
6

Structured Business Process Specification

Isn’t it compelling to apply the structured programming arguments to the
field of business process modeling? Our answer to this question is ‘no’.

The principle of structured programming emerged in the computer science
community. From today’s perspective, the discussion of structured program-
ming rather had the characteristics of a maturing process than the charac-
teristics of a debate, although there have also been some prominent skeptical
comments on the unrestricted validity of the structured programming prin-
ciple. Structured programming is a well-established design principle in the
field of program design like the third normal form in the field of database
design. It is common sense that structured programming is better than un-
structured programming – or let’s say structurally unrestricted programming
– and this is what is taught as foundational knowledge in many standard
curricula of many software engineering study programmes. With respect to
business process modeling, in practice, you find huge business process models
that are arbitrary nets. How come? Is it somehow due to some lack of knowl-
edge transfer from the programming language community to the information
systemcommunity For computer scientists, it might be tempting to state that
structured programming is a proven concept and it is therefore necessary to
eventually promote a structured business process modeling discipline, how-
ever, care must be taken.

We want to contribute to the understanding in how far a structured ap-
proach can be applied to business process modeling and in how far such an
approach is naive [113]. We attempt to clarify that the arguments of struc-
tured programming are about the pragmatics of programming. Furthermore,
we want to clarify that, in our opinion, argumentations in favor of structured
programming often appeal to evidence. Consequentially, our reasoning is at
the level of pragmatics of business process modeling. We try to avoid getting
lost in superficial comparisons of modeling language constructs but trying to
understand the core problems of structuring business process specifications.
As an example, so to speak as a taster to our discussion, we take forward one
of our arguments here, which is subtle but important, i.e., that there are some

© Springer-Verlag Berlin Heidelberg 2010

161
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_6,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

162 6 Structured Business Process Specification

diagrams expressing behavior that cannot be transformed into a structured
diagram expressing the same behavior solely in terms of the same primitives
as the original structurally unrestricted diagram. These are all those diagrams
that contain a loop which is exited via more than one path to the end point,
which is a known result from literature, encountered [37] by Corrado Böhm
and Guiseppe Jacopini, proven for a special case [206] by Donald E. Knuth
and Robert W. Floyd and proven in general [208] by S. Rao Kosaraju.

On a first impression, structured programs and flowcharts appear neat and
programs and flowcharts with arbitrary jumps appear obfuscated, muddle-
headed, spaghetti-like etc. [76]. But the question is not to identify a subset of
diagrams and programs that look particularly fine. The question is, given a
behavior that needs description, whether it makes always sense to replace a
description of this behavior by a new structured description. What efforts are
needed to search for a good alternative description? Is the resulting alternative
structured description as nice as the original non-structured description?

Furthermore, we need to gain more systematic insight into which metrics
we want to use to judge the quality of a description of a behavior, because
categories like neatness or prettiness are not satisfactory for this purpose if we
are serious that our domain of software development should be oriented rather
towards engineering [256, 51] than oriented towards arts and our domain of
business management should be oriented rather towards science [144]. Admit-
tedly, however, both fields are currently still in the stage of pre-paradigmatic
research [223]. All these issues form the topic of investigation of this chapter.

For us, the definitely working theory of quality of business process models
would be strictly pecuniary, i.e., it would enable us to define a style guide
for business process modeling that eventually saves costs in system analysis
and software engineering projects. The better the cost-savings realized by the
application of such a style-guide the better such a theory. Because our ideal is
pecuniary, we deal merely with functionality. There is no cover, no aesthetics,
no mystics. This means there is no form in the sense of Louis H. Sullivan [332]
– just function.

6.1 Basic Definitions

In this section we explain the notions of program, structured program,
flowchart, D-flowchart, structured flowchart, business process model and
structured business process model as used in this chapter. The focus of this
section is on syntactical issues. You might want to skip this section and use
it as a reference, however, you should at least glimpse over the formation
rules of structured flowcharts defined in Fig. 6.1, which are also the basis for
structured business process modeling.

In the course of this chapter, programs are imperative programs which may
contain ‘go to’-statements, i.e., they consist of basic statements, sequences,
case constructs, loops and ‘go to’-statements. Structured programs are those

6.1 Basic Definitions 163

programs that abstain from ‘go to’-statements. Loops, i.e., explicit program-
ming constructs for loops, do not add to the expressive power of a program-
ming language with ‘go to’-statements – in presence of ‘go to’-statements loops
are syntactic sugar. Flowcharts correspond to programs. Flowcharts are di-
rected graphs with nodes being basic activities, decision points or join points.
A directed circle in a flowchart can be interpreted as a loop or as the usage
of a ‘go to’-statement. In general flowcharts it allowed to place join points
arbitrarily, which makes it possible to create spaghetti structures, i.e., arbi-
trary jump structures, like the ‘go to’-statements allows for the creation of
spaghetti code.

It is a matter of taste whether to make decision and joint points explicit
nodes or not. If you strictly use decision and joint points the basic activi-
ties always have exactly one incoming and one outgoing edge. In concrete
modeling languages like event-driven process chains, there are usually some
more constraints, e.g., a constraint on decision points not to have more than
one incoming edge or a constraint on join points to have not more than one
outgoing edge. If you allow basic activities to have more than one incoming
edge you do not need join points any more. Similarly, you can get rid of a
decision point by using several outgoing edges by directly connecting the sev-
eral branches of the decision point as outgoing edges to a basic activity and
labeling the several branches with appropriate flow conditions. For example,
in formcharts [89] we have chosen the option not to use explicit decision and
join points. Our discussion is independent from the detail question of hav-
ing explicit or implicit decision and join points, because both concepts are
interchangeable. Therefore, we feel free to use both options.

A

y

n
C

D
C

D
C

C

D

C

D

C

n

CC
y

(i)
basic activity

(ii)
sequence

(iii)
case

(iv)
do-while

(v)
repeat-until

Fig. 6.1. Semi-formal formation rules for structured flowcharts.

164 6 Structured Business Process Specification

6.1.1 D-Charts

It is possible to define formation rules for a restricted class of flowcharts
that correspond to structured programs. In [208] these diagrams are called
Dijkstra-flowcharts or D-flowcharts for short, named after Edgser W. Dijkstra.
Figure 6.1 summarizes the semi-formal formation rules for D-flowcharts.

Actually, the original definition of D-flowcharts in [208] consists of the
formation rules (i) to (iv) with one formation rule for each programming lan-
guage construct of a minimal structured imperative programming language
with basic statements, sequences, case-constructs and while-loops with basic
activities in the flowchart corresponding to basic statements in the program-
ming language. We have added a formation rule (v) for the representation of
repeat-until-loops and call flowcharts resulting from rules (i) to (v) structured
flowcharts in the sequel.

A B C D

n

y
y

n

Fig. 6.2. Example flowchart that is not a D-flowchart.

The flowchart in Fig. 6.2 is not a structured flowchart, i.e., it cannot be
derived from the formation rules in Fig. 6.1. The flowchart in Fig. 6.2 can
be interpreted as consisting of a repeat-until-loop exited via the α-decision
point and followed by further activities C and D. In this case, the β-decision
point can lead to a branch that jumps into the repeat-until-loop in addition
to the regular loop entry point via activity A, which infringes the structured
programming and structured modeling principle and gives raises to spaghetti
structure. Thus, the flowchart in Fig. 6.2 visualizes the program in Listing 6.1

Listing 6.1 Textual presentation of the business process in Fig. 6.2 with a
jump into the loop.

01 REPEAT

02 A;

03 B;

04 UNTIL alpha;

05 C;

06 IF beta THEN GOTO 03;

07 D;

6.1 Basic Definitions 165

The flowchart in Fig. 6.2 can also be interpreted as consisting of a while-
loop exited via the β-decision point, where the while-loop is surrounded by a
preceding activity A and a succeeding activity D. In this case, the α-decision
point can lead to a branch that jumps out of the while-loop in addition to the
regular loop exit via the β-decision point, which again infringes the structured
modeling principle. Thus, the flowchart in Fig. 6.2 also visualizes the program
in Listing 6.2

Listing 6.2Alternative textual presentation of the business process in Fig. 6.2
with a jump out of the loop.

01 A;

02 REPEAT

03 B;

04 IF NOT alpha THEN GOTO 01

05 C;

06 UNTIL NOT beta;

07 D;

Flowcharts are visualization of programs. In general, a flowchart can be
interpreted ambiguously as the visualization of several different program texts,
because, for example, on the one hand, an edge from a decision point to a
join point can be interpreted as a ‘go to’-statement or, on the other hand,
as the back branch from an exit point of a repeat-until loop to the start
of the loop. Structured flowcharts are visualizations of structured programs.
Loops in structured programs and structured flowcharts enjoy the property
that they have exactly one entry point and exactly one exit point. Whereas
the entry point and the exit point of a repeat-until loop are different, the
entry point and exit point of a while-loop are the same, so that a while-loop
in a structured flowchart has exactly one contact point. That might be the
reason that structured flowcharts that use only while-loops instead of repeat-
until loops appear more normalized. Similarly, in a structured program and
flowchart all case-constructs has exactly one entry point and one exit point.
In general, additional entry and exit points can be added to loops and case
constructs by the usage of ‘go to’-statements in programs and by the usage
of arbitrary decision points in flowcharts. In structured flowcharts, decision
points are introduced as part of the loop constructs and part of the case
construct. In structured programs and flowcharts, loops and case-constructs
are strictly nested along the lines of the derivation of their abstract syntax
tree.

