
A. Håkansson et al. (Eds.): KES-AMSTA 2009, LNAI 5559, pp. 110–119, 2009.
© Springer-Verlag Berlin Heidelberg 2009

jDALMAS: A Java/Prolog Framework for Deontic
Action-Logic Multi-Agent Systems

Magnus Hjelmblom and Jan Odelstad

Department of Mathematics, Natural and Computer Sciences
University of Gävle, SE-801 76 Gävle, Sweden

mbm@hig.se, jod@hig.se

Abstract. A norm-regulated Deontic Action-Logic Multi-Agent System
(DALMAS) is regulated by a normative system consisting of norms, which are
expressed in an algebraic notation based on the Kanger-Lindahl theory of nor-
mative positions. A general-level Prolog implementation of the abstract DAL-
MAS architecture makes it possible to implement specific systems in Prolog.
This work describes jDALMAS, a Java library that may be used to create
DALMAS applications in Java. A jDALMAS application has a client/server ar-
chitecture, where a Prolog implementation of a specific system acts as a logic
server. Together, the general-level Prolog implementation and the jDALMAS
packages offer a framework for implementation of specific systems. Two ex-
amples of such implementations are presented here.

Keywords: deontic action-logic, normative positions, norm-regulated MAS,
DALMAS, logic server.

1 Introduction

During the last decade, the study of norm-regulated multi-agent systems has emerged
as an active field of study within AI. The notion of norm-regulated DALMAS (deon-
tic action-logic based multi-agent system) was introduced by Odelstad and Boman in
[11]. DALMAS is an abstract architecture for a global clock, global state and global
dynamics multi-agent system. A norm-regulated DALMAS is regulated by a norma-
tive system which consists of norms expressed in an algebraic notation (cf. [8], [9])
based on the Kanger-Lindahl theory of normative positions [7].

In earlier work, a general-level Prolog implementation of the DALMAS architec-
ture was developed. [5] The implementation consists of a Prolog module, dnrDAL-
MAS, which may be used to implement specific DALMAS systems as logic servers.
This paper presents jDALMAS, a general Java library that may be used to create Java
applications that connect to dnrDALMAS servers. Together with the dnrDALMAS
module, the jDALMAS library offers a framework for the implementation of specific
DALMAS systems in Java, for example as Swing applications with graphical user
interfaces.

Two such graphical applications have been developed to illustrate the function and
use of the jDALMAS library. The Java code for jDALMAS and the two specific

jDALMAS: A Java/Prolog Framework for Deontic Action-Logic Multi-Agent Systems 111

implementations is available in electronic form, together with the Prolog code for
dnrDALMAS and the two specific logic servers.

The abstract architecture for DALMAS, and its theoretical foundations, is outlined
in section 2.1 - 2.3. Two specific systems are described in section 2.3.1. Section 2.4
gives an overview of the dnrDALMAS implementation, and a description of jDAL-
MAS and the two specific implementations is given in section 3.

2 Background

2.1 Deontic Action-Logic

The term action-logic will be used in this paper to denote a logical system which
includes the binary action operator Do. The intended interpretation of Do(x, p) is “x
sees to it that p”.

Deontic logic may be used to create normative sentences, using norm-building op-
erators such as Shall or May. The intended interpretation of Shall is “it shall be that”
(“it shall be the case that”), and the intended interpretation of May is “it may be that”.
A conditional normative sentence consists of a combination of a descriptive sentence
and a purely normative sentence. A typical conditional norm has the form p → Shall
s. The interpretation of this sentence would be “if p, then it shall be that s”.

Stig Kanger contributed to the deontic logic by combining it with action-logic. [6]
For example, the intended interpretation of Shall Do(x, q) is “it shall be the case that x
sees to it that q”. The result of combining Shall or May, Do and ¬ is a powerful lan-
guage for expressing normative sentences. A conditional norm may for example have
the form c(x,y) → Shall Do(x,¬d(y)). According to the logic of Shall and Do, this
means that “if c(x,y), then it shall be the case that x sees to it that not d(y)”. A more
detailed presentation of deontic action-logic is given in [5], section 3.

The use of deontic logic within the design of multi-agent systems has been ex-
plored by many researchers. One example is the use of Constraint Handling Rules
(CHR) to express deontic constraints within the area of agent communication. [2]
Another example is IMPACT [3], an agent platform where deontic operators of per-
mission, obligation and prohibition is the basis for the specification of what an agent
is obliged to do, may do or cannot do. A third example is Sergot’s Norman-G [12], a
Prolog program based on the theory of normative positions.

