
2 Profinite Groups

2.1 Pro - C Groups

Let C be a nonempty class of finite groups [this will always mean that C
contains all the isomorphic images of the groups in C]. Define a pro - C group
G as an inverse limit

G = lim←−
i∈I

Gi

of a surjective inverse system {Gi, ϕij , I} of groups Gi in C, where each
group Gi is assumed to have the discrete topology. We think of such a pro - C
group G as a topological group, whose topology is inherited from the product
topology on

∏
i∈I Gi.

The class C is said to be subgroup closed if whenever G ∈ C and H ≤ G,
then H ∈ C. We remark that if the class C is subgroup closed, then any
inverse limit of a (non-necessarily surjective) inverse system of groups in C is
a pro - C group.

A group G is a subdirect product of a collection of groups {Gj | j ∈ J }
if there exists a collection of normal subgroups {Nj | j ∈ J } of G such that⋂

j∈J Nj = 1 and G/Nj
∼= Gj for each j ∈ J . Observe that if G is a subdirect

product of the groups {Gj | j ∈ J }, then G is isomorphic to a subgroup of
the direct product

∏
i∈J Gj .

The properties of pro - C groups are obviously dependent on the type of
class C that one considers. We are going to state a series of properties that
a class C could satisfy which are of possible interest in this book. According
to our needs, we shall assume that a class of finite groups C satisfies one or
more of the following properties:

(C1) C is subgroup closed.
(C2) C is closed under taking quotients, that is, if G ∈ C and K � G, then

G/K ∈ C.
(C3) C is closed under forming finite direct products, that is, if Gi ∈ C (i =

1, . . . , n), then
n∏

i=1

Gi ∈ C.
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(C4) If G is a finite group with normal subgroups N1 and N2 such that
G/N1, G/N2 ∈ C, then G/N1 ∩ N2 ∈ C. Equivalently, C is closed under
taking finite subdirect products, that is, if Gi ∈ C, (i = 1, . . . , n) and G
is a subdirect product of G1, . . . , Gn, then G ∈ C.

(C5) C is closed under extensions, that is, if

1 −→ K
ϕ−→ G

ψ−→ H −→ 1

is a short exact sequence of groups (that is, ϕ is a monomorphism, ψ is
an epimorphism and Im (ϕ) = Ker(ψ)) and K, H ∈ C, then G ∈ C.

Note that (C1) plus (C3) imply (C4); (C4) implies (C3); and (C5) im-
plies (C3).

For example, C could be the class of all

(a) finite groups; then C satisfies conditions (C1)–(C5). In this case we call a
pro - C group profinite. Observe that every pro - C group is also profinite.

(b) finite cyclic groups; then C satisfies conditions (C1) and (C2), but not
(C3), (C4), (C5). In this case we call a pro - C group procyclic.

(c) finite solvable groups; then C satisfies conditions (C1)–(C5). In this case
we call a pro - C group prosolvable.

(d) finite abelian groups; then C satisfies conditions (C1)–(C4), but not (C5).
In this case we call a pro - C group proabelian.

(e) finite nilpotent groups; then C satisfies conditions (C1)–(C4), but not (C5).
In this case we call a pro - C group pronilpotent.

(f) finite p-groups, for fixed prime number p; then C satisfies conditions
(C1)–(C5). In this case we call a pro - C group pro-p.

To avoid repetitions we shall give special names to classes C of finite
groups satisfying some of the above conditions that are frequently used in
this book.

• A formation of finite groups is a nonempty class of finite groups C that
satisfies (C2) and (C4).

• A variety of finite groups is a nonempty class of finite groups C that satisfies
conditions (C1)–(C3).

• An NE-formation is a formation which is closed under taking normal sub-
groups and extensions.

• An extension closed variety is a variety which is closed under taking ex-
tensions.

Remark that a variety is automatically a formation, and that a subgroup
closed formation is a variety.

Let Δ be a nonempty set of finite simple groups. A Δ-group D is a finite
group whose composition factors are in Δ, that is, D is a finite group that
has a composition series

D = D0 ≥ D1 ≥ · · · ≥ Dr = 1
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such that Di/Di+1 ∈ Δ. If Δ consists only of one group S, we sometimes refer
to Δ-groups as S-groups. Define C = C(Δ) to be the class of all Δ-groups;
we sometimes refer to C(Δ) as a Δ-class. Note that C(Δ) is a formation
closed under taking normal subgroups and extensions, that is, C(Δ) is an
NE-formation which is not necessarily subgroup closed. Conversely, if C is an
NE-formation, then C = C(Δ), where Δ is the set of all simple groups in C.

There are varieties of finite groups that are not of the form C(Δ) (e.g., the
variety of all finite nilpotent groups). And not every class of the form C(Δ)
is a variety (e.g., if Δ consists of a single finite simple nonabelian group S).
Some important classes of extension closed varieties of finite groups are: the
class of all finite groups, the class of all finite solvable groups and the class
of all finite p-groups (for a fixed prime p).

Furthermore, if Δ is a set of nonabelian finite simple groups, then the
class S of all finite groups which are direct products of groups in Δ is a
formation which is not a variety nor a class of the form C(Δ).

Lemma 2.1.1 Let
G = lim←−

i∈I

Gi,

where {Gi, ϕij , I} is an inverse system of finite groups Gi, and let

ϕi : G −→ Gi (i ∈ I)

be the projection homomorphisms. Then

{Si | Si = Ker(ϕi)}

is a fundamental system of open neighborhoods of the identity element 1 in G.

Proof. Consider the family of neighborhoods of 1 in
∏

i∈I Gi of the form
( ∏

i �=i1,...,it

Gi

)

× {1}i1 × · · · × {1}it ,

for any finite collection of indexes i1, . . . , it ∈ I, where {1}i denotes the subset
of Gi consisting of the identity element. Since each Gi is discrete, this family
is a fundamental system of neighborhoods of the identity element of

∏
i∈I Gi.

Let i0 ∈ I be such that i0 	 i1, . . . , it. Then

G ∩
[(∏

i �=i0

Gi

)

× {1}i0

]

= G ∩
[( ∏

i �=i1,...,it

Gi

)

× {1}i1 × · · · × {1}it

]

.

Therefore the family of neighborhoods of 1 in G, of the form

G ∩
[(∏

i �=i0

Gi

)

× {1}i0

]
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is a fundamental system of open neighborhoods of 1. Finally, observe that

G ∩
[(∏

i �=i0

Gi

)

× {1}i0

]

= Ker(ϕi0) = Si0 .

�

We state next an easy consequence of compactness that will be used often
without an explicit reference.

Lemma 2.1.2 In a compact topological group G, a subgroup U is open if and
only if U is closed of finite index.

Let H be a subgroup of a group G. We define the core HG of H in G to
be the largest normal subgroup of G contained in H. Equivalently,

HG =
⋂

g∈G

Hg,

where Hg = g−1Hg. Observe that HG =
⋂

Hg, where g ranges through a
right transversal of H in G, that is, a set of representatives of the right cosets
of H in G. Therefore, if H has finite index in G, then its core HG has finite
index in G. In particular, if H is an open subgroup of a profinite group G,
then HG is an open normal subgroup of G contained in H.

The following analog of Theorem 1.1.12 provides useful characterizations
of pro - C groups.

Theorem 2.1.3 Let C be a formation of finite groups. Then the following
conditions on a topological group G are equivalent.

(a) G is a pro - C group;
(b) G is compact Hausdorff totally disconnected, and for each open normal

subgroup U of G, G/U ∈ C;
(c) G is compact and the identity element 1 of G admits a fundamental system

U of open neighborhoods U such that
⋂

U ∈U U = 1 and each U is an open
normal subgroup of G with G/U ∈ C;

(d) The identity element 1 of G admits a fundamental system U of open
neighborhoods U such that each U is a normal subgroup of G with G/U ∈

C, and
G = lim←−

U ∈U

G/U.

Proof. (a) ⇒ (b): Say
G = lim←−

i∈I

Gi,

where {Gi, ϕij , I} is a surjective inverse system of groups in C. Denote by
ϕi : G −→ Gi (i ∈ I) the projection homomorphisms. According to Theo-
rem 1.1.12, G is compact Hausdorff and totally disconnected. Let U be an
open normal subgroup G. By Lemma 2.1.1, there is some Si = Ker(ϕi) with
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Si ≤ U . Hence G/U is a quotient group of G/Si. Since G/Si ∈ C and C is
closed under taking quotients, we have that G/U ∈ C.

(b) ⇒ (c): By Theorem 1.1.12, the set V of clopen neighborhoods of 1 in
G is a fundamental system of open neighborhoods of 1 and

⋂

V ∈V
V = 1.

Therefore, it suffices to show that if V is a clopen neighborhood of 1, then it
contains an open normal subgroup of G.

If X is a subset of G and n a natural number, for the purpose of this proof
only, we denote by Xn the set of all products x1 · · · xn, where x1, . . . , xn ∈ X;
further, denote by X−1 the set of all elements x−1, where x ∈ X.

Set F = (G − V ) ∩ V 2. Since V is compact, so is V 2; hence, F is closed
and therefore compact. Let x ∈ V ; then x ∈ G − F . By the continuity
of multiplication, there exists open neighborhoods Vx and Sx of x and 1
respectively such that Vx, Sx ⊆ V and VxSx ⊆ G − F . By the compactness
of V , there exist finitely many x1, . . . , xn such that Vx1 , . . . , Vxn cover V . Put
S =

⋂n
i=1 Sxi , and let W = S ∩ S−1. Then W is a symmetric neighborhood

of 1 (that is, w ∈ W if and only if w−1 ∈ W ), W ⊆ V , and V W ⊆ G − F .
Therefore V W ∩ F = ∅. Since one also has that V W ⊆ V 2, we infer that
V W ∩ (G − V ) = ∅; so V W ⊆ V . Consequently,

V Wn ⊆ V,

for each n ∈ N. Since W is symmetric, it follows that

R =
⋃

n∈N

Wn

is an open subgroup of G contained in V . Thus the core of R

RG =
⋂

x∈G

(x−1Rx)

is an open normal subgroup of G. Finally, observe that RG ⊆ V because

RG ≤ R ⊆ V R ⊆
⋃

n∈N

V Wn ⊆ V.

Thus RG is the desired open normal subgroup contained in V .
(c) ⇒ (d): Let U be as in (c). Make U into a directed poset by defining

U 	 V if U ≤ V , for U, V ∈ U . Consider the inverse system {G/U, ϕUV },
of all groups G/U (U ∈ U ) where ϕUV : G/U −→ G/V is the natural
epimorphism for U 	 V . Since the canonical epimorphisms

ψU : G −→ G/U
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are compatible, they induce a continuous homomorphism

ψ : G −→ lim←−
U ∈U

G/U.

We shall show that ψ is an isomorphism of topological groups. According to
Corollary 1.1.6, ψ is an epimorphism. To see that ψ is a homeomorphism,
it suffices to prove that ψ is a monomorphism since G is compact. Now, if
x ∈ G and ψ(x) = 1, then x ∈ U for each U ∈ U . Since

⋂

U ∈U
U = 1,

it follows that x = 1, as needed.
The implication (d) ⇒ (a) is clear. 
�

We say that a collection S of subsets of a group G is filtered from below
if for every pair of subsets S1, S2 ∈ S, there exists some S3 ∈ S with S3 ≤
S1 ∩ S2.

Proposition 2.1.4 Let H be a closed subgroup of a profinite group G.

(a) If {Ui | i ∈ I} is a family of closed subsets of G filtered from below, then

⋂

i∈I

HUi = H

(⋂

i∈I

Ui

)

.

(b) Let ϕ : G −→ R be a continuous epimorphism of profinite groups. Assume
that {Ui | i ∈ I} is a family of closed subsets of G filtered from below.
Then

ϕ

(⋂

i∈I

Ui

)

=
⋂

i∈I

ϕ(Ui).

(c) Every open subgroup of G that contains H, contains an open subgroup of
the form HU for some open normal subgroup U of G.

(d) H is the intersection of all open subgroups of G containing H. If H is
normal in G, then H is the intersection of all open normal subgroups of
G containing H.

Proof. (a) By the filtration assumption, the result is clearly true if the set I
is finite. For the general case, it is plain that

⋂
i∈I HUi ≥ H(

⋂
i∈I Ui). Let

x ∈
⋂

i∈I HUi and let {Jt | t ∈ T } be the collection of all finite subsets Jt

of I such that {Uj | j ∈ Jt} is filtered from below. Then, for each t ∈ T ,
x ∈

⋂
i∈Jt

HUj = H(
⋂

j∈Jt
Uj) and so, Hx ∩ (

⋂
j∈Jt

Uj) �= ∅. Therefore, by
the finite intersection property of the compact space G, we have

Hx ∩
(⋂

i∈I

Ui

)

=
⋂

t∈T

(

Hx ∩
( ⋂

j∈Jt

Uj

))

�= ∅.
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Thus x ∈ H(
⋂

i∈I Ui), as needed.
(b) Let H = Ker(ϕ) and identify R with G/H. Then, using part (a),

⋂

i∈I

ϕ(Ui) =
⋂

i∈I

(UiH/H) =
(⋂

i∈I

UiH

)

/H =
(⋂

i∈I

Ui

)

H/H = ϕ

(⋂

i∈I

Ui

)

.

(c) Let V be an open subgroup of G containing H. Then its core

VG =
⋂

g∈G

V g

is open and normal; moreover HVG ≤ V .
(d) This follows from parts (a) and (c) by taking {Ui | i ∈ I} in (a) to be

the collection of all open normal subgroups of G. 
�

From now on we shall use the following convenient notations. Let G be a
topological group and H a subgroup of G. Then

H ≤o G, H ≤c G, H �o G, H �c G, H ≤f G, H �f G,

will indicate respectively: H is an open subgroup, H is a closed subgroup,
H is an open normal subgroup, H is a closed normal subgroup of G, H is a
subgroup of finite index, H is a normal subgroup of finite index.

Proposition 2.1.5

(a) Let {Hi | i ∈ I} be a collection of closed subgroups of a profinite group G
and let

⋂
i∈I Hi ≤ U ≤o G. Then there is some finite subset J of I such

that
⋂

j∈J Hj ≤ U .
(b) Let {Ui | i ∈ I} be a collection of open subgroups of a profinite group G

such that
⋂

i∈I Ui = 1. Let

V =
{⋂

j∈J

Uj | J a finite subset of I

}

.

Then V is a fundamental system of neighborhoods of 1 in G.

Proof. Part (b) follows immediately from (a). To prove (a), consider the open
covering {G−Hi | i ∈ I} of the compact space G−U . Choose a finite subcover,
say {G − Hj | i ∈ J }. Then G − U ⊆

⋃
j∈J (G − Hj). Thus

⋂
j∈J Hj ⊆ U . 
�

Example 2.1.6 (Completions)

(1) Let C be a fixed formation of finite groups, and let G be a group. Consider
the collection

N = {N �f G | G/N ∈ C }.

Note that N is nonempty since G ∈ N . Make N into a directed poset by
defining M � N if M ≥ N (M, N ∈ N ). If M, N ∈ N and N 	 M , let
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ϕNM : G/N −→ G/M be the natural epimorphism. Then

{G/N, ϕNM }

is an inverse system of groups in C, and we say that the pro - C group

GĈ = lim←−
N ∈N

G/N

is the pro - C completion of G (we shall give a description of completion in
Section 3.2 in a more general setting; there we introduce also the notation
K C (G) for GĈ ). In particular we use the terms profinite completion, the
pro-p completion, the pronilpotent completion, etc., in the cases where C
consists of all finite groups, all finite p-groups, all finite nilpotent groups,
etc., respectively. The profinite and pro-p completions of a group of G
appear quite frequently, and they will be usually denoted instead by Ĝ,
and Gp̂, respectively.

(2) As a special case of (1), consider the group of integers Z. Its profinite
completion is

Ẑ = lim←−
n∈N

Z/nZ.

Following a long tradition in Number Theory, we shall denote the pro-p
completion of Z by Zp rather than Zp̂. So,

Zp = lim←−
n∈N

Z/pnZ.

Observe that both Ẑ and Zp are not only abelian groups, but also they
inherit from the finite rings Z/nZ and Z/pnZ respectively, natural struc-
tures of rings. The group (ring) Zp is called the group (ring) of p-adic
integers.

(3) Let R be a profinite ring with 1, that is, R is a compact Hausdorff to-
tally disconnected topological ring with 1. Assume in addition that R is
commutative (e.g., R could be Ẑ or Zp). Then one easily checks that the
following groups (with topologies naturally induced from R) are profinite
groups:

– R×, the group of units of R [one can verify the compactness of R× as
follows: consider the multiplication mapping μ : R × R −→ R; then
μ−1{1} is compact; on the other hand, R× is the image of μ−1{1}
under one of the projections R × R −→ R].