Business process models extend flowcharts with further modeling elements
like a parallel split, parallel join or non-deterministic choice. Basically, we dis-
cuss the issue of structuring business process models in terms of flowcharts, be-
cause flowcharts actually are business process model diagrams, i.e., flowcharts

166 6 Structured Business Process Specification

form a subset of business process models. As the constructs in the formation
rules of Fig. 6.1 further business process modeling elements can also be in-
troduced in a structured manner with the result of having again only such
diagrams that are strictly nested in terms of their looping and branching con-
structs. For example, in such a definition the parallel split and the parallel join
would not be introduced separately but as belonging to a parallel modeling
construct.

6.1.2 A Notion of Equivalence for Business Processes

Bisimilarity has been defined formally in [273] as an equivalence relation for
infinite automaton behavior, i.e., process algebra [249, 250]. Bisimilarity ex-
presses that two processes are equal in terms of their observable behavior.
Observable behavior is the appropriate notion for the comparison of auto-
matic processes. The semantics of a process can also be understood as oppor-
tunities of one process interacting with another process. Observable behavior
and experienced opportunities are different viewpoints on the semantics of a
process, however, whichever viewpoint is chosen, it does not change the basic
concept of bisimilarity. Business processes can be fully automatic; however,
business processes can also be descriptions of human actions and therefore
can also be rather a protocol of possible steps undertaken by a human. We
therefore choose to explain bisimilarity in terms of opportunities of an actor,
or, as a metaphor, from the perspective of a player that uses the process de-
scription as a game board – which neatly fits to the notions of simulation and
bisimulation, i.e., bisimilarity.

A

y C

D

(i) A

A C A D

n

y E

Fn

C Diff

iff

C E

D F

(ii)

(iii)

Fig. 6.3. Characterization of bisimilarity for business process models.

In general, two processes are bisimilar if starting from the start node they
reveal the same opportunities and each pair of same opportunities lead again
to bisimilar processes. More formally, bisimilarity is defined on labeled transi-
tion systems [3] as the existence of a bisimulation, which is a relationship that
enjoys the aforementioned property, i.e., nodes related by the bisimilarity lead
via the same opportunities to nodes that are related again, i.e., recursively,
by the bisimilarity. In the non-structured models the opportunities are edges

6.2 The Pragmatics of Structuring Business Processes 167

leading out of an activity and the two edges leading out of a decision point.
For our purposes, bisimilarity can be characterized by the rules in Fig. 6.3.

6.2 The Pragmatics of Structuring Business Processes

6.2.1 Resolving Arbitrary Jump Structures

Have a look at Fig. 6.4. Like Fig. 6.2 it shows a business process model that
is not a structured business process model. The business process described by
the business process model in Fig. 6.4 can also be described in the style of a
program text as in Listing 6.3.

B C

A
y

n

n

y

Fig. 6.4. Example business process model that is not structured.

In textual representation or interpretation in Fig. 6.4, the business process
model in Fig. 6.4 consists of a while-loop followed by a further activity B, a
decision point that might branch back into the while-loop and eventually an
activity C. Alternatively, the business process can also be described by struc-
tured business process models. Fig. 6.5 shows two examples of such structured
business process models and Listings 6.4 and 6.5 show the corresponding pro-
gram text representations that are visualized by the business process models
in Fig. 6.5.

Listing 6.3 Textual presentation of the business process in Fig. 6.4.

01 WHILE alpha DO

02 A;

03 B;

04 IF beta THEN GOTO 02;

05 C;

The business process models in Figs. 6.4 and 6.5 resp. Listings 6.3, 6.4
and 6.5 describe the same business process. They describe the same business

168 6 Structured Business Process Specification

process, because they are bisimilar, i.e., in terms of their nodes, which are,
basically, activities and decision points, they describe the same observable
behavior resp. same opportunities to act for an actor – we have explained the
notion of equality and the more precise approach of bisimilarity in more detail
in Sect. 6.1.2.

B

A

A

A

C

B

y

n

y

n

yn

B

A

A

C

B

y

n

y

n

n

y

(i) (ii)

Fig. 6.5. Structured business process models that replace the non-structured one
in Fig. 6.4.

The derivation of the business process models in Fig. 6.5 from the forma-
tion rules given in Fig. 6.1 can be understood by looking at its abstract syntax
tree, which appears at tree ψ in Fig. 6.6. The proof that the process models in
Figs. 6.4 and 6.5 are bisimilar is left to the reader as an exercise. The reader is
also invited to find structured business process models that are less complex
than the ones given in Fig. 6.5, whereas complexity is an informal concept
that depends heavily on the perception and opinion of the modeler. For ex-
ample, the model (ii) in Fig. 6.4 results from an immediate simple attempt to
reduce the complexity of the model (i) in Fig. 6.5 by eliminating the A-activity
which follows the α-decision point and connecting the succeeding ‘yes’-branch
of the α-decision point directly back with the A-activity preceding the deci-
sion point, i.e., by reducing a while-loop-construct with a preceding statement
to a repeat-until-construct. Note, that the model in Fig. 6.5 has been derived
from the model in Fig. 6.4 by straightforwardly unfolding it behind the β-
decision point as much as necessary to yield a structured description of the
business process. In what sense the transformation from model (i) to model
(ii) in Fig. 6.5 has lowered complexity and whether it actually or rather su-
perficially has lowered the complexity will be discussed in due course. We will

6.2 The Pragmatics of Structuring Business Processes 169

also discuss another structured business process model with auxiliary logic
that is oriented towards identifying repeat-until-loops in the original process
descriptions.

Listing 6.4 Textual presentation of business process (i) in Fig. 6.4.

01 WHILE alpha DO

02 A;

03 B;

04 WHILE beta DO BEGIN

05 A;

06 WHILE alpha DO

07 A;

08 B;

09 END;

10 C;

Listing 6.5 Textual presentation of business process (ii) in Fig. 6.4.

01 WHILE alpha DO

02 A;

03 B;

04 WHILE beta DO BEGIN

05 REPEAT

06 A;

07 UNTIL NOT alpha;

08 B;

09 END;

10 C;

The above remark on the vagueness of the notion of complexity is not just a
side-remark or disclaimer but is at the core of the discussion. If the complexity
of a model is a cognitive issue it would be a straightforward approach to let
people vote which of the models is more complex. If there is a sufficiently
precise method to test whether a person has understood the semantics of a
process specification, this method can be exploited in testing groups of people
that have been given different kinds of specifications of the same process and
concluding from the test results which of the process specifications should be
considered more complex. Such an approach relies on the preciseness of the
semantics and eventually on the quality of the test method. We will suggest
to consider such a test method approach again in Sect. 6.3 in the discussion
of structured programming, because program have a definite semantics as
functional transforms.

170 6 Structured Business Process Specification

It is a real challenge to search for a definition of complexity of models or
their representations. What we expect is that less complexity has something
to do with better quality, and before we undertake efforts in defining complex-
ity of models we should first understand possibilities to measure the quality of
models. The usual measures by which modelers and programmers often judge
complexity of models like understandability or readability are vague concepts
themselves. Other categories like maintainability or reusability are more con-
crete than understandability or readability but still vague. Of course, we can
define metrics for the complexity of diagrams. For example, it is possible to
define that the number of activity nodes used in a business process model
increases the complexity of a model. The problem with such metrics is that
it follows immediately that the model in Fig. 6.5 is more complex than the
model in Fig. 6.4. Actually, this is what we believe.

6.2.2 Immediate Arguments For and Against Structure

We believe that the models in Fig. 6.5 are more complex than the models in
Fig. 6.4. A structured approach to business process models would make us
believe that structured models are somehow better than non-structured mod-
els in the same way that the structured programming approach believes that
structured programs are somehow better than non-structured programs. So
either less complexity must not always be better or the tenets of the structured
approach must be loosened to a rule of thumb, i.e., the belief that structured
models are in general better than non-structured models, despite some ex-
ceptions like our current example. An argument in favor of the structured
approach could be that our current example is simply too small, i.e., that the
aforementioned exceptions are made of small models or, to say it differently,
that the arguments of a structured approach become valid for models beyond
a certain size. We do not think so. We rather believe that our discussion
scales, i.e., that the arguments that we will give below also apply equally and
even more so for larger models. We want to approach these questions more
systematically.

