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Preface to the Second Edition

This new edition contains a few additions. The main ones are three new Ap-
pendices. Appendix B contains a new characterization of free pro - C groups,
based on work of D. Harbater and K. Stevenson. Appendix C, based on a pa-
per of A. Lubotzky, establishes the basic facts about presentations of finitely
generated profinite groups in terms of generators and relators; it complements
Section 7.8 where we consider presentations of pro-p groups. Appendix D con-
tains a new self-contained and conceptually simpler approach to the proof of
some classical subgroup theorems, like the Nielsen-Schreier and the Kurosh
theorems, and some new ones; it is based on a paper of B. Steinberg and the
first author.

In general we have maintained the original numeration, with only a couple
of exceptions. We have inserted numerous additions throughout the text in
the form of new results, better proofs, corrections, etc. We have also enlarged
the bibliography. A few more open questions have been added; in the list of
these open questions that we collect at the end of the book, we have noted
those problems that have been solved after the first edition with comments
and references. Theorem 3.5.13 gives a complete solution, due to J-P. Serre,
of one of those previously open questions.

Several colleagues and friends have pointed out needed corrections or
explanations and have made useful suggestions. We thank specially M. Aka,
K. Auinger, G. Brumfiel, B. Deschamps, M. Jarden, D. Kochloukova and
J-P. Serre.

March, 2009 Luis Ribes, Madrid
Pavel Zalesskii, Brasilia



Preface to the First Edition

The aim of this book is to serve both as an introduction to profinite groups
and as a reference for specialists in some areas of the theory. In neither of
these two aspects have we tried to be encyclopedic. After some necessary
background, we thoroughly develop the basic properties of profinite groups
and introduce the main tools of the subject in algebra, topology and homol-
ogy. Later we concentrate on some topics that we present in detail, including
recent developments in those areas.

Interest in profinite groups arose first in the study of the Galois groups
of infinite Galois extensions of fields. Indeed, profinite groups are precisely
Galois groups and many of the applications of profinite groups are related to
number theory. Galois groups carry with them a natural topology, the Krull
topology. Under this topology they are Hausdorff compact and totally dis-
connected topological groups; these properties characterize profinite groups.
Another important fact about profinite groups is that they are determined by
their finite images under continuous homomorphisms: a profinite group is the
inverse limit of its finite images. This explains the connection with abstract
groups. If G is an infinite abstract group, one is interested in deducing prop-
erties of G from corresponding properties of its finite homomorphic images.
The kernels of all homomorphisms of G into finite groups form a fundamen-
tal system of neighborhoods for a topology on G, and completion of G with
respect to this topology gives a profinite group. In the last decades there has
been an extensive literature on profinite groups and one of the aims of this
book is to present some of these important results.

The first comprehensive exposition of the theory of profinite groups ap-
peared in the book ‘Cohomologie Galoisienne’ by J-P. Serre in 1964. Its em-
phasis is on cohomological properties and their applications to field theory
and number theory. This deceptively slim volume contains a wealth of infor-
mation, some of it not found elsewhere. We have learnt a great deal from
Serre’s book throughout the years and this, no doubt, is reflected in our
exposition in the present book.

We describe briefly the contents of our book. The first three chapters
deal with the basic tools and the main properties of profinite groups. In
Chapter 1 we have collected information about inverse and direct limits and
their algebraic and topological properties, which is used throughout the book.
Chapter 2 contains a fairly detailed account of general profinite groups. The
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results are presented in the context of pro - C groups (inverse limits of groups
in C), where C is a convenient class of finite groups, which includes the classes
of profinite and pro-p groups as particular cases. The minimum we require
of such a class C is that it should be a ‘formation’ (i.e., closed under tak-
ing quotients and finite subdirect products); but often we assume that C is
a ‘variety’ (i.e., closed under taking subgroups, quotients and finite direct
products). Although this approach requires the reader to become familiar
with a little more terminology (but not much more than what is indicated
above), this is compensated by being able to bring many related concepts
and results together. Sometimes we assume throughout a chapter or a sec-
tion that C satisfies certain conditions; when that happens we indicate those
assumptions in italics at the beginning of the chapter or section.

The main properties of free profinite (pro - C) groups are developed in
Chapter 3. These include several useful characterizations in terms of lifting
maps à la Iwasawa and the study of the structure of open subgroups of free
pro - C groups. Chapter 4 considers properties of particular profinite groups,
including profinite abelian groups, Frobenius profinite groups and automor-
phism groups of finitely generated profinite groups.

Chapters 5–7 deal with homological aspects of profinite groups. In Chap-
ter 5, we consider modules over profinite rings, particularly complete group
rings, and constructions involving them. Chapter 6 establishes the fundamen-
tal results of homology and cohomology groups of profinite groups. Here we
combine a computational approach with a conceptual one: on the one hand,
we define homology and cohomology groups by means of standard resolu-
tions, and on the other hand, we give a more abstract description, using the
language of universal functors. Chapter 7 contains cohomological character-
izations of projective profinite groups and the Tate characterization of free
pro-p groups.

Chapter 8 considers closed normal subgroups of free profinite groups, and
in particular, conditions under which such subgroups are free profinite. We
also study similar properties for closed subnormal subgroups and accessible
subgroups. This chapter includes Mel’nikov’s theory of homogeneous groups,
which gives a description of certain closed subgroups of free pro - C groups
(other than pro-p).

Chapter 9 establishes the main properties of the basic ‘free constructions’
of profinite groups: free and amalgamated products and HNN-extensions.
This is the beginning of the theory of profinite groups acting on ‘profinite
trees’, which we shall develop in a subsequent book.

The last section of each chapter gives some of the history of the theory
that has been developed, and indicates the names of the main contributors.
These sections also include statements or references to results not treated in
the main body of the chapters.

Throughout the text we have included a series of open questions that are
also gathered at the end of book.
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We thank Hendrik Lenstra Jr. for his suggestion that a book such as
this should be written for the Ergebnisse Series. His contagious optimism
and enthusiasm, and his interest in our ideas and projects have been very
uplifting and helpful.

Several colleagues and friends have read parts of the book. We are spe-
cially grateful to Zoé Chatzidakis, Juan Ramón Delgado, John Dixon, Otto
Kegel and Wolfgang Herfort for their comments and corrections; the errors
and misprints that may remain are attributable entirely to us. We are greatly
indebted to Jean-Pierre Serre for sharing with us some of his ideas and for
his help in Section 6.9.

Part of this book was written while one of us (LR) was on sabbatical at
the UNED in Madrid at the invitation of Emilio Bujalance. The congenial
mathematical atmosphere that our colleagues have created there was very
conducive to our work. It is a pleasure to thank them for wonderful discussions
(mathematical and otherwise) and for their friendship. The advice of Javier
Pérez regarding xy-pic was very useful and we thank him for the time he
spent teaching us the tricks.

In the Summer of 1998 both authors participated in the program Research
in Pairs of the Mathematisches Forschunginstitut in Oberwolfach while writ-
ing this book; we thank the Mathematisches Forschunginstitut for the use
of the excellent Library there and for the opportunity to work together and
uninterrupted in such quiet and confortable quarters in the beautiful and
relaxing Schwarzwald.

The first author gratefully acknowledges the support of the National Sci-
ence and Engineering Research Council of Canada and the Dirección General
de Investigación y Desarrollo of Spain.

The second author thanks the Austrian Science Foundation and Fundação
de Apoio à Pesquisa do Distrito Federal (Brazil) for support.

Responsibility for the writing of this book: L. Ribes has written most of
the material in Chapters 1–8; the main exceptions are Section 4.5 and parts
of Sections 4.4, 4.7, 5.6 and 8.3 which were written by P. Zalesskii; translation
from Russian done by P. Zalesskii was important in the writing of Sections 8.5
and 8.10. Chapter 9 has been written by both authors. The editorial work
for the final version of the book has been done by both authors.

January, 2000 Luis Ribes, Ottawa
Pavel Zalesskii, Brasilia
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1 Inverse and Direct Limits

1.1 Inverse or Projective Limits

In this section we define the concept of inverse (or projective) limit and es-
tablish some of its elementary properties. Rather than developing the concept
and establishing those properties under the most general conditions, we re-
strict ourselves to inverse limits of topological spaces or topological groups.
We leave the reader the task of extending and translating the concepts and
results obtained here to other objects such as sets, (topological) rings, mod-
ules, graphs. . . , or to more general categories.

Let I = (I,�) denote a directed partially ordered set or directed poset ,
that is, I is a set with a binary relation � satisfying the following conditions:

(a) i � i, for i ∈ I;
(b) i � j and j � k imply i � k, for i, j, k ∈ I;
(c) i � j and j � i imply i = j, for i, j ∈ I; and
(d) if i, j ∈ I, there exists some k ∈ I such that i, j � k.

An inverse or projective system of topological spaces (respectively, topo-
logical groups) over I, consists of a collection {Xi | i ∈ I} of topological spaces
(respectively, topological groups) indexed by I, and a collection of continuous
mappings (respectively, continuous group homomorphisms) ϕij : Xi −→ Xj ,
defined whenever i � j, such that the diagrams of the form

Xi
ϕik

ϕij

Xk

Xj

ϕjk

commute whenever they are defined, i.e., whenever i, j, k ∈ I and i � j � k.
In addition we assume that ϕii is the identity mapping idXi on Xi. We shall
denote such a system by {Xi, ϕij , I}, or by {Xi, ϕij} if the index set I is
clearly understood. If X is a fixed topological space (respectively, topological
group), we denote by {X, id} the inverse system {Xi, ϕij , I}, where Xi = X
for all i ∈ I, and ϕij is the identity mapping id : X −→ X. We say that
{X, id} is the constant inverse system on X.
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DOI 10.1007/978-3-642-01642-4 1, c© Springer-Verlag Berlin Heidelberg 2010
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Let Y be a topological space (respectively, topological group ), {Xi, ϕij , I}
an inverse system of topological spaces (respectively, topological groups) over
a directed poset I, and let ψi : Y −→ Xi be a continuous mapping (respec-
tively, continuous group homomorphism ) for each i ∈ I. These mappings ψi
are said to be compatible if ϕijψi = ψj whenever j � i.

One says that a topological space (respectively, topological group) X to-
gether with compatible continuous mappings (respectively, continuous homo-
morphisms)

ϕi : X −→ Xi (i ∈ I)

is an inverse limit or a projective limit of the inverse system {Xi, ϕij , I} if
the following universal property is satisfied:

Y

ψi

ψ
X

ϕi

Xi

whenever Y is a topological space (respectively, topological group) and
ψi : Y −→ Xi (i ∈ I) is a set of compatible continuous mappings (re-
spectively, continuous homomorphisms), then there is a unique continuous
mapping (respectively, continuous homomorphism) ψ : Y −→ X such that
ϕiψ = ψi for all i ∈ I. We say that ψ is “induced” or “determined” by the
compatible homomorphisms ψi.

The maps ϕi : X −→ Xi are called projections. The projection maps ϕi
are not necessarily surjections. We denote the inverse limit by (X,ϕi), or
often simply by X, by abuse of notation.

If {Xi, I} is a collection of topological spaces (respectively, topological
groups) indexed by a set I, its direct product or cartesian product is the
topological space (respectively, topological group)

∏

i∈I Xi, endowed with
the product topology. In the case of topological groups the group operation
is defined coordinatewise.

Proposition 1.1.1 Let {Xi, ϕij , I} be an inverse system of topological spaces
(respectively, topological groups) over a directed poset I. Then

(a) There exists an inverse limit of the inverse system {Xi, ϕij , I};
(b) This limit is unique in the following sense. If (X,ϕi) and (Y, ψi) are two

limits of the inverse system {Xi, ϕij , I}, then there is a unique homeo-
morphism (respectively, topological isomorphism) ϕ : X −→ Y such that
ψiψ = ϕi for each i ∈ I.

Proof. (a) Define X as the subspace (respectively, subgroup) of the direct
product

∏

i∈I Xi of topological spaces (respectively, topological groups) con-
sisting of those tuples (xi) that satisfy the condition ϕij(xi) = xj if i � j.
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Let
ϕi : X −→ Xi

denote the restriction of the canonical projection
∏

i∈I Xi −→ Xi. Then one
easily checks that each ϕi is continuous (respectively, a continuous homomor-
phism), and that (X,ϕi) is an inverse limit.

(b) Suppose (X,ϕi) and (Y, ψi) are two inverse limits of the inverse system
{Xi, ϕij , I}.

X

ϕ

ϕi

Y

ψi

ψ

Xi

Since the maps ψi : Y −→ Xi are compatible, the universal property of the
inverse limit (X,ϕi) shows that there exists a unique continuous mapping
(respectively, continuous homomorphism) ψ : Y −→ X such that ϕiψ =
ψi for all i ∈ I. Similarly, since the maps ϕi : X −→ Xi are compatible
and (Y, ψi) is an inverse limit, there exists a unique continuous mapping
(respectively, continuous homomorphism) ϕ : X −→ Y such that ψiϕ = ϕi
for all i ∈ I. Next observe that

X

ψϕ

ϕi

idX

X

ϕi

Xi

commutes for each i ∈ I. Since, by definition, there is only one map satisfying
this property, one has that ψϕ = idX . Similarly, ϕψ = idY . Thus ϕ is a
homeomorphism (respectively, topological isomorphism). ��

If {Xi, ϕij , I} is an inverse system, we shall denote its inverse limit by
lim←− i∈IXi, or lim←− iXi, or lim←− IXi, or lim←−Xi, depending on the context.

Lemma 1.1.2 If {Xi, ϕij} is an inverse system of Hausdorff topological
spaces (respectively, topological groups), then lim←−Xi is a closed subspace

(respectively, closed subgroup) of
∏

i∈I Xi.

Proof. Let (xi) ∈
(∏

Xi
)

−
(

lim←−Xi
)

. Then there exist r, s ∈ I with r � s and

ϕrs(xr) 
= xs. Choose open disjoint neighborhoods U and V of ϕrs(xr) and
xs in Xs, respectively. Let U ′ be an open neighborhood of xr in Xr, such that
ϕrs(U ′) ⊆ U . Consider the basic open subset W =

∏

i∈I Vi of
∏

i∈I Xi where
Vr = U ′, Vs = V and Ui = Xi for i 
= r, s. Then W is a open neighborhood
of (xi) in

∏

i∈I Xi, disjoint from lim←−Xi. This shows that lim←−Xi is closed.
��
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A topological space is totally disconnected if every point in the space is its
own connected component. For example, a space with the discrete topology
is totally disconnected, and so is the rational line. It is easily checked that
the direct product of totally disconnected spaces is totally disconnected. The
following result is an immediate consequence of Tychonoff’s theorem, that
asserts that the direct product of compact spaces is compact (cf. Bourbaki
[1989], Ch. 1, Theorem 3), and the fact that a closed subset of a compact
space is compact.

Proposition 1.1.3 Let {Xi, ϕij , I} be an inverse system of compact Haus-
dorff totally disconnected topological spaces (respectively, topological groups)
over the directed set I. Then

lim←−
i∈I

Xi

is also a compact Hausdorff totally disconnected topological space (respectively,
topological group).

Proposition 1.1.4 Let {Xi, ϕij} be an inverse system of compact Hausdorff
nonempty topological spaces Xi over the directed set I. Then

lim←−
i∈I

Xi

is nonempty. In particular, the inverse limit of an inverse system of nonempty
finite sets is nonempty.

Proof. For each j ∈ I, define a subset Yj of
∏

Xi to consist of those (xi) with
the property ϕjk(xj) = xk whenever k � j. Using the axiom of choice and an
argument similar to the one used in Lemma 1.1.2, one easily checks that each
Yj is a nonempty closed subset of

∏

Xi. Observe that if j � j′, then Yj ⊇ Yj′ ;
it follows that the collection of subsets {Yj | j ∈ I} has the finite intersection
property (i.e., any intersection of finitely many Yj is nonempty), since the
poset I is directed. Then, one deduces from the compactness of

∏

Xi that
⋂

Yj is nonempty. Since
lim←−
i∈I

Xi =
⋂

j∈I
Yj ,

the result follows. ��

Let {Xi, ϕij , I} and {X ′
i, ϕ

′
ij , I} be inverse systems of topological spaces

(respectively, topological groups) over the same directed poset I. A map or
a morphism of inverse systems

Θ : {Xi, ϕij} −→ {X ′
i, ϕ

′
ij},

consists of a collection of continuous mappings (respectively, continuous ho-
momorphisms) θi : Xi −→ X ′

i (i ∈ I) such that if i � j, then the following
diagram commutes
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Xj
ϕji

θj

Xi

θi

X ′
j

ϕ′
ji

X ′
i

We say that the mappings θi are the components of Θ. A map

Θ : {Xi, ϕij , I} −→ {Xi, ϕij , I}

of an inverse system to itself, whose components θi : Xi −→ Xi (i ∈ I) are
identity mappings, is called the identity map of the system {Xi, ϕij , I}, and
it is usually denoted by id. Composition of maps of inverse systems is defined
in a natural way. That is, if

Θ : {Xi, ϕij} −→ {X ′
i, ϕ

′
ij},

with components θi, and

Ψ : {X ′
i, ϕ

′
ij} −→ {X ′ ′

i , ϕ
′ ′
ij},

with components ψi, are maps of inverse systems, then the components of
the composition map

ΨΘ : {Xi, ϕij} −→ {X ′ ′
i , ϕ

′ ′
ij},

are ψiθi, i ∈ I. Thus one obtains a category of inverse systems of topological
spaces (respectively, topological groups), whose objects are inverse systems of
topological spaces (respectively, topological groups), and whose morphisms
are maps of inverse systems.

Let {Xi, ϕij} and {X ′
i, ϕ

′
ij} be inverse systems of topological spaces

(respectively, topological groups) over the same directed poset I, and let
(X = lim←−Xi, ϕi) and (X ′ = lim←−X

′
i, ϕ

′
i) be their corresponding inverse lim-

its. Assume that
Θ : {Xi, ϕij , I} −→ {X ′

i, ϕ
′
ij , I}

is a map of inverse systems with components θi : Xi −→ X ′
i. Then the

collection of compatible mappings

θiϕi : X −→ X ′
i

induces a continuous mapping (respectively, continuous homomorphism)

lim←−Θ = lim←−
i∈I

θi : lim←−
i∈I

Xi −→ lim←−
i∈I

X ′
i.

Observe that lim←− is a functor from the category of inverse systems of topologi-

cal spaces (respectively,topological groups) over I to the category of topologi-
cal spaces (respectively, topological groups); that is, lim←−(ΨΘ) = lim←−Ψ lim←−Θ,
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and if id is the identity map on the inverse system {Xi, ϕij , I}, then lim←− id

is the identity map on the topological space (respectively, topological group)
lim←− i∈IXi.

If the components θi : Xi −→ X ′
i of a map Θ : {Xi, ϕij} −→ {X ′

i, ϕ
′
ij} of

inverse systems are embeddings, then obviously, so is

lim←− θi : lim←−Xi ↪→ lim←−X
′
i.

In contrast, if each of the components θi is an onto mapping, lim←− θi is not
necessarily onto. For example, consider the natural numbers I = N, with the
usual partial ordering, as our indexing poset; define two inverse systems (of
discrete spaces) over I as follows: the constant inverse system {Z, id}, and
the inverse system {Z/pnZ, ϕnm}, where ϕnm : Z/pnZ −→ Z/pmZ is the
natural projection for m ≤ n. For each n ∈ N, define θn : Z −→ Z/pnZ to
be the canonical epimorphism; then

Θ = {θn} : {Z, id} −→ {Z/pnZ, ϕnm}

is a map of inverse systems. Observe that the inverse limit of the first system
is Z, while the inverse limit of the second can be identified with

lim←−Z/pnZ = {(xn) | xn ∈ Z, xn ≡ xm (mod pm) if m ≤ n}.

The image of Z in lim←−Z/pnZ under lim←− θn is the set of all constant tuples

{(an) | an = t, t ∈ Z}. On the other hand, the tuple (bn), where bn =
1+ p+ · · ·+ pn−1, is in lim←−Z/pnZ, but it is not constant. Thus lim←− θn is not
onto.

However, for inverse systems of compact Hausdorff spaces, one has the
following result.

Lemma 1.1.5 Let Θ : {Xi, ϕij , I} −→ {X ′
i, ϕ

′
ij , I} be a map of inverse sys-

tems of compact Hausdorff topological spaces (respectively, topological groups),
and assume that each component θi : Xi −→ X ′

i (i ∈ I) is onto. Then

lim←−Θ = lim←−
i∈I

θi : lim←−
i∈I

Xi −→ lim←−
i∈I

X ′
i

is onto.

Proof. Let (x′
i) ∈ lim←−X

′
i. Put ˜Xi = θ−1

i (x′
i) (i ∈ I). Since ˜Xi is closed in

the compact space Xi, it follows that ˜Xi is compact (i ∈ I). Observe that
ϕij( ˜Xi) ⊆ ˜Xj for i � j. Therefore, { ˜Xi, ϕij} is an inverse system of nonempty
compact topological spaces (respectively, compact topological groups). By
Proposition 1.1.4, lim←−

˜Xi 
= ∅. Let (xi) ∈ lim←−
˜Xi ⊆ lim←−Xi. Then one has

( lim←−Θ)(xi) = (x′
i). ��
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Corollary 1.1.6 Let {Xi, ϕij , I} be an inverse system of compact Hausdorff
spaces and X a compact Hausdorff space. Suppose that {ϕi : X −→ Xi}i∈I is
a set of compatible continuous surjective mappings. Then the corresponding
induced mapping θ : X −→ lim←−Xi is onto.

Proof. Consider the constant inverse system {X, id} over I. The collection
{θi}i∈I can be thought of as a map from {X, id, I} to {Xi, ϕij , I}. Then
θ = lim←− θi, and the result follows from the above proposition. ��

Lemma 1.1.7 Let {Xi, ϕij , I} be an inverse system of topological spaces over
a directed set I, and let ρi : X −→ Xi be compatible surjections from the space
X onto the spaces Xi (i ∈ I). Then either lim←−Xi = ∅ or the corresponding
induced mapping ρ : X −→ lim←−Xi maps X onto a dense subset of lim←−Xi.

Proof. Suppose lim←−Xi 
= ∅. A general basic open subset V of lim←−Xi can be
described as follows: let i1, . . . , in be a finite subset of I and let Uij be an
open subset of Xij (j = 1, . . . , n); let

V = (lim←−Xi) ∩
(

∏

i∈I
Vi

)

where Vij = Uij (j = 1, . . . , n) and Vi = Xi for i 
= i1, . . . , in. Assume such
V is not empty. We have to show that ρ(X)∩V 
= ∅. Let i0 � i1, . . . , in, and
let y = (yi) ∈ V . Choose x ∈ X so that ρi0(x) = yi0 . Then ρ(x) ∈ V . ��
Corollary 1.1.8 Let {Xi, ϕij} be an inverse system of compact Hausdorff
spaces, X = lim←−Xi, and let ϕi : X −→ Xi be the projections.

(a) If Y is a closed subspace of X, then Y = lim←−ϕi(Y ).

(b) If Y is a subspace of X, then

Y = lim←−ϕi(Y ),

where Y is the closure of Y in X.
(c) If Y and Y ′ are subspaces of X and ϕi(Y ) = ϕi(Y ′) for each i, then their

closures in X coincide: Y = Y ′.

Proof. (a) Observe that there are obvious embeddings

Y ↪→ lim←−ϕi(Y ) ↪→ lim←−Xi = X.

Moreover, by Corollary 1.1.6, the first of these embeddings is onto. Hence,
Y = lim←−ϕi(Y ).

(b) According to Lemma 1.1.7, Y embeds as a dense subset of lim←−ϕi(Y ).

Arguing as in Lemma 1.1.2 one sees that lim←−ϕi(Y ) is closed in X. Hence the
result follows.

(c) This follows from (a) and (b). ��
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Let (I,�) be a directed poset. Assume that I ′ is a subset of I in such
a way that (I ′,�) becomes a directed poset. We say that I ′ is cofinal in I
if for every i ∈ I there is some i′ ∈ I ′ such that i � i′. If {Xi, ϕij , I} is an
inverse system and I ′ is cofinal in I, then {Xi, ϕij , I ′} becomes an inverse
system in an obvious way, and we say that {Xi, ϕij , I ′} is a cofinal subsystem
of {Xi, ϕij , I}.

Assume that {Xi, ϕij , I ′} is a cofinal subsystem of {Xi, ϕij , I} and denote
by ( lim←− i′ ∈I′Xi′ , ϕ′

i′ ) and ( lim←− i∈IXi, ϕi) their corresponding inverse limits.

For j ∈ I, let j′ ∈ I ′ be such that j′ � j. Define

ϕj : lim←−
I′

Xi′ −→ Xj

as the composition of canonical mappings ϕj′jϕ
′
j′ . Observe that the maps ϕj

are well-defined (independent of the choice of j′) and compatible. Hence they
induce a map

ϕ : lim←−
I′

Xi′ −→ lim←−
I

Xi

such that ϕjϕ = ϕj (j ∈ I). We claim that the mapping ϕ is a bijection.
Note that if (xi′ ) ∈ lim←− i′ ∈I′Xi′ and ϕ(xi′ ) = (yi), then yi′ = xi′ for i′ ∈ I ′.

It follows that ϕ is an injection since I ′ is cofinal in I. To see that ϕ is a
surjection, let (yi) ∈ lim←− i∈IXi and consider the element (xi′ ), where xi′ = yi′

for every i′ ∈ I ′. Then (xi′ ) ∈ lim←− i′ ∈I′Xi′ and clearly, ϕ(xi′ ) = (yi). This
proves the claim. We record these results in the following lemma.

Lemma 1.1.9 Let {Xi, ϕij , I} be a inverse system of compact topological
spaces (respectively, compact topological groups) over a directed poset I and
assume that I ′ is a cofinal subset of I. Then

lim←−
i∈I

Xi ∼= lim←−
i′ ∈I′

Xi′ .

Proof. According to the above observations,

ϕ : lim←−
I′

Xi′ −→ lim←−
I

Xi

is a continuous bijection (respectively, group isomorphism). Since lim←− i′ ∈I′Xi′

and lim←− i∈IXi are compact spaces (respectively, compact topological groups),

it follows that ϕ is a homeomorphism (respectively, topological isomorphism).
We identify lim←− i′ ∈I′Xi′ and lim←− i∈IXi by means of this homeomorphism

(respectively, topological isomorphism). ��

An inverse system {Xi, ϕij , I} is called a surjective inverse system if each
of the mappings ϕij (i � j) is surjective. By Corollary 1.1.8(a), for any
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inverse system {Xi, ϕij , I}, there is a corresponding surjective inverse system
{ϕi(X), ϕ′

ij , I} (where ϕ′
ij is just the restriction of ϕij to ϕi(X)) with the

same inverse limit X.
Let {Xi, ϕij , I} be an inverse system of topological spaces Xi over a

poset I. Put X = lim←−Xi, and let ϕj : X −→ Xj be the projection map.

Assume that X 
= ∅. If ϕj is a surjection for each i ∈ I, then evidently
ϕrs : Xr −→ Xs is a surjection for all r, s ∈ I with r � s. The converse is not
necessarily true. However, as the following proposition shows, the converse
holds if one assumes in addition that each of the Xi is compact.

Proposition 1.1.10 Let {Xi, ϕij , I} be a surjective inverse system of com-
pact Hausdorff nonempty topological spaces Xi over a poset I. Then for each
j ∈ I, the projection map ϕj : lim←−Xi −→ Xj is a surjection.

Proof. Fix j ∈ I. The set Ij = {i ∈ I | i � j} is cofinal in I; so, by
Lemma 1.1.9, lim←− i∈IjXi

∼= lim←− i∈IXi. Therefore, we may assume that i � j
for every i ∈ I. Let xj ∈ Xj and set Yr = ϕ−1

rj (xj) for r ∈ I. Since ϕrj
is onto and continuous, Yr is a nonempty compact subset of Xr (r ∈ I).
Furthermore, if r � s are indices in I, then ϕrs(Yr) ⊆ Ys. Hence {Yr, ϕrs, I}
is an inverse system. According to Proposition 1.1.4, lim←−Yr 
= ∅. Let (yr) ∈
lim←−Yi ⊆ lim←−Xi. Then ϕj(yr) = xj . ��

In what follows we shall be specially interested in topological spaces X
that arise as inverse limits

X = lim←−
i∈I

Xi

of finite spaces Xi endowed with the discrete topology. We call such a space
a profinite space or a Boolean space. Before we give some characterizations
of profinite spaces, we need the following lemma.

Lemma 1.1.11 Let X be a compact Hausdorff topological space and let x ∈
X. Then the connected component C of x is the intersection of all clopen
(i.e., closed and open) neighborhoods of x.

Proof. Let {Ut | t ∈ T} be the family of all clopen neighborhoods of x, and
put

A =
⋂

t∈T
Ut.

It is clear that every clopen neighborhood of x contains the connected compo-
nent C of x; and so C ⊆ A. Therefore, it suffices to show that A is connected.
Assume that A = U ∪ V , U ∩ V = ∅ with both U and V closed in A (and so,
in X). We need to prove that either U or V is empty. Since X is Hausdorff
and U and V are compact and disjoint, there exist open sets U ′ and V ′ in X
such that U ′ ⊇ U , V ′ ⊇ V and U ′ ∩ V ′ = ∅. So,
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[X − (U ′ ∪ V ′)] ∩A = ∅.

Now, X − (U ′ ∪ V ′) is closed; hence, by the compactness of X, there exists a
finite subfamily T ′ of T such that

[X − (U ′ ∪ V ′)] ∩
[

⋂

t′ ∈T ′

Ut′

]

= ∅.

Observe that B =
⋂

t′ ∈T ′ Ut′ is a clopen neighborhood of x, since T ′ is finite.
On the other hand,

x ∈ (B ∩ U ′) ∪ (B ∩ V ′) = B.

Say x ∈ B ∩ U ′. Plainly B ∩ U ′ is open, but it is also closed because B ∩ V ′

is open and (X −B ∩ V ′)∩B = B ∩U ′. Therefore, A ⊆ B ∩U ′ ⊆ U ′. Hence
A ∩ V ⊆ A ∩ V ′ = ∅, and thus V = ∅. ��

We say that an equivalence relation R on a topological space X is open
(respectively, closed) if for every x ∈ X, the equivalence class xR of x is
open (respectively, closed) in X. If R is open, then it is closed (xR is the
complement of a union of open sets).

Observe that R is open in the above sense if and only if R considered as
a subset of X ×X is open. Indeed, assume that R is open, and let (x, y) ∈ R
(x, y ∈ X); then xR × yR is an open neighborhood of (x, y) contained in R,
and hence R is an open subset of X × X. Conversely, assume that R is an
open subset of X ×X; since (x, x) ∈ R, there exists an open neighborhood
U of x in X such that U × U ⊆ R; hence U ⊆ xR, proving that xR is open
in X, and thus that R is an open equivalence relation.

Theorem 1.1.12 Let X be a topological space. Then the following conditions
are equivalent.

(a) X is a profinite space;
(b) X is compact Hausdorff and totally disconnected ;
(c) X is compact Hausdorff and admits a base of clopen sets for its topology.

Proof. (a) ⇒ (b): Let X be a profinite space. Say X = lim←− i∈IXi, where each
Xi is a finite space. By Proposition 1.1.3, X is compact Hausdorff and totally
disconnected.

(b) ⇒ (c): Let X be a compact Hausdorff and totally disconnected space.
Let W be an open neighborhood of a point x in X. We must show that W
contains a clopen neighborhood of x. Let {Ut | t ∈ T} be the family of all
clopen neighborhoods of x. According to Lemma 1.1.11,

{x} =
⋂

t∈T
Ut.
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Since X −W is closed and disjoint from
⋂

t∈T Ut, we deduce from the com-
pactness of X that there is a finite subset T ′ of T such that

(X −W ) ∩
(

⋂

t∈T ′

Ut

)

= ∅.

Thus
⋂

t∈T ′ Ut is a clopen neighborhood of x contained in W , as desired.
(c) ⇒ (a): Suppose that X is compact Hausdorff and admits a base of

clopen sets for its topology. Denote by R the collection of all open equivalence
relations R on X; for such R, the space X/R is finite and discrete since X
is compact. The set R is naturally ordered as follows: if R,R′ ∈ R, then
R � R′ if and only if xR ⊆ xR′ for all x ∈ X. Then R is a poset. To see
that this poset is directed, let R1 and R2 be two equivalence relations on X.
Define its intersection R1∩R2 to be the equivalence relation corresponding to
the partition of X obtained by intersecting each equivalence class of R1 with
each equivalence class of R2. Clearly R1 ∩ R2 � R1, R2. Now, if R,R′ ∈ R
and R � R′, define ϕRR′ : X/R −→ X/R′ by ϕRR′ (xR) = xR′. Then
{X/R,ϕRR′} is an inverse system over R. We shall show that

X ∼= lim←−
R∈R

X/R.

Let
ψ : X −→ lim←−

R∈R

X/R

be the continuous mapping induced by the canonical continuous surjections

ψR : X −→ X/R.

By Corollary 1.1.6, ψ is a continuous surjection. To prove that ψ is a homeo-
morphism, it suffices then to prove that it is an injection, since X is compact.
Let x, y ∈ X. By hypothesis, there exists a clopen neighborhood U of x that
excludes y. Consider the equivalence relation R′ on X with two equivalence
classes: U and X−U . Clearly, R′ ∈ R and ψR′ (x) 
= ψR′ (y). So, ψ(x) 
= ψ(y).
Thus, ψ is an injection. ��

A topological space X is said to satisfy the second axiom of countability if
it has a countable base of open sets; such space is also called second countable
or countably based . A topological space X is said to satisfy the first axiom
of countability if each point of X has a countable fundamental system of
neighborhoods; such space is also called first countable.

Corollary 1.1.13 A profinite space X is second countable if and only if

X ∼= lim←− i∈IXi,

where (I,�) is a countable totally ordered set and each Xi is a finite discrete
space.
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Proof. Suppose X is profinite and second countable. Consider the set R of
all open equivalence relations on X. For R ∈ R, xR is a finite union of basic
open set. Hence R is countable. Say R = {R1, R2, . . .}. For each natural
number i, define R′

i = R1 ∩ · · · ∩Ri. Then R′
1 � R′

2 � · · · and {R′
i | i ∈ N} is

cofinal in R. As seen in the proof of the implication (c) ⇒ (a) in the theorem,
X = lim←−R∈RX/R. Thus X = lim←− i∈NX/R

′
i.

Conversely assume that X = lim←− i∈IXi, where the poset (I,�) is count-

able and each Xi is a finite discrete space. Then obviously
∏

i∈I Xi is second
countable and profinite; thus so is X. ��

Exercise 1.1.14 Let {Xi | i ∈ I} be a collection of spaces. Prove that
∏

i∈I
Xi

can be expressed as an inverse limit of direct products
∏

i∈F Xi, where F
runs through the finite subsets of I.

Exercise 1.1.15 Let {Xi, ϕij} be an inverse system of topological spaces in-
dexed by a poset I, X = lim←−Xi, and denote by ϕi : X −→ Xi the projection
map. Assume that for each i ∈ I, Ui is a base of open sets of Xi. Prove that
{ϕ−1

i (U) | U ∈ Ui, i ∈ I} is a base of open sets of X.

Lemma 1.1.16

(a) Let {Xi, ϕij , I} be an inverse system of profinite spaces. Let

X = lim←−
i∈I

Xi

and denote by ϕi : X −→ Xi the projection map (i ∈ I). Let ρ : X −→ Y
be a continuous mapping onto a discrete finite space Y . Then ρ factors
through some ϕk, that is, there exists some k ∈ I and some continuous
mapping ρ′ : Xk −→ Y such that ρ = ρ′ϕk.

(b) Let {Gi, ϕij , I} be an inverse system of topological groups with underlying
profinite spaces. Let

G = lim←−
i∈I

Gi

and denote by ϕi : G −→ Gi the projection continuous homomorphism
(i ∈ I). Let β : G −→ H be a continuous homomorphism into a discrete
finite group H. Then β factors through some ϕk, that is, there exists
some k ∈ I and some continuous homomorphism β′ : Gk −→ H such
that β = β′ϕk.

Proof. (a) Assume first that each ϕi is a surjection. Let Y = {y1, . . . , yr},
and consider the clopen subsets Ui = ρ−1(yi) (i = 1, . . . , r) of X. Clearly
X =

⋃r
i=1 Ui, and Ui ∩ Uj = ∅ if i 
= j. Fix i. For each x ∈ Ui choose
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an index kx ∈ I and a clopen neighborhood Vx = V ix of ϕkx(x) in Xkx

such that ϕ−1
kx

(Vx) ⊆ Ui (see Exercise 1.1.15). Put Wx = ϕ−1
kx

(Vx). By the
compactness of Ui, there are finitely many points x1, . . . , xti in Ui such that
Ui = Wx1 ∪ · · · ∪Wxti

. Choose an index k ∈ I such that k ≥ kx1 , . . . , kxti
.

Replacing Vxs by ϕ−1
kkxs

(Vxs) (s = 1, . . . , ti), we may assume that kx1 = · · · =
kxti

= k. Note that this k depends on i; however, since I is directed, we may
assume that in fact k is valid for all i = 1, . . . , r. Hence we have constructed
clopen subsets V i1 , . . . , V

i
ti of Xk such that Ui =

⋃ti
s=1 ϕ

−1
k (V is ) (i = 1, . . . , r).

Put V i =
⋃ti
s=1 V

i
s . Then V i ∩ V j = ∅ if i 
= j (1 ≤ i, j ≤ r); furthermore,

Xk =
⋃r
i=1 V

i since ϕk is a surjection. Define ρ′ : Xk −→ Y by ρ′(x) = yi if
x ∈ V i. Then ρ′ is a continuous mapping since the V i are clopen and form a
disjoint covering of X. Clearly ρ = ρ′ϕk.

To finish part (a), consider now the case when the projection maps ϕi are
not necessarily surjective. By the construction above, there exists some k ∈ I
and a continuous surjection μ : ϕk(X) −→ Y such that ρ = μϕk. Hence, it
suffices to extend μ to a continuous map ρ′ : Xk −→ Y . Put Z = ϕk(X).
For each i = 1, . . . , r, let Wi = μ−1(yi). Then Z = W1 ∪. · · · ∪. Wr and each
Wi is clopen in Z. Since Xk is a profinite space and Z is closed in Xk, there
exist clopen subsets W ′

1, . . . ,W
′
r of Xk such that Xk = W ′

1 ∪. · · · ∪. W ′
r and

Wi = W ′
i ∩Z (i = 1, . . . , r). Define ρ′(x) = yi for x ∈W ′

i (i = 1, . . . , r). Then
ρ′ is clearly continuous and extends μ. This ends the proof of part (a).

(b) Thinking of G,H and each Gi as topological spaces, we infer from part
(a) that β factors through a continuous function βi0 : Gi0 −→ H, for some
i0 ∈ I. However βi0 need not be a homomorphism. Put I0 = {i ∈ I | i � i0}.
For each i ∈ I0, define βi : Gi −→ H, by βi = βi0ϕii0 ; then clearly β = βiϕi.
We claim that for some k ∈ I0, the map βk is a homomorphism. To see this
consider the continuous map

η : G×G −→ H ×H, (g1, g2) �→ (β(g1)β(g2), β(g1g2)),

and the analogous continuous maps ηi : Gi ×Gi −→ H ×H, for each i ∈ I0,
replacing β by βi. It is easy to check that

G×G = lim←−
i�i0

Gi ×Gi, η = lim←−
i∈I0

ηi,

and
η(G×G) = lim←−

i∈I0

ηi(Gi ×Gi) =
⋂

i�i0

ηi(Gi ×Gi).

Since ηi(Gi×Gi) is contained in the finite set H×H and since I0 is a directed
poset, it follows that

η(G×G) = ηk(Gk ×Gk),

for some k ∈ I0. Next observe that since β is a homomorphism, η(G×G) ⊆
Δ = {(h, h) | h ∈ H}. Therefore ηk(Gk × Gk) ⊆ Δ; thus ηk is a homomor-
phism. Put β′ = ηk. ��
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1.2 Direct or Inductive Limits

In this section we study direct (or inductive) systems and their limits. The
definitions and some of the properties obtained here are found by dualizing
the corresponding ones in the case of inverse (or projective) limits devel-
oped in Section 1.1; however there some specific results for direct limits that
we want to emphasize. Again, we shall not try to develop the theory un-
der the most general conditions; we are mainly interested in direct limits of
abelian groups (or modules). So, to avoid unnecessary repetitions, we shall
work within the category of abelian groups and leave the reader the task of
translating the results for other categories (sets, rings, modules, graphs, etc.).

Let I = (I,�) be a partially ordered set (see Section 1.1) A direct or
inductive system of abelian groups over I consists of a collection {Ai} of
abelian groups indexed by I and a collection of homomorphisms ϕij : Ai −→
Aj , defined whenever i � j, such that the diagrams of the form

Ai
ϕik

ϕij

Ak

Aj

ϕjk

commute whenever i � j � k.
In addition, we assume that ϕii is the identity mapping idAi on Ai. We

shall denote such a system by {Ai, ϕij , I}, or by {Ai, ϕij} if the index set I
is clearly understood. If A is a fixed abelian group, we denote by {A, id} the
direct system {Ai, ϕij}, where Ai = A for all i ∈ I, and ϕij is the identity
mapping id : A −→ A. We say that {A, id} is the constant direct system
on A.

Let A be an abelian group, {Ai, ϕij , I} a direct system of abelian groups
over a directed poset I and assume that ψi : Ai −→ A is a homomorphism
for each i ∈ I. These mappings ψi are said to be compatible if ψjϕij = ψi
whenever i � j. One says that an abelian group A together with compatible
homomorphisms

ϕi : Ai −→ A

(i ∈ I) is a direct limit or an inductive limit of the direct system {Ai, ϕij , I},
if the following universal property is satisfied:

A
ψ

B

Ai

ϕi
ψi

whenever B is an abelian group and ψi : Ai −→ B (i ∈ I) is a set of
compatible homomorphisms, then there exists a unique homomorphism

ψ : A −→ B
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such that ψϕi = ψi for all i ∈ I. We say that ψ is “induced” or “determined”
by the compatible homomorphisms ψi.

Proposition 1.2.1 Let {Ai, ϕij , I} be a direct system of abelian groups over
a directed poset I. Then there exists a direct limit of the system. Moreover,
this limit is unique in the following sense: if (A,ϕi) and (A′, ϕ′

i) are two
limits, then there is a unique isomorphism η : A −→ A′ such that ϕ′

i = ηϕi
for each i ∈ I.

Proof. The uniqueness is immediate. To show the existence of the direct
limit of the system {Ai, ϕij , I}, let U be the disjoint union of the groups
Ai. Define a relation ∼ on U as follows: we say that x ∈ Ai is equivalent to
y ∈ Aj if there exists k ∈ I with k � i, j such that ϕik(x) = ϕjk(y). This is an
equivalence relation. Denote by x̃ the equivalence class of x ∈ Ai under this
relation. Denote by A the set of all equivalence classes of U . Given x ∈ Ai
and y ∈ Aj consider an index k ∈ I with k � i, j, and define x̃ + ỹ to be
the class of ϕik(x) + ϕjk(y); this is easily seen to be well-defined. Then A
becomes an abelian group under this operation (its zero element is the class
represented by the zero of Ai for any i ∈ I). For each i ∈ I, let ϕi : Ai −→ A
be given by ϕi(x) = x̃; then ϕi is a homomorphism. To check that (A,ϕi) is
a direct limit of the direct system {Ai, ϕij , I}, let ψi : Ai −→ B (i ∈ I) be
a collection of compatible homomorphisms into an abelian group B. Define
the induced homomorphism ψ : A −→ B as follows. Let a ∈ A; say a = ϕi(x)
for some x ∈ Ai and i ∈ I. Then define ψ(a) = ψi(x). Observe that ψ is a
well-defined homomorphism and ψϕi = ψi for all i ∈ I. Furthermore, ψ is
the only possible homomorphism satisfying these conditions. ��

If {Ai, ϕij , I} is a direct system, we denote its direct limit by lim−→ i∈IAi,
or lim−→ iAi, or lim−→ IAi, or lim−→Ai, depending on the context.

Exercise 1.2.2 Let {Ai, ϕij , I} be a direct system of abelian groups over a
directed poset I, and let I ′ be a cofinal subset of I. Show that the groups
{Ai | i ∈ I ′} form in a natural way a direct system of abelian groups over I ′,
and

lim−→
i∈I

Ai = lim−→
i∈I′

Ai.

The following exercise provides an alternative way of constructing direct
limits; this procedure is the dual of the construction for inverse limits used
in the proof of Proposition 1.1.1.

Exercise 1.2.3 Let {Ai, ϕij , I} be a direct system of abelian groups over a
directed poset I. Define A to be the quotient group of the direct sum

⊕

i∈I Ai
modulo the subgroup R generated by the elements of the form ϕij(x)−x for
all x ∈ Ai, i ∈ I and i � j. There are natural homomorphisms ϕi : Ai −→ A.
Prove that A together with these homomorphisms is a direct limit of the
system {Ai, ϕij , I}.
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Proposition 1.2.4 Let {Ai, ϕij} be a direct system of abelian groups over a
directed poset I, A = lim−→Ai its direct limit and ϕi : Ai −→ A the canonical
homomorphisms. Then

(a) A =
⋃

i∈I ϕi(Ai);
(b) Let x ∈ Ai and assume ϕi(x) = 0; then there exists some k � i such that

ϕik(x) = 0;
(c) If ϕik is an injection for each k � i, then ϕi is an injection;
(d) If ϕik is onto for each k � i, then ϕi is a surjection.

Proof. Part (a) is obvious from our construction. To prove (b), note that
ϕi(x) = 0 means that x̃ = 0̃, where 0 ∈ Aj for some j ∈ I (we use the
notation of the proof of Proposition 1.2.1). Therefore, there exists k � i, j
such that ϕik(x) = ϕjk(0) = 0. Part (c) follows from (b). To show (d), let
a ∈ A; then, by construction, a = ỹ, where y ∈ Aj for some j ∈ I. Choose
k � i, j. Since ϕik is onto, there exists x ∈ Ai such that ϕik(x) = ϕjk(y);
therefore ϕi(x) = x̃ = ỹ = a. ��

Example 1.2.5

(1) The prototype of a direct limit is a union. If an abelian group A is a union
A =

⋃

i∈I Ai of subgroups Ai, then A is the direct limit of the subgroup
generated by the finite unions

⋃

j∈J Aj , where J ranges over the finite
subsets of I. Conversely, if

A = lim−→
i∈I

Ai

is a direct limit of a direct system {Ai, ϕij , I}, and if ϕi : Ai −→ A are
the canonical maps, then

A =
⋃

i∈I
ϕi(Ai).

(2) Every abelian group A is a direct limit of its finitely generated subgroups.
In particular, if A is torsion, it is the direct limit of its finite subgroups.

(3) Let p be a prime number. We use the notation Cp∞ for the p-quasicyclic
or Prüfer group, i.e., the group of pnth complex roots of unity, with n
running over all non-negative integers. Equivalently, Cp∞ can be defined
as the direct limit

Cp∞ = lim−→
n

Cpn ,

of the direct system of cyclic groups {Cpn , ϕnm}, where the homomor-
phism ϕnm : Cpn −→ Cpm , defined for n ≤ m, is the natural injection.

A map
Ψ : {Ai, ϕij , I} −→ {A′

i, ϕ
′
ij , I}
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of direct systems {Ai, ϕij , I} and {A′
i, ϕ

′
ij , I} over the same directed poset I

consists of a collection of homomorphisms

ψi : Ai −→ A′
i (i ∈ I)

that commute with the canonical maps ϕij and ϕ′
ij . That is, whenever i � j,

we have a commuting square

Ai
ϕij

ψi

Aj

ψj

A′
i

ϕ′
ij

A′
j

We refer to the homomorphisms ψij as the components of the map Ψ .
Direct systems of abelian groups over a fixed poset I together with their

maps, as defined above, form in a natural way a category. (This category is in
fact an abelian category; although the analogous category of direct systems
of sets, say, is not abelian.)

Let
{Ai, ϕij , I} and {A′

i, ϕ
′
ij , I}

be direct systems over the same poset (I,�), and let

A = lim−→Ai and A′ = lim−→A′
i

be their corresponding direct limits, with canonical maps ϕi : Ai −→ A and
ϕ′
i : A′

i −→ A′, respectively. Associated with each map

Ψ = {ψi} : {Ai, ϕij , I} −→ {A′
i, ϕ

′
ij , I}

of direct systems, there is a homomorphism

lim−→Ψ = A −→ A′

defined by the universal property of direct limits:

lim−→Ψ = lim−→ i∈Iψi.

This is the unique homomorphism induced by the compatible maps

ϕ′
iψi : Ai −→ A′ (i ∈ I).

With these definitions, it is straightforward to verify that lim−→(ΨΨ ′) =

lim−→(Ψ) lim−→(Ψ ′) and lim−→(id{Ai,ϕij ,I}) = id lim−→Ai ; in other words, lim−→ is a
functor from the category of direct systems of abelian groups over the same
poset, to the category of abelian groups.

We restate all this as part of the following proposition.
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Proposition 1.2.6 Let I be a fixed poset. Then the collection D of all direct
systems of abelian groups over I and their maps form an abelian category.
Furthermore, lim−→ is an exact (covariant) functor from D to the category of
abelian groups.

The proof of this proposition follows easily from repeated applications of
Proposition 1.2.4; we leave the details to the reader.

1.3 Notes, Comments and Further Reading

The material in this chapter is standard. For more details on inverse and
direct limits the reader may consult, e.g., Eilenberg and Steenrod [1952],
Bourbaki [1989] or Fuchs [1970].



2 Profinite Groups

2.1 Pro - C Groups

Let C be a nonempty class of finite groups [this will always mean that C
contains all the isomorphic images of the groups in C]. Define a pro - C group
G as an inverse limit

G = lim←−
i∈I

Gi

of a surjective inverse system {Gi, ϕij , I} of groups Gi in C, where each
group Gi is assumed to have the discrete topology. We think of such a pro - C
group G as a topological group, whose topology is inherited from the product
topology on

∏

i∈I Gi.
The class C is said to be subgroup closed if whenever G ∈ C and H ≤ G,

then H ∈ C. We remark that if the class C is subgroup closed, then any
inverse limit of a (non-necessarily surjective) inverse system of groups in C is
a pro - C group.

A group G is a subdirect product of a collection of groups {Gj | j ∈ J}
if there exists a collection of normal subgroups {Nj | j ∈ J} of G such that
⋂

j∈J Nj = 1 and G/Nj ∼= Gj for each j ∈ J . Observe that if G is a subdirect
product of the groups {Gj | j ∈ J}, then G is isomorphic to a subgroup of
the direct product

∏

i∈J Gj .
The properties of pro - C groups are obviously dependent on the type of

class C that one considers. We are going to state a series of properties that
a class C could satisfy which are of possible interest in this book. According
to our needs, we shall assume that a class of finite groups C satisfies one or
more of the following properties:

(C1) C is subgroup closed.
(C2) C is closed under taking quotients, that is, if G ∈ C and K � G, then

G/K ∈ C.
(C3) C is closed under forming finite direct products, that is, if Gi ∈ C (i =

1, . . . , n), then
n
∏

i=1

Gi ∈ C.

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 2, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_2
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(C4) If G is a finite group with normal subgroups N1 and N2 such that
G/N1, G/N2 ∈ C, then G/N1 ∩N2 ∈ C. Equivalently, C is closed under
taking finite subdirect products, that is, if Gi ∈ C, (i = 1, . . . , n) and G
is a subdirect product of G1, . . . , Gn, then G ∈ C.

(C5) C is closed under extensions, that is, if

1 −→ K
ϕ−→ G

ψ−→ H −→ 1

is a short exact sequence of groups (that is, ϕ is a monomorphism, ψ is
an epimorphism and Im (ϕ) = Ker(ψ)) and K,H ∈ C, then G ∈ C.

Note that (C1) plus (C3) imply (C4); (C4) implies (C3); and (C5) im-
plies (C3).

For example, C could be the class of all

(a) finite groups; then C satisfies conditions (C1)–(C5). In this case we call a
pro - C group profinite. Observe that every pro - C group is also profinite.

(b) finite cyclic groups; then C satisfies conditions (C1) and (C2), but not
(C3), (C4), (C5). In this case we call a pro - C group procyclic.

(c) finite solvable groups; then C satisfies conditions (C1)–(C5). In this case
we call a pro - C group prosolvable.

(d) finite abelian groups; then C satisfies conditions (C1)–(C4), but not (C5).
In this case we call a pro - C group proabelian.

(e) finite nilpotent groups; then C satisfies conditions (C1)–(C4), but not (C5).
In this case we call a pro - C group pronilpotent.

(f) finite p-groups, for fixed prime number p; then C satisfies conditions
(C1)–(C5). In this case we call a pro - C group pro-p.

To avoid repetitions we shall give special names to classes C of finite
groups satisfying some of the above conditions that are frequently used in
this book.

• A formation of finite groups is a nonempty class of finite groups C that
satisfies (C2) and (C4).

• A variety of finite groups is a nonempty class of finite groups C that satisfies
conditions (C1)–(C3).

• An NE-formation is a formation which is closed under taking normal sub-
groups and extensions.

• An extension closed variety is a variety which is closed under taking ex-
tensions.

Remark that a variety is automatically a formation, and that a subgroup
closed formation is a variety.

Let Δ be a nonempty set of finite simple groups. A Δ-group D is a finite
group whose composition factors are in Δ, that is, D is a finite group that
has a composition series

D = D0 ≥ D1 ≥ · · · ≥ Dr = 1
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such that Di/Di+1 ∈ Δ. If Δ consists only of one group S, we sometimes refer
to Δ-groups as S-groups. Define C = C(Δ) to be the class of all Δ-groups;
we sometimes refer to C(Δ) as a Δ-class. Note that C(Δ) is a formation
closed under taking normal subgroups and extensions, that is, C(Δ) is an
NE-formation which is not necessarily subgroup closed. Conversely, if C is an
NE-formation, then C = C(Δ), where Δ is the set of all simple groups in C.

There are varieties of finite groups that are not of the form C(Δ) (e.g., the
variety of all finite nilpotent groups). And not every class of the form C(Δ)
is a variety (e.g., if Δ consists of a single finite simple nonabelian group S).
Some important classes of extension closed varieties of finite groups are: the
class of all finite groups, the class of all finite solvable groups and the class
of all finite p-groups (for a fixed prime p).

Furthermore, if Δ is a set of nonabelian finite simple groups, then the
class S of all finite groups which are direct products of groups in Δ is a
formation which is not a variety nor a class of the form C(Δ).

Lemma 2.1.1 Let
G = lim←−

i∈I

Gi,

where {Gi, ϕij , I} is an inverse system of finite groups Gi, and let

ϕi : G −→ Gi (i ∈ I)

be the projection homomorphisms. Then

{Si | Si = Ker(ϕi)}

is a fundamental system of open neighborhoods of the identity element 1 in G.

Proof. Consider the family of neighborhoods of 1 in
∏

i∈I Gi of the form
(

∏

i �=i1,...,it

Gi

)

× {1}i1 × · · · × {1}it ,

for any finite collection of indexes i1, . . . , it ∈ I, where {1}i denotes the subset
of Gi consisting of the identity element. Since each Gi is discrete, this family
is a fundamental system of neighborhoods of the identity element of

∏

i∈I Gi.
Let i0 ∈ I be such that i0 � i1, . . . , it. Then

G ∩
[(

∏

i �=i0

Gi

)

× {1}i0
]

= G ∩
[(

∏

i �=i1,...,it

Gi

)

× {1}i1 × · · · × {1}it
]

.

Therefore the family of neighborhoods of 1 in G, of the form

G ∩
[(

∏

i �=i0

Gi

)

× {1}i0
]
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is a fundamental system of open neighborhoods of 1. Finally, observe that

G ∩
[(

∏

i �=i0

Gi

)

× {1}i0
]

= Ker(ϕi0) = Si0 .
��

We state next an easy consequence of compactness that will be used often
without an explicit reference.

Lemma 2.1.2 In a compact topological group G, a subgroup U is open if and
only if U is closed of finite index.

Let H be a subgroup of a group G. We define the core HG of H in G to
be the largest normal subgroup of G contained in H. Equivalently,

HG =
⋂

g∈G
Hg,

where Hg = g−1Hg. Observe that HG =
⋂

Hg, where g ranges through a
right transversal of H in G, that is, a set of representatives of the right cosets
of H in G. Therefore, if H has finite index in G, then its core HG has finite
index in G. In particular, if H is an open subgroup of a profinite group G,
then HG is an open normal subgroup of G contained in H.

The following analog of Theorem 1.1.12 provides useful characterizations
of pro - C groups.

Theorem 2.1.3 Let C be a formation of finite groups. Then the following
conditions on a topological group G are equivalent.

(a) G is a pro - C group;
(b) G is compact Hausdorff totally disconnected, and for each open normal

subgroup U of G, G/U ∈ C;
(c) G is compact and the identity element 1 of G admits a fundamental system

U of open neighborhoods U such that
⋂

U∈U U = 1 and each U is an open
normal subgroup of G with G/U ∈ C;

(d) The identity element 1 of G admits a fundamental system U of open
neighborhoods U such that each U is a normal subgroup of G with G/U ∈
C, and

G = lim←−
U ∈U

G/U.

Proof. (a) ⇒ (b): Say
G = lim←−

i∈I

Gi,

where {Gi, ϕij , I} is a surjective inverse system of groups in C. Denote by
ϕi : G −→ Gi (i ∈ I) the projection homomorphisms. According to Theo-
rem 1.1.12, G is compact Hausdorff and totally disconnected. Let U be an
open normal subgroup G. By Lemma 2.1.1, there is some Si = Ker(ϕi) with



2.1 Pro - C Groups 23

Si ≤ U . Hence G/U is a quotient group of G/Si. Since G/Si ∈ C and C is
closed under taking quotients, we have that G/U ∈ C.

(b) ⇒ (c): By Theorem 1.1.12, the set V of clopen neighborhoods of 1 in
G is a fundamental system of open neighborhoods of 1 and

⋂

V ∈V
V = 1.

Therefore, it suffices to show that if V is a clopen neighborhood of 1, then it
contains an open normal subgroup of G.

If X is a subset of G and n a natural number, for the purpose of this proof
only, we denote by Xn the set of all products x1 · · ·xn, where x1, . . . , xn ∈ X;
further, denote by X−1 the set of all elements x−1, where x ∈ X.

Set F = (G − V ) ∩ V 2. Since V is compact, so is V 2; hence, F is closed
and therefore compact. Let x ∈ V ; then x ∈ G − F . By the continuity
of multiplication, there exists open neighborhoods Vx and Sx of x and 1
respectively such that Vx, Sx ⊆ V and VxSx ⊆ G − F . By the compactness
of V , there exist finitely many x1, . . . , xn such that Vx1 , . . . , Vxn cover V . Put
S =

⋂n
i=1 Sxi , and let W = S ∩ S−1. Then W is a symmetric neighborhood

of 1 (that is, w ∈ W if and only if w−1 ∈ W ), W ⊆ V , and VW ⊆ G − F .
Therefore VW ∩ F = ∅. Since one also has that VW ⊆ V 2, we infer that
VW ∩ (G− V ) = ∅; so VW ⊆ V . Consequently,

VWn ⊆ V,

for each n ∈ N. Since W is symmetric, it follows that

R =
⋃

n∈N

Wn

is an open subgroup of G contained in V . Thus the core of R

RG =
⋂

x∈G
(x−1Rx)

is an open normal subgroup of G. Finally, observe that RG ⊆ V because

RG ≤ R ⊆ V R ⊆
⋃

n∈N

VWn ⊆ V.

Thus RG is the desired open normal subgroup contained in V .
(c) ⇒ (d): Let U be as in (c). Make U into a directed poset by defining

U � V if U ≤ V , for U, V ∈ U . Consider the inverse system {G/U,ϕUV },
of all groups G/U (U ∈ U) where ϕUV : G/U −→ G/V is the natural
epimorphism for U � V . Since the canonical epimorphisms

ψU : G −→ G/U
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are compatible, they induce a continuous homomorphism

ψ : G −→ lim←−
U ∈U

G/U.

We shall show that ψ is an isomorphism of topological groups. According to
Corollary 1.1.6, ψ is an epimorphism. To see that ψ is a homeomorphism,
it suffices to prove that ψ is a monomorphism since G is compact. Now, if
x ∈ G and ψ(x) = 1, then x ∈ U for each U ∈ U . Since

⋂

U∈U
U = 1,

it follows that x = 1, as needed.
The implication (d) ⇒ (a) is clear. ��

We say that a collection S of subsets of a group G is filtered from below
if for every pair of subsets S1, S2 ∈ S, there exists some S3 ∈ S with S3 ≤
S1 ∩ S2.

Proposition 2.1.4 Let H be a closed subgroup of a profinite group G.

(a) If {Ui | i ∈ I} is a family of closed subsets of G filtered from below, then

⋂

i∈I
HUi = H

(

⋂

i∈I
Ui

)

.

(b) Let ϕ : G −→ R be a continuous epimorphism of profinite groups. Assume
that {Ui | i ∈ I} is a family of closed subsets of G filtered from below.
Then

ϕ

(

⋂

i∈I
Ui

)

=
⋂

i∈I
ϕ(Ui).

(c) Every open subgroup of G that contains H, contains an open subgroup of
the form HU for some open normal subgroup U of G.

(d) H is the intersection of all open subgroups of G containing H. If H is
normal in G, then H is the intersection of all open normal subgroups of
G containing H.

Proof. (a) By the filtration assumption, the result is clearly true if the set I
is finite. For the general case, it is plain that

⋂

i∈I HUi ≥ H(
⋂

i∈I Ui). Let
x ∈

⋂

i∈I HUi and let {Jt | t ∈ T} be the collection of all finite subsets Jt
of I such that {Uj | j ∈ Jt} is filtered from below. Then, for each t ∈ T ,
x ∈

⋂

i∈Jt
HUj = H(

⋂

j∈Jt
Uj) and so, Hx ∩ (

⋂

j∈Jt
Uj) 
= ∅. Therefore, by

the finite intersection property of the compact space G, we have

Hx ∩
(

⋂

i∈I
Ui

)

=
⋂

t∈T

(

Hx ∩
(

⋂

j∈Jt

Uj

))


= ∅.
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Thus x ∈ H(
⋂

i∈I Ui), as needed.
(b) Let H = Ker(ϕ) and identify R with G/H. Then, using part (a),

⋂

i∈I
ϕ(Ui) =

⋂

i∈I
(UiH/H) =

(

⋂

i∈I
UiH

)

/H =
(

⋂

i∈I
Ui

)

H/H = ϕ
(

⋂

i∈I
Ui

)

.

(c) Let V be an open subgroup of G containing H. Then its core

VG =
⋂

g∈G
V g

is open and normal; moreover HVG ≤ V .
(d) This follows from parts (a) and (c) by taking {Ui | i ∈ I} in (a) to be

the collection of all open normal subgroups of G. ��

From now on we shall use the following convenient notations. Let G be a
topological group and H a subgroup of G. Then

H ≤o G, H ≤c G, H �o G, H �c G, H ≤f G, H �f G,

will indicate respectively: H is an open subgroup, H is a closed subgroup,
H is an open normal subgroup, H is a closed normal subgroup of G, H is a
subgroup of finite index, H is a normal subgroup of finite index.

Proposition 2.1.5

(a) Let {Hi | i ∈ I} be a collection of closed subgroups of a profinite group G
and let

⋂

i∈I Hi ≤ U ≤o G. Then there is some finite subset J of I such
that

⋂

j∈J Hj ≤ U .
(b) Let {Ui | i ∈ I} be a collection of open subgroups of a profinite group G

such that
⋂

i∈I Ui = 1. Let

V =
{

⋂

j∈J
Uj | J a finite subset of I

}

.

Then V is a fundamental system of neighborhoods of 1 in G.

Proof. Part (b) follows immediately from (a). To prove (a), consider the open
covering {G−Hi | i ∈ I} of the compact spaceG−U . Choose a finite subcover,
say {G−Hj | i ∈ J}. Then G− U ⊆

⋃

j∈J (G−Hj). Thus
⋂

j∈J Hj ⊆ U . ��

Example 2.1.6 (Completions)

(1) Let C be a fixed formation of finite groups, and let G be a group. Consider
the collection

N = {N �f G | G/N ∈ C}.
Note that N is nonempty since G ∈ N . Make N into a directed poset by
defining M � N if M ≥ N (M,N ∈ N ). If M,N ∈ N and N � M , let
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ϕNM : G/N −→ G/M be the natural epimorphism. Then

{G/N,ϕNM}

is an inverse system of groups in C, and we say that the pro - C group

GĈ = lim←−
N ∈N

G/N

is the pro - C completion of G (we shall give a description of completion in
Section 3.2 in a more general setting; there we introduce also the notation
KC (G) for GĈ ). In particular we use the terms profinite completion, the
pro-p completion, the pronilpotent completion, etc., in the cases where C
consists of all finite groups, all finite p-groups, all finite nilpotent groups,
etc., respectively. The profinite and pro-p completions of a group of G
appear quite frequently, and they will be usually denoted instead by ̂G,
and Gp̂, respectively.

(2) As a special case of (1), consider the group of integers Z. Its profinite
completion is

̂Z = lim←−
n∈N

Z/nZ.

Following a long tradition in Number Theory, we shall denote the pro-p
completion of Z by Zp rather than Zp̂. So,

Zp = lim←−
n∈N

Z/pnZ.

Observe that both ̂Z and Zp are not only abelian groups, but also they
inherit from the finite rings Z/nZ and Z/pnZ respectively, natural struc-
tures of rings. The group (ring) Zp is called the group (ring) of p-adic
integers.

(3) Let R be a profinite ring with 1, that is, R is a compact Hausdorff to-
tally disconnected topological ring with 1. Assume in addition that R is
commutative (e.g., R could be ̂Z or Zp). Then one easily checks that the
following groups (with topologies naturally induced from R) are profinite
groups:

– R×, the group of units of R [one can verify the compactness of R× as
follows: consider the multiplication mapping μ : R × R −→ R; then
μ−1{1} is compact; on the other hand, R× is the image of μ−1{1}
under one of the projections R×R −→ R].

– GLn(R) (the group of invertible n× n matrices with entries from R,
i.e., the group of units of the ringMn(R) of all n×n matrices over R).
[One can verify this as in the previous case, eventhough Mn(R) is not
commutative: just observe that, for matrices over R, having a left
inverse is equivalent to being invertible].

– SLn(R) (the subgroup of GLn(R) of those matrices of determinant 1).
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(4) The upper unitriangular group over Zp of degree n

UTn(Zp) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 a12 a13 . . . a1n
0 1 a23 . . . a2n
0 0 1 . . . a3n
...

...
...

...
0 0 0 . . . 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aij ∈ Zp

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

is a pro-p group.

Exercise 2.1.7 A proabelian group is necessarily abelian. But a pronilpo-
tent (respectively, prosolvable) group need not be nilpotent (respectively,
solvable).

Exercise 2.1.8

(1) The set of elements of ̂Z can be identified with the set of all (equivalence
classes of) sequences (an) = (a1, a2, a3, . . .) of natural numbers such that

an ≡ am (mod m)

whenever m | n. Explain this identification and what is the addition and
multiplication of these sequences under the identification. Show that every
element t of Z can be identified with a constant sequence (an), an = t for
all n = 1, 2, . . . .

(2) Similarly, the set of elements of Zp can be identified with the set group
of all (equivalence classes of) sequences (an) = (a1, a2, a3, . . .) of natural
numbers such that

an ≡ am (mod pm)

whenever m ≤ n. Explain this identification and what is the addition and
multiplication of these sequences under the identification.

(3) Show that Zp can also be identified with the set of power series

Zp =
{

b =
∞
∑

n=0

bnp
n | bn ∈ N, 0 ≤ bn < p

}

.

Explain how the addition and multiplication of series is carried out under
this identification. How is Z embedded in Zp under this identification?

(4) Show that an element b ∈ Zp is a unit in the ring Zp if and only if in its
series representation b =

∑∞
n=0 bnp

n in (3) one has b0 
= 0.

Exercise 2.1.9

(1) Prove that for each natural number i, there is a short exact sequence of
profinite groups

I −→ Ki −→ GLn(Zp)
ϕi−→ GLn(Z/piZ) −→ I
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where ϕi is induced by the canonical epimorphism Zp −→ Z/piZ, and
Ki = I+Mn(piZ) (I denotes here the n×n identity matrix over Zp, and
Mn(piZ) all the n × n matrices with entries in piZ). [Hint: observe that
b ∈ Zp is unit if and only if its image in Z/piZ is a unit.]

(2) Show that
⋂

Ki = {I}, and deduce that

GLn(Zp) = lim←−
i

GLn(Z/piZ).

2.2 Basic Properties of Pro - C Groups

We begin with some elementary properties of pro - C groups inherited from
corresponding properties of C.

Proposition 2.2.1 Let C be a formation of finite groups. Then

(a) Every quotient group G/K of a pro - C group G, where K�cG, is a pro - C
group. If, in addition, C is closed under taking subgroups (respectively,
under taking normal subgroups), then every closed subgroup (respectively,
every closed normal subgroup) of G is a pro - C group.

(b) The direct product
∏

i∈I Gi of any collection {Gj | i ∈ J} of pro - C groups
with the product topology is a pro - C group.

(c) If a profinite group is a subdirect product of pro - C groups, then it is
pro - C.

(d) The inverse limit
lim←−
i∈I

Gi,

of a surjective inverse system {Gi, ϕij , I} of pro - C groups, is a pro - C
group.

(e) Let C be an extension closed variety of finite groups. Then the class of
pro - C groups is closed under extensions.

Proof. (a) This is an easy application of Corollary 1.1.8 and Theorem 2.1.3.
(b) Let G =

∏

i∈I Gi, where each Gi is a pro - C group. Then G is a
compact, Hausdorff and totally disconnected group (the compactness is a
consequence of Tychonoff’s Theorem: see for example Bourbaki [1989], Ch. 1,
Theorem 3). Hence G is a profinite group. Let U �oG. To verify that G is pro -
C we must show that G/U ∈ C, according to Theorem 2.1.3. By definition
of the product topology, there exist a finite subset J of I and open normal
subgroups Uj of Gj (j ∈ J) such that U ≥

∏

i∈I Xi, where Xi = Ui for i ∈ J
and Xi = Gi for i ∈ I − J . So G/U is a homomorphic image of the group

G
/
∏

i∈I
Xi ∼=

∏

j∈J
Gj/Uj .

Since C is a formation and Gj/Uj ∈ C (j ∈ J), one has that G/U ∈ C.
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(c) Let G be a profinite group and let {Ni | i ∈ I} be a collection of
closed normal subgroups of G such that G/Ni is pro - C for each i ∈ I, and
⋂

i∈I Ni = 1. We must show that G is a pro - C group. In order to do this, it
suffices to show that G/U ∈ C whenever U �o G. Let J ⊆f I indicate that
J is a finite subset of I. For J ⊆f I, define NJ =

⋂

j∈J Nj . Since NJ �c G,
the group G/NJ is pro - C. Note that the collection {NJ | J ⊆f I} of closed
normal subgroups of G is filtered from below. Hence,

⋂

J⊆f I
(NJU/U) = 1 in

G/U (see Proposition 2.1.4). Therefore, G/U is a subdirect product of the
(finite) set of groups {(G/U)/(NJU/U) ∼= G/NJU | J ⊆f I}. Since G/NJU
is a quotient of G/NJ , we deduce that G/NJU ∈ C. Thus, using the fact that
C is a formation of finite groups, we get G/U ∈ C, as needed.

(d) follows from (b) and (a)
(e) Let

1 −→ K −→ E
ϕ−→ G −→ 1

be an exact sequence of profinite groups and assume thatK and G are pro - C.
Let U �o E. Then the induced sequence of finite groups

1 −→ KU/U −→ E/U
ϕ̄−→ G/ϕ(U) −→ 1

is exact. Since KU/U ∼= K/K ∩ U and G/ϕ(U) are in C, it follows that
E/U ∈ C. Hence E is a pro - C group (see Theorem 2.1.3). ��

Existence of Sections

Let ϕ : X −→ Y be an epimorphism of sets. We say that a map σ : Y −→ X
is a section of ϕ if ϕσ = idY . Plainly every epimorphism ϕ of sets admits a
section. However, if X and Y are topological spaces and ϕ is continuous, it
is not necessarily true that ϕ admits a continuous section. For example, the
natural epimorphism R −→ R/Z from the group of real numbers to the circle
group does not admit a continuous section. Nevertheless, every epimorphism
of profinite groups admits a continuous section, as the following proposition
shows.

Proposition 2.2.2 Let H be a closed normal subgroup of a profinite group G,
and let

π : G −→ G/H

be the canonical projection. Then π admits a continuous section

σ : G/H −→ G

with the property that σ(1H) = 1.

Proof. We divide the proof into two parts. Assume first that H is a finite
group. Then there exists an open normal subgroup U of G such that U ∩
H = 1. Therefore the restriction π|U is injective. Since U is compact, the
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restriction π|U : U −→ π(U) is an isomorphism of topological groups. Hence,
there is a continuous inverse isomorphism σ : π(U) −→ U of π|U . Since
π(U) is an open (normal) subgroup of G/H, one can express G/H as a finite
disjoint union of the left cosets of π(U). Consequently, σ admits a continuous
extension, by translation, to the whole of G/H. This extension is a section
of π, which we denote still by σ. Clearly, σ(1H) = 1.

Consider now the general case, that is, H is any closed normal subgroup
of G. Let P be the set of all pairs (L, η), where L is a closed normal subgroup
of G with L ≤ H, and where η : G/H −→ G/L is a continuous section of
the natural projection G/L −→ G/H such that η(1H) = 1L. Clearly P is
nonempty, since (H, idG/H) ∈ P . Define a partial ordering on P as follows:

(K1, η1) � (K2, η2) if K1 ≤ K2,

and the diagram
G/K1 G/K2

G/H

η1 η2

commutes, where the horizontal map is the natural epimorphism. In order to
apply Zorn’s lemma, we show next that P is an inductive poset. If

{(Ki, ηi) | i ∈ I}

is a linearly ordered subset of P , set K =
⋂

i∈I Ki; then one easily checks
that

G/K = lim←−
I

G/Ki.

Since the mappings {ηi | i ∈ I} are compatible, they induce a continuous
mapping

η : G/H −→ G/K.

Then (K, η) ∈ P and (K, η) � (Ki, ηi), for every i ∈ I. So {(Ki, ηi) | i ∈ I}
has an upper bound in P , and thus P is inductive. Therefore, by Zorn’s
lemma, there is a maximal element (T, σ) of P . To see that σ is the desired
section, it will suffice to show that T = 1. If this were not the case, there
would exist an open normal subgroup U of G with U ∩T < T . We prove that
this leads to a contradiction by exhibiting a continuous section

ζ : G/H −→ G/(U ∩ T )

of G/(U ∩ T ) −→ G/H such that (U ∩ T, ζ) � (T, σ). To show the existence
of ζ, it suffices to find a continuous section

ξ : G/T −→ G/(U ∩ T )
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to the projection
G/(U ∩ T ) −→ G/T.

But G/T = (G/(U ∩T ))/(T/(U ∩T )), and T/(U ∩T ) is a finite group. Thus
the existence of ξ follows from the first part of the proof. ��

Exercise 2.2.3 Let K ≤ H be closed (not necessarily normal) subgroups of
a profinite group G. Consider the natural continuous epimorphism of topo-
logical spaces

π : G/K −→ G/H.

Prove that π admits a continuous section σ : G/H −→ G/K such that
σ(1H) = 1K.

Exactness of Inverse Limits of Profinite Groups

Let
1 −→ {Gi, ϕij , I}

Θ−→ {G′
i, ϕ

′
ij , I}

Ψ−→ {G′ ′
i , ϕ

′ ′
ij , I} −→ 1 (1)

be a sequence of inverse systems of profinite groups over the same directed
poset I and maps of inverse systems. Say Θ = {θi} and Ψ = {ψi}, and assume
that for each i ∈ I the corresponding short sequence of profinite groups

1 −→ Gi
θi−→ G′

i
ψi−→ G′ ′

i −→ 1

is exact, that is, θi is a monomorphism, ψi is an epimorphism, and Im(θi) =
Ker(ψi). In this situation we say that the sequence (1) is a short exact se-
quence of inverse systems of profinite groups. If we apply the functor lim←− to
this sequence, we get a sequence of groups and continuous homomorphisms

1 −→ lim←−
i∈I

Gi
θ−→ lim←−

i∈I

G′
i

ψ−→ lim←−
i∈I

G′ ′
i −→ 1, (2)

where θ = lim←− θi and ψ = lim←−ψi. We claim that (2) is a short exact se-
quence of profinite groups. Indeed, θ is obviously a monomorphism and, by
Lemma 1.1.5, ψ is onto. Furthermore, Im(θ) = Ker(ψ), for clearly ψθ(xi) = 1
for all (xi) ∈ lim←−Gi; hence Im(θ) ≤ Ker(ψ). Conversely, assume that

(x′
i) ∈ Ker(ψ); then for each i ∈ I, there exists xi ∈ Gi with θ(xi) = x′

i.
Since the θi are monomorphisms commuting with the maps ϕij and ϕ′

ij , we
deduce that (xi) ∈ lim←−Gi; so θ(xi) = (x′

i). Therefore, Im(θ) ⊇ Ker(ψ). This
proves the claim.

A functor that preserves exactness in this way, is called an exact functor .
Hence we have proved the following result.

Proposition 2.2.4 Consider the functor lim←− from the category of inverse
systems of profinite groups over the same directed poset I to the category of
profinite groups. Then lim←− is exact.
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2.3 The Order of a Profinite Group and Sylow
Subgroups

We begin this section by showing that an infinite profinite group cannot
be countable. This is a general fact for locally compact topological groups,
but here we present a proof for profinite groups only. The first part of the
following proposition is a special case of the classical Baire category theorem,
valid for locally compact spaces.

Proposition 2.3.1 Let G be a profinite group.

(a) Let C1, C2, . . . be a countably infinite set of nonempty closed subsets of G
having empty interior. Then

G 
=
∞
⋃

n=1

Ci.

(b) The cardinality |G| of G is either finite or uncountable.

Proof. Part (b) follows immediately from (a). To prove (a), assume that
G =

⋃∞
i=1 Ci, where each Ci is a nonempty closed subset of G with empty

interior. Then Di = G−Ci is a dense open subset of G, for each i = 1, 2, . . . .
Next consider a nonempty open subset U0 of G; then U0 ∩ D1 is open

and nonempty since D1 is open and dense in G. By Theorem 1.1.12(c), there
is a nonempty clopen subset U1 of U0 ∩D1. Similarly, U1 ∩D2 is open and
nonempty; therefore there is a nonempty clopen subset U2 of U1 ∩D2. Pro-
ceeding in this manner we obtain a nested sequence of clopen nonempty
subsets

U1 ⊇ U2 ⊇ · · · ⊇ Ui ⊇ · · ·

such that Ui ⊆ Di ∩ Ui−1 for each i = 1, 2, . . . . Since G is compact and the
closed sets Ui have the finite intersection property, we have that

∞
⋂

i=1

Ui 
= ∅.

On the other hand,

∞
⋂

i=1

Ui ⊆
∞
⋂

i=1

Di = G−
( ∞
⋃

i=1

Ci

)

= ∅,

a contradiction. ��

Consider a profinite group

G = lim←−
i∈I

Gi,
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where each Gi is a finite group. If G is infinite, then the knowledge of its
cardinality carries with it little information. There is, nevertheless, a very
useful notion of order of a profinite group G that reflects, in a global manner,
the arithmetic properties of the finite groups Gi and it is independent of the
presentation of G as an inverse limit of finite groups. In order to explain this
concept we need first to introduce the notion of supernatural number.

A supernatural number is a formal product

n =
∏

p

pn(p),

where p runs through the set of all prime numbers, and where n(p) is a non-
negative integer or ∞. By convention, we say that n <∞, ∞+∞ = ∞+n =
n+ ∞ = ∞ for all n ∈ N. If

m =
∏

p

pm(p)

is another supernatural number, and m(p) ≤ n(p) for each p, then we say
that m divides n, and we write m | n. If

{

ni =
∏

p

pn(p,i) | i ∈ I
}

is a collection of supernatural numbers, then we define their product, greatest
common divisor and least common multiple in the following natural way

–
∏

I ni =
∏

p p
n(p), where n(p) =

∑

i n(p, i);
– gcd{ni}i∈I =

∏

p p
n(p), where n(p) = mini{n(p, i)};

– lcm{ni}i∈I =
∏

p p
n(p), where n(p) = maxi{n(p, i)}.

(Here
∑

i n(p, i), mini{n(p, i)} and maxi{n(p, i)} have an obvious meaning;
note that the results of these operations can be either non-negative integers
or ∞.)

Let G be a profinite group and H a closed subgroup of G. Let U denote
the set of all open normal subgroups of G. We define the index [G : H] of H
in G, to be the supernatural number

[G : H] = lcm{[G/U : HU/U ] | U ∈ U}.

The order #G of G is the supernatural number #G = [G : 1], namely,

#G = lcm{|G/U | | U ∈ U}.

Proposition 2.3.2 Let G be a profinite group.

(a) If H ≤c G, then [G : H] is a natural number if and only if H is an open
subgroup of G;
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(b) If H ≤c G, then

[G : H] = lcm{[G : U ] | H ≤ U ≤o G};

(c) If H ≤c G and U ′ is a fundamental system of neighborhoods of 1 in G
consisting of open normal subgroups, then

[G : H] = lcm{[G/U : HU/U ] | U ∈ U ′};

(d) Let K ≤c H ≤c G. Then

[G : K] = [G : H][H : K];

(e) Let {Hi | i ∈ I} be a family of closed subgroups of G filtered from below.
Assume that H =

⋂

i∈I Hi. Then

[G : H] = lcm{[G : Hi] | i ∈ I};

(f) Let {Gi, ϕij} be a surjective inverse system of profinite groups over a
directed poset I. Let G = lim←− i∈IGi. Then

#G = lcm{#Gi | i ∈ I};

(g) For any collection {Gi | i ∈ I} of profinite groups,

#
(

∏

i∈I
Gi

)

=
∏

i∈I
#Gi.

Proof. We shall prove only part (d), leaving the rest as exercises. Let U denote
the collection of all open normal subgroups of G. Then

[G : K] = lcm{[G/U : KU/U ] | U ∈ U}
= lcm{[G/U : HU/U ][HU/U : KU/U ] | U ∈ U}.

Now, {H ∩ U | U ∈ U} is a fundamental system of neighborhoods of 1 in H.
So, by (c),

[H : K] = lcm{[H/H ∩ U : K(H ∩ U)/H ∩ U ] | U ∈ U}
= lcm{[HU/U : KU/U ] | U ∈ U}.

Hence, it suffices to prove that

lcm{[G/U : HU/U ][HU/U : KU/U ] | U ∈ U}
= lcm{[G/U : HU/U ] | U ∈ U} lcm{[HU/U : KU/U ] | U ∈ U}.

Let p be a prime number, and let pn, pn1 and pn2 be the largest powers of p
such that
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pn | lcm{[G/U : HU/U ][HU/U : KU/U ] | U ∈ U},
pn1 | lcm{[G/U : HU/U ] | U ∈ U}

and
pn2 | lcm{[HU/U : KU/U ] | U ∈ U},

respectively (n, n1, n2 ∈ N ∪ {∞}). Then, clearly n ≤ n1 + n2, n ≥ n1, and
n ≥ n2. So, if n = ∞, n = n1 + n2. If n < ∞, it follows that n1, n2 < ∞.
Then there exist U1, U2 ∈ U such that

pn1 | [G/U1 : HU1/U1] and pn2 | [HU2/U2 : KU2/U2].

Let U = U1 ∩ U2. Then U ∈ U and

pn1+n2 | [G/U : HU/U ][HU/U : KU/U ].

Hence n ≥ n1 + n2, and thus n = n1 + n2, as needed. ��

Let π be a set of prime numbers and let π′ denote the set of those primes
not in π. We say that a supernatural number

n =
∏

p

pn(p)

is a π-number if whenever n(p) 
= 0 then p ∈ π. A profinite group G is called
a pro -π group or π-group if its order #G is a π-number, that is, if G is the
inverse limit of finite groups whose orders are divisible by primes in π only.
If π = {p} consists of just the prime p, then we usually write pro -p group
rather than pro -{p} group. A closed subgroup H of a profinite group G is
a π-Hall subgroup if #H is a π-number and [G : H] is a π′-number. When
π = {p}, a π-Hall subgroup is called a p-Sylow subgroup.

Exercise 2.3.3 Let π be a set of prime numbers and ϕ : G −→ K a contin-
uous homomorphism of profinite groups. Let H ≤c G. Then

(a) If H is a π-group, so is ϕ(H);
(b) If H is a π-Hall subgroup of G, then ϕ(H) is a π-Hall subgroup of ϕ(G).

Lemma 2.3.4 Let π be a set of prime numbers. Assume that G is a profinite
group and let H be a closed subgroup of G.

(a) Suppose that
G = lim←−

I

Gi,

where {Gi, ϕij , I} is a surjective inverse system of finite groups. Then, H
is a π-Hall subgroup of G if and only if each ϕi(H) is a π-Hall subgroup
of Gi.

(b) H is a π-Hall subgroup of G if and only if HU/U is a π-Hall subgroup of
G/U for each open normal subgroup U of G.
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Proof. Part (b) follows from part (a). By Corollary 1.1.8,

H = lim←−
I

ϕi(H).

So, by part (f) of the proposition above and Exercise 2.3.3, H is a π-group if
and only if each ϕi(H) is a π-group. Let Si = Ker(ϕi). By Lemma 2.1.1, the
collection of open normal subgroups {Si | i ∈ I} is a fundamental system of
neighborhoods of 1 in G; hence, by Proposition 2.3.2(c),

[G : H] = lcm{[G/Si : HSi/Si] | i ∈ I}.

Since each ϕi is an epimorphism (see Proposition 1.1.10), [G/Si : HSi/Si] =
[Gi : ϕi(H)]. Thus, [G : H] is a π′-number if and only if each [Gi : ϕi(H)] is
a π′-number. ��

Theorem 2.3.5 Let π be a fixed set of prime numbers and let

G = lim←−
i∈I

Gi,

be a profinite group, where {Gi, ϕij , I} is a surjective inverse system of finite
groups. Assume that every group Gi (i ∈ I) satisfies the following properties:

(a) Gi contains a π-Hall subgroup;
(b) Any π-subgroup of Gi is contained in a π-Hall subgroup;
(c) Any two π-Hall subgroups of Gi are conjugate.

Then

(a′) G contains a π-Hall subgroup;
(b′) Any closed π-subgroup of G is contained in a π-Hall subgroup;
(c′) Any two π-Hall subgroups of G are conjugate.

Proof. (a′) Let Hi be the set of all π-Hall subgroups of Gi. By (a), Hi 
= ∅.
Since ϕij is an epimorphism, ϕij(Hi) ⊂ Hj , whenever i � j. Therefore,
{Hi, ϕij , I} is an inverse system of nonempty finite sets. Consequently, ac-
cording to Proposition 1.1.4,

lim←−
i∈I

H 
= ∅.

Let (Hi) ∈ lim←−Hi. Then Hi is a π-Hall subgroup of Gi for each i ∈ I, and

{Hi, ϕij , I} is an inverse system of finite groups. Hence, by Lemma 2.3.4,
H = lim←−Hi is a π-Hall subgroup of G, as desired.

(b′) Let H be a π-subgroup of G. Then, ϕi(H) is a π-subgroup of Gi
(i ∈ I). By assumption (b), there is some π-Hall subgroup of Gi that contains
ϕi(H); so the set
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Si = {S | ϕi(H) ≤ S ≤ Gi, S is a π-Hall subgroup of Gi}

is nonempty. Furthermore, ϕij(Si) ⊆ Sj . Then {Si, ϕij , I} is an inverse sys-
tem of nonempty finite sets. Let (Si) ∈ lim←−Si; then {Si, ϕij} is an inverse
system of groups. Finally,

H = lim←−ϕi(H) ≤ lim←−Si,

and S = lim←−Si is a π-Hall subgroup of G by Lemma 2.3.4.

(c′) Let H and K be π-Hall subgroups of G. Then ϕi(H) and ϕi(K) are
π-Hall subgroups of Gi (i ∈ I), and so, by assumption, they are conjugate
in Gi. Let

Qi = {qi ∈ Gi | q−1
i ϕi(H)qi = ϕi(K)}.

Clearly ϕij(Qi) ⊆ Qj (i � j). Therefore, {Qi, ϕij} is an inverse system of
nonempty finite sets. Using again Proposition 1.1.4, let q ∈ lim←−Qi. Then

q−1Hq = K, since ϕi(q−1Hq) = ϕi(K), for each i ∈ I. ��

If π = {p} consists of just one prime, then the Sylow theorems for finite
groups (cf. Hall [1959], Theorems 4.2.1–3) guarantee that the assumptions of
Theorem 2.3.5 are satisfied for all finite groups. As a consequence we obtain
the following generalizations of the Sylow theorems.

Corollary 2.3.6 (The Sylow Theorem for Profinite Groups) Let G
be any profinite group and let p be a fixed prime number. Then

(a) G contains a p-Sylow subgroup.
(b) Any closed p-subgroup of G is contained in a p-Sylow subgroup.
(c) Any two p-Sylow subgroups of G are conjugate.

Similarly, every finite solvable group C satisfies the assumptions of The-
orem 2.3.5 for any set π of prime numbers (cf. Hall [1959], Theorem 9.3.1).
Thus one obtains the following result.

Corollary 2.3.7 (The P. Hall Theorem for Prosolvable Groups) Let
G be a prosolvable group, and let π be a fixed set of prime numbers. Then

(a) G contains a π-Hall subgroup.
(b) Any closed π-subgroup of G is contained in a π-Hall subgroup.
(c) Any two π-Hall subgroups of G are conjugate.

The methods used in Theorem 2.3.5 give an indication of how certain
properties valid for the finite groups in a class C, can be generalized to pro -
C groups. The general philosophy is that, if a property is shared by the
groups of an inverse system {Gi, ϕij} of groups, and this property is preserved
by the homomorphisms ϕij in some “uniform” manner, then that property
will imply a judiciously phrased analogous one for the corresponding inverse



38 2 Profinite Groups

limit lim←−Gi. As further applications of these methods, we mention a few
more results that it will be convenient to have explicitly stated for future
reference. In most cases we leave the proofs as exercises, although we shall
remind the reader of the necessary corresponding properties of finite groups.

If G is a finite nilpotent group, then it has a unique p-Sylow subgroup
for each prime p; moreover, G is the direct product of its p-Sylow subgroups.
These properties characterize finite nilpotent groups (cf. Hall [1959], Theo-
rem 10.3.4).

Proposition 2.3.8 A profinite group G is pronilpotent if and only if for each
prime number p,G contains a unique p-Sylow subgroup.

Denote by Gp the unique p-Sylow subgroup of a pronilpotent group G.
Then G is the direct product G =

∏

pGp of its p-Sylow subgroups.

Let G be a prosolvable group. A Sylow basis {Sp | p a prime number} for
G is a collection of p-Sylow subgroups, one for each prime number p, such that
SpSq = SqSp for each pair of primes p, q. Since Sylow subgroups are compact
by definition, SpSq is compact, and so closed; hence the last condition implies
that SpSq is a closed subgroup of G. A theorem of P. Hall asserts that every
finite solvable group admits a Sylow basis, and moreover any two such bases
are conjugate (cf. Kargapolov and Merzljakov [1979], p. 142). Then, using
methods similar to those above, one can prove the following generalization
to prosolvable groups.

Proposition 2.3.9 Let G be a prosolvable group. For each prime number p,
let Sp′ be a p′-Hall subgroup of G. Then

(a) For each prime q,
Sq =

⋂

p �=q
Sp′

is a q-Sylow subgroup of G. The topological closure of the product

S2S3S5 · · ·

of all the groups Sq is G.
(b) The collection {Sq | q} defined in (a) is a Sylow basis of G.
(c) Any two Sylow bases {Sq | q} and {Rq | q} of G are conjugate, that is,

there is some x ∈ G such that Sxq = Rq, for each prime q.

In a profinite group G of order n, a p-complement is a closed subgroup
H whose index is pnp , the highest power of p dividing n. Corollary 2.3.7
asserts that a prosolvable group contains p-complements for every prime p.
In the case of finite groups, this property characterizes solvable groups (cf.
Hall [1959], Theorem 9.3.3). Correspondingly one has the following
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Proposition 2.3.10 Let G be a profinite group. Then G is prosolvable if
and only if G has p-complements for each prime p. If this is the case, a p-
complement in G is a p′-Hall subgroup Sp′ of G, and G = SpSp′ , for any
p-Sylow subgroup Sp of G.

Example 2.3.11 The group of p-adic integers Zp is naturally embedded in ̂Z,
and it is a p-Sylow subgroup of ̂Z. Moreover

̂Z =
∏

p

Zp.

Note that
#Zp = p∞, and #̂Z =

∏

p

p∞.

More generally, if C is a variety of finite groups, then the pro - C completion
of Z can be expressed as

ZĈ =
∏

Cp ∈C
Zp.

Exercise 2.3.12

(a) Show that the order of the finite group GLn(Z/pZ) is

|GLn(Z/pZ)| = (pn − 1)(pn − p) · · · (pn − pn−1);

(b) For each natural numberm, there is a short exact sequence of finite groups

I −→ Lm −→ GLn(Z/pmZ)
ϕm−→ GLn(Z/pZ) −→ I,

where I is the n× n identity matrix, and

Lm = {I + U | U is an n× n matrix with entries in p(Z/pmZ)};

(c) |GLn(Z/pmZ)| = p(m−1)n2
(pn − 1)(pn − p) · · · (pn − pn−1);

(d) The profinite group GLn(Zp) has a p-Sylow subgroup of index

(pn − 1)(pn−1 − 1) · · · (p− 1).

(Hint: see Exercise 2.1.9.)

Exercise 2.3.13 (The Frattini Argument) Let G be a profinite group
and p a prime. Assume H is a closed normal subgroup of G and let P be a
p-Sylow subgroup of H. Prove that the normalizer

N = NG(P ) = {x ∈ G | x−1Px = P}

of P in G is closed in G. Moreover, G = HN .



40 2 Profinite Groups

Exercise 2.3.14 Let G be a profinite group, S ≤c G and W �c S. One says
that W is weakly c (respectively, strongly c)∗ in S with respect to G if for
every g ∈ G with W g ≤ S ones has that W g = W (respectively, if for every
g ∈ G, W g ∩ S ≤W ).

(a) Let p be a prime number and assume that S is a p-Sylow subgroup of
G. Let ϕ : G −→ H be a continuous epimorphism of profinite groups.
Prove that if W is weakly c (respectively, strongly c) in S with respect to
G, then ϕ(W ) is weakly c (respectively, strongly c) in ϕ(S) with respect
to H.

(b) The properties of being weak and strong c are preserved by inverse limits.
Explicitly: assume that

G = lim←−
i∈I

Gi,

where {Gi, ϕij , I} is an inverse system of profinite groups over the poset I.
Let ϕi : G −→ Gi (i ∈ I) be the projection maps. If, for every i ∈ I,
ϕi(W ) is weakly c (respectively, strongly c) in ϕi(S) with respect to Gi,
then W is weakly c (respectively, strongly c) in S with respect to G.

The following is an analog of the classical Schur-Zassenhaus theorem for
finite groups.

Theorem 2.3.15 Let K be a closed normal Hall subgroup of a profinite
group G. Then K has a complement H in G (i.e., H is a closed subgroup of
G such that G = KH and K ∩H = 1). Moreover, any two complements of
K are conjugate in G.

Proof. Let U be the collection of all open normal subgroups of G. Let U ∈ U .
Then KU = KU/U is Hall subgroup of the finite group GU = G/U . Let
SU the collection of all the complements of KU in GU . Then SU 
= ∅ by
the theorem of Schur-Zassenhaus for finite groups (cf. Huppert [1967], Theo-
rem I.18.1). If U, V ∈ U with U ≤ V , let ϕUV : GU −→ GV be the canonical
epimorphism. Then ϕUV (SU ) ⊆ SV . Therefore, {SU | U ∈ U} is an inverse
system of finite nonempty sets. By Proposition 1.1.4,

lim←−
U ∈U

SU 
= ∅.

Let (HU ) ∈ lim←−SU . It follows that the groups {HU | U ∈ U} form an inverse

system (for U ≤ V , the homomorphism HU −→ HV is the restriction of ϕUV
to HU ). Define H = lim←−HU . It follows that H is a closed subgroup of G such
that #K and #H are coprime since their images in each GU are coprime
(see Proposition 2.3.2); therefore, K ∩H = 1. Finally, note that G = KH by
Corollary 1.1.8. Hence H is a complement of K in G.
∗ The terms ‘weakly c’ and ‘strongly c’ correspond to the concepts of ‘weakly closed’
and ‘strongly closed’ used in the theory of fusion for finite groups: see Alperin [1967].
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Assume that L is another complement of K in G. We have to show that
H and L are conjugate in G. Denote by HU and LU their corresponding
canonical images in GU . Clearly HU and LU are complements of KU in
the finite group GU . Using again the theorem of Schur-Zassenhaus for finite
groups, we deduce that HU and LU are conjugate in GU . For each U ∈ U ,
consider the subset EU of GU consisting of all elements e ∈ GU such that
LeU = HU . Plainly, ϕUV (EU ) ⊆ EV for all pairs U, V ∈ U with U ≤ V . Hence
{EU | U ∈ U} is an inverse system of nonempty sets. By Proposition 1.1.4,
there exists some x = (xU ) ∈ lim←−EU ⊆ G. Claim that Lx = H. We know

that LxU

U = HU for every U ∈ U ; hence the claim follows from Corollary 1.1.8.
��

Let G be a profinite group and let K �c G, H ≤c G with G = KH
and K ∩ H = 1. As it is usual, we say that G is an internal semidirect
product of K by H. The standard notation for this situation is G = K �H.
(See Example 4.6.2 for the construction of external semidirect products of
profinite groups.)

Proposition 2.3.16 Let G = K � H be a semidirect product of profinite
groups as above. Assume that K is a Hall subgroup of G. Let L be a closed
subgroup of K which is normalized by H. If H leaves invariant some coset
Lk of L in K, then there exists x ∈ Lk such that xh = x for all h ∈ H.

Proof. The result holds for finite groups (cf. Huppert [1967], Theorem I.18.6).
Let U be the collection of all open normal subgroups of G. For R ≤c G, denote
by RU the image in GU = G/U of R (U ∈ U). Note that |KU | and |HU | are
coprime, and that HU fixes the coset LUkU , where kU is the canonical image
of k in KU . Hence, the set

SU = {s ∈ LUkU | shU = s, for all hU ∈ HU}

is nonempty (by the result for finite groups). Plainly, the canonical epimor-
phism GU = G/U −→ GV = G/V (U ≤ V in U) maps SU into SV . There-
fore, {SU | U ∈ U} is an inverse system of finite nonempty sets. Hence the
corresponding inverse limit is not empty (see Proposition 1.1.4). Let

x ∈ lim←−
U ∈U

SU .

Then x ∈ Lk and xh = x for all h ∈ H (see Corollary 1.1.8). ��

Exercise 2.3.17 Let G be a profinite group. Define closed subgroups γn(G)
(n = 1, 2, . . .) of G as follows

γ1(G) = G, γn+1(G) = [G, γn(G)].

Then G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γn(G) ≥ · · · is called the lower central
series of G. Prove that the following conditions are equivalent:
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(a) G is pronilpotent;
(b)

∞
⋂

n=1

γn(G) = 1.

2.4 Generators

Let G be a profinite group and let X be a subset of G. We say that X
generates G (or, if there could be any danger of confusion, generates G as
a profinite group or as a topological group), if the abstract subgroup 〈X〉 of
G generated by X is dense in G. In that case, we call X a set of generators
(or, if more emphasis is needed, a set of topological generators) of G, and we
write G = 〈X〉. We say that a subset X of a profinite group G converges
to 1 if every open subgroup U of G contains all but a finite number of the
elements in X. If X generates G and converges to 1, then we say that X is a
set of generators of G converging to 1. A profinite group is finitely generated
if it contains a finite subset X that generates G. A profinite group G is
called procyclic if it contains an element x such that G = 〈x〉. Observe that
a profinite group G is procyclic if and only if it is the inverse limit of finite
cyclic groups.

Lemma 2.4.1

(a) Let {Gi, ϕij , I} be a surjective inverse system of profinite groups and let

G = lim←−
i∈I

Gi.

Denote by ϕi : G −→ Gi (i ∈ I) the projection maps. Let X ⊆ G. Then
X generates G if and only if ϕi(X) generates Gi for each i ∈ I.

(b) Let X be a subset of a profinite group G and let X̄ denote its closure.
Then X generates G if and only if X̄ generates G.

Proof. (a) If X generates G, it is plain that ϕi(X) generates Gi for each i ∈ I.
Conversely, suppose that ϕi(X) generates Gi for each i ∈ I. Put H = 〈X〉.
Then ϕi(H) = Gi for each i ∈ I. Therefore, H = G by Corollary 1.1.8.

(b) Write G = lim←−G/U , where U ranges over all the open normal sub-

groups of G. Then X and X̄ have the same image in G/U , for each U . Hence,
the result follows from part (a). ��

Example 2.4.2 ̂Z and Zp are procyclic groups. If p and q are different prime
numbers, then Zp × Zq is procyclic. On the other hand, Zp × Zp can be
generated by two elements, but it is not procyclic.
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Exercise 2.4.3 Let X be a set of generators converging to 1 of a profinite
group G. Then the topology on X − {1} induced from G is the discrete
topology. If X is infinite, X̄ = X ∪ {1}. If 1 /∈ X and X is infinite, then X̄ is
the one-point compactification of X.

Proposition 2.4.4 Every profinite group G admits a set of generators con-
verging to 1.

Proof. Consider the set P of all pairs (N,XN ), where N�cG andXN ⊆ G−N
such that

(i) for every open subgroup U of G containing N , XN − U is a finite set;
and

(ii) G = 〈XN , N〉.

Note that these two conditions imply that X̃N = {xN | x ∈ XN} is a set
of generators of G/N converging to 1. Clearly P 
= ∅. Define a partial ordering
on P by (N,XN ) � (M,XM ) if N ≥ M , XN ⊆ XM and XM − XN ⊆ N .
We first check that the hypotheses of Zorn’s Lemma are met. Let {(Ni, Xi) |
i ∈ I} be a linearly ordered subset of P ; putK =

⋂

i∈I Ni andXK =
⋃

i∈I Xi.
We claim that (K,XK) ∈ P . Clearly XK ⊆ G − K. Observe that for each
i ∈ I, the natural epimorphism ϕi : G/K −→ G/Ni sends X̃K onto X̃i. By
Lemma 2.4.1, X̃K generates G/K = lim←− i∈IG/Ni. Hence condition (ii) holds.

Finally, we check condition (i). Let K ≤ U �oG; then (see Proposition 2.1.5),
there is some i0 ∈ I such that U ≥ Ni0 . So, XK − U = Xi0 − U . Therefore,
XK − U is finite. This proves the claim. One easily verifies that (K,XK) is
an upper bound for the chain {(Ni, Xi) | i ∈ I}; hence (P ,�) is an inductive
poset. By Zorn’s Lemma, there exists a maximal pair (M,X) in P . To finish
the proof, it suffices to show that M = 1. Assuming otherwise, let U �o G
be such that U ∩M is a proper subgroup of M . Choose a finite subset T
of M − (U ∩M) such that M = 〈T, U ∩M〉. Clearly, (U ∩M,X ∪ T ) ∈ P .
Furthermore, (M,X) ≺ (U ∩M,X ∪ T ). This contradicts the maximality of
(M,X). Thus M = 1. ��

Definition 2.4.5 Let G be a profinite group. Define d(G) to be the smallest
cardinality of a set of generators of G converging to 1.

We now consider the question of what types of closed subsets X of a
profinite group G can generate G, as an abstract group. This is obviously the
case if X = G; we shall see that, in some sense, one can deviate very little
from this case. Denote by Prn(X) the set of all finite products of the form
x±1

1 · · ·x±1
n , where x1, . . . , xn ∈ X. Then we have the following result, which

is valid in fact for any compact Hausdorff topological group G.

Lemma 2.4.6 Let G be a profinite group and let X be a closed subset of G
such that X = X−1 and 1 ∈ X. Then G = 〈X〉 (generated as an abstract
group) if and only if G = Prm(X) for some m = 1, 2, . . . .
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Proof. It is plain that if G = Prm(X), then G = 〈X〉. Conversely, suppose
that G = 〈X〉. By assumption G =

⋃∞
n=1 Prn(X), and clearly each Prn(X)

is closed. By Proposition 2.3.1, a profinite group cannot be the union of
countably many closed subsets with empty interior. Hence Prt(X) contains
a nonempty open set U for some t = 1, 2, . . . . Clearly G =

⋃

g∈G gU . By
compactness there exist finitely many g1, . . . , gr ∈ G such that G =

⋃r
i=1 giU .

Since G = 〈X〉, there exists some s such that g1, . . . , gr ∈ Prs(X). Put
m = t+ s; then G = Prm(X). ��

2.5 Finitely Generated Profinite Groups

A closed subgroup K of a profinite group is called characteristic if ϕ(K) = K
for all continuous automorphisms ϕ of G.

Proposition 2.5.1 Let G be a finitely generated profinite group.

(a) For each natural number n, the number of open subgroups of G of index
n is finite.

(b) The identity element 1 of G has a fundamental system of neighborhoods
consisting of a countable chain of open characteristic subgroups

G = V0 ≥ V1 ≥ V2 ≥ · · · .

Proof. (a) If H is an open subgroup of G, the number of conjugates Hg =
g−1Hg of H in G is finite, since H has finite index in G. Hence the core
HG =

⋂

g∈GH
g of H in G has finite index in G; so HG is open in G. Conse-

quently it suffices to show that G has finitely many open normal subgroups
N of index m, for a fixed natural number m. But such a group N is the
kernel of an epimorphism ϕ : G −→ R, for some finite group R of order m.
Observe that such ϕ is completely determined by its values on a given finite
set of generators of G. Therefore, for a fixed R there are only finitely many
epimorphisms ϕ. On the other hand, there are only finitely many groups of
order m. Thus there are finitely many such N .

(b) Let n be a natural number. Define Vn to be the intersection of all open
subgroups of G of index at most n. By (a), Vn is open and characteristic. It
is obvious that Vn ≥ Vn+1 for all natural numbers n. These subgroups form a
fundamental system of neighborhoods of 1 since every open subgroup contains
some Vn. ��

A group G is Hopfian if every endomorphism of G which is onto is an iso-
morphism. Next we establish an analog of the Hopfian property for profinite
groups.

Proposition 2.5.2 Let G be a finitely generated profinite group and let ϕ :
G −→ G be a continuous epimorphism. Then ϕ is an isomorphism.
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Proof. We claim that ϕ is an injection. To see this, it is enough to show that
Ker(ϕ) is contained in every open normal subgroup of G. For each natural
number n denote by Un the set of all open normal subgroups of G of index n.
By Proposition 2.5.1 Un is finite. Define

Φ : Un −→ Un

to be the function given by Φ(U) = ϕ−1(U). Clearly Φ is injective. Since
Un is finite, Φ is bijective. Let U be an open normal subgroup of G; then U
has finite index, say n, in G. Therefore U = ϕ−1(V ) for some open normal
subgroup V , and thus U ≥ Ker(ϕ), as desired. Hence ϕ is an injection. Thus
ϕ is a bijection. Since G is compact, it follows that ϕ is a homeomorphism,
and so an isomorphism of profinite groups. ��

Lemma 2.5.3 Let {Gi, ϕij , I} be a surjective inverse system of finite groups.
Define

G = lim←−
i∈I

Gi.

Then d(G) <∞ if and only if {d(Gi) | i ∈ I} is a bounded set ; in this case,
there exists some io ∈ I such that d(G) = d(Gj), for each j ≥ io.

Proof. Let d(G) = n < ∞. Since the projection ϕi : G −→ Gi is an epi-
morphism (see Proposition 1.1.10), we have that d(Gi) ≤ n for each i ∈ I.
Conversely, assume n < ∞ is the least upper bound of {d(Gi) | i ∈ I}; say
n = d(Gio). For each i ∈ I, let Xi be the set of all n-tuples (x1, . . . , xn) ∈
Gi × · · · × Gi such that 〈x1, . . . , xn〉 = Gi. Then clearly {Xi, ϕij , I} is in
a natural way an inverse system of nonempty sets. By Proposition 1.1.4,
lim←−Xi 
= ∅. Let Y = (y1, . . . , yn) ∈ lim←−Xi. It follows from Corollary 1.1.8

that G = 〈y1, . . . , yn〉. Finally, it is plain that if j ≥ io, then d(G) = d(Gj).
��

Proposition 2.5.4 Let G and H be finitely generated profinite groups and
let n be a natural number with d(G) ≤ n. Let

ϕ : G −→ H

be a continuous epimorphism and assume that H = 〈h1, . . . , hn〉. Then there
exist g1, . . . , gn ∈ G such that G = 〈g1, . . . , gn〉 and ϕ(gi) = hi (i = 1, . . . , n).

Proof.

Case 1. G is finite.

For h = (h1, . . . , hn) ∈ H × · · · × H with 〈h1, . . . , hn〉 = H, let tG(h)
denote the number of n-tuples

g = (g1, . . . , gn) ∈ G× · · · ×G
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such that 〈g1, . . . , gn〉 = G and ϕ(gi) = hi for all i. Let g = (g1, . . . , gn) ∈
G × · · · × G be a tuple such that ϕ(gi) = hi for all i; then any tuple g′ =
(g′

1, . . . , g
′
n) with ϕ(g′

i) = hi (i = 1, . . . , n) must be in

g1Ker(ϕ) × · · · × gnKer(ϕ).

Hence
tG(h) = |Ker(ϕ)|n −

∑

tL(h),

where the sum is taken over the collection of proper subgroups L of G for
which ϕ(L) = H.

We have to show that tG(h) ≥ 1. This is certainly the case for certain
types of tuples h, for example, take h = ϕ(g), where g = (g1, . . . , gn) and
g1, . . . , gn is a set of generators of G. Therefore the result follows if we prove
the following assertion: tG(h) is independent of h. Observe that this assertion
holds if G does not contain any proper subgroup L with ϕ(L) = H, since in
this case tG(h) is precisely the total number of n-tuples g ∈ G×· · ·×G such
that ϕ(g) = h, namely |Ker(ϕ)|n. We prove the assertion by induction on |G|.
Assume that it holds for all epimorphisms L −→ H such that |L| < |G|. Then
the above formula shows that tG(h) is independent of h.

Case 2. G is infinite.

Let U be the collection of all open normal subgroups of G. For each U ∈ U
consider the natural epimorphism ϕU : G/U −→ H/ϕ(U) induced by ϕ. Then

ϕ = lim←−
U ∈U

ϕU .

For h ∈ H, denote by hU its natural image in H/ϕ(U). Plainly H/ϕ(U) =
〈hU1 , . . . , hUn 〉. Let XU be the set of all n-tuples (y1, . . . , yn) ∈ G/U×· · ·×G/U
such that 〈y1, . . . , yn〉 = G/U and ϕ(yi) = hUi (i = 1, . . . , n). By Case 1,
XU 
= ∅. Clearly the collection {XU | U ∈ U} is an inverse system of sets in
a natural way. It follows then from Proposition 1.1.4 that there exists some

(g1, . . . , gn) ∈ lim←−
U ∈U

XU ⊆ G× · · · ×G.

Then it is immediate that ϕ(gi) = hi (i = 1, . . . , n) and G = 〈g1, . . . , gn〉. ��

Finite generation is a property preserved by open subgroups as we show
in the next proposition (we shall give a more precise result later on in Corol-
lary 3.6.3).

Proposition 2.5.5 Let G be a finitely generated profinite group and let U be
an open subgroup of G. Then U is also finitely generated.
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Proof. Let X be a finite set of generators of G and let T be a right transversal
of U in G such that 1 ∈ T . Replacing X by X ∪ X−1 if necessary, we may
assume that X = X−1. If g ∈ G, denote by g̃ the element of T such that
Ug = Ug̃. Define

Y = {tx( ˜tx)−1 | x ∈ X, t ∈ T}.

Then Y is a finite set since both X and T are finite sets. We claim that
〈Y 〉 = U . Put H = 〈Y 〉. Plainly Y ⊆ U , and so H ≤ U . Let h ∈ H; then,
for t ∈ T and x ∈ X, we have htx = htx( ˜tx)−1

˜tx ∈ HT . Since 1 ∈ HT , this
shows that X ⊆ HTX ⊆ HT , and so Xk ⊆ HT for k = 0, 1, 2, . . . . Hence
〈X〉 ≤ HT , because X = X−1. Since T is finite, HT is closed, so HT = G.
We deduce that the index of H in G is at most |T | = [G : U ]. Since H ≤ U ,
it follows that H = U (see Proposition 2.3.2). ��

2.6 Generators and Chains of Subgroups

Let X be a topological space. Define the weight w(X) of X to be the smallest
cardinal of a base of open sets of X. We denote by ρ(X) the cardinal of the
set of all clopen subsets of X. If G is a topological group, its local weight
w0(G) is defined as the smallest cardinal of a fundamental system of open
neighborhoods of 1 in G. When G is an infinite profinite group, it follows
from Theorem 2.1.3 that w0(G) is the cardinal of any fundamental system
of neighborhoods of 1 consisting of open subgroups. Note that for a profinite
group G, w0(G) is finite only if G is finite; and in that case w0(G) = 1. More
generally, if H is a closed subgroup of G, we define the local weight of G/H
to be the smallest cardinal of a fundamental system of open neighborhoods
of a point of G/H. Since for any two points of the quotient space G/H, there
is a homeomorphism of G/H that maps one of those points to the other, this
definition is independent of the point used.

Proposition 2.6.1

(a) Let X be an infinite profinite space. Then w(X) = ρ(X). In particular,
the cardinality of any base of open sets of X consisting of clopen sets
is ρ(X).

(b) If G is an infinite profinite group, then w0(G) = w(G) = ρ(G).

Proof. (a) By Theorem 1.1.12, w(X) ≤ ρ(X). Let U be a base of open sets of
X such that |U| = w(X). For each clopen set W in X, choose a finite subset
Φ(W ) of U such that W is the union of the sets in Φ(W ). It follows that Φ
is an injective function from the set of all clopen subsets to the set of finite
subsets of U . Hence, w(X) ≥ ρ(X).

(b) Let N be a fundamental system of neighborhoods of 1 consisting of
open normal subgroups. Then {gN | N ∈ N} is a base of open sets of G.
The cardinality of this base is still w0(G) since each N ∈ N has finite index
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in G. So w0(G) ≥ w(G), and therefore w0(G) = w(G). By part (a), the result
follows. ��

Proposition 2.6.2 Let G be an infinite profinite group.

(a) If X is an infinite closed set of generators of G, then w0(G) = ρ(X).
(b) If X is an infinite set of generators of G converging to 1, then |X| =

w0(G).

Proof. (a) By Theorem 2.1.3, w0(G) is the cardinal of the set of open normal
subgroups of G. Observe that an open normal subgroup arises always as the
kernel of a continuous homomorphism from G onto a finite group. If H is a
finite group, a continuous homomorphism

ϕ : G −→ H

is completely determined by its restriction to X; and a continuous mapping
from X to H is determined by its values on at most |H| clopen subsets of X.
Therefore, there are at most ρ(X) continuous homomorphisms from G to H.
Since X is infinite and there are countably many nonisomorphic finite groups,
it follows that there are at most ρ(X) continuous homomorphisms from G to
a finite group. Thus, there exist at most ρ(X) open normal subgroups in G.
So w0(G) ≤ ρ(X). On the other hand, ρ(X) ≤ ρ(G) since X ≤ G. Finally, it
follows from Proposition 2.6.1 that ρ(G) = w0(G).

(b) The set X̄ = X ∪ {1} is the one-point compactification of X − {1}
(see Exercise 2.4.3). Hence a base of open sets of X̄ consists of the subsets of
X−{1} and the complements in X̄ of the finite subsets of X−{1}. Hence the
clopen subsets of X̄ are the finite subsets of X − {1} and their complements
in X̄. Therefore ρ(X̄) = |X|.Thus the result follows from (a). ��

As a consequence of the above proposition and the definition of d(G) (see
Definition 2.4.5), one has

Corollary 2.6.3 Let G be a profinite group. If d(G) is infinite, then d(G) =
w0(G).

Theorem 2.6.4 Let C be a formation of finite groups closed under taking
normal subgroups. Assume that G is a pro - C group. Let μ be an ordinal
number, and let |μ| denote its cardinal. Then w0(G) ≤ |μ| if and only if there
exists a chain of closed normal subgroups Gλ of G, indexed by the ordinals
λ ≤ μ

G = G0 ≥ G1 ≥ · · · ≥ Gλ ≥ · · · ≥ Gμ = 1 (3)

such that

(a) Gλ/Gλ+1 is a group in C;
(b) if λ is a limit ordinal, then Gλ =

⋂

ν<λGν .
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Moreover, if G is infinite, μ and the chain (3) can be chosen in such a
way that

(c) w0(G/Gλ) < w0(G) for λ < μ.

Proof. If G is finite, the result is obvious. So, let G be infinite. Assume that
μ is the smallest ordinal whose cardinal is w0(G). Let {Uλ | λ < μ} be a
fundamental system of open neighborhoods of 1 consisting of open normal
subgroups of G, indexed by the ordinals less that μ. For each λ ≤ μ, let
Gλ =

⋂

ν<λ Uν . Then G/Gλ is pro - C (see Proposition 2.2.1), and clearly (a)
and (b) hold. To check (c), assume λ < μ; observe that

{Uν/Gλ | ν < λ}

is a fundamental system of open normal subgroups of G/Gλ. Therefore,

w0(G/Gλ) ≤ |λ| < |μ| = w0(G).

Conversely, suppose that there is a chain (3) of closed normal subgroups
satisfying conditions (a) and (b). We shall show by transfinite induction on
λ that for each λ ≤ μ, w0(G/Gλ) ≤ |λ|. This is obviously true if λ = 1.
Suppose the statement holds for all ordinals ν < λ. If λ is a nonlimit ordinal,
then λ = λ′ + 1, for some λ′. Since [Gλ′ : Gλ] is finite, there is some V �o G
such that Gλ = V ∩Gλ′ . By the induction hypothesis there is a collection U ′

of open normal subgroups of G containing Gλ′ such that {U/Gλ′ | U ∈ U ′}
is a fundamental system of open neighborhoods of the identity in G/Gλ′ and
|U ′| ≤ |λ′|. Let U = {V ∩ U ′ | U ′ ∈ U ′}. Then

⋂

U∈U U = Gλ. Obviously
|U| ≤ |λ|, and it is easily checked that {U/Gλ | U ∈ U} is a fundamental sys-
tem of open neighborhoods of the identity in G/Gλ (see Proposition 2.1.5);
therefore w0(G/Gλ) ≤ |λ|. Suppose now that λ is a limit ordinal. By hypoth-
esis, if ν < λ, then there exists a set Uν of open subgroups of G containing
Gν such that {U/Gν | U ∈ Uν} is a fundamental system of open neighbor-
hoods of the identity in G/Gν and |Uν | ≤ |ν|. Put Uλ =

⋃

ν<λ Uν . Then
⋂

U∈Uλ
U = Gλ; hence, the set U of finite intersections of groups in Uλ form

a fundamental system of open neighborhoods of the identity in G/Gλ (see
Proposition 2.1.5). Furthermore,

|U| = |Uλ| ≤
∑

ν<λ

|Uν | ≤ |λ|,

since λ is infinite. ��

The next result is partly a consequence of the theorem above and partly
a refinement of it.

Corollary 2.6.5 Let C be a formation of finite groups closed under taking
normal subgroups. Assume that G is a pro - C group and let H be a closed
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normal subgroup of G. Then there exists an ordinal number μ and a chain of
closed pro - C subgroups Hλ of H

H = H0 ≥ H1 ≥ · · · ≥ Hλ ≥ · · · ≥ Hμ = 1

indexed by the ordinals λ ≤ μ, such that

(a) Hλ � G and Hλ/Hλ+1 ∈ C, for each λ < μ;
(b) Either Hλ+1 = Hλ or the group Hλ+1 is a maximal subgroup of Hλ with

respect to property (a);
(c) If λ is a limit ordinal, then Hλ =

⋂

ν<λHν ;
(d) If either H or G/H is an infinite group, then

w0(G) = w0(H) + w0(G/H);

(e) Assume that H is infinite. Let M be a closed normal subgroup of G con-
taining H. If w0(M/H) < w0(G), then w0(M/Hλ) < w0(G) whenever
λ < μ.

Proof. If H is finite, the result follows from Theorem 2.6.4: using the notation
of that theorem, denote the (finite!) collection of subgroups {H∩Gλ | λ ≤ μ}
of H by {H ′

0, H
′
1, . . . , H

′
t}, where H = H ′

0 ≥ H ′
1 ≥ · · · ≥ H ′

t = 1. Then
condition (a) holds for this collection; if (b) fails, one can easily add to this
collection finitely many subgroups so that the new collection satisfies (a) and
(b).

Assume that H is infinite. Let U be the set of all open normal subgroups
of G. The collection U(H) = {U ∩ H | U ∈ U} is a fundamental system of
open neighborhoods of 1 in H. The cardinality of this collection is w0(H).
Let μ be the smallest ordinal whose cardinality is |U(H)|. Index the distinct
elements of U(H) by the ordinals less than μ, say {Uλ | λ < μ}. For each
λ ≤ μ, let Hλ =

⋂

ν<λ Uν . Then Hλ is normal in G, and so it is pro - C (see
Proposition 2.2.1). Clearly (a) and (c) are satisfied. Adding finitely many
subgroups between Hλ+1 and Hλ if necessary, we may assume that (b) holds.
Next we prove (d). By Theorem 2.6.4 and the above, there exists a chain

G = G0 ≥ G1 ≥ · · · ≥ Gν = H = H0 ≥ · · · ≥ Hμ = 1

of closed normal subgroups of G satisfying conditions (a) and (b) of Theo-
rem 2.6.4; hence w0(G) ≤ w0(H) + w0(G/H). Now, note that

{U/H | U ∈ U , U ≥ H}

is a fundamental system of open neighborhoods of 1 in G/H and

{H ∩ U | U ∈ U , U 
≤ H}

is a fundamental system of open neighborhoods of 1 in H. Hence w0(G) ≥
w0(H)+w0(G/H). Thus w0(G) = w0(H)+w0(G/H). Part (e) is proved as in
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the theorem: assume λ < μ; observe that {Uν/Hλ | ν < λ} is a fundamental
system of open normal subgroups of H/Hλ. Therefore, w0(H/Hλ) ≤ |λ| <
|μ| = w0(G), where if ρ is an ordinal, then |ρ| denotes its cardinality. Thus,
w0(M/Hλ) ≤ w0(M/H) + w0(Hλ/H) < w0(G). ��

Corollary 2.6.6 Let C be a formation of finite groups closed under taking
normal subgroups. Let G be a profinite group and let X be a system of gen-
erators converging to 1. Then |X| ≤ ℵ0 if and only if G admits a countable
descending chain of open normal subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gi ≥ · · ·

such that
⋂∞
i=0Gi = 1, that is, if and only if the identity element 1 of G

admits a fundamental system of neighborhoods consisting of a countable chain
of open subgroups.

Proof. If |X| is infinite, then the result is a consequence of Proposition 2.6.2
and Theorem 2.6.4. If |X| is finite this follows from Proposition 2.5.1. ��

Remark 2.6.7 It is known that a topological group G is metrizable if and
only if the identity element of G admits a countable fundamental system of
neighborhoods (cf. Hewitt and Ross [1963], Theorem 8.3). So, according to
the corollary above, a profinite group is metrizable if and only if it has a finite
or a countably infinite set of generators converging to 1.

2.7 Procyclic Groups

Recall that a procyclic group is an inverse limit of finite cyclic groups, or
equivalently (see Lemma 2.5.3), a procyclic group is a profinite group that
can be generated by one element. As with finite cyclic groups it is very simple
to classify such groups in terms of their orders.

Proposition 2.7.1 Let p be a prime number and pn a supernatural number
(0 ≤ n ≤ ∞).

(a) There exists a unique procyclic group C of order pn up to isomorphism;
namely, if n <∞, C ∼= Z/pnZ, and if n = ∞, C ∼= Zp.

(b) The group Zp has a unique closed subgroup H of index pn. Moreover,
H = pnZp ∼= Zp if n is finite, and H = 1 if n is infinite.

(c) Every procyclic group of order pn appears as a quotient of Zp in a unique
way.

(d) Zp cannot be written as a direct product of nontrivial subgroups.

Proof. Let C be a procyclic group of order p∞, and let U and V be open
subgroups of C with the same indexes; then U/U ∩ V and V/U ∩ V are
subgroups of the finite cyclic group C/U ∩ V with the same index, and so
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U = V . It follows that for each natural number i, the group C has a unique
open subgroup Ui of index pi. Therefore,

C ∼= lim←−
i

C/Ui ∼= lim←−
i

Z/piZ ∼= Zp.

This proves (a). The above argument shows that Zp has a unique closed sub-
group H of index pn if n is finite; so it must coincide with pnZp. Furthermore,
in this case #H = p∞ by Proposition 2.3.2 and therefore H ∼= Zp as shown
in (a). To finish the proof of (b), assume that H is a closed subgroup of Zp
of index p∞. Put Ui = piZp (i = 1, 2, . . .). Then, by the definition of index,
for each i ∈ N there is some j ∈ N such that UjH ≤ Ui; therefore,

H =
∞
⋂

i=1

UiH = 1.

Statement (c) follows from (b).
To prove (d) observe that if A and B are nontrivial subgroups of Zp, then

they have finite index and hence so does their intersection. Thus A∩B ∼= Zp
according to (a). Therefore Zp 
∼= A×B. ��

If G is a procyclic group then it is the direct product G =
∏

pGp of
its p-Sylow subgroups (see Proposition 2.3.8). Clearly each Gp is a pro-p
procyclic group. In particular, ̂Z =

∏

p Zp. Conversely, the direct product
G =

∏

pH(p) of pro-p procyclic groups H(p), where p runs through different
primes, is a procyclic group; indeed, if U is an open subgroup of G, then G/U
is a finite cyclic group. These facts together with the proposition above yield
the following description for general procyclic groups.

Theorem 2.7.2 Let n =
∏

p p
n(p) be a supernatural number.