– GLn(R) (the group of invertible n × n matrices with entries from R,
i.e., the group of units of the ring Mn(R) of all n×n matrices over R).
[One can verify this as in the previous case, eventhough Mn(R) is not
commutative: just observe that, for matrices over R, having a left
inverse is equivalent to being invertible].

– SLn(R) (the subgroup of GLn(R) of those matrices of determinant 1).
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(4) The upper unitriangular group over Zp of degree n

UTn(Zp) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 a12 a13 . . . a1n

0 1 a23 . . . a2n

0 0 1 . . . a3n

...
...

...
...

0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

aij ∈ Zp

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

is a pro-p group.

Exercise 2.1.7 A proabelian group is necessarily abelian. But a pronilpo-
tent (respectively, prosolvable) group need not be nilpotent (respectively,
solvable).

Exercise 2.1.8

(1) The set of elements of Ẑ can be identified with the set of all (equivalence
classes of) sequences (an) = (a1, a2, a3, . . .) of natural numbers such that

an ≡ am (mod m)

whenever m | n. Explain this identification and what is the addition and
multiplication of these sequences under the identification. Show that every
element t of Z can be identified with a constant sequence (an), an = t for
all n = 1, 2, . . . .

(2) Similarly, the set of elements of Zp can be identified with the set group
of all (equivalence classes of) sequences (an) = (a1, a2, a3, . . .) of natural
numbers such that

an ≡ am (mod pm)

whenever m ≤ n. Explain this identification and what is the addition and
multiplication of these sequences under the identification.

(3) Show that Zp can also be identified with the set of power series

Zp =
{

b =
∞∑

n=0

bnpn | bn ∈ N, 0 ≤ bn < p

}

.

Explain how the addition and multiplication of series is carried out under
this identification. How is Z embedded in Zp under this identification?

(4) Show that an element b ∈ Zp is a unit in the ring Zp if and only if in its
series representation b =

∑∞
n=0 bnpn in (3) one has b0 �= 0.

Exercise 2.1.9

(1) Prove that for each natural number i, there is a short exact sequence of
profinite groups

I −→ Ki −→ GLn(Zp)
ϕi−→ GLn(Z/piZ) −→ I
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where ϕi is induced by the canonical epimorphism Zp −→ Z/piZ, and
Ki = I +Mn(piZ) (I denotes here the n × n identity matrix over Zp, and
Mn(piZ) all the n × n matrices with entries in piZ). [Hint: observe that
b ∈ Zp is unit if and only if its image in Z/piZ is a unit.]

(2) Show that
⋂

Ki = {I}, and deduce that

GLn(Zp) = lim←−
i

GLn(Z/piZ).

2.2 Basic Properties of Pro - C Groups

We begin with some elementary properties of pro - C groups inherited from
corresponding properties of C.

Proposition 2.2.1 Let C be a formation of finite groups. Then

(a) Every quotient group G/K of a pro - C group G, where K �c G, is a pro - C
group. If, in addition, C is closed under taking subgroups (respectively,
under taking normal subgroups), then every closed subgroup (respectively,
every closed normal subgroup) of G is a pro - C group.

(b) The direct product
∏

i∈I Gi of any collection {Gj | i ∈ J } of pro - C groups
with the product topology is a pro - C group.

(c) If a profinite group is a subdirect product of pro - C groups, then it is
pro - C.

(d) The inverse limit
lim←−
i∈I

Gi,

of a surjective inverse system {Gi, ϕij , I} of pro - C groups, is a pro - C
group.

(e) Let C be an extension closed variety of finite groups. Then the class of
pro - C groups is closed under extensions.

Proof. (a) This is an easy application of Corollary 1.1.8 and Theorem 2.1.3.
(b) Let G =

∏
i∈I Gi, where each Gi is a pro - C group. Then G is a

compact, Hausdorff and totally disconnected group (the compactness is a
consequence of Tychonoff’s Theorem: see for example Bourbaki [1989], Ch. 1,
Theorem 3). Hence G is a profinite group. Let U �oG. To verify that G is pro -
C we must show that G/U ∈ C, according to Theorem 2.1.3. By definition
of the product topology, there exist a finite subset J of I and open normal
subgroups Uj of Gj (j ∈ J) such that U ≥

∏
i∈I Xi, where Xi = Ui for i ∈ J

and Xi = Gi for i ∈ I − J . So G/U is a homomorphic image of the group

G
/∏

i∈I

Xi
∼=
∏

j∈J

Gj/Uj .

Since C is a formation and Gj/Uj ∈ C (j ∈ J), one has that G/U ∈ C.
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(c) Let G be a profinite group and let {Ni | i ∈ I} be a collection of
closed normal subgroups of G such that G/Ni is pro - C for each i ∈ I, and⋂

i∈I Ni = 1. We must show that G is a pro - C group. In order to do this, it
suffices to show that G/U ∈ C whenever U �o G. Let J ⊆f I indicate that
J is a finite subset of I. For J ⊆f I, define NJ =

⋂
j∈J Nj . Since NJ �c G,

the group G/NJ is pro - C. Note that the collection {NJ | J ⊆f I} of closed
normal subgroups of G is filtered from below. Hence,

⋂
J ⊆f I(NJU/U) = 1 in

G/U (see Proposition 2.1.4). Therefore, G/U is a subdirect product of the
(finite) set of groups {(G/U)/(NJU/U) ∼= G/NJU | J ⊆f I}. Since G/NJU
is a quotient of G/NJ , we deduce that G/NJU ∈ C. Thus, using the fact that
C is a formation of finite groups, we get G/U ∈ C, as needed.

(d) follows from (b) and (a)
(e) Let

1 −→ K −→ E
ϕ−→ G −→ 1

be an exact sequence of profinite groups and assume that K and G are pro - C.
Let U �o E. Then the induced sequence of finite groups

1 −→ KU/U −→ E/U
ϕ̄−→ G/ϕ(U) −→ 1

is exact. Since KU/U ∼= K/K ∩ U and G/ϕ(U) are in C, it follows that
E/U ∈ C. Hence E is a pro - C group (see Theorem 2.1.3). 
�

Existence of Sections

Let ϕ : X −→ Y be an epimorphism of sets. We say that a map σ : Y −→ X
is a section of ϕ if ϕσ = idY . Plainly every epimorphism ϕ of sets admits a
section. However, if X and Y are topological spaces and ϕ is continuous, it
is not necessarily true that ϕ admits a continuous section. For example, the
natural epimorphism R −→ R/Z from the group of real numbers to the circle
group does not admit a continuous section. Nevertheless, every epimorphism
of profinite groups admits a continuous section, as the following proposition
shows.

Proposition 2.2.2 Let H be a closed normal subgroup of a profinite group G,
and let

π : G −→ G/H

be the canonical projection. Then π admits a continuous section

σ : G/H −→ G

with the property that σ(1H) = 1.

Proof. We divide the proof into two parts. Assume first that H is a finite
group. Then there exists an open normal subgroup U of G such that U ∩
H = 1. Therefore the restriction π|U is injective. Since U is compact, the
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restriction π|U : U −→ π(U) is an isomorphism of topological groups. Hence,
there is a continuous inverse isomorphism σ : π(U) −→ U of π|U . Since
π(U) is an open (normal) subgroup of G/H, one can express G/H as a finite
disjoint union of the left cosets of π(U). Consequently, σ admits a continuous
extension, by translation, to the whole of G/H. This extension is a section
of π, which we denote still by σ. Clearly, σ(1H) = 1.

Consider now the general case, that is, H is any closed normal subgroup
of G. Let P be the set of all pairs (L, η), where L is a closed normal subgroup
of G with L ≤ H, and where η : G/H −→ G/L is a continuous section of
the natural projection G/L −→ G/H such that η(1H) = 1L. Clearly P is
nonempty, since (H, idG/H) ∈ P . Define a partial ordering on P as follows:

(K1, η1) 	 (K2, η2) if K1 ≤ K2,

and the diagram
G/K1 G/K2

G/H

η1 η2

commutes, where the horizontal map is the natural epimorphism. In order to
apply Zorn’s lemma, we show next that P is an inductive poset. If

{(Ki, ηi) | i ∈ I}

is a linearly ordered subset of P , set K =
⋂

i∈I Ki; then one easily checks
that

G/K = lim←−
I

G/Ki.

Since the mappings {ηi | i ∈ I} are compatible, they induce a continuous
mapping

η : G/H −→ G/K.

Then (K, η) ∈ P and (K, η) 	 (Ki, ηi), for every i ∈ I. So {(Ki, ηi) | i ∈ I}
has an upper bound in P , and thus P is inductive. Therefore, by Zorn’s
lemma, there is a maximal element (T, σ) of P . To see that σ is the desired
section, it will suffice to show that T = 1. If this were not the case, there
would exist an open normal subgroup U of G with U ∩ T < T . We prove that
this leads to a contradiction by exhibiting a continuous section

ζ : G/H −→ G/(U ∩ T )

of G/(U ∩ T ) −→ G/H such that (U ∩ T, ζ) � (T, σ). To show the existence
of ζ, it suffices to find a continuous section

ξ : G/T −→ G/(U ∩ T )
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to the projection
G/(U ∩ T ) −→ G/T.

But G/T = (G/(U ∩ T ))/(T/(U ∩ T )), and T/(U ∩ T ) is a finite group. Thus
the existence of ξ follows from the first part of the proof. 
�

Exercise 2.2.3 Let K ≤ H be closed (not necessarily normal) subgroups of
a profinite group G. Consider the natural continuous epimorphism of topo-
logical spaces

π : G/K −→ G/H.

Prove that π admits a continuous section σ : G/H −→ G/K such that
σ(1H) = 1K.

Exactness of Inverse Limits of Profinite Groups

Let
1 −→ {Gi, ϕij , I} Θ−→ {G′

i, ϕ
′
ij , I} Ψ−→ {G′ ′

i , ϕ′ ′
ij , I} −→ 1 (1)

be a sequence of inverse systems of profinite groups over the same directed
poset I and maps of inverse systems. Say Θ = {θi} and Ψ = {ψi}, and assume
that for each i ∈ I the corresponding short sequence of profinite groups

1 −→ Gi
θi−→ G′

i
ψi−→ G′ ′

i −→ 1

is exact, that is, θi is a monomorphism, ψi is an epimorphism, and Im(θi) =
Ker(ψi). In this situation we say that the sequence (1) is a short exact se-
quence of inverse systems of profinite groups. If we apply the functor lim←− to
this sequence, we get a sequence of groups and continuous homomorphisms

1 −→ lim←−
i∈I

Gi
θ−→ lim←−

i∈I

G′
i

ψ−→ lim←−
i∈I

G′ ′
i −→ 1, (2)

where θ = lim←− θi and ψ = lim←− ψi. We claim that (2) is a short exact se-
quence of profinite groups. Indeed, θ is obviously a monomorphism and, by
Lemma 1.1.5, ψ is onto. Furthermore, Im(θ) = Ker(ψ), for clearly ψθ(xi) = 1
for all (xi) ∈ lim←− Gi; hence Im(θ) ≤ Ker(ψ). Conversely, assume that

(x′
i) ∈ Ker(ψ); then for each i ∈ I, there exists xi ∈ Gi with θ(xi) = x′

i.
Since the θi are monomorphisms commuting with the maps ϕij and ϕ′

ij , we
deduce that (xi) ∈ lim←− Gi; so θ(xi) = (x′

i). Therefore, Im(θ) ⊇ Ker(ψ). This
proves the claim.

A functor that preserves exactness in this way, is called an exact functor .
Hence we have proved the following result.

Proposition 2.2.4 Consider the functor lim←− from the category of inverse
systems of profinite groups over the same directed poset I to the category of
profinite groups. Then lim←− is exact.
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2.3 The Order of a Profinite Group and Sylow
Subgroups

We begin this section by showing that an infinite profinite group cannot
be countable. This is a general fact for locally compact topological groups,
but here we present a proof for profinite groups only. The first part of the
following proposition is a special case of the classical Baire category theorem,
valid for locally compact spaces.

Proposition 2.3.1 Let G be a profinite group.

(a) Let C1, C2, . . . be a countably infinite set of nonempty closed subsets of G
having empty interior. Then

G �=
∞⋃

n=1

Ci.

(b) The cardinality |G| of G is either finite or uncountable.

Proof. Part (b) follows immediately from (a). To prove (a), assume that
G =

⋃∞
i=1 Ci, where each Ci is a nonempty closed subset of G with empty

interior. Then Di = G − Ci is a dense open subset of G, for each i = 1, 2, . . . .
Next consider a nonempty open subset U0 of G; then U0 ∩ D1 is open

and nonempty since D1 is open and dense in G. By Theorem 1.1.12(c), there
is a nonempty clopen subset U1 of U0 ∩ D1. Similarly, U1 ∩ D2 is open and
nonempty; therefore there is a nonempty clopen subset U2 of U1 ∩ D2. Pro-
ceeding in this manner we obtain a nested sequence of clopen nonempty
subsets

U1 ⊇ U2 ⊇ · · · ⊇ Ui ⊇ · · ·

such that Ui ⊆ Di ∩ Ui−1 for each i = 1, 2, . . . . Since G is compact and the
closed sets Ui have the finite intersection property, we have that

∞⋂

i=1

Ui �= ∅.

On the other hand,

∞⋂

i=1

Ui ⊆
∞⋂

i=1

Di = G −
( ∞⋃

i=1

Ci

)

= ∅,

a contradiction. 
�

Consider a profinite group

G = lim←−
i∈I

Gi,
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where each Gi is a finite group. If G is infinite, then the knowledge of its
cardinality carries with it little information. There is, nevertheless, a very
useful notion of order of a profinite group G that reflects, in a global manner,
the arithmetic properties of the finite groups Gi and it is independent of the
presentation of G as an inverse limit of finite groups. In order to explain this
concept we need first to introduce the notion of supernatural number.

A supernatural number is a formal product

n =
∏

p

pn(p),

where p runs through the set of all prime numbers, and where n(p) is a non-
negative integer or ∞. By convention, we say that n < ∞, ∞ + ∞ = ∞ +n =
n + ∞ = ∞ for all n ∈ N. If

m =
∏

p

pm(p)

is another supernatural number, and m(p) ≤ n(p) for each p, then we say
that m divides n, and we write m | n. If

{

ni =
∏

p

pn(p,i) | i ∈ I

}

is a collection of supernatural numbers, then we define their product, greatest
common divisor and least common multiple in the following natural way

–
∏

I ni =
∏

p pn(p), where n(p) =
∑

i n(p, i);
– gcd{ni}i∈I =

∏
p pn(p), where n(p) = mini{n(p, i)};

– lcm{ni}i∈I =
∏

p pn(p), where n(p) = maxi{n(p, i)}.

(Here
∑

i n(p, i), mini{n(p, i)} and maxi{n(p, i)} have an obvious meaning;
note that the results of these operations can be either non-negative integers
or ∞.)

Let G be a profinite group and H a closed subgroup of G. Let U denote
the set of all open normal subgroups of G. We define the index [G : H] of H
in G, to be the supernatural number

[G : H] = lcm{[G/U : HU/U ] | U ∈ U }.

The order #G of G is the supernatural number #G = [G : 1], namely,

#G = lcm{ |G/U | | U ∈ U }.

Proposition 2.3.2 Let G be a profinite group.

(a) If H ≤c G, then [G : H] is a natural number if and only if H is an open
subgroup of G;
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(b) If H ≤c G, then

[G : H] = lcm{[G : U ] | H ≤ U ≤o G};

(c) If H ≤c G and U ′ is a fundamental system of neighborhoods of 1 in G
consisting of open normal subgroups, then

[G : H] = lcm{[G/U : HU/U ] | U ∈ U ′ };

(d) Let K ≤c H ≤c G. Then

[G : K] = [G : H][H : K];

(e) Let {Hi | i ∈ I} be a family of closed subgroups of G filtered from below.
Assume that H =

⋂
i∈I Hi. Then

[G : H] = lcm{[G : Hi] | i ∈ I};

(f) Let {Gi, ϕij } be a surjective inverse system of profinite groups over a
directed poset I. Let G = lim←− i∈IGi. Then

#G = lcm{#Gi | i ∈ I};

(g) For any collection {Gi | i ∈ I} of profinite groups,

#
(∏

i∈I

Gi

)

=
∏

i∈I

#Gi.

Proof. We shall prove only part (d), leaving the rest as exercises. Let U denote
the collection of all open normal subgroups of G. Then

[G : K] = lcm{[G/U : KU/U ] | U ∈ U }
= lcm{[G/U : HU/U ][HU/U : KU/U ] | U ∈ U }.