In order to do so, we need to answer why we believe that the models in
Fig. 6.5 are more complex than the model in Fig. 6.4. The immediate answer
is simply because they are larger and therefore harder to grasp, i.e., a very
direct cognitive argument. But there is another important argument why we
believe this. The model in Fig. 6.4 shows an internal reuse that the models
in Fig. 6.5 do not show. The crucial point is the reuse of the loop consisting
of the A-activity and the α-decision point in Fig. 6.4. We need to delve into
this important aspect and will actually do this later. First, we want to discuss
the dual question, which is of equal importance, i.e., we must also try to
understand or try to answer the question, why modelers and programmers
might find that the models in Fig. 6.5 are less complex than the models in
Fig. 6.4.

6.2 The Pragmatics of Structuring Business Processes 171

A standard answer to this latter question could typically be that the edge
from the β-decision point to the A-activity in Fig. 6.4 is an arbitrary jump, i.e.,
a spaghetti, whereas the diagrams in Fig. 6.5 do not show any arbitrary jumps
or spaghetti-like phenomena. But the question is whether this vague argument
can be made more precise. A structured diagram consists of strictly nested
blocks. All blocks of a structured diagram form a tree-like structure according
to their nesting, which corresponds also to the derivation tree in terms of
the formation rules of Fig. 6.1. The crucial point is that each block can be
considered a semantic capsule from the viewpoint of its context. This means,
that once the semantics of a block is understood by the analyst studying the
model, the analyst can forget about the inner modeling elements of the block.
This is not so for diagrams in general. This has been the argument of looking
from outside onto a block in the case a modeler want to know its semantics in
order to understand the semantics of the context where it is utilized. Also, the
dual scenario can be convincing. If an analyst is interested in understanding
the semantics of a block he can do this in terms of the inner elements of a
block only. Once the analyst has identified the block he can forget about its
context to understand it. This is not so easy in a non-structured language.
When passing an element, in general you do not know where you end up in
following the various paths behind it. It is also possible to subdivide a non-
structured diagram into chunks that are smaller than the original diagram and
that make sense to understand as capsules. For example, this can be done,
if possible, by transforming the diagram into a structured one, in which you
will find regions of your original diagram. However, it is extra effort to do this
partition.

With the current set of modeling elements, i.e., those introduced by the
formulation rules in Fig. 6.1, all this can be seen particularly easy, because each
block has exactly one entry point, i.e., one edge leading into it. Fortunately,
standard building blocks found in process modeling would have one entry
point in a structured approach. If you have, in general, also blocks with more
than one entry points, it would make the discussion interesting. The above
argument would not be completely infringed. Blocks still are capsules, with
a semantics that can be understood locally with respect to their appearance
in a strictly nested structure of blocks. The scenario itself remains neat and
tidy; the difference lies in the fact that a block with more than one entry has a
particular complex semantics in a certain sense. The semantics of a block with
more than one entry is manifold, e.g., the semantics of a block with two entries
is threefold. Given that, in general, we also have concurrency phenomena in
a business process model, the semantics of block with two entry points, i.e.,
its behavior or opportunities, must be understood for the case that the block
is entered via one or the other entry point and for the case that the block is
entered simultaneously. But this is actually not a problem; it just means a
more sophisticated semantics and more documentation.

Despite a more complex semantics, a block with multiple entries still re-
mains an anchor in the process of understanding a business process model,

172 6 Structured Business Process Specification

because it is possible, e.g., to understand the model from inside to outside
following the strict tree-like nesting, which is a canonical way to understand
the diagram, i.e., a way that is always defined. It is also always possible to
understand the diagram sequentially from the start node to the end node in
a controlled manner. The case constructs make such sequential proceeding
complex, because they open alternative paths in a tree-like manner. The ad-
vantage of a structured diagram with respect to case-constructs is that each of
the alternative paths that are spawned is again a block and it is therefore pos-
sible to understand its semantics isolated from the other paths. This is not so
in a non-structured diagram, in which there might be arbitrary jumps between
the alternative paths, in general. Similarly, if analyzing a structured diagram
in a sequential manner, you do not get into arbitrary loops and therefore have
to deal with a minimized risk to loose track.

The discussion of the possibility to have blocks with more entry points
immediately reminds us of the discussion we have seen within the business
process community on multiple versus unique entry points for business pro-
cesses in a setting of hierarchical decomposition. The relationship between
blocks in a flat structured language and sub diagrams in a hierarchical ap-
proach and how they play together in a structured approach is an important
strand of discussion that we will come back to in due course. For the time
being, we just want to point out the relationship between the discussion we
just had on blocks with multiple entries and sub diagrams with multiple en-
tries. A counter-argument against sub diagrams with multiple entries would
be that they are more complex. Opponents of the argument would say that
it is not a real argument, because the complexity of the semantics, i.e., its
aforementioned manifoldness, must be described anyhow.

With sub diagrams that may have no more than one entry point, you
would need to introduce a manifoldness of diagrams each with a single entry
point. We do not discuss here how to transform a given diagram with multiple
entries into a manifoldness of diagrams – all we want to remark here that it
easily becomes complicated because of the necessity to appropriately handle
the aforementioned possibly existing concurrency phenomena. Eventually it
turns out to be a problem of transforming the diagram together with its
context, i.e., transforming a set of diagrams and sub diagrams with possibly
multiple entry points into another set of diagrams and sub diagrams with only
unique entry points. Defenders of diagrams with unique entry points would
state that it is better to have a manifoldness of such diagrams instead of
having a diagram with multiple entries, because, the manifoldness of diagrams
documents better the complexity of the semantics of the modeled scenario.

For a better comparison of the discussed models against the above state-
ments we have repainted the diagram from Fig. 6.4 and diagram (ii) from
Fig. 6.5 with the blocks they are made of and their abstract syntax trees resp.
quasi-abstract syntax tree in Fig. 6.6. The diagram of Fig. 6.4 appears to
the left in Fig. 6.6 as diagram Φ and diagram (ii) from Fig. 6.5 appears to
the right as diagram Ψ . According to that, the left abstract syntax tree φ in

6.2 The Pragmatics of Structuring Business Processes 173

Fig. 6.6 corresponds to the diagram from Fig. 6.4 and the right abstract syntax
tree ψ corresponds to the diagram (ii) from Fig. 6.5. Blocks are surrounded
by dashed lines in Fig. 6.6.

B

A

A

C

B

y

n

n

y

y

n

B

C

A
y

n

y
n

1

2
3

5

6

4
7

1

2

6

7

6 5

4

3

2

1

B

C

B

A

A

ii

6 ii

ii

iv

2

1

C

B

A

Fig. 6.6. Block-structured versus arbitrary business process model.

If you proceed in understanding the model Φ in Fig. 6.6 you first have to
understand a while-loop that encompasses the A-activity – the block labeled
with number ‘5’ in model Φ. After that, you are not done with that part of
the model. Later, after the β-decision point you are branched back to the A-
activity and you have to re-understand the loop it belongs to again, however,
this time in a different manner, i.e., as a repeat-until loop – the block labeled
with number ‘1’ in model Φ. It is possible to argue that, in some sense, this
makes the model Φ harder to read than model Ψ . To say it differently, it
is possible to view model Ψ as an instruction manual on how to read the
model Φ. Actually, model Ψ is a bloated version of model Φ. It contains some
modeling elements of model Φ redundantly, however, it enjoys the property
that each modeling element has to be understood only in the context of one
block and its encompassing blocks. We can restate these arguments a bit more
formally in analyzing the abstract syntax trees φ and ψ in Fig. 6.6. Blocks
in Ψ correspond to constructs that can be generated by the formation rules in
Fig. 6.1. The abstract syntax tree ψ is an alternate presentation of the nesting
of blocks in model Ψ . A node stands for a block and for the corresponding

174 6 Structured Business Process Specification

construct according to the formation rules. The graphical model Φ cannot be
derived from the formation rules in Fig. 6.1. Therefore it does not possess an
abstract syntax tree in which each node represent a unique graphical block and
a construct the same time. The tree φ shows the problem. You can match the
region labeled ‘1’ in model Φ as a block against while-loop-rule (iv) and you
can subsequently match the region labeled ‘2’ against the sequence-rule (iii).
But then you get stuck. You can form a further do-while loop with rule (iv) out
of the β-decision point and block ‘2’ as in model Ψ but the resulting graphical
model cannot be interpreted as a part of model Φ any more. This is because
the edge from activity B to the β-decision point graphically serves both as
input branch to the decision point and as back branch to the decision point.
This graphical problem is resolved in the abstract syntax tree φ by reusing
the activity B in the node that corresponds to node ‘5’ in tree ψ in forming
a sequence according to rule (ii) with the results that the tree φ is actually
no longer a tree. Similarly, the reuse of the modeling elements in forming
node ‘6’ in the abstract syntax tree φ visualizes the double interpretation of
this graphical region as both a do-while loop and repeat-until loop.

