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Abstract. While design automation for hardware systems is quite
advanced, this is not the case for practical embedded systems. The cur-
rent state-of-the-art is to use a software modeling environment and inte-
grated development environment for code development and debugging,
but these rarely include the sort of automatic synthesis and verification
capabilities available in the VLSI domain. We present a model-based
integration environment which uses a graphical architecture description
language (EsMoL) to pull together control design, code and configuration
generation, platform-specific simulation, and a number of other features
useful for taming the heterogeneity inherent in safety-critical embedded
control system designs. We describe concepts, elements, and development
status for this suite of tools.

1 Introduction

Embedded software often operates in environments critical to human life and
subject to our direct expectations. We assume that a handheld MP3 player will
perform reliably, or that the unseen aircraft control system aboard our flight will
function safely and correctly. Safety-critical embedded environments require far
more care than provided by the current best practices in software development.
Embedded systems design challenges are well-documented [1], but industrial
practice still falls short of expectations for many kinds of embedded systems.

In modern designs, graphical modeling and simulation tools (e.g. Mathworks’
Simulink/Stateflow) represent physical systems and engineering designs using
block diagram notations. Design work revolves around simulation and test cases,
with code generated from ”‘complete”’ designs. Control designs often ignore
software design constraints and issues arising from embedded platform choices.
At early stages of the design, platforms may be vaguely specified to engineers as
sets of tradeoffs [2].

Software development uses UML (or similar) tools to capture concepts such
as components, interactions, timing, fault handling, and deployment. Workflows
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focus on source code organization and management, followed by testing and
debugging on target hardware. Physical and environmental constraints are not
represented by the tools. At best such constraints may be provided as documen-
tation to developers.

Complete systems rely on both aspects of a design. Designers lack tools to
model the interactions between the hardware, software, and the environment
with the required fidelity. For example, software generated from a carefully sim-
ulated functional dataflow model may fail to perform correctly when its functions
are distributed over a shared network of processing nodes. Cost considerations
may force the selection of platform hardware that limits timing accuracy. Nei-
ther aspect of development supports comprehensive validation of certification
requirements to meet government safety standards.

We propose a suite of tools that aim to address many of these challenges.
Currently under development at Vanderbilt’s Institute for Software Integrated
Systems (ISIS), these tools use the Embedded Systems Modeling Language (ES-
MoL), which is a suite of domain-specific modeling languages (DSML) to in-
tegrate the disparate aspects of a safety-critical embedded systems design and
maintain proper separation of concerns between engineering and software de-
velopment teams. Many of the concepts and features presented here also exist
separately in other tools. We describe a model-based approach to building a
unified model-based design and integration tool suite which has the potential to
go far beyond the state of the art.

We will provide an overview of the tool vision and describe features of these
tools from the point of view of available functionality. Note that two development
processes will be discussed – the development of a distributed control system
implementation (by an assumed tool user), and our development of the tool
suite itself. The initial vision section illustrates how the tools would be used to
model and develop a control system. The final sections describe different parts
of our tool-development process in decreasing order of maturity.

2 Toolchain Vision and Overview

In this work, we envision a sophisticated, end-to-end toolchain that supports not
only construction but also the verification of the engineering artifacts (including
software) for high-confidence applications. The development flow provided by
the toolchain shall follow a variation of the classical V-model (with software and
hardware development on the two branches), with some refinements added at
the various stages. Fig. 1 illustrates this development flow.

Consider the general class of control system designs for use in a flight control
system. Sensors, actuators, and data networks are designed redundantly to mit-
igate faults. The underlying platform implements a variant of the time-triggered
architecture (TTA) [3], which provides precise timing and reliability guaran-
tees. Safety-critical tasks and messages execute according to strict precomputed
schedules to ensure synchronization between replicated components and pro-
vide fault mitigation and management. Software implementations of the control



22 J. Porter et al.

Fig. 1. Conceptual model of the toolchain: Development flow

functions must pass strict certification requirements which impose constraints
on the software as well as on the development process.

