
3

Research Opportunities in Business Process
Technology

Improvements in business process technology are clearly demanded by the
strategic need of today’s enterprises to become more flexible in the sense of
reactiveness to the more and more rapidly changing business environments.

IT systems in an enterprise are seldom designed from scratch, they evolve
along new demands over the years, so that system landscapes [156] emerge. So,
in practice, the issue of making enterprise IT more flexible is about fostering
the flow of information by enterprise application integration efforts – protec-
tion of investment is the rationale for this pragmatic approach. In research,
we are free to look at the problem with a fresh look – actually from scratch.
Now is the time to systematically analyze the needs, driving forces and ben-
efits of business process technology by looking onto the plethora of concrete
business process management products and their features from a conceptual
viewpoint. In the terminology of current software engineering technology and
software processes it is the task to define a component-based platform for
business processes that unifies modeling, construction, operations and main-
tenance of business process software. Such a goal is not only a mental exercise
for researchers, also industry is foreseeing such new integrative products that
go beyond current business process management suites and the term business
process platform has been coined for them.

With respect to business process technology we have identified two po-
tential fields of research, i.e., executable specification and components. We
delve into these topics in Sects. 3.2 resp. 3.3. They are the major topics of
this book. The topics address the improvement of business process technology
independent from specific business functionality. It is also interesting to invest
research into the dimension of specific business functionalities – again from an
enterprise application integration viewpoint. In particular, we currently still
see a gap between IT support for administration and production processes
in manufacturing enterprises. It should not be forgotten that excellence in
production is a foundation of today’s businesses [155].

Enterprises react to technological trends to stay competitive. In the past,
more and more concrete applications and systems were introduced to address

© Springer-Verlag Berlin Heidelberg 2010

45
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_3,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows



46 3 Research Opportunities in Business Process Technology

more and more problems, starting from basic numerical control systems to
today’s manufacturing execution systems [237, 202], from basic accounting
systems to today’s enterprise resource planning systems, from basic report-
ing capabilities to today’s analytical processing systems, from basic electronic
data interchange to today’s logistics management systems. The potential of
automation is still huge in modern enterprises. In general, a focus on the mere
administration side of businesses is too narrow. There are current initiatives
like MESA and ISA-95 that address the integration of business processes and
production processes. We delve into this topic in Sect. 3.5. Having the pro-
duction process in mind can prevent us from making flaws in the design of
future business process platforms from the outset.

3.1 Business Process Platforms

For us, the term business process platform does not stand for some kind of
improved integration of standard components into business process manage-
ment suites. For us, the term business process platform has two aspects, i.e.,
executable specification and component-based architecture. The point is that
the creation of a high-level specification mechanism for business processes
comes first, i.e., we believe that the existence of such a notion of executable
specifications is a precondition for a working component architecture and not
vice versa. This viewpoint differs crucially from how commercial product ven-
dors approach the problem of creating a next generation business process
platform. The approach we see at the vendor’s side follows a certain tradi-
tion of enterprise application integration that has ruled the design of business
process technology in the past, i.e., the understanding of enterprise applica-
tion integration as a step-wise improvement of the information flows in an
enterprise system landscape with the objective to touch existing systems as
little as possible or even not to touch the systems at all instead of radically
refactoring, reengineering or even reconstructing the systems. Therefore the
promises of component architecture for business process management suites
usually do not go beyond the simplification and better support for hooking
realizing software parts together, i.e., the provision of a plug-in architecture.
However, the languages for the construction of software parts are not the focus
of improvement – they are considered as given.

In research, on the contrary, we have the chance to approach things more
fundamentally. We can consider languages and mechanisms for the construc-
tion of software parts and those for gluing software parts together as a whole.
Furthermore, we can view systems from outside, i.e., the viewpoint of sys-
tem specification from an end-user’s viewpoint – we are not restricted to the
viewpoint of the given virtual machine defined by a concrete programming
language. This means that there is a potential to design a domain-specific
language for the specification and construction of business process software
– and if the job is done right, specification and construction are actually the



3.1 Business Process Platforms 47

same, which is expressed by the notion of executable specification. We believe
that only an appropriate notion of compositionality of such an executable
specification mechanism yields a truly powerful component architecture for
business process software.