6.2.3 Structure for Text-based versus Graphical Specifications

In Sect. 6.2.2 we have said that an argument for a structured business process
specification is that it is made of strictly nested blocks and that each identi-
fiable block forms a semantic capsule. In the argumentation we have looked
at the graphical presentation of the models only and now we will have a look
also at the textual representations.

This section needs a disclaimer. We are convinced that it is risky in the
discussion of quality of models to give arguments in terms of cognitive cat-
egories like understandability, readability, cleanness, well-designedness and
well-definedness. These categories tend to have an insufficient degree of de-
finedness themselves so that argumentations based on them easily suffer a
lack of falsifiability. Nevertheless, in this section, in order to abbreviate, we
need to speak directly about the reading ease of specifications. The judgments
are our very own opinion, an opinion that expresses our perception of certain
specifications. The reader may have a different opinion and this would be in-
teresting in its own right. At least, the expression of our own opinion may
encourage the reader to judge about the readability certain specifications.

As we said in terms of complexity, we think that the model in Fig. 6.4 is
easier to understand than the models in Fig. 6.5. We think it is easier to grasp.
Somehow paradoxically, we think the opposite about the respective text rep-
resentation, at least at a first sight, i.e., as long as we have not internalized too
much all the different graphical models in listings. This means, we think that
the text representation of the models in Fig. 6.4, i.e., Listing 6.3, is definitely
harder to understand than the text representation of both models in Fig. 6.5,
i.e., Listings 6.4 and 6.5. How comes? Maybe, the following observation helps,
i.e., that we also think that the graphical model in Fig. 6.5 is also easier to

6.2 The Pragmatics of Structuring Business Processes 175

read than the model’s textual representation in Listing 6.3 and also easier to
read than the two other Listings 6.4 and 6.5. Why is Listing 6.5 so relatively
hard to understand? We think, because there is no explicitly visible connect-
ing between the jumping-off point in line ‘04’ and the jumping target in line
line ‘02’. Actually, the first thing we would recommend in order to understand
Listing 6.5 better is to draw its visualization, i.e., the model in Fig. 6.5, or to
concentrate and to visualize it in our mind. By the way, we think that drawing
some arrows in Listing 6.3 as we did in Fig. 6.7 also help. The two arrows
already help despite the fact that they make explicit only a part of the jump
structure – one possible jump from line ‘01’ to line ‘03’ in case the α-condition
becomes invalid must still be understood by the indentation of the text.

01 WHILE alpha DO
02 A;
03 B;
04 IF beta THEN GOTO 02;
05 C;

Fig. 6.7. Listing enriched with arrows for making jump structure explicit.

All this is said for such a small model consisting of a total of five lines.
Imagine, if you had to deal with a model consisting of several hundreds lines
with arbitrary ‘go to’-statements all over the text. If it is true that the model
in Fig. 6.4 is easier to understand than the models in Fig. 6.5 and at the same
time Listing 6.3 is harder to understand than Listings 6.4 and 6.5 this may
lead us to the assumption that the understandability of graphically presented
models follows other rules than the understandability of textual representa-
tion. Reasons for this may be, on the one hand, the aforementioned lack of
explicit visualizations of jumps, and, on the other hand, the one-dimensional
layout of textual representations. The reason why we have given all of these
arguments in this section is not in order to promote visual modeling. The
reason is that we see a chance that they might explain why the structural
approach has been so easily adopted in the field of programming.

The field of programming was and still is dominated by text-based spec-
ifications – despite the fact that we have seen many initiatives from syntax-
directed editors through to computer-aided software engineering to model-
driven architecture. It is fair to remark that the crucial characteristics of
mere textual specification in the discussion of this section, i.e., lack of explicit
visualization of jumps, or, to say it in a more general manner, support for the
understanding of jumps, is actually addressed in professional coding tools like
integrated development environments with their maintenance of links, code
analyzers and profiling tools. The mere text-orientation of specification has
been partly overcome by today’s integrated development environments. Let us
express once more that we are not promoters of visual modeling or even visual

176 6 Structured Business Process Specification

programming. In [89] we have de-emphasized visual modeling. We strictly be-
lieve that visualizations add value, in particular, if it is combined with visual
meta-modeling [159, 160, 115]. But we also believe that mere visual specifica-
tion is no silver bullet, in particular, because it does not scale. We believe in
the future of a syntax-direct abstract platform with visualization capabilities
that overcomes the gap between modeling and programming from the out-
set as proposed by the work on AP1 [226, 227] of the Software Engineering
research group at the University of Auckland.

6.2.4 Structure and Decomposition

The models in Fig. 6.5 are unfolded versions of the model in Fig. 6.4. Some
modeling elements of the diagram in Fig. 6.5 occur redundantly in each model
in Fig. 6.4. Such unfolding violates the reuse principle. Let us concentrate
on the comparison of the model in Fig. 6.5 with model (i) in Fig. 6.5. The
arguments are similar for diagram (ii) in Fig. 6.5. The loop made of the α-
decision point and the activity A occurs twice in model (i). In the model in
Fig. 6.5 this loop is reused by the jump from the β-decision point albeit via an
auxiliary entry point. It is important to understand that reuse is not about
the cost-savings of avoiding the repainting of modeling elements but about
increasing maintainability.

Imagine, in the lifecycle of the business process a change to the loop con-
sisting of the activity A and the α-decision point becomes necessary. Such
changes could be the change of the condition to another one, the change of
the activity A to another one or the refinement of the loop, e.g., the inser-
tion of a further activity into it. Imagine that you encounter the necessity
for changes by reviewing the start of the business process. In analyzing the
diagram, you know that the loop structure is not only used at the beginning
of the business process but also later by a possible jump from the β-decision
point to it. You will now further analyze whether the necessary changes are
only appropriate at the beginning of the business process or also later when
the loop is reused from other parts of the business process. In the latter case
you are done. This is the point where you can get into trouble with the other
version of the business process specification as diagram (i) in Fig. 6.5. You
can more easily overlook that the loop is used twice in the diagram; this is
particularly true for similar examples in larger or even distributed models.
So, you should have extra documentation for the several occurrences of the
loop in the process. Even in the case that the changes are relevant only at
the beginning of the process you would like to review this fact and investigate
whether the changes are relevant for other parts of the process.

It is fair to remark, that in the case that the changes to the loop in question
are only relevant to the beginning of the process, the diagram in Fig. 6.5 bears
the risk that this leads to an invalid model if the analyst oversees its reuse
from later stages in the process, whereas the model (i) in Fig. 6.5 does not
bear that risk. But we think this kind of weird fail-safeness can hardly be

6.2 The Pragmatics of Structuring Business Processes 177

sold as an advantage of model (i) in Fig. 6.5. Furthermore, it is also fair to
remark, that the documentation of multiple occurrences of a model part can
be replaced by appropriate tool-support or methodology like a pattern search
feature or hierarchical decomposition as we will discuss in due course. All this
amounts to saying that maintainability of a model cannot be reduced to its
presentation but depends on a consistent combination of presentational issues,
appropriate tool support and defined maintenance policies and guidelines in
the framework of a mature change management process.

B

A

C

B

y

n

A
y

DoA

DoA
+

+

DoA

Fig. 6.8. Example business process hierarchy.

We now turn the reused loop consisting of the activity A and the α-decision
point in Fig. 6.5 into its own sub diagram in the sense of hierarchical decom-
position, give it a name – let us say ‘DoA’ – and replace the relevant regions
in diagram (i) in Fig. 6.5 by the respective, expandable sub diagram activity.
The result is shown in Fig. 6.8. Now, it is possible to state that this solution
combines the advantages of both kinds of models in question, i.e., it consists
of structured models at all levels of the hierarchy and offers an explicit means
of documentation of the places of reuse. But caution is necessary. First, the
solution does not free the analyst to actually have a look at all the places a
diagram is used after he or she has made a change to the model, i.e., an elab-
orate change policy is still needed. In the small toy example, such checking is
easy, but in a tool you usually do not see all sub diagrams at once, but rather
step through the levels of the hierarchy and the sub diagrams with links. Re-
member that the usual motivation to introduce hierarchical decomposition
and tool-support for hierarchical decomposition is the desire to deal with the
complexity of large and very large models. Second, the tool should not only
support the reuse-direction but should also support the inverse use-direction,
i.e., it should support the analyst with a report feature that lists all places of
reuse for a given sub diagram.

178 6 Structured Business Process Specification

B

C

B

y

n

Ado

DoA
+

+

Ado

A
y

DoA

A DoA
+

Fig. 6.9. Example for a deeper business process hierarchy.