A modeling language to support this development flow must have several
desired properties: (1) the ability to capture the relevant aspects of the system
architecture and hardware, (2) ability to “understand” (and import) functional
models from existing design tools, (3) support for componentization of functional
models, and (4) ability to model the deployment of the software architecture onto
the hardware architecture. The ability to import existing models from functional
modeling tools is not a deeply justified requirement, it is merely pragmatic.
EsMoL provides modeling concepts and capabilities that are highly compatible
with AADL [4]. The chief differences are that EsMoL aims for a simpler graphical
entry language, a wider range of execution semantics, and most important model-
enabled integration to external tools as described below. Model exchange with
AADL tools may be desirable in the future. A simple sample design will introduce
key points of our model-based development flow and illustrate language concepts.

Our language design was influenced by two factors: (1) the MoC implemented
by the platform and (2) the need for integration with legacy modeling and embed-
ded systems tools. We have chosen Simulink/Stateflow as the supported “legacy”
tool. As our chosen MoC relies on periodically scheduled time-triggered compo-
nents, it was natural to use this concept as the basis for our modeling language
and interpret the imported Simulink blocks as the implementation of these com-
ponents. To clarify the use of this functionality, we import a Simulink design and
select functional subsets which execute in discrete time, and then assign them
to software components using a modeling language that has compatible (time-
triggered) semantics. Communication links (signals) between Simulink blocks
are mapped onto TTA messages passed between the tasks. The resulting lan-
guage provides a componentized view of Simulink models that are scheduled pe-
riodically (with a fixed rate) and communicate using scheduled, time-triggered
messages. Extensions to heterogeneous MoC-s is an active area of research.
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2.1 Requirements Analysis (RA)

Our running example will model a data network implementing a single sen-
sor/actuator loop with a distributed implementation. The sensors and actuators
in the example are doubly-redundant, while the data network is triply-redundant.
The common nomenclature for this type of design is TMR (triple modular redun-
dancy). Unlike true safety-critical designs, we will deploy the same functions on
all replicas rather than requiring multiple versions as is often done in practice [5].
The sensors and actuators close a single physical feedback loop. Specifying the
physical system and particulars of the control functions are beyond the scope of
this example as our focus is on modeling.

This example has an informal set of requirements, though our modeling lan-
guage currently supports the formalization of timing constraints between sen-
sor and actuator tasks. Formal requirements modeling offers great promise, but
in ESMoL requirements modeling is still in conceptual stages. A simple sen-
sor/actuator latency modeling example appears in a later section covering pre-
liminary features for the language.

2.2 Functional Design (FD)

Functional designs can appear in the form of Simulink/Stateflow models or as
existing C code snippets. ESMoL does not support the full semantics of Simulink.
In ESMoL the execution of Simulink data flow blocks is restricted to periodic
discrete time, consistent with the underlying time-triggered platform. This also
restricts the type and configuration of blocks that may be used in a design.
Continuous integrator blocks and sample time settings do not have meaning in
ESMoL. C code snippets are allowed in ESMoL as well. C code definitions are
limited to synchronous, bounded response time function calls which will execute
in a periodic task.

Fig. 2 shows a simple top-level Simulink design for our feedback loop along
with the imported ESMoL model (Fig. 3). The ESMoL model is a structural
replica of the original Simulink, only endowed with a richer software design

Fig. 2. Simulink design of a basic signal conditioner and controller
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Fig. 3. ESMoL-imported functional models of the Simulink design

environment and tool-provided APIs for navigating and manipulating the model
structure in code. A model import utility provides the illustrated function.

2.3 Software Architecture (SwA)

The software architecture model describes the logical interconnection of func-
tional blocks. In the architecture language a component may be implemented
by either a Simulink Subsystem or a C function. They are compatible at this
level, because here their model elements represent the code that will finally im-
plement the functions. These units are modeled as blocks with ports, where the
ports represent parameters passed into and out of C function calls. Semantics
for SwA Connections are those of task-local synchronous function invocations as
well as message transfers between tasks using time-triggered communication.

