
3 Free Profinite Groups

3.1 Profinite Topologies

Let N be a nonempty collection of normal subgroups of finite index of a group
G and assume that N is filtered from below, i.e., N satisfies the following
condition:

whenever N1, N2 ∈ N , there exists N ∈ N such that N ≤ N1 ∩ N2.

Then one can make G into a topological group by considering N as a funda-
mental system of neighborhoods of the identity element 1 of G (cf. Bourbaki
[1989]. Ch. 3, Proposition 1). We refer to the corresponding topology on G
as a profinite topology. If every quotient G/N (N ∈ N ) belongs to a certain
class C, we say more specifically that the topology above is a pro - C topology.

Let C be a formation of finite groups, and let G be a group. Define

N C (G) = {N �f G | G/N ∈ C }. (1)

Then N C (G) is nonempty and filtered from below. The corresponding profi-
nite topology on G is called the pro - C topology of G or, if emphasis is needed,
the full pro - C topology of G. Note that the pro - C topology of G is Hausdorff
if and only if ⋂

N ∈NC (G)

N = 1. (2)

A group G is called residually C if it satisfies condition (2).

Remark 3.1.1 Assume that a profinite topology on G is determined by a col-
lection N of normal subgroups of finite index filtered from below. Consider
the set C of all groups G/M , where M ranges over all open normal subgroups
of G. Then C is a formation of finite groups, and the given topology on G
is a pro - C topology of G, although not necessarily the full pro - C topology
of G. Indeed, consider a finite group T of order n > 1, and let G be the direct
product of infinitely many copies of T . Let N be the collection of all the open
normal subgroups of the profinite group G, and let C be as indicated above.
As we shall show in Example 4.2.12, the pro - C topology of G is richer than
its natural profinite topology.
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76 3 Free Profinite Groups

If C is the class of all finite groups (respectively, all finite p-groups, or
all finite solvable groups, etc.), then, instead of residually C, we say that
G is a residually finite group (respectively, a residually finite p-group or a
residually finite solvable group, etc.). The corresponding topology on G is
called the (full) profinite topology on G (respectively, the (full) pro-p topology,
the (full) prosolvable topology etc. on G). We remark that, for example, the
full pronilpotent topology on a group G is a prosolvable topology on G, but
it is not necessarily its full prosolvable topology (although in some cases it
may be).

Next we describe some basic properties of the pro - C topology of a
group G. Recall that the core HG of H in G is the intersection of all con-
jugates of H in G. Observe that if H ≤f G, then H has only finitely many
conjugates; so,

HG =
⋂

g∈G

Hg �f G.

Lemma 3.1.2 Let C be a formation of finite groups. Assume that G is an
abstract group and let H ≤f G. Then

(a) H is open in the pro - C topology of G if and only if G/HG ∈ C.
(b) H is closed in the pro - C topology of G if and only if H is the intersection

of open subgroups of G.

Proof. (a) If G/HG ∈ C, then HG is open; hence so is H. Conversely, if H is
open, then so is every conjugate Hg of H in G; moreover, H ≤f G, and so H
has only finitely many conjugates. Therefore, HG is open. Hence there exists
some N �f G with G/N ∈ C and N ≤ HG. Then there is an epimorphism
G/N −→ G/HG; thus G/HG ∈ C.

(b) Since an open subgroup has finite index, it is necessarily closed; there-
fore the intersection of open subgroups is closed. Conversely, assume H is a
closed subgroup of G, and let x ∈ G − H. Then there exists some N ∈ N C (G)
such that xN ∩ H = ∅. Hence x �∈ HN ; so

H =
⋂

N ∈NC (G)

HN.

Since HN is open, the result follows. �	

Example 3.1.3 Let C be a formation of finite groups, and assume that the
group G is residually C. If H ≤ G, the pro - C topology of G induces on H a
pro - C topology, but this is not necessarily the full pro - C topology of H, as
the following examples show.

(1) Assume that C is the formation of all finite groups, G = F is a free group
of rank 2, and H = F ′ the commutator subgroup of F . It is known that F ′

is a free group of countably infinite rank (cf. Magnus, Karras and Solitar
[1966]). Let I be the topology induced on F ′ by the profinite topology of
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F . It is plain that there are only countably many open subgroups in I,
while the profinite topology of F ′ has uncountably many open subgroups.

(2) Let G = 〈a, b | b2 = 1, bab = a−1〉 be the infinite dihedral group, and
let H = 〈a〉. Then the pronilpotent topology of G induces on H only its
pro -2 topology.

Next we indicate some cases where the induced pro - C topology on a
subgroup coincides with the full pro - C topology of the subgroup.

Lemma 3.1.4

(a) Let C be an extension closed variety of finite groups. Let H be a subgroup
of G, open in the pro - C topology of G. Then the pro - C topology of G
induces on H its full pro - C topology.

(b) Let C be an NE-formation of finite groups. Let H be a normal subgroup
of G, open in the pro - C topology of G. Then the pro - C topology of G
induces on H its full pro - C topology.

Proof. (a) It suffices to show that if N � H and H/N ∈ C, then there exists
some M � G such that G/M ∈ C and M ≤ N . We claim that we may take
M = NG, the core of N in G. Observe that if we put K = HG ∩ N , then
H/K ≤ H/HG × H/N , and hence H/K ∈ C. Choose g1, . . . , gr ∈ G so
that KG =

⋂r
i=1K

gi . Then Kgi � HG and HG/Kgi ∈ C. Now, HG/KG ≤
HG/Kg1 × · · · × HG/Kgr ; and hence HG/KG ∈ C. Thus the extension G/KG

of HG/KG by G/HG belongs to C. Finally, note that NG = KG, so that we
can take M = NG, as asserted.

(b) Let N � H with H/N ∈ C. Choose g1, . . . , gr ∈ G so that NG =⋂r
i=1N

gi . We claim that H/NG ∈ C. Note first that H/Ng1 ∼= H/N ∈ C.
Moreover Ng1/Ng1 ∩ N ∼= Ng1N/N � H/N ; hence Ng1/Ng1 ∩ N ∈ C, since C
is closed under taking normal subgroups. It follows from the exactness of

1 −→ Ng1/Ng1 ∩ N −→ H/Ng1 ∩ N −→ H/Ng1 −→ 1

that H/Ng1 ∩ N ∈ C, because C is also extension closed. The claim is now
clear by induction. Next, observe that G/H ∈ C, since H is open in the
topology of G (see Lemma 3.1.2). Hence from the exactness of

1 −→ H/NG −→ G/NG −→ G/H −→ 1

we deduce that G/NG ∈ C. Consequently NG, and thus N , are open in the
pro - C topology of G. �	

Lemma 3.1.5 Let C be a variety of finite groups. Let G = K � H be a
semidirect product of the group K by the group H. Then

(a) The pro - C topology of G induces on H its full pro - C topology.
(b) Assume, in addition, that G is residually C. Then H is closed in the pro - C

topology of G.
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Proof. (a) Since C is subgroup closed, the pro - C topology of H is finer than
the topology induced from G. Conversely, let N �f H with H/N ∈ C. Then
KN�f G and G/KN ∈ C, since G/KN ∼= H/N . Next note that KN ∩H = N .

(b) Consider the continuous maps

G
ι−→−→ϕ G,

where ι is the identity, ϕ(kh) = h (k ∈ K, h ∈ H), and G is assumed to have
the pro - C topology. Then H = {g ∈ G | ι(g) = ϕ(g)}. Hence H is closed,
since the topology of G is Hausdorff. �	

Corollary 3.1.6 Let C be a variety of finite groups. Let G = L ∗ H be a free
product of groups. Then

(a) The pro - C topology of G induces on H its full pro - C topology.
(b) Assume, in addition, that G is residually C. Then H is closed in the pro - C

topology of G.

Proof. Denote by K the normal closure of L in G. Then G = K � H. Hence
the results follow from the lemma above. �	

3.2 The Pro - C Completion

Let G be a group and let N be a nonempty collection of normal subgroups of
finite index of G filtered from below. Consider the topology on G determined
by N as indicated in Section 3.1. The completion of G with respect to this
topology is

K N (G) = lim←−
N ∈N

G/N.

Then K N (G) is a profinite group, and there exists a natural continuous ho-
momorphism

ι = ιN : G −→ K N (G),

induced by the epimorphisms G −→ G/N (N ∈ N ). Namely, ι(g) =
(gN)N ∈N , for each g ∈ G. Observe that ι(G) is a dense subset of K N (G)
(see Lemma 1.1.7). The map ι is injective if and only if

⋂
N ∈N N = 1.

Suppose that M is a subcollection of N which is also filtered from below.
Then the epimorphisms

K N (G) −→ G/M (M ∈ M)

induce a continuous epimorphism

KN (G) −→ KM(G)

that makes the following diagram commutative
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K N (G) K M(G)

G

ιN ιM

Let C be a formation of finite groups and let N C (G) be the collection of
normal subgroups of G defined in (1). Then the completion K NC (G)(G) is
just the pro - C completion of G as defined in Example 2.1.6. In this case we
usually denote the completion KNC (G)(G) by K C (G) or by GĈ . If C is the
formation of all finite p-groups, for a fixed prime number p, then one often
uses the notation Gp̂ for the corresponding completion. We shall reserve the
notation Ĝ for the profinite completion of G, i.e., the completion GĈ , where
C is the formation of all finite groups.

Lemma 3.2.1 Let C be a formation of finite groups and let G be a group.
Then the pro - C completion GĈ of a group G is characterized as follows. GĈ
is a pro - C group together with a continuous homomorphism

ι : G −→ GĈ

onto a dense subgroup of GĈ , where G is endowed with the pro - C topology,
and the following universal property is satisfied :

GĈ
ϕ̄

G

ι

ϕ H

whenever H is a pro - C group and ϕ : G −→ H a continuous homomorphism,
there exists a continuous homomorphism ϕ̄ : GĈ −→ H such that ϕ̄ι = ϕ.
Moreover, it suffices to check this property for H ∈ C.

Proof. We verify first that the completion GĈ , as defined above, together
with the map ι satisfy the indicated universal property. Let ϕ : G −→ H be
a continuous homomorphism into a pro - C group H. Set U = {U | U �o H}
and let U ∈ U . Define NU = ϕ−1(U). Then there is a composition of natural
continuous homomorphisms

ϕU : GĈ −→ G/NU −→ H/U.

Then the maps ϕU (U ∈ U ) are compatible. Hence they define a continuous
homomorphism

ϕ̄ : GĈ −→ lim←−
U ∈U

H/U = H

such that ϕUV ϕ̄ = ϕV whenever U, V ∈ U and U ≤ V , where
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ϕUV : H/U −→ H/V

is the canonical epimorphism. Then one verifies without difficulty that
ϕ̄ι = ϕ.

The fact that this universal property characterizes the completion follows
a standard argument that we only sketch. Say that K is a pro - C group and

κ : G −→ K

is a continuous homomorphism whose image is dense in K. Assume that the
pair (K, κ) also satisfies the required universal property. Then there exist
continuous homomorphisms ῑ : K −→ GĈ and κ̄ : GĈ −→ K such that
ῑκ = ι and κ̄ι = κ. Since ι(G) and κ(G) are dense in GĈ and K, respectively,
it follows that ῑκ̄ and κ̄ῑ are the identity maps on GĈ and K, respectively.
Therefore ῑ is a continuous isomorphism.

The last statement of the lemma is clear from the construction of ϕ̄ in
the first part of the proof. �	

Proposition 3.2.2 Let C be a formation and assume that G is a residually
C group. Identify G with its image in its pro - C completion GĈ. Let X̄ denote
the closure in GĈ of a subset X of G.

(a) Let
Φ : {N | N ≤o G} −→ {U | U ≤o GĈ }

be the mapping that assigns to each open subgroup H of G its closure H̄
in GĈ. Then Φ is a one-to-one correspondence between the set of all open
subgroups H in the pro - C topology of G and the set of all open subgroups
of GĈ. The inverse of this mapping is

U �−→ U ∩ G;

in particular, U ∩ G = U if U ≤o GĈ.
(b) The map Φ sends normal subgroups to normal subgroups.
(c) The topology of GĈ induces on G its full pro - C topology.
(d) If H, K ∈ {N | N ≤o G} and H ≤ K, then [K : H] = [K̄ : H̄]; moreover,

if in addition H � K, then K/H ∼= K̄/H̄.
(e) Φ is an isomorphism of lattices, i.e., if H, K ∈ {N | N ≤o G}, then

H ∩ K = H̄ ∩ K̄ and 〈H, K〉 = 〈H̄, K̄〉.

Proof. Denote by N , as usual, the collection of all open normal subgroups of
G in its pro - C topology, i.e., the collection of those normal subgroups of G
such that G/N ∈ C.