(a) There exists a unique procyclic group C of order n up to isomorphism.
(b) The group ̂Z has a unique closed subgroup H of index n. Moreover,

H ∼=
∏

p∈S
Zp,

where S = {p | n(p) <∞}.
(c) Every procyclic group of order n is a quotient of ̂Z in a unique way.

2.8 The Frattini Subgroup of a Profinite Group

Let G be a profinite group. According to Proposition 2.1.4, every closed
subgroup of G is the intersection of open subgroups; hence a maximal closed
subgroup of G is necessarily open. Moreover, if G is nontrivial, it always has
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maximal open subgroups. Define the Frattini subgroup Φ(G) of G to be the
intersection of all its maximal open subgroups. Observe that, unlike what
could happen for abstract infinite groups, if G is a nontrivial profinite group,
then one always has Φ(G) < G. Plainly Φ(G) is a characteristic subgroup
of G, that is, for every continuous automorphism ψ of G, ψ(Φ(G)) = Φ(G).
The quotient group G/Φ(G) is called the Frattini quotient of G.

An element g of profinite group G is a nongenerator if it can be omitted
from every generating set of G, that is, whenever G = 〈X, g〉, then G = 〈X〉.

Lemma 2.8.1 The Frattini subgroup Φ(G) of a profinite group G coincides
with the set S of all nongenerators of G.

Proof. Let g ∈ S. If H is a maximal open subgroup of G and g 
∈ H, then
G = 〈H, g〉 but G 
= H; this is a contradiction since g is a nongenerator. Thus
there is no such maximal subgroup H, and so g ∈ Φ(G).

Now, let g ∈ Φ(G); we must show that g ∈ S. Assume on the contrary
that g 
∈ S, that is, assume that there exists a subset X of G such that
G = 〈X, g〉, but G 
= 〈X〉. Observe that

〈X, g〉 = 〈〈X〉, g〉.

Since 〈X〉 is the intersection of the open subgroups of G containing 〈X〉
(see Proposition 2.1.4), there exists an open subgroup H of G maximal with
respect to the properties of containing 〈X〉 and not containing g. Remark that
H is in fact a maximal open subgroup of G; indeed, if H < K ≤o G, then
K ≥ 〈X, g〉 and so K = G. Since g 
∈ H, we have g 
∈ Φ(G), a contradiction.
Therefore, g ∈ S as needed. ��

Proposition 2.8.2

(a) Let G be a profinite group. If N �c G and N ≤ Φ(G), then Φ(G/N) =
Φ(G)/N .

(b) If ρ : G −→ H is an epimorphism of profinite groups, then ρ(Φ(G)) ≤
Φ(H).

(c) If {Gi, ϕij , I} is a surjective inverse system of profinite groups over the
directed indexing set I, then

Φ
(

lim←−
i∈I

Gi

)

= lim←−
i∈I

Φ(Gi).

Proof. Part (a) follows immediately from the definition. Part (b) is clear since
ρ−1(M) is a maximal subgroup ofG wheneverM is a maximal subgroup ofH.

(c) Put G = lim←− i∈IGi, and note that the canonical projection

ϕi : G −→ Gi

is an epimorphism (see Proposition 1.1.10). By (b), ϕi(Φ(G)) ≤ Φ(Gi), for
every i ∈ I. Hence
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Φ(G) = lim←−
i∈I

ϕi(Φ(G)) ≤ lim←−
i∈I

Φ(Gi).

Consider now an element

x = (xi) ∈ lim←−
i∈I

Φ(Gi),

and suppose x 
∈ Φ(G). Then there is a maximal open subgroup M of G
with x 
∈ M . Hence, xi 
∈ ϕi(M) for some i ∈ I. Since ϕi(M) is a maximal
subgroup ofGi, one has that xi 
∈ Φ(Gi), a contradiction. Therefore x ∈ Φ(G),
and so

lim←−
i∈I

Φ(Gi) ≤ Φ(G).
��

Corollary 2.8.3 If G is a profinite group, then

G/Φ(G) = lim←−
U

(G/U)/Φ(G/U),

where U runs through the open normal subgroups of G.

Proof. Consider the short exact sequence

1 −→ Φ(G/U) −→ G/U −→ (G/U)/Φ(G/U) −→ 1,

apply (the exact functor) lim←−, and use Proposition 2.8.2. ��

Corollary 2.8.4 If G is a profinite group, then Φ(G) is pronilpotent.

Proof. This follows from Proposition 2.8.2 and the corresponding result for
finite groups (cf. Hall [1959], Theorem 10.4.2). ��

Corollary 2.8.5 Let G be a profinite group, H ≤c G and Y ⊆ Φ(G). Assume
that G = 〈H,Y 〉. Then G = H. In particular, if HΦ(G) = G, then H = G.

Proof. Express G as
G = lim←−

U

G/U,

where U runs through the open normal subgroups of G. By Proposition 2.8.2,
Y U/U ⊆ Φ(G/U). Then, using Lemma 2.8.1,

G = lim←−
U

〈HU/U, Y U/U〉 = lim←−
U

HU/U = H.
��

Lemma 2.8.6 Let G be a finitely generated profinite group. Then d(G) =
d(G/Φ(G)).
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Proof. Obviously d(G) ≥ d(G/Φ(G)). Consider the canonical epimorphism
ψ : G −→ G/Φ(G). Let X ⊆ G be such that ψ(X) is a minimal set of gener-
ators of G/Φ(G). Then G = 〈X,Φ(G)〉 = 〈X〉Φ(G) = 〈X〉 by Corollary 2.8.5;
so d(G/Φ(G)) ≥ d(G). ��

For a pro-p group G the properties of its Frattini subgroup are particularly
useful. We begin with the following lemma. As usual, if H,K are subgroups
of a group G, we denote by [H,K] the subgroup of G generated by the
commutators [h, k] = h−1k−1hk (h ∈ H, k ∈ K).

Lemma 2.8.7 Let p be a prime number and let G be a pro-p group.

(a) Every maximal closed subgroup M of G has index p.
(b) The Frattini quotient G/Φ(G) is a p-elementary abelian profinite group,

and hence a vector space over the field Fp with p elements.
(c) Φ(G) = Gp[G,G], where Gp = {xp | x ∈ G} and [G,G] denotes the

commutator subgroup of G.

Proof. (a) Let MG =
⋂

g∈GM
g be the core of M in G. Then M/MG is a

maximal subgroup of the finite p-group G/MG and so normal of index p (cf.
Hall [1959], Theorem 4.3.2). Deduce that M is normal of index p in G.

(b)
G/Φ(G) = G/

⋂

M ↪→
∏

G/M,

where M runs through the closed maximal subgroups of G. By (a) G/M ∼=
Z/pZ for each M , so the result follows.

(c) Put G0 = Gp[G,G]. Since the Frattini quotient G/Φ(G) is elementary
abelian, one has Φ(G) ≥ G0. To see that these two groups are in fact the
same, consider an element x 
∈ G0. By compactness of G0 there exists an open
normal subgroup U of G such that xU ∩G0U = ∅; then (G/U)/(G0U/U) is a
finite abelian group of exponent p, and the image x̃ of x in (G/U)/(G0U/U) is
nontrivial. Since (G/U)/(G0U/U) is a finite direct sum of the form

⊕

Z/pZ,
there is a maximal subgroup of (G/U)/(G0U/U) missing x̃. Hence there exists
a maximal open subgroup of G missing x, and thus x 
∈ Φ(G). ��

Corollary 2.8.8 Let p be a prime number and ψ : G1 −→ G2 a continuous
homomorphism of pro-p groups. Then

(a) ψ(Φ(G1)) ≤ Φ(G2). In particular, if G1 ≤ G2, then Φ(G1) ≤ Φ(G2);
(b) If ψ is an epimorphism, then ψ(Φ(G1)) = Φ(G2). In this case, ψ induces

a continuous epimorphism ψ̄ : G1/Φ(G1) −→ G2/Φ(G2).

Proof. This follows immediately from Lemma 2.8.7(c). ��

We remark that if G1 ≤ G2 are profinite groups, then it is not necessarily
true that Φ(G1) ≤ Φ(G2). For example, let G2 a finite nonabelian simple
group and G1 a nonelementary abelian p-Sylow subgroup.
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Proposition 2.8.9 Let p be a prime number and let G be a pro-p group.
Consider a family {Hi | i ∈ I} of closed subgroups of G filtered from below.
Let H =

⋂

i∈I Hi. Then Φ(H) =
⋂

i∈I Φ(Hi).

Proof. By Corollary 2.8.8 Φ(H) ≤ Φ(Hi) for each i ∈ I; hence Φ(H) ≤
⋂

i∈I Φ(Hi). To prove the opposite containment, let x ∈
⋂

i∈I Φ(Hi). Consider
a maximal open normal subgroup U of H and denote by ϕ : H −→ H/U
the canonical epimorphism. We must show that ϕ(x) = 1. Choose N �o
G so that N ∩ H ≤ U . Then there exists some Hk with Hk ≤ NH (see
Proposition 2.1.5). Denote by ψ the composition of natural maps

Hk ↪→ NH −→ NH/N ∼= H/N ∩H −→ H/U.

Clearly ϕ is the restriction of ψ to H. By Corollary 2.8.8, ψ(x) = 1 since
x ∈ Φ(Hk) and Φ(H/U) = 1; therefore, ϕ(x) = 1. ��

For a pro-p group G there is a very useful way of characterizing when G
is finitely generated in terms of its Frattini subgroup.

Proposition 2.8.10 Let p be a prime number. A pro-p group G is finitely
generated if and only if Φ(G) is an open subgroup of G.

Proof. A maximal closed subgroup of a pro-p group G has index p (see
Lemma 2.8.7). Therefore if G is finitely generated, it has only finitely many
maximal closed subgroups (see Proposition 2.5.1). Hence their intersection
has finite index, and so Φ(G) is open. Conversely, assume that Φ(G) is open.
Then G/Φ(G) is a finite group; so there exists a finite subset X of G such
that its image in G/Φ(G) generates this group, that is, G = 〈X〉Φ(G). We
deduce from Corollary 2.8.5 that G = 〈X〉. ��

In contrast with this result, remark that ̂Z is procyclic, but its Frattini
subgroup Φ(̂Z) =

∏

p pZp has infinite index. However, if the order of an
abelian group G involves only a finite number of prime numbers, the analog
to Proposition 2.8.10 still holds. More generally, one has the following result.
Recall that a finite group G is supersolvable if it admits a finite series G =
C0 ≥ G1 ≥ · · · ≥ Gn = 1 such that Gi � G and Gi/Gi+1 is cyclic, for all i.

Proposition 2.8.11 Let G be a prosupersolvable group whose order is divis-
ible by only finitely many primes. Then G is finitely generated if and only if
Φ(G) is open in G.

Proof. If Φ(G) is open, thenG/Φ(G) is a finite group. SoG = XΦ(G) for some
finite subset X of G. Hence G = 〈X〉. Conversely, assume that G is finitely
generated. It is known (cf. Hall [1959], Corollary 10.5.1) that the maximal
subgroups of a finite supersolvable group are of prime index. It follows that
the maximal open subgroups of the prosupersolvable group G have prime
index as well. Since #G involves only finitely many primes, then the number
of maximal open subgroups of G is finite. Hence their intersection Φ(G) is
also open. ��
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Using this one can deduce the following proposition (cf. Oltikar and Ribes
[1978] for a detailed proof).

Proposition 2.8.12 Let G be a finitely generated prosupersolvable group.
Then every p-Sylow subgroup of G is finitely generated.

For a profinite group G define Φ1(G) = Φ(G) and inductively Φn+1(G) =
Φ(Φn(G)) for n = 1, 2, . . . . The series

G ≥ Φ(G) ≥ Φ2(G) ≥ · · ·

is called the Frattini series. Clearly if Φn(G) 
= 1, [Φn(G) : Φn+1(G)] > 1;
hence if G is a finite group, its Frattini series leads to 1 in a finite number of
steps, that is, Φn(G) = 1 for some n.

Proposition 2.8.13 Let p be a prime number and G a finitely generated pro-
p group. Then the Frattini series of G constitutes a fundamental system of
open neighborhoods of 1 in G.

Proof. By Proposition 2.8.10 Φ(G) is open and hence finitely generated (see
Proposition 2.5.5). We deduce inductively that each of the subgroups Φn(G)
is open and finitely generated. To complete the proof we must show that
if U is an open normal subgroup of G, then U contains Φn(G) for some n.
Now, since G/U is a finite p-group, Φn(G/U) = 1 for some n; finally observe
that Φn(G/U) = Φn(G)U/U , as can be easily seen from Lemma 2.8.7 and
induction on n. Thus Φn(G) ≤ U . ��

Exercise 2.8.14 Let p be a prime number and G a pro-p group. Put

P1(G) = G and Pn+1(G) = Pn(G)p[G,Pn(G)] for n = 1, 2, . . . .

Then

(a) For K �c G, Pn(G/K) = Pn(G)K/K, (n = 1, 2, . . .);
(b) Pn(G)/Pn+1(G) is an elementary abelian p-group;
(c) [Pn(G), Pm(G)] ≤ Pn+m(G) for all natural numbers n,m;
(d) The series

G = P1(G) ≥ P2(G) ≥ · · · ≥ Pn(G) ≥ · · ·
is a central series, that is, Pn(G)/Pn+1(G) is in the center of G/Pn+1(G)
for all n ≥ 1 (this series is called the lower p-central series of G);

(e) Assume that G is in addition finitely generated as a pro-p group. Then
the subgroups Pn(G) (n = 1, 2, . . .) form a fundamental system of open
neighborhoods of 1 in G.

Lemma 2.8.15 Let ϕ : G −→ H be a continuous epimorphism of profi-
nite groups. Then there exists a minimal closed subgroup K of G such
that ϕ(K) = H. Moreover, if ψ denotes the restriction of ϕ to K, then
Ker(ψ) ≤ Φ(K).
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Proof. We use Zorn’s Lemma. Consider the collection L of all closed sub-
groups L of G with ϕ(L) = H; certainly L 
= ∅. Order L by reversed in-
clusion. Consider a chain {Li | i ∈ I} in L, that is, if i, j ∈ I then either
Li ≤ Lj or Li ≥ Lj . We must show the existence of some L ∈ L such that
L ≤ Li for all I ∈ I. Define L =

⋂

i∈I Li. To see that L ∈ L, we have
to show that ϕ(L) = H, or equivalently, if h ∈ H we need to prove that
ϕ−1(h) ∩ L 
= ∅. Now, by assumption ϕ−1(h) ∩ (

⋂

j∈J Lj) 
= ∅, for any finite
subset J of I. Then, by the finite intersection property of compact spaces,
we have ϕ−1(h)∩L =

⋂

J⊆f I
(ϕ−1(h)∩ (

⋂

j∈J Lj)) 
= ∅, as desired. Therefore
the poset L is inductive. The existence of K follows by Zorn’s Lemma.

Consider now a maximal closed subgroup M of K. If Ker(ψ) 
≤ M , then
MKer(ψ) = K and so ϕ(M) = H, contradicting the minimality of K.
Thus Ker(ψ) ≤ M for all maximal closed subgroups M of K, that is,
Ker(ψ) ≤ Φ(K). ��

A continuous epimorphism ψ : K −→ H of profinite groups satisfying the
conclusion of the lemma above (i.e., such that Ker(ψ) ≤ Φ(K)) is called a
Frattini cover of H.

Proposition 2.8.16 Let p be a prime number and A =
∏

I Z/pZ a direct
product of copies of Z/pZ. Then every closed subgroup B of A has a direct
complement C, that is, C is a closed subgroup of A such that A = B × C.

Proof. Consider the canonical epimorphism ϕ : A −→ A/B. By Lem-
ma 2.8.15, there exists a closed subgroup C of A such that ϕ(C) = A/B
(that is, A = BC ) and B ∩ C ≤ Φ(C). Since pC = 0, Φ(C) = 0. Therefore,
B ∩ C = 0. Thus A = B × C. ��

2.9 Pontryagin Duality for Profinite Groups

Let X,Y be topological spaces. We begin with a definition for the compact-
open topology on the space of all continuous functions C(X,Y ) from X to Y .
For each compact subset K of X and each open subset U of Y , set

B(K,U) = {f ∈ C(X,Y ) | f(K) ⊆ U}.

Then the collection of all subsets of the form B(K,U) form a subbase for a
topology on C(X,Y ); this topology is called the compact-open topology on
C(X,Y ). If L is a subset of C(X,Y ), this topology induces on L a topology
which is called the compact-open topology on L. (For general properties of
the compact-open topology see, e.g., Bourbaki [1989], Section X.3.4].)

Denote by T the quotient group T = R/Z of the additive group of real
numbers. Clearly T is isomorphic to the circle group, {e2πix | x ∈ R} con-
sisting of all complex numbers of modulus 1. The dual group G∗ of a locally
compact abelian topological group G is defined to be the group

G∗ = Hom(G,T)



2.9 Pontryagin Duality for Profinite Groups 59

of all continuous homomorphisms from G to T, endowed with the compact-
open topology. It turns out that this topology makesG∗ into a locally compact
topological group. Denote by G∗ ∗ the double dual of G, that is,

G∗ ∗ = Hom(G∗,T) = Hom(Hom(G,T),T).

Given a group G, define a mapping

αG : G −→ G∗ ∗

by αG(g) = g′, where g′ : G∗ −→ T is the map given by g′(f) = f(g)
(f ∈ G∗). It is easy to check that αG is a “natural” homomorphism, that is,
it is a homomorphism, and whenever ϕ : G −→ H is a group homomorphism
and ϕ∗ ∗ : G∗ ∗ −→ H∗ ∗ the corresponding homomorphism of double duals,
then the diagram

G
αG

ϕ

G∗ ∗

ϕ∗ ∗

H αH
H∗ ∗

commutes (in the language of categories, this says that α is a morphism from
the identity functor on the category of groups to the double dual functor
Hom(Hom(−,T),T)).

The celebrated Pontryagin-van Kampen duality theorem establishes that
if G is a locally compact abelian group, then αG is an isomorphism of topolog-
ical groups. A complete proof of this theorem requires considerable machinery
and it is quite long. Proofs can be found for example in Hofmann and Mor-
ris [2006] Hewitt and Ross [1963], Morris [1977], Dikranjan, Prodanov and
Stoyanov [1990].

The purpose of this section is to give a simple proof of Pontryagin-van
Kampen’s theorem in the especial case when G is profinite abelian or discrete
torsion abelian. In order to do this we need first some lemmas.

Proposition 2.9.1

(a) Every proper closed subgroup of T is finite.
(b) If G is compact, then G∗ is discrete; and if G is discrete, then G∗ is

compact.

Proof. Let ϕ : R −→ T = R/Z denote the canonical epimorphism.
(a) It is well-known (and easy to prove) that every proper nondiscrete

subgroup of the group R of real numbers is dense. Let A be a proper closed
subgroup of T. Then ϕ−1(A) is a proper closed subgroup of R. Note that
ϕ−1(A) is not dense in R, for otherwise A would not be proper. Hence ϕ−1(A)
is a discrete subgroup. Since ϕ is an open map, it follows that A is discrete.
On the other hand, A is compact and thus finite.
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(b) Assume that G is compact. Consider the open subset

U = ϕ(−1/3, 1/3)

of T = R/Z. It is easy to see that the only subgroup of T contained in U
is the trivial group {0}. Hence the subbasic open set B(G,U) of G∗ consists
only of the zero map {0}. Thus G∗ is discrete.

Assume now that G is discrete. Then the compact subsets of G are pre-
cisely the finite subsets. Hence the compact-open topology on G∗ coincides
with the topology induced on G∗ from the direct product

∏

GT = TG with
the usual product topology. We claim that G∗ is a closed subset of

∏

GT.
Indeed, suppose that f ∈ (

∏

GT) − G∗; then f : G −→ T is not a homo-
morphism. Therefore there exists x, x′ ∈ G with f(xx′) 
= f(x) + f(x′).
Choose disjoint open subsets U and V of T such that f(xx′) ∈ U and
f(x) + f(x′) ∈ V . Next choose neighborhoods W and W ′ of f(x) and f(x′)
respectively, such that α + α′ ∈ V whenever α ∈ W and α′ ∈ W ′. Con-
sider the open set H of TG consisting of all maps h : G −→ T such that
h(xx′) ∈ U , h(x) ∈ W and h(x′) ∈ W ′. Then H is a neighborhood of f in
TG such that H ∩ G∗ = ∅. This proves the claim. Then the compactness of
TG implies that G∗ is compact. ��

Lemma 2.9.2 Let G be a profinite group and f : G −→ T a continuous
homomorphism into the circle group T = R/Z. Then

(a) f(G) is a finite subgroup of T; and
(b) f factors through the inclusion Q/Z ↪→ T, that is, f(G) < Q/Z.

Proof. Since T is connected and f(G) totally disconnected, then T 
= f(G).
Hence f(G) is finite (see Proposition 2.9.1(a)). Further, observe that the only
torsion elements of T are those in Q/Z; so f(G) < Q/Z. ��

Lemma 2.9.3

(a) Let {Gi, ϕij , I} be a surjective inverse system of profinite groups over a
directed poset I and let G = lim←− i∈IGi be its inverse limit. Then there
exists an isomorphism

G∗ = Hom
(

lim←−
i∈I

Gi,T
)

∼= lim−→
i∈I

Hom(Gi,T) = lim−→
i∈I

G∗
i .

(b) Let {Ai, ϕij , I} be a direct system of discrete torsion abelian groups over
a directed poset I and let A = lim−→ i∈IAi be its direct limit. Assume that
the canonical homomorphisms ϕi : Ai −→ A are inclusion maps. Then
there exists an isomorphism of profinite groups

A∗ = Hom
(

lim−→
i∈I

Ai,T
)

∼= lim←−
i∈I

Hom(Ai,T) = lim←−
i∈I

A∗
i .
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Proof. (a) Let ϕi : G −→ Gi denote the projection of G onto Gi (i ∈ I). Let
f : G −→ T be a continuous homomorphism; then f(G) is a finite group by
Lemma 2.9.2. Hence f factors through ϕj for some j ∈ I (see Lemma 1.1.16),
that is, there exists a homomorphism fj : Gj −→ T such that f = fjϕj .
Define

Φ : G∗ −→ lim−→
i∈I

G∗
i

by Φ(f) = f̃j , where f̃j is the element of lim−→ i∈IG
∗
i represented by fj . This is

well-defined, for if f factors also through Gk, say f = fkϕk, one easily checks
that f̃j = f̃k. Plainly Φ is an onto homomorphism. It is also a monomorphism,
for if Φ(f) = f̃j = 0, then f = frϕr = 0 for some r ≥ j (see Proposition 1.2.4).

(b) Denote by ϕi : Ai −→ A the canonical homomorphism. Let

f : A = lim−→
i∈I

Ai −→ T

be a homomorphism. Denote by fj the composition

Aj
ϕj−→ A

f−→ T

(j ∈ I). Then (fj) ∈ lim←− i∈IHom(Ai,T). The map

Ψ : A∗ −→ lim←−
i∈I

A∗
i

given by f �→ (fj) is obviously an isomorphism of abstract groups. To see
that Ψ is a topological isomorphism, it suffices to show that it is a continuous
map, because the groups A∗ and lim←− i∈IA

∗
i are compact. Denote by

ρj : lim←−
i∈I

A∗
i −→ A∗

j

the canonical projection (j ∈ I). Then Ψ is continuous if and only if ρjΨ is
continuous for each j ∈ I. Consider a subbasic open set B(K,U) of A∗

j , where
K is a compact subset of Aj (hence finite) and where U is an open subset of T.
We must show that (ρjΨ)−1(B(K,U)) is open in A∗. Now, ρ−1

j (B(K,U))
consists of all (fi) ∈ lim←− i∈IA

∗
i such that fj ∈ B(K,U). Identify K with

its image in Aj(≤ A). Then (ρjΨ)−1(B(K,U)) consists of all continuous
homomorphisms f : A −→ T such that f(K) ⊆ U , that is, (ρjΨ)−1(B(K,U))
is a subbasic open set of A∗. ��

To prove the following lemma one can use a slight variation of the above
arguments. We leave the details to the reader.
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Lemma 2.9.4

(a) Let {Gi | i ∈ I} be a collection of profinite groups. Then
(

∏

i∈I
Gi

)∗
∼=
⊕

i∈I
G∗
i .

(b) Let {Ai | i ∈ I} be a collection of discrete torsion groups. Then
(

⊕

i∈I
Ai

)∗
∼=
∏

i∈I
A∗
i .

Example 2.9.5

(1) If G is a finite abelian group, then G∗ ∼= G. To see this we may assume
by Lemma 2.9.4 that G is cyclic. Say G is generated by x and the order
of x is t. Let Rt be the unique subgroup of T consisting of the t-th roots
of unity. Then Rt ∼= G and Hom(G,T) = Hom(G,Rt) ∼= G.

(2) Z∗
p
∼= Cp∞ and C∗

p∞ ∼= Zp. Indeed, these two statements follow from the
example above and Lemma 2.9.3.

(3) ̂Z∗ ∼= Q/Z and (Q/Z)∗ ∼= ̂Z. To see this note that ̂Z ∼=
∏

p Zp and
Q/Z ∼=

⊕

p Cp∞ , and apply Lemma 2.9.4.

Theorem 2.9.6 (Pontryagin Duality for Profinite Groups)

(a) If G is either a profinite abelian group or a discrete abelian torsion group,
then

G∗ = Hom(G,T) ∼= Hom(G,Q/Z).

(b) The dual of a profinite abelian group is a discrete abelian torsion group,
and the dual of a discrete abelian torsion group is a profinite abelian
group.

(c) Let G be either a profinite abelian group or a discrete abelian torsion
group. Then the homomorphism

αG : G −→ G∗ ∗

is an isomorphism.

Proof. Part (a) is essentially the content of Lemma 2.9.2. Part (b) follows
from Lemma 2.9.3 and Proposition 2.9.1. To prove part (c), note first that
the result is obvious for finite cyclic groups. If G1 and G2 are groups, one
easily checks that αG1×G2 = αG1 × αG2 . Since a finite abelian group is a
direct product of cyclic groups, the result is valid for finite abelian groups.

Consider now a profinite abelian group G and express it as

G = lim←−
i∈I

Gi,
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where {Gi, ϕij , I} is a projective system of finite abelian groups. For each
i ∈ I we have a commutative diagram

G
αG

ϕ

G∗ ∗

ϕ∗ ∗

Gi αGi

G∗ ∗
i

Using Lemma 2.9.3, one deduces that

αG = lim←−
i∈I

αGi .

Since each αGi is an isomorphism, so is αG.
If, on the other hand, G is a discrete torsion abelian group, then G is the

union of its finite subgroups, that is,

G = lim−→
i∈I

Gi,

where each Gi is a finite abelian subgroup of G. Then

G∗ = Hom(G,T) ∼= lim←−
i∈I

Hom(Gi,T).

So, using again Lemma 2.9.3,

G∗ ∗ = lim−→
i∈I

G∗ ∗
i

and αG = lim−→ i∈IαGi ; thus αG is an isomorphism since each αGi is an iso-
morphism. ��

Next we give some applications of this theorem that will be needed later.

Lemma 2.9.7 Let G be a discrete torsion abelian group (respectively, profi-
nite abelian group), H a subgroup (respectively, a closed subgroup) of G, and
g ∈ G − H. Then there exists a homomorphism (respectively, a continuous
homomorphism) f : G −→ Q/Z such that f(H) = 0 and f(g) 
= 0.

Proof. Replacing G by G/H if necessary, we may assume that H = 0, and we
must show the existence of a (continuous) homomorphism f with f(g) 
= 0.
If G is a discrete torsion abelian group, g has finite order; so there is a
monomorphism 〈g〉 ↪→ Q/Z. Since Q/Z is an injective abelian group (cf.
Fuchs [1970], page 99), this monomorphism can be extended to a homo-
morphism G −→ Q/Z. If G is an abelian profinite group, consider a finite
quotient Gi of G such that the image gi of g in Gi is not trivial; then it
suffices to construct a homomorphism fi : Gi −→ Q/Z with fi(gi) 
= 0. This
follows again from the injectivity of Q/Z. ��
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If G is a discrete torsion (respectively, profinite) abelian group and H is
a subgroup (respectively, closed subgroup) of G, denote by AnnG∗ (H) the
annihilator of H in G∗, that is,

AnnG∗ (H) = {f ∈ G∗ | f(h) = 0 ∀h ∈ H}.

As an immediate consequence of the lemma above we have

Corollary 2.9.8 Let G be a discrete torsion (respectively, profinite) abelian
group and H is a subgroup (respectively, a closed subgroup) of G. Then

H =
⋂

f∈AnnG∗ (H)

Ker(f).

Proposition 2.9.9 Let G be a discrete torsion (respectively, profinite) abelian
group and H is a subgroup (respectively, closed subgroup) of G. Then αG sends
H to AnnG∗ ∗ (AnnG∗ (H)) isomorphically. Equivalently, if we identify G with
G∗ ∗ via the topological isomorphism αG, then

{g ∈ G | f(g) = 0 ∀f ∈ AnnG∗ (H)} = H

Proof. For g ∈ G put g′ = αG(g). Then

AnnG∗ ∗ (AnnG∗ (H)) = {g′ ∈ G∗ ∗ | g′(f) = 0 ∀f ∈ AnnG∗ (H)}
= {g′ ∈ G∗ ∗ | f(g) = 0 ∀f ∈ AnnG∗ (H)}
= {h′ ∈ G∗ ∗ | h ∈ H} = αG(H),

where the penultimate equality follows from Corollary 2.9.8. ��

Proposition 2.9.10 Let G be a discrete torsion (respectively, profinite)
abelian group and let H1 and H2 be subgroups (respectively, closed subgroups)
of G. Then

(a) AnnG∗ (H1H2) = AnnG∗ (H1) ∩ AnnG∗ (H2);
(b) AnnG∗ (H1 ∩H2) = AnnG∗ (H1)AnnG∗ (H2).

Proof. Statement (a) is plain. According to Corollary 2.9.8, part (b) will
follow if we can prove that

AnnG∗ ∗ (AnnG∗ (H1 ∩H2)) = AnnG∗ ∗ (AnnG∗ (H1)AnnG∗ (H2)).

Using part (a), Proposition 2.9.9 and the fact that αG is an isomorphism (the
duality theorem), we have

AnnG∗ ∗ (AnnG∗ (H1)AnnG∗ (H2))
= AnnG∗ ∗ (AnnG∗ (H1)) ∩ AnnG∗ ∗ (AnnG∗ (H2))
= αG(H1) ∩ αG(H2) = αG(H1 ∩H2) = AnnG∗ ∗ (AnnG∗ (H1 ∩H2)),

as needed. ��
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Let G be a group and n a natural number. Put

Gn = {xn | x ∈ G}

and
G[n] = {x ∈ G | xn = 1}.

Observe that if G is abelian, then both Gn and G[n] are subgroups of G.
If G is a profinite abelian group, then both Gn and G[n] are closed subgroups
of G.

Lemma 2.9.11 Let G be an abelian group which is either profinite or dis-
crete. Fix a natural number n. Then

(a) AnnG∗ (Gn) = (G∗)[n];
(b) AnnG∗ (G[n]) = (G∗)n.

Proof. (a) AnnG∗ (Gn) = {f ∈ G∗ | f(xn) = 0, ∀x ∈ G} = {f ∈ G∗ |
(nf)(x) = 0, ∀x ∈ G} = {f ∈ G∗ | nf = 0} = (G∗)[n]

(b) By Proposition 2.9.9 and part (a), we have (after identifying G
and G∗ ∗)

(G∗)n = AnnG∗ (AnnG∗ ∗ ((G∗)n)) = AnnG∗ (G∗ ∗[n]) = AnnG∗ (G[n]). ��

Recall that an abelian group G is divisible if for every natural number
n and for every element x ∈ G, there exists some element y ∈ G such that
yn = x.

Theorem 2.9.12 Let G be an abelian group which is either discrete or profi-
nite. Then G is divisible if and only if G∗ is torsion-free.

Proof. Assume that G is divisible. Then G = Gn for every natural number
n. By Lemma 2.9.11,

0 = AnnG∗ (G) = AnnG∗ (Gn) = (G∗)[n]

for every natural number n. Therefore G∗ is torsion-free.
To show the converse it suffices to prove, by Theorem 2.9.6, that if G is

torsion-free, thenG∗ is divisible. Assume thatG is torsion-free. ThenG[n] = 1
for every natural number n ≥ 2. Hence AnnG∗ (G[n]) = G∗ for all n ≥ 2.
Therefore, by Lemma 2.9.11,

(G∗)n = G∗

for all n ≥ 0. Thus G∗ is divisible. ��
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2.10 Pullbacks and Pushouts

In this section we establish the concepts of pullback and pushout diagrams.
We do this only for profinite groups and we leave to the reader the devel-
opment of the analogous constructions for other categories, like modules,
graphs, etc. For a more general treatment of these concepts in a category, see
for example Mac Lane [1971].

A commutative square diagram

G
α1

α2

H1

β1

H2
β2

H

(4)

of profinite groups and continuous homomorphisms is called a pullback dia-
gram or a pullback of β1 and β2 if the following universal property is satisfied:

K

ϕ

ϕ1

ϕ2
G α1

α2

H1

β1

H2
β2

H

whenever K is a profinite group and ϕi : K −→ Hi (i = 1, 2) are contin-
uous homomorphisms such that β1ϕ1 = β2ϕ2, then there exists a unique
continuous homomorphism ϕ : K −→ G such that α1ϕ = ϕ1 and α2ϕ = ϕ2.

We say that ϕ is the canonical homomorphism determined by ϕ1 and ϕ2.
Given two continuous homomorphisms of profinite groups βi : Hi −→ H,
there exists a (essentially unique) pullback of β1 and β2. Indeed, define

P = {(h1, h2) ∈ H1 ×H2 | β1(h1) = β2(h2)};

and let γi : P −→ Hi be given by γi(h1, h2) = hi (i = 1, 2). Then

P
γ1

γ2

H1

β1

H2
β2

H

is a pullback diagram, as one easily checks. It is unique in the sense that if (4)
is also a pullback of β1 and β2, then there exists a continuous homomorphism

α : G −→ P
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such that γiα = αi (i = 1, 2); namely α is given α(g) = (α1(g), α2(g));
moreover, one verifies with no difficulty that α is an isomorphism.

Exercise 2.10.1 Let U, V be closed normal subgroups of a profinite group G.
Then the commutative square of natural epimorphisms

G/U ∩ V G/U

G/V G/UV

is a pullback diagram.

Lemma 2.10.2 Assume that (4) is a pullback diagram of profinite groups.
Let A be a profinite group and let ϕi : A −→ Hi (i = 1, 2) be continuous
epimorphisms such that β1ϕ1 = β2ϕ2 and Ker(β1ϕ1) = Ker(ϕ1)Ker(ϕ2).
Then the canonical homomorphism ϕ : A −→ G determined by ϕ1 and ϕ2 is
an epimorphism.

Proof. As pointed out above, G can be identified with

{(h1, h2) ∈ H1 ×H2 | β1(h1) = β2(h2)}
and α1 and α2 with the natural projections. Note that in this case, ϕ(a) =
(ϕ1(a), ϕ2(a)), for all a ∈ A. Since α1ϕ = ϕ1 is onto, to prove that ϕ is
an epimorphism, it suffices to show that Ker(α1) ≤ ϕ(A); in fact we shall
show that Ker(β1α1) ≤ ϕ(A). Let (h1, h2) ∈ Ker(β1α1). We infer that hi ∈
Ker(βi) (i = 1, 2). Let a ∈ A with ϕ1(a) = h1. Then a ∈ Ker(β1ϕ1) =
Ker(ϕ1)Ker(ϕ2). Hence a = k1k2, where ki ∈ Ker(ϕi) (i = 1, 2). Therefore,
h1 = ϕ1(k2). Similarly, h2 = ϕ2(l1) for some l1 ∈ Ker(ϕ1). Thus, ϕ(l1k2) =
(h1, h2). Thus ϕ is onto. ��

The dual concept of pullback is that of pushout. Specifically, a commuta-
tive square diagram

H
β1

β2

H1

α1

H2 α2
G

of profinite groups and continuous homomorphisms is called a pushout dia-
gram or a pushout of β1 and β2 if the following universal property is satisfied:

H
β1

β2

H1

α1

ϕ1
H2

α2

ϕ2

G
ϕ

K
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whenever K is a profinite group and ϕi : Hi −→ K (i = 1, 2) are contin-
uous homomorphisms such that ϕ1β1 = ϕ2β2, then there exists a unique
continuous homomorphism ϕ : G −→ K such that ϕα1 = ϕ1 and ϕα2 = ϕ2.

The existence of pushout diagrams of profinite groups will be established
in Chapter 9.

2.11 Profinite Groups as Galois Groups

In this section we show that profinite groups are precisely those groups that
are Galois groups of (finite or infinite) Galois extensions of fields, with an
appropriate topology. Historically, this is the original motivation for the study
of profinite groups and Galois theory remains the main area of applications
of results in profinite groups.

Let K/F be an algebraic, normal and separable extension of fields, that
is, a Galois extension. Consider the collection K = {Ki | i ∈ I} of all interme-
diate subfields F ⊆ Ki ⊆ K such that each Ki/F is a finite Galois extension.
Then

K =
⋃

i∈I
Ki.

Let G = GK/F and Ui = GK/Ki
denote the Galois groups of K/F and K/Ki

(i ∈ I), respectively. Using elementary results in Galois theory, one sees that

(1) Ui � G, and G/Ui ∼= GKi/F is finite for every i ∈ I;
(2) If i, j ∈ I, then there exists some k ∈ I such that Uk ≤ Ui ∩ Uj ; and
(3)

⋂

i∈I Ui = {1}.

Then there is a unique topology on G, compatible with the group struc-
ture of G, for which the collection {Ui | i ∈ I} is a fundamental system of
neighborhoods of the identity element 1 of G (cf. Bourbaki [1989], Ch. III,
Proposition 1). This topology is called the Krull topology of the Galois group
G = GK/F . Note that if the Galois extension K/F is finite, then the Krull
topology on G = GK/F is the discrete topology.

Theorem 2.11.1 The Galois group G = GK/F , endowed with the Krull
topology, is a profinite group. Moreover,

GK/F = lim←−
i∈I

GKi/F .

Proof. For each i ∈ I, consider the finite Galois group Gi = GKi/F . Observe
that, with the above notation, Gi ∼= G/Ui. Define a partial order relation �
on the set I as follows. Let i, j ∈ I; then
i � j if Ki ⊆ Kj , or equivalently if Ui = GK/Ki

≥ Uj = GK/Kj
. Plainly

(I,�) is a poset. In fact it is a directed poset. Indeed, if Ki,Kj ∈ K, then
there exist polynomials fi(X), fj(X) ∈ F [X] such that Ki and Kj are the
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splitting fields contained in K of fi(X) and fj(X) over F , respectively. Let
L be the splitting field over F of the polynomial fi(X)fj(X), with L ⊆ K.
Then L ∈ K. Say L = Kt for some t ∈ I. Then by definition t � i, j.

If i � j, define

ϕji : Gj = GKj/F −→ Gi = GKi/F

by restriction, that is, ϕji(σ) = σ|Ki
, where σ ∈ GKj/F . Observe that ϕji

is well-defined, because σ(Ki) = Ki since Ki/F is a normal extension. We
obtain in this manner an inverse system {Gi, ϕij , I} of finite Galois groups.
Consider the homomorphism

Φ : G = GK/F −→ lim←−
i∈I

Gi ≤
∏

i∈I
Gi

defined by
Φ(σ) = (σ|Ki

).

We shall show that Φ is an isomorphism of topological groups. It is a
monomorphism since Ker(Φ) =

⋂

i∈I GKi/F = 1. The homomorphism Φ is
continuous since the composition

G −→ lim←−
i∈I

Gi −→ Gi

is continuous for each i ∈ I. Also, Φ is an open mapping since

Φ(GK/Ki
) = (lim←−Gi) ∩

[(

∏

Kj �⊆Ki

Gj

)

×
(

∏

Kj ⊆Ki

{1}j
)]

.

Finally, Φ is an epimorphism. Indeed, if (σi) ∈ lim←−Gi, define σ : K −→ K

by σ(k) = σi(k) for k ∈ Ki; then σ ∈ G and Φ(σ) = (σi). Thus we have
proved that G ∼= lim←−Gi. The result now follows from the characterization of
profinite groups obtained in Theorem 2.1.3. ��

Example 2.11.2

(1) Let p be a prime number, Fp the field with p elements, and let Fp be
its algebraic closure. Then the Galois group of the extension Fp/Fp is ̂Z.
Indeed, from the theory of finite fields, for each positive integer n, there
exists a unique Galois extension Kn/Fp of degree [Kn : Fp] = n and
GKn/Fp

∼= Z/nZ. Thus it follows from Theorem 2.11.1 that

GFp/Fp
= lim←−

n

Z/nZ = ̂Z.
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(2) Let p and q be prime numbers. For each positive integer n, there is a
unique field Ln with Fp ⊆ Ln ⊆ Fp, such that [Ln : Fp] = qn. Then
L =

⋃∞
n=1 Ln is a Galois extension of Fp, and

GL/Fp
= lim←−GLn/Fp

= lim←−Z/qnZ = Zq.

The Krull topology on the Galois group G = GK/F was introduced by
Krull [1928]. His aim was to provide a generalization, to infinite Galois ex-
tensions, of the Galois correspondence between intermediate fields of (a finite
Galois extension) K/F and the subgroups of the group GK/F .

Theorem 2.11.3 Let K/F be a Galois extension of fields with Galois group
G = GK/F . Denote by F(K/F ) the set of intermediate fields F ⊆ L ⊆ K.
Endow G with the Krull topology and let S(G) denote the set of closed sub-
groups of G. Consider the map

Φ : F(K/F ) −→ S(G)

defined by
Φ(L) = {σ ∈ GK/F | σ|L = idL}.

Then Φ is a bijection that reverses inclusion, that is, if L1 ⊆ L2 are fields in
F(K/F ), then Φ(L1) ≥ Φ(L2). The inverse of Φ is the map

Ψ : S(G) −→ F(K/F )

given by
Ψ(H) = {x ∈ K | σ(x) = x, ∀σ ∈ H}.

Moreover, L ∈ F(K/F ) is a normal extension of F if and only if Φ(L) is a
normal subgroup of G, and if that is the case, GL/F ∼= G/Φ(L).

Proof. It is clear that Φ(L) reverses inclusion. Observe that Φ(L) = GK/L;
furthermore, the Krull topology on GK/L is the topology induced from G =
GK/F , and since, according to Theorem 2.11.1, GK/L is compact, then it is
closed in G; therefore Φ(L) ∈ S(G). Next, we check that ΨΦ(L) = L for all
L ∈ F(K/F ). Obviously ΨΦ(L) = Ψ(GK/L) ⊇ L. Finally, if y ∈ K and y is
fixed by every automorphism σ ∈ GK/L, then the minimal polynomial of y
over L must be of degree 1; so y ∈ L.

Conversely, let us show that ΦΨ(H) = H for every closed subgroup H
of G. Put L = Ψ(H). Plainly, ΦΨ(H) = GK/L ⊇ H. To see that GK/L = H,
it will suffice to show that H is dense in GK/L, since H is closed. Now, let
N be an intermediate extension of K/L such that N/L is a finite Galois
extension. Let τ ∈ GK/L; we need to show that τGK/N ∩ H 
= ∅. Remark
that if σ ∈ H, then σ(N) = N , so {σ|N | σ ∈ H} is a group of automorphisms
of N fixing the elements of L; hence, by the fundamental theorem of Galois
theory for finite field extensions (cf. Bourbaki [1967], V,10,5, Theorem 3),

{σ|N | σ ∈ H} = GN/L.
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Then there exists some σ ∈ H such that τ|N = σ|N ; therefore, σ ∈ τGK/N ,
as desired.

Assume now that L ∈ F(K/F ) and L/F is a normal extension. Let
σ ∈ GK/L, τ ∈ GK/F . Evidently, τ−1στ ∈ GK/L and so Φ(L) = GK/L �
GK/F = G. Recall that every F -automorphism of L can be extended to
an F -automorphism of K (cf. Bourbaki [1967], V,6,3, Proposition 7). On
the other hand, if L/F is normal, then τ(L) = L, for all τ ∈ G = GK/F .
Therefore there is a natural epimorphism

G = GK/F −→ GL/F

given by restriction τ �→ τ|L. The kernel of this epimorphism is Φ(L) = GK/L;
thus GL/F ∼= G/Φ(L).

Conversely, if Φ(L) = GK/L�GK/F = G, it follows that τ(L) = L for each
τ ∈ G = GK/F . This implies that L/F is a normal extension (cf. Bourbaki
[1967], V,6,3, Proposition 6). ��

Exercise 2.11.4 Let p be a prime number. Let Fp be the field with p ele-
ments, and Fp its algebraic closure. Prove that the Galois group GFp/Fp

∼= ̂Z
is topologicaly generated by the Frobenius automorphism ϕ : Fp −→ Fp
given by ϕ(x) = xp. Exhibit explicitly a nonclosed subgroup H of GFp/Fp

whose fixed field is Fp (the fixed field of GFp/Fp
).

As we have seen in Theorem 2.11.1, every Galois group can be interpreted
as a profinite group. In the next theorem we show that, conversely, every
profinite group can be realized as a Galois group of an appropriate Galois
extension of fields.

Theorem 2.11.5 Let G be a profinite group. Then there exists a Galois ex-
tension of fields K/L such that G = GK/L.

Proof. Let F be any field. Denote by T the disjoint union of all the sets G/U ,
where U runs through the collection of all open normal subgroups of G. Think
of the elements of T as indeterminates, and consider the field K = F (T ) of
all rational functions on the indeterminates in T with coefficients in F . The
group G operates on T in a natural manner: if γ ∈ G and γ′U ∈ G/U , then
γ(γ′U) = γγ′U . This in turn induces an action of G on K as a group of
F -automorphisms of K. Put L = KG, the subfield of K consisting of the
elements of K fixed by all the automorphisms γ ∈ G. We shall show that
K/L is a Galois extension with Galois group G.

If k ∈ K, consider the subgroup

Gk = {γ ∈ G | γ(k) = k}

of G. If the indeterminates that appear in the rational expression of k are
{ti ∈ G/Ui | i = 1, . . . , n}, then
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Gk ⊇
n
⋂

i=1

Ui.

Therefore Gk is an open subgroup of G, and hence of finite index. From
this we deduce that the orbit of k under the action of G is finite. Say that
{k = k1, k2, . . . , kr} is the orbit of k. Consider the polynomial

f(X) =
r
∏

i=1

(X − ki).

Since G transforms this polynomial into itself, its coefficients are in L,
that is, f(X) ∈ L[X]. Hence k is algebraic over L. Moreover, since the
roots of f(X) are all different, k is separable over L. Finally, the exten-
sion L(k1, k2, . . . , kr)/L is normal. Hence K is a union of normal extensions
over L; thus K/L is a normal extension. Therefore K/L is a Galois exten-
sion. Let H be the Galois group of K/L; then G is a subgroup of H. To
show that G = H, observe first that the inclusion mapping G ↪→ H is con-
tinuous, for assume that U �o H and let KU be the subfield of the elements
fixed by U ; then KU/L is a finite Galois extension by Theorem 2.11.3; say,
KU = L(k′

1, . . . , k
′
s) for some k′

1, . . . , k
′
s ∈ K. Then

G ∩ U ⊇
s
⋂

i=1

Gk′
i
.

Therefore G ∩ U is open in G. This shows that G is a closed subgroup of H.
Finally, since G and H fix the same elements of K, it follows from Theo-
rem 2.11.3 that G = H. ��

2.12 Notes, Comments and Further Reading

As pointed out in Section 2.11, interest about general profinite groups ap-
peared first among algebraic number theorists. Krull [1928] defined a natural
topology on the Galois group GK/F (usually called now the Krull topol-
ogy) with the idea of making precise the generalization of the fundamental
theorem of Galois theory in the case of extensions of infinite degree (see The-
orem 2.11.3). With this topology the Galois group becomes a profinite group
(see Theorem 2.11.1).

Profinite groups were first called ‘groups of Galois type’; the first system-
atic presentation of these groups appeared in the influential book Cohomolo-
gie Galoisienne by Serre [1995] whose first edition is of 1964; this book has
served as a source of information and inspiration to mathematicians, includ-
ing the authors of the present book, since then. In this book Serre refers to
these groups as ‘profinite’ and ‘pro-p’ groups to the exclusion of any other
terminology. Serre’s book contains a systematic use of properties of profinite
and pro-p groups to field theory. It is a short volume, written in a very terse
style, that contains a wealth of results and information. Books published later
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by Poitou [1967], Koch [1970], Ribes [1970], Shatz [1972], Fried and Jarden
[2008] and most recently, Dixon, du Sautoy, Mann and Segal [1999], Klaas,
Leedham-Green and Plesken [1997], Wilson [1998] concentrate on special as-
pects of the theory, and are generally more detailed. Serre’s book is the best
source for certain material, e.g., nonabelian cohomology and applications to
field theory.

Some particular profinite groups have a much older history, also rooted in
number theory. The group Zp of p-adic integers was first defined by Hensel
during his studies of algebraic numbers; see Hensel [1908]. Theorem 2.11.5
was first proved by Leptin [1955]; see also Waterhouse [1972]. The proof of
this theorem that we present here is taken from Ribes [1977].

Proposition 2.2.2, Exercise 2.2.3, Corollary 2.3.6 and Proposition 2.4.4
appear in Douady [1960], where they are attributed to Tate. Many of the
basic results about profinite groups, including cohomological ones, were first
established by Tate, but he has not published much on the subject; see Lang
[1966], Tate [1962]. See also Appelgate and Onishi [1977], Borovik, Pyber
and Shalev [1996], Brauer [1969]. The notion of ‘supernatural number’ is
due to Steinitz [1910], page 250; he uses instead the term ‘G-number’, but
we have decided to stay with the terminology of ‘supernatural’ because it is
well-entrenched by now in the literature and because it is very expressive.

Corollary 2.3.7 can be found in Bolker [1963]. Exercise 2.3.14 appears
in Gilotti, Ribes and Serena [1999]; this paper contains results relating to
fusion and transfer in the context of profinite groups. Exercise 2.3.17 appears
in Lim [1973a]. For a study of localization in profinite groups see Herfort and
Ribenboim [1984].

Proposition 2.5.4 was proved in Gaschütz [1956] for finite groups. The
proof that we give here is attributed to Roquette in Fried and Jarden [2008].
Corollary 2.6.6 is due to Iwasawa [1953]. See Joly [1965], for a study of
procyclic groups. The basic properties of the Frattini subgroup in the con-
text of profinite groups are given in Gruenberg [1967]. Propositions 2.8.2(c)
and 2.8.11 appear in Oltikar and Ribes [1978]. Proposition 2.8.9 was proved
by Lubotzky [1982]. Lemma 2.8.15 and the concept of Frattini cover can be
found in Cossey, Kegel and Kovács [1980]; for additional information on re-
sults and applications of Frattini covers, see Ershov [1980], Ershov and Fried
[1980], Haran and Lubotzky [1983], Cherlin, van den Dries and Macintyre
[1984], Ribes [1985]. For a result on direct products, see Goldstein and Gu-
ralnick [2006].

2.12.1 Analytic Pro-p Groups

Let G be a finitely generated profinite group. According to Proposition 2.5.5,
every open subgroup U of G is also finitely generated. However the minimal
number d(U) of generators of U is usually unbounded (see Theorem 3.6.2(b)
for the case of free profinite groups). More generally, if H is a closed sub-
group of G, then one can usually say little about d(H). Nevertheless, there is
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an important class of finitely generated profinite groups G for which
max{d(H) | H ≤c G} = r(G) <∞.

(The number r(G) thus defined is sometimes called the ‘rank’ of the group G;
we refrain from this terminology to avoid confusion with the concept of rank
of a free group which will be introduced in Chapter 3.)

A representative example of such groups is G = GLn(Zp). This group con-
tains an open pro-p subgroup K1 of index (pn − 1)(pn−1 − 1) · · ·
(p − 1) (see Exercise 2.3.12). One can then prove the following result (see,
e.g., Dixon, du Sautoy, Mann and Segal [1999], Theorem 5.2):

Theorem 2.12.1a r(K1) = n2. Consequently, r(G) <∞.

Profinite groups satisfying conditions analogous to those mentioned above
for GLn(Zp) are called p-adic analytic groups. Explicitly, a profinite group G
is p-adic analytic if it contains an open pro-p subgroup H such that r(H) <
∞. The reason for this terminology is the following theorem due to Lazard
(see Lazard [1965], III, 3.4). Let Qp be the field of p-adic numbers, that is,
the field of quotients of Zp.

Theorem 2.12.1b Let G be a Hausdorff topological group. Then G is p-adic
analytic if and only if G is compact and admits a structure of a Qp-manifold
in such a way that multiplication and inversion in G are analytic functions.

Research in the theory of profinite p-adic analytic groups and related
topics is presently very active. An excellent modern exposition can be found
in Dixon, du Sautoy, Mann and Segal [1999]. See also Lazard [1965, 1954]
(these two works contain a large amount of information on these and other
topics rarely found elsewhere), Lubotzky and Mann [1989], Lubotzky and
Segal [2003], Mann and Segal [1990], du Sautoy [1993], du Sautoy and
Grunewald [2002], Fernández-Alcober, González-Sánchez and Jaikin-Zapirain
[2008], Shalev [1992]. See also Detomi and Lucchini [2007].

2.12.2 Number of Generators of a Group and of Its Profinite
Completion

Let G be a finitely generated residually finite abstract group and consider
its profinite completion ̂G. We denote by d(G) the minimal cardinality of a
set of generators of G as an abstract group; while d( ̂G) denotes the minimal
cardinality of a set of generators of ̂G as a profinite group. Obviously d( ̂G) ≤
d(G). Put f(G) = d(G) − d( ̂G). Then one has the following results.

Theorem 2.12.2a (Noskov [1983]) For each natural number n, there exist
a finitely generated abstract metabelian group Gn such that
f(Gn) ≥ n.

On the other hand, for polycyclic groups G one has

Theorem 2.12.2b (Linnell and Warhurst [1981]) If G is a polycyclic
group, then f(G) ≤ 1.
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3.1 Profinite Topologies

Let N be a nonempty collection of normal subgroups of finite index of a group
G and assume that N is filtered from below, i.e., N satisfies the following
condition:

whenever N1, N2 ∈ N , there exists N ∈ N such that N ≤ N1 ∩N2.

Then one can make G into a topological group by considering N as a funda-
mental system of neighborhoods of the identity element 1 of G (cf. Bourbaki
[1989]. Ch. 3, Proposition 1). We refer to the corresponding topology on G
as a profinite topology. If every quotient G/N (N ∈ N ) belongs to a certain
class C, we say more specifically that the topology above is a pro - C topology.

Let C be a formation of finite groups, and let G be a group. Define

NC (G) = {N �f G | G/N ∈ C}. (1)

Then NC (G) is nonempty and filtered from below. The corresponding profi-
nite topology on G is called the pro - C topology of G or, if emphasis is needed,
the full pro - C topology of G. Note that the pro - C topology of G is Hausdorff
if and only if

⋂

N∈NC (G)

N = 1. (2)

A group G is called residually C if it satisfies condition (2).

Remark 3.1.1 Assume that a profinite topology on G is determined by a col-
lection N of normal subgroups of finite index filtered from below. Consider
the set C of all groups G/M , where M ranges over all open normal subgroups
of G. Then C is a formation of finite groups, and the given topology on G
is a pro - C topology of G, although not necessarily the full pro - C topology
of G. Indeed, consider a finite group T of order n > 1, and let G be the direct
product of infinitely many copies of T . Let N be the collection of all the open
normal subgroups of the profinite group G, and let C be as indicated above.
As we shall show in Example 4.2.12, the pro - C topology of G is richer than
its natural profinite topology.

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 3, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_3
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If C is the class of all finite groups (respectively, all finite p-groups, or
all finite solvable groups, etc.), then, instead of residually C, we say that
G is a residually finite group (respectively, a residually finite p-group or a
residually finite solvable group, etc.). The corresponding topology on G is
called the (full) profinite topology on G (respectively, the (full) pro-p topology,
the (full) prosolvable topology etc. on G). We remark that, for example, the
full pronilpotent topology on a group G is a prosolvable topology on G, but
it is not necessarily its full prosolvable topology (although in some cases it
may be).

Next we describe some basic properties of the pro - C topology of a
group G. Recall that the core HG of H in G is the intersection of all con-
jugates of H in G. Observe that if H ≤f G, then H has only finitely many
conjugates; so,

HG =
⋂

g∈G
Hg �f G.

Lemma 3.1.2 Let C be a formation of finite groups. Assume that G is an
abstract group and let H ≤f G. Then

(a) H is open in the pro - C topology of G if and only if G/HG ∈ C.
(b) H is closed in the pro - C topology of G if and only if H is the intersection

of open subgroups of G.

Proof. (a) If G/HG ∈ C, then HG is open; hence so is H. Conversely, if H is
open, then so is every conjugate Hg of H in G; moreover, H ≤f G, and so H
has only finitely many conjugates. Therefore, HG is open. Hence there exists
some N �f G with G/N ∈ C and N ≤ HG. Then there is an epimorphism
G/N −→ G/HG; thus G/HG ∈ C.

(b) Since an open subgroup has finite index, it is necessarily closed; there-
fore the intersection of open subgroups is closed. Conversely, assume H is a
closed subgroup of G, and let x ∈ G−H. Then there exists some N ∈ NC (G)
such that xN ∩H = ∅. Hence x 
∈ HN ; so

H =
⋂

N∈NC (G)

HN.

Since HN is open, the result follows. ��

Example 3.1.3 Let C be a formation of finite groups, and assume that the
group G is residually C. If H ≤ G, the pro - C topology of G induces on H a
pro - C topology, but this is not necessarily the full pro - C topology of H, as
the following examples show.

(1) Assume that C is the formation of all finite groups, G = F is a free group
of rank 2, and H = F ′ the commutator subgroup of F . It is known that F ′

is a free group of countably infinite rank (cf. Magnus, Karras and Solitar
[1966]). Let I be the topology induced on F ′ by the profinite topology of
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F . It is plain that there are only countably many open subgroups in I,
while the profinite topology of F ′ has uncountably many open subgroups.

(2) Let G = 〈a, b | b2 = 1, bab = a−1〉 be the infinite dihedral group, and
let H = 〈a〉. Then the pronilpotent topology of G induces on H only its
pro -2 topology.

Next we indicate some cases where the induced pro - C topology on a
subgroup coincides with the full pro - C topology of the subgroup.

Lemma 3.1.4

(a) Let C be an extension closed variety of finite groups. Let H be a subgroup
of G, open in the pro - C topology of G. Then the pro - C topology of G
induces on H its full pro - C topology.

(b) Let C be an NE-formation of finite groups. Let H be a normal subgroup
of G, open in the pro - C topology of G. Then the pro - C topology of G
induces on H its full pro - C topology.

Proof. (a) It suffices to show that if N � H and H/N ∈ C, then there exists
some M � G such that G/M ∈ C and M ≤ N . We claim that we may take
M = NG, the core of N in G. Observe that if we put K = HG ∩ N , then
H/K ≤ H/HG × H/N , and hence H/K ∈ C. Choose g1, . . . , gr ∈ G so
that KG =

⋂r
i=1K

gi . Then Kgi � HG and HG/Kgi ∈ C. Now, HG/KG ≤
HG/K

g1 ×· · ·×HG/Kgr ; and hence HG/KG ∈ C. Thus the extension G/KG
of HG/KG by G/HG belongs to C. Finally, note that NG = KG, so that we
can take M = NG, as asserted.

(b) Let N � H with H/N ∈ C. Choose g1, . . . , gr ∈ G so that NG =
⋂r
i=1N

gi . We claim that H/NG ∈ C. Note first that H/Ng1 ∼= H/N ∈ C.
Moreover Ng1/Ng1 ∩N ∼= Ng1N/N �H/N ; hence Ng1/Ng1 ∩N ∈ C, since C
is closed under taking normal subgroups. It follows from the exactness of

1 −→ Ng1/Ng1 ∩N −→ H/Ng1 ∩N −→ H/Ng1 −→ 1

that H/Ng1 ∩ N ∈ C, because C is also extension closed. The claim is now
clear by induction. Next, observe that G/H ∈ C, since H is open in the
topology of G (see Lemma 3.1.2). Hence from the exactness of

1 −→ H/NG −→ G/NG −→ G/H −→ 1

we deduce that G/NG ∈ C. Consequently NG, and thus N , are open in the
pro - C topology of G. ��

Lemma 3.1.5 Let C be a variety of finite groups. Let G = K � H be a
semidirect product of the group K by the group H. Then

(a) The pro - C topology of G induces on H its full pro - C topology.
(b) Assume, in addition, that G is residually C. Then H is closed in the pro - C

topology of G.
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Proof. (a) Since C is subgroup closed, the pro - C topology of H is finer than
the topology induced from G. Conversely, let N �f H with H/N ∈ C. Then
KN�fG and G/KN ∈ C, since G/KN ∼= H/N . Next note thatKN∩H = N .

(b) Consider the continuous maps

G
ι−→−→ϕ G,

where ι is the identity, ϕ(kh) = h (k ∈ K,h ∈ H), and G is assumed to have
the pro - C topology. Then H = {g ∈ G | ι(g) = ϕ(g)}. Hence H is closed,
since the topology of G is Hausdorff. ��

Corollary 3.1.6 Let C be a variety of finite groups. Let G = L ∗H be a free
product of groups. Then

(a) The pro - C topology of G induces on H its full pro - C topology.
(b) Assume, in addition, that G is residually C. Then H is closed in the pro - C

topology of G.

Proof. Denote by K the normal closure of L in G. Then G = K �H. Hence
the results follow from the lemma above. ��

3.2 The Pro - C Completion

Let G be a group and let N be a nonempty collection of normal subgroups of
finite index of G filtered from below. Consider the topology on G determined
by N as indicated in Section 3.1. The completion of G with respect to this
topology is

KN (G) = lim←−
N ∈N

G/N.

Then KN (G) is a profinite group, and there exists a natural continuous ho-
momorphism

ι = ιN : G −→ KN (G),

induced by the epimorphisms G −→ G/N (N ∈ N ). Namely, ι(g) =
(gN)N∈N , for each g ∈ G. Observe that ι(G) is a dense subset of KN (G)
(see Lemma 1.1.7). The map ι is injective if and only if

⋂

N∈NN = 1.
Suppose that M is a subcollection of N which is also filtered from below.

Then the epimorphisms

KN (G) −→ G/M (M ∈ M)

induce a continuous epimorphism

KN (G) −→ KM(G)

that makes the following diagram commutative
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KN (G) KM(G)

G

ιN ιM

Let C be a formation of finite groups and let NC (G) be the collection of
normal subgroups of G defined in (1). Then the completion KNC (G)(G) is
just the pro - C completion of G as defined in Example 2.1.6. In this case we
usually denote the completion KNC (G)(G) by KC (G) or by GĈ . If C is the
formation of all finite p-groups, for a fixed prime number p, then one often
uses the notation Gp̂ for the corresponding completion. We shall reserve the
notation ̂G for the profinite completion of G, i.e., the completion GĈ , where
C is the formation of all finite groups.

Lemma 3.2.1 Let C be a formation of finite groups and let G be a group.
Then the pro - C completion GĈ of a group G is characterized as follows. GĈ
is a pro - C group together with a continuous homomorphism

ι : G −→ GĈ

onto a dense subgroup of GĈ , where G is endowed with the pro - C topology,
and the following universal property is satisfied :

GĈ
ϕ̄

G

ι

ϕ H

whenever H is a pro - C group and ϕ : G −→ H a continuous homomorphism,
there exists a continuous homomorphism ϕ̄ : GĈ −→ H such that ϕ̄ι = ϕ.
Moreover, it suffices to check this property for H ∈ C.

Proof. We verify first that the completion GĈ , as defined above, together
with the map ι satisfy the indicated universal property. Let ϕ : G −→ H be
a continuous homomorphism into a pro - C group H. Set U = {U | U �o H}
and let U ∈ U . Define NU = ϕ−1(U). Then there is a composition of natural
continuous homomorphisms

ϕU : GĈ −→ G/NU −→ H/U.

Then the maps ϕU (U ∈ U) are compatible. Hence they define a continuous
homomorphism

ϕ̄ : GĈ −→ lim←−
U ∈U

H/U = H

such that ϕUV ϕ̄ = ϕV whenever U, V ∈ U and U ≤ V , where
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ϕUV : H/U −→ H/V

is the canonical epimorphism. Then one verifies without difficulty that
ϕ̄ι = ϕ.

The fact that this universal property characterizes the completion follows
a standard argument that we only sketch. Say that K is a pro - C group and

κ : G −→ K

is a continuous homomorphism whose image is dense in K. Assume that the
pair (K,κ) also satisfies the required universal property. Then there exist
continuous homomorphisms ῑ : K −→ GĈ and κ̄ : GĈ −→ K such that
ῑκ = ι and κ̄ι = κ. Since ι(G) and κ(G) are dense in GĈ and K, respectively,
it follows that ῑκ̄ and κ̄ῑ are the identity maps on GĈ and K, respectively.
Therefore ῑ is a continuous isomorphism.

The last statement of the lemma is clear from the construction of ϕ̄ in
the first part of the proof. ��

Proposition 3.2.2 Let C be a formation and assume that G is a residually
C group. Identify G with its image in its pro - C completion GĈ. Let X̄ denote
the closure in GĈ of a subset X of G.

(a) Let
Φ : {N | N ≤o G} −→ {U | U ≤o GĈ}

be the mapping that assigns to each open subgroup H of G its closure H̄
in GĈ. Then Φ is a one-to-one correspondence between the set of all open
subgroups H in the pro - C topology of G and the set of all open subgroups
of GĈ. The inverse of this mapping is

U �−→ U ∩G;

in particular, U ∩G = U if U ≤o GĈ.
(b) The map Φ sends normal subgroups to normal subgroups.
(c) The topology of GĈ induces on G its full pro - C topology.
(d) If H,K ∈ {N | N ≤o G} and H ≤ K, then [K : H] = [K̄ : H̄]; moreover,

if in addition H �K, then K/H ∼= K̄/H̄.
(e) Φ is an isomorphism of lattices, i.e., if H,K ∈ {N | N ≤o G}, then
H ∩K = H̄ ∩ K̄ and 〈H,K〉 = 〈H̄, K̄〉.

Proof. Denote by N , as usual, the collection of all open normal subgroups of
G in its pro - C topology, i.e., the collection of those normal subgroups of G
such that G/N ∈ C.

(a) Let U be an open subgroup of GĈ . Since G is dense in GĈ , it follows
that G ∩ U is dense in U . Hence U ∩G = U . Conversely, assume that H is
an open subgroup of G (in the pro - C topology of G). We must show that
H = G∩H ; plainly, H ≤ G∩H . Let g ∈ G∩H. Recall that G is embedded
in GĈ via the identification
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g �→ (gN) ∈ GĈ = lim←−
N

G/N.

Now, according to Corollary 1.1.8,

H = lim←−
N ∈N

HN/N.

So g ∈ HN for every N ∈ N . Since HG ∈ N , it follows that g ∈ HHG = H.
Thus H ≥ G ∩H, as desired.

(b) IfH�G, thenHN/N�G/N for each N ∈ N ; hence H̄�GĈ . Conversely,
if U �o GĈ then U ∩G � G; therefore the function Φ maps normal subgroups
to normal subgroups.

(c) This follows from (a).
(d) It suffices to show that if H ∈ {N | N ≤o G}, then [G : H] = [GĈ : H̄].

Say n = [GĈ : H̄]; since G is dense in GĈ , we deduce that GH̄ = GĈ . Let
t1, . . . , tn ∈ G be a left transversal of H̄ in GĈ . Then we have a disjoint union

GĈ = t1H̄ ∪. · · · ∪. tnH̄.

If t ∈ G, it follows from part (a) that tH̄ ∩G = tH; therefore,

G = (t1H ∪. · · · ∪. tnH) ∩G = t1H ∪. · · · ∪. tnH;

thus n = [G : H].
Now, if H � K and H,K ∈ {N | N ≤o G}, the natural homomorphism

K −→ K̄/H̄ has kernel K ∩ H̄ = H. From [K̄ : H̄ ] = [K : H], we infer that
the induced homomorphism K/H −→ K̄/H̄ is an isomorphism.

(e) This follows from (a) and (d). ��

The Completion Functor

Let ϕ : G −→ H be a group homomorphism. We wish to define canonically
a corresponding continuous homomorphism

GĈ −→ HĈ ,

whenever possible. The idea is to define compatible continuous homomor-
phisms G −→ H/N (N ∈ NC (H)), and then use Lemma 3.2.1. We shall do
this in a completely explicit manner.

Consider the collection M = {ϕ−1(N) | N ∈ NC (H)} of normal sub-
groups of G. Clearly M is filtered from below. Assume that

ϕ−1(N) ∈ NC (G) for all N ∈ NC (H). (3)

Note that this is the case if, for example, one of the following conditions is
satisfied
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– C is a variety of finite groups;
– C is a formation of finite groups and ϕ is an epimorphism;
– C is a formation of finite groups closed under taking normal subgroups,

and ϕ(G) � H.

Then M determines a pro - C topology on G. For each N ∈ NC (H) one
has a composition of natural homomorphisms

KM(G) −→ G/ϕ−1(N) −→ ϕ(G)/N ∩ ϕ(G) ↪→ H/N.

These maps, in turn, induce continuous homomorphisms

KM(G)
ϕ1→ lim←−

N ∈N

G/ϕ−1(N)
ϕ2→ lim←−

N ∈N

ϕ(G)/N ∩ ϕ(G)
ϕ3→ lim←−

N ∈N

H/N = HĈ ,

where N = NC (H), ϕ1 is an epimorphism, ϕ2 an isomorphism, and ϕ3 an
inclusion (see Proposition 2.2.4). On the other hand, since M is a subset
of NC (G), there exists an epimorphism GĈ −→ KM(G) as indicated above.
Define

ϕĈ = KC (ϕ) : GĈ −→ HĈ

to be the composition homomorphism

GĈ −→ KM(G) −→ HĈ .

From now on, whenever we write ϕĈ , it is assumed that this map is defined,
i.e., that condition (3) is satisfied.

It is plain that if id : G −→ G is the identity homomorphism, then
idĈ : GĈ −→ GĈ is the identity homomorphism. Furthermore, if ϕ : G −→ H
and ψ : H −→ K are group homomorphisms, then (ψϕ)Ĉ = ψĈϕĈ , whenever
the maps (ψϕ)Ĉ , ψĈ and ϕĈ are defined. Therefore we have, in particular,

Lemma 3.2.3 Let C be a variety of finite groups. Then, pro - C completion
(−)Ĉ is a functor from the category of abstract groups to the category of pro - C
groups and continuous homomorphisms.

Let ϕ : G −→ H be a group homomorphism. It follows from the definition
of ϕĈ that the diagram

G
ϕ

ι

H

ι

GĈ ϕĈ
HĈ

commutes. Since ι(H) is dense in HĈ , one deduces that (ιϕ)(G) is dense
in ϕĈ (GĈ ). On the other hand ϕĈ (GĈ ) is closed by the compactness of GĈ .
Therefore, ϕĈ (GĈ ) is the closure of (ιϕ)(G) in HĈ . We record this in the
following lemma.
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Lemma 3.2.4 Let C be a formation of finite groups. Let ϕ : G −→ H be a
homomorphism of groups and assume that ϕĈ : GĈ −→ HĈ is defined. Then

ϕĈ (GĈ ) = (ιϕ)(G),

where (ιϕ)(G) denotes the closure of (ιϕ)(G) in HĈ.

Proposition 3.2.5 Let C be a formation of finite groups closed under taking
normal subgroups. Then the functor (−)Ĉ is right exact, that is, if

1 −→ K
ϕ−→ G

ψ−→ H −→ 1

is an exact sequence of groups, then

KĈ
ϕĈ−→ GĈ

ψĈ−→ HĈ −→ 1

is an exact sequence of pro - C groups.

Proof. Let N = NC (G). Then we get in a natural way a corresponding exact
sequence of inverse systems (indexed by N )

{K/ϕ−1(N) | N ∈ N} ϕ̃−→ {G/N | N ∈ N} ψ̃−→ {H/ψ(N) | N ∈ N} −→ 1.

Observe that

lim←−
N ∈N

G/N = GĈ , lim←−
N ∈N

H/ψ(N) = HĈ , and lim←− ψ̃ = ψĈ .

On the other hand, ϕĈ is the composition of the epimorphism

KĈ −→ lim←−
N ∈N

K/ϕ−1(N)

and lim←− ϕ̃. Our result follows now from the exactness of the functor lim
←−

(see
Proposition 2.2.4). ��

A necessary and sufficient condition for the completion functor (−)Ĉ to
preserve an injection ι : K −→ G is stated in the next lemma.

Lemma 3.2.6 Let C be a variety (respectively, a formation closed under tak-
ing normal subgroups) of finite groups. Assume that K ≤ G (respectively,
K � G), and let ι : K −→ G denote the inclusion map. Then

ιĈ : KĈ −→ GĈ

is injective if and only if the pro - C topology of G induces on K its full pro - C
topology.
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Proof. Let N �f G be such that G/N ∈ C. Then K/K ∩ N ∈ C. Therefore,
there exists a natural epimorphism KĈ −→ K/K ∩ N . The map ιĈ is the
composition

KĈ −→ lim←−
N ∈N C (G)

K/K ∩N −→ lim←−
N ∈N C (G)

G/N = GĈ .

The map on the right is always an injection. Hence ιĈ is an injection if and
only if the epimorphism

ρ : KĈ −→ lim←−
N ∈N C (G)

K/K ∩N

is injective, i.e., an isomorphism. If the pro - C topology of G induces on K
its full pro - C topology, then the collection of normal subgroups

{K ∩N | N ∈ NC (G)}

is cofinal in NC (K); hence ρ is an isomorphism (see Lemma 1.1.9). Conversely,
if ρ is an isomorphism, then {K ∩N | N ∈ NC (G)} is a fundamental system
of neighborhoods of 1 in K (see Lemma 2.1.1); in other words, the pro - C
topology of G induces on K its full pro - C topology. ��

In the next result, we indicate how possibly different groups could have
the same completions.

Theorem 3.2.7 Let C be a formation of finite groups. Let G1, G2 be groups.
Denote by Ui the collection of all normal subgroups U of Gi with Gi/U ∈ C
(i = 1, 2). Assume that

(a) For each natural number n, there exist only finitely many U ∈ Ui such
that [Gi : U ] ≤ n; and

(b) {G1/U | U ∈ U1} = {G2/V | V ∈ U2}.

Then
lim←−

U ∈U1

G1/U ∼= lim←−
V ∈U2

G2/V.

Proof. For each n ∈ N, let

Un =
⋂

{U | U ∈ U1, [G1 : U ] ≤ n} and

Vn =
⋂

{U | U ∈ U2, [G2 : U ] ≤ n}.

Then Un ∈ U1 and Vn ∈ U2. So there exists some K ∈ U1 with G1/K ∼=
G2/Vn. It follows from (b) that K is the intersection of groups U ∈ U1 with
[G : U ] ≤ n; therefore K ≥ Un. Hence, |G1/Un| ≥ |G2/Vn|. By symme-
try |G1/Un| ≤ |G2/Vn|. Thus G1/Un ∼= G2/Vn. Let Xn be the set of all
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isomorphisms from G1/Un to G2/Vn. Observe that if σn+1 ∈ Xn+1, then
σ(Un/Un+1) = Vn/Vn+1; hence σn+1 induces an isomorphism

σn : G1/Un −→ G2/Vn.

Denote by
ϕn+1,n : Xn+1 −→ Xn

the map defined by σn+1 �→ σn. Then {Xn, ϕn+1,n} is an inverse system of
finite nonempty sets. Hence there exists some (σn) ∈ lim←− Xn (see Proposi-
tion 1.1.4). On the other hand,

{G1/Un}∞
n=1 and {G2/Vn}∞

n=1

are in a natural way inverse systems of groups; furthermore, {σn}∞
n=1 is an

isomorphism of these systems. Finally, it follows from Lemma 1.1.9 that

lim←−
U ∈U1

G1/U ∼= lim←−
n

G1/Un ∼= lim←−
n

G2/Vn ∼= lim←−
V ∈U2

G2/V

since {G1/Un}∞
n=1 and {G2/Vn}∞

n=1 are cofinal subsystems of {G1/U | U ∈
U1} and {G2/V | V ∈ U2}, respectively. ��

Corollary 3.2.8 Let G1, G2 be finitely generated abstract groups with the
same finite quotients, then ̂G1

∼= ̂G2.

Using a slight variation of the argument in Theorem 3.2.7, we obtain

Theorem 3.2.9 Let G1 be a finitely generated profinite group and let G2 be
any profinite group. Assume that G1 and G2 have the same finite quotients,
i.e., {G1/U | U �o G1} = {G2/V | V �o G2}. Then G1

∼= G2.

3.3 Free Pro - C Groups

Unless otherwise specified, throughout this section C denotes a formation of
finite groups, i.e., we assume that C is a class of finite groups closed under
taking quotient groups and finite subdirect products; moreover, we assume
that C contains a group of order at least two.

A topological space X with a distinguished point ∗ is called a pointed
space. We shall denote such a space by (X, ∗). Sometimes it is convenient
to think of a profinite group as a pointed space with distinguished point 1.
A mapping of pointed spaces

ϕ : (X, ∗) −→ (X ′, ∗′)

is simply a continuous mapping from X into X ′ such that ϕ(∗) = ∗′.



86 3 Free Profinite Groups

Let X be a profinite space, F a pro - C group and ι : X −→ F a continuous
mapping such that F = 〈ι(X)〉. We say that (F, ι) is a free pro - C group on
the profinite spaceX or, simply, F is a free pro - C group onX, if the following
universal property is satisfied:

F
ϕ̄

G

X

ι
ϕ

whenever ϕ : X −→ G is a continuous mapping into a pro - C group G such
that ϕ(X) generates G, then there exists a (necessarily unique) continuous
homomorphism ϕ̄ : F −→ G such that the above diagram commutes: ϕ̄ι = ϕ.

One defines a free pro - C group on a pointed profinite space (X, ∗) in an
analogous manner: one simply assumes in the description of the universal
property that the maps involved are maps of pointed spaces.

Note that if the profinite space X is empty, then a free pro - C group
on X must be the trivial group. If X contains exactly one element and C
does not contain nontrivial cyclic groups, then the free pro - C group on the
profinite space X is the trivial group. Similarly, if a profinite pointed space
(X, ∗) contains exactly one point, then free pro - C group on the pointed space
(X, ∗) is the trivial group. If (X, ∗) has exactly two points and C does not
contain nontrivial cyclic groups, then a free pro - C group on the pointed space
(X, ∗) is the trivial group.

To avoid trivial counterexamples to some of the statements in this chapter,
from now on we shall tacitly assume that if C does not contain nontrivial
cyclic groups, then we only consider free pro - C groups on profinite spaces
X that are either empty or of cardinality at least 2 (respectively, we only
consider free pro - C groups on profinite pointed spaces (X, ∗) such that either
|X| = 1 or |X| ≥ 3).

Observe that one needs to test the universal property in the definition of
free pro - C groups only for finite groups G in C, for then it holds automatically
for any pro - C group G, since G is an inverse limit of groups in C.

From the universal definition, one deduces in a standard manner that if
a free pro - C group exists, then it is unique. We shall denote the free pro -
C group on a profinite space X by FC (X), and the free pro - C group on a
pointed profinite space (X, ∗) by FC (X, ∗).

Lemma 3.3.1 Let (F, ι) be a free pro - C group on the profinite space X
(respectively, a free pro - C group on the pointed profinite space (X, ∗)), then
the mapping ι is an injection and 1 
∈ ι(X) (respectively, ι is an injection).

Proof. We give a proof for the nonpointed case. If X = {x} has cardinality 1,
then, by our standing assumptions, there exists a nontrivial finite cyclic group
〈a〉 ∈ C. Let ϕ : X −→ 〈a〉 be given by ϕ(x) = a. Let ϕ̄ : F −→ 〈a〉 be the
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continuous homomorphism such that ϕ(ι(x)) = a. It follows that ι(x) 
= 1.
Assume now that |X| ≥ 2. Consider the set R of all open equivalence relations
R onX. According to Theorem 1.1.12, the clopen subsets ofX form a base for
the topology ofX. Therefore, if x 
= y are points ofX, there exists R ∈ R such
that xR 
= yR. Let G ∈ C be generated by two distinct nontrivial elements,
say, a and b (such a group exists: indeed, let H ∈ C be a nontrivial group;
let S be a quotient of H such that S is a simple group; if S is nonabelian,
then it is a two generator group, by the classification of finite simple groups,
and then put G = S; while if S is cyclic, take G = S × S). Consider the
continuous mapping

ψ : X
ψR−→ X/R

ρ−→ G

where ψR is the canonical quotient map, and ρ any map such that ρ(xR) = a
and ρ(yR) = b. Since ψ is continuous, there exists a corresponding continuous
homomorphism ψ̄ : F −→ G such that ψ̄ι = ψ. It follows that 1 
= ι(x) 
=
ι(y) 
= 1, and so ι is one-to-one and 1 
∈ ι(X). ��

Next we show the existence of free pro - C groups.

Proposition 3.3.2 For every profinite space X (respectively, pointed profi-
nite space (X, ∗)), there exists a unique free pro - C group FC (X) on X
(respectively, there exists a unique free pro - C group FC (X, ∗) on the pointed
profinite space (X, ∗)).

Proof. We leave the uniqueness to the reader. For the construction of FC (X),
letD be the abstract free group on the setX. Consider the following collection
of subgroups of D

N = {N � D | D/N ∈ C;X ∩ dN open in X, ∀d ∈ D}.

Observe that N is nonempty and filtered from below. Define FC (X) to be
the completion of D with respect to N

FC (X) = lim←−
N ∈N

D/N.

Let ι : X −→ FC (X) be the restriction to X of the natural homomor-
phism D −→ FC (X). Remark that the composition of ι with each projection
FC (X) −→ D/N , N ∈ N , is continuous, and hence, so is ι. Next we show that
(FC (X), ι) is a free pro - C group on X. Indeed, let G ∈ C and let ϕ : X −→ G
be a continuous map such that G = 〈ϕ(X)〉. Since D is a free abstract group
on X, there exists a homomorphism (of abstract groups) ϕ1 : D −→ G that
extends ϕ. In fact ϕ1 is an epimorphism. Put K = Ker(ϕ1). Then K ∈ N .
Therefore, we have a continuous homomorphism

ϕ̄ : FC (X) −→ D/K −→ G.

Then ϕ̄ι = ϕ.
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The construction of FC (X, ∗) is as follows: let D̃ be the abstract free group
on the set X − {∗}, and let

Ñ = {N � D̃ | D̃/N ∈ C; (X − {∗}) ∩ dN open in X − {∗}, ∀d ∈ D̃}.

Put
FC (X, ∗) = lim←−

N ∈Ñ

D̃/N.

Then one checks as above that (FC (X, ∗), ι) satisfies the universal property
of a free pro - C group on the pointed profinite space (X, ∗). ��

We shall refer to the profinite spaceX (respectively, (X, ∗)) as a topological
basis of FC (X) (respectively, of FC (X, ∗)).

If X is a profinite space, one can associate with it a pointed profinite space
(X ∪. {∗}, ∗), by simply adding toX a new point ∗ and endowingX ∪. {∗} with
the coproduct topology, i.e., ∗ is an isolated point in X ∪. {∗} and a subset
Y of X ∪. {∗} is open if and only if Y ∩X is open in X. Then one easily sees
that FC (X) = FC (X ∪. {∗}, ∗). Thus, we can think of a free pro - C group on
a profinite space as particular instance of a free pro - C group on a pointed
profinite space.

Exercise 3.3.3 Let (X, ∗) be a pointed topological space, not necessarily
profinite.

(a) Mimic the definition above to establish the concept of a free pro - C group
(FC (X, ∗), ι) on the pointed space (X, ∗). As a special case of the above
definition, explain the concept of free pro - C group (FC (X), ι) on a topo-
logical space X.

(b) Define
(X̌, ∗) = lim←−

R∈R

(X, ∗)/R,

where R is the collection of all closed equivalence relations R of X such
that the quotient pointed space (X, ∗)/R is finite and Hausdorff. Let
τ : X −→ X̌ be the natural mapping. Show that there exists a unique
continuous mapping of pointed spaces ι̃ : (X̌, ∗) −→ FC (X, ∗) such that
ι = ι̃τ .

(c) Prove that |R| = ρ(X̌), the cardinality of the collection of all clopen
subsets of X̌.

(d) Show that FC (X, ∗) is a free pro - C group on a pointed profinite space;
specifically, prove that (FC (X, ∗), ι̃) is the free pro - C group on the pointed
profinite space (X̌, ∗).

Free Pro - C Group on a Set Converging to 1

If X is a set, we say that a map μ : X −→ G from X to a profinite group G
converges to 1 if the subset μ(X) of G converges to 1, that is, if every open
subgroup U of G contains all but a finite number of the elements of μ(X).
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Assume now X to be a set, which we wish to view as a topological space
with the discrete topology. Let X̄ = X ∪. {∗} denote its one-point compact-
ification (recall that, by definition, a subset T is open in X̄ if either it is
contained in X or {∗} ∈ T and X − T is a finite set; see, e.g., Bourbaki
[1989], I,9,8). Then X ∪. {∗} is a profinite space. Observe that if X is a set
and X ∪. {∗} is its one-point compactification, then the map

X ↪→ X ∪. {∗} ι−→ FC (X ∪. {∗}, ∗)

converges to 1. We shall still denote this map by ι.
To avoid trivial cases, from now on we shall assume that if C does not

contain nontrivial cyclic groups, then |X| 
= 2.
Then (see Lemma 3.3.1) ι is a topological embedding, and we identify X

with its image in FC (X ∪. {∗}, ∗). The free pro - C group FC (X ∪. {∗}, ∗) on this
pointed space (X ∪. {∗}, ∗) plays a special role because, as we shall see later
(Proposition 3.5.12), every free pro - C group on a (pointed) topological space
is in fact a free pro - C group FC (X ∪. {∗}, ∗) on the one-point compactification
space (X ∪. {∗}, ∗) of some set X.

Let X be a set. By abuse of notation, we denote the free pro - C group
FC (X ∪. {∗}, ∗) on the one-point compactification space (X ∪. {∗}, ∗) of X, as
FC (X) rather than FC (X ∪. {∗}, ∗). To avoid confusion, ifX is a set, we refer to
FC (X) in that case as the free pro - C group on the set X converging to 1.∗ If,
on the other hand, X (respectively, (X, ∗)) is a profinite space (respectively,
a pointed profinite space), then FC (X) (respectively, FC (X, ∗)) has a unique
possible meaning, and we refer to it as the free pro - C group on X or on
the space X (respectively, the free pro - C group on (X, ∗) or on the pointed
space (X, ∗)). If X is a finite subset of a profinite group, then X converges
to 1; so in this case the meaning of FC (X) is unambiguous, and we refer to
it as the free pro - C group on X.

The following lemma gives a characterization of the free group on a set
converging to 1 in terms of a universal property. We leave its easy proof to
the reader (it follows immediately from the definition of free pro - C group on
a pointed space in the special case where the pointed space is the one-point
compactification of a discrete space).

Lemma 3.3.4 The following properties characterize the free pro - C group
FC (X) on the set X converging to 1:

(a) FC (X) contains the set X as a subset converging to 1, and
(b) Whenever μ : X −→ G is a map converging to 1 of X into a pro - C

group G and μ(X) is a set of generators of G, then there exists a unique
homomorphism μ̄ : FC (X) −→ G that extends μ.

∗ Some authors refer to what we call the free pro - C group on the set X converging
to 1 as a restricted free pro - C group on the set X, and they denote it by F r

C (X).
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We shall refer to the subsetX of FC (X) as a basis converging to 1 or simply
as a basis of the free pro - C group FC (X). As we have indicated before, we
shall prove later (see Proposition 3.5.12) that every free pro - C group on a
topological space (or a pointed topological space) is in fact also a free pro -
C group on a set converging to 1. So from now on in this book the word
“basis” for a free pro - C group will be used only in the sense of being a
basis converging to 1 of a free pro - C group. Any other type of basis will be
qualified, for example “topological basis”.

Lemma 3.3.5

(a) Let F = FC (X) be a free pro - C group on a set X converging to 1. If F is
also free pro - C on a set Y converging to 1, then the bases X and Y have
the same cardinality.

(b) Let F be a free pro - C group on a finite set X = {x1, . . . , xn}. Then, any
set of generators {y1, . . . , yn} of F with n elements is a basis of F .

Proof. (a) Say X and Y are two bases of F . If both X and Y are infinite, the
result follows from Proposition 2.6.2. Say that X = {x1, . . . , xn} is finite and
assume that |Y | > n . We show that this is not possible. Indeed, choose a
subset X ′ = {x′

1, . . . , x
′
n} of Y , and define a map μ : Y −→ F by μ(x′

i) = xi
(i = 1, . . . , n) and μ(y) = 1 if y ∈ Y −X ′. Since μ converges to 1, it extends
to a continuous epimorphism μ̄ : F −→ F ; then, by Proposition 2.5.2, μ̄ is
an isomorphism, a contradiction.

(b) Consider the continuous epimorphism ψ : F −→ F determined by
ψ(xi) = yi (i = 1, . . . , n). Then ψ is an isomorphism by Proposition 2.5.2. ��

If F = FC (X) is a free pro - C group on the set X converging to 1, the rank
of F is defined to be the cardinality of X. It is denoted by rank(F ). Given a
cardinal number m, we denote by FC (m) or F (m) a free pro - C group (on a
set converging to 1) of rank m.

We state the next result for easy reference. It follows immediately from
the definition of rank given above and the construction of free pro - C groups
in the proof of Proposition 3.3.2.

Proposition 3.3.6 Let Φ be an abstract free group on a finite basis X. Then
the pro - C completion ΦĈ of Φ is a free pro - C group on X. In particular,
rank(Φ) = rank(ΦĈ ).

Exercise 3.3.7 Show that if F = FC (X, ∗) is the free pro - C group on the
pointed profinite space (X, ∗) and F is finitely generated, then |X| is finite,
and F is the free pro - C group of rank |X| − 1.

Example 3.3.8

(a) The free profinite group of rank 1 is ̂Z. Observe that ̂Z is the free pro-
solvable (or proabelian, pronilpotent, etc.) group of rank 1, as well.

(b) If p is a prime number, then Zp is the free pro-p group of rank 1.
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(c) Let X be any set. Then the free proabelian group on the set X converg-
ing to 1 is the direct product

∏

X
̂Z of copies of ̂Z indexed by X. The

canonical map ι : X −→
∏

X
̂Z sends x ∈ X to the tuple (ay) ∈

∏

X
̂Z

such that ay = 0 for y 
= x and ax = 1. One sees this easily. Indeed,
if ϕ : X −→ A is a map converging to 1 onto a finite abelian group A,
let Y be a finite subset of X such that ϕ(x) = 0 for all x ∈ X − Y .
Then

∏

X
̂Z = (

⊕

Y
̂Z) ⊕ (

∏

X−Y
̂Z). Define the corresponding continu-

ous homomorphism ϕ̄ :
∏

X
̂Z −→ A to be 0 on

∏

X−Y
̂Z, and the natural

extension homomorphism on the finite indexed direct sum
⊕

Y
̂Z.

(d) Similarly, let C be the class of all finite abelian groups of exponent p,
where p is a prime. Then the free pro - C group on the set X converging
to 1 is the direct product

∏

X Z/pZ of copies of Z/pZ indexed by X.
(e) (cf. Douady, Harbater [1964, 1995]; see also Ribes [1970], p. 70; van den

Dries and Ribenboim [1986]) Let F be an algebraically closed field, and
denote by F (t) the algebraic closure of the field F (t), where t is an inde-
terminate. Then the Galois group GF (t)/F (t) is a free profinite group on
a set converging to 1 of rank |F |.

Proposition 3.3.9 Let (X, ∗) be a pointed profinite space.

(a) Assume that
(X, ∗) = lim←−

i∈I

(Xi, ∗),

where {(Xi, ∗), ψij} is an inverse system of pointed profinite spaces. Then

F = FC (X, ∗) = lim←−
i∈I

FC (Xi, ∗).

(b)

F = FC (X, ∗) = lim←−
i∈I

FC (Yi),

where each Yi is a finite space, and (X, ∗) = lim←−
i∈I

(Yi ∪. {∗}, ∗).

Proof. (a) The inverse system {(Xi, ∗), ψij} determines an inverse system of
free groups {FC (Xi, ∗), ψ̄ij}. For each i ∈ I, denote by ψi : (X, ∗) −→ (Xi, ∗)
the canonical projection. Correspondingly, one has continuous homomor-
phisms of groups ψ̄i : FC (X, ∗) −→ FC (Xi, ∗), which are compatible with
the mappings ψ̄ij . These homomorphisms induce then a continuous homo-
morphism of groups

ψ : FC (X, ∗) −→ G = lim←−
i∈I

FC (Xi, ∗).

Denote by ι′ the restriction of ψ to X; note that ι′ is a mapping of pointed
spaces. We claim that ι′(X) generates G as a topological group. To see this
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consider an epimorphism ρ : G −→ H where H ∈ C. It suffices to show
that ρι′(X) generates H. By Lemma 1.1.16, ρ factors through F (Xi0), for
some i0 ∈ I, i.e., there exists an epimorphism ρ′ : F (Xi0) −→ H such that
ρ = ψ̄i0ρ

′. Put Y = ρ′(Xi0). Since H is finite, i0 can be chosen so that
Y = ρ′ψ̄ii0(Xi0), whenever i ∈ I, i ≥ i0. Since

(X, ∗) = lim←−
i≥i0

(Xi, ∗),

we deduce that Y = ρι′(X), as needed.
To prove that

( lim←−
i∈I

FC (Xi, ∗), ι′)

is the free pro - C group on the pointed space (X, ∗), it remains to show
that this pair satisfies the required universal property. Let μ : X −→ H be
a continuous mapping with μ(∗) = 1, where H ∈ C and μ(X) generates H.
Since H is finite, there exists some j ∈ I and a continuous mapping of pointed
spaces μj : (Xj , ∗) −→ (H, 1) such that μjψj = μ (see Lemma 1.1.16). Now,
μj extends to a homomorphism μ̄j : FC (Xj , ∗) −→ H. Define

μ̄ : lim←−
i∈I

FC (Xi, ∗) −→ H

by μ̄ = μ̄jψ̄j . Then clearly μ̄ι′ = μ.
(b) By definition we can express (X, ∗) as an inverse limit of finite pointed

spaces
(X, ∗) = lim←−

i∈I

(Xi, ∗).

Put Yi = Xi − {∗}. Clearly FC (Xi, ∗) = FC (Yi). The result follows then from
part (a). ��

Let X be a set and let {Xi | i ∈ I} be the collection of all finite subsets
of X. Make I into a poset by defining i � j if Xi ⊆ Xj . If i � j define
ϕji : FC (Xj) −→ FC (Xi) as the epimorphism that carries x to x, if x ∈ Xi,
and x to 1, if x ∈ Xj − Xi (x ∈ X). Observe that lim←− (Xi ∪. {1}, 1) is the
one-point compactification of X. Then from Proposition 3.3.9 we deduce

Corollary 3.3.10 Let X be a set and let {Xi | i ∈ I} be the collection of all
finite subsets Xi of X. Then

(a) For each i ∈ I, FC (Xi) is a closed subgroup of the free pro - C group FC (X)
on the set X converging to 1;

(b)

FC (X) = lim←−
i∈I

FC (Xi),

where the canonical homomorphism
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ϕi : FC (X) −→ FC (Xi)

is the extension of the mapping X −→ FC (Xi) that sends x to x for
x ∈ Xi, and x to 1 for x ∈ X −Xi (x ∈ X).

This corollary can be improved in such a way that for a given open sub-
group H of FC (X), the mappings ϕi preserve the index of H. Before we make
this precise, we need the following

Lemma 3.3.11 Let Y ⊆ X be sets and let FC (X) and FC (Y ) be the corre-
sponding free pro - C groups on the sets X and Y converging to 1, respectively.
Consider the epimorphism

ϕ : FC (X) −→ FC (Y )

defined by

ϕ(x) =
{

x if x ∈ Y,
1 if x 
∈ Y.

Then the following is a split exact sequence

1 −→ N −→ FC (X)
ϕ−→ FC (Y ) −→ 1,

where N is the smallest closed normal subgroup generated by X − Y . (This
means that there is a continuous section of ϕ which is a homomorphism, i.e.,
that FC (X) is a semidirect product of N by a closed subgroup isomorphic to
FC (Y ).)

Proof. Define a continuous homomorphism σ : FC (Y ) −→ FC (X) by σ(y) =
y, for all y ∈ Y . Then σ is a section of ϕ. Let K = Ker(ϕ). After identifying
FC (Y ) with σ(FC (Y )), we have F = NFC (Y ) = KFC (Y ). Since

N ∩ FC (Y ) = K ∩ FC (Y ) = 1 and N ≤ K,

it follows that N = K. ��

Proposition 3.3.12 Let FC (X) be a free pro - C group on a set X converging
to 1 and H ≤o FC (X). Then there is a collection {Xj | j ∈ J} of finite
subsets of X such that

(a) {FC (Xj), ϕjk, J} is an inverse system of free pro - C groups, where if Xj ⊇
Xk, the epimorphism ϕjk : FC (Xj) −→ FC (Xk) is defined by

ϕjk(x) =
{

x if x ∈ Xk,
1 if x ∈ Xj −Xk;

(b)

FC (X) = lim←−
j∈J

FC (Xj); and
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(c)

[FC (Xj) : ϕj(H)] = [FC (X) : H],

for every j ∈ J, where ϕj : FC (X) −→ FC (Xj) is the canonical projection.

Proof. Put F = FC (X). Let HF =
⋂

f∈F f
−1Hf (the core of H in F ). Then

HF is an open normal subgroup of F contained in H. Let {Xi | i ∈ I} be the
collection of all finite subsets of X. Make I into a directed poset by defining
i � j if Xi ⊆ Xj (i, j ∈ I). Set

J = {i ∈ I | X −Xi ⊆ HF }.

Clearly J is a cofinal subset of the poset I since X − (X ∩ HF ) is a fi-
nite set. Statement (a) is clear. Part (b) follows from Corollary 3.3.10 and
Lemma 1.1.9. To prove (c), just observe that according to Lemma 3.3.11,
Ker(ϕj) ≤ HF ≤ H. ��

Proposition 3.3.13 Let F = FC (X, ∗) be the free pro - C group on a pointed
profinite space (X, ∗). Assume that every abstract free group of finite rank
is residually C. Then the abstract subgroup of F generated by X is a free
abstract group on X − {∗}.

Proof. Let D = D(X − {∗}) be the abstract free group on X − {∗}, and
denote by ψ : D −→ F the natural homomorphism induced by the canonical
injection ι : (X, ∗) −→ F . We must show that ψ is a monomorphism. Let
w = xε11 · · ·xεrr be a reduced word on X−{∗}, i.e., xi ∈ X−{∗}, εi = ±1, εi 
=
−εi+1 if xi = xi+1 (i = 1, . . . , r). Choose an open equivalence relation R of
X such that if x, y ∈ {x1, . . . , xr} and x 
= y, then xR 
= yR in X/R. Then
the corresponding element w′ = xε11 R · · ·xεrr R of the abstract free group
D = D(X/R − {∗R}) is also in reduced form. Hence if w 
= 1, then w′ 
= 1.
So, from the commutativity of the diagram

D(X − {∗}) ψ
FC (X, ∗)

D(X/R− {∗R})
ψR

FC (X/R, ∗R)

we deduce that we may assume that X is a finite space. Now, from the
construction of F (see the proof of Proposition 3.3.2), we get that

Ker(ψ) =
⋂

{N � D | D/N ∈ C},

since X is finite. Therefore Ker(ψ) = 1, for D is residually C. ��

Corollary 3.3.14 Let F = FC (X) be a free pro - C group on a set X converg-
ing to 1. Assume that every abstract free group of finite rank is residually C.
Then the abstract subgroup of F generated by X is a free abstract group on X.
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We remark that the hypotheses in Proposition 3.3.13 and Corollary 3.3.14
are valid for many classes C of interest, as we show in the following proposi-
tion.

Proposition 3.3.15 Let Φ be an abstract free group and let S be a finite
simple group such that the rank of Φ is at least d(S).† Assume that C is a
formation that contains all S-groups. Then Φ is residually C. In particular,
if C is a nontrivial NE-formation of finite groups, then every abstract free
group is residually C.

Proof. The last statement is a consequence of the first part of the lemma,
since a nontrivial NE-formation of finite groups contains all S-groups for
some finite simple group S. To prove the first part, it suffices to show that Φ
is residually a finite S-group. We may assume that Φ has finite rank.
Case 1: S = Cp for some prime p.
We use the well-known fact that the matrices

[

1 0
p 1

]

and
[

1 p
0 1

]

generate an abstract free subgroup of SL2(Z) of rank 2. Let Γ (pi) be the
kernel of the natural map SL2(Z) −→ SL2(Z/piZ). It follows that Φ can
be embedded as a subgroup of Γ (p). Hence, it suffices to prove that Γ (p)
is residually a finite p-group. Remark that the elements of Γ (pi) are those
elements in SL2(Z) the form I + piA, where I is the identity matrix and A
is a 2 × 2 matrix over Z. Clearly

⋂∞
i=1 Γ (pi) = {I} and each quotient group

SL2(Z)/Γ (pi) is finite. Next, observe that for I + piA ∈ Γ (pi), one has

(I + piA)p =
p
∑

j=0

(

p

j

)

(pkA)j ≡ I mod Γ (pi+1).

One deduces that Γ (p)/Γ (pk) is a finite p-group for all k = 2, 3, . . . .
Case 2: S is a nonabelian simple group.
Set M0 = Φ, and in general, Mn+1 = MS(Mn), the intersection of all nor-
mal subgroups N of Mn with Mn/N ∼= S. Clearly each Mn is a proper
characteristic subgroup of Φ of rank at least d(S), and Mn/Mn+1 is a fi-
nite S-group. By a result of Levi (cf. Lyndon and Schupp [1977], Proposi-
tion I.3.3),

⋂∞
n=0M

n = 1. Thus Φ is residually a finite S-group. ��
Theorem 3.3.16 Let G be a pro - C group. Then there exists a free pro - C
group F on a set converging to 1 and a continuous epimorphism F −→ G.
Furthermore, if G is generated by a finite set with n elements, then F can
be chosen to have rank n; while if G is not finitely generated, then F can be
chosen to have rank equal to ω0(G), the smallest cardinal of a fundamental
system of neighborhoods of 1 in G.
† By the classification theorem of finite simple groups d(S) = 2 for a nonabelian
finite simple group S.
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Proof. By Proposition 2.4.4, G admits a set of generators X converging to 1.
Consider the free pro - C group F = FC (X̃) on the set X̃ converging to 1,
where X̃ is a set with the same cardinality as X. Say that ϕ : X̃ −→ X is a
bijection. Then the composite

X̃
ϕ−→ X ↪→ G

is a mapping converging to 1, and so it extends to an epimorphism

ϕ̄ : F (X̃) −→ G.

If X is infinite, then |X| = ω0(G) by Proposition 2.6.1, and therefore,
rank(F (X̃)) = ω0(G). ��

3.4 Maximal Pro - C Quotient Groups

In this section we establish a relationship between free groups over the same
space when the formation C changes. First we define a subgroup of a profinite
group associated with the class C.

Let C be a formation of finite groups. For a profinite group G, define

RC (G) =
⋂

{N | N �o G,G/N ∈ C}.

Remark that RC (G) is a characteristic subgroup of G. If p is a fixed
prime number and C consists of all finite p-groups, we write Rp(G) rather
than RC (G). The subgroups RC (G) play a role similar to verbal subgroups in
the theory of abstract groups.

Lemma 3.4.1 Let G and H be profinite groups. Let C be a formation of finite
groups.

(a) G/RC (G) is the largest pro - C quotient group of G, i.e., if K �c G and
G/K is a pro - C group, then K ≥ RC (G).

(b) If ϕ : G −→ H is a continuous epimorphism, then ϕ(RC (G)) = RC (H).
(c) Assume that C is, in addition, closed under taking subgroups, i.e., C a vari-

ety of finite groups. Then, if ϕ : G −→ H is a continuous homomorphism,
then ϕ(RC (G)) ≤ RC (H).

(d) Suppose that the formation C is closed under taking normal subgroups and
extensions (i.e., C is an NE-formation). Then, if RC (G) ≤ K �c G, one
has RC (G) = RC (K).

(e) Suppose that C is an NE-formation of finite groups. If L �c RC (G) and
RC (G)/L is a pro - C group, then L = RC (G).

Proof. Part (a) is plain.
(b) Since C is a formation, the collection of all closed normal subgroups

N of G such that G/N is a pro - C group is filtered from below. Hence part
(b) follows from Proposition 2.1.4(b).
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(c) Put B = ϕ(G). Note that

B/B ∩RC (H) ∼= BRC (H)/RC (H) ↪→ H/RC (H).

Since C is a variety, we have that B/B ∩ RC (H) is a pro - C group. Hence,
RC (B) ≤ B ∩RC (H). By part (b), RC (G) = RC (B). Thus, RC (G) ≤ RC (H).

(d) Put R = RC (G). Observe that K/R � G/R. Hence K/R is a pro - C
group. Therefore, RC (K) ≤ R. Since RC (K) is a characteristic subgroup of K
and K is normal in G, it follows that RC (K) �G. Since C is extension closed,
G/RC (K) is a pro - C group. Thus RC (K) = R.

(e) This is clear from part (d) since RC (RC (G)) = RC (G). ��

Proposition 3.4.2 Let C′ and C be formations of finite groups with C′ ⊆ C.
Let F = FC (X, ∗) be a free pro - C group on the pointed space (X, ∗). Then

FC (X, ∗)/RC ′ (FC (X, ∗)) ∼= FC ′ (X, ∗).

Proof. Let ι : (X, ∗) −→ FC (X, ∗) be the canonical embedding and

μ : FC (X, ∗) −→ FC (X, ∗)/RC ′ (FC (X, ∗))

the natural epimorphism. Then one easily checks (using Lemma 3.4.1) that
the pair

(FC (X, ∗)/RC ′ (FC (X, ∗)), μι),

where
μι : (X, ∗) −→ FC (X, ∗)/RC ′ (FC (X, ∗)),

satisfies the universal property of a free pro - C′ group on the pointed space
(X, ∗). ��

We say that a variety of finite groups C is closed under ‘extensions with
abelian kernel’ if whenever

1 −→ A −→ G −→ H −→ 1

is an exact sequence of finite groups such that A,H ∈ C and A is abelian,
then G ∈ C.

Lemma 3.4.3 Let C be a variety of finite groups and let Ce be the smallest
extension closed variety of finite groups containing C. For a given pointed
profinite space (X, ∗), denote by KX the kernel of the natural epimorphism

ϕX : FCe(X, ∗) −→ FC (X, ∗).

Then, KX is perfect (i.e., KX = [KX ,KX ]) for every profinite space X if
and only if C is closed under extensions with abelian kernel.
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Proof. Express (X, ∗) = lim←− (Xi, ∗) as a surjective inverse limit of pointed
finite discrete spaces. Then KX = lim←− KXi . Hence one may assume that X
is finite and discrete (non pointed).

Suppose that C is closed under extensions with abelian kernel. Choose a
finite discrete space X. We have to show that KX is perfect. Put K = KX
and ϕ = ϕX . Then, one has a short exact sequence

1 −→ K/[K,K] −→ FCe(X)/[K,K] −→ FC (X) −→ 1.

From the definition of Ce and the assumption on C, one sees that C and Ce
contain the same abelian groups. Hence, K/[K,K] is a pro - C group. Again,
from our assumption on C, it follows that FCe(X)/[K,K] is a pro - C group.
Therefore, there exists a continuous epimorphism

μ : FC (X) −→ FCe(X)/[K,K].

By Proposition 2.5.2, the epimorphism

FC (X)
μ−→ FCe(X)/[K,K] −→ FCe(X)/K

∼=−→ FC (X)

is an isomorphim. Thus, K = [K,K].
Conversely, suppose that C is not closed under extensions with abelian

kernel. Consider a short exact sequence

1 −→ A −→ G
α−→ H −→ 1,

where A,H ∈ C, A is finite abelian and G 
∈ C. We shall show that KX is not
perfect for a certain finite discrete space X. Choose X to be such that |X| =
d(G). Choose a continuous epimorphism β : FC (X) −→ H. By a property
of free pro - C groups that we prove in the next section (see Theorem 3.5.8),
one has a continuous epimorphism ψ : FCe(X) −→ G such that αψ = βϕX .
This implies that ψ(KX) is contained in A. We claim that KX is not perfect.
To see this, it suffices to show that ψ(KX) 
= 1, since A is abelian. Now, if
we had ψ(KX) = 1, then ψ would factor through FC (X). Thus, G would be
in C, a contradiction. ��

3.5 Characterization of Free Pro - C Groups

Definition 3.5.1 Let G be a profinite group. Let E be a nonempty class of
continuous epimorphisms

α : A −→ B (4)

of profinite groups. Denote by Ef the subclass of E consisting of those epi-
morphisms (4) such that K = Ker(α) is a finite minimal normal subgroup
of A.
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(a) An E-embedding problem for G is a diagram

G

ϕ

A
α

B

or, written more explicitly,

G

ϕ

1 K A
α

B 1

(5)

with exact row, where α ∈ E and ϕ is a continuous epimorphism of profi-
nite groups. We say that the E-embedding problem (5) is ‘solvable’ or that
it ‘has a solution’ if there exists a continuous epimorphism

ϕ̄ : G −→ A

such that αϕ̄ = ϕ. The above E-embedding problem is said to be ‘weakly
solvable’ or to have a ‘weak solution’ if there is a continuous homomor-
phism

ϕ̄ : G −→ A

such that αϕ̄ = ϕ.
(b) The kernel of the E-embedding problem (5) is the group K = Ker(α). We

say that the E-embedding problem (5) has ‘finite minimal normal kernel ’
if α is in Ef .

(c) The nonempty class E of extensions is ‘admissible’ if whenever

α : A −→ B

is in E , so are the corresponding epimorphisms

A −→ A/N and A/N −→ B,

for any closed normal subgroup N of A contained in Ker(α).
(d) An infinite profinite group G is said to have the ‘strong lifting property ’

over a class of epimorphisms E if every E-embedding problem (5) with
w0(B) < w0(G) and w0(A) ≤ w0(G) is solvable.

Remark 3.5.2 The term ‘embedding problem’ has its origins in Galois theory.
Denote by F̄ an algebraic separable closure of a given field F . The Galois
group GF̄ /F of the extension F̄ /F is called the absolute Galois group of F.
Let K/F be a Galois extension of fields and let α : H ′ −→ H be a continuous
epimorphism of profinite groups. Assume that H = GK/F , the Galois group
of K/F . Then there is an epimorphism
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ϕ : GF̄ /F −→ H = GK/F

defined by restricting the automorphisms in GF̄ /F to K. One question that
arises often in Galois theory is the following: does there exist a subfield K ′ of
F̄ containing K in such a way that H ′ = GK′/F and the natural epimorphism
GK′/F −→ GK/F is precisely α? Observe that this question is equivalent to
asking whether there is a solution of the following embedding problem:

GF̄ /F

ϕ

H ′ α
H.

This question is sometimes referred to as the ‘inverse problem of Galois the-
ory’.

Let Q, the field of rational numbers. A well-known question in algebraic
number theory is whether every finite group appears as a Galois group of a
Galois extension of Q. Or, equivalently,

Open Question 3.5.3 Is every finite group a continuous homomorphic im-
age of the absolute Galois group GQ̄/Q of the field Q of rational numbers?

For some additional information on this question see Section 3.7.
Let C be a formation. Observe that if E is an admissible class, then so

is Ef . The class of all continuous epimorphisms of pro - C groups is an example
of admissible class that we shall use frequently.

Lemma 3.5.4 Let E be an admissible class of continuous epimorphisms of
profinite groups and let G be a profinite group. The following conditions are
equivalent.

(a) G has the strong lifting property over E ;
(b) G has the strong lifting property over Ef .

Proof. The implication (a) ⇒ (b) is obvious.
(b) ⇒ (a): Suppose G has the strong lifting property over Ef and let

(5) be a E-embedding problem with w0(B) < w0(G) and w0(A) ≤ w0(G).
By Corollary 2.6.5, there exist an ordinal number μ and a chain of closed
subgroups of K (see diagram (5))

K = K0 > K1 > · · · > Kλ > · · · > Kμ = 1

such that

(i) each Kλ is a normal subgroup of A with Kλ/Kλ+1 finite; moreover,
Kλ+1 is maximal in Kλ with respect to these properties;

(ii) if λ is a limit ordinal, then Kλ =
⋂

ν<λKν ; and
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(iii) if w0(A) = w0(G) (therefore K is an infinite group and w0(A/K) <
w0(A)), then w0(A/Kλ) < w0(A) whenever λ < μ.

We must prove that there exists an epimorphism ϕ̄ : G −→ A such that
αϕ̄ = ϕ. To do this we show in fact that for each λ ≤ μ there exists an
epimorphism

ϕλ : G −→ A/Kλ

such that if λ1 ≤ λ the diagram

G
ϕλ ϕλ1

A/Kλ A/Kλ1

commutes, where the horizontal mapping is the natural epimorphism. Then
we can take ϕ̄ = ϕμ. To show the existence of ϕλ, we proceed by induction
(transfinite, if K is infinite) on λ. Note that A/K0 = B; so, put ϕ0 = ϕ.
Let λ ≤ μ and assume that ϕν has been defined for all ν < λ so that
the above conditions are satisfied. If λ is a limit ordinal, observe that since
Kλ =

⋂

ν<λKν , then
A/Kλ = lim←−

ν<λ

A/Kν ;

in this case, define ϕλ = lim←− ν<λϕν .
If, on the other hand, λ = σ + 1, we define ϕλ to be a solution to the

Ef -embedding problem with finite minimal normal kernel

G

ϕσ
ϕλ

1 Kσ/Kλ A/Kλ A/Kσ 1

To see that such a solution exists, we have to verify that w0(A/Kσ) < w0(G)
and w0(A/Kλ) ≤ w0(G). If w0(A) < w0(G), these inequalities are clear. On
the other hand, if w0(A) = w0(G), we have

w0(A/Kλ) = w0(A/Kσ) < w0(A) = w0(G),

since Kσ/Kλ is a finite group and since condition (iii) above holds.
It is clear that in either case ϕλ satisfies the required conditions. ��

Next we consider equivalent conditions to weak solvability of embedding
problems for some special types of admissible classes.

Lemma 3.5.5 Let C and C′ be varieties of finite groups. Let E be the class of
all continuous epimorphisms (4) of pro - C groups such that Ker(α) is pro - C′,
and let Ē consist of those epimorphisms (4) in E for which Ker(α) is finite.
Let G be a profinite group. The following conditions are equivalent.
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(a) Every E-embedding problem (5) for G has a weak solution;
(b) Every Ē-embedding problem (5) for G has a weak solution;
(c) Every Ēa-embedding problem (5) for G has a weak solution, where Ēa

consists of those epimorphisms (4) in Ē such that Ker(α) is a finite abelian
minimal normal subgroup of A.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear.
(b) ⇒ (a): Consider the embedding problem (5) with α ∈ E . Define a set

P to consist of all pairs (K ′, η′), where K ′ is a closed normal subgroup of A
contained in K, and η′ : G −→ A/K ′ is a continuous homomorphism such
that the diagram

G

ϕ
η′

A/K ′ B

commutes. The set P is nonempty since (K,ϕ) ∈ P . Define (K ′, η′) �
(K ′ ′, η′ ′) if K ′ ≥ K ′ ′ and

G

η′ ′
η′

A/K ′ A/K ′ ′

commutes. Then P is an inductive poset. Indeed, if {(K ′
i, η

′
i)}i is a totally

ordered subset of P , put

K ′ =
⋂

i

K ′
i and η′ = lim←−

i

η′
i;

then (K ′, η′) ∈ P and (K ′, η′) � (K ′
i, η

′
i) for all i.

Let (K̃, η̃) be a maximal element of P . We shall show that K̃ = 1. Suppose
K̃ 
= 1; then there exists an open normal subgroup L of K̃ which is normal
in A, such that L 
= K̃ (if K̃ 
= 1, it contains a proper open subgroup K̃ ∩ U
where U is open in A; then U contains an open normal subgroup V of A; put
L = K ∩ V ).

Since K̃/L is finite, it follows from (b) that there exists a continuous
homomorphism

ψ : G −→ A/L

such that
G

η̃
ψ

A/L A/K̃
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commutes. Hence, (L,ψ) ∈ P and (L,ψ) � (K̃, η̃), contradicting the maxi-
mality of (K̃, η̃). Thus K̃ = 1.

(c) ⇒ (b): We show in fact something stronger, namely that if (c) holds
and we have a diagram (5) with α ∈ Ē and K finite, then there exists a
continuous homomorphism ϕ̄ : G −→ A making the diagram commutative.
We prove this by induction on the order of K. We distinguish two cases
depending on whether K is minimal normal in A or not. Suppose first the
latter. Then there exists a normal subgroup K1 of A such that 1 < K1 < K.

G

ϕ1
ϕ

ϕ̄

A′ A/K1 α1
B

Let α1 : A/K1 −→ B be the epimorphism induced by α. Then, by induc-
tion, there exists a continuous homomorphism ϕ1 : G −→ A/K1 such that
α1ϕ1 = ϕ. Let β : A −→ A/K1 be the canonical epimorphism, and set
A′ = β−1(ϕ1(G)). By induction again, there exists a continuous homomor-
phism ϕ̄ : G −→ A′ such that β|A′ ϕ̄ = ϕ1. If we think of ϕ̄ as a mapping
G −→ A, then ϕ̄ is the desired lifting.

Next assume that K is finite minimal normal in A. Consider the Frattini
subgroup Φ(A) of A, and recall that Φ(A) is pronilpotent (see Corollary 2.8.4).
By the minimality of K, either K ≤ Φ(A) or K∩Φ(A) = 1. Assume first that
K ≤ Φ(A). Hence K is nilpotent, since it is finite. Observe that [K,K] = 1,
for otherwise [K,K] = K, contradicting the nilpotency of K. Therefore,
K is abelian. Then the existence of ϕ̄ follows from (c). Suppose now that
K ∩Φ(A) = 1. Then there exists a maximal open subgroup M of A such that
K 
≤ M . Hence K ∩M < K. Thus, by induction, there exists a continuous
homomorphism ϕ1 : G −→M making the diagram

G
ϕ1

ϕ

1 K ∩M M B 1

commutative. Finally, define ϕ̄ : G −→ A to be the composition

G
ϕ1−→M ↪→ A. ��

Having the strong lifting property over a suitable class of epimorphisms
is a powerful property for a profinite group; in the following result it is used
as a key tool to determine when two groups are isomorphic.

Proposition 3.5.6 Let E be an admissible class of continuous epimorphisms
of profinite groups and let G1 and G2 be infinite profinite groups with the
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strong lifting property over E and such that w0(G1) = w0(G2) = m. Assume
that Ni �c Gi such that w0(Gi/Ni) < m and that the epimorphisms

Gi −→ Gi/Ni −→ 1

belong to E (i = 1, 2). Then, any isomorphism ϕ : G1/N1 −→ G2/N2 lifts to
an isomorphism ϕ̄ : G1 −→ G2 such that the diagram

G1
ϕ̄

G2

G1/N1 ϕ
G2/N2

commutes.

Proof. Let μ be the smallest ordinal with cardinality m. By Corollary 2.6.5,
there exists a chain of closed normal subgroups of Gi (i = 1, 2)

Ni = Ni,0 ≥ Ni,1 ≥ · · · ≥ Ni,λ ≥ · · · ≥ Ni,μ = 1

indexed by the ordinals λ ≤ μ, such that

(i) Ni,λ/Ni,λ+1 is finite for λ ≥ 0;
(ii) if λ is a limit ordinal, then Ni,λ =

⋂

ν<λNi,ν , and
(iii) w0(Gi/Ni,λ) < m, for λ < μ.

We shall use transfinite induction to construct chains of closed normal
subgroups of Gi (i = 1, 2)

Ni = N ′
i,0 ≥ N ′

i,1 ≥ · · · ≥ N ′
i,λ ≥ · · · ≥ N ′

i,μ = 1

satisfying conditions analogous to (i), (ii), (iii), and in addition

(iv) N ′
i,λ ≤ Ni,λ and w0(Gi/N ′

i,λ) ≤ w0(Gi/Ni,λ), for all λ (i = 1, 2).

Note that conditions (iii) and (iv) imply that w0(Gi/N ′
i,λ) < w0(Gi) for

all λ < μ (i = 1, 2).
Furthermore, we construct isomorphisms

ϕλ : G1/N
′
1,λ −→ G2/N

′
2,λ

for each λ ≤ μ, in such a way that if λ < ν ≤ μ, then the diagram

G1/N
′
1,ν

ϕν
G2/N

′
2,ν

G1/N
′
1,λ ϕλ

G2/N
′
2,λ
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commutes. Set N ′
i,0 = Ni,0 = Ni (i = 1, 2), and let ϕ0 : G1/N

′
1,0 −→ G2/N

′
2,0

be the given isomorphism ϕ. Let ρ ≤ μ and assume we have constructed
chains indexed by λ < ρ

Ni = N ′
i,0 ≥ N ′

i,1 ≥ · · · ≥ N ′
i,λ ≥ · · · (i = 1, 2)

as well as isomorphisms ϕλ (λ < ρ), satisfying the above conditions. Next we
indicate how to construct N ′

i,ρ (i = 1, 2) and an isomorphism ϕρ such that
the above conditions still hold. If ρ is a limit ordinal, put

N ′
i,ρ =

⋂

λ<ρ

N ′
i,λ (i = 1, 2).

Observe that
Gi/N

′
i,ρ = lim←−

λ<ρ

Gi/N
′
i,λ (i = 1, 2).

In this case, define
ϕρ = lim←−

λ<ρ

ϕλ.

By Theorem 2.6.4, one has that

w0(Gi/N ′
i,ρ) ≤

∑

λ<ρ

w0(Gi/Ni,λ) = w0(Gi/Ni,ρ).

If ρ = σ+1 for some ordinal σ, we proceed as follows: putM = N ′
1,σ∩N1,ρ

and P = N ′
2,σ ∩ N2,ρ. Observe that [N ′

1,σ : M ] < ∞ and [N ′
2,σ : P ] < ∞.

Let the continuous epimorphism ψ : G2 −→ G1/M be a solution to the
E-embedding problem for G2

G2

ψ

G1/M G1/N
′
1,σ ϕσ

G2/N
′
2,σ 1

SetR = P∩Ker(ψ). Then ψ induces a natural epimorphismG2/R −→ G1/M .
Let the continuous epimorphism ξ : G1 −→ G2/R be a solution to the E-
embedding problem for G1

G1

ξ

G2/R G1/M

(such a solution exists since w0(G1/M) < w0(G2)). Set S = Ker(ξ). Therefore
ξ induces an isomorphism δ : G1/S −→ G2/R. Set N ′

1,ρ = S, G′
2,ρ = R, and

ϕρ = δ. Then N ′
1,ρ ≤ N1,ρ , N ′

2,ρ ≤ N2,ρ and
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G1/N
′
1ρ

ϕρ
G2/N

′
2ρ

G1/N
′
1,σ ϕσ

G2/N
′
2,σ

commutes. Finally, observe that w0(G1/N
′
1,ρ) < w0(G1) and w0(G2/N

′
2,ρ) <

w0(G2), as desired. ��

The following useful special case is obtained by putting Ni = Gi (i = 1, 2).

Corollary 3.5.7 Let C be a formation of finite groups. Let G1 and G2 be
infinite pro - C groups, with w0(G1) = w0(G2). Assume that G1 and G2 have
the strong lifting property over the class of all continuous epimorphisms of
pro - C groups. Then G1 and G2 are isomorphic.

Next we present two results that characterize free pro - C groups on a set
converging to 1 in terms of embedding problems. The first one is about free
groups of finite rank. As we shall see in many occasions, the second result is
a most useful tool whenever one wants to investigate whether an infinitely
generated pro - C group is free pro - C.

Theorem 3.5.8 Let C be a formation of finite groups and let G be a pro - C
group. Assume that d(G) = m is finite. Let E = EC be the class of all epimor-
phisms of pro - C groups. Then, the following two conditions are equivalent

(a) G is a free pro - C group of rank m;
(b) Every E-embedding problem for G

G

ϕ

1 K A
α

B 1

with d(B) ≤ d(G) and d(A) ≤ d(G), has a solution.

Proof. (a) ⇒ (b) This implication follows immediately from Proposition 2.5.4.
(b) ⇒ (a) Consider a free pro - C group F of rank m, and let α : F −→ G

be a continuous epimorphism. By (b) there exists an continuous epimorphism
ϕ : G −→ F such that αϕ = idG. Then ϕ is a monomorphism, and thus an
isomorphism. ��

Theorem 3.5.9 Let C be a formation of finite groups and let G be a pro -
C group. Assume that d(G) = m is infinite. Let E = EC be the class of
all epimorphisms of pro - C groups. Then, the following two conditions are
equivalent

(a) G is a free pro - C group on a set converging to 1 of rank m;
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(b) G has the strong lifting property over E.

Proof. (a) ⇒ (b) Let G be a free pro - C group of rank m on the set X
converging to 1. Then |X| = w0(G) (see Proposition 2.6.2). Consider the
E-embedding problem

G

ϕ

1 K A
α

B 1

with w0(B) < w0(G) and w0(A) ≤ w0(G). We must show that there exists
a continuous epimorphism ϕ̄ : G −→ A such that αϕ̄ = ϕ. According to
Lemma 3.5.4, we may assume that K is finite. Put X0 = X ∩ Ker(ϕ). Let
U be the collection of all open normal subgroups of B. By our assumptions,
|U| < m. Observe that, since X converges to 1,

|X − Ker(ϕ)| =
∣

∣

∣

∣

X −
⋂

U∈U
ϕ−1(U)

∣

∣

∣

∣

=
∣

∣

∣

∣

⋃

U∈U
(X − ϕ−1(U))

∣

∣

∣

∣

= |U|.

Therefore, |X0| = m. Let Z be a set of generators of K; since Z is finite,
we may choose a subset Y of X0 such that |Z| = |Y |. By Proposition 2.2.2,
there exists a continuous section σ : B −→ A of α. Think of K as a subgroup
of A. Define ϕ1 : X −→ A as a map that sends Y to Z bijectively, and such
that ϕ1 = σϕ on X − Y . Since X is a set converging to 1 and ϕ and σ
are continuous, the mapping ϕ1 converges to 1. Therefore, ϕ1 extends to a
continuous homomorphism ϕ̄ : G −→ A with αϕ̄ = ϕ. Finally note that ϕ̄ is
onto since ϕ1(X) generates A.