By the way, it is strange that we have already seen fourth generation (4GL)
languages like RPG (Report Generator) for the midrange computer AS/400
that have been designed for the implementation of business logic and the typi-
cal form-based dialogues of enterprise applications but today’s advertised new
business process management suites all rely on third generation (3GL) lan-
guages for the implementation of the software components they hook together.
And actually we see migration projects in practice from systems that are im-
plemented in such domain-specific technologies to platforms that are based on
a current object-oriented programming language. Superficially, such migration
projects are sometimes motivated by the desire to migrate to object-oriented
technology. However, the argument only works if you take for granted the supe-
riority of object-oriented technologies over older ones. However, the maturity
of domain-specific 4GL languages like the aforementioned RPG should not be
underestimated. There are usually more concrete reasons for such migration
projects. One reason could be simply the better availability of programmers
for a newer non-proprietary programming language. Another could be the
insight that the higher costs of a current system in terms of total costs of
ownership actually do not pay off, because the non-functional requirements
on the system are actually not so high that they justify the costs. Another rea-
son could be the following from many classical legacy problem scenarios: the
functionality of the system has to be made available in the setting of a newer
technology – most probably web technology – and it has been estimated that
re-implementing the system is the cheaper or at least less risky alternative to
wrapping and embedding the system.

We said that the analysis of the driving forces of business process manage-
ment on the problem side and the features of current business process technol-
ogy on the solution side is necessary preparatory work for the design of next
generation business process platforms. We believe that a scientific analysis
must not be misled by the promises of any software engineering metaphor. In
particular, a mere programming language level discussion can easily miss the
point here. A system should be considered as an entirety of software, middle-
ware and hardware – the issue in question is how good these components are
orchestrated and in how far their design is streamlined by overall objectives
and design rationales. We believe that such considerations are important to
reach technology independency eventually. For example, RPG shows its value
as part of the holistically designed AS/400 system [325, 93] – today known
as i-series, ‘System i5’ or ‘System i’ – with its co-designed and co-constructed
operating system, database management system and virtual machine system,
i.e., OS/400 – today known as i5/OS – DB2 and TIMI (Technology Indepen-
dent Machine Interface) respectively. The reason for the system’s robustness



48 3 Research Opportunities in Business Process Technology

is in this case that the hardware and software components are designed for
each other following crosscutting design principles.

3.2 Executable Specification of Business Processes

We have seen steady efforts to make business process specifications executable,
both in academia [134] and industry [247, 272]. There are two non-mutual and
converging communities that foster this trend, i.e., the business process mod-
eling community, e.g., [265], and the workflow management community [164].
Business processes are an issue in enterprises, e.g., [151, 150], even without
executable semantics of processes.

Workflow control has its origins in concrete technologies for computer-
supported collaborative work (CSCW) based on document processing like
Palo Alto’s OfficeTalk [192] in the 1970s or Polymer [232] in the 1980s, on
the one hand, and in more general rapid development frameworks based on
a worklist paradigm like FlowMark [218], on the other hand. A lot of to-
day’s commercial business process management suites [247] actually started
as workflow management products.

3.2.1 Means of Business Process Automation

In principle, the target of executable business process specification can be
approached top-down, by hooking business process modeling tools with exe-
cutable systems, or bottom-up by enriching workflow engines. However, the
gap remains; there is no canonical mapping between the components that
are under the control of workflow technology and the entities addressed by
business process modeling. The view of business process modeling is rather a
global one, i.e., the net of business activities and exchanged information enti-
ties. The view of workflow control, on the other hand, is a local one, looking
at the human computer interaction and having a concrete worklist paradigm
at hand for processing workflows. We believe that the gap between business
process modeling and workflow control should be systematically investigated.
As a quick gain, it is possible to exploit the results of such investigations as
best practices in practical business process projects. In the long run the re-
sults can help in the unification of both levels and the design of an advanced
business process management suite.

A step in bridging the gap between business process modeling and business
process management can be done by an investigation of advanced role-model
concepts from a workflow patterns perspective. There has been a rigorous dis-
cussion of workflow patterns in the workflow community [1] that helped in the
investigation and analytical comparison of existing workflow technology. This
workflow pattern discussion has already been broadened [308] by the consider-
ation of workflow resources, i.e., different users. User and user role models are
at the heart of the workflow paradigm. Considering users and roles can bring a



3.2 Executable Specification of Business Processes 49

human-computer interaction viewpoint to the discussion of workflow patterns
refining the otherwise global, i.e., observational viewpoint of an overall action
flow. The findings of such human-computer interaction focused investigations
can be exploited in the definition of an executable specification language for
business processes. For example, the definition of the single user session of a
submit/response-style system as typed, bipartite state machine can serve as a
basis [89]. Here, the human-computer interaction is form-oriented – it consists
of an ongoing interchange of report presentations and form submissions. In
this setting it is possible to understand the notion of worklist as an interac-
tion pattern in single user session scenarios and to proceed by generalizing the
defined semantic apparatus to a form-oriented workflow definition language.

