a reasoning system
to derive new information (inferences) from it. OWL [3] is a W3C standard for
creating and sharing ontologies on the Web and provides the means for ontology
definition and specifies formal semantics on how to derive inferences. Moreover,
in advanced Service Oriented Architectures (SOA), i.e. Semantic Web Services
[4], the services need to be well-defined with semantics to enable the peers to
perform (semi)automatic discovery, matching and invocation of these services.

The study of pervasive computing and ambient environments in different fields
of life [5][6] has introduced new research challenges. The entities that operate
� This work is partially supported by European Commission within the context

of SmartHEALTH IP Project, contract 016817, priority FP6-2004-IST-NMP-2
http://www.smarthealthip.com

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 305–316, 2009.
� Springer-Verlag Berlin Heidelberg 2009

http://www.ibmt.fraunhofer.de

306 S. Ali and S. Kiefer

in an ambient environment are expected to have different goals, experiences
and they may use distinct ontologies to exhibit their capabilities. Due to the
highly dynamic and open nature of the environment where various entities join
and leave the environment at random times, they are not able to have a priori
knowledge about all other entities that are present in the environment at a par-
ticular time instance. In addition to that, the need for mobile reasoning has been
arisen with the advent of mobile Semantic Web Services in pervasive computing
environments [7][8][9][10], although there exist various implementations [11][12]
where the applications use an external reasoning system through DIG [13] or
the native interfaces to fulfill the reasoning requirements. To cope with these
challenges, the entities or more specifically the devices in a pervasive computing
environment should have

– an integrated knowledge base, reasoning and querying system, which makes
them autonomous.

– the ability to semantically discover and match the desired entities in a
pure Peer-to-Peer (P2P) network, based on their physical and/or functional
characteristics. The physical characteristics (i.e. device/sensor vendor, de-
vice/sensor group/type etc.) are exhibited using a device ontology, while the
functional characteristics (i.e. what a semantic web service does, its meth-
ods and their semantic description etc.) are exhibited through service and
domain/application ontologies.

This paper presents the design and implementation details of μOR, a powerful
micro OWL Description Logic (DL) Reasoning system that we have developed
within the context of SmartHEALTH Project1. μOR is an integral part of Se-
mantic Medical Devices Space (SMDS) [14] framework that we have developed
for the development of next generation Ambient Intelligent (AmI) devices to
cope with the afore-mentioned challenges. μOR is based on our own developed
SCENTRA algorithm and a subset of OWL-Lite2 [15] axioms. SCENTRA is a
variables’ unification and patterns matching algorithm designed to resolve the
SCENT queries. Table 1 shows the constructs of OWL-Lite− that we have cur-
rently implemented for μOR, which gives us the following advantages.

– It does not produce conflicts.
– It avoids the complexities of non-determinism.
– It fulfills most of the requirements of pervasive computing scenarios.
– It is easier to be implemented for the resource-constrained devices.

1.1 SCENT: Semantic Device Language for N-Triples

In order to express the semantic queries, we need a query language, i.e. SPARQL3

and further to process it, we require a query engine, i.e. SPARQL query engine4,
1 http://www.smarthealthip.com
2 Hereafter referred as OWL-Lite−.
3 SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
4 SPARQL Query Engine; http://sparql.sourceforge.net/

http://www.smarthealthip.com
http://www.w3.org/TR/rdf-sparql-query/
http://sparql.sourceforge.net/

μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices 307

Table 1. OWL-Lite− constructs currently implemented in μOR

RDFS Features (In)Equality Properties Header Info. Datatypes

owl:Class ObjectProperty
rdfs:subClassOf DatatypeProperty

rdf:Property inverseOf
rdfs:subPropertyOf sameAs TransitiveProperty Ontology xsd datatypes

rdfs:domain differentFrom SymmetricProperty imports
rdfs:range FunctionalProperty

InverseFunctionalProperty

which is clearly not possible to run over a resource-constrained device. To cope
with this problem, we have developed a simple alternative by modifying the
EBNF (Extended Backus-Naur Form) of N-Triples5, which is a line-based, plain
text format and simple grammar to encode the basic standardized RDF no-
tation. We call this extended version of N-Triple patterns language as SCENT
(Semantic Device Language for N-Triples), which represents a subset of SPARQL
expressiveness and its simplicity makes is possible to be processed by resource-
constrained devices. Contrary to SPARQL, SCENT doesn’t support PREFIX
for the predicates and does not allow keywords, i.e. FILTER, OPTIONAL and
other additional options. Table 2 shows a comparison between original N-Triples
syntax and the SCENT language syntax specifications, where we modified the
original subject and object productions with the inclusion of variable (starting
with ? sign) which now allows to use variables together with absolute URIs at
the places of subject or object of a triple.

Table 2. Comparison between N-Triples and SCENT Syntax Specifications

Original N-Triples specification Modified N-Triples specification

subject ::= uriref | nodeID subject ::= uriref | nodeID | variable
object ::= uriref | nodeID | literal object ::= uriref | nodeID | literal | variable

variable ::= ’?’ name

Although there exist various implementations of OWL DL reasoners, i.e. Pel-
let [16], FaCT++ [17] and RacerPro [18], their memory requirements (installa-
tion/runtime) are quite high, restricting them to be used only on desktop systems
or servers, but surely not on resource-constrained (mobile) devices. Such reason-
ers mostly implement tableaux algorithms that are developed for the expressive
DL knowledge representation with high complexity. Bossam [19], a RETE-based
[20] forward chaining production rule engine is another example of DL reasoner
which takes comparatively less resources (750Kb of runtime-memory), but re-
quires namespace prefixing to express knowledge/queries which is not supported
by N-Triples, and hence not supported by our SCENT based semantic queries.
To the best of our knowledge, Pocket KRHyper [21] is the only reasoner which

5 W3C Recommendation, RDF Test Cases, 10 February 2004,
http://www.w3.org/TR/rdf-testcases/#ntriples

http://www.w3.org/TR/rdf-testcases/#ntriples

308 S. Ali and S. Kiefer

is targeted for mobile devices, thus most relevant to our work. It is a First Order
Logic (FOL) theorem prover and model generator based on the hyper tableau
calculus [22]. The drawback of Pocket KRHyper is that it works on a Set of
clauses and does not support direct DL reasoning, rather it adds an additional
layer for transforming all the DL expressions into first order clausal logic and the
inference results back to DL expressions, which is clearly an overhead for small
devices. Our aim is to make devices intelligent and autonomous w.r.t the capabil-
ities of knowledge querying, processing and reasoning, all integrated entirely on
devices, and to provide sufficient expressiveness and extra-logical features that
we identified as requirement for effective OWL DL reasoning on mobile devices
for pervasive computing scenarios.

The rest of the paper is organized as follows: Section 2 explains the architec-
tural and algorithmic details of μOR. Section 3 explains the general applications
of μOR, with the focus on a pervasive healthcare scenario. Section 4 gives the
implementation details and the performance evaluation results. Finally, Section
5 gives the conclusions and direction for future work.

2 μOR: A Micro OWL DL Reasoner

Fig. 1 shows the overall architecture of a small but powerful querying and rea-
soning system that we have developed for resource-constrained Ambient In-
telligent (AmI) devices. It consists of Query Processor, SCENTRA algorithm
and μOR.

Fig. 1. Architecture of Semantic Query Processing & Reasoning System

μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices 309

Fig. 2. An example of a SCENT query

2.1 Query Processor (QP)

QP is responsible for processing the SCENT queries, which are described using
the syntax explained under Section 1. Fig. 2 shows an example of SCENT query6

that is composed of five conditions/patterns, where each condition involves atleast
one variable and terminated with ’.’. This query is about finding device(s) (?d)
whose type is MedicalDevice and it belongs to the group (?g) of those devices
whose category/type is UrineAnalyzer, and it has performed the measurement of
a patient (?p) with the id 23KD2008. Such queries can be formulated using any
domain/application ontologies, which are used to exhibit the physical and/or
functional characteristics of the devices being used in that environment. In a
pervasive computing environment i.e. P2P unstructured network, such query
(embedded in the device discovery request message) is broadcasted from one
device to all other devices in the network, where the query processor running on
each device processes this query; and if matches are found, it returns back the
results (embedded in the device discovery response message) to the requesting
device. The complete structure of device discovery request and response messages
are not shown here because of the space limitation.

First of all, the QP extracts all the conditions/patterns from the SCENT
query, and adds them into a Set. Secondly, it loads the available knowledge base
(KB) triples stored on the device in a Set, and then it requests μOR to make
inferences on the given Set of KB, based on OWL-Lite− entailments. When
the QP gets back the inference results as a Set from μOR, it augments the
existing KB Set with these inferences using the Set union operation, and then
uses the SCENTRA algorithm (Fig. 3) to find the final results. When it gets back
the final results from SCENTRA algorithm, it formulates the results only for
the requested variable, e.g. in case of SCENT query presented in Fig. 2, only the
result for variable ?d will be returned.

2.2 SCENTRA: The SCENT Resolution Algorithm

Fig. 3 shows the SCENTRA algorithm, a simple variables’ unification algorithm
that we have developed for the SCENT conditions/patterns matching and resolu-
tion. SCENTRA takes a Set K of knowledge base triples and a Set C of conditions

6 Apparent line breaks are due to the space (width) limitation.

310 S. Ali and S. Kiefer

Input: A Set C of conditions’ triples where C = {c1, c2, ..., cm}, and a Set K of
knowledge base triples where K = {k1, k2, ..., kn}

Output: A Subset M of matched triples

begin1

Initialize(I) /* A set of sets for intermediate results */2

Initialize(M) /* A set of sets for matched results */3

V ← ExtractVariables(C) /* V = {v1, v2, ..., vp} */4

for c ∈ C do5

for k ∈ K do6

if Matches(cm, kn) = true then7

for v ∈ V do8

/* Extract the value of vp for cm from kn */9

if temp ←− ExtractValue(cm, kn, vp) 	= null then10

/* Add temp into vp set of I at index m */11

AddIntoSet(I, m, vp, temp)12

for v ∈ V do13

Mvp ←−+

m⋂
1

Imvp
/* zero matches found if M = ∅ */

14

end15

Fig. 3. The SCENTRA Algorithm

Input: A Set C of conditions’ triples, where C = {c1, c2, ..., cm}
Output: A Set V of variables used in C, where V = {v1, v2, ..., vp}
begin1

Initialize(V) /* A Set for variables used in C */2

for c ∈ C do3

if cm.subject is a variable then4

V ←+ cm.subject /* Add the subject variable in Set */5

if cm.object is a variable then6

V ←+ cm.object /* Add the object variable in Set */7

return V8

end9

Fig. 4. The ExtractVariables function

as input from QP or μOR, and returns a subset M of the matched triples that ful-
fills the conditions of Set C. In case of QP, the Set C consists of the conditions made
from SCENT query, while in case of μOR, the Set C consists of the conditions made
from OWL-Lite− entailments and the domain/application ontologies (The Rules
Generator algorithm is not presented here because of lack of space).

SCENTRA extracts the variables from Set C by using ExtractVariables func-
tion shown in Fig. 4, and resolves each of the variables of Set V. It applies

μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices 311

Input: A condition triple c and a knowledge base triple k
Output: true if k matches with c ; else false

begin1

let isMatched ← false2

if c.subject 	∈ V then3

if c.subject = k.subject then4

isMatched ← true5

if c.predicate 	∈ V then6

if c.predicate = k.predicate then7

isMatched ← true8

if c.object 	∈ V then9

if c.object = k.object then10

isMatched ← true11

return isMatched12

end13

Fig. 5. The Matches function

Matches function, shown in Fig. 5, to each triple of the Set K for each condition
of Set C. If a match is found, the value for each variable in Set V is extracted
and stored in a temporary Set I at appropriate index. Finally, the intersection
of Sets is taken for the found values of all variables used in each condition, and
then added in the final Set M. The symbol ←−+ means the addition of elements
(value of each variable) from a temporary Set I to the final Set M of results,
where each element of M is a Set containing the values of variables used in a
condition. The number of elements of Set M will always be equal to the number
of elements of Set V if matches are found, otherwise M would be an empty Set.

Complexity Analysis. The overall complexity of SCENTRA algorithm, as
shown in Eq. 1, would be O(m.n.p) where m is the total number of conditions
in Set C, n is the total number of KB triples in Set K, and p is the total
number of variables in Set V. The complexity of Matches function (Line 7) and
retrieval/addition operations (Line 10,12) on HashSet is of constant time, which
can be ignored. Similarly, the complexity of ExtractVariables function (O(m))
on Line 4, and the complexity of HashSet intersection operation (O(m.n)) on
Lines 13,14 can be ignored.

O(m) + O(1) + O(m.n.p) + O(m.n) =⇒ O(m.n.p) (1)

2.3 μOR

This section describes the details about μOR and its inference process using
SCENTRA Algorithm. μOR loads all the available domain ontologies in RDF
triples form, and if required, it generates the implicit rules based on the OWL-
Lite− entailments, as mentioned in Table 1. Once the implicit rules are created,

312 S. Ali and S. Kiefer

they are stored locally on each device and this process is not repeated, unless
the domain ontology(ies) are changed. Every implicit rule contains two sets, one
for preconditions and one for postconditions. The preconditions Set of each rule
is matched with the available Set K of knowledge base triples using SCENTRA
Algorithm, and if the matches are found, it creates new facts (triples) by substi-
tuting the variables of the postconditions Set with these matches. The resultant
Set of new facts (inferences) is then returned back to the Query Processor.

3 Applications of μOR

μOR can be used in various pervasive computing applications where semantic
knowledge processing and reasoning is required on mobiles/devices side. For
example, it can be used

– for developing personal health systems where plug-n-play like semantic in-
teroperability is required.

– for developing intelligent health kiosks, where the persons health and fitness
status is assessed by dynamically connecting with his/her bio-sensors.

– for semantic discovery/tracking of assets/samples in hospitals/laboratories.
– for developing solutions for ambient assisted living scenarios, i.e. home mon-

itoring for elderly people.
– for developing smart operation theaters, intensive care units etc.

3.1 Neuroblastoma Screening - An Application Scenario

In this section, we describe a laboratory healthcare scenario within the context
of SmartHEALTH project for the screening/diagnosis of Pheochromocytoma
and/or Neuroblastoma cancer, where the mobile semantic reasoning helps to
realize the vision of semantic coordination among Ambient Intelligent medical
devices [23]. Fig. 6 shows the complete interaction of the AmI medical devices
and the forwarding of final results to the remote SmartHEALTH Information
System (SIS). The SmartHEALTH Cancer Markers Analyzer (CMA) processes
the blood sample of a patient and for the completion of the screening/diagnosis,
it requires the urinary catecholamines levels of that patient. In order to do this,
the CMA searches the network by broadcasting a query q, as shown in Fig. 2,
which specifies the discrete conditions for the desired urine analyzer. Although,
there are two other medical devices in the environment, but only that urine
analyzer responds to the query of CMA, as it has performed the urine analysis
of the patient with the id 23KD2008. In the second step, the CMA calls the
Semantic Web Service of the urine analyzer to retrieve the urine analysis results
of that patient and then computes the overall status of the tumor by comparing
the both blood & urine analyses.

After computing the results and making a higher level of interpretation, the
CMA searches the local network for a gateway device, which offers a Semantic
Web Service to forward the final results to the SIS. The CMA now broadcasts the
second query about a device having a 3G internet connection with the SIS, in the

μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices 313

Fig. 6. Gateway Scenario - Semantic Coordination of AmI medical devices

similar way as it was broadcasted at first stage for the urine analyzer. As a result,
the matched mobile gateway device responds to the CMA with its URI, and
the CMA downloads the sawsdl file from gateway device, extracts the method
name using SAWSDL API [24], calls that method by sending the encrypted
measurement results. The mobile gateway device further calls the Semantic Web
Service of SIS to send the measurement results. After the interpreted results are
received on SIS side, the responsible health professional is informed in case of
emergency (through an automatic alert, i.e. SMS/fax) about these results, so
that s/he could login to the web portal of SIS site from his/her clinic (or even
from home) and could view the measurement results along with a higher level
of interpretation made by the server side analysis methods.

4 Implementation and Performance Evaluation

We developed the complete μOR system using Java� programming language.
For filtering and parsing of RDF information, we used small-sized (12Kb) Meg-
ginson’s RDF Filter [25] and one of the fastest SAX2 compliant Piccolo [26]
XML parser respectively. Fig. 7(b) shows the hardware platform, the Gumstix7

XL6P motherboard with wireless network card, Embedded Linux OS and Java
Virtual Machine (JamVM), which we chose to deploy and test the μOR. All the
medical devices used in the application scenario were attached with the Gumstix
modules, one of them is shown in Fig. 7(a) with the Roche Urine Analyzer8.
7 Gumstix Miniature Computers; http://www.gumstix.com
8 http://www.roche.com/prod_diag_urisys.htm

http://www.gumstix.com
http://www.roche.com/prod_diag_urisys.htm

314 S. Ali and S. Kiefer

(a) Urine Analyzer from Roche� (b) Gumstix with XL6P motherboard

Fig. 7. Implementation Platform for μOR

We have tested the performance of our semantic query processing and reason-
ing system in comparison with a couple of other small reasoning systems, namely
Pocket KRHyper and Bossam. We used a Windows XP system with Pentium� 4,
Intel� 2.40 GHz processor, 1.5Gb RAM to perform 10 different tests of loading
different domain ontologies with varying sized knowledge bases. Fig. 8(a) shows
the runtime memory size (24Kb) of complete μOR, which is far less than the
memory sizes of Bossam (750Kb) and Pocket KRHyper (245Kb). Similarly,
Fig. 8(b), Fig. 8(c), and Fig. 8(d) show the comparison of times taken for on-
tology loading/conversion, knowledge base loading and overall reasoning respec-
tively. Because the Gumstix has Marvell� PXA270 processorwith 600MHz speed,
which is a ratio of 4:1 to 2.40 GHz processor, so all the times calculated for μOR

(a) Runtime Memory Usage (b) Ontology loading/Triples conversion Time

(c) Knowledge base loading Time (d) Overall Reasoning Time

Fig. 8. Performance Evaluation of μOR compared to Bossam and Pocket KRHyper

μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices 315

on PC would be of 1:4 ratio to Gumstix platform. In the light of above perfor-
mance/memory results, we believe that the computing/memory requirements of
μOR are lower enough to be used on small/mobile devices.

5 Conclusions and Future Work

We have developed a small but powerful OWL DL reasoning system, namely
μOR for resource-constrained mobile devices. We have not implemented the
tableaux calculus, rather we have developed a simple variables’ unification al-
gorithm for the reasoning process which does not demand higher memory/
computing resources. Secondly, the current version of μOR supports CDC com-
pliant devices only, because of using java.util.HashSet and java.util.HashMap
classes for better performance, which are missing from the specifications of
CLDC9 and MIDP10 compliant devices. However, we will provide a substitu-
tional version in future which will support both CLDC and MIDP devices as
well.

Currently, μOR supports the generation of implicit rules only, which are de-
fined in the ontologies, but in future, we will add support for defining explicit
rules in one of the widely adopted rules defining languages, i.e. SWRL11. Sec-
ondly, although we have compared the performance of μOR with two other rea-
soners using a Set of our own queries, but to evaluate its performance on some
benchmark issues, we will continue to work using the available benchmarking
systems, i.e. LUBM12. Last, but not the least, we will optimize the SCENTRA
algorithm and implement the remaining axioms of OWL-Lite, if needed as per
the requirements of our new pervasive computing scenarios.

References

1. Lee, T.B., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
2. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-

tion 5(2), 199–220 (1993)
3. Web Ontology Language (OWL), http://www.w3.org/2004/OWL/
4. McIlraith, S.A., et al.: Semantic Web Services. In: Proc. of IEEE Intelligent Systems

(2001)
5. Finin, T., et al.: A Pervasive Computing System for the Operating Room of the

Future. Mobile Networks and Applications 12(2-3) (March 2007)
6. Ossowski, S., et al.: Agent-Based Semantic Service Discovery for Healthcare: An

Organizational Approach. IEEE Intelligent Systems 21(6), 11–20 (2006)
7. Helin, H., et al.: CASCOM - Context-Aware Health-Care Service Co-ordination in

Mobile Computing Environments. ERCIM News num. 60

9 http://java.sun.com/products/cldc/
10 http://java.sun.com/products/midp/
11 http://www.w3.org/Submission/SWRL/
12 http://swat.cse.lehigh.edu/projects/lubm/

http://www.w3.org/2004/OWL/
http://java.sun.com/products/cldc/
http://java.sun.com/products/midp/
http://www.w3.org/Submission/SWRL/
http://swat.cse.lehigh.edu/projects/lubm/

316 S. Ali and S. Kiefer

8. Ali, S., Uribarren, A., Parra, J.: Applications of Ambient Intelligence in medical
devices and clinical environments. In: IEEE international conference of E-Medical
Systems, Morocco (2007) ISBN: 9954-8905-0-5

9. Wahlster, W.: SmartWeb: Mobile Applications of the Semantic Web. In: Biundo,
S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS, vol. 3238, pp. 50–51. Springer,
Heidelberg (2004)

10. Kleemann, T., Sinner, A.: Semantic user profiles and their application in a mobile
environment. In: Proc. of Artificial Intelligence in Mobile Systems (2004)

11. Luther, M., Fukazawa, Y., et al.: lassification-based Situational Reasoning for
Task-oriented Mobile Service Recommendation. The Knowledge Engineering Re-
view 23(1), 7–19

12. Ejigu, D., Scuturici, M., Brunie, L.: An Ontology-Based Approach to Context Mod-
eling and Reasoning in Pervasive Computing. In: Proceedings of the Fifth IEEE
International Conference on Pervasive Computing and Communications Workshops
(2007)

13. Bechhofer, S., Moller, R., Crowther, P.: The DIG Description Interface. In: Proc.
Int’l. Workshop Description Logics 2003 (2003)

14. Ali, S., Kiefer, S.: Semantic Medical Devices Space, An Infrastructure for the inter-
operability of Ambient Intelligent Medical Devices. In: Proceedings of IEEE-ITAB
Conference in Ioannina, Greece (October 2006)

15. OWL Web Ontology Language Overview, W3C Recommendation (2004),
http://www.w3.org/TR/owl-features/

16. Sirin, E., Parsia, B., et al.: Pellet: A Practical OWL DL Reasoner. Int’l. Journal
of Web Semantics (2007)

17. Horrocks, I., Tsarkov, D.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Proc. Third Int’l. Joint Conference of Automated Reasoning 2006 (IJCAR
2006) (2006)

18. Möller, R., Harrslev, V.: Racer: A Core Inference Engine for the Semantic Web. In:
Proc. 2nd Int’l. Workshop Evaluation of Ontology Based Tools, pp. 27–36 (2003)

19. Minsu, J., Sohn, J.: Bossam: An extended rule engine for OWL Inferencing. In: An-
toniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 128–138. Springer,
Heidelberg (2004)

20. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence 19, 17–37 (1982)

21. Kleemann, T., Sinner, A.: KRHyper - In Your Pocket. In: Nieuwenhuis, R. (ed.)
CADE 2005. LNCS (LNAI), vol. 3632, pp. 452–457. Springer, Heidelberg (2005)

22. Baumgartner, P.: Hyper Tableaux - The Next Generation; Technical Report 32-97,
Universität Koblenz-Landau (1997)

23. Ali, S., Kiefer, S.: Neuroblastoma Screening through Semantic Coordination of
Ambient Intelligent Medical Devices. In: First International Research Workshop of
The Internet of Things and Services, France (2008)

24. W3C SAWSDL, A mechanism to semantically annotate the Web Service Descrip-
tion Language files, http://www.w3.org/-2002/ws/sawsdl/

25. RDF Filter, http://rdf-filter.sourceforge.net/
26. Piccolo XML Parser for Java, http://piccolo.sourceforge.net/

http://www.w3.org/TR/owl-features/
http://www.w3.org/-2002/ws/sawsdl/
http://rdf-filter.sourceforge.net/
http://piccolo.sourceforge.net/

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 317–327, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Sensor-Actuator Networks with TBox Snippets

Tomasz Rybicki and Jarosław Domaszewicz

Institute of Telecommunications, Warsaw University of Technology,
Warsaw, Poland

{trybicki,domaszew}@tele.pw.edu.pl

Abstract. Wireless sensor and actuator networks (WSAN) consist of many
nodes with limited computing resources. The nodes in such networks may pro-
vide different services, which gives rise to the possibility to compose the ser-
vices at runtime. In order to fully exploit the power of such a service-oriented
approach, the services need to be properly described. We present a novel ap-
proach to service-oriented architectures for networks of resource-constrained
nodes. The services are described ontologically. Each node carries a tiny piece
of a full domain ontology, needed to describe the node’s service. The descrip-
tions of services available in the environment are merged at runtime. This leads
to a lean, runtime version of the domain ontology, suitable for resource-
constrained nodes. The runtime ontology is then processed to answer queries
about available composite services.

Keywords: wireless sensor and actuator networks, ad hoc networks, middle-
wares, resource management and runtime environments, service oriented com-
puting, semantic grid and ontologies.

1 Introduction

Wireless sensor and actuator networks (WSAN) are the next generation of wireless
sensor networks (WSN) [1]. WSN consist of small, resource-constrained nodes capa-
ble of limited computation, wireless communication, and sensing the environment.
WSAN, by enriching the nodes with actuators, are able not only to observe the state
of the environment, but also to change it; for instance, fire detected by smoke and
temperature sensors might be put down by extinguisher actuators.

Nodes in WSAN might be divided into two overlapping groups: those that provide
a service (e.g., a wireless thermometer that provides body temperature readings) and
those that consume a service (e.g. a small display showing the patient’s body tempera-
ture). This gives rise to node cooperation (service composition). When the member-
ship in the network is dynamic, the node cooperation should be performed in an op-
portunistic manner; a node should not assume the presence of another node (e.g. the
display should not rely on certain thermometer but should be able to display readings
of any wireless body thermometer present nearby). Annotating services with coherent
descriptions facilitates service composition (e.g., since both body and room ther-
mometers provide temperature data, the display should be able to show outputs of
either of them). Annotating services with ontological descriptions allows even better

318 T. Rybicki and J. Domaszewicz

service composition, since it allows exploiting semantic relationships between service
descriptions (e.g., since temperature is a numerical value, the display is able to show
other kinds of a numerical value, like room air humidity).

A semantic, service-oriented approach to WSAN requires some additional infra-
structure to be provided by a middleware (e.g. a common ontology, runtime descrip-
tions of node services, service directory, etc.). This in turn raises the amount of com-
puting resources required of the nodes hosting the middleware.

In this paper, we propose a semantic, service-oriented middleware for wireless sensor
and actuator networks, which facilitates service composition and serendipitous coopera-
tion between nodes in the network. The main contribution of this work are a technique
of decomposing big domain ontologies into small ones that might be processed (at run-
time) on resource-constrained nodes, as well as a technique of runtime processing of
ontologies for the purpose of serendipitous service composition. The structure of this
paper is as follows. In section 2, we present related work. In section 3, we outline our
approach. The methods of decomposing the ontologies and annotating nodes with se-
mantic descriptions are presented in section 4. Section 5 contains the discussion of the
runtime processing of the descriptions. Section 6 summarizes the paper.

2 Related Work

The most notable example of service description is the web services architecture [2].
The services are described using WSDL (Web Services Description Language).
WSDL is able to express only the syntax of services. WSDL-S [3] extends it with the
ability to express semantic information. However, both WSDL and WSDL-S lack
efficient solutions for resource-constrained devices. In order to overcome that, an-
other effort was started – DPWS [4] (Device Profile for Web Services). Unfortu-
nately, sensors and actuators are still beyond its reach [5]. Recently, a proxy-based
architecture was proposed [6]; however, it lacks the ability to express and exploit
semantic information.

Another proxy-based approach is presented in SONGS [7]. Sensors are connected
to field servers, which act as proxies between them and the rest of the system. On-
tologies are not used. Instead, services are described with Prolog facts. Service com-
position is performed by calculating Prolog rules.

The idea of describing a node’s resources with ontologies and distributing the de-
scriptions over a network is presented in [8]. Nodes are homogeneous, and each of
them holds a part of the ontology that describes resources available in the whole net-
work. The drawback of such an approach is the necessity to re-align the ontology
upon node arrival or departure, which might require considerable number of messages
to be sent, thus shortening the network lifetime.

Recent research recognizes the advantages of service oriented architecture in
WSAN. TinySOA [9] is a prototype of service-oriented WSAN built on top of
TinyOS. The approach features a query model, where both task queries (service invo-
cations) and event queries (receiving notifications) are possible. TinySOA employs
service-driven routing; they do not exploit advantages of the possible relations be-
tween service types.

 Sensor-Actuator Networks with TBox Snippets 319

Ontologies are used to describe a node’s services in Common Instrument Middle-
ware Architecture (CIMA) [10]. The primary goal of the approach is to enable self-
descriptiveness of nodes and auto-configuration of application.

An ontology-based discovery is described in [11]. A node’s services and service
requests are described with ontologies, and matchmaking that exploits semantic rela-
tionships is possible. The solution, however, is targeted at high-end Bluetooth-enabled
mobile devices, and as such does not deal with issues related to efficient ontology
processing.

3 The Overview

We treat nodes of the network as independent entities that provide atomic services.
Each node is characterized by the type of the service it provides and the types of the
service’s inputs and outputs. For example, the thermometer node shown in Fig. 1a)
provides a Thermometer service which has no inputs and delivers one output of type
Temperature. Fig. 1b) shows a FireDetector service that takes Temperature
and SmokeAlert and outputs FireAlert.

Fig. 1. Thermometer (a) and FireDetector (b) services

The atomic services might be invoked individually, but they may also be composed
into complex services. The inputs of a complex service are all the inputs of its atomic
services that are not connected to the outputs of its atomic services. Similarly, the
outputs of a complex service are all the non-connected outputs of its atomic services.
A complex service shown in Fig. 2 is used to detect fire. It consists of three atomic
services: Thermometer, SmokeSensor, and FireDetector. The outputs of Ther-
mometer and SmokeSensor are used as inputs to FireDetector. This way a com-
plex service is created whose sole output is FireAlert.

Fig. 2. A complex service example

Each atomic service has an ontological description built with concepts from a com-
mon domain ontology. The concepts in the ontology are grouped in two hierarchies: a
hierarchy of service types (e.g. SmokeSensor, Thermometer, FireDetector) and

320 T. Rybicki and J. Domaszewicz

Fig. 3. (a) A straightforward approach is to embed full knowledge base in each node. (b) A
more realistic scenario is to reduce the ABox to assertions concerning the node. (c) In our
approach, both the TBox and ABox parts embedded in a node contain only statements concern-
ing the node.

a hierarchy of service parameter1 types (e.g. Temperature, SmokeAlert,

FireAlert). The hierarchies are linked by axioms that define relationships between
individual services and their parameters.

An ontological knowledge base consists of two components: a TBox and an ABox.
The TBox describes a domain in terms of concepts and relations, while the ABox in
terms of instances of those concepts. In WSAN, the TBox describes the types of
nodes (services) and relations between the types, and the ABox represents actual
nodes. A straightforward approach to handle an ontological knowledge base is to store
information about all the types and all the instances on each node (Fig. 3a). Such an
approach is unrealistic, if only due to network reconfiguration problems: a new node
arrival would require updating the ABox assertions in all nodes. Another scenario is
to store on a node only those ABox assertions that are related to this specific node
(Fig. 3b). Such a solution, although more efficient, still has a severe drawback – since
the TBox may consist of hundreds of concepts2, its size may still be significant. In our
approach, we not only reduce the size of the ABox; we also considerably lessen the
size of the TBox. We use a so-called TBox snippets that, along with ABox assertions,
constitute node descriptions used at runtime (Fig. 3c). A TBox snippet consists only
of concepts and relations directly relevant to the node being described. This way a
node contains only the information about itself, and the combined knowledge base,
composed of all descriptions embedded in a network, contains information about
available nodes only. Its size is smaller than that of the full knowledge base, and it is
easier to process on resource-constrained nodes.

During the design time, the node manufacturer uses a domain ontology to create
the description of a node’s service and installs the description on the node. A descrip-
tion is created by “cutting out” concepts and relations that describe the type of the

1 In the spirit of OWL-S, we use the term ‘parameter’ to refer to both inputs and outputs of a

service.
2

 For instance, the OntoSensor ontology of sensors and actuators consists of 439 classes
(http://www.engr.memphis.edu/eece/cas/OntoSensor/OntoSensor).

 Sensor-Actuator Networks with TBox Snippets 321

node’s service and its parameters from the TBox, and adding ABox statements about
the specific node (e.g., id or manufacturer).

At runtime, one of the nodes is elected as the ontology composer. It gathers de-
scriptions of all neighbouring nodes and composes a so-called runtime ontology. The
composer then becomes a directory service; it resolves service queries by processing
the runtime ontology. Such a query might refer to a particular type of a service (give
me a Thermometer-type service) or a service that has parameters of particular types
(give me a service that returns Temperature).

The runtime ontology has the same structure as the full, design time ontology, but
it consists only of the concepts that are related to services available in the environ-
ment. This makes it smaller than the design time ontology, and more amenable to
processing on resource-constrained nodes.

4 Design Time

The ontology used at design time consists of two layers: an upper level ontology and a
domain ontology. The first one is domain-neutral and covers core concepts required
for the system to function properly, the latter deals with concepts describing a specific
domain of interest.

The upper ontology (shown in Fig. 4) describes entities from a service-oriented
perspective. It contains a concept that denotes atomic services (AtomicService) and
one that denotes their parameters (ServiceParameter). The domain ontology sub-
classes of the former represent actual service types (e.g., Thermometer), while the
domain ontology subclasses of the latter represent data types used as service parame-
ters (e.g., Temperature). The hasInput and hasOutput relations are used to link a
service type with the types of its parameters. This ontology is extended by a domain
ontology that contains actual service and parameter types. However, only the upper
ontology is hardwired into the middleware; as a result, the middleware stays
domain-agnostic.

Fig. 4. The upper ontology

The domain ontology is created by a domain-responsible entity and made available
to all interested parties (e.g., node manufacturers or third-party node-software provid-
ers). The domain ontology consists of three parts: a service types hierarchy, a service
parameter types hierarchy, and axioms linking the hierarchies. Service types must be
subsumed by AtomicService; service parameter types must be subsumed by Ser-
viceParameter.

The upper ontology extended with a domain ontology forms a design time ontol-
ogy. Fig. 5 shows an example of a simple design time ontology for the domain of

322 T. Rybicki and J. Domaszewicz

Fig. 5. An example of design time ontology

“home automation.” The ontology contains eight service types: (1) a smoke sensor,
(2) a “generic” alarm, (3) a “smoke detected” alarm, (4) a “fire detected” alarm, (5) a
fire detector unit that based on temperature in the room and presence of smoke de-
cides whether to signal a fire alert, (6) a generic temperature sensor, (7) a human body
thermometer and (8) a motion sensor. Fig. 5a) shows a hierarchy of ontological con-
cepts representing those service types: SmokeSensor, Alarm, SmokeAlarm,

FireAlarm, FireDetector, MotionSensor, Thermometer and BodyTher-
mometer. SmokeAlarm and FireAlarm are kinds of the Alarm service and so are
subsumed by it. Similarly, BodyThermometer is subsumed by the Thermometer
service type. Fig. 5b) shows the service parameter type hierarchy. It contains the fol-
lowing concepts, each representing a service’s input or output: Temperature,
Alert, HumanTemperature, FireAlert, SmokeAlert and MotionAlert.
Again, HumanTemperature is a subtype of Temperature, and FireAlert,
SmokeAlert, and MotionAlert are subtypes of Alert.

The relationships between service types and their parameter types are shown in
Fig. 5c). For instance, it shows that FireDetector takes Temperature as input
(indicated by the hasInput relation), and Thermometer outputs it (indicated by the
hasOutput relation).

In order to simplify processing of the runtime ontology (reasoning), a number of
pre-processing operations should be performed on the design time ontology. One of
them is making implicit subsumptions explicit. This simplifies the processing, as it
allows checking only direct subsumption of service and parameter type concepts (as
opposed to traversing the whole hierarchy).

4.1 Describing Services with TBox Snippets

The service description consists of a set of concepts related to the service and ex-
tracted from the design time ontology (a so-called TBox snippet), as well as a
“grounding” information (in the form of ABox assertions), which links the snippet

 Sensor-Actuator Networks with TBox Snippets 323

Fig. 6. TBox snippet extraction

with a specific instance of the service, running on a specific node. The design time
ontology can be looked at as consisting of many, possibly overlapping TBox snippets.

We treat ontologies as directed graphs with concepts as vertexes and relations as
edges. Using this approach, the problem of extracting a snippet from the design time
ontology is reduced to finding a subgraph (the snippet) in a graph (the ontology).

A minimal TBox snippet consists of the concept representing the service type and
one or more concepts representing the types of the service’s parameters. We call such
a snippet a ‘core snippet’.

In order enable serendipitous service discovery and composition, it is essential for
the snippets corresponding to different services to “overlap”. The simplest case is
when the same concept is used as a service parameter type of two different services.
This is the case of Temperature, which is used in both Thermometer and FireDe-
tector (see Fig. 5c), in the former as output, in the latter as input. A more elaborate
scenario involves subsumption of concepts – this is the case of Alert, which is the
input to Alarm and which subsumes SmokeAlert, FireAlert, and MotionAlert.
These in turn are other services’ outputs. The information on relationships between
those concepts is used at runtime to detect service opportunities. Since SmokeAlert

324 T. Rybicki and J. Domaszewicz

Fig. 7. Service description examples

is a subclass of Alert, it may also be used as an input to Alarm3. In order for this to
be possible, however, snippets must contain parts of the concept hierarchies. We call
those additional concepts “an enrichment” of the core snippet, and a core snippet with
the enrichment – a rich snippet4.

Fig. 6 shows the extraction of both a core and an enriched snippet. The upper part
shows the design time ontology. Elements of the core snippet of the FireAlarm ser-
vice are marked in black, and those of the enrichment are in bold type. The core snip-
pet extracted from the ontology is shown on lower left, and the rich snippet is shown
on lower right.

The “grounding” information is used to identify a node and link the node with its
snippet. It is introduced with an assertion stating that the node is an instance of a ser-
vice concept in the TBox snippet. The instance id might be chosen by the node manu-
facturer, or it might be generated at runtime (as long as it is unique within the node’s
network5). A description created from the core snippet is called the core description; a
description created from a rich snippet is called a rich description. Fig. 7 shows two
examples of service descriptions. The Alarm service shown in Fig. 7a) has only one
input (Alert). It does not contain any concept not representing its parameters, and
thus it is a core description. The FireDetector shown in Fig. 7b) takes Tempera-
ture and SmokeAlert as the inputs and FireAlert as the output. The Alert
concept is not a parameter of FireAlert, and so the snippet is a rich one. Notice that
the descriptions “overlap” – the Alert concept is present in both of them.

5 Runtime

At runtime, the system consists of a number of nodes, each node having its own ser-
vice description. In order for the system to answer queries regarding available ser-
vices, an ontology composer is elected. The ontology composer is a device that is
most appropriate for processing the descriptions, either because of its computing
power, available bandwidth, or location. The composer gathers all the descriptions
and constructs a runtime ontology. All queries about available services are then for-
warded to the ontology composer, which resolves them and sends the results back to
the original query issuer. The latter contacts the desired service(s) directly.

5.1 The Runtime Ontology

The runtime ontology is created by merging the descriptions of services. Since the
descriptions were parts of the design time ontology, the runtime ontology becomes a

3 In section 5.2. we present the rules, according to which such inferences are performed.
4 Note that the level of “richness” depends on the number of additional concepts.
5 This might be achieved e.g. by using UUID number generator.

 Sensor-Actuator Networks with TBox Snippets 325

Fig. 8. Runtime ontology

subset of the design time ontology, extended with ABox assertions. The absence of
concepts representing services that are not present in the environment makes the
knowledge base lightweight and thus easier to be processed on resource-constrained
nodes.

An example of a runtime ontology is presented in Fig. 8. It consists of descriptions
of SmokeSensor, Alarm, FireDetector, BodyThermometer, and Ther-

mometer services. Fig. 8a) shows the service type hierarchy, along with instances of
service concepts. The instance identifiers represent the nodes the services run on. Fig.
8b) contains the hierarchy of service parameter types. Fig. 8c) depicts the relations
that link services with their parameters. Notice that a rich snippet, when merged with
a core snippet, may hide the lack of additional concepts in the latter one. For example,
if the relation between HumanTemperature and Temperature is present in a rich
Thermometer description, then merging with the core BodyThermometer descrip-
tion yields the same result as merging with a rich BodyThermometer description
containing the above relation.

5.2 Service Query Resolution

There are two kinds of service queries: parameter-based queries and service-based
queries. The former asks for a service that has specific (or matching) parameters, and
the latter asks for a specific (or matching) service type. Both types of queries consist
of concepts from the design time ontology, belonging either to the service type or
service parameter type hierarchy.

The parameter-based query contains a list of parameter types that the requested
service should take and return. A service matching the query must provide all of the
desired outputs and must not require any other inputs6. Also, its parameters must be
ontologically related to the parameters in the request. Specifically, we say that a ser-
vice S matches a query R whenever:

6 Notice that while a service that offers more outputs than specified in the query matches the

request, a service that requires more inputs than specified in the query does not.

326 T. Rybicki and J. Domaszewicz

• Each output outR of R is a super-class of some output outS of S, i.e., for each i
there exists j such that subclassOf(outSj,outRi) holds, where subclas-
sOf(A,B) is true when A is a subclass of B (note that subclass(A,A) is also
true). This means that the outputs of S must be less general (according to the
service parameter type hierarchy) than those of R.

• Each input inS of S is a super-class of some input inR of R, i.e., for each i there
exists j such that subclassOf(inRj,inSi) holds. This means that the inputs of S
must be more general than those of R.

Consider a query that consists of a single output only: the Alert parameter type (see
Fig. 8). There is no direct match; although there is a service that takes it as an input,
no service returns an Alert. However, applying the aforementioned rules reveals two
services that match the query by outputting Alert’s subclasses (FireAlert and
SmokeAlert). Those are SmokeSensor and FireDetector.

In some situations no atomic service matches the query. Consider a query for a
service that outputs FireAlert and takes Temperature as input. Only one service
outputs FireAlert (namely FireDetector), but it requires additional input,
SmokeAlert. This is where the service composition comes into picture. A service
that outputs SmokeAlert is found (SmokeSensor), and the two atomic services are
composed into a complex one. The complex service that consists of FireDetector
and SmokeSensor and that outputs FireAlert is returned as the result.

Another scenario of service composition is the case where no single service is able
to deliver requested outputs. Consider the query consisting of SmokeAlert and Tem-
perature as outputs. The only matching service is the complex one, consisting of
SmokeSensor and Thermometer.

The other kind of a query is the service-based one. It contains the ontological con-
cept denoting the type of service the requestor is looking for. Again, the ontology
composer resolves it using the subsumption relationship. We say that a service S
matches the query R whenever:

• The type of service S, srvS, is a subclass of the type of service R, srvR, i.e.,
subclassOf(srvS, srvR) holds. For example, a query with the Thermometer
service type has two results: Thermometer and BodyThermometer (since the
latter is a subclass of the query service type).

6 Summary and Future Work

This paper presents a novel approach to providing semantic services in resource-
constrained environments. We use ontology decomposition and optimization tech-
niques to create a lightweight, runtime-processable version of the domain ontology.
The ontology is then used on resource-constrained nodes in service discovery and
composition.

Currently, we are implementing a prototype running on handheld devices. Our tar-
get, however, are MicaZ-class WSAN networks. The preliminary results of our re-
search indicate that achieving this target is possible.

 Sensor-Actuator Networks with TBox Snippets 327

References

1. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: research challenges.
Ad Hoc Networks Journal 2(4), 351–367 (2004)

2. Chinnici, R., et al.: Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language (2004)

3. Miller, J., et al.: WSDL-S: Adding Semantics to WSDL-White Paper, Technical report,
Large Scale Distributed Information Systems (2004)

4. Jammes, F., Mensch, A., Smit, H.: Service-oriented device communications using the de-
vices profile for web services. In: 3rd International Workshop on Middleware for Perva-
sive and Ad-Hoc Computing (MPAC 2005) at the 6th International Middleware Confer-
ence (2005)

5. Jammes, F., Smit, H.: Service-oriented architectures for devices-the SIRENA view. In: 3rd
IEEE International Conference on Industrial Informatics (2005)

6. Leguay, J., et al.: An efficient service oriented architecture for heterogeneous and dynamic
wireless sensor networks. In: 33rd IEEE Conference on Local Computer Networks (2008)

7. Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems. In: 2nd
International Conference on Broadband Networks (2005)

8. Heine, F., Hovestadt, M., Kao, O.: Towards ontology-driven P2P grid resource discovery.
In: 5th IEEE/ACM International Workshop on Grid Computing (2004)

9. Rezgui, A., Eltoweissy, M.: Service-oriented sensor-actuator networks: Promises, chal-
lenges, and the road ahead. In: Computer Communications, pp. 2627–2648. Elsevier, Am-
sterdam (2007)

10. McMullen, D.F., Devadithya, T., Chiu, K.: Integrating Instruments and Sensors into the
Grid with CIMA Web Services. In: 3rd APAC Conference and Exhibition Advanced
Computing, Grid Computing, Grid Applications and e-Research (2005)

11. Ruta, M., Di Noia, T., Di Sciascio, E., Piscitelli, G.: Ontology Driven Resource Discovery
in Bluetooth Based M-Marketplace. In: 8th IEEE International Conference on E-
Commerce Technology and The 3rd IEEE International onference on Enterprise Comput-
ing, E-Commerce and E-Services (2006)

Prediction Based Mobile Data Aggregation in
Wireless Sensor Network

Sangbin Lee, Songmin Kim, Doohyun Ko, Sungjun Kim, and Sunshin An

Department of Electronics and Computer Engineering,
Korea University, Seoul, Korea

{kulsbin,minkim,dhko,sjunii,sunshin}@dsys.korea.ac.kr

Abstract. A wireless sensor network consists of many energy-
autonomous micro-sensors distributed throughout an area of interest.
Each node has a limited energy supply and generates information
that needs to be communicated to a sink node. To reduce costs, the
data sent via intermediate sensors to a sink, are often aggregated. The
existing energy-efficient approaches to in-network aggregation in sensor
networks can be classified into two categories, the centralized and dis-
tributed approaches, each having its unique strengths and weaknesses.
In this paper, we introduce PMDA (Prediction based Mobile Data
Aggregation) scheme which uses a novel data aggregation scheme to
utilize the knowledge of the mobile node and the infrastructure (static
node tree) in gathering the data from the mobile node. This knowledge
(geo-location and transmission range of the mobile node) is useful for
gathering the data of the mobile node. Hence, the sensor nodes can
construct a near-optimal aggregation tree by itself, using the knowledge
of the mobile node, which is a similar process to forming the centralized
aggregation tree. We show that the PMDA is a near-optimal data
aggregation scheme with mobility support, achieving energy and delay
efficiency. This data aggregation scheme is proven to outperform the
other general data aggregation schemes by our experimental results.

Keywords: Data Aggregation, Mobility, Prediction, Wireless Sensor
Networks.

1 Introduction

In sensor networks, the communication cost is often several orders of magnitude
higher than the computation cost. In order to optimize the communication cost,
in-network data aggregation is considered an effective technique. The inherent
redundancy in the raw data collected from the sensors can often be eliminated
by in-network data aggregation. In addition, such operations are also useful for
extracting application specific information from the raw data. To conserve en-
ergy for a longer network lifetime, it is critical for the network to support a high
incidence of in-network data aggregation. Optimal aggregation can be defined in
terms of the total energy consumption for transporting the collected information

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 328–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Prediction Based Mobile Data Aggregation in Wireless Sensor Network 329

from the sensor nodes to the sink. Based on the topology of the network, the
location of sources, and the aggregation function, an optimal aggregation tree
can be constructed. Existing energy-efficient approaches to in-network aggre-
gation in sensor networks can be classified into two categories, the centralized
and distributed approaches, with each having its unique strengths and weak-
nesses. Various centralized approaches [2,9,11] have been proposed for aggrega-
tion in data gathering applications, where all nodes periodically report to the
sink. Due to their unchanging traffic pattern, centralized approaches incur low
maintenance overhead and are therefore suited for such applications. Various dis-
tributed approaches have been proposed for event-based applications [4,5,6,12].
However previous aggregation techniques for event based applications have sev-
eral limitations. First, for dynamic scenarios, the overhead associated with the
construction and maintenance of the structure may outweigh the benefits of
data aggregation. Second, some distributed approaches such as [12] assume that
there is a well defined center of the event and that the measured strength of the
sensed signal is an indicator of the distance to the center of the event. For appli-
cations with amorphous events, such as biological hazards, chemical hazards, or
fire detection, the absence of an explicit center or any evident point for optimal
aggregation makes such approaches inapplicable. Third, centralized approaches
that centrally compute the aggregation tree [11] are not practical for dynamic
scenarios due to excessive communication overhead for centralized computation.
The goal of our work is to design techniques and protocols that lead to efficient
data aggregation. Combining a partially centralized approach with a distributed
approach to further improve the performance is the goal of this paper. In this pa-
per, we consider a wireless sensor network consisting of Mobile Nodes and Static
Nodes. Moreover we propose a prediction based mobile data aggregation scheme
to use the knowledge of the mobile node and the infrastructure (static node tree)
in gathering data of the mobile node. This knowledge (geo-location, transmission
range of the mobile node) is useful for gathering the data of the mobile node.
The data of the mobile node has the properties similar to those of event-based
applications (i.e. receiving the data from the mobile node ≈ sensing the event).
However, the mobile node can inform static nodes of their transmission range
and the present location whereas static nodes cannot know the region in which
an event takes place in other event-based applications. A static node receiving
data from a mobile node can predict which other static nodes may receive data
from this mobile node by making use of these properties. Therefore, the sensor
nodes construct the aggregation tree by itself and schedule the transmission in
such a way as to minimize the energy consumption and gathering delay, which
is a similar process to forming the centralized aggregation tree. The remainder
of this paper is organized as follows: In Section 2, we summarize related work.
Section 3 describes the system model (network, energy, data aggregation model).
Section 4 presents the PMDA scheme. Section 5 provides a performance compar-
ison between PMDA and other algorithms through simulations. Finally, Section
6 concludes this paper.

330 S. Lee et al.

2 Related Works

Data aggregation has been an active research area in sensor networks because of
its ability to reduce the energy consumption. Some works focus on how to aggre-
gate data from different nodes [1], some focus on how to construct and maintain
a structure to facilitate data aggregation [2,3,4]. In [2], the authors propose the
LEACH protocol to cluster sensor nodes and let the cluster-heads aggregate data.
The cluster-heads then communicate directly with the base station. PEGASIS [10]
extends LEACH by organizing all nodes in a chain and letting nodes be the cluster-
head in turn. [3] extends PEGASIS by allowing simultaneous transmission so as to
balances the energyand delay cost for data gathering.Both LEACH and PEGASIS
assume that any node in the network can reach the base-station directly in one-hop,
which limits the size of the network for which they are applicable. GIT [13] uses a
different approach as compared to LEACH. GIT is built on top of a routing pro-
tocol, Directed Diffusion [1], which is one of the earliest proposed attribute-based
routing protocols. In Directed Diffusion, data can be aggregated opportunistically
when they meet at any intermediatenode. Based on Directed Diffusion, the Greedy
Incremental Tree establishes an energy-efficient tree by attaching all sources greed-
ily onto an established energy-efficient path and pruning less energy efficient paths.
However due to the overhead of pruning branches, GIT might lead to high cost in
moving event scenarios. In [12], the authors proposeDCTC,DynamicConvoyTree-
Based Collaboration, to reduce the overhead of tree migration in mobile event sce-
narios. DCTC assumes that the distance to the event is known to each sensor and
uses the node near the center of the event as the root to construct and maintain the
aggregation tree dynamically. However, it involves heavy message exchange which
might offset the benefit of aggregation in large-scalenetworks. From the simulation
results in [12], the energy consumption of tree expansion, pruning and reconfigura-
tion is about 33% of the data collection. In [14], the authors propose an aggregation
tree construction algorithm to simultaneously approximate the optimum trees for
all non-decreasing and concave aggregation functions. The algorithm uses a simple
min-cost perfectmatching to construct the tree.Otherworks, such asSMT(Steiner
Minimum Tree) and MST (Multiple Shared Tree) for multicast algorithms which
can be used in data aggregation [15] build a structure in advance for data aggre-
gation. In addition to their complexity and overhead, they are only suitable for
networks where the sources are known in advance. Therefore, they are not suitable
for networks with mobile events.