Fig. 4 shows the architecture diagram for our TMR model. Instances of the
functional blocks from the Simulink model are augmented with C code imple-
menting replicated data voting.

Fig. 4. The architecture diagram defines logical interconnections, and gives finer con-
trol over instantiation of functional units
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2.4 Hardware Architecture (HwA)

Hardware configurations are explicitly modeled in the platform language. Plat-
forms are defined hierarchically as hardware units with ports for interconnec-
tions. Primitive components include processing nodes and communication buses.
Behavioral semantics for these networks come from the underlying time-triggered
architecture. The platform provides services such as deterministic execution of
replicated components and timed message-passing. Model attributes for hard-
ware also capture timing resolution, overhead parameters for data transfers, and
task context switching times.

Figs. 5 and 6 show model details for redundant hardware elements. Each
controller unit is a private network with two nodes and three independent data
buses. Sensor voting and flight control instances are deployed to the controller
unit networks.

Fig. 5. Overall hardware layout for the TMR example

Fig. 6. Detail of hardware model for controller units
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2.5 Deployment Models (CD, SY, DPL)

A common graphical language captures the grouping of architecture compo-
nents into tasks. This language represents three of the design stages from the
V-diagram (Fig. 1) – component design (CD), system architecture design (SY),
and software deployment (DPL), though we will refer to it as the deployment
language. In ESMoL a task executes on a processing node at a single periodic
rate. All components within the task execute synchronously. Data sent between
tasks takes the form of messages in the model. Whether delivered locally (same
processing node) or remotely, all inter-task messages are pre-scheduled for de-
livery. ESMoL uses logical execution time semantics found in time-triggered
languages such as Giotto [6] – message delivery is scheduled after the deadline
of the sending task, but before the release of the receiving tasks. In the TT
model message receivers assume that required data is already available at task
release time. Tasks never block, but execute with whatever data is available each
period.

Fig. 7. Deployment model: task assignment to nodes and details of task definition

Deployment concepts – tasks running on processing nodes and messages sent
over data buses – are modeled as shown in Fig. 7. Software components and bus
channels are actually references to elements defined in architecture and platform
models. Model interpreters use deployment models to generate platform-specific
task wrapping and communication code as well as analysis artifacts.

3 Existing Tools: Simulink to TTA

Control designs in Simulink are integrated using a graphical modeling language
describing software architecture. Components within the architecture are as-
signed to tasks, which run on nodes in the platform.
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Fig. 8. Platforms. This metamodel describes a simple language for modeling the topol-
ogy of a time-triggered processing network. A sample platform model is included.

3.1 Integration Details

The Simulink and Stateflow sublanguages of our modeling environment are de-
scribed elsewhere, though the ESMoL language changes many of the other design
concepts from previously developed languages described by Neema [7].

In our toolchain we created a number of code generators. To construct the
two main platform-independent code generators (one for Simulink-style models
and another one for Stateflow-style models) we have used a higher-level ap-
proach based on graph transformations [8]. This approach relies on assump-
tions that (1) models are typed and attributed graphs with specific structure
(governed by the metamodel of the language) and (2) executable code can
be produced as an abstract syntax graph (which is then printed directly into
source code). This transformation-based approach allows a higher-level repre-
sentation of the translation process, which lends itself more easily to automatic
verification.

The models in the example and the metamodels described below were
created using the ISIS Generic Modeling Environment tool (GME) [9]. GME
allows language designers to create stereotyped UML-style class diagrams defin-
ing metamodels. The metamodels are instantiated into a graphical language,
and metamodel class stereotypes and attributes determine how the elements are
presented and used by modelers. The GME metamodeling syntax may not be en-
tirely familiar to the reader, but it is well-documented in Karsai et al [10]. Class
concepts such as inheritance can be read analogously to UML. Class aggrega-
tion represents containment in the modeling environment, though an aggregate
element can be flagged as a port object. In the modeling environment a port
object will also be visible at the next higher level in the model hierarchy, and
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available for connections. The dot between the Connectable class and the Wire
class represents a line-style connector in the modeling environment.