We believe that a future business process platform should allow for the
executable specification of workflows and dialogues. In such a platform there
will no longer be any artificial distinction between the workflow states and
the states of the dialogues that bridge the workflow states. This means, sys-
tem dialogues and workflows are unified [109]. An immediate major benefit of
this platform is that important BPM techniques like business process moni-
toring and business process simulation are no longer artificially restricted to
some coarse-grained workflow states, they become pervasive. Furthermore, the
business logic is partitioned naturally into services of appropriate granularity
this way. The decision as to which parts of the supported business process
is subject to workflow technology and which parts make up the dialogues is
orthogonal to the specification of the business process, i.e., a posteriori. The
definition can be changed allowing for a yet unseen degree of flexibility in
business process specification.

3.2.2 Inter-Organizational Business Process Automation

It is a further challenge to integrate business process platforms with ap-
proaches for inter-organizational supply chain management and extended
supply chain management [348, 347]. This challenge has a technical and a
conceptual, i.e., business relevant, aspect. The technical challenge is about
distributed deployment. If the component architecture of a business process
platform is done properly support for distributed deployment can be added
easily to the platform. As we will argue in the course of the book we consider
a component architecture as appropriate for a business process platforms if it
allows for the unrestricted decomposition of software at the outermost level
of process specifications.

Support for distributed deployment is good also for intra-organizational
purposes; anyhow, with the correct exploitation of virtualization technol-
ogy [65, 137] there is the chance that the differences between software archi-
tecture [132] and deployment architecture vanish – in particular, in these days
of emerging virtualization technologies for commodity servers like Xen [78] or
VmWare [331]. But as we have mentioned, there is also a business related
challenge of inter-organizational distribution of business processes and this is



50 3 Research Opportunities in Business Process Technology

the challenge of negotiating responsibilities. It will be interesting to see which
kind of information technology can actually support and add value to this
issue.

3.2.3 Executable Specification Communities

The synonyms for executable specification range from old ones like automatic
programming [279] to today’s model-driven architecture [248, 40, 90, 91].

“In short, automatic programming always has been an eu-
phemism for programming with a higher-level language than
was then available to the programmer. Research in auto-
matic programming is simply research in the implementa-
tion of higher-level programming languages.”[279]

Executable specification is about gaining a new level of abstraction in the
description of systems that have an operational semantics. Such endeavors
are typically domain-specific, i.e., phenomena in the program design that oc-
cur often are identified and become new constructs of a new virtual machine.
Therefore it is fair to say that domain-specific languages [349, 79] and even
generative programming [67, 98, 99, 100, 86] are also in the realm of executable
specification. Actually, it is a common misconception about model-driven ar-
chitecture that this approach gains a higher-level of abstraction for general
purpose program system construction. On the contrary, the research commu-
nity in model-driven architecture is very well aware of the fact that the real
work to be done is in defining domain-specific modeling languages that then
can be exploited further to generate systems. The model-driven architecture
approach is rather about setting the stage for the systematic definition of
modeling languages and a kind of standardization of tool support for these
definition efforts, i.e., we think it can be understood somehow as a disciplined
approach to meta case tools [159, 160, 115, 246, 212, 197].

3.3 Component-Based Development

The notion of software component has been discussed as early as the NATO
software engineering conference [256, 51]. Components are about code com-
position. But people associate more than composition mechanisms with the
concept of components. Actually, there are lots of abstraction and composi-
tion mechanisms available in programming languages – routines, procedures,
modules [277], objects. However, the discussion of components goes beyond
the design of composition mechanisms, it also goes beyond the discussion on
how to decompose systems [278] for maximal robustness or reuse. However,
different communities put different emphasis in their discussion on component
technology, so the concept comes with different flavors. There is a sub indus-
try aspect, an infrastructure aspect, and a large system construction aspect.



3.3 Component-Based Development 51

As we will see in due course these aspects are not mutually exclusive. We
need to discuss these three aspects in Sects. 3.3.1 to 3.3.3 in order to gain a
better understanding of current and future trends in component-orientation
for business process management suites.