Now, {H ∩ U | U ∈ U } is a fundamental system of neighborhoods of 1 in H.
So, by (c),

[H : K] = lcm{[H/H ∩ U : K(H ∩ U)/H ∩ U ] | U ∈ U }
= lcm{[HU/U : KU/U ] | U ∈ U }.

Hence, it suffices to prove that

lcm{[G/U : HU/U ][HU/U : KU/U ] | U ∈ U }
= lcm{[G/U : HU/U ] | U ∈ U } lcm{[HU/U : KU/U ] | U ∈ U }.

Let p be a prime number, and let pn, pn1 and pn2 be the largest powers of p
such that
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pn | lcm{[G/U : HU/U ][HU/U : KU/U ] | U ∈ U },

pn1 | lcm{[G/U : HU/U ] | U ∈ U }

and
pn2 | lcm{[HU/U : KU/U ] | U ∈ U },

respectively (n, n1, n2 ∈ N ∪ { ∞}). Then, clearly n ≤ n1 + n2, n ≥ n1, and
n ≥ n2. So, if n = ∞, n = n1 + n2. If n < ∞, it follows that n1, n2 < ∞.
Then there exist U1, U2 ∈ U such that

pn1 | [G/U1 : HU1/U1] and pn2 | [HU2/U2 : KU2/U2].

Let U = U1 ∩ U2. Then U ∈ U and

pn1+n2 | [G/U : HU/U ][HU/U : KU/U ].

Hence n ≥ n1 + n2, and thus n = n1 + n2, as needed. 
�

Let π be a set of prime numbers and let π′ denote the set of those primes
not in π. We say that a supernatural number

n =
∏

p

pn(p)

is a π-number if whenever n(p) �= 0 then p ∈ π. A profinite group G is called
a pro -π group or π-group if its order #G is a π-number, that is, if G is the
inverse limit of finite groups whose orders are divisible by primes in π only.
If π = {p} consists of just the prime p, then we usually write pro -p group
rather than pro -{p} group. A closed subgroup H of a profinite group G is
a π-Hall subgroup if #H is a π-number and [G : H] is a π′-number. When
π = {p}, a π-Hall subgroup is called a p-Sylow subgroup.

Exercise 2.3.3 Let π be a set of prime numbers and ϕ : G −→ K a contin-
uous homomorphism of profinite groups. Let H ≤c G. Then

(a) If H is a π-group, so is ϕ(H);
(b) If H is a π-Hall subgroup of G, then ϕ(H) is a π-Hall subgroup of ϕ(G).

Lemma 2.3.4 Let π be a set of prime numbers. Assume that G is a profinite
group and let H be a closed subgroup of G.

(a) Suppose that
G = lim←−

I

Gi,

where {Gi, ϕij , I} is a surjective inverse system of finite groups. Then, H
is a π-Hall subgroup of G if and only if each ϕi(H) is a π-Hall subgroup
of Gi.

(b) H is a π-Hall subgroup of G if and only if HU/U is a π-Hall subgroup of
G/U for each open normal subgroup U of G.
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Proof. Part (b) follows from part (a). By Corollary 1.1.8,

H = lim←−
I

ϕi(H).

So, by part (f) of the proposition above and Exercise 2.3.3, H is a π-group if
and only if each ϕi(H) is a π-group. Let Si = Ker(ϕi). By Lemma 2.1.1, the
collection of open normal subgroups {Si | i ∈ I} is a fundamental system of
neighborhoods of 1 in G; hence, by Proposition 2.3.2(c),

[G : H] = lcm{[G/Si : HSi/Si] | i ∈ I}.

Since each ϕi is an epimorphism (see Proposition 1.1.10), [G/Si : HSi/Si] =
[Gi : ϕi(H)]. Thus, [G : H] is a π′-number if and only if each [Gi : ϕi(H)] is
a π′-number. 
�

Theorem 2.3.5 Let π be a fixed set of prime numbers and let

G = lim←−
i∈I

Gi,

be a profinite group, where {Gi, ϕij , I} is a surjective inverse system of finite
groups. Assume that every group Gi (i ∈ I) satisfies the following properties:

(a) Gi contains a π-Hall subgroup;
(b) Any π-subgroup of Gi is contained in a π-Hall subgroup;
(c) Any two π-Hall subgroups of Gi are conjugate.

Then

(a′) G contains a π-Hall subgroup;
(b′) Any closed π-subgroup of G is contained in a π-Hall subgroup;
(c′) Any two π-Hall subgroups of G are conjugate.

Proof. (a′) Let Hi be the set of all π-Hall subgroups of Gi. By (a), Hi �= ∅.
Since ϕij is an epimorphism, ϕij(Hi) ⊂ Hj , whenever i 	 j. Therefore,
{Hi, ϕij , I} is an inverse system of nonempty finite sets. Consequently, ac-
cording to Proposition 1.1.4,

lim←−
i∈I

H �= ∅.

Let (Hi) ∈ lim←− Hi. Then Hi is a π-Hall subgroup of Gi for each i ∈ I, and

{Hi, ϕij , I} is an inverse system of finite groups. Hence, by Lemma 2.3.4,
H = lim←− Hi is a π-Hall subgroup of G, as desired.

(b′) Let H be a π-subgroup of G. Then, ϕi(H) is a π-subgroup of Gi

(i ∈ I). By assumption (b), there is some π-Hall subgroup of Gi that contains
ϕi(H); so the set
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Si = {S | ϕi(H) ≤ S ≤ Gi, S is a π-Hall subgroup of Gi}

is nonempty. Furthermore, ϕij(Si) ⊆ Sj . Then {Si, ϕij , I} is an inverse sys-
tem of nonempty finite sets. Let (Si) ∈ lim←− Si; then {Si, ϕij } is an inverse
system of groups. Finally,

H = lim←− ϕi(H) ≤ lim←− Si,

and S = lim←− Si is a π-Hall subgroup of G by Lemma 2.3.4.

(c′) Let H and K be π-Hall subgroups of G. Then ϕi(H) and ϕi(K) are
π-Hall subgroups of Gi (i ∈ I), and so, by assumption, they are conjugate
in Gi. Let

Qi = {qi ∈ Gi | q−1
i ϕi(H)qi = ϕi(K)}.

Clearly ϕij(Qi) ⊆ Qj (i 	 j). Therefore, {Qi, ϕij } is an inverse system of
nonempty finite sets. Using again Proposition 1.1.4, let q ∈ lim←− Qi. Then

q−1Hq = K, since ϕi(q−1Hq) = ϕi(K), for each i ∈ I. 
�

If π = {p} consists of just one prime, then the Sylow theorems for finite
groups (cf. Hall [1959], Theorems 4.2.1–3) guarantee that the assumptions of
Theorem 2.3.5 are satisfied for all finite groups. As a consequence we obtain
the following generalizations of the Sylow theorems.

Corollary 2.3.6 (The Sylow Theorem for Profinite Groups) Let G
be any profinite group and let p be a fixed prime number. Then

(a) G contains a p-Sylow subgroup.
(b) Any closed p-subgroup of G is contained in a p-Sylow subgroup.
(c) Any two p-Sylow subgroups of G are conjugate.

Similarly, every finite solvable group C satisfies the assumptions of The-
orem 2.3.5 for any set π of prime numbers (cf. Hall [1959], Theorem 9.3.1).
Thus one obtains the following result.

Corollary 2.3.7 (The P. Hall Theorem for Prosolvable Groups) Let
G be a prosolvable group, and let π be a fixed set of prime numbers. Then

(a) G contains a π-Hall subgroup.
(b) Any closed π-subgroup of G is contained in a π-Hall subgroup.
(c) Any two π-Hall subgroups of G are conjugate.

The methods used in Theorem 2.3.5 give an indication of how certain
properties valid for the finite groups in a class C, can be generalized to pro -
C groups. The general philosophy is that, if a property is shared by the
groups of an inverse system {Gi, ϕij } of groups, and this property is preserved
by the homomorphisms ϕij in some “uniform” manner, then that property
will imply a judiciously phrased analogous one for the corresponding inverse
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limit lim←− Gi. As further applications of these methods, we mention a few
more results that it will be convenient to have explicitly stated for future
reference. In most cases we leave the proofs as exercises, although we shall
remind the reader of the necessary corresponding properties of finite groups.

If G is a finite nilpotent group, then it has a unique p-Sylow subgroup
for each prime p; moreover, G is the direct product of its p-Sylow subgroups.
These properties characterize finite nilpotent groups (cf. Hall [1959], Theo-
rem 10.3.4).

Proposition 2.3.8 A profinite group G is pronilpotent if and only if for each
prime number p, G contains a unique p-Sylow subgroup.

Denote by Gp the unique p-Sylow subgroup of a pronilpotent group G.
Then G is the direct product G =

∏
p Gp of its p-Sylow subgroups.

Let G be a prosolvable group. A Sylow basis {Sp | p a prime number} for
G is a collection of p-Sylow subgroups, one for each prime number p, such that
SpSq = SqSp for each pair of primes p, q. Since Sylow subgroups are compact
by definition, SpSq is compact, and so closed; hence the last condition implies
that SpSq is a closed subgroup of G. A theorem of P. Hall asserts that every
finite solvable group admits a Sylow basis, and moreover any two such bases
are conjugate (cf. Kargapolov and Merzljakov [1979], p. 142). Then, using
methods similar to those above, one can prove the following generalization
to prosolvable groups.

Proposition 2.3.9 Let G be a prosolvable group. For each prime number p,
let Sp′ be a p′-Hall subgroup of G. Then

(a) For each prime q,

Sq =
⋂

p�=q

Sp′

is a q-Sylow subgroup of G. The topological closure of the product

S2S3S5 · · ·

of all the groups Sq is G.
(b) The collection {Sq | q} defined in (a) is a Sylow basis of G.
(c) Any two Sylow bases {Sq | q} and {Rq | q} of G are conjugate, that is,

there is some x ∈ G such that Sx
q = Rq, for each prime q.

In a profinite group G of order n, a p-complement is a closed subgroup
H whose index is pnp , the highest power of p dividing n. Corollary 2.3.7
asserts that a prosolvable group contains p-complements for every prime p.
In the case of finite groups, this property characterizes solvable groups (cf.
Hall [1959], Theorem 9.3.3). Correspondingly one has the following



2.3 The Order of a Profinite Group and Sylow Subgroups 39

Proposition 2.3.10 Let G be a profinite group. Then G is prosolvable if
and only if G has p-complements for each prime p. If this is the case, a p-
complement in G is a p′-Hall subgroup Sp′ of G, and G = SpSp′ , for any
p-Sylow subgroup Sp of G.

Example 2.3.11 The group of p-adic integers Zp is naturally embedded in Ẑ,
and it is a p-Sylow subgroup of Ẑ. Moreover

Ẑ =
∏

p

Zp.

Note that
#Zp = p∞, and #Ẑ =

∏

p

p∞.

More generally, if C is a variety of finite groups, then the pro - C completion
of Z can be expressed as

ZĈ =
∏

Cp ∈C
Zp.

Exercise 2.3.12

(a) Show that the order of the finite group GLn(Z/pZ) is

|GLn(Z/pZ)| = (pn − 1)(pn − p) · · · (pn − pn−1);

(b) For each natural number m, there is a short exact sequence of finite groups

I −→ Lm −→ GLn(Z/pmZ)
ϕm−→ GLn(Z/pZ) −→ I,

where I is the n × n identity matrix, and

Lm = {I + U | U is an n × n matrix with entries in p(Z/pmZ)};

(c) |GLn(Z/pmZ)| = p(m−1)n2
(pn − 1)(pn − p) · · · (pn − pn−1);

(d) The profinite group GLn(Zp) has a p-Sylow subgroup of index

(pn − 1)(pn−1 − 1) · · · (p − 1).

(Hint: see Exercise 2.1.9.)

Exercise 2.3.13 (The Frattini Argument) Let G be a profinite group
and p a prime. Assume H is a closed normal subgroup of G and let P be a
p-Sylow subgroup of H. Prove that the normalizer

N = NG(P ) = {x ∈ G | x−1Px = P }

of P in G is closed in G. Moreover, G = HN .
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Exercise 2.3.14 Let G be a profinite group, S ≤c G and W �c S. One says
that W is weakly c (respectively, strongly c)∗ in S with respect to G if for
every g ∈ G with W g ≤ S ones has that W g = W (respectively, if for every
g ∈ G, W g ∩ S ≤ W ).

(a) Let p be a prime number and assume that S is a p-Sylow subgroup of
G. Let ϕ : G −→ H be a continuous epimorphism of profinite groups.
Prove that if W is weakly c (respectively, strongly c) in S with respect to
G, then ϕ(W ) is weakly c (respectively, strongly c) in ϕ(S) with respect
to H.

(b) The properties of being weak and strong c are preserved by inverse limits.
Explicitly: assume that

G = lim←−
i∈I

Gi,

where {Gi, ϕij , I} is an inverse system of profinite groups over the poset I.
Let ϕi : G −→ Gi (i ∈ I) be the projection maps. If, for every i ∈ I,
ϕi(W ) is weakly c (respectively, strongly c) in ϕi(S) with respect to Gi,
then W is weakly c (respectively, strongly c) in S with respect to G.

The following is an analog of the classical Schur-Zassenhaus theorem for
finite groups.

Theorem 2.3.15 Let K be a closed normal Hall subgroup of a profinite
group G. Then K has a complement H in G (i.e., H is a closed subgroup of
G such that G = KH and K ∩ H = 1). Moreover, any two complements of
K are conjugate in G.

Proof. Let U be the collection of all open normal subgroups of G. Let U ∈ U .
Then KU = KU/U is Hall subgroup of the finite group GU = G/U . Let
SU the collection of all the complements of KU in GU . Then SU �= ∅ by
the theorem of Schur-Zassenhaus for finite groups (cf. Huppert [1967], Theo-
rem I.18.1). If U, V ∈ U with U ≤ V , let ϕUV : GU −→ GV be the canonical
epimorphism. Then ϕUV (SU ) ⊆ SV . Therefore, {SU | U ∈ U } is an inverse
system of finite nonempty sets. By Proposition 1.1.4,

lim←−
U ∈U

SU �= ∅.

Let (HU ) ∈ lim←− SU . It follows that the groups {HU | U ∈ U } form an inverse

system (for U ≤ V , the homomorphism HU −→ HV is the restriction of ϕUV

to HU ). Define H = lim←− HU . It follows that H is a closed subgroup of G such
that #K and #H are coprime since their images in each GU are coprime
(see Proposition 2.3.2); therefore, K ∩ H = 1. Finally, note that G = KH by
Corollary 1.1.8. Hence H is a complement of K in G.
∗ The terms ‘weakly c’ and ‘strongly c’ correspond to the concepts of ‘weakly closed’
and ‘strongly closed’ used in the theory of fusion for finite groups: see Alperin [1967].
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Assume that L is another complement of K in G. We have to show that
H and L are conjugate in G. Denote by HU and LU their corresponding
canonical images in GU . Clearly HU and LU are complements of KU in
the finite group GU . Using again the theorem of Schur-Zassenhaus for finite
groups, we deduce that HU and LU are conjugate in GU . For each U ∈ U ,
consider the subset EU of GU consisting of all elements e ∈ GU such that
Le

U = HU . Plainly, ϕUV (EU ) ⊆ EV for all pairs U, V ∈ U with U ≤ V . Hence
{EU | U ∈ U } is an inverse system of nonempty sets. By Proposition 1.1.4,
there exists some x = (xU ) ∈ lim←− EU ⊆ G. Claim that Lx = H. We know

that LxU

U = HU for every U ∈ U ; hence the claim follows from Corollary 1.1.8.

�

Let G be a profinite group and let K �c G, H ≤c G with G = KH
and K ∩ H = 1. As it is usual, we say that G is an internal semidirect
product of K by H. The standard notation for this situation is G = K � H.
(See Example 4.6.2 for the construction of external semidirect products of
profinite groups.)

Proposition 2.3.16 Let G = K � H be a semidirect product of profinite
groups as above. Assume that K is a Hall subgroup of G. Let L be a closed
subgroup of K which is normalized by H. If H leaves invariant some coset
Lk of L in K, then there exists x ∈ Lk such that xh = x for all h ∈ H.