(a) Let U be an open subgroup of GĈ . Since G is dense in GĈ , it follows
that G ∩ U is dense in U . Hence U ∩ G = U . Conversely, assume that H is
an open subgroup of G (in the pro - C topology of G). We must show that
H = G ∩ H ; plainly, H ≤ G ∩ H . Let g ∈ G ∩ H. Recall that G is embedded
in GĈ via the identification
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g �→ (gN) ∈ GĈ = lim←−
N

G/N.

Now, according to Corollary 1.1.8,

H = lim←−
N ∈N

HN/N.

So g ∈ HN for every N ∈ N . Since HG ∈ N , it follows that g ∈ HHG = H.
Thus H ≥ G ∩ H, as desired.

(b) If H�G, then HN/N�G/N for each N ∈ N ; hence H̄�GĈ . Conversely,
if U �o GĈ then U ∩ G � G; therefore the function Φ maps normal subgroups
to normal subgroups.

(c) This follows from (a).
(d) It suffices to show that if H ∈ {N | N ≤o G}, then [G : H] = [GĈ : H̄].

Say n = [GĈ : H̄]; since G is dense in GĈ , we deduce that GH̄ = GĈ . Let
t1, . . . , tn ∈ G be a left transversal of H̄ in GĈ . Then we have a disjoint union

GĈ = t1H̄ ∪. · · · ∪. tnH̄.

If t ∈ G, it follows from part (a) that tH̄ ∩ G = tH; therefore,

G = (t1H ∪. · · · ∪. tnH) ∩ G = t1H ∪. · · · ∪. tnH;

thus n = [G : H].
Now, if H � K and H, K ∈ {N | N ≤o G}, the natural homomorphism

K −→ K̄/H̄ has kernel K ∩ H̄ = H. From [K̄ : H̄] = [K : H], we infer that
the induced homomorphism K/H −→ K̄/H̄ is an isomorphism.

(e) This follows from (a) and (d). �	

The Completion Functor

Let ϕ : G −→ H be a group homomorphism. We wish to define canonically
a corresponding continuous homomorphism

GĈ −→ HĈ ,

whenever possible. The idea is to define compatible continuous homomor-
phisms G −→ H/N (N ∈ NC (H)), and then use Lemma 3.2.1. We shall do
this in a completely explicit manner.

Consider the collection M = {ϕ−1(N) | N ∈ NC (H)} of normal sub-
groups of G. Clearly M is filtered from below. Assume that

ϕ−1(N) ∈ NC (G) for all N ∈ NC (H). (3)

Note that this is the case if, for example, one of the following conditions is
satisfied
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– C is a variety of finite groups;
– C is a formation of finite groups and ϕ is an epimorphism;
– C is a formation of finite groups closed under taking normal subgroups,

and ϕ(G) � H.

Then M determines a pro - C topology on G. For each N ∈ N C (H) one
has a composition of natural homomorphisms

K M(G) −→ G/ϕ−1(N) −→ ϕ(G)/N ∩ ϕ(G) ↪→ H/N.

These maps, in turn, induce continuous homomorphisms

KM(G)
ϕ1→ lim←−

N ∈N

G/ϕ−1(N)
ϕ2→ lim←−

N ∈N

ϕ(G)/N ∩ ϕ(G)
ϕ3→ lim←−

N ∈N

H/N = HĈ ,

where N = N C (H), ϕ1 is an epimorphism, ϕ2 an isomorphism, and ϕ3 an
inclusion (see Proposition 2.2.4). On the other hand, since M is a subset
of NC (G), there exists an epimorphism GĈ −→ K M(G) as indicated above.
Define

ϕĈ = K C (ϕ) : GĈ −→ HĈ

to be the composition homomorphism

GĈ −→ K M(G) −→ HĈ .

From now on, whenever we write ϕĈ , it is assumed that this map is defined,
i.e., that condition (3) is satisfied.

It is plain that if id : G −→ G is the identity homomorphism, then
idĈ : GĈ −→ GĈ is the identity homomorphism. Furthermore, if ϕ : G −→ H
and ψ : H −→ K are group homomorphisms, then (ψϕ)Ĉ = ψĈ ϕĈ , whenever
the maps (ψϕ)Ĉ , ψĈ and ϕĈ are defined. Therefore we have, in particular,

Lemma 3.2.3 Let C be a variety of finite groups. Then, pro - C completion
(−)Ĉ is a functor from the category of abstract groups to the category of pro - C
groups and continuous homomorphisms.

Let ϕ : G −→ H be a group homomorphism. It follows from the definition
of ϕĈ that the diagram

G
ϕ

ι

H

ι

GĈ ϕĈ
HĈ

commutes. Since ι(H) is dense in HĈ , one deduces that (ιϕ)(G) is dense
in ϕĈ (GĈ ). On the other hand ϕĈ (GĈ ) is closed by the compactness of GĈ .
Therefore, ϕĈ (GĈ ) is the closure of (ιϕ)(G) in HĈ . We record this in the
following lemma.
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Lemma 3.2.4 Let C be a formation of finite groups. Let ϕ : G −→ H be a
homomorphism of groups and assume that ϕĈ : GĈ −→ HĈ is defined. Then

ϕĈ (GĈ ) = (ιϕ)(G),

where (ιϕ)(G) denotes the closure of (ιϕ)(G) in HĈ.

Proposition 3.2.5 Let C be a formation of finite groups closed under taking
normal subgroups. Then the functor (−)Ĉ is right exact, that is, if

1 −→ K
ϕ−→ G

ψ−→ H −→ 1

is an exact sequence of groups, then

KĈ
ϕĈ−→ GĈ

ψĈ−→ HĈ −→ 1

is an exact sequence of pro - C groups.

Proof. Let N = N C (G). Then we get in a natural way a corresponding exact
sequence of inverse systems (indexed by N )

{K/ϕ−1(N) | N ∈ N } ϕ̃−→ {G/N | N ∈ N } ψ̃−→ {H/ψ(N) | N ∈ N } −→ 1.

Observe that

lim←−
N ∈N

G/N = GĈ , lim←−
N ∈N

H/ψ(N) = HĈ , and lim←− ψ̃ = ψĈ .

On the other hand, ϕĈ is the composition of the epimorphism

KĈ −→ lim←−
N ∈N

K/ϕ−1(N)

and lim←− ϕ̃. Our result follows now from the exactness of the functor lim
←−

(see
Proposition 2.2.4). �	

A necessary and sufficient condition for the completion functor (−)Ĉ to
preserve an injection ι : K −→ G is stated in the next lemma.

Lemma 3.2.6 Let C be a variety (respectively, a formation closed under tak-
ing normal subgroups) of finite groups. Assume that K ≤ G (respectively,
K � G), and let ι : K −→ G denote the inclusion map. Then

ιĈ : KĈ −→ GĈ

is injective if and only if the pro - C topology of G induces on K its full pro - C
topology.
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Proof. Let N �f G be such that G/N ∈ C. Then K/K ∩ N ∈ C. Therefore,
there exists a natural epimorphism KĈ −→ K/K ∩ N . The map ιĈ is the
composition

KĈ −→ lim←−
N ∈N C (G)

K/K ∩ N −→ lim←−
N ∈N C (G)

G/N = GĈ .

The map on the right is always an injection. Hence ιĈ is an injection if and
only if the epimorphism

ρ : KĈ −→ lim←−
N ∈N C (G)

K/K ∩ N

is injective, i.e., an isomorphism. If the pro - C topology of G induces on K
its full pro - C topology, then the collection of normal subgroups

{K ∩ N | N ∈ NC (G)}

is cofinal in NC (K); hence ρ is an isomorphism (see Lemma 1.1.9). Conversely,
if ρ is an isomorphism, then {K ∩ N | N ∈ N C (G)} is a fundamental system
of neighborhoods of 1 in K (see Lemma 2.1.1); in other words, the pro - C
topology of G induces on K its full pro - C topology. �	

In the next result, we indicate how possibly different groups could have
the same completions.

Theorem 3.2.7 Let C be a formation of finite groups. Let G1, G2 be groups.
Denote by Ui the collection of all normal subgroups U of Gi with Gi/U ∈ C
(i = 1, 2). Assume that

(a) For each natural number n, there exist only finitely many U ∈ Ui such
that [Gi : U ] ≤ n; and

(b) {G1/U | U ∈ U1} = {G2/V | V ∈ U2}.

Then
lim←−

U ∈U1

G1/U ∼= lim←−
V ∈U2

G2/V.

Proof. For each n ∈ N, let

Un =
⋂

{U | U ∈ U1, [G1 : U ] ≤ n} and

Vn =
⋂

{U | U ∈ U2, [G2 : U ] ≤ n}.

Then Un ∈ U1 and Vn ∈ U2. So there exists some K ∈ U1 with G1/K ∼=
G2/Vn. It follows from (b) that K is the intersection of groups U ∈ U1 with
[G : U ] ≤ n; therefore K ≥ Un. Hence, |G1/Un| ≥ |G2/Vn|. By symme-
try |G1/Un| ≤ |G2/Vn|. Thus G1/Un

∼= G2/Vn. Let Xn be the set of all
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isomorphisms from G1/Un to G2/Vn. Observe that if σn+1 ∈ Xn+1, then
σ(Un/Un+1) = Vn/Vn+1; hence σn+1 induces an isomorphism

σn : G1/Un −→ G2/Vn.

Denote by
ϕn+1,n : Xn+1 −→ Xn

the map defined by σn+1 �→ σn. Then {Xn, ϕn+1,n} is an inverse system of
finite nonempty sets. Hence there exists some (σn) ∈ lim←− Xn (see Proposi-
tion 1.1.4). On the other hand,

{G1/Un} ∞
n=1 and {G2/Vn} ∞

n=1

are in a natural way inverse systems of groups; furthermore, {σn} ∞
n=1 is an

isomorphism of these systems. Finally, it follows from Lemma 1.1.9 that

lim←−
U ∈U1

G1/U ∼= lim←−
n

G1/Un
∼= lim←−

n

G2/Vn
∼= lim←−

V ∈U2

G2/V

since {G1/Un} ∞
n=1 and {G2/Vn} ∞

n=1 are cofinal subsystems of {G1/U | U ∈
U1} and {G2/V | V ∈ U2}, respectively. �	

Corollary 3.2.8 Let G1, G2 be finitely generated abstract groups with the
same finite quotients, then Ĝ1

∼= Ĝ2.

Using a slight variation of the argument in Theorem 3.2.7, we obtain

Theorem 3.2.9 Let G1 be a finitely generated profinite group and let G2 be
any profinite group. Assume that G1 and G2 have the same finite quotients,
i.e., {G1/U | U �o G1} = {G2/V | V �o G2}. Then G1

∼= G2.

3.3 Free Pro - C Groups

Unless otherwise specified, throughout this section C denotes a formation of
finite groups, i.e., we assume that C is a class of finite groups closed under
taking quotient groups and finite subdirect products; moreover, we assume
that C contains a group of order at least two.

A topological space X with a distinguished point ∗ is called a pointed
space. We shall denote such a space by (X, ∗). Sometimes it is convenient
to think of a profinite group as a pointed space with distinguished point 1.
A mapping of pointed spaces

ϕ : (X, ∗) −→ (X ′, ∗′)

is simply a continuous mapping from X into X ′ such that ϕ(∗) = ∗′.
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Let X be a profinite space, F a pro - C group and ι : X −→ F a continuous
mapping such that F = 〈ι(X)〉. We say that (F, ι) is a free pro - C group on
the profinite space X or, simply, F is a free pro - C group on X, if the following
universal property is satisfied:

F
ϕ̄

G

X

ι
ϕ

whenever ϕ : X −→ G is a continuous mapping into a pro - C group G such
that ϕ(X) generates G, then there exists a (necessarily unique) continuous
homomorphism ϕ̄ : F −→ G such that the above diagram commutes: ϕ̄ι = ϕ.

One defines a free pro - C group on a pointed profinite space (X, ∗) in an
analogous manner: one simply assumes in the description of the universal
property that the maps involved are maps of pointed spaces.

Note that if the profinite space X is empty, then a free pro - C group
on X must be the trivial group. If X contains exactly one element and C
does not contain nontrivial cyclic groups, then the free pro - C group on the
profinite space X is the trivial group. Similarly, if a profinite pointed space
(X, ∗) contains exactly one point, then free pro - C group on the pointed space
(X, ∗) is the trivial group. If (X, ∗) has exactly two points and C does not
contain nontrivial cyclic groups, then a free pro - C group on the pointed space
(X, ∗) is the trivial group.

To avoid trivial counterexamples to some of the statements in this chapter,
from now on we shall tacitly assume that if C does not contain nontrivial
cyclic groups, then we only consider free pro - C groups on profinite spaces
X that are either empty or of cardinality at least 2 (respectively, we only
consider free pro - C groups on profinite pointed spaces (X, ∗) such that either
|X| = 1 or |X| ≥ 3).