Now let us turn to a comparative analysis of the complexity of the modeling
solution in Fig. 6.8 and the model in Fig. 6.5. The complexity of the top-level
diagram in the model hierarchy in Fig. 6.8 is no longer significantly higher
than the one of the model in Fig. 6.5. However, together with the sub diagram,
the modeling solution in Fig. 6.8 again shows a certain complexity. It would
be possible to neglect a reduction of complexity by the solution in Fig. 6.8
completely with the hint that the disappearance of the edge representing the
jump from the β-decision point into the loop in Fig. 6.5 is bought by another
complex construct in Fig. 6.8 – the dashed line from the activity ‘DoA’ to the
targeted sub diagram. The jump itself can still be seen in Fig. 6.8, somehow,
unchanged as an edge from the β-decision point to the activity A. We do
not think so. The advantage of the diagram in Fig. 6.8 is that the semantic
capsule made of the loop in question is already made explicit as a named sub
diagram, which means added documentation value.

Also, have a look at Fig. 6.9. Here the above explanations are even more
substantive. The top-level diagram is even less complex than the top-level
diagram in Fig. 6.8, because the activity A now has moved to its own level
of the hierarchy. However, this comes at the price that now the jump from
the β-decision point to the activity A in Fig. 6.5 now re-appears in Fig. 6.9
as the concatenation of the ‘yes’-branch in the top-level diagram, the dashed
line leading from the activity ‘Ado’ to the corresponding sub diagram at the
next level and the entry edge of this sub diagram.

6.2 The Pragmatics of Structuring Business Processes 179

6.2.5 Business Domain-Oriented versus Documentation-Oriented
Modeling

In Sects. 6.2.1 through 6.2.4 we have discussed structured business process
modeling for those processes that actually have a structured process specifi-
cation in terms of a chosen fixed set of activities. In this section we will learn
about processes that do not have a structured process specification in that
sense. In the running example of Sects. 6.2.1 through 6.2.4 the fixed set of
activities was given by the activities of the initial model in Fig. 6.4 and again
we will explain the modeling challenge addressed in this section as a model
transformation problem.

First, as a further example and for the sake of completeness, we give the
resolution of the model in Fig 6.2 into a structured equivalent in Fig. 6.10.

A B C D

n

y
y

n

B

A

B

C
n

y

Fig. 6.10. Structured business process model that replaces the non-structured one
in Fig. 6.2.

Consider the example business process models in Fig. 6.11. Each model
contains a loop with two exits to paths that lead to the end node without
the opportunity to come back to the originating loop before reaching the end
state. It is known [37, 205, 206, 208] that the behaviors of such loops cannot
be expressed in a structured manner, i.e., by a D-chart as defined in Fig. 6.1
solely in terms of the same primitive activities as those occurring in the loop.
Extra logic is needed to formulate an alternative, structured specification.
Fig. 6.12 shows this loop-pattern abstractly and we proceed to discuss this
issues with respect to this abstract model.

Assume that there is a need to model the behavior of a business process
in terms of a certain fixed set of activities, i.e., the activities A through D
in Fig. 6.12. For example, assume that they are taken from an accepted ter-
minology of a concrete business domain. Other reasons could be that the
activities stem from existing contract or service level agreement documents.
You can also assume that they are simply the natural choice as primitives for
the considered work to be done. We do not delve here into the issue of natural
choice and just take for granted that it is the task to model the observed or
desired behavior in terms of these activities. For example, we could imagine

180 6 Structured Business Process Specification

Fig. 6.11. Two example business processes without structured presentation using
no other than their own primitives.

an appropriate notion of cohesion of more basic activities that the primitives
we are restricted to, or let’s say self-restricted to, adhere to. Actually, as it
will turn out, for our argumentation to be conclusive there is no need for an
explanation how a concrete fixed set of activities arises. What we need for our
current argumentation to be conclusive is to demand that the activities are
only about actions and objects that are relevant in the business process.

BA

C D

y y

n n

Fig. 6.12. Business process with cycle that is exited via two distinguishable paths.

Fig. 6.13 shows a structured business process model that is intended to
describe the same process as the specification in 6.12. In a certain sense it fails.
The extra logic introduced in order to get the specification into a structured
shape do not belong to the business process that the specification aims to
describe. The model in Fig. 6.13 introduces some extra state, i.e., the Boolean
variable δ, extra activities to set this variable so that it gets the desired steering
effect and an extra δ-decision point. Furthermore, the original δ-decision point
in the model of Fig. 6.12 has been changed to a new β∧δ-decision point.
Actually, the restriction of the business process described by Fig. 6.12 onto
those particles used in the model in Fig. 6.12 is bisimilar to this process. The
problem is that the model in Fig. 6.13 is a hybrid. It is not only a business

quality
insurance

handle
workpiece

dispose
deficient

workpiece

finish
workpiece

y y

n n

reject workpiece
due to defects

quality must
be improved

approve
purchase

order

prepare
purchase

order

submit
purchase

order

y y

n n

amount exceeds
threshold

revision is
necessary

)ii()i(

6.3 Structured Programming 181

domain-oriented model any more, it now has also some merely documentation-
related parts. The extra logic and state only serve the purpose to get the
diagram into shape. It needs clarification of the semantics. Obviously, it is
not intended to change the business process. If the auxiliary introduced state
and logic would be also about the business process, this would mean, for
example, that in the workshop a mechanism is introduced, for example a
machine or a human actor that is henceforth responsible for tracking and
monitoring a piece of information δ. So, at least what we need is to explicitly
distinguish those elements in such a hybrid model. The question is whether the
extra complexity of a hybrid domain- and documentation-oriented modeling
approach is justified by the result of having a structured specification.

B

C

y y

n
n

:=false

D

A :=true A

Fig. 6.13. Resolution of business process cycles with multiple distinguishable exits
by the usage of auxiliary logic and state.

6.3 Structured Programming

Structured programming is about the design of algorithms. It is about looking
for an alternative algorithm that has a somehow better design than a given
algorithm but has the same effect. Usually, in the discussion of structured
programming the considered effect of algorithms is a functional transforma-
tion, i.e., the computation of some output values from some input values. If
the effect of a considered algorithm is the behavior of a reactive system things
become significantly more complex and the argumentation becomes harder.

6.3.1 An Example Comparison of Program Texts

Let us have a look at an example program of Donald E. Knuth and Robert W.
Floyd in [204]. The program is given in Listing 6.6. The functionality of the
program is to seek the position of a value x in a global variable array A. If the
value is not yet stored in the array, it is appended as a new value at the end

182 6 Structured Business Process Specification

of the array. Furthermore, the program maintains the length of the A-array
as a global variable m. Furthermore it maintains for each value in the A-array
the number of times the value has been searched for. Another global array B
is used for this purpose, i.e., for each index i the value stored in B[i] equals
to the number of searches for the value stored in A[i].

Listing 6.6 ‘go to’-Program for seeking the position of a value in an array
according to [204].

for i:=1 step 1 until m do

if A[i]=x then go to found fi;

not found: i:=m+1; m:=i;

A[i]:=x;B[i]:=0;

found: B[i]:=B[i]+1;

The program in Fig. 6.6 is not a structured program. Listing 6.8 shows
a structured program, which is an alternative implementation of the pro-
gram in Listing 6.6. The program in Listing 6.8 is also taken from [204].
Knuth compares the programs in Listing 6.8 and Listing 6.6 in order to argue
about structured programming. The formulation of the program in Listing 6.8
slightly differs from the original presentation of the program text in [204] with
respect to some minor changes in the layout. For example, we have put each
statement on a different line and have given line numbers to the lines. Simi-
larly, we have reformulated the program in Listing 6.6 resulting in the program
in Listing 6.7. Despite the changes to the program layout, which can be ne-
glected, the version of the program in Listing 6.7 uses a while-loop instead
of a deterministic for-loop and therefore needs an incrementation of the loop
variable i in the loop body. However, these changes make no difference to
the discussion conducted in the following. We have used a formulation with
a while-loop to make the program more directly comparable to the program
alternative in Listing 6.8.

Listing 6.7 Reformulation of the ‘go to’-Program in Listing 6.6

01 i:=1;

02 WHILE i<=m DO BEGIN

03 IF A[i]=x THEN GOTO 10

04 i:=i+1;

05 END;

07 m:=i;

08 A[i]:=x;

09 B[i]:=0;

10 B[i]:=B[i]+1;

6.3 Structured Programming 183

The program in Listing 6.7 is realized with a while-loop that steps through
the values in array A. In the loop the program compares the current value in
the array with x and if the value equals x the while-loop is exited with a ‘go to’-
statement. The while-loop is exited with a ‘go to’ because the loop variable i
holds the index of the first field that equals x, which is then exploited in the
update of the corresponding field in the B-array in line ‘10’. Furthermore, the
‘go to’ is needed to circumvent the execution of lines ‘07’ through ‘09’ in case
the value x actually exists in array A, because these lines are only there for
handling the case when the value has not been found.