Proof. The result holds for finite groups (cf. Huppert [1967], Theorem I.18.6).
Let U be the collection of all open normal subgroups of G. For R ≤c G, denote
by RU the image in GU = G/U of R (U ∈ U ). Note that |KU | and |HU | are
coprime, and that HU fixes the coset LUkU , where kU is the canonical image
of k in KU . Hence, the set

SU = {s ∈ LUkU | shU = s, for all hU ∈ HU }

is nonempty (by the result for finite groups). Plainly, the canonical epimor-
phism GU = G/U −→ GV = G/V (U ≤ V in U ) maps SU into SV . There-
fore, {SU | U ∈ U } is an inverse system of finite nonempty sets. Hence the
corresponding inverse limit is not empty (see Proposition 1.1.4). Let

x ∈ lim←−
U ∈U

SU .

Then x ∈ Lk and xh = x for all h ∈ H (see Corollary 1.1.8). 
�

Exercise 2.3.17 Let G be a profinite group. Define closed subgroups γn(G)
(n = 1, 2, . . .) of G as follows

γ1(G) = G, γn+1(G) = [G, γn(G)].

Then G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γn(G) ≥ · · · is called the lower central
series of G. Prove that the following conditions are equivalent:
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(a) G is pronilpotent;
(b)

∞⋂

n=1

γn(G) = 1.

2.4 Generators

Let G be a profinite group and let X be a subset of G. We say that X
generates G (or, if there could be any danger of confusion, generates G as
a profinite group or as a topological group), if the abstract subgroup 〈X〉 of
G generated by X is dense in G. In that case, we call X a set of generators
(or, if more emphasis is needed, a set of topological generators) of G, and we
write G = 〈X〉. We say that a subset X of a profinite group G converges
to 1 if every open subgroup U of G contains all but a finite number of the
elements in X. If X generates G and converges to 1, then we say that X is a
set of generators of G converging to 1. A profinite group is finitely generated
if it contains a finite subset X that generates G. A profinite group G is
called procyclic if it contains an element x such that G = 〈x〉. Observe that
a profinite group G is procyclic if and only if it is the inverse limit of finite
cyclic groups.

Lemma 2.4.1

(a) Let {Gi, ϕij , I} be a surjective inverse system of profinite groups and let

G = lim←−
i∈I

Gi.

Denote by ϕi : G −→ Gi (i ∈ I) the projection maps. Let X ⊆ G. Then
X generates G if and only if ϕi(X) generates Gi for each i ∈ I.

(b) Let X be a subset of a profinite group G and let X̄ denote its closure.
Then X generates G if and only if X̄ generates G.

Proof. (a) If X generates G, it is plain that ϕi(X) generates Gi for each i ∈ I.
Conversely, suppose that ϕi(X) generates Gi for each i ∈ I. Put H = 〈X〉.
Then ϕi(H) = Gi for each i ∈ I. Therefore, H = G by Corollary 1.1.8.

(b) Write G = lim←− G/U , where U ranges over all the open normal sub-

groups of G. Then X and X̄ have the same image in G/U , for each U . Hence,
the result follows from part (a). 
�

Example 2.4.2 Ẑ and Zp are procyclic groups. If p and q are different prime
numbers, then Zp × Zq is procyclic. On the other hand, Zp × Zp can be
generated by two elements, but it is not procyclic.
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Exercise 2.4.3 Let X be a set of generators converging to 1 of a profinite
group G. Then the topology on X − {1} induced from G is the discrete
topology. If X is infinite, X̄ = X ∪ {1}. If 1 /∈ X and X is infinite, then X̄ is
the one-point compactification of X.

Proposition 2.4.4 Every profinite group G admits a set of generators con-
verging to 1.

Proof. Consider the set P of all pairs (N, XN ), where N�cG and XN ⊆ G−N
such that

(i) for every open subgroup U of G containing N , XN − U is a finite set;
and

(ii) G = 〈XN , N 〉.

Note that these two conditions imply that X̃N = {xN | x ∈ XN } is a set
of generators of G/N converging to 1. Clearly P �= ∅. Define a partial ordering
on P by (N, XN ) � (M, XM ) if N ≥ M , XN ⊆ XM and XM − XN ⊆ N .
We first check that the hypotheses of Zorn’s Lemma are met. Let {(Ni, Xi) |
i ∈ I} be a linearly ordered subset of P ; put K =

⋂
i∈I Ni and XK =

⋃
i∈I Xi.

We claim that (K, XK) ∈ P . Clearly XK ⊆ G − K. Observe that for each
i ∈ I, the natural epimorphism ϕi : G/K −→ G/Ni sends X̃K onto X̃i. By
Lemma 2.4.1, X̃K generates G/K = lim←− i∈IG/Ni. Hence condition (ii) holds.

Finally, we check condition (i). Let K ≤ U �o G; then (see Proposition 2.1.5),
there is some i0 ∈ I such that U ≥ Ni0 . So, XK − U = Xi0 − U . Therefore,
XK − U is finite. This proves the claim. One easily verifies that (K, XK) is
an upper bound for the chain {(Ni, Xi) | i ∈ I}; hence (P , �) is an inductive
poset. By Zorn’s Lemma, there exists a maximal pair (M, X) in P . To finish
the proof, it suffices to show that M = 1. Assuming otherwise, let U �o G
be such that U ∩ M is a proper subgroup of M . Choose a finite subset T
of M − (U ∩ M) such that M = 〈T, U ∩ M 〉. Clearly, (U ∩ M, X ∪ T ) ∈ P .
Furthermore, (M, X) ≺ (U ∩ M, X ∪ T ). This contradicts the maximality of
(M, X). Thus M = 1. 
�

Definition 2.4.5 Let G be a profinite group. Define d(G) to be the smallest
cardinality of a set of generators of G converging to 1.

We now consider the question of what types of closed subsets X of a
profinite group G can generate G, as an abstract group. This is obviously the
case if X = G; we shall see that, in some sense, one can deviate very little
from this case. Denote by Prn(X) the set of all finite products of the form
x±1

1 · · · x±1
n , where x1, . . . , xn ∈ X. Then we have the following result, which

is valid in fact for any compact Hausdorff topological group G.

Lemma 2.4.6 Let G be a profinite group and let X be a closed subset of G
such that X = X−1 and 1 ∈ X. Then G = 〈X〉 (generated as an abstract
group) if and only if G = Prm(X) for some m = 1, 2, . . . .
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Proof. It is plain that if G = Prm(X), then G = 〈X〉. Conversely, suppose
that G = 〈X〉. By assumption G =

⋃∞
n=1 Prn(X), and clearly each Prn(X)

is closed. By Proposition 2.3.1, a profinite group cannot be the union of
countably many closed subsets with empty interior. Hence Prt(X) contains
a nonempty open set U for some t = 1, 2, . . . . Clearly G =

⋃
g∈G gU . By

compactness there exist finitely many g1, . . . , gr ∈ G such that G =
⋃r

i=1 giU .
Since G = 〈X〉, there exists some s such that g1, . . . , gr ∈ Prs(X). Put
m = t + s; then G = Prm(X). 
�

2.5 Finitely Generated Profinite Groups

A closed subgroup K of a profinite group is called characteristic if ϕ(K) = K
for all continuous automorphisms ϕ of G.

Proposition 2.5.1 Let G be a finitely generated profinite group.

(a) For each natural number n, the number of open subgroups of G of index
n is finite.

(b) The identity element 1 of G has a fundamental system of neighborhoods
consisting of a countable chain of open characteristic subgroups

G = V0 ≥ V1 ≥ V2 ≥ · · · .

Proof. (a) If H is an open subgroup of G, the number of conjugates Hg =
g−1Hg of H in G is finite, since H has finite index in G. Hence the core
HG =

⋂
g∈G Hg of H in G has finite index in G; so HG is open in G. Conse-

quently it suffices to show that G has finitely many open normal subgroups
N of index m, for a fixed natural number m. But such a group N is the
kernel of an epimorphism ϕ : G −→ R, for some finite group R of order m.
Observe that such ϕ is completely determined by its values on a given finite
set of generators of G. Therefore, for a fixed R there are only finitely many
epimorphisms ϕ. On the other hand, there are only finitely many groups of
order m. Thus there are finitely many such N .

(b) Let n be a natural number. Define Vn to be the intersection of all open
subgroups of G of index at most n. By (a), Vn is open and characteristic. It
is obvious that Vn ≥ Vn+1 for all natural numbers n. These subgroups form a
fundamental system of neighborhoods of 1 since every open subgroup contains
some Vn. 
�

A group G is Hopfian if every endomorphism of G which is onto is an iso-
morphism. Next we establish an analog of the Hopfian property for profinite
groups.

Proposition 2.5.2 Let G be a finitely generated profinite group and let ϕ :
G −→ G be a continuous epimorphism. Then ϕ is an isomorphism.
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Proof. We claim that ϕ is an injection. To see this, it is enough to show that
Ker(ϕ) is contained in every open normal subgroup of G. For each natural
number n denote by Un the set of all open normal subgroups of G of index n.
By Proposition 2.5.1 Un is finite. Define

Φ : Un −→ Un

to be the function given by Φ(U) = ϕ−1(U). Clearly Φ is injective. Since
Un is finite, Φ is bijective. Let U be an open normal subgroup of G; then U
has finite index, say n, in G. Therefore U = ϕ−1(V ) for some open normal
subgroup V , and thus U ≥ Ker(ϕ), as desired. Hence ϕ is an injection. Thus
ϕ is a bijection. Since G is compact, it follows that ϕ is a homeomorphism,
and so an isomorphism of profinite groups. 
�

Lemma 2.5.3 Let {Gi, ϕij , I} be a surjective inverse system of finite groups.
Define

G = lim←−
i∈I

Gi.

Then d(G) < ∞ if and only if {d(Gi) | i ∈ I} is a bounded set ; in this case,
there exists some io ∈ I such that d(G) = d(Gj), for each j ≥ io.

Proof. Let d(G) = n < ∞. Since the projection ϕi : G −→ Gi is an epi-
morphism (see Proposition 1.1.10), we have that d(Gi) ≤ n for each i ∈ I.
Conversely, assume n < ∞ is the least upper bound of {d(Gi) | i ∈ I}; say
n = d(Gio). For each i ∈ I, let Xi be the set of all n-tuples (x1, . . . , xn) ∈
Gi × · · · × Gi such that 〈x1, . . . , xn〉 = Gi. Then clearly {Xi, ϕij , I} is in
a natural way an inverse system of nonempty sets. By Proposition 1.1.4,
lim←− Xi �= ∅. Let Y = (y1, . . . , yn) ∈ lim←− Xi. It follows from Corollary 1.1.8

that G = 〈y1, . . . , yn〉. Finally, it is plain that if j ≥ io, then d(G) = d(Gj).

�

Proposition 2.5.4 Let G and H be finitely generated profinite groups and
let n be a natural number with d(G) ≤ n. Let

ϕ : G −→ H

be a continuous epimorphism and assume that H = 〈h1, . . . , hn〉. Then there
exist g1, . . . , gn ∈ G such that G = 〈g1, . . . , gn〉 and ϕ(gi) = hi (i = 1, . . . , n).

Proof.

Case 1. G is finite.

For h = (h1, . . . , hn) ∈ H × · · · × H with 〈h1, . . . , hn〉 = H, let tG(h)
denote the number of n-tuples

g = (g1, . . . , gn) ∈ G × · · · × G
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such that 〈g1, . . . , gn〉 = G and ϕ(gi) = hi for all i. Let g = (g1, . . . , gn) ∈
G × · · · × G be a tuple such that ϕ(gi) = hi for all i; then any tuple g′ =
(g′

1, . . . , g
′
n) with ϕ(g′

i) = hi (i = 1, . . . , n) must be in

g1Ker(ϕ) × · · · × gnKer(ϕ).

Hence
tG(h) = |Ker(ϕ)|n −

∑
tL(h),

where the sum is taken over the collection of proper subgroups L of G for
which ϕ(L) = H.

We have to show that tG(h) ≥ 1. This is certainly the case for certain
types of tuples h, for example, take h = ϕ(g), where g = (g1, . . . , gn) and
g1, . . . , gn is a set of generators of G. Therefore the result follows if we prove
the following assertion: tG(h) is independent of h. Observe that this assertion
holds if G does not contain any proper subgroup L with ϕ(L) = H, since in
this case tG(h) is precisely the total number of n-tuples g ∈ G × · · · × G such
that ϕ(g) = h, namely |Ker(ϕ)|n. We prove the assertion by induction on |G|.
Assume that it holds for all epimorphisms L −→ H such that |L| < |G|. Then
the above formula shows that tG(h) is independent of h.

Case 2. G is infinite.

Let U be the collection of all open normal subgroups of G. For each U ∈ U
consider the natural epimorphism ϕU : G/U −→ H/ϕ(U) induced by ϕ. Then

ϕ = lim←−
U ∈U

ϕU .

For h ∈ H, denote by hU its natural image in H/ϕ(U). Plainly H/ϕ(U) =
〈hU

1 , . . . , hU
n 〉. Let XU be the set of all n-tuples (y1, . . . , yn) ∈ G/U × · · · ×G/U

such that 〈y1, . . . , yn〉 = G/U and ϕ(yi) = hU
i (i = 1, . . . , n). By Case 1,

XU �= ∅. Clearly the collection { XU | U ∈ U } is an inverse system of sets in
a natural way. It follows then from Proposition 1.1.4 that there exists some

(g1, . . . , gn) ∈ lim←−
U ∈U

XU ⊆ G × · · · × G.

Then it is immediate that ϕ(gi) = hi (i = 1, . . . , n) and G = 〈g1, . . . , gn〉. 
�

Finite generation is a property preserved by open subgroups as we show
in the next proposition (we shall give a more precise result later on in Corol-
lary 3.6.3).

Proposition 2.5.5 Let G be a finitely generated profinite group and let U be
an open subgroup of G. Then U is also finitely generated.
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Proof. Let X be a finite set of generators of G and let T be a right transversal
of U in G such that 1 ∈ T . Replacing X by X ∪ X−1 if necessary, we may
assume that X = X−1. If g ∈ G, denote by g̃ the element of T such that
Ug = Ug̃. Define

Y = {tx(t̃x)−1 | x ∈ X, t ∈ T }.

Then Y is a finite set since both X and T are finite sets. We claim that
〈Y 〉 = U . Put H = 〈Y 〉. Plainly Y ⊆ U , and so H ≤ U . Let h ∈ H; then,
for t ∈ T and x ∈ X, we have htx = htx(t̃x)−1t̃x ∈ HT . Since 1 ∈ HT , this
shows that X ⊆ HTX ⊆ HT , and so Xk ⊆ HT for k = 0, 1, 2, . . . . Hence
〈X〉 ≤ HT , because X = X−1. Since T is finite, HT is closed, so HT = G.
We deduce that the index of H in G is at most |T | = [G : U ]. Since H ≤ U ,
it follows that H = U (see Proposition 2.3.2). 
�

2.6 Generators and Chains of Subgroups

Let X be a topological space. Define the weight w(X) of X to be the smallest
cardinal of a base of open sets of X. We denote by ρ(X) the cardinal of the
set of all clopen subsets of X. If G is a topological group, its local weight
w0(G) is defined as the smallest cardinal of a fundamental system of open
neighborhoods of 1 in G. When G is an infinite profinite group, it follows
from Theorem 2.1.3 that w0(G) is the cardinal of any fundamental system
of neighborhoods of 1 consisting of open subgroups. Note that for a profinite
group G, w0(G) is finite only if G is finite; and in that case w0(G) = 1. More
generally, if H is a closed subgroup of G, we define the local weight of G/H
to be the smallest cardinal of a fundamental system of open neighborhoods
of a point of G/H. Since for any two points of the quotient space G/H, there
is a homeomorphism of G/H that maps one of those points to the other, this
definition is independent of the point used.

Proposition 2.6.1

(a) Let X be an infinite profinite space. Then w(X) = ρ(X). In particular,
the cardinality of any base of open sets of X consisting of clopen sets
is ρ(X).

(b) If G is an infinite profinite group, then w0(G) = w(G) = ρ(G).

Proof. (a) By Theorem 1.1.12, w(X) ≤ ρ(X). Let U be a base of open sets of
X such that | U | = w(X). For each clopen set W in X, choose a finite subset
Φ(W ) of U such that W is the union of the sets in Φ(W ). It follows that Φ
is an injective function from the set of all clopen subsets to the set of finite
subsets of U . Hence, w(X) ≥ ρ(X).

(b) Let N be a fundamental system of neighborhoods of 1 consisting of
open normal subgroups. Then {gN | N ∈ N } is a base of open sets of G.
The cardinality of this base is still w0(G) since each N ∈ N has finite index
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in G. So w0(G) ≥ w(G), and therefore w0(G) = w(G). By part (a), the result
follows. 
�

Proposition 2.6.2 Let G be an infinite profinite group.

(a) If X is an infinite closed set of generators of G, then w0(G) = ρ(X).
(b) If X is an infinite set of generators of G converging to 1, then |X| =

w0(G).