Observe that one needs to test the universal property in the definition of
free pro - C groups only for finite groups G in C, for then it holds automatically
for any pro - C group G, since G is an inverse limit of groups in C.

From the universal definition, one deduces in a standard manner that if
a free pro - C group exists, then it is unique. We shall denote the free pro -
C group on a profinite space X by FC (X), and the free pro - C group on a
pointed profinite space (X, ∗) by FC (X, ∗).

Lemma 3.3.1 Let (F, ι) be a free pro - C group on the profinite space X
(respectively, a free pro - C group on the pointed profinite space (X, ∗)), then
the mapping ι is an injection and 1 �∈ ι(X) (respectively, ι is an injection).

Proof. We give a proof for the nonpointed case. If X = {x} has cardinality 1,
then, by our standing assumptions, there exists a nontrivial finite cyclic group
〈a〉 ∈ C. Let ϕ : X −→ 〈a〉 be given by ϕ(x) = a. Let ϕ̄ : F −→ 〈a〉 be the
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continuous homomorphism such that ϕ(ι(x)) = a. It follows that ι(x) �= 1.
Assume now that |X| ≥ 2. Consider the set R of all open equivalence relations
R on X. According to Theorem 1.1.12, the clopen subsets of X form a base for
the topology of X. Therefore, if x �= y are points of X, there exists R ∈ R such
that xR �= yR. Let G ∈ C be generated by two distinct nontrivial elements,
say, a and b (such a group exists: indeed, let H ∈ C be a nontrivial group;
let S be a quotient of H such that S is a simple group; if S is nonabelian,
then it is a two generator group, by the classification of finite simple groups,
and then put G = S; while if S is cyclic, take G = S × S). Consider the
continuous mapping

ψ : X
ψR−→ X/R

ρ−→ G

where ψR is the canonical quotient map, and ρ any map such that ρ(xR) = a
and ρ(yR) = b. Since ψ is continuous, there exists a corresponding continuous
homomorphism ψ̄ : F −→ G such that ψ̄ι = ψ. It follows that 1 �= ι(x) �=
ι(y) �= 1, and so ι is one-to-one and 1 �∈ ι(X). �	

Next we show the existence of free pro - C groups.

Proposition 3.3.2 For every profinite space X (respectively, pointed profi-
nite space (X, ∗)), there exists a unique free pro - C group FC (X) on X
(respectively, there exists a unique free pro - C group FC (X, ∗) on the pointed
profinite space (X, ∗)).

Proof. We leave the uniqueness to the reader. For the construction of FC (X),
let D be the abstract free group on the set X. Consider the following collection
of subgroups of D

N = {N � D | D/N ∈ C; X ∩ dN open in X, ∀d ∈ D}.

Observe that N is nonempty and filtered from below. Define FC (X) to be
the completion of D with respect to N

FC (X) = lim←−
N ∈N

D/N.

Let ι : X −→ FC (X) be the restriction to X of the natural homomor-
phism D −→ FC (X). Remark that the composition of ι with each projection
FC (X) −→ D/N , N ∈ N , is continuous, and hence, so is ι. Next we show that
(FC (X), ι) is a free pro - C group on X. Indeed, let G ∈ C and let ϕ : X −→ G
be a continuous map such that G = 〈ϕ(X)〉. Since D is a free abstract group
on X, there exists a homomorphism (of abstract groups) ϕ1 : D −→ G that
extends ϕ. In fact ϕ1 is an epimorphism. Put K = Ker(ϕ1). Then K ∈ N .
Therefore, we have a continuous homomorphism

ϕ̄ : FC (X) −→ D/K −→ G.

Then ϕ̄ι = ϕ.
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The construction of FC (X, ∗) is as follows: let D̃ be the abstract free group
on the set X − { ∗ }, and let

Ñ = {N � D̃ | D̃/N ∈ C; (X − { ∗ }) ∩ dN open in X − {∗}, ∀d ∈ D̃}.

Put
FC (X, ∗) = lim←−

N ∈Ñ

D̃/N.

Then one checks as above that (FC (X, ∗), ι) satisfies the universal property
of a free pro - C group on the pointed profinite space (X, ∗). �	

We shall refer to the profinite space X (respectively, (X, ∗)) as a topological
basis of FC (X) (respectively, of FC (X, ∗)).

If X is a profinite space, one can associate with it a pointed profinite space
(X ∪. {∗}, ∗), by simply adding to X a new point ∗ and endowing X ∪. {∗} with
the coproduct topology, i.e., ∗ is an isolated point in X ∪. {∗} and a subset
Y of X ∪. {∗} is open if and only if Y ∩ X is open in X. Then one easily sees
that FC (X) = FC (X ∪. { ∗ }, ∗). Thus, we can think of a free pro - C group on
a profinite space as particular instance of a free pro - C group on a pointed
profinite space.

Exercise 3.3.3 Let (X, ∗) be a pointed topological space, not necessarily
profinite.

(a) Mimic the definition above to establish the concept of a free pro - C group
(FC (X, ∗), ι) on the pointed space (X, ∗). As a special case of the above
definition, explain the concept of free pro - C group (FC (X), ι) on a topo-
logical space X.

(b) Define
(X̌, ∗) = lim←−

R∈R

(X, ∗)/R,

where R is the collection of all closed equivalence relations R of X such
that the quotient pointed space (X, ∗)/R is finite and Hausdorff. Let
τ : X −→ X̌ be the natural mapping. Show that there exists a unique
continuous mapping of pointed spaces ι̃ : (X̌, ∗) −→ FC (X, ∗) such that
ι = ι̃τ .

(c) Prove that | R | = ρ(X̌), the cardinality of the collection of all clopen
subsets of X̌.

(d) Show that FC (X, ∗) is a free pro - C group on a pointed profinite space;
specifically, prove that (FC (X, ∗), ι̃) is the free pro - C group on the pointed
profinite space (X̌, ∗).

Free Pro - C Group on a Set Converging to 1

If X is a set, we say that a map μ : X −→ G from X to a profinite group G
converges to 1 if the subset μ(X) of G converges to 1, that is, if every open
subgroup U of G contains all but a finite number of the elements of μ(X).
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Assume now X to be a set, which we wish to view as a topological space
with the discrete topology. Let X̄ = X ∪. { ∗ } denote its one-point compact-
ification (recall that, by definition, a subset T is open in X̄ if either it is
contained in X or { ∗ } ∈ T and X − T is a finite set; see, e.g., Bourbaki
[1989], I,9,8). Then X ∪. { ∗ } is a profinite space. Observe that if X is a set
and X ∪. {∗} is its one-point compactification, then the map

X ↪→ X ∪. { ∗ } ι−→ FC (X ∪. {∗}, ∗)

converges to 1. We shall still denote this map by ι.
To avoid trivial cases, from now on we shall assume that if C does not

contain nontrivial cyclic groups, then |X| �= 2.
Then (see Lemma 3.3.1) ι is a topological embedding, and we identify X

with its image in FC (X ∪. { ∗ }, ∗). The free pro - C group FC (X ∪. {∗}, ∗) on this
pointed space (X ∪. { ∗ }, ∗) plays a special role because, as we shall see later
(Proposition 3.5.12), every free pro - C group on a (pointed) topological space
is in fact a free pro - C group FC (X ∪. { ∗ }, ∗) on the one-point compactification
space (X ∪. {∗}, ∗) of some set X.

Let X be a set. By abuse of notation, we denote the free pro - C group
FC (X ∪. {∗}, ∗) on the one-point compactification space (X ∪. {∗}, ∗) of X, as
FC (X) rather than FC (X ∪. { ∗ }, ∗). To avoid confusion, if X is a set, we refer to
FC (X) in that case as the free pro - C group on the set X converging to 1.∗ If,
on the other hand, X (respectively, (X, ∗)) is a profinite space (respectively,
a pointed profinite space), then FC (X) (respectively, FC (X, ∗)) has a unique
possible meaning, and we refer to it as the free pro - C group on X or on
the space X (respectively, the free pro - C group on (X, ∗) or on the pointed
space (X, ∗)). If X is a finite subset of a profinite group, then X converges
to 1; so in this case the meaning of FC (X) is unambiguous, and we refer to
it as the free pro - C group on X.

The following lemma gives a characterization of the free group on a set
converging to 1 in terms of a universal property. We leave its easy proof to
the reader (it follows immediately from the definition of free pro - C group on
a pointed space in the special case where the pointed space is the one-point
compactification of a discrete space).

Lemma 3.3.4 The following properties characterize the free pro - C group
FC (X) on the set X converging to 1:

(a) FC (X) contains the set X as a subset converging to 1, and
(b) Whenever μ : X −→ G is a map converging to 1 of X into a pro - C

group G and μ(X) is a set of generators of G, then there exists a unique
homomorphism μ̄ : FC (X) −→ G that extends μ.

∗ Some authors refer to what we call the free pro - C group on the set X converging
to 1 as a restricted free pro - C group on the set X, and they denote it by F r

C (X).
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We shall refer to the subset X of FC (X) as a basis converging to 1 or simply
as a basis of the free pro - C group FC (X). As we have indicated before, we
shall prove later (see Proposition 3.5.12) that every free pro - C group on a
topological space (or a pointed topological space) is in fact also a free pro -
C group on a set converging to 1. So from now on in this book the word
“basis” for a free pro - C group will be used only in the sense of being a
basis converging to 1 of a free pro - C group. Any other type of basis will be
qualified, for example “topological basis”.

Lemma 3.3.5

(a) Let F = FC (X) be a free pro - C group on a set X converging to 1. If F is
also free pro - C on a set Y converging to 1, then the bases X and Y have
the same cardinality.

(b) Let F be a free pro - C group on a finite set X = {x1, . . . , xn}. Then, any
set of generators {y1, . . . , yn} of F with n elements is a basis of F .

Proof. (a) Say X and Y are two bases of F . If both X and Y are infinite, the
result follows from Proposition 2.6.2. Say that X = {x1, . . . , xn} is finite and
assume that |Y | > n . We show that this is not possible. Indeed, choose a
subset X ′ = {x′

1, . . . , x
′
n} of Y , and define a map μ : Y −→ F by μ(x′

i) = xi

(i = 1, . . . , n) and μ(y) = 1 if y ∈ Y − X ′. Since μ converges to 1, it extends
to a continuous epimorphism μ̄ : F −→ F ; then, by Proposition 2.5.2, μ̄ is
an isomorphism, a contradiction.

(b) Consider the continuous epimorphism ψ : F −→ F determined by
ψ(xi) = yi (i = 1, . . . , n). Then ψ is an isomorphism by Proposition 2.5.2. �	

If F = FC (X) is a free pro - C group on the set X converging to 1, the rank
of F is defined to be the cardinality of X. It is denoted by rank(F ). Given a
cardinal number m, we denote by FC (m) or F (m) a free pro - C group (on a
set converging to 1) of rank m.

We state the next result for easy reference. It follows immediately from
the definition of rank given above and the construction of free pro - C groups
in the proof of Proposition 3.3.2.

Proposition 3.3.6 Let Φ be an abstract free group on a finite basis X. Then
the pro - C completion ΦĈ of Φ is a free pro - C group on X. In particular,
rank(Φ) = rank(ΦĈ ).

Exercise 3.3.7 Show that if F = FC (X, ∗) is the free pro - C group on the
pointed profinite space (X, ∗) and F is finitely generated, then |X| is finite,
and F is the free pro - C group of rank |X| − 1.

Example 3.3.8

(a) The free profinite group of rank 1 is Ẑ. Observe that Ẑ is the free pro-
solvable (or proabelian, pronilpotent, etc.) group of rank 1, as well.

(b) If p is a prime number, then Zp is the free pro-p group of rank 1.
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(c) Let X be any set. Then the free proabelian group on the set X converg-
ing to 1 is the direct product

∏
X Ẑ of copies of Ẑ indexed by X. The

canonical map ι : X −→
∏

X Ẑ sends x ∈ X to the tuple (ay) ∈
∏

X Ẑ
such that ay = 0 for y �= x and ax = 1. One sees this easily. Indeed,
if ϕ : X −→ A is a map converging to 1 onto a finite abelian group A,
let Y be a finite subset of X such that ϕ(x) = 0 for all x ∈ X − Y .
Then

∏
X Ẑ = (

⊕
Y Ẑ) ⊕ (

∏
X−Y Ẑ). Define the corresponding continu-

ous homomorphism ϕ̄ :
∏

X Ẑ −→ A to be 0 on
∏

X−Y Ẑ, and the natural
extension homomorphism on the finite indexed direct sum

⊕
Y Ẑ.

(d) Similarly, let C be the class of all finite abelian groups of exponent p,
where p is a prime. Then the free pro - C group on the set X converging
to 1 is the direct product

∏
X Z/pZ of copies of Z/pZ indexed by X.