If x exists in A, the program in Listing 6.7 actually finds the first position
of x in the A-array. However, only under the assumption that the following
pre-condition and side-condition hold the values occur at unique positions in
the array, i.e., a value’s first position in the array is a value’s single position.
The necessary side-condition is that the piece of code in Listing 6.7 is the only
means to update the A-array and the variable m. The necessary pre-condition
is that the variablem holds the length of the arrayA, in particular, this means
that the variablem must be set to zero and the array A is considered as empty
before the first run of the program in Listing 6.7. The arraysA and B together
can also be interpreted as a hash map data structure with array A holding
the keys and array B holding the values. In that sense the program has the
functionality of incrementing a key’s value if applied to an existing key x, or
inserting a key and initializing its value to 1 if applied to a key not yet existing
in the hash map.

Listing 6.8 is a reformulation of the program in Listing 6.7 as a structured
program, i.e., an alternative implementation without a ‘go to’-statement. The
condition that leads to an early exit from the loop in Listing 6.7, i.e., an exit
before the loop condition has become false, has now been made part – in its
negated form – of the loop condition in Listing 6.8. Then, after the loop, it is
tested whether the loop has not been ended early by testing for the negation
of the loop condition from Listing 6.7. The test guarantees that the code lines
that are reserved for cases in which value x does not exist in array A are
actually not executed whenever the loop has been exited early.

In [204] Donald E. Knuth argues that the program in Listing 6.7 is an
example of a functionality for which structured programming is inadequate.
In [204] Knuth gives two reasons for the asserted inadequacy. The first reason
is the argument that the program in Listing 6.8 is slightly slower, because of
the extra test of the loop condition after the loop in line ‘05’. Let us assume
that the program is not part of some absolutely time critical application, i.e.,
we do not argue here at the level of machine programming but rather at the
level of application programming. Then we can neglect this first aspect against
the background of today’s computing power. We think that for the most
application domains the overhead of this single statement can be considered as
marginal. Actually, we do not precisely know which of the programs is faster,
because it could be, for example, that the realization of the ‘go to’-mechanism

184 6 Structured Business Process Specification

Listing 6.8 Structured Program for seeking the position of a value in an
array according to [204].

01 i:=1;

02 WHILE (i<=m and (NOT (A[i]=x))) DO BEGIN

03 i:=i+1;

04 END;

05 IF NOT (i<=m) THEN BEGIN

06 m:=i;

07 A[i]:=x;

08 B[i]:=0;

09 END;

10 B[i]:=B[i]+1;

of the concretely used compiler and run-time environment is inefficient so that
it avoidance outweighs the drawback of the extra test.

The second reason given by Knuth in [204] why he believes that the pro-
gram in Listing 6.8 is less adequate than the program in Listing 6.7 is much
more interesting for our discussion here. The reason given is Knuth’s opinion
that the program of Listing 6.8 is less readable than the program in Listing 6.7.
The problem with this argument is that the better readability of Listing 6.7 is
in our opinion not evident. We delve into a discussion of readability of program
texts in general and the readability of the program texts in the Listings 6.6
through 6.8 now in Sects. 6.3.2 and 6.3.3.

6.3.2 Readability of Program Texts

Readability is a concept that is hard to grasp. Readability is a concept that
inherently is about the perception of a person, i.e., about a person’s disposi-
tion. A concept close to readability is the concept of understandability. It is
possible to define some measure for the understandability of a program text.
The question whether such a defined measure is actually objective is another
question. One could instruct the test taker to read the program text and say
‘stop’ immediately when he thinks that he has understood the meaning of the
program. Then, it must be determined whether the person has actually un-
derstood the program. If he has actually understood the program, the test is
valid, otherwise it is not. The defined measurement is not feasible to compare
the understandability of a program by a single person. Once, the person has
read and understood the first version of the program, he has learned some-
thing and this will very likely impact the speed of understanding the second
version of the program positively. But the measurement can be used at a sta-
tistical scale [13] by running the test with several groups to collect the average
understanding periods for the several investigated program versions. Still, the
defined measure is flawed. How to judge fair whether a person has actually
understood the program? If a person simple describes in natural language the

6.3 Structured Programming 185

step-by-step operation of the algorithm this may not be sufficient in order to
be convinced that the person has understood what the algorithm does. What
if people who answer particularly quickly tend to not really understanding the
program?

We think that it is hard to tell whether the program in Listing 6.7 is more
readable or more understandable then the program in Listing 6.8 or vice
versa. Listing 6.6 shows the original version of the program in Listing 6.7.
In our version the line number ‘10’ serves as a label of the statement in
line ‘10’ when it is referenced in the ‘go to’-statement. In the original version
the statement has an explicit label ‘found:’. Furthermore, the statements in
lines ‘07’ through ‘09’ in Listing 6.7 are placed together in a single line in
the original version, which visually emphasizes that these statements logically
belong to the block of logic which is executed in cases where the value x is not
yet stored in the array A. The readability of a program text can be improved
by several means, e.g., line indentation, proper comments, or telling names.
Such actions are usually best if they adhere to a style guide defined for a
project. We think it is hard to tell whether the explicit exit from the loop
with a ‘go to’ in Listing 6.7 or the exit via the loop condition in Listing 6.8 is
more understandable. Actually, we are somewhat biased in favor of the exit
via the loop condition.

Further Attempts to Improve the Readability of a Program Text

Various attempts can be undertaken to improve the readability or understand-
ability of the program in Listing 6.8 further. In the program in Listing 6.9 we
have made the usage of the logic that is needed to handle the single cases of
loop exit unique. In Listing 6.8 the statement in line ‘10’ is used in the case
that the value x occurred in array A to increase the number of times it has
been searched for the value x by one. However, the statement is also used in
the other case, i.e., when the value x has not occurred in the array. Therefore,
the number of times of searches for x is initially set to zero in line ‘08’ in those
cases so that it can be increased correctly to one afterwards. We think that it
is somehow artificial to set the value of search times to an incorrect value first.
Therefore we made the blocks for handling the two cases under consideration
unique in the sense that there is no overlap in case handling any more.

In Listing 6.9 the lines ‘06’ through ‘08’ are only used if x has not occurred
in the array and line ‘11’ is only used if x has occurred in the array. Further-
more, lines ‘06’ through ‘08’ in Listing 6.9 completely handle the case that x
has not occurred in the array, because we changed line ‘08’ so that it imme-
diately sets the value of search the time to the finally correct value of one.
We did something else that improves the readability further in our opinion.
In lines ‘07’ and ‘08’, which assign values to fields of the arrays A and B we
have used the variable m instead of the variable i to index the wanted field.
We think that the usage of m indicates better that we currently access the
last element of each field, which fits better to the containing block.

186 6 Structured Business Process Specification

Listing 6.9 Making unique the finalizing actions that react on the single
conditions of a composed loop condition.

01 i:=1;

02 WHILE i<=m and (NOT (A[i]=x)) DO BEGIN

03 i:=i+1;

04 END;

05 IF NOT (i<=m) THEN BEGIN

06 m:=i;

07 A[m]:=x;

08 B[m]:=1;

09 END ELSE BEGIN

10 B[i]:=B[i]+1;

11 END;

Listing 6.10 shows yet another program solution for the discussed func-
tionality. Here we moved all the specific code that is needed to handle the two
cases leading to the exit of the loop inside the loop. We have done that at the
price of an auxiliary variable ‘stop’ which has the sole purpose to signalize
that the loop should be exited. Both cases that lead to an exit of the loop are
detected and handled completely inside the loop. In the program version in
Listing 6.9 each condition is tested twice, once as part of the complex loop
condition and once again after the loop has been exited. The complex condi-
tion in Listing 6.9 necessarily says something about the reasons why the loop
is eventually exited, because it conducts the respective test. The loop condi-
tion in Listing 6.10 is merely about encoding a control flow issue, however, it
is also possible to introduce a comment explaining why the loop stops after
the statement in line ‘03’ or it is also possible to encode this comment in the
naming of the loop condition variable, e.g., by using a name like

• ‘NotYetCompletelyScannedAndNotYetFound’ or
• ‘((i<=m) AND (NOT A[i]=x))’

instead of the straightforward name ‘stop’. It is up to the reader to decide
whether the program design pattern used in Listing 6.10 is more counter-
intuitive or more intuitive than the one used in, e.g., Listing 6.9 – we do not
really have an opinion about that. The program in Listing 6.10 is important
for another reason. It hints at a general solution to resolve program cycles
that have more than one exit by the introduction of extra state and extra
logic.

6.3.3 Structured Programming and Denotational Semantics

In Sect. 6.3.2 we have discussed the concept of readability of program texts.
We want to talk about readability of programs further but from a more for-

6.3 Structured Programming 187

Listing 6.10 Moving special actions that react on the single conditions of a
composed loop condition into the loop.