3 System Model

In this section, we present the preliminary system model for the design of our
scheme. We state our assumptions and model and introduce some notations to
be used. A summary list of the notation used in this paper is given in Table 1.

3.1 Network Model

We consider a multi-hop wireless network with n nodes. The nodes communi-
cate with each other via wireless links. A node can either send or receive data

Prediction Based Mobile Data Aggregation in Wireless Sensor Network 331

Table 1. List of Notation

Notation Description
α Path loss (2 ≤ α ≤ 5)
β Constant [Joule/(bits · mα)]
Lp length of packets [bits]
vi i-th static node
ri Transmission range of vi

le Longest Edge in sensor network
pi(vi) The number of pi-nodes of node vi when its range is ri

M(rm) Region in rm from Mobile node
V (rm) The set of the nodes in M(rm)

τ The number of V (rm)
N(ri) The number of neighbors of node vi when its range is ri

tdc Delay constraint [sec]
pi-node Node near the sink than vi

at one time, and it can receive data correctly only if exactly one of its neigh-
bors is transmitting at that moment. The main task of the sensor nodes is to
collect data and transmit them back to the sink, and the data can be aggre-
gated all the way to the sink. In other words, if a node receives one packet
from its neighbor before its scheduled transmission time, then it can merge this
packet with its own data packet and simply sends this merged packet later.
Aggregation at an internal node is performed only after all input information
is available at the node - either received from its children, or generated by re-
ceiving packet from the mobile node. The aggregated data is then transmitted
to the parent node. Let Tm = (V (rm), E(rm)) denote the data gathering tree
in the specific area M(rm), where V (rm) denotes the set of τ static nodes in
M(rm), V (rm) = {v1, v2, . . . , vτ}, and E(rm) denotes the set of directed com-
munication links between the members of V (rm). where M(rm) is the area in
which the static nodes receive the packets from the mobile node. Every link in
E(rm) is represented as a a pair (i, j), implying that vj is the parent of vi. Raw
data is generated by V (rm). Data aggregation is performed by all non-sink and
non-leaf nodes (referred to as internal nodes). Aggregation at an internal node
is performed only after all input information is available at the node - either
received from its children, or generated by receiving packet from the mobile
node. The aggregated data is then transmitted to the parent node. As in a pre-
vious work [6], we make the simplistic assumption that an intermediate node
can aggregate multiple incoming packets into a single outgoing packet. A data
aggregation schedule can be thought of as a sequence of senders {S1, S2, ...} (in
which Si ⊂ V, ∀i) satisfying the data aggregation property. This sequence repre-
sents the situation where all nodes in S1 transmit in the first time slot, followed
by all nodes in S2 transmitting in the second time slot and so on and so forth.
The data aggregation property simply means that after S1 transmits its data,
this data will be aggregated from V to V − S1 and after S2 transmits its data,

332 S. Lee et al.

this data will be further aggregated from V − S1 to V − S1 ∪ S2. If we continue
this process, finally all of the data will be aggregated to one single node, which
is the sink. The property of single transmission is essentially equivalent to all
Si’s being disjoint. Now, the minimum data aggregation time problem can be
formulated as follows. Given a graph Tm= (V (rm), E(rm)) and a sink ∈ V , find
a data aggregation schedule with minimum delay. This problem is proven to be
NP-hard even for unit disk graphs [8].

3.2 Energy Model

We assume that each node has a battery with a finite, non-replaceable energy.
Whenever a node transmits or receives a data packet, it consumes some energy
from its battery. However, the sink has an unlimited amount of energy available
to it. The model for the energy consumption per bit at the physical layer is (As
in [2]),

E = Ectrans + Ecrec + Eaggre + βdα
ij (1)

where Ectrans is the energy utilized by the transmitter circuits (PLLs, bias cur-
rents, etc.) and digital processing. This energy is independent of distance; Ecrec

is the energy consumed by the receiver circuits, Ecaggre is the energy consumed
by data aggregation, and βdα

ij accounts for the radiated power necessary to
transmit over a distance dij between node vi and node vj . We assume that
Ectrans = Ecrec = Ecircuit. According to this link metric, the aggregation cost
for node vi is expressed as

CAggre
i (ri) = Lp

[
(Ecircuit + Ecaggre)pi(vi) + Ecircuit + βrα

i

]
(2)

The expression βrα
i represents the energy needed to transmit one bit over a

distance ri ; thus Lp(Ecircuit +βrα
i) is the energy needed for node vi to transmit

the packet in its range, whereas the pi-nodes in range of vi expends only Lp ·
(Ecircuit +Ecaggre) ·pi(vi) to receive and aggregate the packets. By adding these
two components, we obtain the Eq.2.

4 Proposed Scheme

4.1 Transmission Range of Mobile Node

If R is a unit square and n static nodes are distributed uniformly at random in R,
the Eq.3, which refers to [7], denotes the transmission radius for k-connectivity,
rn(k),

rn(k) =

√
log n + (2k − 1) log log n + ξ

πn
≤ max r, (3)

where

ξ =

{
−2 log

(√
e−c + π

4 −
√

π
2

)
if k = 1

2 log
√

π
2(k−1)k! + 2c if k > 1

Prediction Based Mobile Data Aggregation in Wireless Sensor Network 333

Longest
Edge MN

SN

rm

d1

d2

r(n)

Fig. 1. Deciding the transmission range of mobile node from longest edge in wireless
sensor network

As shown in Fig.1, if d1+d2 ≥ longest edge , the mobile node can be connected
to the static nodes larger than one static node. Since d1 ≤ rm and d2 ≤ rm,

longest edge(le) ≤ d1 + d2 ≤ 2ṙm (4)

Therefore,

rm ≥ le
2

(5)

Moreover, the longest edge is related to rn(k) [7,9]. By Eq.5 and relation between
rn(k) and le , when rm is larger than rn(k)

2 , the mobile node may be connected
to the static nodes with high probability. If the range of the mobile node is
rm, the longest distance among V (rm) must be shorter than 2rm. Therefore,
when rm ≤ max ri

2 , the members of V (rm) can know the information of all other
members. In this case, the members of V (rm) can construct an aggregation tree
distributedly and at the same time schedule their transmission time heuristically
by using the table of their one hop neighbors because each member of V (rm)
can predict the rest members and τ . rm is decided according to application
properties, as in Eq. 6.

rn(k)
2

< rm ≤ max ri

2
(6)

After rm is determined, the mobile node transmits the data including its loca-
tion and the value of rm. The whole process described throughout this section
eventually leads τ to be limn→∞ P (τ ≥ 1) = 1. In other words, probability of
connectivity converges to one as n → ∞. The delay is directly proportional to
τ , because the interference among the members of V (rm) prevents them from

334 S. Lee et al.

transmitting their packets simultaneously. Therefore, τ equals the number of
TDMA slots in M(rm). When an application requires a specific delay constraint
(tdc), the mobile node determines the value of rm for the given delay constraint
(tdc = τ ≈ k) by applying Eq.6.

4.2 Construction Aggregation Tree

We assign the numbers to each member of V (rm) for the purpose of schedul-
ing and constructing the aggregation tree. If the static nodes maintain a table
with information about their neighbors (node id, location, etc.), each member of
V (rm) can predict the other members of V (rm) from the mobile node’s location
and transmission range (rm). In other words, if dmj ≤ rm, vi knows that vj is
a member of V (rm), where dmj is the distance between the mobile node and its
neighbor vj .

Since each member of V (rm) is aware of all other members, they can assign
their own number as follows. As it gets farther from sink, it is assigned with
a smaller number. (i.e. v1 is the farthest node from the sink whereas vτ is the
closest). It is done so, since the distance of the nodes from the sink is the most
important factor for deciding the hierarchical level. Sub-aggregation Tree rooted
at vτ in M(rm) is constructed considering the energy consumption and delay.
Each member of V (rm) sets its range of transmission based on the following LP
(Linear Programming) problem.

Objective :
min Esub =

∑
i:vi

CAggre
i (ri), pi(ri) > 0 (7)

Clearly, pi(ri) is reduced as ri is reduced. Therefore when pi(ri) = 1, Esub is
minimized, meaning that each node decides the its range so that pi(ri) = 1
Hence, the Aggregation Tree is constructed as shown in Fig.2.

4.3 TDMA Scheduling

TDMA(Time Division Multiple Access) schemes have been proposed wherein
the slot is optimally assigned according to the routing requirements, while min-
imizing the total energy consumption across the network. In particular, during
the time slot assigned by the TDMA scheme, the corresponding node works in
active mode. After finishing its data transmission, it turns off all of its circuits
and enters sleep mode. In this way, the energy consumption can be minimized. A
data aggregation schedule specifies how the data packets from all of the members
of V (rm) are collected and transmitted to the sink. Deterministically assigning
the TDMA slot to the nodes such that those closer to the sink wait longer can
schedule the tree efficiently. The members of V (rm) receive the knowledge of
the location and transmission range of mobile node (i.e. they can compute the
area in which nodes are triggered by the mobile node), and know their location
and their relative position compared to the other members of V (rm), and their
distance to the sink. Therefore it can set the slot order inversely proportional to

Prediction Based Mobile Data Aggregation in Wireless Sensor Network 335

Sink
MN

SN

rm

ri

1
2

3

4

5
6

7

8

9

10

11

12

Fig. 2. Deciding the transmission range → Constructing the Aggregation Tree →
TDMA slot allocation

its distance to the sink (In figure 1, v1 transmits the packet in the first slot, while
v12 transmits in the 12-th slot). The latency will be proportional to the range
of the mobile node. Therefore, each member of V (rm) delays its transmission
according to the slot that it should select, from 0 to τ , where τ is the maximum
delay. In figure 2, if v10 chooses a higher delay than v1 and v4, v1 and v4’s pack-
ets may be aggregated at v10. Therefore, the slot length must longer than the
aggregation time (transmission time + sampling time). The optimum value of
the slot length depends on τ and the time required to transmit a packet. If the
application is not delay tolerant, a low value of τ is required which can not reap
the benefits of this approach. Since the nodes are able to know the size of the
event (rm), they can know the optimal value of the delay and aggregation tree.

5 Simulation

In this section we evaluate and compare the performance of PMDA with that
of other protocols (Randomized Waiting aggregation (RW) [5], and Optimal
Aggregation Tree (OAT) [6]). We use the ns-2 network simulator to evaluate the
protocols in a 200m x 200m network with uniformly random node separation. We
assume that the data rate of the radio is 38.4Kbps, the maximum transmission
range of the nodes is 40m and the sink is located at (0,0). In our simulation,
we set α = 2, β = 100pJ/bit/mα, Ecircuit = 50pJ/bit and Ecaggre = 100pJ/bit

336 S. Lee et al.

for the power consumption model. We set the data packet size, LP = 1000bits.
We are particularly interested in the typical scenarios encountered in sensor
networks applications. The model depends on several input parameters and on
the appropriate choice of these parameters which are highly dependent on the
technology and on the target application. We vary these parameters in order to
study their relevant effects on the network performance. Moreover, we believe
that the realistic tuning of these parameters must be aided by the real hardware
implementation of the considered protocols. A mobile node moves in the network
using the random way-point mobility model at a speed of 10m/s for 400 seconds.
The nodes triggered by the mobile node will send packets every five seconds
to the sink located at (0,0). The aggregation function evaluated here is perfect
aggregation (i.e. all packets can be aggregated into one packet without increasing
the packet size).

5.1 Impact of Nodes

We evaluate the total energy consumption and gathering delay for these pro-
tocols for different numbers of nodes. Fig.3 shows a comparison of the energy
consumption of the different protocols. RW show the worst energy performance
when the number of nodes is small since its aggregation is opportunistic. PMDA
has the best performance amongst the various protocols because of its ability to
perfectly aggregate packets at nodes closer to the source and, thus, it reduces the
cost of forwarding packets from the sources to the sink and the interference of
the nodes. The energy consumption of PMDA is shown to be sharply lower than
that of the other protocols when the number of nodes increases. Thus, as the
number of nodes increases, PMDA has higher performance than the other pro-
tocols. Fig.4 shows the total data gathering delay as a function of the number of
nodes. RW show the worst delay performance since its wating time is randomly
selected. The gathering delay of PMDA is lower than that of the other protocols,

The number of nodes

100 120 140 160 180 200 220 240 260 280 300

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

0.00

0.05

0.10

0.15

0.20

PMDA
AT
RW

Fig. 3. Energy consumption according
to the number of nodes

The number of nodes

100 120 140 160 180 200 220 240 260 280 300

T
o

ta
l
D

e
la

y
(m

s
)

5

10

15

20

25

30

35

PMDA
AT
RW

Fig. 4. Total gathering delay according
to the number of nodes

Prediction Based Mobile Data Aggregation in Wireless Sensor Network 337

due to its ability to aggregate packets early and scatter them away from each
other to reduce contention. Also, the data gathering delay of PMDA is shown
to be slightly higher than that of the other protocols when the number of nodes
increases. Thus, as the number of nodes increases, PMDA exhibits higher data
gathering delay performance than the other protocols.

5.2 Impact of rm

We evaluate the total energy consumption and gathering delay for these protocols
for different transmission ranges of the mobile nodes (rm). We calculate the
range of rm from Eq. 6. If we assume that the number of nodes is 200 and
k = 1, than r200(1) is 0.149. Since the simulation area is 200 x 200, 14.9 <
rm ≤ 20. Therefore, we evaluate the total energy consumption and gathering
delay on 14 < rm ≤ 20. Fig.5 shows a comparison of the energy consumption of
different protocols. RW shows the worst energy performance since its aggregation
is opportunistic. PMDA has the best performance amongst the protocols because
of its ability to perfectly aggregate the packets at nodes closer to the source and,
thus, it reduces the cost of forwarding packets from the sources to the sink and
the interference of the nodes. The energy consumption of PMDA is shown to
be mostly uniform when the range of the mobile nodes increases. However, the
energy consumption of the other protocols is sharply increases when the range
of the mobile nodes increases. Thus, as the range of the mobile nodes increase,
PMDA has higher performance than the other protocols. Fig.6 shows the total
data gathering delay as a function of the range of the mobile nodes. RW also
shows the worst delay performance since its wating time is randomly selected.
The gathering delay of PMDA is lower than that of other protocols, due to
its ability to aggregate packets early and scatter them away from each other
to reduce contention. Also, the data gathering delay of PMDA is shown to be
slightly higher than that of the other protocols (RW, OAT) when the number of

rm

10 11 12 13 14 15 16 17 18 19 20

E
n

e
rg

y
 C

o
n

s
u

m
p

tio
n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

PMDA
OAT
RW

Fig. 5. Energy consumption according
to rm

rm

10 11 12 13 14 15 16 17 18 19 20

T
o

ta
l D

e
la

y

6

9

12

15

18

21

24

27

PMDA
OAT
RW

Fig. 6. Total gathering delay according
to rm

338 S. Lee et al.

nodes increases. Thus, as the number of nodes increases, PMDA exhibits higher
data gathering delay performance than the other protocols (RW, OAT).

6 Conclusion

In this paper, we propose a data aggregation protocol which supports the mo-
bility of sensor nodes, schedules their transmission times and constructs the
optimal aggregation tree. Furthermore, we showed that this protocol outper-
forms the other data aggregation protocols according to our simulation results.
In the future, we will consider the transmissions of multiple mobile nodes.

References

1. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
Diffusion for Wireless Sensor Networking. IEEE/ACM Transactions on Network-
ing 11 (2003)

2. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An Application-Specific
Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on
Wireless Communications 1(4) (2002)

3. Lindsey, S., Raghavendra, C., Sivalingam, K.M.: Data Gathering Algorithms in
Sensor Networks Using Energy Metrics. IEEE Transactions on Parallel and Dis-
tributed Systems 13 (2002)

4. Zhang, W., Cao, G.: Optimizing Tree Reconfiguration for Mobile Target Tracking
in Sensor Networks. In: Proceedings of INFOCOM 2004, vol. 4 (2004)

5. Fan, K.W., Liu, S., Sinha, P.: Structure-free Data Aggregation in Sensor Networks.
IEEE Transactions on Mobile Computing 6 (2007)

6. Fan, K.W., Liu, S., Sinha, P.: Scalable Data Aggregation for Dynamic Events in
Sensor Networks. In: Proceedings of ACM SenSys. 2006, Boulder, Colorado, USA
(2006)

7. Wan, J., Yi, C.W.: Asymptotic Critical Transmission Radius and Critical Neighbor
Number for k-Connectivity in Wireless Ad Hoc Networks. In: Proceedings of ACM
MobiHoc 2004, Roppongi, Japan (2004)

8. Chen, X., Hu, X., Zhu, J.: Minimum data aggregation time problem in wireless
sensor networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp.
133–142. Springer, Heidelberg (2005)

9. Santi, P.: The Critical Transmitting Range for Connectivity in Mobile Ad Hoc
Networks. IEEE Transaction on Mobile Computing 4(3) (2005)

10. Lindsey, S., Raghavendra, C.: PEGASIS: Power-efficient gathering in sensor infor-
mation systems. In: Proceedings of IEEE Aerospace Conference, vol. 3 (2002)

11. Wong, J., Jafari, R., Potkonjak, M.: Gateway placement for latency and energy
efficient data aggregation. In: 29th Annual IEEE International Conference on Local
Computer Networks (2004)

12. Zhang, W., Cao, G.: DCTC: Dynamic Convoy Tree-based Collaboration for Target
Tracking in Sensor Networks. IEEE Transactions on Wireless Communications 3
(2004)

13. Intanagonwiwat, C., Estrin, D., Goviindan, R.: Impact of Network Density on Data
Aggregation in Wireless Sensor Networks. Technical Report 01-750, University of
Southern California (2001)

Prediction Based Mobile Data Aggregation in Wireless Sensor Network 339

14. Goel, A., Estrin, D.: Simultaneous Optimization for Concave Costs: Single Sink
Aggregation or Single Source Buy-at-Bulk. In: Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (2003)

15. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of Multicast Routing Algo-
rithms for Real-time Communication on High-speed Networks. IEEE Journal on
Selected Area in Communications 15 (1997)

A Distributed Architecture of Sensing Web for
Sharing Open Sensor Nodes

Ryo Kanbayashi and Mitsuhisa Sato

Graduate School of Science and Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
{kanbayashi,msato}@hpcs.cs.tsukuba.ac.jp

Abstract. Today, sensor devices such as video cameras are being in-
stalled at several places. It is a promising technology to make use of
these sensors connected with the network. Sensing Web is a conceptual
framework to shares sensors open in wide-area network with keeping pri-
vacy. While previous sensor grids target small and simple data such as
the temperature and humidity data, Sensing Web targets relatively large
data such as image data or voice data, which may include privacy infor-
mation. In this paper, we propose a architecture named SW-agent to
realize the idea of Sensing Web SW-agent protects privacy information
with elimination of privacy information and appropriate access control.
The elimination of privacy is done with data processing by remote exe-
cution program shipped to a node near a sensor. SW-agent reduces the
amount of communication with elimination of useless data in a similar
way. We examined the basic performance of remote execution program.
We found that SW-agent can execute remote execution program with up
to 7% overhead in performance comparing its direct execution.

1 Introduction

Today, the need for real-world information is increasing rapidly. For example,
services such as Google Street View [1] enable people to see selected street views
on a web map without physically going to that street.

At the same time sensor devices such as video cameras, infrared sensors and
microphones are being installed in buildings on roads and in station yards. There-
fore, Ubiquitous Sensor Networks(USNs) are a promising technology for making
use of these sensors. So far, however, only the owners of USN’s have implemented
major applications, and these closed networks are generally available only to the
owners. For example, these are applications such as surveillance cameras in stores
or cameras showing traffic flow with fixed point cameras, but the sensor data is
available only to the respective owners and selected employees.

A concept called Sensing Web[2] is to enable people to share sensors openly
in a wide-area network. The goal of the Sensing Web is to allow people to access
actual sensor data in the same way they access the World Wide Web (WWW).
In the Sensing Web, new applications or services using sensors can be created
for implementation on both open and closed systems. Consider that you loses an

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 340–352, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes 341

object, a lost property finder service accessible with the Web browser through
the Sensing Web might be used to find the missing object.

Different from existing sensor grids[3], Sensing Web is a open system. In ad-
dition, target data and target application are different. Most important require-
ment of Sensing Web is privacy protection[4]. Previous sensor grids target simple
data such as the temperature and humidity data, which don’t include privacy.
In contrast, Sensing Web targets data such as image data or voice data, which
includes many privacy information. Transmission of data including privacy in-
formation puts the information in danger. Therefore, an appropriate privacy
protection method is needed. Handling data in network for acquisition of sen-
sor data is also a important requirement. The data such as image data or voice
data may be large, although the required information in the data may often be
small. Transmission of all sensor data consumes network resources excessively.
A method for acquisition of sensor data which consumes little network resources
is needed. In addition, consideration of problems arise from several privileges of
sensors and machines managing the sensors is needed. Since, unlike sensor grids,
these resources of Sensing Web is offered by general public. Administration poli-
cies of these are also different from sensor grids.

We propose a distributed architecture named SW-agent as a prototype system
of Sensing Web Protection of privacy can be realized with elimination of privacy
information and a access control mechanism. Elimination of privacy is done with
data processing by remote execution program shipped to a node near a sensor.
Reduction of communication traffic can also be done with elimination of useless
data in a similar way.

Contribution of our research is following: First of all, we reveal issues of design
for sharing sensor data on open systems, which will emerge in the future. We have
designed and implemented a system called SW-agent. We developa a prototype
of SW-agent and report its basic performance.

Remainder of the paper describes SW-agent and is organized as follows.
Section 2 presents an overview of the Sensing WebSection 3 presents the design
of SW-agent, which is composed of program shipping facility, privacy protection
model, and authorization for access control. Section 4 presents prototyping of
SW-agent. Section 5 describes an overview of related work. Our conclusions and
future work are discussed in Section 7.

2 Sensing Web Project

The Sensing Web Project[2] is a three-year project launched in the fall of 2007.
Goal of the project is to develop information technologies necessary for sharing
the data of USNs spreading across society openly like current WWW.

However, natures of information handled on the WWW and the Sensing Web
differ. On the WWW, privacy information can be removed or otherwise protected
because most of the information is entered by humans. In contrast, it can not be
removed because the information is actual sensor data automatically collected
by sensors. Existing sensor usage, including sensor grids, need not to consider

342 R. Kanbayashi and M. Sato

privacy protection because these are closed system. However, privacy protection
should be considered on Sensing Web because it is open system. Focusing on
handling of privacy information is a notable characteristic of Sensing Web.

Realization of following elemental technologies is important on the Sensing
Web.

– Sharing Sensor Data through Service/Request Matching: The information
user requested is offered by matching the request and sensor data.

– Privacy Information Management in Sensor Data Acquisition: data. When
sensor data is acquired, it is handled in symbolized form including no privacy
information, which protects privacy information from leaking the informa-
tion to malicious people.

– Information Integration for Presenting the Real World Information: Actual
sensor data acquired from real world is integrated and offered to users as
appropriate applications.

Our research develops a system, which realizes Sensing Web. Especially, solution
to privacy information management in sensor data acquisition is offered.

3 Design of SW-Agent

In this section, we present the design of SW-agent as a distributed architecture
to realize the concept of Sensing Web. SW-agent is composed of two elements:
program shipping facility, privacy protection model.

3.1 Architecture for Sensing Web

Figure 1 shows a typical environment of the Sensing Web, which currently is
composed of closed sensor networks and standalone sensors such as Web cameras.
Because these sensors are managed by several PCs connected to the Internet,
these sensors are accessible through the Internet.

From the design’s point of view, the Sensing Web is characterized by two
property: privacy information and large sensing data. Although several sensor
grids[3] were already proposed, it targets simple data such as the temperature
and humidity data, which don’t include privacy. The Sensing Web targets image
data and human voice data, which may include many privacy information[4].
The size of data acquired by intelligent sensors such as video cameras may be
large and often include many useless information.

To realize the concept of Sensing Web, we propose SW-agents as a distributed
architecture for Sensing Web. The SW-agent is an agent program installed near
to the sensor to execute applications handling the sensor data. The system ad-
ministrator sets up the SW-agent near to the sensor. At a minimum, directory
service providing information about a sensor’s location, user authentication and
user authorization are needed for access to sensors.

The application developer uploads his or hers application handling the sen-
sor data to the SW-agent by Program Shipping Facility. The client application
communicates with its shipped application program to provide a service.

A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes 343

Fig. 1. A typical environment Fig. 2. Program Shipping Facility

The SW-agent provides several methods to protect privacy information by
monitoring the access to the device and the traffic to the client through the
network.

Prior to the use of sensor data, sensor data were typically accumulated in
storage and then accessed in sensor grids. However, as stated above, the required
information in the sensor data is relatively small and confidential in comparison
with the total amount of sensor data. Transmission of whole data consumes
network resources excessively because the amount of whole data, such as images
from video cameras, is large. Furthermore, the people captured in images may
not prefer accumulation of the sensor data out of concern for the leaking of
privacy information. Therefore, the Sensing Web handles requested data only by
data processing near sensors without accumulating and storing data to storages.

3.2 Program Shipping Facility

The Program Shipping Facility allows an application binary program to be de-
ployed near a sensor, shown in Figure 2. We describe the deployment as “program
shipping”. Program shipping has following advantages:

– Flexible data processing: Users can process sensor data flexibly through fa-
miliar program languages. The flexible data processing extract useful infor-
mation out of a large amount of sensor data.

– Utilization of existing code: A program using a sensor can be used with little
change. This advantage is important because most users will have their own
application using a sensor in a diffusion process of the Sensing Web.

– Usability: Users can use languages familiar to them. That is, users do not
need to learn a special language.

A binary program is deployed through a procedure of web services, which make
flexible deployment such as automatic deployment based on the algorithms
possible.

Sensor information from the shipped program can be acquired by two means.
The first is acquisition of data by web services. Users can acquire the data

344 R. Kanbayashi and M. Sato

through pre-defined web service procedures. This technique is useful for acquisi-
tion of small amounts of data, such as the coordinate data from the lost property
finder service. A flexible and user-customizable data access interface can be re-
alized because an arbitrary procedure can be defined by web services. Flexible
data access interface bridges the gap between sensor data and request of user,
which was mentioned in section 2. In addition, the use of a web service enhances
the compatibility of the Sensing Web with the World Wide Web. In addition, use
of web service enhance compatibility of Sensing Web between Web. The second
way is to use stream communication. If the size of processed data is large or
data transfer is performed continuously, stream communication should be used
because the overhead of remote procedure calls becomes a problem.

The SW-agent also performs sandboxing for the shipping program. Although
shipping is performed by authorized users only, the machines managing the sen-
sors used by the shipping program need ready protection from possible malicious
users. Otherwise, the sensors and machines for shipping are not protected by the
owner. Therefore, sandboxing is important for the Sensing Web.

SW-agent also provides virtual devices abstracting the sensor devices. Conse-
quently, users can acquire sensor data with a unified procedure using a virtual
device without concern for the differences between environments.

3.3 Privacy Protection Model

The SW-agent protects privacy by running the remote execution program near
sensors. Users can access all sensor data by deployment of a program near sen-
sors, but users also are obligated to eliminate privacy information before sending
data to a client through a network. The elimination is achieved through symbol-
ization of sensor data. For example, we show protection on an application that
surveys people passing on a road. The protection is achieved by following.

1. Authorization of User: A user who wants to deploy a program must acquire
authorization from an access control service of the SW-agent.

2. Deployment of Program: The user deploys a binary program to a machine
near a sensor, which manages the sensor. Then, the deployed binary program
is started by the executor of SW-agent.

3. Elimination of Privacy Information: The program applies image processing
to the image data acquired from the surveillance camera and outputs the
number of passages per unit time.

4. Access to Privacy Eliminated Data: The user uses the processed information,
which does not include privacy information.

In this application, video data from the surveillance camera may include confi-
dential information, such as images of pedestrians’ faces. However, this informa-
tion is eliminated with symbolization by the shipping program. Therefore, the
proposed model can enable a user to get sensor data while protecting the privacy
of the sensor data.

However, if an inconsiderate user is authorized, data including privacy infor-
mation may be sent to to the general public because the proposed model allows

A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes 345

an authorized user to acquire all sensor data. Therefore, proper authorization is
important in the SW-agent.

3.4 Authorization for Access Control

First of all, it is important who have the authority of access control for pri-
vacy information. Naturally, captured person, who privacy information belongs
to, should be able to authorize. However, authorization by captured people is
difficult, which needs the people to carry a special device, which notice sensor
authorized users, or interaction between the people and sensors. Therefore, in
SW-agent, owners of sensors authorize the accesses instead of captured people.
For the representation, SW-agent targets sensors whose owner can represents
captured people such as cameras on home.

Appropriate authorization model is also needed. Authorization model for
Sensing Web should satisfy followings;

– Performance: Processing costs needed for the model should not be large.
– Management Costs: Management costs for the model should not be high.
– Usability for Users and Owners: Both users and sensor owners should be

able to apply for authorization without encountering problems.
– Transparent Use of Sensors Scattered across Different Organizations: Sensors

used in the Sensing Web are scattered across different organizations. Users
should be able to use these sensors transparently.

In the Sensing Web, sensors are classified into the following two units.

– Sensor Network: Sensors belonging together, which are managed as a sen-
sor network. Typically, the sensors are owned by an organization such as a
research institute or a company.

– Standalone Sensor: A sensor exists singularly. Typically, these sensors are
owned by an individual.

Virtual Organization (VO) [5] is a promising model for the management of re-
sources by grouping the resources needed by users. Grouping sensor networks by
VO enables users to use sensors scattered across different organizations trans-
parently. However, VO can’t be applied to standalone sensors because there is no
administrator for standalone sensors. Each standalone sensor is managed by an
individual not interested in the Sensing Web. Therefore, separate authorization
is needed for each standalone sensor.

Authorization for standalone sensors may lead to much extra work for users.
For example, if a user needs to acquire authorization from each site in order
to run an application, which uses hundreds of sensors, the user has to send e-
mails to hundreds of administrators or access hundreds of web portals to create
an account. Therefore, an authorization model with few or no manual steps is
needed for standalone sensors.

For realization of separate authorizations which need only a few manual steps,
the Policy Based Model and Chain of Trust Model can be used. The Policy Based

346 R. Kanbayashi and M. Sato

Model authorizes users by matching the policies of sensors with the attributes of
users. The authorization is performed without any extra procedures by the user.
However, the expressiveness of the policy is limited by the expressiveness of the
attributes of the users, but a listing of attributes which allow arbitrary policy
decisions is difficult. The Policy Based Model is suitable for authorization which
needs a broad level of permission control, but it is not suitable for a precise level
of control.

The Chain of Trust Model authorizes users by a chain of trusts based on the
following rule: “friends of my friend are trustworthy.” A representative model of
the Chain of Trust is Pretty Good Privacy (PGP) [6], which can authenticate
users by a chain of trusts. For example, a user who has been allowed to access
sensor-A on a building can access sensor-B on the same building. However, the
effectiveness of the Chain of Trust Model depends on the activity level of owners
of the sensor.

The models described above can be used simultaneously in a mutually comple-
mentary manner. In the future, we are planning the simultaneous use of multiple
models based on the needs of the community.

4 Implementation of SW-Agent

We implemented a prototype system of the SW-agent. Primarily, the execution
functionality for program shipping is implemented. Figure 3 shows an overview
of the execution environment.

The prototype is implemented based on BEE[7]. BEE emulates system calls in
different operating systems (OSs) such as Linux and Windows, which enables a
user to run a Linux binary on a different OS. Together, BEE and the mechanism
for deployment of an execution binary enable the operation of program ship-
ping. However, the prototype does not have a deployment mechanism and can
only run on Linux at this time. Using dynamic class loading and the sandboxing

Fig. 3. Overview of executor part of SW-agent

A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes 347

mechanism of Java may be used for realization of remote execution. However,
Java programs consumes more memory, thus limiting the scalability of the Sens-
ing Web, which runs many processes on a machine. In addition, useful native
code libraries such as Open Computer Vision Library (OpenCV) [8] cannot be
used with implementations constructed with Java.

In the following sections, we describe our implementation of the SW-agent in
more detail.

4.1 Sandboxing for Secure Execution

Sandboxing is achieved by hooking system calls using the ptrace system call in
Linux. SW-agent changes the system call handler by ptrace, and forces system
calls to be handled by the modified call handler by modification of the stack data.
The modified handler determine whether each call is permitted with predefined
policies. If a call is permitted, the handler calls the original system call using
passed arguments. Otherwise, the handler blocks the request and returns a error
code. Currently, SW-agent supports open system call.

4.2 Virtual Devices

The prototype has two virtual devices: a Virtual Sensor Device and a Virtual
Stream Device. Virtual devices are realized by system call emulation, which
changes the system call handler with ptrace, as in sandboxing. We implemented
only the essential system calls: open, read, write, close, ioctl.

Virtual Sensor Device enables the user to access a sensor device transparently.
The prototype supports emulation of a video device. We implemented the es-
sentials of the video4linux [9] API interface, which is a standard interface for
accessing video devices. For supporting video4linux interfaces, we implemented
emulations of ioctl. Virtual Sensor Device is exported as “/dev/sensor.” A pro-
gram can read data by calling the read function for “/dev/sensor.” Virtual Sen-
sor Device acquires sensor data from a video server. The video server provides
sensor data read from a real video device to Virtual Sensor Device through inter-
process communication. The video server is implemented as a process separate
from the executor. While normal device access uses a video device exclusively,
our implementation enable users to share a sensor device simultaneously.

Virtual Stream Device realizes easy and efficient data sending to multiple
clients. Virtual Stream Device abstracts the stream channel to clients and is
exported as “/dev/client.” Currently, the prototype supports sending data to a
clients only.

Unlike the specification of web services for stream data such as MTOM/XOP
[10][11], a user can set socket parameters for the Virtual Sensor Device. This
capability means communication can be adopted to a network environment.
Furthermore, flexible transfer such as third-party transfer is possible by switching
transfer destinations.

348 R. Kanbayashi and M. Sato

4.3 Remote Procedure Call Interface

We used Simple Object Access Protocol (SOAP) for realization of remote proce-
dure call. SOAP supports not only primitive numeric values but also arrays and
structured data as the arguments and return values, which enables flexible data
access. Most codes for realizing remote procedure calls can be generated by our
generation tools. Users only have to write the definitions and implementations of
the procedures. We used the gSoap [12] for implementation. The code generation
tools invokes tools of gSoap internally.

4.4 User Scenario

In this section, we present the user scenario of SW-agent. An execution binary
for shipping is created by the following steps.

1. Describe Procedure Definition: A user describes the definition of a remote
procedure call of web services with the description format of gSoap. In gSoap,
a definition is described as a prototype definition on a header file.

2. Generation of Skelton Code: The user generates the skeleton code of a remote
procedure call with the generation tool of gSoap.

3. Implementation of Procedure: The user writes the implementation of the
generated skeleton code.

4. Generation of Execution Binary: The user makes an execution binary by
linking the object file generated from the implemented code and our offering
object file. Our offering object file includes the main function and something.
Linking should be static due to the constraints of BEE.

Deployment of the execution binary is also performed through a remote proce-
dure call of the web service. Currently, the prototype does not support deploy-
ment of an execution binary. We are planning to offer a client-side tool that
deploys an execution binary through SOAP.

5 Performance Evaluation and Experiment

In this section, we report the results of an experiment and a performance eval-
uation of the SW-agent. The objective of this evaluation and experiment is to
examine availability and especially performance characteristic of shipping pro-
gram facility. First, we examined the basic performance of shipping program
facility. Second, we conducted a sandboxing experiment.

• Basic Performance of System Call Emulation: SW-agent executes
most of a codes directly on processors, except for system calls. Therefore, al-
though a program which does not have a system call is executed without over-
head, a program which has a system call is executed with the overhead of the
system call hooking.

First, we examined the overhead of system call hooking. The overhead is the
average execution time acquired by measuring the time of the getuid system call.

A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes 349

We calculated the average execution time by executing the system call 10,000
times on and not on SW-agent. Machine used for evaluation had Core2Duo
2.4GHz and 2GB memory, and ran Linux Kernel 2.6.24.

As a result, the direct execution time was approximately 0.25 μsec. The ex-
ecution time of SW-agent was approximately 15 μsec. This result means that
overhead of SW-agent is approximately 15 μsec. The impact of this overhead on
applications is examined in the following evaluations.

• Performance of Virtual Sensor Device: We have examined perfor-
mance of Virtual Sensor Device. The performance is the average time calculated
by measuring the time required to acquire 10,000 frames. We measured the exe-
cution time by using both the real sensor device directly and the Virtual Sensor
Device. The frame size was 640x480. Machine used for evaluation was same as
prior evaluation. Capturing board attached to the machine is Buffalo CBP-AV,
whose frame-rate is 30fps and resolution is 640x480.

As a result of the experiment, the execution time required to acquire frame
data was approximately 33375 μsec by direct access and approximately 33376
μsec by the Virtual Sensor Device. This result means that the overhead of the
Virtual Sensor Device is approximately 1 μsec. This overhead is because of sys-
tem call hooking by ptrace and inter-process communication between the video
server and the executor part of the SW-agent. This overhead is smaller than
that of a former evaluation. We assume that this decrease occurs because the
Virtual Sensor Device omits some device calls which the direct access needs,
such as the order of starting capture. The overhead of the Virtual Sensor Device
is sufficiently small.

• Performance of Remote Procedure Call: We examined the perfor-
mance decline of the remote procedure call resulting from system call emulation.
We measured the execution time on and not on SW-agent, as well as the execu-
tion time on the three transition paths shown in Figure 1. In the evaluation, we
used two procedures: procedure-A, procedure-B. Procedure-A has no arguments
and returns an integer value. Procedure-B has no arguments and returns 900
Kbytes of data, equivalent to video frame data whose size is 640x480. The com-
munication data between the shipping program and the client is base64 encoded
and then transmitted as XML messages using the HTTP protocol. For exam-
ination of average execution times, we executed procedure-A 10,000 times and
procedure-B 100,000 times. The network latency on the WAN was approximately
2 msec. For the examination, we used two machines: Machine-A, Machine-B.
Machine-A had Core2Duo 2.2GHz, 2GB memory, and Gigabit Ethernet, and
ran Linux Kernel 2.6.24. Machine-B had Xeon 3.0GHz, 2GB memory, and Giga-
bit Ethernet, and ran Linux Kernel 2.6.9. gSoap library used for implementation
of web service is version 2.7.

Table 2 shows the execution time of each configuration and the ratios of the
overhead. The result shows that the overhead of procedure-A is greater than
that of procedure-B. This is because the system call dominates a larger part
of the total execution time in procedure-A. The result also shows that a larger
network environment has smaller overhead with both procedures. This is because

350 R. Kanbayashi and M. Sato

Table 1. Evaluation Configurations

Name Machine Network
Local Machine-B to Machine-B omni.hpcc.jp
LAN Machine-A to Machine-B omni.hpcc.jp
WAN Machine-A to Machine-B hpcs.cs.tsukuba.ac.jp to omni.hpcc.jp

Table 2. Execution Time of Remote Procedure Calls

Network Procedure Native SW-agent Overhead
Local Procedure-A 31 μsec 1117 μsec 351%

Procedure-B 35 msec 37 msec 107%
LAN Procedure-A 1103 μsec 1449 μsec 131%

Procedure-B 36 msec 38 msec 106%
WAN Procedure-A 6903 μsec 7396 μsec 107%

Procedure-B 78 msec 79 msec 102%

the overhead of system call hooking becomes smaller as the data transition time
increases. The WAN performance is important in the Sensing Web, which shares
sensors on the Internet. The overhead on WAN is sufficiently small.

• Basic Performance of Stream Data Transmission: We evaluated the
stream data transmission between the shipping program and client. The per-
formance of stream data transmission is dependent on the data transmission
bandwidth. We measured the bandwidth of the Virtual Stream Device and
MTOM/XOP on LAN and WAN.

On burst transfer through a raw socket, the max bandwidth for LAN was ap-
proximately 871 Mbps and approximately 134 Mbps for WAN. As a result of the
measure, the max bandwidth of the Virtual Stream Device for LAN was approx-
imately 876 Mbps and approximately 134 Mbps for WAN. The max bandwidth
of MTOM/XOP for LAN was approximately 860 Mbps and approximately 128
Mbps for WAN. This result shows that the performance of both stream trans-
missions was almost equivalent to a normal raw socket.

6 Related Work

There has already been a proposal to utilize the data acquired from sensors
installed in the real world. Open Geospatial Consortium (OGC) proposed Sensor
Web Enablement (SWE) [13], which is embraced in several projects. Buyya et
al. proposed Open Sensor Web Architecture (OSWA) in [3] and implemented
it in [14]. SWE cannot process stream data efficiently because SWE acquires
sensor data by query language with expressiveness that is poor for processing
stream data. Therefore, SWE cannot avoid sending all the data to a client. In
addition, OSWA does not consider privacy. In contrast, SW-agent can process
stream data efficiently with remote execution program and has a mechanism for
protecting privacy.

A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes 351

Some systems can already realize remote program deployment [15]. However,
most of these can run a system-specific binary only. Users are forced to learn a
system-specific rule to prepare the program. Therefore, these cannot be used for
realization of the Sensing Web, which is targeted toward sharing by people who
do not have a high level of computer skills.

Issues of privacy information in pervasive computing are discussed on [4].

7 Conclusion and Future Work

In this paper, we described an overview of Sensing Web and presented that
the research issues for realizing it are privacy protection and consumption of
communication resources. We proposed a architecture named SW-agent. SW-
agent can resolve the issues by shipping a program, which eliminates privacy
information and needless data, into the node near a sensor and with access
control based on the authentication mechanism.

We implemented a prototype system, tested the sandboxing function and
then evaluated the basic performance. The results of our examination showed
that SW-agent can execute remote execution program with up to 7% overhead in
performance comparing direct execution, which is acceptable for Sensing Web.

In the future, we intend to work on the following:

– Currently our prototype has no authorization system and deployment sys-
tem. Therefore, we plan to construct an appropriate authorization model
based on the needs of a community and implement an authorization system
based on it. In addition, we plan to implement a deployment service.

– Mutual use of processed information between shipping programs may achieve
more flexible and efficient sensor use in terms of both usability and network
resource consumption. We plan to investigate it with a work-flow model on
mutually connected shipping programs.

Acknowledgment

We would like to thank Dr.Yuich Ota and Dr.Itaru Kitahara, and Takashi Tsushima
(Graduate School of Systems and Information Engineering in University of Tsukuba)
for technical advices and supports. The authors achnowledges the contribution of all the
members of the Sensing Web Project. The present study was supported by Effective and
Efficient Promotion of the Coodination Program of Science and Technology Projects
in the Special Coodination Funds for Promoting Science and Technology, which is
conducted by MEXT of Japan, and Japan Science and Technology Agency(JST).

References

1. Google Street View: http://www.google.com/help/maps/streetview/
2. Minoh, M., et al.: Sensing Web Project - How to handle privacy information in

sensor data (June 2008)

http://www.google.com/help/maps/streetview/

352 R. Kanbayashi and M. Sato

3. Tham, C.k., Buyya, R.: SensorGrid: Integrating Sensor Networks and Grid Com-
puting. Special Issue on Grid Computing (July 2005)

4. Bhaskar, P., Ahamed, S.I.: Privacy in Pervasive Computing and Open Issues (2007)
5. Foster, I., et al.: Physiology of the Grid: Making the Global Infrastructure a Reality,

pp. 863–869. Wiley, Chichester (2003)
6. Open PGP: http://www.openpgp.org/
7. Uemura, Y., Nakajima, Y., Sato, M.: Direct Execution of Linux Binary on Windows

for Grid RPC workers (March 2007)
8. Open Computer Vision Library: http://sourceforge.net/projects/opencvlibrary/
9. video4linux: http://linux.bytesex.org/v4l2/

10. SOAP Message Transmission Optimization: http://www.w3.org/TR/soap12-mtom/
11. XML-binary Optimized Packaging: http://www.w3.org/TR/xop10/
12. The gSOAP Toolkit for SOAP Web Services and XML-Based Applications:

http://www.cs.fsu.edu/~engelen/soap.html

13. Percivall, G., Reed, C.: OGC Sensor Web Enablement Standard. Sensors & Trans-
ducers, vol. 9, pp. 698–706 (September 2006)

14. Chu, X.: Open Sensor Web Architecture: Core Service (December 2005)
15. Brown, S., Sreenan, C.J.: Updating software in wireless sensor networks: A survey.

Tech. rep. ucc-cs-2006-13-07, Dept. of Computer Science, University College Cork,
Ireland (2006)

http://www.openpgp.org/
http://sourceforge.net/projects/opencvlibrary/
http://linux.bytesex.org/v4l2/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/
http://www.cs.fsu.edu/~engelen/soap.html

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 353–363, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Efficient Parallelized Network Coding
for P2P File Sharing Applications

Karam Park1, Joon-Sang Park2, and Won W. Ro1

1 School of Electrical and Electronic Engineering
Yonsei University, Seoul, Korea

{riopark,wro}@yonsei.ac.kr
2 Department of Computer Engineering

Hongik University, Seoul, Korea
jsp@hongik.ac.kr

Abstract. In this paper, we investigate parallel implementation techniques for
network coding to enhance the performance of Peer-to-Peer (P2P) file sharing
applications. It is known that network coding mitigates peer/piece selection
problems in P2P file sharing systems; however, due to the decoding complexity
of network coding, there have been concerns about adoption of network coding
in P2P file sharing systems and to improve the decoding speed the exploitation
of parallelism has been proposed previously. In this paper, we argue that naive
parallelization strategies of network coding may result in unbalanced workload
distribution and thus limiting performance improvements. We further argue that
higher performance enhancement can be achieved through load balancing in pa-
rallelized network coding and propose new parallelization techniques for net-
work coding. Our experiments show that, on a quad-core processor system,
proposed algorithms exhibit up to 30% of speed-up compared to an existing ap-
proach using 1 Mbytes data with 2048×2048 coefficient matrix size.

Keywords: Network coding, parallelization, random linear coding.

1 Introduction

Multi-core systems nowadays are prevalent; they are found in a wide spectrum of
systems, from high performance servers to special purpose embedded systems. Re-
cently, the trend has been embedding more and more cores in a processor rather than
increasing clock frequency rate to boost processors’ performance [1]. In this paper,
we propose new implementation techniques that can enhance the performance of
network coding [2] by fully exploiting parallelism on the multi-core systems.

Network coding which is generally due to Ahlswede et al. [2] is a method that can
be used to enhance network throughput and reliability. In addition, it has been shown
that network coding benefits peer-to-peer (P2P) file sharing [3], especially so-called
file swarming type systems. In file swarming systems, a file is divided into multiple
pieces and pieces are exchanged among peers. To download a file, a peer must collect
all the pieces comprising the file. If a peer downloads multiple pieces simultaneously
from peers, it dramatically reduces downloading delay, which is the main advantage

354 K. Park, J.-S. Park, and W.W. Ro

of using the file swarming technique. However, the selection of peers and pieces to
download has a big impact on the overall performance, which is generally referred to
as the piece selection problem. The use of network coding mitigates this problem in
P2P file swarming systems [3]. In network coded systems, the data are “encoded” into
packets such that the packets are equally important, i.e., no difference exists among
the packets being exchanged, and thus a peer is only suppose to collect a specific
number of equally important packets.

One pitfall of network coding is computational overhead. Original data are coded
before exchanging and downloaded packets are to be decoded to recover the original
information. The decoding process is implemented usually as a variation of Gaussian
elimination which has O(n3) computational complexity. This complexity is quite pricy
in fact especially when the size of the file is huge. It is probable that the time spent for
decoding may actually cancel out all the benefit of reduced transmission time. Thus, it
is critical for network coded P2P systems to have a fast enough decoder. To provide
fast decoding speed, Shojania et al. has suggested Parallelized Progressive Network
Coding (PPNC) [4]. However, due to its unbalanced workload on each parallel task
(or thread), their algorithms cannot take full advantage of parallelism.

In this paper, we propose parallel implementations of network coding that in nature
balance workload among parallel tasks. Via real machine experiments, we show that
our new techniques allow meaningful reduction of execution time compared to
PPNC. On a quad core system for example, we achieve speed-up of 3.25 compared
with a serial implementation and 30% of performance improvement over PPNC algo-
rithm with 1Mbytes data and the coefficient matrix size of 2048×2048.

2 Background

In this section, we present an introduction of network coding and related work.

2.1 Principles of Network Coding

Fig. 1 depicts a directed graph representing a simple communication network; the
edges represent pathways for information transfer and the node S is the source, and
the node D and E represent receivers. The other remaining nodes represent interme-
diate points in the routing paths.

In this example, network coding enables us to multicast two bits per unit time as-
suming that each link conveys a bit per unit time, which cannot be achieved without

Fig. 1. A Communication Networks for Network Coding

 Efficient Parallelized Network Coding for P2P File Sharing Applications 355

 (a) (b)

Fig. 2. Encoding Concept and Received Data Structure

network coding, i.e., through traditional routing. Suppose we generate data bits a and
b at source S and want to send the data to both D and E. We send data a through path
SAC, SAD, and data b through SBC, SBE. With the routing, we can only send either a
or b but not both, from C to Z. Suppose we send data a to Z. Then D would receive a
twice from A and Z, and would not get b. Sending b instead would also raise the same
problem for E. Therefore, routing is insufficient as it cannot send both data a and b to
both D and E simultaneously. Using network coding, on the other hand, we could
encode the data a and b received in C and send the encoded version to CZ. Say we use
bitwise xor for encoding. Then, a and b are encoded to ‘a xor b’. The encoded data is
sent along on the path CZD and CZE. Node D receives data a and ‘a xor b’, so it can
decode b from them. It is the same for node E, where it receives data b and ‘a xor b’.

However, to assume the increased throughput that network coding allows, the en-
coding/decoding process must not be the bottleneck. The encoding/decoding process
depends on the coding solution to be used and there are several ways to find out an
optimal coding solution given a network. In this paper we restrict ourselves to the
random linear coding [6][7], since it is the most widely used coding solution which is
asymptotically optimal in any network. Now we explain how encoding and decoding
works in random linear coding.

Let us assume that an application transfers a file. Then the file is divided into a
specific number of blocks as shown in Fig. 2-(a) where denotes kth block. A coded
packet is a linear combination of the blocks constituting the file. That is ∑ , where n is the number of blocks and the coefficient is a certain ele-
ment randomly chosen in a certain finite field F. Every arithmetic operation is over
the field F. The coded packet is broadcasted to other destination nodes along with
the coefficient vector, [, …,], stored in the header. This “transfer unit” is shown
in Fig. 2-(a).