The notion of business process platform as currently used and foreseen
by industry has component-orientation as a crucial asset. Here, the sub in-
dustry of components is dominating, expressing the vision that next gener-
ation business process management suites are prepared for gluing together
ready-made business logic components. The development of an appropriate
component-model for business processes is driven this way. Our approach to
component-orientation is more fundamental. Our concept of component is re-
ally just composition and composability. The usefulness of composability is
beyond doubt. What we are seeking is a notion of composition which makes
that the composition of arbitrary business process specification immediately
yields a valid new business process specification. It is our conviction that just
“yet another plug-in component architecture” that targets easier deployment
of business process implementations will not bring the promised new quality
of business process technology. Our targeted notion of component-orientation
for business processes is indivisibly connected to the design of a next-level
specification language for business processes – we consider an appropriate
component architecture of business process platforms rather as a by-product
of robust design efforts of a high-level specification language and not as an
independent asset.

3.3.1 Sub Industry Aspect of Component Technology

One important aspect of component technology is that they are about estab-
lishing software sub industries. This is probably the earliest usage of the term
component [241]. This means the term component is used for the division
of programming efforts at the level of software houses. In [241] input-output
conversion, two and three dimensional geometry, text processing, and storage
management are given as examples for possible components supplied by spe-
cialized software houses to other software houses. With respect to this sub
industry aspect frameworks and application programming interfaces (APIs)
clearly are components.

Still, the sub industry aspect is often considered as the defining aspect of
component technology. However, the perception of the topic has changed. In
motivations of component technology research ordinary, i.e., existing applica-
tion programming interfaces are usually not mentioned but rather domain-
specific business logic components. Here the specialization is along industrial
sectors or concrete businesses.

3.3.2 Infrastructure Aspect of Component Technology

In practice, concrete component technologies are about adding technical value
to a specific technological domain by creating an infrastructure for it – we



52 3 Research Opportunities in Business Process Technology

therefore use the term infrastructure aspect. These technological domains
crosscut industrial sectors. Examples of technological domains are the field of
visual programming, the field of distributed object computing and the wide
field of enterprise computing. Component technologies address one such do-
main with a combination of foundational software services and tools. One
very ubiquitous view of component technology is to see it as an extension of
object-oriented programming technology [335].

For the sake of completeness we list the usual examples. SUN’s JavaBeans
are a component technology for visual programming that must not be con-
fused with Enterprise Java Beans (EJB) that are part of the Java EE (Java
Enterprise Edition) standard formerly known as J2EE, which addresses en-
terprise computing. DCOM (Distributed Component Object Model) is an
example of a component technology that addresses distributed object com-
puting. CORBA (Common Object Request Broker Architecture) [264] also
supports distributed object computing, however, it is usually not mentioned
as a component technology in its own right, only together with CCM (CORBA
Component Model) [266] it is perceived as a component technology that ad-
dresses enterprise computing and is similar to Java EE. OSGi (Open Services
Gateway Initiative) is an example of a Java-based component technology that
enables systematic hot deployment of software , i.e., support for dynamic – in
particular also remote – deployment and update. It is initiated and exploited
by the embedded software community. A prominent usage of OSGi is as the
foundation of the integrated development environment Eclipse.

In the domain of enterprise computing, object-oriented application server
technologies like Java EE are perceived as component technologies. Here, com-
ponent technology is seen as an extension of standard object-oriented lan-
guage platforms with features for persistence – most typically in the form of
support for object-relational mapping – distributed programming and trans-
actional processing. For example, in [260] we find this view on component
technology as an extension of object-oriented programming with features for
concurrency, persistence and distribution – among possibly others. Classical
transaction monitors [29, 138, 141] like IBM’s CICS (Customer Information
Control System) [61] or BEA’s Tuxedo (Transactions for Unix, Extended for
Distributed Operations) also offer such features and even beyond – they usu-
ally tightly integrate support for user interface programming and dialogue
control.

An interesting example for a component technology in the domain of en-
terprise computing is IBM’s San Francisco framework [39]. This framework
is interesting because it is a rare example of an initiative that actively incor-
porated the sub industry aspect into its efforts from the beginning. The San
Francisco framework is Java-based. The architecture of the framework consist
of three layers [38], see Fig. 3.1, i.e., the foundation layer, the common busi-
ness objects layer (CBO) and the core business processes layer. Independent
software vendors can construct their solutions – typically for customers in a
vertical domain – by customizing and reusing software entities from each of



3.3 Component-Based Development 53

these three layers. The foundation layer [304] deals with the typical crosscut-
ting problems of the enterprise computing domain, which are, basically, trans-
actions, persistence and security but also others like national language support
(NLS). Furthermore, the necessary support for distributed object computing
is provided, i.e., an object!request broker (ORB), support for externalization
and so on. With respect to distributed object computing the foundation layer
was designed after the OMG standards CORBA and COS (CORBA Service)
– though no formal adherence to these standards was targeted.