2.2 Normative Positions

The Kanger-Lindahl theory of normative positions is based on Kanger’s “deontic
action-logic”. The theory contains three systems of types of normative positions. The
simplest of these systems is a system of seven one-agent types of normative positions,
based on the logic of Shall and Do. [7]

Ti (where 1 ≤ i ≤ 7) denotes the i:th type of one-agent positions. For example,
T2(ω,d) denotes the deontic action-logic sentence May Do(ω,d) ∧ May Pass(ω, d) ∧
¬May Do(ω, ¬d), where Pass(ω, d) is an abbreviation of ¬Do(ω,d) ∧ ¬Do(ω,¬d).
The complete list of one-agent types is presented in [5], section 4, together with a
detailed discussion and references.

112 M. Hjelmblom and J. Odelstad

The types T1 – T7 may be used as operators on descriptive conditions to get deontic
conditions. If, as an example, d is a unary condition, then Tid (1 ≤ i ≤ 7) is the binary
condition such that

Tid(y,x) iff Ti(x,d(y))

where Ti(x,d(y)) is the i:th formula of one-agent normative positions.

2.3 Norm-Regulated DALMAS

In recent years, the study of norm-regulation of mult-agent systems has developed
into a sub-discipline of AI called Normative Multi-Agent Systems, attracting the
attention of specialists from different areas such as computer science, logic, sociol-
ogy, and cognitive science. Central topics include the the use of norms as a mecha-
nism in multi-agent systems and the use of multi-agent systems to study the concept
and theories of norms and normative behaviour. An overview of this field of study is
given by Boella et al. in [4], where ten research challenges for the NORMAS com-
munity are identified.

The abstract DALMAS architecture is one possible approach within this area. A
deterministic DALMAS D is defined formally in [11], pp. 152f, as an ordered 9-tuple
〈Ω, A, S, Af, Δ, Π, Γ, τ, γ〉. The arguments are specific sets, operators and functions
which are models for the theory of DALMAS, defining the unique features of a spe-
cific DALMAS:

1. Ω is the set of agents in D.
2. A is an act set. An element a in A is a function such that a(ω,s) = s+ means if agent
ω performs act a in state s, then the resulting state will be s+.

3. S is the state space of D, that is, the the set of all states that may be reached when
the agents perform feasible actions.

4. Af is a function such that Af(ω,s) is the set of feasible acts for agent ω in state s.
5. Δ is a deontic structure-operator, such that Δ(ω,s) is ω’s deontic structure on

Af(ω,s) in state s. In a simple DALMAS, the deontic structure for ω in state s is the
set of permissible actions for ω in state s. An act is permissible if it is not prohib-
ited by the DALMAS’s normative system.

6. Π is a preference structure-operator such that Π(ω,s) is ω’s preference structure on
Af(ω,s) in state s. The preference structure is an ordering of the acts in Af(ω,s) ac-
cording to the “utility” of the acts for the agent. In other words, Π determines
which acts are the most preferable for the agent in the current state.

7. Γ is a function such that Γ(ω,s) is the set of actions for ω to choose from in state s,
ordered according to the preference structure. In a simple DALMAS, the choice-
set consists of the most preferred of the permissible actions.

8. τ is a turn-operator such that τ(ω1) = ω2 means that ω2 is to move after ω1.
9. γ is a tie-breaking function, where γ({a1, …, an}) = a means that a is the act to

choose out of a set of permissible and equally preferred actions.

When an agent is to move, it chooses an act out of a set of feasible acts. This leads to
a new state, depending on the state of the system when the act is performed. The
choice of act is determined by the combination of the DALMAS’s preference struc-
ture and deontic structure.

jDALMAS: A Java/Prolog Framework for Deontic Action-Logic Multi-Agent Systems 113

The representation of norms is based on Lindahl-Odelstad’s algebraic representa-
tion of normative systems, which in turn uses the Kanger-Lindahl theory of normative
positions. For example, if c is a binary condition and d is a ternary condition, the
norm 〈M1c,T7d〉 may be interpreted as M1c(ω1,ω; ωm,s) → T7d(ω1,ω2,ω; ωm,s) where
ωi is an agent, ωm is the agent to move and s is the current state of the system. A
deeper discussion is given in section 5 of [5].

2.3.1 Examples: Colour and Form and Waste-Collectors
Two simple systems, Colour & Form and Waste-collectors, are used in [5] and this
paper as running examples to illustrate the ideas behind DALMAS. The Waste-
collector system was originally used in [11] as an example, inspired by [14].

Colour & Form is a very simple multi-agent system consisting of only two agents
called chroma and forma. States of the system are represented by the values of the
colour (“black” or “white”) and form (“circle” or “square”) attributes for each agent.