On reception of coded packets, nodes in the path to the destinations re-encode the
coded packets and send them to downstream nodes. When a coded packet reaches a
destination node it has to be stored in the local memory. For the destination node to
decode the packets and recover the original file, it needs to get n transfer units with
independent coefficient vectors. Let say a receiver has collected n transfer units and
let … , … and … where superscript
T stands for the transpose operation. As the coded packet was calculated as ,
we can recover the original file P from C by . Note that E needs to be

356 K. Park, J.-S. Park, and W.W. Ro

invertible, so all coefficient vectors ’s must be independent with each other. Usual-
ly a variant of Gaussian elimination is used to recover . When transfer units arrive to
a destination, it organizes coefficient and packet matrixes as Fig. 2-(b) as a prepara-
tion for running Gaussian elimination. A typical Gaussian elimination or LU decom-
position restricts us to wait until we collect n transfer units and have the n×n coeffi-
cient matrix before start running the process. However, with progressive decoding [6],
we have no need to wait until all transfer units received. Rather decoding is done
progressively as each transfer unit is arrived.

Since the decoding takes O((n + m) × n2) time where m is the block size, m and n
are important parameters and given the file size l, n and m are inverse proportional to
each other since l = n * m. In the file swarming scenarios, the bigger n enables the
greater downloading delay reduction, since a peer can receive at most n simultaneous
block transfers reducing the downloading delay by n. But since the decoding delay
which might cancel out the downloading delay benefit increases proportional to n3,
fast decoding implementation is a key to get the benefit comes with a large n. In other
words, given a fast decoding algorithm, a larger n allows a bigger performance gain.

2.2 Related Works

Ahlswede et al. first introduced the network coding and showed the usefulness of
network coding [2]. Koetter and Medard proved later that in a network, the maximum
throughput can be achieved with linear network codes [5]. With these backgrounds,
Chou et al. in [6] and Ho et al. in [7] suggested random linear network coding, which
is our target and is conceived to be the most practical scheme for single multicast flow
cases. Lun et al. showed the utility of network coding on wireless network systems in
[8], until then, researches of network coding were focused on wired networks. Katti et
al. proposed practical solutions for wireless networks with multiple unicast flows in
[9] and Park et al. suggested a practical protocol based on network coding for ad hoc
multicasting networks and showed improvements of reliability of ad hoc network
systems by network coding in [10]. In addition, using network coding in P2P was first
proposed in [11] and recent feasibility studies on network coding in real testbeds have
been done in [12] and Lee et al. showed the utility of network coding in mobile P2P
systems [13]. Gkantsidis et al. also showed that network coding allows smooth, fast
downloads and efficient server utilization on a P2P setting [3].

Shojania et al. suggested parallelization of network coding in [4]. They employed
hardware acceleration into the network coding and used a multi-threaded design to
take advantages of multi-core systems. There are some other performance enhance-
ment techniques (e.g. [14], [15]). Their work is different from our work in that their
focus is reducing the computational complexity of encoding/decoding operation and
ours focuses on improving decoding performance via parallelization.

There are many researches such as parallelization of matrix inversion [16], parallel
LU decomposition [17], and parallelization of Gauss-Jordan elimination with block-
based algorithms [18]. In fact, those existing parallel algorithms could be used to
decode received packets of network coding. However, these algorithms need to re-
ceive the entire matrix before starting decoding operations.

In network coded systems, waiting for the entire matrix to be formed is not an op-
timal solution. In P2P settings, transfer units are delivered one by one and the time

 Efficient Parallelized Network Coding for P2P File Sharing Applications 357

Table 1. Operation of Each Stage in Progressive Decoding [4]

Stages Task Descriptions

A
Using the former coefficients rows, reduce the leading coefficients in the new
coefficient row to 0.

B Find the first non-zero coefficient in the new coefficient row
C Check for linear independence with existing coefficient rows
D Reduce the leading non-zero entry of the new row to 1, such that result in REF
E Reduce the coefficient matrix to the reduced row-echelon form

gap between the arrivals of transfer units can be large. Thus, instead of waiting all the
packets to arrive, partial decoding is performed on reception of each transfer unit
hence the name of “progressive” decoding [4]. Our focus is on this type of progres-
sive decoding.

To enhance the performance of the progressive decoding, Parallelized Progressive
Network Coding (PPNC) is proposed [4]. It is basically a variant of the Gauss-Jordan
elimination algorithm. A simple description of Gauss-Jordan elimination borrowed
from [4] is presented in Table 1.

To enable progressive decoding, the stages of PPNC start operating when the des-
tination receives a transfer unit containing coded packet and coefficient, that means a
new row is added to matrix. On each transfer unit’s arriving, the operations from
Stage A to Stage E operate on the coefficient and packet matrixes to form the reduced
row-echelon form. In these stages, Stage A and E are dominant procedures. According
to [4], Stage A has 50.05%, and Stage E has 49.5% of decoding workload. So the
parallelization is focused on Stage A and E.

Fig. 3. Concept of Thread Dividing in PPNC

The main concept of the parallelization is to divide the coefficient matrix and pack-
et matrix into a limited number of operational regions each of which is fed to parallel
tasks (or threads). The regions are divided by vertically and equally as Fig. 3 with
PPNC. Since dependency between threads exists, at start and end of each stage, syn-
chronization between threads is needed.

3 Algorithms for Parallelization of Network Coding

In this section, the proposed parallelized network coding algorithms are discussed.
We present an arithmetic analysis on the workload balancing problem of the parallel

358 K. Park, J.-S. Park, and W.W. Ro

progressive decoding algorithm and propose three new parallelization methods to
improve the performance.

3.1 Arithmetic Analysis of Thread Balancing

The best way to divide overall workload in parallel algorithms is to allocate same
amount of load to each parallel task so that all the tasks can start and end simulta-
neously. If the workload is unbalanced, the benefit of parallelism diminishes, which
limits the performance of PPNC proposed in [4]. Our algorithms have been developed
mainly focusing on paralleling the E stage of PPNC.

To illustrate the problem, let us assume that the size of coefficient matrix is n×n.
The Stage E operations start with all threads, but later, when index of decoding go to
row of , the first thread has no work during coefficient matrix opera-

tion on Stage E. The region for that thread is already filled with 0 and 1, and no addi-
tional operation is needed. If there are two threads, the first thread has no operation
after row’s operation. In case of 4 threads, first thread has no operation after row’s

operation. The more threads are added, the more inefficiency occurs.
To compute the workload of each thread, we define a sequence of a subtraction af-

ter a multiplication on a spot of matrix which operates in Stage E, to a unit operation.

With arithmetical approach, in case of 2 threads, the first thread operates

unit operations and the second thread operates operations. The gap

between two threads’ numbers of operations is , and it is bigger than first
thread’s whole operation numbers. In case of 4 threads, the gap between the threads is

getting larger. The first thread operates unit operations, and the last thread

operates unit operations. The gap between the first and the last

thread’s operation numbers is in this case.
From the analysis above, we can easily see that the workload imbalance gap of

PPNC is proportional to n3. That is, using PPNC threads may have to wait for other
treads possibly for a long time. We solve this workload imbalance problem and sug-
gest more efficient parallel decoding algorithms in the next section.

3.2 DOA: Dynamic Operation Assignment for Balanced Workload

We suggest three different methods for efficient parallelization of the network coding.
The first two methods are based on the horizontal division of matrix in order to bal-
ance the task separation. The easiest way of horizontal dividing is round robin (RR)
method, which means a row is assigned to a thread, and the next row is assigned to
the next thread, and continues as Fig. 4-(a). However, when two threads are assigned
to any odd numbers of rows, the last row is always assigned to the first thread uneven-
ly. Therefore, the first thread has the heavier workload, and unbalanced work
distribution is made. More efficient horizontal dividing is backward round robin
(BRR) after round robin as Fig. 4-(b). In this way, the thread of heaviest workload is
changing, but also in case of operations on rows with odd numbers, perfect load ba-
lancing is not possible. Moreover, this method needs more complex arithmetic

 Efficient Parallelized Network Coding for P2P File Sharing Applications 359

 (a) RR - Round Robin Method (b) BRR – Backward Round Robin Method

Fig. 4. Concept of Horizontal Separation for Balanced Task Partitioning

operations to find the row to operate than round robin and need more time for that. So
we expect there exist some trade-offs; we will discuss this matters with the experi-
mental results of two algorithms on real machines in Section 4.

In case of round robin, the first thread, which has the maximum workload, would

take unit operations on 2 threads, and on 4 threads. On the

other hand, last thread which has the minimum load would take on 2

threads and operations on 4 threads. The gaps between threads are with 2

threads and with 4 threads. Compared to the gap calculated with PPNC, we can
find out that round robin is much more efficient.

The third method is to use dynamic vertical separation of operation area which is
named DOA (Dynamic Operation Assignment). In this method, the dividing point is
dynamically varied for each row operations as illustrated in Fig. 5. When the first row
is to be handled as shown in the left most diagram, each thread is assigned col-
umns, and when working on the second row and the third row shown in the next two
diagrams, each thread works on area of and columns, respectively. If the num-
ber of columns to be assigned is not the multiples of the number of threads, the re-
maining columns are assigned unevenly.

As the algorithms progress, the region assigned to each thread is getting narrower
and deeper. In this way, we can easily achieve fair balancing of workloads among

Fig. 5. Concept of Dynamic Thread Separation on Operation Area

360 K. Park, J.-S. Park, and W.W. Ro

threads. Imbalanced distribution happens when the number of remaining columns is
not a multiple of k (where k denotes the number of threads). However, that kind of
imbalance is negligible especially when k is smaller compared to n and the DOA is an
efficient algorithm for parallelization of Stage E.

4 Experimental Results and Performance Analysis

In this section, we evaluate the proposed three algorithms via extensive experiments
on real multi-core machines. The specification of the machines we have used for our
experiments is described in Table 2.

Table 2. Experimental Environment

 Dual-Core Quad-Core
CPU Intel Core 2 Duo E6750 AMD Phenom-X4 9550
CPU Clock 2.66GHz 2.2GHz
RAM 2GByte 4GByte

Cache
Configuration

2x32KByte L1 cache
4MByte Shared L2 cache

4 x 128KByte L1 cache
4 x 512KByte L2 cache
2MByte Shared L3Cache

Operating Systems Fedora Linux Core 8 Fedora Linux Core 8

4.1 Performance Evaluation Considering Stage E Only

The first set of experiments is carried on in order to see the performance of Gauss-
Jordan elimination only with the coefficient matrix; which means we exclude the
execution time spent on the packet matrix.

Fig. 6-(a) shows the execution time spent only on Stage E of the coefficient matrix
operation for four different algorithms: PPNC, RR, BRR, and DOA. Fig. 6-(b) presents
the speed-up of RR, BRR, and DOA compared to PPNC. The size of the file used is
1MB. From the figures, we notice that DOA shows the best performance. The speed-
up factor ranges from 2 to 2.4 compared to PPNC (again, when considering only
Stage E of the coefficient matrix operation). We also notice that the execution time of

 (a) (b)

Fig. 6. Execution Time on Stage E and Speed-up (Coefficient Matrix Operation Only)

 Efficient Parallelized Network Coding for P2P File Sharing Applications 361

 (a) (b)

Fig. 7. Decoding Process Speed-up with Varying the Data Size

round robin (RR) and backward round robin (BRR) are very similar. This is due to the
fact that the advantages/disadvantages of two different thread assignment methods
diminish in the real implementation.

4.2 Speed-Up Comparison on Dual-Core Systems

In this part, the speed-up factor of total decoding time considering a whole file is
measured. We have calculated the speed-up factors compared to sequential algorithms
for various experimental scenarios. In Fig. 7, we can find out the speed-up factors of
decoding process with four proposed algorithms on a dual-core processor. Fig. 7-(a)
and (b) show speed-ups with n = 1024 and n = 2048 on a dual-core processor. On the
dual-core processor, RR, BRR, and DOA do not show sharp improvement on speed-up
while showing a better performance compared to PPNC. These results prove that our
proposed algorithms are more efficient than PPNC.

4.3 Total Decoding Time Comparison

In this part, the total execution time on process is measured. In Fig. 8, we can find out
the decoding time of the various file sizes. Fig. 8 presents the execution time in case
with n = 1024 at (a), and n = 2048 at (b). Due to the PPNC’s unbalanced parallel
workload distribution, the PPNC approach results in the longest decoding time

(a) On Quad-Core, n = 1024 (b) On Quad-Core, n = 2048

Fig. 8. Decoding Execution Time (in sec) with Different Data Sizes on Quad-core

362 K. Park, J.-S. Park, and W.W. Ro

 (a) Speed-Up Factors (b) Scalability

Fig. 9. Speed-up Factors and Scalability of Each Algorithm (2MB Data, n=1024)

compared to the other three algorithms in the whole decoding process. In fact, the op-
erations in the remaining stages but Stage E in our algorithms are very similar to those
operations in PPNC. In other words, the speed up in Stage E is a dominant factor.

Ratio of execution time on coefficient matrix increases with larger coefficient ma-
trix size, therefore DOA, RR, and BRR show better performance results on whole
decoding process with large n. It is very important finding since the performance
improvement in large sizes is crucial for file swarming as mentioned in Section 2.1.
As indicated in [4], the task of coding more than 128 blocks is challenging and should
be addressed. We claim that our approach can provide a better solution for the net-
work coding with large numbers of blocks.

4.4 Scalability Comparison

We measure the speed-up factors and scalability using various numbers of cores to
verify the efficiency of each algorithm. The scalability means the capability to accele-
rate the operation speed with the addition of cores. In this section, the results on sca-
lability are derived with the speed-up divided by the number of cores. All the results
are calculated considering the execution time of a sequential program on a single
core. Fig. 9-(a) shows the speed-up factors of each algorithm with using various num-
bers of cores. We can find out the DOA shows the best performance over other three
algorithms. Fig. 9-(b) shows the scalability calculated from the results shown on Fig.
9-(a). It is also demonstrated that the DOA algorithms show the best scalability and
these results prove the efficiency of DOA in multi-core environments.

5 Conclusion and Future Work

This paper introduced efficient parallel algorithms for the random network coding.
To be more specific, we proposed “balanced” parallel algorithms. We showed via
analysis that our algorithms have less workload difference between tasks compared to
the previously proposed PPNC algorithm. Via real machine experiments, we showed
that our algorithms achieved speed-up of 3.05 compared to a sequential implementa-
tion. Compared to PPNC, our approach showed 14~30% improvement in the decod-
ing performance. Moreover, our algorithms showed better scalability than PPNC on
the number of processing units (e.g., processor cores). We expect that our work can

 Efficient Parallelized Network Coding for P2P File Sharing Applications 363

be applied to further enhance the performance of various network coding applications
such as peer-to-peer file sharing systems.

Acknowledgement

This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (KRF-2008-313-D00871).

References

1. Geer, D.: Industry trends: Chip makers turn to multi-core processors. Computer 38(5), 11–
13 (2005)

2. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans.
Inform. Theory 46(4), 1204–1216 (2000)

3. Gkantsidis, C., Rodriguez, P.: Comprehensive View of a Live Network Coding P2P Sys-
tem. In: IMC 2006, Rio de Janeiro (2006)

4. Shojania, H., Li, B.: Baochun Li: Parallelized Progressive Network Coding With Hardware
Acceleration. In: 15th IEEE International Workshop on Quality of Service, pp. 47–55 (2007)

5. Koetter, R., M’edard, M.: An algebraic approach to network coding. IEEE/ACM Trans.
Networking 11(5), 782–795 (2003)

6. Chou, P., Wu, Y., Jain, K.: Practical Network Coding. In: 51st Allerton Conf. Commun.,
Control and Computing (2004)

7. Ho, T., M’edard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A Random
Linear Network Coding Approach to Multicast. IEEE Trans. Information Theory 52(10),
4413–4430

8. Lun, D.S., Ratnakar, N., M’edard, M., Koetter, R., Karger, D.R., Ho, T., Ahmed, E., Zhao,
F.: Minimum-cost multicast over coded packet networks. IEEE Trans. Inform.
Theory 52(6), 2608–2623 (2006)

9. Katti, S., Rahul, H., Hu, W., Katabi, D., M’edard, M., Crowcroft, J.: XORs in the Air -
Practical Wireless Network Coding. IEEE/ACM Transactions on Networking 16(3), 497–
510 (2008)

10. Park, J.-S., Gerla, M., Lun, D.S., Yi, Y., M’edard, M.: Codecast: a network coding based
ad hoc multicast protocol. IEEE Wireless Communications 13(5), 76–81 (2006)

11. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In:
24th Annual Joint Conference of the IEEE Computer and Communications Societies,
vol. 4, pp. 2235–2245 (2005)

12. Wang, M., Li, B.: Lava: A Reality Check of Network Coding in Peer-to-Peer Live Stream-
ing. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communica-
tions, pp. 1082–1090. IEEE, Los Alamitos (2007)

13. Lee, U., Park, J.-S., Yeh, J., Pau, G., Gerla, M.: CodeTorrent: Content Distribution using
Network Coding in VANETs. In: 1st international Workshop on Decentralized Resource
Sharing in Mobile Computing and Networking. MobiShare 2006. ACM, New York (2006)

14. Ma, G., Xu, Y., Lin, M., Xuan, Y.: A content distribution system based on sparse linear
network coding. In: NetCod 2007, 3rd Workshop on Network Coding, Miami (2007)

15. Maymounkov, P., Harvey, N.J.A., Lun, D.S.: Methods for efficient network coding. Aller-
ton, Monticello (2006)

16. Csánky, L.: Fast Parallel Matrix Inversion Algorithms. SIAM J. Computing 5, 618–623 (1976)
17. Bisseling, R.H., Van de Vorst, J.G.G.: Parallel LU decomposition on a transputer network.

LNCS, vol. 384, pp. 61–77. Springer, Heidelberg (1989)
18. Melab, N., Talbi, E.-G., Petiton, S.: A Parallel Adaptive Gauss-Jordan Algorithm. The

Journal of Supercomputing 17(2), 167–185 (2000)

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 364–375, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Scheduling Strategy of P2P Based High Performance
Computing Platform Base on Session Time Prediction*

Hao Zhang, Hai Jin, and Qin Zhang

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. P2P based high performance computing (HPC) system introduces
many new and interesting problems. P2P environment is heterogeneous and
asynchronous. At the same time, P2P platform is not stable. The joining and
leaving of peers are random. These characteristics make the P2P based HPC
platform have great difference to the traditional HPC platform and the global
computing project. To achieve effective job scheduling on P2P based platform,
this paper introduces a DHT based monitor and task management scheme. Fur-
ther, we propose a data structure of distributed bidirectional Skiplist to keep the
prediction session time. Our scheme distributes the task to the nodes which
have longer online session time. With such scheme, we can reduce the migra-
tion of tasks among different nodes and improve the resource utilization of
computing nodes. Finally, we use a real trace to demonstrate the efficiency of
our algorithms and scheduling schemes.

Keywords: High Performance Computing, Peer to Peer, Scheduling, Distrib-
uted Hash Table.

1 Introduction

P2P technology is widely used in file sharing. Technologies such as BitTorrent,
eMule, Gnutella have taken advantage of the bandwidth and resources over internet.
While, for many researchers in academia and industry, P2P has another attraction: the
widely distributed idle computing resource over internet. Although the global comput-
ing projects, such as SETI@Home [1], Stanford Folding [2], have achieved success in
some fields. But such type of model usually requests central server to dispatch the
tasks and deal with the results returned from volunteers. The global computing model
does not take full advantage of the characteristics of P2P network, and many different
kinds of applications could not be deployed with such a model.

* This paper is supported by ChinaGrid project from Ministry of Education of China, the Na-

tional High-Tech Research and Development Plan of China under grant No.2006AA01A115,
and National Science Foundation of China under grant No.90412010, No.60433040 and
NSFC/RGC Joint Research Foundation under grant No.60731160630.

 Scheduling Strategy of P2P Based High Performance Computing Platform 365

The structured P2P network based on Distributed Hash Table (DHT) [7][8][9][10]
is a significant improvement to traditional P2P network. Many characteristics which
the unstructured P2P network does not have are introduced. The improvement has
provided more possibilities to HPC under P2P environments. Tasks can be better
organized running under the DHT based P2P network. DHT characterizes the network
with better distribution, better scalability and better fault tolerance. Such characteris-
tics have created favorable foundation for HPC.

Churn is an important characteristic of P2P network. Many nodes may enter the
P2P network simultaneously, while at the same time many other nodes may leave the
network. For the tasks running on the nodes, when the nodes leave the network, those
computation tasks should be suspended and migrate to another node to continue the
computation process. However, the costs of the migration of tasks on the internet are
large. Thus, the adaptive scheduling strategy is to place one task onto the node which
has longer online session time. In this way, the frequency of the task migration will be
reduced. Our research is based on such ideas: in P2P network, although the entering
and leaving of a certain node is hard to predict, but when a large number nodes do the
same thing many times, their behavior will show some statistical characteristics. On
the other hand, for a single node, its session time for a certain landing is hard to pre-
dict. However, it is possible to speculate according to its running habit within a long
term. Thus, computation task can be dispatch onto the node whose predicted online
session time is closely consistent with the time needed to complete the task. In princi-
ple, this model can optimize task scheduling, and shorten the time needed to complete
the task.

The rest of the paper is organized as follows. In section 2, we will introduce the
different scheduling strategy of global computing and parallel system, and then com-
pare them with the strategy introduced in this paper. Section 3 will explore the re-
source management model and task scheduling strategies of HPC platform based on
P2P. Section 4 will evaluate the scheduling algorithm. In the end, our work and con-
tributions are summarized.

2 Related Work

SETI@Home [1] is the first global computing projects running over internet. It aims
to make use of the large amount of computing resources over internet. When the re-
sources are idle, the server dispatches tasks onto those computers and run computa-
tion on them. When one volunteer completes the sub-task it got, it returns the result to
central server. The architecture of such models is a typical client/server model, in
which every volunteer accepts task from the central server, and return results to the
central server. Besides, because there are huge amount of tasks, almost every volun-
teer can receive one relevant portion of task. Thereby, the scheduling of such tasks is
relatively easy---the tasks are divided on the server beforehand, then allocated to
volunteers when they request for tasks.

Boinc [3] aims to excavate the general scheme of global computing, and provides
them a uniform platform. Many global computing projects are all migrated to the
platform. Boinc is also one form of the client/server model, but it takes uniform con-
trol of the volunteers working for different projects. The scheduling strategy is as

366 H. Zhang, H. Jin, and Q. Zhang

follows: when one Boinc client remains idle for a certain time, it will send out a
scheduling request to the server which keeps the tasks and data of a project, and then
the server dispatches a sub-task to the client. Boinc collects the credit of the clients by
the history running record of the tasks the client got. The dispatcher is prone to allo-
cate tasks to the nodes with better credit.

CCOF [4] and WaveGrid [5] are all desktop grid systems developed in recent
years. They adopt the scheduling strategy based on the time zone of the nodes in the
platform. When the resource of one node is busy, the scheduler dispatches some of
the HPC tasks run on the node to the night-time zone nodes whose resource is often
unoccupied. In such a way, HPC tasks can find nodes on the whole internet to com-
plete the computation tasks more efficiently. However, the scheduling strategy based
on time zone is coarse on the whole. When tasks on the internet are migrated accord-
ing to this scheduling policy, too many tasks may be migrated at the same time, which
is a heavy burden for the system.

Task scheduling is also an important issue for the parallel machine and is widely
studied. Optimal scheduling of parallel tasks with some precedence relationship on a
heterogeneous parallel machine is known to be NP-complete. To solve this problem,
many researchers have developed heuristic algorithms to get polynomial time opti-
mized solutions [6]. The scheduling algorithm on heterogeneous parallel machine
often considers many situations: whether the number of processors is limited or
unlimited, the communication latency between nodes, the time of data exchange be-
tween nodes and etc. The introduction or ignoring of a parameter would lead different
algorithms. But almost all these algorithms can not be used in P2P based HPC plat-
form directly as P2P network does not have stable nodes. However, these scheduling
strategies have provided good reference for the dispatch strategy under P2P condition.

3 Problem Analysis

The objective of scheduling is to complete HPC projects as soon as possible. To
achieve effective scheduling in P2P based HPC platform, the specifics of P2P envi-
ronment should be first discussed. Then we analyze the way to handle the information
in P2P based HPC platform---basic data structure to handle nodes’ session time is
introduced. With the new designed data structure, the details of the scheduling strat-
egy are discussed.

3.1 Environment of P2P Based HPC Platform

P2P network is not a stable environment. When a task is dispatched to a certain nodes,
the scheduler assumes that the task could not complete on the node with high prob-
ability (whp). The scheduler should always prepare to re-dispatch the task to the other
nodes to resume the computation. But data exchange between peers in internet is
costly. For many case, scheduling strategy with many task migration is unwise. How-
ever P2P based HPC platform can support the scheduling of tasks with some prece-
dence relationship rather than the single scheduling model in the global computing.
Such platform can be extended to more fields.

 Scheduling Strategy of P2P Based High Performance Computing Platform 367

Compare with the client/server model, P2P has some inherent characteristics: 1)
P2P network is scalable, the peers can serve to each other and peers can take part in
the network without the limitations of the central server. 2) Resource discovery is
much hard than traditional global computing model. To support HPC, P2P network
needs efficient techniques to achieve the resource discovery and management.

Based on the discussion, the design of the P2P based HPC platform should meet
the following qualifications: 1) Take full advantage of the scalability of P2P network
to reduce or eliminate the function of central server. 2) The management of nodes and
discovery of resources in the system are distributed. The information of nodes is pre-
served in the system with distributed way. If needed, nodes in system can obtain
enough information to schedule tasks to appropriate nodes.

3.2 The Platform Model

To satisfy the above requirements, P2P network adopts a structural network, namely a
P2P overlay based on DHT. We choose Chord as the basic protocol for overlay of the
platform in this paper. Chord has a ring-based architecture. For every pair of Key and
Value, the system uses the same hash function for the Key. With the result of the hash
function, the <Key, Value> is stored on the nearest node in the clock-wise direction.
Every node stores the information of its previous node and successor node. Mean-
while, Chord has a finger table to store more routing information.

Traditional DHT model is unable to meet the demand that the scheduling program
searches nodes within a certain range in the whole P2P environment. Under the DHT
model, many models have been developed to support range queries [13][14]. Never-
theless, those models are designed for specific application and cannot be widely
applied. The scheduling algorithm discussed in this paper needs to preserve the pre-
dicted value of the left online session time for every online node. Such values will
change as time passes, and are preserved in another distributed data structure which
will be thoroughly discussed in the following section.

3.3 Basic Data Structure for Session Time

Every node in the system will publish its information on the platform. The nodes
taking care of preserving such information also monitor those nodes and update their
information to make sure that such information can be used right at that time. At the
same time, the monitoring nodes record the online time and offline time for the moni-
tored nodes. Such information is preserved on the monitoring nodes, and serves as the
basic data for the following scheduling algorithm.

Many different types of data exist in the system, such as information of nodes,
tasks and program data, which are distinguished according to Type Id. As shown in
Fig.1, the node N12 combines the Type Id and Node Id into one key, while the charac-
teristic is preserved as value on the node N38. The monitoring module on node N38
will inquire the node N12 periodically to obtain the updated data.

When the monitoring module monitors other nodes, it will record the online time
and offline time for the node. Two values are chosen to represent predicted online

368 H. Zhang, H. Jin, and Q. Zhang

Type Id Node Id

Key

N12

N38

1100101011010001010001
Store the values

Monitor the node
And Update the

Values

IP 202.114.0.xxx
Value

CPU Genuine Intel
... ...

Memory 1000M

N01

N26

N43 Node Info N12

Fig. 1. Preserving of nodes information and monitoring among nodes

session time for a node in the system. One is the mean value of previous session time.
The other is the median value of previous session time.

The elapsed online time of the node is defined as Tela, the expected session time is
defined as Texp, and the expected left online time is defined as Tleft. Then:

le ft exp e laT T T= − (1)

When scheduling tasks, the node will inquire the value of Tleft to decide which node is
best suited for a certain task. Therefore, the values of Tleft should be preserved in
system in advance.

P2P is usually regarded as one heterogeneous and asynchronous system. There is
not a uniform clock to confirm the predicted lifetime for every node. Although without
a uniform reference frame, for every node the time unit is the same. Besides, during
every landing, the expected session time is maintained unchanged. Meanwhile, the
changes of elapsed time are the same for every node. Therefore, although the left life-
time (Tleft) is changing every second, the order relationship of Tleft for nodes is stable.

We use the distributed bidirectional Skiplist [12] to preserve such order relation-
ship of Tleft of nodes in the network so as to support the range query for the node's left
online session time. The distributed bidirectional Skiplist is similar to Skipnet [11].
However, it is not applied in DHT, but only used to preserve the order relationship of
several parameters of nodes.

Fig.2(a) is the table stored in the monitoring node's module recording the expected
left session time of the monitored nodes. Besides, the system also preserves two route
sub-lists for every node: the left route sub-list and right route sub-list. The expected
left session time(Tleft) of the nodes in the left sub routing table is no less than that of
local node, while expected left session time (Tleft) of the nodes in the right sub routing
table is shorter than that of local node. The nodes closest to local node are preserved
on the top layer of the route sub table according to the order relationship. Then, it
stores the information of the node that is 2x (x = 0, 1…) far away. The first item in the
sub routing table is the node with the closest value to the local Tleft. The other items
are to optimize the queries. In the worst case, adding a set of data needs logN steps to
find the right position. In the best case, only one step is required. Fig.2(b) is the global
view of connection of the data in the system.

 Scheduling Strategy of P2P Based High Performance Computing Platform 369

N17 4500

N21

N05 2103
Left Right

20

21 N39 6322 N09 1965
...

N62 735N53 7200
...
2x

...
2x

21
20

2322
Node Id Tleft

(a) Data kept in a monitor peer

N17
4500

N21
2322

N05
2103

N09
1965

N39
6322

N32
1700

N37
900

N41
6798

N53
7200

...
...

...
...

N62
735

(b) Global view of the distributed bidirectional Skiplist

Fig. 2. Order relationship of Tleft kept in distributed bidirectional Skiplist

3.4 The Expression of Tasks

Directed Acyclic Graph (DAG) is the usual way to express tasks in the high perform-
ance computing. In DAG, every node indicates a sub task, and the lines among nodes
and the arrows represent the relationship of sub-tasks. Fig.3 is an example of DAG. In
the system, a task is published by a user. The expression of these tasks is converted
into the corresponding data and stored in the P2P network.

Clients generate tasks based on a project. Every sub-task and the corresponding
data are stored as <Key, Value> pairs. It distributes <Key, Value> pairs on different

1

4

10

57

23

8 6

9

11

Fig. 3. Example of Directed Acyclic Graph (DAG)

370 H. Zhang, H. Jin, and Q. Zhang

Key
Type Id Project Id Task Id

Task Info p001.gird.hust.edu.cn 10
100011001010010010100010

Code P001.jar
Value

Time 2793

... ...

Memory 1000M
Parents 8,7,6

Children 11

Fig. 4. <Key, Value> expression of a sub-task

nodes in the P2P environment. We use Type Id, Project Id and Task Id as the proper-
ties of the Key. Project Id is the identification of the published project. In the whole
network, the Id is unique. In the value of the tasks, it has many properties of a task.
The precedence relationship of the tasks is recorded. Every task has a standard proc-
ess time. Different machines getting the task could accelerate the task. The accelera-
tion ratio depends on the CPU, memory and the ratio of free time. Fig.4 shows the
<Key, Value> of a task.

3.5 Scheduling

The objective of scheduling is to rationally distribute tasks on a proper node, and
finish the task as soon as possible. Our scheduling is based on the nodes’ expected
online session time. With the limited resources, system will dispatch the task on the
nodes that has longer online session time. Meanwhile, every task has redundancy.
That means for every task, there are K backup copies running on other nodes. In such
case, the redundancy of the task is defined to K. When the original copy or any other
copy is done, the scheduling module will inform other copies to stop.

When a task running on a certain node, if the node leaves while the task is still
running, it needs to send the interim results to the scheduler. After the scheduler gets
the interim results and the related information, it will reschedule the task.

The node storing the task information is responsible for scheduling the related
tasks. The following code describes the range queries process of a certain node. The
query deploys on the data structure of distributed bidirectional Skiplist. The algorithm
always expects to find out nodes whose left session time (Tleft) is suitable for the time
the task needs. If the system cannot get the enough nodes within the expected left
session time (Tleft), the expected left session time would reduce to its half and con-
tinue the search. Such process repeats until it finds the result or there are no enough
free nodes.

INPUT : Project_Id, Task_Id, Type_Id
INPUT : K // k for redundancy
//get the information of a task
Task_Value = get (Key(TypeId, ProjectId, TaskId));
int Number_of_node = 0;
For (int i = 1 ; ; i++){
//find nodes whose expect left session time >
//(Task_value.Expect_complete_time/i)
Node_list=

 Scheduling Strategy of P2P Based High Performance Computing Platform 371

FindNodes(Task_value.Get(Expect_complete_time/i));
If (Node_list.size >= K+1)
// Descending sort by expect left online time
 Sort (Node_list);
 Send (Task, Node_list[0~K]);
 break;
Else
 If (Number_of_node == Node_list.size())
 break;
 Else
 Number_of_node = Node_list.size()
 contitnue;
End If
End If
End For

When a sub-task is completed, the scheduler would notify the nodes keeping the next
level sub-tasks. When all of the upper sub-tasks finish, the scheduler will schedule the
following tasks. Every running task has a Copy Id to identify different tasks. The
Copy Id of the original copy is 0, and the Copy Id of the nth copy is n. The task with
the smaller Copy Id has larger priority.

4 Performance Evaluation

In this section, we will evaluate the above algorithm. The trace for the evaluation is
from http://www.cs.berkeley.edu/~pbg/availability/. The trace is collected by ping a
mount of PCs once an hour. We randomly select a set of nodes from 51,662 com-
puters. We use the session data for 51,662 PCs of 35 days from July 6, 1999. We
construct a corresponding P2P network with those nodes.

Fig.5 is the evaluation for the randomly selected 1,000 nodes. To show the disci-
pline of node history session time more clearly, we sort the node id in ascending order
by the mean value of session time.

Fig.5(a) is the distribution of the session time of 1000 nodes in 35 days. It shows
that on the left down corner, there is a condense distribution. That is to say, for most
of the nodes, the change of session time is not huge. Fig.5(b) is the comparison of the
mean value and median value of the session time. The nodes representing median
value are lower than the nodes for the mean value. But the difference is small. That
means it is conservative to use median value as the expected session time than mean
value. Fig.5(c) shows the variance of expected session time based on mean value and
median value. From the figure, we can see that the variance of most of nodes around 0
or the variance is small. That is to say, in most cases, using the average value to pre-
dict the session time is reasonable. Either using the median value or the mean value as
the expected session time does not make much difference. For convenience, Fig.5(b)
and Fig.5(c) are generated based on selecting 250 nodes from the 1000 nodes uni-
formly. Fig.5(d) is the number of active nodes in 35 days. We can see that the number
of nodes has a repeated fluctuation. The fluctuation period is about 7 days
(604800sec). The reason could be some nodes left at weekend.

372 H. Zhang, H. Jin, and Q. Zhang

Fig. 5. The distribution of nodes and node’s session time

4.1 Simulation Metrics and Parameters

Task Size: The size of task is defined by its standard running time. The larger stan-
dard running time means larger size.

Average Number of Migrations per Task: The running tasks could be migrated to
other nodes because of nodes’ leaving. This parameter is used to measure the number
of migrations of tasks. A larger task usually needs several migrations to be finished.
More migrations mean the less performance.

Redundancy: Every task has relative redundant copies. Redundancy indicates the
number of backup copies for each task when it is running.

Task Start Time: After the system running for a period of time, the history session
time of a node can be used to predict its online session time, and the efficiency of the
algorithm begins to take effect.

4.2 Simulation Results

In following figures, every point indicates average results of 10 times simulation. In
following experiments, the network contains 2,000 nodes chosen randomly from the
51,662 nodes in the record of the trace document.

In the simulation shown in Fig.6, 300 tasks of the same size are set to run 26 times
with different start time. At the very beginning, none of the nodes have historical
record, and the scheduler uses the default value to predict the session time for all
nodes (3024000 sec).

From the result we can get that the average of migration times for each task whose
nodes' expected online session time is predicted by mean or median value is much
smaller than those with random schedule strategy. The overlap ratio of the curves
below is rather high, which suggests that the use of mean or median of historical ses-
sion data has little influence on the final result of our experiment. The three curves all

 Scheduling Strategy of P2P Based High Performance Computing Platform 373

Fig. 6. The influence of different task start time on the efficiency of scheduling (Task Size =
259200sec, Redundancy = 1)

show a certain degree of periodicity. Compared with Fig.5(d), that time is the time
when the number of nodes in system begins to decrease.

To test the influence of task size on the average migrations times, we use tasks
with 30 different sizes, from 1 hour to 88 hours, and fix the task start time to the 15th
day (the 1728000th second). For each task size, 300 tasks of the same size are dis-
patched to 2,000 node P2P network. In Fig.7, the curves show that for random sched-
uling strategy, the average migration times of tasks increase rapidly as the task size
increases. While for the simulations using scheduling algorithm, the average migra-
tion times of tasks increase comparatively quite slowly.

The third simulation tests the impact of different redundancy on the average migra-
tion times of scheduling algorithm. As one copy accomplishes its computation, the
left copies are notified to stop. It can be observed from Fig.8 that the use of certain
amount of redundancy does reduce the average migration times of tasks, thus reduces
the time to complete tasks and promotes computation efficiency.

Fig. 7. The influence of different task size (Task Start Time = 1728000th sec, Redundancy = 1)

374 H. Zhang, H. Jin, and Q. Zhang

Fig. 8. The influence of redundancy number (Task size = 259200 sec)

5 Conclusions

Deploying high performance computing on P2P system is an interesting research
work. This paper utilizes DHT to organize and manage tasks and worldwide comput-
ing resources. Further, we establish a new data structure supporting range queries:
distributed bidirectional Skiplist. As large quantity of online sessions on numerous
nodes show statistical regularity, current online time for a certain node could be pre-
dicted by historical record and is stored on the distributed bidirectional Skiplist dy-
namically. Our new HPC platform provides a scheduling strategy right based on that
session time prediction which dispatches tasks onto the nodes with most suitable life
duration according to their sizes. With less migration from node to node, much higher
computing efficiency is gained.

The results of simulation with real nodes’ session data demonstrates our protocol---
using predicted nodes’ session time could improve task scheduling performance and
reduce task migration times.

References

1. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an ex-
periment in public-resource computing. Communications of the ACM 45(11), 56–61
(2002)

2. Larson, S., Snow, C., Shirts, M., Pande, V.: Folding@Home and Genome@Home: Using
distributed computing to tackle previously intractable problems in computational biology.
Computational Genomics (2002)

3. Anderson, D.: BOINC: A System for Public-Resource Computing and Storage. In: Pro-
ceedings of 5th IEEE/ACM International Workshop on Grid Computing, pp. 365–372
(2004)

4. Lo, V., Zappala, D., Zhou, D., Liu, Y., Zhao, S.: Cluster Computing on the Fly: P2P
Scheduling of Idle Cycles in the Internet. In: Voelker, G.M., Shenker, S. (eds.) IPTPS
2004. LNCS, vol. 3279, pp. 227–236. Springer, Heidelberg (2005)

 Scheduling Strategy of P2P Based High Performance Computing Platform 375

5. Zhou, D., Lo, V.: WaveGrid: a Scalable Fast-turnaround Heterogeneous Peerbased Desk-
top Grid System. In: Proceedings of the 20th International Parallel & Distributed Process-
ing Symposium (2006)

6. Bajaj, R., Agrawal, D.: Improving Scheduling of Tasks in a Heterogeneous Environment.
IEEE Transaction on Parallel and Distributed Systems, 107–118 (2004)

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of the 2001 SIGCOMM
conference, vol. 31(4), pp. 149–160 (2001)

8. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

9. Ratnasamy, S., Francis, P., Handley, M., Karp, R.: A Scalable Content-Addressable Net-
work (CAN). In: Proceedings of ACM SIGCOMM (2001)

10. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: A
global-scale overlay for rapid service deployment. IEEE Journal on Selected Areas in
Communications (2003)

11. Harvey, N., Jones, M., Saroiu, S., Theimer, M., Wolman, A.: SkipNet: a scalable overlay
network with practical locality properties. In: Proceedings of the 4th Conference on
USENIX Symposium on Internet Technologies and Systems, p. 9 (2003)

12. Pugh, W.: Skip Lists: A Probabilistic Alternative to Balanced Trees. In: Proceedings of
Workshop on Algorithms and Data Structures, pp. 437–449 (1989)

13. Zheng, C., Shen, G., Li, S., Shenker, S.: Distributed Segment Tree: Support of Range
Query and Cover Query over DHT. In: Proceedings of IPTPS 2006 (2006)

14. Ramabhadran, S., Ratnasamy, S., Hellerstein, J., Shenker, S.: Prefix Hash Tree: An Index-
ing Data Structure over Distributed Hash Tables. IRB Technical Report (2004)

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 376–387, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Activeness-Based Seed Choking Algorithm for
Enhancing BitTorrent’s Robustness

Kun Huang1, Dafang Zhang2, and Li’e Wang3

1 School of Computer and Communication, 2 School of Software,
Hunan University, Changsha, Hunan Province 410082, P.R. China

{huangkun,dfzhang}@hunu.edu.cn
3 College of Computer Science and Information Technology,

Guangxi Normal University, Guilin, Guangxi Province 541004, P.R. China
wle3@163.com

Abstract. BitTorrent suffers from the free-riding problem induced by selfish
peers, hurting the system robustness. Existing research studies have focused on
the fairness, performance, and robustness of BitTorrent, resulting from the Tit-
For-Tat (TFT) choking algorithm, while very few studies have considered the
effect of the seed choking algorithm. This paper experimentally analyzes the
impact of the free riding of selfish peers on BitTorrent’s performance and ro-
bustness, and proposes an activeness-based seed choking algorithm, where ac-
cording to the activeness values of request peers, which are the ratios of the
available download bandwidth to the available upload bandwidth, a seed prefer-
entially uploads to five request peers with the highest activeness values, without
any explicit reputation management system. Our simulation experiments show
that compared to existing seed choking algorithms, the activeness-based seed
choking algorithm not only restrains the free riding of selfish peers but also im-
proves the performance of benign peers, enhancing BitTorrent’s robustness.

1 Introduction

BitTorrent is a large-scale Peer-to-Peer (P2P) content distribution system, which has
recently become one of the most important applications in the Internet [1]. In essence,
BitTorrent organizes peers interested in a shared file into a collaborative P2P overlay
network, where the file is divided into a number of equal-sized independent blocks
and each peer exchanges blocks with each other. Moreover, BitTorrent exploits the
uplink bandwidths of all peers to improve the performance and scalability when the
number of participants increases [2].

To ensure the performance and scalability, BitTorrent adopts the sound core
mechanisms, including Tit-For-Tat (TFT) choking algorithm and Optimistic Unchoke
(OU) algorithm [3]. The TFT algorithm is employed to preferentially upload to four
request peers with the highest upload rates, while the OU algorithm is to randomly
upload to one of other request peers. The purpose of the TFT algorithm is to motivate
peers to contribute their resources to the system, guarantee the fairness of blocks
exchange between peers, and deter the free-riding problem [4, 18], where a peer

 An Activeness-Based Seed Choking Algorithm 377

eagerly downloads blocks from others but does not contribute to others. The OU algo-
rithm is to avoid the first block problem to bootstrap new peers and allow each peer to
explore other peers with the potential higher upload rates.

However, BitTorrent suffers from the free riding induced by selfish peers. Unlike
leechers who employ the TFT algorithm and OU algorithm to reciprocate, seeds em-
ploy a choking algorithm based on available download bandwidth to upload to request
peers. The seed choking algorithm is purposed to quickly distribute blocks among all
peers and speed up the download process of the overall system. But there are oppor-
tunities for the free riding of selfish peers, who exploit the reciprocation protocols of
BitTorrent to download more blocks without uploading any block, in BitTorrent’s
incentive mechanisms. First, since the OU algorithm is an altruistic strategy, selfish
peers can exploit the OU algorithm to download blocks from benign leechers. Second,
since seeds are altruistic peers, selfish peers can exploit the seed choking algorithm to
download blocks from seeds. Finally, after completing all the blocks, selfish peers
immediately leave the system, never to contribute to others. Therefore, BitTorrent is
faced with the free riding of selfish peers, which incurs the performance degradation
of benign peers and hurts BitTorrent’s robustness.

A large number of research studies have focused on analytical models, measure-
ments, system designs, and incentive mechanisms of BitTorrent. Studies of analytical
models and measurements [2, 5-11] show that the TFT algorithm is effective and fair,
and the seeding capacity has a great impact on the file availability and system stabil-
ity. According to studies of system designs and incentive mechanisms [12-23], the
TFT algorithm is not sufficient to effectively prevent the free riding of selfish peers,
and there are several modified free-riding BitTorrent clients running in real torrents,
which can exploit BitTorrent’s incentive mechanisms to complete all the blocks with
uploading no or a few blocks, threatening the fairness of BitTorrent. These existing
research studies have focused on the fairness, performance, and robustness of BitTor-
rent, resulting from the TFT algorithm, while very few studies have considered the
impact of the seed choking algorithm on BitTorrent’s robustness.

This paper explores the impact of the seed choking algorithm on the performance
of both benign peers and selfish peers, and then proposes a modified seed choking
algorithm to improve BitTorrent’s robustness. The main contributions of this paper
are as follows. First, we experimentally analyze the free riding of selfish peers, indi-
cating that the free riding of selfish peers incurs the performance degradation of be-
nign peers and overloads the initial seeds. Second, we propose an activeness-based
seed choking algorithm, where a seed preferentially uploads to five request peers with
the highest activeness values which are the ratios of the available download band-
width to the available upload bandwidth, without any explicit reputation management
system. Finally, we conduct extensive simulation experiments to validate that the
activeness-based seed choking algorithm is a simple and effective scheme, which not
only restrains the free riding of selfish peers but also improves the performance of
benign peers, enhancing BitTorrent’s robustness.

The rest of this paper is organized as follows. Section 2 presents an overview of
BitTorrent. Section 3 introduces related work. In Section 4, we analyze the free riding
of selfish peers using simulation experiments. The activeness-based seed choking
algorithm is described in detailed in Section 5 and experimental results are given to
validate our proposed algorithm in Section 6. Section 7 concludes this paper.

378 K. Huang, D. Zhang, and L. Wang

2 BitTorrent Overview

In recent years, BitTorrent has become the popular large-scale P2P content distribu-
tion system in the Internet. The key idea of BitTorrent is that a shared file is divided
into a number of equal-sized independent blocks (typically 256KB in size) and each
peer simultaneously downloads and uploads multiple blocks [3]. The tracker is a
unique centralized component of BitTorrent, which keeps track of the global informa-
tion of each torrent.

The file download process of BitTorrent is as follows. First, a user downloads a
metadata file of a shared file from a Web site, and starts the BitTorrent client to join as a
new peer. Second, the new peer registers on the tracker, which responds to it with a list
of randomly chosen 40 active peers possessing blocks, and then attempts to establish
connections with these peers as its neighbor peers. Finally, the new peer begins to ex-
change blocks with its neighbor peers in a cooperative manner, and when completing all
the blocks, a leecher turns into a seed and leaves the system. The flash crowd stage [15],
when an amount of new peers burstly join in the system and don’t leave the system until
they complete all the blocks, is the most challenging for BitTorrent’s performance and
robustness. So this paper mainly focuses on the flash crowd stage of BitTorrent.

When downloading a block, a leecher employs the LRF algorithm [3] as the block
selection strategy. The key idea of the LRF algorithm is that a leecher preferentially
downloads the missing blocks that is least replicated among its neighbor peers. The
LRF algorithm is a local optimized block download strategy, purposed to uniformly
distribute all the blocks among all peers and avoid the last block problem. When up-
loading a block, a leecher employs the TFT algorithm and OU algorithm [3] as the
peer selection strategy which is how to upload to which peer. The key idea of the TFT
algorithm is that a leecher preferentially uploads to four request peers who upload
blocks to it with the highest rates every 10 seconds, while the key idea of the OU
algorithm is that a leecher randomly uploads to one of other request peers every 30
seconds. In fact, the TFT algorithm is a reciprocal scheme to ensure the fairness of
blocks exchange and avoid the free riding problem, while the OU algorithm is an
altruistic scheme to complement the TFT algorithm, which is purposed to bootstrap
new peers for free, and avoid the first block problem.

Unlike leechers, a seed employs the choking algorithm based on available
download bandwidth to preferentially upload to five request peers with the highest
available download bandwidths every 10 second. The purpose of the seed choking
algorithm is to quickly distribute all the blocks in the system, startup the block ex-
changes between peers, or speed up the block download process of the overall system.
Although the new version of BitTorrent protocol specification advises a random seed
choking algorithm, yet current mainline BitTorrent clients do not implement the new
seed choking algorithm. So this paper mainly explores the original seed choking algo-
rithm based on available download bandwidth.

3 Related Work

BitTorrent is the successful large-scale P2P content distribution system in the Inter-
net, which has recently attracted considerable research interest. There are a large

 An Activeness-Based Seed Choking Algorithm 379

number of research studies on analytical models [2, 5-7], measurements [9-11], sys-
tem designs [12-17], and incentive mechanisms [4, 18-24] of BitTorrent.

Several incentive mechanism studies have been performed to understand and im-
prove BitTorrent’s fairness and robustness. Jun et al. [18] argue that due to the lack of
reward and punishment, the TFT algorithm is not sufficient to prevent the free riding,
and propose a deficit-based TFT algorithm to enforce BitTorrent’s fairness. Liogkas
et al. [19] design and implement three exploits that allow selfish peers to maintain
high download rates without contribution, and indicate that although such selfish
peers can obtain more bandwidth, there is no considerable degradation of the overall
system’s quality of service. Locher et al. [20] design and implement a free-riding
BitTorrent client, called BitThief, illustrate that the selfish peer can achieve high
download rates, even in the absence of seeds. Sirivianos et al. [21] explore the large
view exploit based on maintaining a larger than normal view of the torrent, and indi-
cate that as the number of selfish peers increases, both selfish peers and benign peers
suffer from substantial performance degradation. Piatek et al. [22] observe that high-
capacity peers typically provide low-capacity peers with an unfair block exchange,
and design and implement a selfish BitTorrent client, called BitTyant, for high-
capacity peers to maximize the peer download rates, but degrading the performance of
other low-capacity peers. Dhungel et al. [23] analyze two anit-P2P network attacks on
the leechers of BitTorrent. Levin et al. [4] present an auction-based model to reveal
new strategic manipulation, and propose a proportional-share auction based choking
algorithm to achieve the fairness and robustness of BitTorrent.