(e) (cf. Douady, Harbater [1964, 1995]; see also Ribes [1970], p. 70; van den
Dries and Ribenboim [1986]) Let F be an algebraically closed field, and
denote by F (t) the algebraic closure of the field F (t), where t is an inde-
terminate. Then the Galois group GF (t)/F (t) is a free profinite group on
a set converging to 1 of rank |F |.

Proposition 3.3.9 Let (X, ∗) be a pointed profinite space.

(a) Assume that
(X, ∗) = lim←−

i∈I

(Xi, ∗),

where {(Xi, ∗), ψij } is an inverse system of pointed profinite spaces. Then

F = FC (X, ∗) = lim←−
i∈I

FC (Xi, ∗).

(b)

F = FC (X, ∗) = lim←−
i∈I

FC (Yi),

where each Yi is a finite space, and (X, ∗) = lim←−
i∈I

(Yi ∪. {∗}, ∗).

Proof. (a) The inverse system {(Xi, ∗), ψij } determines an inverse system of
free groups {FC (Xi, ∗), ψ̄ij }. For each i ∈ I, denote by ψi : (X, ∗) −→ (Xi, ∗)
the canonical projection. Correspondingly, one has continuous homomor-
phisms of groups ψ̄i : FC (X, ∗) −→ FC (Xi, ∗), which are compatible with
the mappings ψ̄ij . These homomorphisms induce then a continuous homo-
morphism of groups

ψ : FC (X, ∗) −→ G = lim←−
i∈I

FC (Xi, ∗).

Denote by ι′ the restriction of ψ to X; note that ι′ is a mapping of pointed
spaces. We claim that ι′(X) generates G as a topological group. To see this
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consider an epimorphism ρ : G −→ H where H ∈ C. It suffices to show
that ρι′(X) generates H. By Lemma 1.1.16, ρ factors through F (Xi0), for
some i0 ∈ I, i.e., there exists an epimorphism ρ′ : F (Xi0) −→ H such that
ρ = ψ̄i0ρ

′. Put Y = ρ′(Xi0). Since H is finite, i0 can be chosen so that
Y = ρ′ψ̄ii0(Xi0), whenever i ∈ I, i ≥ i0. Since

(X, ∗) = lim←−
i≥i0

(Xi, ∗),

we deduce that Y = ρι′(X), as needed.
To prove that

( lim←−
i∈I

FC (Xi, ∗), ι′)

is the free pro - C group on the pointed space (X, ∗), it remains to show
that this pair satisfies the required universal property. Let μ : X −→ H be
a continuous mapping with μ(∗) = 1, where H ∈ C and μ(X) generates H.
Since H is finite, there exists some j ∈ I and a continuous mapping of pointed
spaces μj : (Xj , ∗) −→ (H, 1) such that μjψj = μ (see Lemma 1.1.16). Now,
μj extends to a homomorphism μ̄j : FC (Xj , ∗) −→ H. Define

μ̄ : lim←−
i∈I

FC (Xi, ∗) −→ H

by μ̄ = μ̄jψ̄j . Then clearly μ̄ι′ = μ.
(b) By definition we can express (X, ∗) as an inverse limit of finite pointed

spaces
(X, ∗) = lim←−

i∈I

(Xi, ∗).

Put Yi = Xi − {∗ }. Clearly FC (Xi, ∗) = FC (Yi). The result follows then from
part (a). �	

Let X be a set and let {Xi | i ∈ I} be the collection of all finite subsets
of X. Make I into a poset by defining i � j if Xi ⊆ Xj . If i � j define
ϕji : FC (Xj) −→ FC (Xi) as the epimorphism that carries x to x, if x ∈ Xi,
and x to 1, if x ∈ Xj − Xi (x ∈ X). Observe that lim←− (Xi ∪. {1}, 1) is the
one-point compactification of X. Then from Proposition 3.3.9 we deduce

Corollary 3.3.10 Let X be a set and let {Xi | i ∈ I} be the collection of all
finite subsets Xi of X. Then

(a) For each i ∈ I, FC (Xi) is a closed subgroup of the free pro - C group FC (X)
on the set X converging to 1;

(b)

FC (X) = lim←−
i∈I

FC (Xi),

where the canonical homomorphism
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ϕi : FC (X) −→ FC (Xi)

is the extension of the mapping X −→ FC (Xi) that sends x to x for
x ∈ Xi, and x to 1 for x ∈ X − Xi (x ∈ X).

This corollary can be improved in such a way that for a given open sub-
group H of FC (X), the mappings ϕi preserve the index of H. Before we make
this precise, we need the following

Lemma 3.3.11 Let Y ⊆ X be sets and let FC (X) and FC (Y ) be the corre-
sponding free pro - C groups on the sets X and Y converging to 1, respectively.
Consider the epimorphism

ϕ : FC (X) −→ FC (Y )

defined by

ϕ(x) =
{

x if x ∈ Y,
1 if x �∈ Y.

Then the following is a split exact sequence

1 −→ N −→ FC (X)
ϕ−→ FC (Y ) −→ 1,

where N is the smallest closed normal subgroup generated by X − Y . (This
means that there is a continuous section of ϕ which is a homomorphism, i.e.,
that FC (X) is a semidirect product of N by a closed subgroup isomorphic to
FC (Y ).)

Proof. Define a continuous homomorphism σ : FC (Y ) −→ FC (X) by σ(y) =
y, for all y ∈ Y . Then σ is a section of ϕ. Let K = Ker(ϕ). After identifying
FC (Y ) with σ(FC (Y )), we have F = NFC (Y ) = KFC (Y ). Since

N ∩ FC (Y ) = K ∩ FC (Y ) = 1 and N ≤ K,

it follows that N = K. �	

Proposition 3.3.12 Let FC (X) be a free pro - C group on a set X converging
to 1 and H ≤o FC (X). Then there is a collection {Xj | j ∈ J } of finite
subsets of X such that

(a) {FC (Xj), ϕjk, J } is an inverse system of free pro - C groups, where if Xj ⊇
Xk, the epimorphism ϕjk : FC (Xj) −→ FC (Xk) is defined by

ϕjk(x) =
{

x if x ∈ Xk,
1 if x ∈ Xj − Xk;

(b)

FC (X) = lim←−
j∈J

FC (Xj); and
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(c)

[FC (Xj) : ϕj(H)] = [FC (X) : H],

for every j ∈ J, where ϕj : FC (X) −→ FC (Xj) is the canonical projection.

Proof. Put F = FC (X). Let HF =
⋂

f ∈F f −1Hf (the core of H in F ). Then
HF is an open normal subgroup of F contained in H. Let {Xi | i ∈ I} be the
collection of all finite subsets of X. Make I into a directed poset by defining
i � j if Xi ⊆ Xj (i, j ∈ I). Set

J = {i ∈ I | X − Xi ⊆ HF }.

Clearly J is a cofinal subset of the poset I since X − (X ∩ HF ) is a fi-
nite set. Statement (a) is clear. Part (b) follows from Corollary 3.3.10 and
Lemma 1.1.9. To prove (c), just observe that according to Lemma 3.3.11,
Ker(ϕj) ≤ HF ≤ H. �	

Proposition 3.3.13 Let F = FC (X, ∗) be the free pro - C group on a pointed
profinite space (X, ∗). Assume that every abstract free group of finite rank
is residually C. Then the abstract subgroup of F generated by X is a free
abstract group on X − { ∗ }.

Proof. Let D = D(X − { ∗ }) be the abstract free group on X − {∗}, and
denote by ψ : D −→ F the natural homomorphism induced by the canonical
injection ι : (X, ∗) −→ F . We must show that ψ is a monomorphism. Let
w = xε1

1 · · · xεr
r be a reduced word on X − { ∗ }, i.e., xi ∈ X − {∗}, εi = ±1, εi �=

−εi+1 if xi = xi+1 (i = 1, . . . , r). Choose an open equivalence relation R of
X such that if x, y ∈ {x1, . . . , xr } and x �= y, then xR �= yR in X/R. Then
the corresponding element w′ = xε1

1 R · · · xεr
r R of the abstract free group

D = D(X/R − {∗R}) is also in reduced form. Hence if w �= 1, then w′ �= 1.
So, from the commutativity of the diagram

D(X − { ∗ })
ψ

FC (X, ∗)

D(X/R − {∗R})
ψR

FC (X/R, ∗R)

we deduce that we may assume that X is a finite space. Now, from the
construction of F (see the proof of Proposition 3.3.2), we get that

Ker(ψ) =
⋂

{N � D | D/N ∈ C },

since X is finite. Therefore Ker(ψ) = 1, for D is residually C. �	

Corollary 3.3.14 Let F = FC (X) be a free pro - C group on a set X converg-
ing to 1. Assume that every abstract free group of finite rank is residually C.
Then the abstract subgroup of F generated by X is a free abstract group on X.
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We remark that the hypotheses in Proposition 3.3.13 and Corollary 3.3.14
are valid for many classes C of interest, as we show in the following proposi-
tion.

Proposition 3.3.15 Let Φ be an abstract free group and let S be a finite
simple group such that the rank of Φ is at least d(S).† Assume that C is a
formation that contains all S-groups. Then Φ is residually C. In particular,
if C is a nontrivial NE-formation of finite groups, then every abstract free
group is residually C.

Proof. The last statement is a consequence of the first part of the lemma,
since a nontrivial NE-formation of finite groups contains all S-groups for
some finite simple group S. To prove the first part, it suffices to show that Φ
is residually a finite S-group. We may assume that Φ has finite rank.
Case 1: S = Cp for some prime p.
We use the well-known fact that the matrices

[
1 0
p 1

]
and

[
1 p
0 1

]

generate an abstract free subgroup of SL2(Z) of rank 2. Let Γ (pi) be the
kernel of the natural map SL2(Z) −→ SL2(Z/piZ). It follows that Φ can
be embedded as a subgroup of Γ (p). Hence, it suffices to prove that Γ (p)
is residually a finite p-group. Remark that the elements of Γ (pi) are those
elements in SL2(Z) the form I + piA, where I is the identity matrix and A
is a 2 × 2 matrix over Z. Clearly

⋂∞
i=1 Γ (pi) = {I} and each quotient group

SL2(Z)/Γ (pi) is finite. Next, observe that for I + piA ∈ Γ (pi), one has

(I + piA)p =
p∑

j=0

(
p

j

)
(pkA)j ≡ I mod Γ (pi+1).

One deduces that Γ (p)/Γ (pk) is a finite p-group for all k = 2, 3, . . . .

Case 2: S is a nonabelian simple group.
Set M0 = Φ, and in general, Mn+1 = MS(Mn), the intersection of all nor-
mal subgroups N of Mn with Mn/N ∼= S. Clearly each Mn is a proper
characteristic subgroup of Φ of rank at least d(S), and Mn/Mn+1 is a fi-
nite S-group. By a result of Levi (cf. Lyndon and Schupp [1977], Proposi-
tion I.3.3),

⋂∞
n=0 Mn = 1. Thus Φ is residually a finite S-group. �	

Theorem 3.3.16 Let G be a pro - C group. Then there exists a free pro - C
group F on a set converging to 1 and a continuous epimorphism F −→ G.
Furthermore, if G is generated by a finite set with n elements, then F can
be chosen to have rank n; while if G is not finitely generated, then F can be
chosen to have rank equal to ω0(G), the smallest cardinal of a fundamental
system of neighborhoods of 1 in G.

† By the classification theorem of finite simple groups d(S) = 2 for a nonabelian
finite simple group S.
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Proof. By Proposition 2.4.4, G admits a set of generators X converging to 1.
Consider the free pro - C group F = FC (X̃) on the set X̃ converging to 1,
where X̃ is a set with the same cardinality as X. Say that ϕ : X̃ −→ X is a
bijection. Then the composite

X̃
ϕ−→ X ↪→ G

is a mapping converging to 1, and so it extends to an epimorphism

ϕ̄ : F (X̃) −→ G.

If X is infinite, then |X| = ω0(G) by Proposition 2.6.1, and therefore,
rank(F (X̃)) = ω0(G). �	

3.4 Maximal Pro - C Quotient Groups

In this section we establish a relationship between free groups over the same
space when the formation C changes. First we define a subgroup of a profinite
group associated with the class C.

Let C be a formation of finite groups. For a profinite group G, define

RC (G) =
⋂

{N | N �o G, G/N ∈ C }.

Remark that RC (G) is a characteristic subgroup of G. If p is a fixed
prime number and C consists of all finite p-groups, we write Rp(G) rather
than RC (G). The subgroups RC (G) play a role similar to verbal subgroups in
the theory of abstract groups.

Lemma 3.4.1 Let G and H be profinite groups. Let C be a formation of finite
groups.

(a) G/RC (G) is the largest pro - C quotient group of G, i.e., if K �c G and
G/K is a pro - C group, then K ≥ RC (G).