(b) ⇒ (a) This follows immediately from Corollary 3.5.7. ��

Combining the theorem above with Lemma 3.5.4, we get the following
characterization of free pro - C groups of infinite countable rank.

Corollary 3.5.10 Let C be a formation of finite groups and let G be a pro - C
group with w0(G) = ℵ0. Then G is a free pro - C group on a countably infinite
set converging to 1 if and only if every embedding problem of the form

G

ϕ

1 K A
α

B 1

has a solution whenever A is finite.

The next result provides another characterization of free pro - C groups
from a slightly different point of view.
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Proposition 3.5.11 Let C be a formation of finite groups and let G be a
pro - C group. Assume that d(G) = m is infinite. Then G is a free pro - C
group of rank m if and only if the following condition is satisfied :

(∗) every embedding problem of pro - C groups

G

ϕ

1 K C
α

D 1,

with 1 
= C ∈ C, has m different solutions ψ : G −→ C.

Proof. Assume that G is a free pro - C group on a set X converging to 1 with
|X| = m. Consider an embedding problem for G as above, with C finite.
Since D is finite, U = Ker(ϕ) is open in G. Hence, X − U is finite and
|X ∩U | = m. Since K is finite, there exists an indexing set I of cardinality m

and a collection {Xi}i∈I of distinct subsets of X∩U , each of them of size |K|.
Let σ : D −→ C be a section of α. For each i ∈ I, define a map ϕi : X −→ C
as follows: ϕi = σϕ on X − U , ϕi sends Xi to K bijectively (we think of K
as a subgroup of C), and ϕi(X ∩ U −Xi)) = 1. Clearly, ϕi(X) generates C.
Thus ϕi extends to a continuous epimorphism ψi : G −→ C with αψi = ϕ.
Furthermore, the maps ψi (i ∈ I) are all distinct.

Conversely, assume that condition (∗) holds. Consider an embedding prob-
lem

G

ϕ

1 K A
α

B 1,

where A and B are pro - C groups and where w0(B) < m and w0(A) ≤ m.
According to Theorem 3.5.9, it suffices to show that such an embedding
problem has a solution. By Lemma 3.5.4, we may assume that K is a finite
minimal normal subgroup of A. Let V �oA be such that V ∩K = 1. Consider
the commutative diagram

G

ϕ

1 K

β|K

A
α

β

B

γ

1

1 KV = KV/V A/V
αV

B/α(V ) 1,

where β and γ are the canonical epimorphisms, αV is the epimorphism in-
duced by α and KV = Ker(αV ). One shows easily that the maps α, β, αV , γ
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form a pullback diagram (see Exercise 2.10.1); moreover, β|K is an isomor-
phism and KV is minimal normal in A/V .

By assumption, since A/V ∈ C, there exists an indexing set I with |I| = m

and distinct continuous epimorphisms ψi : G −→ A/V such that αV ψi = γϕ
(i ∈ I). By definition of pullback, for each i ∈ I, there exists a unique
continuous homomorphism ϕ̄i : G −→ A such that αϕ̄i = ϕ and βϕ̄i = ψi.
The proof will be finished if we can prove that ϕ̄j is an epimorphism for
some j ∈ I. Observe that for this it suffices to prove the following claim:
Ker(ϕ) 
≤ Ker(ψj), for some j ∈ I. Indeed, if the claim holds, ψj(Ker(ϕ))
is a nontrivial normal subgroup of A/V . Hence either KV ∩ ψj(Ker(ϕ)) = 1
or KV ≤ ψj(Ker(ϕ)), since KV is minimal normal in A/V . On the other
hand, αV (ψj(Ker(ϕ))) = (γϕ)(Ker(ϕ)) = 1; so, we deduce that ψj(Ker(ϕ)) =
KV . Therefore, Ker(αV ψj) = Ker(ϕ)Ker(ψj). Thus, by Lemma 2.10.2, ϕ̄j is
surjective.

It remains to prove the claim. Let N =
⋂

i∈I Ker(ψi). It follows that
w0(G/N) = m. Indeed, assume that w0(G/N) = n < m; then G/N is a
quotient of a free pro - C group F of rank n; so, F would have m distinct
continuous epimorphisms onto the finite group A, which is plainly impossible,
since each such an epimorphism is completely determined by its values on
a finite subset of a basis of F . Therefore, w0(G/N) = w0(G) > w0(B) =
w0(G/Ker(ϕ)). This implies that Ker(ϕ) 
≤ Ker(ψj), for some j ∈ I. ��

Next we prove that all free pro - C groups are in fact free pro - C groups
on some set converging to 1. Nevertheless, it is sometimes more natural and
more convenient to describe certain free pro - C group as being free on a
topological space, rather than on a set; this becomes apparent when one
studies subgroups of free groups (see Section 8.1).

Proposition 3.5.12 Let C be a formation of finite groups and let F =
FC (X, ∗) be a free pro - C group on a pointed profinite space (X, ∗). Then
F is a free pro - C group on a certain set converging to 1. Furthermore, let
R be the collection of all open equivalence relations R on X. Then if R is
finite, so is the rank of F, and if R is infinite, rank(F ) = |R|.

Proof. If X is finite, there is nothing to prove. So, we assume from now on
that (X, ∗) is an infinite pointed profinite space. Clearly |R| = ρ(X), where
ρ(X) denotes the cardinality of the set of clopen subsets of X. We seek to
prove that F = FC (X, ∗) is a free pro - C group on a set of cardinality ρ(X)
converging to 1. Let E = EC be the class of all epimorphisms of pro - C groups
and consider an E-embedding problem

F

ϕ

1 K A
α

B 1

(6)
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where w0(B) < w0(F ) and w0(A) ≤ w0(F ). According to the characterization
of free pro - C groups on a set converging to 1 established in Theorem 3.5.9,
we must show that there exists a continuous epimorphism ϕ̄ : F −→ A such
that αϕ̄ = ϕ. By Lemma 3.5.4, we may assume that the kernel K is finite.

Put Y = ϕ(X), and let ψ : X −→ Y be the restriction of ϕ toX. Note that
ψ is a mapping of pointed spaces, if we think of 1 as the distinguished point
of Y . It follows from Proposition 2.6.2 and our hypotheses that ρ(Y ) < ρ(X).
In particular, if Y is finite, then ψ−1(y) is infinite for some y ∈ Y .

So in any case we may choose points y1, . . . , ym ∈ Y , and for each i =
1, . . . ,m, points xi,0, . . . , xi,ni ∈ ψ−1(yi), none of them equal to ∗, such that
n1 + · · · + nm = |K| − 1. Represent the set of elements of K as

{1} ∪ {ki,j | i = 1, . . . ,m; j = 0, . . . , ni}.

Choose clopen subsets U and Ui,j of X such that ∗ ∈ U, xi,j ∈ Ui,j (i =
1, . . . ,m; j = 0, . . . , ni) and X = U ∪. U1,0 ∪. · · · ∪. Um,nm . Define

δ : X −→ K

as follows: δ(x) = 1 if x ∈ U or if x ∈ Ui,0 (i = 1, . . . ,m), and δ(x) = ki,j if
x ∈ Ui,j (i = 1, . . . ,m; j = 1, . . . , ni). Then δ is a continuous mapping. Next,
consider a continuous section

σ : B −→ A

of α such that σ(1) = 1 (see Proposition 2.2.2), and define

ξ : X −→ A

by ξ(x) = δ(x)σ(ψ(x)) for x ∈ X. Plainly, ξ is continuous and ξ(∗) = 1.
Therefore there exists a continuous homomorphism

ξ̄ : F −→ A

extending ξ. Observe that α(ξ̄(x)) = ψ(x) for all x ∈ X. It follows that
αξ̄ = ξ. We claim that ϕ̄ = ξ̄ is the desired solution of the E-embedding
problem (6). To verify this claim it remains to show that ξ̄ is an epimorphism.
Note first that

ξ(xi,j)ξ(xi,0)−1 = δ(xi,j)σ(ψ(xi,j))(δ(xi,0)σ(ψ(xi,0)))−1 = ki,j

(i = 1, . . . ,m; j = 1, . . . , ni); therefore, K ≤ ξ(F ). On the other hand,
α(ξ̄(F )) = B, and thus ξ̄(F ) = A, as required. ��

The proof of the theorem above is not constructive, in the sense that
it does not exhibit an explicit basis of F converging to 1. The following
theorem shows that a construction of such a basis cannot be expected. It
answers negatively Open Question 3.5.13 in the first edition of this book.
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Theorem 3.5.13 Let X be a profinite space and let F = F (X) be the free
pro - C group on X. There is no basis S of F converging to 1 that can be
obtained from X in a canonical way, or more precisely, there is no such S that
is left invariant under the action of the group Aut(X) of homeomorphisms
from X to X.

Proof. We prove this by exhibiting a concrete example of a variety C and a
space X such that no basis S of F converging to 1 is left invariant under the
action of the group of automorphisms of F induced by the homeomorphisms
in Aut(X).

Choose C to be the variety of all finite p-groups, where p is a fixed prime
number. Observe that the Frattini quotient F/Φ(F ) of F is a vector space
over the field Fp with p elements and it is also the free pro - C group on the
space X, where C is the variety of all finite abelian p-groups of exponent p
(the vector spaces of finite dimension over Fp). A basis S of F converging
to 1 can be consider to be also a basis of F/Φ(F ) converging to 1; moreover
every ϕ ∈ Aut(X) induces a continuous automorphism of F/Φ(F ); hence we
may replace F by F/Φ(F ).

Consider the Pontryagin dual Hom(F/Φ(F ),Fp) of F/Φ(F ). Under this
duality, a basis S of F/Φ(F ) converging to 1 is transformed into an ordinary
basis of the discrete vector space Hom(F/Φ(F ),Fp) = C(X,Fp) over the
field Fp; furthermore, every ϕ ∈ Aut(X) is transformed into an automor-
phism of C(X,Fp). Therefore, it suffices to prove that, after an appropriate
choice of X, there exists no basis of the vector space C(X,Fp) which is left
invariant under the action of Aut(X). Fix a prime q, and let X = Zq. The
result will follow if we prove the following stronger assertion:

Let f : X −→ Fp be a nonconstant continuous function. Then the trans-
forms of f under Aut(X) are linearly dependent.

For simplicity we restrict ourselves to the case p = 2 (the argument can
be easily extended to any prime p). Consider the decomposition

Zq = lim←−
n∈N

Z/qnZ.

By Lemma 1.1.16, f factors through Z/qn0Z, for some n0 ∈ N, i.e., there
exists f̃ : Z/qn0Z −→ F2 = {0, 1} such that

f = f̃ϕn0 ,

where ϕn0 : Zq −→ Z/qn0Z is the projection.
Let a be the number of elements z ∈ Z/qn0Z such that f̃(z) = 0, and

let b be the number of elements z ∈ Z/qn0Z such that f̃(z) = 1. Note
a+ b = qn0 . Since f is nonconstant, a, b > 0. In fact we may assume a, b > 1:
simply replace Z/qn0Z by Z/qn0+1Z (this has the effect of multiplying a and
b by q). Now consider the set T of functions obtained by transforming f̃ by
the permutations of Z/qn0Z. Then
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|T | =
qn0 !
a!b!

=
(

qn0

a

)

.

Since a > 1, we get |T | > qn0 . Since

dimC(Z/qn0Z,F2) = qn0 ,

we deduce that the elements of T are linearly dependent. Finally observe that
every permutation of Z/qn0Z is induced by a homeomorphism

Zq −→ Zq,

i.e., an element of Aut(X). This proves the above assertion and the theorem.
��

Exercise 3.5.14 Let C be a nontrivial formation of finite groups and X a
set. Prove

(a) If X 
= ∅ is finite, |FC (X)| = 2ℵ0 .
(b) Let C be a finite cyclic group in C, and let G =

∏

X C be the direct
product of |X| copies of C. Then G can be generated by a set converging
to 1 of cardinality |X|.

(c) If X is infinite and let F be the free pro - C group on the set X converging
to 1, then |F | = 2|X|. (Hint: use Proposition 2.6.2.)

(d) Assume thatX is infinite and let Φ = Φ(X) be a free abstract group onX.
Then the pro - C completion of Φ is a free pro - C group of rank 2|X|. (Hint:
see Exercise 3.3.3.)

(e) Let m be an infinite cardinal and let p be a fixed prime number. Consider
the direct sum A =

⊕

m
Z/pZ of m copies of Z/pZ. Then d( ̂A) = 2m.

(f) Let Y be an infinite topological space with the discrete topology. Show
that

|FC (Y )| = 22|Y |
.

In Proposition 3.3.9 we saw that an inverse limit of free pro - C groups is a
free pro - C group if the canonical mappings in the inverse system send bases
to bases. As we shall exhibit later (see Example 9.1.14), a general inverse limit
G of free pro - C groups need not be free pro - C. However, in the following
theorem we show that if, in addition, G has a countable fundamental system
of neighborhoods of the identity (i.e., w0(G) = ℵ0), then G is free pro - C.

Theorem 3.5.15 Let
G = lim←−

i∈I

Fi

be an inverse limit of a surjective inverse system of free pro - C groups (Fi, ϕij)
indexed by a poset I. Assume that G admits a countable set of generators
converging to 1 (i.e., G is second countable as a topological space). Then G
is a free pro - C group.
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Proof. Suppose first that G is finitely generated. Then the free groups Fi
have finite rank bounded by d(G), the minimal number of generators of G. It
follows that there exists some io ∈ I such that rank(Fi) = rank(Fio) if i ≥ io.
Therefore, by the Hopfian property (see Proposition 2.5.2), ϕiio : Fi −→ Fio
is an isomorphism for each i ≥ io. Thus G ∼= Fio is a free pro - C group.

Assume next that G admits an infinite countable set of generators con-
verging to 1. Let E = EC be the class of all epimorphisms of pro - C
groups. Then, according to Corollary 3.5.10, it suffices to prove that every
E-embedding problem for G of the form

G

ϕ

1 K A
α

B 1

has a solution, whenever A is a finite group.
Denote by

ϕr : G −→ Fr

the canonical epimorphism. Since B is finite, there exists some r ∈ I and an
epimorphism

ψr : Fr −→ B

such that ϕ = ψrϕr (see Lemma 1.1.16). Since G is not finitely generated,
we may choose r in such a way that rank(Fr) > |A|. By Theorem 3.5.8,
there exists an epimorphism μ : Fr −→ A such that αμ = ψr. Therefore,
μϕr : G −→ A is the desired solution to the above embedding problem. ��

3.6 Open Subgroups of Free Pro - C Groups

In this section we begin the study of the structure of closed subgroups of free
pro - C groups. Unlike the situation for subgroups of abstract free groups, a
closed subgroup of a free pro - C group is not necessarily a free pro - C group.
For example, Zp is a closed subgroup of the free profinite group of ̂Z, but
obviously Zp is not a free profinite group. Nevertheless, we shall describe
several types of closed subgroups of a free pro - C group, and we shall see that
in some cases they are free pro - C. We revisit this topic at other places in this
book; in particular, in Chapter 7, where we deal with subgroups of free pro-p
groups, and in Chapter 8, where we study normal subgroups of free pro - C
groups.

Before we state the next theorem, we fix notation and recall some results
about subgroups of abstract free groups. For the details one can consult Mag-
nus, Karras and Solitar [1966], Lyndon and Schupp [1977], or Serre [1980],
for example. Let D be an abstract free group on a set X, and let L be a
subgroup of D. Recall that a right transversal T of L in D is a complete
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system of representatives of the right cosets of L in D, so that D = ∪. t∈T Lt;
we shall assume that 1 ∈ T . Write t ∈ T as a reduced word in term of the
elements of X, i.e., t = xε11 · · ·xεrr for some x1, . . . , xr ∈ X, with εi = ±1 for
all i = 1, . . . , r, and εi = εi+1 if xi = xi+1 (i = 1, . . . , r − 1). We refer to the
elements xε11 · · ·xεii (i = 0, . . . , r) as the initial segments of t = xε11 · · ·xεrr . We
say that the transversal T is a right Schreier transversal if whenever t is in T ,
so is any initial segment of t. Every subgroup L of D admits a right Schreier
transversal. A final piece of notation: if f ∈ D, denote by f̃ the unique ele-
ment f̃ ∈ T such that Lf̃ = Lf . Then one has the following theorem due to
Nielsen and Schreier.

Theorem 3.6.1 Let D be an abstract free group on a set X, L a subgroup
of D, and let T be a right Schreier transversal of L in D. Then L is a free
group on the set

{tx( ˜tx)−1 | x ∈ X, t ∈ T, tx( ˜tx)−1 
= 1}.

Furthermore, if L has finite index in D, then

rank(L) − 1 = [D : L](rank(D) − 1).

Theorem 3.6.2 Assume that C is an extension closed variety of finite groups
(respectively, an NE-formation of finite groups). Let F be a free pro - C group
on a set X converging to 1, and let H be an open (respectively, open normal)
subgroup of F . Then

(a) The set
Z = {tx( ˜tx)−1 | x ∈ X, t ∈ T, tx( ˜tx)−1 
= 1},

converges to 1, where T is an appropriate right transversal of H in F ;
moreover, H is a free pro - C group on the set Z.

(b) If rank(F ) is infinite, then rank(H) = rank(F ); while if rank(F ) is fi-
nite,then so is rank(H), and

rank(H) − 1 = [F : H](rank(F ) − 1).

Proof. Let D be the abstract subgroup of F generated by X. By Corol-
lary 3.3.14 and Proposition 3.3.15, D is an abstract free group with basis X.
Choose a Schreier transversal T of D ∩H in D.
Case 1. X = {x1, . . . , xn} is finite.

As pointed out above,D∩H is a free abstract group. By Proposition 3.2.2,
D ∩H = H. By Lemmas 3.1.4, 3.2.4 and 3.2.6, H is the pro - C completion
of D ∩H; hence H is a free pro - C group. Then, by Theorem 3.6.1,

{tx( ˜tx)−1 | x ∈ X, t ∈ T, tx( ˜tx)−1 
= 1}

is a basis of D ∩ H, and so of H (see Proposition 3.3.6). Therefore, using
again Theorem 3.6.1, rank(H) − 1 = [F : H](rank(F ) − 1), as desired.
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Case 2. X is an infinite set.
By Proposition 3.3.12, we may express the free pro - C group F = FC (X)

on the set X converging to 1 as an inverse limit

F = lim←−
j∈J

FC (Xj),

with [FC (Xj) : ϕj(H)] = [F : H], for every j ∈ J , where each Xj is a finite
subset of X, and ϕj : F −→ FC (Xj) denotes the canonical epimorphism. Let
Dj be the abstract subgroup of FC (Xj) generated by Xj (j ∈ J). Therefore,
ϕj(T ) = {ϕj(t) | t ∈ T} is a Schreier transversal of the subgroup Dj ∩ϕj(H)
in Dj (j ∈ J). Put X̃ = X ∪{1} and X̃j = Xj ∪{1} (j ∈ J). Then FC (Xj) =
FC (X̃j , 1). By Case 1, ϕj(H) is a free pro - C group on the finite pointed space

(Yi, 1) = ({xϕj(t)( ˜xϕj(t))−1 | x ∈ X̃j , t ∈ T}, 1).

Observe that ϕjk(Ỹj , 1) = (Ỹk, 1) (j � k), and that

H = lim←−
j∈J

ϕj(H).

Hence, by Proposition 3.3.9, H is a free pro - C group on the pointed topo-
logical space

(Y, 1) = ( lim←−
j∈J

Yj , 1).

It remains to prove that Y is the one-point compactification of the set Z
in the statement. Clearly Z is a discrete subspace of F since X is discrete and
T is finite. Moreover, Z ∪ {1} is compact (it is the continuous image of the
compact space (X ∪ {1}) × T ), in fact, it is the one-point compactification
of Z. Since ϕj(Z ∪ {1}) = Ỹj (j ∈ J), we infer that Z ∪ {1} = Y (see
Corollary 1.1.8). This proves the theorem. ��

Corollary 3.6.3 Let G be a finitely generated profinite group with d(G) = d
and let U ≤o G. Then U is also finitely generated as a profinite group and
d(U) ≤ 1 + [G : U ](d− 1).

Proof. Consider a free profinite group F of rank d and an epimorphism

ϕ : F −→ G.

Then ϕ(ϕ−1(U)) = U . So the result follows from Theorem 3.6.2 applied to
the open subgroup ϕ−1(U) of F . ��

A subgroup H of a group G is called subnormal if there exists a finite
chain of subgroups of G

H = Gn � Gn−1 � · · · � G1 = G.

If G is profinite and H is closed, we only refer to H as subnormal if there is
a chain as above with every Gi closed.
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Corollary 3.6.4

(a) For r, i ∈ N, define T(r, i) = 1 + i(r − 1). If r, i, j ∈ N, then

T(T(r, i), j) = T(r, ij).

(b) Let C be an NE-formation of finite groups. Let F be a free pro - C group
of finite rank r, and let H be an open subnormal subgroup of F . Then H
is a free pro - C group of rank 1 + [F : H](r − 1).

Proof. Part (a) is a routine calculation. Part (b) follows from the theorem
and an easy induction. ��

3.7 Notes, Comments and Further Reading

Profinite topologies are used sometimes to express some algebraic facts in
a succinct manner. For example, an abstract group G is called LERF or
subgroup separable if every finitely generated subgroup of G is closed in the
profinite topology of G (cf. Scott [1978]). In Hall [1949] Theorem 5.1, it is
proved that finitely generated subgroups of abstract free groups are closed
in the profinite topology; see also Hall [1950]. For a study of the induced
topology on the Fitting subgroup of certain groups, see Pickel [1976] and
Kilsch [1986].

Lemma 3.1.5 and Corollary 3.1.6 appear in Ribes and Zalesskii [1994].
Corollary 3.2.8 was proved by Dixon, Formanek, Poland and Ribes [1982].
Theorem 3.2.9 appears in Fried and Jarden [2008]. For polycyclic groups with
isomorphic finite quotients see Grunewald, Pickel and Segal [1980].

Free pro - C groups appear in Iwasawa [1953], where C is a variety of fi-
nite groups, although he does not use the name ‘free pro - C’. In the same
paper (Theorem 8) Iwasawa proves a precursor of the results of Douady and
Harbater mentioned in Example 3.3.8(e): let F be an algebraically closed
countable field and letK be the maximal solvable extension of F (T ); then the
Galois group of the extensionK/F (T ) is a free prosolvable group of countable
rank. The first explicit reference to the universal property of freeness for pro-p
groups seems to appear in the first edition of Serre’s Cohomologie Galoisi-
enne. The first systematic study of free pro - C groups over topological spaces
was began by Gildenhuys and Lim [1972]. At the time it was known, using
cohomological methods, that every free pro-p group on a topological space
is free on a set converging to 1 (Tate); see Section 7.6. Proposition 3.5.12,
showing that this is also the case for general pro - C groups, was proved by
Mel’nikov [1980]. Proposition 3.3.9 appears in Gildenhuys and Lim [1972].
Proposition 3.3.12 was established in Gildenhuys and Ribes [1973]. A version
of Theorem 3.3.16 is shown in Iwasawa [1953].

The embedding problem, as indicated in Remark 3.5.2, seems to have
been posed first in Brauer [1932]. The literature about the inverse problem of
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Galois theory is very extensive. Open Question 3.5.3 has been partially an-
swered in many special cases. Shafarevich [1954] answered it for finite solvable
groups (this paper had a difficulty related to the prime number 2, but Sha-
farevich indicated how to overcome this difficulty shortly after); see Schmidt
and Wingberg [1998] for a simplified proof of Shafarevich’s result. The book
of Matzat [1987] describes the construction of field extensions correspond-
ing to some finite simple groups. See Pop [1996] for the study of embedding
problems over certain fields. For a general survey of results and methods see
Serre [1992] and Völklein [1996].

Iwasawa [1953] makes a pioneering use of embedding problems for groups
to characterize free pro - C groups of countable rank (see Corollary 3.5.10).
This was generalized by Mel’nikov [1978] (see Theorem 3.5.9).

Proposition 3.5.11 was proved by Chatzidakis in her 1984 thesis and ap-
pears in Chatzidakis [1998]; this paper contains several other results on free
profinite groups. In Jarden [1995], profinite groups with solvable finite embed-
ding problems (i.e., embedding problems such as (1) of Section 3.5, where A is
finite) are studied. Theorem 3.5.13 was proved by J-P. Serre (private commu-
nication) to answer negatively Open Question 3.5.13 in the first edition of the
present book. Theorem 3.5.15 is due to Mel’nikov [1980]. Theorem 3.6.1 ap-
pears in Binz, Neukirch and Wenzel [1971]; see a different proof, independent
of the Kurosh theorem for abstract groups, in Appendix D, Theorem D.2.2.

Let F be a free nonabelian pro-p group; Zubkov [1987] proves that F
cannot be embedded as a closed subgroup of GL2(R), if p 
= 2 and R is a
commutative profinite ring; Barnea and Larsen [1999] show the same result
for GLn(F ), if F is a local field.

3.7.1 A Problem of Grothendieck on Completions

Assume that ϕ : G1 −→ G2 is a homomorphism of finitely generated
residually finite abstract groups such that the corresponding homomorphism
ϕ̂ : ̂G1 −→ ̂G2 of the profinite completion is an isomorphism.

Question: Is ϕ necessarily an isomorphism?
This question was posed in Grothendieck [1970] for groups G1 and G2

which in addition are finitely presented. Finite presentability is a natural
condition for the groups Grothendieck was studying, namely fundamental
groups of certain complex varieties which are compact and locally simply
connected; such fundamental groups are finitely presented.

Here we indicate some results related to this question as well as some
references. The motivation of Grothendieck was the study of the functor
induced by ϕ

ϕ∗ : RepA(G2) −→ RepA(G1),

where A is a commutative ring and RepA(G) stands for the category of finitely
presented A-modules on which the group G operates. Grothendieck [1970],
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Theorem 1.2, proved that if ϕ̂ is an isomorphism, then ϕ∗ is an equivalence
of categories. In this connection see also Lubotzky [1980].

In Platonov and Tavgen [1986] an example was found that answers neg-
atively the above question. This example is based on a construction by
Higman [1951] of an infinite finitely presented group with no nontrivial fi-
nite quotients. Let F be a free abstract group on a basis {x1, x2, x3, x4}.
Let N be the smallest normal subgroup of F containing the elements
x2x1x

−1
2 x−2

1 , x3x2x
−1
3 x−2

2 , x4x3x
−1
4 x−2

3 , x1x4x
−1
1 x−2

4 . The group constructed
by Higman is F/N . Denote by Δ the diagonal subgroup of the direct prod-
uct F × F , and consider the subgroup G1 = (N × {1})Δ of G2 = F × F .
Then Platonov and Tavgen show that the inclusion G1 −→ G2 induces an
isomorphism ̂G1 −→ ̂G2.

Further examples with negative answers to the question above have been
given in Bass and Lubotzky [2000] and Pyber [2004]. All these examples
involve groups which do not appear to be finitely presented. Examples with
negative answer to Grothendieck’s question, i.e., with groups G1 and G2 that
are finitely presented, are given in Bridson and Grunewald [2004].

Platonov and Tavgen [1990] contains several results showing that in some
interesting cases the above question has a positive answer. For example they
prove

Theorem 3.7.1 The above question has a positive answer if G2 is a subgroup
of SL2(K), where K is either the field of real or rational numbers.

In connection with Theorems 3.2.7 and Corollary 3.2.8, one may ask

Open Question 3.7.2 What pro - C groups are pro - C completions of finitely
generated abstract groups?

For partial answers to this question see Segal [2001], and Kassabov and
Nikolov [2006].



4 Some Special Profinite Groups

4.1 Powers of Elements with Exponents from ̂Z

Let G be a profinite group and x ∈ G. Since ̂Z is a free profinite group on {1},
there is a unique epimorphism

ϕ : ̂Z −→ 〈x〉

such that ϕ(1) = x. Given λ ∈ ̂Z, define xλ = ϕ(λ).
Consider the decomposition of ̂Z as the direct product of it p-Sylow sub-

groups, ̂Z =
∏

p Zp, after identifying the group of p-adic integers Zp with
the p-Sylow subgroup of ̂Z. If 1 denotes the canonical generator of ̂Z, then 1
can be thought of as infinite tuple 1 = (1p), where 1p denotes the canonical
generator of Zp, for each prime p. Moreover, 1 = 1p + 1p′ , where 1p′ is the
canonical generator of the p′-Hall subgroup

∏

q �=p Zq.

Lemma 4.1.1 Let G be a profinite group. Let x, y ∈ G and λ, μ ∈ ̂Z. Then,

(a) If n1, n2, . . . ∈ Z is a sequence of integers converging to λ in ̂Z, then

lim
i→∞

xni = xλ.

(b) If x and y commute, then (xy)λ = xλyλ.
(c) xλ+μ = xλxμ. In particular, x = x1px1p′ .
(d) x1p is a generator of the p-Sylow subgroup of 〈x〉.

Proof. Part (a) is clear since ̂Z and 〈x〉 are metric spaces. Parts (b) and (c)
are obviously true if the exponents are integers; so the result follows from (a).
Part (d) is just the fact that the continuous epimorphism ϕ above maps the
p-Sylow subgroup of ̂Z onto the p-Sylow subgroup of 〈x〉. ��

We recall that a net {xi} in a topological space X consists of collection
of elements xi of X indexed by a directed poset {I,�}. Such a net converges
to an element x of X if for each neighborhood U of x there exists some j ∈ I
such that xk ∈ U whenever k � j. A point y ∈ X is a cluster point of this
net if for every neighborhood U of y and each i ∈ I, there is some j ∈ I with
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Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 4, c© Springer-Verlag Berlin Heidelberg 2010
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j � i and xj ∈ U . It is well-known that X is compact if and only if every net
in X has a subnet converging to a point in X.

Let G be a profinite group and p a prime number. We say that an element
x ∈ G is a p-element if it generates a pro-p subgroup.

Lemma 4.1.2 Let G be a profinite group and {xi} a net in G that converges
to a p-element x of G. Then {x1p

i } is a net of p-elements of G converging
to x.

Proof. It suffices to show that for any element y ∈ G and any U �o G, one
has that yU = xU implies y1pU = xU . To see this, remark first that by
Lemma 4.1.1, if yU = xU , then 1U = x−1yU = x−1y1py1p′U . Next observe
that y1pU ∈ 〈yU〉 = 〈xU〉; hence x−1y1pU is a p-element. Therefore, y1p′U
is both p-element and a p′-element in the finite group G/U , i.e., y1p′U = 1U .
Thus yU = y1pU . ��

4.2 Subgroups of Finite Index in a Profinite Group

Nikolov and Segal [2007a, 2007b] have proved that the topological structure of
a finitely generated profinite group is completely determined by its algebraic
structure; more precisely, they prove that the subgroups of finite index of
such a group are precisely its open subgroups. The purpose of this section is
to present a relatively short proof of this result for a smaller class of groups
that includes all prosupersolvable groups and in particular all pro-p groups.

We say that a profinite group G is strongly complete if every subgroup of
finite index is open. Equivalently, G is strongly complete if it coincides with
its profinite completion (thinking of G as an abstract group): ̂G = G. It is
not hard to find examples of profinite groups that are not strongly complete
(see Example 4.2.12); the result of Nikolov and Segal says that none of them
are among the finitely generated ones.

Throughout this section we use the following notation, some of it new.
Let

w = w(x1, . . . xn) =
s
∏

i=1

xεi

ji
(ji ∈ {1, . . . , n}, εi = ±1)

be a group word on the variables x1, . . . xn; we think of w as representing an
element of the free abstract group with basis x1, . . . xn. For any group G, we
denote the set of all w-values in G by

w(G) = {w(g1, . . . , gn) | g1, . . . , gn ∈ G}.

The verbal subgroup w(G) of G associated with w is defined to be the sub-
group of G generated algebraically by the set w(G),

w(G) = 〈w(g1, . . . , gn) | g1, . . . , gn ∈ G〉 = 〈w(G)〉.
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If w = c = [x, y] = x−1y−1xy is the commutator word on x, y, we have
that

c(G) = {[g, h] = g−1h−1gh | g, h ∈ G}

is the set of all commutators of G; and c(G) = [G,G] is the commutator
subgroup of G as an abstract group, i.e., [G,G] consists of all elements of
G that can be written as a finite product of commutators; and [G,G] is its
closure in G.

For a subset Y of G, Prt(Y ) is the set of all products of the form yε11 · · · yεt
t ,

where t is a natural number, εi = ±1, and y1, . . . , yt ∈ Y .
Let G be a profinite group and let w = w(x1, . . . , xn) be a group word;

then for each g ∈ w(G), there is some natural number t such that g ∈
Prt(w(G)); clearly this number t depends on g, on G and on w. If there exist
such a t which is independent of the element g ∈ w(G), i.e., if

w(G) = Prt(w(G)),

then we say that w has (at most) width t in G; if no such t exists, we say that
w has infinite width. For some types of finitely generated profinite groups
and some group words w, there is a number t valid for all g, which depends
only on the minimal number d(G) of (topological) generators of those groups
G and on w. We are interested in this because of the following result.

Lemma 4.2.1 Let C be a formation of finite groups closed under taking nor-
mal subgroups and let w be a group word. The following conditions are equiv-
alent :

(a) For every finitely generated pro - C group G, w(G) is closed ;
(b) There exists an integer-valued function f such that for each natural num-

ber k and for each group H ∈ C that can be generated by k elements, one
has

w(H) = Prf(k)(w(H)),

i.e., for each k-generated group H ∈ C, the word w has width f(k) in H.

Proof. Note that for a profinite group G, the set w(G) is compact, hence so
is Prr(w(G)), for each r. Assume that condition (b) holds, and let G be a
finitely generated pro - C group with d(G) = d. Express G as an inverse limit
of finite quotient groups

G = lim←−
i∈I

Gi

with canonical epimorphisms ϕi : G −→ Gi.
Clearly

w(G) = lim←−
i∈I

w(Gi)

and ϕi(Prt(w(G))) = Prt(w(Gi)), for each natural number t. By (b),
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Prf(d)(w(Gi)) = w(Gi).

Hence Prf(d)(w(G)) is dense in w(G), according to Lemma 1.1.7. Since
Prf(d)(w(G)) is closed, it follows that Prf(d)(w(G)) = w(G). Plainly,

Prf(d)(w(G)) ⊆ w(G);

therefore w(G) = w(G).
Suppose now that (a) holds. Let k be a natural number and let F be

the free pro - C group of rank k. Since by our assumption w(F ) = w(F ) is
a profinite group which is algebraically generated by w(F ), it follows from
Lemma 2.4.6 that w(F ) = Prm(w(F )), for some natural number m. Define
f(k) = m. Now, if H is a group in C that can be generated by k elements,
then there is an epimorphism ϕ : F −→ H; consequently w(H) = ϕ(w(F )) =
ϕ(Prf(k)(w(F ))) = Prf(k)(w(H)). ��

In Nikolov and Segal [2007a, 2007b] they prove the existence of a function,
for the class of all finite groups, such as the one described in Lemma 4.2.1.
This is the basis of the following

Theorem 4.2.2 Let G be a finitely generated profinite group. Then every
subgroup of G of finite index is open, i.e., G is strongly complete.

We refer the reader to Nikolov and Segal [2007a, 2007b] for a complete
proof of this theorem that depends on the classification of finite simple groups.

Instead, we offer here a relatively short proof of Theorem 4.2.2 for a
subclass of prosolvable groups; this class includes all prosupersolvable groups
and in particular all pro-p groups. We start with the following

Proposition 4.2.3 Let G be a profinite group and let N be a subgroup (not
necessarily closed) of G of finite index. Then [G : N ] divides #G.

Proof. Replacing N by its core NG, we may assume that N is normal. Let p
be a prime divisor of [G : N ]. We assert that then p is also a divisor of #G.
Indeed, choose x ∈ G−N such that xp ∈ N . Then x has order p in the group
〈x〉/〈x〉∩N . Now, 〈x〉∩N is open in 〈x〉. Indeed, put t = [〈x〉 : 〈x〉∩N ]; then

〈xt〉 ≤ 〈x〉 ∩N,

and clearly 〈xt〉 is open in 〈x〉. Therefore p divides #〈x〉, and so p divides
#G (see Proposition 2.3.2), proving the assertion.

Next, let pn be the largest power of p dividing [G : N ]; we must show
that pn also divides #G. Assume on the contrary that the largest power of
p dividing #G is pm, with 1 ≤ m < n. Since m is finite, there exists an
open subgroup U of G such that pm divides [G : U ]; so p 
 | #U . Hence, by
the above assertion, p 
 | [U : U ∩N ]. Therefore pm is the largest power of p
dividing [G : U ∩N ]. This contradicts the fact that pn divides [G : U ]. ��
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Corollary 4.2.4 Let G be a prosolvable group, and let N be a normal sub-
group (not necessarily closed) of G of finite index. Then G/N is a finite
solvable group.

Proof. Let p be a prime number. It suffices to prove that G/N has a p-
complement (cf. Hall [1959], Theorem 9.3.3). According to Proposition 2.3.10,
G = SpSp′ , where Sp is a p-Sylow subgroup and Sp′ a p′-Hall subgroup of G.
Then

G/N = SpSp′N/N = (SpN/N)(Sp′N/N).

By Proposition 4.2.3 SpN/N ∼= Sp/N ∩ Sp is a finite p-group and Sp′N/N ∼=
Sp′/N ∩ Sp′ a finite p′-group; hence SpN/N is a p-Sylow subgroup of G/N
and Sp′N/N a p-complement. ��

Proposition 4.2.5 Let A be a finitely generated abelian profinite group.
Then every subgroup N of finite index in G is open.

Proof. We may assume that A is a free proabelian group of finite rank, say n.
Then A =

⊕n
i=1 〈ai〉 where 〈ai〉 = ̂Z. Let N be a subgroup of A of index t.

Then tA =
⊕n

i=1 〈tai〉 is open in A, and plainly tA ≤ N . Thus N is open. ��

Proposition 4.2.6 Let G be a finitely generated prosolvable group such that
[G,G] is closed. Then every subgroup N of finite index in G is open.

Proof. Replacing N by its core NG in G, we may assume that N is normal
in G. We shall use induction on the index of N in G. By Corollary 4.2.4,
G/N is a finite solvable group. If G/N is not of prime order, there exists
some H � G with N < H < G. By induction H is open. According to
Proposition 2.5.5, H is also a finitely generated profinite group. So, again
by induction, N is open in H, and hence in G. Assume now that the order
of G/N is p. Then N ≥ [G,G]. Since [G,G] is closed, we may assume that G
is abelian. The result follows then from Proposition 4.2.5. ��

Now we introduce the following terminology and notation. Given a natural
number � ≥ 1, we say that a finite group G is in the class N �, if G admits a
normal series (i.e., Gi � G for all i)

G = G0 ≤ G1 ≤ · · · ≤ G�−1 ≤ G� = 1 (1)

such that Gi/Gi+1 is nilpotent (i = 0, . . . , � − 1). Note that this condition
on G is equivalent to simply assuming that the series (1) is subnormal (i.e.,
Gi+1 �Gi for each i) rather than normal; indeed, if (1) is subnormal, replace
eachGi in (1) by its core

⋂

g∈GG
g
i inG; then

⋂

g∈GG
g
i �G andGi−1/

⋂

g∈GG
g
i

is a subgroup of
∏

g∈GGi−1/G
g
i , which is nilpotent.

We claim that the class N � is a formation of finite groups. Indeed, the
class N � is closed under taking quotient groups, because this is the case
for the class of nilpotent groups. To see that N � is closed under subdirect
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products, let G be a finite group, and assume that Ni � G with G/Ni ∈ N �

(i = 1, 2); then G/N1∩N2 ↪→ G/N1×G/N2. Since N � is clearly closed under
taking subgroups and finite direct products, we have that G/N1 ∩N2 ∈ N �.

The following are examples of classes of finite groups consisting of groups
in N �, for some fixed �:

– The class of all finite p-groups for a fixed prime p (� = 1).
– The class of all finite nilpotent groups (� = 1).
– The class of all finite supersolvable groups (� = 2); this is because the com-

mutator subgroup of a supersolvable group is nilpotent: see Hall [1959],
Theorem 10.5.4.

Theorem 4.2.7 Let G be a finitely generated profinite group such that there
exists some fixed � with G/N ∈ N �, whenever N �o G. Then every subgroup
of G of finite index is open, i.e., G is strongly complete.

The proof of this result will require first some preliminary lemmas.

Lemma 4.2.8 Let K ∈ N �, with � > 1. Then K contains a smallest normal
subgroup H such that K/H ∈ N �−1. Moreover

(a) H is nilpotent ; and
(b) [K,H] = H.

Proof. Certainly K contains normal subgroups L such that K/L ∈ N �−1,
e.g., K�−1; an easy induction shows that the intersection of two such normal
subgroups of K has the same property; H is the intersection of all such
normal subgroups of K. Part (a) is plain since H ≤ K�−1. Now, it is clear
that [K,H] ≤ H and [K,H] � K. Moreover, if

K = H0 ≥ H1 ≥ · · · ≥ H�−2 ≥ H�−1 = H

is a normal series and each Hi/Hi+1 is nilpotent (i = 0, . . . , �− 2), then

K = H0 ≥ [K,H1] ≥ · · · ≥ [K,H�−2] ≥ [K,H�−1] = [K,H]

is a normal series; further [K,Hi]/[K,Hi+1] is nilpotent since it is isomorphic
to a subgroup of Hi/Hi+1 (i = 1, . . . , � − 2), and K/[K,H1] is nilpotent
since K/H1 is nilpotent. Hence K/[K,H] ∈ N �−1. Thus, [K,H] = H by the
minimality of H. This proves (b). ��

Proposition 4.2.9 Let K = 〈x1, . . . , xr〉 be a finitely generated abstract
group.

(a) If A is an abelian normal subgroup of K, then every element of [A,K]
can be expressed in the form

[a1, x1] · · · [ar, xr]

(a1, . . . , ar ∈ A).
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(b) Assume that H is a nilpotent normal subgroup of K. Suppose that H is
generated by y1, . . . , ys as a normal subgroup, i.e., H = 〈y1, . . . , ys〉K .
Then every element of [H,K] can be expressed in the form

[h1, x1] · · · [hr, xr][h′
1, y1] · · · [h′

s, ys]

(h1, . . . , hr, h
′
1 . . . , h

′
s ∈ H).

(c) Assume that K is nilpotent. Then every element of [K,K] can be ex-
pressed in the form

[k1, x1] · · · [kr, xr]
(k1, . . . , kr ∈ K).

Proof. (a) Using the commutator identity

[ab, c] = [a, c]b[b, c], (2)

one deduces that [A, xi] = {[a, xi] | a ∈ A} is a subgroup of A (i = 1, . . . , r).
Put L = [A, x1] · · · [A, xr]. Since axi ≡ amod(L) for each a ∈ A (i = 1, . . . , r),
it follows that K centralizes A modulo L, i.e., [A,K] ≤ L. On the other hand,
it is obvious that L ≤ [A,K]. Hence [A,K] = L = [A, x1] · · · [A, xr].

(b) We use induction on the nilpotency class c of H. If c = 1, H is abelian;
then the result follows from part (a).

Assume now that c > 1. Consider the lower central series

H = γ1(H) > γ2(H) > · · · > γc−1(H) > γc(H) > γc+1(H) = 1

of H. Put B = γc−1(H) and A = γc(H). Then, by definition, [B,H] = A and
[A,H] = 1. So, A is central in H. By part (a),

[A,K] = [A, x1] · · · [A, xr],

since A abelian and normal in K.
By the centrality of A in H, one obtains from (2) that

[B, yi] = {[b, yi] | b ∈ B}

is a subgroup of A = [B,K] (i = 1, . . . , s). Put J = [B, y1] · · · [B, ys]; then
J ≤ A.

We claim that A = [A,K]J , i.e., every element of A can be written in the
form

[a1, x1] · · · [ar, xr][b1, y1] · · · [bs, ys],
for some a1, . . . , ar ∈ A, b1, . . . , bs ∈ B.

Plainly [A,K]J ≤ A. Note that [A,K]J � K, for [J,K] ≤ [A,K]. Now, yi
centralizes B/[A,K]J , for each i = 1, . . . , s, since [B, yi] ≤ J ; hence so does
every conjugate ygi of yi in K, for B/[A,K]J is normal in K/[A,K]J . This
means that H centralizes B/[A,K]J , i.e., A = [H,B] ≤ [A,K]J . This proves
the claim.
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Let u ∈ [H,K]. By induction

u ≡ [h1, x1] · · · [hr, xr][h′
1, y1] · · · [h′

s, ys] mod (A),

where h1, . . . , hr, h
′
1 . . . , h

′
s ∈ H.

Therefore, by the above claim,

u = [h1, x1] · · · [hr, xr][h′
1, y1] · · · [h′

s, ys][a1, x1] · · · [ar, xr][b1, y1] · · · [bs, ys],

where a1, . . . , ar ∈ A, b1, . . . , bs ∈ B. Finally, since A is central inH we obtain

u = [h1a1, x1] · · · [hrar, xr][h′
1b1, y1] · · · [h′

sbs, ys],

using the identity (2) again.
(c) We proceed by induction on the nilpotency class c of K. If c = 1, K is

abelian and the result is trivial.
Suppose next that c > 1. Put A = γc(K) and B = γc−1(K). By the

claim in part (b), every element of a ∈ A can be written in the form a =
[b1, x1] · · · [br, xr], where b1, . . . , br ∈ B, since in this case A is central in K
and we can take {y1, . . . , ys} = {x1, . . . , xr}.

Let g ∈ [K,K]. By induction,

g ≡ [k1, x1] · · · [kr, xr] mod (A)

(k1 . . . kr ∈ K). Therefore,

g = [k1, x1] · · · [kr, xr][b1, x1] · · · [br, xr],

for some b1, . . . , br ∈ B. Since [b1, x1], . . . , [br, xr] are in the center of K, we
can use (2) to get

g = [b1k1, x1] · · · [brkr, xr]. ��

Lemma 4.2.10 Let K = H � L. If K can be generated by d elements, then
there are d elements of H that generate it as a normal subgroup of K.

Proof. Say K = 〈k1, . . . , kd〉. Then ki = hixi, for some hi ∈ H,xi ∈ L
(i = 1, . . . , d). Consider the normal subgroup N of K generated by all the
conjugates hgi (i = 1, . . . , d; g ∈ K). Clearly N ≤ H; furthermore, K = NL
since NL contains each ki. Thus N = H. In other words, H = 〈h1, . . . , hd〉K .

��

Finally, before we prove Theorem 4.2.7, we need a result on the splitting
of some finite groups.

Lemma 4.2.11 Let K ∈ N � and let H be a minimal normal subgroup of K
such that K/H ∈ N �−1. Assume further that H is abelian. Then there exists
some subgroup L of K such that K = H � L.
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The proof of this result can be found in, for example, Doerk and Hawkes
[1992], Theorem IV.5.18, where it is stated in the more general setting of
“saturated formations”. The class N � is a formation. Moreover being “sat-
urated” means that if L is a finite group and its Frattini quotient L/Φ(L)
belongs to N �, then L ∈ N �; this is certainly so since the Frattini subgroup
of a finite group is nilpotent (cf. Hall [1959], Theorem 10.4.2).

Proof of Theorem 4.2.7: According to Proposition 4.2.6, it suffices to show
that [G,G] is closed in G; and by Lemma 4.2.1, this would follow if we
prove that there is an integer-valued function f such that if K ∈ N � can be
generated by k elements, then every element in [K,K] is the product of f(k)
commutators. We shall show specifically that f(k) = k + (�− 1)2k.

We argue by induction on �. If � = 1, then K is nilpotent and f(k) = k
by part (c) of Proposition 4.2.9.

Suppose now that � > 1 and that the result holds for � − 1. By
Lemma 4.2.8, there exists a smallest normal subgroup H of K such that
K/H ∈ N �−1; moreover H is nilpotent and [H,K] = H. It follows that
the abelian group H/[H,H] is the minimal normal subgroup of K/[H,H]
with quotient in N �−1. Then we infer from Lemma 4.2.11 that K/[H,H] =
H/[H,H] � L/[H,H] for some subgroup L such that [H,H] ≤ L ≤ K.
By Lemma 4.2.10, there are elements y1, . . . , yk ∈ H such that H =
[H,H]〈y1, . . . , yk〉K . Since H is nilpotent, [H,H] ≤ Φ(H) (cf. Hall [1959],
Theorem 10.4.3); hence H = 〈y1, . . . , yk〉K (see Corollary 2.8.5). Then we
can apply Proposition 4.2.9(b) to deduce that every element of [H,K] = H
is the product of 2k commutators. Let g ∈ [K,K]; by induction, the element
gH ∈ K/H is the product of k + (� − 2)2k commutators of K/H; therefore
g = vh, where v is the product of k+(�−2)2k commutators of K, and h ∈ H.
Thus g is the product of k + (�− 1)2k commutators of K, as claimed. ��

Example 4.2.12 A nonstrongly complete group.
Let I be an infinite set, T a fixed nontrivial finite group and let F an

ultrafilter on I containing the filter of all cofinite subsets of I (see, e.g.,
Bourbaki [1989], I, 6, 4). Consider the profinite group G =

∏

I T , the direct
product of |I| copies of T . Denote the elements of G by g = (gi). We shall
construct a nonopen subgroup H of index |T | in G. Define H to be the
collection of all elements h = (hi) of G such that {i ∈ I | hi = 1} ∈ F .
Plainly H is a proper normal subgroup of G. Moreover, it is dense in G since
F contains all cofinite subsets of I. For t ∈ T , define t ∈ G as the element of
G whose components ti are all equal to t. To see that [G : H] = |T |, it suffices
to show that every element g ∈ G is congruent to some such t modulo H.
Now, fix g ∈ G; for t ∈ T define It = {i ∈ I | gi = t}. Then

I =
⋃

t∈T
It.
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Since F is an ultrafilter, It ∈ F for some t ∈ T . Therefore, gt−1 ∈ H, i.e.,
g ∈ G is congruent to t modulo H, as desired. Finally note that H is not
open, since it is proper of finite index and it is dense.

For a profinite group G (not necessarily finitely generated) and a normal
subgroup N of finite index, the property of N being open obviously implies
the same property for its intersection with any Sylow subgroup of G; the
following proposition establishes the converse of this.

Proposition 4.2.13 Let G be a profinite group and let H be a normal sub-
group of finite index. Then, H is open in G if and only if H ∩ P is open in
P for every p-Sylow subgroup P of G.

Proof. In one direction the result is evident. Conversely, let us assume that
H ∩ P is open in P for each p-Sylow subgroup P of G. We must show that
H = H̄. Suppose on the contrary that H 
= H̄; then there exists a element
x ∈ H̄ − H such that its image x̃ in the finite group H̄/H has order p for
some prime p. We shall get a contradiction from the existence of such x.
The induced homomorphism 〈x〉 −→ H̄/H is continuous since 〈x〉 is strongly
complete; hence, replacing x by x1p if necessary (see Section 4.1 for this
notation), we may assume that x is a p-element. Let {xi} be a net in H
converging to x. Note that since 〈xi〉 is strongly complete, 〈xi〉 ∩H is open
in 〈xi〉; hence 〈xi〉 ≤ H. It follows then from Lemma 4.1.2 that {x1p

i } is a net
consisting of p-elements of H converging to x. We would reach the desired
contradiction if we could prove the following claim: the set T of p-elements
of H form a compact set. For then the limit x of any subnet of {xi} would
have to be in H. Fix a p-Sylow subgroup P of G. To prove the claim, observe
that T can be decomposed as

T =
⋃

g∈G
(H ∩ P g) =

⋃

g∈G
(H ∩ P )g,

since H is normal in G. On the other hand, T is the image of the continuous
map

(H ∩ P ) ×G −→ H

given by (r, g) �→ rg. Since, by hypothesis, H ∩P is open in P , it is compact,
and hence so is T . ��

Exercise 4.2.14

(a) Let G −→ H be a continuous epimorphism of profinite groups. Prove that
if G is strongly complete, so is H.

(b) If the profinite group G is not strongly complete, then neither is any open
subgroup of G.

(c) Let G be a strongly complete profinite group and let H be a profinite
group. Show that every homomorphism ϕ : G −→ H is continuous.
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(d) Let
1 −→ G1 −→ G −→ G2 −→ 1

be an exact sequence of profinite groups. Show that if G1 and G2 are
strongly complete, so is G.

4.3 Profinite Abelian Groups

In this section we study the structure of certain profinite abelian groups G.
Namely those that are torsion-free or torsion or finitely generated. Our gen-
eral approach consists of considering the Pontryagin dual group G∗ of G; then
use structure theorems for abstract abelian groups to describe this group; and
finally dualize again to obtain the structure of G ∼= G∗ ∗. Recall that a group
G is called torsion if every element of G has finite order. If the orders of the
elements of G are bounded, we say that G is of finite exponent; in that case,
the least common multiple of all orders is called the exponent of G.

For the benefit of the reader we state next two structure results for ab-
stract abelian groups that will be used in the sequel.

Theorem 4.3.1 (Fuchs [1970], Theorem 23.1; Hewitt and Ross [1963],
Theorem A.14) Let D be a divisible abstract abelian group. Then D is a
direct sum of copies of Q and quasicyclic groups:

D ∼=
[

⊕

n

Q
]

⊕
[

⊕

p

(

⊕

m(p)

Cp∞

)]

,

where n and m(p) are cardinal numbers.

Before stating the next theorem we need the concept of purity. A subgroup
B of an abelian group G is called p-pure (in G) if for whenever x ∈ G and
xp

n ∈ B, then there exist some y ∈ B such that yp
n

= xp
n

.

Theorem 4.3.2 (Fuchs [1970], Theorem 32.3; Hewitt and Ross [1963],
Theorem A.24) Let G be an abstract abelian group and let p be any prime
number. Then G contains a subgroup B such that

(a) B is a direct sum of cyclic groups;
(b) B is p-pure; and
(c) G/B is p-divisible.

Now we can classify torsion-free abelian profinite groups.

Theorem 4.3.3 Let G be a torsion-free profinite abelian group. Then G is
the direct product of copies of Zp for all primes p:

G ∼=
∏

p

(

∏

m(p)

Zp

)

,

where p ranges over all primes and each m(p) is a cardinal number.
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Proof. Consider the dual group G∗ of G. By Theorems 2.9.6 and 2.9.12, G∗

is a discrete abelian torsion divisible group. Hence, by Theorem 4.3.1,

G∗ ∼=
⊕

p

(

⊕

m(p)

Cp∞

)

.

Thus, by Theorem 2.9.6, Example 2.9.5 and Lemma 2.9.4,

G ∼= G∗ ∗ ∼=
∏

p

(

∏

m(p)

(Cp∞ )∗
)

∼=
∏

p

(

∏

m(p)

Zp

)

. ��

Theorem 4.3.4 Let p be a fixed prime.

(a) Let G be a torsion-free pro-p abelian group. Then G is free (as a pro-p
abelian group).

(b) Let G be a finitely generated pro-p abelian group. Then the torsion sub-
group tor(G) is finite, and

G ∼= F ⊕ tor(G),

where F is a free pro-p abelian group of finite rank.

Proof. (a) This follows immediately from Theorem 4.3.3 and a result analo-
gous to that in Example 3.3.8(c).

(b) Consider tor(G) as an abstract group. By Theorem 4.3.2, G contains a
subgroup B such that tor(G)/B is divisible and B is a direct sum of
cyclic p-groups. We claim that B is finite. Otherwise B =

⊕

i∈I Li where
each Li is a finite cyclic p-group and I is an infinite set. Now, for each
finite subset J of I one has that

⊕

j∈J Lj is a finite subgroup of G; hence
⊕

j∈J Lj is closed in G. On the other hand, d(
⊕

j∈J Lj) = |J |; moreover
d(
⊕

j∈J Lj) ≤ d(G) since G is abelian. This is a contradiction since
d(G) is finite and since J can be chosen of arbitrarily large cardinality.
This proves the claim. Therefore G/B is profinite. Since tor(G)/B is
divisible and torsion, it follows from Theorem 4.3.1 that either tor(G)/B
is trivial or Cp∞ ≤ G/B. The second alternative is not possible since
every subgroup of a profinite group is residually finite. Hence tor(G) = B
is finite.
Next observe that G/tor(G) is a finitely generated torsion-free pro-p

abelian group. By part (a), G/tor(G) is a free pro-p abelian group of finite
rank. Hence the short exact sequence

1 −→ tor(G) −→ G
ϕ−→ G/tor(G) −→ 1

splits, that is, there exists a continuous homomorphism σ : G/tor(G) −→ G
such that ϕσ is the identity on G/tor(G). Put F = σ(G/tor(G)). It follows
that G = F ⊕ tor(G). ��

We remark that since abelian pro-p groups are in a natural way Zp-mod-
ules, one can deduce the theorem above from the general structure of modules
over principal ideal domains.
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Next we describe finitely generated profinite abelian groups. By Propo-
sition 2.3.8 any such a group is the direct product of its pro-p components
(p-Sylow subgroups). Hence its structure can be deduced immediately from
the theorem above. We make it explicit in the following

Theorem 4.3.5 Let G be a finitely generated profinite abelian group, with
d(G) = d. Then, G is a direct sum of finitely many procyclic groups; more
explicitly,

G ∼=
[

⊕

p

(

⊕

m(p)

Zp

)]

⊕
[

⊕

p

(

⊕

i∈Ip

Li(p)
)]

,

where p ranges over all primes, each Li(p) is a finite cyclic p-group, each
m(p) is a natural number with m(p) ≤ d, and each Ip is a finite set with
|Ip| ≤ d.

Proposition 4.3.6 Let G be a finitely generated profinite abelian group, with
d(G) = d. Let H be a closed subgroup of G. Then, H is also finitely generated
and d(H) ≤ d.

Proof. Say G = 〈g1, . . . , gd〉. Consider the chain of subgroups

1 ≤ G1 ≤ G2 ≤ · · · ≤ Gd = G,

where Gi is the closed subgroup of G generated by g1, . . . , gi. Clearly Gi+1/Gi
is a procyclic group i = 1, . . . , d − 1. Set Hi = H ∩ Gi. Then Hi+1/Hi a
procyclic group since it is isomorphic to a subgroup of Gi+1/Gi (see The-
orem 2.7.2). For each i = 1, . . . , d − 1, choose hi+1 ∈ Hi+1 so that hi+1Hi
generates Hi+1/Hi. Then clearly H = 〈h1, . . . , hd〉. Thus, d(H) ≤ d. ��

We consider now profinite abelian torsion groups.

Lemma 4.3.7 Let G be an abelian profinite torsion group. Then G is of
finite exponent, i.e., there exists some integer t ≥ 1 such that gt = 1 for
every g ∈ G.

Proof. Since G is torsion, then G =
⋃∞
n=1G[n]. Observe that each G[n] is a

closed subgroup of G. By Proposition 2.3.1, there is some m such that G[m]
has nonempty interior. Hence there exists an open normal subgroup U of G
such that U ⊆ G[n]. Let r = [G : U ] and put t = rm. Then gt = 1 for all
g ∈ G. ��

Theorem 4.3.8 Let p be a fixed prime number and let G be a torsion pro-p
abelian group.Then there exist a natural number e such that

G ∼=
e
∏

i=1

(

∏

m(i)

Cpi

)

,

where each m(i) is a cardinal number.
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Proof. By Lemma 4.3.7, there exists some natural number e such that gp
e

= 1
for all g ∈ G. Consider the dual group G∗. Then pef = 0 for all f ∈ G∗, i.e.,
G∗ is of finite exponent. According to Theorem 4.3.2, G∗ contains a subgroup
B such that B is a direct sum of cyclic groups and G∗/B is divisible. It follows
from Theorem 4.3.1 that a divisible group of finite exponent must be trivial.
Hence G∗ = B is a direct sum of cyclic groups. Hence

G∗ ∼=
e
⊕

i=1

(

⊕

m(i)

Cpi

)

,

where each m(i) is a cardinal number. The result follows now from Lem-
ma 2.9.4. ��
Corollary 4.3.9 Let G be a torsion profinite abelian group. Then there exists
a finite set of primes Π and a natural number e such that

G ∼=
∏

p∈Π

( e
∏

i=1

(

∏

m(i,p)

Cpi

))

,

where each m(i, p) is a cardinal number. In particular, G is of finite exponent.

Proof. Write G as a direct product G =
∏

pGp of its p-components. By
Lemma 4.3.7, there is some positive integer t ≥ 1 such that gt = 1 for all
g ∈ G. It follows that Gp = 1 if p > t. Then the result is now a consequence
of Theorem 4.3.8. ��

4.4 Automorphism Group of a Profinite Group

Let G be a profinite group and denote by Aut(G) the group of all continuous
automorphisms of G. For a closed normal subgroup K of G, define

AG(K) = {ϕ ∈ Aut(G) | ϕ(g)g−1 ∈ K for all g ∈ G}.

We make Aut(G) into a topological group by letting the sets AG(U) serve as a
fundamental system of neighborhoods of 1, where U ranges over the set of all
open normal subgroups of G (cf. Bourbaki [1989], III,1.2, Proposition 1). We
term the corresponding topology the congruence subgroup topology of Aut(G).
Note that AG(U) is the subgroup consisting of those automorphisms ofG that
leave U invariant and induce the trivial automorphism on G/U . Remark that

⋂

U�oG

AG(U) = {id},

and therefore Aut(G) is totally disconnected (see Lemma 1.1.11). The next
lemma shows that the congruence subgroup topology is the weakest topology
on Aut(G) such that the holomorph G� Aut(G) is a topological group. [We
refer the reader unfamiliar with actions of one group on another to Section 5.6,
and in particular to Exercise 5.6.2.]
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Lemma 4.4.1 Let G be a profinite group.

(a) Consider Aut(G) as a topological group with the topology defined above.
Then the natural action of Aut(G) on G is continuous;

(b) Suppose that Aut(G) is a topological group with respect to some topology
and that the natural action of Aut(G) on G is continuous. Then AG(U)
is an open subgroup of Aut(G) for every open normal subgroup U of G.

Proof. (a) Define
Ψ : Aut(G) ×G −→ G,

by Ψ(ϕ, g) = ϕ(g). Choose g ∈ G, U ≤o G. We need to show that the
preimage Ψ−1(gU) of gU is open in Aut(G) × G. Pick (ϕ0, g0) ∈ Ψ−1(gU).
It will suffice to find an open neighborhood of (ϕ0, g0) in Aut(G) ×G whose
image under Ψ is contained in gU . Choose an open normal subgroup U0 of G
such that U0 ≤ U and ϕ0(U0) ≤ U (this is possible since ϕ0 is a continuous
automorphism of G). Then ϕ0AG(U0)×g0U0 is clearly an open neighborhood
of (ϕ0, g0) in Aut(G)×G. We show that Ψ(ϕ0AG(U0)× g0U0) ⊆ gU . Indeed,
let ϕ ∈ AG(U0) and u ∈ U0. By the definition of AG(U0), one has ϕ(u) ∈ U0

and ϕ(g0) ∈ U0g0 = g0U0. Thus

Ψ(ϕ0ϕ, g0u) = (ϕ0ϕ)(g0u) = (ϕ0ϕ)(g0)(ϕ0ϕ)(u) ∈ ϕ0(g0)U = gU,

as required.
(b) Since Aut(G) acts continuously on G, the map

Φ : Aut(G) ×G −→ G,

Φ(ϕ, g) = ϕ(g)g−1 is continuous. Indeed, it is the composition

Aut(G) ×G −→ G×G −→ G

given by (ϕ, g) �→ (ϕ(g), g) �→ ϕ(g)g−1, which is plainly continuous.
Let U be an open normal subgroup of G. Since Φ(id, g) = 1 for every

g ∈ G, there exist an open neighborhood Ag,U of the identity in Aut(G) and
an open subgroup Vg,U of G such that

Φ(Ag,U × gVg,U ) ⊆ U.

Clearly, G =
⋃

g∈G gVg,U . Since G is compact, there exist g1, . . . , gn ∈ G

such that G =
⋃n
i=1 giVgi,U . Set A =

⋂n
i=1Agi,U . Then Φ(ϕ, g) ∈ U for all

ϕ ∈ A and g ∈ G. Thus, A is an open neighborhood of the identity in Aut(G)
which is contained in AG(U). Hence, since AG(U) is a subgroup of Aut(G),
we conclude that it is open. ��

Theorem 4.4.2 Let G be a profinite group. The congruence subgroup topol-
ogy on Aut(G) defined above coincides with the compact-open topology of
Aut(G).
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Proof. Let U �o G. We show first that AG(U) is open in the compact-open
topology. Recall (see Section 2.9) that a subbase for the compact open-
topology consists of the sets B(K,V ) = {f ∈ Aut(G) | f(K) ⊆ V }, where K
runs through all the compact subsets of G and V runs through all the open
subsets of G. Choose a transversal g1, . . . , gn of U in G. Then

AG(U) =
n
⋂

i=1

B(giU, giU),

so, AG(U) is open. Thus the compact-open topology is stronger than the
congruence subgroup topology.

Conversely, let K be a compact subset of G, U an open normal subgroup
of G and g an element of G. We need to show that B(K, gU) is open in the
congruence subgroup topology of Aut(G). Pick ϕ0 ∈ B(K, gU). It suffices to
show that AG(U)ϕ0 ⊆ B(K, gU). Indeed, for every ϕ ∈ AG(U) and every
k ∈ K one has

(ϕϕ0)(k) ∈ ϕ(gU) ⊆ gU. ��

Next we give conditions on G for the group Aut(G) to be profinite.

Proposition 4.4.3 Assume that a profinite group G admits a fundamental
system Uc of open neighborhoods of 1 such that each U ∈ Uc is a characteristic
subgroup of G. Then Aut(G) is a profinite group.

Proof. Let U ∈ Uc. Then AG(U) is the kernel of the natural homomorphism

ωU : Aut(G) −→ Aut(G/U),

and ωU is continuous for each U ∈ Uc. Define AU = ωU (Aut(G)). For ϕ ∈
Aut(G), put ϕU = ωU (ϕ) (U ∈ Uc). For V ≤ U (U, v ∈ Uc), the map

ωV U : AV −→ AU

given by ωV U (ϕV ) = ϕU , is a well-defined homomorphism; furthermore by
definition one has a commutative diagram

AV

ωV U

Aut(G/V )

Aut(G)

ωV

ωU

AU Aut(G/U)

Hence the family of continuous homomorphisms {ωU}U∈Uc induces a contin-
uous epimorphism (see Corollary 1.1.6)
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ω : Aut(G) −→ lim←−
U ∈Uc

AU

Observe that ω is an injection since Ker(ω) =
⋂

U∈Uc
AG(U) = {id}. There-

fore
Aut(G) = lim←−

U ∈Uc

AU

is a profinite group. ��

Combining the proposition above with Proposition 2.5.1, we get

Corollary 4.4.4 Let G be a finitely generated profinite group. Then Aut(G)
is a profinite group.

The following exercise indicates how to construct infinitely generated
profinite groups satisfying the hypotheses of Proposition 4.4.3.

Exercise 4.4.5 Let S be the set of all (nonisomorphic) finite simple groups.
For each S ∈ S, let PS be a direct product of finitely many copies of S. Define

G =
∏

S∈S
PS .

Prove that G is not finitely generated, but it has only finitely many open
subgroups of any given index n. Deduce that Aut(G) is a profinite group.

Next we present an example of a profinite group G to show that Aut(G)
need not be profinite.

Example 4.4.6 Let C2 be the cyclic group of order 2 and let

G =
∏

I

Gi

be a direct product indexed by an infinite set I such that Gi ∼= C2 for all
i ∈ I. Let U be a subgroup of G of index 2 containing all but one of the
direct factors. Denote by ci the generator of Gi (i ∈ I), and let i0 ∈ I be such
that ci0 
∈ U . We shall prove that Aut(G), with the congruence subgroup
topology, is not compact. To see this it is enough to show that the open
subgroup AG(U) has infinite index in Aut(G). For i ∈ I, i 
= i0, denote by fi
the automorphism of G that permutes ci0 and ci and fixes the rest of the cj
(j ∈ I). Then for any pair i 
= j in I−{io}, one has f−1

i fj(ci) = ci0 /∈ U , i.e.,
f−1
i fj 
∈ AG(U). This shows that the fi (io 
= i ∈ I) lie in different cosets

of AG(U). Hence AG(U) has infinite index in Aut(G). Thus Aut(G) is not
compact and therefore not profinite.

Next we calculate the automorphism groups of Zp and ̂Z.
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Theorem 4.4.7 Let p be a prime number. Then

(a) Aut(Zp) ∼= Zp × Cp−1, if p 
= 2; and
(b) Aut(Z2) ∼= Z2 × C2.

Proof. By Proposition 4.4.3,

Aut(Zp) ∼= lim←−
n

Aut(Z/pnZ).

Denote by Rn the ring Z/pnZ of integers modulo pn (n = 1, 2, . . .). One easily
checks that the automorphism group of the additive cyclic group Z/pnZ can
be identified with the multiplicative group R×

n of units of the ring Rn. Recall
that an integer represents a unit in Rn if and only if it is prime to p. Therefore,
|Rn| = pn−1(p− 1).

For m ≥ n, let ϕm,n : Rm −→ Rn be the canonical epimorphism. Clearly

ϕm,n(R×
m) = R×

n .

Next we prove the following Claim:

R×
n
∼=

⎧

⎪

⎨

⎪

⎩

Cpn−1 × Cp−1, if p 
= 2;
C2n−2 × C2, if p = 2 and n ≥ 3;
C2, if p = 2 and n = 2; and
1, if p = 2 and n = 1.

Before proving the claim, note that the theorem follows from the claim if
p 
= 2. For p = 2, the theorem will also follow once we describe more precisely
the two factors in R×

n corresponding to the decomposition C2n−2×C2 (n ≥ 3).
Assume that α is an integer and let i be a natural number such that

αi ≡ 1 (mod pn). Then αi ≡ 1 (mod p); so p− 1 | i. Therefore the order of α
in R×

n is a multiple of p−1. Replacing α by one of its powers, we deduce that
there is an element of order p− 1 in R×

n ; we denote this element still by α.
If x ∈ Z satisfies x ≡ 1 + rpt (mod pt+2) and t ≥ 1, one can use the

binomial expansion to get

xp ≡ 1 + rpt+1 +
p(p− 1)

2
r2p2t (mod pt+2). (3)

If follows from this that if x ≡ 1 (mod pt), then xp ≡ 1 (mod pt+1). If one
assumes that either p 
= 2 or t > 1, then (3) implies that if x ≡ 1 (mod pt)
but x 
≡ 1 (mod pt+1), then xp 
≡ 1 (mod pt+2).

We distinguish two cases. Assume first that p 
= 2. Then the above remarks
together with an induction argument show that the element β = 1 + p has
order pn−1 in the group R×

n . Since the orders of α and β are relatively prime,
we deduce that

R×
n = 〈αβ〉 = 〈α〉 × 〈β〉 ∼= Cpn−1 × Cp−1,
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as desired.
Assume now that p = 2. If n = 1, then clearly R×

1 = (Z/2Z)× ∼= C1,
the trivial group; and if n = 2, then clearly R×

2 = (Z/22Z)× ∼= C2. Suppose
n ≥ 3. Then it follows from the argument indicated above using (3), that 5 has
order 2n−2 in R×

n = (Z/2nZ)×. On the other hand −1 is not in the subgroup
L(n, 5) = 〈5〉 of R×

n generated by 5; this is the case because otherwise

−1 ≡ 1 (mod 4)

(since 5 ≡ 1 (mod 4) and R×
2 = (Z/22Z)× is a quotient of R×

n = (Z/2nZ)×),
a contradiction. Consider the subgroup L(n,−1) = 〈−1〉 of R×

n generated
by −1. It follows that

R×
n = (Z/2nZ)× = L(n, 5) × L(n,−1) ∼= C2n−2 × C2,

as asserted. This ends the proof of the claim.
To finish the proof of the theorem in the remaining case p = 2, observe

that (for m ≥ n ≥ 3), one has

ϕm,n(L(m, 5)) = L(n, 5) and ϕm,n(L(m,−1)) = L(n,−1).

Thus

lim←−
n

Aut(Z/2nZ) = lim←−
n

(L(n, 5) × L(n,−1)) ∼= Z2 × C2. ��

Corollary 4.4.8

Aut(̂Z) ∼= Z2 × C2 ×
∏

p

(Zp × Cp−1).

In particular, Aut(̂Z) is infinitely generated.

It is well known that the automorphism group of a free abstract group
of finite rank is finitely generated (cf. Magnus, Karras and Solitar [1966],
Theorem 3.5.N1). The corollary above shows that the corresponding result
for profinite groups fails even for cyclic groups. Next we state a result of
Roman’kov [1993] which shows that it also fails for pro-p groups.

Theorem 4.4.9 Let F be a free pro-p group of rank m ≥ 2. Then Aut(F ) is
an infinitely generated profinite group.

4.5 Automorphism Group of a Free Pro-p Group

Let F be a free pro-p group of finite rank. In this section we study the group
of automorphisms Aut(F ) of F . In the previous section we have already
described this automorphism group when F has rank 1.
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We start with some definitions and results valid for profinite groups in
general. Let G be a profinite group and let γn(G) (n = 1, 2, 3, . . .) denote
the (closure) of the n-th term of its lower central series (see Exercise 2.3.17).
Define

An(G) = Ker
(

Aut(G) −→ Aut(G/γn+1(G))
)

.

Thus we have a series of normal subgroups

· · · � A2(G) � A1(G) �Aut(G).

Our first aim is to establish the following

Proposition 4.5.1 Let G be a profinite group. Then, G is pronilpotent if and
only if A1(G) is pronilpotent.

Before proving this result, we need two technical lemmas. They are valid
for general groups, but we shall state them only for profinite groups for
convenience in our exposition.

Lemma 4.5.2 Let G be a profinite group and let K,L,H be closed subgroups
of G. Put

U = [[K,L], H], V = [[L,H],K] and W = [[H,K], L].

Then, any normal subgroup N of G containing U and V , contains W as
well.

Proof. We use the following Witt-Hall identity, which can be easily checked,

[[x, y−1], z]y[[y, z−1], x]z[[z, x−1], y]x = 1.

Choose x ∈ H, y ∈ K, z ∈ L. Then the three factors on the left hand side of
the above identity belong to W y, Uz, and V x, respectively. Since Uz ≤ N ,
V x ≤ N , one deduces that [[x, y−1], z] ∈ N for all x ∈ H, y ∈ K, z ∈ L.
The commutators [x, y−1] generate [H,K] topologically. Consequently, every
element of L commutes modulo N with every element of [H,K]. In other
words, W = [[H,K], L] is also in N , as required. ��

Lemma 4.5.3 Let G be a profinite group. For every pair of natural numbers
i, j, one has (we think of G and Aut(G) as subgroups of G� Aut(G))

(a) [γi(G), Aj(G)] ≤ γi+j(G);

(b) [Ai(G), Aj(G)] ≤ Ai+j(G).

Proof. (a) We use induction on i. First note that by definition of An(G)
one has [G,Aj(G)] ≤ γj+1(G); so, (a) holds for i = 1. Suppose now that
[γi(G), Aj(G)] ≤ γi+j(G). By the induction hypothesis one has

[γi(G), [G,Aj(G)]] ≤ [γi(G), γj+1(G)] ≤ γi+j+1(G)
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and
[[Aj(G), γi(G)], G] ≤ [γi+j(G), G] = γi+j+1(G).

Hence, by Lemma 4.5.2,

[[G, γi(G)], Aj(G)] = [γi+1(G), Aj(G)] ≤ γi+j+1(G),

as required.
(b) By (a) one has

[Aj(G), [G,Ai(G)]] ≤ [γi+1(G), Aj(G)] ≤ γi+j+1(G).

Therefore, using Lemma 4.5.2 we deduce

[[Ai(G), Aj(G)], G] ≤ γi+j+1(G).

Hence
[Ai(G), Aj(G)] ≤ Ai+j(G),

by definition of Ai+j(G). ��

Proof of Proposition 4.5.1. Let Z(G) denote the center of G. We think of
G/Z(G) as a group of inner automorphisms of G. Since inner automorphisms
act trivially on the commutator quotient, we have that G/Z(G) is a subgroup
of A1(G). If A1(G) is pronilpotent, so is G/Z(G), and hence so is G.

Conversely, ifG is pronilpotent then
⋂∞
n=1 γn(G) = 1 (see Exercise 2.3.17).

So
⋂∞
n=1An(G) = 1. We claim that An(G) contains γn(A1(G)). We use in-

duction on n. By Lemma 4.5.3(b), [A1(G), A1(G)] ≤ A2(G). Assuming that
γn−1(A1(G)) ≤ An−1(G), we deduce from Lemma 4.5.3(b) that

γn(A1(G)) ≤ [An−1(G), A1(G)] ≤ An(G),

proving the claim. This implies that
⋂∞
n=1 γn(A1) = 1. Hence A1 is pronilpo-

tent. ��

Proposition 4.5.4 Let C be a formation of finite groups and let F = F (n)
be a free pro - C group of finite rank n.

(a) Suppose that M and N are closed normal subgroups of F such that
F/M and F/N are isomorphic. Then every continuous isomorphism
β : F/M −→ F/N is induced by a corresponding continuous automor-
phism α of F . In other words the diagram

F

ϕ

∼=
α F

ψ

F/M
∼=
β

F/N

commutes, where ϕ and ψ are the canonical epimorphisms.



140 4 Some Special Profinite Groups

(b) Let K be a characteristic subgroup of F . Then the natural homomorphism

ωK : Aut(F ) −→ Aut(F/K)

is an epimorphism.

Proof. Part (b) follows from part (a). To prove part (a), choose a basis
X = {x1, . . . , xn} of F . For i = 1, 2, . . . , n, set zi = (βϕ)(xi). Then F/N
is generated by z1, . . . , zn. Since n = d(F ), by Proposition 2.5.4, there ex-
ist elements y1, . . . , yn in F such that F = 〈y1, . . . , yn〉 and ψ(yi) = zi
(i = 1, 2, . . . , n). Define a continuous epimorphism α : F −→ F by α(xi) = yi
(i = 1, 2, . . . , n). By the Hopfian property of F (see Proposition 2.5.2), we
deduce that α is an automorphism. Clearly ψα = βϕ. ��

Lemma 4.5.5 Let G be a finitely generated pro-p group. Then the kernel
K1(G) of the natural epimorphism

Aut(G) −→ Aut(G/Φ(G))

is a pro-p group. In particular Aut(G) has an open pro-p subgroup.

Proof. The result is well-known ifG is finite (see Hall [1959], Theorem 12.2.2).
By Proposition 2.8.13, the terms Φn(G) of the Frattini series form a funda-
mental system of neighborhoods of 1 in the group G. It follows from Corol-
lary 4.4.4, Corollary 2.8.3 and the exactness of inverse limits (see Proposi-
tion 2.2.4) that

K1(G) = lim←−
n

K1(G/Φn(G)).

Thus the lemma follows from the corresponding result for finite groups men-
tioned above. ��

In the following theorem we collect some of the results obtained above
in the case of the automorphism group of a free pro-p group, and we obtain
some new information.

Theorem 4.5.6 Let F be a free pro-p group of finite rank m ≥ 2. Let An(F )
be the kernel of the natural epimorphism

Aut(F ) −→ Aut(F/γn+1(F )) (n = 1, 2, . . .).

Then

(a) Each An(F ) is a normal pro-p subgroup of Aut(F ) and

· · · � A2(F ) � A1(F ) �Aut(F ).

(b)
⋂∞
n=1An(F ) = {1};

(c) Aut(F )/A1(F ) is isomorphic to GLm(Zp); and
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(d)
An−1(F )/An(F )

is a free abelian pro-p group of rank d(F )d(γn(F )/γn+1(F )).

Proof. The fact that Aut(F ) −→ Aut(F/γn(F )) is an epimorphism is the
content of Proposition 4.5.4. Part (a) follows from the definition of An(F ) and
Lemma 4.5.5, since (using the notation in that proposition) A1(F ) ≤ K1(F ).
Part (b) follows from the equality

⋂∞
i=1 γn(F ) = 1 (see Exercise 2.3.17).

Part (c) is obvious.
It remains to prove (d). By the definition of An(F ), we may identify

Aut(F )/An(F ) with Aut(F/γn+1(F )), and An−1(F )/An(F ) with the set of
those automorphisms of F/γn+1(F ) which induce the identity on F/γn(F ).
Define

Ψ : An−1(F )/An(F ) −→ Hom(F/γn+1(F ), γn(F )/γn+1(F ))

by Ψ(α)(z) = α(z)z−1 for all α ∈ An−1(F )/An(F ), z ∈ F/γn+1(F ) (it is
straightforward to check that Ψ(α) ∈ Hom(F/γn+1(F ), γn(F )/γn+1(F ))).
We first show that Ψ is an (algebraic) isomorphism.

To show that Ψ is a homomorphism pick α, β ∈ An−1(F )/An(F ). Then
for any z ∈ F/γn+1(F ) one has

Ψ(αβ)(z) = αβ(z)z−1 = α(β(z)z−1)α(z)z−1 = α(z)z−1β(z)z−1,

where the last equality follows from the fact that β(z)z−1 ∈ γn(F )/γn+1(F )
and hence is centralized by α. On the other hand,

Ψ(α)Ψ(β)(z) = α(z)z−1β(z)z−1,

and so the equality Ψ(αβ) = Ψ(α)Ψ(β) is proved.
Now, Ψ(α(z)) = 0 for all z ∈ F/γn+1(F ) if and only if α(z)z−1 = 0 for

all z; and this is equivalent to α = id, which proves injectivity.
To prove surjectivity choose

τ ∈ Hom(F/γn+1(F ), γn(F )/γn+1(F )),

and define ατ : F/γn+1(F ) −→ F/γn+1(F ) by ατ (z) = τ(z)z for all z ∈
F/γn+1(F ). Since τ(z) ∈ γn(F )/γn+1(F ), ατ is a homomorphism and since
τ([F, F ]) is trivial, it is an automorphism of F/γn+1(F ) which induces the
identity automorphism modulo γn(F ), i.e., ατ ∈ An−1(F )/An(F ). Clearly
Ψ(ατ ) = τ .

Let X be a basis for F . Since F/γn+1(F ) is a free nilpotent pro-p group
of class n, the group Hom(F/γn+1(F ), γn(F )/γn+1(F )) is isomorphic to a
direct product

∏

|X|
(γn(F )/γn+1(F ))
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of |X| copies of γn(F )/γn+1(F ). Let

Φ : An−1(F )/An(F ) −→
∏

|X|
(γn(F )/γn+1(F ))

be a composition of this isomorphism with Ψ . We prove that the isomorphism
Φ is topological.

Let U be an open normal subgroup of F/γn+1(F ) which is contained in
γn(F )/γn+1(F ). Then

Φ−1

(

∏

|X|
U

)

= {α ∈ An−1(F )/An(F ) | α(z)z−1 ∈ U for all z ∈ F/γn+1(F )}

= AU (F )/γn+1(F )

is open in Aut(F/γn+1(F )) and therefore so is in An−1(F )/An(F ). ��

4.6 Profinite Frobenius Groups

The aim of this section is to characterize those profinite groups that can be
written as surjective inverse limits of finite Frobenius groups. Finite Frobenius
groups can be described in terms of many equivalent properties; we mention
some of these descriptions in Theorem 4.6.1. Not all those properties remain
equivalent for general profinite groups (see Example 4.6.2).

A closed subgroup H of a profinite group G is called isolated if 1 < H < G
and whenever g ∈ G−H, then H ∩Hg = 1.

Let H and K be groups. Assume that H acts on K, and denote the action
of h ∈ H on k ∈ K by kh. We say that this action is fixed-point-free if kh 
= k
whenever h, k 
= 1 (h ∈ H k ∈ K).

We remark that the actions involving (infinite) profinite groups that we
consider in this section are always by conjugation inside profinite groups;
hence such actions are automatically continuous. For a more general approach
to continuous actions see Section 5.6.

A profinite group G is called Frobenius if it contains a closed isolated
Hall subgroup H. If G is finite, the condition on H being Hall is redundant.
Next we recall some properties of Frobenius groups in the case that G is finite.
See, for example, Huppert [1967], Section V.8, for proof of the following result
where we collect some of the principal properties of finite Frobenius groups.

Theorem 4.6.1 Let G be a finite group.

(a) G is a Frobenius group if and only if G has an isolated subgroup H; an
isolated subgroup of a finite group is automatically a Hall subgroup; an
isolated subgroup of G is called a Frobenius complement.



4.6 Profinite Frobenius Groups 143

(b) G is a Frobenius group if and only if there exists a proper nontrivial nor-
mal subgroup K of G such that for each k ∈ K, k 
= 1, one has CG(k) ≤ K
(CG(k) is the centralizer of k in G ); such K is called a Frobenius kernel
of G; there is only one Frobenius kernel in a finite Frobenius group; any
complement H of K in G is an isolated subgroup.

(c) G is a Frobenius group if and only if there exists a proper nontrivial
subgroup H of G such that the set K = [G − (

⋃

g∈GH
g)] ∪ {1} is a

subgroup of G; then K is the Frobenius kernel of G and H a Frobenius
complement.

(d) G is a Frobenius group if and only if G can be expressed as a nontrivial
semidirect product G = K �H and the action of H on K by conjugation
is fixed-point-free; then K is the Frobenius kernel of G and H a Frobenius
complement.

(e) Let G = K �H be a finite Frobenius group with Frobenius kernel K. Let
L � G; then either L ≤ K or L ≥ K; if L < K, then G/L is Frobenius
with Frobenius kernel K/L.

(f) Let G = K �H be a finite Frobenius group with Frobenius kernel K and
Frobenius complement H. Then
(1) K is nilpotent ;
(2) Let p be a prime number. If p 
= 2, then a p-Sylow subgroup of H is

cyclic. The 2-Sylow subgroups of H are either cyclic or generalized
quaternion.

Example 4.6.2 (1) Define the infinite dihedral pro-2 group to be the pro-2
group D with presentation

D = 〈x, y | y2 = 1, yxy−1 = x−1〉,

i.e., D = F/R, where F is a free pro-2 group on a basis x, y, and R is
the smallest closed normal subgroup of F containing the elements y2 and
yxy−1x. Denote by a and b the images in D of x and y respectively. Then
b has order 2, 〈a〉 ∼= Z2 and G = 〈a〉 � 〈b〉. Note that 〈b〉 is isolated in G,
but it is not a Hall subgroup.

(2) Let p < q be two distinct primes and assume that p | q − 1. By Corol-
lary 4.4.4, there is an embedding of Cp into Aut(Zq). This corresponds
to an action of H = Cp on K = Zq given by multiplication in Zq by
a unit of the ring Zq; therefore this action is fixed-point-free. Construct
the corresponding semidirect product G = K � H (see Exercise 5.6.2).
This implies (see Lemma 4.6.3 below) that, H is isolated, and so G is
Frobenius.

Lemma 4.6.3 Let G = K �H be a semidirect product of K by H such that
1 < H < G. Then H is isolated if and only if H acts fixed-point-free on K
(by conjugation).

Proof. Let g ∈ G. Then there exists some k ∈ K such that Hg = Hk, since
G = KH. Let 1 
= k ∈ K; then Hk ∩H 
= 1 if and only if hk = h for some
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1 
= h ∈ H (because K is normal and H ∩K = 1) if and only if kh = k for
some 1 
= h ∈ H. Thus the result follows. ��

Lemma 4.6.4 Let G be a profinite group and let H be a closed isolated Hall
subgroup of G. Then

(a) H is finite;
(b) The Sylow subgroups of H are either cyclic or generalized quaternion

groups. In particular, a p-Sylow subgroup of H contains a unique subgroup
of order p.

Proof. (a) Let q be a prime number such that q | [G : H]. Then there exists
some U �o G with q | [G : UH]; so, q divides [G : U ]. Assume that H is
infinite. Then H ∩ U 
= 1. Therefore, there exists a prime number p and a
p-Sylow subgroup P of H such that P1 = P ∩ U 
= 1. Note that P1 is a
p-Sylow subgroup of U , since P is also a p-Sylow subgroup of G. By the
Frattini argument (see Exercise 2.3.13), G = NG(P1)U . Therefore,

G/U ∼= NG(P1)/U ∩ NG(P1);

hence q divides the order of NG(P1). Let Q be a q-Sylow subgroup of NG(P1),
and choose 1 
= y ∈ Q; observe that y /∈ H. Then

P1 = P1 ∩ P y1 ≤ H ∩Hy = 1,

a contradiction. Thus H is finite.
(b) These are well-known properties of isolated subgroups in finite groups

(see Theorem 4.6.1). So, it suffices to show that H appears as an isolated
subgroup of a finite group. Assume that G is infinite. Since H is finite, there
exists some open normal subgroup U of G with U ∩H = 1. Choose an open
normal subgroup W of G such that W < U . Consider the profinite group
UH = U �H. By Lemma 4.6.3, H acts fixed-point-free on U . It follows from
Proposition 2.3.16, that H acts fixed-point-free on U/W . Hence U/W �H is
a finite Frobenius group where H is isolated. ��

Lemma 4.6.5 Let G be a profinite group and let H be a closed isolated Hall
subgroup of G.

(a) H has a unique closed normal complement K, i.e., a closed normal sub-
group K of G such that G = KH and K ∩H = 1, so that G = K �H;

(b) Let V be the collection of all open normal subgroups V of G such that
V < K. Then, G/V = (K/V ) � (HV/V ) is a finite Frobenius group with
isolated subgroup HV/V for each V ∈ V , and

G = lim←−
V ∈V

[

(K/V ) � (HV/V )
]

.
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Proof. By Lemma 4.6.4, H is finite. We first prove part (a).
Step 1. Let U be an open normal subgroup of G such that H ∩ U = 1. We
shall show that if HU 
= G, then HU/U is an isolated subgroup of G/U .

It suffices to show that if g ∈ G and Hg ∩HU 
= 1, then g ∈ HU . Indeed,
if Hg ∩HU 
= 1, there exist h1, h2 ∈ H−{1} and u ∈ U , such that hg1 = h2u.
Replacing h1 by a one of its powers, we may assume that hp1 = 1, where
p is a prime divisor of |H|. Since H ∩ U = 1, it follows that hp2 = 1. By
Lemma 4.6.4(b), we deduce that 〈h1〉 = 〈h2〉. Put H0 = 〈h1〉 and Γ = H0U .
Clearly, Γ g = Γ . Since H0 is a p-Sylow subgroup of Γ , there exists u0 ∈ U
with Hg

0 = Hu0
0 . Then 1 
= H0 ≤ Hgu−1

0 ∩H; therefore, since H is isolated,
gu−1

0 ∈ H, i.e., g ∈ HU , as desired.
Step 2. Next we show the existence of a normal complement of H in G.

Choose an open normal subgroup K of G maximal with respect to the
property that H ∩ K = 1. We claim that HK = G. Otherwise, HK/K is
isolated in G/K by Step 1. Hence (see Theorem 4.6.1), HK/K has a normal
complement R/K in G/K, where K < R�oG. Then H∩R = 1, contradicting
the maximality of K. This proves the claim. So, K is the desired complement.
Step 3. We show that this complement is unique.

Let K and K ′ be two normal complements of H in G. Consider the
collection V of all open normal subgroups V of G such that V ≤ K ∩ K ′.
For each V ∈ V , G/V = (K/V ) � (HV/V ) = (K ′/V ) � (HV/V ). By Step 1,
HV/V is an isolated subgroup of the finite group G/V . Hence K/V = K ′/V
(see Theorem 4.6.1). Thus, K = K ′ (see Corollary 1.1.8).

This proves part (a). Part (b) is clear from the argument in Step 3. ��

Let π be a set of prime numbers. Recall that a supernatural number n is
a π-number if the primes involved in n are in π. If G is a profinite group, let
π(G) denote the set of primes involved in the order #G of G.

Corollary 4.6.6 Let G be a profinite group, H a closed isolated Hall subgroup
of G and let K the unique normal complement of H in G. Then,

(a) K = [G− (
⋃

g∈GH
g)] ∪ {1};

(b) If 1 
= k ∈ K, then the centralizer CG(k) of k in G is contained in K.

Proof. Clearly Hg is isolated for every g ∈ G and its normal complement
is K. By Lemma 4.6.3, Hg acts fixed-point-free on K. So, part (b) follows
from part (a). To prove (a), note that G = K � H and #K and #H are
coprime. Hence,

K ⊆
[

G−
(

⋃

g∈G
Hg

)]

∪ {1}.

Conversely, let 1 
= x ∈ G − (
⋃

g∈GH
g) and assume that x /∈ K. Since

⋃

g∈GH
g is a compact subset of G, there exists an open normal subgroup V

of G such that V < K and
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xV ∩
(

⋃

g∈G
Hg

)

V = ∅.

By Lemma 4.6.5, G/V = K/V �H is a Frobenius group with isolated sub-
groupH (we are identifyingH with its canonical image inG/V ). Put x̃ = xV .
Then x̃ /∈ K/V ; therefore x̃ ∈ H g̃, for some g ∈ G. This would imply that

x ∈ HgV ⊆
(

⋃

g∈G
Hg

)

V,

a contradiction. Thus x ∈ K. ��

Lemma 4.6.7 Let G be a profinite group, let K be a closed Hall normal
subgroup of G and let H be a complement of K in G. Then H acts (by
conjugation) fixed-point-free on K if and only if H acts (by the induced
action) fixed-point-free on every finite quotient K/(K ∩ U), where U �o G.

Proof. By Lemmas 4.6.3 and 4.6.4, H is isolated and finite. Let U be the
collection of all open normal subgroups of G. Suppose H acts fixed-point-free
on K/(K ∩ U) for each U ∈ U , and let k ∈ K be such that kh = k for some
1 
= h ∈ H. For U ∈ U , put KU = K ∩ U . Then, obviously (KUk)h = KUk
for all U ∈ U . Hence, KUk = KU ; i.e., k ∈ KU for all U ∈ U . Thus, k = 1.
The converse follows from Proposition 2.3.16. ��

Lemma 4.6.8 Let G = K � H be a finite Frobenius group with isolated
subgroup H. Assume that a proper quotient G̃ = H/N of H is a Frobenius
group with isolated subgroup H1. Then H1 is cyclic.

Proof. Say G̃ = H/N = K1 � H1, where K1 is the Frobenius kernel of G̃.
We claim that K1 contains a subgroup C, characteristic in G̃, such that C is
either cyclic of prime order or H1 has odd order and C ∼= C2 × C2. Assume
the claim holds. Since H1 acts on K1 fixed-point-free (see Theorem 4.6.1),
this means that H1 is isomorphic to a subgroup of Aut(C). If C is cyclic of
order p, this will insure that H1 is cyclic (we remark that in this case, p 
= 2,
for otherwise, Aut(C) = 1, and this would imply that H1 is trivial). Finally,
observe that Aut(C2 ×C2) ∼= S3; hence, if in addition the order of H1 is odd,
then H1

∼= C3, proving the lemma.
To prove the claim, we distinguish two cases. Assume first that there

exists a prime p 
= 2 such that p | |K1|. Since the p-Sylow subgroups of H
are cyclic (see Theorem 4.6.1), so are the p-Sylow subgroups of K1. Since
K1 is nilpotent, it follows that K1 contains a cyclic nontrivial characteristic
p-Sylow subgroup; and hence a characteristic subgroup of order p.

Assume now that |K1| is a power of 2 (consequently, |H1| is odd). Then
K1 cannot be cyclic, as remarked above. Since the 2-Sylow subgroups of H
are either cyclic or generalized quaternion, it follows that K1 is a proper
quotient of a generalized quaternion group, say,
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Q = 〈x, y | x2n−1
= 1, y2 = x2n−2

, xy = x−1〉.

Let M be a proper nontrivial normal subgroup of Q such that K1 = Q/M .
If 〈x〉M = Q, then K1 would be cyclic, a contradiction. If 〈x〉M 
= Q, then
M ≤ 〈x〉, since 〈x〉 is a maximal subgroup in Q. In this case, we have three
possibilities:

(1) M = 〈x〉. Then K1, would be cyclic, a contradiction.
(2) M = 〈x2〉. Then K1 = C2 × C2.
(3) M < 〈x2〉. Then, since M 
= 1, we have that y2 = x2n−2 ∈M . Therefore,

K1 is dihedral, and so its center is isomorphic to C2 × C2. Thus K1

contains a characteristic subgroup of the form C2 × C2. ��

The following theorem gives equivalent characterizations of profinite
Frobenius groups.

Theorem 4.6.9 Let G be a profinite group. Then the following conditions
are equivalent.

(a) G is a profinite Frobenius group;
(b) G has a finite isolated Hall subgroup;
(c) G is an inverse limit of a surjective inverse system {Gi, ϕij , I} of finite

Frobenius groups;
(d) G = K �H, where #H and #K are relatively prime and the action of

H on K is fixed-point-free;
(e) G has a closed Hall normal subgroup K such that CG(k) ≤ K for every

1 
= k ∈ K.

Proof. By Lemma 4.6.4, (a) and (b) are equivalent.
(b) ⇒ (c) follows from Lemma 4.6.5.
(c) ⇒ (d) We may assume that G is an infinite group. For each i ∈ I,

write Gi = KiHi, where Ki is the Frobenius kernel of the finite group Gi and
where Hi is a Frobenius complement. Consider the subset

J = {j ∈ I | Ker(ϕij) ≤ Ki for all i � j}

of I. Then J is cofinal in I. To see this, let r ∈ I−J ; since G is infinite, there
exists some j ∈ I with j � r and Ker(ϕjr) > Kj . If j /∈ J , there would exist
some i ∈ I with i � j and Ker(ϕij) > Ki. By Lemma 4.6.8, Hj is cyclic;
hence Gr = ϕjr(Hj) cannot be a Frobenius group, a contradiction. So j ∈ J .

Therefore, from now on we may assume that Ker(ϕij) ≤ Ki for all pairs
i, j ∈ I with i � j. For each i ∈ I, let Si be the set of all Frobenius comple-
ments in Gi. It follows that ϕij induces a map Si −→ Sj . Hence the Si form
an inverse system of nonempty finite sets. So, there exists some

(H ′
i) ∈ lim←− Si.
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Put K = lim←− Ki and H = lim←− H
′
i. Therefore, G = KH, K �G and #K and

#H are coprime (see Lemma 2.3.4). By Lemma 4.6.7, H acts fixed-point-free
on K.

(d) ⇒ (b) By Lemma 4.6.3, H is isolated. So this implication follows from
Lemma 4.6.5.

(a) ⇒ (e) follows from Corollary 4.6.6.
(e) ⇒ (a) By Theorem 2.3.15, G = K �H for some closed subgroup H

of G. The assumption on K implies that H acts fixed-point-free on K. Thus,
by Lemma 4.6.3, H is isolated. ��

It is known (cf. Huppert [1967], Remark V.8.8) that if K is the Frobenius
kernel in a finite Frobenius group G, then K is nilpotent and its class is
bounded by a function which depends only on the size of the primes involved
in a Frobenius complement H in G. If follows from Lemma 4.6.5 that a
Frobenius kernel in a profinite Frobenius group is also nilpotent, and its
nilpotency class is bounded by the same function. We record this in the
following

Corollary 4.6.10 Let G = K�H be a profinite Frobenius group with Frobe-
nius kernel K. Then K is nilpotent. Moreover,

(a) If 2 | |H|, then K is abelian;
(b) If 3 | |H|, then K is nilpotent of class at most 2;
(c) If p is an odd prime and p | |H|, then K is nilpotent of class at most

(p− 1)2
p−1−1 − 1
p− 2

.

4.7 Torsion in the Profinite Completion of a Group

Let G be a group. Define tor(G) to be the set of elements in G of finite order.
We refer to tor(G) as the torsion subset of G or the torsion of G, and to its
elements as the torsion elements ofG. In this section we study the relationship
between the torsion of a residually finite group G and the torsion tor( ̂G) of
its profinite completion ̂G. More precisely, we regard G as a subgroup of ̂G
and we are interested in determining for which groups G the closure tor(G)
in ̂G of tor(G) contains (or coincides with) tor( ̂G). In particular, we want to
know for which torsion-free groups the profinite completion is torsion-free as
well. Note that for a residually finite group G, one always has

tor(G) ⊆ tor( ̂G).

Furthermore, if the set of orders of the torsion elements of G is bounded,
then
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tor(G) ⊆ tor( ̂G).

We begin with abelian groups.

Proposition 4.7.1 Let G be a residually finite abelian group. Then

tor(G) ⊇ tor( ̂G).

Proof. We use additive notation for G. Let h be an element in ̂G of order
n ∈ N. We must show that for every subgroup U of finite index in G there
is a torsion element gU of G such that gU + U = h+ U . Choose g ∈ G with
g + U = h + U . Then ng ∈ U ∩ G = U . We claim that ng ∈ nU . Suppose
not. Note that G/nU is residually finite, because it has finite exponent and
therefore it is a direct sum of finite cyclic groups (cf. Theorem 10.1.5 and
Exercise 10.1.2 in Kargapolov and Merzljakov [1979]). Therefore, there exists
a subgroup of finite index V in U such that nU ≤ V and ng 
∈ V . Choose
g1 ∈ G such that g1+V = h+V . Then ng1 ∈ V ∩G = V and g−g1 ∈ U∩G =
U . It follows that n(g− g1) ∈ nU ≤ V , so that ng ∈ V , a contradiction. This
proves the claim. Thus ng = nu for some u ∈ U . Put gU = g − u. Then
gU + U = g + U = h+ U and ngU = 0, as desired. ��

Next we give an example of a residually finite abelian group G where
tor(G) contains tor( ̂G) properly.

Example 4.7.2 Let G =
⊕

p Z/pZ, where p ranges through the set of all
prime numbers. Clearly G is residually finite and ̂G =

∏

p Z/pZ. Observe
that tor(G) = ̂G ⊃ tor( ̂G).

Our next objective is to prove the equality tor(G) = tor( ̂G) for residually
finite minimax solvable groups. Recall that a group is called minimax if it
has a subnormal series

1 = G0 � G1 � · · · � Gn = G

of finite length whose factor groups satisfy either the maximal or the min-
imal condition on subgroups. One can find information on minimax groups
in Robinson [1972]. Note that the class of minimax groups is closed under
taking subgroups, homomorphic images and extensions. We start with a de-
scription of abelian minimax groups which can be found in Robinson [1972],
Lemma 10.31.

Proposition 4.7.3 An abelian minimax group is an extension of a finitely
generated abelian group by a direct product of finitely many quasicyclic groups.
Moreover, its torsion subgroup is a direct factor.

From this one easily deduces the following,
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Corollary 4.7.4 (a) Every abelian minimax group of finite exponent is finite.
(b) The torsion subgroup of a residually finite abelian minimax group is finite.

The following description of solvable minimax groups is given in Robinson
[1972], Theorem 10.33.

Theorem 4.7.5 Let G be a solvable minimax group, let R be the subgroup
generated by all quasicyclic subgroups of G and let F/R be the Fitting sub-
group of G/R; then

(a) R is the direct product of finitely many quasicyclic subgroups of G and R
is the intersection of all subgroups of finite index in G,

(b) F/R is nilpotent,
(c) G/F is polycyclic and abelian-by-finite.

Lemma 4.7.6 Let G be a solvable-by-finite minimax group and let H be a
normal subgroup of G which is closed in the profinite topology on G. Then
the profinite topology of G induces the full profinite topology on H.

Proof. We have to show that if N �f H, then there exists some U ≤f G
such that N ≥ H ∩ U . One checks easily that it is enough to prove the
corresponding property for any subgroup of finite index in G. Hence, we may
assume that G is a solvable minimax group.

We claim that it suffices to show that any subgroup N of finite index in
H is closed in the profinite topology of G. Indeed, in that case, N =

⋂

V ∈V V ,
where V is the collection of subgroups of finite index in G containing N (see
Proposition 2.1.4); since [H : N ] < ∞, it would follow that H ∩ V = N ,
for some V ∈ V , proving the claim. Now, let n = [H : N ] and let Hn be
the subgroup of H generated by the n-th powers of the elements of H. Then
Hn ≤ N . Since G is solvable minimax, so is H/Hn. Therefore, H/Hn has
a subnormal series whose factor groups are abelian minimax of exponent at
most n, and hence finite (see Corollary 4.7.4). Thus, Hn has finite index
in H. So, {Hn | n = 1, 2, . . .} is a fundamental system of neighborhoods in
the profinite topology of H. Therefore, it suffices to show that Hn is closed in
the profinite topology of G (n ∈ N). Now, sinceH is closed, G/H is residually
finite, and so it has no nontrivial quasicyclic subgroups by Theorem 4.7.5.
Since H/Hn is finite, G/Hn does not have nontrivial quasicyclic subgroups.
Thus, by Theorem 4.7.5(a), G/Hn is residually finite and hence Hn is closed
in G as required. ��
Lemma 4.7.7 If A is a residually finite torsion free abelian minimax group,
then the group ̂A/A is torsion free and divisible.

Proof. Since A is torsion free, so is ̂A by Proposition 4.7.1. Let n be a positive
integer. Then A/nA is finite by Corollary 4.7.4. Hence n ̂A ∩ A = nA (this
follows from Proposition 3.2.2). One deduces that ̂A/A is torsion free. Now,
if a1, . . . , at is a transversal of nA in A, we have that ̂A =

⋃t
i=1 nA+ ai =

⋃t
i=1 n

̂A+ ai; hence ̂A = n ̂A+A. Thus, ̂A/A is divisible. ��
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Theorem 4.7.8 Let G be a residually finite solvable minimax group. Then

(a) Every finite subgroup of ̂G is conjugate to a subgroup of G, and
(b) tor( ̂G) = tor(G).

Proof. First we show that there exists a series of finite length of closed (in
the profinite topology of G) normal subgroups of G, whose factors are either
finite abelian or torsion-free abelian groups. The existence of such a series
can be established as follows: since G is solvable, it admits a normal series

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

whose factor groups Gi+1/Gi are abelian; we shall refer to such a series as a
solvable series of length n. We proceed by induction on the length n of such
a series. If n = 1, G is abelian; then tor(G) is finite (see Corollary 4.7.4) and
hence closed in the profinite topology of G; moreoverG/tor(G) is torsion-free.
Assume that n > 1. Put A = G1. Then the closure Cl(A) of A in G is a resid-
ually finite abelian minimax group; hence tor(Cl(A)) is finite, tor(Cl(A))�G
and Cl(A)/tor(Cl(A)) is torsion-free. On the other hand, G/Cl(A) has a solv-
able series of length n−1; hence, by induction, there is a series of closed nor-
mal subgroups from Cl(A) to G whose factor groups are either finite abelian
or torsion-free abelian. Putting these two series together, we get a normal
series for G of the desired type.

It follows that the set of orders of the elements in tor(G) is bounded.
So, tor(G) ⊆ tor( ̂G). On the other hand, since tor(G) is invariant under
conjugation in G, the set tor(G) is invariant under conjugation in ̂G. Thus,
part (b) is an immediate consequence of (a).

We shall prove part (a) by induction on the length of a series

1 = A0 ≤ A1 ≤ · · · ≤ Am = G (4)

of closed normal subgroups of G each of whose factors is either a finite abelian
group or a torsion-free abelian group. The result holds if m = 1 by Proposi-
tion 4.7.1 and the fact that tor(G) is finite. Assume that the result is true for
residually finite solvable minimax groups admitting a series of this type of
length m = k, and let G be a residually finite solvable minimax group with a
series (4) of this type of length m = k + 1. Let A = A1. If A is torsion, then
it is finite; since the result holds for G/A by the induction hypothesis, it also
holds for G in this case.

Therefore we may assume that A is torsion-free. Put Q = G/A. Since A is
closed in the topology of G, one deduces that Q is residually finite. Let H be
a finite subgroup of ̂G. We must show that H is conjugate to a subgroup of G.
By Lemma 4.7.6, the profinite topology of G induces on A its own profinite
topology; hence by Lemma 3.2.6 and Proposition 3.2.5, the sequence

1 −→ ̂A −→ ̂G −→ ̂Q −→ 1
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is exact. So ̂Q can be identified with ̂G/ ̂A. Note that the image of H in ̂Q is
conjugate to a subgroup of Q = G ̂A/ ̂A by the induction hypothesis. Hence
Hg
̂A ≤ G ̂A, for some g ∈ ̂G. Replacing H by Hg we may assume that H ≤

G ̂A. Since both G and ̂A normalize A it follows that H normalizes A. Thus
we can view A and ̂A as left H-modules via the action of H by conjugation:

h · a = hah−1 (h ∈ H, a ∈ ̂A).

For each h ∈ H, there exist some gh ∈ G, ah ∈ ̂A such that h = ahgh. Al-
though ah is not uniquely determined by h, it is uniquely determined modulo
A (for, if ahgh = a′

hg
′
h, then a−1

h a
′
h = (g′

h)
−1gh ∈ A, because ̂A ∩ G = A,

since A is closed in the profinite topology of G).
We claim that the function δ : H −→ ̂A/A defined by δ(h) = ahA is a

derivation (see Section 6.8). Indeed, let h1, h2 ∈ H and say h1 = a1g1 and
h2 = a2g2, with ai ∈ ̂A, gi ∈ G (i = 1, 2); then,

h1h2 = a1(g1a2g−1
1 )g1g2 = a1(h1a2h

−1
1 )g1g2 = a1(h1 · a2)g1g2;

hence
δ(h1h2) = (h1 · (a2A))(a1A) = (h1 · δ(h2))δ(h1).

By Lemma 4.7.7, ̂A/A is torsion-free and divisible. Hence,H1(H, ̂A/A)=0
(see Corollary 6.7.5). Therefore δ is an inner derivation (see Lemma 6.8.1),
i.e., there exists some b ∈ ̂A such that

δ(h) = (h · (bA))(bA)−1, for all h ∈ H.

Therefore,
ahA = hbh−1b−1A, for all h ∈ H.

Since h−1ah = g−1
h ∈ G, we deduce that bhb−1 ∈ G for all h ∈ H, i.e.,

bHb−1 ≤ G. Thus H is conjugate to a subgroup of G. ��

A group G is polycyclic if it has a subnormal series of finite length whose
factor groups are cyclic. Such a group is residually finite (cf. Robinson [1996],
Corollary 5.4.17) and it is obviously solvable minimax. Clearly, finitely gener-
ated nilpotent groups are polycyclic. The following corollary is an immediate
consequence of the theorem above.

Corollary 4.7.9 Let G be a polycyclic group. Then tor(G) = tor( ̂G).

Next we state a result which extends Proposition 4.7.1 to finitely gener-
ated abelian by nilpotent groups. The proof can be found in Kropholler and
Wilson [1993].

Theorem 4.7.10 Let G be a finitely generated abelian by nilpotent group
(i.e., a group having an abelian normal subgroup with nilpotent quotient).
Then tor(G) = tor( ̂G).
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We finish the section by showing that the profinite completion of a torsion-
free finitely generated residually finite group need not be torsion-free in gen-
eral. Before we establish this, we introduce some terminology and recall some
facts about the special linear group SLn(Z).

(i) SLn(Z) = 〈I + eij | 1 ≤ i, j ≤ n, i 
= j〉, where I is the identity matrix of
size n, and eij denotes the n × n matrix with 1 as entry ij and zeroes
elsewhere. (This is proved using the Euclidean algorithm for Z and the
fact that pre- or post-multiplication of a matrix by eij corresponds to
elementary row or column operations on the matrix.)

(ii) The natural homomorphism SLn(Z) −→ SLn(Z/mZ) is onto for m =
1, 2, . . . . (This follows easily from (i).)

(iii) The groups of the form

Γn(m) = Ker(SLn(Z) −→ SLn(Z/mZ))

are called congruence subgroups of SLn(Z). For a fixed n, denote by N
the collection of all congruence subgroups Γn(m) (m = 1, 2, . . .). Then
N is a fundamental system of neighborhoods for a Hausdorff topology
on SLn(Z), the congruence subgroup topology. It is easy to prove with the
help of (ii) that if we denote by KN (SLn(Z)) the completion of SLn(Z)
with respect to the congruence subgroup topology, then

KN (SLn(Z)) = lim←−
m∈N

SLn(Z/mZ) ∼= SLn(̂Z) ∼=
∏

p

SLn(Zp).

(iv) One may compare the congruence topology on SLn(Z) with its profi-
nite topology. The congruence subgroup problem over Z is the problem
of deciding whether these two topologies coincide. One may state the
problem in the following equivalent form. Consider the natural continu-
ous epimorphism

ϕ : ̂SLn(Z) −→ SLn(̂Z).

Then the congruence subgroup problem is the problem of deciding
whether the kernel of ϕ is trivial. In Bass, Lazard and Serre [1964] and
Mennicke [1965] it is shown that if n ≥ 3, then Ker(ϕ) = 1, i.e., the
profinite and the congruence subgroup topologies on SLn(Z) coincide.
For n = 2, it was known at that time that the two topologies are dif-
ferent: we give a precise description of Ker(ϕ) for the case n = 2 in
Theorem 8.8.1. See Rapinchuk [1999] for a survey of the congruence
subgroup problem in a more general setting.

Lemma 4.7.11 Let n ≥ 2 and m ≥ 3. Then Γn(m) is torsion-free.

Proof. If p | m, then Γn(m) ≤ Γn(p). So, we may assume that m = p is a
prime number. Let α ∈ Γn(p); then α = I + prβ, where I is the identity
matrix, β is an n×n matrix over Z with at least one entry not divisible by p,
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and where r is a natural number ≥ 1. Let t be a positive integer. Say t = psu,
with s and u natural numbers and p � u. Then

αt = (I + prβ)t = I +
(

t

1

)

prβ + · · · = I + pr+suβ + pr+s+1γ,

for a certain n× n matrix γ. Thus αt 
= I. ��

Proposition 4.7.12 Given any finite group K, there exists a finitely gener-
ated torsion-free linear group G whose profinite completion contains a direct
product

∏

ℵ0
K of countably many copies of K.

Proof. Fix an integer n ≥ 3. As pointed out above, the congruence and the
profinite topologies of SLn(Z) coincide in that case, so that ̂SLn(Z) can be
identified with

∏

p SLn(Zp). From the properties stated above, it is clear that
the congruence subgroup Γn(m) is residually finite, it has finite index in
SLn(Z) and it is finitely generated. Moreover, Γn(m) is torsion-free if m ≥ 3
by Lemma 4.7.11.

Now, the profinite completion ̂Γn(m) of Γn(m) can be regarded as an
open subgroup of ̂SLn(Z) = SLn(̂Z) (see Proposition 3.2.2). Therefore, by
the definition of the product topology, it contains a direct factor of the form
∏

p �∈Σ SLn(Zp), where Σ is a finite set of primes. Since SLn(Z) contains the
permutation group Sn and since K is finite, one can find n such that SLn(Z)
contains a copy of K. Therefore, for each p, SLn(Zp) contains a copy of K.
Thus ̂Γn(m) contains

∏

ℵ0
K. ��

An example of a finitely generated residually finite torsion-free group
whose completion contains every countably based profinite group will be given
in Corollary 9.4.6.

4.8 Notes, Comments and Further Reading

Theorem 4.2.2 was first proved for finitely generated pro-p groups by
J-P. Serre (in an unpublished letter to A. Pletch, dated March 26, 1975) us-
ing Lie algebra methods. Anderson [1976] extended Serre’s result to finitely
generated abelian-by-pronilpotent profinite groups. Oltikar and Ribes [1978]
proved the result for finitely generated prosupersolvable groups. Theor-
em 4.2.7 in the form presented here is due to Hartley [1979]. Part (b) of
Proposition 4.2.9 is based on an argument of Rhemtulla [1969]. Proposi-
tion 4.2.3 and Corollary 4.2.4 are also due to Anderson. Example 4.2.12 is due
to Peterson [1973]; he also proves that an uncountably generated (i.e., a non-
metrizable) profinite group is never strongly complete. Proposition 4.2.13
was proved by Pletch [1981]. In Saxl and Wilson [1997] and Mart́ınez and
Zel’manov [1996] it is shown that finitely generated profinite groups that are
direct products of finite simple groups are strongly complete.
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A prosolvable version of Theorem 4.2.2 was proved by Segal [2000]; he
gives an explicit formula for the function f(d) described in Lemma 4.2.1 in
the case of the commutator word, namely

Theorem 4.8.1 In a finite d-generated solvable group H, every element of
the derived subgroup [H,H] is equal to the product of f(d) = 72d2 + 45d
commutators.

In Nikolov and Segal [2007a, 2007b] they prove

Theorem 4.8.2 Let G be a finitely generated profinite group and H is a
closed normal subgroup of G. Then [H,G] is closed in G. In particular, any
term γn(G) of the lower central series of G is closed.

However the terms of the derived series (other than the commutator sub-
group) of a finitely generated profinite group are not closed in general. Ex-
amples of this are provided in Roman’kov [1982]. In the case of pro-p groups
Jaikin-Zapirain [2008] proves the following

Theorem 4.8.3 Let F be a free nonabelian pro-p group of finite rank, and
let w be a group word, 1 
= w ∈ Φ, where Φ is a free abstract group. Then
w(F ) is closed in F if and only if w 
∈ [Φ,Φ]p[[Φ,Φ], [Φ,Φ]].

A related question was suggested by A. Shalev.

Open Question 4.8.4 Let G be a finitely generated profinite group and let n
be a natural number. Let 〈Gn〉 = 〈xn | x ∈ G〉 be the subgroup of G generated
by the nth powers of its elements. Is 〈Gn〉 closed?

Note that a positive answer to this question combined with the solution
of Burnside’s problem given by E. Zel’manov for profinite groups (see below)
would give another proof of Theorem 4.2.2. Indeed, let H be a normal sub-
group of index n in a finitely generated profinite group G. If 〈Gn〉 is closed,
then G/〈Gn〉 is a finitely generated torsion group. By a result of Zel’manov
(Zel’manov [1992], Theorem 1), G/〈Gn〉 is finite. Hence 〈Gn〉 would be open
in G. On the other hand, 〈Gn〉 ≤ H; thus H would be open as well.

Mart́ınez [1996] gives a positive answer to this question when G is a
pro -N � group; see also Mart́ınez [1994]. More generally, Nikolov and Segal
[2007a, 2007b] answer this question positively for groups G for which there
exists at least one finite group not isomorphic to an open section B/A of G,
(i.e., with A � B ≤ G and A open in G).

An infinite profinite group is called just-infinite if it is infinite and if every
nontrivial closed normal subgroup is open (see, e.g., Wilson [2000]). Jaikin-
Zapirain [2002] proves that if G is a nonsolvable just-infinite pro-p group,
then every nontrivial normal subgroup of G is open.

The monograph of Segal [2009] contains an excellent exposition on results
about group words; many of them relate to whether certain verbal subgroups
of profinite groups are closed.
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4.8.5 Profinite Torsion Groups

The following theorem is proved by Hewitt and Ross [1970] (Theorem 28.20).

Theorem 4.8.5a Every compact Hausdorff torsion group is profinite.

In the same location they mention the following question, which they seem
to consider to be folklore at the time.

Open Question 4.8.5b Is a torsion profinite group necessarily of finite ex-
ponent?

The Burnside Problem for finitely generated compact Hausdorff torsion
groups was raised by Platonov [1966]; see also in Kourovka [1984]: ev-
ery finitely generated profinite torsion group is finite. This conjecture has
been proved to be correct in the case of finitely generated pro-p groups
by Zel’manov. Using methods in the theory of Lie algebras developed in
Zel’manov [1990] and Zel’manov [1991], he proves

Theorem 4.8.5c (Zel’manov [1992], Theorem 1) Every finitely gener-
ated pro-p torsion group is finite.

In fact Platonov’s conjecture has a positive answer for all finitely gener-
ated profinite groups. This can be seen by combining the above theorem of
Zel’manov with a reduction due to Wilson and Herfort to the case of pro-p
groups. This reduction is a consequence of the following

Theorem 4.8.5d (Wilson [1983], Theorem 1) Let G be a profinite tor-
sion group. Then G has a finite series

1 = Gn ≤ Gn−1 ≤ · · · ≤ G0 = G

of closed characteristic subgroups such that each group Gi/Gi+1 is either a
pro-p group, for some prime p, or a direct product of isomorphic finite simple
groups.

The theorem of Wilson in turn is based on a previous result of Herfort.

Theorem 4.8.5e (Herfort [1980], Theorem 1) Let G be a profinite tor-
sion group. Then the order of G is divisible by only finitely many distinct
primes.

A somewhat related result is the following

Theorem 4.8.5f (Herfort [1982]) Let G be a profinite group whose order
is divisible by infinitely many different primes. Then G contains a procyclic
subgroup with the same property.
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Another consequence of the theorem of Zel’manov mentioned above is that
every infinite compact Hausdorff group contains an infinite abelian subgroup
(see Zel’manov [1992], Theorem 2). In this connection see also McMullen
[1974].

The first description of the automorphism group of a finitely generated
profinite group (Corollary 4.4.4) that we are aware of appears in Smith [1969].
A different proof of Theorem 4.4.7 describing Aut(Zp) is given in Serre [1973],
Proposition II.8.

The abstract version of Lemma 4.5.2 is due to Hall [1958]. The abstract
version of Lemma 4.5.3 was proved by Andreadakis [1965]. Proposition 4.5.1
and Theorem 4.5.6 are due to Lubotzky [1982].

Anderson [1974] proves a result more general than Lemma 4.5.5, namely,
he shows that if G a finitely generated profinite group which is virtually pro-p,
then Aut(G) is also virtually pro-p.

4.8.6 Normal Automorphisms

A continuous automorphism ϕ : G −→ G of a profinite group G is called
normal if ϕ(N) = N for every open normal subgroup N of G. Neukirch
[1969] proved that every automorphism of the absolute Galois group GQ̄/Q

of Q is normal. He conjectured that in fact every automorphism of GQ̄/Q is
inner. This conjecture was proved by Uchida [1976] and by Ikeda [1977]. In
Jarden and Ritter [1980] a corresponding result is proved for GK̄/K , where
K is any finite extension of the field Qp of p-adic numbers. In Jarden [1980]
he considers an analogous question for free profinite groups, and he proves
the following

Theorem 4.8.6a Let H and J be open subgroups of the nonabelian free profi-
nite group F . Suppose that σ : H → J is an isomorphism such that σ(U) = U
for every open normal subgroup U of F contained in H∩J . Then σ is induced
by an inner automorphism of F .

The results in Section 4.6 dealing with infinite profinite Frobenius groups
are due to Gildenhuys, Herfort and Ribes [1979].

The question about existence of torsion in the profinite completion of
residually finite torsion-free groups was raised in Crawley-Boevey, Kropholler
and Linnell [1988], where the absence of torsion in the profinite completion of
a torsion-free solvable-by-finite minimax group and a torsion-free metabelian-
by-finite group was proved. The first example of a residually finite torsion-free
group whose profinite completion has torsion was discovered by Evans [1990].
Proposition 4.7.1 is due to Chatzidakis. The results 4.7.2 and 4.7.6–4.7.8 are
due to Kropholler and Wilson [1993]. In this paper they construct examples
of finitely generated torsion-free center-by-metabelian groups whose profinite
completion contains torsion.

For results about prop-p center-by-metabelian groups see Kochloukova
and Pinto [2008]. For the probability of generating a prosolvable group, see
Lucchini, Menegazzo and Morigi [2006].
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Proposition 4.7.12 was proved by Lubotzky [1993]; he also gives an exam-
ple of a finitely generated residually finite torsion-free group whose comple-
tion contains every countably based profinite group.

Chatzidakis [1999] proves the existence of a two-generated torsion-free
residually finite p-group whose pro-p completion contains every countably
based pro-p group.

One may pose a dual problem to the one considered above: let G be an
infinite finitely generated residually finite torsion group. Is ̂G torsion? The
answer to this is always negative. This follows from the result of Zel’manov
quoted in Theorem 4.8.5c and the reduction results of Wilson and Herfort
(4.8.5d and 4.8.5e above). For a special case of this see McMullen [1985].



5 Discrete and Profinite Modules

5.1 Profinite Rings and Modules

A profinite ring Λ is an inverse limit of an inverse system {Λi, ϕij} of fi-
nite rings. We always assume that rings have an identity element, denoted
usually by 1, and that homomorphisms of rings send identity elements to
identity elements. A profinite ring Λ is plainly a compact, Hausdorff and to-
tally disconnected topological ring; the converse is also true, as we indicate in
Proposition 5.1.2 below. It is clear that a profinite ring admits a fundamen-
tal system of neighborhoods of 0 consisting of open (two-sided) ideals (this
follows from a result analogous to Lemma 2.1.1).

Let Λ be a profinite ring. An abelian Hausdorff topological group M is
said to be a left Λ-module if there is a continuous map Λ×M →M , denoted
by (λ,m) �→ λm, satisfying the following conditions

(i) (λ1λ2)m = λ1(λ2m)
(ii) (λ1 + λ2)m = λ1m+ λ2m
(iii) λ(m1 +m2) = λm1 + λm2

(iv) 1m = m

for m,m1,m2 ∈M and λ, λ1, λ2 ∈ Λ, where 1 is the identity element of Λ.
Similarly, a right Λ-module is defined as a topological abelian group M

together with a continuous map M × Λ → M denoted by (m,λ) �→ mλ,
satisfying conditions analogous to (i), (ii), (iii) and (iv) above.

If Λ is a profinite ring, Λop will denote the opposite ring, that is a ring with
the same elements and the same addition as Λ, and where the multiplication
◦ is defined bym1◦m2 = m2m1. Clearly Λop is also a profinite ring. Any right
Λ-module can be thought of as a left Λop-module in a natural way; hence,
any general statement about left Λ-modules is also valid for right Λ-modules.
We often refer to left Λ-modules simply as Λ-modules.

If M and N are two Λ-modules, we use the notation HomΛ(M,N) for
the abelian group of all continuous Λ-homomorphisms M −→ N from M to
N ; Hom(M,N) denotes the abelian group of all continuous homomorphisms
from M to N as abelian profinite groups. We sometimes write EndΛ(M)
and End(M) for HomΛ(M,M) and Hom(M,M), respectively. For conve-
nience, sometimes we refer to a continuous Λ-homomorphism of Λ-modules
as a morphism of Λ-modules.

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 5, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_5
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Sometimes we want to think of HomΛ(M,N) as a topological group; in
that case it is understood that its topology is the compact-open topology (see
Section 2.9).

We leave to the reader the development of the natural notions of submod-
ule of a module, quotient module M/N of a module M modulo a submod-
ule N , kernel and image of a morphism of Λ-modules, etc.