Proof. (a) By Theorem 2.1.3, w0(G) is the cardinal of the set of open normal
subgroups of G. Observe that an open normal subgroup arises always as the
kernel of a continuous homomorphism from G onto a finite group. If H is a
finite group, a continuous homomorphism

ϕ : G −→ H

is completely determined by its restriction to X; and a continuous mapping
from X to H is determined by its values on at most |H| clopen subsets of X.
Therefore, there are at most ρ(X) continuous homomorphisms from G to H.
Since X is infinite and there are countably many nonisomorphic finite groups,
it follows that there are at most ρ(X) continuous homomorphisms from G to
a finite group. Thus, there exist at most ρ(X) open normal subgroups in G.
So w0(G) ≤ ρ(X). On the other hand, ρ(X) ≤ ρ(G) since X ≤ G. Finally, it
follows from Proposition 2.6.1 that ρ(G) = w0(G).

(b) The set X̄ = X ∪ {1} is the one-point compactification of X − {1}
(see Exercise 2.4.3). Hence a base of open sets of X̄ consists of the subsets of
X − {1} and the complements in X̄ of the finite subsets of X − {1}. Hence the
clopen subsets of X̄ are the finite subsets of X − {1} and their complements
in X̄. Therefore ρ(X̄) = |X|.Thus the result follows from (a). 
�

As a consequence of the above proposition and the definition of d(G) (see
Definition 2.4.5), one has

Corollary 2.6.3 Let G be a profinite group. If d(G) is infinite, then d(G) =
w0(G).

Theorem 2.6.4 Let C be a formation of finite groups closed under taking
normal subgroups. Assume that G is a pro - C group. Let μ be an ordinal
number, and let |μ| denote its cardinal. Then w0(G) ≤ |μ| if and only if there
exists a chain of closed normal subgroups Gλ of G, indexed by the ordinals
λ ≤ μ

G = G0 ≥ G1 ≥ · · · ≥ Gλ ≥ · · · ≥ Gμ = 1 (3)

such that

(a) Gλ/Gλ+1 is a group in C;
(b) if λ is a limit ordinal, then Gλ =

⋂
ν<λ Gν .
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Moreover, if G is infinite, μ and the chain (3) can be chosen in such a
way that

(c) w0(G/Gλ) < w0(G) for λ < μ.

Proof. If G is finite, the result is obvious. So, let G be infinite. Assume that
μ is the smallest ordinal whose cardinal is w0(G). Let {Uλ | λ < μ} be a
fundamental system of open neighborhoods of 1 consisting of open normal
subgroups of G, indexed by the ordinals less that μ. For each λ ≤ μ, let
Gλ =

⋂
ν<λ Uν . Then G/Gλ is pro - C (see Proposition 2.2.1), and clearly (a)

and (b) hold. To check (c), assume λ < μ; observe that

{Uν/Gλ | ν < λ}

is a fundamental system of open normal subgroups of G/Gλ. Therefore,

w0(G/Gλ) ≤ |λ| < |μ| = w0(G).

Conversely, suppose that there is a chain (3) of closed normal subgroups
satisfying conditions (a) and (b). We shall show by transfinite induction on
λ that for each λ ≤ μ, w0(G/Gλ) ≤ |λ|. This is obviously true if λ = 1.
Suppose the statement holds for all ordinals ν < λ. If λ is a nonlimit ordinal,
then λ = λ′ + 1, for some λ′. Since [Gλ′ : Gλ] is finite, there is some V �o G
such that Gλ = V ∩ Gλ′ . By the induction hypothesis there is a collection U ′

of open normal subgroups of G containing Gλ′ such that {U/Gλ′ | U ∈ U ′ }
is a fundamental system of open neighborhoods of the identity in G/Gλ′ and
| U ′ | ≤ |λ′ |. Let U = {V ∩ U ′ | U ′ ∈ U ′ }. Then

⋂
U ∈U U = Gλ. Obviously

| U | ≤ |λ|, and it is easily checked that {U/Gλ | U ∈ U } is a fundamental sys-
tem of open neighborhoods of the identity in G/Gλ (see Proposition 2.1.5);
therefore w0(G/Gλ) ≤ |λ|. Suppose now that λ is a limit ordinal. By hypoth-
esis, if ν < λ, then there exists a set Uν of open subgroups of G containing
Gν such that {U/Gν | U ∈ Uν } is a fundamental system of open neighbor-
hoods of the identity in G/Gν and | Uν | ≤ |ν|. Put Uλ =

⋃
ν<λ Uν . Then⋂

U ∈Uλ
U = Gλ; hence, the set U of finite intersections of groups in Uλ form

a fundamental system of open neighborhoods of the identity in G/Gλ (see
Proposition 2.1.5). Furthermore,

| U | = | Uλ| ≤
∑

ν<λ

| Uν | ≤ |λ|,

since λ is infinite. 
�

The next result is partly a consequence of the theorem above and partly
a refinement of it.

Corollary 2.6.5 Let C be a formation of finite groups closed under taking
normal subgroups. Assume that G is a pro - C group and let H be a closed
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normal subgroup of G. Then there exists an ordinal number μ and a chain of
closed pro - C subgroups Hλ of H

H = H0 ≥ H1 ≥ · · · ≥ Hλ ≥ · · · ≥ Hμ = 1

indexed by the ordinals λ ≤ μ, such that

(a) Hλ � G and Hλ/Hλ+1 ∈ C, for each λ < μ;
(b) Either Hλ+1 = Hλ or the group Hλ+1 is a maximal subgroup of Hλ with

respect to property (a);
(c) If λ is a limit ordinal, then Hλ =

⋂
ν<λ Hν ;

(d) If either H or G/H is an infinite group, then

w0(G) = w0(H) + w0(G/H);

(e) Assume that H is infinite. Let M be a closed normal subgroup of G con-
taining H. If w0(M/H) < w0(G), then w0(M/Hλ) < w0(G) whenever
λ < μ.

Proof. If H is finite, the result follows from Theorem 2.6.4: using the notation
of that theorem, denote the (finite!) collection of subgroups {H ∩ Gλ | λ ≤ μ}
of H by {H ′

0, H
′
1, . . . , H

′
t }, where H = H ′

0 ≥ H ′
1 ≥ · · · ≥ H ′

t = 1. Then
condition (a) holds for this collection; if (b) fails, one can easily add to this
collection finitely many subgroups so that the new collection satisfies (a) and
(b).

Assume that H is infinite. Let U be the set of all open normal subgroups
of G. The collection U (H) = {U ∩ H | U ∈ U } is a fundamental system of
open neighborhoods of 1 in H. The cardinality of this collection is w0(H).
Let μ be the smallest ordinal whose cardinality is | U (H)|. Index the distinct
elements of U (H) by the ordinals less than μ, say {Uλ | λ < μ}. For each
λ ≤ μ, let Hλ =

⋂
ν<λ Uν . Then Hλ is normal in G, and so it is pro - C (see

Proposition 2.2.1). Clearly (a) and (c) are satisfied. Adding finitely many
subgroups between Hλ+1 and Hλ if necessary, we may assume that (b) holds.
Next we prove (d). By Theorem 2.6.4 and the above, there exists a chain

G = G0 ≥ G1 ≥ · · · ≥ Gν = H = H0 ≥ · · · ≥ Hμ = 1

of closed normal subgroups of G satisfying conditions (a) and (b) of Theo-
rem 2.6.4; hence w0(G) ≤ w0(H) + w0(G/H). Now, note that

{U/H | U ∈ U , U ≥ H}

is a fundamental system of open neighborhoods of 1 in G/H and

{H ∩ U | U ∈ U , U �≤ H}

is a fundamental system of open neighborhoods of 1 in H. Hence w0(G) ≥
w0(H)+w0(G/H). Thus w0(G) = w0(H)+w0(G/H). Part (e) is proved as in
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the theorem: assume λ < μ; observe that {Uν/Hλ | ν < λ} is a fundamental
system of open normal subgroups of H/Hλ. Therefore, w0(H/Hλ) ≤ |λ| <
|μ| = w0(G), where if ρ is an ordinal, then |ρ| denotes its cardinality. Thus,
w0(M/Hλ) ≤ w0(M/H) + w0(Hλ/H) < w0(G). 
�

Corollary 2.6.6 Let C be a formation of finite groups closed under taking
normal subgroups. Let G be a profinite group and let X be a system of gen-
erators converging to 1. Then |X| ≤ ℵ0 if and only if G admits a countable
descending chain of open normal subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gi ≥ · · ·

such that
⋂∞

i=0 Gi = 1, that is, if and only if the identity element 1 of G
admits a fundamental system of neighborhoods consisting of a countable chain
of open subgroups.

Proof. If |X| is infinite, then the result is a consequence of Proposition 2.6.2
and Theorem 2.6.4. If |X| is finite this follows from Proposition 2.5.1. 
�

Remark 2.6.7 It is known that a topological group G is metrizable if and
only if the identity element of G admits a countable fundamental system of
neighborhoods (cf. Hewitt and Ross [1963], Theorem 8.3). So, according to
the corollary above, a profinite group is metrizable if and only if it has a finite
or a countably infinite set of generators converging to 1.

2.7 Procyclic Groups

Recall that a procyclic group is an inverse limit of finite cyclic groups, or
equivalently (see Lemma 2.5.3), a procyclic group is a profinite group that
can be generated by one element. As with finite cyclic groups it is very simple
to classify such groups in terms of their orders.

Proposition 2.7.1 Let p be a prime number and pn a supernatural number
(0 ≤ n ≤ ∞).

(a) There exists a unique procyclic group C of order pn up to isomorphism;
namely, if n < ∞, C ∼= Z/pnZ, and if n = ∞, C ∼= Zp.

(b) The group Zp has a unique closed subgroup H of index pn. Moreover,
H = pnZp

∼= Zp if n is finite, and H = 1 if n is infinite.
(c) Every procyclic group of order pn appears as a quotient of Zp in a unique

way.
(d) Zp cannot be written as a direct product of nontrivial subgroups.

Proof. Let C be a procyclic group of order p∞, and let U and V be open
subgroups of C with the same indexes; then U/U ∩ V and V/U ∩ V are
subgroups of the finite cyclic group C/U ∩ V with the same index, and so
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U = V . It follows that for each natural number i, the group C has a unique
open subgroup Ui of index pi. Therefore,

C ∼= lim←−
i

C/Ui
∼= lim←−

i

Z/piZ ∼= Zp.

This proves (a). The above argument shows that Zp has a unique closed sub-
group H of index pn if n is finite; so it must coincide with pnZp. Furthermore,
in this case #H = p∞ by Proposition 2.3.2 and therefore H ∼= Zp as shown
in (a). To finish the proof of (b), assume that H is a closed subgroup of Zp

of index p∞. Put Ui = piZp (i = 1, 2, . . .). Then, by the definition of index,
for each i ∈ N there is some j ∈ N such that UjH ≤ Ui; therefore,

H =
∞⋂

i=1

UiH = 1.

Statement (c) follows from (b).
To prove (d) observe that if A and B are nontrivial subgroups of Zp, then

they have finite index and hence so does their intersection. Thus A ∩ B ∼= Zp

according to (a). Therefore Zp �∼= A × B. 
�

If G is a procyclic group then it is the direct product G =
∏

p Gp of
its p-Sylow subgroups (see Proposition 2.3.8). Clearly each Gp is a pro-p
procyclic group. In particular, Ẑ =

∏
p Zp. Conversely, the direct product

G =
∏

p H(p) of pro-p procyclic groups H(p), where p runs through different
primes, is a procyclic group; indeed, if U is an open subgroup of G, then G/U
is a finite cyclic group. These facts together with the proposition above yield
the following description for general procyclic groups.

Theorem 2.7.2 Let n =
∏

p pn(p) be a supernatural number.

(a) There exists a unique procyclic group C of order n up to isomorphism.
(b) The group Ẑ has a unique closed subgroup H of index n. Moreover,

H ∼=
∏

p∈S

Zp,

where S = {p | n(p) < ∞}.
(c) Every procyclic group of order n is a quotient of Ẑ in a unique way.

2.8 The Frattini Subgroup of a Profinite Group

Let G be a profinite group. According to Proposition 2.1.4, every closed
subgroup of G is the intersection of open subgroups; hence a maximal closed
subgroup of G is necessarily open. Moreover, if G is nontrivial, it always has
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maximal open subgroups. Define the Frattini subgroup Φ(G) of G to be the
intersection of all its maximal open subgroups. Observe that, unlike what
could happen for abstract infinite groups, if G is a nontrivial profinite group,
then one always has Φ(G) < G. Plainly Φ(G) is a characteristic subgroup
of G, that is, for every continuous automorphism ψ of G, ψ(Φ(G)) = Φ(G).
The quotient group G/Φ(G) is called the Frattini quotient of G.

An element g of profinite group G is a nongenerator if it can be omitted
from every generating set of G, that is, whenever G = 〈X, g〉, then G = 〈X〉.

Lemma 2.8.1 The Frattini subgroup Φ(G) of a profinite group G coincides
with the set S of all nongenerators of G.

Proof. Let g ∈ S. If H is a maximal open subgroup of G and g �∈ H, then
G = 〈H, g〉 but G �= H; this is a contradiction since g is a nongenerator. Thus
there is no such maximal subgroup H, and so g ∈ Φ(G).

Now, let g ∈ Φ(G); we must show that g ∈ S. Assume on the contrary
that g �∈ S, that is, assume that there exists a subset X of G such that
G = 〈X, g〉, but G �= 〈X〉. Observe that

〈X, g〉 = 〈〈X〉, g〉.

Since 〈X〉 is the intersection of the open subgroups of G containing 〈X〉
(see Proposition 2.1.4), there exists an open subgroup H of G maximal with
respect to the properties of containing 〈X〉 and not containing g. Remark that
H is in fact a maximal open subgroup of G; indeed, if H < K ≤o G, then
K ≥ 〈X, g〉 and so K = G. Since g �∈ H, we have g �∈ Φ(G), a contradiction.
Therefore, g ∈ S as needed. 
�

Proposition 2.8.2

(a) Let G be a profinite group. If N �c G and N ≤ Φ(G), then Φ(G/N) =
Φ(G)/N .

(b) If ρ : G −→ H is an epimorphism of profinite groups, then ρ(Φ(G)) ≤
Φ(H).

(c) If {Gi, ϕij , I} is a surjective inverse system of profinite groups over the
directed indexing set I, then

Φ
(

lim←−
i∈I

Gi

)
= lim←−

i∈I

Φ(Gi).

Proof. Part (a) follows immediately from the definition. Part (b) is clear since
ρ−1(M) is a maximal subgroup of G whenever M is a maximal subgroup of H.

(c) Put G = lim←− i∈IGi, and note that the canonical projection

ϕi : G −→ Gi

is an epimorphism (see Proposition 1.1.10). By (b), ϕi(Φ(G)) ≤ Φ(Gi), for
every i ∈ I. Hence
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Φ(G) = lim←−
i∈I

ϕi(Φ(G)) ≤ lim←−
i∈I

Φ(Gi).

Consider now an element

x = (xi) ∈ lim←−
i∈I

Φ(Gi),

and suppose x �∈ Φ(G). Then there is a maximal open subgroup M of G
with x �∈ M . Hence, xi �∈ ϕi(M) for some i ∈ I. Since ϕi(M) is a maximal
subgroup of Gi, one has that xi �∈ Φ(Gi), a contradiction. Therefore x ∈ Φ(G),
and so

lim←−
i∈I

Φ(Gi) ≤ Φ(G).

�

Corollary 2.8.3 If G is a profinite group, then

G/Φ(G) = lim←−
U

(G/U)/Φ(G/U),

where U runs through the open normal subgroups of G.

Proof. Consider the short exact sequence

1 −→ Φ(G/U) −→ G/U −→ (G/U)/Φ(G/U) −→ 1,

apply (the exact functor) lim←−, and use Proposition 2.8.2. 
�

Corollary 2.8.4 If G is a profinite group, then Φ(G) is pronilpotent.

Proof. This follows from Proposition 2.8.2 and the corresponding result for
finite groups (cf. Hall [1959], Theorem 10.4.2). 
�

Corollary 2.8.5 Let G be a profinite group, H ≤c G and Y ⊆ Φ(G). Assume
that G = 〈H, Y 〉. Then G = H. In particular, if HΦ(G) = G, then H = G.

Proof. Express G as
G = lim←−

U

G/U,

where U runs through the open normal subgroups of G. By Proposition 2.8.2,
Y U/U ⊆ Φ(G/U). Then, using Lemma 2.8.1,

G = lim←−
U

〈HU/U, Y U/U 〉 = lim←−
U

HU/U = H.