Since these existing research studies indicate that the TFT algorithm is not suffi-
cient to prevent the free riding induced by selfish peers, they predominately explore
the free riding that exploits the OU algorithm, while very few studies have considered
the impact of the seed choking algorithm on BitTorrent’s performance and robustness,
and how to prevent the free riding that exploits the seed choking algorithm. Recently
related to our work, Chow et al. [24] explore how to utilize the seeding capacity to
discourage the free riding of selfish peers and at the same time improve the perform-
ance of benign peers, and then propose two simple and scalable schemes, including
the sort-based and threshold-based seed choking algorithm. The key idea of the sort-
based seed choking algorithm is that a seed preferentially upload to request peers that
have furthest from the middle of all blocks, while the key idea of the threshold-based
seed choking algorithms is that a seed preferentially upload request peers whose per-
centages fall in either [0 / 2]%K or[(100 / 2) 100]%K− . Our later experimental

results show that when selfish peers camouflage new peers by cheating, both the sort-
based and threshold-based algorithms are not able to effectively prevent the free
riding of selfish peers, even incurring the significant degradation of benign peers’
performance. Unlike above seed choking algorithms, we propose an activeness-based
seed choking algorithm, which enables to not only restrain the free riding of selfish
peers but also improve the performance of benign peers.

4 Analyzing Free Riding

This section analyzes the impact of the free riding on the performance of both benign
peers and selfish peers using simulation experiments. The free riding of selfish peers

380 K. Huang, D. Zhang, and L. Wang

Table 1. BitTorrent simulation parameters

Num. of total peers 1001 Num. of neighbor peers 10-40
Uplink bandwidth 400KBps Downlink bandwidth 1500KBps
Num. of initial seeds 1 Peer arrival time Poisson
Seed staying time Uniform Size of shared file 100MB
Size of block 256KB Num. of blocks 400
Upload quotas 5 TFT period 10 Second
OU period 30 Second Seed choking period 10 Second

refers to the following strategic manipulation. First, selfish peers camouflage new
peers using the cheating strategy, where selfish peers deceive the tracker and its
neighbor peers. Second, selfish peers frequently contact the tracker to request a list of
new neighbor peers every 30 seconds. Finally, selfish peers immediately leave the
system after completing all the blocks. We do not consider the complicated exploits,
such as faked upload blocks [19] and Sybil attacks [27], since recent studies [20, 22]
have indicated that these exploits can be easily identified and prevented.

4.1 Methodology

We examine the main metrics of BitTorrent’s performance are the download time, the
upload quota utility ratio, and the upload/download ratio. The download time and the
upload quota utility ratio characterize the efficiency of BitTorrent, while the up-
load/download ratio characterizes the fairness of BitTorrent. We design and imple-
ment a discrete event driven simulator for BitTorrent. Table 1 shows the simulation
parameters of BitTorrent.

4.2 Analyzing Results

Figure 1 depicts the download time of the first block. As shown in Figure 1(a), when
the percentage of selfish peers increases, the average download time of the first block
increases. Figure 1(b) shows that compared to selfish peers, benign peers have the less
increase of the average download time of the first block. For example, in the scenarios
of 10%-50% selfish peers, the average download times of the first block of benign
peer and selfish peer increase by a factor of 0.8-8.3 and 15.0-17.0 respectively.

Figure 2 depicts the download time of the last block. As shown in Figure 2(a),
when the percentage of selfish peers increases, the average download time of the last
block decreases. Figure 2(b) shows that the average download time of the last block
of benign peer increases, while that of selfish peer decreases. For example, in the
scenarios of 10%-50% selfish peers, the average download time of the last block of
benign peer increases by a factor of 0.4-2.3, while that of selfish peer decreases by
38%-92%.

Figure 3 depicts the download time of all blocks. As shown in Figure 3(a), when
the percentage of selfish peers increases, the average download time of all blocks
increases. Figure 3(b) shows that compared to selfish peers, benign peers have the less
increase of the average download time of all blocks. For example, in the scenarios of
10%-50% selfish peers, the average download times of all blocks of benign peer and
selfish peer increase by a factor of 0.2-1.9 and 2.1-8.3 respectively. Figure 3 shows

 An Activeness-Based Seed Choking Algorithm 381

Time (seconds)

0 200 400 600 800 1000

C
D

F

0.0

.2

.4

.6

.8

1.0

scenario of 0% seflish peers
scenario of 10% selfish peers
scenario of 20% selfish peers
scenario of 30% selfish peers
scenario of 40% selfish peers
scenario of 50% selfish peers

 Time (seconds)

0 200 400 600 800 1000

C
D

F

0.0

.2

.4

.6

.8

1.0

scenario of 0% selfish peers
scenario of 10% selfish peers
scenario of 20% selfish peers
scenario of 30% selfish peers
scenario of 40% selfish peers
scenario of 50% selfish peers

 Time (seconds)

0 20x103 40x103 60x103 80x103 100x103

C
D

F

0.0

.2

.4

.6

.8

1.0

scenario of 0% selfish peers
scenario of 10% selfish peers
scenario of 20% selfish peers
scenario of 30% selfish peers
scenario of 40% selfish peers
scenario of 50% selfish peers

(a) Cumulative distribution (a) Cumulative distribution (a) Cumulative distribution

Scenario of Fraction of Selfish Peers

0% 10% 20% 30% 40% 50%

A
ve

ra
g

e
D

ow
nl

oa
d

T
im

e
 (

se
co

nd
s)

0

500

1000

1500

2000

2500

3000

benign peers
selfish peers

 Scenario of Fraction of Selfish Peers

0% 10% 20% 30% 40% 50%

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
e

co
nd

s)

0

200

400

600

800
benign peers
selfish peers

 Scenario of Fraction of Selfish Peers

0% 10% 20% 30% 40% 50%

A
ve

ra
g

e
D

ow
n

lo
ad

 T
im

e
(s

ec
on

ds
)

0

2e+4

4e+4

6e+4

8e+4

1e+5

benign peers
selfish peers

(b) Average download time (b) Average download time (b) Average download time

Fig. 1. First block Fig. 2. Last block Fig. 3. All blocks

that the TFT algorithm is effective and fair, guaranteeing the fairness and perform-
ance of BitTorrent, but selfish peers can exploit the OU algorithm and seed choking
algorithm to download blocks without uploading any block.

Figure 4 shows that benign peers almost keep the upload quota utility ratios con-
stant, but have the low upload quota utility ratios with the average values of less than
10% and the max values of less than 50%. In order to improve the upload quota utility
ratio, Huang et al. [16] proposes a dynamic quota-based adaptive peer strategy to
ultimately improve the download time of the overall system. As show in Figure 5,
when the percentage of selfish peers increases, the number of upload blocks of benign
peers slowly increases. For example, in the scenarios of 10%-50% selfish peers, be-
nign peers increase the average upload blocks by 6-25 and the maximal upload blocks
by 12%-223%. Also, Figure 5 shows that selfish peers can exploit the OU algorithm
to free ride, resulting in that benign peers have to upload more blocks.

As shown in Figure 6, when the percentage of selfish peers increases, the number
of the fair peers fluctuates, while the number of the generous peers increases. For
example, in the scenarios of 10%-50% selfish peers, the percentage of the generous
peers increases from 20% to 24%. As shown in Figure 7, when the percentage of
selfish peers increases, the number of upload blocks of the initial seed quickly in-
creases. For example, in the scenarios of 10%-50% selfish peers, the number of up-
load blocks of the initial seed increases by a factor of 1.7-9.1. Figure 7 shows that
from the single peer view, compared to each benign peer, the initial seed has to up-
load enormously more blocks to selfish peers.

Therefore, these above experimental results motivate this paper. On one hand, the
TFT algorithm is effective and fair, which reduces the performance of selfish peers
and ensures the robustness of BitTorrent. On the other hand, selfish peers can exploit

382 K. Huang, D. Zhang, and L. Wang

Mean Min Max

U
pl

oa
d

Q
uo

ta
 R

at
io

 o
f B

en
ig

n
P

ee
rs

0.0

.1

.2

.3

.4

.5

scenario of 0% selfish peers
scenario of 10% selfish peers
scenario of 20% selfish peers
scenario of 30% selfish peers
scenario of 40% selfish peers
scenario of 50% selfish peers

 Mean Max

N
um

be
r

of
 U

pl
oa

d
B

lo
ck

s
o

f B
en

in
g

P
ee

rs

100

1000

10000

scenario of 0% selfish peers
scenario of 10% selfish peers
scenario of 20% selfish peers
scenario of 30% selfish peers
scenario of 40% selfish peers
scenario of 50% selfish peers

Fig. 4. Upload quota utility ratio of benign
peers

Fig. 5. Number of upload blocks of benign
peers

Ratio of Upload Blocks to Download Blocks

<0.5 0.5-1.5 >1.5

F
ra

ct
io

n
of

 B
en

ig
n

P
ee

rs

0.0

.1

.2

.3

.4

.5

.6

scenario of 0% selfish peers
scenario of 10% selfish peers
scenario of 20% selfish peers
scenario of 30% selfish peers
scenario of 40% selfish peers
scenario of 50% selfish peers

 Scenario of Fraction of Selfish Peers

0% 10% 20% 30% 40% 50%

N
um

be
r

of
 U

pl
oa

d
B

lo
ck

s

0

50x103

100x103

150x103

200x103

250x103

original seed

19186

51619

88773

128041

155829

193796

Fig. 6. Upload/download ratio of benign
peers

Fig. 7. Number of upload blocks of initial
seed

the OU algorithm and seed choking algorithm to free ride. So a good seed choking
algorithm is the key to appropriately utilizing the seeding capacity, which not only
prevents the free riding of selfish peers, but also improves the performance and ro-
bustness of BitTorrent.

5 Activeness-Based Choking Algorithm

To enhance BitTorrent’s robustness, this paper proposes an activeness-based seed
choking algorithm, where according to the activeness values of request peers, a seed
preferentially uploads five request peers with the highest activeness values. The pur-
pose of the activeness-based seed choking algorithm is twofold. First, it is to quickly
distribute all the blocks among all peers and accelerate the file download process by
selecting the request peer with the maximal available download bandwidth. Second, it
is to fairly distribute all the blocks in the system and deter the free riding of selfish
peers by selecting the request peer with the minimal available upload bandwidth.

In essence, the activeness-based seed choking algorithm is to preferentially upload
to the request peer with the maximal available download bandwidth and the minimal
available upload bandwidth. For each request peer, the available download band-
width is used to characterize its capacity, while the available upload bandwidth is
used to characterize its contribution. Unlike the original seed choking algorithm
which considers only the capacity of a request peer, our proposed activeness-based
seed choking algorithm considers both the capacity and contribution of a request
peer so as to preferentially upload to the request peer with the highest capacity and
largest contribution.

 An Activeness-Based Seed Choking Algorithm 383

We assume that a request peer p has the available download bandwidth pD and the

available upload bandwidth pU , then the activeness value of p is /p p pA D U= . When

BitTorrent is under homogeneous environment, where all leecher have the same
maximal available upload/download bandwidths, when a benign peer b is a new peer
with the maximal available upload bandwidth maxbU and maximal available download

bandwidth maxbD , then the activeness value bA of b is max max/b b bA D U= . Similarly,

when a selfish peer s camouflages a new peer with the available download band-
width sD and available upload bandwidth sU , then the activeness

value sA of s is max/ /s s s s sA D U D U= = . Since benign peer b and selfish peer s are

homogeneous, sD is less than or equal to maxbU , then b sA A≥ . Hence, when both a

benign peer and a selfish peer simultaneously request a seed for a block under homo-
geneous environment, the seed utilizes the activeness-based seed choking algorithm to
preferentially upload to the benign seed, which not only decreases the download time
of benign peers but also increases the download time of selfish peers.

When BitTorrent is under heterogonous environment, where each leecher has the
different maximal available upload/download bandwidth, the activeness value of

a request peer p is normalized by max max(/) / (/)p p p p pA D D U U= , where

maxbD and maxbU is the maximal available download and available maximal upload

bandwidth of p . When a benign peer b is a new peer with the maximal available up-

load bandwidth maxbU and maximal available download bandwidth maxbD , then the nor-

malized activeness value bA of b is max max(/) / (/) 1b b b b bA D D U U= = . When a selfish

peer s camouflages a new peer with the available download bandwidth sD and available

upload bandwidth maxs sU U= , then the normalized activeness

value sA of s is max max max(/) / (/) / 1s s s s s s sA D D U U D D= = ≤ . Hence, when both a

benign peer and a selfish peer simultaneously request a seed for a block under heter-
ogonous environment, the seed utilizes the activeness-based seed choking algorithm to
preferentially upload to the benign seed, which not only decreases the download time
of benign peers but also increases the download time of selfish peers.

To accurately and quickly estimate the available upload/download bandwidth of a
request peer, we adopt either the packet-pair based available bandwidth estimation
scheme [12] or the capacity estimation tool MultiQ [28] for each seed in BitTorrent.
Since both the packet-pair scheme and MultiQ are a lightweight albeit approximate
scheme, they incur much less overhead and delay than a full block transfer. So we
neglect the overhead and delay of available bandwidth estimation, and effectively
simulate idealized bandwidth estimation on every request peer in our experiments.

The activeness-based seed choking algorithm is a simple and effective scheme,
suitable for real BitTorrent. On one side, since a selfish peer can not camouflage or
fake its available upload/download bandwidth, both the packet-pair scheme and Mul-
tiQ can quickly and accurately estimate the available bandwidth of every request peer
by active probing. On the other side, a seed can not identify the selfish peer by its
available upload/download bandwidth estimation. Moreover, our proposed activeness-
based seed choking algorithm does not need any explicit reputation management

384 K. Huang, D. Zhang, and L. Wang

system, such as EigenTrust [29] and PeerTrust [30]. Such reputation systems are
either too complex or unrealistic, or very easy to be circumvented, especially not
suitable for the scalability, dynamics, and heterogeneity of real BitTorrent.

6 Experimental Evaluation

To evaluate the activeness-based choking algorithm, we conduct a serial of experi-
ments in both the uncooperative and cooperative peering scenarios. The uncoopera-
tive peering scenario is that each leecher downloads all blocks from the initial seeds,
without blocks exchange between peers, while the cooperative peering scenario is that
each leecher not only downloads blocks from the initial seeds, but also exchanges
blocks with each other.

6.1 Uncooperative Peering Scenario

Figure 8 shows that compared to existing seed choking algorithms, our activeness-
based seed choking algorithm not only increases the average download time of all
blocks of selfish peer, but also decreases the average download time of all blocks of
benign peer. As seen in Figure 8(a), compared to the original seed choking algorithm,
the activeness-based seed choking algorithm decreases the average download time of
all blocks of benign peer by 37% and increases the average download time of all
blocks of selfish peer by 56%. As seen in Figure 8(b), compared to the original seed
choking algorithm, the activeness-based seed choking algorithm decreases the aver-
age download time of all blocks of fast benign peer by 6%, decreases the average
download time of all blocks of slow benign peer by 55%, and increase the average
download time of all blocks of slow selfish peer by 128%. Therefore, our activeness-
based seed choking algorithm not only restrains the free riding of selfish peers but
also improve the performance of benign peers. Also, Figure 8 shows that both the
sort-based and threshold-based seed choking algorithms are not suitable for real Bit-
Torrent.

6.2 Cooperative Peering Scenario

Figure 9 shows that our activeness-based choking algorithm has the more improve of
the average download time of the first block of benign peers than that of selfish peers.

Original Sort Threshold Activeness

A
ve

ra
ge

 D
o

w
nl

oa
d

T
im

e
(s

ec
on

d
s)

0.0

2.0e+4

4.0e+4

6.0e+4

8.0e+4

1.0e+5

1.2e+5

1.4e+5

1.6e+5

1.8e+5

benign nodes
selfish nodes

 Original Sort Threshold Activeness

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
ec

on
ds

)

0

5e+4

1e+5

2e+5

2e+5

fast benign peers
slow benign peers
slow selfish peers

Fig. 8. Comparison of average download time of all blocks under different environments

(a) Under homogeneous environment (b) Under heterogeneous environment

 An Activeness-Based Seed Choking Algorithm 385

Scenario of Fraction of Seflish Peers

0% 10% 20% 40%

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
e

co
nd

s)

0

200

400

600

800

1000

original
activeness

Benign Peers

 Scenario of Fraction of Selfish Peers

0% 10% 20% 40%

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
e

co
nd

s)

0

200

400

600

800
original
activeness

Benign Peers

 Scenario of Fraction of Selfish Peers

0% 10% 20% 40%

A
ve

ra
g

e
D

ow
nl

oa
d

T
im

e
 (

se
co

nd
s)

0.0

5.0e+3

1.0e+4

1.5e+4

2.0e+4

2.5e+4

original
activeness

Benign Peers

(a) Benign peers (a) Benign peers (a) Benign peers

Scenairo of Fraction of Selfish Peers

10% 20% 40%

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
e

co
nd

s)

0

500

1000

1500

2000

2500

3000
original
activeness

Selfish Peers

 Scenario of Fraction of Selfish Peers

10% 20% 40%

A
ve

ra
ge

 D
ow

nl
oa

d
T
im

e(
se

co
nd

s)

0

20

40

60

80

100

120

140

160
original
activeness

Selfish Peers

Scenario of Fraction of Selfish Peers

10% 20% 40%

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e(

se
co

nd
s)

0

20

40

60

80

100

120

140

160
original
activeness

Selfish Peers

(b) Selfish peers (b) Selfish peers (b) Selfish peers

Fig. 9. Download time of
first block

Fig. 10. Download time of
last block

Fig. 11. Download time of all
blocks

For example, in the scenario of 10%, 20%, and 40% selfish peers, compared to the
original seed choking algorithm, the activeness-based seed choking algorithm in-
creases the average download time of the first block of benign peer by 40%, 45%, and
28% respectively, and decreases the average download time of the first block of self-
ish peer by 16%, 18%, and 7% respectively.

Figure 10 shows that our activeness-based choking algorithm decreases the aver-
age download time of the last block of benign peers, while it increases the average
download time of the last block of selfish peers. For example, in the scenario of 10%,
20%, and 40% selfish peers, compared to the original seed choking algorithm, the
activeness-based seed choking algorithm separately increases 11%, decreases 3% and
22% of the average download time of the last block of benign peer, and increases the
average download time of the last block of selfish peer by 153%, 22%, and 25% re-
spectively.

Figure 11 shows that our activeness-based seed choking algorithm has the more
improve of the average download time of all blocks of benign peers than that of self-
ish peers. For example, in the scenario of 10%, 20%, and 40% selfish peers, compared
to the original seed choking algorithm, the activeness-based seed choking algorithm
separately increases 5%, decreases 24% and 28% of the average download time of all
blocks of benign peers, and increases 5%, decreases 9% and 19% of the average
download time of all blocks of selfish peers. Figure 11 shows that the activeness-
based seed choking algorithm improves the average download time of benign peers,
which increases the number of benign peers exploited by selfish peers, so that it also
decreases the average download time of selfish peers.

386 K. Huang, D. Zhang, and L. Wang

7 Conclusions

BitTorrent suffers from the free riding of selfish peers, which not only incurs the
performance degradation of benign peers, but also hurts BitTorrent’s robustness.
Existing research studies have focused on the fairness, performance, and robustness
of BitTorrent, resulting from the TFT algorithm, while very few studies have consid-
ered the impact of the seed choking algorithm on the BitTorrent’s robustness. This
paper experimentally analyzes the impact of the free riding of selfish peers on the
performance of BitTorrent, indicating that although the TFT algorithm is effective
and fair, selfish peers can exploit the OU algorithm and seed choking algorithm to
free ride, which increases the download time of benign peers and forces the initial
seed to upload more blocks to the system. We propose an activeness-based seed
choking algorithm to mitigate the free riding, where according to the activeness
values of request peers, a seed preferentially uploads to five request peers with the
highest activeness values, without any explicit reputation management system.
Unlike the original seed choking algorithm, the activeness-based seed choking algo-
rithm considers both the capacity and contribution of a request peer to quickly and
fairly distribute all the blocks in the system. Experimental results show: (1) in the
uncooperative peering scenario, compared to the original seed choking algorithms,
the activeness-based seed choking algorithm not only decreases the average
download time of all blocks of benign peer, but also increases that of selfish peer; (2)
in the cooperative peering scenario, the activeness-based seed choking algorithm
decreases more the average download time of all blocks of benign peer than that of
selfish peer, and selfish peers have more the average download time of all blocks
than benign peers by several factors.

Acknowledgment

This work is supported by the National Science Foundation of China under grant
No.60673155 and No.90718008.

References

1. The True Picture of Peer-to-Peer File Sharing, http://www.cachelogic.com
2. Yang, X., Veciana, G.: Service Capacity of Peer-to-Peer Networks. In: Proc. of IEEE IN-

FOCOM, pp. 2242–2252 (2004)
3. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proc. of the Workshop on Eco-

nomics of Peer-to-Peer Systems (2003)
4. Levin, D., LaCurts, K., Spring, N., et al.: BitTorrent is an Auction: Analyzing and Improv-

ing BitTorrent’s Incentives. In: Proc. of ACM SIGCOMM, pp. 243–254 (2008)
5. Qiu, D., Srikant, R.: Modeling and Performance Analysis of BitTorrent-like Peer-to-Peer

Networks. In: Proc. of ACM SIGCOMM, pp. 367–378 (2004)
6. Massoulie, L., Vojnovic, M.: Coupon Replication Systems. In: Proc. of ACM SIGMET-

RICS, pp. 2–13 (2005)
7. Fan, B., Chiu, D.M., Lui, J.C.: The Delicate Tradeoffs in BitTorrent-like File Sharing Pro-

tocol Design. In: Proc. of IEEE ICNP, pp. 239–248 (2006)

 An Activeness-Based Seed Choking Algorithm 387

8. Izal, M., Urvoy-Keller, G., Biersack, E.W., et al.: Dissecting BitTorrent: Five Months in a
Torrent’s Lifetime. In: Proc. of Passive & Active Measurement Workshop, pp. 1–11
(2004)

9. Pouwelse, J., Garbacki, P., Epema, D., et al.: The BitTorrent P2P File-Sharing System:
Measurements and Analysis. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS,
vol. 3640, pp. 205–216. Springer, Heidelberg (2005)

10. Guo, L., Chen, S., Xiao, Z., et al.: Measurement, Analysis, and Modeling of BitTorrent-
like Systems. In: Proc. of IMC, pp. 35–48 (2005)

11. Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest First and Choke Algorithms are
Enough. In: Proc. of IMC, pp. 203–216 (2006)

12. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Analyzing and Improving a BitTorrent
Network’s Performance Mechanisms. In: Proc. of IEEE INFOCOM, pp. 1–12 (2006)

13. Tian, Y., Wu, D., Ng, K.W.: Modeling, Analysis, and Improvement for BitTorre-like File
Sharing Networks. In: Proc. of IEEE INFOCOM, pp. 1–11 (2006)

14. Bindal, R., Cao, P., Chan, W., et al.: Improving Traffic Locality in BitTorrent via Biased
Neighbor Selection. In: Proc. of IEEE ICDCS, pp. 66–77 (2006)

15. Legout, A., Liogkas, N., Kohler, E., et al.: Clustering and Sharing Incentives in BitTorrent
Systems. In: Proc. of ACM SIGMETRICS, pp. 301–312 (2007)

16. Huang, K., Wang, L., Zhang, D., et al.: Optimizing the BitTorrent Performance Using
Adaptive Peer Selection Strategy. Future Generation Computer Systems 24(7), 621–630
(2008)

17. Marciniak, P., Liogkas, N., Legout, A., et al.: Small is Not Always Beautiful. In: Proc. of
IPTPS (2008)

18. Jun, S., Ahamad, M.: Incentives in BitTorrent Induce Free Riding. In: Proc. of the Work-
shop on Economics of Peer-to-Peer Systems (2005)

19. Ligokas, N., Nelson, R., Kohler, E., et al.: Exploiting BitTorrent for Fun (But Not Profit).
In: Proc. of IPTPS (2006)

20. Locher, T., Moor, P., Schmid, S., et al.: Free Riding in BitTorrent is Cheap. In: Proc. of
HotNets (2006)

21. Sirivianos, M., Park, J.H., Chen, R., et al.: Free-riding in BitTorrent Networks with the
Large View Exploit. In: Proc. of IPTPS (2007)

22. Piatek, M., Isdal, T., Anderson, T., et al.: Do Incentives Build Robustness in BitTorrent?
In: Proc. of NSDI, pp. 1–14 (2007)

23. Dhungel, P., Wu, D., Schonhorst, B., et al.: A Measurement Study of Attacks on BitTor-
rent Leechers. In: Proc. of IPTPS (2008)

24. Chow, A.L., Golubchik, L., Misra, V.: Improving BitTorrent: A Simple Approach. In:
Proc. of IPTPS (2008)

25. Strauss, J., Katabi, D., Kaashoek, F.: A Measurement Study of Available Bandwidth Esti-
mation Tools. In: Proc. of IMC, pp. 39–44 (2003)

26. BitTorrent, http://www.bittorrent.com/
27. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)

IPTPS 2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg (2002)
28. Katti, S., Katabi, D., Blake, C., et al.: MultiQ: Automated Detection of Multiple Bottle-

neck Capacities Along a Path. In: Proc. of IMC, pp. 245–250 (2004)
29. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust Algorithm for Reputation

Management in P2P Networks. In: Proc. of WWW, pp. 640–651 (2003)
30. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Elec-

tronic Communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–
857 (2004)

Resource Aggregation Effectiveness in
Peer-to-Peer Architectures

Mircea Moca and Gheorghe Cosmin Silaghi

Babes.-Bolyai University, Str. Theodor Mihali 58-60, 400599, Cluj-Napoca, Romania
{Mircea.Moca,Gheorghe.Silaghi}@econ.ubbcluj.ro

Abstract. As service-oriented systems emerge toward a fully decentral-
ized collaborative environment, resource aggregation becomes one of the
important features to study. In this paper we investigate the effectiveness
of resource aggregation in a peer-to-peer architecture with autonomous
nodes that can either supply or consume services. We consider various
setups concerning the initial endowment of the system with resources,
the load with service requests, the intrinsic capability of the system for
resource discovery and the subjective valuation of peers concerning the
delivered services. We show that for high loads of the system with service
requests, the performance of the resource supply does not degrade in the
long run and for low loads the resource discovery method combined with
the partner selection algorithm succeeds to deliver a better performance.

1 Introduction

As the grid emerges toward fully distributed P2P networks [1], service oriented
architectures need to adapt to the new peer-to-peer networked environment. To
make the P2P-based SOA pervasive, the challenge is to let all the nodes in the
system to play both roles: consumers and producers of services. Such an ideal
system should be able to discover and aggregate the suitable resources to supply
a consumer query.

Therefore, a system designer faces several major challenges when building
such a system: which is the suitable underlying structure of the P2P network,
which mechanism to employ for resource discovery, what model to apply in order
to select the proper providers or whether the designed mechanisms can lead to
scalable, stable and reliable SOA environments.

On the other hand, agent research contributes with resource allocation mech-
anisms [2], emphasizing on various issues on interest like agent preferences, pro-
duction of the social welfare, complexity, negotiation, algorithm and mechanism
design etc. But, up to now, very few research concerns whether those conceptual
models are effective in fully distributed P2P networked environments.

In this paper we investigate the effectiveness of resource aggregation in un-
structured P2P networks with autonomous nodes. By resource aggregation we
understand the process of gathering quantities of the same resource from many
providers. We let each node to be either a service consumer or resource provider,

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 388–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 389

to be equipped with some decision making model and to have different prefer-
ences over the decision criteria employed for partner selection. We want to draw
out some conclusions about how the global performance of the aggregation is
affected by the network topology and size, the demand load and the power of
the resource discovery mechanism. Further, we investigate whether a consumer-
tailored subjective decision making model can bring global gains on the system.

The paper is organized as follows. In section 2 we describe P2P system model,
the decision making algorithms employed and the measures used to evaluate the
effectiveness of the resource aggregation scheme. Section 3 presents our simu-
lations and describes the results. Section 4 briefs related work while section 5
concludes the paper.

2 Background

2.1 The P2P System Architecture

We present in this section the system architecture and the aggregation mecha-
nisms employed in our setting.

The discussed system comprises a set of N participants, organized in a un-
structured peer-to-peer architecture. Each peer owns a certain quantity of re-
sources and it is linked to a subset of other peers, called neighbors. Consequently,
our system is a connected graph. This structure is established a-priori, in the
sense that it remains stable during one round of experiments. Thus, before each
run, we randomly build the graph structure of the system architecture by select-
ing the neighbors of each peer.

Each peer pi owns a quantity qi from some resource R. The resource R (which
might be a service) is defined by a set of issues (properties) {is1, ..., isk} that
characterize the resource. These issues might be the price, the resource quality
etc. and can hold numerical values {vi,1, vi,2, ..., vi,k}, specific for the resource
provider pi. For the sake of simplicity, as the goal of this paper is to investigate
resource aggregation, we endow the system with only one sort of resource R and
we vary the issues values.

In our experiments we consider various endowments of the system with re-
sources. Thus, the wealth can be uniformly distributed among the peers or they
might be unequally equipped with resources (e.g. some peers might own a big
quantity and ask for a higher price in contrast with other peers that can supply
only with a small quantity of resource).

Upon this peer-to-peer infrastructure we construct the resource aggregation
functionality employing two mechanisms: resource discovery and service compo-
sition. During resource discovery, the process starts at a node - called initiator -
that demands a quantity Qd of the resource R for Td units of time. We assume
the network is equipped with some resource discovery mechanism that search
network in order to discover potential resource providers [3]. The resource dis-
covery mechanism has some intrinsic discovery power in the sense that it is able
to investigate a fraction f of the total number of peers. Later in this paper, we

390 M. Moca and G.C. Silaghi

will address the models for resource discovery. The resource discovery process
returns a list of potential providers.

Next, the service composition mechanism is applied after resource discovery.
During service composition, the initiator selects the proper peers to aggregate
resources from, by filtering the list returned by the resource discovery mecha-
nism. In section 2.2 we describe the procedure applied in the service composition
phase in order to select the best peers for a resource demand. If the initiator can
not aggregate the entire demanded quantity, the query fails.

The time Td related with a resource demand indicates the duration in time
units for which the initiator occupies the selected resource during service con-
sumption. Thus, if a provider pi enters a transaction for a resource demand with
Td, during those time units the provider will not be able to commit the resource
for another query, thus eliminating the possibility of distributed deadlocks in the
system. For simplicity, we assume that each initiator can estimate the time Td

for a resource demand, and if Td is not enough to supply the initiator’s needs,
the initiator will launch a new query for the additional required duration.

Models for resource discovery in peer-to-peer architectures are presented in [3].
Among them, we can consider message broadcasting. With message broadcast-
ing, each resource query is broadcasted by the initiator in the network with
a time-to-live parameter TTL. The TTL is strongly related with the connec-
tion degree of the network. They determine the number of nodes reached by the
search - the query horizon. The bigger the TTL, the further the message is deliv-
ered in the network, and the query horizon of the resource discovery mechanism
increases. The theoretical query horizon can be deduced out of the network size,
topology and TTL. The actual horizon is the total number of distinct nodes that
actually respond the queries. The theoretical horizon calculation is often irrele-
vant [4] since it does not take into account graph cycles and variable connection
degree at different hops. Hence, we employ in our study the actual horizon, and
for simplicity refer with horizon. Being tracked and reported by the system, this
value is accurate.

For our experiments, we employed the deterministic simple-flooding broad-
casting protocol [5]. Broadcasting is very suitable for our needs because there is
a direct relation between the query horizon and the size of the TTL parameter.

In this paragraph we describe the experimentation setup employed in our
study. A round of experiments consists of multiple resource demands, each being
delivered at individual time units on the time scale. For a resource demand, a
peer pi is randomly selected and it initiates a query for Qd quantity of resources
with Td. The resource discovery mechanism retrieves a list of potential providers.
Next, the initiator applies some decision model in order to select the peers to
aggregate resources from. The efficacy of the selection is evaluated and next, the
transaction happens in the sense that the selected peers will have the selected
quantity of resource unavailable for the next Td units of time. This resource
demand scenario is applied several times and at the end, we report the total
efficacy achieved.

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 391

During experimentation (section 3) we change various inputs and we report
and conclude about how effective the resource aggregation procedure described
above is. Next, we describe the decision models used for service composition and
the metrics employed to evaluate the efficacy.

2.2 Decision Models for Resource Aggregation

In this section we describe the decision models employed for service composition.
As indicated by the decision making literature [6,7], decision makers take

action based on various criteria and on their preference among them. Criteria
can be qualitative and quantitative and the decision models are parametric or
non-parametric as they employ rankings of the alternatives based on the values
ordering or they fully employ the values scored by the criteria in some compli-
cated computations.

For the scope of this paper we only need a simple decision making algorithm
that has variants emphasizing or not some decision criteria. We do not intend
to search the best possible decision making model. Thus, we selected a non-
parametric model named Onicescu, presented in [8], developed by the Romanian
mathematician Octav Onicescu, which is applicable in the same initial conditions
of the ELECTRE method [6]. The key requirements of the method are:

– the decision makers include more criteria in the model;
– actions are evaluated on an ordinal scale;
– a strong heterogeneity related to the nature of the evaluations exists among

criteria;
– compensation of the loss on a given criterion by the gain on another may

not be acceptable for the decision maker.

The Onicescu algorithm assigns a score to each alternative and ranks the alter-
natives based on the scores. The score is an evaluation of the decision maker’s
preference for the evaluated alternative. We present below two variants of the
Onicescu’s decision criteria algorithm.

Given the set of alternatives V = {vi}, i = 1, n, the decision maker uses a set
of criteria C = {cj}, j = 1, k to evaluate the alternatives. In our case, potential
providers represent the alternatives, and the price and quantity proposed by
peers, as well as other issues are the criteria.

The Onicescu algorithm starts with a matrix A of size n× k having a line for
each alternative and a column for each decision criteria. Value ai,j represents
the actual values of the ith alternative for the jth criterion. Next, the algorithm
builds a matrix B of size n× k where the value bi,j represents the rank of value
ai,j among the values on the column j of A. Hence, the bi,j represents the ranking
of alternative vi on criterion cj .

In the objective version of the Onicescu’s algorithm, from B, we further build
a new matrix C of size n × n, where ci,j represents the count of rank j for the
alternative vi on all values on line i of B. Thus, matrix C depicts how many
times alternative vi ranked first, second, third etc. among all decision criteria.
Equation 1 gives the score for an alternative vi computed out of C:

392 M. Moca and G.C. Silaghi

SC1(vi) =
n∑

j=1

ci,j
1
2j

(1)

Next, each alternative is ranked according with the score SC1, the first one being
the one that scores highest.

The subjective version of Onicescu’s algorithm takes as input the matrix B
containing all rankings of alternatives vi for all criteria. This version allows the
decision maker to assign importance weights to each criterion. Assuming that
the k criteria are ordered according with the preference of the decision maker
(criterion 1 being the most preferred one, next criterion 2 and so on), eq. 2
presents a possible weighting scheme that puts on each criterion twice as much
importance than the next positioned one:

W = {wj , wj =
1
2j

, j = 1, k} (2)

With this weighting, the subjective Onicescu’s score for each decision alternative
is presented in eq. 3:

SC2(vi) =
k∑

j=1

wj
1

2bi,j
(3)

The variants of Onicescu differ only on the score assigned to the decision alterna-
tives. We note that the subjective variant of Onicescu personalizes the decision
making process. Each decision maker can have another preference order among
criteria and this preference order might vary from a resource demand to another.
More, the decision maker can use other weighting schemes instead the one de-
scribed in eq. 2 and recommended in [8]. The subjective approach was envisaged
as more realistic, coming close to the real-world decision problems.

Another issue in the above-presented decision making scheme is the existence
of a ranking method for each decision criteria. The algorithm assumes that the
decision maker is able to crystal-clear decide which values for a criterion are bet-
ter than others. This is equivalent with assuming that each criterion is equipped
with an ordering relation on its values.

In our experiments, for the sake of simplicity, we considered only two decision
criteria: the price and the quantity and both Onicescu’s scores. More criteria
can be added like real-life issues for a particular resource (which are related with
the QoS parameters for the resource). In the subjective approach, we considered
quantity being more preferred than price. Thus, we model a consumer search-
ing for a specific resource rather than searching for the cheapest one. Such a
consumer will be more happy to directly deal with a small number of providers
to aggregate a big quantity of resources than to fragment the demand in many
shipments.

The ranking produced by the decision making algorithm is valuable in the
case when no single provider can deliver the demanded quantity. Thus, the
provider will have a mean to select the top-ranked potential providers in order to

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 393

aggregate the demanded quantity. If one provider can supply the demand, the
initiator will select the first-ranked potential provider.

2.3 Evaluating the Quality of Resource Discovery

In this section we present the evaluation criteria to assess the effectiveness of
the resource aggregation process.

Evaluation should be done individually at the level of each resource demand
and globally at the level of all resource demands covered is a experimentation
run.

At the end of the resource aggregation process the initiator holds an optimal
list with partners as the result of the query injected into the system. As available
resources permanently fluctuate in the system in terms of provider and quantity,
consecutive demand queries would provide different results. Thus, at the resource
demand level, we evaluate the utility perceived by the initiator concerning the re-
sult delivered by the system in response to its query. A selected result consists in a
number Np of selected partners, the total prices Pi, i = 1, Np paid by each partner
and the quantities Qi delivered for the prices Pi. Initiators are interested in:

– aggregating all the demanded quantity Qd

– minimizing the payments
– minimizing the risks associated with the transaction delivery. In our case,

risks increase with the number of partners per transaction.

Eq. 4 describes the individual ’utility’ associated with a query.

Ud =
1

Np
× 1∑Np

i=1 Pi

× 1∑Np

i=1 Qi

(4)

The bigger the utility scored by a demand d, the better. Utilities can be aggre-
gated over all demands in a run of experiments to obtain the global utility Ug

of a system setup. The global utility Ug characterizes the social welfare concept,
presented in [2].

Besides the above-described utility, we also count the number of failures to
supply the entire demanded quantity and the total payments. From the con-
sumers’ point of view, the objective is to minimize the payments. From the
providers’ point of view, the objective is to maximize the payments.

3 Experiments and Results

In this section we describe the experiments and comment on the results of our
study. The experimentation is performed on a message-based simulator for a
P2P network, implemented at the Faculté Polytechnique de Mons Belgium1 and
modified to accommodate the resource aggregation.
1 We thank Sebastien Noel from Faculté Polytechnique de Mons Belgium for letting

us to use the initial version of the P2P network simulator and for support during
the development.

394 M. Moca and G.C. Silaghi

We employ the P2P system architecture described in section 2.1 with the
broadcasting protocol for resource discovery. Next, we present the set with the
main system parameters that drive our experiments:

– the TTL of the broadcasting mechanism employed for resource discovery,
– the connection degree (Dc), representing the number of neighbors of a node;
– the query horizon (Hd), meaning the number of potential providers that an

initiator discovers; this is the practical achieved value for the parameter f -
the coverage factor of the resource discovery mechanism

– the number of selected providers (Np - as in previous section),
– the initial endowment qi of a node,
– the total number of request messages (Nm) broadcasted for a particular re-

source demand. This is a cost measure for the resource discovery mechanism;
– the demanded quantity Qd for a query; might be (i) low, (ii) high or can

uniformly vary between the low and the high value. Each fulfilled query will
hold the committed resources busy for the next Td queries, with Td being
set up to a random number from 2 to 10. The demanded quantity is in fact
the load factor of the network, as employed in [9].

– and the failure rate (Rf), which is the number of queries that fail within
the running of a scenario. A query is considered failed when the initiator
ends the resource aggregation procedure without fulfilling all the requested
quantity Qd.

We experiment on three different sorts of networks regarding the distribution
of qi. If QN is the total quantity of the resource available in the system, we
experiment with networks where:

– qi ∼ 1
QN (uniform distribution),

– qi ∼ Pois(1) (Poisson distribution with parameter λ = 1) - where very few
nodes hold large quantities of resources, and

– qi ∼ Pois(4) (Poisson distribution with parameter λ = 4) distribution, where
the majority own the average quantity 1

QN and only few nodes own large or
small quantities.

For the rest of our discussion, a scenario (or a run of experiments) is a set of 100
queries initiated by participants randomly chosen from a network of 500 nodes.
The results we present below scales proportionally with the network size and the
load in queries, by maintaining the same network topology.

We first inspect how TTL influences the global utility since a higher value
would lead to a broader horizon. Thus, for fixed values of Dc and Qd we run
scenarios for a range of TTL values. The total utility Ug increases with the TTL,
as depicted in figure 1a. Figure 1b depicts the failure rate Rf decreasing with
increasing TTL. We identify three ’stages’ for the progress of Ug as we modify
TTL. First, for very low values of TTL, Ug is 0, since Rf is 100%. It means
the horizon is insufficient for the initiator to discover enough nodes to fulfill Qd.
Starting from a certain TTL, the Ug rises and then becomes stable, while Rf

decreases.

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 395

(a) (b)

Fig. 1. a) Total utility Ug as a function of TTL; b) The failure rate Rf

(a) Total utility (b) The horizon and number of messages

Fig. 2. Gains and costs as a function of TTL, for various connection degrees

Keeping the same setting, we ran scenarios with different values for Qd. The
pattern followed by the global utility vs. TTL holds as in figure 1a. However, for
high values of Qd, Ug begins to increase only with a higher TTL.

The connection degree is another parameter that determines the horizon’s
ampleness. Thus, for the same scenarios as before: a range of TTL values and
fixed Qd, we inspect Ug while modifying the connection degree Dc. Figure 2a
show the total utility curve Ug for three distinct values of Dc; Qd being fixed.
We observe that a greater Dc improves Ug, in the sense that stages of increasing
and stabilizing emerge sooner, thus for lower values of TTL.

A more detailed analysis of Ug from the communication costs’ perspective,
conveys us to the assertion that both Dc and TTL are worth increasing up to a
certain level. That is, after Ug converged to its upper limit for the given network
setup, increasing Dc and TTL lead only to higher costs, without improving
the total utility. Figure 2b depicts the horizon Hd as it flattens with a certain
TTL, although the number of messages continue to increase with TTL. We also
note that this behavior holds in scenarios with different values of Qd and Dc.
More, if we simultaneously look at how Ug and Hd modify, we observe that they
converge for the same values of TTL and Dc. Consequently, when designing a
real system, Dc and TTL should be adjusted to values that maximize Ug and
still avoid useless retransmission.

In settings with dynamic values of Qd we identify different levels of utility for
different ranges of Qd. In figure 3 we depict total utility lines for setups with
low, high and uniformly distributed values of demanded quantities. We run both

396 M. Moca and G.C. Silaghi

(a) Qd is low (b) Qd is high (c) Qd is uniformly dis-
tributed

Fig. 3. Total utility curves for different values of Qd, for both versions of the decision
making algorithm

versions of the decision making algorithm, the lines with solid circles correspond
to the objective version of the algorithm (the first version described in section
2.2). Hence, higher Qd values are, lower the total utility values Ug are produced
by the network. This assertion holds both for static and dynamic values of Qd

within a scenario. Another remarkable aspect implied by the value of Qd is that
both variants of Onicescu’s algorithm tend to produce same Ug for high demands.
It means that within a system dominated by initiators with high demands, the
preference over a certain variant of the decision making algorithm is not an issue
of performance. However, within scenarios with uniformly distributed Qd, the
two versions of Onicescu’s algorithm perform differently in terms of Ug, as shown
in figure 3c.

Figures 4a - 4c show the numbers of providers selected by both versions
of Onicescu’s algorithm as a function of TTL and Qd. As presented in
section 2.1, the discovery of nodes with available resources is performed by the

(a) Qd is low (b) Qd is high (c) Qd is unif. distributed

(d) Qd is low (e) Qd is high (f) Qd is unif. distributed

Fig. 4. Number of selected providers providers and query horizon for both versions of
Onicescu’s algorithm, as a function of TTL and for different values of Qd

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 397

(a) version 1 (b) version 2

Fig. 5. Ug for different distributions of qi and for both versions of decision making
algorithm

broadcasting mechanism in the first phase of the resource aggregation process.
After the run of a query within a scenario, the resources of certain nodes (the
selected providers) are occupied by the initiator of the respective query. As we
experiment with both versions of Onicescu’s algorighm, we observe that they
perform differently in terms of total selected providers. Since the second ver-
sion ranks better the nodes with higher values of the initial endowment qi, it
minimizes the number of selected providers for a given Qd. Consequently, at the
end of an aggregation process, the second version of Onicescu’s algorithm would
occupy less nodes (as compared to the first version) from within the horizon.
More, this leads to horizons of different extents within experiments for the dis-
tinct versions of Onicescu’s algorithm. As depicted in figures 4d - 4f, the second
version of Onicescu’s algorithm decides on a broader horizon, for low, high and
uniformly distributed values of Qd.

The distribution of the wealth (qi) on the network has a great impact on global
utility. Hence, we inspect Ug in experiments with the distributions mentioned at
the beginning of this section. Figure 5 depicts the utility for these distributions,
where we observe that subjective Onicescu (figure 5b) yields a better utility for
all distributions of qi. We also note (figure 5b) that the subjective version of
the Onicescu’s decision making algorithm is able to take advantage from the
heterogeneity in the endowment of the peers. Thus, the utility scored for the
network with uniformly distributed wealth is higher than the remaining cases.
This is exactly converse in the objective version of the Onicescu’s algorithm with
favors the most homogeneous structure. We can conclude that a decision making
algorithm that reflects closer the preference of the users between various decision
criteria is most suitable for heterogeneous environments and can take advantage
from the heterogeneity.

4 Related Works

Figueira et al. [6] presents various decision making models. The ELECTRE
model is employed in managerial decisions similar with the one considered in

398 M. Moca and G.C. Silaghi

this paper, but with more than one decision maker. Other alternatives are the
PROMETHEE method or the multi-attribute utility theory.

Resource allocation is widely studied in multi-agent systems [2]. They present
various issues of interest we should consider when designing a resource allocation
mechanism. Such mechanism are employed in grid systems for job scheduling [9].
X.Y. Li et al. [10] is concerned in designing mechanisms that provide more trust
in intermediate nodes of a transaction. They treat the ”moral hazard” (as called
in economics) problem in networks with multi-hop routing and design incentive
schemes for nodes to eliminate hidden information that stands between end-
points of a transaction.

Service composition in the sense of finding the proper instantiation for an
orchestration is approached in [11] by employing genetic algorithms. The authors
propose a slower (than integer programming) but scalable solution that deals
with generic QoS attributes.

Emerging cooperative behavior in P2P networks is mostly based on developing
incentive techniques, like the one presented in [12] to confront the problem of
”free riding” (lack of cooperation). The basis of their techniques consist in the
Generalized Prisoner’s Dilemma and the Reciprocative decision function. Jurca
& Faltings [13] propose a reputation model to stand as an incentive mechanism.

5 Conclusion

In this paper we investigated the effectiveness of resource aggregation over a
P2P networked infrastructure. Resource aggregation is viewed as the process of
collecting quantities from the same resource from various providers.

We concluded that unstructured P2P networks equipped with resource discov-
ery mechanisms with a given horizon are able to properly fulfill the consumers’
queries. By experimentation, one can find the proper parameters for the network
connectivity and for the resource discovery mechanism. Increasing the connectiv-
ity or the power of the resource discovery mechanism more than an optimum will
not lead to more satisfaction among consumers. We investigated two variants of
the decision making algorithm that put equal emphasis on the decision criteria
or consider the decision maker’s preference among them. We noticed that when
the wealth is heterogeneously distributed on the environment, the variant of the
decision making algorithm that differences between the criteria can bring more
global welfare.

As a future work we intend to evaluate other decision making algorithms,
including parametric ones. Besides aggregation we intend to consider the more
sophisticated bundling of resources, where a bundle can comprise quantities from
several sorts. Also, reputation of nodes can help as an additional decision cri-
terion during both resource discovery and service composition. The resource
discovery costs can be reduced by properly selecting the nodes. Another issue
to consider is the budget limitation of the initiators, thus, the demand might be
bounded.

Resource Aggregation Effectiveness in Peer-to-Peer Architectures 399

Acknowledgements. This work is supported by the Romanian Authority
for Scientific Research under doctoral scholarship no. 399/2008 and project
IDEI 2452.

References

1. Foster, I.T., Iamnitchi, A.: On death, taxes, and the convergence of peer-to-peer
and grid computing. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 118–128. Springer, Heidelberg (2003)

2. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N.,
Padget, J., Phelps, S., Rodŕıguez-aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30(1), 3–31 (2006)

3. Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P., Mordacchini, M., Pennanen,
M., Popov, K., Vlassov, V., Haridi, S.: Peer-to-peer resource discovery in grids:
Models and systems. Future Generation Computer Systems 23(7), 864–878 (2007)

4. Fisk, A.: Gnutella Dynamic Query Protocol v0.1. LimeWire LLC (2003),
http://www9.limewire.com/developer/dynamic_query.html

5. Mkwawa, I.H., Kouvatsos, D.: Broadcasting methods in mobile ad hoc networks:
An overview. In: Technical Proc. of the Third Intl. Working Conf. HET-NETs,
Networks UK, T9/1–14 (2005)

6. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of
the Art Surveys. Springer, Heidelberg (2005)

7. Abdellaoui, M., Hey, J.D.: Advances in Decision Making Under Risk and Uncer-
tainty. Springer, Heidelberg (2008)

8. Ilies, L., Mortan, M., Lungescu, D., Lazar, I., Popa, M., Veres, V.: Handbook of
Management (in Romanian). Risoprint (2006)

9. Chunlin, L., Layuan, L.: Multi economic agent interaction for optimizing the aggre-
gate utility of grid users in computational grid. Applied Intelligence 25(2), 147–158
(2006)

10. Li, X.Y., Wu, Y., Xu, P., Chen, G., Li, M.: Hidden information and actions in
multi-hop wireless ad hoc networks. In: MobiHoc 2008: Proc. of the 9th ACM Intl.
Symposium on Mobile Ad Hoc Networking and Computing, pp. 283–292. ACM,
New York (2008)

11. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO 2005: Proc. of the
2005 Conf. on Genetic and Evolutionary Computation, pp. 1069–1075. ACM, New
York (2005)

12. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust incentive techniques for peer-
to-peer networks. In: Proc. of the 5th ACM Conf. on Electronic Commerce, New
York, NY, USA, pp. 102–111 (2004)

13. Jurca, R., Faltings, B.: Reputation-based pricing of p2p services. In: P2PECON
2005: Proc. of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-Peer
Systems, pp. 144–149. ACM, New York (2005)

http://www9.limewire.com/developer/dynamic_query.html

Web Services for Deeply Embedded Extra
Low-Cost Devices�

David Villa, Felix Jesús Villanueva, Francisco Moya, Fernando Rincón,
Jesús Barba, and Juan Carlos López

Dept. of Technology and Information Systems
University of Castilla-La Mancha

School of Computer Science. 13071 - Ciudad Real. Spain
{David.Villa,Felix.Villanueva,Francisco.Moya,Fernando.Rincon,

Jesus.Barba,JuanCarlos.Lopez}@uclm.es

Abstract. This paper describes a new approach to implement Web Ser-
vices in embedded devices connected to Wireless Sensor Networks. The
sensor/actuator node is able to process standard requests (XML-RPC
and SOAP), perform an action and generate a valid response.

These stand-alone nodes show good interoperability with standard
Web Services using just a transport protocol gateway.

1 Introduction

While interoperability may be achieved by means of low cost TCP/IP im-
plementations, interoperability at the application layer continues to be a key
problem [4].

Web Services emerge as an interoperable, language and platform independent
solution to access sensor services thought Internet. Being able to introduce Web
Services directly in the WSN devices would allow deploying application inde-
pendent gateways. This implies a set of interesting advantages as we will show
below.

Obviously, the use of SOAP [5] in wireless sensor networks introduces con-
siderable overhead compared to most binary protocols. Therefore it may not
always be appropriate in some application domains where power consumption
or latency are critical. Our prototype implementation was focused on emergency
light control, which shows a number of characteristics compatible with this ap-
proach:

– Nodes do not have power supply problems because they are attached to the
power line.