01 stop:=false;

02 i:=0;

03 WHILE (NOT stop) BEGIN

04 i:=i+1;

05 IF i>m THEN BEGIN

06 m:=m+1;

07 A[m]:=x;

08 A[m]:=1;

09 stop:=TRUE;

10 END ELSE BEGIN

11 IF A[i]=x THEN BEGIN

12 B[i]:=B[i]+1;

13 stop:=true;

14 END;

15 END;

16 END;

mal viewpoint this time. We take forward the main argument of this sec-
tion, which is vague or informal, but, nevertheless, is an argument. It is
fair to consider programming languages with a standard denotational se-
mantics and their programs as better understandable than programming lan-
guages with a continuation-based semantics. Imperative programming lan-
guages with a standard denotational semantics are those that are com-
pletely block-structured, i.e., those that do not allow for arbitrary jumps,
whereas programming languages with ‘go to’-statements must be treated with
a continuation-based semantics.

The discipline of formal semantics of programming languages could en-
courage us to argue further in favor of the program in Listing 6.8 as better
understandable as the program in Listing 6.7. The program in Listing 6.8 can
be given a standard denotational semantics [328, 285], whereas the program
in Listing 6.7 cannot be given a standard denotational semantics but only a
continuation-based denotational semantics [329, 330].

Basically, there are three different approaches to the formal semantics of
programming languages, i.e., operational semantics [211, 351], axiomatic se-
mantics [161] and denotational semantics [328, 285] which is also called the
Scott-Strachey-approach to the semantics of programming languages. We do
not want to delve into a distinction of these three approaches to semantics of
programming languages. We just give a short statement about the essence of
each of the three approaches. An operational semantics describes the effect
of a program as its interpretation by a machine or, more abstractly, through
the application of a reduction system to it. An axiomatic semantics tries to
characterize the impact of the single building blocks of a program onto the

188 6 Structured Business Process Specification

program state logically by identifying pre- and post-conditions for them. A
denotational semantics directly assigns a mathematical object to a program as
its semantics. Even in the standard case of functional programming languages
or imperative programming languages without jumps, these mathematical ob-
jects cannot be just functions between ordinary sets. The mathematical ob-
jects are more complex, because in general a semantics for such a language has
to deal with recursion, non-termination and higher-order functions. Therefore
the mathematical objects are complete partial orders – or lattices [317] in the
original work on denotational semantics – and continuous functions. Again,
we do not want to delve into a complex discussion of formal semantics here, in
particular, we do not want to delve into the technical aspects of denotational
semantics. What counts is an understanding that denotational semantics is a
mature apparatus in understanding the programs of a programming language
directly as mathematical objects. When we say that the quality of denota-
tional semantics lays in its direct understanding we mean that the semantics
of a program is given by semantic composition of the semantics of its direct
parts.

A major aspect of the denotational semantics of a programming language is
that it is decompositional. As we have said, the semantics of a program can be
understood directly by the application of a semantic function on the semantics
of its sub programs. The semantics of an imperative program is the transfor-
mation of a store. Given an arbitrary store, it transforms it into another store.
A store is a mapping that maps variables to values. The transformation on
stores that is specified by a program can be considered mathematically as a
function between sets. The sets must be special sets, i.e., complete partial or-
ders, and the function must be special functions, i.e., continuous function, so
that the denotational semantics works, however, for us it is sufficient to under-
stand here that the transformations are functions. Stores are also functions.
The source domain of a store is the set of variables and the target domain is
the set of possible values.

The difference between the programs in Listings 6.7 and 6.8 is the follow-
ing. For the program in Listing 6.8 a semantics can be given as a transforma-
tion of stores for all of its sub programs and recursively all the sub programs
of sub programs. This is not so for the program in Listing 6.7, because of
the ‘go to’-statement that jumps out of the loop. In order to deal with this
the sub programs must be described relatively to an extra notion of continua-
tion [329, 330], which binds semantics of exploited programs to labels used in
the exploiting program. The continuation of a program is a second argument
in addition to the store – it is a kind of environment. A continuation-based
semantics transports the operational concept of jumps to the mathematical
structures that denote programs and therefore brings the operational com-
plexity of them to these structures. The current discussion can be considered
as a reformulation of the discussion on decompositional semantics of block-
structured versus arbitrary business process models that we have conducted
in Sect. 6.2.2 and illustrated Fig. 6.6 for the field of programming languages,

6.3 Structured Programming 189

[[01]] = λσ.λv.

{
1 , v = i

σ(v) , else
(6.1)

[[03]] = λσ.λv.

{
σ(i) + 1 , v = i

σ(v) , else
(6.2)

[[02..04]] = νλF.λσ.

{
([[03]] ◦ F)σ , σ(i) ≤ σ(m) ∧ (σ(A))(i) �= σ(x)

σ , else
(6.3)

[[06]] = λσ.λv.

{
σ(i) , v = m

σ(v) , else
(6.4)

[[07]] = λσ.λv.

⎧⎪⎨
⎪⎩
λp.

{
σ(x) , p = σ(i)

(σ(A))(p) , else
, v = A

σ(v) , else

(6.5)

[[08]] = λσ.λv.

⎧⎪⎨
⎪⎩
λp.

{
0 , p = σ(i)

(σ(B))(p) , else
, v = B

σ(v) , else

(6.6)

[[06 · · · 08]] = [[06]] ◦ [[07]] ◦ [[08]] (6.7)

[[05 · · · 09]] = λσ

{
[[06 · · · 08]]σ , σ(i) > σ(m)

σ , else
(6.8)

[[10]] = λσ.λv.

⎧⎪⎨
⎪⎩
λp.

{
σ(B)(σ(i)) + 1 , p = σ(i)

σ(B)(σ(p)) , else
, v = B

σ(v) , else

(6.9)

[[01 · · · 10]] = [[01]] ◦ [[02 · · · 04]] ◦ [[05 · · · 09]] ◦ [[10]] (6.10)

however, this time against the background of a more formal treatment which
is available for programming languages, i.e., denotational semantics.

As an illustration of what we have just explained we glimpse over the
denotational semantics of the program in Listing 6.8 in a step-by-step fashion
now. The denotational semantics of the program in Listing 6.8 is given by the
Eqns. 6.1 through 6.10.

The statement in line ‘01’ assigns the value 1 to the variable i. This is also
expressed by the denotation of the statement that we have given in Eqn. 6.1.
The expression [[01]] is a shorthand notation for the semantics of the line ‘01’,
in which we have used so-called semantics brackets [[and]]. The denotation
of line ‘01’ is a function that takes a store σ – the input store – as an argu-
ment and yields a new result store. The input store and the result store are
both functions that map each variable to a value. The result store maps each
variable v to the value that it is mapped to by the input store σ except for

190 6 Structured Business Process Specification

the variable i which is mapped to the value 1 by the result store independent
of the value it is mapped to by the input store. This is exactly what the se-
mantics of an assignment statement is about, i.e., manipulating the left-hand
variable and keeping all other variables of the store as they are.

The semantics of line ‘03’ is given in Eqn. 6.2. Line ‘03’ is similar to
line ‘01’. Here, the variable that is manipulated is again the variable i, how-
ever, this time it is increased by one, which means that the result store maps
the variable i to the value that it is mapped to in the input store σ plus 1.
The semantics of the while-loop in lines ‘02’ through ‘04’ is given in Eqn. 6.3.
The semantics of [[02 · · · 04]] is defined recursively. It is defined as a function
F that takes a store σ as an input argument. The function first evaluates the
loop condition with respect to the input store. If the loop condition evalu-
ates to false, the function yields the input store as it is as the result store,
which represents adequately the termination of the while-loop. In the case
that the loop condition evaluates to true, the function F is unfolded one time
by applying the semantics of the inner block of the while-loop, i.e., [[03]] in
our case, to the input store, taking the result of this application of [[03]] and
then applying F recursively to this result. You might want to use the explicit
notation F

(
[[03]](σ)

)
for this sequenced application of first [[03]] and than F ,

however, we have decided to express it by a function concatenation
(
[[03]]◦F)

which is then applied to the input store σ as a whole.
You might also want to use a more direct notation for recursive defini-

tion like
(
F ≡DEF G(F)

)
instead of the νλ-notation

(
νλF.G(F)

)
that we

have used in Eqn. 6.3. However, the νλ-notation expresses better that recur-
sive definitions have no operational semantics but the so-called fixed point
semantics in the denotational approach to the semantics of programming lan-
guages. Without further elaboration and explanation the understanding of a
recursive definition is operational, i.e., it relies on a notion of reduction of the
program text which is reduced until a token is reached that leads to the next
reduction of the entire program text. The fixed point semantics is another
viewpoint on recursion. It defines the recursive function

(
F ≡DEF G(F)

)

as the smallest fixed point of the higher oder function
(
λF.G(F)

)
. At a first

sight, the fixed point semantics is less operational, however, it is also somehow
operational by the way the smallest fixed point is constructed as the limit of
the endlessly repeated application of the considered higher order function to
the bottom element ⊥ of its input domain – see the fixed point theorem of
Knaster-Tarski [336] and, e.g., [145] for further reference.