(b) If ϕ : G −→ H is a continuous epimorphism, then ϕ(RC (G)) = RC (H).
(c) Assume that C is, in addition, closed under taking subgroups, i.e., C a vari-

ety of finite groups. Then, if ϕ : G −→ H is a continuous homomorphism,
then ϕ(RC (G)) ≤ RC (H).

(d) Suppose that the formation C is closed under taking normal subgroups and
extensions (i.e., C is an NE-formation). Then, if RC (G) ≤ K �c G, one
has RC (G) = RC (K).

(e) Suppose that C is an NE-formation of finite groups. If L �c RC (G) and
RC (G)/L is a pro - C group, then L = RC (G).

Proof. Part (a) is plain.
(b) Since C is a formation, the collection of all closed normal subgroups

N of G such that G/N is a pro - C group is filtered from below. Hence part
(b) follows from Proposition 2.1.4(b).
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(c) Put B = ϕ(G). Note that

B/B ∩ RC (H) ∼= BRC (H)/RC (H) ↪→ H/RC (H).

Since C is a variety, we have that B/B ∩ RC (H) is a pro - C group. Hence,
RC (B) ≤ B ∩ RC (H). By part (b), RC (G) = RC (B). Thus, RC (G) ≤ RC (H).

(d) Put R = RC (G). Observe that K/R � G/R. Hence K/R is a pro - C
group. Therefore, RC (K) ≤ R. Since RC (K) is a characteristic subgroup of K
and K is normal in G, it follows that RC (K) � G. Since C is extension closed,
G/RC (K) is a pro - C group. Thus RC (K) = R.

(e) This is clear from part (d) since RC (RC (G)) = RC (G). �	

Proposition 3.4.2 Let C ′ and C be formations of finite groups with C ′ ⊆ C.
Let F = FC (X, ∗) be a free pro - C group on the pointed space (X, ∗). Then

FC (X, ∗)/RC ′ (FC (X, ∗)) ∼= FC ′ (X, ∗).

Proof. Let ι : (X, ∗) −→ FC (X, ∗) be the canonical embedding and

μ : FC (X, ∗) −→ FC (X, ∗)/RC ′ (FC (X, ∗))

the natural epimorphism. Then one easily checks (using Lemma 3.4.1) that
the pair

(FC (X, ∗)/RC ′ (FC (X, ∗)), μι),

where
μι : (X, ∗) −→ FC (X, ∗)/RC ′ (FC (X, ∗)),

satisfies the universal property of a free pro - C ′ group on the pointed space
(X, ∗). �	

We say that a variety of finite groups C is closed under ‘extensions with
abelian kernel’ if whenever

1 −→ A −→ G −→ H −→ 1

is an exact sequence of finite groups such that A, H ∈ C and A is abelian,
then G ∈ C.

Lemma 3.4.3 Let C be a variety of finite groups and let Ce be the smallest
extension closed variety of finite groups containing C. For a given pointed
profinite space (X, ∗), denote by KX the kernel of the natural epimorphism

ϕX : FCe(X, ∗) −→ FC (X, ∗).

Then, KX is perfect (i.e., KX = [KX , KX ]) for every profinite space X if
and only if C is closed under extensions with abelian kernel.
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Proof. Express (X, ∗) = lim←− (Xi, ∗) as a surjective inverse limit of pointed
finite discrete spaces. Then KX = lim←− KXi . Hence one may assume that X

is finite and discrete (non pointed).
Suppose that C is closed under extensions with abelian kernel. Choose a

finite discrete space X. We have to show that KX is perfect. Put K = KX

and ϕ = ϕX . Then, one has a short exact sequence

1 −→ K/[K, K] −→ FCe(X)/[K, K] −→ FC (X) −→ 1.

From the definition of Ce and the assumption on C, one sees that C and Ce

contain the same abelian groups. Hence, K/[K, K] is a pro - C group. Again,
from our assumption on C, it follows that FCe(X)/[K, K] is a pro - C group.
Therefore, there exists a continuous epimorphism

μ : FC (X) −→ FCe(X)/[K, K].

By Proposition 2.5.2, the epimorphism

FC (X)
μ−→ FCe(X)/[K, K] −→ FCe(X)/K

∼=−→ FC (X)

is an isomorphim. Thus, K = [K, K].
Conversely, suppose that C is not closed under extensions with abelian

kernel. Consider a short exact sequence

1 −→ A −→ G
α−→ H −→ 1,

where A, H ∈ C, A is finite abelian and G �∈ C. We shall show that KX is not
perfect for a certain finite discrete space X. Choose X to be such that |X| =
d(G). Choose a continuous epimorphism β : FC (X) −→ H. By a property
of free pro - C groups that we prove in the next section (see Theorem 3.5.8),
one has a continuous epimorphism ψ : FCe(X) −→ G such that αψ = βϕX .
This implies that ψ(KX) is contained in A. We claim that KX is not perfect.
To see this, it suffices to show that ψ(KX) �= 1, since A is abelian. Now, if
we had ψ(KX) = 1, then ψ would factor through FC (X). Thus, G would be
in C, a contradiction. �	

3.5 Characterization of Free Pro - C Groups

Definition 3.5.1 Let G be a profinite group. Let E be a nonempty class of
continuous epimorphisms

α : A −→ B (4)

of profinite groups. Denote by Ef the subclass of E consisting of those epi-
morphisms (4) such that K = Ker(α) is a finite minimal normal subgroup
of A.
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(a) An E -embedding problem for G is a diagram

G

ϕ

A
α

B

or, written more explicitly,

G

ϕ

1 K A
α

B 1

(5)

with exact row, where α ∈ E and ϕ is a continuous epimorphism of profi-
nite groups. We say that the E -embedding problem (5) is ‘solvable’ or that
it ‘has a solution’ if there exists a continuous epimorphism

ϕ̄ : G −→ A

such that αϕ̄ = ϕ. The above E -embedding problem is said to be ‘weakly
solvable’ or to have a ‘weak solution’ if there is a continuous homomor-
phism

ϕ̄ : G −→ A

such that αϕ̄ = ϕ.
(b) The kernel of the E -embedding problem (5) is the group K = Ker(α). We

say that the E -embedding problem (5) has ‘finite minimal normal kernel ’
if α is in Ef .

(c) The nonempty class E of extensions is ‘admissible’ if whenever

α : A −→ B

is in E , so are the corresponding epimorphisms

A −→ A/N and A/N −→ B,

for any closed normal subgroup N of A contained in Ker(α).
(d) An infinite profinite group G is said to have the ‘strong lifting property ’

over a class of epimorphisms E if every E -embedding problem (5) with
w0(B) < w0(G) and w0(A) ≤ w0(G) is solvable.

Remark 3.5.2 The term ‘embedding problem’ has its origins in Galois theory.
Denote by F̄ an algebraic separable closure of a given field F . The Galois
group GF̄ /F of the extension F̄ /F is called the absolute Galois group of F.
Let K/F be a Galois extension of fields and let α : H ′ −→ H be a continuous
epimorphism of profinite groups. Assume that H = GK/F , the Galois group
of K/F . Then there is an epimorphism
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ϕ : GF̄ /F −→ H = GK/F

defined by restricting the automorphisms in GF̄ /F to K. One question that
arises often in Galois theory is the following: does there exist a subfield K ′ of
F̄ containing K in such a way that H ′ = GK′/F and the natural epimorphism
GK′/F −→ GK/F is precisely α? Observe that this question is equivalent to
asking whether there is a solution of the following embedding problem:

GF̄ /F

ϕ

H ′ α
H.

This question is sometimes referred to as the ‘inverse problem of Galois the-
ory’.

Let Q, the field of rational numbers. A well-known question in algebraic
number theory is whether every finite group appears as a Galois group of a
Galois extension of Q. Or, equivalently,

Open Question 3.5.3 Is every finite group a continuous homomorphic im-
age of the absolute Galois group GQ̄/Q of the field Q of rational numbers?

For some additional information on this question see Section 3.7.
Let C be a formation. Observe that if E is an admissible class, then so

is Ef . The class of all continuous epimorphisms of pro - C groups is an example
of admissible class that we shall use frequently.

Lemma 3.5.4 Let E be an admissible class of continuous epimorphisms of
profinite groups and let G be a profinite group. The following conditions are
equivalent.

(a) G has the strong lifting property over E ;
(b) G has the strong lifting property over Ef .

Proof. The implication (a) ⇒ (b) is obvious.
(b) ⇒ (a): Suppose G has the strong lifting property over Ef and let

(5) be a E -embedding problem with w0(B) < w0(G) and w0(A) ≤ w0(G).
By Corollary 2.6.5, there exist an ordinal number μ and a chain of closed
subgroups of K (see diagram (5))

K = K0 > K1 > · · · > Kλ > · · · > Kμ = 1

such that

(i) each Kλ is a normal subgroup of A with Kλ/Kλ+1 finite; moreover,
Kλ+1 is maximal in Kλ with respect to these properties;

(ii) if λ is a limit ordinal, then Kλ =
⋂

ν<λ Kν ; and
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(iii) if w0(A) = w0(G) (therefore K is an infinite group and w0(A/K) <
w0(A)), then w0(A/Kλ) < w0(A) whenever λ < μ.

We must prove that there exists an epimorphism ϕ̄ : G −→ A such that
αϕ̄ = ϕ. To do this we show in fact that for each λ ≤ μ there exists an
epimorphism

ϕλ : G −→ A/Kλ

such that if λ1 ≤ λ the diagram

G
ϕλ ϕλ1

A/Kλ A/Kλ1

commutes, where the horizontal mapping is the natural epimorphism. Then
we can take ϕ̄ = ϕμ. To show the existence of ϕλ, we proceed by induction
(transfinite, if K is infinite) on λ. Note that A/K0 = B; so, put ϕ0 = ϕ.
Let λ ≤ μ and assume that ϕν has been defined for all ν < λ so that
the above conditions are satisfied. If λ is a limit ordinal, observe that since
Kλ =

⋂
ν<λ Kν , then

A/Kλ = lim←−
ν<λ

A/Kν ;

in this case, define ϕλ = lim←− ν<λϕν .
If, on the other hand, λ = σ + 1, we define ϕλ to be a solution to the

Ef -embedding problem with finite minimal normal kernel

G

ϕσ
ϕλ

1 Kσ/Kλ A/Kλ A/Kσ 1

To see that such a solution exists, we have to verify that w0(A/Kσ) < w0(G)
and w0(A/Kλ) ≤ w0(G). If w0(A) < w0(G), these inequalities are clear. On
the other hand, if w0(A) = w0(G), we have

w0(A/Kλ) = w0(A/Kσ) < w0(A) = w0(G),

since Kσ/Kλ is a finite group and since condition (iii) above holds.
It is clear that in either case ϕλ satisfies the required conditions. �	

Next we consider equivalent conditions to weak solvability of embedding
problems for some special types of admissible classes.

Lemma 3.5.5 Let C and C ′ be varieties of finite groups. Let E be the class of
all continuous epimorphisms (4) of pro - C groups such that Ker(α) is pro - C ′,
and let Ē consist of those epimorphisms (4) in E for which Ker(α) is finite.
Let G be a profinite group. The following conditions are equivalent.
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(a) Every E -embedding problem (5) for G has a weak solution;
(b) Every Ē -embedding problem (5) for G has a weak solution;
(c) Every Ēa-embedding problem (5) for G has a weak solution, where Ēa

consists of those epimorphisms (4) in Ē such that Ker(α) is a finite abelian
minimal normal subgroup of A.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear.
(b) ⇒ (a): Consider the embedding problem (5) with α ∈ E . Define a set

P to consist of all pairs (K ′, η′), where K ′ is a closed normal subgroup of A
contained in K, and η′ : G −→ A/K ′ is a continuous homomorphism such
that the diagram

G

ϕ
η′

A/K ′ B

commutes. The set P is nonempty since (K, ϕ) ∈ P . Define (K ′, η′) �
(K ′ ′, η′ ′) if K ′ ≥ K ′ ′ and

G

η′ ′
η′

A/K ′ A/K ′ ′

commutes. Then P is an inductive poset. Indeed, if {(K ′
i, η

′
i)}i is a totally

ordered subset of P , put

K ′ =
⋂

i

K ′
i and η′ = lim←−

i

η′
i;

then (K ′, η′) ∈ P and (K ′, η′) � (K ′
i, η

′
i) for all i.

Let (K̃, η̃) be a maximal element of P . We shall show that K̃ = 1. Suppose
K̃ �= 1; then there exists an open normal subgroup L of K̃ which is normal
in A, such that L �= K̃ (if K̃ �= 1, it contains a proper open subgroup K̃ ∩ U
where U is open in A; then U contains an open normal subgroup V of A; put
L = K ∩ V ).