– Nodes are static. There are no mobile nodes in the network.
– Interaction across the WSN is quite limited. In fact, the nodes will only

provide autochecking notifications on request so that delay and bandwidth
are not major bottlenecks.

� This work was supported by ERDF, the Regional Government of Castilla-La Man-
cha, and the Spanish Ministry of Science and Innovation under grants PAI08-0234-
8083 (RGrid), TEC2008-06553 (DAMA), and Hesperia CENIT.

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 400–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Web Services for Deeply Embedded Extra Low-Cost Devices 401

– The configuration procedure should be as simple as possible in order to
reduce installation cost. We initially aim at per-node remote configuration.
Global configuration would be handled as an external system-wide service.

In this case, or any other field with similar properties, Web Services seem to be a
good approach to solve the problem of interoperability at the application layer.

2 Related Work

Most of the former approaches take the raw data from wireless sensor networks
using proprietary protocols and export them through Web Services residing in
a gateway [1,3]. The web service is actually running in the gateway and not in
the WSN device. Each new application would require specific developments, and
each web service becomes a wrapper or a facade for the binary protocols used
in the WSN.

Our approach, as we will see later, uses generic gateways (independent of the
wireless sensor network devices deployed) and reduces configuration procedures
required to describe and publish the WSN nodes to a specific network. We aim at
removing the need of an intermediate application-level proxy such as the Sensor
Collection Service described in [1].

In [2] a framework has been developed to facilitate the use of SOAP in WSN
focusing on reducing the overhead (e.g reducing the number of messages) on the
network by means of data aggregation techniques. Their implementation is done
in the NS2 network simulator and we are not aware of any implementation for
actual devices.

Other approaches [8] try to embed the Web Services architecture in low-
cost devices reducing the size of the protocol stack (TCP/IP, XML and SOAP
processor, etc.). These low-cost devices exceed the average capacity of many
wireless sensor networks devices.

In this paper we propose a different way to embed a minimun web service in
a WSN device which follows the general principles described in [11]. Instead of
reducing existing implementations of the Web Services protocol stack, we are
going to define the smallest feature set that a web service needs to provide and
build it up from there.

3 Embedding Web Services, a Bottom-Up Approach

Although it is important that each device looks like a web service, it is not
essential that they are real Web Services. If devices are able to generate coherent
replies when they receive predefined request messages then the system will work
as expected. For a given WSDL [7] specification these request and reply messages
are completely specified by the communication protocol (SOAP or XML-RPC).

Let us analyze an HTTP embedded SOAP request and the corresponding
reply for a very simple interaction (e.g. get the status of an emergency light).
We will show the full SOAP messages to make it easier to follow the behavior
of the automaton of figure 1.

402 D. Villa et al.

Init

Start

Req Set

Tail

Resp Set Resp Get

<?xml version="1.0" encoding="UTF 8"?>

<SOAP ENV: Envelope
SOAP ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/
xmlns:SOAP ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP ENV:Body>
<get SOAP ENC:root="1">

<SOAP ENV: Envelope
SOAP ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema instance"
xmlns:SOAP ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP ENV:Body>
<set SOAP ENC:root="1">

<v1 xsi:type="xsd:boolean">True</v1>

</set>
</SOAP ENV:Body>
</SOAP ENV:Envelope>

</get>
</SOAP ENV:Body>
</SOAP ENV:Envelope>

Fig. 1. Finite state machine for get() and set() SOAP messages

POST / HTTP/1.0
Host: localhost:8080
User-agent: SOAPpy 0.12.0 (pywebsvcs.sf.net)
Content-type: text/xml; charset="UTF-8"
Content-length: 336
SOAPAction: "get"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<get SOAP-ENC:root="1">
</get>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

It seems clear that SOAP is a verbose protocol where most of the information is
in the Body part of the message. This message can be obtained from the WSDL
specification:

[...]
<message name="getRequest">
</message>

<message name="getResponse">
<part name="retval" type="xs:boolean" />

</message>
[...]
<operation name="get">

<input message="getRequest" />
<output message="getResponse" />

</operation>
[...]

We implement an ad-hoc parser from the WSDL specification which recognizes
the request and builds, in a dynamic way, an appropriate answer to such a
request:

Web Services for Deeply Embedded Extra Low-Cost Devices 403

HTTP/1.0 200 OK
Server: SOAPpy 0.12.0 (Python 2.5.2)
Date: Fri, 21 Nov 2008 10:52:17 GMT
Content-type: text/xml; charset="UTF-8"
Content-length: 501

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<getResponse SOAP-ENC:root="1">
<Result xsi:type="xsd:boolean">False</Result>
</getResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Typical sensors usually expose a very simple interaction model. Therefore we pro-
pose a set of very simple WSDL interfaces to access the data provided by the nodes.
We define a get/set interface that may be used by the clients to obtain the current
value of a sensor (get) or manipulate and actuator (set). Of course, the approach
is not limited to this interface, but it illustrates perfectly the proposed solution.

We focus on minimizing the amount of memory required to parse the messages
in order to be able use WSAN devices with limited resources. To achieve this,
we use several techniques:

– We implement an ad-hoc finite state machine in order to recognize a request
and build up the answer. The parser removes redundant whitespace, and
XML comments in order to feed a canonical XML stream into the automaton.

– Instead of saving and comparing all possible tags that a request message can
have, we calculate a CRC using the CCITT-CRC 16 bit algorithm [10]. In the
parser, we only compare CRC values of the XML tags with the precalculated
CRC for each request available in the WSDL specification.

– We do not store whole messages. Each message is parsed incrementally as
it is being received, much like a SAX parser, but using an ad-hoc parser to
reduce overall resource consumption.

For example, for the request message shown above, we implement the finite
state machine shown in figure 1. Basically, we calculate the CRC for each XML
tag (delimited by ’<>’). From the Init state, we start to parse the input data
ignoring the HTML header. This header does not include relevant information
from the point of view of the WSAN devices.

The parser ignores all incoming data until the tag <?xml version="1.0"
encoding="UTF-8"?> is recognized (the calculated CRC matches the expected
CRC for this tag). This event triggers the transition to the Start state, which
will discriminate among the available operations. Input data will include some
encoding tags inmediately followed by the operation being invoked, which helps
us to recognize whether the request is a valid verb (set or get in our example).
Depending on the CRC calculated at the expected positions of the incoming
data stream there will be a transition to the state where the corresponding

404 D. Villa et al.

arguments are read. Operations without arguments will lead to a transition to
the Tail state which validates the remaining of the request message.

Operations with parameters will go through intermediate parameter parsing
states. In our example, in the Req Set state, the automaton will parse the pa-
rameter attached to the set operation and then it will trigger a transition to the
Tail state. Finally, after a completely validated request is received we build up
the response message specifically for each request. Note that there is no need to
store which method is being invoked since the tail of each request is different
and may be used to discriminate among the response generators.

In each of the response generation states (Resp Set and Resp Get in our
example), the user needs to provide an appropriate routine which executes the
validated request and builds the appropriate response.

Although not explicitly stated in figure 1 (for the sake of clarity) whenever
the incoming tags do not match any of the expected CRCs the state machine
is reset to the initial state Init and the connection is closed. This provides a
reasonable protection against faulty clients.

3.1 Compiler

The design and implementation of the finite state machine is a tedious and error
prone task. Therefore we are building a compiler that takes a WSDL specifica-
tion and a service definition and automatically generates the appropriate finite
state machine for the corresponding messages from the interfaces defined in the
WSDL file.

The compiler (see figure 2) takes four files as inputs:

ipk
source

WSDL
parser

ipk
parser

SymbolTable

WSDL
interface

platform
constraints

Automaton
(C source)C compiler

ELF
binary
(PC)

MICA2
binary

(TinyOS)

binary
(other)

parsing
templates

provided by user

generated by compiler

manifest

manifest
parser

servant

Fig. 2. Compiler block diagram

Web Services for Deeply Embedded Extra Low-Cost Devices 405

– The WSDL interface declaration. The services provided by the WSN node
must adhere to the interfaces specified in this file.

– The servant (method implementation). This file contains the application
specific code. Usually this includes code to access to the underlying hardware
and read or write a physical transducer.

– Service definition. The programmer defines in this file which concrete ser-
vices the node holds and the interface (portType) exposed by each sensor
or actuator in the node. We use a very simple syntax defining services and
basic interaction events. The following listing shows a little example.

uses "DUORW.wsdl";

local myLocalEP("xbow -h 0x0001") {
DUOIBoolRW_Service svc1;

}

remote myRemoteEP("xbow -h 0x0002") {
DUOIBoolRW_Service svc2;

}

repeat(5) {
svc2.set(svc1.status(), svc1.endpoint);

}

This example defines both a local and a remote web service endpoint. It also
states that a periodic request must be done in the remote service sending
the status and the endpoint of the local service.

– A manifest file which contains the interfaces for user-provided procedures,
such as the procedures to read hardware sensors. The status procedure of
the listing above is one such example:

private DUOIBoolRW status(11) {
output = bool;

};

The compiler is able to generate generic parsers that may be compiled on several
platforms. This include support for the MICA2 (Crossbow) on the TinyOS [13]
operating system, and also for OS-less implementations for general purpose mi-
crocontrolers such as ATMega128, 8051 or even mid-range Microchip devices.

4 Network Architecture

In our application field (emergency lighting), a control center usually manages
and monitors several buildings distributed in a large geographical area. Build-
ings with hundreds or even thousands of emergency lights are quite common
(airports, museums, etc.). Each installation is connected to an external network
(e.g. Internet) by means of one or more gateways (figure 3).

Each gateway performs three main tasks:

– It encapsulates SOAP messages from Internet transport protocol (typically
TCP protocol) in the WSN transport protocol. The reverse process is also
needed for outgoing messages (encapsulation of SOAP messages from WSN
transport protocol to Internet). This task is shown in figure 4.

406 D. Villa et al.

Fig. 3. Physical network topology

TCP port Node ID

12300 12FA
12305 163B

PAT TABLE

TCP PORT

GATEWAY

NODE ID

WSN HeaderSOAP Request

WSN Header SOAP Reply

SOAP Request TCP Header

TCP Header SOAP Reply

WSNInternet

Fig. 4. Simplified gateway process

– It must implement a bidirectional correspondence between TCP ports and
node IDs. This is a crucial aspect for avoiding hand-made configuration
procedures. When we install a WSN node, the gateway must assign a TCP
port to its node ID.

The association established between the TCP port and the node ID must be
represented in the WSDL. A WSDL file represents the interface for users of
the service and also some properties of that service, for example, its location
(endpoint).

We embed both the WSN location and the TCP port assigned in the WSDL
tag soap:address, as shown below. The gateway needs to know the WSN node
ID of each WSN device available in the network and it generates the correspond-
ing WSDL file. This task may be accomplished without human intervention using
a modification of ASDF [12] (our service discovery protocol for WSN).

Web Services for Deeply Embedded Extra Low-Cost Devices 407

When a WSN node is attached to the network it sends an advertisement with
the name of the interfaces that it implements and its node ID. The gateway builds
a WSDL file from a template which contains the service interface and the service
implementation. In the service implementation section we may include some
common information about the environment such as human readable location,
node ID, etc.

Here is an example:

[...]
<!-- Service to export -->

<service name="ExitDoor_Service">
<port name="IBoolRW_Port" binding="IBoolRW_Binding">

<soap:address location="http://example.com:7890"/>
</port>

</service>
[...]

With this WSDL file, the services may also be located by means of UDDI pro-
tocol. The process of publishing any Web Service associated to a WSN device
in a UDDI registry is similar to any other Web Service, namely, the web service
interface like UDDI t-model structure and the Web Service implementation like
a UDDI business Service.

Additionally, it is possible to install more advanced services in the gateway
to provide additional features such as logging, authorization, etc.

The gateway may be able to generate the associated WSDL file from a set of
templates for each of the interfaces implemented by nodes in the network. There
are two possible solutions:

– Templates for each interfaces are stored in the gateways. Whenever new
nodes are installed in the WSN their interfaces must be added to the template
repository of the gateways (if they where not already there). This situation
introduces coupling between gateways and applications deployed in the SAN,
but do not affect nodes themselves.

– When a node is advertised through the network, the gateway may request the
template of the interfaces implemented in the node. This is easily achieved
with a small modification of ASDF storing the WSDL template in the node
and implementing an operation to retrieve the template. This is more ex-
pensive for the nodes in terms of the amount of required FLASH/ROM, but
it allows simpler gateways, fully independent of the application.

5 Prototypes

Using the strategies and policies described so far we developed a set of prototypes
on widespread WSN hardware.

Probably one of the most used microcontrollers in WSN platforms is the Atmel
ATMega128 with the TinyOS operating system. OS-less devices are also quite
common.

We compare here the size of different Web Services implementations. In a first
step, we implement a basic get/set service (see section 3), using two lightweight

408 D. Villa et al.

Table 1. Size of the implementation (in bytes) of a simple emergency light controller
as described in section 3

Software Platform Middleware Binary size Other
C-SOAP x86 SOAP 1,731,508 OS
libXML-RPC XML-RPC 768,536 OS
Embedded WS x86 SOAP 507,676 OS

XML-RPC 504,772 OS
TinyOS SOAP 35,150

XML-RPC 11,216
AVR SOAP 1,068 ZigBee (4.261)

XML-RPC 1,182 ZigBee (4.261)

general-purpose libraries: csoap [14] and libxml-rpc [15]. Then we implement
the same service using our approach on three platforms: a PC, a MICA2 running
TinyOS and on an OS-less AVR microcontroller. The size of the resulting binaries
are shown in the table 1. Notice that:

– All the x86 prototypes are statically linked and they run on a conventional
PC with Debian GNU/Linux. All of them require an operating system whose
size is not taken into account.

– The x86 Embedded WS prototypes are pure C programs with standard
socket support.

– The TinyOS and AVR prototypes include all the required components. The
data refers to the binary file we install in the device. The AVR prototype
does not use an operating system but just a simple cyclic executive runtime,
much smaller than TinyOS although it lacks most of TinyOS features.

The source code for all these tests is available in our EWS webpage [16]. The
current reference implementations and other useful data may be found there.

6 Conclusions

In this paper we presented a very low-footprint implementation of web services
for wireless sensor actuator networks. As far as the authors know this is the most
reduced implementation of this type of architecture in WSAN.

Introducing web services directly in the WSAN devices allows building generic
and application independent gateways. In this way, we enable the deployment
on WSAN devices with minimun configuration procedures.

Some prototypes for SOAP and XML-RPC have been implemented showing the
feasibility of our approach.Our current efforts are focused on improving and testing
the compiler to allow the generation of complete ready-to-use sensor nodes.

References

1. Kobialka, T., Buyya, R., Leckie, C.: Open Sensor Web Architecture: Stateful Web
Services. In: Proceedings of the Third International Conference on Intelligent Sen-
sors, Sensor Networks and Information Processing (ISSNIP)(2007)

Web Services for Deeply Embedded Extra Low-Cost Devices 409

2. Al-Yasiri, A., Sunley, A.: Data aggregation and middleware in wireless sensor net-
works. In: Sensor and theory applicatios XIV (SENSOR 2007), Journal of Physics:
Conference Series, vol. 76 (2007)

3. Arch Rock Corporation. Arch Rock Primer Pack product gateway datasheet. Prod-
uct Catalog (2007)

4. Priyantha, B., Kansal, A., Goraczko, M., Zhao, F.: Tiny Web Services for Sensor
Device Interoperability. In: International Conference on Information Processing in
Sensor Networks (IPSN) (2008)

5. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H.F.: SOAP Version
1.2 Part 1: Messaging Framework.W3C Recommendation (2003),
http://www.w3.org

6. Winer, D.: XML-RPC Specification. UserLand Software, Inc. (2003),
http://www.xmlrpc.com/

7. Winer, D.: WSDL Specification. World Wide Web Consortium (2001),
http://www.w3.org/TR/wsdl

8. Helander, J., Xiong, Y.: Secure Web services for low-cost devices. In: Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(2005)

9. Helander, J.: Deeply Embedded XML Communication, Towards an Interoperable
and Seamless World. In: EMSOFT (2005)

10. Koopman, P., Chakravarty, T.: Cyclic Redundancy Code (CRC) Polynomial Se-
lection For Embedded Networks. In: Dependable Systems and Networks (2004)

11. Villa, D., Villanueva, F.J., Moya, F., Rincón, F., Barba, J., López, J.C.: Embedding
a general purpose middleware for seamless interoperability of networked hardware
and software components. In: Chung, Y.-C., Moreira, J.E. (eds.) GPC 2006. LNCS,
vol. 3947, pp. 567–576. Springer, Heidelberg (2006)

12. Villa, D., Villanueva, F.J., Moya, F., Rincón, F., Barba, J., López, J.C.: Minimal-
ist Object Oriented Service Discovery Protocol for Wireless Sensor Networks. In:
Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS, vol. 4459, pp. 472–483. Springer,
Heidelberg (2007)

13. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Archi-
tecture Directions for Networked Sensors. In: Proceedings of Ninth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2000)

14. csoap client/server SOAP library in pure C, http://csoap.sourceforge.net/
15. XML-RPC for C and C++, A lightweight RPC library based on XML and HTTP,

http://xmlrpc-c.sourceforge.net/

16. EWS Webpage, http://arco.esi.uclm.es/en/ews

http://www.w3.org
http://www.xmlrpc.com/
http://www.w3.org/TR/wsdl
http://csoap.sourceforge.net/
http://xmlrpc-c.sourceforge.net/
http://arco.esi.uclm.es/en/ews

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 410–421, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Group-Based Reputation Mechanism for Mobile
P2P Networks

Xu Wu1, Jingsha He2, and Fei Xu1

1 College of Computer Science and Technology, Beijing University of Technology,
Beijing 100124, China

{wuxu,xfei}@emails.bjut.edu.cn
2 School of Software Engineering, Beijing University of Technology, Beijing 100124, China

jhe@bjut.edu.cn

Abstract. This paper presents a group-based reputation mechanism and gives a
distributed implementation method for mobile p2p networks. In the proposed
mechanism peers with similar mobility are clustered into a set of groups, where
there are two different kinds of peers: Mobile and Power peers. Mathematic
analyses and simulations show that the adoption of group avoids the communi-
cation overload in global trust computation, and the benefits of trust evaluation
are maintained by managing trust in the groups. Compared to the current p2p
reputation mechanisms, the proposed mechanism is slightly affected by the dy-
namic joining and departing of peers. Additionally, it effectively encourages
new peers to take part in the systems actively and friendly.

Keywords: reputation, trust, P2P networks, mobility.

1 Introduction

Peer-to-Peer systems have gained tremendous attention of many researchers and
companies. Each peer in a P2P system is presumed to have the equivalent functional-
ity and is willing to share resources. Because of its ability to pool together and har-
ness the large volume of resources, P2P systems’ features include scalability, service
availability, self-organization, fault tolerance, and load balancing. However, most P2P
systems assume peers are using fixed Internet instead of wireless networks. Here we
consider a mobile P2P network is an infrastructure designed to support mobile de-
vices and wireless networks.

Mobile p2p Networks are also organized according to the P2P principle, they are
autonomous (independent of any infrastructure), self-organized and decentralized. A
mobile p2p network is a set of moving objects that communicate with each other via
unregulated, short-range wireless technologies such as IEEE 802.11, Bluetooth, or
Ultra Wide Band (UWB) [1]. No fixed infrastructure is assumed or relied upon. It is
also an abstract, logical network called an overlay network which builds on basic
communication network, because there is no control of peers joining or leaving the
network, a lot of drawbacks of the real mobile P2P systems have been disclosed. In
P2P applications, Free-Riding is a typical problem. According to the Gnutella file

 A Group-Based Reputation Mechanism for Mobile P2P Networks 411

trace [2] approximately 25 percent of the clients do not share data at all, and totally
about 75 percent of the hosts share less than 100 unique files. On the other hand,
roughly 5 percent of the peers share 99 percent of all files. Similar challenges can be
anticipated in the MP2P system, too. The major reason is lacking of the effective
cooperation mechanism inherently in the P2P systems, so not all participators can be
encouraged to take part in the systems actively and friendly.

Normally the P2P applications give computers or devices access to other peers’ re-
sources, e.g. hard drives, but there exist some security problems in the mobile p2p
network. For example when a user tries using smart phone to download a file from
another user’s one, he may worry about the virus or attack embedded in that file; the
mobile user shares resources with others but who do not; and so on [3]. All of these
risks limit the applications build in the mobile P2P network. It is an effective solution
to construct the reputation mechanism in the networks to build up the trust among the
mobile users.

The idea is motivated from existing human societies in the world. Embedded in
every social network is a web of trust; with a link representing the trustworthiness
between two individuals. When faced with uncertainty, individuals seek the opinions
of those they trust. The intent is to develop a similar reputation mechanism for mobile
p2p Networks, where mobile peers maintain reputation for other peers. This reputa-
tion is used to evaluate the trustworthiness of other peers. This establishes a web of
trust in the network, which is then used as an inherent aspect in predicting the future
behavior of peers in the network.

In the P2P environment, the users can reenter the network system by changing their
network identities to get new reputation values to avoid the penalty imposed on them,
which can’t be identified from the fresh users to the network. This greatly hampers
the implementation of the practical reputation system. So others [6] advise conserva-
tively trusting nobody initially at the beginning of users’ participating to the network,
which impose the serious penalty on the malicious peers. But in reality, the useful
behaviors of newcomers have also been unfairly restricted in the case of this strategy.
It will take new peers very long time to cumulate enough reputation values to take
part in the cooperation in the network, which decreases the network efficiency seri-
ously in the case of mobile peers joining and departing the network with high fre-
quency. Although the security objectives in mobile peer-to-peer networks and fixed
peer-to-peer networks are considered the same, the realization of reputation mecha-
nism in mobile p2p networks is quite different due to some characteristics of mobile
environment such as high mobility of the peers, limited-range as well as unreliability
of wireless links, which indicates the trust between participants can not be set up
simply on the traditional reputation mechanism.

Therefore, in the paper we present a group-based reputation mechanism and give a
distributed implementation method for mobile p2p networks. As we will show, the
proposed mechanism is fit in such a mobile environment. By managing trust in the
groups, the benefits of trust evaluation are maintained and the communication over-
load in global trust computation is avoided. In addition, it effectively encourages
participators to take part in the systems actively and friendly.

The remainder of this paper is organized as following: Section 2 presents the re-
lated work. The section 3 describes the proposed group-based reputation mechanism
in detail, which is organized into two subsections named group-based reputation

412 X. Wu, J. He, and F. Xu

architecture and distributed implementation method respectively. Theoretical analysis
and simulation results to the performance of the new reputation mechanism are given
in section 4. Finally, section 5 concludes the paper.

2 Related Work

Trust-management approach for distributed systems security was first introduced in
the context of Internet as an answer to the inadequacy of traditional cryptographic
mechanisms. Some of the notable earlier works in this domain have been trust-
management engines. Since then, reputation-based frameworks based on the approach
of trust management have been extensively studied in many contexts and equally
diverse domains such as human social networks, e-commerce, 802.11 networks, peer-
to-peer networks etc. In this paper, we study the applicability of this approach in de-
veloping high integrity mobile p2p networks.

The proposed mechanism does borrow some design features from several existing
works in literature but as a complete system differs from all the existing methods or
schemes.

Lance, et al. studied trust from a number of influencing factors from the engineer-
ing and psychological points of view and tried to combine these factors in order to
provide a comprehensive model [4].

EigenTrust [5] model is designed for the reputation management of P2P systems.
The global reputation of peer i is marked by the local trust values assigned to peer i by
other peers, which reflects the experience of other peers with it. The core of the model
is that a special normalization process where the trust rating held by a peer is normal-
ized to have their sum equal to 1. The shortcoming is that the normalization could
cause the loss of important trust information.

Runfang Zhou and Kai Hwang [6] proposed a power-law distribution in user feed-
backs and a computational model, i.e., PowerTrust, to leverage the power-law feed-
back characteristics. The paper used a trust overlay network (TON) to model the trust
relationships among peers. PowerTrust can greatly improves global reputation accu-
racy and aggregation speed, but it can’t avoid the communication overhead in global
trust computation.

John Chuang [7] designs an incentive mechanism for p2p systems, the proposed
methods radically to trust all the users initially when they enter the network, so every
peer can trade with others rapidly and extensively.

Thomas Repantis and Vana Kalogeraki [8] propose a decentralized trust manage-
ment middleware for ad-hoc, peer-to-peer networks, based on reputation. In the work,
the middleware’s protocols take advantage of the unstructured nature of the network
to render malicious behavior, and the reputation information of each peer is stored in
its neighbors and piggy-backed on its replies.

A new trust model based on recommendation evidence (RETM) is proposed for
P2P Networks by Tian Chun Qi etc [9]. The proposed model has advantages in mod-
eling dynamic trust relationship and aggregating recommendation information. It
filters out noisy recommendation information.

Mobile p2p networks are self-organized among the mobile peers. Research work
on providing a relatively stable layer of network on top of flat ad hoc network routing

 A Group-Based Reputation Mechanism for Mobile P2P Networks 413

forms a major research focus, and in the context of group-based paradigm, mobile
peer clustering in the network into sets of groups. Popular schemes proposed include
lowest-id and highest degree heuristics [10].

Those works also proposed different techniques for group management. Group
management involves the mechanisms for maintaining the membership of mobile
hosts in the groups, including procedures for handling the join and leave events of
mobile hosts with respect to a group. Our basic join procedure in the proposed
mechanism takes on a similar approach as the one in [11].

3 The Group-Based Reputation Mechanism

We proposed a group-based reputation mechanism in the paper. The motivation is
taken from observing the evolution of existing social networks in the world. Embed-
ded in every social network is a web of trust with a link representing the amount of
trust between two individuals. Let us analyze the integrated role of “reputation” and
“trust” in these networks. Trust can simply be defined as the expectation of one per-
son about the actions of others. It is used by the first person to make a choice, when
an action must be taken before the actions of others are known. Reputation is defined
as the perception that a person has of another’s intentions. When facing uncertainty,
individuals tend to trust those which have a reputation for being trustworthy. The
proposed mechanism is a similar framework where mobile peers maintain reputation
for other peers in the network.

In the section, we describe the proposed group-based reputation mechanism in de-
tail, which is organized into two subsections named group-based reputation architec-
ture and distributed implementation method respectively.

3.1 Group-Based Reputation Architecture

The logical group-based reputation architecture is shown in Fig. 1. We consider mo-
bile peers with similar mobility are clustered into a set of groups. A group is a natural
collection of mobile peers that can communicate with one another and that move
together in an aggregated manner. A member of a group should be at most a distance
of r away from the position of the group. A group is defined based on the stable con-
nectivity of mobile peers. In our scheme, the stable connectivity indicates relative
stability in distance over time. In the group we have two different kinds of peers:
Mobile and Power peers.

Mobile peers can consist of any kind of mobile devices. Peers in the same group
can exchange files and data directly between each other over the wireless link. Con-
nections between Mobile and Power peers are carried over the cellular or WLAN
networks. All mobile peers are connected to one Power peer in the same group, which
is most reputable in the group and also interacts with rest of the world.

A Power peer is elected by the mobile agent [14] running in the MP2P network
from a group to act on behalf of the group, which has multiple tasks. To start with,
each mobile peer has in a Power peer a cache memory, eq. a mirror page, that pro-
vides an efficient reputation information anchor to the MP2P, and even further, to

414 X. Wu, J. He, and F. Xu

P2P peer

Power peer

Mobile peer

Power peer

P2P network

Group 1 Group 2

Mobile peer

MP2P network

Fig. 1. The logical group-based reputation architecture

the wired P2P networks. A cache acts as a virtual storage meaning that reputation
information can be offered from the cache, instead of the mobile peer itself, when a
mobile peer is switched off or out of coverage. Here reputation information is about
the reputation table of a mobile peer, which is depicted in the 3.2.2 section.

A Power peer can provide functions, such as routing, service discovery, security
and network topology management tasks. A Power peer acts as a firewall against
malicious and this power peer can fetch interesting trust information on behalf of the
mobile peer from other MP2P and P2P networks. In this situation a Power peer acts as
a P2P Proxy towards the P2P networks.

The architecture is formed on top of the mobile, cellular and fixed networks. All
peers are connected to each other but the routes are controlled by the Power peer,
except when the mobiles are communicating in the same group. A peer monitors the
behavior of other peers in the same group based on which it builds up their reputation
over time. It uses this reputation to evaluate their trustworthiness and in predicting
their future behavior. At the time of collaboration, a peer only cooperates with those
peers that it trusts.

3.2 Distributed Implementation Method

When a peer moves to another cluster, topology mismatching problem will occur. A
distributed implementation method is developed within the group-based reputation
architecture. This dynamic deployment method overcomes this problem. The method
works as follows.

(a) A power peer communicates with its peers periodically.
(b) A mobile peer selects to join a group based on a join procedure before estab-

lishing trust relationship.
(c) If a mobile peer leaves, the power peer will update its index file of reputation

table to reflect the fact that a mobile peer has left.
(d) If a power peer dies, leaves, or disappears abnormally, the mobile peers in the

same group will find this out after a certain period of time (e.g. using timeout),
and a new power peer will be elected by the mobile agent.

 A Group-Based Reputation Mechanism for Mobile P2P Networks 415

3.2.1 Group Joining Process
In the group-based reputation architecture, each mobile peer p is assumed to possess

a simple device for keeping track of its existing location and its movement informa-
tion such as a GPS sensor etc.

The current location of p is denoted by (,)p px y , while the movement informa-

tion is maintained and represented as a vector (,)
p pp x yv v v= , being resolved into

the x and y components. A single group has only one member in the group. It will

search periodically another group or another mobile peer based on a predefined pe-

riod sσ . The group finding process will end until another group is found or another

peer considers joining this single group. Every member within a group has a similar
mobility. Degree of affinity is used to measure the movement similarity between
mobile peers or groups.

The degree of affinity, ,i ku , between two mobile domains, i and k , is defined by

the equation:

2 2

, 2 2 2 2

() ()(,)
(1 (1)

xi xk yi yk

i k

xi yi xk yk

v v v vdist i k
u

r v v v v
α β

− + −
= − + −

+ + +

(1)

Where 1α β+ = and (,)dist i k is the Euclidean distance between two mobile units i

and k .
Before establishing trust relationship, a mobile peer selects to join a group based

on a join procedure. In the join procedure, a mobile host (group seeker) needs to find
an appropriate group so that the impact on the stability of the target group can be
minimized. It interacts with neighbors from other groups in order to gather group
information and makes a group joining decision. Our basic join procedure in the pro-
posed mechanism takes on a similar approach as the one in [11]. The step of basic
join procedure is depicted in the following.

Basic Join Procedure

1. Group seeker m obtains all the related group information by broadcasting a
“FIND_GROUP”message to its neighbors

2. A neighbor that receives the “FIND_GROUP”message replies with a
“GROUP_INFO”message to m with its group information

3. Group seeker m receives group information from neighbors
4. For each group G discovered, add G to the set of potential groups if dist (m,G) <

r and dist (mr,Gr) < r.
5. if the set of potential groups is not NULL then send a “join”message to the

leader of the group G* with the highest degree of affinity, Sm, G* store the group
leader and group location and movement information

6. else // no group is available for this moment create a new group and set itself to
be the leader

3.2.2 Trust Computing
In the mechanism, the trust of a peer is related to its reputation. We use mathematical
method to represent the reputation of a peer, and continuously update it based on new

416 X. Wu, J. He, and F. Xu

direct/indirect observations. An enhanced trust model based on reputation [12] is used
to evaluate the trustworthiness of peers. In the trust model, a peer’s trustworthiness is
defined by an evaluation of the peer in terms of the level of reputation it receives in
interacting with other peers in the past. In order to effectively evaluate the trustwor-
thiness of peers and to address various malicious behaviors in a p2p network, seven
trust factors are identified in evaluating trustworthiness of peers.

This trust model has two types of trust: direct trust and recommendation trust. Di-
rect trust is used to evaluate trustworthiness when a peer has enough interacting ex-
perience with another peer. On the other hand, recommendation trust is used when a
peer has little interacting experience with another one.

We assume that peer j and i are in the same group. Direct trust of peer j computed
by peer i is given by:

()

0

(,) (,) 1
() (()) ()

() 1

N j

i n
i

S i j M i j Z
T j pen m Risk j

N j e
α β−

=

∗ ∗= ∗ + +
+∑ (2)

α , β : weighting factors. α and β are weighting factors that satisfy the condition

1α β+ = .

()N j : total number of interactions

(,)S i j : peer satisfaction degree of interaction. Satisfaction and dissatisfaction degrees

express how well and how poor this peer has performed in the interaction, respec-
tively. Satisfaction or dissatisfaction degree can encourage interacting sides to behave
well during interactions.

(,)M i j : ratio of the interaction size. Some peers have a higher interaction frequency

than some other peers due to a skewed interaction distribution. A peer will be more
familiar with other peers by increasing the number of interactions. This factor is re-
lated to the interaction authority.

Z : time factor. We introduce time factor to reflect this decay, that is, the most recent
interaction usually has the biggest time factor.

()pen m : punishment function. Punishment should be involved by decreasing its trust

degree according to the amount of malicious behaviors. Therefore we introduce the
punishment factor in our model to be used to fight against subtle malicious attacks.

1

1 ne−+
 : acceleration factor. 1

1 ne−+
 is the acceleration factor where n denotes the

number of failures. It can make trust value drop fast when an interaction fails. As this
factor increases with n , it helps avoid heavy penalty simply because of a few uninten-
tional cheats.

()Risk y : risk factor. Every peer has its own security defense ability which is reflected

by risk factor, such as the ability to detect vulnerabilities, the ability to address any
viruses and to defend against intrusions.

Peers’ recommendation is received through a polling protocol according the trust
model. The recommendation trust of a peer is impacted by the polling results from
other peers, the total number of transactions a peer performs, and the credibility of the
polling sources. Let k denotes a voting peer, then

 A Group-Based Reputation Mechanism for Mobile P2P Networks 417

()

1

(,) (,) 1
() (())

() 1

N j

k n
k k

S k j M k j Z
DT j pen m

N j e−
=

∗ ∗= +
+∑ (3)

where ()kDT j is the poll value of k in j. The more details of the model can be found

in [12].
Peer i has Reputation table

iRT . It is related to every peer j for which peer i main-

tains a reputation. Index file of reputation table of mobile peer i is storaged at its
Power peer, which is easily updated in the Power Peer keeping the system simple to
manage.

When the mobile peer wants to interact with others, it firstly checks their reputa-
tion values through the proposed mechanism, and then determines whether to do.
Consider the situation where a peer i wants to interact with another peer j in order to
accomplish a certain task. Peer i will not interact unless it is sure that peer j is trust-
worthy. In order to find out whether peer j is trustworthy or not, peer i calculates a
reputation value for peer j. If two peers are in same group, peer i can get the trust
value of j through its Power peer; otherwise if two peers are in different groups, peer i
must search for j’s group and retrieves its reputation value from its Power peer. Peer j
does the same as i.

At the end of interaction, peer i(j) updates the j(i)’s reputation value in its reputa-
tion table according to the following reputation adjusting principle.

1. The reputation of a peer should be increased as the probability of its normal ac-
tion, in order to avoid that newcomers take very long time to cumulate enough reputa-
tion values to take part in the interaction in the network.

2. When the peer behaves well, its reputation should be increased with small span
in order to prevent that the malicious peer can reenter the network system by chang-
ing its network identities to get good reputation values.

3. When the peer behaves badly, its reputation should be decreased in large span in
order to prevent the networks from the attacks of malicious peers.

The principle can efficiently encourage participators to take part in the systems ac-
tively and friendly.

4 Experimental Study

We have evaluated the group-based reputation mechanism. The simulation software
used is PlanetSim version 3.0 [13], which is written in Java, and is a simulation soft-
ware for P2P network. A P2P file sharing network is simulated with PlanetSim ver-
sion 3.0. The environments of the network are as follows. We assume that mobile
peers are distributed at the area whose size is 5000m x 5000m. Each peer is located at
a random position. Communicating range of a mobile device is 70m. In this analysis,
all mobile peers are assumed to have a same amount of battery power.

The first experiment evaluates the communication efficiency of global reputation
by the comparison of computing time. We collect 3000 transaction data of mobile
peers and let peers’ feedback rates from {-1, 0, 1} to {0, 0.5, 1}. Table1 shows the
data description. The error between computing result and actual feedback rating are
used as metric to measure the value of trust model.

418 X. Wu, J. He, and F. Xu

Table 1. Comparison of computing time

time

Number of peers EigenTrust Model Group-based
reputation mechanism

Computing
times

time Computing
times time Computing

times

62.86 10−×2650

63.54 10−×

2520

20174

304.43 10× 305.67 10×

23.15

232.25 10×

52128

81.26 10−×2417

PowerTrust Model

43347

21254

304.41 10× 235.31 10×

43189

71.82 10−×

84.53 44.01

234.34 10×

60.96 10−×62.03 10−× 20589

100

300

500

700

As table 1 shows, comparing with EigenTrust [5] and PowerTrust Model [6], the
group-based reputation mechanism gets more efficient. Because of the adoption of
group, the communication overload is avoided in global trust computation, and the
benefits of trust evaluation are maintained by managing trust in the groups.

The second experiment examines the cooperation success rate of new peer. Coop-
eration success rate presents the ratio between the number of new peers’ successful
interactions and the total number of new peers’ interactions. We set the total number
of new peers to 1500 in the P2P file sharing network. The reputation of each peer in
the network is computed separately with our reputation mechanism and PowerTrust.
Fig. 2 presents a number of interesting observations. First, we see an obvious gain of
the cooperation success rate in the network where the reputation of each peer is
computed with our reputation mechanism. Second, PowerTrust Model [6] is not as
effective as our reputation mechanism. Third, it is also interesting to observe that the
cooperation success rate reaches 90% after 7h in the network with our reputation
mechanism and then stays fairly stable.

The experiment results show that our mechanism can effectively deal with new
peer reputation problem, compared to PowerTrust where the reputation value of new
peers is get based on feedback scores from their neighbors. It is because in reality the
useful behaviors of newcomers have also been unfairly restricted in the case of feed-
back-based strategy. The PowerTrust approach gets reputation value of new peers
based on feedback scores from their neighbors. Since a new peer hasn’t any interact-
ing experience with its neighbors, it is endowed the lowest trust value. It will take
new peers very long time to cumulate enough reputation values to take part in the
cooperation in the network, which decreases the network efficiency seriously in the
case of mobile peers joining and departing the network with high frequency. How-
ever, the group-based reputation mechanism can adjusts the peer initial reputation
according to its behavior based on a flexible reputation adjusting principle expressed
in section 3.

The third experiment shows that our proposed reputation mechanism is slightly af-
fected by the dynamic joining and departing of peers. The dynamic joining and leav-
ing process is simulated by processing random joining or leaving of each individual
node. The probability of joining and leaving of a node equals to 0.5. This means that

 A Group-Based Reputation Mechanism for Mobile P2P Networks 419

0

10

20

30

40

50

60

70

80

90

100

3 5 7 9 11 13

C
oo

pe
ra

tio
n

su
cc

es
s r

at
e

of
 n

ew
co

m
er

s /
 %

Time / h
Group-based Reputation

Mechanism

PowerTrust Model

Fig. 2. Cooperation success rate of newcomers

nodes’ leaving and joining are of the same chance. We examined the network perform-
ance at each 250 interval and get the results as shown in fig. 3. The whole process ended
when network has experienced 3000 times joining/leaving actions. The simulation is
conducted on a network with size n=10,000 and n=6,000. Compared with the network
of size 6000, the performance is basically the same. We can see that the network per-
formance actually has little change. Fig. 3 represents the experiment result which clearly
shows that our reputation mechanism is very robust in a dynamic environment.

4.5

4.0

3.5

3.0

2.5

2.0

1.5

n=10000

Th
e

ne
tw

or
k

pe
rf

or
m

an
ce

af

te
r n

od
es

 le
av

in
g

4.5

4.0

3.5

3.0

2.5

2.0

1.5

n=10000

Th
e

ne
tw

or
k

pe
rf

or
m

an
ce

af

te
r n

od
es

 jo
in

in
g

4.5

4.0

3.5

3.0

2.5

2.0

1.5

n=6000

Th
e

ne
tw

or
k

pe
rf

or
m

an
ce

af

te
r n

od
es

 le
av

in
g

4.5

4.0

3.5

3.0

2.5

2.0

1.5

n=6000

Th
e

ne
tw

or
k

pe
rf

or
m

an
ce

af

te
r n

od
es

 jo
in

in
g

Number of leaving/joining members with probability equals to 0.5

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

3000

3000

3000

3000

Fig. 3. The network performance after nodes leaving or joining

420 X. Wu, J. He, and F. Xu

5 Conclusion and Future Work

The realization of reputation mechanism in mobile p2p networks is quite different due
to some characteristics of mobile environment such as high mobility of the peers,
limited-range as well as unreliability of wireless links, which indicates the trust be-
tween participants can not be set up simply on the traditional reputation mechanism.

Therefore, in the paper we present a group-based reputation mechanism and give a
distributed implementation method for mobile p2p networks. We consider mobile
peers with similar mobility are clustered into a set of groups. The motivation is taken
from observing the evolution of existing social networks in the world. In the group we
have two different kinds of peers: Mobile and Power peers. As we will show, the
proposed mechanism is fit in such a mobile environment. Our mechanism deals with
the fundamental reputation management problem, it can serve as the building block
for higher level security solutions such as key management mechanisms or secure
routing protocols. In the near future, we would like to test our mechanism into more
real mobile p2p systems and analyze the system performances.

References

1. Wolfson, O., Xu, B., Yin, H., Cao, H.: Search-and-Discover in Mobile P2P Network Data-
bases. In: 26th IEEE International Conference on Distributed Computing Systems (2006)

2. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A Measurement Study of Peer-to-Peer File
Sharing Systems. In: Multimedia Computing and Networking (MMCN 2002), California,
USA, pp. 156–170 (2002)

3. Yan, Z., Zhang, P.: Trust Collaboration in P2P Systems Based on Trusted Computing Plat-
forms. WSEAS Transactions on Information Science and Applications 3(2), 275–282
(2006)

4. Lance, J., Hoffman, L.J., Kim, L.J., Blum, J.: Trust Beyond Security: an Expanded Trust
Model. Communications of the ACM 49(7), 94–101 (2006)

5. Kamvar, S.D., Schlosser, M.T., Molina, H.G.: The EigenTrust Algorithm for Reputation
Management in P2P Networks. In: 12th International Conference on Word Wide Web,
Budapest, Bulgaria, pp. 640–651 (2003)

6. Zhou, R., Hwang, K.: PowerTrust: A Robust and Scalable Reputation System for Trusted
P2P Computing. IEEE Transactions on Parallel and Distributed Systems 18(5) (2007)

7. John, C.: Designing Incentive Mechanisms for Peer-to-Peer Systems. In: 1st IEEE Interna-
tional Workshop on Grid Economics and Business Models (2004)

8. Repantis, T., Kalogeraki, V.: Decentralized Trust Management for Ad-hoc Peer-to-Peer
Networks. In: 4th international workshop on Middleware for Pervasive and Ad-Hoc Com-
puting, Melbourne, Australia (2006)

9. Tian, C.Q., Zou, S.H., Wang, W.D., Cheng, S.D.: A New Trust Model Based on Recom-
mendation Evidence for P2P Networks. Chinese Journal of Computers 31(2), 271–281
(2008)

10. Chatterjee, M., Das, S.K., Turgut, D.: WCA: A Weighted Clustering Algorithm for Mobile
Ad hoc Networks. Journal of Cluster Computing (Special Issue on Mobile Ad hoc Net-
works) 5(2), 193–204 (2002)

11. McDonald, A.B., Znat, T.F.: Mobility-based Framework for Adaptive Clustering in Wire-
less Ad hoc Networks. IEEE Journal on Selected Areas in Communications 17(8), 1466–
1487 (1999)

 A Group-Based Reputation Mechanism for Mobile P2P Networks 421

12. Xu, W., He, J.S., Fei, X.: An Enhanced Trust Model Based on Reputation. In: IEEE Inter-
national Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing,
Taichung, Taiwan, pp. 67–73 (2008)

13. http://planet.urv.es/planetsim/
14. Yan, P., Wang, F.C., Liu, F.: Distributed Integrating Method for Enterprise Information

Based on Peer-to-Peer Network. Computer Integrated Manufacturing Systems 10(5), 492–
496+555 (2004)

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 422–433, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Partition-Based Broadcast Algorithm over DHT for
Large-Scale Computing Infrastructures

Kun Huang1 and Dafang Zhang2

1 School of Computer and Communication, 2 School of Software,
Hunan University, Changsha, Hunan Province 410082, P.R. China

{huangkun,dfzhang}@hunu.edu.cn

Abstract. Scalable and efficient broadcast is essential to the large-scale com-
puting infrastructures such as PlanetLab and Grids. Existing DHT-based broad-
cast algorithms suffer from the limitations of scalability and load balancing,
incurring high-overhead construction and maintenance of a distributed broad-
cast tree (DBT). This paper proposes a partition-based broadcast algorithm over
DHT for the large-scale computing infrastructures, where each node hierarchi-
cally partitions its identifier space into two subspaces and selects the agent
nodes in the subspaces as its children in a top-down approach. Our theoretical
analysis and experimental results demonstrate that the partition-based broadcast
algorithm can construct and maintain a balanced DBT with low overhead,
where the branching factors of each node are at most two, and the tree height
is (log)O n in a Chord of n nodes, without any extra storage space for each node
and explicit maintenance overhead for the parent-child membership in the DBT.

1 Introduction

The federated planet-scale computing infrastructures such as PlanetLab [1] and Grids
[2] have become increasingly important for developing and deploying many emerging
distributed applications such as content distribution networks, peer-to-peer systems,
and scientific computing. These computing infrastructures typically consist of large
numbers of personal workstations and dedicated servers scattered around the world.
As the size of the computing infrastructures continues to grow, it is very challenging
for administrators to efficiently manage such large-scale dynamic distributed systems.

Distributed information management systems [3-6] have been extensively used in
the large-scale computing infrastructures for a broad range of network services such
as network monitor and management, resource management, and content distribution.
Distributed broadcast is one of the fundamental primitive operations of distributed
information management systems to disseminate information on a global scale. For
example, in PlanetLab, researchers replicate their programs, along with the corre-
sponding execution environment, on tens of thousands of nodes before launching a
distributed application. In recent years, the Peer-to-Peer (P2P) based broadcast algo-
rithms have been proposed to perform scalable content distribution across the large-
scale computing infrastructures in a decentralized fashion. There are two design
principles for a P2P-based broadcast algorithm according to overlay structures: tree-
based and mesh-based approaches. The tree-based approach constructs a tree overlay
rooted at the source node as the content delivering structure, such as ESM [16], NICE

 A Partition-Based Broadcast Algorithm over DHT 423

[17], Scribe [8], and Bayeux [18]. Since the single tree structure is vulnerable to the
failure of an interior node, the multiple-tree approach such as SplitStream [9] and
CoopNet [10] is proposed to improve the resilience, where each sub-stream of content
is delivered along one of multiple disjoint trees. The mesh-based approach such as
Bullet [11], FastReplica [12], Bullet’ [13], BitTorrent [19], and CoBlitz [15] con-
structs a data-driven mesh overlay as a swarm system, where each node has a small
set of neighbors to exchange data. Despite of these arguments [20-21] against the two
approaches, the tree-based approach is more suitable for the large-scale computing
infrastructures with a large fraction of relatively stable dedicated nodes due to its
simplicity and controlled overhead.

DHT-based broadcast algorithms [4-10, 15, 18, 28-31] have been recently pro-
posed to support efficient broadcast on large scale. These broadcast algorithms utilize
the routing mechanisms of DHT to build up an overlay routing path between a source
node and each destination node, and then construct a DBT rooted at the source node
by merging all the routing paths. The DHT-based broadcast algorithms have two
approaches for constructing a DBT: top-down and bottom-up approaches. For exam-
ple, the k-ary search based broadcast algorithm [30] constructs a DBT over DHT in a
top-down approach, while the reverse-path forwarding based broadcast algorithm [8]
constructs a DBT over DHT in a bottom-up approach. However, existing DHT-based
broadcast algorithms suffer from the limitations of scalability and load balancing.
First, DHT is a greedy routing algorithm, where each node always forwards a
searched key to the closest preceding node in its finger table, whose identifier is
closer to the key in the identifier space. The greedy essence of DHT would result in
that existing DHT-based broadcast algorithms such as the k-ary search based broad-
cast algorithm [30] and the reverse-path forwarding based broadcast algorithm [8]
construct a flat and unbalanced DBT either in a top-down approach or in a bottom-up
approach. Second, existing DHT-based broadcast algorithms have high construction
and maintenance overhead of a DBT with respect to a large number of participating
nodes. For example, the reverse-path forwarding based broadcast algorithm [8] re-
quires interior nodes to consume extra storage space to contain its children for reverse
forwarding, which leads to high overhead of maintaining these children. Moreover,
although existing DHT-based broadcast algorithms often adopt the pushdown and
anycast methods [8-9] to tackle the overloading of nodes by adjusting the branching
factors between nodes in a DBT, Bharambe et al. [32] indicated that these adjustment
methods would result in a significant number of non-DHT links that are present in the
DBT but are not part of the routing links of DHT, which not only restricts the scal-
ability of DBT but also incurs higher maintenance overhead of these non-DHT links
due to the dynamic nodes [22-23].

To address the above limitations, this paper proposes a partition-based broadcast
algorithm over DHT for scalability and load balancing in the large-scale computing
infrastructures, where a balanced DBT is implicitly constructed from the novel rout-
ing paths of DHT such as Chord, without explicit parent-child membership mainte-
nance. The key idea of the partition-based broadcast algorithm is that by leveraging
the topology and routing mechanisms of Chord, each node hierarchically partitions its
identifier space into two subspaces and selects the agent nodes in the subspaces as its
children in a top-down approach. Our theoretical analysis and experimental results
show that the partition-based broadcast algorithm can construct and maintain a

424 K. Huang and D. Zhang

scalable and balanced DBT, where the branching factors of each node are at most
two, and the tree height is (log)O n in a Chord of n nodes, without any extra storage
space for each node and explicit maintenance overhead for the parent-child member-
ship in the DBT.

The rest of the paper is organized as follows. Section 2 overviews the Chord net-
work. In Section 3, we present in details the partition-based algorithm. Section 4 gives
the experimental results. Related work is introduced in Section 5 and Section 6 con-
cludes the paper.

2 Chord Overview

The Chord network is modeled as an undirected graph (,)G V E= , where the vertex

setV contains n nodes and E is the set of overlay links between nodes. According to the
identifiers of nodes, Chord organizes nodes as a ring topology in the circular space. An
object’s identifier k is assigned to the first node whose identifier is equal to or fol-
lows k in the identifier space of Chord. This node is called the successor node of the
identifier k , denoted by ()Succ k . In Chord, ()Pred u refers to the immediate predeces-

sor of a node u , while ()Succ u refers to the immediate successor of a node u . Besides its

immediate predecessor and successor, each node u also maintains a set of m finger nodes
that are spaced exponentially in the identifier space of Chord. The thi finger node of a

node u , denoted by (,)Finger u i , is the first node that succeeds u by at least 2i in the

identifier space, that is (,) ((2) mod 2)i mFinger u i Succ u= + , where 0 1i m≤ ≤ − .