Let X be a subset of a Λ-module M . The closed Λ-submodule generated
by X is the intersection of all closed Λ-submodules of M containing X; we
denote it by 〈X〉. We say that M is finitely generated if M = 〈X〉 for some
finite subset X of M . As in the case of profinite groups, we say that a subset
Y of a profinite Λ-module M converges to 1 if every open submodule of M
contains all but finitely many elements of Y ; a map ϕ : X −→ M from a
set X into a profinite group M converges to 1 if the set ϕ(X) converges to 1
in M .

Lemma 5.1.1 Let Λ be a profinite ring and let M be a Λ-module.

(a) If M is discrete, then M is the union of its finite Λ-submodules; in par-
ticular, M is torsion as an abelian group.

(b) If M is profinite, then it is the inverse limit of its finite quotient
Λ-modules. Equivalently, the submodules of M of finite index form a fun-
damental system of neighborhoods of 0.

(c) Every profinite Λ-module contains a subset of generators converging to 1.

Proof. Let M be discrete and let m ∈ M . Since there exists a fundamental
system of neighborhoods of 0 in Λ consisting of open ideals of Λ, there is
an open ideal T of Λ such that Tm = 0; therefore, Λm is a submodule with
finitely many elements. Thus (a) follows.

To prove (b) we first think ofM simply as an abelian profinite group with
respect to addition. As such, its open subgroups form a fundamental system
of neighborhoods of the element 0 (see Theorem 2.1.3). Next we prove that
if U is an open subgroup of the abelian group M , then it contains some open
Λ-submodule. By continuity of the action of Λ on M , for each λ ∈ Λ there
exists some open neighborhoodWλ of λ in Λ and some open subgroup Vλ of U
such that WλVλ ⊆ U . Since Λ is compact, there exist finitely many elements
λ1, . . . , λt ∈ Λ such that Wλ1 , . . . ,Wλt is a covering of Λ. Put V =

⋂t
i=1 Vλi .

Then V ≤o U and ΛV ⊆ U . Let N be the closure of the subgroup of U
consisting of all finite sums of the form λ1v1 + · · · + λrvr (λi ∈ Λ, vi ∈ V ).
Then N is an open Λ-module contained in U , as needed.

Consider the collection {Ni | i ∈ I} of all open Λ-submodules of M . One
readily checks that

M = lim←−M/Ni

(see the implication (c) ⇒ (d) in Theorem 2.1.3).
Part (c) follows from Proposition 2.4.4. ��
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Note that in the proof of (b) above we only use the compactness of Λ
and the fact that M is a compact, Hausdorff and totally disconnected group.
A slight modification of the proof of the above lemma shows that a compact
Hausdorff totally disconnected ring is the inverse limit of finite rings, i.e.,
it is profinite. To be complete we collect several useful characterizations of
profinite rings in the following proposition.

Proposition 5.1.2 Let Λ be a topological ring. Then the following conditions
are equivalent.

(a) Λ is a profinite ring ;
(b) Λ is compact and Hausdorff ;
(c) Λ is compact, Hausdorff and totally disconnected ;
(d) Λ is compact and the zero element of Λ has a fundamental system of

neighborhoods consisting of open ideals of Λ;
(e) The zero element of Λ has a fundamental system of neighborhoods {Ti |
i ∈ I} consisting of open ideals of Λ, and Λ = lim←− Λ/Ti;

(f) There is an inverse system {Λi, ϕij} of finite rings, where each morphism
ϕij is an epimorphism, and Λ = lim←− Λi.

Proof. Most of the proof is done by mimicking the proof of Theorem 2.1.3; we
leave the details to the reader. The only new fact is the implication (b) ⇒ (c),
and we proceed to establish this. We wish to prove that the connected com-
ponent C of 0 in Λ is {0}. To prove this, consider the Pontryagin dual
Λ∗ = Hom(Λ,Q/Z) of Λ as a compact abelian group (see Section 2.9). Then
Λ∗ is a discrete abelian group, and we make it into a Λ-module by the rule
(λf)(μ) = f(μλ) (λ, μ ∈ Λ, f ∈ Λ∗). Now, for any f ∈ Λ∗, Cf = {cf | c ∈ C}
is a continuous image of C, and so it is a connected subset of Λ∗. Since Λ∗

is discrete, Cf = 0. Hence 0 = (cf)(1) = f(c) for each c ∈ C, i.e., f(C) = 0.
Since this is valid for every f ∈ Λ∗, one deduces as a consequence of the
Pontryagin-van Kampen duality theorem for compact abelian groups that
C = 0 (cf. Hewitt and Ross [1963], Theorem 24.10 or Hofmann and Morris
[2006], Theorem 7.64, for example). �

Exercise 5.1.3 (The structure of commutative profinite rings)

(1) Finite rings: Let R be a commutative finite ring and let {P1, . . . , Pn} be
the collection of its maximal ideals.
(1i) Prove that for every natural number m = 1, 2, . . ., Pmi + Pmj = R

whenever i 
= j. Deduce that
⋂n
i=1 P

m
i = Pm1 · · ·Pmn .

(1ii) Prove that there exists a natural number m such that the homomor-
phism

R −→ R/Pm1 × · · · ×R/Pmn
given by r �→ (r + Pm1 , . . . , r + Pmn ) is an isomorphism. (Hint: re-
call that the Jacobson radical J(R) =

⋂n
i=1 Pi of Λ is nilpotent;
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choose m to be the smallest positive integer such that 0 = J(R)m(=
Pm1 · · ·Pmn ).)

(1iii) Prove that R is a direct product of local rings (recall that a ring is
called local if it has a unique maximal ideal).

(2) Commutative profinite rings: A commutative profinite ring R is the direct
product of profinite local rings. (Hint: show that an epimorphism of finite
commutative rings ϕ : R1 −→ R2 sends a system {P1, . . . , Pn, R1;m},
consisting of the maximal ideals of R1, the ring R1, and a natural number
m such that Pm1 · · ·Pmn = 0, to another system of the same type.)

The class of all Λ-modules together with their morphisms form an abelian
category (cf. Mac Lane [1963] for a formal definition of the concept of
abelian category). In particular if M1, . . . ,Mt is a collection of finitely many
Λ-modules, there exists a direct sum

⊕t
i=1Mi of these modules which is a

Λ-module, namely, the set of all t-tuples (m1, . . . ,mt) (mi ∈Mi, i = 1, . . . , t)
with the product topology and the usual definition of coordinatewise addition
and multiplication by elements of Λ.

Let ϕ : Λ −→ Λ′ be a continuous homomorphism of profinite rings. If
A′ is a Λ′-module, it becomes a Λ-module via ϕ by the action λa′ = ϕ(λ)a′

(a′ ∈ A′, λ ∈ Λ). Let A be a Λ-module and let f : A → A′ (respectively,
f : A′ → A ) be a continuous homomorphism of groups. We say that the pair
ϕ, f of maps is compatible if f is a map of Λ-modules, i.e., if f(λa) = ϕ(λ)f(a′)
(respectively, f(ϕ(λ)a′) = λf(a′)) for all a ∈ A, λ ∈ Λ, a′ ∈ A′.

Lemma 5.1.4

(a) Let {Λi, ϕij} be an inverse system of profinite rings over a directed poset
(I,�); for each i ∈ I let Ai be a profinite Λi-module and Bi a discrete
Λi-module. Assume that {Ai, fij} is an inverse system of profinite abelian
groups, and {Bi, gij} a direct system of discrete abelian groups with the
additional conditions that for each pair i, j ∈ I with i � j, both fij and
gji are compatible with ϕij , and moreover fij and ϕij are epimorphisms.
Put

Λ = lim←− Λi, A = lim←− Ai, and B = lim−→ Bi.

Then A and B are Λ-modules, and the natural homomorphism

Ψ : lim−→ HomΛi(Ai, Bi) −→ HomΛ(A,B)

is an isomorphism (the topologies of HomΛ(A,B) and HomΛi(Ai, Bi) are
assumed to be the compact-open topologies; in this case these are discrete
topologies).

(b) Let Λ be a profinite ring, {Ai, αij} an inverse system of profinite Λ-
modules over an indexing set I, and A = lim←− Ai. Let B be a discrete
Λ-module and write it as a direct limit lim−→ j∈JBj of finitely generated
Λ-submodules of B. Then there is a natural isomorphism
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Δ : HomΛ(B,A) −→ lim←−
I,J

HomΛ(Bj , Ai).

(this is in fact a topological isomorphism; in this case the compact-open
topologies of HomΛ(B,A) and HomΛ(Bj , Ai) are compact, Hausdorff and
totally-disconnected).

(c) Let Λ and B be as in part (b). Then HomΛ(B,−) commutes with inverse
limits, i.e., if {Ai, αij} is as in (b), then there is a natural (topological)
isomorphism

HomΛ(B,A) −→ lim←−
I

HomΛ(B,Ai).

Proof. (a) Let fi : A → Ai, gi : Bi → B and ϕi : Λ → Λi denote the
canonical mappings (i ∈ I). First we indicate the action of Λ on A and B.
If λ = (λi) ∈ Λ and a = (ai) ∈ A (λi ∈ Λi, ai ∈ Ai, i ∈ I), then define
λa = (λiai). If b ∈ B, choose i ∈ I and bi ∈ Bi so that gi(bi) = b; then
put λb = gi(λibi); this is well-defined by the compatibility of the maps ϕij
and gji. Next we make the homomorphisms

Φij : HomΛi(Ai, Bi) → HomΛj (Aj , Bj) (i � j)

and
Ψi : HomΛi(Ai, Bi) → HomΛ(A,B)

explicit: if hi ∈ HomΛi(Ai, Bi), define Φij(hi) = gijhifji and Ψi(hi) = gihifi.
Let Φi : HomΛi(Ai, Bi) → lim−→ HomΛi(Ai, Bi) be the canonical maps. The
homomorphisms Ψi commute with the Φij , and so they induce the map Ψ in
the statement. We show that this map is both injective and surjective, and
thus an isomorphism.

Ψ is injective: Assume h ∈ lim−→ HomΛi(Ai, Bi) with Ψ(h) = 0, and let
k ∈ I and hk ∈ HomΛi(Ak, Bk) be such that Φk(hk) = h (see Proposi-
tion 1.2.4). For i � k, let hi = Φki(hk); then 0 = Ψ(h) = Ψi(hi) = gihifi. If
i � k, define

Xi = {ai ∈ Ai | hi(ai) 
= 0}.

We shall show that for some i � k, Xi = ∅, i.e., hi = 0; this will imply
that h = 0, as needed. Since hi is continuous, Ai compact and Bi discrete,
one has that hi takes only a finite number of values; hence Xi is closed and,
therefore compact. On the other hand i � j � k implies that fij(Xi) ⊆ Xj .
Indeed, if ai ∈ Xi, then 0 
= hi(ai) = (gjihjfij)(ai). So hj(fij(ai)) 
= 0; hence
fij(ai) ∈ Xj . Therefore,

{Xi, fij | i, j � k}

is an inverse system of compact spaces. Now, if

a ∈ lim←−
i≥k

Xi ⊆ A,
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then Ψ(h)(a) = Ψi(hi)(a) = (gihifi)(a) = (gihi)(ai); since hi(ai) 
= 0 if i � k,
it follows from Proposition 1.2.4, that Ψ(h)(a) 
= 0. Since by assumption
Ψ(h) = 0, we deduce that

lim←−
i≥k

Xi = ∅.

Thus, by Proposition 1.1.4, there is some i such that Xi = ∅, as asserted.

Ψ is surjective: Let h ∈ HomΛ(A,B). We shall show that for some i ∈ I
there exists hi ∈ HomΛi(Ai, Bi) such that h = Ψ(hi) = gihifi. Notice that
since A is compact and B discrete, h(A) is finite. Hence, there exists j0 ∈ I
such that for every j � j0 there is some Λj-submodule Dj of Bj for which
the restriction of gj maps Dj isomorphically onto h(A) (one sees this using
Proposition 1.2.4(ii) and the fact that each Bk is torsion). Since h(A) is finite,
Ker(h) is open in A. Hence (replacing j0 by a larger index if necessary) there
exists an open Λj0 -submodule Uj0 with U = f−1

j0
(Uj0) ≤ Ker(h). For j � j0,

define Uj = f−1
jj0

(Uj0); then

A/U = lim←−
j≥j0

Aj/Uj .

Since A/U is finite and each A/U −→ Aj/Uj is an epimorphism, there exists
i � j0 such that the canonical map A/U −→ Ai/Ui is an isomorphism.
Let h̄ : A/U −→ B be the map induced by h. Then there is a unique
(Λi-homomorphism) h̄i : Ai/Ui −→ Di such that the diagram

A/U
h̄

∼=

h(A) B

Ai/Ui
h̄i

Di

commutes. Let hi be the composition Ai −→ Ai/Ui
h̄i−→ Di ↪→ Bi. This hi is

the desired map.
(b) First let us make Δ explicit. Define

Δij : HomΛ(B,A) −→ HomΛ(Bj , Ai)

as follows: if h ∈ HomΛ(B,A), then hij = Δij(h) is the result of restricting h
to Bj and composing this with the canonical map A −→ Ai. By the definition
of the topologies involved, it is plain that each Δij is continuous. Hence these
maps induce a continuous homomorphism Δ. Suppose that Δ(h) = 0. Then
hij = 0 for every i ∈ I, j ∈ J . Therefore h = 0. This shows that Δ is an
injection. Consider now an element (hij) of lim←− HomΛ(Bj , Ai). For a fixed
i ∈ I, define hi : B −→ Ai as follows: if b ∈ B, then choose Bj such that
b ∈ Bj and put hi(b) = hij(b). Set h = lim←− hi. Then Δ(h) = (hij). The proof
of (c) is similar. ��
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We shall be particularly interested in two types of Λ-modules M : those
that are compact, Hausdorff and totally disconnected (i.e., profinite), and
those that are discrete. We refer to the first type as profinite modules, and to
the second as discrete modules. Profinite Λ-modules together with their mor-
phisms form an category that we shall denote by PMod(Λ). The category of
discrete Λ-modules and their morphisms will be denoted by DMod(Λ). It is
easy to verify that both PMod(Λ) and DMod(Λ) are abelian subcategories
of the category of all Λ-modules.

Duality Between Discrete and Profinite Modules

Next we generalize the construction made in the proof of Proposition 5.1.2.
Given a Λ-module M (discrete or profinite), consider the abelian group
M∗ = Hom(M,Q/Z) of all continuous homomorphism from M to Q/Z (as
abelian groups) with the compact open topology (see Section 2.9). By The-
orem 2.9.6, M∗ is profinite if M discrete torsion, and it is discrete torsion
if M is profinite. Define a right action of Λ on M∗ by (ϕλ)(m) = ϕ(λm).
This action is continuous and so M∗ becomes a right Λ-module, i.e., a Λop-
module. Therefore, it easily follows from Theorem 2.9.6 and the definition
of action that the contravariant functor Hom(−,Q/Z) establishes a “dual-
ity” between the categories PMod(Λ) and DMod(Λop). In other words,
for every Λ-module M in PMod(Λ) or DMod(Λ), there is a continuous
Λ-isomorphism

M −→M∗ ∗,

of Λ-modules; furthermore, this isomorphism is natural in the sense that if
ϕ : M −→ N is a morphism in either PMod(Λ) or DMod(Λ), then the
diagram

M

ϕ

M∗ ∗

ϕ∗ ∗

N N∗ ∗

commutes, where ϕ∗ ∗ is the map obtained from ϕ by applying the functor
Hom(−,Q/Z) twice. It is important to understand the implications of this
duality since we shall make use of them often. For a precise statement of
duality see for example Mac Lane [1963]. In our context duality can be de-
scribed as follows: every (elementary) statement, definition, theorem, etc.,
that one makes in either the category PMod(Λ) or DMod(Λop) involving
modules and morphisms (that we represent by arrows), can be translated into
a dual statement, definition, theorem, etc. in the other category by applying
the functor Hom(−,Q/Z), i.e., replacing each module M by Hom(M,Q/Z)
and reversing the arrows; if a statement, theorem, etc., holds in one of these
categories, then the dual statement, theorem, etc. holds true in the other
category.
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5.2 Free Profinite Modules

Let X be a profinite space, Λ a profinite ring, M a profinite Λ-module and
ι : X −→ M a continuous mapping. We say that (M, ι) is a free profinite
Λ-module on the space X or, simply, M is a free profinite Λ-module on X, if
the following universal property is satisfied:

M
ϕ̄

N

X

ι
ϕ

whenever ϕ : X −→ N is a continuous mapping into a profinite Λ-module N ,
there exists a unique continuous homomorphism ϕ̄ : M −→ N such that the
above diagram commutes, i.e., ϕ̄ι = ϕ.

A free profinite Λ-module on a pointed topological space (X, ∗) is defined
similarly. It consists of a profinite Λ-moduleM together with a map of pointed
spaces ι : (X, ∗) −→ M (i.e., ι(∗) = 0) satisfying an analogous universal
property: whenever ϕ : X −→ N is a continuous mapping of pointed spaces
into a profinite Λ-module N , there exists a unique continuous homomorphism
ϕ̄ : M −→ N such that ϕ̄ι = ϕ.

Another way of expressing this is the following. Let N be a topological
Λ-module and let C(X,N) denote the set of all continuous mappings from X
to N . Then M is a free profinite Λ-module on X if and only if the natural
map

Hom(M,N) −→ C(X,N)

induced by ι is a bijection for each profinite Λ-module N . Similarly for a free
Λ-module on a pointed space (X, ∗).

Observe that one needs to test the above universal property (or, equiv-
alently, the existence of the above bijection) only for finite Λ-modules N ,
for then it holds automatically for any profinite Λ-module N , since N is an
inverse limit of finite Λ-modules (see Lemma 5.1.1).

Lemma 5.2.1 Let Λ be a profinite ring and let (M, ι) be a free profinite Λ-
module on the profinite space X (respectively, a free profinite Λ-module on
the profinite pointed space (X, ∗)), then

(a) ι(X) generates M as a Λ-module;
(b) The mapping ι is injective.

Proof. The proof of part (b) is essentially the same as the proof of
Lemma 3.3.1, and we leave it to the reader. We prove part (a) for a free
profinite Λ-module (M, ι) on a profinite space X; the pointed case is similar.
Let N be the closed Λ-submodule of M generated by ι(X). By the universal
property of (M, ι), there exists a continuous homomorphism ϕ : M −→ M
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such that ϕι = ι; and so ϕ(M) = N . On the other hand, it is clear that
the identity map idM on M also satisfies the condition (IdM )ι = ι. Hence
ϕ = idM , and thus M = N . ��

From these definitions it is easily deduced that if a free profinite Λ-module
exists, then it is unique. We shall denote the free profinite Λ-module on X
by [[ΛX]], and the free profinite Λ-module on the pointed space (X, ∗) by
[[Λ(X, ∗)]].

If X is a set and Λ a ring, we denote the abstract free Λ-module on
X by [ΛX]. Hence, [ΛX] is simply the direct sum

⊕

X Λ of copies of Λ
(considered as a Λ-module) indexed by X. Note that if X is finite and Λ
is a profinite ring, then [[ΛX]] = [ΛX]. Similarly, if (X, ∗) is finite, then
[[Λ(X, ∗)]] = [Λ(X, ∗)] =

⊕

X− { ∗ } Λ.∗

Proposition 5.2.2 Let Λ be a profinite ring.

(a) For every profinite space X, there exists a unique free profinite Λ-module
[[ΛX]] on X, namely [[ΛX]] = lim←−[ΛXj ], where X = lim←−Xj is any de-
composition of X as an inverse limit of finite spaces.

(b) For every profinite pointed space (X, ∗), there exists a unique free profi-
nite Λ-module [[Λ(X, ∗)]] on the pointed space (X, ∗), namely [[Λ(X, ∗)]] =
lim←−[Λ(Xj , ∗)], where (X, ∗) = lim←−(Xj , ∗) is any decomposition of (X, ∗)
as an inverse limit of finite pointed spaces.

Proof. (a) As pointed out above, the uniqueness follows immediately from
the definition, and we leave it to the reader. We begin with the construction
of [[ΛX]]. If X is finite, it is clear that [[ΛX]] = [ΛX] =

⊕

X Λ. Assume that
X is infinite. Write X = lim←−Xj , where {Xi, ϕij , I} is a surjective inverse
system of finite spaces. Denote by ρj : X −→ Xj the canonical projections.
Then the free profinite Λ-modules [ΛXj ] constitute an inverse system. Define
[[ΛX]] = lim←−[ΛXj ]. Let ι:X −→ [[ΛX]] be the inverse limit of the natural

homomorphismsXj −→ [ΛXj ]. Next we show that ([[ΛX]], ι) is a free profinite
Λ-module on X. Indeed, let N be a finite Λ-module, and let ϕ:X −→ N be
continuous. Since ϕ(X) is finite, ϕ factors through some ρj : X −→ Xj ,
i.e. there exists a ϕ′:Xj −→ N with ϕ′ρj = ϕ (see Lemma 1.1.16). Since
[ΛXj ] is a free profinite Λ-module on Xj , ϕ′ can be extended to a Λ-module
homomorphism ϕ′ : [ΛXj ] −→ N . Put ϕ̄ = ϕ′ψj , where ψj : [[ΛX]] −→ [ΛXj ]
is the projection. It is easy to see that ϕ̄ι = ϕ, as required.
∗ Some authors use the notation ΛX or even Λ[X] for what we denote [ΛX]. The
first one is fine if one is only dealing with abstract free modules, while Λ[X] might
be confused with the notation normally used for rings of polynomials. Our notation
allows us to distinguish between such free modules and profinite free modules [[ΛX]].
We shall make later similar distinctions when dealing with group algebras and
complete group algebras.
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Finally it follows from uniqueness that the above construction of [[ΛX]] is
independent of how X is written as an inverse limit of finite spaces.

(b) The proof for this part is similar. ��
We shall refer to the profinite space X (respectively, (X, ∗)) as a topolog-

ical basis of [[ΛX]] (respectively, of [[Λ(X, ∗)]]).
Exercise 5.2.3 Let {Λi, ϕij} {Xi, ψij} and {(Yi, ∗), ρij} be inverse systems
of profinite rings, profinite spaces and pointed profinite spaces, respectively,
over a poset I. Let Λ = lim←− Λi, X = lim←− Xi and (Y, ∗) = lim←− (Yi, ∗). Then

[[ΛX]] = lim←− [[ΛiXi]] and [[Λ(Y, ∗)]] = lim←− [[Λi(Yi, ∗)]].

Exercise 5.2.4 Let Λ be a profinite ring. Let Y and Z be closed subspaces
of the profinite pointed space (X, ∗) such that ∗ ∈ Y and ∗ 
∈ Z.

(a) Prove that the natural Λ-homomorphisms [[ΛZ]] −→ 〈Z〉 and [[Λ(Y, ∗)]] −→
〈Y 〉 are isomorphisms; so 〈Z〉 can be identified with [[ΛZ]] and 〈Y 〉 with
[[Λ(Y, ∗)]].

(b) Show that there is an isomorphism [[Λ(X, ∗)]]/[[Λ(Y, ∗)]] ∼= [[Λ(X/Y, ∗)]].
(c) Prove that (Y, ∗) =

⋂

i∈I(Yi, ∗) implies [[Λ(Y, ∗)]] =
⋂

i∈I [[Λ(Yi, ∗)]], where
the (Yi, ∗) are closed subsets of (X, ∗).

(d) Prove that assertions analogous to (a), (b) and (c) also hold in the non-
pointed case.

(Hint: use the decomposition [[Λ(X, ∗)]] = lim←−[Λ(Xj , ∗)] and note that the

assertions are obvious if X is finite.)

Let S be a set and let us think of it as a discrete space. Let S̄ = S∪{∗} be
its one-point compactification. We shall refer to [[Λ(S̄, ∗)]] as the free profinite
Λ-module on the set S converging to 0. We denote it by [[ΛS]] (with a certain
abuse of notation; to avoid any ambiguity, whenever we use this notation for
this purpose, we shall specify that it is a module on the set S converging
to 0). Then one easily proves the following result.

Lemma 5.2.5 Let S be a set.

(a) The Λ-module [ΛS] is a dense submodule of the free profinite Λ-module
[[ΛS]] on the set S converging to 0.

(b) The free profinite Λ-module [[ΛS]] on the set S converging to 0 is char-
acterized by the following universal property: whenever ϕ : S −→ M is
a mapping converging to 0 of S into a profinite Λ-module M , then there
exists a unique continuous Λ-homomorphism

ϕ̄ : [[ΛS]] −→M

such that ϕ̄(s) = ϕ(s) for every s ∈ S.
(c) Every Λ-module is a quotient of a free profinite Λ-module on a set con-

verging to 0.
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5.3 G-modules and Complete Group Algebras

Let G be a profinite group. A left G-module or simply a G-module is a
topological abelian group M on which G operates continuously. Specifically,
a G-module is a topological abelian groupM together with a continuous map
G×M →M , denoted by (g, a) �→ ga, satisfying the following conditions

(i) (gh)a = g(ha),
(ii) g(a+ b) = ga+ gb,
(iii) 1a = a,

for a, b ∈M and g, h ∈ G, where 1 is the identity of G.

If the topology of M is discrete, then M is called a discrete G-module;
and if the topology of M is profinite, we say that M is a profinite G-module.
Right G-modules are defined analogously.

We leave it to the reader to develop the concepts of G-submodule and
G-submodule generated by a collection of elements in a G-module.

The following lemma is proved easily.

Lemma 5.3.1 Let G be a profinite group and let M be a discrete abelian
group. Let G ×M −→ M be an action of G on M satisfying conditions (i),
(ii), (iii) as above. Then, the following are equivalent :

(a) G×M −→M is continuous;
(b) For each a in M , the stabilizer ,

Ga = {g ∈ G | ga = a}

of a is an open subgroup of G;
(c)

M =
⋃

U

MU ,

where U runs through the set of all open subgroups of G, and where

MU = {a ∈M | ua = a, u ∈ U},

is the subgroup of fixed points of M under the action of U .

Example 5.3.2 (Discrete G-modules)

(1) Let G be any profinite group and M any discrete abelian group. Define
an action of G on M by ga = a, for all a ∈ M and g ∈ G. Then M is a
discrete G-module. This action is called the trivial action on M , and we
refer to M with this action as a trivial G-module.

(2) Let N/K be a Galois extension of fields and G = GN/K its Galois group.
For σ ∈ G and x ∈ N , define σx = σ(x). Under this action the following
are examples of discrete G-modules:
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(2a) N× (the multiplicative group of N);
(2b) N+ (the additive group of N);
(2c) The roots of unity in N (under multiplication).

As proved in Lemma 5.1.1, discrete modules over a profinite ring must be
torsion as abelian groups; in contrast observe that a discrete G-module need
not be torsion. For example, with the exception of (2c), the examples above
are not torsion abelian groups in general.

Let M and N be G-modules. A G-morphism ϕ : A −→ B is a continuous
G-homomorphism, i.e., an abelian group homomorphism for which

ϕ(ga) = gϕ(a), for all g ∈ G, a ∈M.

The class of G-modules and G-morphisms constitutes an abelian cate-
gory which we denote by Mod(G). The profinite G-modules form an abelian
subcategory of Mod(G), denoted PMod(G), while the discrete G-modules
form an abelian subcategory denoted DMod(G). In turn, the discrete torsion
G-modules form a subcategory of DMod(G).

Lemma 5.3.3 Let G be a profinite group and let M be a G-module.

(a) If M is a discrete G-module, then it is finitely generated as a G-module
if and only if it is finitely generated as an abelian group.

(b) If M is discrete torsion, then it is the union of its finite G-submodules.
(c) If M is profinite, then it is an inverse limit of finite G-modules.

Proof. (a) Suppose a1, . . . , at are generators of M as a G-module. Let Gi be
the stabilizer of ai (i = 1, . . . , t). Then Gi is an open subgroup of G (see
Lemma 5.3.1). Hence

⋃t
i=1Gai =

⋃t
i=1(G/Gi)ai is a finite set of generators

of M as an abelian group.
(b) It is plain that if M is discrete, it is the union of its finitely generated

submodules. Hence to prove (b) it suffices to show that every finitely gener-
ated discrete torsion G-module is finite. This follows from (a) since a finitely
generated torsion abelian group is finite.

The proof of (c) is almost identical to the proof of part (b) of Lemma 5.1.1,
and we leave it to the reader. ��

Exercise 5.3.4 Let G be a profinite group, Λ a profinite ring and M a fi-
nite abelian group with the discrete topology. Show that M is a G-module
(respectively, an Λ-module) if and only if there exists a continuous group ho-
momorphism (respectively, a continuous ring homomorphism)G −→ Aut(M)
(respectively, Λ −→ End(M)).

The Complete Group Algebra

Consider a commutative profinite ring R and a profinite group H. We denote
the usual abstract group algebra (or group ring) by [RH]. Recall that it
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consists of all formal sums
∑

h∈H rhh (rh ∈ R, where rh is zero for all but
a finite number of indices h ∈ H), with natural addition and multiplication.
As an abstract R-module, [RH] is free on the set H.

Assume that H is a finite group. Then [RH] is (as a set) a direct product
[RH] ∼=

∏

H R of |H| copies of R. If we impose on [RH] the product topology,
then [RH] becomes a topological ring, in fact a profinite ring (since this
topology is compact, Hausdorff and totally disconnected). Suppose now that
G is a profinite group. Define the complete group algebra [[RG]] to be the
inverse limit

[[RG]] = lim←−
U ∈U

[R(G/U)]

of the ordinary group algebras [R(G/U)], where U is the collection of all open
normal subgroups of G. Then [[RG]] is a profinite ring. It is easy to express
[[RG]] as an inverse limit of finite rings

[[RG]] = lim←− [(R/I)(G/U)],

where I and U range over the open ideals of R and the open normal sub-
groups of G, respectively. Consider now the topology on the ring [RG] with
a fundamental system of neighborhoods of 0 consisting of the ideals

Ker([RG] −→ [(R/I)(G/U)])

of [RG], where [RG] −→ [(R/I)(G/U)] are the natural epimorphisms. We
refer to that topology as the natural profinite topology of [RG]. The following
lemma is now obvious.

Lemma 5.3.5 Let G be a profinite group and R a commutative profinite ring.

(a) The intersection of all the ideals Ker([RG] −→ [(R/I)(G/U)]) is zero.
(b) [[RG]] is the completion of [RG] endowed with its natural profinite topol-

ogy.
(c) [RG] is densely embedded in [[RG]].
(d) As a module, [[RG]] is a free profinite R-module on the underlying profinite

space of G.
(e) [[RG]] behaves functorially on G.

Proposition 5.3.6 Let G be a profinite group and R a commutative profinite
ring.

(a) Every [[RG]]-module is naturally a G-module.
(b) Every profinite abelian group and every discrete torsion abelian group has

a unique ̂Z-module structure.
(c) Profinite G-modules coincide with profinite [[̂ZG]]-modules.
(d) If A is both a G-module and an R-module with commuting actions (i.e.,

if r ∈ R, g ∈ G and a ∈ A, then r(ga) = g(ra)), then A is in a natural
way an [[RG]]-module.
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(e) The category DMod([[̂ZG]]) coincides with the subcategory of DMod(G)
consisting of the discrete torsion G-modules.

Proof. Part (a) is clear since G is naturally embedded in [[RG]] (see
Lemma 5.3.5(c)). Part (b) follows from Lemma 4.1.1.

To prove (c), let M be a profinite G-module. By (b), M has also the
structure of a ̂Z-module in a unique way; moreover, if g ∈ G,α ∈ ̂Z and
m ∈M , then g(αm) = (gα)m. Express M as a inverse limit

M = lim←−Mi

of finite G-modules Mi. To see that M has a unique [[̂ZG]]-module structure
that induces on M its original G-module structure, it suffices to show that
this is the case for each Mi, as one easily checks. Consider the continuous
homomorphism

G −→ Aut(Mi)

determined by the G-action (see Exercise 5.3.4). Let U be the kernel of this
homomorphism. Then there is a corresponding continuous homomorphism of
rings [̂Z(G/U)] −→ End(Mi); and so a continuous homomorphism of rings

[̂ZG] −→ [̂Z(G/U)] −→ End(Mi),

where [̂ZG] has its profinite topology. This in turn determines a continuous
homomorphism of rings

[[̂ZG]] −→ End(Mi),

since [[̂ZG]] is the completion of [̂ZG]; i.e.,Mi is a [[̂ZG]]-module. Furthermore,
it follows from this definition that the action of [[̂ZG]] onMi extends the action
of G on Mi.

Part (d) is proved similarly. Finally, (e) follows from (c), Lemma 5.1.1
and Lemma 5.3.3. ��

5.4 Projective and Injective Modules

Let C be a category. An object P in C is called projective if for every diagram

P

ϕ

B
α

A

(1)

of objects and morphisms in C, where α is an epimorphism, there exists a
morphism β : P −→ B making the diagram commutative, i.e., αβ = ϕ. We
refer to β as a lifting (of ϕ). If C is an abelian category, one has equivalently,
that P is projective in C if the functor Hom(P,−) is exact, i.e., whenever
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0 −→ C −→ B −→ A −→ 0

is an exact sequence in C, so is the corresponding sequence

0 −→ Hom(P,C) −→ Hom(P,B) −→ Hom(P,A) −→ 0

of abelian groups.
When C is the category of profinite modules over a profinite ring, it suffices

to use finite Λ-modules A in B in the diagram (1) to test the projectivity of
a module P , as the next lemma shows.

Lemma 5.4.1 Let Λ be a profinite ring and P a profinite Λ-module. Then P
is projective in the category PMod(Λ) of all profinite Λ-modules if and only if
whenever there is a diagram of the form (1) in PMod(Λ), where α is an epi-
morphism and A and B are finite, there exists a continuous Λ-homomorphism
β : P −→ B making the diagram commutative.

Proof. In one direction the result is obvious. For the other, consider a general
diagram of profinite Λ-modules

P

ϕ
β

K B
α

A

where α is an epimorphism. Denote byK the kernel of α. For every submodule
H of B contained in K, let αH : B/H −→ A denote the Λ-epimorphism
induced by α. Let E be the collection of all pairs (H,ϕH) where H is a
Λ-submodule of B contained in K, and ϕH : P −→ B/H is a continuous Λ-
homomorphism such that αHϕH = ϕ. E is not empty, since (K,α−1

K ϕ) ∈ E .
Define a partial ordering � on E as follows: (H,ϕH) � (H ′, ϕH′ ) if H ≥ H ′

and ϕH = πϕH′ , where π : B/H ′ −→ B/H is the canonical projection. It is
easily seen that (E ,�) is an inductive poset; hence by Zorn’s Lemma it has a
maximal element, say (L,ϕL). The result will be proved if we can show that
L = 1. Suppose not; then there exists some open submodule U of B such that
L∩U < L. Since both B/U and B/(U+L) are finite and B/U −→ B/(U+L)
is an epimorphism, the map

P
ϕL−→ B/L −→ B/(U + L)

can be lifted to a continuous Λ-homomorphism β : P −→ B/U . Remark that

B/L ∩ U B/U

B/L B/(U + L)
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is a pullback diagram of Λ-modules. Hence, there exists a map of Λ-modules
δ : P −→ B/U ∩ L such that the diagram

P
ϕL

δ

B/L

B/U ∩ L

commutes. It follows that αU∩Lδ = ϕ, and so (U ∩ L, δ) ∈ E , contradicting
the maximality of (L,ϕL). Thus L = 1 as desired. ��

One says that a category C has enough projectives if for every object M
in C, there exists a projective object P of C and an epimorphism P −→M .

Proposition 5.4.2 Let Λ be a profinite ring.

(a) Every free profinite Λ-module is projective in the category PMod(Λ) of
all profinite Λ-modules.

(b) The category PMod(Λ) has enough projectives.
(c) The projective objects in PMod(Λ) are precisely the direct summands of

free profinite Λ-modules.

Proof. (a) We prove this for free modules over a nonpointed topological space,
the pointed case being similar. By Lemma 5.4.1, it suffices to test the pro-
jectivity property for finite modules. Let [[ΛX]] be a free profinite Λ-module
on the profinite space X. Consider a diagram in PMod(Λ)

[[ΛX]]

ϕ
ϕ̄

B
α

A

where A and B are finite and α is an epimorphism. Choose a section σ :
A −→ B of α (considering α as a set map). Hence by the universal property
of free modules, there exists a continuous Λ-homomorphism ϕ̄ : [[ΛX]] −→ B
such that ϕ̄(x) = σϕ(x) (x ∈ X); therefore αϕ̄ = ϕ. Thus ϕ̄ is a lifting of ϕ
as required.

(b) This follows from part (a) and Lemma 5.2.5.
(c) Let P be a projective profinite Λ-module. By Lemma 5.2.5, there is a

free profinite Λ-module [[ΛX]] and an epimorphism α : [[ΛX]] −→ P . Since P is
projective, there exists a continuous Λ-homomorphism σ : P −→ [[ΛX]] such
that ασ = idP . Therefore, σ is a monomorphism, and by the compactness
of P , we have that P is topologically isomorphic to σ(P ). Then one readily
checks that [[ΛX]] = σ(P ) ⊕ Ker(α). ��
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The dual concept of a projective object in a category C is that of an
injective object. An object Q in C is called injective if whenever

A
α

ϕ

B

Q

(2)

is a diagram of objects and morphisms in C, where α is a monomorphism,
there exists a morphism ϕ̄ : B −→ Q making the diagram commutative, i.e.,
ϕ̄α = ϕ. We refer to ϕ̄ as an extension of ϕ. If C is an abelian category, one
has equivalently, that Q is injective in C if the functor Hom(−, Q) is exact,
i.e., whenever

0 −→ A −→ B −→ C −→ 0

is an exact sequence in C, so is the corresponding sequence

0 −→ Hom(C,Q) −→ Hom(B,Q) −→ Hom(A,Q) −→ 0

of abelian groups.
Since the categories of profinite projective Λ-modules PMod(Λ) and the

category of discrete Λ-modules DMod(Λ) are dual to each other (see Sec-
tion 4.1), we obtain automatically the following results by duality.

Lemma 5.4.3 Let Λ be a profinite ring and Q a discrete Λ-module. Then
Q is injective in the category DMod(Λ) of all discrete Λ-modules if and
only if whenever there is a diagram of the form (2) in DMod(Λ), where
α is a monomorphism and A and B are finite, there exists a continuous
Λ-homomorphism ϕ̄ : B −→ Q making the diagram commutative.

One says a category C has enough injectives if for every object M in C,
there exists an injective object Q of C and a monomorphism M −→ Q.

An object M in DMod(Λ) is called cofree if it satisfies a universal prop-
erty dual to that of free objects, i.e., if its dual M∗ is free in PMod(Λ).
Applying duality, Proposition 5.4.2 yields

Proposition 5.4.4 Let Λ be a profinite ring.

(a) Every cofree discrete Λ-module is injective in the category DMod(Λ) of
all discrete Λ-modules.

(b) The category DMod(Λ) has enough injectives.
(c) The injective objects in DMod(Λ) are precisely the direct factors of cofree

discrete Λ-modules.

Let G be a profinite group. Next we show that the category DMod(G)
of discrete G-modules also has enough injectives. As we indicated in Proposi-
tion 5.3.6, DMod([[̂ZG]]) is the subcategory of DMod(G) consisting of those
modules that are torsion.
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Proposition 5.4.5 Let G be a profinite group. Then DMod(G) has enough
injectives, i.e., for every A ∈ DMod(G), there exists a monomorphism

A −→MA

in DMod(G) with MA injective.

Proof. Denote by G0 the abstract group underlying G. Let A be a discrete G-
module; then obviously A ∈ Mod(G0), the category of abstract G0-modules.
It is well known that Mod(G0) has enough injectives (cf. Mac Lane [1963],
page 93). Let

0 −→ A
ϕ−→M

be an exact sequence in Mod(G0), with M injective in Mod(G0). Define

MA =
⋃

U

MU ,

where U runs through all open normal subgroups of G. Clearly MA ∈
DMod(G). Let a ∈ A, and let U be an open normal subgroup of G such
that a ∈ AU . Then ϕ(a) ∈ MU . Hence ϕ(A) ⊆ MA. Finally MA is injective
in DMod(G) because any diagram

0 B
ψ

ζ

C

ξMA

M

where ψ, ζ are mappings in DMod(G), with ψ a monomorphism, can be
completed to a commutative diagram by a G0-homomorphism ξ : C −→M .
However, since C is a discrete G-module, one has ξ(C) ⊆MA. ��

Remark 5.4.6 The construction in the above proof can easily be modi-
fied to obtain enough injective objects in DMod([[̂ZG]]) (respectively, in
DMod([[(Z/nZ)G]]), where n is a fixed natural number), by taking instead
of MA, its torsion G-submodule (respectively, the G-submodule of MA con-
sisting of those elements x such that nx = 0).

Exercise 5.4.7 Let Λ be a profinite ring.

(a) Assume that P ∈ PMod(Λ) is projective, i.e., that HomΛ(P,−) is exact
as a functor on PMod(Λ). Prove that HomΛ(P,−) is also exact as a
functor on the category DMod(Λ).

(b) Assume that Q ∈ DMod(Λ) is injective, i.e., that HomΛ(−, Q) is exact
as a functor on DMod(Λ). Prove that HomΛ(−, Q) is also an exact as a
functor on the category PMod(Λ). (Hint: use Lemma 5.1.4.)
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5.5 Complete Tensor Products

Throughout this section R is a commutative profinite ring and Λ a profinite
R-algebra, i.e., a profinite ring that contains a continuous homomorphic image
of R in its center. Complete group rings [[RG]] are examples of profinite R-
algebras. By abuse of notation we sometimes use the same symbol for an
element r ∈ R and for its image in Λ, when the homomorphism from R to Λ
is an injection.

Let A be a profinite right Λ-module, B a profinite left Λ-module, and M
an R-module. A continuous map

ϕ : A×B −→M

is called middle linear if ϕ(a+a′, b) = ϕ(a, b)+ϕ(a′, b), ϕ(a, b+b′) = ϕ(a, b)+
ϕ(a, b′) and ϕ(aλ, b) = ϕ(a, λb) for all a, a′ ∈ A, b, b′ ∈ B, λ ∈ Λ.

We say that a profinite R-module T together with a middle linear map
A × B −→ T , denoted (a, b) �→ a ̂⊗ b, is a complete tensor product of A and
B over Λ if the following universal property is satisfied: If M is a profinite
R-module and ϕ : A×B −→M a continuous middle linear map, then there
exists a unique map of R-modules ϕ̄ : T −→M such that ϕ̄(a ̂⊗ b) = ϕ(a, b).

It is easy to see that if the complete tensor product exists, it is unique
up to isomorphism. We denote it by A ̂⊗ΛB. Furthermore, it is clear that
{a ̂⊗ b | a ∈ A, b ∈ B} is a set of topological generators for the R-module
A ̂⊗ΛB.

Note that it suffices to check the above universal property only for finiteR-
modules M , since every R-module is the inverse limit of its finite R-quotient
modules.

Lemma 5.5.1 With the above notation, the complete tensor product A ̂⊗ΛB
exists. In fact, if

A = lim←−
i∈I

Ai and B = lim←−
j∈J

Bj ,

where each Ai (respectively, Bi) is a finite right (respectively, left) Λ-module,
then

A ̂⊗ΛB = lim←−
i∈I,j∈J

(Ai ⊗Λ Bj),

where Ai ⊗Λ Bj is the usual tensor product as abstract Λ-modules. In partic-
ular, A ̂⊗ΛB is the completion of A ⊗Λ B, where A ⊗Λ B has the topology
for which a fundamental system of neighborhoods of 0 are the kernels of the
natural maps

A ⊗Λ B −→ Ai ⊗Λ Bj (i ∈ I, j ∈ J).

Proof. Observe that
A×B = lim←−

i∈I,j∈J

(Ai ×Bj).



178 5 Discrete and Profinite Modules

It easily follows that there exists a canonical middle linear map

ι : A×B −→ lim←−
i∈I,j∈J

(Ai ⊗Λ Bj),

namely, the inverse limit of the canonical middle linear maps Ai × Bj −→
Ai ⊗ Bj . For a ∈ A, b ∈ B, put a ̂⊗ b = ι(a, b). Let M be a finite Λ-module
and ϕ : A × B −→ M a middle linear map. Since M is finite, there exist a
pair of indices i, j such that ϕ factors through a map ϕij : Ai × Bj −→ M ,
which is also middle linear (this follows from an analog of Lemma 1.1.16).
By the universal property of Ai ⊗Λ Bj , there is an R-homomorphism ϕ̄ij :
Ai ⊗Λ Bj −→ M such that ϕ̄ij(ai ⊗ bj) = ϕij(ai × bj) (ai ∈ Ai, bj ∈ Bj).
Define ϕ̄ : A ̂⊗ΛB −→ M as the composition A ̂⊗ΛB −→ Ai ⊗ Bj

ϕ̄ij−→ M .
Then ϕ̄ι = ϕ, as needed. ��

A similar argument shows that “complete tensoring commutes with lim←−”.
More precisely,

Lemma 5.5.2 Let
lim←−
i∈I

Ai and B = lim←−
j∈J

Bj

be inverse limits of profinite right Λ-modules Ai and profinite left Λ-modules
Bj, respectively. Then

(

lim←−
i∈I

Ai

)

̂⊗Λ
(

lim←−
j∈J

Bj

)

= lim←−
i∈I,j∈J

(Ai ̂⊗ΛBj).

The complete tensor product enjoys most of the properties of the usual
tensor product of modules over abstract rings. If A is a profinite right
Λ-module and ρ : B −→ B′ a continuous homomorphism of profinite
left Λ-modules, define A ̂⊗Λ ρ : A ̂⊗ΛB −→ A ̂⊗ΛB′ as the continuous
R-homomorphism lifting the continuous middle linear map A × B −→
A ̂⊗ΛB′ given by (a, b) �→ a ̂⊗ ρ(a) (a ∈ A, b ∈ B). If ρ is the identity,

then obviously so is A ̂⊗Λ ρ. It is clear that if B
ρ−→ B′ ρ′

−→ B′ ′, then
A ̂⊗Λ (ρρ′) = (A ̂⊗Λ ρ)(A ̂⊗Λ ρ′). In other words, A ̂⊗Λ—is a covariant func-
tor. Similarly, if B is a profinite left Λ-module, −̂⊗ΛB is a covariant functor.
We record this as part of the following proposition.

Proposition 5.5.3 Let R be a commutative profinite ring, Λ a profinite
R-algebra, A a profinite right Λ-module, and B a profinite left Λ-module.
Then

(a) A ̂⊗Λ—is a right exact covariant functor.
(b) The functor A ̂⊗Λ—is additive, that is, if B1 and B2 are profinite left

Λ-modules, then there is a natural isomorphism of profinite R-modules,

A ̂⊗Λ (B1 ⊕B2) ∼= A ̂⊗ΛB1 ⊕A ̂⊗ΛB2.
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(c) There is a natural isomorphism of profinite Λ-modules A ̂⊗Λ Λ ∼= A.
(d) If B is a finitely generated profinite left Λ-module, then

A ̂⊗ΛB = A⊗Λ B.

(e) If A is a projective profinite right Λ-module, then the functor A ̂⊗Λ—is
exact.

(f) Similar statements for −̂⊗ΛB.

Proof. (a) We have already seen that A ̂⊗Λ—is a covariant functor. To show
that this functor is right exact, we must prove that if

0 −→ B1 −→ B2
ϕ−→ B3 −→ 0

is an exact sequence of profinite left Λ-modules, then

A ̂⊗ΛB1 −→ A ̂⊗ΛB2 −→ A ̂⊗ΛB3 −→ 0 (3)

is an exact sequence of profinite R-modules. To see this, let {Ui | i ∈ I}
be the collection of all open Λ-submodules of B2, and consider the inverse
system of the exact sequences

0 −→ B1/ρ
−1(Ui) −→ B2/Ui

ϕ−→ B3/ϕ(Ui) −→ 0

of finite Λ-modules. Express A as an inverse limit A = lim←− j∈JAj of finite

Λ-modules. It is well-known (cf. Mac Lane [1963], page 148) that A⊗Λ—is
right exact; hence

Aj ⊗Λ B1/ρ
−1(Ui) −→ Aj ⊗Λ B2/Ui

ϕ−→ Aj ⊗Λ B3/ϕ(Ui) −→ 0

is exact for each i ∈ I. These sequences form an inverse system whose inverse
limit is the sequence (3). Since lim←− is an exact functor on the category of
compact R-modules (analogous to Proposition 2.2.4), we deduce that (3) is
exact.

We leave the proof of (b) and (c) to the reader. To prove (d), let A be
a profinite right Λ-module generated by n elements and consider an epimor-
phism of profinite Λ-modules π : Λn −→ A, where Λn denotes the direct sum
of n copies of Λ. By (b) and (c), Λn ̂⊗ΛB = Λn ⊗Λ B, so that Λn ⊗Λ B
is compact. Now, π induces an epimorphism Λn ⊗Λ B −→ A ⊗Λ B. Since
A ⊗Λ B is dense in A ̂⊗ΛB and this epimorphism is continuous, one deduces
that A ⊗Λ B is compact as well. Thus A ̂⊗B = A ⊗Λ B.

Finally we show (e). Since A is projective, there exists a free Λ-module
[[ΛX]] on some profinite space X such that A is a direct summand of [[ΛX]] by
Lemma 5.5.2. From property (b) (applied to −̂⊗ΛB ) one sees that it suffices
to show that the functor [[ΛX]] ̂⊗Λ—is exact. Write [[ΛX]] = lim←− [[ΛXi]], where
each Xi is finite. Since lim←− is exact, we are reduced to the case when X is
finite. Then, the result follows immediately from properties analogous to (b)
and (c). ��
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Let Λ and Δ be profinite R-algebras, and let B be a profinite Δ-Λ bimod-
ule, that is, a profinite left Δ-module which is at the same time a profinite
right Λ-module such that for each b ∈ B, δ ∈ Δ,λ ∈ Λ and r ∈ R, one has
(δb)λ = δ(bλ) and rb = br. Assume that A is a profinite left Λ-module, D a
profinite right Δ-module and C is a discrete left Δ-module. Then one easily
proves the following

Proposition 5.5.4

(a) B ̂⊗ΛA is a profinite left Δ-module, with an action determined by

δ(b ̂⊗Λ a) = δb ̂⊗Λ a (δ ∈ Δ, a ∈ A, b ∈ B).

(b) HomΔ(B,C) is a discrete left Λ-module, with action determined by

(λϕ)(b) = ϕ(bλ) (λ ∈ Λ, b ∈ B, ϕ ∈ HomΔ(B,C)).

(c) There is a unique natural isomorphism of discrete R-modules

Φ : HomΛ(A,HomΔ(B,C)) −→ HomΔ(B ̂⊗ΛA,C)

such that

Φ(ϕ)(b ̂⊗ a) = ϕ(a)(b) (a ∈ A, b ∈ B, ϕ ∈ HomΛ(A,HomΔ(B,C))).

(d) D ̂⊗Δ (B ̂⊗ΛA) ∼= (D ̂⊗ΔB) ̂⊗ΛA.

Exercise 5.5.5 Let R be a commutative profinite ring.

(a) Let X and Y be profinite spaces. Then [[R(X × Y )]] ∼= [[RX]] ̂⊗R [[RY ]] as
R-modules.

(b) Let G and H be profinite groups. Then [[R(G×H)]] ∼= [[RG]] ̂⊗R [[RH]] as
R-algebras.

5.6 Profinite G-spaces

Let G be a profinite group and X a topological space. We say that X is a
left G-space, or simply a G-space if there exists a continuous map

G×X → X,

denoted (g, x) �→ gx, such that (gh)x = g(hx) and 1x = x for all g, h ∈ G,
x ∈ X (one says then that G operates or acts on X on the left). A pointed
topological space (X, ∗) is a G-space if X is a G-space in the above sense,
and in addition g∗ = ∗ for all g ∈ G. There are corresponding notions of
right G-spaces or pointed right G-spaces. Note that G-modules are examples
of pointed G-spaces.
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Remark 5.6.1

(1) If X is a G-space, then for each g ∈ G, the map αg : X −→ X defined by
x �→ gx is easily seen to be a homeomorphism of X to X; moreover the
map

α : G −→ Homeo(X)

given by α �→ αg is a homomorphism of G to the group of homeomor-
phisms Homeo(X) of X. If one imposes the compact-open topology on
Homeo(X), one can prove that the homomorphism α is continuous if an
only if G operates on X continuously (cf. Bourbaki [1989], X, 3.4, Theo-
rem 3).

(2) Similarly, if A is a G-module, then for each g ∈ G, the map αg : A −→
A defined by a �→ ga is a continuous automorphism of the topological
group A; moreover the map

α : G −→ Aut(A)

given by α �→ αg is a homomorphism of groups. If one imposes the
compact-open topology on Aut(A), one can use the result in Bourbaki
just mentioned to prove that the homomorphism α is continuous if an
only if G operates on A continuously.

Exercise 5.6.2 Let G and H be abstract groups. Recall that G is said to
operate or act on H (as groups) if there is an action

G×H −→ H,

which we denote by (g, h) �→ αg(h) (g ∈ G, h ∈ H), of G on H such that for
each g ∈ G, the map αg : H −→ H is an automorphism of H.

(a) Let G and H be profinite groups. Prove that G operates on H continu-
ously if and only if there is a continuous homomorphism

G −→ Aut(H)

from G to the group of continuous automorphisms of H, where Aut(H) is
endowed with the compact-open topology. (Hint: use the result in Bour-
baki mentioned in Remark 5.6.1.)

(b) Let G and H be topological groups. Assume that G acts on H contin-
uously. Endow the corresponding semidirect product H � G with the
product topology (recall that H � G can be identified with H × G, as
sets). Prove that then H �G is a topological group.

(c) Let C be an NE-formation of finite groups (see Section 2.1). Prove that
if G and H are pro - C groups and G acts continuously on H, then the
semidirect product H �G determined by this action is a pro - C group.
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(d) Let F = FC (X) (respectively, F = FC (X, ∗)) be a free pro - C group on
a profinite space X (respectively, on a pointed profinite space (X, ∗))
and let G be a profinite group. Assume that G acts continuously on X
(respectively, on (X, ∗)). Prove that this action extends uniquely to a
continuous action of the group G on the group F .

If X and Y are G-spaces, a G-map ϕ : X −→ Y is a continuous map such
that ϕ(gx) = gϕ(x) (g ∈ G, x ∈ X). If the spaces are pointed, we require in
addition that ϕ(∗) = ∗. G-spaces and their maps form a category; similarly,
pointed G-spaces and their maps form a category.

Let X be a profinite G-space; we say that decomposition X = lim←− Xi, as
an inverse limit of spaces, is a G-decomposition if this is an inverse limit in the
category of profinite G-spaces, that is, if each Xi is a profinite G-space and
the canonical maps Xi −→ Xj are G-maps. There is an analogous concept
of G-decomposition for pointed profinite G-spaces.

Let G be a profinite group and X a G-space. We denote the quotient space
under this action by G\X: it is the space of the G-orbits Gx = {gx | g ∈ G}
of each x ∈ X. If the action of G on X is on the right, we denote the quotient
by X/G, and the orbits by xG. There is a natural onto map G −→ G\X
that sends each x ∈ X to its G-orbit. The topology of G\X is the quotient
topology.

The following lemma is an immediate consequence of continuity of the
action and of compactness.

Lemma 5.6.3 Let G be a profinite group and let X be a Hausdorff G-space.

(a) Assume that x ∈ X. Then the G-stabilizer Gx = {g ∈ G | gx = x} of x
is closed in G.

(b) If X is profinite, so is G\X.

The action of G on X (respectively, on (X, ∗)) is called free if Gx = 1
of each x ∈ X (respectively, Gx = 1 for all x 
= ∗ in X). One also uses the
expressions “G acts freely” or “X or (X, ∗) is a free G-space”.

Recall that a topological space is countably based (see Section 1.1) if it
has a countable base of open subsets.

Lemma 5.6.4 Let G be a profinite group acting on a profinite space X
(respectively, a pointed profinite space (X, ∗)). Then

(a) X (respectively, (X, ∗)) admits a G-decomposition as an inverse limit of
finite quotient G-spaces

X = lim←−
i∈I

Xi

(

respectively, (X, ∗) = lim←−
i∈I

(Xi, ∗)
)

.

(b) Suppose that G is finite and acts freely on X. If

X = lim←−
i∈I

Xi
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is as in (a), then there exists some io ∈ I such that G acts freely on Xj
for every j � i0; in particular, X admits a decomposition as an inverse
limit of finite quotient free G-spaces.

(c) Suppose that G is finite and acts freely on a pointed profinite space (X, ∗).
Then there exists a G-decomposition of (X, ∗) as an inverse limit of finite
quotient free G-spaces

(X, ∗) = lim←−
i∈I

(Xi, ∗).

(d) If X is countably based, the poset (I,�) in parts (a), (b) and (c) can be
chosen to be countable and totally ordered.

Proof. (a) We consider here the nonpointed case. For the pointed case, the
proof is similar. First we show that for any open equivalence relation R on X,
there exists a G-invariant open equivalence relation S ⊆ R. Indeed, consider
R as a subset of X × X on which G acts coordinatewise. Observe that if
g ∈ G, then gR is also an open equivalence relation on X. Set

S =
⋂

g∈G
gR.

Clearly S is a G-invariant equivalence relation on X. Let us prove that S is
open. Fix s ∈ S. Then for all g ∈ G, gs ∈ R. Since the action of G on X ×X
is continuous, for every g ∈ G there exist open neighborhoods Vg,Wg of the
points g and s, respectively, such that VgWg ⊆ R. The set {Vg | g ∈ G} is an
open covering of G. By the compactness of G, there exists a finite subcovering
Vg1 , . . . , Vgn of G. Set

Ws =
n
⋂

i=1

Wgi .

Then gWs ⊆ R, for all g ∈ G. Therefore Ws ⊆ S and Ws is an open neigh-
borhood of s. Since this is true for all s ∈ S, then S =

⋃

s∈SWs is open.
This shows that the set of all G-invariant open equivalence relations on X is
cofinal in the set of all open equivalence relations on X.

Thus (see the proof of (c) ⇒ (a) in Theorem 1.1.12) it follows that X =
lim←−X/S, where S runs through all G-invariant open equivalence relations
on X, i.e., X is the inverse limit of finite G-spaces.

(b) Suppose that G is finite. Consider a G-decomposition X = lim←−Xi as
an inverse limit of finite G-spaces Xi. Denote by Si the subset of G of all
g 
= 1 such that gx = x for some x ∈ Xi. We claim that

⋂

i Si = ∅. Assume
not; then, for g ∈

⋂

i Si, the sets Y gi = {x ∈ Xi | gx = x} are finite, nonempty
and form a natural inverse system. So, the limit Y g = lim←−Y

g
i is not empty

(see Proposition 1.1.4), and gx = x for any x ∈ Y g. This contradicts the
freeness of the action of G on X, and hence the claim is proved. Note that if
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j � i, then Si ⊆ Sj . Since G is finite there exists i0 such that Si = ∅ (i.e., G
acts freely on Xj) for any i � i0. Therefore,

X = lim←−
j�i0

Xj

is a decomposition of the desired form.
(c) It follows from part (a) that (X, ∗) can be written as

(X, ∗) = lim←−
i∈I

(Xi, ∗),

where {(Xi, ∗), ψij} is the inverse system of all finite pointed quotient G-
spaces of (X, ∗). Fix an index j ∈ I. We need to prove that there exists an
index j′ ∈ I such that j′ � j and (Xj′ , ∗) is a pointed free G-space; observe
that to do this we simply have to exhibit a finite pointed free G-space (Z, ∗)
together with G-epimorphisms of pointed spaces μ : (X, ∗) −→ (Z, ∗) and
ν : (Z, ∗) −→ (Xj , ∗) such that νμ = ψj , where ψj : (X, ∗) −→ (Xj , ∗) is the
canonical projection.

Set X ′ = X−ψ−1
j (∗). We claim that X ′ is a G-subspace. Indeed, if g ∈ G,

x ∈ X ′ and we had gx 
∈ X ′, then gψj(x) = ψj(gx) = ∗; hence ψj(x) = ∗,
contradicting our choice of x. Therefore, X ′ is a free G-space. Then

X ′ = lim←−
i�j

ψi(X ′)

is a G-decomposition of X ′. By part (b), there exists some i0 ∈ I with i0 � j
such that ψi0(X

′) is a finite free G-space. Define Z = ψi0(X
′)∪. {∗}. Then

(Z, ∗) is in a natural way a finite pointed free G-space. Define

μ : (X, ∗) −→ (Z, ∗)

by

μ(x) =
{

ψi0(x), if x ∈ X ′;
∗, if x ∈ ψ−1

j (∗),

and define ν : (Z, ∗) −→ (Xj , ∗) by

ν(x) =
{

ψi0j(x), if x ∈ ψi0(X ′);
∗, if x = ∗ .

Clearly μ and ν satisfy the required conditions.
(d) This follows from Corollary 1.1.13. ��

Let G be a profinite group, X a G-space and π : X → G\X the canonical
quotient map. We say that π admits a continuous section if there exists a
continuous map σ : G\X → X such that πσ = idG\X . In other words, there
exists a closed subspace Z of X such that the restriction π|Z of π to Z is a
homeomorphism onto G\X.
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Lemma 5.6.5 Let G be a profinite group acting freely on a profinite space X,
and let

π : X → G\X

denote the canonical quotient map. Then

(a) There exists a continuous section σ : G\X → X of π;
(b) If Y is a closed subset of X such that π|Y is injective, then σ can be

chosen such that Y is a subset of σ(G\X).

Proof. (a) Assume first that G finite. By Lemma 5.6.4(b), there exists a finite
G-quotient space X0 of X, on which G acts freely. Let ϕ0 : X0 −→ G\X0 be
the canonical quotient map. Choose Z0 ⊆ X0 to be such that the restriction
of ϕ0 to Z0 is bijective. Denote by π0 : X −→ X0 the natural G-epimorphism.
Then Z = π−1

0 (Z0) is the desired subset. Indeed, since Z is compact, it suffices
to check that ϕ|Z is injective and surjective, and these properties follow easily
since G acts freely on both X and X0.

Now let G be infinite. We proceed in a way similar to the proof of Propo-
sition 2.2.2. Let L be the set of all closed normal subgroups of G. For L ∈ L,
put XL = L\X. Then G/L acts freely on XL. Consider the collection P
of all closed subspaces ZL of XL (L ∈ L) such that the restriction of the
canonical epimorphism

ϕL : XL −→ (G/L)\XL = G\X

to ZL is a homeomorphism. Define a partial ordering on P by ZL � ZK if
K ≤ L and ZL = πKL(ZK), where πKL is the natural projection XK →
XL. Then P is an inductive poset: if {ZMi | i ∈ I} is a linearly ordered
subset of P , set M0 =

⋂

i∈IMi and ZM0 = lim←− i∈IZMi ; one verifies without

difficulty that ZM0 is in P and that it is an upper bound for {ZMi | i ∈ I}.
Zorn’s Lemma provides a maximal element ZM in P . It suffices to prove that
M = 1. Suppose M 
= 1. Then there is some normal subgroup L of G such
that L < M and M/L is finite. Note that (M/L)\XL = XM . Now we use
the finite case considered above to obtain a closed subspace Z ′

L of XL such
that the restriction of the natural epimorphism ϕLM : XL → XM to Z ′

L

is a homeomorphism. Define ZL = Z ′
L ∩ ϕ−1

LM (ZM ). Then (ZL, ∗) ∈ P and
ZL � ZM , contradicting the maximality of ZM .

(b) Define an equivalence relation on X by setting x ∼ y if and only if
either x, y ∈ gY for some g ∈ G, or x = y. The quotient space X0 of X
modulo this equivalence relation is a profinite space with induced free action
of G. By (a), there is a closed subset Z0 ofX0 mapping bijectively onto G\X0.
The desired subset Z is the preimage of X0 in X. ��

Corollary 5.6.6 Let G act freely on the profinite space X and let

π : X −→ G\X



186 5 Discrete and Profinite Modules

be the canonical projection. Choose a continuous section σ of π and define
Z = σ(G\X). Then the map ρ : G × Z −→ X given by (g, z) �→ gz (g ∈ G,
z ∈ Z) is a homeomorphism. This is a map of G-spaces, where the G-structure
of G× Z is defined by multiplication on the first component.

Proof. Clearly ρ is a bijective G-map; furthermore ρ is continuous since it
is the restriction of the action map G × X −→ X, which is continuous by
assumption. Since G× Z is compact, ρ is a homeomorphism. ��

Lemma 5.6.7 Let G be a profinite group and let X be a second countable
profinite G-space, i.e., w(X) = ℵ0. Then the quotient map π : X −→ G\X
admits a continuous section σ : G\X −→ X. More generally, suppose that Y
is a closed subset of X such that π|Y is injective; then σ can be chosen such
that Y is a subset of σ(G\X).

Proof. We shall prove the second statement. Denote by σ̃ : π(Y ) −→ Y the
(continuous!) inverse of π|Y . We need a continuous section σ of π extending σ̃.

According to Lemma 5.6.4(a), if S is the collection of all G-invariant open
equivalence relations S on X, then

X = lim←−
S∈S

X/S

(see the proof of that lemma for this viewpoint).
First we show, with no conditions on w(X), that given S ∈ S there exists

a G-invariant open equivalence relation R on X with R ≤ S and such that

y1, y2 ∈ Y and y1R(gy2) (some g ∈ G) =⇒ y1Ry2. (4)

Consider first the equivalence relation SY induced by S on Y : SY =
(Y × Y ) ∩ S. Then SY is an open equivalence relation on Y . Since Y is
compact, π|Y : Y −→ π(Y ) is a homeomorphism, hence S̃Y = (π× π)(SY ) is
an open equivalence relation on π(Y ). Since π(Y ) is compact, there exists an
open equivalence relation T̃ on G\X whose restriction to π(Y ) is S̃Y . Define
T = (π × π)−1(T̃ ); then T an open G-invariant equivalence relation on X.
Define

R = S ∩ T.
Then R is clearly a G-invariant open equivalence relation on X, and R ≤ S.
Furthermore, if y1, y2 ∈ Y and y1R(gy2), for some g ∈ G, then π(y1)T̃ π(gy2),
and hence π(y1)T̃ π(y2), i.e., y1Ty2. On the other hand, since y1, y2 ∈ Y ,
π(y1)T̃ π(y2) also means that π(y1)S̃Y π(y2), and so y1SY y2, i.e., y1Sy2. Thus
y1Ry2.

Let R is the collection of all open G-invariant equivalence relation on X
satisfying condition (4). Then we have proved that R is cofinal in S, and so

X = lim←−
R∈R

X/R.
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For R ∈ R, let YR denote the canonical image of Y in the finite G-space
XR = X/R, and let πR : XR −→ G\XR denote the canonical projection.
Then

π = lim←−
R∈R

πR;

furthermore, by condition (4), πR is an injection when restricted to YR
(R ∈ R).

Next we use the assumption that X is second countable to construct
compatible sections σR : G\XR −→ XR of π|R (R ∈ R). Since X is second
countable, R is countable. We may replace R by a cofinal subset R′ that is to-
tally ordered: R′ = {R′

1, R
′
2, . . .}, where R′

1 ≥ R′
2 ≥ · · · (if R = {R1, R2, . . .},

define R′
1 = R1, and recursively, R′

n+1 = R′
n ∩ Rn+1). For each n ∈ N, put

Xn = XR′
n
, Yn = YR′

n
and πn = πR′

n
. Denote by σ̃n : πn(Yn) −→ Yn the

unique map such that πnσ̃n = idπn(Yn). Choose an arbitrary section

σ1 : G\X1 −→ X1

of π1 such that σ1 extends σ̃1. Assuming that compatible sections

σi : G\Xi −→ Xi

(1 = 1, . . . , n) have been chosen, construct a section

σn+1 : G\Xn+1 −→ Xn+1

extending σ̃n+1 such that the diagram

Xn+1
πn+1

G\Xn+1
σn+1

Xn
πn

G\Xn
σn

commutes. Define
σ = lim←−

n∈N

σn.

Then σ : G\X −→ X is a continuous section of π extending

lim←−
n∈N

σ̃n = σ̃.

So, σ(G\X) contains lim←−n∈Nσ̃n(G\Xn) = Y . ��

Next example shows that the assumptions of Lemmas 5.6.5 and 5.6.7
cannot be avoided.
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Example 5.6.8 We construct a profinite G-space X such that the quotient
map

π : X −→ G\X

does not have a continuous section.
Let K = {0, 1,−1} be the field of integers modulo 3 with the discrete

topology, and let G = {1,−1} be the multiplicative group of K. Let I be an
indexing set, and consider the direct product

X =
∏

I

K

of copies of K (as a discrete space) indexed by I. Then X is a profinite space
on which G operates continuously in a natural way. Let π : X −→ G\X
be the canonical quotient map. We shall prove that π admits a continuous
section if and only if I is countable. By Lemma 5.6.7, π admits a continuous
section if I is countable.

Conversely, assume that σ : G\X −→ X is a continuous section of π and
let Z = Im(σ). Hence Z is a compact subset of X such that 0 ∈ Z and if
0 
= x ∈ X, then either 1 ∈ Z or −1 ∈ Z (not both). Let J be a finite subset
of I and let u = (ui) ∈ X be such that ui = 0 for i 
∈ J . Define

B(J, u) =
{

x ∈
∏

I

K | xj = uj for all j ∈ J
}

.

Then the subsets of X of the form B(J, u) are clopen and constitute a base
for the topology of X. For i ∈ I, write ei for the element of X which has
entry 1 at position i and entry 0 elsewhere. Define εi ∈ {1,−1} to be such
that εiei 
∈ Z. Since Z is closed, for each i ∈ I there exists a finite subset Ji
of I such that i ∈ Ji and B(Ji, εiei) ∩ Z = ∅.

Consider now any two distinct indices i, j ∈ I. We claim that either i ∈ Jj
or j ∈ Ji (or both). To see this, set x = εiei − εjej . Assume that i 
∈ Jj and
j 
∈ Ji. Then, x 
∈ Z (since j 
∈ Ji implies x ∈ B(Ji, εiei)); similarly, −x 
∈ Z
(since i 
∈ Jj implies x ∈ B(Jj , εjej)). This is a contradiction, and so the
claim is proved.

Next we show that I is countable. Let N be a countably infinite subset of
I and set P =

⋃

i∈N Ji. If I were uncountable, there would be some j ∈ I−P ,
since P is countable. Then, by construction, j 
∈ Ji, for any i ∈ N . Therefore,
i ∈ Jj by the preceding paragraph. In particular, N ⊆ Jj , contradicting the
finiteness of Jj .

Exercise 5.6.9

(a) Extend the example above to a finite group G acting on a profinite space
X =

∏

I(G∪. {∗}), with an appropriate action of G on the discrete space
G∪. {∗}, and where I is an uncountable indexing set.
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(b) Extend Example 5.6.8 to any profinite group G. Namely, prove that given
a profinite group G, there is a profinite space G-space X such that the
canonical map X −→ G\X does not admit a continuous section.

(c) Use Example 5.6.8 to exhibit an example where Lemma 5.6.5(a) fails if
one assumes that X is only locally compact.

5.7 Free Profinite [[RG]]-modules

Let R be a commutative profinite ring, G a profinite group and X a profinite
G-space. The action of G on X induces a natural action of the complete
group ring [[RG]] on the free profinite R-module [[RX]]; one can see this as
follows. Express X as an inverse limit

X = lim←−
i∈I

Xi

of finite G-spaces Xi (see Lemma 5.6.4(a)). For each i ∈ I, consider the open
normal subgroup of G defined by Ui =

⋂

x∈Xi
Gx. For each i ∈ I there is an

obvious continuous action

[R(G/Ui)] × [RXi] −→ [RXi]

of the ring [R(G/Ui)] on the profinite abelian group [RXi]. Hence there is a
continuous action

[[RG]] × [RXi] −→ [RXi]

of the ring [[RG]] on the profinite abelian group [RXi] induced by the contin-
uous ring homomorphism [[RG]] −→ [R(G/Ui)]. Taking inverse limits, we get
the indicated action

[[RG]] × [[RX]] −→ [[RX]].

One has similar definitions for pointed spaces.

Proposition 5.7.1

(a) Let a profinite group G act freely on a profinite space X. Then for any
profinite commutative ring R, the module [[RX]] is a free [[RG]]-module on
the space G\X.

(b) Conversely, every free profinite left [[RG]]-module has the form
[[R(G× Z)]] for some profinite space Z, where the action of G on G× Z
is by left multiplication on the first component.

Proof. (a) By Corollary 5.6.6, there exists an isomorphism of G-spaces G ×
Z ∼= X, where Z is a certain closed subspace of X, and where the action
of G on G × Z is by left multiplication on the first component. Write Z =
lim←− i∈IZi, where the Zi are finite quotient spaces of Z. Let G act on G×Zi
by left multiplication on the first component. Correspondingly we have a
decomposition
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X = G× Z = lim←−
i∈I

(G× Zi),

as G-spaces. Now, since Zi is finite, we have natural [[RG]]-isomorphisms

[[R(G× Zi)]] ∼=
⊕

z∈Zi

[[RG]]z.

Hence, for each i ∈ I, [[R(G × Zi)]] is a free [[RG]]-module on the space Zi.
Taking limits we get the desired result.

(b) For the converse, observe that if a free [[RG]]-module has a finite basis,
say Y , then it has the form

⊕

y∈Y
[[RG]]y ∼= [[R(G× Y )]],

where the isomorphism is an [[RG]]-module isomorphism. The case of a general
profinite basis follows from this and from Lemma 5.6.4 by an inverse limit
argument as in (a). ��

Corollary 5.7.2 Let R a commutative profinite ring and let H be a closed
subgroup of a profinite group G. Then

(a) Every free [[RG]]-module is a free [[RH]]-module. In particular [[RG]] is a
free [[RH]]-module;

(b) Every projective profinite [[RG]]-module is a projective [[RH]]-module;
(c) Every injective discrete [[RG]]-module is an injective [[RH]]-module.

Proof. Part (b) follows from (a) since a profinite projective module is a direct
summand of a free module (see Proposition 5.4.2). To prove (a), let A be a
free [[RG]]-module. By Proposition 5.7.1, A has the form [[R(G× Z)]]. Then

A = [[R(G× Z)]] = [[R(H × (H\G) × Z)]].

Since the action of H on the basis H × (H\G)×Z is multiplication on H, it
is a free action; hence, again by Proposition 5.7.1, A is a free H-module.

Part (c) is obtained from (b) by duality. ��

5.8 Diagonal Actions

Let R be a commutative profinite ring and let G be a profinite group.
Assume that A is a profinite left [[RG]]-module and A′ a discrete left
[[RG]]-module. Then HomR(A,A′) is an R-module with the action (rf)(a) =
rf(a) (r ∈ R, a ∈ A, f ∈ HomR(A,A′)). The diagonal action of G on
Hom(A,A′) is defined as follows: if f ∈ HomR(A,A′) and x ∈ G, then xf is
the R-homomorphism A −→ A′ given by
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(xf)(a) = xf(x−1a) (a ∈ A).

Observe that HomR(A,A′), with the compact-open topology, is discrete. It
follows from the decomposition of Lemma 5.1.4 that the diagonal action is
continuous, making Hom(A,A′) into a discrete [[RG]]-module.

Assume now that A and A′ are profinite left [[RG]]-modules. The diagonal
action of G on the R-module A ̂⊗A′ is defined as follows: if x ∈ G, a ∈ A
and a′ ∈ A′, set

x(a ̂⊗ a′) = (xa) ̂⊗ (xa′).

Using Lemma 5.5.1 one sees that this is a continuous action, making A ̂⊗A′

into a profinite left [[RG]]-module.
Note that one has similar definitions of diagonal actions in the case that

A and A′ are not necessarily both left [[RG]]-modules. For example, if A is
a profinite right [[RG]]-module and A′ a discrete left [[RG]]-module, then the
diagonal action on Hom(A,A′) is given by (xf)(a) = xf(ax) (x ∈ G, f ∈
Hom(A,A′), a ∈ A). If A is a profinite right [[RG]]-module and A′ a profinite
left [[RG]]-module, then the diagonal action on A ̂⊗A′ is given by x(a ̂⊗ a′) =
(ax−1) ̂⊗ (xa′) (x ∈ G, a ∈ A, a′ ∈ A′).

Proposition 5.8.1 Let H ≤c G be profinite groups, R a commutative profi-
nite ring and B a right [[RG]]-module. Then, there exists an isomorphism of
right [[RG]]-modules

B ̂⊗[[RH]] [[RG]] ∼= B ̂⊗R [[R(H\G)]],

where the action of [[RG]] on B ̂⊗[[RH]] [[RG]] is via the right action on [[RG]],
and its action on B ̂⊗R [[R(H\G)]] is the diagonal action.

Proof. Define a map

ϕ : B ×G −→ B ̂⊗R [[R(H\G)]]

by ϕ(b, g) = bg ̂⊗Hg, (b ∈ B, g ∈ G). Note that ϕ is middle H-linear, i.e.,
ϕ(bh, g) = ϕ(b, hg), for all h ∈ H. Moreover, ϕ is continuous, for it is the
inverse limit of maps of finite sets

B/BU ×G/U −→ B/BU ̂⊗R [[R(HU\G)]],

where U ranges over the open normal subgroups of G. Hence ϕ induces a
continuous homomorphism

ϕ : B ̂⊗[[RH]] [[RG]] −→ B ̂⊗R [[R(H\G)]].

One easily checks that this homomorphism has an inverse homomorphism ψ
determined by ψ(b ̂⊗Hg) = bg−1

̂⊗ g (b ∈ B, g ∈ G). ��
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Corollary 5.8.2 Let G, R and B be as above. Denote by B0 the underlying
R-module of B (i.e., we forget the G-module structure of B). Then there is
an isomorphism of right [[RG]]-modules

B0 ̂⊗R [[RG]] ∼= B ̂⊗R [[RG]],

given by b ̂⊗ g �→ bg ̂⊗ g ([[RG]] acts on B ̂⊗R [[RG]] via its right action on
[[RG]], and it acts on B ̂⊗R [[RG]] diagonally).

Proof. This corresponds to the case H = 1 in Proposition 5.8.1. ��

Proposition 5.8.3 Let R be a profinite commutative ring, G a profinite
group, and let A,P ∈ PMod([[RG]]). Assume that P is projective as an
[[RG]]-module and A is projective as an R-module. Then

P ̂⊗RA,

endowed with the diagonal G-action, is projective in PMod([[RG]]).

Proof. Since P is a direct summand of a free [[RG]]-module (see Proposi-
tion 5.4.2), we may assume that P is a free [[RG]]-module. Hence (see Propo-
sition 5.7.1) P = [[R(G × Z)]], where Z is a profinite space, and G acts on
G×Z by left multiplication on G. Note that A is a direct summand of some
free profinite R-module [[RX]]. Now, there exists a natural isomorphism of
right [[RG]]-modules

P ̂⊗R [[RX]] = [[R(G× Z)]] ̂⊗R [[RX]] ∼= [[R(G× Z ×X)]],

where G acts on P ̂⊗R [[RX]] via its left action on P , and on [[R(G×Z ×X)]]
via multiplication on the left of the component G of G × Z ×X. Moreover,
P ̂⊗RA with G-action induced from the action of G on P is obviously a direct
summand of P ̂⊗R [[RX]], and hence of [[R(G×Z×X)]]. Therefore P ̂⊗RA with
this action is a projective [[RG]]-module by Corollary 5.7.2. Finally observe
that P ̂⊗RA with this action is [[RG]]-isomorphic to P ̂⊗RA with the diagonal
action; indeed, (g, z) ̂⊗ a �→ (g, z) ̂⊗ ga defines an [[RG]]-isomorphism with
inverse map given by (g, z) ̂⊗ a �→ (g, z) ̂⊗ g−1a (a ∈ A, z ∈ Z, g ∈ G). ��

Dualizing the above three results one obtains the following.

Exercise 5.8.4 Let H ≤c G be profinite groups, R a commutative profinite
ring, and let A ∈ DMod([[RG]]). Then

(a) There exists an isomorphism of [[RG]]-modules

Hom[[RH]]([[RG]], A) ∼= HomR([[R(G/H)]], A)

(the action of G on Hom[[RH]]([[RG]], A) is given by (xf)(g) = f(gx), and
on HomR([[R(G/H)]], A) it is diagonal, i.e., (xf)(gH) = xf(xgH)).
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(b) Let A0 denote the underlying R-module of A. Then there is an isomor-
phism of [[RG]]-modules

HomR([[RG]], A0) ∼= HomR([[RG]], A)

given by f �→ f̄ , where f̄(g) = gf(g) (f ∈ HomR([[RG]], A0), f̄ ∈
HomR([[RG]], A), g ∈ G; the actions are as indicated in part (a)).

(c) If A is injective as an R-module, and P is a projective [[RG]]-module, then

HomR(P,A),

with diagonal G-action, is injective in DMod([[RG]]).

5.9 Notes, Comments and Further Reading

There are accounts of discrete modules in Serre [1995], Ribes [1970] and Shatz
[1972]. Profinite modules are special cases of pseudocompact modules over
pseudocompact rings, defined in Brumer [1966].

The implication (b) ⇒ (c) of Proposition 5.1.2 appears in Goldman and
Sah [1966].

Complete group algebras and complete tensor products are defined in
Lazard [1965]. This monograph contains a general treatment of filtrations in
pro-p groups and their relationship with mixed Lie algebras. It has a good
account of analytic pro-p groups including cohomological results of Lazard
which do not appear anywhere else.

5.9.1 The Magnus Algebra and Free Pro-p Groups

Let Mp(n) denote the associative Zp-algebra of formal power series on the
noncommuting indeterminates u1, . . . , un with coefficients in Zp. Endow
Mp(n) with the topology of simple convergence of the coefficients (in other
words, the product topology of copies of Zp indexed by the monomials on
u1, . . . , un). This is sometimes called a Magnus algebra. The results in the
following theorem are due to M. Lazard.

Theorem 5.9.1 (Lazard [1965], Section II.3)

(a) Let U be the multiplicative group of units of Mp(n) consisting of those
power series whose independent term is 1. Then U is a pro-p group.

(b) Let F = F (x1, . . . , xn) be a free pro-p group of rank n on a basis
{x1, . . . , xn}. Then the continuous homomorphism

ϕ : F −→ U

determined by ϕ(xi) = 1 + ui (i = 1, . . . , n) is an embedding.
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(c) The map ϕ extends to a continuous isomorphism of Zp-algebras

[[ZpF ]] −→Mp(n).

It was pointed out by C.-K. Lim that these results can be extended to get

Corollary 5.9.2 (Lim [1973b]) Let M(n) be the associative ̂Z-algebra
of formal power series on n noncommuting indeterminates with coefficients
in ̂Z, and let Fnilp be the free pronilpotent group of rank n. Then statements
analogous to (a), (b), (c) in the theorem above hold for Fnilp and M(n).

Lemma 5.6.5 appears as an exercise in Serre [1995] (only in the fifth
edition of this book, page 4).

The nonexistence of continuous sections of the type presented in Exam-
ple 5.6.8, has been known for a long time (cf. Ščepin [1976], pp. 157–158, from
which such examples can be deduced). The version presented here as well a
the content of Exercise 5.6.9 were communicated to us by C. Scheiderer. See
Chatzidakis and Pappas [1992] for a more general version.

For the group of units in the ring of power series over a finite ring, see
Deschamps and Leloup [2006].



6 Homology and Cohomology of Profinite
Groups

6.1 Review of Homological Algebra

In this section we introduce some terminology and sketch some general ho-
mological results. For more details the reader may consult, e.g., Grothendieck
[1957], Cartan and Eilenberg [1956] or Mac Lane [1963]. We shall state the
concepts and results for general abelian categories to avoid repetitions, but we
are mainly interested in categories of modules such as Mod(Λ), PMod(Λ)
DMod(Λ) or DMod(G), where Λ is a profinite ring and G a profinite group.
All functors will be assumed to be additive, i.e., they preserve direct sums
systems of the form A⊕B.

Let B and D be abelian categories. A covariant cohomological functor

H• = {Hn}n∈Z : B −→ D

from B to D is a sequence of covariant additive functors Hn : B −→ D that
assigns to every short exact sequence

0 −→ A −→ B −→ C −→ 0

in B and every n ∈ Z, a connecting morphism

δ = δn : Hn(C) −→ Hn+1(A)

satisfying the following conditions:

(a) For every commutative diagram

0 A

α

B

β

C

γ

0

0 A′ B′ C ′ 0

in B with exact rows, the following diagram commutes for every n

Hn(C) δn

Hn(γ)

Hn+1(A)

Hn+1(α)

Hn(C ′) δn

Hn+1(A′)

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 6, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_6
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(b) The long sequence

· · · → Hn−1(C) δ
n−1

−→ Hn(A) → Hn(B) → Hn(C) δn

−→ Hn+1(A) → · · ·

is exact.

Analogously, a contravariant cohomological functor H• = {Hn}n∈Z :
B −→ D from B to D is a sequence of contravariant additive functors
Hn : B −→ D, with connecting morphisms δn : Hn(A) −→ Hn+1(C), and
satisfying conditions similar to (a) and (b). A covariant homological functor
H• = {Hn}n∈Z from B to D is a sequence of covariant additive functors
Hn : B −→ D, with connecting morphisms δn : Hn(C) −→ Hn−1(A) and
satisfying conditions similar to (a) and (b). Finally, a contravariant homo-
logical functor H• = {Hn}n∈Z : B −→ D from B to D is a sequence of
contravariant additive functors Hn : B −→ D, with connecting morphisms
δn : Hn(A) −→ Hn−1(C) and satisfying conditions similar to (a) and (b).

Let Bop −→ B, B −→ Bop and D −→ Dop be the canonical contravari-
ant functors from a category to its opposite category. Then the following
statements are equivalent:

(a) H• : B −→ D is a covariant cohomological functor;

(b) Bop −→ B H•
−→ D is a contravariant cohomological functor;

(c) B H•
−→ D −→ Dop is a contravariant homological functor;

(d) Bop −→ B H•
−→ D −→ Dop is a covariant homological functor.

Therefore, a statement made about one of these (co)homological functors
has an automatic translation to a corresponding statement about any of
the other three (co)homological functors. Hence it suffices to consider one of
these types of (co)homological functors; we shall usually state definitions and
results for covariant cohomological functors.

Let H•,T• be covariant cohomological functors from B to D. A morphism
ϕ : H• −→ T• is a family ϕn : Hn −→ Tn (n ∈ Z) of morphisms of functors
such that for every short exact sequence

0 −→ A −→ B −→ C −→ 0

in B, the following diagram commutes:

Hn(C) δn

ϕn(C)

Hn+1(A)

ϕn+1(A)

Tn(C) δn

Tn+1(A)

for every n ∈ Z.
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An additive functor F : B −→ D is called effaceable if for every object
A of B there is a monomorphism ι : A −→ B such that F (ι) = 0. Dually
F is called coeffaceable if for every object A of B there is an epimorphism
π : B −→ A such that F (π) = 0.

We say that F is effaceable by a class of objects M of C if F (M) = 0 for
every M ∈ M.

Recall that a category B has enough projectives (respectively, enough
injectives) if for each object A in B, there exists an epimorphism P −→ A
in B, where P is projective (respectively, a monomorphism A −→ Q in B,
where Q is injective).

Lemma 6.1.1 Let F : B −→ D be an additive functor of abelian categories.

(a) If F is effaceable, then F (Q) = 0 for every injective object Q of B.
(a′) If F is coeffaceable, then F (P ) = 0 for every projective object P of B.
(b) Assume that B has enough injectives. Then, F is effaceable if and only if

F (Q) = 0 for every injective object Q of B.
(b′) Assume that B has enough projectives. Then, F is coeffaceable if and only

if F (P ) = 0 for every projective object P of B.

Proof. Let Q be injective, and suppose that ϕ : Q −→M is a monomorphism
such that F (ϕ) = 0. By definition of injective object, there exists a morphism
ψ : M −→ Q with ψϕ = idQ. Hence F (idQ) = 0, and so F (Q) = 0. This
proves (a). Part (b) follows immediately from (a). Statements (a′) and (b′)
are obtained from (a) and (b) by duality. ��

Let H• be a positive covariant cohomological functor, from B to D, i.e.,
a covariant cohomological functor such that Hn = 0 for n < 0. We say
that H• is effaceable if Hn is effaceable for every n > 0. There are similar
definitions for positive coeffaceable contravariant cohomological functor and
positive coeffaceable covariant homological functor.

Before stating the following proposition we need some more terminology.
We say that a positive cohomological functor H• : B −→ D is universal if it
satisfies the following condition: whenever E• : B −→ D is a cohomological
functor of the same type, then for every morphism of functors ψ : H0 −→ E0

there exists a unique morphism ϕ : H• −→ E• with ϕ0 = ψ. Dually, a positive
homological functor H• : B −→ D is universal if whenever E• : B −→ D is
a homological functor of the same type, then for every morphism of functors
ψ : E0 −→ H0 there exists a unique morphism ϕ : E• −→ H• with ϕ0 = ψ.

Proposition 6.1.2 Let H• be a positive cohomological functor from B to D.
Assume that B has enough injectives and that H• is effaceable. Then H• is
universal.

Proof. To fix the ideas, we shall assume that H• is covariant; the contravari-
ant case is similar. We just sketch the proof and leave the details to the
reader.
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Consider a cohomological functor E• : B −→ D of the same type, and let
ψ : H0 −→ E0 be a morphism of functors. For A ∈ B, let

0 −→ A −→MA −→ XA −→ 0

be exact in B, with MA injective.
To prove the existence of ϕ we proceed by induction. Suppose the existence

of morphisms ϕi : Hi −→ Ei, i = 0, 1, . . . , n − 1, has already been shown,
with ϕ0 = ψ, and that they commute with the connecting homomorphisms δ.
Define ϕn(A) : Hn(A) −→ En(A) to be the unique map making the following
diagram commutative

· · · Hn−1(MA) Hn−1(XA) δ

ϕn−1(XA)

Hn(A)

ϕn(A)

0

· · · En−1(MA) En−1(XA) δ
En(A) En(MA)

Now, it is straightforward to check that ϕn is a morphism of functors,
and that ϕ0, ϕ1, . . . , ϕn commute with the connecting homomorphisms δ.

For the uniqueness of ϕ, suppose ϕ̄ : H• −→ E• is another morphism
with ϕ̄0 = ψ. Assume ϕn−1 = ϕ̄n−1. Then from the commutativity of

· · · Hn−1(XA) Hn(A)

ϕ̄n(A)ϕn(A)

0 · · ·

· · · En−1(XA) En(A) En(MA) · · ·

it follows that ϕn(A) = ϕ̄n(A), for all A ∈ B; hence ϕn = ϕ̄n; thus ϕ = ϕ̄ by
induction. ��

Dually, one obtains

Proposition 6.1.3 Let H• be a positive homological functor from B to D.
Assume that B has enough projectives and that H• is coeffaceable. Then H•
is universal.

The following result follows from the definition of universality. It is often
used in conjunction with Propositions 6.1.2 and 6.1.3.

Lemma 6.1.4

(a) Let H•, F• be universal cohomological functors from B to D of the same
type. Let

H0 ψ→ F 0

be a morphism of functors, and
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H• ϕ→ F•

its corresponding extension. Then ϕ is an isomorphism if and only if ψ
is an isomorphism.

(b) Dually, let H•, F• be universal homological functors from B to D of the
same type. Let

H0
ψ→ F0

be a morphism of functors, and

H•
ϕ→ F•

its corresponding extension. Then ϕ is an isomorphism if and only if ψ
is an isomorphism.

Right and Left Derived Functors

A covariant (respectively, contravariant) functor F : B −→ D from an abelian
category B to an abelian category D is called left exact if whenever

0 −→ A −→ B −→ C −→ 0

is a short exact sequence in B, then

0 −→ F (A) −→ F (B) −→ F (C)

is exact (respectively,

0 −→ F (C) −→ F (B) −→ F (A)

is exact). There is an analogous definition for right exact functors. Let
F : B −→ D be a left exact covariant functor, and assume that B has
enough injectives. Then, associated with F there is a (unique) positive ef-
faceable universal covariant cohomological functor {RnF}n≥0 from B to D,
with R0F = F called the sequence of right derived functors of F . This
sequence is constructed as follows. Given an object A in B, let

0 −→ A −→ Q0 −→ · · · −→ Qn
dn

−→ Qn+1 −→ · · ·

be an injective resolution of A (i.e., an exact sequence where each Qn is
injective in B). Define RnF (A) to be the n-th cohomology group of the cochain
complex

0 −→ F (Q0) −→ · · · −→ F (Qn)
F (dn)−→ F (Qn+1) −→ · · ·

i.e, RnF (A) = Ker(F (dn))/Im(F (dn−1)).
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Since F is left exact, F (A) = R0F (A). It is not difficult, but it requires
some patience, to check that in fact this defines a universal covariant coho-
mological functor. The reader may consult, e.g., Cartan and Eilenberg [1956],
Mac Lane [1963] or Grothendieck [1957] for the details.

Similarly, if F : B −→ D is a left exact contravariant functor and B
has enough projectives, then, associated with F there is a (unique) positive
coeffaceable universal contravariant cohomological functor {RnF}n≥0 from
B to D, with R0F = F , called the sequence of right derived functors of F .
This sequence is constructed as follows.

Given an object A in B, let

· · · −→ Pn+1 −→ Pn −→ · · · −→ P0 −→ A −→ 0

be a projective resolution of A (i.e., an exact sequence where each Pn is
projective in B). Define RnF (A) to be the n-th cohomology group of the
cochain complex

0 −→ F (P0) −→ · · · −→ F (Pn) −→ F (Pn+1) −→ · · · .

If F : B −→ D is a right exact covariant functor and B has enough
projectives, then, associated with F there is a (unique) positive coefface-
able universal covariant homological functor {LnF}n≥0 from B to D, with
L0F = F called the sequence of left derived functors of F . This sequence is
constructed as follows.

Given an object A in B, let

· · · −→ Pn+1 −→ Pn −→ · · · −→ P0 −→ A −→ 0

be a projective resolution of A. Define LnF (A) to be the n-th homology group
of the chain complex

· · · −→ F (Pn−1) −→ F (Pn) −→ · · · −→ F (P0) −→ 0.

Bifunctors

Let B, B′ and D be abelian categories. A functor of the type

F = F (−,−) : B × B′ −→ D

is sometimes called a bifunctor from B × B′ to D. Fix an object A ∈ B, then

F (A,−) : B′ −→ D

is a functor. Similarly if A′ ∈ B′, then

F (−, A′) : B −→ D
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is a functor. We refer to F (A,−) as the functor on the second variable
(attached to A), and to F (−, A′) as the functor on the first variable (at-
tached to A′). Then one may calculate the derived functors of these two
functors. The following two results indicate that under certain conditions
these derived functors coincide. For the proofs one may consult Grothendieck
[1957], page 144, and in slightly less generality Cartan and Eilenberg [1956],
pages 94–97.

Theorem 6.1.5 Let F = F (−,−) : B × B′ −→ D be a bifunctor. Assume

(a) F (−,−) is covariant and left exact on the second variable and contravari-
ant and left exact on the first one.

(b) F (P,−) is exact whenever P is a projective object of B and F (−, Q) is
exact whenever Q is an injective object of B′.

(c) B has enough projectives and B′ has enough injectives.

Fix objects A ∈ B and B ∈ B′, and denote the functor F (−, B) by F1 and
the functor F (A,−) by F2. Then

(RnF1)(A) = (RnF2)(B) for all n ≥ 0.

Theorem 6.1.6 Let F = F (−,−) : B × B′ −→ D be a bifunctor. Assume

(a) F (−,−) is covariant and right exact on the first and second variables.
(b) F (P,−) and F (−, P ′) are exact whenever P is a projective object of B

and P ′ a projective object of B′, respectively.
(c) B and B′ have enough projectives.

Fix the objects A ∈ B and B ∈ B′, and denote the functor F (−, B) by F1

and F (A,−) by F2. Then

(LnF1)(A) = (LnF2)(B), for all n ≥ 0.

The Ext Functors

Next we apply these general results to the concrete categories of modules
over profinite rings and groups that are of interest to us.

Let Λ be a profinite R-algebra, where R is a commutative profinite ring
(see Section 5.1). Consider now the bifunctor HomΛ(−,−) from the category
PMod(Λ) × DMod(Λ) to the category DMod(R); it is covariant on the
second variable and contravariant on the first one. FixA ∈ PMod(Λ). Denote
by ExtnΛ(A,−) the n-th right derived functor of the functor

HomΛ(A,−) : DMod(Λ) −→ DMod(R).

Note that HomΛ(−,−) satisfies the hypotheses of Theorem 6.1.5 (see Exer-
cise 5.4.7). Hence if B ∈ DMod(Λ), then ExtnΛ(A,B) can also be computed
by obtaining the n-th right derived functor of



202 6 Homology and Cohomology of Profinite Groups

HomΛ(−, B) : PMod(Λ) −→ DMod(R)

and then applying it to A.
Putting together the above information, we get the following characteri-

zation of the functor ExtnΛ(−,−).

Proposition 6.1.7 Let R be a commutative profinite ring and Λ a profinite
R-algebra. Fix A ∈ PMod(Λ) and B ∈ DMod(Λ). Then

(a) {ExtnΛ(A,−)}n∈N is the unique positive covariant cohomological functor
from DMod(Λ) to DMod(R) such that ExtnΛ(A,Q) = 0 for n ≥ 1
and for every injective discrete Λ-module Q. Moreover, Ext0Λ(A,−) =
HomΛ(A,−).

(b) {ExtnΛ(−, B)}n∈N is the unique positive contravariant cohomological func-
tor from PMod(Λ) to DMod(R) such that ExtnΛ(P,B) = 0 for n ≥ 1
and for every projective profinite Λ-module P . Moreover, Ext0Λ(−, B) =
HomΛ(−, B).

In particular ExtnΛ(A,−) and ExtnΛ(−, B) are additive functors, i.e., they
commute with finite direct sums.

As a consequence of this proposition together with Lemmas 5.1.4 and
6.1.4, we get that each of the functors ExtnΛ(A,−) and ExtnΛ(−, B) commutes
with limits (n ≥ 0). Explicitly,

Corollary 6.1.8 Under the hypotheses of the above proposition, we have

(a)
ExtnΛ

(

A, lim−→
i∈I

Bi

)

= lim−→
i∈I

ExtnΛ(A,Bi),

where {Bi, ψij , I} is a direct system of discrete Λ-modules.
(b)

ExtnΛ
(

lim←−
i∈I

Ai, B
)

= lim−→
i∈I

ExtnΛ(Ai, B),

where {Ai, ϕij , I} is a surjective inverse system of profinite Λ-modules.

The Tor Functors

Next we consider the bifunctor

− ̂⊗Λ− : PMod(Λop) × PMod(Λ) −→ PMod(R).

Let A be a profinite right Λ-module. Then

A ̂⊗Λ− : PMod(Λ) −→ PMod(R)

is a right exact covariant functor. Since PMod(Λ) has enough projectives
(see Proposition 5.4.2), there exist left derived functors of A ̂⊗Λ−. We define
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the n-th Tor functor TorΛn(A,−) as the n-th derived functor of A ̂⊗Λ−. Let
B be a left Λ-module. According to Theorem 6.1.6, TorΛn(A,B) can also be
computed by taking the n-th left derived functor of − ̂⊗ΛB and applying it
to A.

Using this notation, we get the following characterization of the functors
TorΛn(−,−).

Proposition 6.1.9 Let R be a commutative profinite ring and Λ a profinite
R-algebra. Fix A ∈ PMod(Λop) and B ∈ PMod(Λ). Then

(a) {TorΛn(A,−)}n∈N is the unique positive covariant homological functor
from PMod(Λ) to PMod(R) such that TorΛn(A,P ) = 0, for n ≥ 1
and for every projective profinite Λ-module P . Moreover, TorΛ0 (A,−) =
A ̂⊗Λ−.

(b) {TorΛn(−, B)}n∈N is the unique positive covariant homological functor
from PMod(Λop) to PMod(R) such that TorΛn(P,B) = 0, for n ≥ 1 and
for every projective profinite right Λ-module P . Moreover, TorΛ0 (−, B) =
− ̂⊗ΛB.

In particular TorΛn(A,−) and TorΛn(−, B) are additive functors, i.e., they
commute with finite direct sums.

It follows from this proposition, Lemma 5.5.2 and Lemma 6.1.4 that each
of the functors TorΛn(A,−) and TorΛn(−, B) commutes with inverse limits
(n ≥ 0). Explicitly,

Corollary 6.1.10 Under the hypotheses of the above proposition, we have

(a)
TorΛn(A, lim←−

i∈I

Bi) = lim←−
i∈I

TorΛn(A,Bi),

where {Bi, ψij , I} is an inverse system of profinite Λ-modules.
(b)

TorΛn( lim←−
i∈I

Ai, B) = lim←−
i∈I

TorΛn(Ai, B),

where {Ai, ϕij , I} is an inverse system of profinite right Λ-modules.

6.2 Cohomology with Coefficients in DMod([[RG]])

Let G be a profinite group and R a commutative profinite ring. Consider R
as a profinite G-module with trivial action: gr = r for all g ∈ G, r ∈ R.
Then R becomes an [[RG]]-module. Given a discrete [[RG]]-module A define
the n-th cohomology group Hn(G,A) of G with coefficients in A by

Hn(G,A) = Extn[[RG]](R,A) (n ∈ N).
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It follows that

H0(G,A) = Ext0[[RG]](R,A) = Hom[[RG]](R,A).

On the other hand, every homomorphism ϕ in Hom[[RG]](R,A) is completely
determined by its value on the element 1 of R; therefore, ϕ can be identified
with an element a of A which is fixed by the action of G, i.e., ga = a for
every g ∈ G. Recall (see Lemma 5.3.1) that the subgroup of fixed points of
A under the action of G is defined by

AG = {a | a ∈ A, ga = a, ∀g ∈ G}.

It is evident that AG is an [[RG]]-submodule of A. We call AG the submodule
of fixed points of A. Hence we have

Lemma 6.2.1 Let G be a profinite group. There is an isomorphism of R-
modules

H0(G,A) = Hom[[RG]](R,A) ∼= AG

for every A ∈ DMod([[RG]]), and this isomorphism is functorial on the vari-
able A.

Sometimes we use the notation (−)G for the functor that assigns to each
[[RG]]-module A, the submodule AG of fixed points.

The following characterization is a consequence of Proposition 6.1.7 and
Lemma 6.2.1.

Proposition 6.2.2 Let G be a profinite group. Then,

{Hn(G,−)}n∈N

is the sequence of right derived functors of the functor A �→ AG from
DMod([[RG]]) to DMod(R). In other words, H•(G,−) = {Hn(G,−)}n∈N

is the unique sequence of functors from DMod([[RG]]) to DMod(R) such
that

(a) H0(G,A) = AG (as functors on DMod([[RG]]));
(b) Hn(G,Q) = 0 for every discrete injective [[RG]]-module Q and n ≥ 1;
(c) For each short exact sequence 0 −→ A1 −→ A2 −→ A3 −→ 0 in

DMod([[RG]]), there exist connecting homomorphisms

δ : Hn(G,A3) −→ Hn+1(G,A1)

for all n ≥ 0, such that the sequence

0 → H0(G,A1) → H0(G,A2) → H0(G,A3)
δ→ H1(G,A1) → H1(G,A2) → · · ·

is exact ; and
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(d) For every commutative diagram

0 A1

α

A2

β

A3

γ

0

0 A′
1 A′

2 A′
3 0

in DMod([[RG]]) with exact rows, the following diagram commutes for
every n ≥ 0

Hn(G,A3)
δ

Hn(G,γ)

Hn+1(G,A1)

Hn+1(G,α)

Hn(G,A′
3)

δ
Hn+1(G,A′

1)
.

Standard Resolutions

Next we shall describe an explicit way of calculating the cohomology groups
Hn(G,A) = Extn[[RG]](R,A). First we construct convenient projective resolu-
tions for the profinite [[RG]]-module R. This can be done as in the case of
abstract groups and modules.

The Homogeneous Bar Resolution

For each n ≥ 0, define Ln as the left free profinite R-module on the
free profinite G-space Gn+1 = G× n+1· · · ×G with diagonal action (i.e.,
x(x1, . . . , xn) = (xx1, . . . , xxn), for x, x1, . . . , xn ∈ G). Then (see Proposi-
tion 5.7.1) Ln is a free profinite [[RG]]-module on the profinite space

{(1, x1, . . . , xn) | xi ∈ G}.

Define a sequence L(G):

· · · −→ Ln
∂n−→ Ln−1 −→ · · · −→ L0

ε−→ R −→ 0, (1)

where

∂n(x0, x1, . . . , xn) =
n
∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn)

(the symbol x̂i indicates that xi is to be omitted ), and ε is the augmentation
map

ε(x) = 1.

It is easy to check that ε and each ∂n are [[RG]]-homomorphisms, and that (1)
is a chain complex (i.e., ∂n∂n+1 = 0 (n ≥ 1) and ε∂1 = 0). In fact it is exact,



206 6 Homology and Cohomology of Profinite Groups

and hence a free [[RG]]-resolution of R. One way of verifying this is to establish
the existence of a ‘contracting homotopy’, i.e., continuous R-homomorphisms
γn : Ln −→ Ln+1 (n ≥ 0) and γ−1 : R −→ L0 such that ∂n+1γn + γn−1∂n =
id, ∂1γ0 + γ−1ε = id and εγ−1 = id. Assume such contracting maps γn have
been found; then the exactness of (1) follows immediately. Indeed, if a ∈ Ln
and ∂n(a) = 0 (or ε(a) = 0, if n = 0) put b = γn(a); then a = ∂n+1(b),
proving the assertion. We defined the maps γn as follows:

γn(x0, x1, . . . , xn) = (1, x0, x1, . . . , xn) and γ−1(1) = (1).

It is easy to verify that these maps form indeed a contracting homotopy. The
free resolution (1) of R is called the homogeneous bar resolution.

The Inhomogeneous Bar Resolution

It is sometimes convenient to work with a different free resolution of R. For
each natural number n = 0, 1, 2, . . . , let L̃n = L̃n(G) be the free profinite
left [[RG]]-module on the topological basis Gn = G× n· · · ×G (notice that L̃0

is just the free [[RG]]-module on the space consisting of the single symbol (),
i.e., L̃0

∼= [[RG]], as modules). In this case, define the augmentation map
ε̃ : L0 −→ R as the continuous [[RG]]-epimorphism such that ε̃() = 1. If
n ≥ 1, define ∂̃n : L̃n −→ L̃n−1 to be the unique [[RG]]-homomorphism
extending the map Gn −→ L̃n−1 given by

∂̃n(x1, . . . , xn) = x1(x2, . . . , xn) +
n−1
∑

i=1

(−1)i(x1, . . . , xixi+1, . . . , xn)

+ (−1)n(x1, . . . , xn−1).

Consider now the sequence L̃(G):

· · · −→ L̃n
∂̃n−→ L̃n−1 −→ · · · −→ L̃0

ε̃−→ R −→ 0. (2)

One checks without difficulty that (2) is a complex. To show that it is exact,
one can define a contracting homotopy (see Exercise 6.2.3 below), but instead,
we proceed by proving that (1) and (2) are isomorphic complexes. Let ϕn :
L̃n −→ Ln and ψn : Ln −→ L̃n be given by

ϕn(x1, . . . , xn) = (1, x1, x1x2, . . . , x1x2 · · ·xn)

and by
ψn(x0, x1, . . . , xn) = x0(x−1

0 x1, x
−1
1 x2, . . . , x

−1
n−1xn).

Then ϕn and ψn are [[RG]]-homorphisms, inverse to each other. Moreover
∂n+1ϕn+1 = ϕn∂̃n+1 (n ≥ 1) and εϕ0 = ε̃ (in other words, {ϕn}n≥0 is an
homomorphism of chain complexes); similarly, {ψn}n≥0 is a homomorphism
of chain complexes. Hence (1) and (2) are isomorphic complexes, and so (2)
is exact. Thus (2) is a free (and thus projective) resolution of R. We call (2)
the inhomogeneous bar resolution of R.
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Exercise 6.2.3 Give a direct proof that (2) is an exact sequence by con-
structing a contracting homotopy.

Let A ∈ DMod([[RG]]). Observe that if f ∈ Hom[[RG]](Ln, A), then the
image of f is finite since A is discrete and Ln compact; therefore, it follows
from the freeness of Ln that

Hom[[RG]](Ln, A) ∼= Cn(G,A),

where Cn(G,A) consists of all continuous maps f : Gn+1 −→ A such
that f(xx0, xx1, . . . , xxn) = xf(x0, x1, . . . , xn), for all x, xi ∈ G. Note that
Cn(G,A) is a discrete R-module, with module structure given by

(rf)(x0, x1, . . . , xn) = rf(x0, x1, . . . , xn) r ∈ R, x, x0, x1, . . . , xn ∈ G.

The elements of Cn(G,A) are called homogeneous n-cochains.
If one applies the functor Hom[[RG]](−, A) = −G to (2), excluding the first

term R, one gets the following cochain complex, C(G,A):

0 −→ C0(G,A) −→ · · · −→ Cn(G,A) ∂
n+1

−→ Cn+1(G,A) −→ · · · , (3)

where

(∂n+1f)(x0, x1, . . . , xn+1) =
n+1
∑

i=0

(−1)if(x0, . . . , x̂i, . . . xn+1). (4)

Thus, according to the definition of cohomology groups of G with coefficients
in A ∈ DMod([[RG]]), we have the following explicit description:

Theorem 6.2.4 Hn(G,A) is the n-th cohomology group of the cochain com-
plex (3), i.e.,

Hn(G,A) = Extn[[RG]](R,A) = Ker(∂n+1)/Im(∂n).

Following standard terminology, we refer to the elements in Ker(∂n+1) as
n-cocycles, and the elements of Im(∂n) as n-coboundaries

Remark 6.2.5 This calculation shows that one has natural abelian group iso-
morphisms

Extn[[RG]](R,A) ∼= Extn
[[̂ZG]]

(̂Z, A)

for all [[RG]]-modules A. The role of the ring R is important only in the
sense that Hn(G,A) = Extn[[RG]](R,A) is a discrete R-module. Because of
this, we shall often restrict ourselves to cohomology groups Hn(G,A) of G
with coefficients in DMod([[̂ZG]]).
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6.3 Homology with Coefficients in PMod([[RG]])

We turn our attention next to homology groups. Let G be a profinite group,
R a commutative profinite ring and let B be a profinite right [[RG]]-module.
Define the n-th homology group Hn(G,B) of G with coefficients in B by the
formula

Hn(G,B) = Tor[[RG]]
n (B,R).

Using the definition of Tor[[RG]]
n (B,R) as the n-th left derived functor of

− ̂⊗[[RG]]R, one can make an explicit computation of Hn(G,B) using, for
example, the free resolution (1):

Theorem 6.3.1 Hn(G,B) is the n-th homology group of the chain complex

· · · −→ B ̂⊗[[RG]] Ln+1 −→ B ̂⊗[[RG]] Ln
∂n−→ · · · −→ B ̂⊗[[RG]] L0 −→ 0.

We refer to the elements in Ker(∂n) as n-cycles , and to those in Im(∂n+1)
as n-boundaries.

In particular, this theorem says that

H0(G,B) = Tor[[RG]]
0 (B,R) = B ̂⊗[[RG]]R.

To give a more suggestive (and often useful) description of H0(G,B), we
proceed as in the case of abstract groups. We denote the usual augmentation
ideal of the abstract group [RG] by (IG); that is, (IG) is the kernel of the
ring homomorphism (the abstract augmentation map) [RG] −→ R defined
by g �→ 1, for all g ∈ G (see, e.g., Mac Lane [1963], p. 104). Define the
augmentation ideal ((IG)) = ((IRG)) of the complete ring [[RG]] to be the
kernel of the continuous ring homomorphism (the augmentation map)

ε : [[RG]] −→ R

given by ε(g) = 1 for every g ∈ G (note that ε is the inverse limit of the
abstract augmentation maps [(R/L)(G/U)] −→ R/L, where U ranges over
the open normal subgroups of G and L over the open ideals of R; so, indeed
ε is a continuous ring homomorphism).

Lemma 6.3.2 Let G be a profinite group, R a profinite ring and ((IG)) =
((IRG)) the augmentation ideal of the complete group algebra [[RG]]. Then

(a)
((IG)) = lim←− I(G/U),

where U ranges over all open normal subgroups of G.
(b) ((IG)) is a free R-module on the pointed topological space

G− 1 = {x− 1 | x ∈ G},

where 0 is the distinguished point of G− 1.
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(c) If T is a profinite subspace generating G such that 1 ∈ T , then ((IG)) is
generated by the pointed space T−1 = {t−1 | t ∈ T}, as an [[RG]]-module.

Proof. Part (a) follows from Proposition 2.2.4 and the fact that, by definition,
[[RG]] = lim←− [R(G/U)].

To prove part (b), let us assume first that G is finite. In that case we
must show that the set {x− 1 | 1 
= x ∈ G} is an R-basis of (IG). This set is
obviously R-linearly independent. Furthermore it generates (IG), for consider
α ∈ (IG), say α =

∑

x∈G αxx; then
∑

x∈G αx = 0; therefore
∑

x∈G αxx =
∑

x∈G αx(x−1), proving the assertion. If G is infinite, the result follows from
this, Proposition 5.2.2 and part (a).

In the proof of (c), we may assume again by part (a), that G is finite.
Observe that if x, y ∈ G, then

xy − 1 = x(y − 1) + (x− 1) and x−1 − 1 = −x−1(x− 1).

Since every element x in G can be expressed in the form x = te11 · · · ter
r ,

(ti ∈ T , ei = ±1), one deduces that every element of the form x− 1 belongs
to the [RG]-submodule generated by T − 1; hence the result. ��

To compute H0(G,B) = B ̂⊗[[RG]]R, consider the short exact sequence

0 −→ ((IG)) −→ [[RG]] −→ R −→ 0.

Since B ̂⊗[[RG]] − is a right exact functor (see Proposition 5.5.3), the sequence

B ̂⊗[[RG]] ((IG)) −→ B ̂⊗[[RG]] [[RG]] −→ B ̂⊗[[RG]]R −→ 0

is exact. After identifying B ̂⊗[[RG]] [[RG]] with B (see Proposition 5.5.3), and
using Lemma 6.3.2, we obtain the following lemma.

Lemma 6.3.3

H0(G,B) ∼= B/B((IG)) = B/〈bg − b | b ∈ B, g ∈ G〉 def
= BG.

Furthermore, this isomorphism is natural on the variable B.

Proof. The isomorphism has been already established. The naturality of this
isomorphism on the variable B is a consequence of the commutativity of the
diagram

B ̂⊗[[RG]] ((IG)) B ̂⊗[[RG]] [[RG]] B ̂⊗[[RG]]R 0

B′
̂⊗[[RG]] ((IG)) B′

̂⊗[[RG]] [[RG]] B′
̂⊗[[RG]]R 0,

where the vertical maps are induced by a homomorphism B −→ B′ of [[RG]]-
modules. ��
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Therefore, we have the following explicit characterization of the homology
functor H•(G,−) (see Proposition 6.1.9).

Proposition 6.3.4 {Hn(G,−)}n∈N is the sequence of left derived functors of
the functor B �→ BG from PMod([[RG]]op) to PMod(R). In other words, this
sequence is the unique sequence of covariant functors from PMod([[RG]]op)
to PMod(R) such that

(a) H0(G,B) = BG (as functors on PMod([[RG]]op)),
(b) Hn(G,P ) = 0 for every projective profinite right [[RG]]-module P and

n ≥ 1.
(c) For each short exact sequence 0 −→ B1 −→ B2 −→ B3 −→ 0 in

PMod([[RG]]op), there exist connecting homomorphisms

δ : Hn+1(G,B3) −→ Hn(G,B1),

for all n ≥ 0, such that the sequence

· · · → H1(G,B2) → H1(G,B3)
δ→ H0(G,B1)

→ H0(G,B2) → H0(G,B3) → 0

is exact ; and
(d) For every commutative diagram

0 B1

α

B2

β

B3

γ

0

0 B′
1 B′

2 B′
3 0

in PMod([[RG]]op) with exact rows, the diagram

Hn+1(G,B3)
δ

Hn+1(G,γ)

Hn(G,B1)

Hn(G,α)

Hn+1(G,B′
3)

δ
Hn(G,B′

1)

commutes for every n ≥ 0.

We wish to clarify now what is the role of the ring R in the computation
of homology groups.

Lemma 6.3.5 Let G be a profinite group, R a profinite ring and B a profinite
right [[RG]]-module. Then there is a natural isomorphism of abelian groups

Tor[[RG]]
n (B,R) ∼= Tor[[

̂ZG]]
n (B, ̂Z).
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Proof. Put Λ = [[̂ZG]]. Consider a free Λ-resolution of ̂Z (for example (2))

· · · → [[ΛXn]] → [[ΛXn−1]] → · · · → [[ΛX0]] → ̂Z → 0, (5)

where each Xn is a profinite space. Since each [[ΛXn]] is automatically a free
̂Z-module, (5) is a projective ̂Z-resolution of ̂Z as well. Furthermore, this
resolution is ̂Z-split, that is, each term of the sequence is the direct sum of
the image of the previous map and the kernel of the next map as ̂Z-modules
(this is a consequence of the ̂Z-projectivity of each term of the sequence).
One easily deduces from this that tensoring (5) with R over ̂Z yields an
exact sequence

· · · → R ̂⊗
̂Z [[ΛXn]] → · · · → R ̂⊗

̂Z [[ΛX0]] → R ̂⊗
̂Z
̂Z ∼= R→ 0. (6)

Next observe that (6) is an [[RG]]-free resolution of R. Indeed, if X is a
profinite space,

R ̂⊗
̂Z [[ΛX]] = lim←− R ̂⊗̂Z [[[̂Z(G/U)]Yi]],

where U ranges over the open normal subgroups of G, and whereX = lim←− Yi,

with each Yi finite. By Proposition 5.5.3(d),

R ̂⊗
̂Z [[[̂Z(G/U)]Yi]] = R ⊗

̂Z [[[̂Z(G/U)]Yi]] = [[[R(G/U)]Yi]];

thus R ̂⊗
̂Z [[ΛX]] = [[[[RG]]X]], a free [[RG]]-module.

Now suppose that B is a profinite right [[RG]]-module. Then there exists
a natural isomorphism of profinite abelian groups

B ̂⊗[[RG]] (R ̂⊗̂Z [[ΛXn]]) ∼= B ̂⊗[[̂ZG]] [[ΛXn]]

given by
b ̂⊗ (r ̂⊗ d) �→ br̂⊗d (b ∈ B, r ∈ R, d ∈ [[ΛXn]]).

Thus the result. ��

Because of this lemma, we shall often state our results only for homology
groups Hn(G,B), where B is a profinite right [[̂ZG]]-module.

We end this section by establishing a duality relationship between homol-
ogy and cohomology groups.

Proposition 6.3.6 Let G be a profinite group and let B be a profinite right
[[̂ZG]]-module. Then

Hn(G,B) and Hn(G,B∗) (n ∈ N)

are Pontryagin dual, where B∗ denotes the Pontryagin dual of B (see Sec-
tion 5.1).
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Proof. We must show that Hn(G,B) ∼= Hn(G,B∗)∗. In fact we shall show
that {Hn(G,−)}n∈N and {Hn(G,−∗)∗}n∈N are isomorphic homological func-
tors from Mod([[̂ZG]]op) to Mod(̂Z).

That {Hn(G,−∗)∗}n∈N is a homological functor follows from the follow-
ing facts:

(1) {Hn(G,−)}n∈N is a cohomological functor from Mod([[̂ZG]]) to Mod(̂Z),
and

(2) Hom(−,Q/Z) is an exact functor, since Q/Z is an injective discrete ̂Z-
module (to see the latter assertion observe that the discrete ̂Z-modules
are precisely the torsion abelian groups; on the other hand, Q/Z is in-
jective as an abelian group since it is divisible).

Therefore, it suffices to prove that both sequences are coeffaceable and
isomorphic in dimension 0 (see Lemma 6.1.4). If P is a projective profinite
[[̂ZG]]-module, then P ∗ is an injective discrete [[̂ZG]]-module; so Hn(G,P ∗) =
0 for n ≥ 1; hence {Hn(G,−∗)∗}n∈N is coeffaceable. Finally we must show
that H0(G,B) and H0(G,B∗)∗ are isomorphic as functors on the second
variable. Now,

H0(G,B∗)∗ = (Hom[[̂ZG]](̂Z,Hom
̂Z(B,Q/Z))∗

∼= Hom
̂Z(B ̂⊗[[̂ZG]]

̂Z,Q/Z)∗ ∼= B ̂⊗[[̂ZG]]
̂Z = H0(G,B)

(the first isomorphism follows from Proposition 5.5.4, and the second is just
Pontryagin duality). ��

The above proposition allows us to prove general results for cohomology
(respectively, homology) groups of a group G, obtaining automatically corre-
sponding results for homology (respectively, cohomology) groups, by duality.

6.4 Cohomology Groups with Coefficients in DMod(G)

Let G be a profinite group. The definition given in Section 6.2 for the co-
homology groups of G is valid for coefficient modules A in DMod([[̂ZG]])
(or more generally, in DMod([[RG]])). In this section we shall extend this
definition to include any coefficient module from DMod(G). We do this in a
way that makes it irrelevant whether A is in DMod([[̂ZG]]) or in DMod(G).

Let G be a profinite group and let A be a discrete G-module. Define a
cochain complex C(G,A):

0 → C0(G,A) → C1(G,A) → · · · → Cn(G,A) ∂
n+1

−→ Cn+1(G,A) → · · · ,

where Cn(G,A) is the abelian group of all continuous functions

f : G× n+1· · · ×G −→ A (7)
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such that f(xx0, . . . , xxn) = xf(x0, . . . , xn) (x, x0, . . . , xn ∈ G), and ∂n+1

is defined by the formula (4), i.e.,

(∂n+1f)(x0, x1, . . . , xn+1) =
n+1
∑

i=0

(−1)if(x0, . . . , x̂i, . . . xn+1), (8)

where x0, x1, . . . , xn+1 ∈ G.
For simplicity, we often drop the superindices and write ∂ rather than ∂n

if there is no danger of confusion.

Definition 6.4.1 Let G and A be as above. Then the n-th cohomology group
of G with coefficients in A is defined as the n-th cohomology group of the
cochain complex (7), i.e.,

Hn(G,A) = Ker(∂n+1)/Im(∂n).

As previously, the elements in Ker(∂n+1) are called n-cocycles, and those
in Im(∂n), n-coboundaries.

According to Theorem 6.2.4, this is consistent with the definition of the
cohomology groups with coefficient modules A in DMod([[̂ZG]]). This justi-
fies formally our approach; there is however another more substantial reason
to justify this definition. Indeed, as we shall see later, with Definition 6.4.1
each Hn(G,A) becomes a functor on the second variable; in fact (see Sec-
tion 6.6) {Hn(G,A)}n∈N is the sequence of right derived functors of the left
exact functor

−G : DMod(G) −→ A,

where A is the category of abelian groups : if A is a discrete G-module, then
AG = {a ∈ A | ga = a, ∀g ∈ G} is in fact a “trivial” G-module in the sense
that the natural action of G on AG is the trivial one; see Section 5.8 where AG

was defined for [[RG]]-modules. This is plausible in principle since DMod(G)
has enough injectives. Also, in this process we shall make explicit some maps,
like the connecting homomorphisms involved in the cohomological functor
{Hn(G,A)}n∈N (defined either in DMod(G) or in DMod([[̂ZG]]), the latter
being a restriction of the former).

Exercise 6.4.2 Let G be a profinite group and R a commutative profi-
nite ring. Assume that A is a discrete left G-module (respectively, A ∈
DMod([[̂ZG]])). Let C̃n(G,A) denote the group of all continuous functions
f : G× n· · · ×G −→ A. Define a cochain complex C̃(G,A):

0 → C̃0(G,A) → · · · → C̃n(G,A) ∂̃
n+1

−→ C̃n+1(G,A) → · · · ,

where

(∂̃n+1f)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)

+
n
∑

i=1

(−1)if(x1, . . . , xixi+1, . . . , xn+1) + (−1)n+1f(x1, . . . , xn).
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Prove that Hn(G,A) (see Definition 6.4.1) is the n-th cohomology group of
this complex.

6.5 The Functorial Behavior of Hn(G, A) and Hn(G, A)

Let ϕ : G −→ G′ be a continuous homomorphism of profinite groups. Let
A ∈ DMod(G), A′ ∈ DMod(G′), and let f : A′ −→ A be a group ho-
momorphism. As in Section 5.1, we say that ϕ and f are compatible maps
if

f(ϕ(x)a′) = xf(a′), (x ∈ G, a′ ∈ A′),

i.e., if f is a G-homomorphism when A′ is considered as a G-module by means
of the action xa′ def= ϕ(x)a′, (x ∈ G, a′ ∈ A′).

Example 6.5.1 Let N ⊃ L ⊃ K be Galois extensions of fields. Then the
natural projection and injection

π : GN/K −→ GL/K and i : L∗ ↪→ N∗,

respectively, are easily seen to be compatible (see Example 5.3.2).

A pair of compatible maps ϕ, f as above, induces homomorphisms

(ϕ, f) : Cn(G′, A′) −→ Cn(G,A) (n ≥ 0)

given by

[(ϕ, f)σ](x0, . . . , xn) = f(σ(ϕ(x0), . . . , ϕ(xn))) (σ ∈ Cn(G′, A′), xi ∈ G).

In fact (ϕ, f) is a map of cochain complexes, i.e.,

Cn(G′, A′) ∂n+1

(ϕ,f)

Cn+1(G′, A′)

(ϕ,f)

Cn(G,A) ∂n+1

Cn+1(G,A)

commutes for n ≥ 0. From this one easily defines homomorphisms

(ϕ, f)n : Hn(G′, A′) −→ Hn(G,A)

of the cohomology groups.
The maps (ϕ, f)n that we have just constructed behave functorially in

the following sense. Let Gi be profinite groups and let Ai ∈ DMod(Gi)
(i = 1, 2, 3). Assume that

G1
ϕ1−→ G2

ϕ2−→ G3
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and
A1

f1←− A2
f2←− A3

are continuous homomorphisms and abelian group homomorphisms, respec-
tively, such that the pairs ϕ1 and f1, and ϕ2 and f2 are compatible. Then
one checks that ϕ2ϕ1 and f2f1 are compatible, and

(ϕ2ϕ1, f2f1)n = (ϕ1, f1)n ◦ (ϕ2, f2)n.

Moreover, if ϕ1 : G1 −→ G1 and f1 : A1 −→ A1 are identity maps, so is
(ϕ1, f1)n. In particular, we have established the following result.