The agents can choose between two acts: change colour and change form. The
agents’ behaviour is controlled by

1. a simple utility function which is defined such that agent chroma prefers to change
colour, and agent forma prefers to change form; and

2. a normative system containing one norm that prohibits an agent to choose an act
leading to a state where both agents have identical attribute values.

In other words, if ω1 ≠ ω2, then the moving agent must not act so that all of ω1’s at-
tributes are identical with all of ω2’s attributes. This norm may be expressed in logical
form (with the universal quantifier ∀ omitted) in the following way:

Diff(ω1,ω2; s) → ¬May Do(ω1,Eq(ω1,ω2; s))

Diff is defined such that Diff(ω1,ω2; s) iff ω1 ≠ ω2, and Eq is defined such that
Eq(ω1,ω2; s) iff agents ω1 and ω2 have identical attributes in state s. Using the appro-
priate Ti operator (see section 2.2), the norm may be expressed

M1Diff(ω1,ω2,ω; ωm,s) → T7Eq(ω1,ω2,ω; ωm,s)

where the operator M1 unifies agent ω1 with the acting agent ωm. The algebraic form
of this norm is 〈M1Diff, T7Eq〉.

The Waste-collector system is a system of agents operating in an environment
which consists of a grid of squares ordered in rows and columns. Each square is as-
signed coordinate in the form of an ordered pair of integers. Some squares contain an
amount of waste, represented by a number. The agents can move one square at a time
in four directions: up/north, down/south, left/west and right/east, and at the same time
pick up waste from the square where the agent starts its move. The agents may also
pass1, that is, do nothing except pick up waste (if any) from the current square. To
summarize, an agent may choose one of the following actions: gonorth, gosouth, gowest,
goeast, or pass. An agent in the system tries to cooperate with other agents to collect as
much waste as possible. Each waste-collector has a utility function, such that the
utility of an act depends on the amount of waste in the squares surrounding the target

1 Note that the pass act, meaning that an agent does nothing, should not be confused with the

Pass operator, meaning that an agent is passive with regard to some state-condition s.

114 M. Hjelmblom and J. Odelstad

square. Also, there are some restrictions on how the waste-collector agents may act,
especially on how they may move near other agents. These restrictions may be ex-
pressed as norms in a normative system. For simplicity, let us consider a normative
system with a single norm stating that it is not permissible to move to a square that is
already occupied by another agent. Omitting the ∀ quantifier, this norm may be ex-
pressed in logical form in the following way:

Diff(ω1,ω2; s) → ¬May Do(ω1,Lap9(ω1,ω2; s))

The intended meaning of Lapn(ω1,ω2) is that the protected spheres (that is, the square
where the agent is presently located and the eight squares surrounding it) overlap with
n squares. See figure 1 of [5] for an illustration. This may be expressed in algebraic
form as 〈M1Diff, T7Lap9〉.

2.4 dnrDALMAS

Previously, a Prolog implementation of the abstract DALMAS architecture has been
developed. [5] The implementation consists of a Prolog module, dnrDALMAS, which
may be used to create standalone text-based applications or logic servers for specific
DALMASes. The module is written in SICStus Prolog, version 4.

The dnrDALMAS module contains a set of predicates for creating and initialising
specific DALMAS implementations and querying the state of the system. An
implementation of a specific system defines a set of (user-defined) primary predicates
written in Prolog. These primary predicates correspond to the primary functions char-
acterizing the system. The heart of the implementation is the prohibited/3 predi-
cate, which determines if an act is permissible or not according to the norms in the
normative system.

Using dnrDALMAS, two implementations of the example systems in section 2.3.1
have been created. These implementations function both as standalone applications
with simple text-based user interfaces and as logic servers within the jDALMAS
framework.

The implementation of dnrDALMAS and the two implementations of specific sys-
tems are thoroughly described and discussed in [5]. The details will not be repeated
here. The code is publicly available via sourceforge.net.

3 The jDALMAS Framework

jDALMAS is a general Java library consisting of a set of Java classes that can be used
to create Java applications that communicate with dnrDALMAS servers. The Java
part of the application may then provide for a (graphical) user interface, while the
dnrDALMAS server provides for the DALMAS logic. The code for jDALMAS is
publicly available via sourceforge.net.

A jDALMAS application has a client/server architecture, where a Java client
communicates with a dnrDALMAS server.