Java Virtual Machine

Foundation

Common Business Objects

Core Business Processes

Independent Software Vendor
Solutions

Fig. 3.1. System architecture of IBM’s San Francisco framework.

With the common business objects layer the San Francisco framework
starts to go beyond the discussed infrastructure aspect of component tech-
nology. The software entities provided here contain real business information
and logic as default behavior. The software entities in this layer are rather
general in the sense that they occur in several vertical domains. Examples
for these entities are address, business partner, customer, calendar, time and
currency [39, 193]. Actually also some design patterns [62, 130] for reuse in
the next layer are implemented in the common business object layer. The next
and highest layer of the framework, i.e., the core business processes layer, is
about vertical domains. The software entities in this layer have been designed
with domain experts from several companies in the particular domains. Ex-
amples for vertical domains addressed by this layer are the domain of business
financials with support for, e.g., payable accounts, receivable accounts, and
general ledger, the domain of order management with support for, e.g., sales
and purchase orders, and the domain of warehouse management with support
for, e.g., receiving and shipping of materials [193].



54 3 Research Opportunities in Business Process Technology

3.3.3 Large System Construction Aspect of Component
Technology

Considering all the discussions on component technology we followed in the
past we think it is fair to say that another important aspect of component-
based development is simply that it is about the construction of large systems.
It is common sense among developers that programming large system is fun-
damentally different from programming small systems. The larger a system
becomes the more complex it becomes and you need special mechanisms to
deal with the complexity. All the abstraction mechanisms in programming
languages have the purpose to get complexity under control. The usual ab-
straction mechanisms found in programming languages are sufficient to build
arbitrary layers of abstraction, so, in principle they are sufficient to deal with
programs of any size. On the other hand, also small programs in the sense
of programming in the large can be large enough for requiring the usage of
programming language abstraction mechanisms in order to get into control
of their complexity. So, the question arises: why do we need to discuss mech-
anisms that go beyond the usual programming language abstraction mecha-
nisms? Or to pose the question differently: when is a program large, i.e., large
in the sense of programming in the large [70]? One possible answer could be:
programs are not large, projects [45] are.

In principle, each software system can be programmed by a single devel-
oper; however, often a wanted software system cannot be programmed by a
single developer in a set time frame. Now, projects with more than one per-
son differ fundamentally form single-person projects. There is overhead for
communication, need for system documentation, need for system integration,
and need for project management. Projects with more than one person, i.e.,
team projects are large. And programs that are developed in large projects
are large. By the way, projects with distributed teams, i.e., sub-contractors,
are usually even larger – that’s why they are called mega projects in [135], a
paper on the Boeing 777 software. So, team projects cost extra resources. And
programming in the large actually addresses software programmed with more
than one person. In the original paper [70] on programming in the large, or
to be more precisely, in the paper that coined the term programming in the
large, the notion of a module interconnection language (MIL) is introduced
that should support developers in programming in the large. Two of the gen-
eral objectives of the envisioned module interconnection languages explicitly
address support for dealing with the overhead of division of labor. It is said
that a module interconnection language should serve as a project management
tool and as a means of communication between programming team members.
Other objectives of the envisioned module interconnection languages are to
serve as a tool for designing and concisely documenting large-scale program
structures.

In answering our above question on when is a program large we said that
one possible answer could be that programs are not large, but projects. We



3.4 Exploiting Emerging Tools for BCM 55

deliberately did not say that the answer is that programs are not large, but
projects. Whenever a programmer feels overstrained with dealing with the
complexity of a program he would be tempted to call the program a large
program. This is a fuzzy characterization because defining when a developer
is overstrained is not as easy as defining when a project is large – see above,
we said that a project is large if it consists of more than one person. It would
be superfluous to seek an answer to that question but the fact is that since
the existence of programming languages we have seen a plethora of tools
emerging that help programmers to get control of their code, e.g., profilers,
shape analysis tools, style checkers, documentation generators, refactoring
tools, versioning tools [84] to name a few and, last but not least, integrated
development environments.