Chord adopts a greedy finger routing algorithm [24] to recursively (or iteratively)
forward a query message with an object’s identifier k to its successor
node ()Succ k that maintains a pair (,)k v , where v is the object’s value. When a

node u want to lookup an object’s identifier k , it forwards a query message with the
identifier k to its finger node (,)Finger u j , which is closest to the successor

node ()Succ k in the circular identifier space, satisfying (,) (, ()]Finger u j u Succ k∈

and { ((,),),0 1}Min Dist Finger u j k j m≤ ≤ − , where 1 2(,)Dist u u is the numeric dis-

tance between two identifiers 1u and 2u , that is 1 2 1 2(,) (2) mod 2m mDist u u u u= − + .

And then the finger node (,)Finger u j continues to forward the query message to the

next node using the similar routing algorithm, until to the successor node ()Succ k .

Therefore, the finger routing algorithm of Chord is a scalable and efficient lookup
algorithm, with average routing path length of (log)O n and average node state space

of (log)O n in a Chord of n nodes.

3 Partition-Based Broadcast Algorithm

We propose a partition-based broadcast algorithm over DHT to achieve the scalability
and load balancing, where each node hierarchically partitions its identifier space into

 A Partition-Based Broadcast Algorithm over DHT 425

1: // receive (P, R, Limit) represents that node P receives
 a broadcast message from source node R with subspace Limit.
 T he initial value of Limit is R, when starting to broadcast.
2: // Select right child for broadcasting
3: for j m-1 to 0 do
4: if Finger(P, j) (P, Limit) then
5: Right Finger(P, j);
6: else
7: Right Null;
8: endif
9: endfor
10: if Right Null then
11: exit(0);
12: endif
13: // Select left child for broadcasting
14: for i 0 to m-1 do
15: if Finger(P, i) (P, Right) then
16: Left Finger(P, i);
17: else
18: Left Null;
19: endif
20: endfor
21: // Eliminate redundant child and set new limit for subspace
22: if (Lef Null) and (Left Right) then
23: NewLimit Right;
24: send (Left, R, NewLimit);
25: endif
26: send (Right, R, Limit);

Fig. 1. Pseduo-codes of partition-based broadcast algorithm

two subspaces, and selects the agent nodes in the subspaces as its children, and then a
balanced DBT rooted at the source node is constructed in a top-down approach. The
balanced DBT construction process of the partition-based broadcast algorithm is as
follows.

First, on receiving a broadcast message with a limitation value l of identifier space,
each node iN partitions its limited identifier space (,)iN l into two sub-

spaces (, (,))i iN Finger N j and [(,),)iFinger N j l , where (,)iFinger N j is the closest

finger node to the limitation value l in the circular identifier space. Second, the
node iN selects the agent node (,)iFinger N k in (, (,))i iN Finger N j as its left child,

where (,)iFinger N k is the farthest finger node from (,)iFinger N j , and selects the

agent node (,)iFinger N j in [(,),)iFinger N j l as its right child. Finally, the

node iN forwards the broadcast message with the limitation value (,)iFinger N j to its

left child (,)iFinger N k and the broadcast message with the limitation value l to its

right child (,)iFinger N j , until no any child is selected. When initiating a broadcast

message with a limitation value l , the source node sN sets the limitation value sl N= ,

which means that its identifier space (,)s sN N is the whole identifier space. When a

node dN selects its left child lN and right child rN , if l rN N= , then the broadcast

message is only forwarded to its right child rN . The pseudo-codes of the partition-

based broadcast algorithm are illustrated in Figure 1.
Figure 2 depicts an example of the balanced DBT construction using the partition-

based broadcast algorithm in an 11-node Chord. In Figure 2(a), the source
node 0N sets the limitation value 0l N= , and partitions the whole identifier

426 K. Huang and D. Zhang

N0

N3

N8

N6

N4

N14

N7N9

N12

N13

N2

N0

N2 N8

N3 N6 N9 N12

N4 N7 N13 N14

Fig. 2. Balanced DBT construction using partition-based broadcast algorithm in an 11-node
Chord: (a) Finger routing paths rooted at N0; (b) Constructed balanced DBT rooted at N0

N0

N3

N8

N6

N5

N4

N15

N14

N7N9

N12

N13

N11

N10

N1

N2

Fig. 3. Balanced DBT construction using partition-based broadcast algorithm in a 16-node
Chord: (a) Finger routing paths rooted at N0; (b) Constructed balanced DBT rooted at N0

space 0 0(,)N N into two subspaces 0 8(,)N N and 8 0[,)N N , where 8N is the closest finger

node to the limitation value 0l N= , and selects the agent node 2N in 0 8(,)N N as its left

child and the agent node 8N in 8 0[,)N N as its right node, and then forwards the broad-

cast message with the limitation value 8N to 2N and the broadcast message with the

limitation value 0N to 8N ; similarly, when receiving the broadcast message with the

limitation value, 2N and 8N further partition their identifier space into two subspace

respectively, and then continue to forward the broadcast message to their children
until no any child is selected. Figure 2(b) shows the corresponding balanced DBT
rooted at 0N constructed from the finger routing paths in Figure 2(a). As seen in

Figure 2, the partition-based broadcast algorithm constructs a balanced DBT, where
the branching factors of each node are at most two, and the tree height
is 23 log 4n< =⎡ ⎤⎢ ⎥ , in which 11n = is the number of nodes in Chord.

Also, the partition-based broadcast algorithm is adapted to construct a scalable and
balanced DBT for broadcasting in a Chord with the uniform identifier space. For

(a)

(a)

(b)

(b)

 A Partition-Based Broadcast Algorithm over DHT 427

example, Figure 3(a) depicts an example of the balanced DBT construction using
partition-based broadcast algorithm in a 16-node Chord, where there is the uniform
identifier space. Figure 3(b) shows the corresponding balanced DBT rooted at 0N con-

structed from the finger routing paths in Figure 3(a). As seen in Figure 3, the parti-
tion-based broadcast algorithm also constructs a scalable and balanced DBT, where
the branching factors of each node are at most two and the tree height is 2log 4n =⎡ ⎤⎢ ⎥ ,

in which 16n = is the number of nodes in Chord.

3.1 Algorithm Analysis

The essence of the partition-based broadcast algorithm is that the identifier space of
each node is hierarchically partitioned into two subspaces to construct a binary parti-
tion tree. Thus it is guaranteed by the novel binary partition of the partition-based
algorithm that a DBT is balanced and all the destination nodes are hierarchically cov-
ered. Figure 4 illustrates the properties of the partition-based broadcast algorithm in
an 11-node Chord. As seen in Figure 4(a), the source nod 0N partitions the whole

identifier space into two subspaces, each of which is further partitioned into two sub-
spaces, until the identifier subspace contains only one node, so that a balanced parti-
tion tree rooted at 0N is constructed by the hierarchical binary partition. As seen in

Figure 4(b), when the source node 0N forwards a broadcast message, each node i parti-

tions its identifier space into two subspace (, 2)ji i + and[2 ,)ji Limit+ , and selects the

finger node 02i + as its left child and 2 ji + as its right child, and then forwards the
broadcast message to its children, until all the destination nodes 2 3 14,N N N are cov-

ers in a hierarchical approach to construct a balanced DBT root at 0N .

A DBT constructed by the partition-based broadcast algorithm is scalable, where
the tree height is (log)O n , in which n is the number of nodes in Chord. We assume

that Chord has the identifier space [0,2)m , and the thi binary partition divides the

whole identifier space into 2i subspaces, each of which has the size of 2 / 2m i ,

where1 i h≤ ≤ and h is the tree height of DBT. After the thh binary partition, since

each subspace contains only one node, which means that it is / 2 1hn⎡ ⎤ =⎢ ⎥ , we deduce

that it is 2logh n= ⎡ ⎤⎢ ⎥ in which n is the number of nodes in Chord. Hence, we prove that

the tree height is (log)O n and the DBT is scalable.

Moreover, the partition-based broadcast algorithm needs no explicit construction
and maintenance overhead of a balanced DBT. First, since the partition-based broad-
cast algorithm hierarchically selects the children by partitioning the identifier space
into two parts in a top-down approach, each parent does not need extra storage space
for its children, so that a balanced DBT is implicitly constructed from the finger rout-
ing paths of Chord. Second, due to the finger stabilization algorithm [24] of Chord,
besides periodically updating the finger tables of nodes, the partition-based algorithm
does not need extra cost to repair the parent-child membership in the DBT, which
significantly reduces the maintenance overhead of the balanced DBT. Therefore, a

428 K. Huang and D. Zhang

Fig. 4. Properties of partition-based broadcast algorithm in an 11-node Chord: (a) Hierarchical
binary partition of the node identifier space from N0; (b) Alternately covering all the destination
nodes to construct balanced DBT rooted at N0

DBT constructed by the partition-based broadcast algorithm has no any extra storage
cost and explicit maintenance overhead of each node.

4 Experimental Evaluation

This section presents the simulation experiments to validate the performance of our
partition-based broadcast algorithm. The performance metrics of a DHT-based broad-
cast algorithm include branching factor, path length, message overhead, and message
imbalance factor. Message imbalance factor refers to the ratio between the maximal
number of messages and average number of messages on each node in a DBT. In the
experiments, we implement the k-ary search based broadcast algorithm, the reverse-
path forwarding based broadcast algorithm, and the partition-based broadcast algo-
rithm, and simulate from 200 to 2000 nodes of Chord to examine the performance
metrics of above three DHT-based broadcast algorithms.

Figure 5 depicts the comparison of branching factor. As seen in Figure 5(a), the
partition-based algorithm keeps the constant maximal branching factor, while the

Network size

200 400 600 800 1000 1200 1400 1600 1800 2000

M
ax

im
al

 b
ra

nc
hi

ng
 fa

ct
or

0

5

10

15

20

25

30

k-ary
reverse
partition

 Branching factor

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
D

F

.4

.5

.6

.7

.8

.9

1.0

k-ary
reverse
partition

Fig. 5. Branching factor: (a) Maximal branching factor; (b) Cumulative distribution function in
a 2000-node Chord

(a)

(a)

(b)

(b)

 A Partition-Based Broadcast Algorithm over DHT 429

Network size

200 400 600 800 1000 1200 1400 1600 1800 2000

M
ax

im
al

 p
at

h
le

ng
th

1

2

3

4

5

6

7

8

9

10

11

12

k-ary
reverse
partition

 Network size

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 p
at

h
le

ng
th

1

2

3

4

5

6

7

8

9

10

k-ary
reverse
paritition

Fig. 6. Path length: (a) Maximal path length; (b) Average path length

maximal branching factor of both the k-ary search based and reverse-path forwarding
based algorithms fluctuates with various network sizes. For example, the partition-
based algorithm has the constant maximal branching factor of 2, whereas the k-ary
search based algorithm has the maximal branching factor of about 11 and the reverse-
path forwarding based algorithm has the maximal branching factor varying from 14 to
26. As seen in Figure 5(b), both the k-ary search based and reverse-path forwarding
based algorithms construct a skewed DBT, while the partition-based algorithm con-
structs a balanced DBT. For example, about 88% of nodes in the DBT constructed by
both the k-ary search based and reverse-path forwarding based algorithms has the
branching factor of equal to or less than 2, while about 50% of nodes of the DBT
constructed by the partition-based algorithm have the branching factor of 2.

Figure 6 depicts the comparison of path length. As seen in Figure 6(a), the maximal
path length of the partition-based algorithm is larger than that of both the k-ary search
based and reverse-path forwarding based algorithms. For example, when Chord has no
more than 1400 nodes, the maximal path length of the partition-based algorithm is kept 10,
while the maximal path length of both k-ary search based and reverse-path forwarding
based algorithms varies with different network sizes, but not beyond 10. As seen in Figure
6(b), compared to both k-ary search based and reverse-path forwarding based algorithms,
the partition-based algorithm separately increase 55%~68% and 58%~100% of the aver-
age path length. Therefore, the partition-based broadcast algorithm constructs a scalable
DBT, where the tree height is (log)O n in which n is the number of nodes in Chord.

Figure 7 depicts the comparison of message overhead. As seen in Figure 7, both
the k-ary search based and partition-based algorithms have the same messages

Network size

200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 m

es
sa

ge
s

102

103

104

k-ary
reverse
partition

199

398

199

399

798

399

599

1198

599

799

1598

999

1998

1199

2398

1399

2798

1599

3198

1799

3598

1999

3998

799
999

1199
1399 1599

1799
1999

 Network size

200 400 600 800 1000 1200 1400 1600 1800 2000

M
es

sa
ge

 im
ba

la
nc

e
fa

ct
or

0

2

4

6

8

10

12

k-ary
reverse
partition

3.6 3.7 3.9
4.4

4.9 5.0 5.0 5.1 5.2 5.4

7.9

6.1

7.7

8.5

10.0
10.4

11.4

9.4

10.3

6.9

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.0

Fig. 7. Message overhead Fig. 8. Message imbalance factor

(a) (b)

430 K. Huang and D. Zhang

of 1n − , while the reverse-path forwarding based algorithms have the message over-
head of 2(1)n − . The reason is that both the k-ary search based and partition-based

algorithms construct a DBT in a top-down approach, which reduces the number of
broadcast messages and results in no extra storage space for a node’s children in the
DBT. Therefore, the partition-based broadcast algorithm has low-overhead construc-
tion and maintenance of a balanced DBT, without any extra storage cost and explicit
maintenance overhead for the parent-child membership.

Figure 8 depicts the comparison of message imbalance factor. As seen in Figure 8,
compared to both the k-ary search based and reverse-path forwarding based algo-
rithms, the partition-based algorithm has the lower constant message imbalance
factor. For example, in a 2000-node Chord, the partition-based algorithm has the
message imbalance factor of 1.0, while both the k-ary search based and reverse-path
forwarding based algorithms have the message imbalance factor of 5.4 and 6.9 re-
spectively. Therefore, compared to both the k-ary search based and reverse-path for-
warding based algorithms, the partition-based broadcast algorithm separately reduces
67%~81% and 81%~90% of the message imbalance factor, further indicating that a
DBT constructed by the partition-based algorithm is balanced.

5 Related Work

There have been many research efforts on multicast and broadcast in past decades. In
general, broadcast is a special case of multicast. In recent years, application-level
multicast and broadcast algorithms are categorized into tree-based and mesh-based
approaches as follows.

In the tree-based approach, a tree overlay rooted at a source node is constructed as
the content delivering structure. For example, ESM [16] is a classic application-layer
multicast system towards small-sized groups for audio and video conferencing appli-
cations. NICE [17] is proposed to support a larger number of participating nodes
using a hierarchical clustering approach. Bayeux [18] is proposed to construct a scal-
able and fault-tolerant application-layer multicast system by replicating root nodes
and clustering receivers via identifier on top of Tapestry [27]. Since the single tree
structure is vulnerable to node dynamics, the multiple-tree approach has been pro-
posed, where a forest with multiple disjoint sub-trees is constructed and each sub-
stream of the content is delivered along each sub-tree. For example, SplitStream [9] is
proposed to construct an interior-node disjoint forest of multiple Scribe [8] trees on
top of Pastry [26]. CoopNet [10] is proposed to compute locally random or node-
disjoint forests of trees in a manner similar to SplitStream, primarily designed for
resilience to node departures.

In the mesh-based approach, a data-driven mesh overlay is constructed as a swarm
system, where each node has a small of neighbors to exchange data. For example,
Bullet [11] and Bullet’ [13] are proposed for large-file distribution in the wide area,
where a overlay mesh is constructed over any overlay tree and each node transmits a
disjoint set of data to its children in order to maintain uniform distribution of each
data and achieve high throughput. BitTorrent [19, 33] is one of the most popular P2P
content distribution systems, where a file is divided into multiple equal-sized blocks
and all participating nodes upload and download blocks in parallel. These mesh-based

 A Partition-Based Broadcast Algorithm over DHT 431

swarm systems can mitigate link stresses and the performance bottleneck of the ori-
gin, but can incur enormous traffic stresses on the Internet Service Providers (ISP).

Moreover, distributed aggregation is also one of the fundamental primitive opera-
tions to recursively computing the global information by applying an aggregate
function such as min, max, count, and sum on a set of local status in the large-scale
computing infrastructures. DHT-based aggregation algorithms for global resource
monitor and discovery related to our work have been recently proposed. For example,
Astrolabe [3] is a DNS-like distributed management service by organizing the re-
sources into a hierarchy of domains, specifying an aggregation tree between domains,
and exchanging information across domains using an unstructured gossip protocol.
SDIMS [4] is a scalable distribution information system, where each attribute is
hashed to a key and the aggregation tree rooted at the key is built upon the routing
mechanisms of Plaxton. Other algorithms also include SOMO [28], Willow [29], and
DAT [7]. The DHT-based aggregation algorithms are designed to provide a scalable
all-to-one operation for collecting global information, while on the contrary the DHT-
based broadcast algorithms are proposed to provide a scalable one-to-all operation for
disseminating global information.

6 Conclusions

It is very challenging to support scalable and efficient broadcast in the large-scale
computing infrastructures such as PlanetLab and Grids. Although most DHT-based
broadcast algorithms have been recently proposed, by exploiting the greedy routing
mechanisms of DHT, they suffer from the limitations of scalability and load balanc-
ing, incurring high construction and maintenance overhead of a DBT. This paper
proposes a partition-based broadcast algorithm over DHT for the large-scale comput-
ing infrastructures, where each node hierarchically partitions its identifier space into
two subspaces and selects the agent nodes in the subspaces as its children. We lever-
age the topology and routing mechanisms of Chord to select the appropriate children
of each node from its finger table in a top-down approach, so that a balanced DBT is
implicitly constructed from the novel routing paths of Chord, without explicit
parent-child membership maintenance. Our experimental results show that the parti-
tion-based broadcast algorithms construct a scalable and balanced DBT, where the
branching factor of each node is at most 2, and the tree height is (log)O n , without any

extra storage space for the children of each node and explicit maintenance overhead
for the parent-childe membership in the DBT; compared to both the k-ary search
based and reverse-path forwarding based broadcast algorithms, the partition-based
broadcast algorithm separately reduces 67%~81% and 81%~90% of the message
imbalance factor. Therefore, our partition-based broadcast algorithm would be widely
adopted to support scalable and efficient information management in the large-scale
computing infrastructures.

Acknowledgment

This work is supported by the National Science Foundation of China under grant
No.60673155 and No.90718008.

432 K. Huang and D. Zhang

References

1. Bavier, A., Bowman, M., Chun, B., et al.: Operating System Support for Planetary-Scale
Network Services. In: Proc. of NSDI, pp. 253–266 (2004)

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications 15(3), 200–222 (2001)

3. Renesse, R.V., Birman, K.P., Vogels, W.: Astrolabe: A Robust and Scalable Technology
for Distributed System Monitoring, Management, and Data Mining. ACM Transaction on
Computer Systems 21(2), 164–206 (2003)

4. Yalagandula, P., Dahlin, M.: A Scalable Distributed Information Management System. In:
Proc. of ACM SIGCOMM, pp. 379–390 (2004)

5. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Design and Implementation
Tradeoffs for Wide-Area Resource Discovery. ACM Transactions on Internet Technol-
ogy 8(2), 1–40 (2008)

6. Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: STAR: Self-Tuning
Aggregation for Scalable Monitoring. In: Proc. of VLDB, pp. 962–973 (2007)

7. Cai, M., Hwang, K.: Distributed Aggregation Algorithms with Load-Balancing for Scal-
able Grid Resource Monitoring. In: Proc. of IPDPS, Long Beach, California (2007)

8. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: SCRIBE: A Large-Scale and
Decentralized Application-Level Multicast Infrastructure. IEEE Journal on Selected Areas
in Communication 20(8), 1489–1499 (2002)

9. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Splitstream:
High-bandwidth Multicast in Cooperative Environments. In: Proc. of SOSP, pp. 298–313
(2003)

10. Padmanbhan, V.N., Wang, H.J., Chou, P.A., Sripanid-Kuchai, K.: Distributed Streaming
Media Content Using Cooperative Networking. In: Proc. of ACM NOSSDAV, pp. 177–
186 (2002)

11. Kostic, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: High Bandwidth Data Dissemi-
nation Using an Overlay Mesh. In: Proc. of SOSP, pp. 282–297 (2003)

12. Cherkasova, L., Lee, J.: FastReplica: Efficient Large File Distribution within Content De-
livery Networks. In: Proc. of USITS (2003)

13. Kostic, D., Braud, R., Killian, C., VandeKieft, E., Anderson, J.W., Snoeren, A.C., Vahdat,
A.: Maintaining High Bandwidth under Dynamic Network Conditions. In: Proc. of
USENIX Annual Technical Conference, pp. 193–208 (2005)

14. Ganguly, S., Saxena, A., Bhatnagar, S., Banerjee, S.: Fast Replication in Content Distribu-
tion Overlays. In: Proc. of IEEE INFOCOM, pp. 2246–2256 (2005)

15. Park, K., Pai, V.S.: Scale and Performance in the CoBlitz Large-File Distribution Service.
In: Proc. of NSDI, pp. 29–44 (2006)

16. Chu, Y., Rao, S.G., Seshan, S., Zhang, H.: A Case for End System Multicast. IEEE Journal
on Selected Areas in Communication, Special Issue on Networking Support for Multi-
cast 20(8), 1456–1471 (2002)

17. Baerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable Application Layer Multicast. In:
Proc. of ACM SIGCOMM, pp. 205–217 (2002)

18. Zhuang, S., Zhao, B., Joseph, A., Katz, R., Kubiatowicz, J.: Bayeux: An Architecture for
Scalable and Fault-tolerant. Wide-area Data Dissemination. In: Proc. of ACM NOSSDAV,
pp. 11–20 (2001)

19. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proc. of Workshop on Econom-
ics of Peer-to-Peer Systems (2003)

 A Partition-Based Broadcast Algorithm over DHT 433

20. Venkataraman, V., Yoshida, K., Fancis, P.: Chunkyspread: Heterogeneous Unstructured
End System Multicast. In: Proc. of IEEE ICNP, pp. 2–11 (2006)

21. Wang, F., Xiong, Y., Liu, J.: mTreebone: A Hybrid Tree/Mesh Overlay for Application-
Layer Live Video Multicast. In: Proc. of IEEE ICDCS (2007)

22. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In: Proc. of
USENIX Technical Conference, pp. 127–140 (2004)

23. Godfrey, P.B., Shenker, S., Stoica, I.: Minimizing Churn in Distributed Systems. In: Proc.
of ACM SIGCOMM, pp. 147–158 (2006)

24. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. In: Proc. of ACM SIGCOMM, pp. 149–
160 (2001)

25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content Ad-
dressable Network. In: Proc. of ACM SIGCOMM, pp. 161–172 (2001)

26. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing
for Large-scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–351. Springer, Heidelberg (2001)

27. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: a Fault-tolerant Wide-area Application In-
frastructure. ACM Computer Communication Review 32(1), 81 (2002)

28. Zhang, Z., Shi, S.-M., Zhu, J.: SOMO: Self-organized Metadata Overlay for Resource
Management in P2P DHT. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735. Springer, Heidelberg (2003)

29. Renesse, R.V., Bozdog, A.: Willow: DHT, Aggregation, and Publish/Subscribe in One
Protocol. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 173–
183. Springer, Heidelberg (2005)

30. El-Ansary, S., Alima, L.O., Brand, P., Haridi, S.: Efficient Broadcast in Structured P2P
Networks. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735. Springer,
Heidelberg (2003)

31. Ratnasamy, S., Handley, M., Karp, R., Shenker, S.: Application-level Multicast Using
Content-Addressable Networks. In: Proc. of International Workshop on Networked Group
Communicaion, pp. 14–29 (2001)

32. Bharambe, A.R., Rao, S.G., Padmanabhan, V.N., Seshan, S., Zhang, H.: The Impact of
Heterogeneous Bandwidth Constraints on DHT-Based Multicast Protocols. In: Castro, M.,
van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 115–126. Springer, Heidelberg
(2005)

33. Huang, K., Wang, L., Zhang, D., Liu, Y.: Optimizing the BitTorrent Performance Using
Adaptive Peer Selection Strategy. Future Generation Computer Systems 24(7), 621–630
(2008)

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 434–445, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Novel Crash Recovery Approach for Concurrent
Failures in Cluster Federation

Bidyut Gupta and Shahram Rahimi

Department of Computer Science
Southern Illinois University
Carbondale, IL 62901, USA

{bidyut, rahimi}@cs.siu.edu

Abstract. In this paper, we have proposed a simple and efficient approach for
check pointing and recovery in cluster computing environment. The recovery
scheme deals with both orphan and lost intra and inter cluster messages. This
check pointing scheme ensures that after the system recovers from failures, all
processes in different clusters can restart from their respective recent check-
points; thus avoiding any domino effect. That is, the recent check points always
form a consistent recovery line of the cluster federation. The main features of
our work are: it uses selective message logging which enables the initiator
process in each cluster to log the minimum number of messages, the recovery
scheme is domino effect free and is executed simultaneously by all clusters in
the cluster federation, it considers concurrent failures, message complexities in
each cluster for both check pointing and recovery schemes are just O(n), where
n is the number of processes in a cluster. These features make our algorithm su-
perior to the existing works.

1 Introduction

Cluster federation is a union of clusters, where each cluster contains a certain number
of processes. A Cluster may be defined as an independent computer combined into a
unified system through software and networking. Cluster computing environments
have provided a cost-effective solution to many distributed computing problems by
investing inexpensive hardware [2], [3], [15]. With the growing importance of cluster
computing, its fault-tolerant aspect deserves significant attention. It is known that
check pointing and rollback recovery are widely used techniques that allows a system
to progress in spite of a failure [1]. The basic idea is to periodically record the system
state as a checkpoint during normal system operation and upon detection of faults, to
restore one of the checkpoints and restart the system from there [4]-[7], [10]-[12],
[16]. It may be noted that a distributed system / cluster federation is said to be consis-
tent, if there is no message which is recorded in the state of its receiver but not re-
corded in the state of its sender [1]-[7]. But if such a message exists, then it is known
as orphan message. Such a consistent state of the system is also referred to as a recov-
ery line which in effect consists of one checkpoint per process of the system. It is the
responsibility of each cluster to determine its consistent checkpoint set that consists of

 Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation 435

one checkpoint from each process present in it. But this consistent checkpoint set of
one cluster may not be consistent with the other clusters’ consistent checkpoint sets,
because clusters interact through inter cluster messages which may result in depend-
encies among the clusters, meaning thereby that some such inter cluster messages
may become orphan messages. Therefore, a collection of consistent checkpoint sets,
one from each cluster in the federation, does not necessarily produce a consistent fed-
eration level checkpoint (also known as federation level recovery line). Consequently,
rollback of one failed process in a cluster may force some other processes in the other
clusters to rollback in order to maintain consistency of operation by the cluster federa-
tion. In the worst case, consistency requirement may force the system to rollback to
the initial state of the system, losing all the work performed before a failure. This un-
controlled propagation of rollback is known as domino-effect [1]. Besides, for correct
computation of the underlying distributed computation after the system recovers from
failures, a recovery scheme must ensure that all lost messages are identified and re-
played to the appropriate processes when they restart.

Problem Formulation: The main objective of this work is three fold. First, it must
take care of both orphan messages during the check pointing phase itself unlike the
existing works [2],[3],[13],[14]. For this purpose we will consider designing a single
phase non blocking check pointing scheme that must take care of both intra and inter
cluster orphan messages. Second, it must identify all intra and inter cluster lost mes-
sages in an efficient way at the time of recovery. Third, recovery schemes in the dif-
ferent clusters must have to be executed simultaneously and the processes must restart
from their respective recent (latest) checkpoints, thereby avoiding the domino effect.

This paper is organized as follows. In Section 2 we have presented the different
data structures. In Section 3 we have presented the check pointing algorithm and its
performance. Section 4 contains the recovery scheme along with its performance.
Section 5 draws the conclusion.

2 Relevant Data Structures and System Model

2.1 System Model

We assume that processes are deterministic in the sense that from the same state, if
given the same inputs, a process executes the same sequence of instructions. We also
assume that processes are fail stop. It means that upon failure, a process does not per-
form any incorrect actions and simply ceases to function.

2.2 Notations and Relevant Data Structures

The proposed recovery approach needs the following data structures to be maintained
in each cluster.

The kth cluster of the cluster federation is denoted as CK. The ith process in CK is
denoted as Pi

K. The xth checkpoint taken by the ith process Pi
K in the kth cluster is de-

noted as CPi,K
x. An intra cluster message from Pi

K is denoted as ms
i, where s is the

message sequence number assigned by the sender Pi
K. We term this sequence number

as the primary sequence number (PSN). An inter cluster message from the ith process

436 B. Gupta and S. Rahimi

Pi
K (ЄCK) is denoted as Ms

K(i), where s is the PSN of the message. We assume that
every cluster has an initiator process which has a two-fold responsibility; first, it is
responsible for invoking the check pointing algorithm in this cluster and second, it
determines the lost messages in this cluster in the event of failures. For the kth cluster
Pk represents the initiator process. In order to identify lost messages in the event of a
failure, we assume that for every cluster all intra and inter cluster messages are routed
through its initiator process on their way to the respective destinations. Thus in a clus-
ter CK any message communication between any two application processes takes
place via the initiator PK. To every message (including both intra and inter cluster
ones) to be delivered to a process, say Pi

K, the initiator process PK assigns a new se-
quence number, termed as the secondary sequence number (SSN) following its order
of arrival at the initiator. Each such message is then delivered along with its SSN to
the destination process Pi

K. This destination process in its recent checkpoint just re-
members only the maximum SSN in SEQi(max). Note that these SSNs (in ascending
order) actually create the total order of the messages sent to a receiving process. In
each cluster its initiator process maintains a message log for each process belonging
to this cluster. Thus in cluster CK the initiator process PK maintains a message log,
MESG-LOGi for each process Pi

K. This log stores copies of the messages to be deliv-
ered to the ith process following their order of arrival at the initiator. PK saves the
maximum SSN found in the message log for process Pi

K in SSNi(max). As an example,
assume that PK has received first an intra cluster message m2

r, followed by another
one, m6

t from the rth and tth processes respectively for the destination Pi
K. After that it

receives an inter cluster message M4
Q(n) coming from the nth process Pn

Q of the qth
cluster CQ for the same destination Pi

K. Note that the three PSNs of the messages are
2, 6, and 4 respectively. However the initiator process PK now assigns the secondary
sequence numbers 1, 2, and 3 to these messages following their order of arrival at it.
Now SSNi(max) contains 3. The message log for process Pi

K is stated below along with
the messages’ respective SSNs appearing in brackets.

MESG-LOGi

K = [m2

r (1), m6

t (2), M4

Q(n) (3)]

2.3 Check Pointing Interval and Selective Message Logging

As in [14], we assume that the value of the common check pointing interval T used in
all the clusters is just larger than the maximum message (considering both intra and
inter cluster messages) passing time between any two processes of the cluster federa-
tion. In the following discussion we have used some of the idea reported in [14]. We
now state the benefits for such an assumption. It is known that message logging [17]
is used to take care of lost and delayed messages. So naturally the question arises for
how long a process will go on logging the messages it has sent before a failure (if at
all) occurs. We have shown below that because of the above mentioned value of the
common check pointing interval T, a process Pi

K in cluster CK needs to save in its re-
cent checkpoint CPi,K

x only all the messages it has sent in the recent check pointing
interval (CPi,K

x ─ CPi,K
x-1). In other words, we are able to use as little information

related to the lost and delayed messages as possible for consistent operation after the
system restarts.

Consider the situation shown in Fig. 1. For simplicity we will explain using a sin-
gle cluster, say CK with only two processes and with intra cluster messages only. Let

 Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation 437

 CPj,k
x-1 CPj,k

x

Pi
K

Pj
K

ms
i
 ms1

i ms2
i

 delayed message
 lost message

CPi,k
x-1 CPi,k

x f

Fig. 1. Messages ms1
i and ms2

i are lost messages

the processes be Pi
K and Pj

K. The observation is true for clusters consisting of any
number of processes as well as for inter cluster messages as well. Observe that be-
cause of our assumed value of T, the duration of the check pointing interval, any mes-
sage ms

i sent by process Pi
K during its check pointing interval (CPi,K

x-1 ─ CPi,K
x-2)

always arrives before the recent checkpoint CPj,K
x of process Pj

K. Now assume the
presence of a failure f as shown in the figure. Also assume that after recovery, the two
processes restart from their recent xth checkpoints. Observe that any such message ms

i
does not need to be resent as it is processed by the receiving process Pj

K before its
recent checkpoint Cj,K

x. So it is obvious that such a message ms
i can not be either a

lost or a delayed message. Therefore, there is no need to log such messages by the
initiator process PK. However, messages, such as ms1

i and ms2
i, sent by process Pi

K in
the interval (CPi,K

x ─ CPi,K
x-1) may be lost or delayed. So in the event of a failure f, in

order to avoid any inconsistency in the computation after the system restarts from the
recent checkpoints, we need to log only such sent messages at the initiator so that they
can be resent after the processes restart. Observe that in the event of a failure, any
delayed message, such as message ms2

i, is essentially a lost message as well. Hence,
in our approach, we consider only the recent checkpoints of the processes and the
messages logged at the initiator process are the ones sent only in the recent check
pointing interval. From now on, by ‘lost message’ we will mean both lost and delayed
message. Observe that without such an assumption about the value of the common
check pointing interval T, the above mentioned selective message logging is not pos-
sible; rather without such an assumption the messages logged may include not only
the ones which a process Pi

K has sent in its current interval (CPi,K
x ─ CPi,K

x-1), but also
those which Pi

K sent in the previous intervals as well.

3 The Check Pointing Algorithm

It is known that the classical synchronous check pointing scheme for distributed sys-
tems has three phases: first an initiator process sends a request to all processes to take
checkpoints; second the processes take temporary check points and reply back to the
initiator process; third the initiator process asks them to convert the temporary check
points to permanent ones. Only after that processes can resume their normal computa-
tion. In between every two consecutive phases processes remain blocked. In this work

438 B. Gupta and S. Rahimi

our objective is to design a single phase non-blocking synchronous approach as in [12]
in each cluster. The proposed check pointing algorithm in every cluster works in the
following way. Without any loss of generality let us consider a cluster CK. The algo-
rithm is invoked periodically by the initiator process PK. In each invocation the initiator
sends a request message Mc to the different processes of CK asking them to take a
checkpoint each. Each process after receiving the request message Mc will take its
checkpoint independent of what others are doing. As in [12], no additional control
message exchange is necessary unlike the classical synchronous approach for making
individual recent checkpoints mutually consistent. However the present approach faces
similar problem as in [12] regarding making checkpoints consistent. We explain first
the problem considering the cluster CK only and then we will state a solution which is
similarly applicable to other clusters as well. Assume that the check pointing algorithm
has been initiated by the initiator process PK and it has sent a request message Mc to the
processes of the cluster CK. Also assume that it is the xth execution of the algorithm.
Suppose that after receiving Mc the ith process Pi

K takes its xth checkpoint CPi,K
x and

immediately then sends an intra cluster application message ms
i to the jth process Pj

K.
Note that in our approach all processes act independently after receiving Mc. Suppose
at time (t + €€), where €€ is very small with respect to t, process Pj

K receives the message
ms

i. Also suppose that Pj
K has not yet received Mc from the initiator process. So, it

processes the message. Now the request message Mc arrives at Pj
K. Process Pj

K now
takes its checkpoint CPj,K

x. We find that message ms
i has become an orphan due to the

checkpoint CPj,K
x. Hence, the checkpoints CPi,K

x and CPj,K
x cannot be consistent.

To avoid this problem we propose the following simple solution. Every sending
process Pi

K piggybacks a flag, say $, only with its first application message, say ms
i,

sent (after it has taken its checkpoint for the current execution of the check pointing
algorithm and before its next participation in the algorithm) to any other process Pj

K in
the cluster. Process Pj

K after receiving the piggybacked application message learns
immediately that the check pointing algorithm has already been invoked; so instead of
waiting for the request it takes its checkpoint first, then processes the message ms

i and
later it ignores the current request when that arrives. Observe that the above solution
holds good for all inter cluster messages also. The reason is that the xth execution of
the check pointing algorithm takes place simultaneously in the different clusters. Note
that in our check pointing approach each initiator process interacts with the other
processes in its cluster only once via the control message Mc. After receiving Mc each
such process, independent of what others are doing, just takes its checkpoint and re-
sumes normal computation. That is why we term it as a single phase non-blocking
algorithm. Below we describe the algorithm. Assume that it is the xth invocation of the
check pointing algorithm.

3.1 Algorithm Non-blocking

 For each cluster CK

 At each process Pi
K (Є CK)

if Pi
K receives Mc

 takes checkpoint CPi,K
x ;

 continues its normal operation;

 Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation 439

 else if Pi
K receives a piggybacked application message < ms

j/ Ms
Q(t) , $>

 && Pi
K has not yet received Mc for the current execution of the

check pointing algorithm, it takes checkpoint CPi,K
x without waiting

 for Mc; continues its normal operation;
 // processes the received intra cluster message ms

i / inter cluster
 message Ms

Q(t) and ignores Mc, when received later

Proof of Correctness: In the ‘if’ block every process Pi
K takes its xth checkpoint

CPi,K
x when it receives the request message Mc. That is, none of the intra / inter clus-

ter messages it has sent before this checkpoint can be an orphan. In the ‘else if’ block,
a receiving process Pi

K takes its xth checkpoint CPi,K
x before processing any intra /

inter cluster application message ms
j/ Ms

Q(t) , sent by a process which took its xth
checkpoint first before sending the message to Pi

K. Therefore the message ms
i/ Ms

Q(t)
can not be an orphan as well. Since this is true for all the processes, hence all recent
xth checkpoints in cluster CK are mutually consistent. ●

Theorem 1. The xth checkpoints of all processes in the cluster federation are mutually
consistent.

Proof. Without any loss of generality let us consider two clusters CK and CL and we
assume that it is the xth invocation of the check pointing algorithm. Observe that the
same check pointing interval is used by the respective initiator processes PK and PL in
these two clusters. Suppose that the ith process Pi

K (Є CK) has just taken its xth check-
point CPi,K

x and immediately after that it sends an inter cluster application message
Ms

K(i) to the jth process Pj
L (Є CL). According to our proposed solution this message is

piggybacked with the flag $.
Now assume that process Pj

L receives this application message before it receives
the request message Mc corresponding to the xth execution of the algorithm from its
initiator PL. If process Pj

L has not yet received any other piggybacked application
message yet, whether it is intra or inter cluster, then instead of waiting for the request
to come from its initiator PL, it first takes its xth checkpoint CPj,L

x, then processes the
message Ms

K(i) and later it ignores the current request when that arrives. Now observe
that the message Ms

K(i) cannot be an orphan. Hence the two checkpoints CPi,K
x and

CPj,L
x are mutually consistent. Now assume that process Pj

L receives this piggybacked
application message after it receives the request message Mc corresponding to the xth
execution of the algorithm from its initiator PL. This means that process Pj

L has re-
ceived the inter cluster message after taking its xth checkpoint CPj,L

x. So obviously the
message Ms

K(i) cannot be an orphan and hence the two checkpoints CPi,K
x and CPj,L

x
are mutually consistent.

Since the above observation is true for any two checkpoints belonging to different
clusters in the cluster federation and also Algorithm Non-blocking guarantees that the
checkpoints inside a cluster are mutually consistent, therefore all checkpoints in the
cluster federation are mutually consistent. ●

3.2 Performance

The algorithm is a synchronous one. However it differs from the classical synchro-
nous approach in the following sense; it is just a single phase one unlike the three
phase classical approach, it does not need any exchange of additional (control)

440 B. Gupta and S. Rahimi

messages except only the request message Mc, there is no synchronization delay, and
finally it is non-blocking. However it enjoys the main advantage of the three phase
classical approach in that the recent checkpoints are always consistent; so processes
after recovery from failures can restart from these checkpoints (i.e. domino-effect
free recovery). Therefore, it offers the advantages of both synchronous and asyn-
chronous check pointing approach while avoiding their main drawbacks, such as
blocking, synchronization delay, and domino effect. About message complexity in
each cluster the initiator process broadcasts Mc only once. So the message complex-
ity is O(n) for an n-process cluster. Also note that it is simultaneously executed in all
the clusters.

Since a cluster is nothing but an individual distributed system, so we compare the
proposed algorithm used in each cluster with some noted check pointing algorithms.

Comparisons with Some Existing Works. We use the following notations (and
some of the analysis from [7]) to compare our algorithm with some of the most nota-
ble check pointing algorithms [1], [6], and [7]. The analytical comparison is given in
Table 1. In this Table:

Cair is average cost of sending a message from one process to another process;
Cbroad is cost of broadcasting a message to all processes; Note that we assume IP
 broadcasting.
nmin is the number of processes that need to take checkpoints.
n is the total number of processes in the system;
ndep is the average number of processes on which a process depends;
Tch is the check pointing time;

Table 1. System Performance

Algorithm Blocking time Messages Distributed

Alg. [1] nmin * Tch 3 * nmin * ndep * Cair Yes

Alg. [6] 0 2 * Cbroad + n * Cair No

Alg. [7] 0 ≈ 2 * nmin * Cair + min(nmin * Cair, Cbroad) Yes

Our Alg. 0 Cbroad Yes

Fig. 2 illustrates how the number of control messages (system messages) sent and
received by processes is affected by the increase in the number of the processes in the
distributed system (cluster). In Fig. 2, the ndep factor is considered being 5% of the
total number of processes in the system and Cbroad is equal to n*Cair. We observe that
the number of control messages does increase in our approach with the number of
processes, but it stays smaller compared to other approaches when the number of the
processes is higher than 7 (which is the case most of the time).

 Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation 441

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28

Number of Processes

N
u
m

b
er

 o
f
M

es
sa

g
es

Number of Messages
(Koo-Toueg)

Number of Messages
(Elnozahy)

Number of Messages
(Singhal)

Number of Messages
(ours)

Fig. 2. Number of messages vs. number of processes for four different approaches

4 Recovery Scheme

Our recovery approach is independent of the number of processes that may fail con-
currently. In order to identify lost messages in the event of a failure, we assume that
for every cluster all intra and inter cluster messages are routed through the initiator
process (s) on their way to their respective destinations. Also, in each cluster, say CK,
the messages sent to the ith process Pi

K in the cluster are logged at its initiator process
PK according to the order of their arrival at the initiator. The message log for Pi

K is denoted
as MESG-LOGi

K.

4.1 Algorithm Recovery

The following recovery algorithm is executed simultaneously in all clusters. It works
for any number of concurrent failures.

 For each cluster CK

 At each process Pi
K (Є CK):

 Pi
K sends its SEQi(max) to PK;

 At the initiator process PK:
 if SSNi(max) > SEQi(max)

 P
K replays to Pi

K the messages with sequence numbers from
 SEQi(max) + 1 to SSNi(max);
 // Lost messages are resent to Pi

K following their total order
 Pi

K restarts computation;

 else Pi

K restarts computation;
 // no lost message to Pi

K exists

442 B. Gupta and S. Rahimi

Theorem 2. Algorithm Non-blocking together with the recovery scheme results in
correct computation of the underlying distributed application.

Proof: According to the check pointing algorithm and Theorem 1 there does not exist
any orphan message with respect to the recent checkpoints of the processes in the
cluster federation. Also, in each cluster CK, its initiator process PK identifies the lost
messages, if any, with respect to the recent local checkpoints of the processes in the
cluster and the recovery approach ensures through the use of the secondary sequence
numbers that the lost messages are resent following their total order to the appropriate
destinations in the cluster after the system restarts. Therefore there does not exist any
orphan or lost message with respect to the recent checkpoints of the processes in the
cluster federation. Hence the correctness of the underlying distributed computation is
ensured. ●

4.2 Performance

The following are the salient features of our approach. First of all, processes restart
from their respective recent checkpoints; that is there is no further rollback (i.e. dom-
ino effect free recovery). It also means that processes save only their recent check-
points replacing their previous ones. Second, the choice of the value of the common
check pointing interval T enables to use as little information related to the lost mes-
sages as possible for consistent operation after the system restarts. Third, our work is
independent of, if it is a single failure or concurrent failures. Fourth, the recovery ap-
proach needs just one control message from each of the processes of a cluster, which
carries the SEQ(max). Therefore it needs only n control messages for an n-process clus-
ter and so the message complexity is O(n) in each cluster. Besides, it takes care of
both orphan and lost messages. Finally, the recovery scheme is executed simultane-
ously by all clusters in the cluster federation.

4.3 Comparison

Since a cluster is nothing but an individual distributed system, so first we compare the
proposed recovery scheme used in each cluster with some noted recovery algorithms
existing in the area of distributed computing.

Comparison with noted recovery approaches in distributed systems: In [5] the mes-
sage overhead is O(F), where F is the number of recovery lines established, where as
in our work it is absent. Note that by ‘message overhead’ it is meant the size of the
control information that is piggybacked with each application message which are ex-
changed during normal computation. Another important difference is that the work in
[5] will establish a recovery line for each failure and then establish a consistent recov-
ery line for the distributed system after the occurrence of concurrent failures. It is not
needed in our work, because in our work it does not depend on if it is a single failure
or concurrent failures; our recovery line always consists of the recent checkpoints of
the individual processes of the system independent of single or concurrent failures. In
the classical work reported in [8] there is always an extra control message for each
application message, i.e. it requires receive sequence number (RSN) and acknowl-
edgement messages in addition to the application message. We don’t require it. Be-
sides, we handle both single and concurrent failures where as it is only single failures

 Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation 443

Table 2. Brief Summary of Comparisons

Algorithm Required
Message
ordering

Maximum
rollbacks Per
failure

Message
Overhead

Message
Complexity

Number of
concurrent
Failures

 [5] None 1 O(F) O(n2) n
 [8] None 1 O(1) O(n) 1
 [11] None 1 O(1) O(n2) n
 [9] None 1 O(n) O(n2) n
 Our Alg. None DEF None O(n) n

in [8]. Below in Table 2 we state a brief summery of comparisons of some important
features of the different check pointing / recovery approaches. Note that ‘DEF’ in the
3rd column denotes ‘domino effect free’. In the proposed solution of [9], fault-tolerant
vector clock has been used to track causal dependencies in spite of failures. In order to
determine a consistent state after failure, it uses checkpointing along with a history
mechanism that helps to detect orphan and obsolete messages. In [11], an optimistic
recovery algorithm has been proposed that uses O(n2) messages in arbitrary networks.
Each application message is appended with information of size O(1).

Comparisons with recovery approaches in cluster federation: We will now compare
our approach with some existing works that deal with recovery in cluster federations.
The work in [2] has considered a very restricted architecture in which multiple coor-
dinated checkpointing subsystems are connected with a single independent check-
pointing subsystem and the multiple coordinated subsystems can not communicate
directly with each other; rather they do it via the independent subsystem. The assumed
restricted architecture is the main short coming of this work. In the proposed solution
of [3], whenever a cluster fails, it broadcasts an alert message after recovering. Each
time there is a rollback, the rolled back cluster further broadcasts the alert message
triggering the next iteration of the algorithm. The algorithm terminates when there is
no more any alert message. The main drawbacks of the algorithm are: it suffers from
domino effect; if all clusters have to roll back except the failed cluster, then it may
result in a message storm of the alert messages; it does not consider lost messages and
concurrent failures. We have none of these drawbacks. The work in [13] considers
communication-induced check pointing scheme. Although it does not suffer from any
message storm unlike in [3] and it has a better message complexity than in [3], how-
ever, it also suffers from domino effect and it considers only single failures and
orphan messages. We don’t have any such drawback. The work in [14] offers advan-
tages similar to ours. However, its message complexity is O(N2), where N is the total
number of processes in the cluster federation; where as in our work it is O(N) because
the message complexity in an n-process cluster is just O(n). Also in [14] authors have
used quite complex data structures, for example, each process maintains two vectors
of size equal to the number of clusters to handle inter cluster lost messages. Also to
handle intra cluster lost messages each process in a cluster maintains two more vec-
tors of size equal to the number of processes inside the cluster. In our work each proc-
ess maintains just one simple data structure SEQ(max) to save the maximum SSN. In
Table 3 we have summarized the comparisons.

444 B. Gupta and S. Rahimi

Table 3. Comparison Summary. N = Number of processes in the cluster federation, N1 =
Number of clusters in the cluster federation, and K = Number of iterations of the recovery
algorithm.

Criteria Our Approach Alg [14] Alg [3] Alg [13]
Architecture Dependent Yes No No No
Domino – Effect Free Yes Yes No No
Concurrent Failures Yes Yes No No
Inter – Cluster Lost Messages Yes Yes No No
No. of checkpoints / process 1 1 >> 1 >> 1
Message complexity O (N) O (N2) O (KN1) O (KN1

2)

5 Conclusion

In this work, we have proposed a single phase non-blocking check pointing approach
free from any synchronization delay and domino effect. The proposed value of the
common check pointing interval T enables to use as little information related to the
lost messages as possible for consistent operation. Also, it is independent of the num-
ber of processes that may fail concurrently. The message complexity of the check
pointing algorithm as well as the recovery approach is just O(n) for an n process clus-
ter. Both the check pointing and recovery schemes are executed simultaneously in all
clusters. The proposed schemes are independent of the effect of any clock drift on the
respective sequence numbers of the recent checkpoints of the processes, Finally, it
should be noted that since existing tools are not sufficient to implement the algorithm,
a large amount of additional work is required for its implementation.