We have said that the stores that are transformed by programs are map-
pings that map variables to values. In our case the store is nested for some
variables, i.e., the array variables. First the application of the store to an ar-
ray name yields a further function that maps position indexes to result values.
Then, the application of this function to a concrete position index yields the
array value. For example, the expression (σ(A))(i) in Eqn. 6.3 stands for the
concrete array value A[i]. According to this, the updates to array values are

6.4 Frontiers of Structured Business Process Modeling 191

modeled in Eqns. 6.5, 6.6, and 6.9. The semantics of the program lines ‘06’
through ‘08’ should be self-explaining now.

The semantics of a sequence of program statements is given by the con-
catenation of the function that they denote. The semantics of the program
that consists of the lines ‘06’ through ‘08’ in Eqn. 6.7 is an example for this.
The semantics of the lines ‘05’ through ‘09’ is now defined by Eqn. 6.8. The
lines ‘05’ through ‘09’ form a case construct. Equation 6.8 checks the case con-
dition on the store. If it evaluates to false the result store remains the same,
otherwise the result store is yielded by the application of the semantics of the
lines ‘06’ through ‘08’ to the store. The semantics of the program line ‘10’ in
Eqn. 6.9 should be again self-explaining. Finally, the semantics of the whole
program is defined as the concatenation of the semantics of its direct program
parts in Eqn 6.10.

In the example we have constructed the program semantics bottom up.
The example has shown that program semantics can be given by composition
of the semantics of its program parts. In the case of programs without ‘go to’-
statements the semantics of all program parts can be given homogenously as
transformation of stores. This is not so for programs with ‘go to’-statements.
This means that this is not so for programs with ‘go to’-statements in general.
Some programs with ‘go to’-statements can also be given a standard semantics.
We call a semantics that is given homogenously as transformation of stores for
all program parts a standard denotational semantics or standard semantics
for short. If a program with ‘go to’-statements has only such circles that
can be exited by no more than one means, it can also be given a standard
semantics. The program in Listing 6.7 has no standard semantics, because
the circle realized by the program while-loop in lines ‘02’ through ‘05’ is a
circle that can be exited by two means, i.e., the loop-condition in line ‘02’
and the ‘go to’-statement in line ‘03’. Therefore, the program in Listing 6.7
must be interpreted as a program of a programming language with ‘go to’-
statements and, as we have said earlier, a programming language with ‘go to’-
statements does not have standard denotational semantics but must be given a
non-standard denotational semantics, e.g., a continuation-based denotational
semantics.

6.4 Frontiers of Structured Business Process Modeling

We are not able to characterize the subset of business processes for which we
believe that structured process descriptions, i.e., structured business process
models, are better. However, we have argued against the hypothesis that this
subset equals the set of all business processes. This means, we say that the
postulation that all business processes should be structured [162] is arguable.
We do not say that the statement is false; this would be to harsh, because the
message that all business processes should be structured is not a statement
with a truth value but a postulation. Furthermore, we argue in a yet informal

192 6 Structured Business Process Specification

setting, which is the pragmatics of system specification methodology. For the
same reason, we would say that it is not appropriate to say that the message
is true.

However, eventually we dare to say: It should not be postulated that all
business processes should be structured. This is a negative result. Neverthe-
less, it is an important result, because it can help modelers in preventing
pitfalls.

Structuring is considered a proven concept in program design. We have
discussed structured programming in Sect. 6.3. The overall question behind
the discussion in Sect. 6.3 is whether structured programming is actually as
proven as it is considered. We have discussed an example program of the es-
tablished computer science author Donald E. Knuth that he actually considers
as a counter-example for structured programming. What interests us here is
merely the fact that an established computer science author argues against
the general validity of the structured programming paradigm. Actually, Knuth
has argued that the non-structured program in Listing 6.7 is somehow better
than the structured program version in Listing 6.8, in particular also because,
in his opinion, it is slightly better readable than the program version in List-
ing 6.8. We have said that we do not think so and that we actually feel that
the structured program version in Listing 6.8 is better readable. In that sense
we have actually defended structured programming. For us, it is important to
show, that the standing of structured programming should not be used with-
out care in the argumentation for a structured approach to business process
modeling.

The arguments that are given in favor of structured programming:

• Improved readability.
• Improved maintainability.
• Improved testability.

With respect to validation the arguments have different levels of formality.
The longer the structured approach is used as the best practice in real-world
projects, the more we rely as a software engineering community in the va-
lidity of its claims. Empirical software engineering [36] with its experiments
could offer tools for the more systematic evaluations of a software engineering
approach, pattern, method and so on. The arguments in favor of a struc-
tured approach must be basically the same for the domain of programming
languages and the domain of business process modeling language. And the
same holds for the claims of structured business process modeling as holds for
the claims of structured programming. Without systematic investigation they
must be proven through experience in real-world projects and feedback from
software engineers in real-world projects.

However, what we have tried to argue in this section is that the standing
of structured programming can not simply be transferred to a structured
business process modeling approach, even if it would be taken for granted
that structured programming is without doubt the best practice in program

6.4 Frontiers of Structured Business Process Modeling 193

design. We summarize the reasons for this in the following. The semantics
of programming languages is different from the semantics of business process
modeling languages. The semantics of a program is a state transformation.
The state transformation of a program is achieved compositionally by the
parts of the program which again have state transformations as semantics. It
does not matter, how a program achieves the overall state transformation with
its inner state transformations. This fact opens a space for program design. A
program with better design, i.e., with improved readability, maintainability,
testability and the like can be taken to replace a program with a weaker
design. Business processes may also manipulate state and therefore may cause
a state transformation as a side-effect. However, they have an observational
semantics. In particular, two business process descriptions are considered as
equal if they are observational equivalent. For a program, the processing does
not count – as long as we have not to deal with reactive programming and
the like. What counts for a program is the result. Two programs are equal if
they evaluate to the same result; they are equal if they stand for the same
state transformation.

Two business process descriptions may not be interchangeable even if they
always have the same effect with respect to a business objective. This is be-
cause each modeling element stands for a real-world activity and a business
process is a plan for doing work. Therefore, the opportunities for reshaping a
given business process description are in general much more restricted than
the possibilities for reshaping a program. You can reshape a program as much
as you want and, in particular, as much as you think it improves the design
of the program text, as long as you ensure that the resulting reshaped pro-
gram has the same semantics. It is even a best practice to abstract from the
implementation, to hide the implementation of functionality. All this does not
immediately hold also for business process modeling. We give a further small
example for the limitation in freedom for reshaping in Fig. 6.14 that works
even without a discussion of structuring principles and structured modeling
languages.

α

A

A

B

C

α

B

C

A
y y

n n

(i) (ii)

Fig. 6.14. Two business processes that are not behavioral equivalent.

Figure 6.14 shows two processes. In process algebraic notation [249, 250]
process (i) is α.A.B + ¬α.A.C and process (ii) is A.(α.B + ¬α.C). Now, let
us assume that A has no impact on the outcome of the decision α. If we
interpret the two processes (i) and (ii) as programs of a usual programming
language with A, B and C being statements, this would mean that A is not

194 6 Structured Business Process Specification

manipulating those parts of the system state that is tested by α. If (i) and (ii)
were programs we now could start a discussion on whether we would prefer
the program design of (i) over the program design of (ii). For example, the
inner reuse of activity A in (ii) is a plus, because it improves maintainability.
But (i) and (ii) are business process description and the discussion about
which one has the better design is limited even if α is independent of A and,
therefore, A and B have the same effect with respect to the business objective.
The problem is that also α describes an activity, i.e., a test that is conducted,
that occurs in the real world. And it might be a huge difference whether you
conduct the test at the beginning of the process or conduct it in the middle
after activity A for several reasons. One such reason might be that α tests
some property of a good that flow through A and the good occurs at another
location after A than before A and the location of the good before A is much
more suited for conducting the α-test than the location after the processing
of A.

The described problem of reshaping a business process description –
against the fact that business process modeling must be in first place domain-
oriented and only in second place artifact-oriented – is the basic motive also
in the other examples of this section.

	6 Structured Business Process Specification
	6.1 Basic Definitions
	6.1.1 D-Charts
	6.1.2 A Notion of Equivalence for Business Processes

	6.2 The Pragmatics of Structuring Business Processes
	6.2.1 Resolving Arbitrary Jump Structures
	6.2.2 Immediate Arguments For and Against Structure
	6.2.3 Structure for Text-based versus Graphical Specifications
	6.2.4 Structure and Decomposition
	6.2.5 Business Domain-Oriented versus Documentation-Oriented Modeling

	6.3 Structured Programming
	6.3.1 An Example Comparison of Program Texts
	6.3.2 Readability of Program Texts
	Further Attempts to Improve the Readability of a Program Text

	6.3.3 Structured Programming and Denotational Semantics

	6.4 Frontiers of Structured Business Process Modeling