The major value added by an integrated development environment (IDE)
is not that it combines several of the aforementioned tools as features but
that it allows the developer to experience the code as a structure of hy-
perlinked code entities. For example, consider the major motivation of the
aspect-oriented programming paradigm, i.e., the problem of maintaining the
call positions of a code entity. This problem is also addressed in integrated
development environments. Here, you can list the call positions of a method
and the integrated development environment supports you in uniformly ma-
nipulating these call positions by its in-built refactoring capabilities. As any of
these mechanisms that go beyond standard programming language features,
also component technologies add value to the task of controlling complexity of
large programs. Even if in academia the discussion of component technology is
sometimes rather focused onto programming language constructs, in practice,
a concrete component technology typically consists of a combination of new
programming language features, tools, and software services.

Actually, in [45] yet another characterization of programs becoming large
is given. There an artifact named “programming system product” is consid-
ered. A program which is implemented by a single person becomes a program-
ming system if it consists of parts implemented by different programmers. In
another dimension a program becomes a programming product if it is devel-
oped for more than one usage context. Different objectives like adaptivity,
reusability and maintainability now become an issue. Brooks coined the term
productizing for the transition from a program to a programming product
– see Fig. 3.2, which also gives estimates for the extra efforts needed for the
transitions in both dimension. With the consideration of productizing the loop
is closed to the sub industry aspect of component technology that we have
discussed earlier.

3.4 Exploiting Emerging Tools for BCM

We have discussed the importance of business continuity management for
enterprises, how it targets the stability of an enterprise’s business processes



56 3 Research Opportunities in Business Process Technology

Generalization
Testing
Documentation
Maintenance

Interfaces
System Integration

Programming
System
Product

Programming
System

Programming
Product

Program

××××3

××××3

Fig. 3.2. Efforts for division of labour and productizing according to Frederik
Brooks [45].

and the basic principles how business continuity can be achieved in Sect. 2.5.
In order to support business continuity management there exists a range of
proprietary tools, e.g., for writing business continuity plans, assessing risks,
analyzing business impacts [32]. These tools usually come as combined struc-
tured editors, database repositories and bunches of templates for plans and
questionnaires.

Both developing and eventually enforcing business continuity plans with
the accompanying activities of risk and impact analysis are usually highly
collaborative efforts if done properly. There are elements of knowledge man-
agement in these tasks and social aspects must not be neglected. Therefore,
it seems natural to use some kind of CSCW tool (computer-supported collab-
orative work) or groupware [143] to get these things done. The several team
collaboration software and social software products [116] that are currently
emerging in the realm of the Web 2.0 metaphor form today’s generation of
CSCW tools.

According to [116] a social software product is expected to provide at least
shared workspaces, management of shared documents, discussion forums, user
profiles – all this supported by appropriate user and access control manage-
ment – to count as a team collaboration and social software. Team collabo-
ration software helps exchanging knowledge and joint building of knowledge
bases. Therefore wikis [240, 215] and web logs (blogs) naturally fall into this
software product category. Other features that fall into the area of team col-
laboration and social software, i.e., features that can be found in concrete
products of this software category are about allocating and tracking tasks,
managing projects, integration of calendars, controlling workflows, social tag-
ging and bookmarking, visualization and analysis of social networks, content
feeds, people search capabilities, in particular with respect to skill manage-
ment, decision support for teams like support for prioritizing items, voting and
ranking. Support for basic groupware features, i.e., email and team-based cal-
endaring, or tight integration with respective products is expected. Also other



3.5 Integration of Business and Production Processes 57

traditional but more advanced groupware features like instant messaging and
video conferencing belong to the repertoire of team collaboration software.

Against the background of all these just mentioned team-supporting soft-
ware features team collaboration software seems a natural candidate as a tool
in business continuity management. Imagine the process of risk assessment,
impact analysis and finally estimation of risk probabilities. The processes for
gathering the necessary information and afterwards categorizing and rank-
ing the information items can be greatly supported by the features found in
today’s team collaboration software products.