�

Lemma 2.8.6 Let G be a finitely generated profinite group. Then d(G) =
d(G/Φ(G)).
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Proof. Obviously d(G) ≥ d(G/Φ(G)). Consider the canonical epimorphism
ψ : G −→ G/Φ(G). Let X ⊆ G be such that ψ(X) is a minimal set of gener-
ators of G/Φ(G). Then G = 〈X, Φ(G)〉 = 〈X〉Φ(G) = 〈X〉 by Corollary 2.8.5;
so d(G/Φ(G)) ≥ d(G). 
�

For a pro-p group G the properties of its Frattini subgroup are particularly
useful. We begin with the following lemma. As usual, if H, K are subgroups
of a group G, we denote by [H, K] the subgroup of G generated by the
commutators [h, k] = h−1k−1hk (h ∈ H, k ∈ K).

Lemma 2.8.7 Let p be a prime number and let G be a pro-p group.

(a) Every maximal closed subgroup M of G has index p.
(b) The Frattini quotient G/Φ(G) is a p-elementary abelian profinite group,

and hence a vector space over the field Fp with p elements.
(c) Φ(G) = Gp[G, G], where Gp = {xp | x ∈ G} and [G, G] denotes the

commutator subgroup of G.

Proof. (a) Let MG =
⋂

g∈G Mg be the core of M in G. Then M/MG is a
maximal subgroup of the finite p-group G/MG and so normal of index p (cf.
Hall [1959], Theorem 4.3.2). Deduce that M is normal of index p in G.

(b)
G/Φ(G) = G/

⋂
M ↪→

∏
G/M,

where M runs through the closed maximal subgroups of G. By (a) G/M ∼=
Z/pZ for each M , so the result follows.

(c) Put G0 = Gp[G, G]. Since the Frattini quotient G/Φ(G) is elementary
abelian, one has Φ(G) ≥ G0. To see that these two groups are in fact the
same, consider an element x �∈ G0. By compactness of G0 there exists an open
normal subgroup U of G such that xU ∩ G0U = ∅; then (G/U)/(G0U/U) is a
finite abelian group of exponent p, and the image x̃ of x in (G/U)/(G0U/U) is
nontrivial. Since (G/U)/(G0U/U) is a finite direct sum of the form

⊕
Z/pZ,

there is a maximal subgroup of (G/U)/(G0U/U) missing x̃. Hence there exists
a maximal open subgroup of G missing x, and thus x �∈ Φ(G). 
�

Corollary 2.8.8 Let p be a prime number and ψ : G1 −→ G2 a continuous
homomorphism of pro-p groups. Then

(a) ψ(Φ(G1)) ≤ Φ(G2). In particular, if G1 ≤ G2, then Φ(G1) ≤ Φ(G2);
(b) If ψ is an epimorphism, then ψ(Φ(G1)) = Φ(G2). In this case, ψ induces

a continuous epimorphism ψ̄ : G1/Φ(G1) −→ G2/Φ(G2).

Proof. This follows immediately from Lemma 2.8.7(c). 
�

We remark that if G1 ≤ G2 are profinite groups, then it is not necessarily
true that Φ(G1) ≤ Φ(G2). For example, let G2 a finite nonabelian simple
group and G1 a nonelementary abelian p-Sylow subgroup.
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Proposition 2.8.9 Let p be a prime number and let G be a pro-p group.
Consider a family {Hi | i ∈ I} of closed subgroups of G filtered from below.
Let H =

⋂
i∈I Hi. Then Φ(H) =

⋂
i∈I Φ(Hi).

Proof. By Corollary 2.8.8 Φ(H) ≤ Φ(Hi) for each i ∈ I; hence Φ(H) ≤⋂
i∈I Φ(Hi). To prove the opposite containment, let x ∈

⋂
i∈I Φ(Hi). Consider

a maximal open normal subgroup U of H and denote by ϕ : H −→ H/U
the canonical epimorphism. We must show that ϕ(x) = 1. Choose N �o

G so that N ∩ H ≤ U . Then there exists some Hk with Hk ≤ NH (see
Proposition 2.1.5). Denote by ψ the composition of natural maps

Hk ↪→ NH −→ NH/N ∼= H/N ∩ H −→ H/U.

Clearly ϕ is the restriction of ψ to H. By Corollary 2.8.8, ψ(x) = 1 since
x ∈ Φ(Hk) and Φ(H/U) = 1; therefore, ϕ(x) = 1. 
�

For a pro-p group G there is a very useful way of characterizing when G
is finitely generated in terms of its Frattini subgroup.

Proposition 2.8.10 Let p be a prime number. A pro-p group G is finitely
generated if and only if Φ(G) is an open subgroup of G.

Proof. A maximal closed subgroup of a pro-p group G has index p (see
Lemma 2.8.7). Therefore if G is finitely generated, it has only finitely many
maximal closed subgroups (see Proposition 2.5.1). Hence their intersection
has finite index, and so Φ(G) is open. Conversely, assume that Φ(G) is open.
Then G/Φ(G) is a finite group; so there exists a finite subset X of G such
that its image in G/Φ(G) generates this group, that is, G = 〈X〉Φ(G). We
deduce from Corollary 2.8.5 that G = 〈X〉. 
�

In contrast with this result, remark that Ẑ is procyclic, but its Frattini
subgroup Φ(Ẑ) =

∏
p pZp has infinite index. However, if the order of an

abelian group G involves only a finite number of prime numbers, the analog
to Proposition 2.8.10 still holds. More generally, one has the following result.
Recall that a finite group G is supersolvable if it admits a finite series G =
C0 ≥ G1 ≥ · · · ≥ Gn = 1 such that Gi � G and Gi/Gi+1 is cyclic, for all i.

Proposition 2.8.11 Let G be a prosupersolvable group whose order is divis-
ible by only finitely many primes. Then G is finitely generated if and only if
Φ(G) is open in G.

Proof. If Φ(G) is open, then G/Φ(G) is a finite group. So G = XΦ(G) for some
finite subset X of G. Hence G = 〈X〉. Conversely, assume that G is finitely
generated. It is known (cf. Hall [1959], Corollary 10.5.1) that the maximal
subgroups of a finite supersolvable group are of prime index. It follows that
the maximal open subgroups of the prosupersolvable group G have prime
index as well. Since #G involves only finitely many primes, then the number
of maximal open subgroups of G is finite. Hence their intersection Φ(G) is
also open. 
�
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Using this one can deduce the following proposition (cf. Oltikar and Ribes
[1978] for a detailed proof).

Proposition 2.8.12 Let G be a finitely generated prosupersolvable group.
Then every p-Sylow subgroup of G is finitely generated.

For a profinite group G define Φ1(G) = Φ(G) and inductively Φn+1(G) =
Φ(Φn(G)) for n = 1, 2, . . . . The series

G ≥ Φ(G) ≥ Φ2(G) ≥ · · ·

is called the Frattini series. Clearly if Φn(G) �= 1, [Φn(G) : Φn+1(G)] > 1;
hence if G is a finite group, its Frattini series leads to 1 in a finite number of
steps, that is, Φn(G) = 1 for some n.

Proposition 2.8.13 Let p be a prime number and G a finitely generated pro-
p group. Then the Frattini series of G constitutes a fundamental system of
open neighborhoods of 1 in G.

Proof. By Proposition 2.8.10 Φ(G) is open and hence finitely generated (see
Proposition 2.5.5). We deduce inductively that each of the subgroups Φn(G)
is open and finitely generated. To complete the proof we must show that
if U is an open normal subgroup of G, then U contains Φn(G) for some n.
Now, since G/U is a finite p-group, Φn(G/U) = 1 for some n; finally observe
that Φn(G/U) = Φn(G)U/U , as can be easily seen from Lemma 2.8.7 and
induction on n. Thus Φn(G) ≤ U . 
�

Exercise 2.8.14 Let p be a prime number and G a pro-p group. Put

P1(G) = G and Pn+1(G) = Pn(G)p[G, Pn(G)] for n = 1, 2, . . . .

Then

(a) For K �c G, Pn(G/K) = Pn(G)K/K, (n = 1, 2, . . .);
(b) Pn(G)/Pn+1(G) is an elementary abelian p-group;
(c) [Pn(G), Pm(G)] ≤ Pn+m(G) for all natural numbers n, m;
(d) The series

G = P1(G) ≥ P2(G) ≥ · · · ≥ Pn(G) ≥ · · ·
is a central series, that is, Pn(G)/Pn+1(G) is in the center of G/Pn+1(G)
for all n ≥ 1 (this series is called the lower p-central series of G);

(e) Assume that G is in addition finitely generated as a pro-p group. Then
the subgroups Pn(G) (n = 1, 2, . . .) form a fundamental system of open
neighborhoods of 1 in G.

Lemma 2.8.15 Let ϕ : G −→ H be a continuous epimorphism of profi-
nite groups. Then there exists a minimal closed subgroup K of G such
that ϕ(K) = H. Moreover, if ψ denotes the restriction of ϕ to K, then
Ker(ψ) ≤ Φ(K).
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Proof. We use Zorn’s Lemma. Consider the collection L of all closed sub-
groups L of G with ϕ(L) = H; certainly L �= ∅. Order L by reversed in-
clusion. Consider a chain {Li | i ∈ I} in L, that is, if i, j ∈ I then either
Li ≤ Lj or Li ≥ Lj . We must show the existence of some L ∈ L such that
L ≤ Li for all I ∈ I. Define L =

⋂
i∈I Li. To see that L ∈ L, we have

to show that ϕ(L) = H, or equivalently, if h ∈ H we need to prove that
ϕ−1(h) ∩ L �= ∅. Now, by assumption ϕ−1(h) ∩ (

⋂
j∈J Lj) �= ∅, for any finite

subset J of I. Then, by the finite intersection property of compact spaces,
we have ϕ−1(h) ∩ L =

⋂
J ⊆f I(ϕ

−1(h) ∩ (
⋂

j∈J Lj)) �= ∅, as desired. Therefore
the poset L is inductive. The existence of K follows by Zorn’s Lemma.

Consider now a maximal closed subgroup M of K. If Ker(ψ) �≤ M , then
MKer(ψ) = K and so ϕ(M) = H, contradicting the minimality of K.
Thus Ker(ψ) ≤ M for all maximal closed subgroups M of K, that is,
Ker(ψ) ≤ Φ(K). 
�

A continuous epimorphism ψ : K −→ H of profinite groups satisfying the
conclusion of the lemma above (i.e., such that Ker(ψ) ≤ Φ(K)) is called a
Frattini cover of H.

Proposition 2.8.16 Let p be a prime number and A =
∏

I Z/pZ a direct
product of copies of Z/pZ. Then every closed subgroup B of A has a direct
complement C, that is, C is a closed subgroup of A such that A = B × C.

Proof. Consider the canonical epimorphism ϕ : A −→ A/B. By Lem-
ma 2.8.15, there exists a closed subgroup C of A such that ϕ(C) = A/B
(that is, A = BC ) and B ∩ C ≤ Φ(C). Since pC = 0, Φ(C) = 0. Therefore,
B ∩ C = 0. Thus A = B × C. 
�

2.9 Pontryagin Duality for Profinite Groups

Let X, Y be topological spaces. We begin with a definition for the compact-
open topology on the space of all continuous functions C(X, Y ) from X to Y .
For each compact subset K of X and each open subset U of Y , set

B(K, U) = {f ∈ C(X, Y ) | f(K) ⊆ U }.

Then the collection of all subsets of the form B(K, U) form a subbase for a
topology on C(X, Y ); this topology is called the compact-open topology on
C(X, Y ). If L is a subset of C(X, Y ), this topology induces on L a topology
which is called the compact-open topology on L. (For general properties of
the compact-open topology see, e.g., Bourbaki [1989], Section X.3.4].)

Denote by T the quotient group T = R/Z of the additive group of real
numbers. Clearly T is isomorphic to the circle group, {e2πix | x ∈ R} con-
sisting of all complex numbers of modulus 1. The dual group G∗ of a locally
compact abelian topological group G is defined to be the group

G∗ = Hom(G,T)
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of all continuous homomorphisms from G to T, endowed with the compact-
open topology. It turns out that this topology makes G∗ into a locally compact
topological group. Denote by G∗ ∗ the double dual of G, that is,

G∗ ∗ = Hom(G∗,T) = Hom(Hom(G,T),T).

Given a group G, define a mapping

αG : G −→ G∗ ∗

by αG(g) = g′, where g′ : G∗ −→ T is the map given by g′(f) = f(g)
(f ∈ G∗). It is easy to check that αG is a “natural” homomorphism, that is,
it is a homomorphism, and whenever ϕ : G −→ H is a group homomorphism
and ϕ∗ ∗ : G∗ ∗ −→ H∗ ∗ the corresponding homomorphism of double duals,
then the diagram

G
αG

ϕ

G∗ ∗

ϕ∗ ∗

H αH
H∗ ∗

commutes (in the language of categories, this says that α is a morphism from
the identity functor on the category of groups to the double dual functor
Hom(Hom(−,T),T)).

The celebrated Pontryagin-van Kampen duality theorem establishes that
if G is a locally compact abelian group, then αG is an isomorphism of topolog-
ical groups. A complete proof of this theorem requires considerable machinery
and it is quite long. Proofs can be found for example in Hofmann and Mor-
ris [2006] Hewitt and Ross [1963], Morris [1977], Dikranjan, Prodanov and
Stoyanov [1990].

The purpose of this section is to give a simple proof of Pontryagin-van
Kampen’s theorem in the especial case when G is profinite abelian or discrete
torsion abelian. In order to do this we need first some lemmas.

Proposition 2.9.1

(a) Every proper closed subgroup of T is finite.
(b) If G is compact, then G∗ is discrete; and if G is discrete, then G∗ is

compact.

Proof. Let ϕ : R −→ T = R/Z denote the canonical epimorphism.
(a) It is well-known (and easy to prove) that every proper nondiscrete

subgroup of the group R of real numbers is dense. Let A be a proper closed
subgroup of T. Then ϕ−1(A) is a proper closed subgroup of R. Note that
ϕ−1(A) is not dense in R, for otherwise A would not be proper. Hence ϕ−1(A)
is a discrete subgroup. Since ϕ is an open map, it follows that A is discrete.
On the other hand, A is compact and thus finite.
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(b) Assume that G is compact. Consider the open subset

U = ϕ(−1/3, 1/3)

of T = R/Z. It is easy to see that the only subgroup of T contained in U
is the trivial group {0}. Hence the subbasic open set B(G, U) of G∗ consists
only of the zero map {0}. Thus G∗ is discrete.

Assume now that G is discrete. Then the compact subsets of G are pre-
cisely the finite subsets. Hence the compact-open topology on G∗ coincides
with the topology induced on G∗ from the direct product

∏
G T = TG with

the usual product topology. We claim that G∗ is a closed subset of
∏

G T.
Indeed, suppose that f ∈ (

∏
G T) − G∗; then f : G −→ T is not a homo-

morphism. Therefore there exists x, x′ ∈ G with f(xx′) �= f(x) + f(x′).
Choose disjoint open subsets U and V of T such that f(xx′) ∈ U and
f(x) + f(x′) ∈ V . Next choose neighborhoods W and W ′ of f(x) and f(x′)
respectively, such that α + α′ ∈ V whenever α ∈ W and α′ ∈ W ′. Con-
sider the open set H of TG consisting of all maps h : G −→ T such that
h(xx′) ∈ U , h(x) ∈ W and h(x′) ∈ W ′. Then H is a neighborhood of f in
TG such that H ∩ G∗ = ∅. This proves the claim. Then the compactness of
TG implies that G∗ is compact. 
�

Lemma 2.9.2 Let G be a profinite group and f : G −→ T a continuous
homomorphism into the circle group T = R/Z. Then

(a) f(G) is a finite subgroup of T; and
(b) f factors through the inclusion Q/Z ↪→ T, that is, f(G) < Q/Z.

Proof. Since T is connected and f(G) totally disconnected, then T �= f(G).
Hence f(G) is finite (see Proposition 2.9.1(a)). Further, observe that the only
torsion elements of T are those in Q/Z; so f(G) < Q/Z. 
�

Lemma 2.9.3

(a) Let {Gi, ϕij , I} be a surjective inverse system of profinite groups over a
directed poset I and let G = lim←− i∈IGi be its inverse limit. Then there
exists an isomorphism

G∗ = Hom
(

lim←−
i∈I

Gi,T
)

∼= lim−→
i∈I

Hom(Gi,T) = lim−→
i∈I

G∗
i .