Proposition 6.5.2 Hn(G,−) is a functor from the category DMod(G) to
the category A of abelian groups (n ≥ 0).

The Inflation Map

Let K be a closed normal subgroup of a profinite group G, and let A ∈
DMod(G). Then AK becomes a G/K-module in a natural way:

(xK)(a) = xa, (x ∈ G, a ∈ AK).

It is clear that the projection G −→ G/K and the inclusion AK −→ A are
compatible maps. Hence for each n, they induce homomorphisms

Inf = InfG/KG : Hn(G/K,AK) −→ Hn(G,A)

which are called inflations. Explicitly,

Inf : H0(G/K,AK) = (AK)G/K −→ H0(G,A) = AG

is the identity mapping. Assume n > 0, and let σ ∈ Cn(G/K,AK) represent
an element σ̄ of Hn(G/K,AK), i.e., σ : (G/K)n+1 −→ AK is a (continuous)
n-cocycle. Then Inf(σ̄) is represented by the continuous n-cocycle

ρ : Gn+1 −→ A

given by
ρ(x0, . . . , xn) = σ(x0K, . . . , xnK).

From this definition it is straightforward to check the following proposition.

Proposition 6.5.3

(a) Let K be a normal closed subgroup of a profinite group G. Let f : A −→ B
be a map of G-modules. Then f induces a G/K-homomorphism fK :
AK −→ BK , and the diagram
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Hn(G/K,AK)
(id,fK)

n

Inf

Hn(G/K,BK)

Inf

Hn(G,A)
(id,f)n

Hn(G,B)

commutes. In other words, Inf : Hn(G/K,−K) −→ Hn(G,−) is a mor-
phism of functors for each n ≥ 0.

(b) Let G and K be as in part (a). Let 0 −→ A −→ B −→ C −→ 0 be a short
exact sequence of G-modules and assume that the corresponding sequence
0 −→ AK −→ BK −→ CK −→ 0 of G/K-modules is also exact. Then
Inf commutes with the corresponding connecting homomorphisms, that is,
for each natural number n we have a commutative diagram

Hn(G/K,CK) δ

Inf

Hn+1(G/K,AK)

Inf

Hn(G,C) δ
Hn+1(G,A).

(c) If G −→ G1 and G1 −→ G2 are surjective continuous homomorphisms of
profinite groups, then

InfG1
G InfG2

G1
= InfG2

G .

Let I be a directed poset and let {Gi, ϕij , I} be an inverse system over
I of profinite groups. Let {Ai, fij , I} be a direct system over I of abelian
groups, where each Ai is a Gi-module such that, for each pair i � j in I, the
maps

ϕij : Gi −→ Gj and fji : Aj −→ Ai

are compatible. Then, for each n, we obtain in a natural way direct systems
over I

{Cn(Gi, Ai)}i∈I and {Hn(Gi, Ai)}i∈I .

Let
G = lim←−

i∈I

Gi and A = lim−→
i∈I

Ai.

Denote by ϕi : G −→ Gi and fi : Ai −→ A the corresponding canonical
homomorphisms. Then A can be considered as a G-module in the following
manner: given a ∈ A and x ∈ G, then for some i ∈ I and ai ∈ Ai one has
fi(ai) = a; define xa

def
= fi[(ϕi(x))ai]. This is a well defined continuous action

of G on A.

Lemma 6.5.4 Under the above assumptions one has
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(a)
Cn(G,A) ∼= lim−→

i∈I

Cn(Gi, Ai) (n = 0, 1, . . .).

Moreover these isomorphisms commute with the operators ∂ given by for-
mula (8) in the following sense: for each i ∈ I the diagram

Cn(Gi, Ai)
∂n+1

∼=

Cn+1(Gi, Ai)

∼=

Cn(G,A) ∂n+1

Cn+1(G,A)

commutes.
(b) Cn(G,−) is an exact functor on the category DMod(G).

Proof. Fix n. For each i ∈ I define a homomorphism

Ψni : Cn(Gi, Ai) −→ Cn(G,A)

as follows. Let σi ∈ Cn(Gi, Ai), then put Ψni(σi) = fiσiϕi. The homomor-
phisms Ψni are compatible with the canonical homomorphisms

Cn(Gi, Ai) −→ Cn(Gj , Aj) (i � j).

Hence they induce homomorphisms

Ψn : lim−→
i∈I

Cn(Gi, Ai) −→ Cn(G,A).

The commutativity of the homomorphisms Ψn with the operators ∂ follow
immediately from these definitions and formula (8).

The proof that each Ψn is an isomorphism is very similar to the proof of
Lemma 5.1.4(a), and we leave the details to the reader.

(b) Let U be the set of all open normal subgroups of G. Note that
{G/U}U∈U is an inverse system of finite groups, {AU}U∈U a direct system of
abelian groups and AU is a G/U -module by means of the action (gU)a = ga.
The canonical homomorphisms G/U −→ G/V and AU ←− AV (U ≤ V ), are
compatible. So by part (a),

Cn(G,A) ∼= lim−→
U ∈U

Cn(G/U,AU ).

Now, since lim−→ is an exact functor on abelian groups (see Proposition 1.2.6),

then in the proof of (b) we may assume that G is finite. For finite G,

Cn(G,−) = Hom[ZG](F,−),

where F is the free [ZG]-module on the set Gn. Hence Cn(G,−) is exact. ��
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We can now translate this information to cohomology.

Proposition 6.5.5 For each n ≥ 0

Hn(G,A) ∼= lim−→
I

Hn(Gi, Ai).

Proof. Since lim−→ is an exact functor on the category of abelian groups (see

Proposition 1.2.6), one has

lim−→
I

Hn(Gi, Ai) ∼= Hn
(

lim−→
I

C•(Gi, Ai)
)

,

where the cochain complexes C•(Gi, Ai) form a direct system by means of
the maps

gij = (ϕji, fij) : Cn(Gi, Ai) −→ Cn(Gj , Aj),

given by gij(σi) = fijσiϕji (σi ∈ Cn(Gi, Ai), j � i). Note that the maps gij
determine a map of cochain complexes

C•(Gi, Ai) −→ C•(Gj , Aj)

since they commute with the coboundary operators ∂n. Hence, to prove our
assertion it suffices to show the existence of isomorphisms

lim−→
i∈I

Cn(Gi, Ai) ∼= Cn(G,A),

n ≥ 0, commuting with the coboundary maps ∂n. This is the content of
Lemma 6.5.4. ��

Corollary 6.5.6 Let G be a profinite group and A ∈ DMod(G). Then

(a)
Hn(G,A) = lim−→

U ∈U

Hn(G/U,AU )

where U is the collection of all open normal subgroups of G.
(b)

Hn(G,A) = lim−→
A′

Hn(G,A′),

where A′ runs through the finitely generated G-submodules of A.
(c) Suppose A =

⊕

i∈I Ai is a direct sum of G-submodules of A. Then

Hn(G,A) =
⊕

i∈I
Hn(G,Ai) for all n ≥ 0.
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Proof. (a) As indicated in the proof of part (b) of Lemma 6.5.4,

Cn(G,A) ∼= lim−→
U ∈U

Cn(G/U,AU ).

Furthermore, by Lemma 6.5.4(a) these isomorphisms commute with ∂ (see
formula (8)). Since lim−→ is an exact functor, we obtain from Lemma 6.5.4(a)
that

Hn(G,A) = Hn(C•(G,A)) = Hn( lim−→
U ∈U

C•(G/U,AU ))

= lim−→
U ∈U

Hn(C•(G/U,AU )) = lim−→
U ∈U

Hn(G/U,AU ).

(b) This follows from the proposition above since A = lim−→ A′.

(c) A = lim−→JAJ , where AJ =
⊕

j∈J Aj , and J ranges over all finite
subsets of I. Hence the result follows from Proposition 6.5.5 and the fact
that each Hn(G,−) is an additive functor. ��

We turn now to homology. The functorial behavior of Hn(G,B) can be
deduced by duality from the behavior of Hn(G,B∗) (see Proposition 6.3.6).
In detail, consider a homomorphism of profinite groups ϕ : G −→ G′ and
a homomorphism f : B −→ B′ of profinite abelian groups; assume that B
is a profinite right G-module, B′ a profinite right G′-module, and that the
maps ϕ and f are compatible (i.e., f(bx) = f(b)ϕ(x), for all x ∈ G, b ∈ B).
Then ϕ and the dual map f∗ : B′ ∗ −→ B∗ are compatible; hence, as we
have seen above, for each natural number n, there exists a corresponding
homomorphism

(ϕ, f)n : Hn(G,B∗) −→ Hn(G′, B′ ∗).

The dual of this map is the desired continuous homomorphism for the ho-
mology groups

(ϕ, f)n = ((ϕ, f)n)∗ : Hn(G,B) −→ Hn(G′, B′).

Using Theorem 6.3.1, there is an obvious way of describing explicitly the
maps (ϕ, f)n in terms of chains; we leave this to the reader.

We term the dual of inflation, coinflation. It is defined as follows. LetK be
a closed normal subgroup of a profinite group G, and let ϕ : G −→ G/K be
the canonical homorphism. Let B be a profinite right [[̂ZG]]-module, and con-
sider the canonical projection f : B −→ BK = B/B((IK)) (see Lemma 6.3.3).
Then ϕ and f are compatible maps; hence they induce continuous homor-
phisms of homology groups:

Coinf = CoinfGG/K : Hn(G,B) −→ Hn(G/K,BK) (n ≥ 0),

called the coinflation maps.
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To get dual results to Proposition 6.5.5 and Corollary 6.5.6, we need some
notation first. Let

G = lim←−
i∈I

Gi

be a profinite group expressed as an inverse limit of an inverse system
{Gi, ϕij , I} of profinite groups. Assume that

B = lim←−
i∈I

Bi

is a profinite abelian group expressed as an inverse limit of an inverse system
{Bi, fij , I} of profinite abelian groups over the same indexing poset I. Sup-
pose, in addition, that each Bi has the structure of a right [[̂ZGi]]-module and
that ϕij and fij are compatible maps for each pair i, j ∈ I such that i � j.
Then we have

Proposition 6.5.7 For each n ≥ 0,

Hn(G,B) ∼= lim←−
I

Hn(Gi, Bi).

The first part of the following corollary is just the dual of Lemma 5.3.1(c);
the second part follows from the proposition above.

Corollary 6.5.8 Let G be a profinite group and A a profinite right [[̂ZG]]-
module. Then

(a)
B = lim←−

U ∈U

BU ,

where U is the collection of open normal subgroups of G.
(b)

Hn(G,B) = lim←−
U ∈U

Hn(G/U,BU ).

6.6 Hn(G, A) as Derived Functors on DMod(G)

As announced in Section 6.4, we shall prove here that the sequence of functors
{Hn(G,−)}n∈N on DMod(G) is a positive effaceable cohomological functor,
in fact it is the sequence of right derived functors of the functor A �→ AG that
maps a discrete G-module A to its submodule of fixed points. The proofs here
are necessarily computational. On the other hand, since by definition coho-
mology with coefficients in DMod(G) includes cohomology with coefficients
in DMod([[̂ZG]]), our computations using cochains are valid for all coefficient
modules, whether torsion or not.
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Lemma 6.6.1 Let
0 −→ A

ϕ−→ B
ψ−→ C −→ 0

be an exact sequence of discrete G-modules and G-homomorphisms. Then
there exist canonical homomorphisms (the “connecting homomorphisms”)

δ = δn : Hn(G,C) −→ Hn+1(G,A) (n ≥ 0)

such that the sequence

0 −→ AG
ϕ0

−→ BG
ψo

−→ CG
δo

−→ H1(G,A)
ϕ1

−→ H1(G,B)
ψ1

−→ H1(G,C) δ1−→ H2(G,A)
ϕ2

−→ · · ·

is exact, where the maps ϕn and ψn are induced by ϕ and ψ respectively.

Proof. One way of proving this is to assume first thatG is finite. The existence
of this exact sequence is well-known in that case (see, e.g., Mac Lane [1963],
pages 116 and 97). Since lim−→ is exact in the category of abelian groups, the
result follows from Corollary 6.5.6.

Next, we give a direct proof of this lemma for a general profinite group G.
In this proof we indicate an explicit definition of the connecting homomor-
phisms δn. Consider the short exact sequence of cochain complexes induced
by ϕ and ψ:

0 0

· · · Cn(G,A) ∂

ϕ

Cn+1(G,A)

ϕ

· · ·

· · · Cn(G,B) ∂

ψ

Cn+1(G,B)

ψ

· · ·

· · · Cn(G,C) ∂
Cn+1(G,C) · · ·

0 0

By Lemma 6.5.4, each vertical line is a short exact sequence of abelian groups.
For a discreteG-moduleM , we shall represent an element ofHn(G,M) by [μ],
where μ ∈ Cn(G,M) is a cocycle (i.e., ∂(μ) = 0; see the complex (8)).

Let [σn] ∈ Hn(G,C); then ∂(σn) = 0. Let ρn ∈ Cn(G,B) with
ψ(ρn) = σn. Then 0 = ∂ψ(ρn) = ψ∂(ρn). Hence there exists νn+1 ∈
Cn+1(G,A) with ϕ(νn+1) = ∂(ρn). Clearly ∂(νn+1) = 0. Define
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δ([σn]) = [νn+1] ∈ Hn+1(G,A).

To see that δ is well defined, assume that also ρ′
n ∈ Cn(G,B) with ψ(ρ′

n) =
σn; let ν′

n+1 ∈ Cn+1(G,A) be such that ϕ(ν′
n+1) = ∂(σ′

n). We must show that
[ν′
n+1] = [νn+1]. Indeed, since ψ(ρ′

n − ρn) = 0, there exists νn ∈ Cn(G,A)
with ϕ(νn) = ρ′

n − ρn; then ϕ∂(νn) = ∂(ρ′
n − ρn) = ϕ(ν′

n+1 − νn+1). Hence
∂(νn) = ν′

n+1 − νn+1, because ϕ is injective. In other words, ν′
n+1 − νn+1

is a coboundary, i.e., [ν′
n+1] = [ν′

n+1]. It is an easy exercise to check that
δ is a homomorphism. Moreover, the long sequence in the statement of
the lemma is exact. The verification of this requires easy diagram chas-
ing, and we leave most of this verification to the reader. As a sample,
we check the exactness at Hn+1(G,A). First observe that the definition
of δ above implies that ϕn+1δ = 0; therefore Im(δ) ≤ Ker(ϕn+1). Con-
versely, let [νn+1] ∈ Hn+1(G,A), where νn+1 ∈ Cn+1(G,A) is a cocy-
cle, i.e., ∂(νn+1) = 0. Assume that ϕn+1([νn+1]) = 0. This means that
ϕ(νn+1) = ∂(νn) for some νn ∈ Cn(G,B). Then, by the definition of δ above,
we have that δ([ψ(νn)]) = [νn+1]. Thus Im(δ) ≥ Ker(ϕn+1). ��

We can now characterize in a global way the cohomology groups of a
profinite group with coefficients in the category of all discrete G-modules.

Theorem 6.6.2 The sequence of functors

{Hn(G,−) : DMod(G) −→ A}n≥0

is the sequence of right derived functors of the functor

−G : DMod(G) −→ A

that sends a discrete G-module A to the abelian group AG of fixed elements
of A.

Proof. Let A,B ∈ DMod(G). Then Cn(G,A⊕B) = Cn(G,A) ⊕Cn(G,B);
so Hn(G,A ⊕ B) = Hn(G,A) ⊕ Hn(G,B), i.e., Hn(G,−) is an additive
functor for each n ≥ 0. By definition of derived functors, we must show that
{Hn(G,−)}n≥0 is an effaceable covariant cohomological functor and that
H0(G,−) ∼= −G. First we show that it is a cohomological functor. In view of
Lemma 6.6.1, it only remains to see that every commutative diagram

0 A
ϕ

B
ψ

C 0

0 A′ ϕ′

B′ ψ′

C ′ 0

of G-modules and G-homomorphisms, with exact rows, induces a commuta-
tive diagram
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Hn(G,C) δ
Hn+1(G,A)

Hn(G,C ′)
δ′ Hn+1(G,A′)

for each n ≥ 0. This follows immediately from the definition of δ and δ′ (see
the proof of Lemma 6.6.1).

Next observe that

H0(G,G) = Ker(C0(G,A) −→ C1(G,A)) ∼= AG;

moreover this isomorphism determines a natural equivalence of functors.
Finally, it is necessary to prove that the sequence is effaceable, i.e., that

Hn(G,Q) = 0 for every injective object in DMod(G) and n > 0. Let U
be an open normal subgroup of G. It is easy to see that QU is an injective
G/U -module; hence Hn(G/U,QU ) = 0 (see Proposition 6.2.2). Thus, by
Corollary 6.5.6,

Hn(G,Q) = lim−→
U

Hn(G/U,QU ) = 0. ��

Proposition 6.6.3 Let G be a profinite group and H ≤c G. Then

{Hn(H,−)}n∈N

is a universal cohomological functor DMod(G) −→ A.

Proof. It is obvious that {Hn(H,−)}n∈N is a cohomological functor from
DMod(G) to A. To prove universality we must show that Hn(H,Q) = 0 if
n > 0 and Q is injective in DMod(G) (see Proposition 6.1.2). By Proposi-
tion 6.5.5

Hn(H,Q) = lim−→
U ∈U

Hn(HU/U,QU )

(U is the collection of all open normal subgroups of G). Since QU is G/U -
injective, it will suffice to prove the following lemma. ��

Lemma 6.6.4 Let H ≤ G be abstract groups and let Q be an injective ab-
stract G-module, then Q is injective as an abstract H-module.

Proof. One can adapt the proof of Corollary 5.7.2 to abstract groups. Instead
we give a different proof which is completely explicit. Consider a diagram

0 A
ϕ

ψ

B

ζ

Q
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of H-modules, where ϕ is a monomorphism. We need an H-homomorphism
ζ : B −→ Q such that ζϕ = ψ.

Construct a new diagram

0 [ZG] ⊗[ZH] A ϕ̄

ψ̄

[ZG] ⊗[ZH] B

ζ̄

Q

of G-modules and G-homomorphisms. The abelian groups [ZG]⊗[ZH] A and
[ZG]⊗[ZH]B are considered as G-modules by means of the action x(r⊗a) =
xr⊗ a, (x ∈ G, r ∈ [ZH], a ∈ A). The G-homorphisms ϕ̄ and ψ̄ are given by

ϕ̄(s⊗ a) = s⊗ ϕ(a),
ψ̄(s⊗ a) = sψ(a), (s ∈ [ZG], a ∈ A).

Since [ZG] is free as a right H-module, ϕ̄ is again a monomorphism. By the
G-injectivity of Q, there exits a G-homomorphism ζ̄ : [ZG] ⊗[ZH] B −→ Q
such that ζ̄ϕ̄ = ψ̄. Define ζ : B −→ Q by ζ(b) = ζ̄(1 ⊗ b). This is easily seen
to be the desired H-homomorphism. ��

6.7 Special Mappings

In this section we consider some special homomorphisms of (co)homology
groups that relate the (co)homology of a group with the (co)homology of
its subgroups. We first define special maps and establish results for coho-
mology groups; in the second part of the section we use duality to obtain
corresponding definitions and results for homology. We have already defined
the (co)inflation in Section 6.5; it can be regarded as a special map relating
the (co)homology of a group and the (co)homology of one of its quotients.

The Restriction Map in Cohomology

Let H be a closed subgroup of a profinite group G. Then every G-module
A is automatically an H-module, and the inclusion H ↪→ G is compatible
with the identity homomorphism A −→ A. Therefore (see Section 6.5), these
maps induced homomorphisms of cohomology groups

Res = ResGH : Hn(G,−) −→ Hn(H,−) (n ≥ 0) (9)

that are called restrictions.
For each A ∈ DMod(G), AG ⊆ AH . In fact the sequence {Res} is a

morphism of cohomological functors {Hn(G,−)}n≥0 −→ {Hn(H,−)}n≥0;
this can be seen from the following equivalent approach to the definition
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of Res. Since {Hn(G,−)}n≥0 is a universal cohomological functor (see The-
orem 6.6.2), the restriction maps (9) are determined by the morphism of
functors

H0(G,A) = AG ↪→ H0(H,A) = AH .

In terms of cochains these maps can be described as follows. Let σ :
Gn+1 −→ A (continuous) represent an element σ̄ of Hn(G,A); then a repre-
sentative n-cocycle ρ : Hn+1 −→ A of Res (σ̄) is given by

ρ(x0, . . . , xn) = σ(x0, . . . , xn), (x0, . . . , xn ∈ H).

The following proposition is now clear.

Proposition 6.7.1 Let G ≥ H ≥ T be profinite groups. Then

ResHT ResGH = ResGT .

The Corestriction Map in Cohomology

Let H be an open subgroup of a profinite group G, and let A ∈ DMod(G).
Since H has finite index, we can define a group homomorphism

NG/H : AH −→ AG

by
NG/H(a) =

∑

ta,

where a ∈ AH and t runs through a left transversal of H in G.
Then NG/H is a well-defined morphism of the functors H0(H,−) to

H0(G,−) on DMod(G). By Proposition 6.6.3

{Hn(H,−)}n≥0

is a universal cohomological functor DMod(G) −→ A; hence NG/H extends
to a unique morphism of cohomological functors

Cor = CorHG : H•(H,−) −→ H•(G,−).

In particular, for every A ∈ DMod(G) and every n ≥ 0, we have a natural
homomorphism

Cor = CorHG : Hn(H,A) −→ Hn(G,A)

which is called the corestriction or transfer.

Proposition 6.7.2 Let G be a profinite group and let T ≤ H be open sub-
groups of G. Then

CorHGCorTH = CorTG.
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Proof. By Lemma 6.1.4 it suffices to verify this result in dimension 0. This
in turn follows from the fact that if {hj} is a left transversal of T in H
and {gi} a left transversal of H in G, then {gihj} is a left transversal of T
in G. ��

Theorem 6.7.3 Let H be an open subgroup of a profinite group G. Then the
composition CorRes is multiplication by the index [G : H] of H in G, i.e.,

CorHGResGH = [G : H] · id,

where id is the identity on Hn(G,−) (n ≥ 0).

Proof. Since both CorHGResGH and [G : H] · id are endomorphisms of the
cohomological functor H•(G,−), it suffices to prove the result on dimension 0
(see Lemma 6.1.4). Let A ∈ DMod(G). Then if a ∈ AG we have

CorHGResGH(a) = NG/H(a) =
∑

ta = [G : H]a,

as desired. ��

Observe that if A is a discrete [[̂ZG]]-module then Hn(G,A) is torsion (i.e.,
every element in it has finite order), since its dual Hn(G,A∗) is profinite (see
Proposition 6.3.6). The following result extends this to show that Hn(G,A)
is torsion for any discrete G-module A (not necessarily torsion).

Corollary 6.7.4 If G is a profinite group and A ∈ DMod(G), then Hn(G,A)
is a torsion abelian group for n ≥ 1. Moreover the order of any element
c ∈ Hn(G,A) divides the order of G.

Proof. By Corollary 6.5.6 and Proposition 1.2.4, every element ofHn(G,A) is
in the image of Hn(G/U,AU ) for some open normal subgroup U of G. Hence,
we may assume that G is finite, and prove that in that case |G|Hn(G,A) = 0.
By Theorem 6.7.3

|G|Hn(G,A) = (Cor1GResG1 )(Hn(G,A)) = 0,

since obviously Hn(1, A) = 0 for n ≥ 1. ��

Corollary 6.7.5 Let G be a profinite group and let Q be a torsion-free di-
visible abelian group. Consider Q as a trivial G-module. Then Hn(G,Q) = 0
for n ≥ 1.

Proof. By Corollary 6.7.4, Hn(G,Q) is a torsion group. Let 0 
= r ∈ Z. Ob-
viously, multiplication by r is a G-automorphism of Q; hence multiplication
by r is an automorphism of Hn(G,Q). The result follows. ��

If A is an abelian group and p a prime number, denote by Ap the p-primary
component of A (the subgroup consisting of those elements of A whose order
is a p-power). By Corollary 6.7.4, Hn(G,A) is a torsion group, and therefore
one has
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Corollary 6.7.6 Let G be a profinite group.

(a) If A ∈ DMod(G), then

Hn(G,A) =
⊕

p

Hn(G,A)p.

(b) If A ∈ DMod(ZG), then Hn(G,A)p = Hn(G,Ap) for every prime p,
and consequently,

Hn(G,A) =
⊕

p

Hn(G,Ap).

Corollary 6.7.7 Let H be a closed subgroup of a profinite group G and let
p be a prime number. Assume that [G : H] is not divisible by p. Then the
mapping

Res : Hn(G,A) −→ Hn(H,A), (n ≥ 1)

is injective when restricted to Hn(G,A)p. If moreover H is open in G, then
the mapping

Cor : Hn(H,A) −→ Hn(G,A), (n ≥ 1)

is a surjection of Hn(H,A)p onto Hn(G,A)p.

Proof. Denote by V the collection of all open subgroups of G containing H.
Then (see Proposition 2.1.4)

H =
⋂

V ∈V
V = lim←−

V ∈V

V.

Therefore, by Proposition 6.5.5,

Hn(H,A) = lim−→
V ∈V

Hn(V,A).

Notice that the canonical map Hn(V,A) −→ Hn(H,A) is precisely the
restriction map. For each V ∈ V we have a commutative diagram (see Propo-
sition 6.7.1).

Hn(H,A) Hn(V,A)
ResVH

Hn(G,A)p
ResG

H ResG
V

Suppose ResGH(c) = 0 for some c ∈ Hn(G,A)p. Then there exists some
V ∈ V such that ResGV (c) = 0 (see Proposition 1.2.4). So, by Theorem 6.7.3,

0 = CorVGResGV (c) = [G : V ]c.
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Hence c = 0, since ([(G : V ], p) = 1. Therefore ResGH is injective on
Hn(G,A)p.

Assume now that H is open in G. Again by Theorem 6.7.3,

CorHGResGH : Hn(G,A)p −→ Hn(G,A)p

is multiplication by [G : H]. However since p � [G : H], multiplication by
[G : H] is an automorphism of Hn(G,A)p, and hence

CorHG : Hn(H,A)p −→ Hn(G,A)p

is surjective. ��

Corollary 6.7.8 Let G be a profinite group and A ∈ DMod(G). For a
prime p, denote by Gp a p-Sylow subgroup of G. If Hn(Gp, A) = 0 for every
prime p (and a fixed n ≥ 1), then Hn(G,A) = 0.

Proof. By Corollary 6.7.7, Hn(G,A)p = 0 for each p. Thus

Hn(G,A) =
⊕

p

Hn(G,A)p = 0. ��

Lemma 6.7.9 Let G1 and G2 be profinite groups and let ϕ : G1 −→ G2 be
a continuous epimorphism with kernel N . Assume that Ki ≤o Gi (i = 1, 2)
such that ϕ(K1) = K2. Then, for every A ∈ DMod(G2) and every natural
number n, one has a commutative diagram

Hn(K2, A)
[NK1:K1]Cor

K2
G2
Hn(G2, A)

Hn(K1, A)
Cor

K1
G1

Hn(G1, A)

where the vertical maps are induced by ϕ.

Proof. Assume first that N ≤ K1. In this case, [NK1 : K1] = 1 and
[G1 : K1] = [G2 : K2]; hence the result follows easily from the definition
of corestriction.

Consider next the general case. Form the following diagram

Hn(K2, A)
[NK1:K1]Cor

K2
G2

Hn(G2, A)

Hn(NK1, A)
[NK1:K1]id

Res
NK1
K1

Hn(NK1, A)
Cor

NK1
G1

id

Hn(G1, A)

id

Hn(K1, A)
Cor

K1
NK1

Hn(NK1, A)
Cor

NK1
G1

Hn(G1, A)



6.7 Special Mappings 229

where those maps which are not labeled are induced by ϕ. Note that
CorNK1

G1
CorK1

NK1
= CorK1

G1
(see Proposition 6.7.2), and observe that the com-

position of the two leftmost vertical maps is just the canonical homomor-
phism Hn(K2, A) −→ Hn(K1, A) induced by ϕ. Hence the result will follow
if we can prove the commutativity of this diagram. The top rectangle com-
mutes by the case above, since [G1 : NK1] = [G2 : K2]. The lower left
rectangle commutes by Theorem 6.7.3. The lower right rectangle is obviously
commutative. ��

The Corestriction Map in Homology

Let H ≤ G be profinite groups and let B be a right profinite [[̂ZG]]-
module. Define the corestriction homomorphism of the corresponding ho-
mology groups

Cor = CorHG : Hn(H,B) −→ Hn(G,B)

to be the dual of the restriction homomorphism of the corresponding coho-
mology groups. Explicitly, when q = 0, the corestriction

Cor : H0(H,B) = BH −→ H0(G,B) = BG

is simply the canonical projection; this is functorial on B, and, in turn, ex-
tends to a morphism of universal homological functors

Cor : {Hn(H,−)}n≥0 −→ {Hn(G,−)}n≥0.

We leave to the reader the description of these mappings in terms of chains.

The Restriction Map in Homology

Assume now that H is an open subgroup of G. The dual of the corestriction
maps defined above in cohomology are called the restriction homomorphisms

Res = ResGH : Hn(G,B) −→ Hn(H,B).

In dimension zero the restriction homomorphism

Res : H0(G,B) = BG −→ H0(H,B) = BH

is denoted N ′
G/H and it is given by

N ′
G/H

(

b+B((IH))
)

=
∑

t

bt+B((IG)), (b ∈ B)

with t running through a left transversal of H in G (observe that this map is
independent of the chosen transversal, since th = t+ t(h−1), and bt(h−1) ∈
BG, whenever t ∈ G and h ∈ H). Then N ′

G/H determines a morphism
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Res : {Hn(G,B)}n≥0 −→ {Hn(H,B)}n≥0

of universal homological functors.
The dual of Theorem 6.7.3 is formally the same for homology:

Theorem 6.7.10 Let H be an open subgroup of a profinite group G, CorRes
is multiplication by the index [G : H] of H in G, i.e.,

CorHGResGH = [G : S] · id,

where id is the identity on Hn(G,−) (n ≥ 0).

We end this section on special maps by considering the homomorphisms
induced by an inner automorphism of a group on the (co)homology groups
of its subgroups. We first state the cohomology result.

Proposition 6.7.11 Let G be a profinite group, H a closed subgroup of G,
A ∈ DMod(G), and g ∈ G. Let ιg : H −→ gHg−1 be the isomorphism given
by ιg(x) = gxg−1, and let fg : A −→ A be the group homomorphism defined
by fg(a) = g−1a. Then

(a) ιg and fg are compatible maps and the homomorphisms induced in coho-
mology

(ιg, fg)n : Hn(gHg−1, A) −→ Hn(H,A)

are isomorphisms (n = 0, 1, 2, . . .).
(b) If H � G and g ∈ H, the isomorphisms in (a) are the identity maps on

Hn(H,A) (n = 0, 1, 2, . . .).
(c) If H �G, conjugation in G induces an action of G/H on Hn(H,A) (n =

0, 1, 2, . . .).

Proof. From the definition of (ιg, fg)n (see Section 6.5), one immediately sees
that

{(ιg, fg)n}n≥0 : H•(gHg−1,−) −→ H•(H,−)

is a morphism of universal cohomological functors (see Proposition 6.6.3).
Hence, by Lemma 6.1.4, it suffices to show that

(ιg, fg)0 : H0(gHg−1,−) = AgHg
−1

−→ H0(H,−) = AH

is an isomorphism. This map is a �→ g−1a, which is evidently an isomorphism.
This proves (a). For (b), note that if H is normal in G, then (ιg, fg)n is an
endomorphism of Hn(H,A); if moreover g ∈ H, then (ιg, fg)0 is the identity,
and hence (ιg, fg)n is the identity for all n ≥ 0.

Part (c) is a consequence of (b). ��

Dually one has
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Proposition 6.7.12 Let G be a profinite group, H a closed subgroup of G,
B ∈ PMod([[̂ZG]]), and g ∈ G. Let ιg : H −→ gHg−1 be the isomorphism
given by ιg(x) = gxg−1, and let fg : B −→ B be the group homomorphism
defined by f(a) = ag−1. Then

(a) ιg and fg are compatible maps and the homomorphisms induced in ho-
mology

(ιg, fg)n : Hn(H,B) −→ Hn(gHg−1, B)

are isomorphisms (n = 0, 1, 2, . . .).
(b) If H � G and g ∈ H, the isomorphisms in (a) are the identity maps on

Hn(H,B) (n = 0, 1, 2, . . .).
(c) If H �G, conjugation in G induces an action of G/H on Hn(H,B) (n =

0, 1, 2, . . .).

Remark 6.7.13 See Section 7.2 for an explicit description in terms of cochains
of the action of G/H on Hn(H,A) when H � G.

6.8 Homology and Cohomology Groups in Low Dimensions

In this section we use the definition of (co)homology groups in term of
(co)chains to give explicit descriptions of the (co)homology groups H0(G,A),
H1(G,A), H2(G,A), H0(G,B) and H1(G,B) of a profinite group G.

We have already seen that

H0(G,A) = {a ∈ A | xa = a, ∀x ∈ G} = AG

is the subgroup of elements of A invariant under the action of G.
According to Definition 6.4.1,

H1(G,A) = Ker(∂2)/Im(∂1).

The elements of Ker(∂2) are called crossed homomorphisms or derivations
from G to A; so, a crossed homomorphism or derivation

d : G −→ A

is a continuous function such that

d(xy) = xd(y) + d(x), for all x, y ∈ G.

We denote the abelian group of derivations by Der(G,A). The elements of
Im(∂1) are called principal crossed homomorphisms or inner derivations.
Each inner derivation da : G −→ A is determined by an element a ∈ A and
is defined by the formula da(x) = xa − a (x ∈ G). The abelian group of all
inner derivations from G to A is denoted by Ider(G,A).
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Lemma 6.8.1 With the notation above we have

H1(G,A) = Der(G,A)/Ider(G,A).

Exercise 6.8.2 LetG be a profinite group andA a discrete torsionG-module.
Prove that

(a)
Der(G,A) = lim−→

U ∈U

Der(G/U,AU ),

where U is the collection of all open normal subgroups U of G. (Hint:
imitate the proof of Lemma 5.1.4.)

(b) There exists a bijective correspondence between the set of derivations
d : G −→ A and the set of (continuous) group homomorphisms

ϕ : G −→ A�G

such that the composition G
f−→ A�G −→ G is the identity homomor-

phism idG.

The following lemma provides an often useful interpretation of derivations
in terms of the augmentation ideal.

Lemma 6.8.3 Let G be a profinite group and R a commutative profinite ring.
Then, for each discrete [[RG]]-module A, there is a natural isomorphism

ϕ : Der(G,A) −→ Hom[[RG]](((IG)), A)

defined by (ϕ(d))(x − 1) = d(x), where ((IG)) = ((IRG)) is the augmentation
ideal of [[RG]].

Proof. Remark first that

Hom[[RG]](((IG)), A) = lim−→
U ∈U

Hom[[R(G/U)]](((I(G/U))), AU ),

where U is the collection of all open normal subgroups U of G (see Lem-
ma 5.1.4). This together with Exercise 6.8.2(a) show that it suffices to prove
the result for G finite. By Lemma 6.3.2, ((IG)) = (IG) is a free R-module on
the pointed space G − 1. Remark that if d : G −→ A is a derivation, then
d(1) = 0; therefore the map

ϕ(d) : G− 1 = {x− 1 | x ∈ G} −→ A

is a (continuous) mapping of pointed spaces; so, it defines a homomorphism

ϕ(d) : I(G) −→ A
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of profinite R-modules. Since G is finite, every element of (IG) can be written
as a finite sum

∑

x∈G αx(x − 1) (αx ∈ R). So it is sufficient to show that
ϕ(d)(y(x− 1)) = yϕ(d)(x− 1). Indeed,

ϕ(d)(y(x− 1)) = ϕ(d)((yx− 1) − (y − 1)) = ϕ(d)(yx− 1) − ϕ(d)(y − 1)
= d(yx) − d(y) = yd(x) = yϕ(d)(x− 1). ��

Next we give an explicit description of the second cohomology group

H2(G,A) = Ker(∂3)/Im(∂2).

One readily checks that the elements of Ker(∂3) are precisely those continuous
functions f : G×G −→ A such that

x1f(x2, x3) − f(x1x2, x3) + f(x1, x2x3) − f(x1, x2) = 0 ∀x1, x2, x3 ∈ G.

They are called continuous factor systems. On the other hand, an element of
Im(∂2) is a continuous function f : G×G −→ A such that

f(x1, x2) = x1g(x2) − g(x1x2) + g(x1), (x1, x2 ∈ G)

for some continuous g : G −→ A.

H2(G, A) and Extensions of Profinite Groups

Consider a short exact sequence

1 −→ A −→ E
ϕ−→ G −→ 1

of profinite groups and continuous homomorphisms, with A finite abelian.
Let σ : G −→ E be a continuous section (see Proposition 2.2.2). Define an
action G × A −→ A of G on A by (x, a) �→ σxaσ

−1
x (x ∈ G, a ∈ A). Clearly

this action is continuous. This action makes A into a discrete G-module, as
one easily verifies. This action is independent of the chosen section because
A is abelian.

Given a profinite group G and a finite G-module A, an extension X of A
by G is defined to be an exact sequence

X : 0 −→ A −→ E
ϕ−→ G −→ 1 (10)

with continuous homomorphisms, where E is a profinite group. We shall
assume that A and E are written additively (although E is not necessarily
abelian), and that the canonical action of G on A described above is precisely
the given action of G on A. If X, X ′ are two extensions of A by G, we say that
they are equivalent if there exists a continuous homomorphism (necessarily
an isomorphism) E −→ E′ such that
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X : 0 A E
ϕ

G 1

X ′ : 0 A E′ ϕ′

G 1

commutes.
Denote by X (G,A) the set of equivalence classes of extensions of A by G.

Theorem 6.8.4 Given a profinite group G and a finite G-module A, there
exists a one-to-one correspondence between X (G,A) and H2(G,A).

Proof. We only give a sketch; for more details see Ribes [1970]. Consider the
extension (10) of A by G, and let σ : G −→ E be a continuous section. Then
the action of G on A is given by

xa = σ(x) + a− σ(x), (a ∈ A, ∈ G).

If x1, x2 ∈ G, then σ(x1) + σ(x2) and σ(x1x2) belong to the same coset of A
in E. Hence there exists some element f(x1, x2) ∈ A such that

σ(x1) + σ(x2) = f(x1, x2) + σ(x1x2).

It is clear that f : G×G −→ A is a continuous map. One shows easily that
it is in fact a continuous factor system.

The definition of f depends on the choice of σ. However, if σ′ : G −→ E
is another continuous section and f ′ : G×G −→ A its corresponding factor
system, define d(x) ∈ A to be such that

σ′(x) = d(x) + σ(x).

Clearly d : G −→ A is continuous, and one verifies that f ′ − f = ∂2(d);
therefore f and f ′ define the same element of H2(G,A). In fact this last
argument shows that if X and X ′ are equivalent extensions of A by G, they
have the same corresponding element in H2(G,A). Hence we have shown the
existence of a well defined map

Φ : X (G,A) −→ H2(G,A).

Conversely, let f : G×G −→ A be a continuous factor system representing
an element of H2(G,A). We may assume that f(x, 1) = f(1, x) = 0, for all
x ∈ G. Define a profinite group E in the following manner. The elements of
E are the pairs (a, x) (a ∈ A, x ∈ G). Set

(a1, x1)+ (a2, x2) = (a1 +x1a2 + f(x1, x2), x1x2), (a1, a2 ∈ A, x2, x2 ∈ G).

With this definition E becomes a group (the associativity follows from f
being a factor system) whose zero element is (0, 1), and where
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−(a, x) = (−x−1a− f(x−1, x), x−1).

We endow E with the product topology of A×G. Then E is a profinite group,
as one easily checks. Moreover

X(f) : 0 −→ A
i−→ E

j→ G −→ 1,

(where i and j are the natural injection and projection, respectively), is an
extension of A by G. Thus we have defined a map

Ψ : H2(G,A) −→ X (G,A).

Finally one sees that Φ ◦ Ψ = id and Ψ ◦ Φ = id. This ends the proof of
the theorem. ��

Corollary 6.8.5

(a) The correspondence defined in the theorem above induces an abelian group
structure on the set X (G,A).

(b) The extension corresponding to the zero element of H2(G,A) is the split
extension, i.e., an extension (10) for which there exists a continuous sec-
tion G −→ E which is a homomorphism. All split extensions are equiva-
lent.

(c) Assume that (10) is a split extension and let σ1, σ2 : G −→ E be contin-
uous homomorphisms such that ϕσ1 = idG = ϕσ2. Define d = σ1 − σ2.
Then d is a continuous derivation G −→ A.

Proof. Parts (a) and (b) are clear. For (c), observe that if x ∈ G, then
ϕd(x) = ϕ(σ1(x) − σ2(x)) = xx−1 = 1; hence, d(x) ∈ A. In other words, d is
a map from G to A. To see that d is a derivation, choose x, y ∈ G; then

d(xy) = σ1(xy) − σ2(xy) = σ1(x) + σ1(y) − σ2(y) − σ2(x)
= (σ1(x) + d(y) − σ1(x)) + σ1(x) − σ2(x) = xd(x) + d(y),

as desired. The continuity of d is obvious. ��

Now we shall deal with homology in low dimensions. We have already
seen that

H0(G,B) = BG = B/B((IG))

(see Lemma 6.3.3). Next we describe H1(G, ̂Z), H1(G,Zp) and H1(G,Fp),
where we think of ̂Z, Zp and Fp as a [[̂ZG]]-modules with trivial G-action.

Lemma 6.8.6

(a) Let G be a profinite group. Then there are isomorphisms

H1(G, ̂Z) ∼= ((IG))/((IG))2 ∼= G/[G,G].
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These isomorphisms are natural, that is, whenever ϕ : G −→ H is a group
homomorphism, then the diagram

H1(G, ̂Z)
∼=

G/[G,G]

H1(H, ̂Z)
∼=

H/[H,H]

commutes, where the vertical maps are induced by ϕ.
(b) Let G be a pro-p group. Then there are natural isomorphisms

H1(G, ̂Zp) ∼= ((IG))/((IG))2 ∼= G/[G,G].

(c) Let G be a pro-p group. Then there is an isomorphism

H1(G,Fp) ∼= G/Φ(G).

Moreover, this isomorphism is natural in the following sense. If

ϕ : G −→ H

is a group homomorphism, then the diagram

H1(G,Fp)
∼=

G/Φ(G)

H1(H,Fp)
∼=

H/Φ(H)

commutes, where the vertical maps are induced by ϕ, and Φ(G) is the
Frattini subgroup of G.

Proof. (a) Put Λ = [[̂ZG]]. Corresponding to the short exact sequence

0 −→ ((IG)) −→ Λ −→ ̂Z −→ 0,

there is a long exact sequence in homology (see Proposition 6.3.4)

· · · → H1(G,Λ) → H1(G, ̂Z) → H0(G, ((IG))) → H0(G,Λ) → H0(G, ̂Z) → 0.

Since Λ((IG)) = ((IG)), it follows from the above description of H0(G,B) that

H0(G, ((IG))) −→ H0(G,Λ)

is the zero map. On the other hand, H1(G,Λ) = 0 since Λ is Λ-projective.
Therefore, we have an isomorphism

H1(G, ̂Z) −→ H0(G, ((IG))).
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By Lemma 6.3.3, H0(G, ((IG))) ∼= ((IG))/((IG))2. To show the second
isomorphism, define a continuous homomorphism

α : ((IG)) −→ G/[G,G]

of profinite abelian groups by α(x − 1) = x[G,G]; note that this defines in
fact a continuous homomorphism for, according to Lemma 6.3.2, ((IG)) is free
on the pointed space {x− 1 | x ∈ G}, as a profinite abelian group. Using the
formula

xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1), (11)

one deduces that α(((IG))2) = 1[G,G]; therefore α induces a homomorphism,
that we denote again by the same symbol,

α : ((IG))/((IG))2 −→ G/[G,G].

The map α is in fact an isomorphism. To see this, define a map

β : G/[G,G] −→ ((IG))/((IG))2

by β(g[G,G]) = g − 1 + ((IG))2 (g ∈ G); it follows again from (11) that β
is a well-defined homomorphism. It is plain that α and β are inverse of each
other.

The naturality of the second isomorphism follows from the explicit formula
used to define it. The naturality of the first isomorphism is a consequence of
the commutativity of the diagram

H1(G, ̂Z) H0(G, ((IG)))

H1(H, ̂Z) H0(H, ((IH))),

where the vertical homomorphisms are induced by ϕ : G −→ H.
(b) This is similar to the proof of (a); simply replace ̂Z by Zp.
(c) Consider the short exact sequence

0 −→ Zp
p−→ Zp −→ Fp −→ 0,

where the map Zp
p−→ Zp is multiplication by p. Correspondingly there is a

long exact sequence

· · · → H1(G,Zp)
p→ H1(G,Zp) → H1(G,Fp) → H0(G,Zp)

p−→ H0(G,Zp).

Since H0(G,Zp)
p−→ H0(G,Zp) = Zp

p−→ Zp is a monomorphism, we have
that

H1(G,Zp)
p→ H1(G,Zp) → H1(G,Fp) → 0

is exact. This together with part (b) imply that

H1(G,Fp) ∼= G/Gp[G,G].

Clearly this isomorphism is natural. ��
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6.9 Extensions of Profinite Groups with Abelian Kernel

The purpose of this section is to describe conditions under which certain
extensions of profinite groups ‘split’ i.e., they are semidirect products. One
such condition is that the kernel of the extension is a Hall subgroup (see
Theorem 2.3.15). In this section we consider only extensions whose kernel is
abelian. As in Section 6.8, it is convenient to write such an extension as an
exact sequence of profinite groups of the form

X(A) : 0 −→ A −→ E
ϕ−→ G −→ 1

with A abelian and the map A −→ E is the inclusion, where A and E are
written additively and G multiplicatively. It should be emphasized that E is
not necessarily abelian.

Let T be a closed subgroup of G and let σ : T −→ G be continuous
homomorphism such that ϕσ = idT . Then we say that σ is a continuous
T -splitting of the extension X(A). A continuous G-splitting is usually called
simply a continuous splitting of X(A). If X(A) has a continuous splitting,
then one says that X(A) splits (see Corollary 6.8.5).

Since A is abelian, one has that A =
∏

pAp (see Proposition 2.3.8), where
p runs through the prime numbers and Ap is the p-Sylow subgroup of A. For
a prime q, denote by Aq̌ the direct product of all Ap such that p 
= q. Then
A = Aq ×Aq̌, Aq̌ � E and

⋂

q Aq̌ = 0.

Lemma 6.9.1 Consider the extension X(A) above. Then X(A) has a con-
tinuous section (respectively, splitting) if and only if for each prime p, the
induced extension

X(A/Ap̌) : 0 −→ A/Ap̌ −→ E/Ap̌
ϕp−→ G −→ 1

has a continuous section (respectively, splitting).

Proof. Assume that σ : G −→ E is a continuous section (respectively, split-
ting) for X(A). Then the composite map G σ−→ E −→ E/Ap̌ is a continuous
section (respectively, splitting) for the extension X(A/Ap̌), for every prime p.
Conversely, assume that for each p there is a continuous section (respectively,
splitting) σp : G −→ E/Ap̌ of X(A/Ap̌). Denote by Δ the diagonal subgroup
of the direct product

∏

pG of copies ofG indexed by the set of prime numbers,
i.e., Δ = {(g) | g ∈ G}. Consider the following diagram:

∏

pA/Ap̌
∏

pE/Ap̌

∏

ϕp ∏

pG
∏

σp

A

∼=ψ|A

E

ψ

ϕ G

ρ
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where ψ is the continuous homomorphism that sends e in E to the tuple
(e + Ap̌); and where ρ sends G isomorphically to the diagonal subgroup Δ:
g �→ (g).

Clearly (
∏

ϕp)ψ = ρϕ. Since
⋂

pAp̌ = 0, ψ is a monomorphism; further-
more, we claim that

ψ(E) =
(

∏

ϕp

)−1

(Δ).

Obviously, ψ(E) ≤ (
∏

ϕp)−1(Δ). Conversely, assume that (ep + Ap̌) ∈
(
∏

ϕp)−1(Δ), where ep ∈ E for all p; then, there exists some g ∈ G
such that ϕ(ep) = g for all p. Choose e ∈ E such that ϕ(e) = g. Then
(
∏

ϕp)(ep − e+Ap̌) = 1. Hence (ep − e+Ap̌) ∈
∏

pA/Ap̌. Since

ψ|A : A −→
∏

p

A/Ap̌

is an isomorphism, there exists a ∈ A with ψ(a) = (ep − e+ Ap̌). Therefore,
ψ(a+ e) = (ep +Ap̌). Thus, ψ(E) ≥ (

∏

ϕp)−1(Δ), proving the claim.
Hence, the image of the continuous map (respectively, homomorphism)

(

∏

σp

)

ρ : G −→
∏

p

E/Ap̌

is contained in ψ(E). Thus ψ−1(
∏

σp)ρ : G −→ E is a continuous section
(respectively, splitting) for the extension X(A). ��

Theorem 6.9.2 Assume that for every prime number p, the extension X(A)
above has a continuous Gp-splitting, where Gp is some p-Sylow subgroup of G.
Then the extension X(A) splits.

By Lemma 6.9.1, it suffices to consider the following special case.

Theorem 6.9.3 Let p be a fixed prime number. Assume that A is an abelian
pro-p group and assume that the extension X(A) has a continuous Gp-
splitting, where Gp is some p-Sylow subgroup of G. Then the extension X(A)
splits.

Proof. We shall prove this theorem in several steps. The idea of the proof
for general A is to consider appropriate short exact sequences obtained by
taking finite quotients of A and then use an inverse limit argument. The
main difficulty is that for finite A, the number of splittings of X(A) is not
necessarily finite; the key of the proof is to exhibit the existence of a canonical
finite set of splittings in that case.
Step 1. Assume that A is a finite abelian p group. We show that in this case,
X(A) splits.

According to Theorem 6.8.4 and Corollary 6.8.5, the extension X(A) cor-
responds canonically to an element f̄ ∈ H2(G,A), where f : G×G −→ A is
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a 2-cocycle (a continuous factor system); moreover, X(A) splits if and only
if f̄ = 0. By our assumptions, ResGGp

(f̄) = 0. By Corollary 6.7.7, ResGGp
is a

monomorphism; therefore f̄ = 0.
Step 2. Assume that A is a finite abelian p group. We identify Hn(G,A)
with its image ResGGp

(Hn(G,A)) in Hn(Gp, A) (this is permissible since in
this case ResGGp

is a monomorphism by Corollary 6.7.7). We show that there
exists a canonical decomposition

Hn(Gp, A) = Hn(G,A) ⊕K (n ≥ 1),

where K is described below (of course, K depends on n).
First we assert that if G is finite, then Hn(Gp, A) = Hn(G,A)⊕K, where

K = Ker(CorGp

G ). Indeed, when G is finite,

CorGp

G ResGGp
: Hn(G,A) −→ Hn(G,A)

is multiplication by [G : Gp]; since Hn(G,A) is finite and p-primary, multi-
plication by [G : Gp] is an isomorphism. Thus the assertion easily follows.

If G is infinite, let U be the collection of all open normal subgroups of E
such that U ∩A = 1; put Ũ = ϕ(U). For each U ∈ U , there is a corresponding
extension

0 −→ A −→ E/U −→ G/Ũ −→ 1.

By the above assertion, there is a canonical decomposition

Hn(ŨGp/Ũ , A) = Hn(G/Ũ,A) ⊕K(U),

where K(U) is the kernel of CorŨGp/U

G/Ũ
: Hn(ŨGp/Ũ , A) −→ Hn(G/Ũ,A).

Let U, V ∈ U be such that V ≤ U . Denote by ρ : E/V −→ E/U the natural
epimorphism. Then ρ induces a homomorphism

Hn(ρ,A) : Hn(ŨGp/Ũ , A) −→ Hn(Ṽ Gp/Ṽ , A).

Clearly Hn(ρ,A) sends Hn(G/Ũ,A) to Hn(G/Ṽ ,A), since Hn(ρ,A) com-
mutes with Res. Moreover, Hn(ρ,A) sends K(U) to K(V ), by Lemma 6.7.9:
let the pairs (G/Ṽ , Ṽ Gp/Ṽ ) and (G/Ũ, ŨGp/Ũ) play the role of (G1,K1)
and (G2,K2), respectively.

Therefore, taking direct limits, one has (see Corollary 6.5.6)

Hn(Gp, A) = lim−→
U ∈U

Hn(ŨGp/Ũ , A)

= lim−→
U ∈U

Hn(G/Ũ,A) ⊕ lim−→
U ∈U

K(U) = Hn(G,A) ⊕K,

since the functor lim−→ is exact in the category of abelian groups (see Propo-
sition 1.2.6).
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Step 3. Assume still that A is a finite abelian p group. We shall prove the
existence of a canonical nonempty finite set S of continuous splittings of
X(A).

First we define the concept of ‘closeness’ of two continuous Gp-splittings
σ, σ′ : Gp −→ E of X(A). Put z(σ, σ′) = σ′ −σ. Then z(σ, σ′) is a continuous
derivation, z(σ, σ′) = σ′ − σ : Gp −→ A (see Corollary 6.8.5). Denote by
z̃(σ, σ′) the corresponding class in H1(Gp, A). We say that σ and σ′ are close
if, in the canonical decomposition of Step 2 (for n = 1)

H1(Gp, A) = H1(Gp, Ap) = H1(G,A) ⊕K, (12)

one has that z̃(σ, σ′) ∈ K.
By hypothesis, there exists a certain Gp-splitting of X(A), γ : Gp −→ E,

that we fix. Define S to consist of those G-splittings Γ of X(A) such that Γp
and γ are close, where Γp denotes the restriction of Γ to Gp.

We make two claims.
Claim 1: S 
= ∅, and
Claim 2: S is a finite set (more precisely, two elements of S are conjugate by
an element of A).

By Step 1, the extension X(A) admits a continuous G-splitting Γ ′ : G −→
E. Denote by Γ ′

p its restriction to Gp. Use (12) to find a decomposition

z̃(Γ ′
p, γ) = ũ+ k,

where k ∈ K and ũ ∈ H1(G,Ap). Choose a continuous derivation u : G −→ A
in ũ. Put Γ = u+Γ ′. Then Γ is a continuous G-splitting of X(A) and clearly
Γp and γ are close. This proves Claim 1.

To prove Claim 2, let Γ, Γ ′ ∈ S and let u = Γ − Γ ′. Then u : G −→ A is
a continuous derivation. Note that

ResGGp
(ũ) = z̃(Γp, Γ ′

p) ∈ H1(Gp, A).

Since z̃(Γp, γ), z̃(Γ ′
p, γ) ∈ K, we have that z̃(Γp, Γ ′

p) ∈ K. On the other hand,
since we have identified H1(G,A) with its image in H1(Gp, A) under the map
ResGGp

, we have that ũ = z̃(Γp, Γ ′
p) ∈ H1(G,A). Therefore, ũ ∈ H1(G,A) ∩

K = 0. Thus, u is an inner derivation; hence, there exists some a ∈ A such
that u(g) = ga− a, for every g ∈ G. Since A is finite, there are only finitely
many possibilities for u = Γ − Γ ′. Hence, the set S is finite. (Note that for
g ∈ G, one has u(g) = Γ (g) − Γ ′(g) = ga − a = Γ (g) + a − Γ (g) − a; hence
Γ ′(g) = a+ Γ (g) − a; i.e., Γ ′ is the a-conjugate of Γ .)
Step 4. General case: A is any abelian pro-p group.

Let V = {V �oA | V = A∩U for some U �oE}. For each V ∈ V , consider
the extension of profinite groups

X(A/V ) : 0 −→ A/V −→ E/V
ϕV−→ G −→ 1,
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where ϕV is induced by ϕ. If V, V ′ ∈ V with V ≤ V ′, denote by

ε(V, V ′) : X(A/V ) −→ X(A/V ′)

the map of extensions naturally induced by E/V −→ E/V ′. The extensions
X(A/V ) together with the maps ε(V, V ′) (V, V ′ ∈ V) form an inverse system,
and clearly

lim←−
V ∈V

X(A/V ) = X(A).

Denote by SV the canonical finite set of continuous G-splittings described in
Case 3 for the extension X(A/V ). Let V, V ′ ∈ V with V ≤ V ′, and assume
that Γ : G −→ E/V is a G-splitting of X(A/V ) contained in SV . Then
by the construction of the sets SV , the map G Γ−→ G/V −→ G/V ′ is a
G-splitting of X(A/V ′) contained in SV ′ . In other words, ε(V, V ′) induces a
map SV −→ SV ′ . Hence, the sets SV (V ∈ V) together with these maps form
an inverse system of nonempty finite sets. Thus (see Proposition 1.1.4),

lim←−
V ∈V

SV 
= ∅.

Let
(ΓV )V ∈V ∈ lim←−

V ∈V

SV .

Define
Γ = lim←−

V ∈V

ΓV .

Then Γ : G −→ E is a continuous splitting of the extension X(A). ��

6.10 Induced and Coinduced Modules

Let G be a profinite group and let H ≤c G. For A ∈ DMod(H) consider the
abelian group

CoindGH(A) = {f : G −→ A | f continuous,
with f(hy) = hf(y) for all h ∈ H, y ∈ G}.

The compact-open topology makes CoindGH(A) into a discrete abelian group.
Define an action of G on CoindGH(A) by

(xf)(y) = f(yx) (x, y ∈ G, f ∈ CoindGH(A)).

This action is in fact continuous. To see this we must show that the
G-stabilizer of each element of CoindGH(A) is open in G, according to
Lemma 5.3.1. Indeed, assume f ∈ CoindGH(A) and let Gf = {x ∈ G | xf = f}
be its stabilizer. For each x ∈ G, choose an open normal subgroup Ux of G
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such that xUx ⊆ f−1(f(x)). By compactness there exist finitely many points
x1, . . . , xn such that

G =
n
⋃

i=1

xiUxi .

Put U =
⋂n
i=1 Uxi . We claim that xU ⊆ f−1(f(x)), for each x ∈ G. To

see this consider x ∈ G; then x = xiui for some i = 1, . . . , n and some
ui ∈ Ui. Hence, f(x) = f(xi). Now, if u ∈ U , then xu = xiuiu ∈ xiUi. Thus
f(xu) = f(xi) = f(x). This proves the claim. Therefore, (uf)(x) = f(xu) =
f(x), whenever x ∈ G, u ∈ U . Hence U ⊆ Gf , showing that Gf is open, as
asserted.

The G-module CoindGH(A) is called a coinduced module.∗ It is easy to see
that CoindGH(−) is an additive functor from DMod(H) into DMod(G).

Remark 6.10.1 If the discrete G-module A is torsion, then in fact A is a
discrete [[̂ZG]]-module (see Proposition 5.3.6(e)). In this case one clearly has
CoindGH(A) = Hom[[ẐH]]([[̂ZG]], A). In particular, if H is the trivial group,

then CoindG1 (A) = HomẐ([[̂ZG]], A).

The following is an analogue of Proposition 5.5.4(c) for non-necessarily
torsion A.

Lemma 6.10.2 Let G be a profinite group, H a closed subgroup of G, A a dis-
crete H-module and A′ a discrete G-module. Then there exists a natural iso-
morphism

HomG(A′,CoindGH(A)) ∼= HomH(A′, A).

Proof. Given ϕ ∈ HomG(A′,CoindGH(A)), define ϕ̄ : A′ −→ A by ϕ̄(a′) =
ϕa′ (1) (a′ ∈ A′); then ϕ̄ ∈ HomH(A′, A). Conversely, if ψ ∈ HomH(A′, A),
define ψ̃ : A′ −→ CoindHG (A) by ψ̃a′ (x) = ψ(xa′) (a′ ∈ A′, x ∈ G); then
indeed ψ̃a′ ∈ CoindHG (A) and ψ̃ ∈ HomG(A′,CoindSG(A)). One easily verifies
that the maps ϕ �→ ϕ̄ and ψ �→ ψ̃ are homomorphisms and inverse to each
other; hence the result. ��

Corollary 6.10.3 The functor CoindGH(−) sends injective H-modules to in-
jective G-modules.

Proof. Let Q be an injective H-module. Then, by definition of injectivity,
the functor HomH(−, Q) : DMod(H) −→ A is exact (A is the category of
abelian groups). The isomorphism in Lemma 6.10.2 implies that the functor
HomG(−,CoindGH(Q)) : DMod(G) −→ A is also exact; hence CoindGH(Q) is
G-injective. ��
∗ Note that these modules are called ‘induced’ in Serre [1995], Ribes [1970] and

Shatz [1972], where they are denoted by MH
G (A). In this book we adopt a termi-

nology and notation which is more in accordance to the traditional use of the term
‘coinduced’ in the context of the cohomology of abstract groups.
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Proposition 6.10.4 Let G be a profinite group, H a closed subgroup of G
and A a discrete H-module. Then

(a)
CoindGH(A) = lim−→

U ∈U

CoindG/UHU/U (AU∩H),

where U is the collection of open normal subgroups of G.
(b) CoindGH(−) is an exact functor.

Proof. The proof of (a) is similar to the proof of Lemma 5.1.4(a) and we
leave it to the reader. Using (a), in the proof of (b) we may assume that G
is finite, since lim−→ is an exact functor. In this case, note that

CoindGH(−) = Hom[ZH]([ZG],−).

Now, [ZG] is a direct sum of |G/H| copies of [ZH]; hence [ZG] is [ZH]-
projective; thus Hom[ZH]([ZG],−) is exact. ��

Let H ≤c G be profinite groups and A ∈ DMod(H). Then there exists a
canonical H-homomorphism

μ : CoindGH(A) −→ A

given by
μ(f) = f(1), for all f ∈ CoindGH(A). (13)

Theorem 6.10.5 (Shapiro’s Lemma) Let G be a profinite group, H a
closed subgroup of G and A ∈ DMod(H). Then there exist natural isomor-
phisms

Hn(G,CoindGH(A)) ∼= Hn(H,A) (n ≥ 0).

Proof. By Corollary 6.10.3, Proposition 6.10.4 and Theorem 6.6.2

H•(H,−) and H•(G,CoindGH(−))

are effaceable cohomological functors on the category DMod(H). We shall
show that the morphism of cohomological functors

Hn(G,CoindGH(A)) Res−→ Hn(H,CoindGH(A))
μ̄−→ Hn(H,A)

is an isomorphism, where μ̄ is induced by μ (see (13)). It suffices to do this
in dimension zero.

For n = 0 this map is the following: the element f ∈ (CoindGH(A))G =
H0(G,CoindGH(A)) is mapped to f(1) (note that f(x) = f(1), for all x ∈ G;
hence for h ∈ H, one has that hf(1) = f(h) = f(1); and so f(1) ∈ AH).
To see that this is an isomorphism, check that the following is its inverse: if
a ∈ AH , put f : G −→ A to be the constant function f(x) = a, for all x ∈ G;
then f ∈ (CoindGH(A))G = H0(G,CoindGH(A)). ��
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Corollary 6.10.6 Let G be a profinite group and let A be an abelian group.
Then CoindG1 (A) = C(G,A) (the group of all continuous functions from G
to A), and Hn(G,C(G,A)) = 0 for n > 0.

Proof. The first assertion is clear. For the second we use the theorem above,
Hn(G,C(G,A)) = Hn(G,CoindG1 (A)) ∼= Hn(1, A) = 0 (n > 0). ��

The dual concept of a coinduced module is that of an induced module.
Let H ≤ G be profinite groups and let B be a profinite right [[̂ZH]]-module.
Define a right G-module structure on the profinite group

IndGH(B) = B ̂⊗[[̂ZH]] [[̂ZG]]

by (b̂⊗r)g = b̂⊗rg (g ∈ G, b ∈ B, r ∈ [[̂ZG]]). Then IndGH(B) is called an
induced [[̂ZG]]-module.

Using Proposition 5.5.4(c) one obtains immediately the following result.

Lemma 6.10.7 Let H ≤ G be profinite groups and let B be a profinite right
[[̂ZH]]-module. Then IndGH(B) and CoindGH(B∗) are Pontryagin dual.

Hence, by duality one obtains automatically the following results from
Corollary 6.10.3, Proposition 6.10.4, Theorem 6.10.5 and Corollary 6.10.6
(remark that part (c) of the following theorem can be also deduced from
the fact that [[̂ZG]] is [[̂ZH]]-projective; however Proposition 6.10.4 cannot be
obtained in full generality from this using duality, since the module A may
not be torsion).

Theorem 6.10.8 Let G be a profinite group, H a closed subgroup of G and
B ∈ PMod([[̂ZH]]).

(a) The functor IndGH(−) sends projective profinite [[̂ZH]]-modules to projec-
tive profinite [[̂ZG]]-modules.

(b)
IndGH(B) = lim←−

U ∈U

IndG/UHU/U (BU∩H),

where U is the collection of open normal subgroups of G.
(c) IndGH(−) is an exact functor.
(d) (Shapiro’s Lemma) There exist natural isomorphisms

Hn(G, IndGH(B)) ∼= Hn(H,B), (n ≥ 0).

(e) Let M be a profinite abelian group. Then IndG1 (M) = M ̂⊗
̂Z[[̂ZG]], and

Hn(G,M ̂⊗
̂Z [[̂ZG]]) = 0

for n > 0.
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It is easy to give a direct proof of Shapiro’s Lemma for homology (but
we remark that this is not good enough for cohomology since in that case we
want the proof to be valid for all discrete G-modules, even if they are not
torsion). We do this in the next lemma for a general commutative profinite
ring R.

Theorem 6.10.9 (Shapiro’s Lemma) Let G be a profinite group, H a
closed subgroup of G, R a commutative profinite ring and B ∈ PMod([[RH]]).
Then, there are natural isomorphisms

Hn(G,B ̂⊗[[RH]] [[RG]]) ∼= Hn(H,B) (n ≥ 0).

Proof. Since [[RG]] is a free [[RH]]-module, the functor − ̂⊗[[RH]] [[RG]] is ex-
act; hence {Hn(G,− ̂⊗[[RH]] [[RG]]}n∈N is a universal homological sequence
of functors from PMod([[RH]]) to PMod(R). By Proposition 6.6.3, this is
also the case for the sequence {Hn(H,−)}n∈N. Hence, it suffices to prove the
lemma in dimension 0. But this case is clear:

H0(G,B ̂⊗[[RH]] [[RG]]) = B ̂⊗[[RH]] [[RG]] ̂⊗[[RG]]R ∼= B ̂⊗[[RH]]R = H0(H,B).
��

Next we observe that if A and B are [[RG]]-modules, then

B ̂⊗[[RG]]A = (B ̂⊗RA)G,

where G acts on (B ̂⊗RA)G diagonally. This is clear for abstract tensor prod-
ucts (it follows from the definition), and for complete tensor products it fol-
lows by taking inverse limits.

We record next a technical result for future reference.

Lemma 6.10.10 Let G be a profinite group, H a closed subgroup of G and R
a commutative profinite ring. Let B be a right PMod([[RG]])-module. Then

(a) For each n = 0, 1, . . . there exist natural isomorphisms

ϕn : Tor[[RG]]
n (B, [[R(G/H)]]) −→ Hn(H,B).

(b) For each n, there is a commutative diagram

Tor[[RG]]
n (B, [[R(G/H)]])

εn

ϕn Hn(G,B)

Hn(H,B)
Cor

where εn is the map induced by the augmentation map [[R(G/H)]] ε−→ R.
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Proof. (a) Since {H•(H,−)}n∈N and {Tor[[RG]]
• (−, [[R(G/H)]])}n∈N are uni-

versal homological functors on the category PMod([[RG]]), it suffices to prove
the existence of this natural isomorphism in dimension 0. Using the above
observation and Proposition 5.8.1, we have

Tor[[RG]]
0 (B, [[R(G/H)]])

= B ̂⊗[[RG]] [[R(G/H)]] ∼= (B ̂⊗R[[R(G/H)]])G
∼= ((B ̂⊗R[[R(G/H)]]) ̂⊗RR)G ∼= (B ̂⊗R[[R(G/H)]]) ̂⊗[[RG]]R

∼= (B ̂⊗[[RH]] [[RG]]) ̂⊗[[RG]]R ∼= B ̂⊗[[RH]]R = H0(H,B),

as needed.
For use in part (b), we remark that if b ∈ B and s ∈ [[R(G/H)]], then

ϕ0(b ̂⊗ s) = b ̂⊗ ε(s). To see this it is enough to check it when s = r(Hg)
r ∈ R, g ∈ G); in this case one easily verifies the assertion with the explicit
formulas used in the proof of Proposition 5.8.1.

(b) Since

{Tor[[RG]]
n (−, [[R(G/H)]])}n∈N, {Hn(H,−)}n∈N and {Hn(G,−)}n∈N

are universal homological functors from PMod([[RG]]) to PMod(R), it suf-
fices to prove the commutativity of the diagram in dimension zero. This
follows from the remark at the end of part (a), since

(Corϕ0)(b ̂⊗ s) = Cor(b ̂⊗ ε(s)) = b ̂⊗ ε(s) = ε0(b ̂⊗ s)

for b ∈ B, s ∈ [[R(G/H)]]. ��

6.11 The Induced Module IndG
H(B) for H Open

LetH be an open subgroup of a profinite group G and let R be a commutative
profinite ring. Consider a profinite right [[RH]]-module B. Next we wish to
study IndGH(B) = B ̂⊗[[RH]] [[RG]] in more detail in this special case. Choose
a right transversal {t | t ∈ T} of H in G with 1 ∈ T . Then there is a
decomposition of left [[RH]]-modules

[[RG]] ∼=
⊕

t∈T
[[RH]]t.

Correspondingly, there is a decomposition of R-modules

B ∼=
⊕

t∈T
B ̂⊗[[RH]] [[RH]]t ∼=

⊕

t∈T
B ̂⊗ t,

where B ̂⊗ t = {b ̂⊗ t | b ∈ B}. Remark that B ̂⊗ t ∼= Bt, as R-modules, so
that
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B⊗[[RH]] [[RG]] ∼=
⊕

t∈T
Bt. (14)

In fact this is an isomorphism of [[RG]]-modules if one lets G act on
⊕

t∈T Bt
by permuting the summands Bt. More explicitly, for g ∈ G and t ∈ T , one
has

tg = ht(g)tπg ,

where ht(g) ∈ H and πg is the permutation on T induced by the natural
continuous action of G on the set H\G of right cosets; then

(m ̂⊗ t)g = mht(g) ̂⊗ tπg .

Observe that the stabilizer of t under the action of G on T is t−1Ht, and
that Bt is naturally a t−1Ht-module. The R-isomorphism ϕt : B −→ Bt
given by m �→ mt, and the isomorphism of groups ιt : H −→ t−1Ht given
by h �→ t−1ht, are compatible, i.e., ϕt(mh) = ϕt(m)hιt . Hence ϕt induces an
isomorphism of [[RG]]-modules

IndGH(B) = B ̂⊗[[RH]] [[RG]] −→ IndGt−1Ht(Bt) = Bt ̂⊗[[R(t−1Ht)]] [[RG]]

given by m ̂⊗ g �→ mt ̂⊗ t−1g. Then one has the following characterization of
induced modules.

Proposition 6.11.1 Let G be a profinite group and let M be a right [[RG]]-
module. Suppose that M =

⊕

i∈I Bi is a direct sum decomposition of M as
an R-module, where the indexing set I is finite. Moreover assume that G acts
continuously and transitively on the finite set I in such a way that Big = Big.
Fix i ∈ I and let H be the stabilizer of i under the action of G. Then B = Bi
is a right [[RH]]-module and

M ∼= IndGH(B) = B ̂⊗[[RH]] [[RG]],

as [[RG]]-modules.

Proof. That B is a right H-module is clear. Note [G : H] = |I|. Define

ρ : B ̂⊗[[RH]] [[RG]] −→M

by ρ(m ̂⊗ g) = mg (mg ∈ Big ⊆ M). Then ρ is well-defined and it is an
[[RG]]-homomorphism. Clearly B = B ̂⊗ 1 is mapped to itself identically, and
B = B ̂⊗ g is mapped to Big bijectively. Therefore ρ is an isomorphism. ��

Let K ≤c G, and let M ∈ Mod([[RG]]). Then M can be considered as
an [[RK]]-module. Sometimes it is advisable to emphasize, for clarity, that we
are regarding M as an [[RK]]-module and we write resGK(M), the restriction
of scalars from G to K. With this notation we have,
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Proposition 6.11.2 Let G be a profinite group, H an open subgroup and
K a closed subgroup of G. Assume that B is a profinite right [[RH]]-module,
where R is a commutative profinite ring. Then there exists an isomorphism
of [[RK]]-modules

resGK(IndGH(B)) ∼=
⊕

e∈E
IndKK∩e−1Heres

e−1He
K∩e−1He(Be),

where E is a set of representatives of the set of double cosets H\G/K.

Proof. Consider the decomposition (14) of [[RH]]-modules. Since T is finite,
the continuous action of K on T admits a continuous section. Denote by E
the image of this section. Then E is a (finite) set of representatives of the
space of double cosets H\G/K, and K acts continuously on E. Therefore

IndGH(B) ∼=
⊕

e∈E

(

⊕

f∈e·K
Bf

)

,

as [[RK]]-modules. Since K acts on each orbit e ·K continuously and transi-
tively, and since the stabilizer of f ∈ e·K under the action ofK isK∩e−1He,
the result follows from Proposition 6.11.1. ��

6.12 Notes, Comments and Further Reading

Most of the basic results on cohomology of profinite groups with discrete
coefficient modules can be attributed to J. Tate. He has published almost
nothing on this, but his work has been recorded in publications of Douady
[1960], Lang [1966] and Serre [1995]. In our presentation we have built on the
detailed exposition in Ribes [1970]. Brumer [1966] contains a good treatment
of the Ext and Tor functors using pseudocompact modules over pseudocom-
pact algebras; it also contains references to results about homology groups.
The book of Serre [1995] contains in addition a treatment of nonabelian co-
homology.

Lemma 6.7.9 was pointed out to us by Serre. Theorem 6.9.2 and its special
case Theorem 6.9.3 are due to Schirokauer [1997] (in the context of profinite
groups). The proof that we have presented here (Lemma 6.9.1 and Steps 2–4
of the proof that we give here of Theorem 6.9.3) is due to Serre. The original
proof of Schirokauer is longer but very natural; he defines cohomology groups
Hn(G,A) of a profinite group G where the coefficient G-module A is allowed
to be torsion profinite. He defines a transfer map Hn(H,A) −→ Hn(G,A)
for any closed subgroup H of G; using this, he obtains a decomposition as
in Corollary 6.7.6, to reduce to the case when A is pro-p. Then he is able to
use an argument similar to the one we use in Step 1 of the proof presented
here. Theorem 6.9.2 is a generalization of a result of Gaschütz [1952] for finite
groups.
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The abstract version of Theorems 6.10.5 (and 6.10.9), which we call
Shapiro’s Lemma, is sometimes attributed also to B. Eckmann and to
D.K. Faddeev. For a study of double coset formulas for profinite groups,
see Symonds [2008].

Accounts of (co)homology of abstract groups can be found in Serre [1968],
[1971], Lang [1966], Bieri [1976], Gruenberg [1970] and Brown [1982]. For
homology in relation with p-adic analytic groups, see Symonds and Weigel
[2000].

The following question is due to P.H. Kropholler.

Open Question 6.12.1 Let G be a solvable pro-p group such that
Hn(G,Z/pZ) is finite for every n. Is G polycyclic?



7 Cohomological Dimension

7.1 Basic Properties of Dimension

Let G be a profinite group and let p be a prime number. Recall that if A is an
abelian group, then Ap denotes its p-primary component, i.e., the subgroup
consisting of those elements of A of order pn, for some n. If A = Ap we
say that A is p-primary. The cohomological p-dimension cdp(G) of G is the
smallest non-negative integer n such that Hk(G,A)p = 0 for all k > n and
A ∈ DMod([[̂ZG]]), if such an n exists. Otherwise we say that cdp(G) = ∞.

Similarly, the strict cohomological p-dimension scdp(G) of G is the small-
est non-negative number n such that Hk(G,A)p = 0 for all k > n and
A ∈ DMod(G).

Define
cd(G) = sup

p
cdp(G),

and
scd(G) = sup

p
scdp(G).

The next proposition is an obvious consequence of these definitions.

Proposition 7.1.1 Let G be a profinite group and let n be a fixed natural
number. The following statements are equivalent

(a) cdp(G) ≤ n (respectively, scdp(G) ≤ n);
(b) Hk(G,A)p = 0 for all k > n and A ∈ DMod([[̂ZG]]) (respectively, for all

k > n and A ∈ Mod(G)).

Proposition 7.1.2 Let G be a profinite group and let p be a prime. Then

cdp(G) ≤ scdp(G) ≤ cdp(G) + 1.

Proof. The first inequality is clear. For the second we may suppose that
cdp(G) <∞. Let n = cdp(G) + 1. Assume A ∈ Mod(G) and let p : A −→ A
be multiplication by p. Denote the kernel of this map A[p]; in other words,

A[p] = {a ∈ A | pa = 0}.

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 7, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_7
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Consider the short exact sequences

0 −→ A[p] −→ A
p−→ pA −→ 0,

0 −→ pA −→ A −→ A/pA −→ 0.

Then A[p] and A/pA are in DMod([[̂ZG]]), in fact they are annihilated by p.
So, if k ≥ n,

Hk(G,A[p]) = Hk(G,A/pA) = 0.

Therefore, from the long exact sequences corresponding to the short exact
sequences above,

· · · −→ Hk(G,A[p]) −→ Hk(G,A)
ϕ−→ Hk(G, pA) −→ · · ·

· · · −→ Hk−1(G,A/pA) −→ Hk(G, pA)
ψ−→ Hk(G,A) −→ · · · ,

one obtains that the maps ϕ and ψ are injections if k > n. Hence their
composition

ψϕ : Hk(G,A) −→ Hk(G,A)

is again an injection. On the other hand, it is clear that ψϕ is multiplication
by p. Thus

Hk(G,A)p = 0, if k > n.

Hence the second inequality follows. ��

Example 7.1.3 Let G = ̂Z. As we shall see later (Theorem 7.7.4), for every p,
we have cdp(G) = 1. Consider Q as a G-module with trivial action. By
Corollary 6.7.5, Hn(G,Q) = 0 for n ≥ 1. So, from the exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0,

one obtains isomorphisms

Hn+1(G,Z) ∼= Hn(G,Q/Z) (n ≥ 1).

In particular H2(G,Z) ∼= H1(G,Q/Z) = Hom(̂Z,Q/Z) = Q/Z. Thus
scdp(G) = 2.

A G-module S is simple if it has precisely two submodules, the module
itself and the zero submodule. Observe that a simple p-primary G-module S
is annihilated by p, i.e., pS = 0. Our next proposition simplifies the problem
of finding the cohomological p-dimension of a group.

Proposition 7.1.4 Let G be a profinite group and let n be a fixed natural
number. The following conditions are equivalent :

(a) cdp(G) ≤ n;
(b) Hk(G,A) = 0 for all k > n and all p-primary A ∈ DMod([[̂ZG]]);
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(c) Hn+1(G,A) = 0 for all simple p-primary G-modules A ∈ DMod([[̂ZG]]);
(d) Extn+1

[[FpG]](Fp, A) = 0 for all A ∈ DMod([[FpG]]);
(e) There exists a projective resolution

0 → Pn → Pn−1 → · · · → P0 → Fp → 0

of Fp in PMod([[FpG]]) of length n;
(f) If

0 → Ln → Ln−1 → · · · → L0 → Fp → 0

is an exact sequence in PMod([[FpG]]) and Li is projective for 0 ≤ i ≤
n− 1, then Ln is projective.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear.
(c) ⇒ (d): By Remark 6.2.5,

Hn+1(G,A) = Extn+1

[[̂ZG]]
(̂Z, A) ∼= Extn+1

[[FpG]](Fp, A),

for all [[FpG]]-modules A, i.e., for all [[̂ZG]]-modules which are annihilated by p.
By Lemma 5.1.1(a) and Corollary 6.1.8(a), to prove that Extn+1

[[FpG]](Fp, A) =
0, we may assume that A is a finite [[FpG]]-module. For such a finite module
A 
= 0, consider a series

0 = A0 < A1 < · · · < At = A

where Ai is a submodule of A and the quotient Ai+1/Ai is a simple module
(i = 0, . . . , t−1). We say that t is the length of A. If t = 1, the result holds by
part (c). Let A be a finite [[FpG]]-module of length t > 1 and assume that the
result holds for [[FpG]]-modules of length at most t − 1. Consider the short
exact sequence

0 −→ At−1 −→ A −→ A/At−1 −→ 0.

From the long exact sequence associated with the cohomological functor
{Extr[[FpG]](Fp,−)}r∈N and the above short exact sequence (see Proposi-
tion 6.1.7(a)) we deduce that Extn+1

[[FpG]](Fp, A) = 0, as needed.
(d) ⇔ (e) ⇔ (f): Put R = [[FpG]]. The equivalence of these three state-

ments is well-known and, in fact, it is valid for any ring. The implications (f)
⇒ (e) ⇒ (d) are obvious. Here we prove that (d) ⇒ (f). Consider the exact
sequence in part (f), and define short exact sequences

0 → Ki+1 → Li → Ki → 0,

where Ki+1 = Ker(Li → Li−1) = Im(Li+1 → Li). Remark that Ln = Kn.
Correspondingly, there are long exact sequences,

ExtkR(Li, A) → ExtkR(Ki+1, A)
δk

i−→ Extk+1
R (Ki, A) → Extk+1

R (Li, A) → · · · ,
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where δki is the connecting homomorphism. Note that ExtkR(Li, A) = 0 when-
ever Li is projective and k ≥ 1. Hence δki is an isomorphism for 0 ≤ i ≤ n−1
and k ≥ 1. Thus the composite map

δ = δn0 · · · δ1n−1 : Ext1R(Ln, A) = Ext1R(Kn, A) ∼= Extn+1
R (Fp, A)

is an isomorphism.
It follows from (d) and the hypotheses of (f), that Ext1R(Ln, A) = 0, for

all A. One deduces that Ext0R(Ln,−) = HomR(Ln,−) is an exact functor.
Therefore, Ln is projective (see Section 5.4); thus (f) holds.

(d) ⇒ (c): This is clear since every simple p-primary G-module is annihi-
lated by p, and so it is in DMod([[FpG]]).

(b) ⇒ (a): Let A ∈ DMod([[̂ZG]]). Then A =
⊕

pAp is a decomposition
of discrete [[̂ZG]]-modules. So (see Corollary 6.5.6),

Hk(G,A) =
⊕

p

Hk(G,Ap).

Hence
Hk(G,A)p ∼= Hk(G,Ap).

Thus if k > n, we have Hk(G,A)p = 0, and hence cdp(G) ≤ n.
(c) ⇒ (b): Assume first that A is a finite p-primary [[̂ZG]]-module. We

shall show, by induction on the order of A, that Hn+1(G,A) = 0. If A = 0,
this is obviously true. If A 
= 0, assume true for those modules of order less
than |A|. Let A′ be a simple G-module contained in A. Consider the exact
sequence

0 −→ A′ −→ A −→ A/A′ −→ 0,

and its corresponding long exact sequence

· · · → Hn+1(G,A′) → Hn+1(G,A) → Hn+1(G,A/A′) → · · · .

Since Hn+1(G,A′) = Hn+1(G,A/A′) = 0, one has Hn+1(G,A) = 0.
Now we prove that Hn+1(G,A) = 0 for all p-primary A ∈ DMod(G). By

Lemma 5.1.1
A ∼= lim−→Ai,

where Ai runs through all the finite submodules of A. So (see Corollary 6.5.6),

Hn+1(G,A) ∼= lim−→Hn+1(G,Ai) = 0. (1)

It remains to prove that Hk(G,A) = 0 for all k > n and all p-primary
A ∈ DMod([[̂ZG]]). Let k ≥ n. Consider the exact sequence

0 −→ A
ι−→ CoindG1 (A) −→ A′ −→ 0
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of G-modules, where ι(a)(x) = xa (a ∈ A, x ∈ G) and A′ = CoindG1 (A)/ι(A).
From the corresponding long exact sequence

· · · → Hk(G,A′) δ−→ Hk+1(G,A) → Hk+1(G,CoindG1 (A)) → · · ·

and the fact that Ht(G,CoindG1 (A)) = 0 if t ≥ 1 (see Corollary 6.10.6), we
obtain

Hk(G,A′) ∼= Hk+1(G,A)

for k ≥ 1. By an induction argument on k, we deduce from (1) that
Hk(G,A) = 0 for k > n. ��

For pro-p groups, the simple p-primary modules are particularly conve-
nient and easy to describe. In fact there is only one such a module, as shown
in the following

Lemma 7.1.5 If G is a pro-p group, every discrete simple p-primary G-
module A is isomorphic to Z/pZ (where the abelian group Z/pZ is considered
as a G-module on which G operates trivially).

Proof. Since A is simple and p-primary, it follows from Lemma 5.1.1 that A is
finite of order a power of p. Furthermore pA = 0, since pA is a G-submodule
of A. Put U =

⋂

a∈A Ua, where Ua is the stabilizer of a. Since each Ua is
open (see Lemma 5.3.1), so is U . Let V =

⋂

t∈G/U t
−1Ut be the core of U

in G. Then V is a normal open subgroup of G, and V acts trivially on A. So
the finite p-group G/V acts naturally on A, and A is a simple G/V -module.
Thus we may assume that G is finite.

Claim that G acts trivially on A. Suppose not; then AG = 0, because A is
simple. Write A as the disjoint union of its orbits under the action of G. Then
the cardinality of each of these orbits is divisible by p, except for the orbit
of 0 which has cardinality 1. It follows that |A| ≡ 1 modulo p, contradicting
the fact that |A| is a power of p. This proves the claim. Finally, since Z/pZ
is the only simple abelian group of exponent p, we have A ∼= Z/pZ. ��

Combining this lemma with Proposition 7.1.4, we obtain the following
useful characterization of cohomological dimension for pro-p groups.

Corollary 7.1.6 Let G be a pro-p group and let n be a fixed natural number.
Then cd(G) ≤ n if and only if Hn+1(G,Z/pZ) = 0.

Corollary 7.1.7 If G is a pro-p group and cd(G) = n, then Hn(G,A) 
= 0
for every finite p-primary discrete G-module A 
= 0.

Proof. Let A be a finite p-primary discrete G-module. By Lemma 7.1.5, there
exists some G-submodule K of A such that A/K ∼= Z/pZ. Construct an exact
sequence of G-modules of the form

0 −→ K −→ A
f−→ Z/pZ −→ 0.
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The corresponding long exact sequence in cohomology

· · · −→ Hn(G,A)
f̄−→ Hn(G,Z/pZ) −→ Hn+1(G,K) = 0

shows that f̄ is onto. So, since Hn(G,Z/pZ) 
= 0, we have Hn(G,A) 
= 0. ��

7.2 The Lyndon-Hochschild-Serre Spectral Sequence

Throughout this section G is a profinite group and K a closed normal
subgroup of G. Our aim is to obtain a spectral sequence that relates the
(co)homology groups of G, K and G/K. We consider cohomology groups
first, and we shall work with coefficient modules for the cohomology of G
which are discrete G-modules, not necessarily torsion. The corresponding re-
sults for homology will be obtained by restricting ourselves to torsion modules
and dualizing.

Let A ∈ DMod(G). Define CnK(G,A) to be the discrete abelian group
consisting of all continuous maps f : Gn+1 −→ A such that

f(kx0, . . . , kxn) = kf(x0, . . . , xn) (k ∈ K,x0, . . . , xn ∈ G).

Define
∂ = ∂n+1 : CnK(G,A) −→ Cn+1

K (G,A)

by

(∂n+1f)(x0, . . . , xn+1) =
n+1
∑

i=0

(−1)if(x0, . . . , x̂i, . . . , xx+1)

(the symbol x̂i indicates, as usual, that xi is to be omitted). Then ∂n+1∂n = 0
(n ≥ 1), so that

(CK(G,A), ∂) : · · · → CnK(G,A) ∂−→ Cn+1
K (G,A) → · · ·

is a complex.

Lemma 7.2.1 Hn(K,A) ∼= Hn(CK(G,A), ∂).

Proof. Remark that this is clear if we assume that A is torsion, for then
it follows from the fact that the G-resolution (1) in Section 6.2 is a free
K-resolution as well. Here we give a computational proof valid for any G-
module. Taking into account Definition 6.4.1 and Shapiro’s lemma (see The-
orem 6.10.5), it suffices to show that the complexes C(G,CoindGK(A)) and
CK(G,A) are isomorphic. In order to prove this, define homomorphisms

CnK(G,A) Φn

−→ Cn(G,CoindGK(A)) and Cn(G,CoindGK(A)) Ψn

−→ CnK(G,A)

by
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(Φnf)(x0, . . . , xn)(x) = f(xx0, . . . , xxn);

and
(Ψng)(x0, . . . , xn) = g(x0, . . . , xn)(1),

(f ∈ CnK(G,A); g ∈ Cn(G,CoindGK(A));x, xi ∈ G). Then it is easily verified
that {Φn}n∈N and {Ψn}n∈N are morphisms of complexes (i.e., they commute
with the maps ∂), and they are inverse to each other. ��

We consider each CnK(G,A) as a G/K-module by means of the following
action. Let

x ∈ G and f ∈ CnK(G,A);

put x̄ = xK; then x̄f : Gn+1 −→ A is defined by

(x̄f)(x0, . . . , xn) = xf(x−1x0, . . . , x
−1xn).

Note that this is well-defined. From the continuity of f one deduces that x̄f
is also continuous. Using the normality of K in G, we have

(x̄f)(kx0, . . . , kxn) = xf(x−1kx0, . . . , x
−1kxn)

= xf(x−1kxx−1x0, . . . , x
−1kxx−1xn)

= k(x̄f)(x0, . . . , xn).

Hence x̄f ∈ CnK(G,A). Moreover the action of G/K on CnK(G,A) is contin-
uous, therefore CnK(G,A) ∈ DMod(G/K). Since

∂n+1(x̄f) = x̄(∂n+1f)

(n ∈ N, x ∈ G, f ∈ CnK(G,A)), the groups Hn(K,A) are also G/K-modules.

Remark 7.2.2 It is sometimes more convenient to describe the action of G/K
on Hn(K,A) in terms of nonhomogeneous cochains. We claim that the action
defined above is precisely the following: let f ∈ Cn(K,A) be a cochain repre-
senting an element of Hn(K,A), and assume that x ∈ G and k1, . . . , kn ∈ K.
Then

(x̄f)(k1, . . . , kn) = xf(x−1k1x, . . . , x
−1knx).

To verify this, note that multiplication by x̄ determines automorphisms of
the cohomological functors (on the variable A ∈ DMod(G))

H•(CK(G,A)) and H•(K,A).

Hence, it suffices to see that the two actions that we have defined coincide
on dimension zero (after we identify H0(CK(G,A)) with H0(K,A) via the
isomorphism given in Lemma 7.2.1). An element of H0(K,A) can be repre-
sented by a constant function f : K −→ A given by f(k) = a, for all k ∈ K,
where a is an element of AK . The corresponding element of H0(CK(G,A))
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can be represented by the constant function f̄ : G −→ A given by f̄(y) = a,
for all y ∈ G. Now, according to our definitions,

(x̄f̄)(y) = xf̄(x−1y) = xa,

and
(x̄)f(k) = xf(x−1kx) = xa.

Finally, the elements of H0(CK(G,A) and H0(K,A) represented by the con-
stant functions with value xa, correspond to each other under the isomor-
phism given in Lemma 7.2.1. Thus the assertion is proved.

Next we shall construct a double complex using the complexes CK(G,−)
and C(G/K,−); then, following standard techniques (see Appendix A, Sec-
tion A.4) we build a spectral sequence relating the cohomology of the
groups G, K and G/K. Define a double complex L = (Lr,s, ∂′, ∂′ ′) by

Lr,s = Cr(G/K,CsK(G,A))

where
∂′ : Cr(G/K,CsK(G,A)) −→ Cr+1(G/K,CsK(G,A))

is induced by
∂r+1 : Cr(G/K,−) −→ Cr+1(G/K,−)

and
∂′ ′ : Cr(G/K,CsK , (G,A)) −→ Cr(G/K,Cs+1

K (G,A))

is induced by
(−1)r∂s+1 : CsK(G,−) → Cs+1

K (G,−).

Clearly ∂′∂′ = 0, ∂′ ′∂′ ′ = 0 and ∂′∂′ + ∂′ ′∂′ ′ = 0.

Lemma 7.2.3 Hs(G/K,CrK(G,A)) = 0, if s > 0.

Proof. Consider f ∈ CsK(G/K,Cr(G,A)) with ∂s+1(f) = 0. Define

g ∈ Cs−1(G/K,CrK(G,A))

by

g(x̄0, . . . , x̄s−1)(y0, . . . , yr) = f(x̄0, . . . , x̄s−1, ȳ0)(y0, . . . , yr) (xi, yj ∈ G).

Then one readily checks that ∂s((−1)sg) = f . ��

In the following theorem a very useful spectral sequence is constructed.
It is the counterpart of the Lyndon-Hochschild-Serre spectral sequence for
abstract groups.
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Theorem 7.2.4 Let K be a normal closed subgroup of a profinite group G,
and let A ∈ DMod(G). Then there exists a spectral sequence E = (Er,st )
such that

Er,s2
∼= Hr(G/K,Hs(K,A))

and
Er,s2 ⇒ Hn(G,A).

Proof. We shall show that E is the first spectral sequence of the double
complex

Lr,s = (Cr(G/K,CsK(G,A)), ∂′, ∂′ ′).

We shall make use of the second spectral sequence of this double complex to
show that E converges to Hn(G,A).

By the results in Section A.4, we have

′Er,s1
∼= Hs(Lr,•) = Hs(Cr(G/K,C•

K(G,A)), ∂′ ′).

Since Cr(G/K,−) is an exact functor (see Lemma 6.5.4), we obtain

′Er,s1
∼= Cr(G/K,Hs(K,A)).

From this we get
′Er,s2

∼= Hr(G/K,Hs(K,A)).

This spectral sequence converges to Hn(Tot(L)) (see Theorem A.4.1). To
compute Hn(Tot(L)), we consider the second spectral sequence of the double
complex L. We have

′ ′Er,s1
∼= Hs(L•,r) = Hs(G/K,CrK(G,A)).

By Lemma 7.2.3, ′ ′Er,s1 = 0, for s > 0. Hence the second spectral sequence
of L collapses, i.e., ′ ′Er,st = 0, for s > 0 and 1 ≤ t ≤ ∞. Since

′ ′F rHn(Tot(L))/ ′ ′F r+1Hn(Tot(L)) = ′ ′Er,s∞ = 0

if r + s = n, s > 0, we have

′ ′En,0∞
∼= ′ ′FnHn(Tot(L)) ∼= ′ ′Fn−1Hn(Tot(L)) ∼= · · · ∼= Hn(Tot(L)).

On the other hand ′ ′En,02
∼= ′ ′En,0∞ . Thus

Hn(Tot(L)) ∼= ′ ′En,02
∼= Hn(H0(L•,i), ∂′ ′) ∼= Hn(H0(G/K,C•

K(G,A)), ∂′ ′)
∼= Hn(C•

K(G,A)G/K , ∂) ∼= Hn(C•(G,A), ∂) ∼= Hn(G,A). ��

Corollary 7.2.5 Let G be a profinite group, K a closed normal subgroup of
G and A ∈ DMod(G).
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(a) Assume Hs(K,A) = 0 for 0 < s < n. Then we obtain a five term exact
sequence

0 → Hn(G/K,AK) Inf−→ Hn(G,A) Res−→ Hn(K,A)G/K

tr−→ Hn+1(G/K,AK) Inf−→ Hn+1(G,A).

(b) In particular, there exists always a five term exact sequence

0 −→ H1(G/K,AK) Inf−→ H1(G,A)
Res−→ H1(K,A)G/K tr−→ H2(G/K,AK) Inf−→ H2(G,A).

Proof. This follows from Theorem A.2.6 applied to the Lyndon-Hochschild-
Serre spectral sequence. ��

Dualizing part (b) of the above corollary, one obtains,

Corollary 7.2.6 Let G be a profinite group, K a closed normal subgroup of
G and B ∈ PMod([[̂ZG]]). Then, there exists a five term exact sequence of
homology groups

H2(G,B) −→ H2(G/K,BK) −→ H1(K,B)G/K
−→ H1(G,B) −→ H1(G/K,BK) −→ 0.

As an application of the five term exact sequence in the above corollaries
we obtain the following criterion.

Proposition 7.2.7 Let

1 −→ K −→ G
ϕ−→ H −→ 1

be an exact sequence of prosolvable groups. Assume that for each simple dis-
crete [[̂ZH]]-module A one has

(1)

Inf : H1(H,A) −→ H1(G,A)

is an epimorphism, and
(2)

Inf : H2(H,A) −→ H2(G,A)

is a monomorphism.

Then ϕ is an isomorphism.
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Proof. The action of G on A is defined via ϕ, by xa = ϕ(x)a (x ∈ G, a ∈ A).
Hence K act trivially on A, so that the maps in the statement are indeed
inflation maps. Consider the five term exact sequence of Corollary 7.2.5,

0 −→ H1(H,A) −→ H1(G,A) −→ H1(K,A)H −→ H2(H,A) −→ H2(G,A).

By our assumptions, H1(K,A)H = 0. We have to prove that K = 1. Suppose
that K 
= 1. Then there exists U �oG such that K∩U 
= K. Since K/K∩U is
a finite nontrivial solvable group, there exists W �oK such that W ≥ K ∩U
and K/W is a finite nontrivial abelian group. Let WG be the core of W in G.
Then K/WG is a finite nontrivial abelian group and WG �o G. Therefore,
there exists some closed subgroup V of G which is maximal with respect to
the following properties

V �o K and K/V is nontrivial abelian.

Let G act on K/V on the left by ‘conjugation’:

x · (kV ) = xkx−1V (x ∈ G, k ∈ K).

Note that K/V is a finite simple discrete G-module, and that the induced
action of K on K/V is trivial. Hence K/V becomes an H-module in a natural
way. Clearly K/V is simple as an H-module. Therefore,

H1(K,K/V )H = 0.

Since K/V is a trivial K-module, we have

H1(K,K/V ) = Hom(K,K/V ).

Let f : K −→ K/V be the canonical epimorphism k �→ kV . We claim that
f ∈ H1(K,K/V )H . Indeed (see Remark 7.2.2), if x ∈ G and k ∈ K, one has

(x̄f)(k) = x · f(x−1kx) = x · (x−1kxV ) = xx−1kxx−1V = kV = f(k),

so that x̄f = f . Thus f = 0, i.e., K = V , a contradiction. This proves the
claim and the proposition. ��

7.3 Cohomological Dimension of Subgroups

This section contains results relating the p-cohomological dimension of a
profinite group and its closed subgroups.

Theorem 7.3.1 Let G be a profinite group, H a closed subgroup of G and p
a prime number. Then

(a) cdp(H) ≤ cdp(G),
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(b) scdp(H) ≤ scdp(G).

Moreover, equality holds in either of the following cases

(1) p � [G : H],
(2) cdp(G) <∞ and the exponent of p in the supernatural number [G : H] is

finite (this is the case, e.g., if H is open in G).

Proof. We give proofs for the case of cohomological dimension; the case of
strict cohomological dimension is analogous.

(a) Let A ∈ DMod([[̂ZH]]) and let k > cdp(G). Using Shapiro’s lemma
(see Theorem 6.10.5) we get

Hk(H,A)p ∼= Hk(G,CoindGH(A))p = 0,

as desired.
(1) Let n ≥ 1 be such that there exists A ∈ DMod([[̂ZG]]) with

Hn(G,A)p 
= 0. By Corollary 6.7.7,

Res : Hk(G,A)p −→ Hk(H,A)p

is an injection if k ≥ 1, since p � [G : H]. Therefore

Hn(H,A)p 
= 0.

Hence cdp(H) ≥ cdp(G). By part (a) we obtain equality.
(2) First we consider the case that H is open. Let cdp(G) = n be finite.

Then there exists A ∈ DMod([[̂ZG]]) with Hn(G,A)p 
= 0. Choose a right
transversal {ti}i∈I of H in G containing 1. Define homomorphisms

CoindGH(A) π−→ A

and
A

ι−→ CoindGH(A)

by
π(f) =

∑

i∈I
t−1
i f(ti) f ∈ CoindGH(A)

and, for a ∈ A, x ∈ G,

(ι(a))(x) =
{

xa if x ∈ H
0 if x ∈ G−H.

Then πι = idA. So π is surjective. One verifies easily that π is a G-
homomorphism. Let A′ = Ker(π). Consider the exact sequence

0 −→ A′ −→ CoindGH(A) π−→ A −→ 0.

From the corresponding long exact sequence in cohomology we obtain that



7.3 Cohomological Dimension of Subgroups 263

Hn(G,CoindGH(A))p
π̄−→ Hn(G,A)p

δ−→ Hn+1(G,A′)p

is exact. SinceHn+1(G,A′)p = 0, π̄ is surjective. Hence, sinceHn(G,A)p 
= 0,

Hn(G,CoindGH(A))p 
= 0.

Therefore, by Shapiro’s lemma (see Theorem 6.10.5),

Hn(H,A) 
= 0.

Thus cdp(H) ≥ n. Equality follows then from part (a). This proves the state-
ment when H is open.

Assume now that p has finite exponent, say t, in [G : H]. Choose p-Sylow
subgroups Gp of G and Hp of H such that Hp ≤ Gp. Let U be an open
normal subgroup of G. Then [GpU/U : HpU/U ] ≤ pt. Hence [Gp : Hp] = pt,
finite. By the above case, cdp(Gp) = cdp(Hp). On the other hand, by part (1),
cdp(Hp) = cdp(H) and cdp(Gp) = cdp(G). Thus cdp(H) = cdp(G). ��

Remark 7.3.2 The condition cdp(G) <∞ in part (2) above is necessary. For
example, if G is a finite p-group, then it is well-known that cdp(G) = ∞ (cf.
Cartan and Eilenberg [1956], page 255), while cdp(1) = 0.

For an example involving infinite groups, let

G = GQ and H = GQ(i)

be the absolute Galois groups of the fields Q and Q(i), respectively. Then
(cf. Ribes [1970], Theorem V.8.8)

cd2(G) = ∞ and cd2(H) = 2.

Corollary 7.3.3 Let Gp be a p-Sylow group of a profinite group G. Then

(a) cdp(G) = cdp(Gp) = cd(Gp),
(b) scdp(G) = scdp(Gp) = scd(Gp),
(c) cdp(G) = 0 if and only if p � #G.

Proof. Parts (a) and (b) follow immediately from Theorem 7.3.1. To demon-
strate part (c), we may assume that G is a pro-p group. In this case, if p � #G
then G = 1, and so cdp(G) = 0. Conversely, assume cdp(G) = 0. Then
H1(G,A) = 0 for all A ∈ DMod([[̂ZG]]). In particular H1(G,Z/pZ) = 0,
where Z/pZ is considered as a trivial G-module. However,

0 = H1(G,Z/pZ) = Hom(G,Z/pZ),

the group of continuous homomorphisms. This clearly implies that G = 1,
since every nontrivial pro-p group has an open normal subgroup of index p.

��
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Corollary 7.3.4 If cdp(G) 
= 0,∞, then p∞ divides #G.

Proof. By Corollary 7.3.3, we may assume that G is a pro-p group and G 
= 1.
Observe that G is infinite, for otherwise cdp(G) = ∞ (cf. Cartan and Eilen-
berg [1956], page 255). Thus p∞ | #G. ��

Next we supplement Theorem 7.3.1 with a powerful result due to Serre
that establishes the equality of the p-cohomological dimensions of a group and
an open subgroup when the group has no p-torsion. We deduce this result
from a theorem of Scheiderer which we only state here. We need first some
notation.

Let G be a profinite group and express it as an inverse limit

G = lim←−
U ∈U

G/U,

where U is the set of all open normal subgroups of G. Denote by S (respec-
tively, SU ) the set of all closed subgroups of G (respectively, of GU = G/U).
Clearly

S = lim←−
U ∈U

SU .

Hence S can be thought of as a profinite space.

Lemma 7.3.5 Let G be a profinite group having an open normal torsion-free
subgroup H. Then

(a) The space F of subgroups of G of finite order is closed in the space S of
all closed subgroups of G; in particular, F is a profinite space;

(b) Let n be a natural number. Then the space Sn of subgroups of G of order n
is closed in the space S of all closed subgroups of G and so it is profinite;

(c) The subset T = tor(G)−{1} of nontrivial torsion elements of G is closed
in G.

Proof. (a) Let R ∈ F . Since H is torsion-free, H ∩R = 1. Hence |R| divides
[G : H]. For each U �oG, let FU denote the set of all subgroups of G/U whose
order divides [G : H]. Then, using the notation introduced above,

F = lim←−
U ∈U

FU ≤ lim←−
U ∈U

SU = S.

(b) Let SH denote the set of all subgroups of G/H and let SnH denote
the set of all subgroups of order n in G/H. Let

ϕ : S −→ SH

be the projection map. Since H is torsion-free, ϕ−1(SnH) consists of all sub-
groups of G of order n together with possibly some infinite subgroups. Hence,

Sn = F ∩ ϕ−1(SnH).
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Since both F and ϕ−1(SnH) are closed in S, the result follows.
(c) Set n = [G : H]. Then yn = 1 for all y ∈ T since H is torsion-free. Let

x ∈ T̄ ; hence xn = 1. Therefore, either x ∈ T or x = 1. So, tor(G) = T ∪ {1}
is a closed set. On the other hand H is an open neighborhood of 1 and
H ∩ T = ∅. Thus, T is closed. ��

Let G be a profinite group and let p be a prime number. Consider the set
Sp of all subgroups of G of order p; then, by the preceding lemma, Sp has in
a natural way the structure of a profinite space. Observe that Sp is a right
G-space by means of the natural action

Sp ×G −→ Sp

given by conjugation: (S, g) �→ g−1Sg (S ∈ Sp).
We can state now the following result (Scheiderer [1994]).

Theorem 7.3.6 Let G be a profinite group which does not contain any sub-
group isomorphic to Cp ×Cp, where p is a fixed prime number. Assume that
H is an open subgroup of G of finite cohomological p-dimension d.

(a) Let A be a discrete p-primary left G-module. Then the natural homomor-
phism

ϕ : A −→ C(Sp, A) = Hom([[̂ZSp]], A)

that sends a ∈ A to the constant map Sp → A with value a, induces
isomorphisms

ϕn : Hn(G,A) −→ Hn(G,C(Sp, A))

for every n > d.
Dually,

(b) If B is a profinite p-primary right G-module, the natural homomorphism

B̂⊗[[̂ZSp]] −→ B

defined by b̂⊗t̄ �→ bε(t̄) (b ∈ B, t̄ ∈ [[̂ZSp]]), where ε : [[̂ZSp]] −→ ̂Z is the
augmentation map, induces isomorphisms

Hn(G,B̂⊗[[̂ZSp]]) −→ Hn(G,B)

for each n > d.

We now prove a result, due to Serre [1965], as a consequence of this
theorem. Historically Serre’s result precedes the above theorem by 30 years.

Theorem 7.3.7

(a) Let G be a profinite group with no subgroups of order p, and let H be an
open subgroup of G. Then

cdp(G) = cdp(H).
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(b) Let G be a torsion-free pro-p group. If G is virtually a free pro-p group
(i.e., G contains an open subgroup which is a free pro-p group), then it is
free pro-p.

Proof. Part (b) is a consequence of part (a) and Theorem 7.7.4. To show part
(a) notice first that if cdp(H) = ∞, the result follows since cdp(H) ≤ cdp(G)
(see Theorem 7.3.1). Assume then that cdp(H) = d is finite. Observe that in
this case Sp = ∅, and so [[̂ZSp]] = 0. It follows from Theorem 7.3.6 that

Hn(G,Z/pZ) = Hn(G,Hom([[̂ZSp]],Z/pZ)) = 0

if n > d. Therefore cdp(G) = d. ��

7.4 Cohomological Dimension of Normal Subgroups and
Quotients

Here we study the relationship between the cohomology of a group and that
of a normal subgroup and the corresponding quotient. The main tool again
is the Lyndon-Hochschild-Serre spectral sequence.

Lemma 7.4.1 Let G be a profinite group and K a closed normal subgroup
of G. Assume cdp(G/K) = m and cdp(K) = n are finite. Then, for every
prime p and each discrete G-module A,

Hn+m(G,A)p ∼= Hm(G/K,Hn(K,A))p.

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence (see Theo-
rem 7.2.4)

Er,s2 = Hr(G/K,Hs(K,A)) ⇒ Hn(G,A).

If r > m, then (Er,s2 )p = 0; and if r < m and r + s = m+ n, then s > n,
so again (Er,s2 )p = 0. Hence (Er,s∞ )p = 0 if r + s = m + n, r 
= m. Thus the
induced filtration of Hm+n(G,A)p is trivial and

Hm+n(G,A)p ∼= (Em,n∞ )p.

Finally, one easily sees that (Em,n2 )p ∼= (Em,n∞ )p. ��

Proposition 7.4.2 Let K be a normal closed subgroup of a profinite group
G and let p be a prime. Then
(a)

cdp(G) ≤ cdp(K) + cdp(G/K).

(b) Assume that cdp(G/K) is finite. Then

cdp(G) = cdp(K) + cdp(G/K)

in either of the following cases
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(i) K is a pro-p group with cd(K) = n and Hn(K,Z/pZ) is finite;
(ii) K is in the center of G.

Proof. (a) Consider the Lyndon-Hochschild-Serre spectral sequence

Er,s2 = Hr(G/K,Hs(K,A)) ⇒ Hn(G,A).

Let m > cdp(K) + cdp(G/K). We shall show that Hm(G,A)p = 0 if A ∈
DMod([[̂ZG]]). Choose r, s ≥ 0 such that r+ s = m. Then either s > cdp(K)
or r > cdp(G/K). So

(Er,s2 )p = 0, if r + s = m.

Therefore
(Er,s∞ )p = 0, r + s = m.

Thus
Hm(G,A)p = 0.

(b) We may assume that cdp(G) is finite. Say cdp(G/K) = m and
cdp(K) = n. Let Gp be a p-Sylow subgroup of G. Then GpK/K is a p-Sylow
subgroup of G/K. Put H = GpK. Then

cdp(H/K) = cdp(G/K) = m.

By part (a),
cdp(H) ≤ cdp(G) ≤ m+ n.

So, it will suffice to prove that

cdp(H) = m+ n.

We may assume that G/K is a pro-p group.
Case (i): Suppose that K is a pro-p group with cd(K) = n and Hn(K,Z/pZ)
finite.

By Lemma 7.4.1 and Corollary 7.1.7,

Hn+m(G,Z/pZ) ∼= Hm(G/K,Hn(K,Z/pZ)) 
= 0

since Hn(K,Z/pZ) is p-primary and finite by hypothesis.
Case (ii): Suppose now that K is in the center of G.

By the description of the action given in Remark 7.2.2, one sees that the
group G/K acts trivially on Hn(K,Z/pZ). Since K is abelian, it is the direct
sum of its Sylow subgroups Kp (see Proposition 2.3.8). By Corollary 7.1.6,
Hn(Kp,Z/pZ) 
= 0. Using cochains one easily sees that Hn(Kp,Z/pZ) is a
direct summand of Hn(K,Z/pZ), and so Hn(K,Z/pZ) 
= 0. Therefore, as a
G/K-module, Hn(K,Z/pZ) is isomorphic to a direct sum

⊕

I(Z/pZ) where
I 
= ∅. Thus we have

Hn+m(G,Z/pZ) ∼=
⊕

I

Hm(G/K,Z/pZ) 
= 0. ��
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Exercise 7.4.3

(a) Let A = Zp⊕
m· · · ⊕Zp be a free abelian pro-p group of finite rank m.

Then cdp(A) = m.
(b) Let Zp/pmZp act on B = Zp⊕ pm

. . . ⊕Zp (the direct sum of pm copies of
Zp) by permuting the summands in a natural way and let Zp act on B
via the canonical epimorphism

Zp −→ Zp/pmZp.

Consider the corresponding semidirect product

G = B � Zp.

Then cdp(G) = pm + 1.

7.5 Groups G with cdp(G) ≤ 1

Let G be a profinite group. Recall (see Definition 3.5.1) that an embedding
problem for G is a diagram of profinite groups and continuous homomor-
phisms

G

ϕ

1 K A
α

B 1

(2)

with exact row, and where ϕ is an epimorphism.

Theorem 7.5.1 Let G be a profinite group and p a prime number. The fol-
lowing statements are equivalent :

(a) cdp(G) ≤ 1;
(b) The embedding problem (2) is weakly solvable whenever A is finite and K

is a finite elementary abelian p-group;
(c) Every short exact sequence of profinite groups

1 −→ K −→ A −→ G −→ 1,

where K is a finite elementary abelian p-group, splits;
(d) The embedding problem (2) is weakly solvable whenever K is a pro-p

group;
(e) Every short exact sequence of profinite groups

1 −→ K −→ A −→ G −→ 1,

where K is any pro-p-group, splits.
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Proof. The implications (d) ⇒ (e) ⇒ (c) and (d) ⇒ (b) are clear.
(b) ⇒ (d): First, observe that if A is a profinite group and K is an abelian

p-group which is a minimal normal subgroup of A, thenK is annihilated by p.
Hence (d) is equivalent (b) by Lemma 3.5.5.

(a) ⇒ (b): We need a continuous homomorphism η : G −→ A such that
αη = ϕ. Let f : B×B −→ K be a representative in H2(B,K) corresponding
to the extension

1 −→ K −→ A
α−→ B −→ 1,

(see Theorem 6.8.4). We associate a cocycle g : G×G −→ K to f by defining

g(x, y) = f(ϕ(x), ϕ(y))

(i.e., g = Inf(f), where Inf is the inflation map). Note that there is an action
of G on K induced by ϕ, namely, if a ∈ K and x ∈ G, then xa = ϕ(x)a.

To g there corresponds an extension

1 −→ K −→ Ā
ᾱ−→ G −→ 1

which must split since by hypothesis H2(G,K)p = 0. Say σ : G −→ Ā is a
continuous homomorphism with ᾱσ = idG. We identify A and Ā with the
direct productsK×B andK×G respectively (see the proof of Theorem 6.8.4).
Define

γ : Ā −→ A

by γ(a, x) = (a, ϕ(x)) (a ∈ K, x ∈ G). One easily checks that γ is a continuous
homomorphism (see Theorem 6.8.4 for the definition of the operation in A
and Ā, and their topologies) making the diagram

1 K

id

Ā
ᾱ

γ

G
σ

ϕ

1

1 K A
α

B 1

commutative.
Define η : G −→ A by η = γσ. Then αη = ϕ, as desired.
(c) ⇒ (a): According to (c), H2(G,K) = 0, whenever K is a G-module

which is an elementary abelian p-group. Now, every p-primary discrete simple
[[ZG]]-module is a finite elementary abelian p-group; therefore H2(G,K) = 0
for every p-primary discrete simple [[ZG]]-module K. Hence the result follows
from Proposition 7.1.4. ��

Corollary 7.5.2 Let F be a free pro-p group of rank at least 1. Then

cdp(F ) = cd(F ) = 1.
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Proof. Since F 
= 1, cd(F ) ≥ 1. We shall prove that (e) of the theorem above
holds. Let F be free on the set X converging to 1, and let ι : X −→ F be the
canonical embedding. Let

1 −→ P −→ A
α−→ F −→ 1,

be an exact sequence, where P is a pro-p-group. Let σ : F −→ A be a
continuous section with σ(1) = 1 (see Proposition 2.2.2). Then the map
σι : X −→ A converges to 1. Since P and F are pro-p-groups, so is A. Hence
there is a continuous homomorphism ψ : F −→ A with ψι = σι. Thus αψ is
the identity on F . This verifies (e) and so, by Theorem 7.5.1, cd(F ) ≤ 1. ��

See Theorem 7.7.4 for a converse of the above corollary. The following
result is obtained using a similar argument.

Corollary 7.5.3 Let C be NE-formation of finite groups (see Section 2.1)
and let F be a nontrivial free pro - C group. Then cdp(F ) = 1 for every prime
p.

Some parts of Theorem 7.5.1 can be sharpen in a certain direction. Recall
that if π is a set of primes, a π-group is a profinite group whose order involves
only primes in π.

Proposition 7.5.4 Let G be a profinite group and let π be a fixed set of
primes. The following conditions are equivalent :

(a) cdp(G) ≤ 1 for each p ∈ π;
(b) Every embedding problem (2) where A is finite and K is a π-group, is

weakly solvable;
(c) Every embedding problem (2), where K is any profinite π-group, is weakly

solvable.

Proof. The equivalence of conditions (b) and (c) follows from Lemma 3.5.5.
The implication (b) ⇒(a) is a consequence of Theorem 7.5.1. Here we prove
that (a) implies (b). Consider an embedding problem (2) with A finite and K
a π-group. We use induction on the order of K to show that the embedding
problem (2) is weakly solvable. If K = 1, this is clear. Assume that K 
=
1 and, for a fixed p ∈ π, consider a p-Sylow subgroup P of K. We may
assume P 
= K, for otherwise the embedding problem is solvable according
to Theorem 7.5.1. We shall distinguish two cases:

(1) P is a normal subgroup of A. Then P is the unique p-Sylow subgroup
ofK, and hence normal in A. By the induction hypothesis, the embedding
problem

G

ϕ

1 K/P A/P
α

B 1
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is weakly solvable. Say ϕ1 : G −→ A/P is a solution. Then, again by
induction, the embedding problem

G

ϕ

1 P A
α
A/P 1

is weakly solvable. Hence the original embedding problem is solvable.
(2) P is not normal in A. By the Frattini argument (see Exercise 2.3.13),

A = KN , where N = NA(P ) is the normalizer of P in A. Note that
N ∩ K < K since P is obviously not normal in K. Therefore, α(N) =
α(A) = B. Then

G

ϕ1

1 K ∩N N
α

B 1

is an embedding problem. This is weakly solvable by induction. Thus the
original problem is weakly solvable since N ≤ A. ��

7.6 Projective Profinite Groups

Let C be a variety of finite groups. We say that a pro - C group is C-projective
if it is a projective object in the category of pro - C groups, i.e., if every
embedding problem

G

ϕ

1 K A
α

B 1

(3)

of pro - C groups is weakly solvable. A profinite group is called projective if it
is C-projective for the variety C of all finite groups.

As an immediate consequence of Lemma 3.5.5, we have

Lemma 7.6.1 A pro - C group G is C-projective if and only if every embed-
ding problem (3) with A ∈ C is weakly solvable.

Example 7.6.2 Let C be a variety of finite groups. Then every free pro - C
group is C-projective. Indeed, let F = F (X) be a free pro - C group on a set
X converging to 1 (recall that every free pro - C group is of this type: see
Proposition 3.5.12). Consider an embedding problem for F
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F

ϕ

1 K A
α

B 1

Let σ : B −→ A be a continuous section (see Proposition 2.2.2) for α. Let
ρ : X −→ A be the restriction of σϕ to X. Since the restriction of ϕ to X
converges to 1, so does ρ. Let ρ̄ : F −→ A be the unique continuous homo-
morphism extending ρ. Then αρ̄ = ϕ, proving that the embedding problem
above is weakly solvable.

When the variety C is extension closed (see Section 2.1), the following
lemma provides a complete characterization of C-projective groups in terms
of free groups.

Lemma 7.6.3 Let C be a variety of finite groups and let G be a pro - C group.

(a) If G is C-projective, then it is isomorphic to a closed subgroup of a free
pro - C group.

(b) Assume in addition that the variety C is extension closed (see Section 2.1).
Then G is C-projective if and only if G is a closed subgroup of a free pro - C
group.

Proof. (a) By Theorem 3.3.16, there exists a free pro - C group F and a con-
tinuous epimorphism α : F −→ G. Since G is C-projective, there exists a
continuous homomorphism σ : G −→ F such that ασ = idG. Hence σ is an
embedding.

(b) Assume that G ≤c F , where F is a free pro - C group. Consider an
embedding problem (3) as above with A ∈ C. Then Ker(ϕ) is an open normal
subgroup of G. Hence there exists V �o F such that V ∩ G ≤ Ker(ϕ). Since
GV is open in F and the variety C is extension closed, it follows that GV
is a free pro - C group (see Theorem 3.6.2). Therefore we may assume that
F = GV . Put U = VKer(ϕ). Then U �o F and U ∩ G = Ker(ϕ). Define an
epimorphism ϕ1 : F −→ B to be the composite of the natural maps

F −→ F/U = GU/U −→ G/G ∩ U = G/Ker(ϕ) −→ B.

Note that ϕ is the restriction of ϕ1 to G. Since F is C-projective, there exists
a continuous homomorphism ϕ̄1 : F −→ A such that αϕ̄1 = ϕ1. Therefore,
the restriction of ϕ̄1 to G is a weak solution of the embedding problem (3),
as needed. ��

Definition 7.6.4 A variety of finite groups C is called ‘saturated ’ if whenever
G is a finite group and its Frattini quotient G/Φ(G) belongs to C, then G is
in C.

Example 7.6.5 The following are examples of saturated varieties of finite
groups.
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(1) Every extension closed variety. This follows from the fact that if G is a
finite group and p is a prime number which divides the order of the Frattini
subgroup Φ(G) of G, then p divides the order of the Frattini quotient
G/Φ(G) (cf. Huppert [1967], Satz III.3.8). Since Φ(G) is nilpotent, this
means that it is in C. Therefore, G ∈ C.

(2) The variety of all finite nilpotent groups (cf. Huppert [1967], Satz III.3.7).
(3) The variety of all finite supersolvable groups (cf. Huppert [1967],

Satz VI.8.6).

Our interest in saturated varieties stems from the following result.

Lemma 7.6.6 Let C be a saturated variety of finite groups. Let α : A −→ B
be an epimorphism of finite groups with B ∈ C. Then there exists a subgroup
M of A such that M ∈ C and α(M) = B.

Proof. Let N = Ker(α). Consider the set of all complements of N in A:

M = {H | H ≤ A,NH = A.}

Note that M 
= ∅ since A ∈ M. Let M be a minimal element of M. It
will suffice to show that M ∈ C. In order to see this, we first show that
M ∩N ≤ Φ(M). Indeed, ifM ∩N 
≤ Φ(M), then there is a maximal subgroup
T of M such that M ∩N 
≤ T ; hence (M ∩N)T = M . So A = NM = NT ,
contradicting the minimality ofM . Thus we have shown thatM∩N ≤ Φ(M).
From A = NM , we deduce that

M/M ∩N ∼= A/N ∈ C.

Since C is closed under taking quotients, one has that M/Φ(M) ∈ C, and so
M ∈ C, because C is saturated. ��

Proposition 7.6.7 Let C be a saturated variety of finite groups and let G be
a pro - C group. Then the following conditions on G are equivalent :

(a) G is a C-projective group;
(b) G is a projective group;
(c) cd(G) ≤ 1.

Proof. Clearly (b) implies (a). The equivalence of (b) and (c) follows from
Proposition 7.5.4. Hence it remains to prove that (a) implies (b). Consider
an embedding problem for G

G

ϕ

1 K A
α

B 1

where K, A and B are arbitrary finite groups. Since ϕ is an epimorphism
and G is a pro - C group, we have that B ∈ C. By Lemma 7.6.6 there exists a
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subgroup M of A such that M ∈ C and α(M) = B. Therefore by (a), there
exists a continuous homomorphism ϕ̄ : G −→ M ↪→ A with αϕ̄ = ϕ. Thus
(b) holds. ��

Corollary 7.6.8 Let C be a saturated variety of finite groups and let B be
a pro - C group. Suppose that α : A −→ B is an epimorphism of profinite
groups. Then A contains a closed pro - C subgroup H such that α(H) = B.

Proof. Let ϕ : F −→ A be a continuous epimorphism, where F is a free pro - C
group (see Theorem 3.3.16). As mentioned in Example 7.6.5, the group F is C-
projective. By Proposition 7.6.7, we deduce that F is projective. Hence there
exists a homomorphism ϕ̄ : F −→ A with αϕ̄ = ϕ. Then take H = Im(ϕ̄). ��

Proposition 7.6.9 Let C be a variety of finite groups and let G and H be
pro - C groups.

(a) Assume G is C-projective. Then every continuous epimorphism

ρ : G/Φ(G) −→ H/Φ(H)

of Frattini quotients can be lifted to a continuous epimorphism

ψ : G −→ H,

i.e., the following diagram commutes

G
ψ

α

H

β

G/Φ(G)
ρ

H/Φ(H),

where α and β are the canonical epimorphisms.
(b) Assume that both G and H are C-projective. Then every continuous iso-

morphism ρ : G/Φ(G) −→ H/Φ(H) can be lifted to a continuous isomor-
phism ψ : G −→ H.

Proof. (a) Since G is C-projective, there exists a continuous homomorphism
ψ : G −→ H lifting ρ. Hence ψ(G)Φ(H) = H. Thus ψ(G) = H (see Corol-
lary 2.8.5).

(b) By part (a), there exists a continuous epimorphism ψ : G −→ H
such that βψ = ρα. Since ρ is an injection, Ker(ψ) ≤ Φ(G). Since H is C-
projective, there exists a continuous homomorphism ξ : H −→ G such that
ψξ = idH . So ξ is a injection and, in addition, ξ(H)Ker(ψ) = G. Therefore,
ξ(H) = G (see Corollary 2.8.5). Thus, ξ is an isomorphism. Consequently, ψ
is an isomorphism. ��

Corollary 7.6.10 Let F be a pro-p group. Let y1, . . . , yn ∈ F be linearly
independent mod Φ(F ). Then there exists a basis Y of F converging to 1
containing the elements y1, . . . , yn.
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Proof. Let π : F −→ F/Φ(F ) be the canonical epimorphism. We think of
F/Φ(F ) as a free pro - C group, where C is the class of all finite elemen-
tary abelian p-groups. Choose a basis Ȳ converging to 1 of F/Φ(F ) such
that π(yi) ∈ Ȳ (i = 1, . . . , n) and such that rank(F ) = |Ȳ | (this can be
done as follows: consider the finite subgroup A of F/Φ(F ) generated by
π(y1), . . . , π(yn); by Proposition 2.8.16, F/Φ(F ) = A ⊕ B for some closed
subgroup B of F/Φ(F ); it is easy to see that in this case, B is a free pro - C
group; then Ȳ can be taken to be the union of π(y1), . . . , π(yn) and a basis
converging to 1 of the free pro - C group B).