Since K̃/L is finite, it follows from (b) that there exists a continuous
homomorphism

ψ : G −→ A/L

such that
G

η̃
ψ

A/L A/K̃
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commutes. Hence, (L, ψ) ∈ P and (L, ψ) � (K̃, η̃), contradicting the maxi-
mality of (K̃, η̃). Thus K̃ = 1.

(c) ⇒ (b): We show in fact something stronger, namely that if (c) holds
and we have a diagram (5) with α ∈ Ē and K finite, then there exists a
continuous homomorphism ϕ̄ : G −→ A making the diagram commutative.
We prove this by induction on the order of K. We distinguish two cases
depending on whether K is minimal normal in A or not. Suppose first the
latter. Then there exists a normal subgroup K1 of A such that 1 < K1 < K.

G

ϕ1
ϕ

ϕ̄

A′ A/K1 α1
B

Let α1 : A/K1 −→ B be the epimorphism induced by α. Then, by induc-
tion, there exists a continuous homomorphism ϕ1 : G −→ A/K1 such that
α1ϕ1 = ϕ. Let β : A −→ A/K1 be the canonical epimorphism, and set
A′ = β−1(ϕ1(G)). By induction again, there exists a continuous homomor-
phism ϕ̄ : G −→ A′ such that β|A′ ϕ̄ = ϕ1. If we think of ϕ̄ as a mapping
G −→ A, then ϕ̄ is the desired lifting.

Next assume that K is finite minimal normal in A. Consider the Frattini
subgroup Φ(A) of A, and recall that Φ(A) is pronilpotent (see Corollary 2.8.4).
By the minimality of K, either K ≤ Φ(A) or K ∩ Φ(A) = 1. Assume first that
K ≤ Φ(A). Hence K is nilpotent, since it is finite. Observe that [K, K] = 1,
for otherwise [K, K] = K, contradicting the nilpotency of K. Therefore,
K is abelian. Then the existence of ϕ̄ follows from (c). Suppose now that
K ∩ Φ(A) = 1. Then there exists a maximal open subgroup M of A such that
K �≤ M . Hence K ∩ M < K. Thus, by induction, there exists a continuous
homomorphism ϕ1 : G −→ M making the diagram

G
ϕ1

ϕ

1 K ∩ M M B 1

commutative. Finally, define ϕ̄ : G −→ A to be the composition

G
ϕ1−→ M ↪→ A. �	

Having the strong lifting property over a suitable class of epimorphisms
is a powerful property for a profinite group; in the following result it is used
as a key tool to determine when two groups are isomorphic.

Proposition 3.5.6 Let E be an admissible class of continuous epimorphisms
of profinite groups and let G1 and G2 be infinite profinite groups with the
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strong lifting property over E and such that w0(G1) = w0(G2) = m. Assume
that Ni �c Gi such that w0(Gi/Ni) < m and that the epimorphisms

Gi −→ Gi/Ni −→ 1

belong to E (i = 1, 2). Then, any isomorphism ϕ : G1/N1 −→ G2/N2 lifts to
an isomorphism ϕ̄ : G1 −→ G2 such that the diagram

G1
ϕ̄

G2

G1/N1 ϕ
G2/N2

commutes.

Proof. Let μ be the smallest ordinal with cardinality m. By Corollary 2.6.5,
there exists a chain of closed normal subgroups of Gi (i = 1, 2)

Ni = Ni,0 ≥ Ni,1 ≥ · · · ≥ Ni,λ ≥ · · · ≥ Ni,μ = 1

indexed by the ordinals λ ≤ μ, such that

(i) Ni,λ/Ni,λ+1 is finite for λ ≥ 0;
(ii) if λ is a limit ordinal, then Ni,λ =

⋂
ν<λ Ni,ν , and

(iii) w0(Gi/Ni,λ) < m, for λ < μ.

We shall use transfinite induction to construct chains of closed normal
subgroups of Gi (i = 1, 2)

Ni = N ′
i,0 ≥ N ′

i,1 ≥ · · · ≥ N ′
i,λ ≥ · · · ≥ N ′

i,μ = 1

satisfying conditions analogous to (i), (ii), (iii), and in addition

(iv) N ′
i,λ ≤ Ni,λ and w0(Gi/N

′
i,λ) ≤ w0(Gi/Ni,λ), for all λ (i = 1, 2).

Note that conditions (iii) and (iv) imply that w0(Gi/N
′
i,λ) < w0(Gi) for

all λ < μ (i = 1, 2).
Furthermore, we construct isomorphisms

ϕλ : G1/N
′
1,λ −→ G2/N

′
2,λ

for each λ ≤ μ, in such a way that if λ < ν ≤ μ, then the diagram

G1/N
′
1,ν

ϕν
G2/N

′
2,ν

G1/N
′
1,λ ϕλ

G2/N
′
2,λ
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commutes. Set N ′
i,0 = Ni,0 = Ni (i = 1, 2), and let ϕ0 : G1/N

′
1,0 −→ G2/N

′
2,0

be the given isomorphism ϕ. Let ρ ≤ μ and assume we have constructed
chains indexed by λ < ρ

Ni = N ′
i,0 ≥ N ′

i,1 ≥ · · · ≥ N ′
i,λ ≥ · · · (i = 1, 2)

as well as isomorphisms ϕλ (λ < ρ), satisfying the above conditions. Next we
indicate how to construct N ′

i,ρ (i = 1, 2) and an isomorphism ϕρ such that
the above conditions still hold. If ρ is a limit ordinal, put

N ′
i,ρ =

⋂

λ<ρ

N ′
i,λ (i = 1, 2).

Observe that
Gi/N

′
i,ρ = lim←−

λ<ρ

Gi/N
′
i,λ (i = 1, 2).

In this case, define
ϕρ = lim←−

λ<ρ

ϕλ.

By Theorem 2.6.4, one has that

w0(Gi/N
′
i,ρ) ≤

∑

λ<ρ

w0(Gi/Ni,λ) = w0(Gi/Ni,ρ).

If ρ = σ+1 for some ordinal σ, we proceed as follows: put M = N ′
1,σ ∩N1,ρ

and P = N ′
2,σ ∩ N2,ρ. Observe that [N ′

1,σ : M ] < ∞ and [N ′
2,σ : P ] < ∞.

Let the continuous epimorphism ψ : G2 −→ G1/M be a solution to the
E -embedding problem for G2

G2

ψ

G1/M G1/N
′
1,σ ϕσ

G2/N
′
2,σ 1

Set R = P ∩Ker(ψ). Then ψ induces a natural epimorphism G2/R −→ G1/M .
Let the continuous epimorphism ξ : G1 −→ G2/R be a solution to the E -
embedding problem for G1

G1

ξ

G2/R G1/M

(such a solution exists since w0(G1/M) < w0(G2)). Set S = Ker(ξ). Therefore
ξ induces an isomorphism δ : G1/S −→ G2/R. Set N ′

1,ρ = S, G′
2,ρ = R, and

ϕρ = δ. Then N ′
1,ρ ≤ N1,ρ , N ′

2,ρ ≤ N2,ρ and



106 3 Free Profinite Groups

G1/N
′
1ρ

ϕρ
G2/N

′
2ρ

G1/N
′
1,σ ϕσ

G2/N
′
2,σ

commutes. Finally, observe that w0(G1/N
′
1,ρ) < w0(G1) and w0(G2/N

′
2,ρ) <

w0(G2), as desired. �	

The following useful special case is obtained by putting Ni = Gi (i = 1, 2).

Corollary 3.5.7 Let C be a formation of finite groups. Let G1 and G2 be
infinite pro - C groups, with w0(G1) = w0(G2). Assume that G1 and G2 have
the strong lifting property over the class of all continuous epimorphisms of
pro - C groups. Then G1 and G2 are isomorphic.

Next we present two results that characterize free pro - C groups on a set
converging to 1 in terms of embedding problems. The first one is about free
groups of finite rank. As we shall see in many occasions, the second result is
a most useful tool whenever one wants to investigate whether an infinitely
generated pro - C group is free pro - C.

Theorem 3.5.8 Let C be a formation of finite groups and let G be a pro - C
group. Assume that d(G) = m is finite. Let E = EC be the class of all epimor-
phisms of pro - C groups. Then, the following two conditions are equivalent

(a) G is a free pro - C group of rank m;
(b) Every E -embedding problem for G

G

ϕ

1 K A
α

B 1

with d(B) ≤ d(G) and d(A) ≤ d(G), has a solution.

Proof. (a) ⇒ (b) This implication follows immediately from Proposition 2.5.4.
(b) ⇒ (a) Consider a free pro - C group F of rank m, and let α : F −→ G

be a continuous epimorphism. By (b) there exists an continuous epimorphism
ϕ : G −→ F such that αϕ = idG. Then ϕ is a monomorphism, and thus an
isomorphism. �	

Theorem 3.5.9 Let C be a formation of finite groups and let G be a pro -
C group. Assume that d(G) = m is infinite. Let E = E C be the class of
all epimorphisms of pro - C groups. Then, the following two conditions are
equivalent

(a) G is a free pro - C group on a set converging to 1 of rank m;
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(b) G has the strong lifting property over E .

Proof. (a) ⇒ (b) Let G be a free pro - C group of rank m on the set X
converging to 1. Then |X| = w0(G) (see Proposition 2.6.2). Consider the
E -embedding problem

G

ϕ

1 K A
α

B 1

with w0(B) < w0(G) and w0(A) ≤ w0(G). We must show that there exists
a continuous epimorphism ϕ̄ : G −→ A such that αϕ̄ = ϕ. According to
Lemma 3.5.4, we may assume that K is finite. Put X0 = X ∩ Ker(ϕ). Let
U be the collection of all open normal subgroups of B. By our assumptions,
| U | < m. Observe that, since X converges to 1,

|X − Ker(ϕ)| =
∣∣∣∣X −

⋂

U ∈U
ϕ−1(U)

∣∣∣∣ =
∣∣∣∣
⋃

U ∈U
(X − ϕ−1(U))

∣∣∣∣ = | U |.

Therefore, |X0| = m. Let Z be a set of generators of K; since Z is finite,
we may choose a subset Y of X0 such that |Z| = |Y |. By Proposition 2.2.2,
there exists a continuous section σ : B −→ A of α. Think of K as a subgroup
of A. Define ϕ1 : X −→ A as a map that sends Y to Z bijectively, and such
that ϕ1 = σϕ on X − Y . Since X is a set converging to 1 and ϕ and σ
are continuous, the mapping ϕ1 converges to 1. Therefore, ϕ1 extends to a
continuous homomorphism ϕ̄ : G −→ A with αϕ̄ = ϕ. Finally note that ϕ̄ is
onto since ϕ1(X) generates A.

(b) ⇒ (a) This follows immediately from Corollary 3.5.7. �	

Combining the theorem above with Lemma 3.5.4, we get the following
characterization of free pro - C groups of infinite countable rank.

Corollary 3.5.10 Let C be a formation of finite groups and let G be a pro - C
group with w0(G) = ℵ0. Then G is a free pro - C group on a countably infinite
set converging to 1 if and only if every embedding problem of the form

G

ϕ

1 K A
α

B 1

has a solution whenever A is finite.

The next result provides another characterization of free pro - C groups
from a slightly different point of view.
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Proposition 3.5.11 Let C be a formation of finite groups and let G be a
pro - C group. Assume that d(G) = m is infinite. Then G is a free pro - C
group of rank m if and only if the following condition is satisfied :

(∗) every embedding problem of pro - C groups

G

ϕ

1 K C
α

D 1,

with 1 �= C ∈ C, has m different solutions ψ : G −→ C.

Proof. Assume that G is a free pro - C group on a set X converging to 1 with
|X| = m. Consider an embedding problem for G as above, with C finite.
Since D is finite, U = Ker(ϕ) is open in G. Hence, X − U is finite and
|X ∩ U | = m. Since K is finite, there exists an indexing set I of cardinality m

and a collection {Xi}i∈I of distinct subsets of X ∩ U , each of them of size |K|.
Let σ : D −→ C be a section of α. For each i ∈ I, define a map ϕi : X −→ C
as follows: ϕi = σϕ on X − U , ϕi sends Xi to K bijectively (we think of K
as a subgroup of C), and ϕi(X ∩ U − Xi)) = 1. Clearly, ϕi(X) generates C.
Thus ϕi extends to a continuous epimorphism ψi : G −→ C with αψi = ϕ.
Furthermore, the maps ψi (i ∈ I) are all distinct.

Conversely, assume that condition (∗) holds. Consider an embedding prob-
lem

G

ϕ

1 K A
α

B 1,

where A and B are pro - C groups and where w0(B) < m and w0(A) ≤ m.
According to Theorem 3.5.9, it suffices to show that such an embedding
problem has a solution. By Lemma 3.5.4, we may assume that K is a finite
minimal normal subgroup of A. Let V �o A be such that V ∩ K = 1. Consider
the commutative diagram

G

ϕ

1 K

β|K

A
α

β

B

γ

1

1 KV = KV/V A/V
αV

B/α(V ) 1,

where β and γ are the canonical epimorphisms, αV is the epimorphism in-
duced by α and KV = Ker(αV ). One shows easily that the maps α, β, αV , γ
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form a pullback diagram (see Exercise 2.10.1); moreover, β|K is an isomor-
phism and KV is minimal normal in A/V .