(b) Let {Ai, ϕij , I} be a direct system of discrete torsion abelian groups over
a directed poset I and let A = lim−→ i∈IAi be its direct limit. Assume that
the canonical homomorphisms ϕi : Ai −→ A are inclusion maps. Then
there exists an isomorphism of profinite groups

A∗ = Hom
(

lim−→
i∈I

Ai,T
)

∼= lim←−
i∈I

Hom(Ai,T) = lim←−
i∈I

A∗
i .
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Proof. (a) Let ϕi : G −→ Gi denote the projection of G onto Gi (i ∈ I). Let
f : G −→ T be a continuous homomorphism; then f(G) is a finite group by
Lemma 2.9.2. Hence f factors through ϕj for some j ∈ I (see Lemma 1.1.16),
that is, there exists a homomorphism fj : Gj −→ T such that f = fjϕj .
Define

Φ : G∗ −→ lim−→
i∈I

G∗
i

by Φ(f) = f̃j , where f̃j is the element of lim−→ i∈IG
∗
i represented by fj . This is

well-defined, for if f factors also through Gk, say f = fkϕk, one easily checks
that f̃j = f̃k. Plainly Φ is an onto homomorphism. It is also a monomorphism,
for if Φ(f) = f̃j = 0, then f = frϕr = 0 for some r ≥ j (see Proposition 1.2.4).

(b) Denote by ϕi : Ai −→ A the canonical homomorphism. Let

f : A = lim−→
i∈I

Ai −→ T

be a homomorphism. Denote by fj the composition

Aj
ϕj−→ A

f−→ T

(j ∈ I). Then (fj) ∈ lim←− i∈IHom(Ai,T). The map

Ψ : A∗ −→ lim←−
i∈I

A∗
i

given by f �→ (fj) is obviously an isomorphism of abstract groups. To see
that Ψ is a topological isomorphism, it suffices to show that it is a continuous
map, because the groups A∗ and lim←− i∈IA

∗
i are compact. Denote by

ρj : lim←−
i∈I

A∗
i −→ A∗

j

the canonical projection (j ∈ I). Then Ψ is continuous if and only if ρjΨ is
continuous for each j ∈ I. Consider a subbasic open set B(K, U) of A∗

j , where
K is a compact subset of Aj (hence finite) and where U is an open subset of T.
We must show that (ρjΨ)−1(B(K, U)) is open in A∗. Now, ρ−1

j (B(K, U))
consists of all (fi) ∈ lim←− i∈IA

∗
i such that fj ∈ B(K, U). Identify K with

its image in Aj(≤ A). Then (ρjΨ)−1(B(K, U)) consists of all continuous
homomorphisms f : A −→ T such that f(K) ⊆ U , that is, (ρjΨ)−1(B(K, U))
is a subbasic open set of A∗. 
�

To prove the following lemma one can use a slight variation of the above
arguments. We leave the details to the reader.
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Lemma 2.9.4

(a) Let {Gi | i ∈ I} be a collection of profinite groups. Then
(∏

i∈I

Gi

)∗
∼=
⊕

i∈I

G∗
i .

(b) Let {Ai | i ∈ I} be a collection of discrete torsion groups. Then
(⊕

i∈I

Ai

)∗
∼=
∏

i∈I

A∗
i .

Example 2.9.5

(1) If G is a finite abelian group, then G∗ ∼= G. To see this we may assume
by Lemma 2.9.4 that G is cyclic. Say G is generated by x and the order
of x is t. Let Rt be the unique subgroup of T consisting of the t-th roots
of unity. Then Rt

∼= G and Hom(G,T) = Hom(G, Rt) ∼= G.
(2) Z∗

p
∼= Cp∞ and C∗

p∞ ∼= Zp. Indeed, these two statements follow from the
example above and Lemma 2.9.3.

(3) Ẑ∗ ∼= Q/Z and (Q/Z)∗ ∼= Ẑ. To see this note that Ẑ ∼=
∏

p Zp and
Q/Z ∼=

⊕
p Cp∞ , and apply Lemma 2.9.4.

Theorem 2.9.6 (Pontryagin Duality for Profinite Groups)

(a) If G is either a profinite abelian group or a discrete abelian torsion group,
then

G∗ = Hom(G,T) ∼= Hom(G,Q/Z).

(b) The dual of a profinite abelian group is a discrete abelian torsion group,
and the dual of a discrete abelian torsion group is a profinite abelian
group.

(c) Let G be either a profinite abelian group or a discrete abelian torsion
group. Then the homomorphism

αG : G −→ G∗ ∗

is an isomorphism.

Proof. Part (a) is essentially the content of Lemma 2.9.2. Part (b) follows
from Lemma 2.9.3 and Proposition 2.9.1. To prove part (c), note first that
the result is obvious for finite cyclic groups. If G1 and G2 are groups, one
easily checks that αG1×G2 = αG1 × αG2 . Since a finite abelian group is a
direct product of cyclic groups, the result is valid for finite abelian groups.

Consider now a profinite abelian group G and express it as

G = lim←−
i∈I

Gi,
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where {Gi, ϕij , I} is a projective system of finite abelian groups. For each
i ∈ I we have a commutative diagram

G
αG

ϕ

G∗ ∗

ϕ∗ ∗

Gi αGi

G∗ ∗
i

Using Lemma 2.9.3, one deduces that

αG = lim←−
i∈I

αGi .

Since each αGi is an isomorphism, so is αG.
If, on the other hand, G is a discrete torsion abelian group, then G is the

union of its finite subgroups, that is,

G = lim−→
i∈I

Gi,

where each Gi is a finite abelian subgroup of G. Then

G∗ = Hom(G,T) ∼= lim←−
i∈I

Hom(Gi,T).

So, using again Lemma 2.9.3,

G∗ ∗ = lim−→
i∈I

G∗ ∗
i

and αG = lim−→ i∈IαGi ; thus αG is an isomorphism since each αGi is an iso-
morphism. 
�

Next we give some applications of this theorem that will be needed later.

Lemma 2.9.7 Let G be a discrete torsion abelian group (respectively, profi-
nite abelian group), H a subgroup (respectively, a closed subgroup) of G, and
g ∈ G − H. Then there exists a homomorphism (respectively, a continuous
homomorphism) f : G −→ Q/Z such that f(H) = 0 and f(g) �= 0.

Proof. Replacing G by G/H if necessary, we may assume that H = 0, and we
must show the existence of a (continuous) homomorphism f with f(g) �= 0.
If G is a discrete torsion abelian group, g has finite order; so there is a
monomorphism 〈g〉 ↪→ Q/Z. Since Q/Z is an injective abelian group (cf.
Fuchs [1970], page 99), this monomorphism can be extended to a homo-
morphism G −→ Q/Z. If G is an abelian profinite group, consider a finite
quotient Gi of G such that the image gi of g in Gi is not trivial; then it
suffices to construct a homomorphism fi : Gi −→ Q/Z with fi(gi) �= 0. This
follows again from the injectivity of Q/Z. 
�
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If G is a discrete torsion (respectively, profinite) abelian group and H is
a subgroup (respectively, closed subgroup) of G, denote by AnnG∗ (H) the
annihilator of H in G∗, that is,

AnnG∗ (H) = {f ∈ G∗ | f(h) = 0 ∀h ∈ H}.

As an immediate consequence of the lemma above we have

Corollary 2.9.8 Let G be a discrete torsion (respectively, profinite) abelian
group and H is a subgroup (respectively, a closed subgroup) of G. Then

H =
⋂

f ∈AnnG∗ (H)

Ker(f).

Proposition 2.9.9 Let G be a discrete torsion (respectively, profinite) abelian
group and H is a subgroup (respectively, closed subgroup) of G. Then αG sends
H to AnnG∗ ∗ (AnnG∗ (H)) isomorphically. Equivalently, if we identify G with
G∗ ∗ via the topological isomorphism αG, then

{g ∈ G | f(g) = 0 ∀f ∈ AnnG∗ (H)} = H

Proof. For g ∈ G put g′ = αG(g). Then

AnnG∗ ∗ (AnnG∗ (H)) = {g′ ∈ G∗ ∗ | g′(f) = 0 ∀f ∈ AnnG∗ (H)}
= {g′ ∈ G∗ ∗ | f(g) = 0 ∀f ∈ AnnG∗ (H)}
= {h′ ∈ G∗ ∗ | h ∈ H} = αG(H),

where the penultimate equality follows from Corollary 2.9.8. 
�

Proposition 2.9.10 Let G be a discrete torsion (respectively, profinite)
abelian group and let H1 and H2 be subgroups (respectively, closed subgroups)
of G. Then

(a) AnnG∗ (H1H2) = AnnG∗ (H1) ∩ AnnG∗ (H2);
(b) AnnG∗ (H1 ∩ H2) = AnnG∗ (H1)AnnG∗ (H2).

Proof. Statement (a) is plain. According to Corollary 2.9.8, part (b) will
follow if we can prove that

AnnG∗ ∗ (AnnG∗ (H1 ∩ H2)) = AnnG∗ ∗ (AnnG∗ (H1)AnnG∗ (H2)).

Using part (a), Proposition 2.9.9 and the fact that αG is an isomorphism (the
duality theorem), we have

AnnG∗ ∗ (AnnG∗ (H1)AnnG∗ (H2))
= AnnG∗ ∗ (AnnG∗ (H1)) ∩ AnnG∗ ∗ (AnnG∗ (H2))
= αG(H1) ∩ αG(H2) = αG(H1 ∩ H2) = AnnG∗ ∗ (AnnG∗ (H1 ∩ H2)),

as needed. 
�
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Let G be a group and n a natural number. Put

Gn = {xn | x ∈ G}

and
G[n] = {x ∈ G | xn = 1}.

Observe that if G is abelian, then both Gn and G[n] are subgroups of G.
If G is a profinite abelian group, then both Gn and G[n] are closed subgroups
of G.

Lemma 2.9.11 Let G be an abelian group which is either profinite or dis-
crete. Fix a natural number n. Then

(a) AnnG∗ (Gn) = (G∗)[n];
(b) AnnG∗ (G[n]) = (G∗)n.

Proof. (a) AnnG∗ (Gn) = {f ∈ G∗ | f(xn) = 0, ∀x ∈ G} = {f ∈ G∗ |
(nf)(x) = 0, ∀x ∈ G} = {f ∈ G∗ | nf = 0} = (G∗)[n]

(b) By Proposition 2.9.9 and part (a), we have (after identifying G
and G∗ ∗)

(G∗)n = AnnG∗ (AnnG∗ ∗ ((G∗)n)) = AnnG∗ (G∗ ∗[n]) = AnnG∗ (G[n]). 
�

Recall that an abelian group G is divisible if for every natural number
n and for every element x ∈ G, there exists some element y ∈ G such that
yn = x.

Theorem 2.9.12 Let G be an abelian group which is either discrete or profi-
nite. Then G is divisible if and only if G∗ is torsion-free.

Proof. Assume that G is divisible. Then G = Gn for every natural number
n. By Lemma 2.9.11,

0 = AnnG∗ (G) = AnnG∗ (Gn) = (G∗)[n]

for every natural number n. Therefore G∗ is torsion-free.
To show the converse it suffices to prove, by Theorem 2.9.6, that if G is

torsion-free, then G∗ is divisible. Assume that G is torsion-free. Then G[n] = 1
for every natural number n ≥ 2. Hence AnnG∗ (G[n]) = G∗ for all n ≥ 2.
Therefore, by Lemma 2.9.11,

(G∗)n = G∗

for all n ≥ 0. Thus G∗ is divisible. 
�
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2.10 Pullbacks and Pushouts

In this section we establish the concepts of pullback and pushout diagrams.
We do this only for profinite groups and we leave to the reader the devel-
opment of the analogous constructions for other categories, like modules,
graphs, etc. For a more general treatment of these concepts in a category, see
for example Mac Lane [1971].

A commutative square diagram

G
α1

α2

H1

β1

H2
β2

H

(4)

of profinite groups and continuous homomorphisms is called a pullback dia-
gram or a pullback of β1 and β2 if the following universal property is satisfied:

K

ϕ

ϕ1

ϕ2
G α1

α2

H1

β1

H2
β2

H

whenever K is a profinite group and ϕi : K −→ Hi (i = 1, 2) are contin-
uous homomorphisms such that β1ϕ1 = β2ϕ2, then there exists a unique
continuous homomorphism ϕ : K −→ G such that α1ϕ = ϕ1 and α2ϕ = ϕ2.

We say that ϕ is the canonical homomorphism determined by ϕ1 and ϕ2.
Given two continuous homomorphisms of profinite groups βi : Hi −→ H,
there exists a (essentially unique) pullback of β1 and β2. Indeed, define

P = {(h1, h2) ∈ H1 × H2 | β1(h1) = β2(h2)};

and let γi : P −→ Hi be given by γi(h1, h2) = hi (i = 1, 2). Then

P
γ1

γ2

H1

β1

H2
β2

H

is a pullback diagram, as one easily checks. It is unique in the sense that if (4)
is also a pullback of β1 and β2, then there exists a continuous homomorphism

α : G −→ P
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such that γiα = αi (i = 1, 2); namely α is given α(g) = (α1(g), α2(g));
moreover, one verifies with no difficulty that α is an isomorphism.

Exercise 2.10.1 Let U, V be closed normal subgroups of a profinite group G.
Then the commutative square of natural epimorphisms

G/U ∩ V G/U

G/V G/UV

is a pullback diagram.

Lemma 2.10.2 Assume that (4) is a pullback diagram of profinite groups.
Let A be a profinite group and let ϕi : A −→ Hi (i = 1, 2) be continuous
epimorphisms such that β1ϕ1 = β2ϕ2 and Ker(β1ϕ1) = Ker(ϕ1)Ker(ϕ2).
Then the canonical homomorphism ϕ : A −→ G determined by ϕ1 and ϕ2 is
an epimorphism.

Proof. As pointed out above, G can be identified with

{(h1, h2) ∈ H1 × H2 | β1(h1) = β2(h2)}
and α1 and α2 with the natural projections. Note that in this case, ϕ(a) =
(ϕ1(a), ϕ2(a)), for all a ∈ A. Since α1ϕ = ϕ1 is onto, to prove that ϕ is
an epimorphism, it suffices to show that Ker(α1) ≤ ϕ(A); in fact we shall
show that Ker(β1α1) ≤ ϕ(A). Let (h1, h2) ∈ Ker(β1α1). We infer that hi ∈
Ker(βi) (i = 1, 2). Let a ∈ A with ϕ1(a) = h1. Then a ∈ Ker(β1ϕ1) =
Ker(ϕ1)Ker(ϕ2). Hence a = k1k2, where ki ∈ Ker(ϕi) (i = 1, 2). Therefore,
h1 = ϕ1(k2). Similarly, h2 = ϕ2(l1) for some l1 ∈ Ker(ϕ1). Thus, ϕ(l1k2) =
(h1, h2). Thus ϕ is onto. 
�

The dual concept of pullback is that of pushout. Specifically, a commuta-
tive square diagram

H
β1

β2

H1

α1

H2 α2
G

of profinite groups and continuous homomorphisms is called a pushout dia-
gram or a pushout of β1 and β2 if the following universal property is satisfied:

H
β1

β2

H1

α1

ϕ1
H2

α2

ϕ2

G
ϕ

K
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whenever K is a profinite group and ϕi : Hi −→ K (i = 1, 2) are contin-
uous homomorphisms such that ϕ1β1 = ϕ2β2, then there exists a unique
continuous homomorphism ϕ : G −→ K such that ϕα1 = ϕ1 and ϕα2 = ϕ2.

The existence of pushout diagrams of profinite groups will be established
in Chapter 9.

2.11 Profinite Groups as Galois Groups

In this section we show that profinite groups are precisely those groups that
are Galois groups of (finite or infinite) Galois extensions of fields, with an
appropriate topology. Historically, this is the original motivation for the study
of profinite groups and Galois theory remains the main area of applications
of results in profinite groups.

Let K/F be an algebraic, normal and separable extension of fields, that
is, a Galois extension. Consider the collection K = {Ki | i ∈ I} of all interme-
diate subfields F ⊆ Ki ⊆ K such that each Ki/F is a finite Galois extension.
Then

K =
⋃

i∈I

Ki.

Let G = GK/F and Ui = GK/Ki
denote the Galois groups of K/F and K/Ki

(i ∈ I), respectively. Using elementary results in Galois theory, one sees that

(1) Ui � G, and G/Ui
∼= GKi/F is finite for every i ∈ I;

(2) If i, j ∈ I, then there exists some k ∈ I such that Uk ≤ Ui ∩ Uj ; and
(3)

⋂
i∈I Ui = {1}.

Then there is a unique topology on G, compatible with the group struc-
ture of G, for which the collection {Ui | i ∈ I} is a fundamental system of
neighborhoods of the identity element 1 of G (cf. Bourbaki [1989], Ch. III,
Proposition 1). This topology is called the Krull topology of the Galois group
G = GK/F . Note that if the Galois extension K/F is finite, then the Krull
topology on G = GK/F is the discrete topology.