Let X be a basis of F converging to 1. Then

X̄ = {x̄ = π(x) | x ∈ X}

is a basis of F/Φ(F ) converging to 1. Consider a bijection ϕ : X̄ −→ Ȳ .
Choose a continuous homomorphism ϕ̄ : F −→ F lifting ϕ such that ϕ̄(xi) =
yi (i = 1, . . . , n). By Proposition 7.6.9, ϕ̄ is an isomorphism. Therefore, Y =
ϕ̄(X) is the basis we were seeking. ��

Exercise 7.6.11 Let C be a variety of finite groups and let {Gi, ϕij , I} be
an inverse system of C-projective pro - C groups over a poset I. Prove that

lim←−
i∈I

Gi

is C-projective. (Hint: use Lemma 1.1.16.)

7.7 Free Pro-p Groups and Cohomological Dimension

In this section we show that projective pro-p groups are precisely free pro-p
groups.

If G is a pro-p group, we denote by Hn(G) the cohomology group
Hn(G,Z/pZ). Recall that the Frattini subgroup of G is Φ(G) = [G,G]Gp
(see Lemma 2.8.7).

Remark 7.7.1

(a) Let G be a pro-p group. Then

H1(G) ∼=
⊕

X

Z/pZ,

the direct sum of |X| copies of Z/pZ, for some indexing setX. This is clear
since H1(G) = Hom(G/Φ(G),Z/pZ) is an elementary abelian p-group.

(b) Let F = F (X) be a free pro-p group on the set X converging to 1. Then

H1(F ) = Hom(F,Z/pZ) ∼= {h : X −→ Z/pZ | h converges to 0}
∼=
⊕

X

Z/pZ.
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(c) Let G be a pro-p group. Then, H1(G) and G/Φ(G) are Pontryagin dual,
where Φ(G) is the Frattini subgroup of G. Indeed,

Hom(G/Φ(G),Q/Z) ∼= Hom(G/Φ(G),Z/pZ)
∼= Hom(G,Z/pZ) = H1(G).

(d) Let G1 and G2 be pro-p groups and let

ψ : G1 −→ G2

be a continuous homorphism. Then ψ induces a homomorphism

H1(ψ) : H1(G2) = Hom(G2,Z/pZ) −→ H1(G1) = Hom(G1,Z/pZ)

given by
f �→ fψ (f ∈ Hom(G2,Z/pZ)).

The map ψ also induces a homomorphism of Frattini quotient groups

ρ : G1/Φ(G1) −→ G2/Φ(G2)

since ψ(G1) ≤ G2. Note that ρ and H1(ψ) are Pontryagin dual to each
other.

Proposition 7.7.2 Let ψ : G1 −→ G2 be a continuous homomorphism of
pro-p groups. Then the following statements are equivalent.

(a) ψ is surjective;
(b) H1(ψ) : H1(G2) −→ H1(G1) is injective;
(c) ρ : G1/Φ(G1) −→ G2/Φ(G2) is surjective.

Proof. If ψ is surjective, it is obvious that H1(ψ) is injective. Conversely,
assume that H1(ψ) is injective and that ψ(G1) 
= G2. Choose a maximal
open subgroup U of G2 containing ψ(G1). Since G2 is a pro-p group, U is
normal of index p (see Lemma 2.8.7). Then the canonical homomorphism

f : G2 −→ G2/U ∼= Z/pZ

is non-trivial. However H1(ψ)(f) = fψ = 0. A contradiction. This proves the
equivalence of (a) and (b).

The equivalence of (a) and (c) follows from Corollary 2.8.8 and Proposi-
tion 7.6.9. ��

Lemma 7.7.3 Let G1 and G2 be pro-p groups and assume that cdp(G1) ≤ 1.
Then every homomorphism α : H1(G2) −→ H1(G1) is of the form H1(ψ),
for some continuous homomorphism ψ : G1 −→ G2.
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Proof. Let ρ : G1/Φ(G1) −→ G2/Φ(G2) be the dual map of α. It suffices
to prove the existence of a continuous homomorphism ψ : G1 −→ G2 which
induces ρ on the Frattini quotients (see Remark 7.7.1(d)). Consider the em-
bedding problem

G1

G1/Φ(G1)

ρ

G2 G2/Φ(G2).

Since cdp(G1) ≤ 1, this embedding problem has a weak solution ψ : G1 −→
G2 (see Theorem 7.5.1). Clearly ψ induces the map ρ on the Frattini quo-
tients. ��

Theorem 7.7.4 Let G be a pro-p group. Then, the following statements are
equivalent

(a) cdp(G) ≤ 1;
(b) H2(G) = 0;
(c) G is a free pro-p group;
(d) G is a projective group.

Proof. By Corollary 7.1.6 and Proposition 7.6.7, the statements (a), (b) and
(d) are equivalent. By Corollary 7.5.3, (c) implies (a). Conversely, assume
that cdp(G) ≤ 1. According to Remark 7.7.1,

H1(G) ∼=
⊕

X

Z/pZ

for some index set X. Consider a free pro-p group F = F (X) on the set X
converging to 1. Then (see Remark 7.7.1), there exists an isomorphism

α : H1(G) −→ H1(F ).

Therefore, its dual ρ : F/Φ(F ) −→ G/Φ(G) is an isomorphism. By Lem-
ma 7.7.3, there is a continuous homomorphism ψ : F −→ G such that
H1(ψ) = α. By Propositions 7.7.2 and 7.6.9, ψ is an isomorphism. ��

Corollary 7.7.5 Every closed subgroup H of a free pro-p group G is a free
pro-p group.

Proof. By Theorem 7.3.1, cd(H) ≤ cd(G) ≤ 1. So the result follows from the
theorem above. ��

Corollary 7.7.6 Let G be a profinite group. Then G is projective if and only
if for any prime p, a p-Sylow subgroup Gp of G is a free pro-p group. In
particular, a projective profinite group is torsion-free.
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The following corollary sharpens the content of Proposition 3.4.2.

Proposition 7.7.7 Let G be a projective profinite group. Then, for every
prime number p, its maximal pro-p quotient G/Rp(G) is a free pro-p group.

Proof. By Theorem 7.7.4, it suffices to show that G/Rp(G) is projective.
Consider the diagram

G

ϕ1

G/Rp(G)

ϕ

A
α

B 1

where α and ϕ are continuous epimorphisms of pro-p groups and where ϕ1

is the canonical quotient map. We have to show that there is a continuous
homomorphism ϕ̄ : G/Rp(G) −→ A such that ϕ̄α = ϕ. Since G is projective,
there exists a continuous homomorphism ψ : G −→ A such that αψ = ϕϕ1.
Since G/Ker(ψ) is a pro-p group, we have Rp(G) ≤ Ker(ψ). Hence ψ factors
through G/Rp(G), i.e., there exists a homomorphism ψ1 : G/Rp(G) −→ A
such that ψ = ψ1ϕ1. Define ϕ̄ to be ψ1. ��

Exercise 7.7.8

(a) (Zassenhaus groups) LetG be a profinite group all whose Sylow subgroups
are procyclic. Prove that G contains procyclic subgroups K and H of
relatively prime orders such that K is normal in G and G = K � H.
(Hint: for the corresponding property for finite groups, see Hall [1959],
Theorem 9.4.3.)

(b) (Projective solvable groups) Let G be a solvable profinite group. Prove
that if G is projective then there exists disjoint sets of primes σ and τ
such that

G ∼= ̂Zσ �
̂Zτ .

7.8 Generators and Relators for Pro-p Groups

We recall that if G is a profinite group, d(G) denotes the minimal cardinality
of a set of generators of G converging to 1 (see Definition 2.4.5). If G is pro-p,
then Hn(G) = Hn(G,Z/pZ) is in a natural way a vector space over the field
Fp with p elements. In the sequel we write dimHn(G) for dimFp H

n(G), the
dimension of Hn(G) over Fp.

Theorem 7.8.1 Let G be a pro-p group. Then d(G) = dimH1(G).
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Proof. Assume dimH1(G) = |X|, for some set X. Let F = F (X) be a free
pro-p group on the set X converging to 1. By Remark 7.7.1(b), dimH1(F ) =
|X|. Let

α : H1(G) −→ H1(F )

be an isomorphism. It follows from Lemma 7.7.3 and Proposition 7.7.2 that
there exists a surjective continuous homomorphism ψ : F −→ G. Thus

d(G) ≤ |X| = dimH1(G).

Now, assume d(G) = |Y |, for some set Y . Let F (Y ) be a free pro-p
group on the set Y converging to 1. Then there is a continuous epimorphism
ϕ : F (Y ) −→ G. By Proposition 7.7.2, ϕ induces an injection

H1(G) −→ H1(F (Y )).

Thus,
dimH1(G) ≤ dimH1(F (Y )) = |Y | = d(G). ��

Let F be a free profinite group and let K be a closed normal subgroup
of F . We say that a subset R = {ri | i ∈ I} of K converging to 1 is a set
of generators of K as a normal subgroup of F , if the F -conjugates of the ri
generate algebraicly a dense subgroup of K, i.e., if K is the smallest closed
normal subgroup of F containing the ri. We define dF (K) to be the smallest
cardinal of a generating set of K as a normal subgroup of F .

Proposition 7.8.2 Let F be a pro-p group and let K be a closed normal
subgroup of F . Then

dF (K) = dimH1(K)F

where H1(K)F is the fixed submodule of H1(K) under the action of F de-
scribed in Remark 7.2.2.

Proof. First we show that dF (K) ≥ dimH1(K)F . Assume dF (K) = |I|,
where {ri | i ∈ I} converges to 1 and generates K as a normal subgroup
of F . Define a homomorphism

α : H1(K)F −→
⊕

I

Z/pZ

by α(f)(i) = f(ri) (f ∈ H1(K)F = Hom(K,Z/pZ)F ). Then α is an injection.
Indeed, suppose α(f) = 0. Then f(ri) = 0 for all i ∈ I. Now, according to
the definition of the action of F on Hom(K,Z/pZ) (see Remark 7.2.2), we
have that for x ∈ F ,

f(xrix−1) = (xf)(ri) = xf(ri) = 0.

So f = 0 on the dense subgroup 〈xrix−1 | i ∈ I, x ∈ F 〉 of K. Thus f = 0.
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Next we prove that dF (K) ≤ dimH1(K)F . Observe that since H1(K)
and K/Φ(K) are Pontryagin dual (see Remark 7.7.1), the inclusion map
H1(K)F ↪→ H1(K) induces a dual epimorphism K/Φ(K) −→ K̃, where K̃
is the dual of H1(K)F . Put

H1(K)F =
⊕

J

(Z/pZ)fj ,

where {fj : K −→ Z/pZ | j ∈ J} is a basis for H1(K)F . Hence,

K̃ ∼=
∏

j∈J
(Z/pZ)xj

where fj(xi) = 0 or 1, according to whether j = i or j 
= i. Let F (J) be the
free pro-p group on the set J converging to 1, and consider the diagram

K

K/Φ(K)

F (J)
ϕ

K̃

where the continuous homomorphism ϕ is defined by ϕ(j) = xj (j ∈ J).
Since F (J) is projective, ϕ can be lifted to a continuous homomorphism
ϕ̄ : F (J) −→ K. Set vj = ϕ̄(j) (j ∈ J). Then {vj | j ∈ J} is a subset of K
converging to 1.

To prove that dF (K) ≤ dimH1(K)F , it suffices to establish the following
Claim: {vj | j ∈ J} is a set of generators of K as a normal subgroup of F .
To prove this claim, let K ′ be the smallest closed normal subgroup of F
containing the vj . Then K ′ ↪→ K. We shall show that this map is surjective,
or equivalently, that its dual map

α : H1(K) −→ H1(K ′)

is an injection. First we prove that its restriction

ᾱ : H1(K)F −→ H1(K ′)F

is an injection: let f ∈ H1(K)F , and assume that f(K ′) = 0. Then f(vj) = 0;
so f(xj) = 0 for all j ∈ J . Hence f(K̃) = 0. Therefore, f = 0.

Finally we show that this implies that α is an injection. Indeed, since ᾱ
an injection, Ker(α) contains no element different from 0 which is invariant
under F . If Ker(α) 
= 0, it would contain a simple F -submodule all whose
elements are fixed by F (see Lemma 7.1.5), a contradiction. Thus the claim
is proved. ��
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Let G be a pro-p group and let {xi | i ∈ I} be a set of generators of G
converging to 1. Let F = F (I) be a free pro-p group on the set I converging
to 1. Then there exists a unique continuous epimorphism

ϕ : F −→ G

mapping i to xi (i ∈ I). Let K be its kernel. A set R of generators of K (as
a normal subgroup of F ) is called a set of defining relators corresponding to
the set of generators {xi | i ∈ I}.

We then say that
〈x1, . . . , xn | R〉

is a presentation of G as a pro-p group. (One can give an analogous definition
of ‘presentation’ for a general profinite group, using a free profinite group
instead: see Appendix C.)

Assume now that d(G) = |I| = d is finite and let F and K be as above.
Then, define

rr(G) = relation rank (G) = dF (K).

The next result shows that rr(G) is independent of the choice of the minimal
set of generators {x1, . . . , xd} of G.

Theorem 7.8.3 Let G be a finitely generated pro-p group. Then

rr(G) = dimH2(G).

Proof. Let d(G) = |I| = d, and consider the exact sequence described above

1 −→ K −→ F −→ G −→ 1,

where F = F (I) is a free pro-p group on the finite set I. By Corollary 7.2.5,
we obtain a five term exact sequence

0 −→ H1(G) −→ H1(F ) −→ H1(K)F −→ H2(G) −→ H2(F ).

Since both H1(G) and H1(F ) are finite dimensional Fp-vector spaces of the
same dimension (see Theorem 7.8.1), the monomorphism

H1(G) −→ H1(F )

is an isomorphism. Since F is free pro-p, we have H2(F ) = 0. Hence
H1(K)F ∼= H2(G). Therefore, the result follows from Proposition 7.8.2. ��

Now, let G be a finite p-group. Then d(G) = dimH1(G) and rr(G) =
dimH2(G). Clearly, both d(G) and rr(G) are finite, since in this case the
kernel K is finitely generated as a profinite group.

Proposition 7.8.4 Let G be a finite p-group. Then

rr(G) − d(G) = d(H3(G,Z)).
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Proof. Consider the short exact sequence

0 −→ Z
p−→Z −→ Z/pZ −→ 0,

where p indicates multiplication by p. From this we obtain a corresponding
exact sequence in cohomology

0 −→ H1(G) −→ H2(G,Z)
p−→ H2(G,Z) −→ H2(G) −→ H3(G,Z)[p] −→ 0,

where H3(G,Z)[p] denotes the subgroup of elements of H3(G,Z) annihilated
by p. Since G is finite, each Hi(G,Z) (i ≥ 1) is a finitely generated abelian
torsion group, and hence finite. Therefore,

dimH1(G) − dimH2(G,Z) + dimH2(G,Z) − dimH2(G)
+ dimH3(G,Z)[p] = 0.

Thus,
rr(G) − d(G) = dimH3(G,Z)[p].

On the other hand it is plain that dimH3(G,Z)[p] = d(H3(G,Z)), since
H3(G,Z) is a finite abelian p-group. ��

We mention the following result without proof (see Section 7.10 for refer-
ences).

Theorem 7.8.5 (The Golod-Shafarevich inequality) Let G be a non-
trivial finite p-group. Then

rr(G) > (d(G))2/4.

7.9 Cup Products

Let G be a profinite group and let A,B ∈ DMod(G). Consider the tensor
product over the ring of integers A⊗ZB. In this section we shall write A⊗B
instead of A⊗Z B. Define an action of G on A⊗Z B by x(a⊗ b) = xa⊗ xb
(x ∈ G, a ∈ A, b ∈ B). Under this action A⊗B becomes a discrete G-module,
since

A⊗B =
⋃

U

(A⊗B)U ,

where U runs through the set of all open subgroups of G.

Theorem 7.9.1 Let G be a profinite group. Then there is a unique family of
Z-linear maps, called ‘cup products’,

Hn(G,A) ×Hm(G,B) → Hn+m(G,A⊗B),

denoted (a, b) �→ a ∪ b, defined for every pair n,m of natural numbers and
every pair of discrete G-modules A, B such that the following properties hold :
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(a) These maps are morphisms of functors when we consider each side as a
covariant bifunctor on (A,B);

(b) For n = m = 0, the map

H0(G,A) ×H0(G,B) = AG ×BG −→ H0(G,A⊗B) = (A⊗B)G

is given by (a, b) �→ a⊗ b;
(c) Let B ∈ DMod(G). If

0 −→ A −→ A′ −→ A′ ′ −→ 0

is an exact sequence in DMod(G) and if

0 −→ A⊗B −→ A′ ⊗B −→ A′ ′ ⊗B −→ 0

is also exact, then the diagram

Hn(G,A′ ′) ×Hm(G,B)
δ×id

∪

Hn+1(G,A) ×Hm(G,B)

∪

Hn+m(G,A′ ′ ⊗B) δ
Hn+m+1(G,A⊗B)

commutes, where δ denotes the connecting homomorphism corresponding
to the above exact sequences; in other words, if a′ ′ ∈ Hn(G,A′ ′) and
b ∈ Hm(G,B) then

δ(a′ ′ ∪ b) = δ(a′ ′) ∪ b;

(d) Let A ∈ DMod(G). If

0 −→ B −→ B′ −→ B′ ′ −→ 0

is an exact sequence in DMod(G) and if

0 −→ A⊗B −→ A⊗B′ −→ A⊗B′ ′ −→ 0

is also exact, then the diagram

Hn(G,A) ×Hm(G,B′ ′)
id×δ

∪

Hn(G,A) ×Hm+1(G,B)

∪

Hn+m(G,A⊗B′ ′)
(−1)nδ

Hn+m+1(G,A⊗B)

commutes; that is, if a ∈ Hn(G,A) and b′ ′ ∈ Hm(G,B′ ′), then

(−1)nδ(a ∪ b′ ′) = a ∪ δ(b′ ′).
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Proof. Uniqueness: Let A ∈ DMod(G), and consider the exact sequence

0 −→ A
ι−→ C(G,A) −→ A′ ′ −→ 0 (4)

where C(G,A) is the group of all continuous functions from G to A considered
as a G-module (see Section 6.10), and ι is the G-homomorphism given by
ι(a)(x) = xa (x ∈ G, a ∈ A). Consider the map the map

μ : C(G,A) −→ A

defined by μ(f) = f(1). Then μ is an abelian group homomorphism such that
μι = identity. Therefore, (4) splits as a sequence of abelian groups. Hence,

0 −→ A⊗B −→ C(G,A) ⊗B −→ A′ ′ ⊗B −→ 0

is an exact sequence of G-modules for every B ∈ DMod(G). On the other
hand, by Corollary 6.10.6, Hn(G,C(G,A)) = 0 if n ≥ 1. Hence, by property
(c) we obtain a commutative diagram with exact upper row

Hn(A′ ′) ×Hm(B)
δ×id

∪

Hn+1(A) ×Hm(B)

∪

0 ×Hm(B)

Hn+m(A′ ′ ⊗B) δ
Hn+m+1(A⊗B)

for n,m ≥ 0 (in this diagram Hr(X) stands for Hr(G,X)). By an induction
argument, it follows that

H0(G,A′ ′) ×H0(G,B) −→ H0(G,A′ ′ ⊗B)

uniquely determines the cup products

Hn(G,A) ×H0(G,B) −→ Hn(G,A⊗B) (n ≥ 0).

Using property (c) one sees in a similar way that these maps in turn determine
uniquely the cup products

Hn(G,A) ×Hm(G,B) −→ Hm(G,A⊗B).

Existence: To prove the existence of cup products we define first analogous
maps at the level of the groups Cn(G,−) of cochains (see Section 6.4). Given
n,m ≥ 0 and A,B ∈ DMod(G), we define a mapping

ψn,m : Cn(G,A) × Cm(G,B) −→ Cn+m(G,A⊗B),

by
ψn,m(a, b)(x0, . . . , xn+m) = a(x0, . . . , xn) ⊗ b(xn, . . . , xn+m)
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(a ∈ Cn(G,A), b ∈ Cm(G,B)). It is easy to see that

ψn,m(a, b) ∈ Cn+m(G,A⊗B),

and that each ψn,m is a homomorphism of abelian group on each variable.
One checks without difficulty that

∂(ψn,m(a, b)) = ψn+1,m(∂(a), b) + (−1)nψn,m+1(a, ∂(b))

for a ∈ Cn(G,A) and b ∈ Cm(G,B). From these formulas one deduces that
the maps ψn,m induce well-defined maps

∪ : Hn(G,A) ×Hm(G,B) −→ Hn+m(G,A⊗B)

given by
a ∪ b = ψn,m(a, b)

for a ∈ Hn(G,A) and b ∈ Hm(G,B) (by abuse of notation, we let a, b stand
both for cocycles and the corresponding elements in the cohomology groups).

Finally we prove that the products (a, b) �→ a∪ b satisfy the conditions of
the theorem. Property (b) follows immediately from the definitions.

Property (a): Let α : A −→ A′ and β : B −→ B′ be homomorphisms of
discrete G-modules. Then the diagram

Hn(G,A) ×Hm(G,B) ∪

α̃×β̃

Hn+m(G,A⊗B)

˜α⊗β

Hn(G,A′) ×Hm(G,B′) ∪
Hn+m(G,A′ ⊗B′)

commutes, where α̃, β̃, α̃⊗ β are the maps induced on the cohomology groups
by α, β, α⊗ β, respectively. Indeed,

(α̃(a) ∪ β̃(b))(x0, . . . , xn+m)
= ψ(α̃(a), β̃(b))(x0, . . . , xn+m) = α̃(a)(x0, . . . , xn) ⊗ β̃(b)(xn, . . . , xn+m)

= (α̃⊗ β(a ∪ b))(x0, . . . , xn+m)

(a ∈ Hn(G,A), b ∈ Hm(G,B)).
Property (c): Let B ∈ DMod(G) and let

0 −→ A
α−→ A′ β−→ A′ ′ −→ 0

be an exact sequence in DMod(G) such that

0 −→ A⊗B α⊗1−→ A′ ⊗B β⊗1−→ A′ ′ ⊗B −→ 0
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is also exact.
Next we recall the definition of the connecting homomorphism δ. Let a′ ′ ∈

Cn(G,A′ ′) with ∂(a′ ′) = 0, so that a′ ′ represents an element of Hn(G,A′ ′).
Then, δ(a′ ′) is defined as follows (see the proof of Lemma 6.6.1): let a′ ∈
Cn(G,A′) with β̃(a′) = a′ ′, and let a ∈ Cn+1(G,A) be such that α̃(a) = ∂(a′)
(a exists since (β̃∂)(a′) = (∂β̃)(a′) = 0). Hence, ∂(a) = 0, so that a represents
an element of Hn+1(G,A). We set δ(a′ ′) = a.

Assume that b ∈ Cm(G,B). Then, using Property (a), we have

β̃ ⊗ 1(a′ ∪ b) = a′ ′ ∪ b,
α̃⊗ 1(a ∪ b) = ∂(a′) ∪ b.

Hence,
∂(a′ ′ ∪ b) = 0 and ∂(a ∪ b) = 0.

Therefore, a′ ′ ∪ b and a ∪ b represent elements of the cohomology groups
Hn+m(G,A′ ′ ⊗B) and Hn+m+1(G,A⊗B), respectively. Thus, from the ex-
plicit definition of the connecting homomorphism δ, we deduce that

δ(a′ ′ ∪ b) = a ∪ b = δ(a′ ′) ∪ b

(notice that, in the above considerations, a′ ′ and b stand both for cocycles and
for the corresponding elements of the cohomology groups). The verification
of Property (d) can be done in a similar manner. ��

Next we establish some of the basic properties of cup products.

Proposition 7.9.2 Let G be a profinite group. Let A,B ∈ DMod(G) and
let a ∈ Hn(G,A) and b ∈ Hn(G,B). Then

a ∪ b = (−1)mnb ∪ a,

where A⊗B and B ⊗A are identified canonically.

Proof. This is plain if n = m = 0. We proceed by induction. Suppose the
result holds for n = n0 and m = m0, and assume a ∈ Hn0+1(G,A) and b ∈
Hm0(G,B). As in the uniqueness proof of Theorem 7.9.1, we can construct
a commutative diagram with exact upper row

Hn0(A′ ′) ×Hm0(B)
δ×id

∪

Hn0+1(A) ×Hm0(B)

∪

0 ×Hm0(B)

Hn0+m0(A′ ′ ⊗B) δ
Hn0+m0+1(A⊗B)

for n0,m0 ≥ 0 (in this diagram Hr(X) stands for Hr(G,X)).
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Let a′ ′ ∈ Hn0(G,A′ ′) be such that δ(a′ ′) = a. Using Property (d) of
Theorem 7.9.1 and induction, one has

a ∪ b = δ(a′ ′ ∪ b) = (−1)n0m0δ(b ∪ a′ ′) = (−1)n0m0(−1)m0b ∪ δ(a′ ′)
= (−1)(n0+1)m0b ∪ a.

One proves similarly that if the result holds for n = n0 and m = m0, then it
holds for n = n0 and m = m0 + 1. ��

Proposition 7.9.3 Let G be a profinite group. Let A,B,C ∈ DMod(G) and
assume that a ∈ Hn(G,A), b ∈ Hm(G,B), c ∈ Hr(G,C). Then

(a ∪ b) ∪ c = a ∪ (b ∪ c),

after the canonical identification of (A⊗B) ⊗ C and A⊗ (B ⊗ C).

Proof. This follows immediately from the definition of the cup product and
cohomology groups by means of cochains (see the proof of “existence” in
Theorem 7.9.1 and Section 6.6). ��

We now turn to the study of the relationship between cup products and
the special maps Res, Cor and Inf (see Section 6.7). The next two results
follow immediately from the description of Res and Inf in terms of cochains
(see Sections 6.7 and 6.5).

Proposition 7.9.4 Let H be a closed subgroup of a profinite group G. Let
A,B ∈ DMod(G) and assume that a ∈ Hn(G,A) and b ∈ Hm(G,B). Then

Res(a ∪ b) = Res(a) ∪ Res(b),

where Res is the restriction map.

Proposition 7.9.5 Let H be a closed normal subgroup of a profinite group
G. Let A,B ∈ DMod(G) and assume that a ∈ Hn(G/H,AH), b ∈
Hm(G/H,BH). Then

Inf(a ∪ b) = Inf(a) ∪ Inf(b),

where Inf is the inflation map.

Proposition 7.9.6 Let G be a profinite group and let H be an open subgroup
of G. Let a ∈ Hn(G,A) and b ∈ Hm(G,B), where A,B ∈ DMod(G). Then

Cor
(

a ∪ Res(b)
)

= Cor(a) ∪ b.

Proof. Assume first that n = m = 0. Then a ∈ AH and b ∈ BG. Let x1, . . . , xt
be a set of representatives of the left cosets of H in G. Then (see Section 6.7),
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Cor
(

a ∪ Res(b)
)

=
t
∑

i=1

xi(a ∪ b) =
t
∑

i=1

xia⊗ xib =
t
∑

i=1

xia⊗ b

=

(

t
∑

i=1

xia

)

∪ b = Cor(a) ∪ b.

Now we proceed by induction. Assume the formula holds true for n = n0 and
m = m0. Let a ∈ Hn0+1(G,A) and b ∈ Hm0(G,B). Consider the split exact
sequence of abelian groups

0 −→ A
ι−→ C(G,A) −→ A′ ′ −→ 0

(see proof of uniqueness in Theorem 7.9.1). Since Hn
(

H,C(G,A)
)

= 0, for
n ≥ 1, there is a′ ′ ∈ Hn0(H,A) with δ(a′ ′) = a, where δ is the connecting
homomorphism corresponding to the above short exact sequence and the
cohomological functor {Hn(H,−)}n≥0. Since

0 −→ A⊗B −→ C(G,A) ⊗B −→ A′ ′ ⊗B −→ 0

is also exact, we can apply property (c) of Theorem 7.9.1. Hence, taking into
account that Res and Cor commute with δ (see Section 6.7), we have by the
induction hypothesis

Cor(a ∪ Res(b)) = Cor(δ(a′ ′) ∪ Res(b)) = Cor(δ(a′ ′ ∪ Res(b)))
= δ(Cor(a′ ′ ∪ Res(b))) = δ((Cor(a′ ′) ∪ b))
= δ(Cor(a′ ′)) ∪ b = Cor(δ(a′ ′)) ∪ b = Cor(a) ∪ b.

Similarly, using property (d) of Theorem 7.9.1, one proves that if the
formula holds for n = n0 and m = m0, it also holds for n = n0 and m =
m0 + 1. Thus, by induction, the formula is valid for all n,m ≥ 0. ��

Corollary 7.9.7 Under the hypotheses of Proposition 7.9.6 we have

Cor(Res(b) ∪ a) = b ∪ Cor(a).

Proof.

Cor
(

Res(b) ∪ a
)

= Cor
(

(−1)nma ∪ Res(b)
)

= (−1)nmCor(a) ∪ b
= b ∪ Cor(a). ��

7.10 Notes, Comments and Further Reading

Most of the results in Sections 7.1, 7.3, 7.4, 7.5, 7.7, 7.8 and 7.9 are due
to J. Tate; we are influenced by the presentation of some of these results
in Serre [1995], Lang [1966] and Ribes [1970]. Theorem 7.3.6 was proved by
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Scheiderer [1994, 1996], while Theorem 7.3.7 is due to Serre [1965]; Haran
[1990] gives a different proof of Theorem 7.3.7 based on a suggestion in Serre
[1971]. Our presentation of the Lyndon-Hochschild-Serre spectral sequence
follows (and improves) the presentation in Ribes [1970]. The useful five term
exact sequences of Corollary 7.2.5 appear, for abstract groups, in Hochschild
and Serre [1953]. Proposition 7.2.7 was proved by Neukirch [1971] for pro-p
groups, and in the form presented here for prosolvable groups, by Ribes [1974].
In Weigel and Zalesskii [2004] they complement Proposition 7.4.2 and prove
that, with the same notation, cdp(G) = cdp(K) + vcdp(G/K) if cdp(G) <∞
and Hn(K,Zp/pZ) is finite, where n = cdp(K). In Cossey, Kegel and Kovács
[1980], a proof of Corollary 7.7.5 is given with no reference to cohomology. For
a treatment of number fields using group cohomology, see Neukirch, Schmidt
and Wingberg [2008].

Projective profinite groups have been studied by Gruenberg [1967]. Propo-
sition 7.6.9 is due to him. Lemma 7.6.6 is due to Huppert [1954] (the result is
valid, more generally, for saturated formations of finite groups). Exercise 7.7.8
is mentioned in Herfort and Ribes [1989a]. For the relationship between local
and absolute properties such as freeness and projectivity in profinite groups,
see Pletch [1982].

Let G be a finite p-group with, say, d = d(G). Then one can consider
the relation rank of G as an abstract group: let Φ = Φ(I) be an abstract
free group on a basis I of cardinality d. Consider a short exact sequence of
abstract groups

1 −→ R −→ Φ −→ G −→ 1.

Define the abstract relation rank arr(G) of G as the smallest cardinality of
a set of generators of R as a normal subgroup of Φ. Clearly rr(G) ≤ arr(G).
Serre mentions (skeptically) the following question (cf. Serre [1995], page 32).

Open Question 7.10.1 For what finite p-groups G does one have rr(G) =
arr(G)?

Theorem 7.8.5 was proved in a slightly weaker form by Golod and Shafare-
vich [1964]: what they actually proved was that rr(G) > (d(G)− 1)2/4. The
improvement is due to Gaschütz and to Vinberg, independently (cf. Roquette
[1967]). Another proof of this inequality can be found in Serre [1995], Ch. I,
Annex 3. Lubotzky [1983] studies pro-p groups satisfying the analog of the
Golod-Shafarevich inequality and applications to abstract infinite groups. He
shows that p-adic analytic groups satisfy the analogous inequality. As a con-
sequence he proves the following

Theorem 7.10.2 Let Γ be a finitely generated nilpotent group different
from Z, and let Γ = 〈X | R〉 be a minimal presentation of Γ . Then
|R| ≥ |X|2/4.

Answering a conjecture of J. Wilson, Zel’manov [2000] has proved the
following
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Theorem 7.10.3 Let G be a finitely generated pro-p group satisfying the
analog of Golod-Shafarevich’s inequality. Then G contains a closed nonabelian
free pro-p subgroup.

Pro-p Groups G with one Defining Relator

A finitely generated pro-p group G is said to admit a presentation with a
single defining relator if G has a presentation (as a pro-p group) of the form
G = 〈x1, . . . , xn | R〉, where R consists of just one element r (see Section 7.8);
in other words, G ∼= F/(r), where F is a free pro-p group of finite rank, r ∈ F ,
and (r) denotes the smallest closed normal subgroup of F containing r.

In some analogy with a well-known result of Lyndon [1950] for ab-
stract groups, Serre [1963] posed the following question, slightly corrected
by Gildenhuys [1968].

Open Question 7.10.4 Let G be a finitely generated pro-p group such that
cd(G) > 2 and dimH2(G,Z/pZ) = 1, i.e., rr(G) = 1. Does G admit a
presentation with a single defining relator of the form up?

For studies of pro-p groups with one defining relator and connections
with Lie algebras and group algebras, see Labute [1967], Romanovskii [1992],
Gildenhuys, Ivanov and Kharlampovich [1994]; a ‘Freiheitssatz’ for pro-p
groups appears in Romanovskii [1986]. Somewhat related are the results in
Würfel [1986]. For results on finitely presented profinite groups, see Remeslen-
nikov [1979], Myasnikov and Remeslennikov [1987].

7.10.1 Poincaré Groups

Let G be a pro-p group and let n be a natural number. We say that G is a
Poincaré group of dimension n if the following conditions are satisfied:

(1) Hi(G) is finite for every i;
(2) dim Hn(G) = 1;
(3) Hi(G) = 0 for i > n; and
(4) For every integer i, 0 ≤ i ≤ n, the cup product

Hi(G) ×Hn−i ∪−→ Hn(G)

is a nondegenerate bilinear form.

According to Theorems 7.7.4 and 7.8.1 and the definition of cup products,
the only pro-p Poincaré group of dimension 1 is Zp.

Poincaré groups of dimension 2 are called Demushkin groups. By Theo-
rem 7.8.3, a Demushkin group admits a presentation with a single defining
relator. These presentations have been studied in Demushkin [1959, 1963],
Serre [1963], Labute [1966a, 1966b], Dummit and Labute [1983]. There is a
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good presentation of some of these results in Serre [1995]; see also Weigel
[2005]. For results on Poincaré groups of dimension 3 see Grunewald, Jaikin-
Zapirain, Pinto and Zalesskii [2008].

For the study of general profinite groups satisfying a duality more general
than a Poincaré type duality, see the article of Verdier in Serre [1995], Ch. I,
Annex 2, and Pletch [1980a, 1980b].

Next we state an unrelated problem due to Ivan Fesenko about finitely
generated pro-p groups. The motivation for the problem comes from rami-
fication theory. It is known (due to Abrashkin) that if Gr is a ramification
subgroup of the Galois group G of the maximal p-extension of a local field
with algebraically closed residue field of characteristic p, then every closed
subgroup of infinite index in G/Gr (which itself is an infinite generated pro-p
group) is a free pro-p group. Thus, he proposes the following:

Open Question 7.10.5 Study finitely generated pro-p groups with the fol-
lowing property : every closed subgroup of infinite index is free pro-p.

In a different direction one can pose (cf. Kochloukova and Zalesskii [2010])
the following

Open Question 7.10.6 Let F be a free pro-p group of finite rank. Is
vcd(Aut(F )) finite?



8 Normal Subgroups of Free Pro - C Groups

Throughout this chapter C denotes usually an NE-formation of finite groups,
i.e., C is a nonempty class of finite groups closed under taking normal sub-
groups, homomorphic images and extensions. Equivalently, C is the class of
all finite Δ-groups, where Δ is a set of finite simple groups (see Section 2.1).
In particular, C could be the class of all finite groups, the class of all finite
solvable groups, etc. Often we require in addition that C ‘involves two different
primes’, that is, that there exists a group in C whose order is divisible by at
least two different prime numbers. In this chapter ΣC denotes the collection
of all finite simple groups in C, and Σ denotes the class of all finite simple
groups.

The main theme of this chapter is the structure of the closed normal
subgroups of a free pro - C group. In Chapter 7 (Corollary 7.7.5) we saw that
all closed subgroups of a free pro-p group are free pro-p. However, for a general
class C, the closed subgroups of a free pro - C group F need not be free pro - C.
For example, a p-Sylow subgroup of a free profinite group of rank 2 is not free
profinite. Moreover, it is difficult to establish conditions under which closed
subgroups of F will be free pro - C, other than being open in F or a certain
type of free factors of F (e.g., if Y is a clopen subset of a topological basis X
of F , then the closed subgroup of F generated by Y is a free pro - C group).
Nevertheless, we shall see in this chapter that for closed normal subgroups
of F , one can describe reasonable conditions to determine whether or not the
subgroup is free pro - C. Examples of nonfree normal subgroups of a free pro -
C group can easily be found using, for example, Lemma 3.4.1(e). We shall see,
however, that a closed normal subgroup of F is always virtually free pro - C;
more precisely we shall see that a proper open subgroup of a closed normal
subgroup of F is necessarily free pro - C. Some of the results in the chapter
apply not only to normal subgroups of F , but to ‘accessible’ subgroups, in
particular subnormal subgroups of F .

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 8, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_8
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8.1 Normal Subgroup Generated by a Subset of a Basis

Definition 8.1.1 Let (Z, ∗) be a pointed topological space and let (X, ∗) and
(Y, ∗) be pointed subspaces of (Z, ∗). We say that (Z, ∗) is the ‘coproduct ’ of
(X, ∗) and (Y, ∗) if

(a) Z = X ∪ Y and X ∩ Y = {∗}, and
(b) a subset U is open in Z if and only if U ∩X is open in X and U ∩ Y is

open in Y .

Example 8.1.2

(1) Let N be a discrete space and let Z = N ∪. {∗} be its one-point compact-
ification. Let N = N1 ∪. N2 and set X = N1 ∪ {∗} and Y = N2 ∪ {∗}.
Then (Z, ∗) is the coproduct of (X, ∗) and (Y, ∗).

(2) Let Z ′ be a profinite space and assume that Z ′ = X ′ ∪. Y ′ where X ′

and Y ′ are clopen subsets of Z ′. Let Z be endowed with the unique
topology which induces on Z ′ its original topology and where ∗ is an
isolated point. Then (Z, ∗) is the coproduct of (X, ∗) = (X ′ ∪ {∗}, ∗) and
(Y, ∗) = (Y ′ ∪ {∗}, ∗).

(3) Let (Z, ∗) be a profinite pointed space and let X be a finite subset of Z
such that ∗ ∈ X. Set Y = (Z −X)∪ {∗}. Then (Z, ∗) is the coproduct of
(X, ∗) and (Y, ∗).

Before stating the main result of this section we need some notation.
Assume that a profinite pointed space (Z, ∗) is the coproduct of two closed
pointed subspaces (X, ∗) and (Y, ∗). Let F = F (Z, ∗) be a free pro - C group
on the pointed space (Z, ∗). Put G = F (X, ∗), the free pro - C group on
the pointed space (X, ∗). Consider the product space G × Y , and let R =
(G × Y )/(G × {∗}) be the quotient space of G × Y obtained by collapsing
the closed subspace G× {∗} to a point, which, by abuse of notation, we also
denote by ∗. The elements of R are denoted by #g, y$ (g ∈ G, y ∈ Y ). We
think of R as a pointed space with distinguished point ∗ = #g, ∗$. Clearly
R is a profinite pointed space. We let G act on the pointed space (R, ∗) by
g#g′, ∗$ = #gg′, ∗$; plainly this action is continuous. Then one has

Theorem 8.1.3 With the notation above, let N be the closed normal sub-
group of F generated by Y (i.e., the smallest closed normal subgroup of F
containing Y ). Then N is a free pro - C group on the pointed space (R, ∗). If
rank(F ) = m > 1 and |Y | > 1, then the rank of N is m∗ = max{m,ℵ0}.

Proof. It suffices to prove the first statement, since the second follows from
the first (see Proposition 2.6.1).

The action of G on the space (R, ∗) extends to a continuous action of G on
the free pro - C group F (R, ∗) (see Exercise 5.6.2(c)). Form the corresponding
semidirect product

H = F (R, ∗) �G.
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The elements of H can be written as pairs (f, g) (f ∈ F (R, ∗), g ∈ G). Then
H is a pro - C group (see Exercise 5.6.2(b)). Next we define a continuous map
of pointed spaces

ι : (Z, ∗) −→ H.

To do this, it suffices to define its restrictions ιX and ιY to (X, ∗) and (Y, ∗),
respectively, since (Z, ∗) is their coproduct. Put

ιX(x) = (1, x) and ιY (y) = (#1, y$, 1) (x ∈ X, y ∈ Y )

(note that in F (R, ∗), one has #g, ∗$ = ∗ = 1; while in G, ∗ = 1). Since
both ιX and ιY are continuous (this is clear since these are really maps into
(R, ∗) ×G, and the topology of this space is the product topology), we have
that ι is a continuous map of pointed spaces.

We claim that (H, ι) is a free pro - C group on the pointed space (Z, ∗).
We prove this by checking the universal property of free groups. Let K be a
pro - C group and let ϕ : (Z, ∗) −→ K be a continuous map of pointed spaces
such that ϕ(Z, ∗) generates K. Denote by ϕX the restriction of ϕ to X. Let

ϕ̄X : G = F (X, ∗) −→ K

be the induced continuous homomorphism; such homomorphism exists, even
if ϕX(X) does not generate K: it is the restriction of the continuous homo-
morphism ϕ̄ : F (Z, ∗) −→ K induced by ϕ. Define

ρ : (R, ∗) −→ K

by
ρ(#g, y$) = ϕ̄X(g)ϕ(y)ϕ̄X(g−1) (g ∈ G, y ∈ Y ).

We shall prove that ρ(R, ∗) generates a subgroup L of K which is pro - C.
To do that, set KX = 〈ϕ̄(X)〉 and KY = 〈ϕ̄(Y )〉. Since KX and KY are
homomorphic images of F (X, ∗) and F (Y, ∗), respectively, they are pro - C
groups. Note that ρ(R, ∗) is generated by

{ab = b−1ab | a ∈ KX , b ∈ KY };

hence ρ(R, ∗) is a normal subgroup of K, because K is generated by KX
and KY . If follows that L is a pro - C group (see Proposition 2.2.1).

One sees without difficulty that ρ is a continuous map of pointed spaces.
Hence, there exists an induced continuous homomorphism

ρ̄ : F (R, ∗) −→ L ↪→ K.

The homomorphisms ϕ̄X and ρ̄ are compatible with the action of G on
F (R, ∗), i.e.,

ρ̄(g · f) = ϕ̄X(g)ϕ(y)ϕ̄X(g−1) (f ∈ F (R, ∗), g ∈ G).
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Indeed, this is certainly the case if f ∈ R, by definition; hence it is always
true since the action of G on F (R, ∗) is induced by its action on the basis
(R, ∗) of F (R, ∗) (see Exercise 5.6.2).

Therefore, the map ϕ̄ : H = F (R, ∗) �G −→ K given by

ϕ̄(f, g) = ρ̄(f)ϕ̄X(g),

is a continuous homomorphism. Finally, observe that ϕ̄ι = ϕ. This proves the
claim.

Thus we can identify H with F (Z, ∗). Under this identification, Y corre-
sponds to {#1, y$ | y ∈ Y } in H. By definition of the action of G, the closed
normal subgroup N of H generated by {#1, y$ | y ∈ Y } contains

R = {#g, y$ | y ∈ Y, g ∈ G}.

Hence, N = F (R, ∗), as desired. ��

8.2 The S-rank

This section is of a technical nature. Here we introduce the concept of S-
rank of a group, where S is a finite simple group. In the next sections we
shall use the idea of S-rank to characterize which profinite groups appear as
normal, characteristic or subnormal subgroups of a free pro - C group; or, more
generally, as ‘accessible’ (see Section 8.3) or ‘homogeneous’ (see Section 8.4)
subgroups of a free pro - C group.

Lemma 8.2.1 Let G be a profinite group and let K be an open normal sub-
group of G such that G/K is a nonabelian finite simple group. Let M be the
set of all closed normal subgroups M of G for which MK = G. Then M is
closed under arbitrary intersections, i.e., the intersection of any collection of
groups in M is in M.

Proof. We show first that if M1,M2 ∈ M, then M1 ∩M2 ∈ M. Suppose
not, that is, suppose that (M1 ∩M2)K 
= G. Since G/K is simple, we have
M1∩M2 ≤ K. Consider arbitrary elements a, b ∈M1. Since M2K = G, there
exist m ∈M2 and k ∈ K with a = mk. Then, using elementary commutator
calculus,

[a, b] = [mk, b] = (mk)−1b−1mkb = [k, bm][m, b].

Since [m, b] ∈ K, it follows that [a, b] ∈ K. Thus,

G/K = M1K/K ∼= M1/M1 ∩K

is abelian, a contradiction. This implies that M1 ∩ M2 ∈ M, as desired.
Therefore M is closed under finite intersections.

Now let L be an arbitrary subset of M, and put L =
⋂

M∈L M . We need
to prove that LK = G. Fix g ∈ G and define BM = M ∩ gK, for M ∈ L. It
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follows from the first part of the proof that the family {BM |M ∈ L} of closed
subsets of G has the finite intersection property. Thus the intersection of all
the subsets in this family is nonempty by the compactness of G. Therefore
L ∩ gK 
= ∅. So g ∈ LK. Hence LK = G, as needed. ��

Lemma 8.2.2 Let G be a profinite group and let M ⊇ M′ be sets of maximal
open normal subgroups of G. Put M =

⋂

R∈M R. Assume that the natural
homomorphism

ϕ(M′) : G −→
∏

R∈M′

G/R

is an epimorphism. Then there exists a subset N of M containing M′ such
that the natural homomorphism

ϕ(N ) : G −→
∏

R∈N
G/R

is an epimorphism and M = Ker(ϕ(N )), i.e.,

G/M ∼=
∏

R∈N
G/R.

Proof. Let Ω be the family of all subsets L of M such that M′ ⊆ L and

ϕ(L) : G −→
∏

R∈L
G/R

is an epimorphism. The family Ω is nonempty because M′ belongs to Ω.
Since

∏

R∈L G/R is an inverse limit of direct products over finite sets (see
Exercise 1.1.14), one deduces from Corollary 1.1.6 that L ∈ Ω if and only if
ϕ(F) is an epimorphism for each of its finite subsets F . Therefore Ω, ordered
by inclusion, is an inductive set. Hence there exists a maximal N in Ω by
Zorn’s Lemma. To finish the proof it suffices to show that M = Ker(ϕ(N )).
Put N =

⋂

R∈N R. We must show that N = M . It is obvious that M ≤ N .
If M < N , then there would exist some K ∈ M with K ∩N < N . So, since
G/K is simple, KN = G, and hence G/K ∩N ∼= G/K × G/N . This would
imply that N ∪ {K} ∈ Ω, contrary to the maximality of N . Thus N = M ,
as desired. ��

Lemma 8.2.3 Let G be a profinite group and let M be a set of maximal open
normal subgroups of G such that G/R is a nonabelian finite simple group for
every R ∈ M. Put M =

⋂

R∈M R. Then the natural homomorphism

ϕ : G/M −→
∏

R∈M
G/R

is an isomorphism.
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Proof. Consider first the case when M is finite, say M = {M1, . . . ,Mn}. If
n = 1, the result is obvious. If n > 1, we use induction. Let R′ = M2∩· · ·∩Mn

and assume that G/R′ = G/M2 × · · · × G/Mn. We need to show that the
natural homomorphism ϕ̃ : G −→ G/M1 × G/R′ is an epimorphism. By
Lemma 8.2.1, M1R

′ = G. Let g, g′ ∈ G. Then gM1 = r′M1, for some r′ ∈ R′,
and g′R′ = m1R

′, for some m1 ∈M1. So ϕ̃(r′m1) = (gM1, g
′R′), i.e., ϕ̃ is an

epimorphism. This proves the result when M is finite.
For the general case, observe that ϕ is in a natural way the inverse limit

of the isomorphisms
ϕN : G/N −→

∏

R∈N
G/R,

where N ranges over the finite subsets of M, and where N =
⋂

R∈N R. ��

Lemma 8.2.4 Let {Si | i ∈ I} be a family of finite simple groups and let

G =
∏

i∈I
Si.

Set Ia = {i ∈ I | Si is abelian} and In = {i ∈ I | Si is nonabelian}. Define

Ga =
∏

i∈Ia

Si and Gn =
∏

i∈In

Si.

(a) Let K � G. Assume that Sj is nonabelian (some j ∈ I). Then Sj ≤ K
if and only if πj(K) 
= 1, where πj : G −→ Sj denotes the canonical
projection.

(b) If K � G and Si is not abelian for each i ∈ I, then

K =
∏

i∈I′

Si,

where I ′ = {i ∈ I | πi(K) 
= 1}.
(c) If K � G, then K = (K ∩Ga) × (K ∩Gn).
(d) Let K be a closed normal subgroup of G considered as a profinite group.

Then both K and G/K are a direct product of finite simple groups; more-
over, there is a continuous isomorphism G ∼= K ×G/K.

(e) Assume that {Gi | i ∈ I} and {Hj | j ∈ J} are families of finite simple
groups such that

∏

i∈I
Gi ∼=

∏

j∈J
Hj .

Then |I| = |J |.

Proof. (a) In one direction the result is obvious. Assume πj(K) 
= 1. Then
there exists some k = (ki) ∈ K with kj 
= 1. To see that Gj ≤ K, it suffices
to prove that Gj ∩K 
= 1. Since the center of Gj is trivial, there exists some
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t ∈ Gj such that t−1kjt 
= kj . Define g = (gi) to be the element of G such
that gi = 1, if i 
= j, and gj = t. Then 1 
= k−1g−1kg ∈ Gi′ ∩K, as needed.

Parts (b) and (c) follow easily from (a).
(d) By part (b),

Gn = (Gn ∩K) ×
(

∏

i∈Ia −I′

Si

)

.

Next, denote Ga by L and Ga ∩ K by R. For each prime number p, let
Lp and Rp denote the unique p-Sylow subgroups of L and R, respectively.
Then L =

∏

p Lp, R =
∏

pRp and Rp ≤c Lp. Observe that Lp and Rp are
direct products of copies of a cyclic group of order p. By Proposition 2.8.16,
Lp = Rp × Rp′, where Rp′ is a closed subgroup of Lp. Hence Lp′ is a direct
product of copies of a cyclic group of order p. Put R′ =

∏

pRp
′. Then

Ga = L = R×R′ = (Ga ∩K) ×R′.

Using this and part (c), we deduce that K has a closed complement K ′ =
R′ × (

∏

i∈Ia −I′ Si) in G and both K and K ′ are direct products of finite
simple groups. Since K ′ ∼= G/K, all statements in part (d) follow.

(e) It is plain that either I and J are both finite or both infinite. If both
are finite, the result is a consequence of the Krull-Remak-Schmidt theorem
(cf. Huppert [1967], Satz I.12.3). Suppose that I and J are both infinite.Then
2|I| = |G| = |H| = 2|J|. Hence |I| = |J |. ��

Let S be a fixed finite simple group and let G be a profinite group. Denote
by MS(G) the intersection of all closed normal subgroups N of G whose
quotient group G/N is isomorphic to S. By Lemma 8.2.2,

G/MS(G) ∼=
∏

I

S,

the direct product of |I| copies of S, where I is some indexing set. The S-
rank rS(G) of G is defined to be the cardinality of the indexing set I. This
is well-defined by Lemma 8.2.4(e). Observe that if S does not appear as a
quotient of G, then rS(G) = 0. If S ∼= Z/pZ, where p is a prime number, we
write rp(G) instead of rS(G), and we refer to it as the p-rank of G.

Lemma 8.2.5 Let S be a finite simple group and let G be a profinite group.

(a) rS(K) ≤ max{w0(G),ℵ0}, for each closed subgroup K of G.
(b) If H is a continuous homomorphic image of G, then rS(H) ≤ rS(G).
(c) rS(G) = rS(G/MS(G)).
(d) If K �c G, then rS(G) ≤ rS(K) + rS(G/K).

Proof. Parts (a), (b) and (c) are clear. We show (d). It follows from Lem-
ma 8.2.4(b) that G/MS(G) ∼= G/KMS(G)×KMS(G)/MS(G). On the other
hand, there exist natural epimorphisms

G/K −→ G/KMS(G)
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and
K/MS(K) −→ K/K ∩MS(G) ∼= KMS(G)/MS(G).

Hence the result is a consequence of part (b). ��

Proposition 8.2.6 Assume that C is a formation of finite groups. Let F =
FC (X) be a free pro - C group of infinite rank m. Then rS(F ) = m for every
finite simple group S ∈ C.

Proof. By Proposition 2.6.2, m = w0(F ). Then rS(F ) ≤ m, according to
Lemma 8.2.5(a). Let I be a set of cardinality m. Since d(

∏

I S) = m, there
exists an epimorphism F −→

∏

I S. Hence, Lemma 8.2.5(b) implies that
rS(F ) ≥ m. ��

Lemma 8.2.7 Let n and m be natural numbers. Denote by FC (n) the free
pro - C group of rank n.

(a) If p is a prime number and Z/pZ ∈ C, then rp(FC (n)) = n.
(b) If S ∈ C is a simple nonabelian group and n ≥ d(S),∗ then

rS(FC (n+ 1)) ≥ 2rS(FC (n)).

(c) If S ∈ C is a simple nonabelian group and m > n ≥ d(S), then

rS(FC (m)) − rS(FC (n)) ≥ m− n.

Proof. (a) Consider the group A = 〈a1〉 × · · · × 〈an〉, where 〈ai〉 ∼= Z/pZ
(i = 1, . . . , n). Say that X = {x1, . . . , xn} is a basis for the group F = FC (n),
and let

π : F −→ A

be the epimorphism defined by π(xi) = ai (i = 1, . . . , n). Every epimorphism

ϕ : F −→ Z/pZ

factors through π; so, if L�oF and F/L ∼= Z/pZ, there exists some subgroup
L′ of A of index p such that π−1(L′) = L. It follows that

Mp(F ) =
⋂

{L | L �o F, F/L ∼= Z/pZ}

= π−1

(

⋂

{L′ | L′ ≤ A,A/L′ ∼= Z/pZ}
)

= Ker(π).

Hence F/Mp(F ) = A, and therefore rp(FC (n)) = n.
(b) Put

E(n) = FC (n)/MS(FC (n)) ∼=
∏

i∈I
S,

∗ It follows from the classification of finite simple groups that d(S) = 2 for all
nonabelian finite simple groups S.
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where |I| = rS(FC (n)). Let v be an element of E(n) whose projection onto
each of the direct factors of

∏

i∈I S is nontrivial; let w be the preimage of
v in FC (n); and let {x1, . . . , xn} and {y1, . . . , yn+1} be bases of FC (n) and
FC (n+ 1), respectively. Define epimorphisms

ϕ, ψ : FC (n+ 1) −→ FC (n)

by ϕ(yi) = ψ(yi) = xi for i = 1, . . . , n, ϕ(yn+1) = w and ψ(yn+1) = 1.

FC (n+ 1)

ϕ ψ

E(n+ 1)

α β

FC (n) E(n)

Denote by K the normal subgroup of E(n + 1) generated by the image of
yn+1 under the natural projection

FC (n+ 1) −→ E(n+ 1),

and let
α, β : E(n+ 1) −→ E(n)

be the epimorphisms induced by ϕ and ψ respectively. Since S is simple
nonabelian, we infer from the choice of v, that v generates E(n) as a normal
subgroup (see Lemma 8.2.4). It follows that α(K) = E(n). On the other
hand, β(K) = 1; therefore, β induces an epimorphism from E(n + 1)/K
onto E(n). Thus, since K is a direct factor of E(n+1) (see Lemma 8.2.4(c)),
we have

rS(FC (n+ 1)) = rS(E(n+ 1))
= rS(K) + rS(E(n+ 1)/K) ≥ 2rS(E(n)) = 2rS(FC (n)).

(c) Since n ≥ d(S), we deduce from (b) that

rS(FC (n+ 1)) − rS(FC (n)) ≥ 1.

Hence
rS(FC (m)) − rS(FC (n)) ≥ m− n,

by induction on m− n. ��

Exercise 8.2.8 Let G be a profinite group.

(1) Let p be a prime number. Then rp(G) = 0 if and only if H1(G,Z/pZ) = 0,
where Z/pZ is considered as a trivial G-module.

(2) rp(G) = 0 for all prime p if and only if H1(G,Q/Z) = 0, where Q/Z is
considered as a trivial G-module.

(3) Let F = F (n) be the free profinite group of finite rank n, F̃ = FSol(n)
the free prosolvable group of rank n and ϕ : F −→ F̃ the canonical
epimorphism. Then rp(Ker(ϕ)) = 0 for every prime p.
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8.3 Accessible Subgroups

A closed subgroup H of a profinite group G is said to be accessible if there
exists a chain of closed subgroups of G

H = Gμ ≤ · · · ≤ Gλ ≤ · · · ≤ G2 ≤ G1 = G, (1)

indexed by the ordinals smaller than a certain ordinal μ, such that

(i) Gλ+1 � Gλ for all ordinals λ ≤ μ, and
(ii) if ν is a limit ordinal such that ν ≤ μ, then Gν =

⋂

λ≤ν Gλ.

A chain with properties (i) and (ii) will be called an accessible chain of
H in G.

Clearly, a closed subnormal subgroup is accessible since it has a finite
accessible chain. We collect some basic properties of accessible subgroups in
the following

Proposition 8.3.1 Let H be an accessible subgroup of a profinite group G.
Then

(a) If N is an accessible subgroup of H, then N is an accessible subgroup
of G.

(b) For any subgroup L of G, the intersection H ∩L is an accessible subgroup
of L.

(c) For any continuous epimorphism ϕ : G −→ K of profinite groups, the
image ϕ(H) of H is an accessible subgroup of K.

Proof. Parts (a) and (b) follow directly from the definition of an accessible
subgroup. For (c), let (1) be an accessible chain of H in G. Then

ϕ(H) = ϕ(Gμ) ≤ · · · ≤ ϕ(Gλ) ≤ · · · ≤ ϕ(G2) ≤ ϕ(G1) = K

is also an accessible chain. Indeed, it is plain that ϕ(Gλ+1) �ϕ(Gλ). Let ν be
a limit ordinal with ν ≤ μ. Then, by Proposition 2.1.4(b),

⋂

λ≤ν
ϕ(Gλ) = ϕ(Gν).

��

The next theorem gives useful characterizations of accessible subgroups
of a profinite group.

Theorem 8.3.2 Let H be a closed subgroup of a profinite group G. Define a
chain of subgroups indexed by the natural numbers

G = N1 $ N2 $ · · ·

as follows: N1 = G, and if Nm has been already defined, let Nm+1 be the
normal closure of H in Nm (that is, the smallest closed normal subgroup of
Nm containing H). Then the following statements are equivalent.
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(a) H is accessible in G;
(b) The image of H in every finite quotient group of G is subnormal ;
(c) H =

⋂∞
m=1Nm.

Proof. The implication (a) ⇒ (b) follows from Proposition 8.3.1(c) and the
fact that every accessible subgroup of a finite group is subnormal.

(b) ⇒ (c): Write G as an inverse limit G = lim←−Gi of a surjective inverse

system {Gi, ϕij , I} of finite groups. Let ϕi : G −→ Gi be the projection, and
set Hi = ϕi(H) (i ∈ I). Choose a subnormal chain of Hi in Gi

Gi = Gi1 $ Gi2 $ · · · $ Gini = Hi.

Obviously ϕi(N1) = Gi1. Since ϕi is an epimorphism, one has that ϕi(Nm+1)
is the normal closure of Hi in ϕi(Nm), for every natural number m. Hence
one can argue by induction on m to deduce that ϕi(Nm) ≤ Gim for all
m = 1, 2, . . . , ni. Therefore, ϕi(Nk) = Hi, for k ≥ ni. Put

N =
∞
⋂

m=1

Nm.

By Proposition 2.1.4(b), one has ϕi(N) = Hi = ϕi(H), for all i ∈ I. Then,
by Corollary 1.1.8, H = N =

⋂∞
i=1Ni, as required.

The implication (c) ⇒ (a) is obvious. ��

Corollary 8.3.3 Let C be a formation of finite groups closed under taking
normal subgroups. Then every accessible subgroup of a pro - C group is a pro -
C group.

Corollary 8.3.4 Let p be a prime number and let G be a pro-p group (or,
more generally, a pronilpotent group). Then every closed subgroup of G is
accessible.

Proof. This follows from part (b) of the above theorem since in a finite p-
group (more generally, in a finite nilpotent group), every subgroup is subnor-
mal (cf. Hall [1959], Corollary 10.3.1). ��

This corollary shows that the concept of accessible subgroup plays no role
in the study of pro-p groups. It explains why whenever accessible groups are
involved in this and subsequent sections, we shall assume that those groups
are, in general, not pro-p.

The characterizations given in Theorem 8.3.2 are very useful in proving
properties related to accessible groups. We begin with the following

Proposition 8.3.5

(a) Let {Hi | i ∈ I} be a family of accessible subgroups of a profinite group
G. Then their intersection H =

⋂

i∈I Hi is an accessible subgroup of G.
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(b) If H1 and H2 are accessible subgroups of a profinite group G, then the
subgroup H = 〈H1, H2〉 generated by H1 and H2 is also accessible.

Proof. (a) Let F be the collection of all finite subsets of I. For F ∈ F , put
HF =

⋂

i∈F Hi. Let us show that HF is accessible in G, for every F ∈ F .
By an obvious induction, we may assume that F consists of two elements i
and j. Remark that Hi∩Hj is accessible in Hj by Proposition 8.3.1(b). Since
Hj is accessible in G, then Hi∩Hj is accessible in G by Proposition 8.3.1(a).

Note that
H =

⋂

F∈F
HF .

Let ϕ : G −→ K be a continuous epimorphism onto a finite group K. Since
the collection of subgroups {HF | F ∈ F} is filtered from below, one has

ϕ(H) =
⋂

F∈F
ϕ(HF )

(see Proposition 2.1.4(b)). Since K is finite, one deduces that ϕ(H) is sub-
normal in K. Then H is accessible in G by Theorem 8.3.2.

(b) Let ϕ : G −→ K be a continuous epimorphism onto a finite group K.
Clearly ϕ(H1) and ϕ(H2) are subnormal in K. Furthermore, ϕ(H) is gen-
erated by ϕ(H1) and ϕ(H2). Now, a subgroup generated by subnormal sub-
groups is subnormal (cf. Suzuki [1982], Ch. 2, 3.23). Hence, by Theorem 8.3.2,
H is accessible in G. ��

Let G be a profinite group. We denote by M(G) the intersection of all
maximal closed normal subgroups of G. Next we show that M(G) has a
Frattini type property with respect to accessible subgroups.

Proposition 8.3.6 Let H be an accessible group of a profinite group G. If
HM(G) = G, then H = G.

Proof. Assume first that H is normal in G. If H 
= G, then H is contained in
some closed maximal normal subgroup M of G. But M(G) ⊆ M ; therefore
HM(G) ≤M < G, a contradiction.

Next consider the general case. Let N be the normal closure of H in G.
We claim that N = G if and only if H = G. Indeed, if N = G, then, using
the notation of Theorem 8.3.2, we have that Ni = G for all i = 1, 2, . . . , by
induction. Hence H =

⋂∞
i=1Ni = G. The converse is obvious.

Since H ≤ N , then HM(G) = G implies NM(G) = G. By the first part
of the proof, N = G. Thus from above, H = G. ��

We end this section with two technical results that will be of use later.

Lemma 8.3.7 Let ϕ : G −→ H be a continuous epimorphism of profinite
groups. Then ϕ(M(G)) = M(H).



8.3 Accessible Subgroups 305

Proof. Since ϕ−1 sends maximal closed normal subgroups of H to maximal
closed normal subgroups of G and since ϕ−1 preserves intersections, we have
that ϕ−1(M(H)) ≥ M(G). So, ϕ(M(G)) ≤ M(H). For the reverse contain-
ment, observe that H/ϕ(M(G)) is a direct product of finite simple groups,
since it is a homomorphic image of G/M(G) (see Lemma 8.2.4(d)). There-
fore, ϕ(M(G)) is an intersection of maximal closed normal subgroups of H.
Thus, ϕ(M(G)) ≥M(H). ��

The following lemma shows how certain information on subgroups placed
deep in a profinite group can be brought closer to the surface of the group.
This lemma plays a crucial role in many of the results in this chapter.

Lemma 8.3.8 Let C be a formation of finite groups which is also closed under
taking normal subgroups. Let H and K be subgroups of a pro - C group G with
K �c H, and assume that H is an accessible subgroup of G. Then G has a
closed pro - C subgroup L containing H such that

(1) L is an accessible subgroup of G;
(2) there exists a continuous epimorphism ρ : L −→ H/K extending the

canonical epimorphism H −→ H/K; and
(3) w0(G/L) ≤ w0(H/K) (note that G/L is not necessarily a group).

Moreover,

(a) if [G : H] = ∞ and [H : K] < ∞, then L is open. Furthermore, any
open subnormal subgroup L′ of L containing H also satisfies conditions
(1)–(3); in addition, such L′ can be chosen so that it has arbitrarily large
finite index in G;

(b) if H �c G, then L �c G, K �c L and L/K ∼= H/K × Ker(ρ)/K; and
(c) if H �c G and K �c G, then Ker(ρ) �c G.

Proof. Since accessible subgroups of pro - C groups are pro - C (see Corol-
lary 8.3.3), we have that both H and K are pro - C groups. Let {Ui | i ∈ I}
be a family of open normal subgroup of H such that

⋂

i∈I Ui = K and
|I| = w0(H/K). For each i ∈ I, choose Vi �o G with H ∩ Vi ≤ Ui. Put
V =

⋂

i∈I Vi. Define L = HV . In light of Proposition 8.3.5, L is an accessible
subgroup of G; so L is pro - C (see Corollary 8.3.3). By Proposition 2.1.5, the
set of all finite intersections of the open subgroups {Vi/V | i ∈ I} form a fun-
damental system of neighborhoods of G/V ; hence w0(G/V ) ≤ |I|. Therefore,
w0(G/L) ≤ |I| = w0(H/K), because G/L is a quotient space of G/V . Since
KV � HV = L and V ∩H ≤ K, we have

L/KV = HKV/KV ∼= H/H ∩ (KV ) ∼= H/K.

Define ρ : L −→ H/K to be the composition of natural maps

L −→ L/KV
∼=−→ H/K.
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Plainly ρ is an epimorphism and its restriction to H is the natural epimor-
phism H −→ H/K. Hence we have shown that L satisfies conditions (1), (2)
and (3).

(a) Assume now that [G : H] = ∞ and [H : K] <∞. Let L be the group
constructed above. Then w0(G/L) ≤ w0(H/K) = 1; so L is open in G. Let r
be a natural number; since H is an accessible subgroup of L, there exists an
open subnormal subgroup L′ of L with H ≤ L′ and such that [G : L′] ≥ r.
Fix any such L′. Obviously L′ is an accessible subgroup of G; hence L′ is
pro - C. Note that L′V = L = HV . Thus

L′ −→ L′V/KV
∼=−→ H/K

is an epimorphism extending H −→ H/K.
(b) Assume that H �c G. Then clearly L = HV �c G. On the other hand,

[V,K] ≤ V ∩H =
(

⋂

i∈I
Vi

)

∩H =
⋂

i∈I
(Vi ∩H) =

⋂

i∈I
Ui = K,

where [V,K] is the closed subgroup generated by the commutators [v, k] (v ∈
V, k ∈ K). Therefore, V normalizes K. Thus K �c HV = L. Finally, observe
that Ker(ρ) = KV ; so H ∩ Ker(ρ) = K. Hence L/K ∼= H/K × Ker(ρ)/K.

(c) If H �c G and K �c G, note that then Ker(ρ) = KV �c G. ��

Exercise 8.3.9 Let C be an extension closed variety of finite groups. Let H
and K be closed subgroups of a pro - C group G with K � H. Then G has a
closed subgroup L containing H such that

(1) there is a continuous epimorphism ρ : L −→ H/K extending the canonical
epimorphism H −→ H/K; and

(2) w0(G/L) ≤ w0(H/K) (note that G/L is not necessarily a group).

Exercise 8.3.10 Let K be a minimal finite normal subgroup of a profinite
group G. Then K ≤M(G) if and only if G does not split as a direct product
G ∼= K ×G/K. [Hint: use Lemma 8.2.4(d).]

8.4 Accessible Subgroups H with w0(F/H) < rank(F )

In Theorem 3.6.2 we saw that open subgroups of free pro - C groups are free
pro - C if C is an extension closed variety of finite groups, that is, freeness is
preserved for groups that are “close to the surface” of F . In this section we
pursue this idea of being close to the surface relative to the rank of the free
group. The main result is that if H is an accessible subgroup of infinite index
in a free pro - C group F and w0(F/H) is sufficiently small in relation to the
rank of F , then H is also free pro - C.
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Lemma 8.4.1 Let C be an NE-formation of finite groups. Let F be a free
pro - C group of finite rank n ≥ 2 and assume that K is a closed normal
subgroup of F of infinite index such that d(F/K) < n. Let r be a natural
number. Then there exists an open normal subgroup Lr of F containing K
such that for every open subgroup U of F with K ≤ U � Lr, one has

rank(U) − d(U/K) ≥ r.

Proof. We proceed by induction on r. For r = 1, choose L1 = F ; the result
then follows from Corollary 3.6.3 and Theorem 3.6.2. For a given r ≥ 1,
assume the existence of Lr satisfying the conditions of the lemma. Define
Lr+1 to be a proper open subgroup of Lr containing K such that Lr �F . Let
U be an open subgroup of F with K ≤ U �Lr+1. Then, using Theorem 3.6.2,
Corollary 3.6.3 and the induction hypothesis, we have

rank(U) = 1 + [Lr : U ](rank(Lr) − 1) ≥ 1 + [Lr : U ](d(Lr/K) + r − 1)
= 1 + [Lr : U ](d(Lr/K) − 1) + [Lr : U ]r ≥ d(U/K) + (r + 1),

since [Lr : U ] > 1. ��

In Theorem 3.6.2 we studied subgroups of finite index of a free pro - C
group. The next theorem considers certain accessible subgroups of infinite
index which are also free (see Theorem 8.9.4 for further results in this direc-
tion).

Theorem 8.4.2 Let C be an NE-formation of finite groups. Let F be a free
pro - C group of rank m ≥ 2. Set m∗ = max{m,ℵ0}.

(a) Suppose that H is an accessible subgroup of F of infinite index with
w0(F/H) < m (note that F/H is not necessarily a group). Then H is
a free pro - C group of rank m∗.

(b) Suppose that H is a closed normal subgroup of F of infinite index with
d(F/H) < m. Then H is a free pro - C group of rank m∗.

Proof. Let E = EC be the class of all epimorphisms of pro - C groups.
(a) In this case we may assume that m > ℵ0, for otherwise H would have

finite index. By Corollary 8.3.3 H is a pro - C group. Observe that w0(H) =
m = m∗, since w0(F/H) < m = m∗.

Consider the following E-embedding problem for H

H

ϕ
ϕ̄

1 N A
α

B 1

(2)

with w0(B) < w0(H), w0(A) ≤ w0(H) and where the row is exact. We shall
show the existence of an epimorphism ϕ̄ : H −→ A such that αϕ̄ = ϕ. This
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will prove two things. First, that d(H) = m (for if B is a finite simple quotient
of H, then A can be chosen to be a direct product of m copies of B). And
second, that H is free pro - C of rank m (see Theorem 3.5.9).

Our strategy to find ϕ̄ is to search for a convenient open subnormal sub-
group U (hence free pro - C of rank m) of F , containing H so that ϕ can be
extended to an epimorphism from U onto B; then use the freeness of U to
lift that epimorphism to an epimorphism from U onto A; and finally, make
sure that the restriction of the latter epimorphism restricted to H is still an
epimorphism onto A.

By Lemma 3.5.4, we may assume that in diagram (2), the kernel N is
finite. Hence, there exists an open normal subgroupW ofA such thatW∩N =
1. Consider the commutative diagram

H

ϕ

ωA
α

β

B = A/N

γ

A/W
δ

A/NW

where β, γ, δ are the natural epimorphisms, and ω = γϕ.
Let K = Ker(ω); then K is open in H. By Lemma 8.3.8, there exists an

open subnormal subgroup U of F containing H and a continuous epimor-
phism U −→ H/K whose restriction to H is the canonical map H −→ H/K.
Hence there exists an epimorphism

ω1 : U −→ H/K
∼=−→ A/NW

whose restriction to H is ω. Note that Ker(ϕ) ≤ Ker(ω) = K. Since U is open
and subnormal in F , it is a free pro - C group of rank m, since m is infinite
(see Corollary 3.6.4).

Our next step is to construct a special continuous epimorphism

ψ1 : U −→ A/W

lifting ω1. SayX is a basis of U converging to 1. We know thatH/Ker(ϕ) ∼= B,
w0(B) < m and w0(U/H) < m (the latter inequality is a consequence of our
hypothesis w0(F/H) < m). Therefore, there exist collections

{V (1)
i | V (1)

i ≤o U, i ∈ I1} and {V (2)
i | V (2)

i ≤o U, i ∈ I2}

such that |I1|, |I2| < m,
⋂

i∈I1 V
(1)
i = H and

⋂

i∈I2 V
(2)
i ∩ H = Ker(ϕ) (see

Proposition 2.1.4). So, there exists a collection

{Vi | Vi ≤o U, i ∈ I}
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such that |I| < m and
⋂

i∈I Vi = Ker(ϕ). Therefore

|X − Ker(ϕ)| =
∣

∣

∣

∣

⋃

i∈I
(X − Vi)

∣

∣

∣

∣

< m,

since each X − Vi is a finite set. Hence |X ∩ Ker(ϕ)| = m. Define a mapping

ψ1 : X −→ A/W

as follows: On X − Ker(ϕ), let ψ1 be equal to the function σω1, where σ :
A/NW −→ A/W is a section of δ; and let ψ1 on X ∩ Ker(ϕ) be a mapping
fromX∩Ker(ϕ) onto Ker(δ) converging to 1 (such a mapping exists since m is
an infinite set and Ker(δ) is finite). Then ψ1 is a mapping converging to 1 and
ψ1(X) generates A/W . Hence it defines an epimorphism ψ1 : U −→ A/W,
such that δψ1 = ω1.

Define ψ : H −→ A/W as the restriction of ψ1 to H. Then ψ(Ker(ϕ)) =
Ker(δ). One deduces that ψ is onto and Ker(ω) = Ker(ϕ)Ker(ψ). Next note
that

A
α

β

B = A/N

γ

A/W
δ

A/NW

is a pullback diagram since W ∩ N = 1 (see Exercise 2.10.1). Therefore, ψ
and ϕ induce a homomorphism ϕ̄ : H −→ A such that βϕ̄ = ψ and αϕ̄ = ϕ.
Finally observe that ϕ̄ is onto by Lemma 2.10.2. Thus ϕ̄ is the desired solution
of the E-embedding problem (2).

(b) Suppose first that m > ℵ0. Then, w0(F/H) = max{ℵ0, d(F/H)}.
Hence w0(F/H) < m, and so the result follows in this case from part (a)
above.

Hence we may assume from now on that m ≤ ℵ0. We distinguish two
cases.

Case 1. m = n is finite.

Observe that w0(H) = ℵ0, since H is an infinite group. As in case (a), we
shall prove that every E-embedding problem (2), where the row is an exact
sequence of pro - C groups with w0(A) ≤ ℵ0 and where B is finite, is solvable.
Again, this will show both that d(H) = ℵ0 and that H is free of rank ℵ0. By
Lemma 3.5.4 we may assume that N and A are finite as well.

Let K = Ker(ϕ); then K is open in H. By Lemma 8.3.8, there exist an
open normal subgroup L of F containing H and a continuous epimorphism
ρ : L −→ H/K extending the map H −→ H/K. In addition, if we put V =
Ker(ρ), then L/K = H/K×V/K. Define an epimorphism θ : L −→ B×V/K
as the composition
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θ : L −→ L/K = H/K × V/K −→ B × V/K

(the last map is the natural isomorphism induced by ϕ).
By Theorem 3.6.2, L is a free pro - C group of finite rank. Next we shall

show that, after changing L appropriately if necessary, we can find a basis X
of L such that |X ∩ Ker(θ)| ≥ d(N). First remark that as a consequence of
Corollary 3.6.4 and our hypothesis,

d(L/H) ≤ 1 + [F : L](d(F/H) − 1) < 1 + [F : L](rank(F ) − 1) = rank(L).

Hence by Lemmas 8.4.1 and 8.3.8, L can be chosen so that

rank(L) ≥ d(L/H) + d(B) + d(N).

Put r = rank(L) and t = d(B × V/K). Therefore,

r = rank(L) ≥ d(B × V/K) + d(N) = t+ d(N).

By Proposition 2.5.4, there exists a set of generators

X = {x1, . . . , xt, xt+1, . . . , xr}

of L such that θ(〈x1, . . . , xt〉) = B × V/K and θ(xi) = 1 for i = t+ 1, . . . , r.
Since L is a free pro - C group of rank r, we have that X is a basis of L (see
Lemma 3.3.5).

Now, let σ : B −→ A be a section of α : A −→ B. Denote by θ1 the
composition map L θ−→ B × V/K −→ B. To define a homomorphism

θ̄1 : L −→ A

it suffices to define it on X. We do this as follows: θ̄1(xi) = σθ1(xi), for
i = 1, . . . , t, and we let θ̄1 send xt+1, . . . , xr to a set of generators of N . This
is possible since r − t ≥ d(N).

Clearly θ̄1 is an epimorphism and αθ̄1 = θ1. Let ϕ̄ : H −→ A be the
restriction of θ̄1 to H. Then

αϕ̄ = ϕ.

Therefore, ϕ̄(H)N = A. Finally, remark that N ≤ ϕ̄(H) since xt+1, . . . , xr ∈
Ker(θ) = H. So, ϕ̄(H) = A. Thus ϕ̄ is an epimorphism, as needed.

Case 2. m = ℵ0.

In this case d(F/H) is finite by assumption. We shall prove that every em-
bedding problem (2) with A and B finite is solvable. Again, this will show
that H is a free pro - C group of rank ℵ0.

Write
F = lim←−Fi,



8.4 Accessible Subgroups H with w0(F/H) < rank(F ) 311

where each Fi is a free pro - C group of finite rank i and where the canonical
map πi : F −→ Fi is an epimorphism, for each i = 1, 2, . . . (see Corol-
lary 3.3.10). Set Hi = πi(H). Then Hi � Fi and

F/H = lim←−Fi/Hi.

Clearly d(Fi/Hi) ≤ d(F/H), for i = 1, 2, . . . . Choose a natural number n such
that n ≥ d(F/H) and such that ϕ factors through Hn (see Lemma 1.1.16).
Say ϕ(h) = ϕnπn(h), for all h ∈ H, where ϕn : Hn −→ B is an epimorphism.
By Case 1, there exists a continuous epimorphism ϕ̄n : H −→ A with αϕ̄n =
ϕn. Then the composition

ϕ̄ : H −→ Hn
ϕ̄n−→ A

is the desired solution of the embedding problem (2). ��
Part (a) of the result above has an analog valid not only for accessible

subgroups, but also for closed subgroups in general, if the class C is an exten-
sion closed variety, in particular for closed subgroups of free profinite groups.
Precisely, we have,

Theorem 8.4.3 Let C be an extension closed variety of finite groups. Let H
be a closed subgroup (not necessarily accessible) of infinite index of a free
pro - C group F of rank m ≥ 2. If w0(F/H) < m, then H is also free pro - C
of rank m∗.

The proof of this result can be obtained by mimicking almost word by
word the proof of part (a) in the theorem above. One simply has to use the
result contained in Exercise 8.3.9 rather than Lemma 8.3.8.

Let r be a natural number and let G be a profinite group with d(G) = r.
We say that G satisfies Schreier’s formula or that G is r-freely indexed if for
every open normal subgroup U of G one has

d(U) = 1 + [G : U ](r − 1).

The prototype of a group that satisfies Schreier’s formula is a free profinite
group of rank r (see Theorem 3.6.2).

Corollary 8.4.4 Let C be an NE-formation of finite groups. Let r ≥ 2 be a
natural number, F a free pro - C group of rank r, and let H be a closed normal
subgroup of F of infinite index. If F/H does not satisfy Schreier ’s formula,
then H is a free pro - C group of rank ℵ0.

Proof. Observe that F/H does not satisfy Schreier’s formula if and only if
there exists some open normal subgroup L of F containing H such that

d(L/H) < 1 + [G : L](r − 1).

By Theorem 3.6.2, d(L) = 1 + [G : L](r − 1), and so d(L/H) < d(L). Thus
the result follows then from Theorem 8.4.2(b) applied to H and L. ��



312 8 Normal Subgroups of Free Pro - C Groups

The following result provides examples of groups which do not satisfy
Schreier’s formula.

Lemma 8.4.5 Let K = K1×K2 be a nontrivial direct product decomposition
of a profinite group K. Assume that 2 ≤ d(K) <∞. Then K does not satisfy
Schreier’s formula.

Proof. Note that max{d(K1), d(K2)} ≤ d(K) ≤ d(K1) + d(K2) (i = 1, 2). If
Ki is finite, thenK3−i is a proper open normal subgroup ofK with d(K3−i) ≤
d(K) (i = 1, 2). Thus K does not satisfy Schreier’s formula. Assume now that
both K1 and K2 are infinite. Let Li be a proper open normal subgroup of Ki
of index ni (i = 1, 2). Then d(Li) ≤ 1 + ni(d(Ki) − 1) (see Corollary 3.6.3).
So,

d(L1 × L2) ≤ 2 + n1(d(K1) − 1) + n2(d(K2) − 1) ≤ 2 + (n1 + n2)(d(K) − 1).

Next observe that

2 + (n1 + n2)(d(K) − 1) < 1 + n1n2(d(K) − 1)

if
n1n2 − (n1 + n2) ≥ 2,

in particular, if n1, n2 ≥ 3. Hence, in any such a case,

d(L1 × L2) < 1 + n1n2(d(K) − 1).

��

Exercise 8.4.6

(a) Let G be a free pronilpotent group with d(G) ≥ 2. Show that G does not
satisfy Schreier’s formula.

(b) Let G be a free prosupersolvable group with d(G) ≥ 2, and assume that
the order of G is divisible by only finitely many primes. Show that G does
not satisfy Schreier’s formula. (Hint: use Proposition 2.8.11.)

Theorem 8.4.7 Let p be a prime number and let G be a finitely generated
pro-p group. Then G is free pro-p if and only if it satisfies Schreier ’s formula.

Proof. Let d(G) = r and let F be the free pro-p group of rank r. If G = F ,
then G satisfies Schreier’s formula by Theorem 3.6.2.

Assume that G satisfies Schreier’s formula. Let ϕ : F −→ G be a contin-
uous epimorphism. Consider the Frattini series

F = F1 ≥ F2 ≥ · · · ≥ Fi ≥ · · · and G = G1 ≥ G2 ≥ · · · ≥ Gi ≥ · · ·

of F and G respectively (that is, Fi+1 and Gi+1 are the Frattini subgroups
of Fi and Gi respectively, for i = 1, 2, . . .). By Proposition 2.8.13,
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∞
⋂

i=1

Fi = 1 and
∞
⋂

i=1

Gi = 1;

so
F = lim←−F/Fi and G = lim←−G/Gi.

Therefore, it suffices to show that the natural epimorphisms

ϕi : F/Fi −→ G/Gi

induced by ϕ are isomorphisms. We do this by induction. This is obviously
the case for i = 1. Assume that ϕn : F/Fn −→ G/Gn is an isomorphism, and
consider the commutative diagram

1 Fn/Fn+1

ψn+1

F/Fn+1

ϕn+1

F/Fn

ϕn

1

1 Gn/Gn+1 G/Gn+1 G/Gn 1

where ψn+1 is the natural epimorphism induced by ϕ. Since F and G sat-
isfy Schreier’s formula, d(Fn) = d(Gn). Hence the finite Fp-vector spaces
Fn/Fn+1 and Gn/Gn+1 are isomorphic. Therefore, ψn+1 is an isomorphism.
We deduce then from the above diagram and the induction hypothesis that
ϕn+1 is an isomorphism. ��

8.5 Homogeneous Pro - C Groups

The main purpose of this section is to obtain a workable characterization of
accessible subgroups of infinite index of free pro - C groups; this characteriza-
tion provides criteria to decide which of those accessible subgroups are free
pro - C. If C consists of finite p-groups for a fixed prime number p, then we
already have a good understanding of the subgroups of free pro-p groups (see
Section 7.7); therefore, for most results in this section we exclude the case
of pro-p groups by assuming that the class C involves at least two primes.
Indeed, many of the results in this section are not valid for pro-p groups.

As we saw in Lemma 7.6.3, every projective group G is a subgroup of
a free profinite group and by Proposition 7.6.9, such a group is determined
by its Frattini quotient G/Φ(G). However, for many projective groups the
Frattini subgroup Φ(G) is trivial and so G = G/Φ(G).

The situation is much better when we consider accessible (in particular,
normal) subgroups of free profinite groups. The key point in this situation is
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the replacement of the Frattini subgroup by its analogM(G), the intersection
of all closed maximal normal subgroups of G.

As we see in this section, the class of accessible subgroups of infinite index
in free profinite groups coincides with the class of ‘homogeneous’ groups.
These are defined as profinite groups having the strong lifting property with
respect to certain types of epimorphisms. We remark that, in analogy with
projective groups, every homogeneous group is determined uniquely by its
local weight and the quotient group G/M(G) (see Theorem 8.5.2 below).

Let C be a formation of finite groups closed under taking normal sub-
groups. Denote by L the class of epimorphisms of pro - C groups α : A −→ B
such that Ker(α) ≤ M(A). Obviously, L is an admissible class of epimor-
phisms (see Definition 3.5.1(c)). An infinite pro - C group G is said to be
homogeneous if it has the strong lifting property over the class L.

Remark 8.5.1 By Theorem 3.5.8, a free pro - C group F of infinite rank is
homogeneous.

Let H be a profinite group. Denote by r∗(H) the function that assigns
to every finite simple group S the S-rank rS(H) of H. We shall name it the
S-rank function of H.

Next we state the main results of this section. The proofs will be given
later. The first theorem says that homogeneous groups are characterized by
their rank functions and their local weights.

Theorem 8.5.2 Let C be a formation of finite groups closed under tak-
ing normal subgroups. Let G1 and G2 be homogeneous pro - C groups with
w0(G1) = w0(G2). Then G1

∼= G2 if and only if r∗(G1) = r∗(G2), or
equivalently, if and only if G1/M(G1) ∼= G2/M(G2). In particular, a ho-
mogeneous pro - C group G is free pro - C of infinite rank m if and only if
rS(G) = m for every simple group S ∈ C.

The next result is of a more technical nature; it serves as a preparation for
Theorem 8.5.4 which characterizes homogeneous pro - C groups as accessible
groups of infinite index in nonabelian free pro - C groups.

Theorem 8.5.3 Assume that C is an NE-formation of finite groups involving
at least two different prime numbers. Let m be an infinite cardinal and let
f be a function that assigns to each simple group S ∈ C a cardinal f(S),
with f(S) ≤ m. Then there exists a homogeneous pro - C group G such that
w0(G) = m and r∗(G) = f .

Theorem 8.5.4 Assume that C is an NE-formation of finite groups involving
at least two different prime numbers. Let F (m) be a free pro - C group of rank
m ≥ 2. Put m∗ = max{m,ℵ0}. Then, a pro - C group G is isomorphic to an
accessible subgroup of infinite index of F (m) if and only if G is homogeneous
and w0(G) = m∗.
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Theorems 8.5.2 and 8.5.4 allow us to classify accessible subgroups of free
pro - C groups. We state this in the following corollary.

Corollary 8.5.5 Assume that C is an NE-formation of finite groups involv-
ing at least two different prime numbers. Let G1 and G2 be accessible sub-
groups of infinite index in a free pro - C group of rank m ≥ 2. Then G1

∼= G2

if and only if r∗(G1) = r∗(G2).

Our strategy to prove these theorems will be as follows. First we prove
Theorem 8.5.2. Then we prove that homogeneous groups are precisely the
accessible subgroups of free pro - C groups (of infinite index if the rank of the
free group is finite). Finally we shall show Theorem 8.5.3.

Lemma 8.5.6 Let C be a formation of finite groups closed under taking nor-
mal subgroups. Let G be a pro - C homogeneous group with w0(G) = m. Then
any embedding problem

G

ϕ

A
α

B

(3)

with w0(A) ≤ m, Ker(α) ≤M(A) and w0(M(A)/Ker(α)) < m, is solvable.

Proof. We consider two cases.

Case 1. K = Ker(α) is a finite minimal normal subgroup of A.

From the finiteness of K = Ker(α) it follows that w0(M(A)) < m. Then, by
Lemma 8.3.8, there exists a closed normal subgroup L of A containing M(A)
and a continuous epimorphism ρ : L −→M(A) such that ρ is the identity map
on M(A) and w0(A/L) ≤ w0(M(A)) < m; moreover R = Ker(ρ) is normal
in A and RM(A) = A. Clearly R∩M(A) = 1 and so w0(L/R) = w0(M(A)).
Therefore, w0(A/R) < m, since m is infinite.

Consider the embedding problem

G
ξ

ω

A/R
ζ
A/KR

where ζ is the canonical epimorphism and ω is the composition of natural
epimorphisms G

ϕ−→ B = A/K
η−→ A/KR. Clearly w0(A/KR) < m and

Ker(ζ) = KR/R ≤ M(A/R) (since K ≤ M(A)). Hence there exists an
epimorphism ξ solving the embedding problem above, i.e., such that ω = ζξ.

Next we define a map ψ : G −→ A; to do this observe that the commuta-
tive diagram
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A
β

α

A/R

ζ

A/K
η
A/KR

is a pullback since K ≤ M(A) and R ∩ M(A) = 1 (see Exercise 2.10.1).
Therefore, from ηϕ = ζξ, we deduce the existence of a continuous homomor-
phism ψ : G −→ A such that αψ = ϕ and βψ = ξ. It remains to prove that
ψ is surjective. Next consider the following commutative diagram

A/R

ζ δ

A

β

α σ

G
ψ

ξ

ϕ

ω
A/KR A/M(A)R

B = A/K

η

κ
A/M(A)

ε

where all mappings are (canonical) epimorphisms except possibly ψ.
Note that

A
β

σ

A/R

δ

A/M(A) ε
A/M(A)R

is a pullback diagram since R ∩M(A) = 1. Observe that ψ is also the map
induced by the pair ξ and κϕ with respect to this pullback. According to
Lemma 2.10.2, to prove that ψ is surjective, it suffices to show that

Ker(ξ)Ker(κϕ) = Ker(δξ).

Since A/M(A) ∼= G/Ker(κϕ), one has that Ker(κϕ) is the intersection of
maximal normal subgroups of G; hence Ker(κϕ) ≥ M(G). Thus, using this
and Lemma 8.3.7, we have

Ker(δξ) = ξ−1(M(A)R/R) = Ker(ξ)M(G) ≤ Ker(ξ)Ker(κϕ).

To prove equality observe that

δξ(Ker(ξ)Ker(κϕ)) = δξ(Ker(κϕ)) = εκϕ(Ker(κϕ)) = 1.

Case 2. General K = Ker(α).

By Corollary 2.6.5, there exist an ordinal number μ and a chain of closed
subgroups of K

K = K0 > K1 > · · · > Kλ > · · · > Kμ = 1

such that
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(i) each Kλ is a normal subgroup of A with Kλ/Kλ+1 ∈ C; moreover Kλ is
maximal with respect to these properties;

(ii) if λ is a limit ordinal, Kλ =
⋂

ν<λKν ; and
(iii) if K is an infinite group, then w0(M(A)/Kλ) < w0(A) whenever λ < μ.

We use induction (transfinite, if K is infinite) on λ to construct an epi-
morphism

ϕλ : G −→ A/Kλ

for each λ ≤ μ, such that if λ1 ≤ λ the diagram

G
ϕλ ϕλ1

A/Kλ A/Kλ1

commutes, where the horizontal mapping is the natural epimorphism. Then
ϕμ : G −→ A will be a solution to the embedding problem (3).

Note that A/K0 = B; so, put ϕ0 = ϕ. Let λ ≤ μ and assume that ϕν has
been defined for all ν < λ so that the above conditions are satisfied.

If λ is a limit ordinal, then

A/Kλ = lim←−
ν<λ

A/Kν ;

in this case, define
ϕλ = lim←−

ν<λ

ϕν .

If, on the other hand, λ = σ + 1, we define ϕλ to be a solution to the
embedding problem

G

ϕσ
ϕλ

1 Kσ/Kλ A/Kλ A/Kσ 1

Remark that such a solution exists because Ker(A/Kλ −→ A/Kσ) =
Kσ/Kλ ≤M(A/Kλ) = M(A)/Kλ and

w0((M(A)/Kλ)/(Kσ/Kλ)) = w0(M(A)/Kλ) < m.

It is clear that in either case ϕλ satisfies the required conditions. ��
The following proposition is a variation of Proposition 3.5.6.

Proposition 8.5.7 Let C be a formation of finite groups closed under taking
normal subgroups. Let m be an infinite cardinal and let G1 and G2 be ho-
mogeneous pro - C groups such that w0(G1) = w0(G2) = m. Assume that Ni
is a normal subgroup of Gi such that Ni ≤ M(Gi) and w0(M(Gi)/Ni) < m

(i = 1, 2). Then any isomorphism β : G1/N1 −→ G2/N2 can be lifted to an
isomorphism ω : G1 −→ G2.
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Proof. Let μ be the smallest ordinal whose cardinal is m. By Corollary 2.6.5,
there exists a chain of closed normal subgroups of Gi (i = 1, 2)

Ni = Ni0 ≥ Ni1 ≥ · · · ≥ Niλ ≥ · · · ≥ Niμ = 1

indexed by the ordinals λ ≤ μ, such that

(1) Niλ/Niλ+1 is finite for λ ≥ 0,
(2) if λ is a limit ordinal, Niλ =

⋂

ν<λNiν , and
(3) w0(M(Gi)/Niλ) < m, if λ < μ.

One now proceeds essentially as in the proof of Proposition 3.5.6; the only
new ingredient is the use of Lemma 8.5.6 at the appropriate places. We omit
the details. ��

Proof of Theorem 8.5.2. Since G/M(G) ∼=
∏

S∈ΣC

∏

rS(G) S for any pro - C
group G, the equality r∗(G1) = r∗(G2) implies the existence of an isomor-
phism β : G1/M(G1) −→ G2/M(G2). In light of Proposition 8.5.7, β lifts to
an isomorphism G1 −→ G2.

For the last statement of the theorem, just recall that if F is a free pro - C
group of infinite rank m, then rS(F ) = m for each finite simple group S ∈ C
(see Proposition 8.2.6). ��

Next we construct certain groups of arbitrarily large local weight which
we shall need in several occasions.

Lemma 8.5.8 Let S, T be finite simple groups with S 
∼= T if S = Cp, where p
is a prime number. Then, for every cardinal number m, there exists a profinite
group A = Am(S, T ) such that

(1) A has a unique maximal closed normal subgroup B and A/B ∼= T ;
(2) B =

∏

i∈I Bi, where |I| = m and Bi is a finite direct product of copies
of S.

Proof. Let I be an indexing set of cardinality m. For each i ∈ I, define a
group Bi as follows. If S is nonabelian, put

Bi =
∏

t∈T
St,

where St is a copy of S. And if S = Cp, choose

Bi = L = Fp ⊕ · · · ⊕ Fp

to be a fixed irreducible T -module of dimension n > 1 over Fp.
Let

B =
∏

i∈I
Bi.
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If S is nonabelian, let an action of T on Bi be defined by

(st)t1 = (stt1) (t, t1 ∈ T ; (st) ∈ Bi).

And if S = Cp, let the action of T on Bi be the module action. Let T act on
B via the action on each Bi described above.

Consider the corresponding semidirect product

A = B � T.

Since the action of T on B is continuous, A is a profinite group. In fact, each
Bi (i ∈ I) is T -invariant under this action, and so Bi � A for each i ∈ I.

Clearly B is a maximal closed normal subgroup of A. We claim that B is
the unique maximal closed normal subgroup of A. Indeed, letK be a maximal
closed normal subgroup of A, and suppose K 
≤ B. Then there exists some
j ∈ I with Bj 
≤ K, that is, Bj ∩K 
= Bj . Since K is maximal normal, one
has that A = BjK. Plainly Bj ∩K � A. Note that Bi does not contain any
proper nontrivial T -invariant subgroup; hence, Bj ∩K = 1. Therefore,

A/K ∼= Bj/Bj ∩K ∼= Bj .

But Bj is not simple; therefore, K is not maximal normal, a contradiction.
Thus B is the unique maximal closed normal subgroup of A, as asserted. ��

Corollary 8.5.9 Assume that C is an NE-formation of finite groups involv-
ing at least two different prime numbers. Then every homogeneous pro - C
group G is infinitely generated.

Proof. By definition of homogeneous group, w0(G) = m is infinite. Let S, T ∈
C be simple groups (different if S is abelian). Construct A = Am(S, T ) as in
Lemma 8.5.8. Clearly d(A) = w0(A) = m. Consider the embedding problem

G

ϕ
ϕ̄

A
α

S

where α is the natural epimorphism A = B � S −→ S. Then Ker(α) =
M(A) = B. Hence there exists an epimorphism ϕ̄ : G −→ A such that
αϕ̄ = ϕ. Thus d(G) ≥ d(A) = w0(G). Therefore, d(G) = w0(G). ��

Proposition 8.5.10 Assume that C is an NE-formation of finite groups in-
volving at least two different prime numbers. Let H be an accessible subgroup
of a free pro - C group F = FC (m), where m ≥ 2. Assume that H is nontriv-
ial and has infinite index in F . Then H is a homogeneous pro - C group and
w0(H) = m∗, where m∗ = max{m,ℵ0}.
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Proof. Consider an embedding problem of pro - C groups

H

ϕ
ϕ̄

A
α

B

where Ker(α) ≤ M(A), α and ϕ are epimorphisms, w0(A) ≤ m∗ and
w0(B) < m∗. We must prove that there exists an epimorphism ϕ̄ : H −→ A
such that αϕ̄ = ϕ and that w0(H) = m∗. By Lemma 3.5.4, we may assume
that Ker(α) is a finite minimal normal subgroup of A.

Step 1. We shall first show the existence of an epimorphism ϕ̄ : H −→ A such
that αϕ̄ = ϕ. (Observe that this will not yet show that H is homogeneous,
for one does not know that w0(H) = m∗; this will be proved in Step 2.) By
Lemma 8.3.8, there exists an accessible subgroup L of F containing H and a
continuous epimorphism ρ : L −→ H/Ker(ϕ) such that

w0(F/L) ≤ w0(H/Ker(ϕ)) = w0(B) < m
∗

and such that the restriction of ρ to H is the natural map H −→ H/Ker(ϕ).
Define an epimorphism

ϕ1 : L −→ B

to be the composition of epimorphisms L
ρ−→ H/Ker(ϕ) −→ B, the latter

map being the isomorphism induced by ϕ. Plainly ϕ is the restriction of ϕ1

to H.
If m is finite, then m∗ = ℵ0; hence B is finite. Therefore, A and F/L

are finite. In addition L can be chosen subnormal in F so that [F : L] is
arbitrarily large (see Lemma 8.3.8); thus L is a free pro - C group whose rank
is finite, but as large as we wish (see Corollary 3.6.4). Choose L to be such
that rank(L) ≥ d(A).

If m ≥ ℵ0, then L is free pro - C of rank m; indeed, if [F : L] is finite,
this follows from Theorem 3.6.2; while if [F : L] is infinite, it follows from
Theorem 8.4.2, since then w0(F/L) < m∗ = m.

Next consider the embedding problem

L

ϕ1
ψ

A
α

B

By Theorem 3.5.8 or Theorem 3.5.9 and the considerations above, ϕ1 can be
lifted to an epimorphism ψ : L −→ A such that αψ = ϕ1. Define ϕ̄ : H −→ A
to be the restriction of ψ to H. It remains to show that ϕ̄ is an epimorphism,
that is, ψ(H) = A.
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From the definition of ψ we deduce that αψ(H) = B. Since Ker(α) ≤
M(A), we have ψ(H)M(A) = A. On the other hand, ψ(H) is an accessible
subgroup of A (see Proposition 8.3.1); thus by Proposition 8.3.6, we have
ψ(H) = A, as desired.

Step 2. Next we show that w0(H) = m∗. Certainly w0(H) ≤ m∗. Since H is
nontrivial, there exists some finite simple group T ∈ C and an epimorphism
δ : H −→ T . Choose a finite simple group S ∈ C (if T is abelian, choose
S 
∼= T ). Consider the group A = Am∗ (S, T ) constructed in Lemma 8.5.8;
then there exists a canonical epimorphism

β : A −→ A/M(A) = T.

As shown in Step 1, the embedding problem

H

δ
δ̄

A = Am∗ (S, T )
β

T

is solvable, since obviously Ker(β) ≤ M(A). In other words, there exists an
epimorphism δ̄ : H −→ Am∗ (S, T ) such that βδ̄ = δ. Thus,

w0(H) ≥ w0(Am∗ (S, T )) = m
∗,

as desired. ��

Proposition 8.5.11 Let F = FC (m) be a free pro - C group of rank m ≥ 2.
Assume that f is a function that assigns to each finite simple group S ∈ C a
cardinal number f(S) such that f(S) ≤ m∗. Then there exists an accessible
subgroup H of infinite index in F such that f(S) = rS(H) for every S ∈ ΣC.

Proof. Let X be a basis of FC (m) converging to 1. Choose x ∈ X and denote
by N the closed normal subgroup of F generated by x. By Theorem 8.1.3, N
is a free pro - C group of rank m∗. Note that the index of N in F is infinite.
We shall construct H as an accessible subgroup of N . From the isomorphism
N ∼= FC (m∗), it follows that

N/M(N) ∼=
∏

S∈ΣC

∏

m∗

S.

Since f(S) ≤ m∗ for all S ∈ ΣC , there exists K �c N/M(N) such that

K ∼=
∏

S∈ΣC

∏

f(S)

S.

Let ϕ : N −→ N/M(N) be the canonical epimorphism. Denote by L the set of
all accessible subgroups L of N such that ϕ(L) = K. The set L is nonempty,
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since ϕ−1(K) ∈ L. Define a partial order on L by reverse inclusion, that is,
if L,L′ ∈ L, we define L � L′ if and only if L ≥ L′. We claim that L is an
inductive poset. Let

· · · ≥ Li ≥ · · · ≥ Lj ≥ · · ·

be a chain in L indexed by I. Put L =
⋂

i∈I Li. Plainly L � Li for all
i ∈ I. By Proposition 2.1.4, ϕ(L) = K. In light of Proposition 8.3.5, L is an
accessible subgroup of N . Hence L ∈ L. This proves the claim. By Zorn’s
lemma, there exists a maximal element H in (L,�). That is, if L ∈ L and
L ≤ H, then H = L.

We shall show that f(S) = rS(H) for all S ∈ ΣC . Let V be an arbitrary
maximal closed normal subgroup of N . Then, either V ≥ H or H ∩ V is a
maximal closed normal subgroup of H; hence V ≥M(H); therefore

H ∩M(N) ≥M(H).

To prove the reverse inclusion, consider a maximal closed normal subgroup
W of H. Then, either W ≥ H ∩M(N) or (H ∩M(N))W = H. In the latter
case, M(N)W = M(N)H; hence ϕ(W ) = ϕ(H) = K, contradicting the
minimality of H. Therefore, H ∩M(N) ≤W . Since W is arbitrary, M(H) ≥
H ∩ M(N). Thus H ∩ M(N) = M(H). This means that H/M(H) ∼= K.
Therefore, f(S) = rS(H) for all S ∈ ΣC . ��

Proof of Theorem 8.5.3. By Proposition 8.5.11, there exists an accessible
subgroup G of FC (m) of infinite index such that f(S) = rS(G) for all S ∈ ΣC .
The group G is homogeneous and w0(G) = m by Proposition 8.5.10. ��

Proof of Theorem 8.5.4. Let G be a homogeneous pro - C group of local
weight m∗. By Proposition 8.5.11, there exists an accessible subgroup H of
FC (m) of infinite index such that rS(H) = rS(G) for all S ∈ ΣC . By Propo-
sition 8.5.10, H is homogeneous with w0(H) = m∗. Hence by Theorem 8.5.2,
H ∼= G. The converse is just the content of Proposition 8.5.10. ��

Corollary 8.5.12 Assume that C is an NE-formation of finite groups involv-
ing at least two different prime numbers. Let N be an accessible subgroup of
a free pro - C group F = FC (m) of rank m ≥ 2. Then d(N) is finite if and
only if m is finite and N has finite index in F .

Proof. If F has finite rank and the index of N in F is finite, then clearly
d(N) is finite. Conversely, assume that d(N) is finite. If the index of N in F
were infinite, then, by Proposition 8.5.10 N would be homogeneous of rank
m∗ = max{m,ℵ0}. Hence N has finite index and so it is open and subnormal
in F . Therefore, by Corollary 3.6.4, m has to be finite. ��

Now we can prove the following criterion of freeness of an accessible sub-
group of a free pro - C group FC (m) of rank m ≥ 2.
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Theorem 8.5.13 Assume that C is an NE-formation of finite groups involv-
ing at least two different prime numbers. Let F = F (m) be a free pro - C group
of rank m ≥ 2. Then, a nontrivial accessible subgroup H of F of infinite index
is free pro - C if and only if rS(H) = m∗ = max{m,ℵ0} for all S ∈ ΣC.

Proof. By Theorem 8.5.4, H is homogeneous with w0(H) = m∗. By Corol-
lary 8.5.12, d(H) is infinite. Hence d(H) = m∗. Now, if H is free, then its
rank is m∗ by Corollary 2.6.3. Therefore, rS(H) = m∗ for all S ∈ ΣC .

Conversely, if rS(H) = m∗ for all S ∈ ΣC , then, by Theorem 8.5.2, H ∼=
FC (m∗), since both groups are homogeneous and w0(H) = w0(FC (m∗)). ��

An accessible subgroup H of a homogeneous group G is homogeneous of
the same local weight as G, according to Theorem 8.5.4. If H is open in G one
can get more precise information about H. It is more convenient to state the
corresponding result in terms of accessible subgroups of free pro - C groups.

Theorem 8.5.14 Assume that C is an NE-formation of finite groups involv-
ing at least two different prime numbers. Let G be an accessible subgroup of
infinite index of a free pro - C group F = FC (m),m ≥ 2, and let H be a proper
open normal subgroup of G. Set m∗ = max{m,ℵ0}. Then

(a) rS(H) = m∗ for every nonabelian finite simple group S;
(b) rp(H) = m∗ if G/H is not a finite p-group (any prime number p);
(c) rp(H) = [G : H](rp(G) − 1) + 1 if G/H is a finite p-group (any prime

number p; note that if rp(G) is infinite, then [G : H](rp(G) − 1) + 1 =
rp(G) by convention).

Proof. (a) Let

H = Gn+1 �c Gn �c · · · �c G1 �c G0 = G

be a composition series from H to G. Then T = Gn/H is a simple group.
Since S is nonabelian, we can consider the group Am∗ (S, T ) constructed in
Lemma 8.5.8. Let α : Am∗ (S, T ) −→ T and ϕ : Gn −→ T be the canon-
ical epimorphisms. By Theorem 8.5.4, the group Gn is homogeneous and
w0(Gn) = m∗. Since Ker(α) = M(Am∗ (S, T )), the embedding problem

Gn
ϕ̄

ϕ

Am∗ (S, T ) α
T

is solvable. Clearly, ϕ̄(H) = M(Am∗ (S, T )), sinceM(Am∗ (S, T )) is the unique
maximal normal subgroup of M(Am∗ (S, T )) ∼=

∏

m∗ S. It follows that

rS(H) ≥ rS(M(Am∗ (S, T )) = m
∗.

On the other hand, it is obvious that rS(H) ≤ m∗.
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(c) Let Rp(G) be the intersection of all normal subgroups K of G
such that the quotient G/K is a pro-p group (see Lemma 3.4.1). Since
G is projective, the quotient group G/Rp(G) is free pro-p by Proposi-
tion 7.7.7. We claim that the rank of G/Rp(G) is rp(G). To see this, put
L = G/Rp(G). Note that rank(L) = d(L/Φ(L)) and Rp(G) ≤ [G,G]Gp.
Hence Φ(L) = [G,G]Gp/Rp(G); so L/Φ(L) ∼= G/[G,G]Gp. Thus rank(L) =
d(G/[G,G]Gp) = rp(G), proving the claim.

Now, since G/[H,H]Hp is an extension of the pro-p group H/[H,H]Hp

by G/H, then G/[H,H]Hp is a pro-p group. Therefore Rp(G) ≤ [H,H]Hp.
Let H0 be the image of H in G/Rp(G), that is, H0 = H/Rp(G). Hence
rank(H0) = [G : H](rank(G/Rp(G)) − 1) + 1 (see Theorem 3.6.2). Then the
following equalities complete the proof of (c)

rp(H) = rp(H0) = rank(H0) = [G : H](rank(G/Rp(G)) − 1) + 1.

(b) Assume that G = G/H is not a p-group. Let

H = Gn+1 �c Gn �c · · · �c G1 �c G0 = G

be a composition series. Then there are quotients in this series which are not
isomorphic to Cp. Let 0 ≤ k ≤ n be the largest index such that Gk/Gk+1 
∼=
Cp. We claim that rp(Gk+1) = m∗. Put T = Gk/Gk+1 and consider the group
Am∗ (Cp, T ) from Lemma 8.5.8. Then M(Am∗ (Cp, T )) ∼=

∏

m0
Cp. Hence, by

Theorem 8.5.4, the embedding problem

Gk
ϕ̄

ϕ

Am∗ (Cp, T ) α
T

is solvable. Since M(Am∗ (Cp, T )) is the unique maximal normal subgroup of
Am∗ (Cp, T ), then ϕ̄(Gk+1) = M(Am∗ (Cp, T ). Hence w0(Gk+1) ≥ m∗; thus
rp(Gk+1) = m∗.

Since m∗ is infinite and Gi/Gi+1 is a finite p-group for all i = k + 1, k +
2, . . . , n, one deduces from (b) inductively that rp(Gn+1) = rp(H) = m∗, as
desired. ��

Corollary 8.5.15 Assume that C is an NE-formation of finite groups involv-
ing at least two different prime numbers. Let G be an accessible subgroup of a
free pro - C group F = FC (m) of rank m ≥ 2. Then G is virtually free pro - C.
More precisely, if H is a maximal open normal subgroup of G, then

(a) H is free pro - C if G/H is a finite nonabelian simple group;
(b) H contains a free pro - C subgroup of finite index if G/H ∼= Cp, for some

prime p.
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Proof. We may assume that G has infinite index, for otherwise the result
follows from Corollary 3.6.4.

(a) By Theorem 8.5.14, rS(H) = m∗ for every finite simple group S. Hence
H is free pro - C of rank m∗ by Theorem 8.5.13.

(b) Choose a nonabelian finite simple group S. Then rS(H) = m∗ by Theo-
rem 8.5.14. In particular, there exists some open normal subgroup K of
H with H/K ∼= S. Then by part (a), K is free pro - C of rank m∗. ��

Theorem 8.5.16 Assume that C is an extension closed variety of finite
groups involving at least two different prime numbers. Let R be a closed
finitely generated subgroup of a free pro - C group F = F (m) of rank m ≥ 2.
Suppose R contains a nontrivial accessible subgroup H of F . Then m is finite
and R is open in F .

Proof. First note that if H is open in F , then so is R, and this implies the
finiteness of m by Theorem 3.6.2. Thus, we may assume that H has infinite
index in F . Then, by Theorem 8.5.4, H is homogeneous and w0(H) = m∗.

Since H is nontrivial, there exists an epimorphism H −→ T onto some
finite simple group T ∈ C. Therefore (see Exercise 8.3.9), there exist an open
subgroup L of F containing H and a continuous epimorphism ϕ : L −→ T
extending H −→ T . Put R1 = R ∩ L. Choose a finite simple group S ∈ C
such that S 
∼= T if T is abelian.

Case 1. m is infinite.

If m > ℵ0, then w0(R) ≥ w0(H) = m > ℵ0, contradicting the fact that
R is finitely generated. Therefore, m = ℵ0. Construct A = Aℵ0(S, T ) as in
Lemma 8.5.8. Hence, there exists an epimorphism α : A −→ T whose kernel
is M(A) ∼=

∏

ℵ0
S. By Theorem 3.6.2, L is free pro - C of rank ℵ0; so, the

embedding problem
L

ϕ̄
ϕ

A
α

T

is solvable. Say ϕ̄ : L −→ A is a continuous epimorphism making the diagram
commutative. Note that ϕ̄(H) is an accessible subgroup of A. The equality
α(ϕ̄(H)) = ϕ(H) = T implies that ϕ̄(H)M(A) = A. Then, by Proposi-
tion 8.3.6, ϕ̄(H) = A. Since H ≤ R1 ≤ L, we have ϕ̄(R1) = A. Therefore,
d(R1) ≥ d(A) = ℵ0. However, R1 is finitely generated because it is open in R,
a contradiction. Thus, subgroups R and L with the stated conditions do not
exist if m is infinite.

Case 2. m is finite.

Since R1 is open in R, one has that d(R1) < ∞. Choose a natural number
n such that d(A) > d(R1), where A = An(S, T ) is the group constructed in
Lemma 8.5.8.
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We may assume that [F : R1] = ∞ (otherwise, R would be of finite
index in F as needed). Then there exists an open subgroup V of F such
that R1 < V ≤ L and [F : V ] ≥ d(A). Set ϕ∗ = ϕ|V . Since H ≤ R1 < V ,
then ϕ∗(V ) = ϕ(V ) ≥ ϕ(H) = T . So, ϕ∗ is an epimorphism of V onto T
whose restriction to H coincides with H −→ T . By Theorem 3.6.2, V is a
free pro - C group of rank [F : V ](m − 1) + 1 > d(A). Hence one can extend
the epimorphism ϕ∗ to an epimorphism ϕ̄ : V −→ A. As in the previous case,
it follows that ϕ̄ maps R1 onto A. This, however, contradicts the fact that
(by construction) d(A) is greater than d(R1). ��

Exercise 8.5.17 Let C be an NE-formation of finite groups involving at least
two different prime numbers. Let R be an accessible subgroup of a free pro - C
group F = F (m) of rank m ≥ 2. Suppose that R is finitely generated. Then
m is finite and R is open in F .

Compare the following lemma with Theorem 3.2.9.

Lemma 8.5.18 Assume that C is an NE-formation of finite groups involving
at least two different prime numbers. Let F = F (m) be a free pro - C group
of rank m ≥ 2 and let G be an accessible subgroup of F with w0(G) = ℵ0.
Suppose that every group in C is an epimorphic image of G. Then G is a free
profinite group of countably infinite rank.

Proof. By Theorem 8.5.13, it suffices to prove that rS(G) = ℵ0 for every
S ∈ ΣC . For every natural number n and every S ∈ ΣC , there is a epimor-
phism G −→

∏

n S. Hence rS(G) ≥ n by Lemma 8.2.5. Since n is arbitrarily
large, the result follows. ��

Exercise 8.5.19 Let {Gi, ϕij , I} be a surjective inverse system of countably
generated homogeneous pro - C groups Gi over a countable poset I. Then
G = lim←− i∈IGi is a countably generated homogeneous pro - C group.

8.6 Normal Subgroups

According to Theorem 3.6.2, open normal subgroups of a free pro - C group
are free and their ranks are determined by their indices. By Theorem 8.5.4,
closed normal subgroups of a free pro - C group are homogeneous and there-
fore they are determined up to isomorphism by their S-rank functions (see
Theorem 8.5.2). Thus, to classify normal subgroups of free pro - C groups it
suffices to describe all their possible S-rank functions. These description is
contained in Theorems 8.6.11 and 8.6.12.

In Theorem 8.5.13 we saw that if C involves at least two primes, then
rS(H) = m∗ = max{m,ℵ0} for (in particular) any closed normal subgroup
H of infinite index in a nonabelian free pro - C group and for any finite simple
group S. The next three results are intended to reprove this result but without
the restriction on the number of primes involved in C.
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Lemma 8.6.1 Let C be an NE-formation of finite groups. Let F = F (X) be
a free pro - C group on a set X converging to 1 with |X| ≥ 2. Let Φ be the
abstract subgroup of F generated by X. Assume that H is a closed normal
subgroup of F of infinite index such that H ∩ Φ 
= 1. Then there exists an
open normal subgroup U of F containing H and a basis X ′ of U converging
to 1 such that H ∩X ′ 
= ∅.

Proof. By Corollary 3.3.14, Φ is a free abstract group on the basis X. Let
{Ui | i ∈ I} be the collection of all open normal subgroups of F containing
H; then H =

⋂

i∈I Ui. For i ∈ I, denote by Xi the set of all bases Z of the
abstract free group Ui ∩ Φ such that Z is a basis converging to 1 of Ui. The
set Xi is not empty by Theorem 3.6.2. Let 1 
= w ∈ H ∩ Φ. Then w ∈ Φ ∩ Ui
for each i ∈ I. For Y ∈ Xi, let �(Y ) denote the word length of w with respect
to the abstract basis Y of Φ ∩ Ui and set

� = min{�(Y ) | Y ∈ Xi, i ∈ I}.

Choose j ∈ I and Xj ∈ Xj such that � = �(Xj). Say w = xε11 · · ·xε�

� (εr =
±1, xr ∈ Xj , r = 1, . . . , �). We shall show that x1 ∈ H. To see this, assume
to the contrary that x1 
∈ H; then there exists some k ∈ I such that x1 
∈ Uk
and Uk is a proper subgroup of Uj . Choose a Schreier transversal T of Uk in
Uj containing xε11 (the existence of such T is easily seen using, for example,
Proposition I.14 in Serre [1980]). Then, using the notation of Theorem 3.6.2,
the set

X(k) = {st,x = tx ˜tx−1 | t ∈ T, x ∈ Xj , st,x 
= 1}

is in Xk. Moreover, if we put t1 = 1 and ts = ˜xε11 · · ·xεs−1
s−1 (s = 2, . . . , �+ 1),

w = (t1xε11 t
−1
2 )(t2xε22 t

−1
3 ) · · · (t�xε�

� t
−1
�+1), (4)

since t�+1 = 1. Note that t1xε11 t
−1
2 = 1, and that

tsx
εs
s t

−1
s+1 =

{

tsxs˜tsxs
−1, if εs = 1;

(ts+1xst̃s+1xs
−1)−1, if εs = −1.

It follows that (4) is a word for w in terms of the basis X(k), and so
�(X(k)) < �, contradicting the choice of �. Therefore x1 ∈ H. If we set
U = Uj and X ′ = Xj , we deduce that X ′ is a basis of U ′ converging to 1 and
H ∩X ′ 
= ∅, as desired. ��

Proposition 8.6.2 Let C be an NE-formation of finite groups. Let F be a
free pro - C group of rank m, with m ≥ 2. Assume that N is a closed normal
subgroup of F of infinite index. Let X be a basis of F converging to 1 and let
Φ be the subgroup of F generated by X as an abstract group. If Φ ∩ N 
= 1,
then rS(N) = max{m,ℵ0} for each simple group S ∈ C.
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Proof. By Lemma 8.2.5, rS(N) ≤ max{m,ℵ0}. We shall show that rS(N) ≥
max{m,ℵ0}. According to Lemma 8.6.1, we may assume that X ∩N 
= ∅.

Case 1. m = |X| is finite.

Fix a natural number t. Set G = F/N and d = d(G). From X ∩ N 
= ∅, we
deduce that d < m. Since G is infinite, there exists an open subgroup U of
G of index j sufficiently large so that (m − d)j ≥ t + d(S). Let V be the
preimage of U in F . Then, according to Theorem 3.6.2, V is a free pro - C
group FC (n) of rank n = (m − 1)j + 1. Moreover, d(U) ≤ k = (d − 1)j + 1,
by Corollary 3.6.3. Since U ∼= V/N , we deduce from Lemma 8.2.5(d) and (b)
that

rS(N) ≥ rS(V ) − rS(U) ≥ rS(FC (n)) − rS(FC (k)).

Now, if rS(FC (k)) = 0, we have

rS(N) ≥ rS(FC (n)) ≥ rS(FC ((m − 1)j)) ≥ rS(FC (t+ d(S))) ≥ t

by Lemma 8.2.7. On the other hand, if rS(FC (k)) 
= 0, we can use Lemma 8.2.7
again to obtain

rS(N) ≥ rS(FC (n)) − rS(FC (k)) ≥ n− k = (m − d)j ≥ t.

Since t is arbitrary, we infer that

rS(N) ≥ ℵ0.

Case 2. m = |X| = ℵ0.

Fix x ∈ X ∩N . Let t be a natural number bigger than d(S) and let Y be a
finite subset of X of cardinality t such that x ∈ Y . Consider the epimorphism

ϕ : FC (X) −→ FC (Y )

that sends Y to Y identically and X−Y to 1. Let K = ϕ(N). Then x ∈ K∩Y
and K �c FC (Y ). If [FC (Y ) : K] = ℵ0, we get that

rS(N) ≥ rS(K) = ℵ0,

by Case 1. If [FC (Y ) : K] = j < ℵ0, then by Theorem 3.6.2, K is free of rank
j(t− 1) + 1. So, by Lemma 8.2.7,

rS(N) ≥ rS(K) = rS(FC (j(t− 1) + 1)) ≥ t− d(S) + rS(FC (d(S)).

Since t is arbitrarily large, it follows that

rS(N) ≥ ℵ0.

Case 3. m = |X| > ℵ0.



8.6 Normal Subgroups 329

Again, fix x ∈ X ∩ N . We consider two subcases. First assume that S is
nonabelian. Let I denote an indexing set with the same cardinality as X,
and consider the direct product

E =
∏

i∈I
Si

where Si ∼= S for all i ∈ I. Observe that
⋃

i∈I Si is a set of generators of E
converging to 1. Choose s = (si) ∈ E to be such that si 
= 1 for every i ∈ I.
Then there exists an epimorphism

ϕ : F −→ E =
∏

i∈I
Si

such that ϕ(x) = s. Since S is simple and nonabelian and since x ∈ N , we
infer from Lemma 8.2.4 that ϕ(N) = E. Thus, rS(N) ≥ |I| = |X| = m.

Next, assume that S ∼= Z/pZ, where p is a prime number. Let R denote
the intersection of the open normal subgroups of F whose index is a finite
power of p. Then F̃ = F/R is the free pro-p group on the set X (see Propo-
sition 3.4.2). Let Ñ = NR/R. Then Ñ is a closed normal subgroup of F̃ . If
[F̃ : Ñ ] < ∞, then rank(Ñ) = |X| by Theorem 3.6.2; hence rp(Ñ) = |X| by
Proposition 8.2.6. Therefore, rp(N) ≥ |X|. If [F̃ : Ñ ] is not finite, the result
follows from Proposition 8.6.3 below. ��

Proposition 8.6.3 Let p be a prime number and let F = Fp(X) be a free
pro-p group on a set X converging to 1, where |X| ≥ 2. Assume that N is a
closed nontrivial normal subgroup of F of infinite index. Then,

rank(N) = max{|X|,ℵ0}.

Proof. Note that in this case Mp(F ) = M(F ) = Φ(F ), the Frattini subgroup
of F . By Proposition 2.1.4, N =

⋂

U , where U runs through the open normal
subgroups of F containing N . It follows that (see Proposition 2.8.9)

Φ(N) = lim←−Φ(U) =
⋂

Φ(U).

Since N is nontrivial, we have Φ(N) 
= N . So, there exists some U such that
N ≤ U �o F and N 
≤ Φ(U), that is, such that N − (N ∩ Φ(U)) 
= ∅. Choose
y ∈ N − (N ∩ Φ(U)). By Corollary 7.6.10, there exists a basis Y converging
to 1 of the free pro-p group U with y ∈ Y (note that U is free pro-p by
Theorem 3.6.2). Hence, replacing F by U if necessary, we may assume that
X ∩N 
= ∅.

Then the hypotheses of cases 1 and 2 in the proof of Proposition 8.6.2
are valid under our present assumptions, and therefore our result holds if
|X| ≤ ℵ0.

Suppose next that |X| > ℵ0. We know that N is a free pro-p group
(see Corollary 7.7.5). If rank(N) = |X|, then rp(N) = rank(N) = |X| by
Proposition 8.2.6; hence, in this case, the result follows.
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The other alternative is that rank(N) < |X|; but we shall show presently
that this in fact is not possible. Indeed, assume that rank(N) < |X|. Then,
by Lemma 8.3.8(b), there exist closed subgroups L and R of F such that
N,R ≤ L � F , L = N × R and w0(F/L) ≤ w0(N). Remark that w0(N) <
|X| = w0(F ), because either N has finite rank and then w0(N) = ℵ0, or
w0(N) = rank(N). It follows that w0(F/L) < |X|; hence, w0(L) = |X|,
and so w0(R) = |X|. Choose elements x and y such that 1 
= x ∈ N and
1 
= y ∈ R. By Corollary 7.7.5, 〈x, y〉 is a free pro-p group. Since xy = yx,
this group is abelian, and hence 〈x, y〉 = 〈z〉, for some element z. On the
other hand, it is plain that

〈z〉 = 〈x, y〉 = 〈x〉 × 〈y〉.

Say x = zα and y = zβ . Then 〈x〉 ∩ 〈y〉 ≥ 〈zαβ〉 
= 1. This contradiction
implies that, in fact, the case rank(N) < |X| never occurs. ��

Corollary 8.6.4 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of rank m ≥ 2. Let N be a closed normal
subgroup of F . Assume that either m or the index of N in F is infinite.
Then for any given prime number p, either rp(N) = 0 or rp(N) = m∗, where
m∗ = max{m,ℵ0}.