References

1. Koo, R., Toueg, S.: Checkpointing and Rollback-Recovery for Distributed Systems. IEEE
Trans. Software Engineering, SE-13(1) 1, 23–31 (1987)

2. Cao, J., Chen, Y., Zhang, K., He, Y.: Checkpointing in Hybrid Distributed Systems. In:
Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN 2004), Hong Kong, China, pp. 136–141 (2004)

3. Monnet, S., Morin, C., Badrinath, R.: Hybrid Checkpointing for Parallel Applications in
cluster Federations. In: Proceedings of the 4th IEEE/ACM International Symposium on
Cluster Computing and the Grid, Chicago, IL, USA, pp. 773–782 (2004)

4. Gupta, B., Rahimi, S., Liu, Z.: A Novel Low-Overhead Roll-Forward Recovery Scheme
for Distributed Systems. IET Computers and Digital Techniques 1(4), 397–404 (2007)

5. Manivannan, D., Singhal, M.: Asynchronous Recovery without using vector timestamps.
Journal of Parallel and Distributed Computing 62, 1695–1728 (2002)

6. Elnozahy, E.N., Johnson, D.B., Zwaenepoel, W.: The Performance of Consistent Check
pointing. In: Proceedings of the 11th Symp. Reliable Distributed Systems, pp. 86–95
(1992)

7. Cao, G., Singhal, M.: Mutable Checkpoints. A New Checkpointing Approach for Mobile
Computing Systems. IEEE Transactions on Parallel and Distributed Systems 12(2), 157–
172 (2001)

 Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation 445

8. Johnson, D.B., Zwaenepoel, W.: Sender-Based Message Logging. In: Proceedings of the
17th Fault-Tolerant Computing Symposium, Pittsburgh, pp. 14–19 (1987)

9. Damini, O.P., Garg, V.K.: How to Recover Efficiently and Asynchronously When Opti-
mism Fails. In: Proceedings of the 16th International Conference on Distributed Comput-
ing Systems, pp. 108–115 (1996)

10. Venkatesan, S., Juang, T., Alagar, S.: Optimistic Crash Recovery Without Changing Ap-
plication Messages. IEEE Trans. Parallel and Distributed Systems 8(3), 263–271 (1997)

11. Juang, T., Venkatesan, S.: Efficient Algorithm for Crash Recovery in Distributed Systems.
In: Proceedings of the 10th Conference on Foundations on Software Technology and
Theoretical Computer Science, pp. 349–361 (1990)

12. Gupta, B., Rahimi, S., Rias, R.A., Bangalore, G.: A Low-Overhead Non-Blocking Check-
pointing Algorithm for Mobile Computing Environment. In: Chung, Y.-C., Moreira, J.E.
(eds.) GPC 2006. LNCS, vol. 3947, pp. 597–608. Springer, Heidelberg (2006)

13. Gupta, B., Rahimi, S., Ahmad, R., Chirra, R.: A Novel Recovery approach for Cluster
Federations. In: Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS, vol. 4459, pp. 519–530.
Springer, Heidelberg (2007)

14. Gupta, B., Rahimi, S., Allam, V., Jupally, V.: Domino-Effect Free Crash Recovery for
Concurrent Failures in Cluster Federation. In: Wu, S., Yang, L.T., Xu, T.L. (eds.) GPC
2008. LNCS, vol. 5036, pp. 4–17. Springer, Heidelberg (2008)

15. Qi, X., Parmer, G., West, R.: An Efficient End-Host Architecture for Cluster Communica-
tion. In: Proceedings of the 2004 IEEE Intl. Conf. on Cluster Computing, San Diego, Cali-
fornia, pp. 83–92 (2004)

16. Shrivastava, S.K., Mancini, L.V., Randell, B.: The Duality of Fault- Tolerant System
Structures. Software-Practice and Experience 23(7), 73–798 (1993)

17. Alvisi, L., Marzullo, K.: Message Logging: Pessimistic, Optimistic, and Causal. In: Proc.
15th IEEE Int. Conf. on Distributed Computing Systems, pp. 229–236 (1995)

JACEP2P-V2: A Fully Decentralized and Fault
Tolerant Environment for Executing Parallel

Iterative Asynchronous Applications on Volatile
Distributed Architectures

Jean-Claude Charr, Raphaël Couturier, and David Laiymani

Laboratory of computer sciences, University of Franche-Comté (LIFC)
IUT de Belfort-Montbéliard, Rue Engel Gros, BP 527, 90016 Belfort, France

Tel: +33-3-84587781
{jean-claude.charr,raphael.couturier,david.laiymani}@univ-fcomte.fr

Abstract. This article presents JACEP2P-V2, a Java environment
dedicated to designing parallel iterative asynchronous algorithms
(with direct communications between nodes) and executing them on
global computing architectures or distributed clusters composed by a
large number of volatile heterogeneous distant computing nodes. This
platform is fault tolerant, multi-threaded and completely decentralized.
In this paper, we describe the different components of JACEP2P-V2 and
the various mechanisms used for scalability and fault tolerance purposes.
We also evaluate the performance of this platform and we compare
it to JACEP2P by implementing a parallel iterative asynchronous
application and by executing it on a volatile distributed architecture
using both platforms.

Keywords: Decentralized global Convergence, Peer-to-Peer architec-
tures, Distributed clusters, Parallel iterative asynchronous algorithms.

1 Introduction

The simulation of natural and nuclear reactions (like climate change or nuclear
fusion) requires solving very large and complex numerical problems and neces-
sitates computing very large data in order to obtain precise and reliable results.
These problems cannot be solved using a single computing unit because most
of the time, the numerical problems are so huge that a single computing unit
does not have enough memory nor computing power to store the application
and to solve it. These problems could only be solved using simultaneously many
computing resources. With the development of new reliable network equipments
and the emergence of cheap and fast desktops, scientists are able nowadays to
create distributed architectures using only these simple low cost devices. Most
of the time, these distributed architectures tends to replace equally powerful
but more expensive supercomputers. In numerical computing we can distinguish
three kinds of distributed architectures:

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 446–458, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 447

1. Local clusters are composed of similar workstations connected via a local
network with low latency and large bandwidth.

2. Distributed clusters are composed of many distant clusters with heteroge-
neous computing units that are connected via heterogeneous networks with
high latency and large bandwidth.

3. Global computing architectures are mainly composed of public unused
heterogeneous workstations connected to Internet. These architectures offer
free and unlimited computing power but suffer from the volatility of the
nodes and from the slowness of communications.

Most of the time, the local cluster architecture does not have enough computing
power to solve very large numerical problems. Therefore, in this paper, we are
only interested in distributed clusters and global computing architectures. Using
one of these parallel architectures, developers have to parallelize the method that
solves the numerical problem in order to execute a subsystem of the problem on
each computing unit. However, to use these architectures, the developer needs
to manage carefully the exchange of data between the different computing units,
especially when using high latency networks with heterogeneous and volatile
nodes.

There are two classes of methods to solve numerical problems:

– Direct methods give the exact solution of a numerical problem after exe-
cuting a finite number of operations. However, they are not really suited to
distributed clusters and global computing architectures because they require
several synchronizations.

– Iterative methods iterate many times the same block of instructions until
obtaining a good approximation of the solution (e.g., Jacobi or Conjugate
Gradient algorithms [1]). An iterative method converges when the “residual
vector” (there is many methods to evaluate the value of the residue, for
example Residue = maxi(|xk+1

i − xk
i |) where xk

i denotes the value of the
component i at iteration k) is inferior to the precision (ε) requested by the
user. Iterative methods are well adapted for very large problems.

Since we would like to solve very large numerical problems, in the rest of this
paper we only focus on iterative methods. Now, from a parallel point of view,
there are two models of parallel iterative algorithms:

– The synchronous iteration model. Using this model, as shown in
figure 1, after each iteration (represented by a filled rectangle in the figure),
a node sends its dependencies to its neighbors and waits for the reception of
all the dependency messages from all its neighbors. Then all the nodes must
synchronize to test if the system has globally converged. This results in large
periods of idle time (represented by white spaces between the rectangles).
These synchronizations can drastically penalize the overall performances in
the case of large scale heterogeneous platforms. Moreover, if a dependency
message is lost, the receiver will wait forever for that message and the ap-
plication will be blocked. In the same way, if a computing node is dead,

448 J.-C. Charr, R. Couturier, and D. Laiymani

Processor 1

Processor 2

Time

Fig. 1. Two processors using the synchronous iteration model

Processor 1

Processor 2

Time

Fig. 2. Two processors using the asynchronous iteration model

all the rest of the nodes will be blocked until the dead node is replaced. In
conclusion, this model is not well suited for large scale volatile computing
environments.

– The asynchronous iteration model [2]. Using this model, as shown in
figure 2, after each iteration, a computing node sends its dependencies to its
neighbors and begins the next iteration using the last received dependency
data. The node does not have to wait for the reception of the dependencies
messages from its neighbors, consequently, there is no idle time anymore
(no white spaces between iterations). The sending and the receiving mech-
anisms are asynchronous and the computing nodes tolerate the loss of data
messages. Even if a node dies, the rest of the nodes can continue the com-
putation process using the last dependency message sent by the dead node.
In conclusion, the asynchronous iteration model is well adapted for volatile
environments like peer-to-peer architectures or distributed clusters.

To tackle the specificities of the asynchronous iteration model on distributed
clusters or global computing architectures, we have developed JACEP2P-V2, a
new and improved version of JACEP2P [3]. JACEP2P-V2 is a fully decentralized
and fault tolerant platform dedicated to designing and executing parallel itera-
tive asynchronous algorithms on volatile architectures. The aim of this paper is
to present the design and the features of this new platform.

The rest of this paper is organized as follows: in the next section we present
some existing platforms related to our work. These platforms are briefly de-
scribed and the differences between our work and these platforms are empha-
sized. In the third section, we present JACEP2P’s architecture and its limits.
Then, we introduce JACEP2P-V2 and we describe in details its mechanisms
and functionalities. In the fourth section, we present the experiments conducted
on the Grid5000[4] testbed using JACEP2P-V2 to solve a numerical problem.
Finally, we end this paper with a conclusion and some perspectives.

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 449

2 Related Work

Recently, many middlewares for distributed clusters and global computing plat-
forms have been developed. However, most of them are not well adapted for
large numerical computing. Here are some examples:

– Seti@home [5]: The amazing success that this platform has achieved,
helped the creation of generalized environments like Xtrem Web [6] and
Boinc [7]. They are independent of the application and fault tolerant. The
user creates a parallel application and executes it using the “workers”. How-
ever, in these platforms, the clients cannot communicate with each others.
So they cannot execute a parallel computing application with dependencies
between nodes.

– JXTA [8]: It is an open-source project, composed of a set of peer-to-peer
protocols that allows any connected device (cell phone to PDA, PC to server)
on the network to communicate and collaborate. However, JXTA is a low
level platform and offers a lot of general functionalities that are not well
adapted for executing complex computing applications.

– ProActive [9]: It is an Open Source Java library for parallel, distributed,
and multi-threaded computing. Although this environment provides direct
communications between nodes using the RMI technology, when two nodes
communicate, they must be synchronized (even if the concept of future ob-
jects exists). Moreover ProActive uses a global checkpointing mechanism [10]
that requires synchronizing all the nodes in case of failures. In consequence,
the asynchronous iteration model cannot simply be used on this platform.

– JACE [11]: “Java Asynchronous Computation Environment” is a multi-
thre- aded Java based library designed to build asynchronous iterative al-
gorithms and execute them in a Grid environment. In JACE, two nodes
exchange data (synchronously or asynchronously) using either Sockets, RMI
or NIO (New Input/Output). However, this platform is not fault tolerant,
so it cannot be used in large scale volatile environments.

3 JACEP2P-V2

3.1 JACEP2P

JACEP2P is a distributed platform implemented using the Java programming
language and dedicated to developing and executing parallel iterative asyn-
chronous applications. JACEP2P executes parallel iterative asynchronous ap-
plications with dependencies between computing nodes. On the other hand, JA-
CEP2P is fault tolerant which allows it to execute parallel applications over
volatile environments and even for stable environments like local clusters and
grids, it offers a safer and crash free platform.

JACEP2P’s architecture. Figure 3, presents the architecture of JACEP2P
and the various components that form the platform:

450 J.-C. Charr, R. Couturier, and D. Laiymani

– The first entity is the “super-node” (represented by a big circle in figure 3).
Each super-node stores in its register the identifiers (IP address) of all the
computing nodes that are connected to it and are not executing an appli-
cation. The super-node regularly receives heartbeat messages (represented
by doted lines in figure 3) from the computing nodes connected to it. If the
super-node does not receive a heartbeat message from a computing node
included in its register for a given period of time, it declares that this com-
puting node is dead and deletes its identifier from the register.

– The second entity is the “spawner” (represented by a square in figure 3).
When a user wants to execute a parallel application, he or she launches a
spawner with the required parameters which contacts a super-node to re-
serve the required computing nodes. The super-node reserves the demanded
daemons (see next paragraph) which are removed from the super-node’s reg-
ister and returns to the spawner a register containing the identifiers of the
reserved computing nodes. When the spawner receives the register, it cre-
ates a task for each computing node and starts the execution of the tasks
on the respective daemons. The spawner has to send its register to all the
computing nodes in order for them to be able to communicate with each
others. Moreover, the spawner is responsible for detecting the disconnection
of a computing node. Indeed, when the computing nodes are reserved by
the spawner, they start sending their heartbeat messages to the spawner. If
the spawner detects that a computing node has not sent to it a heartbeat
message for a while, it declares that this computing node is dead. Then, it
fetches a new one from the super-node in order to replace the dead one. The
spawner initializes the new daemon, which retrieves the last backup of the
dead node and continues the computing task from that checkpoint. Finally,
the spawner is also responsible for detecting the global convergence of the
parallel iterative application. When a subsystem converges locally, the com-
puting node executing it sends a convergence message to the spawner. If the
spawner receives a convergence message from all the computing nodes, it
declares that the parallel iterative application has globally converged.

– The third entity is the “daemon” or the computing node (represented in
figure 3 by a hashed small circle if it is free and by a white small circle if it
is executing an application). Once launched, it connects to a super-node and

Communicate

Super−node

Heartbeat

Spawner

DaemonD

SN

SP

D3D1
D2

SN1 SN2SP2

Fig. 3. JACEP2P’s architecture and the different components

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 451

waits for a task to execute. During the execution of the parallel application,
the daemons can communicate with each others and they regularly save their
state on their neighbors. At the end of a task, the daemons reconnect to the
super-node.

To be able to execute asynchronous iterative applications, JACEP2P has an
asynchronous messaging mechanism (for more details interested readers can refer
to [3]) and to resist to daemons’ failures, it implements a distributed backup
mechanism called the uncoordinated distributed transparent checkpointing [12].
This method allows daemons to save their data on neighboring daemons without
any user intervention. The asynchronous nature of the application allows two
daemons to execute two different iterations, thus each daemon saves its status
without synchronizing with other daemons. This decentralized procedure allows
the platform to be very scalable, with no weak points and does not require a
secure and stable station for backups. Moreover, if a daemon dies, the other
computing nodes continue their tasks and they are not affected by this failure.

JACEP2P’s limitations. In [13], the experiments’ results proved that the first
version of JACEP2P performs very well and presents a relatively small overhead.
Nevertheless, this version has some important limits:

– JACEP2P is not fully fault tolerant. Indeed, in this version, spawners’
crashes are not tolerated. Moreover, while executing the global convergence
process, the platform does not resist well to the disconnection of daemons.

– JACEP2P has a centralized failure detection. The spawner receives heart-
beat messages from all the daemons and detects if a daemon is dead. If the
application is being executed by a large number of daemons, the spawner
will be overloaded with heartbeat messages. This will delay the detection of
a dead daemon and could even lead to a false crash detection. Moreover, if
many daemons die successively and there is only one spawner to handle the
dead daemons, then the spawner will take a lot of time to replace them. This
may reduce the performance of the platform.

– JACEP2P has a centralized global convergence detection mechanism which
is not well adapted for executing asynchronous parallel iterative algorithms
on volatile architectures. The daemons executing such applications do not re-
ceive dependencies messages from their neighbors at each iteration. This may
lead to a false local convergence and thus result to false global convergence
detection. Furthermore, the spawner could be overloaded by convergence
messages, if many daemons converge locally at the same time.

– JACEP2P has many centralized mechanisms like launching the application,
detecting the global convergence and detecting the dead nodes. These cen-
tralizations limit the scalability of JACEP2P.

– In JACEP2P, each daemon receives the whole register which contains the
identifiers of all the daemons executing the application. If a daemon crashes
and is replaced by a new one, the spawner has to notify the modifications to
all the daemons in order to update their registers. This could overload the
spawner and increase the congestion of messages in the network.

452 J.-C. Charr, R. Couturier, and D. Laiymani

To remedy these problems we present JACEP2P-V2 a fully decentralized and
fault tolerant platform. In the next subsection, we will describe in details the
functionalities and characteristics of the new platform.

3.2 JACEP2P-V2’s Architecture

Figure 4 shows the architecture of JACEP2P-V2 where we notice that there are
two spawners handling the execution of a single application and each group of en-
tities (spawners, daemons and super-nodes) forms a circular network. JACEP2P-
V2 has similar entities as JACEP2P but with different functionalities:

– Super-nodes. They form a circular network now and store in an equally
distributed manner the identifiers of all the computing nodes that are con-
nected to the platform and that are not executing any application. Each
super-node has a status table containing the number of connected comput-
ing nodes to each super-node and all the super-nodes share a “token” that
is passed successively from a super-node to the next one. Once a super-node
has the token, it computes the average number of computing nodes con-
nected to a super-node (avg) using the status table. If avg is lower than the
number of computing nodes connected to it, then it sends the identifiers of
the extra computing nodes to the super-nodes that have the number of com-
puting nodes connected to them less than avg. If the number of computing
nodes connected to it has changed, it broadcasts the information to all the
super-nodes in the platform. Finally, it passes the token to the next super
node. This distribution reduces the overload of the super-nodes.

– Spawners. When a user wants to execute a parallel application that requires
N computing nodes, he or she launches a spawner. The spawner contacts a
super-node to reserve the N computing nodes plus some extra nodes in order
to transform them into spawners. When the spawner receives the register
from the super-node, it transforms the extra daemons into spawners and
stores the identifiers of the rest of the daemons in its own register. Once

D1

D2

D3

SN3

SN2

SN1

SP2SP1

Communicate

Super−node

Heartbeat

Spawner

DaemonD

SN

SP

Fig. 4. JACEP2P-V2’s architecture and different components

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 453

the extra nodes are transformed into spawners, they form a circular network
and they receive the register containing the identifiers of the computing
nodes. Then each spawner becomes responsible for a subgroup of computing
nodes, starts the tasks on the computing nodes under its command and sends
a specified register to them. So each computing node receives a specified
register that only contains the identifiers of the daemons it interacts with
and that depends on the application being executed. These specified registers
reduce the number of messages sent by the spawners to update the register
of the daemons after a daemon crashes because usually a small number of
daemons is affected by this crash.

– Daemons. Once they begin executing an application they form a circular
network which is only used in the failure detection mechanism. Each daemon
can communicate directly with the daemons whose identifiers it has in its
register.

3.3 JACEP2P-V2 Functionalities and Characteristics

After describing quickly the modifications made on the architecture of
JACEP2P-V2, in this section we present in details the different new functional-
ities and characteristics implemented in JACEP2P-V2:

– Completely decentralized. JACEP2P-V2 is completely decentralized. In
fact, all the tasks are divided between the entities of the same type. For
example, a daemon can be connected to any super-node and the group of
super nodes shares equally the control of the free daemons connected to the
super-node network. The spawners are also decentralized: once a spawner
is launched to execute an application, it quickly duplicates itself into sev-
eral spawners (depending on the number of daemons required to execute the
parallel application) by transforming some daemons into spawners. Each
spawner becomes responsible for starting the application on a subgroup
of daemons and handling the needs of that subgroup. For the computing
nodes, each one executes a part of the application and the sum of their work
gives the solution of the global problem. This distribution of tasks, allows
JACEP2P-V2 to solve very large problems and thus to become very scalable
with theoretically no limiting conditions.

– Completely fault tolerant. We have implemented many mechanisms to
make the three entities that form the core of JACEP2P-V2 fault tolerant. An
important concept available for the three entities is the decentralized crash
detection mechanism. It enables the neighbors of a node to detect if it is dead
or alive. Each group of entities forms a circular network. This organization
is needed to apply the decentralized crash detection mechanism we have
implemented. Each entity has a “heartbeat thread” that signals regularly
to the next node in the circular network that the sender is still alive and
another thread, the “scan thread” , that tests at each iteration if the previous
node in the circular network has recently sent a heartbeat message. If for
a given period of time the node does not receive a heartbeat message from

454 J.-C. Charr, R. Couturier, and D. Laiymani

the previous one, the scan thread detects that the previous node is probably
dead. Depending on the type of the dead node, the disconnection is handled.
In fact, each entity has a restoring mechanism which is also dependent on
the saving mechanism used for each type of entity.

• For daemons we use the distributed backup mechanism described be-
fore and we have implemented two types of backup in JACEP2P-V2.
The first backup contains all the information concerning the state of a
node (convergence data) and its computing process (solution vector).
This backup is saved each N iterations (N given by the user and usu-
ally depends of the length of an iteration) on a different neighbor using
the “round-robin” strategy. On the other hand, the second backup only
contains the status data. This backup has a smaller size and it is saved
when the status of a daemon has changed, especially when it concerns
the global convergence detection mechanism. This backup is saved on
all the backup neighbors simultaneously. Once a daemon detects that
the previous daemon is dead, the daemon signals it to the spawner re-
sponsible for it. The spawner contacts a super-node and acquires a new
daemon. The new daemon replaces the dead one and retrieves the last
status backup and the last data backup. Once it has the backups, it
continues the task from that last checkpoint. During all this operation,
all the other daemons continue their tasks normally.

• For spawners, we use the duplication mechanism. The spawner is du-
plicated into many spawners. All the spawners have all the information
concerning all the daemons and each one manages only a subgroup of
daemons. If a spawner dies, the next spawner detects it (using the same
scheme described before). Then, that spawner contacts a super-node,
gets a new daemon and transforms it into a spawner. Once it becomes a
spawner, it receives the register containing the identifiers of all the dae-
mons executing the application, it identifies its subgroup of daemons, it
informs them that it is the new spawner and it is reintegrated into the
circular spawner network.

• For super-nodes, there is no saving mechanism, they do not contain very
valuable information. When a dead super-node is detected by the next
super-node, it is rejected from the circular super-node network. All the
daemons that were connected to the dead super-node will reconnect onto
another super-node.

– Multi-threaded. JACEP2P-V2 is multi-threaded. The computing process
is never blocked by the exchange of data messages between daemons. Each
functionality (communicating, detecting crashes, saving and computing) has
its own thread.

– Decentralized global convergence detection algorithm: JACEP2P-
V2 has implemented this algorithm to detect efficiently the global conver-
gence of the asynchronous iterative parallel algorithms executed on the plat-
form. It consists of two phases: the detection phase and the verification phase.
This algorithm is presented in details in these papers [2,13].

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 455

– Acknowledge mechanism: JACEP2P-V2 tolerates the loss of data mes-
sages when it executes parallel asynchronous iterative algorithms. However,
it has to ensure the right reception of the convergence messages by the re-
ceivers in order to ensure a coherent system. Therefore, we had to imple-
ment an acknowledge mechanism dedicated to the convergence messages.
When a computing node sends a convergence message to another one, the
receiver handles the received message (this usually changes the state of the
receiver) then it saves its new state on its backup neighbors and next it re-
turns an acknowledge message to the sender. Once the sender receives the
acknowledge message, it knows that the receiver has received the conver-
gence message and then it saves its state on its backup neighbors so it does
not send the convergence message again. On the other hand, if the sender
does not receive the acknowledge message, it knows that the message did
not reach its destination and that it has to send the convergence message all
over again.

4 Experiments

In order to evaluate the benefits of the improvements that have been im-
plemented in JACEP2P-V2, we have conducted two sets of experiments on
Grid’5000 French national grid. The same experiments were realized using JA-
CEP2P and JACEP2P-V2 in order to compare both platforms. Both sets of
experiments were realized on two different architectures. During these tests,
both platforms had to execute a parallel iterative application that solves a three
dimensional advection-diffusion equations system. This system represents math-
ematically the transport processes of pollutants, salinity, and so on, combined
with their bio-chemical interactions.

4.1 Mathematical Description

A system of 3D advection-diffusion-reaction equations has the following form:

∂c

∂t
+ A (c, a) = D (c, d) + R (c, t) (1)

where c denotes the vector of unknown species concentrations, of length m, and
the two vectors A(c, a) = [J(c)] ∗ aT and D(c, d) = [J(c)] ∗ d ∗ ∇T respectively
define the advection and diffusion processes (J (c) denotes the Jacobian of c with
respect to (x, y, z)). The local fluid velocities u, v and w of the field a = (u, v, w)
and the diffusion coefficients matrix d are supposed to be known in advance. A
simulation of pollution evolution in shallow seas is obtained if a is provided by a
hydro-dynamical model. The chemical species dynamic transport is defined by
both advection and diffusion processes, whereas the term R includes interspecies
chemical reactions and emissions or absorption from sources. For more details,
readers can refer to [14].

456 J.-C. Charr, R. Couturier, and D. Laiymani

Table 1. Execution time with 3 random crashes every n seconds

n ∞ 90 60 30
Execution time for JACEP2P 522s 873s 1003s 1611s

Total number of crashes for JACEP2P 0 30 51 159
Execution time for JACEP2P-V2 495s 565s 595s 744s

Total number of crashes for JACEP2P-V2 0 18 28 68

4.2 First Experiment: Local Cluster

In this experiment, we compare JACEP2P to JACEP2P-V2 while executing the
same application on a single site. This application solves a system containing
405.224.000 components and that simulates a 90 seconds time interval. 252 bi-
processors computing units, located in Orsay, were used to run this application.
The computing nodes were equipped with 2 AMD Opteron 246 2.0GHz or 250
2.4GHz processors. To prove that the two platforms are fault tolerant, we used
a shell script that randomly kills three computing nodes each n seconds.

The results for this set of experiments are presented in table1. It shows the
execution times taken by JACEP2P and JACEP2P-V2 to solve the problem
with various frequencies of nodes crashes. It is obvious that JACEP2P-V2 out-
performs JACEP2P in each category. We also notice that JACEP2P-V2 is less
affected than JACEP2P by the disconnection of computing nodes. Indeed, when
the computing nodes disconnect frequently, JACEP2P suffers a lot because of
the centralized nature of some of its components. On the other hand, with the
JACEP2P-V2’s decentralized dead nodes detection, the dead nodes are detected
faster by their neighbors and thus they are replaced quickly by new ones to con-
tinue their tasks. These mechanisms reduce the influence of the crashes on the
performance of JACEP2P-V2 platform.

4.3 2nd Experiment: Distributed Clusters

In this second set of experiments, we aimed at simulating a global computing ar-
chitecture which has the following characteristics: large number of heterogeneous
computing units, high latency communications and volatile nodes. So, we used
the same number of computing nodes but this time we have chosen them from
three distant sites in order to have heterogeneous computing nodes. Moreover,
the latency between two nodes from distinct sites is superior to the one between
two nodes located on the same site, thus the latency of the communications is
also heterogeneous. The computing nodes were selected from the following sites:
Nancy where each station is equipped with 2 double cores 1.6 GHz Intel Xeon
5110, Sophia where each station is equipped with 2 processors AMD Opteron 246
2.0GHz and Orsay which is described in the first experiment. We executed the
same application as in the first experiment using JACEP2P and JACEP2P-V2.
We have also simulated the volatility of the computing nodes by using the same
perturbator script. However in this experiment, the script killed one daemon on
each site each n seconds. The results for this set of experiments are presented in

JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment 457

Table 2. Execution time with one crash every n seconds at each site

n ∞ 90 60 50
Execution time for JACEP2P 565s 1438s 2008s 2050s

Total number of crashes JACEP2P 0 48 100 122
Execution time for JACEP2P-V2 581s 624s 632s 663s

Total number of crashes JACEP2P-V2 0 19 30 38

table 2. As in the previous experiment, JACEP2P-V2 outperforms JACEP2P,
in particular when the environment is highly volatile. Moreover, the crashes
overhead is totally acceptable in JACEP2P-V2. These experiments prove that
the modifications implemented in JACEP2P improve its performance on volatile
architectures that suffer from high latency between computing nodes.

5 Conclusion and Perspectives

In this paper we have presented the new version of JACEP2P, called JACEP2P-
V2. This parallel platform is dedicated for designing and executing parallel asyn-
chronous iterative applications in volatile environments. This new version is fully
fault tolerant which makes it able to resist the failure of any node in the plat-
form, especially the ones executing an application. We have also implemented a
decentralized mechanism for detecting dead nodes in order to replace them. We
also conducted two sets of experiments using two different architectures. In all
these tests JACEP2P-V2 outperformed JACEP2P.

In the near future, we want to test JACEP2P-V2 using more computing units.
We also would like to test it on a real global computing architecture, using unused
public computing units connected via Internet. Finally, we want to implement
many types of iterative asynchronous applications on JACEP2P-V2 to show the
benefits of this platform and its general utility.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS publishing (1996)
2. Bahi, J., Contassot-Vivier, S., Couturier, R.: Parallel Iterative Algorithms: from

sequential to grid computing. Numerical Analysis & Scientific Computating, vol. 1.
Chapman & Hall/CRC, Boca Raton (2007)

3. Bahi, J., Couturier, R., Vuillemin, P.: JACEP2P: an environment for asynchronous
computations on peer-to-peer networks. In: Cluster 2006, pp. 1–10 (2006)

4. grid 5000, http://grid5000.fr
5. Seti@home, http://www.setiathome.berkeley.edu/
6. Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., Lodygen-

sky, O.: Computing on large-scale distributed systems: XtremWeb architecture,
programming models, security, tests and convergence with grid. Future Genera-
tion Computer Systems 21(3), 417–437 (2005)

7. BOINC, http://www.boinc.berkley.edu/
8. JXTA, http://www.jxta.org/

http://grid5000.fr
http://www.setiathome.berkeley.edu/
http://www.boinc.berkley.edu/
http://www.jxta.org/

458 J.-C. Charr, R. Couturier, and D. Laiymani

9. ProActive, http://www.proactive.inria.fr/
10. Cao, G., Singhal, M.: On coordinated checkpointing in distributed systems. IEEE

Transactions on PDS-9 (12), 1213–1225 (1998)
11. Bahi, J., Domas, S., Mazouzi, K.: Jace: a java environment for distributed asyn-

chronous iterative computations. In: PDP 2004, Spain, February 2004, pp. 350–357
(2004)

12. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing
under UNIX. In: USENIX Winter, pp. 213–224 (1995)

13. Charr, J.C., Couturier, R., Laiymani, D.: A decentralized convergence detection al-
gorithm for asynchronous iterative algorithms in volatile environments (submitted,
2008)

14. Bahi, J., Couturier, R., Mazouzi, K., Salomon, M.: Synchronous and asynchronous
solution of a 3D transport model in a grid computing environment. Applied Math-
ematical Modelling 30(7), 616–628 (2006)

http://www.proactive.inria.fr/

Performance Evaluation of Scheduling
Mechanism with Checkpoint Sharing and Task
Duplication in P2P-Based PC Grid Computing�

Joon-Min Gil1, Ui-Sung Song2, and Heon-Chang Yu3

1 Dept. of Computer Science Education, Catholic University of Dague
330 Geumnak, Hayang-eup, Gyeongsan-si, Gyeongbuk 712-701, Korea

jmgil@cu.ac.kr
2 Dept. of Computer Science Education, Busan National University of Education

37 Gyodae-ro, Yeonje-gu, Busan 611-736, Korea
ussong@bnue.ac.kr

3 Dept. of Computer Science Education, Korea University
5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Korea

yuhc@comedu.korea.ac.kr

Abstract. An important issue in the PC grid computing environment
that is characterized by volatility and heterogeneity is the minimization
of execution time for all tasks. This paper proposes a scheduling
mechanism to reduce such execution time by means of both checkpoint
sharing and task duplication under a peer-to-peer (P2P) architecture.
In the mechanism, the checkpoint executed by an individual peer (i.e.,
a desktop PC) is used as an intermediate result and executed in other
peers via its duplication and transmission. As a result, as the checkpoint
is close to a final result, the reduction of execution time for each task
becomes higher. Ultimately, turnaround time can be reduced. Moreover,
an analytical model with an embedded Markov chain is presented to
evaluate the transmission cost and execution time of our scheduling
mechanism. The performance of our scheduling mechanism is also
compared with that of the existing mechanism operating on client-server
architecture. The analytical results show that our scheduling mechanism
is superior to the existing mechanism with respect to the reduction of
execution time.

Keywords: P2P-based PC Grid Computing, Checkpoint Sharing, Task
Duplication, Embedded Markov Chain.

1 Introduction

One performance factor of a PC grid computing environment is the minimiza-
tion of the execution time of all tasks [1]. Unexpected failures can be considered

� This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (KRF-2008-331-D0447).

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 459–470, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

460 J.-M. Gil, U.-S. Song, and H.-C. Yu

degrading factors in the minimization of the execution time, which can be par-
tially addressed with the use of a checkpointing method in application level.
Another method of minimizing the execution time is to share all the checkpoints
performed on each PC [5]. The sharing of checkpoints is a method of reusing the
checkpoint, which was recently performed on a local PC, in other PCs; i.e., the
intermediate result of a task is relayed to other PCs so that task execution from
the last checkpoint position would be restated. Ultimately, the purpose of this
method is to reduce the execution time, compared to the execution of each task
from the beginning.

Most PC grid computing systems, however, has used a client-server model
as their main architecture [2,4,6]. Although this model is simple in architecture
as well as in control of resources and tasks, it concentrates all functions on
the central server, which heightens the bottleneck phenomenon in the server.
Moreover, in the client-server model, checkpoint sharing is based on a method of
storing checkpoints into a central stable storage [5]. However, the checkpoints of
all PCs are also concentrated on the central stable storage, which again brings
about the bottleneck phenomenon in the central stable storage. To overcome this
shortcomings of the client-server model in a PC grid computing environment, this
paper utilizes the peer-to-peer (P2P) model [3] as a fundamental architecture,
which has been widely used in Internet services, such as file sharing or content
delivery. Compared to the client-server model that completely depends on the
central server, the P2P-based PC grid computing environment used in this paper
is based on a three-layered structure (central server, peer groups, and peers). In
this structure, the central server controls only peer groups, and a representative
peer in a peer group controls the peers that belong to the corresponding group
so as to disperse the functions of the central server and ultimately, to reduce the
bottleneck phenomenon in the central server.

To cope with peer failures in a P2P-based PC grid computing environment,
each peer performs checkpointing on its local disk at a periodic cycle. The in-
termediate result, which is stored in a peer as a checkpoint, is transmitted to
another peer requesting a task. Then the peer continuously executes the interme-
diate result beginning from the last checkpoint position. This checkpoint sharing
leads to the reduction of the execution time. In order to deal with peer volatil-
ity and heterogeneity, this paper uses a task duplication method along with the
checkpoint sharing method; when a peer requests a task, an intermediate result
with the last checkpoint among replicas for the task is allocated to the peer. The
requesting peer successively executes the task, utilizing the intermediate result.
Therefore, it is expected that our scheduling mechanism will more significantly
reduce the execution time than the existing mechanism, where the duplicated
tasks are executed from the beginning.

Eventually, this paper aims to devise a scheduling mechanism of reducing ex-
ecution time per task using checkpoint sharing and task duplication methods in
a P2P-based PC grid computing computing environment, and ultimately, of pro-
viding large-scale applications with fast turnaround time. Contrary to the exist-
ing mechanism which is based on a client-server model, our scheduling mechanism

Performance Evaluation of Scheduling Mechanism 461

performs checkpoint sharing and task duplication on the basis of a P2P architec-
ture. Thus, our mechanism can highly distribute the load of central server. As for
checkpoint sharing, it does not need any central storage. Instead, checkpoints in
each peer are autonomously transmitted to other peers by the mediation of a spe-
cific peer in a peer group. To show the superiority of our scheduling mechanism,
this paper presents a mathematical analysis model with an embedded Markov
chain. Based on the model, we compare our mechanism with the existing one, in
terms of message/data transmission cost and the reduction of execution time.

The rest of this paper is organized as follows: In Section 2, we provide a
system model for a P2P-based PC grid computing environment. This section
also describe checkpoint sharing and task duplication processes in our system
model. Section 3 presents an analytical model for our scheduling mechanism
and analyzes the performance of our scheduling mechanism from the viewpoint
of message/data transmission cost and the reduction of execution time. Section
4 provides the performance evaluation of our scheduling mechanism. Finally, the
conclusion of this paper is given in Section 5.

2 P2P-Based PC Grid Computing Environment

2.1 System Model

Fig. 1 shows a system model for the P2P-based PC grid computing environment
that this paper assumes. This system model is based on the three-layered struc-
ture that consists of a central server, peer groups, and peers. The central server
operates minimum functions, such as peer group management, peer authenti-
cation management, and metadata management for tasks and peers, instead of
all kinds of managements for peers and tasks. The peer groups (PGs) consist
of peers with identical characteristics under certain conditions. A unique peer
within a peer group becomes a representative peer (RP) of the peer group, and
the other peers become member peers (MPs) of the peer group.

RP

RP

PG

PG

PG

MP

MP MP

MP

MP

MP MP

MP

RP

MP

MP MP

MP

PG: Peer Group

RP: Representative Peer

MP: Member Peer

. . .

. . .

. . .

Central

Server

Fig. 1. System Model

462 J.-M. Gil, U.-S. Song, and H.-C. Yu

Generally, a large-scale application in a PC grid computing environment is
divided into hundreds and millions of unit tasks, each of them should be suitable
to be executed in a peer (or a PC). These unit tasks are also structured in such
a way that there is no dependency among unit tasks [1].

In our system model, an RP keeps a list of tasks, Wg = {w1, w2, · · · , wm, · · · ,
wM}, to manage the tasks to be allocated to the MPs that belong to its PG. Here,
g is an index for distinguishing a PG, and M is the number of tasks. An element of
the list, wm, has the following data structure: wm = {wid, wd, wc} (1 ≤ m ≤ M),
where wid is a unique identifier for a task. For task duplication, each task wm

should recognize how many replicas are being executed on different MPs. The wm

keeps the current number of replicas wd which has one of the following values:
{0, 1, · · · , D}, where D is the maximum number of duplications. The wc repre-
sents the largest number of checkpoints among those of the duplicated tasks. This
information is also used for the RP to duplicate the intermediate result that has
the largest number of checkpoints when an identical task is being duplicated.

Meanwhile, a member peer in a PG, MPl, has the following data structure:
MPl = {MPid, PGg, wid, MPc}, where MPid and PGg are the identifier of the
MP and that of the PG to which MPid belongs, respectively; wid is the identifier
of the task allocated from the RP; and MPc represents the checkpoint status of
the task, which has one of the following values: {0, 1, · · · , C}, where C represents
the maximum number of checkpoints. If MPc = 0, it means the status that has
not yet taken a checkpoint; i.e., it means either a stand-by status or a status of
having executed a task just before being taken the first checkpoint. If MPc has a
value of c (1 ≤ c < C), it means the status that has taken the cth checkpoint and
executed a task just before being taken the (c + 1)th checkpoint. If MPc = C,
it means task execution has ended.

2.2 Checkpointing and Task Duplication

Figs. 2 and 3 show the duplication process and the checkpointing process between
RP and MP, respectively. The process of task duplication (Fig. 2) is as follows:

RP

MPi MPj

(1) Task Request
Message

(2) Task Data Transmission

(a) RP transmits task data directly

RP

MPi MPj

(1) Task Request
Message

(3) Order Message
for Sending Task

Data to MPi

(4) Task Data Transmission

(2) Notification Message
for Receiving Task Data

from MPj

(b) Task data is transmitted by the me-
diation of RP

Fig. 2. Duplication Process between RP and MP

Performance Evaluation of Scheduling Mechanism 463

RP

MPi

.

1st
checkpoint

2nd
checkpoint

cth
checkpoint

Cth
checkpoint

Task
Completion

Message
Checkpoint

Message
Checkpoint

Message
Checkpoint

Message

time

(1)

(2)

task execution time

task execution timesaving of task execution time

Fig. 3. Checkpointing Process Between RP and MP

First, if MPi sends a task request message to RP [(1) in Fig. 2 (a) and (b)],
RP searches for the task with the smallest number of duplications from the task
list it keeps. Assume that this task is wm. By examining the wd value of wm,
RP can know how many member peers execute wm in duplication. If wd is 0, it
means wm has not been duplicated yet, and therefore, RP directly transmits the
task data of wm to MPi [(2) in Fig. 2 (a)]. If wm has the wd value larger than
1, RP recognizes an MP (or MPs) to which wm has been already allocated (let
the MP be MPj). At this point, RP sends MPi the notification message that
task data would be transmitted from MPj [(2) in Fig. 2 (b)]. Then RP sends
an order message to MPj so that MPj would transmit task data to MPi [(3)
in Fig. 2 (b)]. On receiving this message, MPj sends MPi its last checkpoint as
task data. In other words, it sends the intermediate result, which was produced
by checkpointing, to MPi [(4) in Fig. 2 (b)].

Fig. 3 shows the checkpointing process. As the intermediate result of a task,
each checkpoint is saved in the local disk of an MP at a periodic cycle (MPi

in Fig. 3). Right after checkpointing is performed, MPi notifies RP that its
checkpoint has been taken. Since checkpointing is performed at a periodic cycle,
MPi sends the RP the checkpoint messages of total C times, from the beginning
to the end of a task ((1) in Fig. 3). Meanwhile, by checkpoint sharing, MPi can
receive a checkpoint as an intermediate result from another MP. If the checkpoint
transmitted to MPi has been performed up to the cth checkpoint, MPi will send
the checkpoint messages of C − c times to RP until the task is completed. ((2)
in Fig. 3). At this time, task execution time can be also reduced because MPi

executes a task from the cth checkpoint time, not from the beginning.
Having received from MPi a checkpoint message for the task wm, RP updates

the wc value of wm in the task list. At this point, wc is compared to the MPc

of MPi, which is included in the checkpoint message; and if wc < MPc, wc is
replaced with MPc. This case indicates that in a state where the task wm is
being executed on several MPs in duplication, the MPi with the largest number
of checkpoints sends its checkpoint message to RP . If wc ≥ MPc, wc is kept
without any change. Meanwhile, if RP receives a task completion message from
MPi, it confirms that task execution has been completed. Then RP receives a
final result from MPi.

464 J.-M. Gil, U.-S. Song, and H.-C. Yu

3 Analytical Model

The proposed mechanism in this paper is modeled by embedded Markov chain
and analyzed from the viewpoint of message/data transmission cost and the
reduction of execution time.

3.1 Analysis Modeling with Embedded Markov Chain

The proposed mechanism is analyzed with embedded Markov chain model. Fig.
4 shows the state transition diagram established when MPs execute at most two
checkpoints (C = 2) until completing each replica, permitting three duplications
per task (D = 3). As shown in Fig. 4, when D = 3 and C = 2, each state is
expressed as a state vector (a, c1, c2, c3, r). The first element a (0 ≤ a ≤ D)
represents the number of replicas for the task wm. The second to the fourth
elements c1, c2, c3 come in the order of the number of checkpoints of the MPs
executing the task, which is 0 ≤ c3 ≤ c2 ≤ c1 < C. That is, c1 is the number
of checkpoints of the MP that has the largest number of checkpoints among the
MPs executing the task. On the other hand, c3 is the number of checkpoints
of the MP that has the smallest number of checkpoints. Because the checkpoint
status for all the MPs executing the task should be expressed in the state vector,
the total number of ci elements is required as many as D (i.e., the number of
duplications). The last element r represents the number of the completed tasks
among the duplicated ones.

In this paper, it is assumed that task request and checkpoint report follow
the Poisson process [7] with the ratio of λ1 and λ2, respectively. λ1 indicates
the mean number of events generated for unit time when the RP receives a
task request from an MP and allocates a task to the MP, and λ2 indicates
the mean number of events generated for unit time when the MP executing
a task performs checkpointing and reports to the RP that it has taken the
checkpoint. From Fig. 4, we can observe that the state transition of a task by
checkpoint sharing and task duplication is caused by an MP’s task request or

�1

�1

�1

�1

�1

�1

�1 �1

�1

�1

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2

�2
�2

�2

�2

�2

Fig. 4. State Transition Diagram (D = 3, C = 2)

Performance Evaluation of Scheduling Mechanism 465

checkpoint report. Whenever either a task request event or a checkpoint event
occurs in an MP, the RP receives messages for the event from the MP. Thus,
if such the messages are observed on the RP, the state transition of a task can
be modeled. Let p(a,c1,c2,c3,r),(a′,c′1,c′2,c′3,r′) be the one-stop transition probability
from a state (a, c1, c2, c3, r) to a state (a′, c′1, c

′
2, c

′
3, r

′). It can be calculated based
on the state transition shown in Fig. 4. The one-step transition matrix P =
(p(a,c1,c2,c3,r),(a′,c′1,c′2,c′3,r′)) can be expressed as follows:

P =
1
L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 λ1 0 λ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 λ1 0 λ2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 λ2 0 λ1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2 λ2
1
2 λ2 0 λ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2 L 1

2 L 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 λ1 0 λ2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 λ1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 L 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 L 1
2 L 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 λ1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 L 1
2 L 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this transition matrix, λ1 and λ2 indicate the task request rate and the check-
point arrival rate per unit time, respectively, and L = λ1 + λ2. In the above
transition matrix, the elements of each column and row are listed in the follow-
ing (a, c1, c2, c3, r) order: (0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (2, 0, 0, 0, 0), (3, 0, 0, 0, 0), · · ·,
(0, 0, 0, 0, 2), (1, 0, 0, 0, 2), (2, 1, 1, 0, 2), and (1, 1, 0, 0, 2).

Next, let N be the total number of states and π(a,c1,c2,c3,r) be the steady-
state probability of a state (a, c1, c2, c3, r). The unique steady-state probabil-
ity distribution vector π for these states can be obtained from the following
formula [7]:

π = e(I + E − P)−1 (1)

where, E and e are the matrix (N×N) and the row (1×N), whose element has a
value of 1, respectively. Eq. (1), a variation of π = πP , is used very significantly
for the numerical calculation; and using this formula, we can compute each
π(a,c1,c2,c3,r).

3.2 Analysis of Transmission Cost

Now, we describe the transmission cost required by task requests and check-
pointing when D = 3 and C = 2. Firstly, consider the transmission cost related
to task requests. Let the message cost and the data cost be expressed as mr

and dr, respectively. If it is assumed that initial task data and intermediate re-
sult data have the same size, the transmission cost for the two data would also
be identical; i.e., the transmission cost for each data is dr. Then the unit cost
required by a task request event can be calculated by

RU1 = mr + dr (2)
RU2 = 3 · mr + dr

466 J.-M. Gil, U.-S. Song, and H.-C. Yu

where, RU1 is the unit cost made when the RP directly transmits task data, and
RU2 is the unit cost made when task data is transmitted by the mediation of
the RP. Using Eq (2) and the transition probability for task request, the total
cost Rc required by a task request event is calculated by

Rc = R1 · RU1 + R2 · RU2 (3)

R1 =
D−1∑
i=0

π(0,0,0,0,i) +

(
D−1∑
i=1

π(i,0,0,0,0) + π(1,0,0,0,1)

)
·
(

λ1

λ1 + λ2

)

R2 =

⎛
⎝D−2∑

i=0

π(1,1,0,0,i) +
C−1∑
j=0

π(2,1,j,0,0)

⎞
⎠ ·

(
λ1

λ1 + λ2

)

where, R1 is the total sum of the transition probabilities that the RP directly
sends task data to an MP for a task request, and R2 is the total sum of the
transition probabilities that the checkpoint of another MP as task data is sent
the MP making a task request by the mediation of the RP.

Secondly, consider the transmission cost related to checkpointing. Let message
cost and data cost for checkpointing be expressed as mc and dc, respectively.
The cost of one checkpoint message is incurred only when the notification of the
checkpoint acquisition is made. However, there is an exception when an RP is
notified of the completion of a task. In this case, the transmission costs of both
task completion message and final result data are incurred each once. Also, if
the checkpoint message and the task completion message have the same cost,
the unit cost required by a checkpoint event can be calculated by

CU1 = mc (4)
CU2 = mc + dc

where, CU1 represents the unit cost required when an MP notifies the RP that
it has acquired a checkpoint, and CU2 represents the unit cost required when
the MP notifies the RP that it has completed the allocated task. Using Eq (4)
and the transition probability for checkpointing, the total cost of a checkpoint
event can be calculated by

Cc = C1 · CU1 + C2 · CU2 (5)

C1 =

(
D−2∑
i=0

π(1,0,0,0,i) + π(2,0,0,0,0) +
1
2
· π(2,1,0,0,0)

)
·
(

λ2

λ1 + λ2

)
+

D−1∑
i=0

π(D−i,0,0,0,i) +
1
2
·

⎛
⎝π(2,1,0,0,1) +

C−1∑
j=0

π(3,1,j,0,0)

⎞
⎠

C2 =

(
D−2∑
i=0

π(1,1,0,0,i) + π(2,1,1,0,0) +
1
2
· π(2,1,0,0,0)

)
·
(

λ2

λ1 + λ2

)
+

π3,1,1,1,0 + π2,1,1,0,1 + π1,1,0,0,2 +
1
2
·

⎛
⎝π(2,1,0,0,1) +

C−1∑
j=0

π(3,1,j,0,0)

⎞
⎠

Performance Evaluation of Scheduling Mechanism 467

where, C1 is the total sum of the transition probabilities that an MP notifies the
RP of the execution of checkpointing, and C2 is the total sum of the transition
probabilities that the final result of the completed task is transmitted to the RP.

So far, using Eqs. (3) and (5), we have calculated the average cost for one
task request event and one checkpoint report event. Until a task is completed
going through checkpoint sharing and task duplication, on the average, D times
of task request reports and D · C times of checkpoint reports occur. Thus, the
total cost of our scheduling mechanism, TC, is the sum of the task request cost
and the checkpoint report cost, as follows: TC = D · Rc + (D · C) · Cc.

3.3 Analysis of Execution Time Reduction Cost

Here, we examine how much execution time our mechanism can reduce as com-
pared to the client-server model. The average execution time (ET) reduced per
task request in our scheduling mechanism can be calculated by

ET =

⎛
⎝D−2∑

i=0

π(1,1,0,0,i) +
C−1∑
j=0

π(2,1,j,0,0)

⎞
⎠ ·

(
1
C

· T
)
·
(

λ1

λ1 + λ2

)
(6)

where, T is the execution time required when one task is performed from the
beginning to the end without the use of the intermediate result, and C is the
total number of checkpoints. For analytical convenience, it is assumed that all
MPs have the same performance. Accordingly, all checkpoints will be taken at a
periodic cycle. Then we can see that a mean execution time between two consec-
utive checkpoints is 1

C ·T . The reduction of the execution time is determined by
how few checkpointing the MP has performed after it receives an intermediate
result from another MP; i.e., as a checkpoint in an intermediate result is close
to a final result, the execution time becomes less, as much as any times of 1

C ·T .
On the other hand, tasks in the client-server model are not executed utilizing
an intermediate result; rather, even replica is executed from the beginning. As a
result, in the client-server model, if a task is duplicated D times, the total execu-
tion time becomes D · T . Therefore, the execution time reduction ratio (ETRR)
of our scheduling mechanism to the client-server model is as follows:

ETRR =
D · ET

D · T =
ET

T
(7)

4 Performance Evaluation

In this section, the performance of our scheduling mechanism is compared to
that of the scheduling mechanism based on the client-server model. Using the
analytical model described in the previous section, the total cost generated by the
task request and checkpoint events for one task were calculated. For analytical
convenience, it was assumed that the messages cost generated in the task request
and checkpoint events is identical and that the data cost in the two events is

468 J.-M. Gil, U.-S. Song, and H.-C. Yu

Table 1. Parameters

Parameter Description Values
The number of duplications per task (D) 2, 4, 6
The number of checkpoints per task (C) 3, 4, 5
The ratio of message transmission cost to data transmission cost
(α)

1:100

The ratio between the proposed mechanism and the client-server
model for message/data transmission cost

1:2

The ratio of task request and checkpoint report (ρ) 0.1, 0.2, · · · , 6.0

also identical; i.e., mr = mc and dr = dc. Generally, data transmission needs
more cost than message transmission, so we define a relation between two costs
as the following formula: dr = α · mr (α ≥ 1).

In the proposed mechanism, an RP can be located either in the identical
network where each peer is located, or in a network not far away from each peer;
message/data transmission is performed within one hop on the average because
an RP is located in between central server and MPs. On the other hand, since
there is no a special peer such as an RP in the client-server model, more than
two hops are needed to be transmitted message or data. Thus, it is assumed
that message/data transmission of the client-server model costs twice as much
as that of the proposed mechanism. Table 1 shows the parameters used for our
performance evaluation.

The effect of D and C on total costs is now examined. Towards this end, D
and C were divided into three cases (D = 2, 4, 6 and C = 3, 4, 5), respectively.
The total costs for the nine cases based on all the combinations of D and C were
calculated and compared.

Fig. 5 shows a relative cost for message/data transmission between two mech-
anisms. The relative cost is defined as the ratio of the message/data transmission
cost of the proposed mechanism to that of the client-server model. A relative cost
of more than 1.0 means that the proposed mechanism costs less than the client-
server model. From Fig. 5, we can observe that in all combinations of D and C,
the relative cost is larger than 1.0. This result signifies that the message/data
transmission cost of the proposed mechanism is relatively lower than that of the
client-server model. As a result, the proposed mechanism can distribute the load
of message/data transmission as compared to the client-server model.