Theorem 2.11.1 The Galois group G = GK/F , endowed with the Krull
topology, is a profinite group. Moreover,

GK/F = lim←−
i∈I

GKi/F .

Proof. For each i ∈ I, consider the finite Galois group Gi = GKi/F . Observe
that, with the above notation, Gi

∼= G/Ui. Define a partial order relation �
on the set I as follows. Let i, j ∈ I; then

i � j if Ki ⊆ Kj , or equivalently if Ui = GK/Ki
≥ Uj = GK/Kj

. Plainly
(I, �) is a poset. In fact it is a directed poset. Indeed, if Ki, Kj ∈ K, then
there exist polynomials fi(X), fj(X) ∈ F [X] such that Ki and Kj are the
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splitting fields contained in K of fi(X) and fj(X) over F , respectively. Let
L be the splitting field over F of the polynomial fi(X)fj(X), with L ⊆ K.
Then L ∈ K. Say L = Kt for some t ∈ I. Then by definition t 	 i, j.

If i � j, define

ϕji : Gj = GKj/F −→ Gi = GKi/F

by restriction, that is, ϕji(σ) = σ|Ki
, where σ ∈ GKj/F . Observe that ϕji

is well-defined, because σ(Ki) = Ki since Ki/F is a normal extension. We
obtain in this manner an inverse system {Gi, ϕij , I} of finite Galois groups.
Consider the homomorphism

Φ : G = GK/F −→ lim←−
i∈I

Gi ≤
∏

i∈I

Gi

defined by
Φ(σ) = (σ|Ki

).

We shall show that Φ is an isomorphism of topological groups. It is a
monomorphism since Ker(Φ) =

⋂
i∈I GKi/F = 1. The homomorphism Φ is

continuous since the composition

G −→ lim←−
i∈I

Gi −→ Gi

is continuous for each i ∈ I. Also, Φ is an open mapping since

Φ(GK/Ki
) = (lim←− Gi) ∩

[( ∏

Kj �⊆Ki

Gj

)

×
( ∏

Kj ⊆Ki

{1}j

)]

.

Finally, Φ is an epimorphism. Indeed, if (σi) ∈ lim←− Gi, define σ : K −→ K

by σ(k) = σi(k) for k ∈ Ki; then σ ∈ G and Φ(σ) = (σi). Thus we have
proved that G ∼= lim←− Gi. The result now follows from the characterization of
profinite groups obtained in Theorem 2.1.3. 
�

Example 2.11.2

(1) Let p be a prime number, Fp the field with p elements, and let Fp be
its algebraic closure. Then the Galois group of the extension Fp/Fp is Ẑ.
Indeed, from the theory of finite fields, for each positive integer n, there
exists a unique Galois extension Kn/Fp of degree [Kn : Fp] = n and
GKn/Fp

∼= Z/nZ. Thus it follows from Theorem 2.11.1 that

GFp/Fp
= lim←−

n

Z/nZ = Ẑ.



70 2 Profinite Groups

(2) Let p and q be prime numbers. For each positive integer n, there is a
unique field Ln with Fp ⊆ Ln ⊆ Fp, such that [Ln : Fp] = qn. Then
L =

⋃∞
n=1 Ln is a Galois extension of Fp, and

GL/Fp
= lim←− GLn/Fp

= lim←− Z/qnZ = Zq.

The Krull topology on the Galois group G = GK/F was introduced by
Krull [1928]. His aim was to provide a generalization, to infinite Galois ex-
tensions, of the Galois correspondence between intermediate fields of (a finite
Galois extension) K/F and the subgroups of the group GK/F .

Theorem 2.11.3 Let K/F be a Galois extension of fields with Galois group
G = GK/F . Denote by F (K/F ) the set of intermediate fields F ⊆ L ⊆ K.
Endow G with the Krull topology and let S(G) denote the set of closed sub-
groups of G. Consider the map

Φ : F (K/F ) −→ S(G)

defined by
Φ(L) = {σ ∈ GK/F | σ|L = idL}.

Then Φ is a bijection that reverses inclusion, that is, if L1 ⊆ L2 are fields in
F (K/F ), then Φ(L1) ≥ Φ(L2). The inverse of Φ is the map

Ψ : S(G) −→ F (K/F )

given by
Ψ(H) = {x ∈ K | σ(x) = x, ∀σ ∈ H}.

Moreover, L ∈ F (K/F ) is a normal extension of F if and only if Φ(L) is a
normal subgroup of G, and if that is the case, GL/F

∼= G/Φ(L).

Proof. It is clear that Φ(L) reverses inclusion. Observe that Φ(L) = GK/L;
furthermore, the Krull topology on GK/L is the topology induced from G =
GK/F , and since, according to Theorem 2.11.1, GK/L is compact, then it is
closed in G; therefore Φ(L) ∈ S(G). Next, we check that ΨΦ(L) = L for all
L ∈ F (K/F ). Obviously ΨΦ(L) = Ψ(GK/L) ⊇ L. Finally, if y ∈ K and y is
fixed by every automorphism σ ∈ GK/L, then the minimal polynomial of y
over L must be of degree 1; so y ∈ L.

Conversely, let us show that ΦΨ(H) = H for every closed subgroup H
of G. Put L = Ψ(H). Plainly, ΦΨ(H) = GK/L ⊇ H. To see that GK/L = H,
it will suffice to show that H is dense in GK/L, since H is closed. Now, let
N be an intermediate extension of K/L such that N/L is a finite Galois
extension. Let τ ∈ GK/L; we need to show that τGK/N ∩ H �= ∅. Remark
that if σ ∈ H, then σ(N) = N , so {σ|N | σ ∈ H} is a group of automorphisms
of N fixing the elements of L; hence, by the fundamental theorem of Galois
theory for finite field extensions (cf. Bourbaki [1967], V,10,5, Theorem 3),

{σ|N | σ ∈ H} = GN/L.
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Then there exists some σ ∈ H such that τ|N = σ|N ; therefore, σ ∈ τGK/N ,
as desired.

Assume now that L ∈ F (K/F ) and L/F is a normal extension. Let
σ ∈ GK/L, τ ∈ GK/F . Evidently, τ −1στ ∈ GK/L and so Φ(L) = GK/L �
GK/F = G. Recall that every F -automorphism of L can be extended to
an F -automorphism of K (cf. Bourbaki [1967], V,6,3, Proposition 7). On
the other hand, if L/F is normal, then τ(L) = L, for all τ ∈ G = GK/F .
Therefore there is a natural epimorphism

G = GK/F −→ GL/F

given by restriction τ �→ τ|L. The kernel of this epimorphism is Φ(L) = GK/L;
thus GL/F

∼= G/Φ(L).
Conversely, if Φ(L) = GK/L �GK/F = G, it follows that τ(L) = L for each

τ ∈ G = GK/F . This implies that L/F is a normal extension (cf. Bourbaki
[1967], V,6,3, Proposition 6). 
�

Exercise 2.11.4 Let p be a prime number. Let Fp be the field with p ele-
ments, and Fp its algebraic closure. Prove that the Galois group GFp/Fp

∼= Ẑ
is topologicaly generated by the Frobenius automorphism ϕ : Fp −→ Fp

given by ϕ(x) = xp. Exhibit explicitly a nonclosed subgroup H of GFp/Fp

whose fixed field is Fp (the fixed field of GFp/Fp
).

As we have seen in Theorem 2.11.1, every Galois group can be interpreted
as a profinite group. In the next theorem we show that, conversely, every
profinite group can be realized as a Galois group of an appropriate Galois
extension of fields.

Theorem 2.11.5 Let G be a profinite group. Then there exists a Galois ex-
tension of fields K/L such that G = GK/L.

Proof. Let F be any field. Denote by T the disjoint union of all the sets G/U ,
where U runs through the collection of all open normal subgroups of G. Think
of the elements of T as indeterminates, and consider the field K = F (T ) of
all rational functions on the indeterminates in T with coefficients in F . The
group G operates on T in a natural manner: if γ ∈ G and γ′U ∈ G/U , then
γ(γ′U) = γγ′U . This in turn induces an action of G on K as a group of
F -automorphisms of K. Put L = KG, the subfield of K consisting of the
elements of K fixed by all the automorphisms γ ∈ G. We shall show that
K/L is a Galois extension with Galois group G.

If k ∈ K, consider the subgroup

Gk = {γ ∈ G | γ(k) = k}

of G. If the indeterminates that appear in the rational expression of k are
{ti ∈ G/Ui | i = 1, . . . , n}, then
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Gk ⊇
n⋂

i=1

Ui.

Therefore Gk is an open subgroup of G, and hence of finite index. From
this we deduce that the orbit of k under the action of G is finite. Say that
{k = k1, k2, . . . , kr } is the orbit of k. Consider the polynomial

f(X) =
r∏

i=1

(X − ki).

Since G transforms this polynomial into itself, its coefficients are in L,
that is, f(X) ∈ L[X]. Hence k is algebraic over L. Moreover, since the
roots of f(X) are all different, k is separable over L. Finally, the exten-
sion L(k1, k2, . . . , kr)/L is normal. Hence K is a union of normal extensions
over L; thus K/L is a normal extension. Therefore K/L is a Galois exten-
sion. Let H be the Galois group of K/L; then G is a subgroup of H. To
show that G = H, observe first that the inclusion mapping G ↪→ H is con-
tinuous, for assume that U �o H and let KU be the subfield of the elements
fixed by U ; then KU/L is a finite Galois extension by Theorem 2.11.3; say,
KU = L(k′

1, . . . , k
′
s) for some k′

1, . . . , k
′
s ∈ K. Then

G ∩ U ⊇
s⋂

i=1

Gk′
i
.

Therefore G ∩ U is open in G. This shows that G is a closed subgroup of H.
Finally, since G and H fix the same elements of K, it follows from Theo-
rem 2.11.3 that G = H. 
�

2.12 Notes, Comments and Further Reading

As pointed out in Section 2.11, interest about general profinite groups ap-
peared first among algebraic number theorists. Krull [1928] defined a natural
topology on the Galois group GK/F (usually called now the Krull topol-
ogy) with the idea of making precise the generalization of the fundamental
theorem of Galois theory in the case of extensions of infinite degree (see The-
orem 2.11.3). With this topology the Galois group becomes a profinite group
(see Theorem 2.11.1).

Profinite groups were first called ‘groups of Galois type’; the first system-
atic presentation of these groups appeared in the influential book Cohomolo-
gie Galoisienne by Serre [1995] whose first edition is of 1964; this book has
served as a source of information and inspiration to mathematicians, includ-
ing the authors of the present book, since then. In this book Serre refers to
these groups as ‘profinite’ and ‘pro-p’ groups to the exclusion of any other
terminology. Serre’s book contains a systematic use of properties of profinite
and pro-p groups to field theory. It is a short volume, written in a very terse
style, that contains a wealth of results and information. Books published later
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by Poitou [1967], Koch [1970], Ribes [1970], Shatz [1972], Fried and Jarden
[2008] and most recently, Dixon, du Sautoy, Mann and Segal [1999], Klaas,
Leedham-Green and Plesken [1997], Wilson [1998] concentrate on special as-
pects of the theory, and are generally more detailed. Serre’s book is the best
source for certain material, e.g., nonabelian cohomology and applications to
field theory.

Some particular profinite groups have a much older history, also rooted in
number theory. The group Zp of p-adic integers was first defined by Hensel
during his studies of algebraic numbers; see Hensel [1908]. Theorem 2.11.5
was first proved by Leptin [1955]; see also Waterhouse [1972]. The proof of
this theorem that we present here is taken from Ribes [1977].

Proposition 2.2.2, Exercise 2.2.3, Corollary 2.3.6 and Proposition 2.4.4
appear in Douady [1960], where they are attributed to Tate. Many of the
basic results about profinite groups, including cohomological ones, were first
established by Tate, but he has not published much on the subject; see Lang
[1966], Tate [1962]. See also Appelgate and Onishi [1977], Borovik, Pyber
and Shalev [1996], Brauer [1969]. The notion of ‘supernatural number’ is
due to Steinitz [1910], page 250; he uses instead the term ‘G-number’, but
we have decided to stay with the terminology of ‘supernatural’ because it is
well-entrenched by now in the literature and because it is very expressive.

Corollary 2.3.7 can be found in Bolker [1963]. Exercise 2.3.14 appears
in Gilotti, Ribes and Serena [1999]; this paper contains results relating to
fusion and transfer in the context of profinite groups. Exercise 2.3.17 appears
in Lim [1973a]. For a study of localization in profinite groups see Herfort and
Ribenboim [1984].

Proposition 2.5.4 was proved in Gaschütz [1956] for finite groups. The
proof that we give here is attributed to Roquette in Fried and Jarden [2008].
Corollary 2.6.6 is due to Iwasawa [1953]. See Joly [1965], for a study of
procyclic groups. The basic properties of the Frattini subgroup in the con-
text of profinite groups are given in Gruenberg [1967]. Propositions 2.8.2(c)
and 2.8.11 appear in Oltikar and Ribes [1978]. Proposition 2.8.9 was proved
by Lubotzky [1982]. Lemma 2.8.15 and the concept of Frattini cover can be
found in Cossey, Kegel and Kovács [1980]; for additional information on re-
sults and applications of Frattini covers, see Ershov [1980], Ershov and Fried
[1980], Haran and Lubotzky [1983], Cherlin, van den Dries and Macintyre
[1984], Ribes [1985]. For a result on direct products, see Goldstein and Gu-
ralnick [2006].

2.12.1 Analytic Pro-p Groups

Let G be a finitely generated profinite group. According to Proposition 2.5.5,
every open subgroup U of G is also finitely generated. However the minimal
number d(U) of generators of U is usually unbounded (see Theorem 3.6.2(b)
for the case of free profinite groups). More generally, if H is a closed sub-
group of G, then one can usually say little about d(H). Nevertheless, there is
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an important class of finitely generated profinite groups G for which
max{d(H) | H ≤c G} = r(G) < ∞.

(The number r(G) thus defined is sometimes called the ‘rank’ of the group G;
we refrain from this terminology to avoid confusion with the concept of rank
of a free group which will be introduced in Chapter 3.)

A representative example of such groups is G = GLn(Zp). This group con-
tains an open pro-p subgroup K1 of index (pn − 1)(pn−1 − 1) · · ·
(p − 1) (see Exercise 2.3.12). One can then prove the following result (see,
e.g., Dixon, du Sautoy, Mann and Segal [1999], Theorem 5.2):

Theorem 2.12.1a r(K1) = n2. Consequently, r(G) < ∞.

Profinite groups satisfying conditions analogous to those mentioned above
for GLn(Zp) are called p-adic analytic groups. Explicitly, a profinite group G
is p-adic analytic if it contains an open pro-p subgroup H such that r(H) <

∞. The reason for this terminology is the following theorem due to Lazard
(see Lazard [1965], III, 3.4). Let Qp be the field of p-adic numbers, that is,
the field of quotients of Zp.

Theorem 2.12.1b Let G be a Hausdorff topological group. Then G is p-adic
analytic if and only if G is compact and admits a structure of a Qp-manifold
in such a way that multiplication and inversion in G are analytic functions.

Research in the theory of profinite p-adic analytic groups and related
topics is presently very active. An excellent modern exposition can be found
in Dixon, du Sautoy, Mann and Segal [1999]. See also Lazard [1965, 1954]
(these two works contain a large amount of information on these and other
topics rarely found elsewhere), Lubotzky and Mann [1989], Lubotzky and
Segal [2003], Mann and Segal [1990], du Sautoy [1993], du Sautoy and
Grunewald [2002], Fernández-Alcober, González-Sánchez and Jaikin-Zapirain
[2008], Shalev [1992]. See also Detomi and Lucchini [2007].

2.12.2 Number of Generators of a Group and of Its Profinite
Completion

Let G be a finitely generated residually finite abstract group and consider
its profinite completion Ĝ. We denote by d(G) the minimal cardinality of a
set of generators of G as an abstract group; while d(Ĝ) denotes the minimal
cardinality of a set of generators of Ĝ as a profinite group. Obviously d(Ĝ) ≤
d(G). Put f(G) = d(G) − d(Ĝ). Then one has the following results.

Theorem 2.12.2a (Noskov [1983]) For each natural number n, there exist
a finitely generated abstract metabelian group Gn such that
f(Gn) ≥ n.

On the other hand, for polycyclic groups G one has

Theorem 2.12.2b (Linnell and Warhurst [1981]) If G is a polycyclic
group, then f(G) ≤ 1.
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