Unfortunately, the unconsidered idea to support business continuity man-
agement by web-based team collaboration is naive against the background of
the especially strict security needs of the considered domain. An important
threat considered in business continuity management is always any kind of
intrusion leading to several security actions from facility security to all the
issues of IT security. For potential intruders the plans that deal with any kind
of threats can be of interest. Therefore security requirements of the business
continuity management domain are significantly high. People working in this
domain and conducting the business continuity management often stem from
the security sector or IT security sector. The problem is that people from the
security sector are often biased against web-based technology; they often tend
to work only with tools they have long experience with. Therefore, it can be
challenging to convince stakeholders in the business continuity management
process to use a web-based team collaboration platform. The openness of such
platforms can be easily considered just too insecure. Of course, there are pos-
sibilities to make the usage of a web-based platform secure. The platform itself
can be secured with virtual privacy network technology, but more obviously it
is possible to fully separate a small intranet from the outside world and make
it the basis for the team collaboration platform.

On the other hand, first experience already tells us that the capabilities of
team collaboration and social software are really promising for business conti-
nuity management. At least we know this from one of our own projects where
a simple wiki has been used in order to grasp and communicate the business
continuity plan. Here, the wiki has proven particularly practical because it
immediately integrates the business continuity plan with other existing docu-
mentation of the system architecture in a lightweight manner. A simple plain
wiki system has been used. Mature domain-specific team collaboration soft-
ware would extend the plain wiki software with templates and predefined
workflows for business continuity planning and implementation.

3.5 Integration of Business and Production Processes

There is a huge potential for optimization of processes in today’s industrial
manufacturing. Important targets of improvement are production efficiency
and product quality. Optimization is a complex task. A plethora of data that



58 3 Research Opportunities in Business Process Technology

stems from numerical control and monitoring systems must be accessed, cor-
relations in the information must be recognized, and rules that lead to im-
provement must be identified. Despite concrete standardization efforts exist-
ing approaches to this problem are often low-level and proprietary in today’s
manufacturing projects. The various manufacturing applications in a com-
pany must be turned from isolated spots of information into well-thought out
integrated data sources [47, 16] that make up an overall solution.

The lowest level considered in automatic manufacturing is the automation
level, i.e., the level of machine and device control. However, the automation
level is not merely about automated tasks. For example, machine maintenance,
transportation control and stock control are important issues at this level. The
entities controlled by control computers are machines, cranes, transport belt
systems or other transport mechanisms, chemical processors, converters etc.
This is the level of computer numerical control (CNC), robot control (ROC),
motion control (MC), programmable logic controllers (PLC), cell controllers
(CC), data collection systems (DCS) and so on.

The technical integration of production devices is an issue in its own right.
This is the domain of fieldbus technology like Modbus, CAN (Controller Area
Network), PROFIBUS (Process Field Bus), AS-i (Aktuator Sensor Interface)
– to name a few. Fielbusses are network protocols that have their strength usu-
ally at OSI level 2 – data link layer. A technology that addresses the issue of
vertical integration of production devices immediately at the level of applica-
tion programming interfaces is OPC (‘Openness Productivity Collaboration’
formerly known as ‘OLE for process control’) [269]. The technical integration
of production devices is in a sense a horizontal integration. In the discussion
of this section we are rather interested in the vertical integration of automa-
tion control shop floor control and production planning. However, vertical
and horizontal integration are not completely orthogonal issues. In particu-
lar, a strictly data-centric horizontal integration approach could greatly ease
vertical integration efforts from the outset.

3.5.1 Automatic Shop Floor Control

In a fully automatic plant in today’s manufacturing industry there are au-
tomatic shop floor control systems or process control systems that control
and track the interplay of the machines. This is the level that is often called
SCADA (Supervisory Control and Data Acquisition). To give an impression
we describe a fictional shop floor control system. Though the example sys-
tem is fictional its described functionality is very close to a real world system
from the area of material refinement. However, we abstract from the concrete
domain and from the full complexity of the system, because the terminology
and the details of the concrete domain do not add to the understanding of
the concepts implemented by the software. In this example there is a fully in-
tegrated software control of all processors and transport devices in the plant.
In a control center a supervisor sees a screen similar to the one depicted in



3.5 Integration of Business and Production Processes 59

Fig. 3.3. Material is shipped into the plant in batches. The batches ship in
from another plant in the factory. Each batch has to be processed sequen-
tially by three kinds of converters A, B and C. There are several processors
for each kind of processor, because the processing stages take different amount
of time. For example, processing the batch by one of the B-processors takes
approximately twice as much time as processing the batch by an A-processor.
Therefore, there are twice as many B-processors as A-processors, otherwise,
the B-processor stage would become a bottleneck.