Proof. Consider a prime number p for which rp(N) 
= 0. Then there ex-
ists some K �o N with N/K ∼= Cp. We must show that rp(N) = m∗, and
for this it suffices to check that rp(N) ≥ m∗. By Lemma 8.3.8(b) there ex-
ists an open normal subgroup L of F containing N such that K � L and
L/K = N/K × N ′/K, where N ′ is a certain closed normal subgroup of L
containing K; furthermore, if the rank of F is finite, L can be chosen so
that its rank is arbitrarily large. According to Theorem 3.6.2, L is free pro -
C and max{rank(L),ℵ0} = max{m,ℵ0}. So, we may assume that F = L,
and if rank(F ) is finite, we may suppose it is as large as we wish. It follows
that K = N ∩ N ′ and F/N ′ ∼= N/K ∼= Cp. Recall that if R = Rp(F )
is the intersection of all closed normal subgroups T of F where F/T is
a pro-p group, then F/R is the free pro-p group of rank m (see Proposi-
tion 3.4.2). By Lemma 8.2.5, rp(N) ≥ rp(NR/R). Note that NR/R is non-
trivial, for if NR = R, then N ≤ R ≤ N ′ and so NN ′ = N ′; however
we know that NN ′ = F 
= N ′. If the index of NR/R in F/R is infinite,
then rp(N) ≥ rp(NR/R) = m∗ by Proposition 8.6.3. Suppose now that
[F/R : NR/R] < ∞. Then rp(NR/R) ≥ m by Theorem 3.6.2 and Proposi-
tion 8.2.6. If m is infinite, we clearly have rp(N) ≥ rp(NR/R) = m = m∗. On
the other hand, if m is finite, we may assume that rp(NR/R) is as large as
we wish; thus rp(N) ≥ ℵ0 = m∗. Therefore, if m is finite, then rp(N) = ℵ0. ��

Theorem 8.6.5 Let C be an NE-formation of finite groups. Assume that N
is a closed normal subgroup of a free pro - C group F = FC (m) of rank m ≥ 2.
Then d(N) is finite if and only if m is finite and N has finite index in F .
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Proof. If C involves at least two primes, this follows from Corollary 8.5.12.
If F is a pro-p group, then the result follows from Proposition 8.6.3 and
Theorem 3.6.2. ��

For varieties of finite groups we have the following result.

Theorem 8.6.6 Let C be an extension closed variety of finite groups and let
L be a finitely generated subgroup of a free pro - C group F = F (m) of rank
m ≥ 2. Suppose L contains a nontrivial normal subgroup N of F . Then m is
finite and L is open in F .

Proof. If C involves at least two different primes, the result is a special case
of Theorem 8.5.16. If F a free pro-p group, for completeness we indicate an
easy proof based on Theorem 9.1.19 proved later on and on a result not
contained in this book. According to Theorem 9.1.19, there exists an open
subgroup U of F containing L such that U = L%L1 (the free pro-p product;
see Section 9.1 for this concept). Since N is normal in F and nontrivial,
L ∩ Lx ≥ N 
= 1, for every x ∈ L1. This implies that L1 = 1 (cf. Herfort and
Ribes [1985], Theorem B′), i.e., L = U is open. Since L is finitely generated,
this means that m is finite. ��

Theorem 8.6.7 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of infinite rank m. Assume that N1 and N2

are closed normal subgroups of F with the same S-rank functions, i.e.,
rS(N1) = rS(N2) for all S ∈ Σ. Then N1

∼= N2.

Proof. If F is a free pro-p group, then N1 and N2 are free pro-p groups of rank
m. Therefore N1

∼= N2. Assume next that C involves at least two different
primes. Then by Theorems 3.6.2 and 8.5.4, the groups N1 and N2 are homo-
geneous and w0(N1) = w0(N2). Then the result follows from Theorem 8.5.2.

��

Theorem 8.6.8 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of rank m ≥ 2. A nontrivial closed normal
subgroup N of infinite index in F is free pro - C if and only if rS(N) = m∗

for every finite simple group S ∈ C, where m∗ = max{m,ℵ0}.

Proof. If C involves at least two different primes, this follows from Theo-
rem 8.5.13 and Theorem 3.6.2. If F is a free pro-p group, every closed sub-
group N of F is free pro-p by Corollary 7.7.5; moreover if N is of infinite
index in F , then rp(N) = m∗ = max{m,ℵ0} by Proposition 8.6.3. ��

Example 8.6.9 Let F = FC (m) be a free profinite group of rank m ≥ 2.
Let S be the class of all finite solvable groups. Let RS (F ) be as defined in
Section 3.4, so that F/RS (F ) is the maximal prosolvable quotient of F . Then
RS (F ) has no nontrivial prosolvable quotients (see Lemma 3.4.1). Hence, in
particular, RS (F ) is not a free profinite group.
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Similarly, for every prime number p, the normal subgroup Rp(F ) of F is
not a free profinite group. Observe that if p and q are different primes, then,
using Theorem 8.6.7, one sees that Rp(F ) and Rq(F ) are not isomorphic.
Similarly, Rp(F ) 
∼= RS (F ).

Definition 8.6.10 Let m be an infinite cardinal. Denote by XC (m) the col-
lection of all functions f = fC that assign to each finite simple group S a
cardinal number f(S) satisfying the following conditions:

(a) 0 ≤ f(S) ≤ m, for all S ∈ Σ;
(b) If S 
∈ ΣC , then f(S) = 0; and
(c) For a prime number p, f(Cp) is either 0 or m.

The next two theorems indicate the importance of such functions f . They
show that XC (m) is exactly the collection of all S-rank functions of normal
subgroups of a free pro - C group of rank m.

Theorem 8.6.11 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group of rank m ≥ 2 and N a closed normal subgroup of F .
Assume that either m or the index of N in F is infinite. Then the S-rank
function r∗(N) of N belongs to XC (m∗), where m∗ = max{m,ℵ0}.

Proof. If N = 1, the result is obvious. Assume N 
= 1. By Lemma 8.2.5,
rS(N) ≤ w0(N) ≤ w0(F ) = m∗ for S ∈ Σ, and obviously rS(N) = 0 for
S 
∈ ΣC . The function r∗(N) satisfies condition (c) by Corollary 8.6.4. ��

Theorem 8.6.12 Let C be an NE-formation of finite groups. Let m be an
infinite cardinal and let f ∈ XC (m). Then F = FC (m) contains a closed
normal subgroup N with rank function r∗(N) such that f(S) = rS(N) for
every S ∈ ΣC.

Proof. Recall that ΣC is the collection of all simple groups in C.

Step 1. Construction of N.

For each S ∈ ΣC , choose KS to be a closed normal subgroup of F such that

MS(F ) ≤ KS ≤ F

and
rS(KS/MS(F )) = f(S).

Put
H =

⋂

S∈ΣC

KS .

We claim that HMT (F ) = KT for each T ∈ ΣC . To see this, first set

HT̃ =
⋂

S �=T
KS .
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Remark that F/HT̃ does not admit T as a quotient, since F/HT̃ is a quotient
of F/(

⋂

S �=T MS(F )).

F

KS KT

HT̃ MT

H

We deduce that F/HT̃KT = 1, since F/HT̃KT is a quotient of both F/HT̃
and F/KT . So F = HT̃KT ; therefore KT /H ∼= F/HT̃ does not admit T as
a quotient. Now, since KT /HMT (F ) is a product of copies of T as well as a
quotient of KT /H, we have HMT (F ) = KT , proving the claim.

Consider now the set L of all closed normal subgroups L of F such that
LMT (F ) = KT for each T ∈ ΣC . Since H ∈ L, L 
= ∅. Define a partial
ordering on L by reverse inclusion, i.e., L1 ≺ L2 if and only if L1 ≥ L2. Then
(L,≺) is an inductive poset. Indeed, let {Li | i ∈ I} be a totally ordered
subset of L, and set L =

⋂

i∈I Li; then LMT (F ) = KT for each T ∈ ΣC (to
see this, let k ∈ KT ; then the nonempty closed subsets Bi = Li ∩ kMT (F )
(i ∈ I) have the finite intersection property; hence, by the compactness of F ,
⋂

i∈I Bi = L ∩ kMT (F ) 
= ∅, i.e., k ∈ LMT (F )). By Zorn’s Lemma there
exists a maximal N in the poset (L,≺). Therefore, N is a minimal closed
normal subgroup of F with respect to the property

NMT (F ) = KT for all T ∈ ΣC .

Step 2. We shall show that for this N , rS(N) = f(S) for every finite simple
group S.

Clearly, rS(N) = 0 if S 
∈ ΣC , and rS(N) ≤ m for each S ∈ ΣC (see
Lemma 8.2.5). Assume S ∈ ΣC and f(S) = m. Since NMS(F ) = KS , there is
an epimorphism from N onto KS/MS(F ); so rS(N) ≥ rS(KS/MS(F )) = m;
thus rS(N) = f(S).

Next suppose that S ∈ ΣC and f(S) = 0. We claim that MS(N) is in the
set L defined in Step 1 above. Since MS(F ) = KS , one has N ≤MS(F ), and
hence MS(N)MS(F ) = KS . For T ∈ ΣC , T 
= S, observe that the image of
the natural epimorphism

N/MS(N) −→ NMT (F )/MS(N)MT (F ) = KT /MS(N)MT (F )

must be trivial, since N/MS(N) is a direct product of copies of S, and
KT /MS(N)MT (F ) a direct product of copies of T . Therefore
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MS(N)MT (F ) = KT ,

proving our claim. From the minimality of N , we infer that MS(N) = N .
Thus rS(N) = 0, as needed.

Finally, let S ∈ ΣC with 0 
= f(S) 
= m. In particular, S is not abelian.
To verify that rS(N) = f(S), it suffices to show that N ∩MS(F ) = MS(N).
Indeed, if that is the case,

N/MS(N) ∼= NMS(F )/MS(F ) = KS/MS(F ),

and, by assumption, rS(KS/MS(F )) = f(S).
Suppose N ∩MS(F ) 
= MS(N). Then there exists U �o N with N/U ∼= S

such that for every V �o F with F/V ∼= S, one has V ∩N 
= U . For any such
V we have either N ≤ V , and then NV = V = UV , or N 
≤ V , and then
NV = F = UV . Therefore, for any x ∈ F , one has

x−1UxV = x−1UV x = x−1NV x = NV.

Set
R =

⋂

x∈F
x−1Ux.

Now, if N ≤ V , then RV = V . On the other hand, if N 
≤ V , RV = F
by Lemma 8.2.1, since S is a nonabelian simple group, and, as pointed out
above, x−1UxV = F for all x ∈ F . Hence

NV = RV for all V �o F with F/V ∼= S.

Therefore, taking intersections over these V ,
⋂

V

RV =
⋂

V

NV.

Now,
⋂

V

RV =
⋂

V ≥R
RV =

⋂

V ≥RMS(F )

V = RMS(F ),

since RMS(F ) is normal in F (see Lemma 8.2.4 for the last equality). Simi-
larly,

⋂

V

NV =
⋂

V ≥N
NV =

⋂

V ≥NMS(F )

V = NMS(F ) = KS .

Thus RMS(F ) = KS . Further, we shall show that R ∈ L. To see this it
remains to show that if S 
= T ∈ ΣC , then RMT (F ) = KT . First observe
that N/R is a direct product of copies of S (see Lemma 8.2.2), and hence so
is its homomorphic image NMT (F )/RMT (F ) = KT /RMT (F ). But this last
group is a direct product of copies of T . Thus KT = RMT (F ). So R ∈ L. By
the minimality of N , we get that R = N , a contradiction. Hence U does not
exist. Therefore N ∩MS(F ) = MS(N), as desired. ��
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Theorem 8.6.13 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group of finite rank m ≥ 2 and let N be a closed normal
subgroup of F of infinite index. Then N is isomorphic to a normal subgroup of
FC (ℵ0) (in fact to any closed normal subgroup of FC (ℵ0) whose rank function
is r∗(N)).

Proof. If C involves only one prime p, then the result is clear since then
N is a free pro-p group of countably infinite rank (see Proposition 8.6.3).
Assume that C involves at least two different primes. Then N is homogeneous
by Theorem 8.5.4. By Theorem 8.6.11, r∗(N) ∈ XC (ℵ0); and according to
Theorem 8.6.12, there exists a closed normal subgroup N1 of FC (ℵ0) such
that r∗(N1) = r∗(N). If N1 has finite index in FC (ℵ0), then it is isomorphic
to FC (ℵ0) (see Theorem 3.6.2); therefore, N1 is homogeneous. If, on the other
hand, the index of N1 is infinite, then N1 is homogeneous by Theorem 8.5.4.
Thus, by Theorem 8.5.2, N ∼= N1. The last assertion of the theorem follows
from Theorem 8.6.7. ��

Exercise 8.6.14 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group of finite rank m ≥ 2 and N a closed normal subgroup
of F of infinite index. Then N is isomorphic to a normal subgroup of FC (ℵ0).

Exercise 8.6.15 Let π be a nonempty set of prime numbers and let C be the
class of all finite solvable groups whose orders involve only primes in π. Let
F = FC (m) be the free pro - C group of rank m ≥ 2 and let N be a nontrivial
closed normal subgroup of F of infinite index. Let C′ be the class of all finite
solvable groups whose orders involve only those primes p ∈ π such that Cp is
not a (continuous) quotient of N .

(a) C and C′ are extension closed varieties of finite solvable groups.
(b) The isomorphism class of N is determined by the primes involved in C′

in the following sense. Let m∗ = {m,ℵ0} and let R = RC ′ (FC (m∗)) be the
intersection of all closed normal subgroups M of the free pro - C group
FC (m∗) of rank m∗ such that FC (m∗)/M is pro - C′. Then

N ∼= R.

8.7 Proper Open Subgroups of Normal Subgroups

In Example 8.6.9 we saw explicit instances of closed normal subgroups of a
free pro - C group which are not free pro - C. The main result of this section is
that any proper open normal subgroup of closed normal subgroups of a free
pro - C group are free pro - C. This follows immediately from the work above
and it is stated in Theorem 8.7.1. A more general result holds if C is an ex-
tension closed variety of finite groups. In this case, any proper open subgroup
of a closed normal subgroups of a free pro - C group is free pro - C. This result
requires some additional preparation and it is proved in Theorem 8.7.9.
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Theorem 8.7.1 Let C be an NE-formation of finite groups. Let F be a free
pro - C group of rank m ≥ 2 and N a closed normal subgroup of F . Then,
every proper open normal subgroup K of N is a free pro - C group.

Proof. If F is a free pro-p group, then the result is clear by Corollary 7.7.5.
Assume that C involves at least two different primes. By Theorem 3.6.2 we
may assume that N has infinite index in F . Next observe that if p is a
prime number and N/K is a p-group, then rp(N) = m∗ = max{m,ℵ0} by
Corollary 8.6.4. Therefore, by Theorem 8.5.14, rS(K) = m∗ for every finite
simple group S in C. Thus K is free pro - C by Theorem 8.5.13. ��

Proposition 8.7.2 Let C be an NE-formation of finite groups. Let F = F (m)
be a free pro - C group of rank m ≥ 2. Then, every closed abelian normal
subgroup of F is trivial.

Proof. Let N �c F . If [F : N ] < ∞, then N is free pro - C of rank at least
2 according to Theorem 3.6.2; hence N is not abelian. If [F : N ] is infinite,
then it contains a proper normal subgroup T , which is free pro - C by The-
orem 8.7.1. Using Theorem 8.6.5 one deduces that the rank of T is infinite,
and thus T is not abelian. ��

Corollary 8.7.3 Let C be an NE-formation of finite groups. Let F = F (m)
be a free pro - C group of rank m ≥ 2. Then, the center of F is trivial.

Proposition 8.7.4 Let C be an NE-formation of finite groups involving at
least two different prime numbers. Let F = F (m) be a free pro - C group of
rank m ≥ 2. Then, every closed pronilpotent normal subgroup of F is trivial.

Proof. Let p, q be distinct primes such that Cp, Cq ∈ C. Consider the wreath
product G = Cp & Cq. Then G ∈ C, d(G) = 2 and G is not nilpotent. Let
N be a nontrivial closed normal subgroup of F . If [F : N ] < ∞, then N
is free pro - C of rank at least 2 according to Theorem 3.6.2; hence there is
a continuous epimorphism N −→ G, and so N is not pronilpotent. Assume
that [F : N ] = ∞. Let K be a proper open normal subgroup of N . By
Theorems 8.7.1 and 8.5.16, K is free pro - C of infinite rank. Hence G is a
homomorphic image of K. Therefore K is not pronilpotent, and so neither
is N . ��

Since the Frattini subgroup of a profinite group is pronilpotent (see Corol-
lary 2.8.4), we deduce

Corollary 8.7.5 Let C be an NE-formation of finite groups involving at least
two different prime numbers. Let F = F (m) be a free pro - C group of rank
m ≥ 2. Then, the Frattini subgroup of F is trivial.

Exercise 8.7.6

(a) Prove that results 8.6.2–8.6.8, 8.6.11 and 8.7.1–8.7.4 remain valid for sub-
normal subgroups N .
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(b) Show that Theorem 8.7.1 is not necessarily valid if one only assumes that
N is an accessible subgroup, even if C is an NE-formation of finite groups
involving at least two different prime numbers.

Proposition 8.7.7 Let C be an NE-formation of finite groups. A free pro -
C group F = F (m) of rank m ≥ 2 cannot be written as a nontrivial direct
product.

Proof. Suppose F = A × B, where A 
= 1 
= B. Choose open normal proper
subgroups A1 and B1 of A and B respectively. By Theorem 8.7.1, A1 and B1

are free pro - C. Choose a prime p such that Cp ∈ C. Then F contains a closed
subgroup isomorphic to Zp×Zp. Hence (see Theorem 7.3.1 and Exercise 7.4.3)
the cohomological dimension of F would be at least 2, a contradiction. ��

We can now generalize Corollary 8.7.3.

Proposition 8.7.8 Let C be an NE-formation of finite groups. Let F be a
pro - C group of rank at least two, and let N �cF . Then the centralizer CF (N)
of N in F is trivial.

Proof. Put C = CF (N). Then C ∩ N is an abelian normal subgroup of F ,
and hence C ∩N = 1 by Corollary 8.7.3. Therefore, CN = C ×N . If C 
= 1,
let C1 be a proper open normal subgroup of C. Then by Theorem 8.7.1,
the group C1 × N is a free pro - C group. This contradicts the conclusion of
Proposition 8.7.7. Thus C = 1. ��

Next we state a sharper version of Theorem 8.7.1 when the class C is in
addition a variety.

Theorem 8.7.9 Let C be an extension closed variety of finite groups and let
F = FC (m) be a free pro - C group of rank m ≥ 2. Let N be a closed normal
subgroup of F and R a proper open subgroup of N . Then R is a free pro - C
group. If either [F : N ] = ∞ or m = ∞, then rank(R) = m∗ = max{m,ℵ0};
while, if [F : N ] <∞ and m <∞, then rank(R) = [F : R](m − 1) + 1.

The proof of this theorem consists of first reducing the problem to the
situation when R is a normal subgroup of infinite index of a free pro - C group;
then one uses Theorem 8.6.8. The key step is contained in the following
lemma; it will allow us to compute the rank function of R.

Lemma 8.7.10 Let C be an extension closed variety of finite groups, and let
F = FC (m) be a free pro - C group of infinite rank m. Let E be a proper open
subgroup of F . Let S be a finite simple group in C. Then there exists a closed
normal subgroup H of E such that H(E ∩MS(F )) = E and E/H ∼=

∏

m
S.

Proof. We shall use the fact that S can be generated by two elements; but
the proof can be easily modified if one does not want to use this fact.
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Let I denote a set of cardinality m. Let X = Y ∪. {xi, x′
i | i ∈ I} be a basis

of F converging to 1 such that X ∩E = {xi, x′
i | i ∈ I}. Note that Y is finite.

For each i ∈ I define a continuous epimorphism

ϕi : F −→ S

such that ϕi(y) = 1 for y ∈ Y and

〈ϕi(xj), ϕi(x′
j)〉 =

{

S if j = i;
1 if j 
= i.

If S is abelian, we shall assume in addition that ϕi(xj) = ϕi(x′
j) for all j ∈ I.

Clearly, E∩MS(F ) is a closed normal subgroup of E∩(
⋂

i∈I Ker(ϕi)). Define
ψi : E −→ S to be the restriction of ϕi to E. Set

M = E ∩
(

⋂

i∈I
Ker(ϕi)

)

=
⋂

i∈I
Ker(ψi).

Hence it suffices to show the existence of a closed normal subgroup H of E
such that HM = E and E/H ∼=

∏

m
S.

By the construction in the proof of Theorem 3.6.2, E admits a basis W =
{xi, x′

i | i ∈ I}∪. Z converging to 1, where Z has cardinality m. Furthermore,
the elements of Z have the form tx( ˜tx)−1( 
= 1), where t ranges through a
certain right transversal T , containing 1, of E in F , and where x ∈ X.

For each i ∈ I, define
σi : E −→ S

to be a continuous epimorphism such that σi(z) = 1 for all z ∈ Z and

〈σi(xj), σi(x′
j)〉 =

{

S if j = i;
1 if j 
= i.

If S is abelian, we shall assume in addition that σi(xj) = σi(x′
j) for all j ∈ I.

It follows from this definition that Ker(σi) 
= Ker(σj) for all i, j ∈ I, i 
= j.
Next we claim that Ker(σi) 
= Ker(ψj) for all i, j ∈ I. Assume to the

contrary that Ker(σi) = Ker(ψj). Choose x ∈ {xi, x′
i} and 1 
= t ∈ T (such t

exists since [F : E] > 1) so that tx( ˜tx)−1 ∈ Z. Then σi(tx( ˜tx)−1) = 1, and
therefore (note ˜tx = t, since x ∈ E)

1 = ψj(tx( ˜tx)−1) = ϕj(tx( ˜tx)−1) = ϕj(txt−1) = ϕj(t)ϕj(x)ϕj(t)−1.

Hence, ϕj(x) = 1, and so ψj(x) = 1. Thus σi(x) = 1; but, by definition of σi,
σi(x) 
= 1, a contradiction. This proves the claim.

Define H =
⋂

i∈I Ker(σi).

Case 1: S is nonabelian.

Then, by Lemma 8.2.3, the canonical homomorphism
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E/H −→
∏

i∈I
E/Ker(σi)

is an isomorphism. Therefore,

E/H ∼=
∏

m

S.

Finally, we have to show that HM = E. Suppose not. Then, by Lem-
ma 8.2.4, there exists an open normal subgroup L of E such that L =
Ker(σi) = Ker(ψj), for some i, j ∈ I. This contradicts the claim above.

Case 2: S ∼= Z/pZ is cyclic of prime order p.

In this case, let E/Rp(E) be the maximal pro-p quotient of E. Then
E/Rp(E) is free pro-p of rank m. Observe that E/H is the Frattini quotient
of E/Rp(E). Therefore, w0(E/H) = m; so, E/H ∼=

∏

m
Z/pZ.

It remains to prove that E = HM . To show this, consider the Z/pZ-
vector space V = E/Mp(E), written additively. Let H̄ and M̄ denote the
canonical images of H and M in V , respectively.

It suffices to prove that H̄ + M̄ = V . Denote by ψ̄i : V −→ Z/pZ and
σ̄i : V −→ Z/pZ the maps induced on V by ψi and σi respectively (i ∈ I).
Then, using the notation of Section 2.9, we have M̄ = AnnV (〈ψ̄i | i ∈ I〉)
and H̃ = AnnV (〈σ̄i | i ∈ I〉). Hence, according to Proposition 2.9.10,

H̄ + M̄ = AnnV (〈ψ̄i | i ∈ I〉 ∩ 〈σ̄i | i ∈ I〉).

Therefore, it suffices to show that 〈ψ̄i | i ∈ I〉 ∩ 〈σ̄i | i ∈ I〉 = 0. To see this,
consider an element α in this intersection. Say

α =
∑

i∈I
aiψ̄i =

∑

i∈I
biσ̄i,

where ai, bi ∈ Z/pZ, and all coefficients ai, bi are zero but for a finite number
of cases. We must show that α = 0. Consider the image z̄ in V of an element
z = txi˜txi

−1 ∈ Z (i ∈ I, 1 
= t ∈ T ). Then

ψ̄j(z̄) = ψj(txi˜txi
−1

) = ψj(txit−1) = ψj(t) + ψj(xi) − ψj(t) = ϕj(xi).

By definition of ϕi we have that ϕj(xi) = 0 if and only if j 
= i. On the other
hand, σ̄j(z̄) = 0 for all j ∈ I. Therefore, ai = 0 for all i ∈ I. Thus α = 0. ��

Proof of Theorem 8.7.9. If [F : N ] < ∞, the result follows from Theo-
rem 3.6.2. Suppose [F : N ] is infinite. By Theorem 8.6.13 we may assume that
m is an infinite cardinal. By Theorem 8.6.8, it suffices to prove that rS(R) = m

for every finite simple group S ∈ C. Choose an open subgroup E of F with
E ∩N = R. Replacing F by EN if necessary, we may assume that F = EN .
By Theorem 3.6.2, E is a free pro - C group of rank m. Given any finite simple
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group S ∈ C, it follows from Lemma 8.7.10 that there exists a closed normal
subgroup H of E such that E/H ∼=

∏

m
S and H(E∩MS(F )) = E. We claim

that HR = E. Suppose not. Then there exists a closed normal subgroup K of
E such that E/K ∼= S andK ≥ HR (this assertion is clear if S = Cp for some
prime p, for in this case E/H is an elementary abelian p-group; while, if S
is nonabelian, the assertion follows from Lemma 8.2.4). Put L = NK. Then
L � F and F/L ∼= S. Therefore K = L ∩ E ≥ MS(F ). Thus K ≥ HMS(F ),
contradicting the fact that E = HMS(F ). This proves the claim. Hence,

R/R ∩H ∼= E/H ∼=
∏

m

S.

So rS(R) ≥ m. But obviously w0(R) ≤ m. Thus rS(R) = m, as desired. ��

8.8 The Congruence Kernel of SL2(Z)

Recall (see Section 4.7) that the congruence kernel K of SL2(Z) is the kernel
of the natural continuous epimorphism

ϕ : ̂SL2(Z) −→ SL2(̂Z) ∼=
∏

p

SL2(Zp).

The following theorem describes K and, in particular, it shows that ϕ is not
an isomorphism, i.e., that the profinite topology of SL2(Z) is strictly finer
than its congruence subgroup topology.

Theorem 8.8.1 The congruence kernel K of SL2(Z) is a free profinite group
of countably infinite rank.

Proof. The group SL2(Z) can be expressed as an amalgamated product

SL2(Z) = 〈a〉 ∗〈c〉 〈b〉,

where

a =
[

0 1
−1 0

]

, b =
[

0 −1
1 1

]

and c =
[

−1 0
0 −1

]

= a2 = b3

(cf., for example, Serre [1980], Example I.4.2(c)).
Consider the congruence subgroup Γ2(3), that is, the kernel of the natural

epimorphism
ψ : SL2(Z) −→ SL2(Z/3Z).

Note that Γ2(3) has finite index in SL2(Z) and Γ2(3)∩ 〈a〉 = Γ2(3)∩ 〈b〉 = 1.
Hence, Γ2(3) is a free abstract group of finite rank (cf. Serre [1980], Proposi-
tion I.18). Since 〈c〉 is a finite central subgroup of SL2(Z), we have that 〈c〉 is
a central subgroup of ̂SL2(Z). Let ϕp : ̂SL2(Z) −→ SL2(Zp) be the continuous
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epimorphism induced by ϕ. Clearly ϕp(〈c〉) is a subgroup of order 2 which is
central in SL2(Zp). Since ̂SL2(Z)/K ∼= SL2(̂Z) ∼=

∏

p SL2(Zp), we have that
̂SL2(Z)/K contains an infinite closed central subgroup L of exponent 2.

Since Γ2(3) is an abstract free group of finite rank, ̂Γ2(3) is a free profinite
group of the same rank (see Proposition 3.3.6). The group ̂Γ2(3) can be
identified with the closure of Γ2(3) in ̂SL2(Z) because Γ2(3) has finite index
in SL2(Z); moreover, it is clear that ̂Γ2(3) ≥ K. Since ̂Γ2(3)/K is open
in ̂SL2(Z)/K, we have that (̂Γ2(3)/K) ∩ L 
= 1. Hence ̂Γ2(3)/K contains a
normal subgroup R/K of order 2, whereK�oR�ĉΓ2(3). Therefore, d(R) = ℵ0

by Proposition 8.5.10. Thus, Theorem 8.7.1 implies that K is a free profinite
group of rank ℵ0. ��

8.9 Sufficient Conditions for Freeness

The criterion of freeness for normal subgroups of free pro - C groups given in
Theorem 8.6.8 is sometimes difficult to use in practice. So it is convenient to
have other sufficient conditions of freeness that one can verify more easily.
To give such conditions is the purpose of this section. Sufficient conditions
for freeness have already appeared in Theorems 8.4.2 and 8.4.3 and in Corol-
lary 8.4.4. Our first result is a very useful test for freeness for certain “verbal”
subgroups of a free pro - C group.

Theorem 8.9.1 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group of rank m on a basis X converging to 1. Assume that
Φ = Φ(X) is the subgroup of F generated by X as an abstract group. Let
N �c F . If N ∩ Φ 
= 1, then N is a free pro - C group.

Proof. By Theorem 3.6.2, we may assume that N is of infinite index in F .
Note that if m = 1, then Φ ∼= Z; hence N = N ∩ Φ has finite index in F .
Therefore, we may also assume that m ≥ 2. Let S be a finite simple group.
By Proposition 8.6.2, rS(N) = m∗, where m∗ = max{m,ℵ0}. Thus the result
follows from Theorem 8.6.8. ��

Let G be a profinite group. Its n-th derived subgroup G(n) (n = 0, 1, 2, . . .)
is defined recursively by

G(0) = G, G(n+1) = [G(n), G(n)].

The series
G = G(0) ≥ G(1) ≥ · · · ≥ G(n) ≥ · · ·

is termed the derived series of G. The group G(1) is also called the commu-
tator subgroup of G, and often denoted by G′.
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Similarly, recall (see Exercise 2.3.17) that the n-th term Gn = γn(G)
(n = 1, 2, . . .) of the lower central series

G = G1 ≥ G2 ≥ · · · ≥ Gn ≥ · · ·

of G is defined recursively by

G1 = G, Gn+1 = [G,Gn].

As examples of how to make use of the test for freeness of Theorem 8.9.1,
we list explicitly some types of subgroups of a free pro - C group for which
freeness is preserved.

Corollary 8.9.2 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group. Then the following closed subgroups of F are also free
pro - C groups.

(a) The n-th derived group F (n) of F (n = 0, 1, . . .);
(b) The n-th term Fn of the lower central series of F (n = 1, 2, . . .).

Corollary 8.9.3 Let C be an NE-formation of finite groups. Let N be a closed
normal subgroup of a free pro - C group F = FC (m) of rank m ≥ 2 such that
F/N is abelian. Then N is a free pro - C group.

Proof. We use the notation of the theorem above. Since F/N is abelian, it
follows that N ≥ [F, F ]. Hence N ∩ Φ(X) 
= ∅ (Φ(X) is the abstract free
group on X). So the result is a consequence of Theorem 8.9.1. ��

The next result sharpens Theorem 8.4.2.

Theorem 8.9.4 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group of rank m ≥ 2. Assume that N and K are closed normal
subgroups of F such that N < K � F and d(K/N) < d(K). Then N is a free
pro - C group.

Proof. By Theorems 3.6.2, 8.7.1 and 8.4.2, we may assume that [F : K] and
[K : N ] are both infinite. Then d(K) = m∗ according to Theorem 8.6.5.
Choose a proper open normal subgroup L of K containing N ; then L is
free pro - C of rank m∗ by Theorem 8.7.1. If d(L/N) is finite, then obviously
d(L/N) < d(L). On the other hand, if d(L/N) is infinite (see Corollary 2.6.3
and Corollary 3.6.3),

d(L/N) = w0(L/N) = w0(K/N) = d(K/N) < d(K) = m
∗ = d(L).

Thus, applying Theorem 8.4.2 to the subgroup N of L, one deduces that N
is free pro - C, as asserted. ��
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Lemma 8.9.5 Let C be an NE-formation of finite groups. Let F = FC (m) be
a free pro - C group of infinite rank m and let N be a closed normal subgroup
of F . Assume that the set

Δ = {S ∈ C | S is a simple group and rS(N) < m}

is nonempty, and let C(Δ) be the class of all finite Δ-groups (see Section 2.1).
Then,

(a) An embedding problem of the form

F/N

ϕ
ϕ̄

A
α

B

is solvable whenever A and B are pro - C groups such that w0(B) < m,
w0(A) ≤ m and Ker(α) is a pro - C(Δ) group.

(b) If S ∈ Δ, then rS(F/N) = m.

Proof. (a) We need to construct a continuous epimorphism ϕ̄ : F/N −→ A
such that αϕ̄ = ϕ. By Lemma 3.5.4, we may assume that E = Ker(α) is
a finite minimal normal subgroup of A. By the minimality of E = Ker(α),
we must have that E =

∏

S (a finite direct product of copies of S), for
some S ∈ Δ (for, if S ∈ Δ is involved in E, then MS(E) �c A). By
Lemma 8.3.8, there exist closed normal subgroups L and Q of F with
MS(N) �c Q �c L and N �c L such that L/MS(N) = N/MS(N) ×Q/MS(N)
and w0(F/L) ≤ w0(N/MS(N)). Hence Q ∩N = MS(N). Since, by assump-
tion, w0(N/MS(N)) < m, we have w0(F/Q) < m. Let Ker(ϕ) = K/N , where
N ≤ K � F . Denote by ω : F −→ F/N and δ : F −→ D = F/Q ∩ K the
canonical epimorphisms. Let η : D −→ B be the epimorphism defined by
η(f(Q∩K)) = ϕ(fN) (f ∈ F ). Clearly ηδ = ϕω. Consider the pullback (see
Section 2.10)

C
α1

η1

D

η

A
α

B

of α and η. We shall think of C as consisting of those pairs (a, d) ∈ A × D
such that α(a) = η(d). Since α and η are epimorphisms, so are α1 and η1.
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MS(N) Q

N L F

ω

δ

γ

K

F/N

ϕD = F/(Q ∩K)
η

C

α1

η1

B

A

α

E

Note that w0(F/K) = w0(B) < m. Since D can be embedded in the group
F/Q × F/K and C can be embedded in A × D, we have w0(D) < m and
w0(C) ≤ m. Then, according to Theorem 3.5.9, there exists an epimorphism

γ : F −→ C

such that α1γ = δ. Since δ(N) ≤ Ker(η), one has

γ(N) ≤ α−1
1 (δ(N)) = E × δ(N).

Claim: (η1γ)(N) = 1.

Case 1. S is nonabelian.

Observe that
δ(N) = N(Q ∩K)/Q ∩K ∼= N/MS(N).

Hence E × δ(N) is a direct product of copies of S. Since γ(N) is a normal
subgroup of E × δ(N), it follows that γ(N) = E1 × δ(N), for some subgroup
E1 of E. Since δ(N) ∼= N/MS(N) is the largest quotient of N which is a
direct product of copies of S, it follows that E1 = 1. Thus (η1γ)(N) = 1 in
this case.
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Case 2. S = Cp, for some prime p.

Since rp(N) < m, we have rp(N) = 0 (see Theorem 8.6.11). So Mp(N) = N ,
and hence Q = F ; therefore Q ∩K = K. Then δ(N) = 1. If γ(N) 
= 1, we
would have that γ(N) = E×δ(N) has a quotient isomorphic to Cp. Therefore,
rp(N) ≥ 1, a contradiction. Thus γ(N) = 1, and hence the claim is proved.

From the claim we deduce that η1γ induces an epimorphism

ϕ̄ : F/N −→ A.

Then αϕ̄ = ϕ, as needed.
(b) First observe that rS(F/N) > 0. Indeed, if rS(F/N) = 0, then

NMS(F ) = F ; hence N/N ∩MS(F ) ∼= F/MS(F ). Therefore, rS(N) = m,
a contradiction. It follows that there exists a continuous epimorphism ϕ :
G/N −→ S. Choose a projection map α :

∏

m
S −→ S. By part (a), ϕ can

be lifted to an epimorphism ϕ̄ : G/N −→
∏

m
S. Thus, rS(F/N) ≥ m. ��

Theorem 8.9.6 Let C be an NE-formation of finite groups. Let F = FC (m)
be a free pro - C group of infinite rank m and let N be a closed normal subgroup
of F . Assume that the set

Δ = {S ∈ C | S is a simple group and rS(N) < m}

is nonempty, and let

R =
⋂

{H | N ≤ H �o F, F/H is a pro - C(Δ) group},

where C(Δ) is the class of all finite Δ-groups (see Section 2.1). Then F/R is
a free pro - C(Δ) group of rank m.

Proof. Let S ∈ Δ. By Lemma 8.9.5(b), there is a continuous epimorphism
G/N −→

∏

m
S. Remark that every continuous epimorphism F/N −→

A onto a pro - C(Δ) group A factors through the canonical epimorphism
F/N −→ F/R. Hence, there exists a continuous epimorphism

F/R −→
∏

m

S.

Thus, w0(G/R) = m. So, by Theorem 3.5.9, it suffices to prove that F/R has
the strong lifting property over the class E of all epimorphisms of pro - C(Δ)
groups. From the remark above, it suffices to prove that F/N has the strong
lifting property over E . This follows from Lemma 8.9.5(a). ��

Theorem 8.9.7 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of rank m ≥ 2. Suppose that K1 and K2 are
closed normal subgroups of F such that neither of them contains the other.
Then N = K1 ∩K2 is a free pro - C group.
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Proof. By Theorem 8.7.1, we may assume that [F : Ki] = ∞ (i = 1, 2).
Choose Li to be a proper open normal subgroup ofKi containingN (i = 1, 2);
then L1 and L2 are both free pro - C by Theorem 8.7.1. Clearly L1 ∩L2 = N .
One easily checks that Li � K1K2 (i = 1, 2); it follows that L1L2 is a proper
open normal subgroup of K1K2. So, by Theorem 8.7.1, L1L2 is a free pro - C
group. Hence, replacing Ki by Li (i = 1, 2) and F by L1L2, we may assume
that F = K1K2, and that K1 and K2 are free pro - C nontrivial normal
subgroups of infinite index.

Suppose first that the rank m of F is finite. Since F/N ∼= K1/N ×K2/N ,
the group F/N does not satisfy Schreier’s formula (see Lemma 8.4.5). There-
fore N is free pro - C by Corollary 8.4.4.

Assume now that the rank m of F is infinite. Consider the family

Δ = {S ∈ C | S is a simple group and rS(N) < m}.

If Δ is empty, then N is free pro - C of rank m by Theorem 8.6.8. Suppose
that Δ is nonempty. Put C′ = C(Δ), the class of all finite Δ-groups, (see
Section 2.1) and let

R =
⋂

{H | N ≤ H �o F, F/H is a pro - C′ group}.

Then, by Theorem 8.9.6, F̄ = F/R is a free pro - C′ group of rank m. Let
ϕ : F −→ F̄ be the canonical epimorphism and let K̄i = ϕ(Ki) = KiR/R
(i = 1, 2). Since R ≥ N , ϕ factors through F/N . From

F/N = K1/N ×K2/N

we deduce that K̄1∩K̄2 is in the center of F̄ . By Corollary 8.7.3, K̄1∩K̄2 = 1,
and, by Proposition 8.7.7, this implies that either K̄1 or K̄2 is trivial. Say
K̄1 = 1, i.e., K1R = R. Then K1 ≤ R. Hence, F = RK2 and so F/K2

has no quotients belonging to Δ. Let S ∈ Δ. Since the free pro - C group
K1 is a normal nontrivial subgroup of F , its rank is m (see Theorem 8.6.8).
Therefore, we have K1/MS(K1) ∼=

∏

m
S. Now,

K1/MS(K1)N ∼= F/MS(K1)K2 = 1

since K1/MS(K1)N is a direct product of copies of S (see Lemma 8.2.4)
and, as we have pointed out before, S is not a quotient of F/K2. Therefore,
K1 = MS(K1)N . So,

N/(MS(K1) ∩N) ∼= K1/MS(K1) ∼=
∏

m

S.

Thus rS(N) = m. This is a contradiction since S ∈ Δ. So Δ = ∅, and
N = K1 ∩K2 is free pro - C, as asserted. ��
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Corollary 8.9.8 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of rank m ≥ 2. Suppose

ϕ : F −→ G1 ×G2

is a continuous epimorphism, where G1 and G2 are nontrivial pro - C groups.
Then Ker(ϕ) is a free pro - C group.

Proof. Denote by πi : G1 × G2 −→ Gi (i = 1, 2) the canonical projections.
Then Ker(π1ϕ) and Ker(π2ϕ) are nontrivial and

Ker(ϕ) = Ker(π1ϕ) ∩ Ker(π2ϕ).

So the result follows from the theorem above. ��
The following theorem is in some sense a counterpart to Theorem 8.7.1

in the case of free groups of finite rank.

Theorem 8.9.9 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of finite rank m ≥ 2. Suppose that N is a
closed normal subgroup of F of infinite index. Then, there exists H �c F such
that N ≤ H and H is a free pro - C group of countably infinite rank.

Proof. Denote by Δ the subset of C consisting of those simple groups S for
which rS(N) is finite. Observe that if Δ = ∅, then N itself is free pro - C by
Theorem 8.6.8; in this case we can take H = N .

Suppose then that Δ 
= ∅, and let S ∈ Δ. Consider an open normal
subgroup K of F containing N whose rank k as a free pro - C group satisfies
rS(FC (k − 1)) > rS(N). Let X be a basis of F , and let Φ be the abstract
group generated byX. By Proposition 3.3.13, Φ is a free abstract group. Since
K �o F , Φ ∩K is a free abstract group of rank k. Let Y be a basis of Φ ∩K,
and let y ∈ Y . Denote by L the closed normal subgroup of K generated by y.
Clearly K/L is a free pro - C group of rank k− 1. We claim that the index of
NL in K is infinite. Indeed, otherwise NL/L is a free pro - C group of rank
n ≥ k − 1 (see Theorem 3.6.2). So, using Lemmas 8.2.5 and 8.2.7, we have

rS(N) ≥ rS(FC (n)) ≥ rS(FC (k − 1)) > rS(N),

a contradiction. Choose a set {ti | i = 1, . . . , r} of coset representatives of K
in F belonging to Φ. Then

W =
r
⋂

i=1

Lti

is a normal subgroup of F . It follows that W ∩ Φ 
= 1. Put H = NW .
Observe that the index of H in F is infinite, for H ≤ NL. Therefore, by
Theorems 8.6.5 and 8.9.1, H is free pro - C of rank ℵ0. ��
Exercise 8.9.10 Let S be a fixed finite simple group and let C be the class of
all finite S-groups (see Section 2.1). Assume that F = FC (m) is a free pro - C
group of infinite rank m. Let N �c F . Then either N or F/N is a free pro - C
group.
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8.10 Characteristic Subgroups of Free Pro - C Groups

In Section 8.5 we characterized those homogeneous groups that can be real-
ized as normal subgroups of free pro - C groups. In this section we describe
the homogeneous groups with the more restrictive property that they can be
realized as characteristic subgroups of free pro - C groups.

Lemma 8.10.1 Let C be a formation of finite groups and let F be a free pro -
C group. Let U, V be closed normal subgroups of F and let β : F/U −→ F/V
be a continuous isomorphism. Then if either the rank of F is finite or the
rank of F is infinite and both U and V are open subgroups, then β is induced
by an automorphism α of F, i.e., α(U) = V and β(tU) = α(t)V, for each
t ∈ F .

Proof. This is equivalent to proving the existence of an automorphism α of
F such that the diagram

F
α

πU

F

πV

F/U
β

F/V

commutes, where the vertical maps are the natural projections. If the rank
of F is infinite, this follows from Theorem 3.5.9 and Proposition 3.5.6. As-
sume that rank(F ) is finite and let {x1, . . . , xn} be a basis of F . By Propo-
sition 2.5.4, there are elements y1, . . . , yn ∈ F such that πV (yi) = βπU (xi)
(i = 1, . . . , n) and F = 〈y1, . . . , yn〉. Let α : F −→ F be the epimorphism
defined by α(xi) = yi (i = 1, . . . , n). Clearly πV α = βπU . Finally, by Propo-
sition 2.5.2, α is an isomorphism. ��

Theorem 8.10.2 Let C be an NE-formation of finite groups and let F =
FC (m) be a free pro - C group of infinite rank m.

(a) If K is a closed characteristic subgroup of F, then rS(K) equals 0 or m

for every finite simple group S.
(b) Assume that Δ ⊆ ΣC. Then there exists a characteristic subgroup K of

F for which rS(K) > 0 (and thus, rS(K) = m) if and only if S ∈ Δ.

Proof. (a) Let K be a characteristic subgroup of F and let S be a finite
simple group with rS(K) 
= 0. Then MS(K)�cF . By Proposition 2.1.4, there
exists an open normal subgroup U of F such that MS(K) ≤ K ∩ U < K.
Hence KU/U ∼= K/K ∩ U ∼=

∏

S, a finite direct product of copies of S.
Suppose that rS(K) < m. Consider the diagram
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F

θ

ψ F/K

ϕ̄
ϕ

F/U
α
F/KU

where α, θ and ϕ are the canonical epimorphisms. By Lemma 8.9.5, there
exists a continuous epimorphism ϕ̄ : F/K −→ F/U such that αϕ̄ = ϕ. Define
ψ : F −→ F/U by ψ = ϕ̄θ. Then K ≤ Ker(ψ). Let ψ̄ : F/Ker(ψ) −→ F/U be
the isomorphism induced by ψ. By Lemma 8.10.1, there exists a continuous
automorphism β : F −→ F lifting ψ̄. Since K is characteristic, one has
K = β(K) ≤ β(Ker(ψ)) = U . This, however, contradicts the fact that, by
construction, K ∩ U < K. Hence rS(K) = m.

(b) If Δ = ΣC , one can put K = F . Let Δ 
= ΣC . Set Γ = Σ − Δ and
let C′ = C(Γ ) (see Section 2.1). Define K = RC ′ (F ) (see Section 3.4). Hence
K is characteristic. By Lemma 3.4.1, rS(K) = 0 for each S ∈ Γ . On the
other hand, if S ∈ Δ, there exists some U �o F such that F/U ∼= S. Note
that U 
≥ K since S 
∈ C′. So, KU = F . Hence K/K ∩ U ∼= F/U ∼= S. Thus,
rS(K) > 0. ��

The next goal of this section is to describe characteristic subgroups of a
free profinite group in terms of formations of finite groups. This gives addi-
tional useful information about characteristic subgroups.

Let G be a profinite group and let C be a formation of finite groups. It
follows from Lemma 3.4.1 that the subgroup RC (G) of G is characteristic;
furthermore, if C is a variety of finite groups, then RC (G) is fully invariant.
From the definition of RC (G) one can see that these subgroups play a role
analogous to that of verbal subgroups in the theory of abstract groups. If
F = F (m) is a free profinite group of rank m and C is a formation of profinite
groups, then the quotient group F/RC (F ) is a free pro - C group of rank m.

In the abstract theory of group varieties, the bijection between varieties
and fully invariant subgroups of free groups plays an important role. In the
context of profinite groups, this extends to a correspondence between forma-
tions and characteristic subgroups of free profinite groups, as we see in the
following

Theorem 8.10.3 Let F be a free profinite group of infinite rank. Then the
map C −→ RC (F ) defines a bijective correspondence between the set of all
formations of finite groups and the set of characteristic subgroups of F .
Moreover, C is a variety if and only if RC (G) is fully invariant in F .

Proof. Let K be a characteristic subgroup of F . Denote by C the class of
all finite groups which are quotient groups of F/K. We show that C is a
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formation of profinite groups. To do this, it suffices to prove that C is closed
under taking quotient groups and subdirect products of a finite collection of
groups. The first of these is clear. To prove the second, assume that G is
a finite group and let Ni � G be such that G/Ni ∼= Gi ∈ C (i = 1, 2) and
N1 ∩ N2 = 1. We have to show that G ∈ C. Since the rank of F is infinite,
there exists an epimorphism ϕ : F −→ G. Put Vi = ϕ−1(Ni), i = 1, 2. Then
V1 ∩ V2 = Ker(ϕ). By the definition of C, there exist open normal subgroups
W1 and W2 of F such that K ≤ Wi and F/Wi

∼= Gi ∼= F/Vi (i = 1, 2). By
Lemma 8.10.1, there exist automorphisms α1, α2 of F such that αi(Wi) = Vi,
i = 1, 2. Since K is characteristic, K = αi(K) ≤ α(Wi) = Vi. It follows that
K ≤ Ker(ϕ) = V1 ∩ V2; therefore G ∈ C.

Next we show that K = RC (G). Let M be a closed normal subgroup of
F such that F/M is a pro - C group. Then F/U ∈ C for any open normal
subgroup U of F containing M . It follows from the definition of C that there
exists an open normal subgroup V of F such that K ≤ V and F/V ∼= F/U .
By Lemma 8.10.1, there exists an automorphism α of F such that α(V ) = U .
Hence K = α(K) ≤ α(V ) = U . It follows that K ≤ RC (F ). The reverse
inclusion is obvious since F/K is pro - C.

One deduces from Lemma 3.4.1 that RC (F ) is characteristic (respectively,
fully invariant) if C is formation (respectively, a variety) of finite groups. It
remains to show that if RC (F ) is fully invariant, then C is a variety. To do
this we have to prove that C is closed under taking subgroups. Let G ∈ C
and assume that H is a subgroup of G. By definition of C, there exists an
epimorphism ψ : F −→ G such that Ker(ψ) contains K. Put V = ψ−1(H).
Since w0(V ) ≤ w0(F ) = rank(F ), there exists an epimorphism η : F −→ V
(see Theorem 3.5.9) which we can regard as an endomorphism of F . Since
η(K) ≤ K ≤ Ker(ψ), the group H ∼= V/Ker(ψ) is an epimorphic image of
F/K and therefore belongs to C. ��

Next we state a result that generalizes Proposition 4.5.4. We shall give
only a brief sketch of the proof, which is based in part on Theorem 8.10.3.

Theorem 8.10.4 Let K be a characteristic subgroup of a free profinite
group F . Then every automorphism of the quotient group F/K can be lifted
to an automorphism of F .

If the rank of F is finite, this result was proved as part of Proposition 5.4.4.
Suppose that the rank of F is infinite. Then, by Theorem 8.10.3, K = RC (F )
for some formation C of finite groups. Then, the idea of the proof is to prove
analogs of Lemma 8.5.6 and Proposition 8.5.7 after replacingM(−) by RC (−)
at appropriate places. For an explicit proof of this theorem see Mel’nikov
[1982].



8.11 Notes, Comments and Further Reading 351

8.11 Notes, Comments and Further Reading

The main idea for Theorem 8.1.3 appears in Gildenhuys and Lim [1972]. This
chapter is based mainly on work of O.V. Mel’nikov. Most of the results and
the methods contained here can be traced back to his papers, specially Mel’ni-
kov [1976, 1978, 1982, 1988]. In most cases our presentation is somewhat more
general than his.

The concept of a group ‘satisfying Schreier’s formula’ is due to Lubotzky
and van den Dries [1981]; they use it to give an elegant and independent
proof of Theorem 8.7.9 when F is at most countably generated.

Theorem 8.7.9, in the form presented here, appears in Jarden and
Lubotzky [1992]. Theorem 8.4.7 appears in Lubotzky [1982] (the analog of
this theorem for abstract free groups is also valid, and it was proved by R.
Strebel). Versions of 8.7.2–8.7.5 appear in Gruenberg [1967] (where a ver-
sion of Corollary 8.7.5 is attributed to O. Kegel), Anderson [1974], Mel’nikov
[1978], Oltikar and Ribes [1978], Lubotzky and van den Dries [1981]. Theo-
rem 8.9.7 is due to Jarden and Lubotzky [1992].

Further results of this type have been proved by Haran [1999] and Bary-
Soroker [2006]. Combining their results, they prove:

Theorem 8.11.1 Let F = F (m) be a free profinite group of rank m ≥ 2.
Suppose that N is a closed subgroup of F of infinite index and K1 and K2

are closed normal subgroups of F such that N ≥ K1 ∩ K2 but Ki 
≤ N
(i = 1, 2). Then N is a free profinite group of rank max{ℵ0,m}.



9 Free Constructions of Profinite Groups

Throughout this chapter C denotes a variety of finite groups.

In this chapter we introduce free products, free products with amalgamation
and HNN-extensions in the category of pro - C groups. We shall study only
basic properties of these constructions here.

9.1 Free Pro - C Products

In this section we study free pro - C products of finitely many pro - C groups.
Let Gi (i = 1, . . . , n) be a finite collection of pro - C groups. A free pro - C
product of these groups consists of a pro - C group G and continuous homo-
morphisms ϕi : Gi −→ G (i = 1, . . . , n) satisfying the following universal
property:

G
ψ

Gi

ϕi

ψi

K

for any pro-C group K and any continuous homomorphisms ψi : Gi −→ K
(i = 1, . . . , n), there is a unique continuous homomorphism ψ : G −→ K
such that ψi = ψϕi for all i = 1, . . . , n. We refer to ψ as the homomorphism
induced by the ψi, and we refer to the ϕi as the canonical maps of the free
pro - C product.

We denote a free pro - C product of the groups G1, . . . , Gn by

G =
n
∐

i=1

Gi or by G = G1 % · · · %Gn.

This is justified because free products are unique in a certain natural sense
(see Proposition 9.1.2).

Observe that one needs to test the above universal property only for finite
groups K ∈ C, for then it holds automatically for any pro - C group K, since
K is an inverse limit of groups in C.

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4 9, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4_9
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Exercise 9.1.1

(a) Let G = A ∗ B be a free product of abstract groups. Prove that GĈ =
AĈ %BĈ . (Hint: use Corollary 3.1.6 and the universal property.)

(b) Prove that a free pro - C group of finite rank is a free pro - C product of
copies of ZĈ .

Proposition 9.1.2 Let {Gi | i = 1, . . . , n} be a collection of pro - C groups.
Then there exists a unique free pro - C product

G =
n
∐

i=1

Gi.

Proof. The meaning of ‘uniqueness’ in this context is the following: assume
that G, together with continuous homomorphisms ϕi : Gi −→ G is a free pro -
C product of the groups {Gi | i = 1, . . . , n}, and assume that G̃, together with
continuous homomorphisms ϕ̃i : Gi −→ G̃ is another free pro - C product
of the groups {Gi | i = 1, . . . , n}; then there exists a unique continuous
isomorphism ρ : G −→ G̃ such that ρϕi = ϕ̃i, for all i = 1, . . . , n. From the
universal property in the definition of free product it is easily deduced that
if a free pro - C product exists, then it is unique.

To prove the existence we give an explicit construction of

G =
n
∐

i=1

Gi.

Let Gabs = G1 ∗ · · · ∗ Gn be a free product of G1, . . . , Gn considered as
abstract groups. Denote by ϕabsi : Gi −→ Gabs the natural embeddings. Let

N = {N �f Gabs | (ϕabsi )−1(N) �o Gi for all i = 1, . . . , n and Gabs/N ∈ C}.

One easily checks that N is filtered from below (see Section 3.2). Define
G = KN (Gabs) to be the completion of Gabs with respect to the topology
determined by N (see Section 3.2). Denote by

ι : Gabs −→ G

the natural homomorphism and put ϕi = ιϕabsi . Then each ϕi is continuous.
We show that G and ϕi (i = 1, . . . , n) satisfy the universal property of a free
product.

Let ψi : Gi −→ L, (i = 1, . . . , n) be continuous homomorphisms to some
group L ∈ C. Then, by the universal property for abstract free products, there
exists a unique homomorphism ψabs : Gabs −→ L with ψi = ψabsϕabsi . It fol-
lows that (ϕabsi )−1(Ker(ψabs)) = Ker(ψi) is open in Gi for every i = 1, . . . , n.
Since L ∈ C one has that Ker(ψabs) ∈ N . Therefore (see Lemma 3.2.1), there
exists a continuous homomorphism ψ : G −→ L with ψabs = ψι. Thus the
following diagram
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G

ψ

Gabs

ι

ψabs

Gi

ϕi

ϕabs
i

ψi
L

is commutative. This implies that ψi = ψϕi. Since G = KN (Gabs), one has
that

G = 〈ϕi(Gi) | i = 1, . . . , n〉

from where the uniqueness of ψ follows. ��

Remark 9.1.3 Think of the Gi as being embedded in

Gabs = G1 ∗ · · · ∗Gn.

Then G = G1%· · ·%Gn is the completion of Gabs with respect to the topology
defined by the collection of all normal subgroups N of finite index in Gabs

such that N ∩Gi is open in Gi (i = 1, . . . , n) and Gabs/N ∈ C.

Corollary 9.1.4 Let G1, . . . , Gn be pro - C groups and let G = G1 % · · · %Gn
be their free pro - C product. Then

(a) the natural homomorphisms

ϕj : Gj −→ G =
n
∐

i=1

Gi (j = 1, . . . , n)

are monomorphisms; and
(b) G = 〈ϕi(Gi) | i = 1, . . . , n〉.

Proof. Part (b) follows from the explicit construction of a free pro - C product
given in the proof of Proposition 9.1.2.

(a) Fix j. Define ψj : Gj −→ Gj to be the identity map and ψi : Gi −→ Gj
to be the trivial homomorphism for i 
= j (i = 1, . . . , n). Let ψ : G −→ Gj be
the homomorphism induced by ψ1, . . . , ψn. Then ψϕj = idGj . Therefore, ϕj
is injective. ��

Terminology: If H ≤c G are pro - C groups and there exists a closed sub-
group K of G such that G = H %K, then we say that H is a free factor of
G (as pro - C groups).

Let μi : Gi −→ Hi (i = 1, 2) be continuous homomorphisms of pro - C
groups. Denote by

μ1 % μ2 : G1 %G2 −→ H1 %H2
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the unique continuous homomorphism that makes the following diagrams
commutative (i = 1, 2)

G1 %G2
μ1�μ2

H1 %H2

Gi μi
Hi

where the vertical maps are the canonical monomorphisms.
In the next result we show that the operations of taking inverse limits

and free pro - C products commute.

Lemma 9.1.5 Let {G1i, μ1ij , I1} and {G2i, μ2ij , I2} be surjective inverse sys-
tems of pro - C groups over posets I1 and I2, respectively. Then,

(a) I1 × I2 is a poset in a natural way and {G1i %G2k, μ1ij % μ2kr, I1 × I2}
is an inverse system over I1 × I2.

(b)
(

lim←−
I1

G1i

)

%
(

lim←−
I2

G2i

)

∼= lim←−
I1×I2

(G1i %G2k).

Proof. Part (a) is straightforward. We indicate the main steps to prove
part (b). Set

G1 = lim←−
I1

G1i, G2 = lim←−
I1

G2i and G = lim←−
I1×I2

(G1i %G2k),

and denote by

μ1i : G1 → G1i, μ2k : G2 → G1ki and
μik : G→ G1i %G2k (i ∈ I1, k ∈ I2)

the projection maps.
For (i, k) ∈ I1 × I2, consider the composition

G1
μ1i−→ G1i −→ G1i %G2k

of canonical homomorphisms. These maps are compatible, and induce a cor-
responding continuous homomorphism

ϕ1 : G1 −→ G = lim←−
I1×I2

(G1i %G2k).

In an analogous way we obtain a continuous homomorphism ϕ2 : G2 −→ G.
To prove the lemma, it suffices to show that G together with the maps ϕ1 and
ϕ2 is a free pro - C product of G1 and G2. Remark that from our definitions
it follows easily that G is topologically generated by ϕ1(G1) and ϕ2(G2).
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Let K be a group in C and let ψi : Gi −→ K (i = 1, 2) be continuous
homomorphisms. We have to prove that there is a continuous homomorphism
ψ : G −→ K such that ψϕi = ψi (i = 1, 2). Observe that such ψ, if it exists,
would be unique by the remark just made. To define ψ we proceed as follows.
By Lemma 1.1.16, there exist indices ji ∈ Ii such that ψi factors through
Giji (i = 1, 2), i.e., there are continuous homomorphisms ρi : Giji −→ K
(i = 1, 2) such that

ψi = ρiμiji (i = 1, 2).

Let ρ : G1j1 % G1j2 −→ K be the continuous homomorphism induced by ρ1
and ρ2. Define ψ : G −→ K to be the composition

G
μj1j2−→ Gj1 %Gj2

ρ−→ K

of the natural projection and ρ. One checks readily that ψ satisfies the re-
quired conditions. ��

Let G = G1

∐

G2 be a free pro - C product of pro - C groups G1 and G2.
Denote by ψi : Gi −→ G1 × G2 (i = 1, 2) the natural inclusions. Then, by
the universal property, the maps ψi induce a continuous homomorphism

ψ : G −→ G1 ×G2.

The kernel of ψ is called the cartesian subgroup of G (there is a certain
abuse of language here, since the cartesian kernel depends on the chosen
decomposition of G as a free product). Our next theorem gives a description
of the cartesian subgroup of G that mirrors the situation in free products of
abstract groups.

Theorem 9.1.6 Let C be an extension closed variety of finite groups and let
G = G1 % G2 be a free pro - C product of pro - C groups G1 and G2. Then
the cartesian subgroup K of G is a free pro - C group on the pointed profinite
space ({[g1, g2] | g1 ∈ G1, g2 ∈ G2}, 1), where [g1, g2] = g−1

1 g−1
2 g1g2.

Proof. Suppose first that G1 and G2 are finite. Then K is open in G. It
follows that K is the pro - C completion of the cartesian subgroup Kabs of the
abstract free product G1 ∗G2 (see Lemmas 3.1.4 and 3.2.6). It is known (see
Serre [1980], Proposition I.4) that Kabs is a free abstract group with basis

{[g1, g2] | g1 ∈ G1 − {1}, g2 ∈ G2 − {1}}.

So, by Proposition 3.3.6, K is a free pro - C group on the finite space

{[g1, g2] | g1 ∈ G1 − {1}, g2 ∈ G2 − {1}}.

Therefore, the result is proved in this case.
Assume now that G1 and G2 are arbitrary pro - C groups. Represent G

as an inverse limit of groups GNM = G1/N % G2/M , where N and M
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run through the open normal subgroups of G1 and G2 respectively (see
Lemma 9.1.5). Clearly, then K = lim←−M,NKMN is the inverse limit of the
cartesian subgroups KMN of GMN . Moreover, the canonical epimorphism
GMN −→ GM ′N ′ (N ≤ N ′, M ≤ M ′) map the pointed basis of KMN de-
scribed above onto the corresponding pointed basis of KM ′N ′ . Hence the
result follows from Proposition 3.3.9. ��

Corollary 9.1.7 Let C be an extension closed variety of finite groups and let
G = G1 % G2 be a free pro - C product of pro - C groups G1 and G2. Then
for any closed subgroups H1 ≤ G1 and H2 ≤ G2, the free pro - C product
H = H1 %H2 is canonically embedded in G = G1 %G2.

Proof. Consider the commutative diagram

1 KG G = G1 %G2
ϕ

G1 ×G2 1

1 KH

α

H = H1 %H2
ψ

β

H1 ×H2

γ

1

with exact rows (ϕ and ψ send free factors identically to the corresponding
direct factors). By Theorem 9.1.6 KG and KH are free pro - C on the pointed
profinite spaces

({[g1, g2] | g1 ∈ G1, g2 ∈ G2}, 1) and ({[h1, h2] | h1 ∈ H1, h2 ∈ H2}, 1),

respectively. The map β is induced by the inclusions Hi −→ Gi (i = 1, 2), and
α and γ are given by α([h1, h2]) = [h1, h2], γ(h1, h2) = (h1, h2) (h1 ∈ H1, h2 ∈
H2). Clearly γ is a monomorphism. By Lemma 3.3.11, α is a monomorphism
as well. Hence so is β. ��

Proposition 9.1.8 Let C be an extension closed variety of finite groups and
let G1, . . . , Gn be pro - C groups. Let Gabs = G1 ∗ · · · ∗Gn be the abstract free
product of the groups G1, . . . , Gn. Then the natural homomorphism

ι : Gabs = G1 ∗ · · · ∗Gn −→ G = G1 % · · · %Gn

is a monomorphism.

Proof. Recall that if g ∈ Gabs = G1 ∗ · · · ∗ Gn is nontrivial, then it can be
written uniquely as g = x1x2 · · ·xm, where m ≥ 1, xj ∈ (

⋃n
i=1Gi)− {1} and

where xj ∈ Gi implies xj+1 
∈ Gi for all j = 1, . . . ,m − 1 (see, for example,
Serre [1980]). We need to prove that ι(g) 
= 1. For every 1 ≤ i ≤ n let
ψi : Gi −→ Hi be a continuous epimorphism onto a group Hi ∈ C such that
ψi(xj) 
= 1, whenever xj ∈ Gi. Let H = H1 % · · · %Hn be the corresponding
free pro - C product. By Corollary 9.1.4(a), we can think of Hi as subgroups
of H. By the universal property (of G), the maps ψi induce a continuous
homomorphism
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ψ : G −→ H =
n
∐

i=1

Hi.

Since each ψi is onto, one deduces from Corollary 9.1.4(b) that ψ is an epi-
morphism. It suffices to prove that ψι(g) 
= 1.

Let Habs = H1 ∗ · · · ∗Hn be the free product of the groups H1, . . . , Hn, as
abstract groups. We claim that Habs is residually C. Indeed, let Kabs be the
cartesian subgroup ofHabs (i.e., the kernel of the epimorphismHabs −→ H1×
· · ·×Hn that sends each Hi identically to its canonical copy in H1×· · ·×Hn).
Then Kabs is open in the pro - C topology of Habs. By the Kurosh subgroup
theorem for abstract groups (see Serre [1980], Theorem I.14 and the exercise
following that theorem), Kabs is a free abstract group of finite rank. By
Lemma 3.1.4(a) the topology induced on Kabs from the pro - C topology of
Habs coincides with the full pro - C topology on Kabs. Hence it is enough to
show that Kabs is residually C. The latter follows from Proposition 3.3.15.
This proves the claim.

Since all Hi are finite, we have H = (Habs)Ĉ by Exercise 9.1.1(a) (al-
ternatively, use the construction of pro - C products in the proof of Proposi-
tion 9.1.2). So, by the claim above, the canonical homomorphism Habs −→ H
is a monomorphism. It follows that we can think of Habs as a dense subgroup
of H. Then ψι(g) = ψi1(x1) · · ·ψim(xm), where ij is the index of the free
factor containing xj and the latter product is taken inside of Habs. Since the
maps ψij were chosen in such a way that ψij (xj) 
= 1 for all j = 1, . . . ,m,
one has that ψι(g) = ψi1(x1) · · ·ψim(xm) 
= 1 and the result follows. ��

Next we prove a pro - C version of the Kurosh subgroup theorem for open
subgroups of free pro - C products of pro - C groups. There is no pro - C ana-
log of the Kurosh subgroup theorem for general closed subgroups of such
products.

Theorem 9.1.9 Let C be an extension closed variety of finite groups and let
G1, . . . , Gn be a finite collection of pro - C groups. Let D be an open subgroup
of the free pro - C product G = G1%· · ·%Gn. Then D is a free pro - C product

D =
n
∐

i=1

∐

τ∈D\G/Gi

(D ∩ gi,τGig−1
i,τ ) % F, (1)

where

(a) for each i, gi,τ ranges over a system of double coset representatives for
D\G/Gi containing 1; and

(b) F is a free pro - C group of rank 1 + (n− 1)[G : D] −
∑n
i=1 |D\G/Gi|.

Proof. Let Γ = Gabs = G1∗· · ·∗Gn be the abstract free product of the Gi. By
Proposition 9.1.8, we can think of Γ as a dense subgroup of G. PutΔ = D∩Γ .
By the Kurosh subgroup theorem for abstract groups
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Δ =
[∗n

i=1 ∗τ∈Δ\Γ/Gi
(Δ ∩ gi,τGig−1

i,τ )
]

∗ Φ,

where, for each i, gi,τ ranges over a system of double cosets representatives
for Δ\Γ/Gi containing 1, and where Φ is a free abstract group of rank

1 + (n− 1)[Γ : Δ] −
n
∑

i=1

|Δ\Γ/Gi|

(see Serre [1980], Theorem I.14 and Exercise 2 following that theorem). We
remark that

(1) Δ ∩ gi,τGig−1
i,τ = D ∩ gi,τGig−1

i,τ for all gi,τ and all i = 1, . . . , n; and
(2) since D is open, the double cosets in D\G/Gi are just the topological

closures of the double cosets in Δ\Γ/Gi. Hence, for each i,

{gi,τ | τ ∈ Δ\Γ/Gi}

is also a system of double coset representatives for D\G/Gi.

Let N be the collection of all normal subgroups N of Γ of finite index
such that N ∩ Gi is open in Gi for all i = 1, . . . , n, and G/N ∈ C. Denote
by TN the topology on Γ defined by N . According to Remark 9.1.3, G is the
completion of Γ with respect to the topology TN .

Denote by T the topology on Δ induced by TN . By Corollary 9.1.4(a), the
topology of each Gi as a profinite group coincides with the topology induced
by TN . It follows that the topology of each D∩gi,τGig−1

i,τ as a profinite group
coincides with the topology induced by TN .

Define M to be the collection of all normal subgroups M of Δ of finite
index such thatM ∩D∩gi,τGig−1

i,τ is open in D∩gi,τGig−1
i,τ and Φ/M ∩Φ ∈ C.

Then M determines a second topology TM on Δ such that the groups in M
are a fundamental system of neighborhoods of 1.

We claim that T = TM. Clearly T is coarser than TM. To show the
converse, it suffices to prove that if M ∈ M, then there exists some N ∈ N
with N ≤ M . To do this we first follow the argument used in the proof of
Lemma 3.1.4(a) to construct a subgroup of finite index in M which is normal
in Γ : consider the core MΓ of M in Γ . Put K = ΔΓ ∩M , and note that
KΓ = MΓ . Then, as in that lemma, ΔΓ /MΓ ∈ C and Γ/ΔΓ ∈ C; since C
is extension closed and since the group Γ/MΓ is an extension of ΔΓ /MΓ by
Γ/ΔΓ , we obtain that Γ/MΓ ∈ C. Put N = MΓ .

To see that N ∈ N , we still need to verify that N ∩ Gi is open in Gi
(i = 1, . . . , n). Note that N =

⋂t
j=1 γ

−1
j Mγj , where γ1, . . . , γt is a (finite)

set of representatives of the right cosets of M in Γ . Therefore, to prove that
N ∩ Gi is open in Gi, it suffices to prove that for any γ ∈ Γ , γ−1Mγ ∩ Gi
is open in Gi; or, equivalently, that M ∩ γGiγ−1 is open in γGiγ−1. Say
γ ∈ Δgi,τGi; then γ = δgi,τgi, for some δ ∈ Δ, gi ∈ Gi. So it suffices to prove
that M ∩ δgi,τGig−1

i,τ δ
−1 is open in δgi,τGig−1

i,τ δ
−1. Since M is normal in Δ,
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this is equivalent to showing that M ∩ gi,τGig−1
i,τ is open in gi,τGig−1

i,τ . But
this is the case because M ∈ M, M ∩ gi,τGig−1

i,τ = M ∩D∩ gi,τGig−1
i,τ and D

is open. This proves the claim.
Therefore, D is the completion of Δ with respect to the topology TM. It

is immediate from the definition of M, that TM induces on the free group
Φ its full pro - C topology. Hence the closure F of Φ in D coincides with the
pro - C completion of Φ. Thus (see Proposition 3.3.6), F is a free pro - C group
of rank

1 + (n− 1)[Γ : Δ] −
n
∑

i=1

|Δ\Γ/Gi| = 1 + (n− 1)[G : D] −
n
∑

i=1

|D\G/Gi|,

where the equality holds since Δ = D ∩ Γ and D is open in G.
To finish the proof that the decomposition (1) holds, we show that the ap-

propriate universal property of free pro - C products is satisfied. LetH ∈ C and
let fi,τ : D ∩ gi,τGig−1

i,τ −→ H (i = 1, . . . , n; τ ∈ D\G/Gi) and f : F −→ H
be continuous homomorphisms. Let ϕ : Φ −→ H be the restriction of f to Φ.
Then, the maps fi,τ and ϕ induce a homomorphism

ψ : Δ =
[∗n

i=1 ∗τ∈D\Γ/Gi
(D ∩ gi,τGig−1

i,τ )
]

∗ Φ −→ H.

Observe that ψ is continuous if we endow Δ with the topology TM. Indeed,
if K = Ker(φ), then obviously Δ/K ∈ C and Φ/K ∩ Φ ∈ C; furthermore,
K ∩D ∩ gi,τGig−1

i,τ is open in D ∩ gi,τGig−1
i,τ since it coincides with Ker(fi,τ ),

which is open by the continuity of fi,τ .
Therefore, ψ extends to a unique continuous homomorphism on the com-

pletion D of Δ with respect to TM (see Lemma 3.2.1)

ψ̄ : D −→ H,

and obviously ψ̄ extends the maps fi,τ and f uniquely. ��

Corollary 9.1.10 Under the assumptions of the theorem above, one has that
H ∩Gi is a free factor of H for every i = 1, . . . , n.

Next proposition shows that in contrast with the situation for abstract
groups, a free factor of a free pro - C group is not necessarily a free pro - C
group.

Proposition 9.1.11 Let F be a free pro - C group of infinite rank m and let
P be a projective pro - C group with local weight w0(P ) ≤ w0(F ). Then the
free pro - C product G = F % P is isomorphic to F .

Proof. By Theorem 3.5.9, it suffices to show the strong lifting property
for G over the class E of all epimorphisms of pro - C groups. Consider the
E-embedding problem
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G

ϕ

1 K A
α

B 1

with w0(B) < w0(G) and w0(A) ≤ w0(G). We must show that there exists a
continuous epimorphism ϕ̄ : G −→ A such that αϕ̄ = ϕ. Note that w0(F ) =
w0(G). Since F is free pro - C, there exists a continuous epimorphism ϕ0 :
F −→ α−1(ϕ(F )) such that αϕ0 = ϕ|F . Since P is projective, there exists
a continuous homomorphism ϕ1 : P −→ A such that αϕ1 = ϕ|P . By the
universal property of free pro - C products, ϕ0 and ϕ1 induce a continuous
homomorphism ϕ̄ : G −→ A such that αϕ̄ = ϕ. It remains to prove that
ϕ̄ is an epimorphism. Since K ≤ ϕ̄(G), one has ϕ̄(G) = α−1(α(ϕ̄(G))) =
α−1(ϕ(G)) = α−1(B) = A. ��

Theorem 9.1.12 Let G1, . . . , Gn be pro - C groups and let G = G1%· · ·%Gn
be their free pro - C product. Then Gi ∩Gxi = 1 for x ∈ G−Gi. In particular
one has NG(Gi) = Gi and CG(a) = CGi(a) for a ∈ Gi (i = 1, . . . , n).

Proof. Fix i ∈ {1, . . . , n} and let x ∈ G − Gi. Choose an open normal sub-
group U of G such that x 
∈ GiU . Then by Theorem 9.1.9, GiU admits a
Kurosh decomposition

GiU =
n
∐

j=1

∐

τ∈GiU\G/Gj

(GiU ∩Ggj,τ

j ) % F, (2)

where

(1) for each j, gj,τ ranges over a system of double cosets representatives
containing 1 for GiU\G/Gj , and

(2) F is a free pro - C group.

Since x 
∈ GiU , there exists some gi,τ 
= 1 such that x = gigi,τg
′
iu, for

some gi, g′
i ∈ Gi, u ∈ U , because U is normal. Note that Gi appears as one

of the free factors in the decomposition (2), namely GiU ∩Gi = Gi. On the
other hand, Gxi = Ggi,τg

′
iu

i . Let

ψ : GiU −→
n
∏

j=1

∏

τ∈GiU\G/Gj

(GiU ∩Ggj,τ

j ) × F

be the homomorphism induced by the maps that send each free factor in (2)
identically to the corresponding direct factor of the direct product. Now,

Gi ∩Gxi = Gi ∩GiU ∩Gxi = Gi ∩ (GiU ∩Ggi,τg
′
iu).
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Hence,

ψ(Gi ∩Gxi )
≤ ψ(Gi) ∩ ψ(GiU ∩Ggi,τg

′
iu)

= ψ(Gi) ∩ ψ((GiU ∩Ggi,τ )g
′
iu) = ψ(Gi) ∩ ψ(GiU ∩Ggi,τ ) = 1.

Thus Gi ∩Gxi = 1, since ψ is an injective map when restricted to

GiU ∩Ggi,τg
′
iu = (GiU ∩Ggi,τ )g

′
iu. ��

In the next proposition we describe the maximal abelian subgroups of a
free profinite group.

Proposition 9.1.13 Let F be a nonabelian free profinite group and let π be
a set of primes. Then Zπ̂ =

∏

p∈π Zp is isomorphic to a maximal abelian
closed subgroup of F .

Proof. First we assume that F has infinite rank. By Proposition 9.1.11, F =
H % A, where H ∼= F and A ∼= Zπ̂. Hence, by Theorem 9.1.12, A is self-
normalized, and hence maximal abelian.

Suppose now that F is of finite rank ≥ 2. Choose p ∈ π. Let ϕ : F −→ Zp
be an epimorphism and N the kernel of ϕ. By Corollary 8.9.3 and Theo-
rem 8.6.11, N is a free profinite group of countable rank. By the case above,
there exists a maximal abelian closed subgroup A ofN with A ∼= Zπ̂. To prove
that A is a maximal abelian closed subgroup of F it suffices to show that A
is self-centralized in F . Suppose on the contrary that there exists x ∈ F −N
centralizing A. Then x centralizes also the p-Sylow subgroup Ap ∼= Zp of A.
By our choice of ϕ and N , the Sylow p-subgroup 〈x〉p of 〈x〉 is nontrivial.
Hence

〈Ap, 〈x〉p〉 ∼= Zp × Zp

is a subgroup of F . However, cdp(Zp ×Zp) = 2 and cdp(F ) = 1, a contradic-
tion (see Exercise 7.4.3 and Corollary 7.5.3). ��

Next we give an example to show that an inverse limit of free profinite
groups is not necessarily free (see Theorem 3.5.15).

Example 9.1.14 Let F be a free profinite group of infinite countable rank and
let P be a free pro-p group of rank 2ℵ0 . Let G = F %P be their free profinite
product. Choose a decomposition

P = lim←−Pi

such that each Pi is a free pro-p quotient group of P of finite rank (see
Corollary 3.3.10). Let {Pi, ϕij} be the corresponding inverse system. Define
an inverse system {F % Pi, ψij} where ψij is induced by idF and ϕij . Then
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G = lim←−(F % Pi)

by Lemma 9.1.5. By Proposition 9.1.11, F % Pi is a free profinite group of
countable rank for every i.

On the other hand, G is not free profinite. One can see this as follows.
First note that w0(G) = 2ℵ0 . Let q be a prime number different from p, and
let Q be a free pro-q group of rank 2ℵ0 . Let ρ : P −→ B be a continuous
epimorphism onto a certain finite p-group B. Consider a diagram

G = F % P
ϕ

Q× P α
B

where ϕ is induced by ρ and the trivial map F −→ B, and α is the compo-
sition of the natural projection Q × P −→ P and the map ρ. It is clear
that ϕ cannot be lifted (if ϕ̄ : G −→ Q × P is an epimorphism, then
F −→ G −→ Q× P −→ Q would be an epimorphism; this would contradict
the assumptions on the ranks of F and Q). Thus, G is not free profinite (see
Theorem 3.5.9).

We turn to the study of free pro-p products. Assume that G1, . . . , Gn
are pro-p groups and let G = G1 % · · · % Gn be their free pro-p product.
Corollary 9.1.4 allows us to identify each Gi with its canonical image in G.

The Grushko-Neumann theorem which is a deep result for free products
of abstract groups is very easy to prove in the pro-p case. We do this in the
next

Proposition 9.1.15 Let G = G1%G2 be a free pro-p product of pro-p groups
G1 and G2. Then d(G) = d(G1) + d(G2).

Proof. By Corollary 9.1.4(b), G is generated by G1 and G2. So d(G) ≤
d(G1) + d(G2). On the other hand, G1 × G2 is a quotient of G and so is
A = G1/Φ(G1) × G2/Φ(G2). The last group is just an elementary abelian
p-group (see Lemma 2.8.7(b)) with

d(A) = d(G1/Φ(G1)) + d(G2/Φ(G2)) = d(G1) + d(G2).

Thus d(G) ≥ d(G1) + d(G2). ��

Remark 9.1.16 The corresponding question for free profinite of profinite
groups has a negative answer (see Section 9.5 for details), that is, if G =
G1 %G2 is the free profinite product of two profinite groups G1 and G2, one
may have d(G) 
= d(G1) + d(G2).
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Lemma 9.1.17 Let A and B be pro-p groups.

(a) Let G = A % B (free pro-p product). Then the Frattini subgroups of G
and B are related as follows:

Φ(B) = B ∩ Φ(G).

(b) Let G = A×B. Then Φ(B) = B ∩ Φ(G).
(c) Let G be defined as either in (a) or in (b). Then G/Φ(G) is naturally

isomorphic to A/Φ(A) ×B/Φ(B).

Proof. The proof of parts (a) and (b) is formally the same. In both cases we
think of A and B as subgroups of G. By Lemma 2.8.7(c), Φ(B) ≤ B ∩Φ(G).
To prove the other inclusion, consider the natural epimorphism

ϕ : G −→ B −→ B/Φ(B).

By Lemma 2.8.7(c), Φ(G) ≤ Ker(ϕ). On the other hand, if x ∈ B − Φ(B),
then x 
∈ Ker(ϕ), and so x 
∈ Φ(G). Thus, B ∩ Φ(G) ≤ Φ(B).

We leave the proof of (c) to the reader. ��

The following lemma gives an easy criterion for a subgroup of a free pro-p
group to be a free factor.

Lemma 9.1.18 Let F be a free pro-p group and let H be a closed subgroup
of F . Then the following two conditions are equivalent :

(a) H is a free factor of F , i.e., there exists a closed subgroup M of F such
that F = H %M (free pro-p product);

(b) Φ(F ) ∩H = Φ(H).

Proof. The implication (a) =⇒ (b) follows from Lemma 9.1.17. Assume now
that (b) holds. From the inclusion H −→ F , we may assume that H/Φ(H)
is embedded in F/Φ(F ). So, by Proposition 2.8.16, F/Φ(F ) = H/Φ(H) ×
V , where V is a closed subgroup of F/Φ(F ). Let ϕ : F −→ F/Φ(F ) be
the canonical epimorphism. By Lemma 2.8.15, there exists a minimal closed
subgroup M of F such that ϕ(M) = V and Ker(ϕ|M ) ≤ Φ(M). Hence M ∩
Φ(F ) ≤ Φ(M), and so M ∩ Φ(F ) = Φ(M).

Define G = H %M to be the free pro-p product of H and M . Let ψ :
G −→ F be the homomorphism induced by the inclusions H,M −→ F .
Then ψ is surjective, since the induced map ψ̄ : G/Φ(G) −→ F/Φ(F ) is an
isomorphism by Lemma 9.1.17(c). Now, ψ has a right inverse α : F −→ G,
since F is a free pro-p group. However, α is also surjective since the induced
map ᾱ : F/Φ(F ) −→ G/Φ(G) coincides with (ψ̄)−1, which is an isomorphism.
Thus ψ is an isomorphism. ��

The previous lemma can be used to proof a pro-p analog of a well known
theorem of M. Hall.
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Theorem 9.1.19 Let H be a finitely generated closed subgroup of a free pro-p
group F . Then H is a free factor of some open subgroup L of F .

Proof. By Proposition 2.1.4(d),

H =
⋂

H≤Hi ≤oF

Hi.

Then, by Proposition 2.8.9,

Φ(H) =
⋂

H≤Hi ≤oF

Φ(Hi).

It follows that Φ(H) =
⋂

H≤Hi ≤oF
(H ∩Φ(Hi)). Since H is finitely generated,

Φ(H) is open in H. Hence, there exists Hi0 such that Φ(H) = H ∩ Φ(Hi0).
Lemma 9.1.18 applies now to yield that H is a free factor of Hi0 . ��

Now we are in a position to prove a pro-p version of Howson’s theorem
Howson [1954].

Theorem 9.1.20 Let H and K be finitely generated closed subgroups of a
free pro-p group F . Then H ∩K is finitely generated.

Proof. By Theorem 9.1.19, there exist an open subgroup V of F containing
K such that V = K %M (free pro-p product), where M is a closed subgroup
of V . Recall that every closed subgroup of F is free pro-p (see Corollary 7.7.5).
Hence H is a free pro-p group of finite rank. It follows from Proposition 2.5.5,
that H ∩ V has finite rank. Let {Ti | i ∈ I} be the set of all open subgroups
of V containing H ∩ V . Then, H ∩ V =

⋂

i∈I Ti. Therefore, Φ(H ∩ V ) =
⋂

i∈I Φ(Ti), by Proposition 2.8.9. By Corollary 9.1.10, K ∩ Ti is a free factor
of Ti. Hence, by Lemma 9.1.18,

Φ(K ∩ Ti) = Φ(Ti) ∩K ∩ Ti = Φ(Ti) ∩K (i ∈ I).

Therefore,

Φ(H ∩ V ) ∩K =
⋂

i∈I
(Φ(Ti) ∩K) =

⋂

i∈I
Φ(Ti ∩K)

= Φ(H ∩ V ∩K) = Φ(H ∩K),

where the penultimate equality follows from Proposition 2.8.9. We apply
Lemma 9.1.18 again to deduce that H ∩K = H ∩ V ∩K is a free factor of
H ∩ V and therefore is finitely generated. ��

Open Question 9.1.21 Is there a bound on the rank of H ∩K in terms of
the ranks of H and K?

In the abstract case such a bound exists (see Section 9.5).
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Exercise 9.1.22 Let G = G1 % · · · % Gn be a free pro-p product of pro-p
groups and let g1, . . . , gn be elements of G. Prove that

G = g1G1g
−1
1 % · · · % gnGng−1

n .

We end this section with a proposition, which we only state, generalizing
Theorem 8.1.3. A proof can be obtained by mimicking almost word by word
the proof of that theorem, and hence, we omit it. [A more general result along
these lines can be given for the closed normal closure of S in a free pro - C
product L = G% S, where G and S are pro - C groups; this can be described
best using the concept of free pro - C product of pro - C groups indexed by a
profinite space, which we do not treat in this book.]

Proposition 9.1.23 Let L = G % F be the free pro - C product of a pro - C
group G and a free pro - C group F = FC (X) group on a profinite space X.
Let N be the smallest closed normal subgroup of L containing F . Then N is
the free pro - C group on the space R = G×X with canonical map

ι : R −→ N

given by ι(g, x) = gxg−1.

9.2 Amalgamated Free Pro - C Products

Let G1 and G2 be pro - C groups and let fi : H −→ Gi (i = 1, 2) be continuous
monomorphisms of pro - C groups. An amalgamated free pro - C product of
G1 and G2 with amalgamated subgroup H is defined to be a pushout (see
Section 2.10)

H
f1

f2

G1

ϕ1

G2
ϕ2

G

in the category of pro - C groups, i.e., a pro - C group G together with contin-
uous homomorphisms ϕi : Gi −→ G (i = 1, 2) satisfying the following uni-
versal property: for any pair of continuous homomorphisms ψ1 : G1 −→ K,
ψ2 : G2 −→ K into a pro - C group K with ψ1f1 = ψ2f2, there exists a unique
continuous homomorphism ψ : G −→ K such that the following diagram is
commutative:

H
f1

f2

G1

ϕ1

ψ1
G2

ϕ2

ψ2

G
ψ

K
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We note that it is enough to check the universal property when K ∈ C. As
a rule, we shall consider H as a common subgroup of G1 and G2 and think
of f1 and f2 as inclusions. An amalgamated free pro - C product is sometimes
referred to as a free pro - C product with amalgamation.

We denote an amalgamated free pro - C product of G1 and G2 with amal-
gamated subgroup H by G = G1 %H G2. This is justified because of the
uniqueness of such products as we see in the next proposition.

Proposition 9.2.1 Let G1, G2 and H be pro - C groups and let fi : H −→ Gi
(i = 1, 2) be continuous monomorphisms. The free pro - C product of G1 and
G2 amalgamating H exists and it is unique.

Proof. We leave to the reader the task of making precise the meaning of
uniqueness and its proof (see the proof of Proposition 9.1.2).

To prove existence we give an explicit construction of

G = G1 %H G2.

Let Gabs = G1 ∗H G2 be the free product of G1 and G2 amalgamating
H, as abstract groups (see, e.g., Magnus, Karras and Solitar [1966], Lyndon
and Schupp [1977] or Serre [1980]). Denote by ϕabsi : Gi −→ Gabs the natural
embeddings (i = 1, 2). Let

N = {N �f Gabs | (ϕabsi )−1(N) �o Gi (i = 1, 2) and Gabs/N ∈ C}.

One easily checks that N is filtered from below (see Section 3.2). Define
G = KN (Gabs) to be the completion of Gabs with respect to N . Let ι :
Gabs −→ G be the natural homomorphism. Define ϕi : Gi −→ G by ϕi =
ιϕabsi (i = 1, 2). We claim that G together with ϕ1 and ϕ2 is an amalgamated
free pro - C product of G1 and G2 amalgamating H. To see this we check the
corresponding universal property.

Let ψi : Gi −→ K (i = 1, 2) be continuous homomorphisms to some
K ∈ C such that ψ1f1 = ψ2f2. Then, by the universal property for abstract
amalgamated free products, there exists a unique homomorphism

ψabs : Gabs −→ K

with ψi = ψabsϕabsi (i = 1, 2). It follows that (ϕabsi )−1(Ker(ψabs)) = Ker(ψi)
is open in Gi for every i = 1, 2, and since K ∈ C one has that Ker(ψabs) ∈
N . Therefore, there exists a continuous homomorphism ψ : G −→ K with
ψabs = ψι. Thus the following diagram

G

ψ

Gabs

ι

ψabs

H
fi

Gi

ϕi

ϕabs
i

ψi
K
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is commutative. This means that ψi = ψϕi. The uniqueness of ψ follows from
the fact that G = 〈ϕ1(G1), ϕ2(G2)〉. ��

In the abstract situation the canonical homomorphisms

ϕabsi : Gi −→ G1 ∗H G2 (i = 1, 2)

are monomorphisms (cf. Theorem I.1 in Serre [1980], for example). Because of
this, we usually think of Gi as a subgroup of G1 ∗H G2 (i = 1, 2). In contrast,
Examples 9.2.9 and 9.2.10 below show that in the category of pro - C groups
the corresponding maps

ϕi : Gi −→ G1 %H G2 (i = 1, 2)

are not always injections. An amalgamated free pro - C product G = G1 %H
G2 will be called proper if the canonical homomorphisms ϕi (i = 1, 2) are
monomorphisms. In that case we shall identify G1, G2 and H with their
images in G, when no possible confusion arises.

The following result is immediate.

Proposition 9.2.2 Let G1, G2 be pro - C groups and let H be a common
closed subgroup of G1 and G2. Let Gabs = G1 ∗H G2 be an abstract free
amalgamated product of pro - C groups and let

ι : Gabs −→ KN (Gabs) = G = G1 %H G2

be the canonical homomorphism. Then G = G1 %H G2 is proper if and only
if Ker(ι) ∩Gi = 1 for i = 1, 2.

Remark 9.2.3 If G = G1 %H G2 is not proper, one can replace G1, G2 and H
by their canonical images in G. This operation does not change G, but the
amalgamated free pro - C product G = G1 %H G2 becomes proper.

Theorem 9.2.4 Let G = G1%HG2 be an amalgamated free profinite product
of profinite groups. Then the following conditions are equivalent.

(a) The natural homomorphism

ι : G1 ∗H G2 −→ G1 %H G2

is a monomorphism;
(b) G = G1 %H G2 is proper ;
(c) There exists an indexing set Λ such that for each i = 1, 2, there is a set

Ui = {Uiλ | λ ∈ Λ} of open normal subgroups of Gi with the following
properties
(1)

⋂

λ∈Λ
Uiλ = 1 (i = 1, 2); and



370 9 Free Constructions of Profinite Groups

(2) for each λ ∈ Λ,
U1λ ∩H = U2λ ∩H.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear.
(c) ⇒ (a): Remark that one may assume that the collections U1 and U2

are filtered from below: indeed, if that is not the case, replace Ui by the
collection of all finite intersections of its elements (i = 1, 2). It follows from
Proposition 2.1.4 that

⋂

λ∈Λ
HU1λ = H =

⋂

λ∈Λ
HU2λ.

Let 1 
= a ∈ G1 ∗H G2. We have to show that ι(a) 
= 1. Our first aim is
to find an appropriate λ ∈ Λ (for a purpose that will be explained later). If
a ∈ H, choose λ so that a 
∈ U1λ. Assume now that a 
∈ H. With no loss of
generality, we may assume that a can be written as a finite nonempty product
a = x1y1x2y2 · · ·, where xi ∈ G1 −H and yi ∈ G2 −H, for all i. Then, from
our assumptions, there exist some λ ∈ Λ such that x1, x2, . . . 
∈ HU1λ and
y1, y2, . . . 
∈ HU2λ.

In either case, we have U1λ ∩ H = U2λ ∩ H. Identify HU1λ/U1λ with
HU2λ/U2λ via the natural isomorphism

HU1λ/U1λ
∼= H/(H ∩ U1λ) = H/(H ∩ U2λ) ∼= HU2λ/U2λ.

Then one has a commutative diagram,

G1 ∗H G2

μ

ι
G1 %H G2

ν

G1/U1λ ∗HU1λ/U1λ
G2/U2λ

ι G1/U1λ %HU1λ/U1λ
G2/U2λ

where μ and ν are induced by the canonical epimorphisms Gi −→ Gi/Uiλ
(i = 1, 2). It suffices to prove that (νι)(a) 
= 1. By our choice of U1λ and U2λ,
one has that μ(a) 
= 1. Therefore, it suffices to show that

ι : G1/U1λ ∗HU1λ/U1λ
G2/U2λ −→ G1/U1λ %HU1λ/U1λ

G2/U2λ

is a monomorphism. In other words, we have reduced the problem to the case
when the groups G1 and G2 are finite. Now, in this case, G1%HG2 is just the
profinite completion of G1 ∗H G2 (see the proof of Proposition 9.2.1). Thus,
it suffices to show that G1 ∗H G2 is residually finite. This follows from the
fact that G1 ∗H G2 contains a normal free subgroup of finite index (see, e.g.,
Serre [1980], Proposition II.11). ��

Exercise 9.2.5 Assume that the equivalent conditions of Theorem 9.2.4
hold. Prove that

G1 %H G2
∼= lim←−

(

G1/U1λ %HU1λ/U1λ
G2/U2λ

)

.
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Exercise 9.2.6 Let G1 and G2 be profinite groups with a common closed
subgroup H. Prove that G1 %H G2 is proper in each of the following cases:

(a) G1 and G2 are isomorphic with the corresponding copies of H identified;
(b) H is in the center of either G1 or G2;
(c) H is finitely generated and normal in both G1 and G2.

Exercise 9.2.7

(1) Let G = G1 ∗H G2 be an amalgamated free product of abstract groups.
Prove that G is residually finite if and only if there exists an indexing set
Λ such that for each i = 1, 2, there is a set Ni = {Niλ | λ ∈ Λ} of normal
subgroups of Gi of finite index with the following properties
(a) For each i = 1, 2, the collection Ni = {Niλ | λ ∈ Λ} is filtered from

below;
(b)
⋂

λ∈ΛNiλ = 1, for i = 1, 2;
(c) for each λ ∈ Λ, N1λ ∩H = N2λ ∩H; and
(d)
⋂

λ∈ΛNiλH = H for i = 1, 2.
(Hint: deduce from (a) and (c) that G̃1 = lim←− λ∈ΛG1/N1λ and G̃2 =

lim←− λ∈ΛG2/N2λ have a common subgroup H̃ = lim←− λ∈ΛH/(H ∩ N1λ);

then use (b) and (d) to show that the natural homomorphism G∗HG2 −→
G̃1 ∗H̃ G̃2 is injective; and finally show that the sets obtained by taking
the closures of Niλ in G̃i (λ ∈ Λ, i = 1, 2) satisfy the assumptions of
Theorem 9.2.4.)

(2) Let G = G1 ∗H G2 be an amalgamated free product of abstract groups.
Suppose that G is residually finite and that the profinite topology on
G induces the profinite topologies on G1, G2 and H. Prove that ̂G =
̂G1%Ĥ ̂G2 is a proper amalgamated free profinite product of the profinite
completions of G1, G2 and H.

(3) Let G = G1 ∗HG2 be an amalgamated free product of abstract residually
finite groups and suppose H is finite. Prove that G is residually finite
and that ̂G = ̂G1 %H ̂G2 is a proper amalgamated free profinite product
of the profinite completions of G1 and G2.

Next we give an example of a nonproper amalgamated free pro-p product.
First we need a lemma.

Lemma 9.2.8 Let A be a finite nontrivial normal subgroup of a pro-p
group G. Then A contains a nontrivial element which is in the center of G.

Proof. This is well-known if G is finite. Let ϕ : G −→ Aut(A) the homomor-
phism that sends an element x of G to the restriction of the inner automor-
phism determined by x. Let K = Ker(ϕ). Then G/K is finite. Since the result
holds for finite groups, the induced action of G/K on A has a nontrivial fixed
point. Since the action of G on A factors through the action of G/K, the
result follows. ��
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Example 9.2.9 Let H be an abelian finitely generated pro-p group of order,
say, pn, where 1 ≤ n ≤ ∞. Put K = H ×H. Let T be a procyclic group of
order pn. We shall use additive notation for T and multiplicative notation
for H. Define two actions of T on K as follows:

t(g, h) = (ght, h) and t(g, h) = (g, gth) (t ∈ T, g, h ∈ H),

(see Section 4.1 for the meaning of ht and gt when T = Zp). We refer to
these actions as the ‘first’ and the ‘second’ action, respectively. Clearly, these
actions are continuous. Define G1 = K � T and G2 = K � T to be semidi-
rect products using the first and the second action, respectively. Consider the
amalgamated free pro-p product G = G1 %K G2 of G1 and G2 amalgamat-
ing K. We show that G is not proper.

Suppose it is proper. Let H1 be a normal subgroup of index p in H.
It is easy to check that K1 = H1 × H1 is normal in G1 and G2 and so
in G. Then one verifies without difficulty that G/K1 = G1/K1%K/K1 G2/K1

(amalgamated free pro-p product), and so it is a proper amalgamated free
pro-p product. We claim that K/K1 = H/H1 × H/H1 does not contain
nontrivial proper subgroups which are normal in both G1/K1 and G2/K1.
Indeed, assume that Δ is a nontrivial subgroup of K/K1 which is normal in
both G1/K1 and G2/K1. Let 1 
= (g, h) ∈ Δ, where g, h ∈ H/H1. Then either
g or h is nontrivial, say g 
= 1. Hence, h = gt for some 1 ≤ t ≤ p. So, using
the action of T on H/H1 ×H/H1 determined by the ‘second’ action, one has
(−t)(g, h) = (g, g−th) = (g, 1). Now using the action of T on H/H1 ×H/H1

determined by the ‘second’ action again, one has 1(g, 1) = (g, g). Thus we
get that (g, 1) and (1, g) = (g−1, 1)(g, g) belong to Δ. Thus Δ = K/K1. This
proves the claim.

It follows that K/K1 is a finite minimal normal subgroup of G/K1. How-
ever, this is impossible sinceK/K1 is noncyclic and contains a central element
of G/K1 according to Lemma 9.2.8. This contradiction proves that G is not
proper.

Now we give an example of nonproper free amalgamated product in the
category of profinite groups.

Example 9.2.10 Let

N1 = 〈a, b | [[a, b], b] = [[a, b], a] = 1〉

and
N2 = 〈c, d | [[c, d], d] = [[c, d], c] = 1〉

be two copies of a free nilpotent group of class 2 with two generators. Con-
sider the following subgroups A = 〈a, [a2, b]〉 and B = 〈c, [c2, d]〉 ofN1 andN2,
respectively. Using the identity [a2, b] = [a, b]a[a, b], one deduces that a com-
mutes with [a2, b]. Hence the groups A and B are free abelian of rank 2, and
so there exist isomorphisms K = Z × Z −→ A and K = Z × Z −→ B. Let
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N1 ∗K N2 be the corresponding free amalgamated product. One knows (see
Theorem 1 in Baumslag [1963]) that N1 ∗K N2 is not residually finite. Let
G1 = ̂N1, G2 = ̂N2 be the profinite completions of N1 and N2, respectively.
It is easy to see that the closures of A and B in G1 and G2, respectively,
coincide with their corresponding profinite completions, i.e., A = ̂A, B = ̂B.
So there are continuous isomorphisms H ∼= ̂Z × ̂Z −→ A, H ∼= ̂Z × ̂Z −→ B
induced by the isomorphisms above. Consider the abstract amalgamated free
product G1 ∗HG2. Since any finitely generated torsion-free nilpotent group is
residually finite (see 5.2.21 in Robinson [1996]), one has natural embeddings
N1 −→ G1, N2 −→ G2. It follows easily that they induce natural embedding
N1 ∗K N2 −→ G1 ∗H G2. Hence G1 ∗H G2 is not residually finite. Now let
G1 %H G2 be the amalgamated free profinite product of G1 and G2 amal-
gamating H. We claim that G1 %H G2 is not proper. Otherwise, G1 ∗H G2

would be isomorphic to a subgroup of G1 %H G2 (see Theorem 9.2.4). This
would imply that G1 ∗H G2 is residually finite, a contradiction.

Example 9.2.11 Let X be a proper, nonsingular, connected algebraic curve
of genus g over a field C of complex numbers. As a topological space X is
a compact oriented 2-manifold and is simply a sphere with g handles added.
The algebraic fundamental group π1(X) in the sense of SGA-1 [1971] is the
profinite completion of the fundamental group πtop1 (X) in the topological
sense (see Exp. 10, page 272 in SGA-1 [1971]). The (abstract) group πtop1 (X)
is called a surface group and has 2g generators ai, bi (i = 1, . . . , g) subject to
one relation [a1, b1][a2, b2] · · · [ag, bg] = 1. It follows that the profinite group
π1(X) has exactly the same presentation. It is easy to see then that

π1(X) = 〈a1, b1〉 %[b1,a1]=[a2,b2]···[ag,bg] 〈a2, b2, . . . , ag, bg〉 ∼= F2 %Ẑ F2g−2

is a profinite proper free amalgamated product of free profinite groups of
ranks 2 and 2g − 2 with a procyclic amalgamated subgroup for g > 1.

Example 9.2.12 A Demushkin group is a pro-p group G having one of the
following presentation (see Labute [1967], Theorem 1):

(a)
G = 〈a1, b1, . . . , ag, bg | ap

n

1 [a1, b1] · · · [ag, bg]〉,

where p > 2 and n is a natural number or ∞ (the latter just means that
ap

n

1 = 1);
(b)

G = 〈a1, b1, . . . , ag, bg | a2+2n

1 [a1, b1] · · · [ag, bg]〉,

where p = 2 and n > 1 or ∞;
(c)

G = 〈a1, b1, . . . , ag, bg | a21[a1, b1]a2n2 [a2, b2] · · · [ag, bg]〉,

where p = 2 and n > 1.
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If g > 1 then a Demushkin group splits as a proper free pro - p product
with procyclic amalgamation in one of the following form:

(a)
〈a1, b1〉 % [b1,a1]a

−pn

1 =[a2,b2]···[ag,bg]
〈a2, b2, . . . , ag, bg〉;

(b)
〈a1, b1〉 % [b1,a1]a

−2−2n

1 =[a2,b2]···[ag,bg]〈a2, b2, . . . , ag, bg〉;

(c)
〈a1, b1〉 % [b1,a1]a

−2
1 =a2n

2 [a2,b2]···[ag,bg]〈a2, b2, . . . , ag, bg〉.

Note that if p > 2 and n = ∞ then a Demushkin group is a maximal pro-p
quotient of the algebraic fundamental group of an algebraic curve of genus g
from the preceding example.

There are Mayer-Vietoris sequences associated with an amalgamated free
pro - C product. We state them in the following theorem without proof (cf.
Gildenhuys and Ribes [1974], Theorem 1.13).

Proposition 9.2.13 Let C be an extension closed variety of finite groups.
Let G = G1 %H G2 be a proper amalgamated free pro - C product of pro - C
groups. Then

(a) for any left discrete [[ZĈG]]-module A, there is a long exact sequence

1 → H0(G,A) Res−→ H0(G1, A) ⊕H0(G2, A) → H0(H,A)

→ · · · → Hn(G,A) Res−→ Hn(G1, A) ⊕Hn(G2, A) → Hn(H,A)
→ Hn+1(G,A) → · · ·

where Res is induced by the restrictions ResGGi
: Hn(G,A) −→ Hn(Gi, A)

(i = 1, 2);
(b) for any profinite right [[ZĈG]]-module B, there is a long exact sequence

· · · → Hn+1(G,B) → Hn(H,B) → Hn(G1, B) ⊕Hn(G2, B)
Cor−→ Hn(G,B) → · · · → H1(G,B) → H0(H,B)

→ H0(G1, B) ⊕H0(G2, B) Cor−→ H0(G,B) → 1,

where Cor is induced by corestrictions CorGGi
: Hn(Gi, B) −→ Hn(G,B),

i = 1, 2.

9.3 Cohomological Characterizations of Amalgamated Products

Let H be a pro - C group and let L be a closed subgroup of H. For A ∈
DMod([[ZĈH]]), define
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DerL(H,A) = {d : H −→ A | d(xy) = xd(y) + d(x), ∀x, y ∈ H, d|L = 0},

the abelian group of all continuous derivations from H to A vanishing on L.
Our aim is to prove the following criterion to decide, in terms of deriva-

tions, when a pro - C group H is a free pro - C product of two of its subgroups
amalgamating a common subgroup.

Theorem 9.3.1 Let C be an extension closed variety of finite solvable groups.
Let H1 and H2 be closed subgroups of a pro - C group H. Assume that L ≤c
H1 ∩H2. Then

H = H1 %L H2

(amalgamated free pro - C product) if and only if the natural homomorphism

ΦH : DerL(H,A) −→ DerL(H1, A) × DerL(H2, A)

(f �→ (f|H1 , f|H2), f ∈ DerL(H,A)) is an isomorphism for all [[ZĈH]]-modules
A ∈ C.

Before proving this theorem we need some auxiliary results. Remark that
under the conditions of the theorem above, the amalgamated free pro - C
product H = H1%LH2 is always proper, as one easily sees using the criterion
given in Theorem 9.2.4, for example (one can also see this directly by using
the universal property of an amalgamated product).

Clearly DerL(H,−) is a left exact additive functor from the category
DMod([[ZĈH]]) to the category A of abelian groups.

Consider the continuous monomorphism of [[ZĈH]]-modules

ν : A −→ CoindHL (A)

given by ν(a)(x) = xa (a ∈ A, x ∈ H). One can identify ν(A) with the
following submodule of CoindHL (A)

ν(A) = {f : H −→ A | f(xy) = xf(y), ∀x, y ∈ H}.

Define
Γ (A) = CoindHL (A)/ν(A).

Then we have a short exact sequence

0 −→ A
ν−→ CoindHL (A) −→ Γ (A) −→ 0. (3)

Lemma 9.3.2
Γ (−) : DMod([[ZĈH]]) −→ A

is an exact functor.

Proof. This is a consequence of Proposition 6.10.4. ��
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Lemma 9.3.3 Let L ≤c H be pro - C groups. For each A ∈ DMod([[ZĈH]]),
there is a natural isomorphism

ϕA : Hom[[̂ZCH]](̂ZC , Γ (A)) ∼= DerL(H,A).

Proof. Clearly Hom[[ZĈH]](ZĈ , Γ (A)) = Γ (A)H . Let f ∈ CoindHL (A) be such
that f + ν(A) ∈ Γ (A)H . Then zf − f ∈ ν(A) for each z ∈ H. So, for all
x, y, z ∈ H, one has

(zf − f)(xy) = x[(zf − f)(y)] = xf(yz) − xf(y),

and on the other hand,

(zf − f)(xy) = f(xyz) − f(xy).

Letting z = y−1, we deduce that

f(xy) = xf(y) + f(x) − xf(1), ∀x, y ∈ H.

Define fc ∈ ν(A) to be the map x �→ xf(1) (x ∈ H). Hence, f − fc ∈
DerL(H,A). Define ϕA(f+ν(A)) = f−fc. Clearly ϕA is a natural monomor-
phism. To prove that ϕA is an epimorphism, let d ∈ DerL(H,A). Then
d ∈ CoindHL (A). Claim that d + ν(A) ∈ Γ (A)H . To see this we must show
that if z ∈ H, then zd− d ∈ ν(A). Indeed,

(zd− d)(x) = d(xz) − d(z) = xd(z), ∀x ∈ H,

i.e., zd−d is the function x �→ xd(z), which belongs to ν(A). Finally, observe
that d(1) = 0; thus ϕA(d+ ν(A)) = d. ��

Corollary 9.3.4 Let H be a pro - C group and assume L ≤c H. Then

{Extn[[ZĈH]](ZĈ , Γ (−))}n≥0

is the sequence of right derived functors of the left exact functor DerL(H,−)
in the category DMod([[ZĈH]]).

Proof. Observe that the sequence of functors

{Extn[[ZĈH]](ZĈ , Γ (−))}n≥0

is a cohomological sequence since Γ (−) is an exact functor by Lemma 9.3.2.
We claim that this sequence is effaceable, i.e., Extn[[ZĈH]](ZĈ , Γ (A)) = 0 when-
ever A is injective and n ≥ 1. This follows from Corollary 6.10.3 by consid-
ering the long exact sequence

· · · ExtnH(ZĈ , A) ExtnH(ZĈ ,CoindHL (A)) ExtnH(ZĈ , Γ (A)) · · ·

obtained by applying {Extn[[ZĈH]](ZĈ ,−)}n≥0 to (3) (here ExtnH(ZĈ , Γ (A))
stands for Extn[[ZĈH]](ZĈ , Γ (A))). The result follows now from Lemma 9.3.3
and Lemma 6.1.4. ��
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Proposition 9.3.5 Let H be a pro - C group and assume L ≤c H. Let A ∈
DMod([[ZĈH]]). Then

(a) There exists an exact sequence

0 −→ AH −→ AL −→ Ext0[[ZĈH]](ZĈ , Γ (A)) −→ H1(H,A)

−→ H1(L,A) −→ Ext1[[ZĈH]](ZĈ , Γ (A)) −→ H2(H,A) −→ · · · ;

(b) If

H ′ ρ
H

L′
ρ|L′

L

is a commutative diagram of pro - C groups and continuous homomor-
phisms, then there is a corresponding commutative diagram

· · · Ext0[[ZĈH]](ZĈ , Γ (A)) H1(H,A) H1(L,A) . . .

· · · Ext0[[ZĈH
′]](ZĈ , Γ (A)) H1(H ′, A) H1(L′, A) . . .

where the vertical maps are induced by ρ.

Proof. (a) It follows from the definition of group cohomology that

Extn[[ZĈH]](ZĈ , A) = Hn(H,A).

By Theorem 6.10.5,

Extn[[ZĈH]](ZĈ ,CoindHL (A)) = Hn(L,A).

Hence the exact sequence of part (a) is just the long exact sequence obtained
by applying the cohomological functor {Extn[[ZĈH]](ZĈ ,−)}n≥0 to the short
exact sequence (3).

Part (b) is left as an exercise. ��

Lemma 9.3.6 Assume that the variety C is extension closed. Let G be a
profinite group and let A be a finite discrete G-module. Denote by

G̃ = A�G

the corresponding semidirect product. Let d : G −→ A be a continuous deriva-
tion. Then the map ρ : G −→ G̃, given by x �→ (d(x), x) (x ∈ G), is a
continuous homomorphism of profinite groups. Conversely, if ρ : G −→ G̃
is a continuous homomorphism such that ρ(x) = (d(x), x) (x ∈ G), where
d : G −→ A is a function, then d is a continuous derivation.
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Proof. This follows from the definition of multiplication in G̃ = A�G:

(a, x)(a′, x′) = (a+ xa′, xx′) (a, a′ ∈ A, x, x′ ∈ G). ��

Lemma 9.3.7 Let H1 and H2 be closed subgroups of a pro - C group H and
let L ≤c H1 ∩H2. Assume that the natural homomorphism

ΦH : DerL(H,A) −→ DerL(H1, A) × DerL(H2, A)

(f �→ (f|H1 , f|H2), f ∈ DerL(H,A)), is a monomorphism for all simple
[[ZĈH]]-modules A ∈ C. Then the closed subgroup of H generated by H1 and
H2 is H.

Proof. For a closed subgroup T of H, denote by ω(T ) the closed left ideal
of [[ZĈH]] generated by the subspace {t − 1 | t ∈ T}. Then the map ω in an
injection. One sees this by observing that the natural module homomorphism
[[ZĈH]] −→ [[ZĈ(H/T )]] sends ω(T ) to the zero submodule.

Let S be the closed subgroup of H generated by H1 and H2. Assume that
H > S. Define

ω(H,S) = ω(H)/ω(S).

Then ω(H,S) is a nonzero profinite [[ZĈH]]-module. Let ω(H,S) −→ A be an
epimorphism onto a finite discrete simple [[ZĈH]]-module (see Lemma 5.1.1).
Define

d : H −→ ω(H,S)

by d(x) = (x− 1) + ω(S) (x ∈ H). One readily checks that

d ∈ DerL(H,ω(H,S)).

Denote the composition

H
d−→ ω(H,S) −→ A

by f . Then f ∈ DerL(H,A) and f 
= 0. However, ΦH(f) = 0, a contradiction.
Thus S = H, as desired. ��

Proposition 9.3.8 Let C be an extension closed variety of finite groups.
Assume that H = H1%LH2 is a free pro -C product of two pro -C groups H1

and H2 amalgamating a common closed subgroup L. Then, for every pro -C
[[ZĈH]]-module A, the natural homomorphism

ΦH : DerL(H,A) −→ DerL(H1, A) × DerL(H2, A)

(f �→ (f|H1 , f|H2), f ∈ DerL(H,A)), is an isomorphism.
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Proof. Express A = lim−→ Ai, where each Ai ∈ C is a finite [[ZĈH]]-module.
Since DerL(H,−) commutes with direct limits (this can be seen by an argu-
ment similar to the one used in Lemma 5.1.4), one may assume that A ∈ C.
We shall exhibit an inverse homomorphism

Ψ : DerL(H1, A) × DerL(H2, A) −→ DerL(H,A)

of ΦH . Let di ∈ DerL(Hi, A) (i = 1, 2). Since A ∈ C, the semidirect products
H̃i = A�Hi (i = 1, 2) are pro - C groups. For i = 1, 2, define

ρi : Hi −→ H̃i = A�Hi

by ρi(x) = (di(x), x) (x ∈ Hi). By Lemma 9.3.6, ρi is a continuous homo-
morphism. Consider the following commutative diagram for each i = 1, 2:

A H̃ π H

ρ̃

A H̃i
πi

ι̃i

Hi
ρi

ιi
ρ̃i

where π and πi are the canonical projections, and ιi and ι̃i are the inclusion
maps (i = 1, 2). Put ρ̃i = ι̃iρi (i = 1, 2). Plainly, ρ̃1 and ρ̃2 coincide on L.
Hence they induce a continuous homomorphism ρ̃ : H −→ H̃ = A�H, by the
universal property of amalgamated products. Since πρ̃i(x) = x for all x ∈ Hi
(i = 1, 2), it follows that πρ̃(x) = x for all x ∈ H. Therefore, ρ̃(x) = (d(x), x),
where d : H −→ A is a derivation (see Lemma 9.3.6). Define Ψ(d1, d2) = d.
One easily checks that ΦH and Ψ are inverse to each other. ��

Proof of Theorem 9.3.1. In one direction this follows from Proposition 9.3.8.
Conversely, assume that ΦH is an isomorphism. Consider the amalgamated
free pro - C product G = H1 %L H2, and denote by ϕ : G −→ H the con-
tinuous homomorphism induced by the inclusions Hi ↪→ H (i = 1, 2). By
Lemma 9.3.7, H = 〈H1, H2〉; hence ϕ is an epimorphism. To show that
ϕ is an isomorphism, it suffices to prove that the conditions of Proposi-
tion 7.2.7 are satisfied, i.e., that for every (simple) H-module A, the map ϕ
induces an epimorphism ϕ1 : H1(H,A) −→ H1(G,A) and a monomorphism
ϕ2 : H2(H,A) −→ H2(G,A). We shall show in fact that ϕ1 and ϕ2 are
isomorphisms. Consider the infinite commutative diagram

AL Ext0H

ϕ̄0

H1(H,A)

ϕ1

H1(L,A) Ext1H

ϕ̄1

H2(H,A)

ϕ2

AL Ext0G H1(G,A) H1(L,A) Ext1G H2(G,A)
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with exact rows and vertical maps induced by ϕ (see Proposition 9.3.5), where
ExtnH stands for ExtnH(ZĈ , Γ (A)) and ExtnG for ExtnG(ZĈ , Γ (A)).

By our assumptions and by the first part of the proof, we have a commu-
tative diagram

DerL(H,A)
ΦH

ϕ̄ DerL(H1, A) × DerL(H2, A)

DerL(G,A)
ΦG

where ϕ̄ is induced by ϕ and ΦH and ΦG are isomorphisms. Therefore ϕ̄ is
an isomorphism. It follows from Corollary 9.3.4 that the maps

ϕ̄n : ExtnH(ZĈ , Γ (A)) −→ ExtnG(ZĈ , Γ (A))

are isomorphisms for n ≥ 0 (note that it is here where one needs that
the isomorphism ΦH is valid for all [[ZĈH]]-modules A ∈ C, not just for
simple modules). Thus one infers from the ‘Five Lemma’ (cf. Mac Lane
[1963], Lemma I.3.3) and the above infinite diagram that ϕn : Hn(H,A) −→
Hn(G,A) are isomorphisms, as desired. ��

Proposition 9.3.9 Let C be an extension closed variety of finite groups. As-
sume that H = H1 % H2 is a free pro -C product of two pro -C groups H1

and H2. Then, for every A ∈ DMod([[ZĈH]]) we have that

(a)
ΦH : Der(H,A)

∼=−→ Der(H1, A) × Der(H2, A)

is an isomorphism, where the homomorphism ΦH is given by f �→
(f|H1 , f|H2) (f ∈ DerL(H,A)), and

(b)
ΦnH : Hn(H,A)

∼=−→ Hn(H1, A) ×Hn(H2, A) (n ≥ 2)

are isomorphisms, where the homomorphisms ΦnH are induced by the re-
striction maps.

Proof. Part (a) is a special case of Proposition 9.3.8. For part (b), assume
first that L = 1 and consider the exact sequence (3). It follows from the long
exact sequence of Proposition 9.3.5(a) that, if L = 1, then

ExtnH(ZĈ , Γ (A)) = Hn+1(H,A) ∀n ≥ 1

and
Ext0H(ZĈ , Γ (A)) = Der(H,A).
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Since every injective DMod([[ZĈH]]-module is DMod([[ZĈHi]]-injective
(i = 1.2) (see Corollary 5.7.2), it follows that the cohomological functors

{ExtnH(ZĈ , Γ (−))}n≥0 and {ExtnH2
(ZĈ , Γ (−)) × ExtnH1

(ZĈ , Γ (−))}n≥0

are universal. The result follows then from Part (a). ��

Theorem 9.3.10 Let p be a prime number. Let H1 and H2 be closed sub-
groups of a pro-p group H. Then,

H = H1 %H2

(the free pro-p product) if and only if

(a)
Φ1
H : H1(H,Z/pZ) −→ H1(H1,Z/pZ) ×H1(H2,Z/pZ)

is an epimorphism,
(b)

Φ2
H : H2(H,Z/pZ) −→ H2(H1,Z/pZ) ×H2(H2,Z/pZ)

is a monomorphism (here ΦnH is induced by the restriction maps (n =
1, 2)).

Proof. In one direction, this follows from Proposition 9.3.9. Conversely, as-
sume that (a) and (b) hold. Since Z/pZ is a trivial H-module, we have

H1(G,Z/pZ) = Der(G,Z/pZ),

for G = H, H1 or H2. Hence by Lemma 9.3.7, H is generated by H1 and H2

(as a pro-p group). Set G = H1 %H2 (the free pro-p product). Let

ϕ : G −→ H

the homomorphism induced by the inclusions Hi ↪→ H (i = 1, 2). Then ϕ is
an epimorphism. Consider the commutative diagram

Hn(H,Z/pZ)
Φn

H

ϕ̄n Hn(H1,Z/pZ) ×Hn(H2,Z/pZ)

Hn(G,Z/pZ),
Φn

G

where ϕ̄n is induced by ϕ and ΦnG is induced by ΦG as defined in Propo-
sition 9.3.9. Since ΦnG is an isomorphism for every n, it follows from our
assumptions that ϕ̄1 is an epimorphism and ϕ̄2 a monomorphism. Therefore
ϕ is an isomorphism by Proposition 7.2.7. ��
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9.4 Pro - C HNN-extensions

Let H be a pro - C group and let f : A −→ B be a continuous isomorphism
between closed subgroups A,B of H. A pro - C HNN-extension of H with
associated subgroups A,B consists of a pro - C group G = HNN(H,A, f),
an element t ∈ G, and a continuous homomorphism ϕ : H −→ G with
t(ϕ(a))t−1 = ϕf(a) and satisfying the following universal property: for any
pro - C group K, any k ∈ K and any continuous homomorphism ψ : H −→ K
satisfying k(ψ(a))k−1 = ψf(a) for all a ∈ A, there is a unique continuous
homomorphism ω : G −→ K with ω(t) = k such that the diagram

G
ω

H

ϕ

ψ
K

is commutative. We shall refer to ω as the homomorphism induced by ψ.
Observe that one needs to test the above universal property only for finite

groups K ∈ C, for then it holds automatically for any pro - C group K, since
K is an inverse limit of groups in C.

Proposition 9.4.1 Let H be a pro - C group and let f : A −→ B be an
isomorphism of subgroups of H. Then there exists a unique pro - C HNN-
extension G = HNN(H,A, f).

Proof. The uniqueness follows easily from the universal property. We give
an explicit construction of G = HNN(H,A, f) to prove the existence. Let
Gabs = HNNabs(H,A, f) be the abstract HNN-extension. Denote by ϕabs :
H −→ Gabs the natural embedding. Let

N = {N �f Gabs | (ϕabs)−1(N) �o H,G/N ∈ C}.

Define G = KN (Gabs) to be the completion of Gabs with respect to N . Let
ι : Gabs −→ G be the natural homomorphism. Put ϕ = ιϕabs. We check the
universal property for G and ϕ.

Let ψ : H −→ K be a continuous homomorphism to some K ∈ C
with k(ψ(a))k−1 = ψf(a) for all a ∈ A. Then, by the universal prop-
erty for abstract HNN-extensions, there is a unique homomorphism ωabs :
Gabs −→ K with ωabs(t) = k such that the diagram

Gabs

ωabs

H

ϕabs

ψ
K

is commutative. It follows that (ϕabs)−1(Ker(ωabs)) = Ker(ψ) is open in H,
and since K ∈ C, one has that Ker(ωabs) ∈ N . Therefore, there exists a
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continuous homomorphism ω : G −→ K with ωabs = ωι. Thus the following
diagram

G

ω

Gabs

ι

ωabs

H

ϕ

ϕabs

ψ
K

is commutative. This means that ψ = ωϕ and ω(t) = k. The uniqueness of ω
follows from the fact that G = 〈ϕ(H), ι(t)〉. ��

In contrast with the abstract situation, the canonical homomorphism
ϕ : H −→ G = HNN(H,A, f) is not always a monomorphism. When ϕ
is a monomorphism, we shall call G = HNN(H,A, f) a proper pro - C HNN-
extension.

Associated with a pro - C HNN-extension, there exist Mayer-Vietoris se-
quences analogous to those obtained for abstract groups. We present them
in the following theorem without proof.

Proposition 9.4.2 Let C be an extension closed variety of finite groups. Let
G = HNN(H,A, f) be a proper pro - C HNN-extension of pro - C groups and
π = π(C). Then

(a) for any left discrete ZĈ [[G]]-module M there is a long exact sequence

1 → H0(G,M) Res−→ H0(H,M) → H0(A,M) → H1(G,M) → · · ·
→ Hn(G,M) → Hn(H,M) → Hn(A,M) → Hn+1(G,M) → · · · ,

where Res is the restriction ResGH : Hn(G,M) −→ Hn(H,M);
(b) for any profinite right Zπ̂[[G]]-module M there is a long exact sequence

· · · → Hn+1(G,M) → Hn(A,M) → Hn(H,M) Cor→ Hn(G,M) → · · ·

→ H1(G,M) → H0(A,M) → H0(H,M) Cor→ H0(G,M) → 1,

where Cor is the corestriction CorGH : Hn(H,M) −→ Hn(G,M), i = 1, 2.

From now on in this section we assume that C is the variety of all finite
groups.

The next proposition gives a sufficient condition for a profinite HNN-
extension to be proper.

Proposition 9.4.3 Let G = HNN(H,A, f) be a profinite HNN-extension of
profinite groups and let ϕ : H −→ G be the canonical homomorphism. Then
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(1) Ker(ϕ) = K, where

K =
{

⋂

U | U �o H, f(A ∩ U) = f(A) ∩ U
}

.

(2) G = HNN(H,A, f) is proper if and only if for every open normal subgroup
U of H there is an open normal subgroup V of H contained in U and
such that

f(A ∩ V ) = f(A) ∩ V

(or equivalently, if and only if K is trivial). In particular, if A is finite,
then G is proper.

(3) G = HNN(H,A, f) is a proper profinite HNN-extension if and only if
HNNabs(H,A, f) embeds in G and therefore is residually finite.

Proof. (1) Let Gabs = HNNabs(H,A, f) be the abstract HNN-extension.
We identify H with its natural image in Gabs. Let N = {N �f G |
N ∩ H ≤o H}. From the explicit construction of G = HNN(H,A, f) (see
the proof of Proposition 9.4.1), it follows that

Ker(ϕ) =
⋂

N∈N
(N ∩H).

Since N ∩ H is an open normal subgroup of H for any N ∈ N , we deduce
from f(A ∩N) = (A ∩N)t = At ∩N = f(A) ∩N , that K ≤ Ker(ϕ).

Conversely, let U be an open normal subgroup of H such that f(A∩U) =
f(A) ∩ U . The isomorphisms A/(A ∩ U) ∼= AU/U and f(A)/(f(A) ∩ U) ∼=
f(A)U/U induce an isomorphism fU : AU/U −→ f(A)U/U . Let GU =
HNN(H/U,AU/U, fU ) be the profinite HNN-extension of H/U with asso-
ciated subgroups AU/U and fU (AU/U). By the universal property, there
exists a continuous homomorphism ωU : G −→ GU induced by the natural
epimorphism ψU : H −→ HU . Hence one has the following commutative
diagram:

G
ωU

GU

H

ϕ

ψU
HU

ϕU

where ϕU is the canonical homomorphism. Since HU is finite, it follows
from the explicit construction of a profinite HNN-extension in Proposi-
tion 9.4.1 that GU is the profinite completion of the abstract HNN-extension
HNNabs(H/U,AU/U, fU ). In turn, HNNabs(H/U,AU/U, fU ) is residually fi-
nite (see, e.g., Proposition II.2.12 in Serre [1980]). We deduce that ϕU is a
monomorphism. Therefore, Ker(ϕ) ≤ U for every U �o H with f(A ∩ U) =
f(A) ∩ U . Hence Ker(ϕ) ≤ K.