High-confidence systems require platforms providing services and guarantees
for properties such as fault containment, temporal firewalls, partitioning, etc.
System developers should not re-implement such critical services from scratch [2].
Note that the platform also defines a ’Model of Computation’ [11]. An MoC gov-
erns how the concurrent objects of an application interact (i.e. synchronization
and communication), and how these activities unfold in time. The simple plat-
form definition language shown in Fig. 8 contains relationships and attributes
describing time-triggered networks.

Similarly, Fig. 9 shows the software architecture language. Connector elements
model communication between components. Semantic details of such interactions
remain abstract in this logical architecture – platform models must be defined

Fig. 9. Architecture Metamodel. Architecture models use Simulink subsystems or C
code functions as components, adding attributes for real-time execution. The Input
and Output port classes are typed according to the implementation class to which
they belong.

Fig. 10. Details from deployment sublanguage
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and associated in order to completely specify interactions (though this version
only offers synchronous or time-triggered communications).

Deployment models capture the assignment of Components (and Ports) from
the Architecture to Platform Nodes (and Channels). Additional implementation
details (e.g. worst-case execution time) are represented here for platform-specific
synthesis. Fig. 10 shows the relevant modeling concepts. Simulink objects SLIn-
putPort and SLOutputPort are assigned to Message objects, which represent the
marshaling of data to be sent on a Bus.

4 Under Development: Platform-Specific Simulation,
Generic Hardware, and Scheduling

A control system designer initially uses simulation to check correctness of the
design. Software engineers later take code implementing control functions and
deploy it to distributed controllers. Concurrent execution and platform limita-
tions may introduce new behaviors which degrade controller performance and
introduce errors. Ideally, the tools could allow the control functions to be re-
simulated with appropriate platform effects.

The TrueTime simulation environment [12] provides Simulink blocks mod-
eling processing nodes and communication links. ESMoL tasks map directly
to TrueTime tasks. In TrueTime, tasks can execute existing C code or invoke
subsystems in Simulink models. Task execution follows configured real-time
scheduling models, with communication over a selected medium and proto-
col. TrueTime models use a Matlab script to associate platform elements with
function implementations. A platform-specific re-simulation requires this Matlab
mapping function, and in our case also a periodic schedule for distributed time-
triggered execution. Both of these can be obtained by synthesis from ESMoL
models.

Resimulation precedes synthesis to a time-triggered platform. In order to use
generic computing hardware with this modeling environment, we created a sim-
ple, open, portable time-triggered virtual machine (VM) to simulate the timed
behavior of a TT cluster [13] on generic processing hardware. Since the com-
mercial TT cluster and the open TT VM both implement the same model of
computation, synthesis differences amount to management of structural details
in the models. The open VM platform is limited to the timing precision of
the underlying processor, operating system, and network, but it is useful for
testing.

For both steps above the missing link is schedule generation. In commercial
TTP platforms, associated software tools perform cluster analysis and sched-
ule generation. For resimulation and deployment to an open platform, an open
schedule generation tool is required. To this end we created a schedule generator
using the Gecode constraint programming library [14]. The scheduling approach
implements and extends the work of Schild and Würtz [15]. Configuration for
the schedule generator is also generated by the modeling tools.
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4.1 Integration Details

To configure TrueTime or the scheduler, the important details lie in the deploy-
ment model. Tasks and Messages must be associated with the proper
processing nodes and bus channels in the model. The ISIS UDM libraries [16]
provide a portable C++ API for creating model interpreters, navigating in mod-
els, and extracting required information. See Fig. 10 for the relevant associations.
Model navigation in these interpreters must maintain the relationships between
processors and tasks and between buses and messages. Scheduler configuration
also requires extraction of all message sender and receiver dependencies in the
model.