3.1 Server Side

The concept of a logic server is somewhat analogous to a database server, but a logic
server provides for application logic rather than for data storage and persistence.

jDALMAS: A Java/Prolog Framework for Deontic Action-Logic Multi-Agent Systems 115

Basically, the server side of a jDALMAS application consists of a dnrDALMAS
server, which is a logic server for a specific system built with the dnrDALMAS
Prolog module. The prologbeans module [13] in SICStus Prolog is used to initial-
ize and start a server listening on a certain (user-defined or OS-assigned) port, register
general queries that are to be accepted by the server, and register a set of event lis-
tener callback predicates.

To facilitate the administration of a dnrDALMAS server, the jDALMAS frame-
work provides for a simple graphical control panel for the server.

3.2 Client Side

A jDALMAS client is a Java Swing applet. It uses the PrologBeans Java library [13]
in SICStus Prolog to communicate with the dnrDALMAS server. The user interface
consists of a generic control panel (see figure 1) that lets the user configure the spe-
cific system. Through the panel, the user may:

• add agents to the agent set;
• add acts to the act set;
• register and/or update functors of primary and secondary Prolog predicates;
• add functors of ground-predicates to the ground set;
• add functors of consequence-predicates to the consequence set; and
• add norms to the norm set.

To create an implementation of a specific system, the user needs to perform the fol-
lowing steps:

• create Prolog definitions of the appropriate predicates, for example user-defined
primary and/or secondary predicates, or state-conditions used in the grounds or con-
sequences of norms;

• deploy the user-defined Prolog files on the server;
• create a “logic handler” that translates between the client’s own representation of

knowledge and the representation used by the dnrDALMAS server; and
• determine how the specific system’s knowledge base shall be visualized on the

client side, and write the necessary Java code.

When the client control panel is started, the user adds agents to the agent set and acts
to the act set. The user also adds functors of state conditions to the ground set and
consequence set, and adds norms to the norm set. Finally, the user registers functors
of primary or secondary predicates, and adds knowledge to the knowledge base which
is initially empty.

The client application should display the specific system’s current knowledge base
in an appropriate way, and let the user perform the desired actions on the system. For
instance, the user may want to ask the system for its next situation, which is the re-
sulting situation when the agent to move chooses and performs its most preferred act
that is not prohibited by the norm-system.

116 M. Hjelmblom and J. Odelstad

Fig. 1. Control panel for a specific jDALMAS client

3.2.1 Example 1: CFDALMAS
CFDALMAS is a graphical Java client for a Colour & Form system; see section 2.3.1.
Aside from the client control panel shown in the previous section, the user interface
consists of an agent frame for each agent. The agent frame (figure 2) shows a graphi-
cal representation of the agent’s state.

3.2.2 Example 2: WasteDALMAS
WasteDALMAS is a graphical Java client for the Waste-collector system described in
section 2.3.1. The user interface consists of two parts: a client control panel and state

Fig. 2. Graphical representation of a state of the Colour & Form system

jDALMAS: A Java/Prolog Framework for Deontic Action-Logic Multi-Agent Systems 117

Fig. 3. Graphical representation of a state of the Waste-collector system

frame that shows a graphical representation of the state of the system. The client con-
trol panel is very similar to the one shown in section 3.2.

The state frame (see figure 3) shows the state of each square in the wasteland grid,
including the position of agents and the amount of waste carried by each agent. The
background colour of a square indicates how much waste the square contains; the
darker the square, the less waste it contains. The square containing the agent which is
next to move is marked by a green border. A dialog frame which contains more de-
tailed information about a certain square is shown if the user clicks on the square.

4 Discussion

The jDALMAS framework is still work in progress. The current version works well,
but some improvements and extensions can be made. An issue to deal with is how the
implementations should behave in situations where the deontic structure is empty, that
is, when all feasible acts for the acting agent are prohibited by the normative system.
The current version of the framework leaves this issue to the user: if, in a given situa-
tion, there are no permissible acts, the run of the system fails. Another approach in
this situation could be to let the moving agent be “confused”, in the sense that it does
nothing. However, this would mean that the “pass” (i.e. “do nothing”) act will always
be permissible, even if prohibited by the normative system. Another issue is to extend
the framework to handle non-elementary norms, i.e. norms whose grounds and/or
consequences are Boolean expressions.

5 Conclusion and Future Work

jDALMAS offers a framework for the creation of specific DALMAS applications,
making it possible to implement a wide range of norm-regulated multi-agent systems.
It also offers the possibility to design and experiment with different normative systems
for a given agent system. For a system such as the Waste-collectors it would be

118 M. Hjelmblom and J. Odelstad

possible to experiment with different combinations of normative systems and utility
functions, to see which normative system gives the best overall performance or desired
behaviour according to some evaluation function or the user’s preferences. If combined
with some learning mechanism, such as a genetic algorithm, the system itself could try
to find an optimal combination for a given class of problems. [11], pp. 164f.