By assumption, since A/V ∈ C, there exists an indexing set I with |I| = m

and distinct continuous epimorphisms ψi : G −→ A/V such that αV ψi = γϕ
(i ∈ I). By definition of pullback, for each i ∈ I, there exists a unique
continuous homomorphism ϕ̄i : G −→ A such that αϕ̄i = ϕ and βϕ̄i = ψi.
The proof will be finished if we can prove that ϕ̄j is an epimorphism for
some j ∈ I. Observe that for this it suffices to prove the following claim:
Ker(ϕ) �≤ Ker(ψj), for some j ∈ I. Indeed, if the claim holds, ψj(Ker(ϕ))
is a nontrivial normal subgroup of A/V . Hence either KV ∩ ψj(Ker(ϕ)) = 1
or KV ≤ ψj(Ker(ϕ)), since KV is minimal normal in A/V . On the other
hand, αV (ψj(Ker(ϕ))) = (γϕ)(Ker(ϕ)) = 1; so, we deduce that ψj(Ker(ϕ)) =
KV . Therefore, Ker(αV ψj) = Ker(ϕ)Ker(ψj). Thus, by Lemma 2.10.2, ϕ̄j is
surjective.

It remains to prove the claim. Let N =
⋂

i∈I Ker(ψi). It follows that
w0(G/N) = m. Indeed, assume that w0(G/N) = n < m; then G/N is a
quotient of a free pro - C group F of rank n; so, F would have m distinct
continuous epimorphisms onto the finite group A, which is plainly impossible,
since each such an epimorphism is completely determined by its values on
a finite subset of a basis of F . Therefore, w0(G/N) = w0(G) > w0(B) =
w0(G/Ker(ϕ)). This implies that Ker(ϕ) �≤ Ker(ψj), for some j ∈ I. �	

Next we prove that all free pro - C groups are in fact free pro - C groups
on some set converging to 1. Nevertheless, it is sometimes more natural and
more convenient to describe certain free pro - C group as being free on a
topological space, rather than on a set; this becomes apparent when one
studies subgroups of free groups (see Section 8.1).

Proposition 3.5.12 Let C be a formation of finite groups and let F =
FC (X, ∗) be a free pro - C group on a pointed profinite space (X, ∗). Then
F is a free pro - C group on a certain set converging to 1. Furthermore, let
R be the collection of all open equivalence relations R on X. Then if R is
finite, so is the rank of F, and if R is infinite, rank(F ) = | R |.

Proof. If X is finite, there is nothing to prove. So, we assume from now on
that (X, ∗) is an infinite pointed profinite space. Clearly | R | = ρ(X), where
ρ(X) denotes the cardinality of the set of clopen subsets of X. We seek to
prove that F = FC (X, ∗) is a free pro - C group on a set of cardinality ρ(X)
converging to 1. Let E = EC be the class of all epimorphisms of pro - C groups
and consider an E -embedding problem

F

ϕ

1 K A
α

B 1

(6)
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where w0(B) < w0(F ) and w0(A) ≤ w0(F ). According to the characterization
of free pro - C groups on a set converging to 1 established in Theorem 3.5.9,
we must show that there exists a continuous epimorphism ϕ̄ : F −→ A such
that αϕ̄ = ϕ. By Lemma 3.5.4, we may assume that the kernel K is finite.

Put Y = ϕ(X), and let ψ : X −→ Y be the restriction of ϕ to X. Note that
ψ is a mapping of pointed spaces, if we think of 1 as the distinguished point
of Y . It follows from Proposition 2.6.2 and our hypotheses that ρ(Y ) < ρ(X).
In particular, if Y is finite, then ψ−1(y) is infinite for some y ∈ Y .

So in any case we may choose points y1, . . . , ym ∈ Y , and for each i =
1, . . . , m, points xi,0, . . . , xi,ni ∈ ψ−1(yi), none of them equal to ∗, such that
n1 + · · · + nm = |K| − 1. Represent the set of elements of K as

{1} ∪ {ki,j | i = 1, . . . , m; j = 0, . . . , ni}.

Choose clopen subsets U and Ui,j of X such that ∗ ∈ U, xi,j ∈ Ui,j (i =
1, . . . , m; j = 0, . . . , ni) and X = U ∪. U1,0 ∪. · · · ∪. Um,nm . Define

δ : X −→ K

as follows: δ(x) = 1 if x ∈ U or if x ∈ Ui,0 (i = 1, . . . , m), and δ(x) = ki,j if
x ∈ Ui,j (i = 1, . . . , m; j = 1, . . . , ni). Then δ is a continuous mapping. Next,
consider a continuous section

σ : B −→ A

of α such that σ(1) = 1 (see Proposition 2.2.2), and define

ξ : X −→ A

by ξ(x) = δ(x)σ(ψ(x)) for x ∈ X. Plainly, ξ is continuous and ξ(∗) = 1.
Therefore there exists a continuous homomorphism

ξ̄ : F −→ A

extending ξ. Observe that α(ξ̄(x)) = ψ(x) for all x ∈ X. It follows that
αξ̄ = ξ. We claim that ϕ̄ = ξ̄ is the desired solution of the E -embedding
problem (6). To verify this claim it remains to show that ξ̄ is an epimorphism.
Note first that

ξ(xi,j)ξ(xi,0)−1 = δ(xi,j)σ(ψ(xi,j))(δ(xi,0)σ(ψ(xi,0)))−1 = ki,j

(i = 1, . . . , m; j = 1, . . . , ni); therefore, K ≤ ξ(F ). On the other hand,
α(ξ̄(F )) = B, and thus ξ̄(F ) = A, as required. �	

The proof of the theorem above is not constructive, in the sense that
it does not exhibit an explicit basis of F converging to 1. The following
theorem shows that a construction of such a basis cannot be expected. It
answers negatively Open Question 3.5.13 in the first edition of this book.
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Theorem 3.5.13 Let X be a profinite space and let F = F (X) be the free
pro - C group on X. There is no basis S of F converging to 1 that can be
obtained from X in a canonical way, or more precisely, there is no such S that
is left invariant under the action of the group Aut(X) of homeomorphisms
from X to X.

Proof. We prove this by exhibiting a concrete example of a variety C and a
space X such that no basis S of F converging to 1 is left invariant under the
action of the group of automorphisms of F induced by the homeomorphisms
in Aut(X).

Choose C to be the variety of all finite p-groups, where p is a fixed prime
number. Observe that the Frattini quotient F/Φ(F ) of F is a vector space
over the field Fp with p elements and it is also the free pro - C group on the
space X, where C is the variety of all finite abelian p-groups of exponent p
(the vector spaces of finite dimension over Fp). A basis S of F converging
to 1 can be consider to be also a basis of F/Φ(F ) converging to 1; moreover
every ϕ ∈ Aut(X) induces a continuous automorphism of F/Φ(F ); hence we
may replace F by F/Φ(F ).

Consider the Pontryagin dual Hom(F/Φ(F ),Fp) of F/Φ(F ). Under this
duality, a basis S of F/Φ(F ) converging to 1 is transformed into an ordinary
basis of the discrete vector space Hom(F/Φ(F ),Fp) = C(X,Fp) over the
field Fp; furthermore, every ϕ ∈ Aut(X) is transformed into an automor-
phism of C(X,Fp). Therefore, it suffices to prove that, after an appropriate
choice of X, there exists no basis of the vector space C(X,Fp) which is left
invariant under the action of Aut(X). Fix a prime q, and let X = Zq. The
result will follow if we prove the following stronger assertion:

Let f : X −→ Fp be a nonconstant continuous function. Then the trans-
forms of f under Aut(X) are linearly dependent.

For simplicity we restrict ourselves to the case p = 2 (the argument can
be easily extended to any prime p). Consider the decomposition

Zq = lim←−
n∈N

Z/qnZ.

By Lemma 1.1.16, f factors through Z/qn0Z, for some n0 ∈ N, i.e., there
exists f̃ : Z/qn0Z −→ F2 = {0, 1} such that

f = f̃ϕn0 ,

where ϕn0 : Zq −→ Z/qn0Z is the projection.
Let a be the number of elements z ∈ Z/qn0Z such that f̃(z) = 0, and

let b be the number of elements z ∈ Z/qn0Z such that f̃(z) = 1. Note
a + b = qn0 . Since f is nonconstant, a, b > 0. In fact we may assume a, b > 1:
simply replace Z/qn0Z by Z/qn0+1Z (this has the effect of multiplying a and
b by q). Now consider the set T of functions obtained by transforming f̃ by
the permutations of Z/qn0Z. Then
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|T | =
qn0 !
a!b!

=
(

qn0

a

)
.

Since a > 1, we get |T | > qn0 . Since

dim C(Z/qn0Z,F2) = qn0 ,

we deduce that the elements of T are linearly dependent. Finally observe that
every permutation of Z/qn0Z is induced by a homeomorphism

Zq −→ Zq,

i.e., an element of Aut(X). This proves the above assertion and the theorem.
�	

Exercise 3.5.14 Let C be a nontrivial formation of finite groups and X a
set. Prove

(a) If X �= ∅ is finite, |FC (X)| = 2ℵ0 .
(b) Let C be a finite cyclic group in C, and let G =

∏
X C be the direct

product of |X| copies of C. Then G can be generated by a set converging
to 1 of cardinality |X|.

(c) If X is infinite and let F be the free pro - C group on the set X converging
to 1, then |F | = 2|X|. (Hint: use Proposition 2.6.2.)

(d) Assume that X is infinite and let Φ = Φ(X) be a free abstract group on X.
Then the pro - C completion of Φ is a free pro - C group of rank 2|X|. (Hint:
see Exercise 3.3.3.)

(e) Let m be an infinite cardinal and let p be a fixed prime number. Consider
the direct sum A =

⊕
m

Z/pZ of m copies of Z/pZ. Then d(Â) = 2m.
(f) Let Y be an infinite topological space with the discrete topology. Show

that
|FC (Y )| = 22|Y |

.

In Proposition 3.3.9 we saw that an inverse limit of free pro - C groups is a
free pro - C group if the canonical mappings in the inverse system send bases
to bases. As we shall exhibit later (see Example 9.1.14), a general inverse limit
G of free pro - C groups need not be free pro - C. However, in the following
theorem we show that if, in addition, G has a countable fundamental system
of neighborhoods of the identity (i.e., w0(G) = ℵ0), then G is free pro - C.

Theorem 3.5.15 Let
G = lim←−

i∈I

Fi

be an inverse limit of a surjective inverse system of free pro - C groups (Fi, ϕij)
indexed by a poset I. Assume that G admits a countable set of generators
converging to 1 (i.e., G is second countable as a topological space). Then G
is a free pro - C group.
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Proof. Suppose first that G is finitely generated. Then the free groups Fi

have finite rank bounded by d(G), the minimal number of generators of G. It
follows that there exists some io ∈ I such that rank(Fi) = rank(Fio) if i ≥ io.
Therefore, by the Hopfian property (see Proposition 2.5.2), ϕiio : Fi −→ Fio

is an isomorphism for each i ≥ io. Thus G ∼= Fio is a free pro - C group.
Assume next that G admits an infinite countable set of generators con-

verging to 1. Let E = EC be the class of all epimorphisms of pro - C
groups. Then, according to Corollary 3.5.10, it suffices to prove that every
E -embedding problem for G of the form

G

ϕ

1 K A
α

B 1

has a solution, whenever A is a finite group.
Denote by

ϕr : G −→ Fr

the canonical epimorphism. Since B is finite, there exists some r ∈ I and an
epimorphism

ψr : Fr −→ B

such that ϕ = ψrϕr (see Lemma 1.1.16). Since G is not finitely generated,
we may choose r in such a way that rank(Fr) > |A|. By Theorem 3.5.8,
there exists an epimorphism μ : Fr −→ A such that αμ = ψr. Therefore,
μϕr : G −→ A is the desired solution to the above embedding problem. �	

3.6 Open Subgroups of Free Pro - C Groups

In this section we begin the study of the structure of closed subgroups of free
pro - C groups. Unlike the situation for subgroups of abstract free groups, a
closed subgroup of a free pro - C group is not necessarily a free pro - C group.
For example, Zp is a closed subgroup of the free profinite group of Ẑ, but
obviously Zp is not a free profinite group. Nevertheless, we shall describe
several types of closed subgroups of a free pro - C group, and we shall see that
in some cases they are free pro - C. We revisit this topic at other places in this
book; in particular, in Chapter 7, where we deal with subgroups of free pro-p
groups, and in Chapter 8, where we study normal subgroups of free pro - C
groups.