5 Designs in Progress: Requirements and Model Updates

Many types of requirements apply to real-time embedded control systems de-
sign. Embedded systems are heterogeneous, so requirements can include con-
straints on control performance, computational resources, mechanical design,
and reliability, to name a few things. Formal safety standards (e.g. DO-178B [5])
impose constraints on the designs as well as on the development process it-
self. Accordingly, current research has produced many techniques for formal-
izing requirements (e.g. ground models in abstract state machines [17] or Z
notation [18]). Models could be used to incorporate formal requirements into
other aspects of the design process. During analysis, requirements may appear
as constraints in synthesized optimization problems or conditions for model
checking. Requirements can also be used for test generation and assessment of
results.

Management of model updates is also essential. As designs evolve engineers
and developers reassess and make modifications. Changes to either the plat-
form model or functional aspects of the design may invalidate architecture and
deployment models created earlier. Some portions of the dependent models will
survive changes. Other parts needing changes must be identified. Where possible,
updates should be automated.

5.1 Integration Details

The requirements sublanguage is in design, and so is light on details. As a simple
example of the potential of such a language, Fig. 13 shows a model with latency
requirements between tasks, and Fig. 11 shows the modeling language definition.
This simple relationship can be quantified and passed directly to the schedule
solver as a constraint. Ideally a more sophisticated requirements language could
capture the syntax and semantics of an existing formal requirements tool. Some
candidate languages and approaches are currently under consideration for inclu-
sion in the framework.

To track model changes we propose to use the Simulink UserData field to store
a unique tag in each functional block when the models are imported. During an
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Fig. 11. Latencies are timing constraints
between task execution times

Fig. 12. Simulink’s UserData field can help
manage model changes occurring outside
the design environment

Fig. 13. Example of task latency spec for sample model, with detail of timing attribute
value specified on model links

update operation tags in the control design can be compared with previously im-
ported tags in the model environment. Fig. 12 shows the UserData attribute from
our Simulink sublanguage, corresponding to the actual attribute in Simulink
blocks. To handle issues arising from topology concerns during model evolution,
we require control designers to group top-level functionality into subsystems and
place a few restrictions on model hierarchy in deployment models.
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6 Wishlist: Expanded Semantics, Implementation
Generation, and Verification

Many exciting possibilities loom on the horizon for this tool chain construction
effort. We briefly describe some concepts currently in discussion for the tools.

The current modeling languages describe systems which provide performance
and reliability guarantees by implementing a time-triggered model of computa-
tion. This is not adequate for many physical processes and controller platforms.
We also need provisions for event-triggered communication and components.
Event-triggered component structures give rise to interesting and useful com-
munication patterns common in practical systems (e.g. publish-subscribe, ren-
dezvous, and broadcast). Several research projects have explored heterogeneous
timed models of computation. Two notable examples are the Ptolemy project [19]
and the DEVS formalism and associated implementations [20]. More general sim-
ulation and model-checking tools for timed systems and specifications include
UPPAAL [21] and timed abstract state machines [22]. We aim to identify useful
design idioms from event-triggered models and extend the semantics of the mod-
eling language to incorporate them. Synthesis to analysis tools is also possible
using model APIs.

Safe automation of controller implementation techniques is another focus.
Control designs are often created and simulated in continuous time and arbitrary
numerical precision, and then discretized in time for platforms with periodic sam-
pling and in value for platforms with limited numeric precision. Recent work in
optimization and control offers some techniques for building optimization prob-
lems which describe valid controller implementation possibilities [23] [24]. Early
work on model interpreters aims to generate such optimization problems directly
from the models. Other interesting problems include automated generation of
fixed-point scaling for data flow designs. If integrated, tools like BIP [25] provide
potential for automated verification of distributed computing properties (safety,
liveness, etc...). Model representation of data flow functions, platform precision,
and safety requirements could be used together for scaling calculation.

The addition of proper formal requirements modeling can enable synthesis of
conditions for model checking and other verification tools. Executable seman-
tics for these modeling languages can also provide the behavioral models to be
checked (see Chen [26] [27], Gargantini [28], and Ouimet [29]). Other relevant
work includes integration of code-level checking, as in the Java Pathfinder [30]
or Saturn [31] tools. Synthesis to these tools must also be verified, an active area
of research at ISIS [32].
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