Other applications of DALMAS can be found in many areas. Somewhat related are
the fields of education, edutainment and entertainment. A norm-regulated DALMAS
could for example be part of a game environment which lets the user act as a “legisla-
tor”, creating and playing with different “laws” for the game world.

Another idea is to use the framework for experiments involving humans. Is it, for
example, possible for human observers to conclude which normative system is used
by a particular application, just by examining the application’s behaviour? This could
be an interesting tool within many different disciplines.

It could also be rewarding to explore the use of DALMAS within decision support.
Possible applications within this area could be to use norm-regulated systems as an
analytical tool for the creation and/or evaluation of decision-theoretical expert sys-
tems. In a given situation, such a system could for example facilitate decision making
by eliminating those feasible acts that are prohibited by some normative system.

Ahonen-Jonnarth and Odelstad have discussed the area of forest cleaning as a pos-
sible area of application for norm-regulated multi-agent systems. A single cleaning
agent may be regarded as a one-agent system where the agent’s decision making is
regulated by a normative system. [1], [10]

References

[1] Ahonen-Jonnarth, U., Odelstad, J.: Evaluation of Simulations with Conflicting Goals with
Application of Cleaning of Young Forest Stands. In: Proceedings of ISC 2006 (Fourth
Annual International Industrial Simulation Conference), Palermo, Italy, June 5-7 (2006)

[2] Alberti, et al.: Logic Based Semantics for an Agent Communication Language. DEIS
Technical Report no. DEIS-LIA-03-001. LIA Series no. 62

[3] Arisha, K.A., Ozcan, F., Ross, R., Subrahamanian, V.S., Eiter, T., Kraus, S.: IMPACT: A
platform for collaborating agents. IEEE Intelligent Systems 14(2), 64–72 (1999)

[4] Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent sys-
tems. Computation and Mathematical Organizational Theory, special issue on normative
multiagent systems 12(2-3), 71–79 (2006)

[5] Hjelmblom, M.: Deontic Action-Logic Multi-Agent Systems in Prolog. Institutionen för
matematik, natur- och datavetenskap, Högskolan i Gävle (2008) ISSN 1403-8749;30,
http://hig.diva-portal.org/smash/record.jsf?pid=diva2:118137

[6] Kanger, S.: New foundations for ethical theory, Part 1 (1957). In: Holmström-Hintikka, et
al. (eds.) Collected Papers of Stig Kanger With Essays on His Life and Work, pp. 99–
119. Kluwer, Dordrecht (2001)

[7] Lindahl, L.: Position and Change: A study in Law and Logic. Reidel, Dordrecht (1977)
[8] Lindahl, L., Odelstad, J.: An Algebraic Analysis of Normative Systems. Ratio Juris 13(3),

261–278 (2000)
[9] Lindahl, L., Odelstad, J.: Normative Positions within an Algebraic Approach to Norma-

tive Systems. Journal of Applied Logic 2, 63–91 (2004)

jDALMAS: A Java/Prolog Framework for Deontic Action-Logic Multi-Agent Systems 119

[10] Odelstad, J.: Agents, Norms and Forest Cleaning. In: Boella, G., van der Torre, L., Ver-
hagen, H. (eds.) Normative Multi-Agent Systems. Dagstuhl Seminar Proceedings, 07122
(2007) ISSN 1862-4405,
http://drops.dagstuhl.de/portals/index.php?semnr=07122

[11] Odelstad, J., Boman, M.: Algebras for Agent Norm-Regulation. Annals of Mathematics
and Artificial Intelligence 42, 141–166 (2004)

[12] Sergot, M.J.: A computational theory of normative positions. ACM Trans. Comput. Logic
(TOCL) 2, 581–622 (2001)

[13] SICStus Prolog User’s Manual. The Intelligent Systems Laboratory, Swedish Institute of
Computer Science, Kista (2005)

[14] Steels, L.: Cooperation between distributed agents through self organization. In: Decen-
tralized, A.I., Demazeau, Y., Muller, J.P. (eds.) Proc. of Maamaw 1989, pp. 175–196. El-
sevier Science Publisher, Amsterdam (1990)

	jDALMAS: A Java/Prolog Framework for Deontic Action-Logic Multi-Agent Systems
	Introduction
	Background
	Deontic Action-Logic
	Normative Positions
	Norm-Regulated DALMAS
	dnrDALMAS

	The jDALMAS Framework
	Server Side
	Client Side

	Discussion
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