(2) follows from (1).
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(3) Suppose that G is proper. Let Gabs = HNNabs(H,A, f) be the abstract
HNN-extension and let X and Y be sets of representatives for H/A and
H/f(A), each of them containing 1. Recall that every element g of Gabs can
be written in a unique way as

g = h1t
ε1hε22 · · ·hεnn a

where εi = ±1, εi = 1 implies hi ∈ X − {1}, εi = −1 implies hi ∈ Y − {1},
hn ∈ X − {1}, a ∈ A. From the explicit construction of a profinite HNN-
extension (see Proposition 9.4.1) it follows that it suffices to find a normal
subgroup N of finite index in Gabs such that N ∩H is open in H and g 
∈ N .
Since A and f(A) are closed, there is an open normal subgroup U of H such
that a 
∈ U , hi 
∈ AU and hi 
∈ f(A)U for all i = 1, . . . , n. Since HNN(H,A, f)
is proper, K is trivial by (2). So we may assume that f(U ∩A) = f(A) ∩ U .
Let ψ be the canonical epimorphism of Gabs = HNNabs(H,A, t) onto
HNNabs(H/U,AU/U, f̄), where f̄ : AU/U −→ f(A)U/U is the isomorphism
induced by f . Then

ψ(g) = ψ(h1)tε1ψ(h2)ε2 · · ·ψ(hn)εnψ(a)

is written in reduced form (abusing notation, we use t for the image of t).
Therefore, ψ(g) is nontrivial. It is known that HNNabs(H/U,AU/U, f̄) is
virtually free. Therefore, it contains a normal subgroup of finite index V that
intersects H/U trivially and does not contain ψ(g). Then N = ψ−1(V ) is the
required normal subgroup of Gabs.

The converse statement is obvious. ��

Next we give a profinite analog of a construction of G. Higman, B. H.
Neumann and H. Neumann to show that any countably based profinite group
can be embedded into a 2-generated profinite group.

Theorem 9.4.4 Let L be a countably based profinite group. Then L embeds
into some 2-generated profinite group G.

Proof. Let F be a free profinite group on a basis {x1, x2} and let σ be
the automorphism of F permuting x1 and x2. Let N be the closed nor-
mal subgroup of F generated by x1. Then N is free on the topological basis
X = {x−α

2 x1x
α
2 | α ∈ ̂Z} (see Theorem 8.1.3). ClearlyX has countable weight

w(X) (see Section 2.6). Choose a clopen neighborhood X1 of x1 in X such
that w(X − X1) = ℵ0. Then 〈X −X1〉 is a free profinite group of rank ℵ0.
Since L is countably based, it can be generated by a countable set converg-
ing to 1 (see Propositions 2.4.4 and 2.6.2). Hence, there exists a continuous
epimorphism ϕ : N −→ L such that ϕ(X1) = 1 and ϕ(〈X −X1〉) = L. In
particular, ϕ(x1) = 1.

Consider the subgroup A = N × {1} of F × L and the monomorphism
f : A −→ F × L defined as follows: f(a, 1) = (σ(a), ϕ(a)) (a ∈ N). Then f
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is clearly continuous. Consider the profinite HNN-extension G = HNN(F ×
L,A, f). Observe that f(x1, 1) = (x2, 1).

We shall first show that F×L embeds into G, i.e. that F×L and f satisfy
condition (2) in Proposition 9.4.3.

Let U be an open normal subgroup of F × L. Then U contains an open
normal subgroup of the form U1 × U2 for some U1 �o F , U2 �o L. Since ϕ is
continuous and σ has order 2, one can choose U1 such that U1 ≤ ϕ−1(U2)
and σ(U1) = U1. Then

f(A ∩ (U1 × U2)) = {(σ(u), ϕ(u)) | u ∈ N ∩ U1}

and

f(A ∩ (U1 × U2)) = {(σ(u), ϕ(u)) | u ∈ N ∩ σ−1(U1) ∩ ϕ−1(U2)}.

Since N ∩σ−1(U1)∩ϕ−1(U2) = N ∩U1, one deduces that f(A∩ (U1×U2)) =
f(A) ∩ (U1 × U2), as required.

We now show that G is (topologically) generated by (x1, 1) and t (see
the definition of HNN-extension for the meaning of t). Indeed, conjugating
(x1, 1) by t, we obtain (x2, 1) and therefore F × {1} ≤ 〈(x1, 1), t〉. This in
turn implies that f(A) ≤ 〈(x1, 1), t〉. Since F ×L = 〈F ×{1}, f(A)〉, we have

G = 〈F × L, t〉 = 〈(x1, 1), t〉,

as asserted. ��

We finish the section with a modification of Theorem 9.4.4 adapted to the
category of abstract groups. This will yield a construction of a residually finite
2-generated torsion-free abstract group whose profinite completion contains
every countably based profinite group.

Theorem 9.4.5 Let {gi | i ∈ N} be a countable set generators of an ab-
stract group L. Let N be the family of those normal subgroups of finite index
in L which contain all but finitely many of the gi. Then L embeds into a
2-generated abstract group G, and this embedding induces an embedding of
KN (L) into ̂G. Furthermore, if the natural map L −→ KN (L) is injective,
then so is G −→ ̂G.

Proof. We use the same construction as in Theorem 9.4.4 with small adjust-
ments to our situation. Let F be an abstract free group on a basis {x1, x2}
and let σ be the automorphism of F permuting x1 and x2. Let N be the
normal subgroup of F generated by x1. Then N is a free abstract group on
the basis X = {x−j

2 x1x
j
2 | j ∈ Z}. We can replace X by a new basis Y which

converges to 1 with respect to the profinite topology on F , as follows: for any

j > 1, find the maximal n ∈ N with |j| ≥ n! and replace xx
j
2

1 by xx
j
2

1 x
−xj0

2
1 ,

where j0 is the remainder of j modulo n!. Then Y converges to 1 (in the
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profinite topology of F ) and x1 ∈ Y . Choose an epimorphism ϕ : N −→ L
such that ϕ(Y ) = {gi | i ∈ N} and ϕ(x1) = 1. Then ϕ is continuous if N is
regarded as a topological group with the topology induced by the profinite
topology of F and L is regarded as a topological group with the topology
defined by N . Consider the subgroup A = N×{1} of F×L and the monomor-
phism f : A −→ F × L defined by f(a, 1) = (σ(a), ϕ(a)), a ∈ N . Then f is
clearly continuous with respect to the product topology on F × L. Consider
the (abstract) HNN-extension G = HNN(F × L,A, f).

Let ̂F be the profinite completion of F . Put B = f(A). Let Ā and B̄ be
the closures of A and B, respectively, in the profinite group ̂F ×KN (L). Let
f̄ : Ā −→ B̄ be the isomorphism induced by f (f̄ can be defined also by
the equality f(a, 1) = (σ̂(a), ϕ(a)) (a ∈ N̄), where σ̂ is the automorphism of
̂F induced by σ and ϕ̄ : N̄ −→ KN (L) is the epimorphism induced by ϕ).
Consider the profinite HNN-extension HNN( ̂F ×KN (L), Ā, f).

As in the proof of Theorem 9.4.4, one shows that ̂F ×KN (L) embeds into
HNN( ̂F ×KN (L), Ā, f), i.e., that ̂F × KN (L) and f satisfy condition (2) in
Proposition 9.4.3.

To prove the residual finiteness of G, note that the natural embedding F×
L −→ ̂F ×KN (L) induces an embedding of G into HNNabs( ̂F ×KN (L), Ā, f)
and the latter group is residually finite by Proposition 9.4.3.

Now we show that the profinite topologies ofG and HNN( ̂F×KN (L), Ā, f̄)
induce the same topology on F × L. Indeed, let U be a normal subgroup of
finite index in G. Then U contains almost all elements of Y . Since f(U∩A) =
U ∩B, it follows that U contains almost all gi. This shows that the topology
of G induces a topology on L which is weaker than the one defined by N . It
remains to show that for any normal subgroup U1 of finite index in F and
U2 ∈ N , there exists a normal subgroup U of finite index in G such that
U ∩ (F × L) ≤ U1 × U2. Choose U2 ∈ N . Since ϕ is continuous and σ has
order 2, one can choose U1 such that U1 ≤ ϕ−1(U2) and σ(U1) = U1. Then

f(A ∩ (U1 × U2)) = {(σ(u), ϕ(u)) | u ∈ N ∩ U1}

and

B ∩ (U1 × U2) = {(σ(u), ϕ(u)) | u ∈ N ∩ σ−1(U1) ∩ ϕ−1(U2)}.

Since N ∩σ−1(U1)∩ϕ−1(U2) = N ∩U1, one deduces that f(A∩ (U1×U2)) =
B ∩ (U1 × U2). Therefore, one has a natural isomorphism

f̃ : A(U1 × U2)/(U1 × U2) −→ B(U1 × U2)/(U1 × U2)

and the HNN-extension HNNabs(F ×L/(U1 ×U2), A(U1 ×U2)/(U1 ×U2), f̃)
is an epimorphic image of G. The base subgroup of this extension is finite,
and therefore there exists a normal subgroup V of finite index in

HNN(F × L/(U1 × U2), A(U1 × U2)/(U1 × U2), f̃)
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that intersects trivially the base subgroup. Let U be the preimage of V in G.
Then U ∩ (F × L) = U1 × U2, as needed.

Finally, one proves that G is generated by (x1, 1) and t (see the definition
of HNN-extension for the meaning of t) as it was done in the last paragraph
of the proof of the preceding theorem. ��

Corollary 9.4.6 There exists a 2-generated residually finite torsion-free ab-
stract group G whose profinite completion ̂G contains an isomorphic copy of
every countably based profinite group.

Proof. It suffices to construct a group G that contains a direct product K =
∏

nKn of all finite simple groups (one copy for each isomorphism class).
Note that by Proposition 4.7.12, for every Kn there exists a finitely generated
torsion-free residually finite group Γn whose profinite completion contain Kn.
Let L be the restricted direct product of the Γn (i.e., the subgroup of the
direct product consisting of those tuples all whose components are trivial
except for a finite number of them). Let Xn be a finite set of generators
of Γn and X =

⋃∞
i=1Xn. Put N = {N �f L | |X − L| < ∞}. Then the

completion KN (L) of L with respect to N is the direct product
∏∞
i=1
̂Γn. Now

Theorem 9.4.5 gives us the required construction for G. Indeed, according to
that construction, G is torsion-free since it is an HNN-extension of a torsion
free group. ��

9.5 Notes, Comments and Further Reading

Throughout this chapter we use freely standard properties of free products,
amalgamated products and HNN-extensions of abstract groups. Good sources
of information about these properties are Magnus, Karras and Solitar [1966],
Lyndon and Schupp [1977] and Serre [1980].

For absolute Galois groups and free pro - C products, see Pop [1990] (spe-
cially Theorem 3.4) and Ershov [1997], where it is proved that the class
of absolute Galois groups is closed under free profinite products; see also
Koenigsmann [2002] for a simplified proof of this fact and a history of the
problem; Mel’nikov [1997]; Efrat and Haran [1994], where an analogous result
is proved for absolute Galois groups that are pro-p. In contrast, Koenigsmann
[2005] proves that the class of absolute Galois groups is not closed under di-
rect products. See also Efrat [1997].

For a general treatment of cartesian subgroups (Theorem 9.1.6) in a profi-
nite context see Ribes [1990]. Corollary 9.1.7 was proved in a special case in
Haran and Lubotzky [1985] and in general in Herfort and Ribes [1989b]. The-
orem 9.1.9 was first proved in Binz, Neukirch and Wenzel [1971]; they proved
it for a more general type of free product, namely, they allow an infinite set
of free factors ‘converging’ to 1 (see a definition for this type of product in
Appendix D, and a simpler proof for the result in Theorem D.3.1).
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Proposition 9.1.11 was obtained by Neukirch [1971]; in this paper Neukirch
studies applications of free products to Galois theory. Theorem 9.1.12 is
proved in Herfort and Ribes [1985]; this paper contains also information about
the torsion elements in a free pro - C product; more precisely, the following
result is proved:

Theorem 9.5.1 Let G = G1 % G2 be a free pro - C product and let H be a
finite subgroup of G. Then H is conjugate to a subgroup of G1 or of G2.

Proposition 9.1.13 was proved for free profinite groups F of any infinite
rank in Herfort and Ribes [1985] and for nonabelian free profinite groups
of finite rank in Haran and Lubotzky [1985]. Example 9.1.14 was described
by Mel’nikov [1980]. In this paper he also raises the following problem (see
Theorem 3.5.15 in this connection).

Open Question 9.5.2 Is a general inverse limit of a surjective inverse sys-
tem of free profinite groups of finite rank necessarily a free profinite group?

Proposition 9.1.15 appears in Lubotzky [1982]. Concerning Remark 9.1.16,
the Grushko-Neumann theorem for profinite groups can be reformulated in
terms of finite groups (see Ribes and Wong [1991]) as follows: for which
extension closed varieties C of finite groups is it always true that whenever
groups G1, G2 ∈ C are given, then there exists a group G ∈ C such that
G1, G2 ≤ G, G = 〈G1, G2〉 and d(G) = d(G1) + d(G2)? For pro-p groups,
the answer is positive (see Proposition 9.1.15); however the result does not
hold for general varieties. For the variety of all finite groups Lucchini [2001b]
(cf. also Lucchini [1992] and [2001a]) gives bounds for the minimal number
of generators of a finite group generated by subgroups of pairwise coprime
order. In particular he proves

Theorem 9.5.3 Let G be a finite group such that G = 〈G1, G2〉, where G1

and G2 are subgroups of G of relatively prime orders. Assume that d(Gi) ≤ r
(i = 1, 2). Then d(G) < 2r, if r is large enough.

When C is the class of all finite solvable groups, Kovács and Sim [1991]
prove

Theorem 9.5.4 If a finite solvable group G is generated by s subgroups of
pairwise coprime orders, and if each of these subgroups can be generated by
r elements, then G can be generated by r + s− 1 elements.

From this one can deduce, for example, that the free prosolvable product
(C2 × C2) % (C3 × C3) can be generated by three elements.

Abért and Hededűs [2007] contains several results on d(G), where G is
the free profinite product of finite groups. In particular they prove that if
G1, . . . , Gn are finite groups and G = G1 % · · · % Gn is their free profinite
product, then d(G) ≥ n+ s′ − 1, where s′ = max(d(Gi/G′

i)).



390 9 Free Constructions of Profinite Groups

The next question is about the existence of certain Frobenius profinite
groups in free profinite products. One can pose the question in terms of
normalizers. If A and B are finite groups, then an element in A of order
at least 3 cannot normalize an infinite cyclic subgroup of the abstract free
product A ∗ B. However, it is shown in Herfort and Ribes [1989b] that if
the finite groups A and B are solvable, then the free prosolvable product
A % B contains Frobenius groups of the form ̂Zπ � C, where C is any fi-
nite cyclic subgroup of A, p � |C| for all p ∈ π and C acts fixed-point-free
on ̂Zπ.

Lemma 9.1.18 and Theorem 9.1.19 were proved by Lubotzky [1982] for
free pro-p groups of finite rank, and in general by Ribes [1991]. Theo-
rem 9.1.20 was proved by Lubotzky [1982] for free pro-p groups of finite
rank.

In connection with Open Question 9.1.21, we mention the status of the
equivalent question for abstract groups. Let F be a free group and let H and
K be finitely generated subgroups of F . Put rk−n(G) = max(rank(G)−n, 0).
Hanna Neumann conjectured that

rk−1(H ∩K) ≤ rk−1(H)rk−1(K).

The best bound

rk−1(H ∩K) ≤ rk−1(H)rk−1(K) + rk−3(H)rk−3(K),

up to now, was obtained recently by Dicks and Formanek [1999].
Exercise 9.1.22 appears in Ribes [1991]. The result in Exercise 9.2.7(1) was

obtained by Baumslag [1963]. See Shirvani [1992] for the case whenH satisfies
a law. Theorem 9.2.4, Exercise 9.2.6 and Examples 9.2.9 and 9.2.10 appear
in Ribes [1971], [1973]. Serre (see Ribes [1973]) has also produced examples
of nonproper amalgamated free profinite products. A useful necessary and
sufficient condition for an amalgamated free pro-p product to be proper is
given in Ribes [1971]. The Mayer-Vietoris sequence in Proposition 9.2.13(a)
appears in Gildenhuys and Ribes [1974].

Theorem 9.3.1 was proved in Ribes [1974], where it is expressed in terms
of cohomology of pairs of groups. Proposition 9.3.8 is proved in Gildenhuys
and Ribes [1974]. Theorem 9.3.10 was proved by Neukirch [1971] (in fact he
proves this in a more general setting: he allows free products of infinitely
many pro-p groups ‘converging to 1’).

There are two approaches to the task of embedding a countably based
profinite (respectively, a residually finite, countably generated) group into
a 2-generated profinite (respectively, residually finite) group. The first one,
due to J.S. Wilson, is to use the construction of wreath products. This is the
method used in Lubotzky and Wilson [1984] (respectively, in Wilson [1980])
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to prove Theorem 9.4.4 for extension closed varieties (respectively, a residu-
ally finite version of Theorem 9.4.4). The idea of the second approach, due
to Z. Chatzidakis, is to use the well-known Higman-Neumann-Neumann con-
struction with certain variations; the approach has been exploited in Chatzi-
dakis [1994], Wilson and Zalesskii [1996] and in Chatzidakis [1999]. This
approach allows the control of torsion in the constructed group. Proposi-
tion 9.4.3 is due to Chatzidakis [1994], where one can find a proof of Theo-
rem 9.4.4 as well as pro-p versions of Proposition 9.4.3 and Theorem 9.4.4.
A pro-p version of Theorem 9.4.5 is proved in Chatzidakis [1999].

There are two examples of 2-generated pro-p groups containing every
countably based pro-p group that recently have received attention in the
literature. The first one is the Nottingham group, which is a subgroup of finite
index of the group Aut(Fp[[t]]) of ring automorphisms of the power series ring
Fp[[t]] (see Johnson [1988]). The other example is the pro-p completions of 2-
generated torsion p-groups constructed by Gupta-Sidki (the construction is
similar to Grigorchuk’s construction of 3-generated p-groups). Pro-p groups
of both types are generated by two elements of order p; these groups are just-
infinite (i.e., they do not have infinite proper quotients) and possess many
interesting properties (see Camina [1997], Grigorchuk [1980], Gupta and Sidki
[1983], Grigorchuk, Herfort and Zalesskii [2000]).

A profinite groupG is said to have bounded generation if there are elements
x1, . . . , xd ∈ G, not necessarily different, such that G = 〈x1〉 · · · 〈xd〉. Let
H = H1 ∗H0 H2 be a amalgamated free product of abstract groups H1 and
H2 amalgamating a common subgroup H0, and let ̂H and Hp̂ denote the
profinite and pro-p completion of H, respectively. The following questions
are proposed by A.S. Rapinchuk.

Open Question 9.5.5 Give (verifiable) sufficient conditions for ̂H to have
bounded generation, where H = H1 ∗H0 H2.

An analogous problem (although weaker, due to the fact that pro-p groups
with bounded generation are precisely analytic pro-p groups—cf. Lazard
[1965]) is

Open Question 9.5.6 Give (verifiable) sufficient conditions for Hp̂ to have
bounded generation, where H = H1 ∗H0 H2.

For these questions to be meaningful one should of course require in addi-
tion that H = H1 ∗H0 H2 is residually finite (respectively, residually a finite
p-group), or some conditions that insure that ̂H and Hp̂ do not collapse.

There is a natural analogue of this type of question in an abstract set-
ting; in this case there are known necessary conditions (cf. Fujiwara [2000],
Grigorchuk [1996]): if for at least one i = 1, 2 the number of double cosets
G0\Gi/G0 is at least 3, then G does not have bounded generation.

The interest in these questions arises because many S-arithmetic sub-
groups of algebraic groups associated with quaternion algebras over a number
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field are amalgamated free products, and progress in these questions would
help with the congruence subgroup property for such groups. More informa-
tion about these questions can be found in Platonov and Rapinchuk [1993],
Lubotzky [1995], Rapinchuk [1998].

Finally we indicate two problems suggested by D. Kochloukova involving
amalgamated free pro-p products. The problems are suggested by results for
abstract free groups that arise in connection with the solution of Tarski’s
problem on the elementary equivalence of free abstract nonabelian groups
(cf. Kharlampovich and Myasnikov [2005] for a source of information on this
type of results). Fix a prime p and let G0 be a free pro-p group of finite rank.
Construct pro-p groups Gn recursively as follows. Assume Gn has already
been constructed and let R be a procyclic subgroup of Gn with CGn(R) = R;
consider a free abelian finitely generated pro-p group A = R×B. Then define
the pro-p group Gn+1 to be the amalgamated free pro-p product

Gn+1 = Gn %R A.

We say that a pro-p group G is a limit pro-p group if it is a finitely generated
closed subgroup of a group of the form Gn constructed in the above manner.

Open Question 9.5.7 Let G be a limit pro-p group. Does G satisfy the
Howson property? In other words, if H1 and H2 are finitely generated closed
subgroups of G, is H1 ∩H2 a finitely generated pro-p group?

Open Question 9.5.8 Are limit pro-p groups residually free pro-p?

Open Question 9.5.9 Let H be a finitely generated closed subgroup of a
limit pro-p group G. Is then H a virtual retract of G, i.e., is there an open
subgroup M of G and a normal closed subgroup K of M so that M = K�H?
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We collect here the open questions mentioned in the book. We have main-
tained the numeration of the original question so that the reader may consult
the context in which the question is posed. The wording of the questions are
sometimes modified slightly to make them self-contained. We also mention
here those open problems that appeared in the first edition of this book which
have been solved or advanced in the meantime; in these cases we provide some
relevant information.

Open Question 3.5.3 (Inverse problem of Galois Theory) Is every
finite group a continuous homomorphic image of the absolute Galois group
GQ̄/Q of the field Q of rational numbers?

Question in the First Edition of this Book Let F be a free profinite (or,
more generally, pro - C) group on a profinite space X. Is there a canonical
way of constructing a basis converging to 1 for F? NOTE: J-P. Serre has
given a negative answer to this question; see Theorem 3.5.13.

Open Question 3.7.2 What pro - C groups are pro - C completions of finitely
generated abstract groups?

Question in the First Edition of this Book Let G be a finitely gener-
ated profinite group. Is every subgroup of finite index in G necessarily open?
NOTE: This question has been answered positively by N. Nikolov and D.
Segal (see Theorem 4.2.2; for a proof see Nikolov and Segal [2007a, 2007b]).

Question in the First Edition of this Book Let G be a finitely generated
prosolvable group. Are the terms (other than [G,G]) of the derived series of G
closed? NOTE: This question has a negative answer; in fact V.A. Roman’kov
had already provided a counterexample in 1982 for a more general setting;
see Roman’kov [1982].

Open Question 4.8.4 Let G be a finitely generated profinite group and let
n be a natural number. Let 〈Gn〉 = 〈xn | x ∈ G〉 be the abstract subgroup of
G generated by the n-th powers of its elements. Is 〈Gn〉 closed?

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4, c© Springer-Verlag Berlin Heidelberg 2010
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Open Question 4.8.5b Is a torsion profinite group necessarily of finite
exponent?

Open Question 6.12.1 Let G be a solvable pro-p group such that
Hn(G,Z/pZ) is finite for every n. Is G polycyclic?

Open Question 7.10.1 For what finite p-groups G does one have rr(G) =
arr(G)? [rr = relation rank as a profinite group; arr = relation rank as an
abstract group]

Open Question 7.10.4 Let G be a finitely generated pro-p group such that
cd(G) > 2 and dimH2(G,Z/pZ) = 1, (i.e., relation rank rr(G) is 1). Does
G admit a presentation with a single defining relator of the form up?

Open Question 7.10.5 Study finitely generated pro-p groups with the fol-
lowing property: every closed subgroup of infinite index is free pro-p.

Open Question 7.10.6 Let F be a free pro-p group of finite rank. Is
vcd(Aut(F )) finite?

Question in the First Edition of this Book Does the Grushko-Neumann
theorem hold for free profinite products of profinite groups, that is, if G =
G1 % G2 is the free profinite product of two profinite groups G1 and G2,
is d(G) = d(G1) + d(G2)? NOTE: The answer to this is negative. It was
answered by A. Lucchini; see Lucchini [2001a, 2001b].

Open Question 9.1.21 Let F be a free pro-p group and let H and K be
closed finitely generated subgroups of F . Is there a bound on the rank of
H ∩K in terms of the ranks of H and K?

Open Question 9.5.2 Is a general inverse limit of a surjective inverse sys-
tem of free profinite groups of finite rank necessarily a free profinite group?

Question in the First Edition of this Book For which extension closed
varieties C of finite groups is it always true that whenever we are given
G1, G2 ∈ C, then there is a group G ∈ C such that G1, G2 ≤ G, G = 〈G1, G2〉
and d(G) = d(G1) + d(G2)? NOTE: For the class C of all finite solvable
groups the answer is negative, see Kovács and Sim [1991]; for the class C of
all finite groups the answer is negative, see Lucchini [2001a, 2001b].

Question in the First Edition of this Book Do all profinite Frobenius
groups of the form ̂Zπ �C (C is finite cyclic, p � |C| for all p ∈ π and C acts
fixed-point-free on ̂Zπ) appear as subgroups of free profinite products A%B?
NOTE: A positive answer is provided in Guralnick and Haran [2010].
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Open Question 9.5.5 Give (verifiable) sufficient conditions for ̂H to have
bounded generation, where H = H1 ∗H0 H2.

Open Question 9.5.6 Give (verifiable) sufficient conditions for Hp̂ to have
bounded generation, where H = H1 ∗H0 H2.

Open Question 9.5.7 Let G be a limit pro-p group. Does G satisfy the
Howson property? In other words, if H1 and H2 are finitely generated closed
subgroups of G, is H1 ∩H2 a finitely generated pro-p group?

Open Question 9.5.8 Are limit pro-p groups residually free pro-p?

Open Question 9.5.9 Let H be a finitely generated subgroup of a limit pro-p
group G. Is then H a virtual retract of G, i.e., is there an open subgroup M
of G and a normal closed subgroup K of M so that M = K �H?

Open Problem C.3.2 Let G be a finitely generated profinite (respectively,
pro-p) group with finite def (G) ≥ 2 (respectively, def p(G) ≥ 2). Does G
contain an open subgroup U such that there exists a continuous epimorphism
U → F onto a free profinite (respectively, pro-p) group F of rank at least 2?



Appendix A: Spectral Sequences

A.1 Spectral Sequences

A bigraded abelian group E is a family E = (Er,s)r,s∈Z of abelian groups.
A differential d of E of bidegree (p, q) is a family of homomorphisms

d : Er,s → Er+p,s+q

such that dd = 0.

s

• • E2,4
3

d3

• • • •

• • • • • • •

• • • • • E5,2
3

•

• E1,1
3

• E3,1
3

• • •

• • • • • • •
r

A spectral sequence consists of a sequence E = {E1,E2,E3, . . .} of bi-
graded abelian groups Et = (Er,st )r,s∈Z, with differentials dt : Et −→ Et of
bidegree (t,−t+ 1), such that

Er,st+1
∼= Ker(Er,st

dt−→ Er+t,s−t+1
t )/Im(Er−t,s+t−1

t
dt−→ Er,st ). (1)

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
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To simplify the notation, from now on we assume that the isomorphism in
(1) is in fact an equality. The bigraded abelian group E2 is called the initial
term of the spectral sequence.

Lemma A.1.1 For each r, s ∈ Z there exists a series of subgroups of Er,s2

0 = Br,s2 ≤ Br,s3 ≤ Br,s4 ≤ · · · ≤ Cr,s4 ≤ Cr,s3 ≤ Cr,s2 = Er,s2

such that
Er,st = Cr,st /B

r,s
t (t ≥ 2).

Proof. Set Br,s2 = 0 and Cr,s2 = Er,s2 ; then Er,s2 = Cr,s2 /Br,s2 . Define induc-
tively

Br,st+1/B
r,s
t = Im(Er−t,s+t−1

t = Cr−t,s+t−1
t /Br−t,s+t−1

t
dt→ Er,st = Cr,st /B

r,s
t ),

and

Cr,st+1/B
r,s
t = Ker(Er,st = Cr,st /B

r,s
t

dt→ Er+t,s−t+1 = Cr+t,s−t+1
t /Br+s,s−t+1

t ).

Hence
Br,s2 ≤ Br,st ≤ Br,st+1 ≤ Cr,st+1 ≤ Cr,st ≤ Cr,s2 ,

and
Er,st+1 = (Cr,st+1/B

r,s
t )/(Br,st+1/B

r,s
t ) = Cr,st+1/B

r,s
t+1. ��

Let Cr,st , Br,st be as in Lemma A.1.1. Define

Cr,s∞ =
⋂

t

Cr,st , Br,s∞ =
⋃

t

Br,st

and
Er,s∞ = Cr,s∞ /Br,s∞ .

The bigraded abelian group E∞ = (Er,s∞ )r,s∈Z, is completely determined
by the spectral sequence. We think of the terms Et of the spectral sequence
as approximating E∞.

A filtered abelian group with filtration F consists of an abelian group A
together with a family of subgroups Fn(A) of A, (n ∈ Z), such that

A ≥ · · · ≥ Fn(A) ≥ Fn+1(A) ≥ · · · .

We always assume that a filtration satisfies the additional condition:
⋃

r

F r(A) = A and
⋂

r

F r(A) = 0. (2)

To each filtered abelian group A we associate a grading in the following
manner
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Gr(A) = F r(A)/F r+1(A) (r ∈ Z).

A filtered graded abelian group with filtration F , consists of a family H =
(Hn)n∈Z, of filtered groups Hn.

A spectral sequence E = (Et) is said to converge to the filtered graded
abelian group H = (Hn) with filtration F if

Er,s∞
∼= Gr(Hr+s) = F r(Hr+s)/F r+1(Hr+s).

We indicate this situation by Er,s2 =⇒ Hn or by E =⇒ H.

A.2 Positive Spectral Sequences

We say that a spectral sequence E is positive or first quadrant if Er,s2 = 0,
whenever r < 0 or s < 0. It is clear that if E is a positive spectral sequence
then Er,st = 0 for t ≥ 2 and r < 0 or s < 0. From now on we assume that all
spectral sequences are positive.

Proposition A.2.1 Let E be a positive spectral sequence converging to H.
Then

(a) Er,st = Er,s∞ if t > max(r, s+ 1),
(b) Hn = 0 if n < 0,

(c) F r(Hn) =
{

0 if r > n,
Hn if r ≤ 0.

Proof. (a) Note that

Er−t,s+t−1
t

dt−→ Er,st
dt−→ Er+t,s−t+1

t .

If t > r, then Er−t,s+t−1
t = 0; if t > s + 1, then Er+t,s−t+1

t = 0. So, if
t > max(r, s+ 1), then Cr,st = Cr,sr+1 = · · ·, and Br,st = Br,sr+1 = · · ·; hence, by
Lemma A.1.1,

Er,st = Er,st+1 = · · · = Er,s∞ .

(b) If r + s = n < 0, then either r < 0 or s < 0; so F r(Hn)/F r+1(Hn) =
Er,s∞ = 0; therefore F r(Hn) = F r+1Hn, for all r ∈ Z; thus F r(Hn) = 0 (since
⋂

r F
rHn = 0). This implies that Hn =

⋃

r F
r(Hn) = 0.

(c) Let r + s = n. Then Er,s∞
∼= F r(Hn)/F r+1(Hn). Now, if r < 0 or

s < 0, then Er,s∞ = 0; so F r(Hn) = F r+1(Hn). Hence,

· · · = F−2(Hn) = F−1(Hn) = F 0(Hn)

and
Fn+1(Hn) = Fn+2(Hn) = Fn+2(Hn) = · · · .

Thus, it follows from condition (2) thatHr = F 0(Hn) if r ≤ 0, and F r(Hn) =
0 if r > n. ��



400 A: Spectral Sequences

Proposition A.2.2 For each n there is a sequence

En,0∞
ι−→ Hn π−→ E0,n

∞ ,

where ι is an injection, π a surjection and πι = 0. The sequence is exact if
n = 1.

Proof. One has the following composition of maps

En,0∞
=−→ Fn(Hn) ↪→ Hn −→ Hn/F 1(Hn)

∼=−→ E0,n
∞ ,

and so,
En,0∞

ι−→ Hn π−→ E0,n
∞ .

Note that Im(ι) = Fn(Hn) ≤ F 1(Hn) = Ker(π); hence πι = 0. If n = 1,
Im(ι) = Ker(π) = F 1(Hn), so the sequence is exact. ��

The Base Terms

The terms of the form Er,0t are called the base terms of the spectral sequence.

Proposition A.2.3 For each r there exist epimorphisms

Er,02 −→ Er,03 −→ · · · −→ Er,0r+1

∼=−→ Er,0∞ .

Proof. The last arrow is an isomorphism by Proposition A.2.1. Since Er,03
∼=

Ker(d2)/Im(d2) = Er,02 /Im(d2), we have a surjection Er,02 −→ Er,03 . One
obtains the other maps in a similar way. ��

Each of the maps of Proposition A.2.3 and the map Er,02 −→ Er,0∞
ι−→ Hr

obtained from the maps of Propositions A.2.2 and A.2.3, are called edge
homomorphisms on the base, and will be denoted by eB .

The Fiber Terms

The terms of the form E0,s
t are called the fiber terms of the spectral sequence.

Proposition A.2.4 For each s, there exist monomorphisms

E0,s
2 ←− E0,s

3 ←− · · · ←− E0,s
s+2

∼=←− E0,s
∞ .

Proof. The last arrow is an isomorphism by Proposition A.2.1. Since E0,s
3

∼=
Ker(d2)/Im(d2) = Ker(d2), we have an injection E0,s

3 −→ E0,s
2 . The other

injections are obtained similarly. ��
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Each of the maps of the Proposition A.2.4, and the map

Hs π−→ E0,s
∞ −→ E0,s

2

obtained by composing the maps of Propositions A.2.2 and A.2.4, are called
edge homomorphisms on the fiber, and will be denoted by eF .

For n ≥ 1, the homomorphism dn+1 : E0,n
n+1 −→ En+1,0

n+1 is called a trans-
gression.

Condition *(n).

For a fixed n ≥ 1, we will say that the spectral sequence E satisfies
condition ∗(n) if

Er,s2 = 0 whenever 1 ≤ s ≤ n− 1 and r+ s = n, and whenever 1 ≤ s ≤ n− 1
and r + s = n+ 1.

Note that condition ∗(1) is vacuous.

Proposition A.2.5 Assume condition ∗(n) holds for a positive spectral se-
quence E. Then

(a) the monomorphism eF : E0,n
n+1 −→ E0,n

2 is an isomorphism;
(b) the epimorphism eB : En+1,0

2 −→ En+1,0
n+1 is an isomorphism.

Proof. (a) Et,n−t+1
t = 0 if t 
= n+ 1. So Ker(dt : E0,n

t −→ Et,n−t+1
t ) = E0,n

t

if t 
= n+ 1. Therefore, E0,n
2

∼= E0,n
3

∼= · · · ∼= E0,n
n+1.

(b) En−t+1,t−1
t = 0 if t 
= n + 1. So Im(dt : En−t+1,t−1

t −→ En+1,0
t ) = 0.

Therefore, En+1,0
2

∼= En+1,0
3

∼= · · · ∼= En+1,0
n+1 . ��

By the proposition above we can define a map

E0,n
2

e−1
F−→ E0,n

n+1

dn+1−→ En+1,0
n+1

e−1
B−→ En+1,0

2

if condition ∗(n) is satisfied. This homomorphism will also be called a trans-
gression and denoted tr.

Theorem A.2.6 Let E = (Er,st ) be a positive spectral sequence converging to
H = (Hn). Assume that Er,s2 = 0 for 1 ≤ s ≤ n− 1 (for n = 1 this condition
is vacuous). Then there exists a five term exact sequence

0 −→ En,02
eB−→ Hn eF−→ E0,n

2
tr−→ En+1,0

2
eB−→ Hn+1.

Proof. First notice that

Ker
(

Er,0t
eB−→ Er,0t+1

)

= Im
(

Er−t,t−1
t

dt−→ Er,0t

)

(3)

Im
(

E0,s
t+1

eF−→ E0,s
t

)

= Ker
(

E0,s
t

dt−→ Et,s−t+1
t

)

. (4)
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We shall prove exactness at each term.
Exactness at En,02 : It is enough to prove that each En,0t −→ En,0t+1 is

an injection (r = 2, . . . , n). But this follows from (3) since En−t,t−1
t = 0

(t = 2, . . . , n).
Exactness at Hn: Since condition ∗(n) holds, it follows then from Propo-

sitions A.2.2 and A.2.5 that

Im(eB) = Im
(

En,02 −→ Hn
)

= Im
(

En,0∞
ι−→ Hn

)

= Fn(Hn)

and

Ker(eF ) = Ker
(

Hn −→ E0,n
2

)

= Ker
(

Hn π−→ E0,n
∞

)

= F 1(Hn).

Now, by hypothesis, if n = r + s and 1 ≤ r ≤ n − 1, then 0 = Er,s∞ =
F r(Hn)/F r+1(Hn); so F r(Hn) = F r+1(Hn). Hence F 1(Hn) = Fn(Hn).
Thus Im(eB) = Ker(eF ).

Exactness at E0,n
2 : By Proposition A.2.5 and the definition of tr we have

Im(eF ) = Im
(

Hn −→ E0,n
n+1

)

= Im
(

E0,n
n+2 −→ E0,n

n+1

)

,

and
Ker(tr) = Ker

(

E0,n
n+1 −→ En+1,0

n+1

)

.

Thus Im(eF ) = Ker(tr).
Exactness at En+1,0

2 : Analogously,

Im(tr) = Im
(

E0,n
n+1 −→ En+1,0

n+1

)

,

and

Ker(eB) = Ker
(

En+1,0
n+1 −→ Hn+1

)

= Ker
(

En+1,0
n+1 −→ En+1,0

n+2

)

.

Therefore Im(tr) = Ker(eB). ��

Corollary A.2.7 There exists a five term exact sequence

0 −→ E1,0
2

eB−→ H1 eF−→ B0,1
2

tr−→ E2,0
2

eB−→ H2.

Proof. This is a special case of the theorem since for n = 1 the hypothesis is
vacuous. ��

A.3 Spectral Sequence of a Filtered Complex

In this section we study a canonical way of constructing spectral sequences.
Given a complex with a suitable filtration, we define a spectral sequence that
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converges to the filtered graded abelian group consisting of the homology
groups of that complex.

Let

X = (X, ∂) = · · · −→ Xn−1 ∂−→ Xn −→ Xn+1 −→ · · ·

be a complex of abelian groups. We say that X is filtered if each Xn has
a filtration F compatible with ∂, i.e., for each r and each n, ∂F r(Xn) ≤
F r(Xn+1).

Assume that X is a filtered complex:

... · · ·
...

↓ ↓
Xn−1 ≥ · · · ≥ F r(Xn−1) ≥ · · ·
↓ ↓
Xn ≥ · · · ≥ F r(Xn) ≥ · · ·
↓ ↓

Xn+1 ≥ · · · ≥ F r(Xn+1) ≥ · · ·
↓ ↓
... . . .

...

Then the sequence of homology groups H = {Hn(X)} of this complex can
be thought of as a single graded abelian group with a filtration inherited
from the filtration of the complex X; namely, F r(Hn(X)) is the image of
Hn(F r(X)) under the injection F r(X) ↪→ X.

Next we begin the construction of a spectral sequence associated to X.
Let r + s = n and r ∈ Z. Set

Zr,st = {a ∈ F r(Xn) | ∂(a) ∈ F r+t(Xn+1)},
Br,st = ∂Zr−t+1,s+t−2

t−1 = ∂(F r−t+1(Xn−1)) ∩ F r(Xn),

and
Er,st = Zr,st /(B

r,s
t + Zr+1,s−1

t−1 ). (5)

Since
∂Zr,st ≤ Zr+t,s−t+1

t ,

and
∂(Br,st + Zr+1,s−1

t−1 ) = ∂Zr+1,s−1
t−1 = Br+t,s−t+1

t ,

we have that the map ∂ induces a homomorphism

dt : Er,st −→ Er+t,s−t+1
t , (6)

with dtdt = 0. Moreover, one checks that

Ker
(

Er,st
dt−→ Er+t,s−t+1

t

)

=
(

Zr,st+1 + Zr+1,s−1
t−1

)/(

Br,st + Zr+1,s−1
t−1

)

,
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and

Im
(

Er−t,s+t−1
t

dt−→ Er,st

)

=
(

Br,st+1 + Zr+1,s−1
t−1

)/(

Br,st + Zr+1,s−1
t−1

)

.

Hence

Ker(dt)/Im(dt) ∼=
(

Zr,st+1 + Zr+1,s−1
t−1

)/(

Br,st+1 + Zr+1,s−1
t−1

)

∼= Zr,st+1

/(

Br,st+1 + Zr+1,s−1
t−1

)

= Er,st+1.

Observe that this is valid for every t ∈ Z. Thus we have proved the first part
of the following

Theorem A.3.1 Let (X, ∂) be a filtered complex. Then

(a) There exists a spectral sequence E, where Er,st is given by (5).
(b) Assume, in addition, that the filtration F of (X, ∂) is bounded, i.e., for

each n there are integers u = u(n) < v = v(n) with Fu(Xn) = Xn and
F v(Xn) = 0. Then E converges to the graded abelian group H = H(X)
(the homology groups of X) with the filtration induced by the filtration
of X.

Proof. (b) To show that E =⇒ H, we first need to obtain a description of
F rHn(X)/F r+1Hn(X). Write

Zr,s∞ = {a ∈ F r(Xn) | ∂(a) = 0}, and
Br,s∞ = ∂(Xn−1) ∩ F r(Xn) (r + s = n).

Then,
F r(Hn(X)) ∼=

(

Zr,s∞ + ∂Xn−1
)/

∂Xn−1.

So,

F r(Hn(X))/F r+1(Hn(X)) ∼=
(

Zr,s∞ + ∂Xn−1
)/(

Zr+1,s−1
∞ + ∂Xn−1

)

∼= Zr,s∞

/[(

Zr+1,s−1
∞ + ∂Xn−1

)

∩ Zr,s∞

]

∼= Zr,s∞

/(

Zr+1,s−1
∞ +Br,s∞

)

.

Since the filtration of (X, ∂) is bounded, it is clear that

Zr,su
∼= Zr,s∞ and Br,su

∼= Br,s∞

for u large enough. Hence

F r(Hn(X))/F r+1(Hn(X)) ∼= Er,su
for u large enough.

Finally, it is immediate that the boundedness of the filtration of (X, ∂)
implies that Er,su ∼= Er,s∞ for u large enough. Thus E =⇒ H(X). ��
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A.4 Spectral Sequences of a Double Complex

A double complex is a family K = (Kr,s)r,s∈Z of abelian groups together with
differentials

∂′ : Kr,s → Kr+1,s, ∂′ ′ : Kr,s → Kr,s+1

such that ∂′∂′ = 0, ∂′ ′∂′ ′ = 0 and ∂′∂′ ′ + ∂′ ′∂′ = 0.
Using the double complex K we define a complex (X, ∂) = X = Tot(K),

the total complex of K, by

Xn =
⊕

r+s=n

Kr,s,

and where ∂ : Xn −→ Xn+1 is ∂ = ∂′ + ∂′ ′. Note that (X, ∂) is a complex,
for

∂∂ = ∂′∂′ + ∂′∂′ ′ + ∂′ ′∂′ + ∂′ ′∂′ ′ = 0.

Now we construct in a canonical way two filtrations of its total complex X.
The first filtration ′F of X is given by

′F r(Xn) =
⊕

α+β=n
α≥r

Kα,β .

The second filtration ′ ′F of X is defined by

′ ′F s(Xn) =
⊕

α+β=n
β≥s

Kα,β .

For each of these filtrations we can construct corresponding spectral se-
quences ′E = (′Er,st ) and ′ ′E = (′ ′Er,st ), called the first and second spectral
sequence of the double complex K (see the construction in Section A.3). Now
assume that the double complex K is positive, i.e., Kr,s = 0 if r < 0 or s < 0.
Then both the first and second filtrations are bounded. In fact

Xn = ′F 0(Xn) ≥ ′F 1(Xn) ≥ · · · ≥ ′Fn+1(Xn) = 0

and
Xn = ′ ′F 0(Xn) ≥ ′ ′F 1(Xn) ≥ · · · ≥ ′ ′Fn+1(Xn) = 0.

So, according to Theorem A.3.1, there exist corresponding spectral sequences
′E = (′Er,st ) and ′ ′E = (′ ′Er,st ) (the first and second spectral sequences of K)
converging both of them to H(X) with the induced filtrations.

Next we calculate the initial terms ′E2 and ′ ′E2 of these two spectral
sequences. In order to do this we compute first the terms ′E1 and ′ ′E1. We
start with the first spectral sequence. We have

′Zr,s1 = {a ∈ ′F r(Xn) | ∂(a) ∈ ′F r+1(Xn+1)}
∼= Ker(Kr,s ∂′ ′

−→ Kr,s+1) ⊕ ′F r+1(Xn);
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and

′Br,s1 + ′Zr+1,s−1
−1

∼= ∂′F r(Xn−1) + ′F r+1(Xn)

∼= Im(Kr,s−1 ∂′ ′
−→ Kr,s) ⊕ ′F r+1(Xn).

Hence

′Er,s1
∼= Ker

(

Kr,s ∂′ ′
−→ Kr,s+1

)/

Im
(

Kr,s−1 ∂′ ′
−→ Kr,s

)

∼= Hs
(

· · · −→ Kr,s−1 −→ Kr,s −→ Kr,s+1 −→ · · ·
)

∼= Hs(Kr,•).

The mapping d1 : ′Er,s1 −→ Er+1,s
1 is induced by ∂′, so that

′Er,s2
∼= Hr(Hs(Ki,•), ∂′) = ′Hr(′ ′Hs(K)),

where ′ ′H indicates that we are taking the homology of a vertical com-
plex Ki,•, and ′H that we are taking the homology of the horizontal complex
of homology groups induced by ∂′.

In a similar manner we obtain for the second spectral sequence

′ ′Er,s1
∼= Hs(· · · −→ Ks−1,r −→ Ks,r −→ Ks+1,r −→ · · ·) ∼= Hs(K•,r),

and
′ ′Er,s2

∼= Hr(Hs(K•,i), ∂′ ′) = ′ ′Hr(′Hs(K)).

Thus, we have proved the following

Theorem A.4.1 Let K = (Kr,s) be a positive double complex.

(1) There is a “first spectral sequence” ′E = (′Er,st ) canonically constructed
from K such that

(a′) ′Er,s2
∼= ′Hr(′ ′Hs(K)),

(b′) ′Er,s2 =⇒ Hn(Tot(K)).

(2) There is a “second spectral sequence” ′ ′E = (′ ′Er,st ) canonically con-
structed from K such that

(a′ ′) ′ ′Er,s2
∼= ′ ′Hr(′Hs(K)),

(b′ ′) ′ ′Er,s2 =⇒ Hn(Tot(K)).

A.5 Notes, Comments and Further Reading

This appendix follows the presentation of spectral sequence in Ribes [1970].
For alternative and more detailed presentations see Cartan and Eilenberg
[1956], Mac Lane [1963] or McCleary [1985].



Appendix B: A Different Characterization
of Free Profinite Groups

B.1 Free vs Projective Profinite Groups

In this appendix we present an additional way of characterizing free pro - C
groups (see Section 3.5). This new characterization emphasizes the difference
between free pro - C groups and projective groups.

A profinite embedding problem for a pro - C group G

G

ϕ

A α B

(1)

is said to split if α splits, i.e., there is a continuous homomorphism σ : B −→
A such that ασ = idB . This means that A = Ker(α) � σ(B) ∼= Ker(α) � B.
If, in addition, α is not an isomorphism, we say that (1) is a proper split
embedding problem for the pro - C group G.

Let m be an infinite cardinal and let C be a variety of finite groups. A pro -
C group G is called m-quasifree if for every proper split embedding problem
(1) with A ∈ C, there are exactly m distinct epimorphisms

ψ : G −→ A

such that αψ = ϕ (i.e., m solutions of the embedding problem).

Proposition B.1.1 Let G be a pro - C group and let d(G) = m be an infinite
cardinal. Then the following conditions are equivalent

(a) G is a free pro - C group of rank m.
(b) G is C-projective and m-quasifree.

Proof. Obviously a free pro - C group is C-projective. By Proposition 3.5.11,
it suffices to prove that if (b) holds, every proper embedding problem (1) with
A ∈ C has precisely m different solutions. Assume condition (b), and let (1)
be a proper embedding problem for G with A ∈ C. Since G is C-projective,
there exists a continuous homomorphism f : G −→ A such that αf = ϕ. Set
A′ = f(G), and denote again by f the induced epimorphism G −→ A′. Let
α′ : A′ −→ B be the restriction of α to A′. Consider the pull-back

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4
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P = {(a, a′) ∈ A×A′ | α(a) = α′(a′)}

of the maps α and α′ (see Section 2.10). Let α1 : P −→ A and α′
1 : P −→ A′

be the canonical projections. Observe that α1 and α′
1 are epimorphisms;

furthermore, α′
1 is proper (since Ker(α′

1) ∼= Ker(α)) and splits by means of
the section a′ �→ (a′, a′) (a′ ∈ A′).

G
ψ

f

P
α′

1

α1

A′

α′

A α B

By condition (b) there are exactly m epimorphisms ψ : G −→ P such that
α′

1ψ = f . Each of these ψ determines a solution α1ψ of the embedding
problem (1). We claim that the total number of solutions obtained in this
manner of the embedding problem (1) is m: indeed, suppose that ψi : G −→ P
(i = 1, 2) satisfy α′

1ψ1 = f = α′
1ψ2 and α1ψ1 = α1ψ2; then

αα1ψ1 = α′α′
1ψ1 = α′α′

1ψ2 = αα1ψ2,

and so ψ1 = ψ2 by the uniqueness of the universal property of pull-backs.
This proves the claim. Finally, since d(G) = m, the number of continuous
homomorphisms from G to A is at most m, since A is finite. Thus the number
of different solutions of the proper embedding problem (1) is exactly m. ��

B.2 Notes, Comments and Further Reading

The concept of m-quasifree profinite group as well as Proposition B.1.1 appear
first in Harbater and Stevenson [2005]. In this paper they give an example of
a profinite group that is m-quasifree but not free profinite. Specifically they
prove

Theorem B.2.1 Let L be any field and let K = L((x, t)) be the field of frac-
tions of the ring L[[x, t]] of power series in the indeterminates x and t over
the field L. Then the absolute Galois group GK̄/K of K (see Remark 3.5.2)
is an m-quasifree but not free profinite group, where m is the cardinal of K.

For further information about m-quasifree profinite groups and related
concepts, see Appendix D.



Appendix C: Presentations of Profinite Groups

Throughout this appendix C is an extension closed variety of finite groups.

C.1 Presentations

Let G be a finitely generated pro - C group with d(G) = d. Let F = F (X) be
a free pro - C group on the set X with |X| = n and let

1 −→ K −→ F
ϕ−→ G −→ 1 (1)

be a short exact sequence of pro - C-groups; we think of K as a subgroup
of F . We refer to this sequence as a pro - C presentation of the group G as a
pro - C group. Let R be a set convergent to 1 of topological generators of K
as a normal subgroup. Then G is completely determined by X and R, and
we write

G = 〈X | R〉. (2)

We also refer to 〈X | R〉 as a pro - C presentation of G. The smallest cardinal
|R| among such sets R is denoted dF (K). If the set R can be chosen to be
finite, i.e., dF (K) <∞, we say that (1) (and (2)) is a finite pro - C presentation
for G, and that G is finitely presentable as a pro - C group. If rank(F ) = d(G),
we say that (1) is a minimal presentation of G as a pro - C group. Finally we
define the relation rank of G as a pro - C group, written rr(G) or rrC (G) for
emphasis of its dependence on C, to be the smallest dF (K) for any pro - C
presentation of G.

The following proposition shows that in some strong sense pro - C presen-
tations of a pro - C group are essentially unique.

Proposition C.1.1 Let G be a finitely generated pro - C group with d(G) =
d ≤ m ≤ n <∞ and let F = FC (n) be the free pro - C group of rank n.

(a) Let
ϕ : F −→ G

be a continuous epimorphism. Then there exists a basis

{x1, . . . , xm, xm+1, . . . , xn}

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4, c© Springer-Verlag Berlin Heidelberg 2010
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of F such that ϕ(xm+1) = · · · = ϕ(xn) = 1. Consequently, if we put
F1 = 〈x1, . . . , xm〉, the restriction ϕ|F1 : F1 −→ G is an epimorphism
from the free pro - C group F1 onto G; and if m = d, this defines a minimal
pro - C presentation for G.

(b) Let
1 −→ Ki −→ F

ϕi−→ G −→ 1 (i = 1, 2)

be two pro - C presentations of the group G. Then there exists an automor-
phism τ : F −→ F of F such that ϕ1 = ϕ2τ ; consequently, τ(K1) = K2.
In particular dF (K1) = dF (K2).

Proof. (a) Say G = 〈z1, . . . , zm〉. According to Proposition 2.5.4, there exist
x1, . . . , xn such that F = 〈x1, . . . , xn〉 and ϕ(xi) = zi, if i = 1, . . . ,m, while
ϕ(xi) = 1, if i = m+ 1, . . . , n. Observe that {x1, . . . , xn} is a basis for F by
Lemma 3.3.5(b).

(b) Choose a basis x1, . . . , xn of F . By Proposition 2.5.4 and Lemma 3.3.5(b),
there exists a basis y1, . . . , yn of F such that ϕ2(yi) = ϕ1(xi) for all
i = 1, . . . , n. Define τ to be the unique automorphism of F such that
τ(xi) = yi for all i = 1, . . . , n. ��

Corollary C.1.2 Let G be a finitely generated pro - C group.

(a) Let

1 −→ K1 −→ F1
ϕ1−→ G −→ 1, 1 −→ K2 −→ F2

ϕ2−→ G −→ 1

be pro - C presentations of G such that rank(F1) ≤ rank(F2) < ∞; then
dF1(K1) ≤ dF2(K2).

(b) If 1 −→ K −→ F −→ G −→ 1 is a minimal presentation as a pro - C
group. Then

rr(G) = dF (K).

Proof. Part (b) follows immediately from (a). To prove part (a), let rank(F1) =
n1 and rank(F2) = n2. By Proposition C.1.1(a), there exists a basis

{x1, . . . , xn1 , xn1+1, . . . , xn2}

such that ϕ2(xn1+1) = · · · = ϕ2(xn2) = 1. Consider the closed normal sub-
group N of F2 generated by xn1+1, . . . , xn2 . Since ϕ2(N) = 1, the correspond-
ing sequence

1 −→ K2/N −→ F2/N −→ G −→ 1

is exact. Obviously dF2/N (K2/N) ≤ dF2(K2). Since F2/N ∼= F1, the result
follows from Proposition C.1.1(b). ��

The dependency of the relation rank on the class C is expressed by

Proposition C.1.3 Let C′ ⊆ C be extension closed varieties of finite groups
and let G be a finitely generated pro - C′ group. Then rrC ′ (G) ≤ rrC (G).
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Proof. Let
1 −→ K −→ F

ϕ−→ G −→ 1

be a minimal pro - C presentation of G. Then (see Proposition 3.4.2)

1 −→ K/RC ′ (F ) −→ F/RC ′ (F )
ϕ−→ G −→ 1

is a minimal pro - C′ presentation of G. Since dF/RC ′ (F )(K/RC ′ (F )) ≤ dF (K),
the result follows from Corollary C.1.2(b). ��

Exercise C.1.4 Let

0 −→ K −→ FC (n) −→ FC (m) −→ 0

be an exact sequence. Prove that dFC (n)(K) = n−m.

Lemma C.1.5 Let L = K � H be a semidirect product of profinite groups.
Assume that {x1, . . . , xn} is a set of topological generators of L. Let xi = kihi
(ki ∈ K,hi ∈ H, i = 1, . . . , n). Then {ki | i = 1, . . . , n} is a set of topological
generators of K as a normal subgroup.

Proof. Let N be generated by {k1, . . . , kn} as a closed normal subgroup of
L. Then L = NH = KH, N ≤ K and N ∩H = L ∩H = 1. So, N = K. ��

Example C.1.6 Finitely presented groups

(a) Let G ∈ C. Then obviously dF (G) < ∞ for every presentation (1). In
particular G is finitely presentable as a pro - C group.

(b) Let G be a finitely generated projective profinite group with d(G) = d.
Then G is finitely presentable as a profinite group and rr(G) ≤ d. Indeed,
if F (d) denotes the free profinite group of rank d, then F (d) = K � G,
whereK is some closed normal subgroup of F (d). So the statement follows
from Lemma C.1.5.

(c) Let FC (n) be the free pro - C group of finite rank n. Then FC (n) is finitely
presentable as a profinite group and rr(FC (n)) ≤ n. Indeed, since C
is extension closed, FC (n) is a projective profinite group (see Proposi-
tion 7.6.7); so this is a special case of (a).

Proposition C.1.7 Let 1 −→ K −→ F −→ G −→ 1 be a pro - C pre-
sentation of a finitely generated pro - C group G. Assume that K 
= 1 and
K = [K,K]. [This is the case, for example, if G is a free prosolvable group
of finite rank and the presentation above is a minimal profinite presentation:
see Exercise 8.2.8(3)]. Then dF (K) = 1. Consequently G admits a pro - C
presentation with a single defining relator.

Proof. Let M(K) be the intersection of all maximal closed normal sub-
groups R of K. Since K does not have nontrivial finite abelian quotients,
K/M(K) =

∏

R∈M K/R, where eachK/R is a finite nonabelian simple group
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(see Lemma 8.2.3). Choose an element k ∈ K such that its natural projection
in K/R is nontrivial, for all R ∈ M. Let N denote the normal subgroup of
F generated by k. Then NM(K)/M(K) = K/M(K) (see Lemma 8.2.4(b));
so NM(K) = K. Therefore, by Proposition 8.3.6, N = K; i.e., K is gen-
erated by k as a normal subgroup; thus, since K is nontrivial, dF (K) = 1.

��

Exercise C.1.8 LetG be a finitely generated pro - C group. ThenG is finitely
presentable as a profinite group if an only if it is finitely presentable as a pro -
C group.

C.2 Relation Modules

Given a pro - C presentation (1) of a finitely generated pro - C group G, put
K ′ = [K,K], the commutator subgroup of K; and let

K̃ = K/K ′

denote its corresponding abelian pro - C quotient. Then

1 −→ K̃ = K/K ′ −→ F/K ′ −→ G −→ 1

is an exact sequence of pro - C groups. Let σ : G −→ F be a continuous section
of ϕ as topological spaces (see Proposition 2.2.2). Define a right action of G
on K̃ by

(kK ′, g) �→ (kK ′)σ(g)K′
= σ(g)−1kσ(g)K ′.

One checks easily that this action is well-defined (independent of the choice
of the continuous section σ) and it is continuous. Hence K̃ = K/K ′ becomes
a profinite [[ZĈG]]-module, which is called the relation module corresponding
to the presentation (1). The smallest cardinality of a set of generators of the
module K̃ is denoted by dG(K̃). Clearly

dG(K̃) ≤ dF (K).

Proposition C.2.1 Let G be a finitely generated pro - C group and let

1 −→ K −→ F
ϕ−→ G −→ 1

be a pro - C presentation of G. Then

dF (K) =
{

1 if K 
= 1 and K̃ = 0;
dG(K̃) otherwise.

Furthermore, if K = 1, dF (K) = 0 = dG(K̃).
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Proof. The last statement is obvious. If K 
= 1 and K̃ = 0, the result is
just Proposition C.1.7. So, we may assume then that K 
= 1 and K̃ 
= 0.
If dG(K̃) = ∞, then obviously dF (K) = ∞. Therefore, we may assume in
addition that dG(K̃) = r <∞.

Since dG(K̃) ≤ dF (K), it suffices to show that dF (K) ≤ r. Let M be the
collection of all maximal closed normal subgroups R of K, and let M(K) =
⋂

R∈M R. By Lemma 8.2.2, there exist subsets Ns and Na of M such that

K/M(K) = Ks ×Ka,

where Ks =
∏

R∈Ns
K/R and for each R ∈ Ns, K/R is a nonabelian finite

simple group, and Ka =
∏

R∈Na
K/R and for each R ∈ Na, K/R is an

abelian simple group. Hence Ka is a nontrivial [[ZĈG]]-module which in fact
is a quotient of the [[ZĈG]]-module K̃; so Ka can be generated by at most r
elements as a [[ZĈG]]-module.

Let y1, . . . , yr ∈ K be such that their images in Ka generate Ka as a
[[ZĈG]]-module. And let y ∈ K be such that its image in each K/R is non-
trivial, for all R ∈ Ns. Let T be the smallest closed normal subgroup of F
containing the r elements yy1, y2, . . . , yr. Then, TM(K)/M(K) contains Ks
by Lemma 8.2.4(a), and hence it contains Ka. Therefore, TM(K)/M(K) =
K/M(K); so TM(K) = K. Hence T = K, according to Proposition 8.3.6,
and thus dF (K) ≤ r, as needed. ��

Proposition C.2.2 Let

1 −→ N −→ F (n)
ϕ−→ G −→ 1 (3)

and
1 −→M −→ F (m)

ψ−→ G −→ 1

be pro - C presentations of a finitely generated pro - C group G, and let n > m.
Put M̃ = M/M ′ and Ñ = N/N ′. Then

Ñ = [[ZĈG]]n−m ⊕ M̃,

as [[ZĈG]]-modules.

Proof. We may assume that there exists a basis {x1, . . . , xm, xm+1, . . . , xn}
of F (n) such that ϕ(xm+1) = · · · = ϕ(xn) = 1, F (m) = 〈x1, . . . , xm〉 and ψ =
ϕ|F (m) (see Proposition C.1.1). Hence the presentation (3) can be rewritten
in the form

1 −→ N −→ F (n) = F (m) % F (n−m)
ϕ−→ G −→ 1,

where % indicates free pro - C product, and with certain abuse of nota-
tion, F (m) = 〈x1, . . . , xn〉 and F (n − m) = 〈xm+1, . . . , xn〉; moreover
ϕ|F (m) = ψ. Denote by T the smallest closed normal subgroup of F (n)
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containing F (n−m). Then N = TM = T �M , so that Ñ = T/T ′ ⊕ M̃ . It
remains to prove that T/T ′ ∼= [[ZĈG]]n−m. To see this recall that T is the free
pro - C group on the basis

B = {fxif−1 | i = m+ 1, . . . , n and f ∈ F (n−m)}

(see Proposition 9.1.23). Therefore, T/T ′ is a free ZĈ -module on the same
basis B. Now that action of G on Ñ described above induces an action on
B which can be described as follows: (fxif−1, g) �→ g̃(fxif−1)g̃−1, where
g̃ ∈ F (n −m) and ϕ(g̃) = g. Clearly this action of G on B is a free action
and the quotient of B under this action is {xm+1, . . . , xn}. Thus, according
to Proposition 5.7.1(a), T/T ′ is a free profinite [[ZĈG]]-module on B/G =
{xm+1, . . . , xn}; i.e., T/T ′ ∼= [[ZĈG]]n−m, as needed. ��

Next we study the deficiency

d− dF (n)(K)

of the pro - C presentation (1). As we shall see in the next theorem, the defi-
ciency is independent of the presentation for most groups G, but not for all
of them. The case of a minimal presentation plays a crucial role in this study.
For a finitely generated pro - C group G with d = d(G) and a minimal pro - C
presentation

1 −→ D −→ F (d)
ϕ−→ G −→ 1,

denote the corresponding relation module by

AC (G) = D̃ = D/D′.

We use A(G) for the relation module of a minimal profinite presentation of G,
and if G is a pro-p group, we write Ap(G) instead of AC (G), where C is the
variety of all finite p-groups. Observe that if G is a pro-p group and (1) is a
pro-p presentation of G, then K̃ = 0 if and only if K = 0, since K is a free
pro-p group. Hence if C consists only of finite p-groups, only parts (a) and
(b) of the following theorem are relevant (see Proposition 7.8.4).

Theorem C.2.3 Let G be a finitely generated pro - C group and put d = d(G).
We continue with the above notation. Consider a pro - C presentation

1 −→ N −→ F (n)
ϕ−→ G −→ 1

of G.

(a) If AC (G) 
= 0, then

n− dF (n)(N) = d− dF (d)(D), for all n ≥ d;

(note that dF (d)(D) might not be finite).
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(b) If AC (G) = 0 and G = F (d), then

n− dF (n)(N) = d, for all n ≥ d.

(c) If AC (G) = 0 and G 
= F (d), then

n− dF (n)(N) = d, for all n > d and d− dF (d)(D) = d− 1.

Proof. By Proposition C.2.2,

dG(Ñ) = n− d+ dG(D̃). (4)

So, Ñ 
= 0 if either AC (G) = D̃ 
= 0 or n > d.
(a) In this case Ñ 
= 0 for all n ≥ d. Hence dF (n)(N) = dG(Ñ) for all

n ≥ d, according to Proposition C.2.1. Thus

dF (n)(N) = n− d+ dF (d)(D)

as desired.
(b) In this case we also have dF (n)(N) = dG(Ñ) for all n ≥ d, but in

addition dF (d)(D) = 0. Thus n− dF (n)(N) = d.
(c) In this case Ñ 
= 0, and so dF (n)(N) = dG(Ñ), if n > d. Hence from (4)

and the assumption dG(D̃) = 0, we deduce that n− dF (n)(N) = d, if n > d.
Finally, according to Proposition C.2.1, dF (d)(D) = 1; hence d− dF (d)(D) =
d− 1. ��

We define the deficiency def C (G) of a finitely generated pro - C group G,
in the category of pro - C groups, to be the maximum of n − r, where n =
|X| <∞, r = |R| and 〈X | R〉 ranges over all pro - C presentations of G. If C
is the class of all finite groups, we simply write def (G); and write def p(G) if
C is the variety of all finite p-groups. In view of Theorem C.2.3,

def C (G) = n− dF (n)(N)

where 1 −→ N −→ F (n) −→ G −→ 1 is any pro - C presentation of G, unless
AC (G) = 0, in which case, def C (G) = d(G).

Observe that def C (G) is finite if and only if G is finitely presentable. One
deduces from Theorem 7.8.5 that if G is a finite p-group, def p(G) ≤ 0.

We end this section with an alternative internal characterization of those
pro - C groups G satisfying the condition AC (G) = 0.

Lemma C.2.4 Let

1 −→ D −→ F (d)
ϕ−→ G −→ 1

be a minimal pro - C presentation of a finitely generated pro - C group G with
d(G) = d. Then

AC (G) = D/D′ = 0
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if and only if whenever H ≤o G, then

H/H ′ ∼= ZrĈ ,

the free abelian pro - C group of rank r, where r = 1 + (d− 1)[G : H].

Proof. To simplify the notation, put F = F (d). Assume AC (G) = D/D′ = 0.
Let H ≤o G and define r = 1 + (d − 1)[G : H]. We need to show that
H/H ′ ∼= ZrĈ . To see this, identify G with F/D and H with Ḧ/D, where
D ≤ Ḧ ≤o F . Then [F : Ḧ] = [G : H], and so Ḧ is a free pro - C group of
rank r = 1 + (d − 1)[G : H] (see Theorem 3.6.2). Since D = D′, Ḧ ′ ≥ D;
hence

H/H ′ = (Ḧ/D)/(Ḧ ′/D) = Ḧ/Ḧ ′ ∼= ZrĈ ,

as desired.
Conversely, assume that whenever H ≤oG, then H/H ′ ∼= ZrĈ , where r =

1 + (d− 1)[G : H]. We need to show that D = D′. Suppose on the contrary
that D 
= D′. Again identify G with F/D. Since D′ �c F and D 
= D′, there
exists some L�oF such thatD′ ≤ L∩D < D. Put T = LD. ThenH = T/D is
open in G = F/D; moreover, [G : H] = [F : T ]. By assumption ZrĈ

∼= H/H ′ ∼=
T/T ′D. Since T is a free pro - C group of rank r = 1 + (d − 1)[G : H] (see
Theorem 3.6.2), we deduce that T/T ′ ∼= ZrĈ . So (see Proposition 2.5.2), the
natural epimorphism T/T ′ −→ T/T ′D is an isomorphism, a thus D ≤ T ′.
However, since T/L ∼= D/(L ∩ D) is abelian and nontrivial, we have that
T ′ ≤ L; hence T ′ ∩ D ≤ L ∩ D < D, a contradiction. Thus D = D′, as
desired. ��

Exercise C.2.5 With the notation of Lemma C.2.4, prove that AC (G) = 0
if and only if D = RSC (D) (see Section 3.4 for this notation), where SC is
the variety of solvable groups that are in C.

C.3 Notes, Comments and Further Reading

The material in this appendix follows Lubotzky [2001]. This paper contains
also a description of rr(G) in cohomological terms. A finite group G is called
quasisimple if it is perfect and simple modulo its center; in Guralnick, Kantor,
Kassabov and Lubotzky [2007] it is proved that such a group has a profinite
presentation with two generators and at most 18 relators. Furthermore, they
prove that, as profinite groups, rr(An), rr(Sn) ≤ 4, for every n.

Hillman and Schmidt [2008] prove that if G is a finitely presentable pro-p
group which contains a finite nontrivial normal subgroup, then def p(G) ≤ 0;
while if G contains a nontrivial finitely generated closed normal subgroup
N , then def p(G) ≤ 1. In this last case, when def p(G) = 1, they show that
cd(G) = 2, N is a free pro-p group, and either N ∼= Zp or G/N is virtually Zp.

In Grunewald, Jaikin-Zapirain, Pinto and Zalesskii [2008] a profinite ver-
sion of this last result is given:
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Theorem C.3.1 Let G be a finitely presentable profinite group of positive
deficiency and N a finitely generated normal subgroup such that the p-Sylow
subgroup (G/N)p is infinite and p divides the order of N . Then either the
p-Sylow subgroup of G/N is virtually cyclic or the p-Sylow subgroup of N is
cyclic. Moreover, cdp(G) = 2, cdp(N) = 1 and vcdp(G/N) = 1.

The following problem is suggested by A. Lubotzky as an analogue of
result for abstract groups in Baumslag and Pride [1978].

Open Problem C.3.2 Let G be a finitely generated profinite (respectively,
pro-p) group with finite def (G) ≥ 2 (respectively, def p(G) ≥ 2). Does G
contain an open subgroup U such that there exists a continuous epimorphism
U → F onto a free profinite (respectively, pro-p) group F of rank at least 2?



Appendix D: Wreath Products and Some
Subgroup Theorems

Throughout this appendix C is an extension closed variety of finite groups.

In this appendix we present alternative proofs of the structure of sub-
groups of certain type of profinite groups. The common thread is that these
proofs are based on wreath products; they are simpler than the original
proofs, some of them presented previously in this book and, more impor-
tantly, these are direct proofs which do not rely on corresponding results for
abstract groups. In fact, in some cases, the same method of proof presented
here can be used for the corresponding result for abstract groups with the
advantage that this proof is conceptually simpler (for example, the Kurosh
subgroup theorem for free products of groups).

We use the following notation and conventions. Composition of maps in
this appendix is always assumed to be right-to-left, except when dealing with
permutations in a symmetric group SΣ , which we multiply left-to-right. Let
K ≤ L be pro -C group groups. If x, y ∈ L, we define xy = y−1xy, yx = yxy−1

and Ky = y−1Ky. The inner automorphism inny of L determined by y is the
automorphism x �→ yxy−1 (x ∈ L).

D.1 Permutational Wreath Products

Fix a finite set Σ. Given a group pro - C group A, define AΣ to be the (pro - C)
group of all functions f :Σ −→ A. We write the argument of such a function
f on its right; thus the operation on AΣ is given by

(fg)(s) = f(s)g(s) (f, g ∈ AΣ , s ∈ Σ).

We denote by δ:A → AΣ the diagonal homomorphism: it assigns to a ∈ A,
the constant function δa ∈ AΣ defined by δa(s) = a, for all s ∈ Σ. Note that
δ is continuous. The image of δ is denoted δA.

Assume that a pro - C group G acts continuously on Σ on the right. Define
the permutational wreath product A & G (with respect to the G-set Σ) to be
the semidirect product

A &G = AΣ �G,

L. Ribes, P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 40,
DOI 10.1007/978-3-642-01642-4, c© Springer-Verlag Berlin Heidelberg 2010

http://dx.doi.org/10.1007/978-3-642-01642-4
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where the action of G on AΣ is on the left and it is defined by (g, f) �→ gf ,
and

gf(s) = f(sg) (g ∈ G, f ∈ AΣ , s ∈ Σ).

Since this action is continuous and both A and G are pro - C groups, so is
A & G. We sometimes denote the elements of A & G = AΣ � G by (f, g) or
f · g or fg, with f ∈ AΣ , g ∈ G, depending on convenience. Observe that G
centralizes δA in A &G, so that δAG = δA ×G.

Several fundamental properties of the wreath product are recorded in the
following proposition.

Proposition D.1.1

(a) If B ≤ A and H ≤ G are pro - C groups, then

B &H = BΣ �H ≤c A &G = AΣ �G.

(b) Functoriality on A: (−) &G is a functor, i.e., for each continuous homo-
morphism α:A −→ B, there is a continuous homomorphism

α &G:A &G = AΣ �G −→ B &G = BΣ �G

given by (f, g) �→ (αf, g) (f ∈ AΣ , g ∈ G) so that
(b1) idA &G = idA�G, and

(b2) if A α−→ B
β−→ C are continuous homomorphisms of pro - C groups,

then
βα &G = (β &G)(α &G).

(c) Furthermore, α & G is an epimorphism (respectively, monomorphism) if
and only if α is an epimorphism (respectively, monomorphism).

Let H be an open subgroup of a pro - C group G. Let Σ = H\G be the
set of all right cosets of H in G. Denote by

ρ:G −→ SΣ

the regular representation of G in SΣ , i.e., ρ is the homomorphism defined by
ρ(g) = ḡ (g ∈ G), where ḡ:Σ → Σ is the permutation Hx �→ Hxg (x ∈ G).
Note that

Ker(ρ) =
⋂

x∈G
xHx−1 = HG,

the core of H in G. So HG �o G. Therefore ρ is continuous.
Fix a right transversal T of H in G, i.e., a complete set of representatives

of the right cosets Hx (x ∈ G). We denote the representative of Hx in T by
either tHx or x̄, as convenient. Define sT ∈ GΣ to be the map that assigns
to each right coset of H in G its representative in T :

sT (Hx) = tHx = x̄ ∈ T (x ∈ G).
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Consider the monomorphism of groups ϕ̃:G→ G & ρ(G) given by the compo-
sition of homomorphisms

G
δ×ρ

δG × ρ(G) G & ρ(G)
innST

G & ρ(G) .

Explicitly, if g ∈ G, then

ϕ̃(g) = sT (δg · ρ(g))s−1
T = fg · ρ(g),

where fg ∈ GΣ is defined by fg = sT δgρ(g)(s−1
T ), i.e.,

fg(Hx) = tHxgt−1
Hxg (x ∈ G).

We remark that ϕ̃(G) ≤ H & ρ(G), because fg(Hx) = tHxgt
−1
Hxg ∈ H

(x ∈ G). Furthermore, ϕ̃ is continuous. Therefore, we have proved

Theorem D.1.2 (Embedding Theorem) Let G be a pro - C group and let
H be an open subgroup of G.

(a) There is a continuous injective homomorphism ϕ:G −→ H & ρ(G) defined
by

ϕ(g) = fg · ρ(g)

where fg:Σ = H\G −→ H is given by fg(Hx) = tHxgt−1
Hxg (g, x ∈ G).

(b) ϕ(H) ≤ HΣ
� ρ(H) = H & ρ(H).

We record the following facts for future use; they follow by routine com-
putation in the wreath product.

Lemma D.1.3 Let G and A be pro - C groups. Consider an open subgroup H
of G and set Σ = H\G. Let ψ:G −→ A & ρ(G) = AΣ � ρ(G) be a continuous
homomorphism such that

G
ψ

ρ

A & ρ(G)

θ

ρ(G)

commutes, where θ is the projection. Put ψ(g) = (f̃g, ρ(g)) (g ∈ G). Then the
following hold :

(a) f̃g1g2···gn = f̃g1
ρ(g1)f̃g2 · · · ρ(g1···gn−1)f̃gn , for g1, . . . , gn ∈ G;

(b) f̃g−1 = (ρ(g
−1)f̃g)−1 = ρ(g−1)(f̃−1

g ), for g ∈ G.

Remark If H �o G, then Σ has the structure of a pro - C group that we
denote K. Identifying K with its canonical image in SΣ = SK , we have
K = ρ(G), so that ϕ:G ↪→ H & K. This is the so called Kaluznin-Krasner
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Theorem in the context of profinite groups: every finite extension of a pro - C
group H by a pro - C group K can be embedded in H &K.

From now on we shall use the notation T = {t1, . . . , tk}, and we shall
assume that t1 = 1 is the representative of the coset H, i.e., tH = t1 = 1.
Then the action of Hti = t−1

i Hti on Σ = H\G fixes the element Hti ∈ Σ.
Hence if A is a group and f ∈ AΣ , one has ρ(x)f(Hti) = f(Hti), for all
x ∈ Hti . Therefore, the copy

{f(Hti) | f ∈ AΣ} ∼= A

of the group A corresponding to theHti ∈ Σ component of the direct product
AΣ centralizes ρ(Hti) in A & ρ(Hti). Thus

A & ρ(Hti) = AΣ � ρ(Hti) = A× (AΣ− {Hti }
� ρ(Hti)).

We denote by πA,i:A & ρ(Hti) → A the corresponding projection:

πA,i(f · ρ(x)) = f(Hti) (x ∈ Hti , f ∈ AΣ).

The case i = 1 will be used so often, that it is convenient to set πA = πA,1.
Part (b) of the following lemma expresses the naturality of πA,i.

Lemma D.1.4 We continue with the above setting. Let i ∈ {1, . . . , k}.
(a) There is a commutative diagram

Hti
ϕ|Hti

innti |Hti

H & ρ(Hti)

πH,i

H.

In particular, for i = 1, πHϕ|H = πH,1ϕ|H = idH .
(b) If α:A −→ B is a homomorphism of groups, then the diagram

A & ρ(Hti)

πA,i

α�ρ(Hti )
B & ρ(Hti)

πB,i

A α B

commutes.
(c) One has

⋂k
i=1(A & ρ(Hti)) = A & ρ(HG) = AΣ , where HG is the core of

H in G. The restriction (πA,i)|AΣ :AΣ → A is the usual direct product
projection.

Proof. To prove (a) observe that, for r ∈ Hti , one has

πH,iϕ(r) = fr(Hti) = tHtirt
−1
Htir

= tirt−1
i

since Hti stabilizes Hti. The proof of (b) follows directly from the definitions
of πA,i, πB,i, and α & ρ(Hti). Part (c) is clear, as

⋂k
i=1H

ti = HG = Kerρ. ��
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D.2 The Nielsen-Schreier Theorem for Free Pro - C
Groups

We present an elementary proof of part of Theorem 3.6.2 using wreath prod-
ucts; namely we prove that open subgroups of free pro - C groups are free
pro - C. Our proof is algebraic in nature and proceeds by direct verification
of the universal property without appeal to the corresponding result for ab-
stract free groups. Let F = F (X, ∗) be a free pro - C group on a pointed
profinite space (X, ∗) and let H be an open subgroup of F . Then (see Propo-
sition 3.3.13), F contains a copy of the abstract free group Φ = Φ(Y ) on the
set Y = X − {∗}, as a dense subgroup.

Elements of Φ can be viewed as reduced words over Y ∪ Y −1. Recall that
a Schreier transversal for Δ ≤ Φ is a right transversal T of Δ in Φ which is
closed under taking prefixes (and in particular contains the empty word): if
y1, . . . , yn ∈ Y ∪ Y −1 and y1 · · · yi · · · yn ∈ T is a word in reduced form, then
y1 · · · yi ∈ T , for all i = 0, . . . , n−1. The existence of Schreier transversals is a
standard exercise in Zorn’s Lemma. We include a proof here for completeness.

Lemma D.2.1 There exists a Schreier transversal T of Δ in Φ.

Proof. Consider the collection P of all prefix-closed sets of reduced words in
Y ∪Y −1 that intersect each right coset of Δ in at most one element; order P
by inclusion. Then {1} ∈ P , so P 
= ∅. It is also clear that the union of a chain
of elements from P is again in P , hence P has a maximal element T by Zorn’s
Lemma. We need to show that each right coset of H has a representative in T .
Suppose this is not the case and choose a word w of minimum length so that
Hw ∩ T = ∅. Since 1 ∈ T , it follows w 
= 1 and hence w = uy is in reduced
form where y ∈ Y ∪Y −1. By assumption on w, we have Hu = Ht some t ∈ T .
If ty is reduced as written, then T ∪. {ty} ∈ P , contradicting the maximality
of T . If ty is not reduced as written, then ty ∈ T by closure of T under
prefixes, and Hw = Hty, contradicting the choice of w. This completes the
proof that T is a transversal. ��

We now proceed with our proof of Theorem 3.6.2 via wreath products.

Theorem D.2.2 Open subgroups of free pro - C groups are free pro - C. More
precisely, let F be a free pro - C group on a profinite pointed space (X, ∗)
and let H be an open subgroup of F . Let Φ be the free abstract group on
Y = X − {∗} and let T be a Schreier transversal for H ∩ Φ in Φ. Define

B = {tx(tx)−1 | (t, x) ∈ T ×X}. (1)

Then 1 ∈ B, B is a profinite space and H is a free pro - C on the pointed
space (B, 1).

Proof. Observe that the natural map
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(H ∩ Φ)\Φ −→ H\F = Σ

is a bijection, and T is a right transversal for H in F . Clearly 1 ∈ B. The
map

T ×X −→ B = {tx(tx)−1 | t ∈ T, x ∈ X} ⊆ H ≤ F

given by
(t, x) �→ tx(tx)−1 = tx(tπ(tx))−1

(where π:F → Σ = H\F is the projection) is continuous, since π and the
section Hf �→ tHf from H\F to F are obviously continuous. Therefore B is
closed by the compactness of T ×X, i.e., B is profinite.

Our goal is to show that any continuous map α:B −→ G of pointed spaces,
with G a pro - C group, extends uniquely to a continuous homomorphism
γ:H −→ G. Denote by Σ the set H\F of right cosets of H in F and let
ρ:F → SΣ be the associated permutation representation of F .

To motivate our construction of the extension, we start with a proof of
uniqueness. Let γ:H −→ G be any continuous homomorphism extending α.
Consider the standard wreath product embedding ϕ:F −→ H & ρ(F ) of The-
orem D.1.2. The functoriality of the wreath product and Lemma D.1.4 yield
the commutative diagram

F
ϕ

H & ρ(F )
γ�ρ(F )

G & ρ(F )

H
ϕ|H

idH

H & ρ(H)
γ�ρ(H)

πH

G & ρ(H)

πG

H γ G

Hence γ is uniquely determined by (γ &ρ(F ))ϕ, which is in turn determined
by its values on X. But if x ∈ X, then (γ & ρ(F ))ϕ(x) = (γfx, ρ(x)). Now
recall that

fx(Hw) = tHwxt−1
Hwx ∈ B

and hence γfx = αfx. Thus the unique possible extension of α to a homo-
morphism is given by πG(τ|H) where τ :F −→ G & ρ(F ) is the homomorphism
defined on X by τ(x) = (αfx, ρ(x)). Let us show πG(τ|H) extends α.

Let b ∈ B. Then b = tx(tx)−1, for some t ∈ T , x ∈ X. Let us suppose
that

t = x1 · · ·xk−1 and (tx)−1 = xk+1 · · ·xn
in reduced form. We put xk = x so that b = x1 · · ·xn, although this product
may not be reduced as written. Set ti = x1 · · ·xi, for i = 0, . . . , n. Using that
Schreier transversals are prefix-closed, one easily deduces the formulas:
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ti =
{

x1 · · ·xi, if i < k,
x−1
n · · ·x−1

i+1, if i > k. (2)

Indeed, the first formula is clear. The second follows because, for i ≥ k + 1,
Hti = Htxxk+1 · · ·xi = Hx−1

n · · ·x−1
k+1xk+1 · · ·xi = Hx−1

n · · ·x−1
i+1.

Our aim now is to verify πGτ(b) = α(b). Put τ(r) = (f ′
r, ρ(r)), for r ∈ F .

We claim that if tHwxt−1
Hwx = 1 (x ∈ X ∪ X−1, w ∈ F ), then f ′

x(Hw) = 1.
This is immediate if x ∈ X, since f ′

x = αfx and fx(Hw) = tHwxt
−1
Hwx. Next

assume x ∈ X−1. Hence, taking into account that x−1 ∈ X,

f ′
x(Hw) = (αfx−1(Hwx))−1 = (α(tHwxx−1t−1

Hw))−1 = 1,

since tHwxx−1t−1
Hw = (tHwxt−1

Hwx)
−1 = 1.

In light of (2) it follows that ti−1xit
−1
i = 1 for all i 
= k. Thus by the

claim and Lemma D.1.3,

πGτ(b) = f ′
b(H) = f ′

x1···xn
(H)

= f ′
x1

(H)f ′
x2

(Hx1) · · · f ′
xn

(Hx1 · · ·xn−1)
= f ′

x1
(Ht0)f ′

x2
(Ht1) · · · f ′

xn
(Htn−1)

= f ′
xk

(Htk−1) = α(tk−1xkt
−1
k ) = α(b),

as needed. ��

Remark that the above proof only shows that B is a basis for H. It
does not follow from the proof that B − {1} is in bijection with the set of
pairs (t, x) ∈ T × (X − {∗}) satisfying tx(tx)−1 
= 1 (and hence the formula
in Theorem 3.6.2(b)). However this can be deduced by a straightforward
independent combinatorial reasoning.

D.3 The Kurosh Subgroup Theorem for Profinite
Groups

In this section we prove an enhanced version of Theorem 9.1.9. Again the
point here is that this new proof is based on wreath products and it is not
dependent on the corresponding theorem for abstract groups. Indeed this new
proof is elementary and, as one easily sees, it provides a proof for the abstract
case with essentially the same procedure.

First we define a more general concept of ‘free pro - C product’ than the
one used in Section 9.1. Let G be a pro - C group and let {Gα | α ∈ A}
be a collection of pro - C groups indexed by a set A. For each α ∈ A, let
ια:Gα −→ G be a continuous homomorphism. One says that the family
{ια | α ∈ A} is convergent if whenever U is an open neighborhood of 1 in G,
then U contains all but a finite number of the images ια(Gα). We say that
G together with the ια is the free pro - C product of the groups Gα if the
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following universal property is satisfied: whenever {λα:Gα −→ K | α ∈ A}
is a convergent family of continuous homomorphisms into a pro - C group K,
then there exists a unique continuous homomorphism λ:G −→ K such that

Gα
ια

λα

G

λ

K

commutes, for all α ∈ A. One easily sees that if such a free product exists,
then the maps ια are injections. We denote such a free pro - C product again
by

G =
∐

α∈A

r
Gα.

Free pro - C products exist and are unique. To construct the free pro - C prod-
uct G one proceeds as follows: let

Gabs = ∗α∈AGα

be the free product of theGα as abstract groups. Consider the pro - C topology
on Gabs determined by the collection of normal subgroups N of finite index
in Gabs such that Gabs/N ∈ C, N ∩ Gα is open in Gα, for each α ∈ A, and
N ≥ Gα, for all but finitely many α. Put

G = lim←−
N

G/N.

Then G together with the maps ια : Gα −→ G is the free pro - C product
∐r
α∈AGα.
If the set A is finite, the ‘convergence’ property of the homomorphisms

ια is automatic; in that case, instead of
∐r, we use the symbol

∐

as in
Section 9.1.

For such free products, one has the following analogue of the Kurosh
Subgroup Theorem

Theorem D.3.1 Let H be an open subgroup of the free pro - C product

G =
∐

α∈A

r
Gα.

Then, for each α ∈ A, there exists a set Dα of representatives of the double
cosets H\G/Gα such that the family of inclusions

{uGαu−1 ∩H ↪→ H | u ∈ Dα, α ∈ A}

converges, and H is the free pro - C product
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H =

⎡

⎣

r
∐

α∈A,u∈Dα

uGαu
−1 ∩H

⎤

⎦% F,

where F is a free pro - C group of finite rank.

Before dealing with the actual proof of the theorem we make a reduction
to the case when A is finite. Consider the core HG =

⋂

g∈G gHg
−1 of H

in G. Since H is open, so is HG. Hence, by definition, there exists a finite
subset B of A such that Gα ≤ HG for all α ∈ A − B. Let G′ be the closed
subgroup of G generated by the groups {Gα | α ∈ A−B}; then one sees that
G′ =

∐r
α∈A−B Gα; consequently

G =

[

∐

α∈B
Gα

]

%G′

is a free pro - C product of finitely many factors, and one easily sees that it
suffices to prove the theorem for this product: indeed, observe first that for
all α ∈ A − B, HG ≥ Gα and since HG � G, one has HuGα = Hu = HuG′

(u ∈ G), i.e., H\G/G′ = H\G = H\G/Gα; on the other hand,

uG′u−1 ∩H = uG′u−1 =
∐

α∈A−B
uGαu

−1 =
∐

α∈A−B
(uGαu−1 ∩H).

Hence from now on we shall assume that A is a finite indexing set, and we
write it as A = {1, . . . , n}.

As pointed out in Proposition 9.1.8, the natural homomorphism

Gabs = G1 ∗ · · · ∗Gn −→ G = G1 % · · · %Gn

is a continuous injection; in fact we may think of Gabs as a dense subgroup of
G. Let H ≤o G and define Habs = Gabs∩H. We have [G : H] = [Gabs : Habs]
(this is a variation of Proposition 3.2.2); one easily deduces that a right
transversal of Habs in Gabs is also a right transversal of H in G. Similarly,
a set of representatives of the double cosets Habs\Gabs/Gα is also a set of
representatives of the double cosets H\G/Gα. We use these facts to define
certain special sets of representatives of the double cosets H\G/Gα and of
the right cosets H\G so that those representatives are in fact in Gabs. To do
this we take advantage of the well-known fact that the elements g of Gabs

can be written uniquely as products g = g1g2 · · · gm where each gi belongs to
some Gα (α ∈ A) and gi ∈ Gα implies gi+1 /∈ Gα, for i = 1, . . . ,m − 1 (cf.
Lyndon and Schupp [1977], Ch. IV). The number m will be called the syllable
length of g and we write �(g) = m. If S ⊆ G, denote by �(S) the smallest
syllable length of an element of S. By convention, the syllable length of the
identity is 0. If gm ∈ Gα, then we shall say that g ends in the syllable α or
that α is the last syllable of g.
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Kurosh Systems

Let us begin by setting up additional notation. Let {Hi | i ∈ I}, be the right
cosets of H and assume there is a symbol 1 ∈ I such that H1 = H. Assume
that we have a transversal (with elements in Gabs) Tα of the right cosets of
H in G for each α ∈ A. Denote by α(Hi) the representative of Hi in Tα. We
require α(H) = 1, all α ∈ A.

A collection D = {Dα | α ∈ A} of systems Dα of representatives
α(HgGα) ∈ Gabs of the double cosets H\G/Gα, (α ∈ A), together with
a system {Tα | α ∈ A} of transversals (with elements in Gabs) for H\G is
called a Kurosh system if the following holds:

(i) If g = α(HgGα), then g = α(Hg);
(ii) α(HgGα) is either 1 or ends in a syllable β 
= α;
(iii) Hi ⊆ HgGα and α(HgGα) = g implies α(Hi) ∈ gGα;
(iv) If 1 
= g = α(HgGα) has last syllable in Gβ , then β(Hg) = g;
(v) �(α(HgGα)) = �(HgGα).

Proposition D.3.2 Kurosh systems exist.

Proof. We proceed by induction on the length of the double cosets HgGα.
If �(HgGα) = 0, i.e., HgGα = HGα choose α(HgGα) = 1 and α(H) = 1; if
H 
= Hi ⊆ HGα, choose aα ∈ Gα so that Hi = Haα, and put α(Hi) = aα.
Then conditions (i)–(v) hold. Let n > 1, and assume representatives β(HrGβ)
and β(Hi) have been chosen whenever Hi ⊆ HrGβ and �(HrGβ) ≤ n − 1
(β ∈ A, r ∈ G), satisfying conditions (i)–(v). Let �(HgGα) = n with �(g) =
n. Then g = g̃aβ , where �(g̃) = n − 1, 1 
= aβ ∈ Gβ and β 
= α. Since
�(HgGβ) ≤ n− 1, representatives β(HgGβ) = t and β(Hg) = tbβ (bβ ∈ Gβ)
have already been chosen; in particular, �(t) ≤ n−1 by (v). Since �(Hg) = n,
we deduce that bβ 
= 1 and �(tbβ) = n. Define α(HgGα) = tbβ = α(Hg), and
whenever Hg 
= Hi ⊆ HgGα, choose cα ∈ Gα so that Hi = Hgcα, and put
α(Hi) = tbβcα. Clearly, conditions (i)–(v) are satisfied. ��

Let us define some key elements of H. Fix an index α0 ∈ A. For x ∈ Gα
and Hi ∈ H\G, define:

yi,x = α(Hi)xα(Hix)−1;
zi,α = α(Hi)α0(Hi)−1.

It is immediate that yi,x, zi,α ∈ H all i, x and α. Notice that z1,α = 1 =
zi,α0 for all α ∈ A, i ∈ I. If Hi = Hg, we often write yHg,x and zHg,α for yi,x
and zi,α. We begin with some simple observations concerning these elements.

Proposition D.3.3 Retaining the above notation, we have:

(1) If x1, x2 ∈ Gα, then yi,x1yj,x2 = yi,x1x2 where Hix1 = Hj ;
(2) If x ∈ Gα, Hi ⊆ HuGα with u = α(HuGα), then yi,x ∈ uGαu−1 ∩H;



D.3 The Kurosh Subgroup Theorem for Profinite Groups 429

(3) If h ∈ uGαu−1∩H with u = α(HuGα), then h = yHu,x for some x ∈ Gα;
(4) If 1 
= u = α(HuGα) ends with a β-syllable, then zHu,α = zHu,β.

Proof. First we handle (1). Straightforward computation yields

yi,x1yj,x2 = α(Hi)x1α(Hix1)−1α(Hix1)x2α(Hix1x2)−1 = yi,x1x2 .

Next we turn to (2). By condition (iii) of a Kurosh system, α(Hi) = ug and
α(Hix) = ug′ some g, g′ ∈ Gα, whence yi,x = ugx(ug′)−1 ∈ uGαu−1 ∩ H.
To prove (3), suppose h = uxu−1 with x ∈ Gα. Then Hu = Hux and
α(Hu) = u by (i). We conclude yHu,x = α(Hu)xα(Hux)−1 = uxu−1 = h.
For (4) we simply observe α(Hu) = u = β(Hu) by (i) and (iv). ��

Set Z = {zi,α | i ∈ I, α ∈ A, zi,α 
= 1}; note that since [G : H] < ∞ and
A is finite, the set Z is finite. Let F = 〈Z〉.

From now on we work with a fixed Kurosh system. If ψ:Z → K is a map,
with K a pro - C group, then we extend ψ to Z ∪ {1} by setting ψ(1) = 1. As
usual we set Σ = H\G = Habs\Gabs. We denote by

ρ : G −→ SΣ

the representation map (see Section D.1).

Proposition D.3.4 Given a family F = {ψu:uGαu−1 ∩H → K}α∈A,u∈Dα

of continuous group homomorphisms and a map ψ:Z → K into a pro -
C group K, there exists, for each α ∈ A, a continuous homomorphism
Ψα:Gα −→ K & ρ(G) defined by Ψα(x) = (fx, ρ(x)) with

fx(Hi) = ψ(zi,α)−1ψu(yi,x)ψ(zj,α),

where Hix = Hj and u = α(HiGα). If Ψ :G→ K & ρ(G) denotes the induced
homomorphism, then the following diagram commutes

G
Ψ

ρ

K & ρ(G)

θ

ρ(G)

(3)

where θ is the projection.
Moreover, the construction of Ψ is functorial in the sense that given an-

other family of continuous homomorphisms

F ′ = {ψ′
u:uGαu

−1 ∩H → K ′}α∈A,u∈Dα ,

a map ψ′:Z −→ K ′ and a continuous homomorphism γ:K ′ −→ K such that
the diagrams
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uGαu
−1 ∩H

ψ′
u ψu

Z
ψ′ ψ

K ′
γ K K ′

γ K

(4)

commute, then the following diagram commutes

K ′ & ρ(G)

γ�ρ(G)

G

Ψ ′

Ψ
K & ρ(G)

(5)

where Ψ ′ is the map associated to the family F ′.

Proof. The continuity of Ψα is clear. We verify that Ψα is a homomorphism.
Proposition D.3.3(2) implies yi,x ∈ uGαu

−1 ∩ H so that Ψα makes sense.
Let x1, x2 ∈ Gα. Clearly, Hix1Gα = Hix2Gα = Hix1x2Gα = HiGα; set
u = α(HiGα). From

(fx1 , ρ(x1))(fx2 , ρ(x2)) = (fx1(
ρ(x1)fx2), ρ(x1x2))

it follows that we just need fx1(Hi)fx2(Hix1) = fx1x2(Hi). Putting Hj =
Hix1 and Hk = Hix1x2, an application of Proposition D.3.3(1) yields

fx1(Hi)fx2(Hix1) = ψ(zi,α)−1ψu(yi,x1)ψ(zj,α)ψ(zj,α)−1ψu(yj,x2)ψ(zk,α)
= ψ(zi,α)−1ψu(yi,x1x2)ψ(zk,α) = fx1x2(Hi),

as required. The Ψα induce the desired map Ψ by the universal property of
a free product. The commutativity of (3) and (5) are immediate from the
definition of Ψα and the universal property of a free product. ��

From the proposition and Lemma D.1.4, we obtain

Corollary D.3.5 Let Ψ, Ψ ′ and γ be as in Proposition D.3.4. Then there is
a commutative diagram

K ′ & ρ(H)
πK′

γ�ρ(H)

K ′

γ

H

Ψ ′
|H

Ψ |H
K & ρ(H)

πK
K

(6)

Our next lemma is where we make use of the full strength of the Kurosh
system.

Lemma D.3.6 Let u = α(Hu). Then fu(H) = ψ(zHu,α).
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Proof. We use induction on the syllable length of u. If u = 1, there is nothing
to prove as zH,α = 1 for all α. So assume u 
= 1. The proof divides into two
cases.

Case 1. Assume u 
= α(HuGα). Then (iii) implies we can write u = vx
with v = α(HuGα) and x ∈ Gα. Moreover, �(v) < �(u) by (ii). Since α(Hv) =
v by (i), by induction fv(H) = ψ(zHv,α). Then we find by Lemma D.1.3

fu(H) = fv(H)fx(Hv) = ψ(zHv,α)ψ(zHv,α)−1ψv(yHv,x)ψ(zHu,α)
= ψv(yHv,x)ψ(zHu,α).

But yHv,x = α(Hv)xα(Hvx)−1 = α(Hv)xα(Hu)−1 = vxu−1 = 1, establish-
ing fu(H) = ψ(zHu,α).

Case 2. Suppose u = α(HuGα). Since u 
= 1, (ii) implies u ends in a
syllable β with β 
= α and (iv) yields β(Hu) = u. By (ii) u 
= β(HuGβ),
so Case 1 implies fu(H) = ψ(zHu,β). Proposition D.3.3(4) provides zHu,β =
zHu,α, so fu(H) = ψ(zHu,α). This establishes the lemma. ��

An important special case is when K = H and the ψu and ψ are the
inclusions. Let us denote the induced map in this case by

Ψ̃ :G −→ H & ρ(G).

Proposition D.3.7 The map Ψ̃ :G −→ H &ρ(G) is the standard wreath prod-
uct embedding associated to the transversal Tα0 . Consequently, πH Ψ̃|H is the
identity.

Proof. Writing Ψ̃(g) = (Fg, ρ(g)), if x ∈ Gα and Hix = Hj , then

Fx(Hi) = z−1
i,αyi,xzj,α = α0(Hi)α(Hi)−1[α(Hi)xα(Hj)−1]α(Hj)α0(Hj)−1

= α0(Hi)xα0(Hix)−1.

Thus Ψ̃ is the standard embedding associated to the transversal Tα0 . ��

In the proof of the next theorem, we retain all the notation introduced
in this section. We restate Theorem D.3.1 in the form that it is needed after
the reduction to the case when A is finite.

Theorem D.3.8 Let G be a free pro - C product

G =
n
∐

α=1

Gα.

of finitely many pro - C groups G1, . . . , Gn. Let H be an open subgroup of G.
Fix a Kurosh system {Dα, Tα | α ∈ A} for H ≤o G. Then

H =
n
∐

α=1

[

∐

u∈Dα

(

uGαu
−1 ∩H

)

]

% F

and F is a free pro - C group with basis Z.
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Proof. Let {ψu:uGαu−1 ∩ H −→ K}α∈A,u∈Dα be a family of continuous
group homomorphisms into a pro - C group K and let ψ:Z −→ K a map. Let
Ψ :G −→ K & ρ(G) be as in Proposition D.3.4. We show πKΨ|H extends the
ψu and ψ where πK = πK,1 is as in Lemma D.1.4. Suppose u = α(HuGα)
and h ∈ uGαu−1 ∩ H. By Proposition D.3.3(3), h = yi,x for some x ∈ Gα,
where Hi = Hu. Setting Hj = Hix, an application of Lemmas D.3.6 and
D.1.3 (and the fact Hα(Hi) = Hi) yields

πKΨ(h) = fyi,x(H) = fα(Hi)xα(Hj)−1(H)

= fα(Hi)(H)fx(Hi)
(

fα(Hj)(Hjα(Hj)−1)
)−1

= fα(Hi)(H)fx(Hi)(fα(Hj)(H))−1

= ψ(zi,α)[ψ(zi,α)−1ψu(yi,x)ψ(zj,α)]ψ(zj,α)−1

= ψu(yi,x) = ψu(h).

Similarly, we calculate using Lemmas D.3.6 and D.1.3

πKΨ(zi,α) = fzi,α(H) = fα(Hi)(H)
(

fα0(Hi)(Hiα0(Hi)−1)
)−1

= fα(Hi)(H)(fα0(Hi)(H))−1

= ψ(zi,α)ψ(zi,α0)
−1 = ψ(zi,α)

since zi,α0 = 1.
The uniqueness of πKΨ|H follows from the functoriality of our construc-

tion. Namely, in Proposition D.3.4 take K ′ = H and ψ′
u, ψ′ the inclusions

(and so Ψ ′:G −→ H &ρ(G) is Ψ̃ from Proposition D.3.7). Suppose γ:H −→ K
is an extension of the ψu and ψ. Then (4) commutes and so diagrams (5) and
(6) commute. Since πHΨ ′

|H = πH Ψ̃|H is the identity in this case by Proposi-
tion D.3.7, we conclude γ = πKΨ|H . ��

D.4 Subgroups of Projective Groups

In Proposition 7.6.7 projective groups are characterized as those with coho-
mological dimension at most 1. It follows that a closed subgroup of a projec-
tive group is projective. In this section we present a proof of this fact which
does not use homology. Instead we deduce this result first for open subgroups
using the wreath product embedding of Theorem D.1.2; then a standard argu-
ment provides a proof for closed subgroups in general. Under our assumption
that C is extension closed, C-projective groups are just projective groups; so
in this section we use only the terminology ‘projective’ group.

Theorem D.4.1 Let G be a projective profinite group and let H ≤c G. Then
H is projective.
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Proof. We must show (see Lemma 7.6.1) that any embedding problem for H

H

β

A α B

where A and B are finite, has a weak solution, i.e., there exists a continuous
homomorphism λ : H −→ A such that αλ = β.

Case 1. Assume H is open in G. Put Σ = H\G, and let ρ : G −→ SΣ be
the regular representation. Consider the diagram

A

α

B

A & ρ(G)

πA

α�ρ(G)
B & ρ(G)

πB

A′ α′

B′ H

β

H & ρ(G)

β′ πH

G

ϕ

H

idH

where ϕ is the standard embedding of Theorem D.1.2, B′ is the image of

the map G
ϕ−→ H & ρ(G)

β�ρ(G)−→ B & ρ(G), A′ = (α & ρ(G))−1(B′), α′ is the
restriction of α & ρ(G) to A′, and finally, β′ : H & ρ(G) −→ B′ is the map x �→
(β & ρ(G))(x) (x ∈ H & ρ(G)). Since G is projective, there exists a continuous
homomorphism λ̃ : G −→ A′ such that α′λ̃ = β′ϕ. This diagram commutes
thanks to Lemma D.1.4. Define λ : H −→ A to be the composition

H ↪→ G
λ̃−→ A & ρ(G) πA−→ A,

(here we are denoting by λ̃ again the map G λ̃−→ B′ ↪→ A & ρ(G)). From the
commutativity of the diagram, it follows that αλ = β, as required.
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Case 2. Assume now that H is any closed subgroup of G. Since Ker(β) is
open in H, there exists an open normal subgroup M of G such that H ∩M ≤
Ker(β). Then β = β′ι, where ι : H ↪→ HM is the inclusion and β′ is the
composition of natural epimorphisms

HM −→ HM/M ∼= H/H ∩M −→ B.

SinceHM is open we can apply Case 1 to obtain a continuous homomorphism
λ′ : HM −→ A such that αλ′ = β′. Define λ : H −→ A to be λ = λ′ι; then
αλ = β, as needed. ��

D.5 Quasifree Profinite Groups

Recall (see Appendix B) that, given a infinite cardinal m, a pro - C group G
is called m-quasifree if every split embedding problem

G

ϕ

A α B

with A,B ∈ C, has exactly m different solutions.

Lemma D.5.1 The minimal number of generators d(G) of an m-quasifree
pro - C group G is d(G) = m.

Proof. By Proposition 2.6.1, d(G) = w(G), the weight of G. So it suffices to
prove that w(G) = m. For any open normal subgroup N of G, the number
of continuous epimorphisms ϕN : G −→ G/N with N = Ker(ϕN ) is finite.
Therefore for any finite group A, the number nA of open normal subgroups N
of G with G/N ∼= A equals the number of continuous epimorphisms G −→ A,
which in turn equals m, because G is an m-quasifree group (just put B = 1
in the embedding problem). Now

w(G) =
∑

A

nA = mℵ0 = m,

since the number of isomorphism classes of finite groups is ℵ0. ��

Proposition D.5.2 Let G be an m-quasifree pro - C group. Then G contains
a free pro - C group of countable rank.

Proof. According to Corollary 2.6.6, if H is a pro - C group that admits a
countable set of generators converging to 1, then H contains a countable
collection of open normal subgroups

H = U0 > U1 > · · ·
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that form a fundamental system of neighborhoods of 1, and so

H = lim←−
i∈I

H/Ui ≤
∏

i

H/Ui.

It follows that H appears as a closed subgroup of the cartesian product of the
set of all finite groups in C. In particular the free pro - C group F of countable
rank appears as a closed subgroup of such cartesian product.

Therefore to prove the proposition it is enough to construct an epimor-
phism λ : G −→

∏∞
i=0Ki, where Ki runs over all finite groups in C, where we

assumeK0 = 1. To do this we construct inductively compatible epimorphisms

λn : G −→
n
∏

i=0

Ki.

If λn−1 has been constructed consider the following split embedding problem

G

λn−1

∏n
i=0Ki

αn ∏n−1
i=1 Ki

where αn is the natural projection. Since G is quasifree, there exists an epi-
morphism λn : G −→

∏n
i=0Ki such that αnλn = λn−1 (n = 1, 2, . . .). The

inverse limit of these maps

λ = lim←− nλn : G −→
∞
∏

i=0

Ki

provides the required epimorphism. ��

Examples D.5.3

1. Clearly (see also Appendix B) a free profinite group of infinite rank m is
m-quasifree.

2. If G is an m-quasifree group and H is a pro - C group with d(H) ≤ m, then
their free pro - C product G%H is m-quasifree.

3. Let m be an infinite cardinal. Let {G1, G2, . . .} be the collection of all
nontrivial finite groups. For each i = 1, 2, . . . form the free profinite product

Ai =
∐

m

r
Gi

of m copies of Gi in the sense described in Section D.3. One sees easily
that d(Ai) = m. Define

G =
∐

i

r
Ai.

Then G is m-quasifree and it is not projective; in fact G is generated by
its torsion elements.
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4. (Harbater and Stevenson 2005) Let k be a field and k((x, t)) be the fraction
field of the power series ring k[[x, t]], where x and t are indeterminates. Let
G = Gk((x,t)) be the absolute Galois group of k((x, t)). Denote by m the
cardinality of k((x, t)). Then G is an m-quasifree profinite group which is
not projective.

5. Let F be a free pro - C group on a countable set of generators

x1, y1, x2, y2, . . .

convergent to 1. Observe that the infinite product [x1, y1][x2, y2] · · · con-
verges in F and so it defines a unique element r. Define a profinite group
G imposing on F the relation [x1, y1][x2, y2] · · ·, i.e., G = F/(r), where (r)
denotes the smallest closed normal subgroup of F containing r.

We shall show that G is ℵ0-quasifree. Consider a split embedding problem

G

f

A
α

B

PutK =Ker(α). Let θ : B −→ A be a homomorphism such that αθ = idB .
Then A = K � θ(B). Since B is finite, there exists a natural number t such
that f(xj) = f(yj) = 1, for all j > t. Let k1, . . . , kn be the elements of K.

Next we define an infinite countable set of continuous epimorphism {ηs :
F −→ A | s = 0, 1, 2, . . .}. The epimorphism ηs is determined by

ηs(xj) =

⎧

⎨

⎩

(θf)(xj), if 1 ≤ j ≤ t+ s;
ki, if j = t+ s+ i, i = 1, . . . , n;
1 if j > t+ s+ n;

and

ηs(yj) =

⎧

⎨

⎩

(θf)(yj), if 1 ≤ j ≤ t+ s;
ki, if j = t+ s+ i, i = 1, . . . , n;
1 if j > t+ s+ n.

Observe that ηs(r) = 1. Therefore, ηs induces a continuous epimorphism
λs : G −→ A. Moreover λs 
= λs′ , if s 
= s′, and αλs = f , for all s = 0, 1, 2, . . . .
Since d(G) = ℵ0, this shows that the above embedding problem has exactly
ℵ0 solutions.

Theorem D.5.4 Let G be an m-quasifree pro - C group, and let H be an open
subgroup of G. Then H is m-quasifree.

Proof. Given A,B ∈ C, a proper split epimorphism α:A −→ B and a contin-
uous epimorphism β:H −→ B, we need to prove the existence of exactly m

continuous epimorphisms λ:H −→ A such that αλ = β.
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Set Σ = H\G and let ρ:G −→ SΣ be the corresponding permutation
representation as in Section D.1. Consider the standard embedding

ϕ:G −→ H & ρ(G)

constructed in Theorem D.1.2. Note that α & ρ(G):A & ρ(G) −→ B & ρ(G) is a
split proper epimorphism by Proposition D.1.1; observe also that A&ρ(G) and
B&ρ(G) are finite groups in C, as C is extension closed. Let B′ = (β &ρ(G))ϕ(G)
and A′ = (α &ρ(G))−1(B′). Then A′, B′ ∈ C, and the restriction α′:A′ −→ B′

of α & ρ(G) to A′ is a split proper epimorphism.

A & ρ(G)
α�ρ(G)

B & ρ(G)

A′ α′

B′

H & ρ(G)

β�ρ(G)

G

ϕ

λ̃

Since G is m-quasifree, there exists a continuous epimorphism λ̃:G −→ A′

such that α′λ̃ = (β &ρ(G))ϕ. Then, for each g ∈ G, λ̃(g) = (f̃g, ρ(g)), for some
f̃g ∈ AΣ .

Let T = {t1 = 1, t2, . . . , tk} be a right transversal of H in G. For i =
1, . . . , k, define λi:Hti −→ A to be λi = πA,iλ̃|Hti , i.e., λi(x) = f̃x(Hti), for
x ∈ Hti . According to Lemma D.1.4, the diagram

A
α

B

A & ρ(Hti)
α�ρ(Hti )

πA,i

B & ρ(Hti)

πB,i

AΣ

ι

H & ρ(Hti)
πH,i

β�ρ(Hti )

H

β

Hti

ϕ|Hti

λ̃|Hti

innti |Hti

HG

λ̃|HG
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commutes. Thus β ◦ innti |Hti = αλi.
We claim that λi is surjective. Let a ∈ A and let b = α(a). Since β is

surjective, the commutativity of the above diagram ensures that there exists
(f, ρ(x)) ∈ (B & ρ(Hti)) ∩ B′, where x ∈ Hti , with f(Hti) = b. Choose
f ′:Σ → A to be any function so that f ′(Hti) = a and αf ′ = f ; then
(f ′, ρ(x)) ∈ A′. Therefore, πA,i takes A′∩(A&ρ(Hti)) onto A. Because Kerλ̃ ≤
Kerρ = HG ≤ Hti , it follows that λ̃(g) ∈ A & ρ(Hti) implies g ∈ Hti . We
deduce that λ̃|Hti :Hti → A′ ∩ (A & ρ(Hti)) is an epimorphism, and hence so
is λi, proving the claim.

Since G is quasifree, the total number of epimorphisms λ̃:G −→ A′ such
that α′λ̃ = (β &ρ(G))ϕ is m. Since HG =

⋂k
i=1H

ti has finite index in G, these
λ̃ restrict to m different homomorphisms

λ̃|HG
:HG −→ A & ρ(HG) = AΣ .

Recalling from Lemma D.1.4 that the πA,i:AΣ → A (i = 1, . . . , k) are the
direct product projections, we conclude that λ̃|HG

is determined by the
maps πA,iλ̃|HG

= λi|HG
, i = 1, . . . , k. It follows that there exists some

j ∈ {1, . . . , k}, such that the number of different maps λj |HG
constructed

in this manner is precisely m.
For each of these λj , define λ = λj ◦ innt−1

j |H
. Then, since HG has finite

index in H, we have constructed m different epimorphisms λ:H −→ A such
that αλ = β. Finally, observe that there cannot be more such λ since the
minimal number d(H) of generators of H converging to 1 is m and A is finite.
This completes the proof. ��

D.6 Notes, Comments and Further Reading

Most of this appendix is based on Ribes and Steinberg [2010], where also
conceptually simple proofs for the Nielsen-Schreier Theorem and the Kurosh
theorem for abstract groups are explicitly given using wreath products. The
proof that we present here of Theorem D.4.1 is due to Cossey, Kegel and
Kovács [1980]; the result was known earlier: it is clear from the cohomo-
logical characterization of projective groups given in Proposition 7.6.7 (cf.
Gruenberg [1967]). The results in D.5 appeared first in Ribes, Stevenson and
Zalesskii [2007]; the proof of Theorem D.5.4 that we present here is from
Ribes and Steinberg [2010]. In Bary-Soroker, Haran and Harbater [2010] a
concept similar to m-quasifree is introduced and several subgroup theorems
are proved using also wreath products. See also Ershov [1998]. For uses of
wreath products in the context of profinite semigroups see Steinberg [2009]
and Rhodes and Steinberg [2008].
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Birkhäuser, Boston (2000)

Efrat, I.: Free pro-p product decompositions of Galois groups. Math. Z. 225, 245–
261 (1997)

Efrat, I., Haran, D.: On Galois groups over Pythagorean and semi-real closed fields.
Isr. J. Math. 85, 57–78 (1994)

Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton Univ.
Press, Princeton (1952)

Ershov, Yu.: Profinite groups. Algebra Log. 19, 552–565 (1980). English transl.:
Algebra Log. 19, 357–366

Ershov, Yu.L.: Free products of absolute Galois groups. Dokl. Math. 56, 915–917
(1997)

Ershov, Yu.L.: On a theorem of Kurosh. Algebra Log. 37, 381–393 (1998). English
trans.: Algebra Log. 37, 215–222

Ershov, Yu., Fried, M.: Frattini covers and projective groups without the extension
property. Math. Ann. 253, 322–339 (1980)

Evans, M.J.: Torsion in pro-finite completions of torsion-free groups. J. Pure Appl.
Algebra 65, 101–104 (1990)
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Ščepin, E.V.: The topology of limit spaces of uncountable inverse spectra. Russ.
Math. Surv. 31, 155–191 (1976)

Scott, P.: Subgroups of surface groups are almost geometric. J. Lond. Math. Soc.
17, 555–565 (1978)

Scheiderer, C.: Real and Étale Cohomology. Lect. Notes Math., vol. 1588. Springer,
Berlin (1994)

Scheiderer, C.: Farrel cohomology and Brown theorems for profinite groups.
Manuscr. Math. 91, 247–281 (1996)

Schirokauer, O.: A cohomological transfer map for profinite groups. J. Algebra 195,
74–92 (1997)
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normal subgroups of G, 304

MS(G) - intersection of all normal
subgroups with quotient S, 299

m | n - m divides n (as supernatural
numbers), 33

NG(P ) - normalizer of P in G, 39

R× - multiplicative group of the ring R,
136

Rp(G) - kernel of the maximal pro - p
quotient of G, 96

RC (G) - kernel of the maximal pro - C
quotient of G, 96

w0(G) - local weight of G, 47

w(G) - verbal subgroup, 121
w(X) - weight of a topological space X,

47
X − Y - set difference, 3
X/G - quotient space of X modulo G,

182
Z(G) - center of G, 139
[G : H] - index of H in G, 33
[H, K] - subgroup generated

by commutators, 55
[h, k] - commutator, 55
[RG] - abstract group algebra, 170
[ΛX] - abstract free module on X, 167
#G - order of a profinite group G, 33
∐n

i=1 Gi - free pro - C product
of profinite groups, 353

∪ - cup product, 282
δ, δn - connecting morphisms, 221
δ, δn - connecting morphisms, 196
γn(G) - n-th term of lower central

series, 41
Λop - opposite ring, 159
〈X | R〉 - presentation, 409
[[RG]] - complete group algebra, 171
[[Λ(X, ∗)]] - free profinite Λ-module

on a pointed profinite space (X, ∗),
167

[[ΛX]] - free profinite Λ-module
on a profinite space X, 167

lim←− i∈IXi - inverse limit, 3

lim−→ Ai - direct limit, 15

X - closure of X, 41
〈X〉 - closed subgroup (submodule)

generated by X, 42, 160
Φ(G) - Frattini subgroup, 53
Φn(G) - n-th term of the Frattini series

of G, 57
π′ - the set of primes not belonging

to π, 35
∏

- direct product, 2
� - semidirect product, 41
ϕĈ - homomorphism of pro - C

completions induced by ϕ, 82
|X| - cardinality of X, 48
̂G - profinite completion of G, 26

{Ai, ϕij , I} - direct system, 14
{Ai, ϕij } - direct system, 14
{Xi, ϕij , I} - inverse system, 1
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{Xi, ϕij } - inverse system, 1
DMod(G) - category of discrete

G-modules, 170
DMod(Λ) - category of discrete

Λ-modules, 165
H• - homological functor, 196
H• - cohomological functor, 195
N - set of natural numbers, 6
PMod(G) - category of profinite

G-modules, 170
PMod(Λ) - category of profinite

Λ-modules, 165
Q - field of rational numbers, 60
R - field of real numbers, 58
T - circle group, 58
Z - ring of integers, 6
ZĈ - pro - C completion of Z, 39
Zp - ring of p-adic integers, 26
C(Δ) - Δ-class, 21
Dop - opposite category to D, 196
E - class of continuous epimorphisms,

98
Ef - class of homomorphisms with finite

minimal kernel, 98
K N (G) - completion of G with respect

to N , 78
N � - class of groups of Fitting length

≤ 
, 123
Sn - space of subgroups of order n, 264
X C(m) - collection of all S-rank

functions, 332
A - category of abelian groups, 213
c(G) - set of commutators of G, 121
m

∗ = max{m, ℵ0}, 294
w(G), 120
AnnG∗ (H) - annihilator of H in G∗, 64
Aut(G) - automorphism group of G,

132

CoindG
H(A) - coinduced module, 242

Coinf = CoinfG
G/K - coinflation map,

219
Cor = CorH

G - corestriction map, 225,
229

CG(k) - centralizer of k in G, 143
DerL(H, A) - group of derivations

vanishing on L, 375
Der(G, A) - group of derivations, 231
End(M) - group of continuous

endomorphisms, 159
Extn

Λ(A, −) - n-th right derived functor
of HomΛ(A, −), 201

EndΛ(M) - group of continuous
Λ-endomorphisms, 159

gcd - greatest common divisor, 33
HNNabs(H, A, f) - abstract HNN-

extension, 382
Hom(M, N) - group of continuous

homomorphisms, 159
HomΛ(M, N) - group of continuous

Λ-homomorphisms, 159
Ider(G, A) - group of inner derivations,

231
Im(ϕ) - image of ϕ, 20
IndG

H(B) - induced module, 245

Inf = Inf
G/K
G - inflation map, 215

id - identity map, 1
Ker(ψ) - kernel of ψ, 20
lcm - least common multiple, 33
PrnX - subset of elements repre-

sented as a product of length n
of elements of X, 43

Prt(Y ), 121
Res = ResG

H - restriction map, 224, 229
rank(F ) - rank of a free pro - C group F ,

90
resG

K(M) - restriction of scalars, 248
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– – proper, 369
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– and absolute Galois groups, 388
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– homological, 196
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– functorial behavior, 214
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functors, 208
Hopfian group, 44
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– system, 14
inflation map, 215
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– enough injectives, 175
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– limit of projective groups, 275
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– system, 1
inverse problem of Galois theory, 100
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Kurosh system, 428
– existence, 428

length of a module, 253
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– direct, 14
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limit pro-p group, 392
Lyndon-Hochschild-Serre spectral

sequence, 258
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map
– converging to 1, 88, 160
– middle linear, 177
– of direct systems, 17
– of inverse systems, 4
maps
– compatible pair of, 162
Mayer-Vietoris sequence, 374
minimax group, 149
module, 159
– basis of free, 168
– cofree, 175
– coinduced, 243
– discrete, 165
– finitely generated, 160
– free profinite, 166
– G-module, 169

– induced, 245
– Λ-module, 159
– profinite, 165
– simple, 252
– with trivial action, 169
modules
– direct sum of, 162
morphism
– of cohomological functors, 196
– of G-modules, 170
– of Λ-modules, 159

net, 119
– cluster point of a, 119
– convergence of a, 119
Nielsen-Schreier theorem, 114
nongenerator, 53

order of a profinite group, 33

partially ordered set, 1
– directed, 1
Poincaré Group, 290
polycyclic group, 152
pontryagin duality, 59
poset, 1
– cofinal subset, 8
presentation, 409
– finite, 409
– minimal, 409
– of a pro-p group, 281
pro - C topology of a group, 75
– full, 75
pro - C group, 19
pro-p group, 20
– with one relator, 290
proabelian group, 20
procyclic group, 20, 51
profinite
– dihedral group, 143
– free group, 86
– free group on a set converging to 1,

89
– G-module, 169
– group, 20
– metrizable profinite group, 51
– module, 165
– order of a profinite group, 33
– restricted free group, 89
– ring, 159
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– space, 9
– strongly complete group, 120
– topology, 75, 76
– torsion group, 156
profinite groups with the same finite

quotients, 85
projection
– of an inverse limit, 2
projective
– C-projective profinite group, 271
– enough projectives, 174
– limit, 2
– object, 172
– profinite group, 271
– solvable profinite group, 278
– system, 1
pronilpotent group, 20
prosolvable group, 20
Prüfer group, 16
pullback, 66
pure subgroup, 129
pushout, 67

quasisimple finite group, 416

rank
– of a free group, 90
– S-rank function of a group, 314
– S-rank of a profinite group, 299
relation module, 412
relation rank, 281, 409
relator
– defining relators, 281
residually C group, 75
residually finite group, 76
resolution
– homogeneous, 206
– inhomogeneous, 206
– injective, 199
– projective, 200
– split, 211
restriction
– in cohomology, 224
– in homology, 229
restriction of scalars, 248
ring
– commutative profinite, 161
– profinite, 159

Schreier’s formula, 311

Schur-Zassenhaus theorem, 40
second axiom of countability, 11
section
– for G-spaces, 184
– of a map, 29
semidirect product, 41
– external, 181
sequence
– exact, 20
– of inverse systems, 31
– short exact sequence of groups, 20
series
– derived, 341
– lower central, 41
– lower p-central series, 57
Shapiro’s Lemma, 244, 245
space

– Boolean, 9
– countably based, 11
– first countable, 11
– pointed, 85
– profinite, 9
– second countable, 11
– totally disconnected, 4
– weight of a, 47
spectral sequence, 397
– base terms, 400
– convergence, 399
– edge homomorphisms, 400, 401
– fiber terms, 400
– first quadrant, 399
– initial term, 398
– Lyndon-Hochschild-Serre, 258
– of a double complex, 405
– of a filtered complex, 402

– positive, 399
splitting, 238
– T -splitting of sequence, 238
stabilizer, 169
strict cohomological p-dimension, 251
strong lifting property, 99
strongly complete profinite group, 120,

122
– example of a nonstrongly complete

group, 127
subdirect product, 19
subgroup
– accessible, 302
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– cartesian, 357
– characteristic, 44
– derived, 341
– isolated, 142
– of a free pro - C: not free, 331
– pure, 129
– subnormal, 115
– subnormal in free pro- C groups, 336
– verbal, 96
subgroups of finite index
– in profinite groups, 122
submodule
– of fixed points, 204
supernatural number, 33, 73
– divides, 33
– greatest common divisor of, 33
– least common multiple of, 33
– product of, 33
Sylow
– subgroup, 35
– theorem, 37

tensor product

– commutes with lim←−, 178

– complete, 177

torsion subset, 148

transfer, 225

transgression, 401

transversal, 22

– Schreier transversal, 114

trivial action, 169

variety of finite groups, 20

– extension closed, 20

– saturated, 272

verbal subgroup, 120

weight

– local, 47

– of a space, 47

width of a word w, 121

Zassenhaus group, 278
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