Before we state the next theorem, we fix notation and recall some results
about subgroups of abstract free groups. For the details one can consult Mag-
nus, Karras and Solitar [1966], Lyndon and Schupp [1977], or Serre [1980],
for example. Let D be an abstract free group on a set X, and let L be a
subgroup of D. Recall that a right transversal T of L in D is a complete
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system of representatives of the right cosets of L in D, so that D = ∪. t∈T Lt;
we shall assume that 1 ∈ T . Write t ∈ T as a reduced word in term of the
elements of X, i.e., t = xε1

1 · · · xεr
r for some x1, . . . , xr ∈ X, with εi = ±1 for

all i = 1, . . . , r, and εi = εi+1 if xi = xi+1 (i = 1, . . . , r − 1). We refer to the
elements xε1

1 · · · xεi
i (i = 0, . . . , r) as the initial segments of t = xε1

1 · · · xεr
r . We

say that the transversal T is a right Schreier transversal if whenever t is in T ,
so is any initial segment of t. Every subgroup L of D admits a right Schreier
transversal. A final piece of notation: if f ∈ D, denote by f̃ the unique ele-
ment f̃ ∈ T such that Lf̃ = Lf . Then one has the following theorem due to
Nielsen and Schreier.

Theorem 3.6.1 Let D be an abstract free group on a set X, L a subgroup
of D, and let T be a right Schreier transversal of L in D. Then L is a free
group on the set

{tx(t̃x)−1 | x ∈ X, t ∈ T, tx(t̃x)−1 �= 1}.

Furthermore, if L has finite index in D, then

rank(L) − 1 = [D : L](rank(D) − 1).

Theorem 3.6.2 Assume that C is an extension closed variety of finite groups
(respectively, an NE-formation of finite groups). Let F be a free pro - C group
on a set X converging to 1, and let H be an open (respectively, open normal)
subgroup of F . Then

(a) The set
Z = {tx(t̃x)−1 | x ∈ X, t ∈ T, tx(t̃x)−1 �= 1},

converges to 1, where T is an appropriate right transversal of H in F ;
moreover, H is a free pro - C group on the set Z.

(b) If rank(F ) is infinite, then rank(H) = rank(F ); while if rank(F ) is fi-
nite,then so is rank(H), and

rank(H) − 1 = [F : H](rank(F ) − 1).

Proof. Let D be the abstract subgroup of F generated by X. By Corol-
lary 3.3.14 and Proposition 3.3.15, D is an abstract free group with basis X.
Choose a Schreier transversal T of D ∩ H in D.
Case 1. X = {x1, . . . , xn} is finite.

As pointed out above, D∩H is a free abstract group. By Proposition 3.2.2,
D ∩ H = H. By Lemmas 3.1.4, 3.2.4 and 3.2.6, H is the pro - C completion
of D ∩ H; hence H is a free pro - C group. Then, by Theorem 3.6.1,

{tx(t̃x)−1 | x ∈ X, t ∈ T, tx(t̃x)−1 �= 1}

is a basis of D ∩ H, and so of H (see Proposition 3.3.6). Therefore, using
again Theorem 3.6.1, rank(H) − 1 = [F : H](rank(F ) − 1), as desired.
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Case 2. X is an infinite set.
By Proposition 3.3.12, we may express the free pro - C group F = FC (X)

on the set X converging to 1 as an inverse limit

F = lim←−
j∈J

FC (Xj),

with [FC (Xj) : ϕj(H)] = [F : H], for every j ∈ J , where each Xj is a finite
subset of X, and ϕj : F −→ FC (Xj) denotes the canonical epimorphism. Let
Dj be the abstract subgroup of FC (Xj) generated by Xj (j ∈ J). Therefore,
ϕj(T ) = {ϕj(t) | t ∈ T } is a Schreier transversal of the subgroup Dj ∩ ϕj(H)
in Dj (j ∈ J). Put X̃ = X ∪ {1} and X̃j = Xj ∪ {1} (j ∈ J). Then FC (Xj) =
FC (X̃j , 1). By Case 1, ϕj(H) is a free pro - C group on the finite pointed space

(Yi, 1) = ({xϕj(t)( ˜xϕj(t))−1 | x ∈ X̃j , t ∈ T }, 1).

Observe that ϕjk(Ỹj , 1) = (Ỹk, 1) (j � k), and that

H = lim←−
j∈J

ϕj(H).

Hence, by Proposition 3.3.9, H is a free pro - C group on the pointed topo-
logical space

(Y, 1) = ( lim←−
j∈J

Yj , 1).

It remains to prove that Y is the one-point compactification of the set Z
in the statement. Clearly Z is a discrete subspace of F since X is discrete and
T is finite. Moreover, Z ∪ {1} is compact (it is the continuous image of the
compact space (X ∪ {1}) × T ), in fact, it is the one-point compactification
of Z. Since ϕj(Z ∪ {1}) = Ỹj (j ∈ J), we infer that Z ∪ {1} = Y (see
Corollary 1.1.8). This proves the theorem. �	

Corollary 3.6.3 Let G be a finitely generated profinite group with d(G) = d
and let U ≤o G. Then U is also finitely generated as a profinite group and
d(U) ≤ 1 + [G : U ](d − 1).

Proof. Consider a free profinite group F of rank d and an epimorphism

ϕ : F −→ G.

Then ϕ(ϕ−1(U)) = U . So the result follows from Theorem 3.6.2 applied to
the open subgroup ϕ−1(U) of F . �	

A subgroup H of a group G is called subnormal if there exists a finite
chain of subgroups of G

H = Gn � Gn−1 � · · · � G1 = G.

If G is profinite and H is closed, we only refer to H as subnormal if there is
a chain as above with every Gi closed.
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Corollary 3.6.4

(a) For r, i ∈ N, define T(r, i) = 1 + i(r − 1). If r, i, j ∈ N, then

T(T(r, i), j) = T(r, ij).

(b) Let C be an NE-formation of finite groups. Let F be a free pro - C group
of finite rank r, and let H be an open subnormal subgroup of F . Then H
is a free pro - C group of rank 1 + [F : H](r − 1).

Proof. Part (a) is a routine calculation. Part (b) follows from the theorem
and an easy induction. �	

3.7 Notes, Comments and Further Reading

Profinite topologies are used sometimes to express some algebraic facts in
a succinct manner. For example, an abstract group G is called LERF or
subgroup separable if every finitely generated subgroup of G is closed in the
profinite topology of G (cf. Scott [1978]). In Hall [1949] Theorem 5.1, it is
proved that finitely generated subgroups of abstract free groups are closed
in the profinite topology; see also Hall [1950]. For a study of the induced
topology on the Fitting subgroup of certain groups, see Pickel [1976] and
Kilsch [1986].

Lemma 3.1.5 and Corollary 3.1.6 appear in Ribes and Zalesskii [1994].
Corollary 3.2.8 was proved by Dixon, Formanek, Poland and Ribes [1982].
Theorem 3.2.9 appears in Fried and Jarden [2008]. For polycyclic groups with
isomorphic finite quotients see Grunewald, Pickel and Segal [1980].

Free pro - C groups appear in Iwasawa [1953], where C is a variety of fi-
nite groups, although he does not use the name ‘free pro - C’. In the same
paper (Theorem 8) Iwasawa proves a precursor of the results of Douady and
Harbater mentioned in Example 3.3.8(e): let F be an algebraically closed
countable field and let K be the maximal solvable extension of F (T ); then the
Galois group of the extension K/F (T ) is a free prosolvable group of countable
rank. The first explicit reference to the universal property of freeness for pro-p
groups seems to appear in the first edition of Serre’s Cohomologie Galoisi-
enne. The first systematic study of free pro - C groups over topological spaces
was began by Gildenhuys and Lim [1972]. At the time it was known, using
cohomological methods, that every free pro-p group on a topological space
is free on a set converging to 1 (Tate); see Section 7.6. Proposition 3.5.12,
showing that this is also the case for general pro - C groups, was proved by
Mel’nikov [1980]. Proposition 3.3.9 appears in Gildenhuys and Lim [1972].
Proposition 3.3.12 was established in Gildenhuys and Ribes [1973]. A version
of Theorem 3.3.16 is shown in Iwasawa [1953].

The embedding problem, as indicated in Remark 3.5.2, seems to have
been posed first in Brauer [1932]. The literature about the inverse problem of
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Galois theory is very extensive. Open Question 3.5.3 has been partially an-
swered in many special cases. Shafarevich [1954] answered it for finite solvable
groups (this paper had a difficulty related to the prime number 2, but Sha-
farevich indicated how to overcome this difficulty shortly after); see Schmidt
and Wingberg [1998] for a simplified proof of Shafarevich’s result. The book
of Matzat [1987] describes the construction of field extensions correspond-
ing to some finite simple groups. See Pop [1996] for the study of embedding
problems over certain fields. For a general survey of results and methods see
Serre [1992] and Völklein [1996].

Iwasawa [1953] makes a pioneering use of embedding problems for groups
to characterize free pro - C groups of countable rank (see Corollary 3.5.10).
This was generalized by Mel’nikov [1978] (see Theorem 3.5.9).

Proposition 3.5.11 was proved by Chatzidakis in her 1984 thesis and ap-
pears in Chatzidakis [1998]; this paper contains several other results on free
profinite groups. In Jarden [1995], profinite groups with solvable finite embed-
ding problems (i.e., embedding problems such as (1) of Section 3.5, where A is
finite) are studied. Theorem 3.5.13 was proved by J-P. Serre (private commu-
nication) to answer negatively Open Question 3.5.13 in the first edition of the
present book. Theorem 3.5.15 is due to Mel’nikov [1980]. Theorem 3.6.1 ap-
pears in Binz, Neukirch and Wenzel [1971]; see a different proof, independent
of the Kurosh theorem for abstract groups, in Appendix D, Theorem D.2.2.

Let F be a free nonabelian pro-p group; Zubkov [1987] proves that F
cannot be embedded as a closed subgroup of GL2(R), if p �= 2 and R is a
commutative profinite ring; Barnea and Larsen [1999] show the same result
for GLn(F ), if F is a local field.

3.7.1 A Problem of Grothendieck on Completions

Assume that ϕ : G1 −→ G2 is a homomorphism of finitely generated
residually finite abstract groups such that the corresponding homomorphism
ϕ̂ : Ĝ1 −→ Ĝ2 of the profinite completion is an isomorphism.

Question: Is ϕ necessarily an isomorphism?
This question was posed in Grothendieck [1970] for groups G1 and G2

which in addition are finitely presented. Finite presentability is a natural
condition for the groups Grothendieck was studying, namely fundamental
groups of certain complex varieties which are compact and locally simply
connected; such fundamental groups are finitely presented.

Here we indicate some results related to this question as well as some
references. The motivation of Grothendieck was the study of the functor
induced by ϕ

ϕ∗ : RepA(G2) −→ RepA(G1),

where A is a commutative ring and RepA(G) stands for the category of finitely
presented A-modules on which the group G operates. Grothendieck [1970],
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Theorem 1.2, proved that if ϕ̂ is an isomorphism, then ϕ∗ is an equivalence
of categories. In this connection see also Lubotzky [1980].

In Platonov and Tavgen [1986] an example was found that answers neg-
atively the above question. This example is based on a construction by
Higman [1951] of an infinite finitely presented group with no nontrivial fi-
nite quotients. Let F be a free abstract group on a basis {x1, x2, x3, x4}.
Let N be the smallest normal subgroup of F containing the elements
x2x1x

−1
2 x−2

1 , x3x2x
−1
3 x−2

2 , x4x3x
−1
4 x−2

3 , x1x4x
−1
1 x−2

4 . The group constructed
by Higman is F/N . Denote by Δ the diagonal subgroup of the direct prod-
uct F × F , and consider the subgroup G1 = (N × {1})Δ of G2 = F × F .
Then Platonov and Tavgen show that the inclusion G1 −→ G2 induces an
isomorphism Ĝ1 −→ Ĝ2.

Further examples with negative answers to the question above have been
given in Bass and Lubotzky [2000] and Pyber [2004]. All these examples
involve groups which do not appear to be finitely presented. Examples with
negative answer to Grothendieck’s question, i.e., with groups G1 and G2 that
are finitely presented, are given in Bridson and Grunewald [2004].

Platonov and Tavgen [1990] contains several results showing that in some
interesting cases the above question has a positive answer. For example they
prove

Theorem 3.7.1 The above question has a positive answer if G2 is a subgroup
of SL2(K), where K is either the field of real or rational numbers.

In connection with Theorems 3.2.7 and Corollary 3.2.8, one may ask

Open Question 3.7.2 What pro - C groups are pro - C completions of finitely
generated abstract groups?

For partial answers to this question see Segal [2001], and Kassabov and
Nikolov [2006].
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