The effect of the relative cost is now examined based on the ratio ρ of the
task request ratio λ1 to the checkpoint report ratio λ2. Fig. 5 shows that for
all cases of C, the relative cost rapidly declined in a region where ρ ≤ κ. Here,
κ represents the lowest relative cost in each graph of Fig. 5. For C = 3, 4, 5,
κ has 1.1, 1.5, 1.8, respectively. This sharply decline is because the number of
task requests is relatively more than that of checkpoint reports. Since few MPs
receive intermediate results when they request the task to be executed, most
task executions are performed from the beginning; there is a high probability
that MPs perform lots of checkpointing without the reduction of the number
of checkpoint reports. As a result, the increase in the checkpoint reports causes

Performance Evaluation of Scheduling Mechanism 469

Fig. 5. Message/Data Transmission Cost Fig. 6. Execution Time Reduction Ratio

transmission cost to increase. On the other hand, in the region where ρ > κ, the
relative cost gradually increases. In this region, the number of checkpoint reports
is relatively more than that of task requests, and most MPs receive intermediate
results from other MPs when they request the task to be executed. Accordingly,
the MPs can perform checkpoint reports fewer than C times; and therefore,
message cost in this region are lower than that in the remaining region.

Fig. 6 shows the ETRR (Execution Time Reduction Ratio) according to the
variations of D and C. From this figure, we can observe that as D increases in
relation to each C, the ETRR becomes higher. When D = 6 for each C, the
execution time of the proposed mechanism is reduced as much as about 9-10%,
compared to that of the client-server model. This is because when an MP requests
a task, the frequency of task executions based on the checkpoint of other MPs
becomes more as D increases. It should be noted that as the checkpoint is more

470 J.-M. Gil, U.-S. Song, and H.-C. Yu

close to a final result, the reduction of execution time per task becomes higher.
Consequently, by means of checkpoint sharing and task duplication, we can see
that the proposed mechanism has a shorter execution time than the client-server
model.

5 Conclusions

This paper proposed a scheduling mechanism based on checkpoint sharing
and task duplication in order to reduce the execution time of all tasks (i.e.,
turnaround time) in a P2P-based PC grid computing environment. Also, using
a mathematical analysis model, we compared and analyzed the transmission cost
and the execution time of the proposed mechanism to those of the client-server
model.

The proposed mechanism uses the checkpoint performed by each peer as an
intermediate result, and when another peer requests for a task, duplicates and
executes the task using the intermediate result. Compared to the existing mech-
anism that executes a task from the beginning, the reduction effect of the exe-
cution time in the proposed mechanism is heightened as the checkpoint is close
to a final result. The analysis of transmission cost and execution time by the
embedded Markov chain showed that the transmission cost of the proposed mech-
anism somewhat increases when the number of duplications per task increases.
However, it showed that when checkpointing is executed more and more, the
proposed mechanism can considerably reduce the execution time compared to
the client-server model. Thus, our scheduling mechanism can reduce the time it
takes for an application user to get a final task result. It is expected that when
our scheduling mechanism is implemented in an actual PC grid system, it is
useful in minimizing the turnaround time of large-scale applications.

References

1. Abbas, A.: Grid Computing: A Practical Guide to Technology and Applications.
Charles River Media Inc., Massachusetts (2004)

2. Anderson, D.: BOINC: A System for Public-Resource Computing and Storage. In:
5th IEEE/ACM Int. Workshop on Grid Computing, pp. 4–10 (2004)

3. Barkai, D.: Peer-to-Peer Computing: Technologies for Sharing and Collaborating on
the Net. Intel Press (2002)

4. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: Architecture and Perfor-
mance of an Enterprise Desktop Grid System. J. Parallel and Distributed Comput-
ing 63, 597–610 (2003)

5. Domingus, P., Silva, J.G., Silva, L.: Sharing Checkpoints to Improve Turnaround
Time in Desktop Grid Computing. In: 20th Int. Conf. on Advanced Information
Networking and Applications, pp. 6–11 (2006)

6. Fedak, C., Germain, V., Neri, V., Cappello, F.: XtremWeb: A Generic Global Com-
puting Systems. In: 1st Int. Symp. on Cluster Computing and the Grid, pp. 582–587
(2001)

7. Minh, D.L.: Applied Probability Models. Brooks/Cole Publishing Co. (2001)

N. Abdennadher and D. Petcu (Eds.): GPC 2009, LNCS 5529, pp. 471–482, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Probabilistic Fault-Tolerant Recovery Mechanism
for Task and Result Certification of Large-Scale

Distributed Applications

Rim Chayeh1, Christophe Cerin2, and Mohamed Jemni1

1 Ecole Supérieure des Sciences et Techniques de Tunis, Unité de recherche UTIC
5, Av. Taha Hussein, B.P. 56, Bab Mnara, Tunis, Tunisia

Tel.: (+216) 71 496 066; Fax: (+216) 71 391 166
rim.chayeh@utic.rnu.tn, mohamed.jemni@fst.rnu.tn

2 LIPN-UMR CNRS 7030, Institut Galilée – Université Paris-Nord
99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Tel.: +33-(0)1.49.40.35.78; Fax: +33-(0)1.48.26.07.12
christophe.cerin@lipn.univ-paris13.fr

Abstract. This paper deals with fault tolerant recovery mechanisms and prob-
abilistic results certification issues on large scale architectures. The related
works in the result certification domain are based on a total or a partial duplica-
tion of the application. However, they are limited to independent tasks execu-
tions. In the present work, we extend these mechanisms to dependant tasks
applications. First of all we propose an approach, based on an abstract represen-
tation of a parallel execution called macro-dataflow graph. Second we intro-
duce probabilistic certification algorithms that avoid the re-execution of the
program, allowing for recovery on different platforms under different number
of processors. We also sketch how to simulate our framework according to state
of the art, modeling workloads and fault injection tools.

Keywords: Meta-computing, Distributed systems, Probabilistic certification,
Recovery, Result checking, Fault-Tolerance by value.

1 Introduction

Grid and cluster architectures are gaining in popularity for scientific computing appli-
cations. The distributed computations, as well as their underlying infrastructure
consisting of a large number of computers, storage and networking devices, pose
challenges in overcoming the effects of node failures. In this unbounded environment
one should consider possible malicious acts that may result in massive attacks against
the whole global computation. This is supported by an exponentially increasing num-
ber of reported incidents [1]. Usually, global computations are expected to tolerate
certain rates of faults [2, 3], e.g. small number of isolated intrusions. However, in
order to ensure correctness of the computed results, one should detect if the global
computation has been the victim of a massive attack resulting in an error rate larger
than what can be tolerated by the application. In order to eliminate any assumption on

472 R. Chayeh, C. Cerin, and M. Jemni

the attack and the distribution of errors in the context of a general parallel computa-
tion with dependencies, we propose to adopt a view directly inspired by probabilistic
algorithms. Specifically, given the results of a global computation with task depend-
encies, we attempt to detect if the execution contains faulty results, and try to throw
an efficient process of recovery when a fault is discovered. Probabilistic algorithms
are presented that make random choices and determine whether the execution is cor-
rect or faulty. Since the detection is probabilistic, its output may be wrong. However,
contrary to previous approaches, the probability of certification error is not related to
the application, i.e. the global computation, but only to the unlucky random choices
associated with task selection for verification.

This work is motivated by Desktop Grid applications, for instance philogenetic ap-
plication [6] studied with the help of the XtremWebCH[14] (XWCH) tool under
GTRS[15] platform. The probabilistic certification and recovering algorithms intro-
duced in this paper can detect if these computations have been subjected to a massive
attack with a so-called attack ratio greater than or equal to q < 1. If the presence of an
error is confirmed during the certification phase, we throw a recovery process, only
on the infected parts of the application. The bound on the error is not related to q, but
to the minimum number of so-called initiator tasks.

This paper is organized as following, in section 2, we present definitions and nota-
tions adopted in this work. Our contributions are explained in sections 3 and 4: we
present a set of optimized algorithms for detecting and recovering faults in applica-
tions with independent and dependant tasks. In section 5, we present our work in
progress for simulating our framework which is a challenging task in itself with the
current technologies. In section 6, we review related works on probabilistic certifica-
tion of tasks, and we demonstrate the difference between them and our approach.

2 Definitions and Assumptions

We assume that applications are executed on the global computing platform such as the
one presented in [4]. A user initiates a computation, represented by a directed acyclic
graph G, that is then executed on (a potentially large number of) unreliable workers. In
order to verify the correctness of the results of the execution, verifiers, implemented by
reliable resources that know graph G, re-execute selected tasks. Communication be-
tween workers and verifiers is through a checkpoint server containing computations
submitted by workers [4]. Whereas any attack can occur on the worker or between the
worker and the checkpoint server, the checkpoint server and verifiers are considered
secure. Let us recall the important definitions as they appear in [4]. A data-flow graph is
a directed graph G = (V, ε), where V is a finite set of vertices and ε is a set of edges. The
total number of tasks Tj in G is n. E denotes the execution of a workload represented by
G with a set Î of initial inputs on a set of unreliable resources.

Each task T in E executes with inputs i(T,E) and creates output o(T,E). The inputs
of a task Tj are composed of either inputs from Î or outputs of other tasks Tk, i.e.
o(Tk,E). Ê denotes the execution of the program on a verifier, i.e. a reliable resource.
If E = Ê , i.e. if every task in E uses the same inputs and computes the same outputs as
those in Ê , then E is said to be “correct”. Conversely, if E ≠ Ê, then at least one task
in E produced a wrong result and the execution is said to have “failed”.

 A Probabilistic Fault-Tolerant Recovery Mechanism 473

i(T,E) denotes the input of T in E and î(T, Ê) the input of T in Ê. Furthermore,
o(T,E) denotes the output of T on the client, ô(T,E) the output of T on the verifier
based on inputs from E, and ô(T, Ê) the output of T on the verifier based on inputs
from Ê . Note that the notations ô(T,E) and ô(T, Ê) differ. We consider probabilistic
certification based on a probabilistic algorithm that uses randomization in order to
state if E has failed or not. Given an execution E, a Monte Carlo certification is de-
fined as a randomized algorithm that takes an arbitrary ε , 0 < ε ≤ 1 , as input and
delivers (a) either CORRECT or (b) FAILED, together with a proof that E has failed.
The probabilistic certification is said to be with error ε if the probability of the answer
CORRECT, when E has actually failed, is less than or equal to ε. For instance, a
Monte Carlo certification may consist of re-executing randomly chosen tasks in G on
a verifier, comparing results to those obtained in E.

If the results differ, E has failed. Otherwise, E may be correct or failed. However,
if E has failed, a probabilistic certification with error ε ensures that the probability of
non-detection of failure (based on randomly selecting tasks in G for re-execution) is
less than or equal to ε. Authors in [4] introduce a Monte Carlo certification approach
against massive attacks. In the sequel, we denote the number of forged tasks in G by
nF. We are considering the two scenarios where either all tasks execute correctly, i.e.
nF = 0, or nF is large, corresponding to a massive attack. A massive attack with attack

ratio q consists of falsifying the execution of at least nq= ⎡ ⎤nq . ≤ nF tasks. E is said to
be “attacked with ratio q” and (nF /n) ≥ q. It should be noted that q is assumed rela-
tively large, resulting from massive attacks such as caused by a virus.

The objective is to provide a probabilistic Monte Carlo certification against such
massive attacks and try to recover, when errors are detected, during the certification
phase. Note that detection of small attacks, e.g. single intrusions, is not the scope of
this work. As indicated in Section 1, global computations are expected to tolerate
certain fault rates.

3 Applications with Independent Tasks

We first consider the case where all tasks in G are independent. In this case, certifica-
tion of tasks is equivalent to certification of results. The following algorithm TestI
[12], based on task re-execution on a verifier, will be used to detect if execution E
contains forged tasks.

This certification method costs better than O(�) (naive duplication).

3.1 Certification

Algorithm 1 [4,12] : TestI (T, E)
// Re-execute T on a verifier, using inputs from E, i.e. i(T,E), to get output ô(T,E).
ô(T,E) ← ReexecuteOnControler(T, i(T,E));
If o(T,E) ≠ ô(T,E) then // it means that T is failed
Return 1 ; // we return 1, to say that E contains forged tasks.
Else Return 0 // it means that T is correct
End If
End TestI

474 R. Chayeh, C. Cerin, and M. Jemni

Since all tasks in G are independent we always have i(T,E) = î(T, Ê), (We note that
in case of dependencies between tasks, this assumption about the inputs does not hold
anymore, as we will see later).

If Algorithm TestI selects a forged task, then one knows that the execution E has
failed. However, if TestI returns CORRECT, then one can only make conclusions
based on the probabilities of randomly selecting a falsified or non-falsified task. The
following lemma addresses these probabilities.

Lemma 1. Let E be an execution with n independent tasks, nF of that have been
forged. The probability that TestI returns FAILED is (nF /n) and the probability that it
returns CORRECT is 1 − (nF /n) ≤ 1 − q.

Theorem 1 [12]. Let E be an execution with only independent tasks and assume that
E is either correct or massively attacked with ratio q. For a given ε, the number of
independent executions of algorithm TestI necessary to achieve a certification of E

with probability of error less than or equal to ε is N ≥ ⎥
⎥

⎤
⎢
⎢

⎡
−)1log(

log

q

ε
.

The N calls to TestI, is explained as follows into algorithm 2 (Verify).

Algorithm 2 : Verify (E)
{Tcertified}← Ø // { Tcertified } contains correct tasks, that has been already
verified, (in the beginning {Tcertified } is empty , because all the tasks must be
candidates for the test)

Nε,q ←
⎥
⎥

⎤
⎢
⎢

⎡
−)1log(

log

q

ε

For i=1 to Nε,q do
Choose one task T, randomly from G – { Tcertified }
If (TestI(T, E) = =1) then Return FALSIFIED
Else // T is correct
{ Tcertified } ← { Tcertified } U T
End If
End For
Return CORRECT
End verify

Proof (Theorem1). Consider N executions of Algorithm TestI. If during any of the N
executions TestI selects a forged task, the execution has failed. Therefore, assume that
only non-forged tasks are selected. According to Lemma 1 the probability of TestI
selecting a non-forged task is (n −nF) / n ≤ 1 − q. Then N independent applications of
TestI lead to a Monte-Carlo certification with a probability of error bound by ε ≤

(1−q)N. For a given ε, it is thus sufficient to select N ≥ ⎥
⎥

⎤
⎢
⎢

⎡
−)1log(

log

q

ε
tasks.

So the Total cost is: O)
)1log(

log
(

q−
ε

quickly negligible, with a probability of

error ≤ ε.

 A Probabilistic Fault-Tolerant Recovery Mechanism 475

3.2 Recovery

Before describing the recovery process that we are adopting, we indicate here that this
part is makes the difference with the related works (see Section 6) and is the basis for
allowing checkpointing in a heterogeneous environment with the flexibility of recov-
ery on any type or number of processors.

For our recovery step we apply a local recovery principle (not a global one) and it
implies that only the roll-back of the falsified tasks is necessary, so we do not need to
stop the execution of the dataflow nor obliging the application to save its global state
of execution regularly.

In this first case, where we have graphs without independencies between tasks, we
run the following steps:

_We replace the falsified output of the forged task by the correct outputs in E.
_We isolate the machine that has executed the forged task T.
_We put this machine (M) in the black list, so we do not reuse it in the future.
_We locate all the tasks (other then T) that has been executed by M, then we put them
in a suspicious list ({LTSuspect}), to be r-executed later on reliable machines.

Algorithm 3 Recover (T : falsified task , G)
Replace (o(T,E),ô(T,E)) // we replace the falsified output of the forged task T by
the correct outputs in E.
{ Tcertified } { Tcertified } U T // after correcting T in E, we can add this task
to the list of certified tasks ({Tcertified})
M ← Research (T , MachineList) // we get the machine (from MachinList) witch
executed T
Blacklist (M) // we put M in the black list
{LTSuspect} ← Localize (MachineList , M) - { Tcertified } // we locate all the
tasks (other then T) witch has been executed by M, then we put them in a suspi-
cious list ({LTSuspect})
 ReExecution ({LTSuspect}) // re-execute all the suspicious tasks (executed by
M) on reliable machines.
{ Tcertified } { Tcertified } U {LTSuspect} //after re-executing {LTSuspect},
we can add them to certified tasks
End Recover

4 Certification in the Presence of Task Dependencies

In the previous section there is no difference between certification of tasks and their
respective results. If one allows for dependencies among tasks the certification of
the results of tasks is more difficult. The problem lies in the way a reliable resource
has to determine the validity of results. Any measure of validity of a task’s result
based on the comparison to the results obtained by re-executing the same task on a
reliable resource depends on the validity of the inputs the reliable resource uses for
re-execution. The fact that the outputs of a task execution and its re-execution on a
reliable resource produce identical results does not provide more information about

476 R. Chayeh, C. Cerin, and M. Jemni

the validity of that result, since in the assumed deterministic computing environ-
ment the same faulty input will produce identical faulty output. Thus, in the pres-
ence of dependencies, o(T,E) = ô(T,E) only indicates that the results are the same,
but not that they are correct. It should be noted that correctness would imply that
o(T,E) = ô(T, Ê).

4.1 Faulty Tasks and the Concept of Initiators

The randomized testing used in Section 3 is only valid for result certification of
independent tasks. If we were to apply the same reasoning in the presence of de-
pendencies, certification based on repeated application of Algorithm TestI would
only certify results if o(T,E) ≠ ô(T,E) for each falsified T selected by TestI. How-
ever, this assumption is too restrictive since it would assume that a re-execution with
some (perhaps incorrect) input values would always expose the forgery. This weak
assumption could be easily exploited by an attacker. Suppose Algorithm TestI is
used. If o(T,E) ≠ ô(T,E) then E has failed. However, o(T,E) = ô(T,E) indicates a
correct output only if the inputs are correct, i.e. î(T, Ê). This implies that T has no
forged predecessors. In the following discussion, falsified tasks that have no falsified
predecessors will be called initiators [12]. The probabilities associated with ran-
domly selecting initiators will be the basis for result certification. It should be noted
that it is difficult to speculate on the capabilities of detecting incorrect results of
falsified tasks that are not initiators. Pathological attacks may be derived where the
output of one falsified task may be custom tailored to produce results for other falsi-
fied tasks that do not differ from their re-executions (with the forged inputs) on reli-
able resources.

4.2 Certification

Result certification is directly related to the probability of the certification algorithm
selecting initiators. Let nI denote the number of initiators in G. Note that the determi-
nation of nI depends on the graph and on the nodes that have been falsified. The fol-
lowing lemma and theorem, modified from Lemma 1 and Theorem 1, can be stated.

Lemma 2. Let E be an execution with n tasks with dependencies. Furthermore, let nF
and nI be the number of forged tasks and initiators respectively, nI ≤ nF. The probabil-
ity that TestI returns FAILED is at least (nI /n) and the probability that it returns
CORRECT is less than or equal to 1 − (nI /n) .

Since re-execution of a task with incorrect inputs may still result in o(T,E) = ô(T,E)
one has to consider the limitations induced by the inputs.

Note that it is similar to Algorithm TestI, except that it contains forecasting opera-
tions to verify all predecessors for the task T selected for verification. Thus, it effec-
tively verifies G≤(T).

Algorithm Test for Dependant tasks (TestD1)[12,4], for this algorithm we pro-
posed two other different versions called TestD2 and TestD3, in witch we tried to
optimize it by adding additional tests and hypothesis to make the certification step
more efficient, then we proposed a recovery model when an error is detected.

 A Probabilistic Fault-Tolerant Recovery Mechanism 477

Algorithm 4: TestD1 (T, E)
For all Tj in G≤T, that have not been verified yet and ∉{ Tcertified } do
ô(Tj,E) ← ReexecuteOnControler(Tj, i(Tj,E));
If o(Tj,E) ≠ ô(Tj,E) then // Tj is an initiator
return j ; // we return the index of the initiator task Tj

End If
End For
{ Tcertified }← { Tcertified } U G≤T
Return 0 // 0 means that the certification of G≤T is correct
End TestD1

Theorem 2.[12]: For a single execution of Algorithms TestD the probability of error
is

eE ≤ 1 − q. The average cost in terms of verification, i.e. the expected number of

verifications, is C =
n

GTi TiG∑ ∈ ≤
. (1)

Proof. A pathological attacker who knows that uniform random task selection is used
and that all predecessor tasks are verified can minimize detection by falsifying tasks
in such a way as to minimize error propagation, thereby minimizing the total number
of tasks affected by falsifications. In other words, in the worst case nq falsified tasks
in G are distributed so that the number of T whose G≤(T) contain falsified tasks is
minimized. This can be achieved in any scenario that attacks the nq tasks Ti with the
smallest successor graph G≥(i), e.g. first attack only leaf tasks, then tasks at the sec-
ond level, etc… until nq tasks have been attacked. Finally, the error eE is 1 minus the
probability of G≤(T) containing a faulty task. In the worst case, described above, this
leads to eE ≤ 1- (nq / n) ≤ 1 - q.

The average number of verifications is simply the average number of tasks in the
predecessor graph verified in TestD. Note that once T is selected, the cost can be
specified exactly as |G≤(T)|.

So the average cost TestD is : O (
n

GTi TiG∑ ∈ ≤
).

We implemented two other optimized versions of the algorithm TestD, called
TestD2 and TestD3, and this is the most important contribution and it makes the
difference with related works (see section 6).

In TestD2, we proposed to order the sub-graph of predecessors of a task T (G≤(T))
by runtime decreasing, in order to maximize the probability of finding initiators (if the
execution is falsified) in a short time.

For the third version of our algorithm TestD3, we tried to optimize the certification
test by including the concept of certificated machines into the verification of G≤T.

We consider that machines have stable states into each sub_graph, so if we find a

correct task Ti ∈ G≤T, executed by a machine M, we adopt that this machine is reli-

able into G≤T, thus we exclude the verification of all Tj ∈ G≤T executed by M.

478 R. Chayeh, C. Cerin, and M. Jemni

Algorithm 5: TestD3 (T, E)
For all Tj in G≤T, that have not been verified yet and ∉{Tcertified, LTsures } do
ô(Tj,E) ← ReexecuteOnControler(Tj, i(Tj,E));

 If o(Tj,E) ≠ ô(Tj,E) then // Tj is an initiator
• return j ; // we return the index of the initiator task Tj

 Else
• M ← Research (Tj, MachineList) // research returns the worker who

executed Tj from the set of machines participating on the computa-
tion.

• {LTsure} ← LocalizeT (MachineList, M) U {LTsure} // localizeT
locates the set of tasks executed by M into G≤T.

 End If
End For
{ Tcertified } ← { Tcertified } U G≤T
Return 0;

End TestD3

Algorithm Verify is rewriting as follows:

Algorithm 6: Verify(E)
{LTsure}← Ø // this list contains tasks yet executed by certificated machines.

{ Tcertified }← Ø ,and Nε,q ← ⎥
⎥

⎤
⎢
⎢

⎡
−)1log(

log

q

ε

For i = 1 to Nε,q do
Choose one task T, randomly from G – { Tcertified, LTsure }
j TestD (T , E)
If (j ≠ 0) // it means that an error was detected, so j contains the index of the initia-
tor of this error, later we will recover from the task who has the index j
Return Falsified
End If
End For
Return Correct
End Verify

4.3 Recovery

The overhead associated with fault-free execution is the penalty one pays for having a
recovery mechanism. It remains to show how much overhead is associated with re-
covery as the result of a fault and how much execution time can be lost under differ-
ent strategies. The overhead associated with recovery is due to loading and rebuilding
G. This can be effectively achieved by loading the sub-graph Gi of the affected tasks.
The time depends on the size of Gi and is dominated by the size of the data represent-
ing the tasks inputs.

The main difference with the case of applications with independent tasks is that an
error in one task can affect different parts of the dataflow graph, so we should detect
and recover all the affected parts of G.

Thus the overhead of this recovery process depends on the size of the graph that
needs to be loaded and rebuilt.

 A Probabilistic Fault-Tolerant Recovery Mechanism 479

As soon as a fault is detected in a task denoted Tj (initiator), many alternatives
should be left aside: first we have to stop the execution of the sub-graph of successors
of Tj : G≥Tj, then we blacklist the failing machine M that has executed Tj, next we try
to locate all the tasks has been executed by M, and we put them in a suspicious list.
Finally, we look for the smallest common ancestor (denoted CA) for all these suspi-
cious tasks, then, we re-execute the sub-graph with vertex CA.

The flexibility of macro dataflow graphs has been exploited to allow for a plat-
form-independent the description of the application state. This description resulted in
flexible and portable recovery strategies, allowing for rollback at lowest level of
granularity, with a maximal computation loss of one task. However, its overhead was
sensitive to the size of the application graph, i.e. the number of tasks.

Algorithm 7: Recover (Tj : initiator , G)
 StopExecution(G≥Tj) // we stop the execution of the sub-graph G≥Tj
 M ← Research (Tj , MachineList)
 Blacklist (M) // we put M in the black list

{LTSuspect} ← Localize (MachineList , M) - { Tcertified } // we locate all the tasks
(other then T) wish has been executed by M, then we put them in a suspicious list

 CA ← ResearchCA ({LTSuspect}, G) // we try to get the smallest
common ancestor (CA) of the set {LTSuspect}(see [13])

 ReExecution(G≥CA) // re-execute the sub-graph with vertex CA
 { Tcertified } { Tcertified } U G≥CA

End recover

5 Results

The purpose of this section is to present some results about simulating our fault toler-
ant algorithms under the grid GTRS [15]. We have injected errors into the workloads
to simulate a fault by value.

Fig. 1. Evaluations of the algorithm TestI and verif

480 R. Chayeh, C. Cerin, and M. Jemni

Fig. 2. Successive evaluations of TestD1
into PHYLIP application

Fig. 3. Evaluations of TestD3 with
PHYLIP

The figure 3 evaluates the number of calls to TestI before detecting and recovering
the massive attack of an execution E, with n=106 tasks, q = 10% and ε=10-4. More-
over, when this number is superior to Nε,q = 88, the algorithm verif() gives a wrong
result. This experience shows that the verification of Nε,q tasks, leads to a wrong result
in 0,008% of cases, witch is lower than ε. The different executions demonstrate that in
average, our fault tolerant process allows to certificate and to recover an application
with a rate of error ≤ ε.

To validate our fault tolerance process for dependant tasks we considered the
philogenetic application “PHYLIP”[6], with n=144 tasks, q=0,1 and ε =10-5.The
figure 2 shows that we can detect and recover the massive attack in more than 98% of
cases before achieving the Nε,q calls to TestD1. This allows certification and recover-
ing in a reasonable time, and with an acceptable degree of certification. The figure 3
shows the impact of adopting the concept of certificated machines in TestD3 in order
accelerate the verification and recovering process.

6 Related Work Section

The problem of protecting a computation against massive attacks has been mainly
addressed for independent tasks. The analysis of voting, spot-checking and credibil-
ity-based fault tolerance is presented in [3]. An approach based on re-execution of
tasks on reliable nodes is considered in [2], assuming that the majority of workers are
honest while workers compromised by an attack will always falsify their results. Un-
der the same assumption, task dependencies are considered in [4], however, depend-
encies are used only for correction. Faults in systems with task dependencies are
addressed in [5] where tasks are determined to execute on reliable or non-reliable
nodes in order to maximize the expected number of correct results. Whereas the ap-
proach considers the critical issue of fault propagation, it is deterministic and there-
fore could be exploited by an intelligent adversary.

There are a few works designed for the certification of dependant tasks, and they
are not designed for identifying the source of error nor for throwing a recovery proc-
ess. S.Varette in [12,4] studied a probabilistic certification based on Monte Carlo Test
(MCT) to verify if the global computation has been the victim of a massive attack or

 A Probabilistic Fault-Tolerant Recovery Mechanism 481

not, but his probabilistic approach does not make any assumptions about the attack
nor her initiator or the procedure to throw for correcting them.

We use a similar MCT approach to certify the execution, but we tried to optimize it
by adding additional tests and hypothesis to make the certification step more efficient,
and we proposed a recovery model when an error is detected.

7 Conclusion

This paper discussed certification and recovery of large distributed applications exe-
cuting in hostile environments, where tasks or data may be subject to attacks. Unlike
previous work based on independent tasks, and do not reach the recovery phase, we
considered fault propagation occurring in applications with dependent tasks. We
present a set of certification probabilistic and recovering algorithms that avoid the
total re-execution of the program and launch thereafter a recovery process if neces-
sary. The certification is done with a low additional number of tasks re-executed
compared to a total duplication. Furthermore, our fault tolerant approach is based on
the following principle: when an error is detected during the execution of an applica-
tion, we try to confine this error to prevent its spread to other parts of the application
and make a recovery in order to make the program able to provide a correct result.
In other words, our contribution in the field of integrity is related to the correctness
of certification for distributed executions through result checking. Using an abstract
representation of a parallel execution called macro-dataflow graph, partial duplica-
tion mechanisms are extended to provide probabilistic certification algorithms that
are very efficient.

References

1. CERT/CC Statistics 1988-2004, CERT Coordination Center,
http://www.cert.org/stats/cert_stats.html

2. Germain, C., Playez, N.: Result Checking in Global Computing Systems. In: Proceedings
of the 17th Annual ACM International Conference on Supercomputing (ICS 2003),
SanFrancisco, California, 23-26 June, pp. 218–227 (2003)

3. Sarmenta, L.F.G.: Sabotage-Tolerance Mechanisms for Volunteer Computing Systems.
Future Generation Computer Systems 18(4), 561–572 (2002)

4. Jafar, S., Varrette, S., Roch, J.-L.: Using Data-Flow Analysis for Resilence and Result
Checking in Peer to Peer Computations. In: Proceedings of the 15th International
Workshop on Database and Expert Systems Applications (DEXA 2004), Zaragoza,
Espagne (2004)

5. Gao, L., Malewicz, G.: Internet computing of tasks with dependencies using unreliable
workers. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 443–458. Springer,
Heidelberg (2005)

6. http://www.xtremwebch.net/doc/falsh.pdf
7. Tixeuil, S., Silva, L.M., Hoarau, W.: An Overview of Existing Tools for Fault-Injection

and Dependability Benchmarking in Grids. In: Proc. of the Springer-Verlag, 2nd
CoreGRID Workshop on Grid and Peer To Peer Systems Architecture (January 2006)

8. Tixeuil, S., Silva, L.M., Hoarau, W.: Fault-Injection and Dependability Benchmarking for
Grid Computing Middleware. In: Proc. of the Springer-Verlag, Workshop of Integrated
Research in Grid Computing, Pisa, Italy (November 2005)

482 R. Chayeh, C. Cerin, and M. Jemni

9. Silva, L.M.: Reputation-based trust management systems and their applicability to grids,
CoreGRID Technical Report, TR-0064 (February 2007)

10. Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak, G., Capello, F.:
Characterizing Result Errors in Internet Desktop Grids. In: Kermarrec, A.-M., Bougé, L.,
Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 361–371. Springer, Heidelberg
(2007)

11. Kondo, D., Araujo, F., Silva, L.M., Domingues, P.: Result Error Detection on
Heterogeneous and Volatile Resources via Intermediate Checkpointing. In: CoreGRID
Workshop on Grid Programming Model/Grid and P2P Systems Architecture/Grid
Systems, Tools and Environments, Heraklion, Greece (June 2007)

12. Varrette, S., Roch, J.-L., Leprevost, F.: FlowCert: Probabilistic Certification for Peer-to-
Peer Computations. In: Proceedings of the 16th Symposium on Computer Architecture and
High Performance Computing, IEEE SBAC-PAD 2004, Foz do Iguaçu, Bresil, pp. 108–
115. IEEE, Los Alamitos (2004)

13. http://www.absoluteastronomy.com/topics/Most_recent_common_a
ncestor

14. http://www.xtremwebch.net/
15. The Tunisian Research Grid GTRS (Grille Tunisienne pour la Recherche Scientifique),

http://www.utic.rnu.tn/gtrs/index.htm

Author Index

Abdullah, Tariq 189
Aikema, David 57
Alessandro, Maraschini 256
Ali, Safdar 305
Alima, Luc Onana 189
Allenotor, David 13
Altmann, Jörn 1
Alvise, Dorigo 256
Amarnath, Balachandar R. 235
An, Sunshin 328
Antonia, Ghiselli 256
Ashaduzzaman, Md. 69

Bacu, Victor 98
Bahi, Jacques M. 142
Bairappan, Madusudhanan 235
Barba, Jesús 400
Bertels, Koen 189
Bittencourt, Luiz F. 177

Cardinale, Yudith 36
Cerin, Christophe 471
Charr, Jean-Claude 446
Chaves-González, José M. 79
Chayeh, Rim 471
Chen, Chun-Ting 119
Chung, KwangSik 211
Chung, Wu-Chun 131
Chung, Yeh-Ching 131
Cogneras, Eric 91
Couturier, Raphaël 142, 446

De Oliveira, Jesús 36
Domaszewicz, Jaros�law 317

Ellappan, Mahendran 235

Fabio, Capannini 256
Fabrizio, Pacini 256
Figueira, Carlos 36
Francesco, Giacomini 256
Francesco, Prelz 256
Fr̂ıncu, Marc E. 199
Frohner, Ákos 48

Gadomski, Szymon 91
Gil, Joon-Min 211, 459

Gnanapragasam, Rajesh Britto 235
Goasguen, Sebastien 165
Gómez-Pulido, Juan A. 79
Gorgan, Dorian 98
Gupta, Bidyut 434

Hahkala, Joni 48
Hameri, Ari-Pekka 110
Happonen, Kalle 110
Hasan, Toufiq 69
Haug, Sigve 91
He, Jingsha 410
Hernando-Carnicero, Román 79
Hsu, Chin-Jung 131
Hsu, Chun-Chen 119, 223
Huang, Kun 376, 422
Huang, Po-Jung 269
Huang, Xiao-Wei 223

Islam, Rafiqul 69

Jemni, Mohamed 471
Jenness, Jeff 244
Jiang, Hai 244
Jin, Hai 364

Kanbayashi, Ryo 340
Kandan, Rajendar 235
Kiddle, Cameron 57
Kiefer, Stephan 305
Kim, Songmin 328
Kim, Sungjun 328
Klem, Jukka 110
Ko, Doohyun 328
Koenig, Hartmut 153
Kommeri, Jukka 110
Koufi, Vassiliki 281
Kunszt, Peter 91

Lai, Kuan-Chou 131, 269
Laiymani, David 142, 446
Lee, JongHyuk 211
Lee, Sangbin 328
Lelli, Francesco 293
Li, Kuan-Ching 269

484 Author Index

Lin, Yi-Shiang 131
Liu, Pangfeng 119
López, Juan Carlos 400
Luca, Petronzio 256

Madeira, Edmundo R.M. 177
Maffioletti, Sergio 91
Malamateniou, Flora 281
Marco, Cecchi 256
Mazouzi, Kamel 142
Mei, Chonglei 244
Moca, Mircea 388
Moreno, Marzolla 256
Moya, Francisco 400
Murri, Riccardo 91

Niemi, Tapio 110

Opitz, Alek 153

Park, Joon-Sang 353
Park, Karam 353
Pautasso, Cesare 293
Ponnuram, Balakrishnan 235

Rahimi, Shahram 434
Rajaian, Rajiv 235
Rangasamy, Kumar 235
Rincón, Fernando 400
Risch, Marcel 1
Ro, Won W. 353
Rybicki, Tomasz 317

Salvatore, Monforte 256
Sánchez-Pérez, Juan M. 79
Sato, Mitsuhisa 340
Schröpfer, Christian 25

Senna, Carlos R. 177
Sepulveda, Dru 165
Silaghi, Gheorghe Cosmin 388
Simmonds, Rob 57
Somasundaram, Thamarai Selvi 235
Song, SungJin 211
Song, Ui-Sung 459
Stantchev, Vladimir 25
Stefanut, Teodor 98
Suh, Taeweon 211

Thulasiram, Ruppa K. 13
Thulasiraman, Parimala 13
Topfel, Cyril 91

Vassilacopoulos, George 281
Vega-Rodŕıguez, Miguel A. 79
Villa, David 400
Villanueva, Felix Jesús 400

Wang, Chien-Min 223
Wang, Li’e 376
White, John 48
Wu, Jan-Jan 119
Wu, Xu 410

Xu, Fei 410

Yang, Chao-Tung 269
Yu, Heon-Chang 459
Yu, HeonChang 211
Yu, You-Fu 269

Zhang, Dafang 376, 422
Zhang, Hao 364
Zhang, Qin 364

	Title Page
	Preface
	Organization
	Table of Contents
	Grid Economy
	Capacity Planning in Economic Grid Markets
	Introduction
	An Introduction to Capacity Planning
	Capacity Planning Tasks
	Capacity Planning Inputs and Outputs

	Grid Capacity Planning and Traditional Capacity Planning
	Resource Selection
	Price Volatility and Demand Fluctuation
	Application Mapping
	Comparison

	A Capacity Planner Model
	The Long-Term Capacity Planning Service
	The Short-Term Capacity Planning Service

	Implementation and Validation
	Conclusion
	References

	A Financial Option Based Grid Resources Pricing Model: Towards an Equilibrium between Service Quality for User and Profitability for Service Providers
	Introduction
	Related Work
	Model Assumptions and Theory
	Model Architecture
	Price Variant Factor
	Discretized Real Option
	Fuzzy Logic Framework and QoS

	Experiments and Results
	Real Grid Trace Data Collection and Analysis
	Grid Resources Pricing Using Financial Options Theory

	Conclusions
	References

	Negotiating and Enforcing QoS and SLAs in Grid and Cloud Computing
	Introduction
	Emerging Grid Computing Infrastructures for Services
	Challenges
	Work Structure

	An Approach for SLA Mapping
	Related Work

	Formalization and Negotiation of SLAs
	QoS Enforcement of SLAs in Grid and Cloud Computing Environments
	Performance
	Dependability
	Evaluation and Improvement of IT Infrastructure Capabilities

	Experimental Evaluation
	Conclusion and Outlook
	References

	Grid Security
	Dynamic and Secure Data Access Extensions of Grid Boundaries
	Introduction
	Related Work
	SUMA/G Architecture Overview
	SUMA/G Components
	Execution Model

	Extending Data Access
	Access to User Local File Systems
	Access to External Data Repositories

	Implementation in SUMA/G
	Experiment Results
	Conclusions
	References

	Proxy Restrictions for Grid Usage
	Background
	Certificates
	Proxy Certificates

	Problem Definition
	Proxy Restrictions
	Source Restriction
	Target Restriction
	Identifiers
	Data Structure

	ProxyTracing
	Discussion
	Conclusion
	References

	An Account Policy Model for Grid Environments
	Introduction
	Background
	Virtual Organization and Account Management Software
	Existing Models

	Requirements
	Model Overview
	Credentials and VOs
	Accounts and Account Grouping
	Account Policies

	Example
	Conclusion and Future Work
	References

	Providing Security of Real Time Data Intensive Applications on Grids Using Dynamic Scheduling
	Introduction
	Other Related Work
	Grid Architecture for Security Attentive Real Time Data Intensive Jobs
	Security Services for Real Time Data Intensive Jobs
	Scheduling Strategy of Real Time Data Intensive Jobs for Security Enhancement
	Security Overhead of Real Time Data Intensive Jobs
	Deadline and Earliest Start Time
	The SARDIG Scheduling Algorithm
	The Performance Analysis
	Simulation Results
	Conclusion
	References

	Grid Applications
	Solving a Realistic FAP Using GRASP and Grid Computing
	Introduction
	Frequency Assignment Problem in GSM Networks
	Mathematical Formulation

	The GRASP Metaheuristic
	Our Environment of Grid Computing
	Experiments and Results
	Tuning the GRASP Parameters
	Using Grid Computing

	Conclusions and Future Work
	References

	The Swiss ATLAS Grid
	Introduction
	ATLAS Job Patterns
	Infrastructure
	Monitoring and Accounting
	Conclusions and Outlook
	References

	Grid Based Training Environment for Earth Observation
	Introduction
	Teaching Materials and Scenarios
	Related Works
	GiSHEO eLearning Environment Architecture
	gProcess Platform
	Description of Grid Based Processing
	gProcess Architecture
	Service Level
	User Level
	Process Execution
	Operators

	Teaching Material Development and Execution
	Acquire the Lesson Content
	Organize and Display the Lesson Content
	Data Binding and Interactions Description
	Lesson Execution

	Conclusions
	References

	Middleware
	Improving Energy-Efficiency of Grid Computing Clusters
	Introduction
	Background
	Grid Computing Clusters
	LHC Computing

	Related Work
	Method
	Tests
	Results
	Conclusions and Future Work
	References

	GFS: A Distributed File System with Multi-source Data Access and Replication for Grid Computing
	Introduction
	Architecture of Grid File System
	Directory Server
	GFS Clients and File Servers
	A Usage Scenario

	Security
	Access Control

	Multiple Source Data Transfer Mechanism
	Performance Evaluation
	Experiment Settings
	Experiment Results

	Conclusion
	References

	G2G: A Meta-Grid Framework for the Convergence of P2P and Grids
	Introduction
	Related Work
	G2G Framework and Prototype
	Super-Peer Based G2G System
	G2G Framework
	G2G Prototype

	Experimental Results
	Conclusions and Future Work
	References

	Distributed Asynchronous Iterative Algorithms: New Experimentations with the Jace Environment
	Introduction
	Motivations and Context
	The Asynchronous Iterations Model
	The Jace Environment

	Improving Performances of the Jace Environment
	Limitations of the Actual Version
	The Communication Management Level
	The Threads Management Level

	Experimentations
	The Test Application: The 3D Advection-Diffusion
	Experimental Results

	Conclusion and Future Works
	References

	Predicting Free Computing Capacities on Individual Machines
	Introduction
	Related Work
	Measures for the Accuracy of Predictions
	Accuracy on Average
	Accuracy of Individual Predictions
	Recapitulation of Proposed Measures

	Usage of Empirical Frequency Distributions (EFDs)
	Transformation of the EFD into the Prediction
	Transformation Methods Proposed in Literature
	Transformation Method $T_interval$
	Adaptive Correction of Predictions

	Experimental Results
	Conclusions
	References

	The Deployment and Maintenance of a Condor-Based Campus Grid
	Introduction
	Condor
	Condor as a Way to Build a Campus Grid
	Motivation for the Clemson Condor Pool
	BOINC and Condor Backfill
	Open Science Grid Expands Campus Grids

	Campus Grid Implementation Challenges
	Deployment
	Backfill Configuration
	Condor Job Router

	Results and Statistics
	Condor Pool Usage and Administration
	Condor Job Router Speedup
	BOINC Time Donated
	Power Consumed by the Pool
	Offsetting the Cost

	Future Expansion
	Conclusion
	References

	Scheduling
	Bicriteria Service Scheduling with Dynamic Instantiation for Workflow Execution on Grids
	Introduction
	Service Scheduling
	Problem Definition

	Service Scheduling Algorithm
	Experimental Results
	Related Work
	Conclusion
	References

	Ant Colony Inspired Microeconomic Based Resource Management in Ad Hoc Grids
	Introduction
	Related Work
	Background Knowledge
	Continuous Double Auction Based Resource Discovery
	Bid/Ask Price Calculation

	Proposed Architecture
	Ant Colony Optimization Algorithm
	Load Balancing Factor

	Experimental Setup and Results
	Experimental Results

	Conclusion and Future Work
	References

	Dynamic Scheduling Algorithm for Heterogeneous Environments with Regular Task Input from Multiple Requests
	Introduction
	Overview of Existing SAs
	A Dynamic Scheduling Policy with Regular Task Input from Multiple Requests
	Terms and Notion
	The Mathematical Model
	Convergence of the Solution
	Physical Movement Condition for Tasks on New Queues
	Algorithm
	Impact of the Value of EET in the SAs Overall Behaviour

	Test Results
	Conclusions and Future Work
	References

	Balanced Scheduling Algorithm Considering Availability in Mobile Grid
	Introduction
	Related Work
	Problem Statement
	SystemModel
	System Architecture
	Characteristics of User Mobility

	Balanced Scheduling Algorithm Considering Availability
	Experiments
	Experimental Environment
	Experimental Results

	Conclusions and Future Work
	References

	Bi-objective Optimization: An Online Algorithm for Job Assignment
	Introduction
	Related Work
	The Problem Definition
	The Proposed Online Algorithm and Its Properties
	The $O(\sqrt{m}$)-Competitive Ratio for the Total Load
	The $O(\sqrt{m}$-Competitive Ratio for the throughput

	Lower Bounds
	References

	Achieving Co-allocation through Virtualization in Grid Environment
	Introduction
	Related Work
	Co-allocation through Virtualization
	Implementation
	Scheduler
	SLA Negotiator
	Virtual Machine Service (VMS)
	Discussion

	Conclusion
	References

	Load Balancing
	MTS: Multiresolution Thread Selection for Parallel Workload Distribution
	Introduction
	Techniques for ParallelWorkload Distribution
	Multiresolution Thread Grouping and Selection
	Multiresolution Thread Grouping (MTG)
	Multiresolution Thread Selection (MTS)
	Data Realignment with Grouping Tree

	Experimental Results
	Related Work
	Conclusion and Future Work
	References

	The gLite Workload Management System
	Introduction
	The gLite WMS in a Nutshell
	Functionality at Various Levels
	Interoperability and Interfacing
	Results and Future Developments
	Conclusions
	References

	On the Design of a Performance-Aware Load Balancing Mechanism for P2P Grid Systems
	Introduction
	Related Works
	Performance-Aware Load Balancing Mechanism
	Preliminary Experimental Results
	Conclusions
	References

	Pervasive Computing
	A Mediation Framework for the Implementation of Context-Aware Access Control in Pervasive Grid-Based Healthcare Systems
	Introduction
	Using Agent and Workflow Technology for Access Control
	Related Work
	Motivating Scenario
	Security Mediation Framework
	Concluding Remarks
	References

	The Tiny Instrument Element
	Introduction
	Related Work
	Design Principles
	Architecture and API Design
	How to Plug a New Instrument
	How to Share Instruments on the Grid

	Case Study
	Conclusion
	References

	μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices
	Introduction and Related Work
	SCENT: Semantic Device Language for N-Triples

	μOR: A Micro OWL DL Reasoner
	Query Processor (QP)
	SCENTRA: The SCENT Resolution Algorithm
	μOR

	Applications of μOR
	Neuroblastoma Screening - An Application Scenario

	Implementation and Performance Evaluation
	Conclusions and Future Work
	References

	Sensor Networks
	Sensor-Actuator Networks with TBox Snippets
	Introduction
	Related Work
	The Overview
	Design Time
	Describing Services with TBox Snippets

	Runtime
	The Runtime Ontology
	Service Query Resolution

	Summary and Future Work
	References

	Prediction Based Mobile Data Aggregation in Wireless Sensor Network
	Introduction
	Related Works
	SystemModel
	Network Model
	Energy Model

	ProposedScheme
	Transmission Range of Mobile Node
	Construction Aggregation Tree
	TDMA Scheduling

	Simulation
	Impact of Nodes
	Impact of r_m

	Conclusion
	References

	A Distributed Architecture of Sensing Web for Sharing Open Sensor Nodes
	Introduction
	SensingWebProject
	Design of SW-Agent
	Architecture for Sensing Web
	Program Shipping Facility
	Privacy Protection Model
	Authorization for Access Control

	Implementation of SW-Agent
	Sandboxing for Secure Execution
	Virtual Devices
	Remote Procedure Call Interface
	User Scenario

	Performance Evaluation and Experiment
	Related Work
	Conclusion and Future Work
	References

	Peer-to-Peer
	Efficient Parallelized Network Coding for P2P File Sharing Applications
	Introduction
	Background
	Principles of Network Coding
	Related Works

	Algorithms for Parallelization of Network Coding
	Arithmetic Analysis of Thread Balancing
	DOA: Dynamic Operation Assignment for Balanced Workload

	Experimental Results and Performance Analysis
	Performance Evaluation Considering {\it Stage E} Only
	Speed-Up Comparison on Dual-Core Systems
	Total Decoding Time Comparison
	Scalability Comparison

	Conclusion and Future Work
	References

	Scheduling Strategy of P2P Based High Performance Computing Platform Base on Session Time Prediction
	Introduction
	Related Work
	Problem Analysis
	Environment of P2P Based HPC Platform
	The Platform Model
	Basic Data Structure for Session Time
	The Expression of Tasks
	Scheduling

	Performance Evaluation
	Simulation Metrics and Parameters
	Simulation Results

	Conclusions
	References

	An Activeness-Based Seed Choking Algorithm for Enhancing BitTorrent’s Robustness
	Introduction
	BitTorrent Overview
	Related Work
	Analyzing Free Riding
	Methodology
	Analyzing Results

	Activeness-Based Choking Algorithm
	Experimental Evaluation
	Uncooperative Peering Scenario
	Cooperative Peering Scenario

	Conclusions
	References

	Resource Aggregation Effectiveness in Peer-to-Peer Architectures
	Introduction
	Background
	The P2P System Architecture
	Decision Models for Resource Aggregation
	Evaluating the Quality of Resource Discovery

	Experiments and Results
	Related Works
	Conclusion
	References

	Web Services for Deeply Embedded Extra Low-Cost Devices
	Introduction
	Related Work
	Embedding Web Services, a Bottom-Up Approach
	Compiler

	Network Architecture
	Prototypes
	Conclusions
	References

	A Group-Based Reputation Mechanism for Mobile P2P Networks
	Introduction
	Related Work
	The Group-Based Reputation Mechanism
	Group-Based Reputation Architecture
	Distributed Implementation Method

	Experimental Study
	Conclusion and Future Work
	References

	A Partition-Based Broadcast Algorithm over DHT for Large-Scale Computing Infrastructures
	Introduction
	Chord Overview
	Partition-Based Broadcast Algorithm
	Algorithm Analysis

	Experimental Evaluation
	Related Work
	Conclusions
	References

	Fault Tolerance
	Novel Crash Recovery Approach for Concurrent Failures in Cluster Federation
	Introduction
	Relevant Data Structures and System Model
	System Model
	Notations and Relevant Data Structures
	Check Pointing Interval and Selective Message Logging

	The Check Pointing Algorithm
	Algorithm Non-blocking
	Performance

	Recovery Scheme
	Algorithm Recovery
	Performance
	Comparison

	Conclusion
	References

	JACEP2P-V2: A Fully Decentralized and Fault Tolerant Environment for Executing Parallel Iterative Asynchronous Applications on Volatile Distributed Architectures
	Introduction
	Related Work
	JACEP2P-V2
	JACEP2P
	JACEP2P-V2’s Architecture
	JACEP2P-V2 Functionalities and Characteristics

	Experiments
	Mathematical Description
	First Experiment: Local Cluster
	2nd Experiment: Distributed Clusters

	Conclusion and Perspectives
	References

	Performance Evaluation of Scheduling Mechanism with Checkpoint Sharing and Task Duplication in P2P-Based PC Grid Computing
	Introduction
	P2P-Based PC Grid Computing Environment
	System Model
	Checkpointing and Task Duplication

	AnalyticalModel
	Analysis Modeling with Embedded Markov Chain
	Analysis of Transmission Cost
	Analysis of Execution Time Reduction Cost

	Performance Evaluation
	Conclusions
	References

	A Probabilistic Fault-Tolerant Recovery Mechanism for Task and Result Certification of Large-Scale Distributed Applications
	Introduction
	Definitions and Assumptions
	Applications with Independent Tasks
	Certification
	Recovery

	Certification in the Presence of Task Dependencies
	Faulty Tasks and the Concept of Initiators
	Certification
	Recovery

	Results
	Related Work Section
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