03 05 09 12 14 16

01

02 04 08 11 13

06 07 10 15 17

02
03

01
06
04

05

07
08

09
10

11
12

14

15

13

16
17

02

03

01

06 04

07 05

08

09 11

12

10

14 15

16

17

13

A1

A2

A3

B1
B2

B3
B4
B5
B6

C1

C2

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00

9:23

Fig. 3.3. An example manufacturing execution system.

In the graphical user interface in Fig. 3.3 the material flow proceeds from
left to the right, from the top to the bottom. Actually, the graphical user
interface shows a Gantt diagram of what is going on in the plant. A bar in the
diagram stands for the processing of a batch in a certain processor. There are
no edges connecting the bars in the diagram. The material flow is given by
the numbering of the batches that remains the same throughout the different
processing stages. Just to give an example, we have painted the edges for the
material flow of batch with the number ‘01’ into the diagram. A fat vertical
line on the screen serves as the current-time indicator. The crucial point is
that the diagram on the screen is not just about planning, it is really about
control. If the current-time indicator passes the right end of a bar element, the
corresponding batch is fully automatically removed from the current processor
and moved into the next processor according to the schedule in the diagram.
Workers in the plant are triggered by events on the production process and
not vice versa. Workers can be considered to be embedded into the production
process, i.e., they do not control it.

Even the scheduling, i.e., the assignment of processors to batches is done
automatically by the system. The optimization target is resource utilization.



60 3 Research Opportunities in Business Process Technology

However, the supervisor in the control panel has the opportunity to reschedule
the batches, i.e., to overwrite the default schedule proposed by the system.
Furthermore, he can adjust the processing time per batch and processor. This
way, he can react to exceptional events based on his expert knowledge. For
example, he knows that a certain batch can only be processed on a certain
processor, because this processor has a certain feature that is needed in the
concrete case. Or one of the processors needs to pause for a while, for example,
for maintenance reasons. Or the supervisor recognizes that a certain batch
actually needs more processing time on its current processor than initially
assumed. With respect to this it is necessary to know that the supervisor
has a second screen on his desk which shows a dashboard with miscellaneous
information about the current state of each of the processors.

3.5.2 Manufacturing Execution Systems

At the level of enterprise resource planning systems managers use production
planning systems (PPS) for rough planning of the production. Rough planning
means that managers use aggregate values for capacities and performance of
production resources. Rough planning also means long-term planning, i.e.,
the time units managers deal with during production planning are rather
months, weeks or days at the least. The management needs to give the planned
production schedule to the production department as an internal order and
needs feedback about the actual production in order to compare production
figures with planning figures and to have a hook for high-level quality control
and potential production process optimization. It also needs the feedback to
improve its production planning process by an adjustment of the aggregate
values used during planning.

Without further IT support there is a huge gap between production plan-
ning systems and the automation level. It is the task of manufacturing execu-
tion systems (MES) [202] to bridge this gap – see Fig. 3.4. Most importantly,
with manufacturing execution systems production process planners detail the
rough planning they receive from production planning to a level of detail at
which shop control becomes possible. The time frames manufacturing execu-
tion systems deal with are much smaller than the ones of production plan-
ning systems – they are in the range of days, working shifts or even minutes.
Full-automatic shop control systems allow for real-time planning, control and
monitoring of a plant. Therefore manufacturing execution systems are natural
hosts for shop control systems.

To give an impression of what manufacturing execution systems are about
we list their functions as defined by the industrial standardization body MESA
(Manufacturing Enterprise Solutions Association) [244]:

• Resource allocation and status.
• Operations and detail scheduling.
• Dispatching production units.



3.5 Integration of Business and Production Processes 61

Sun
Sat
Fri

Thu
Wed
Tue
Mo

Machine and Device Control

Manufacturing Execution System

Production Planning System

production
schedule

operational
commands

production
report

operational
response

ISA-95

ISA-88

4
3
2
1

11
10
9
8
7
6
5

18
17
16
15
14
13
12

25
24
23
22
21
20
19

31
30
29
28
27
26

October

Fig. 3.4. Production planning, execution and control system architecture.

• Document control.
• Data collection acquisition.
• Labor management.
• Quality management.
• Process management.
• Maintenance management.
• Product tracking and genealogy.
• Performance analysis.

A manufacturing execution system supports the systematic fulfillment of
the production schedule given by the management and also supports the de-
livery of the production reports needed by the management. It is that in-
tegration aspect between automation level and enterprise resource planning
of manufacturing execution systems that is often emphasized. However, from
the above list it becomes clear that a manufacturing execution system already
adds significant value in the production department even if it were not con-
nected with production planning systems. It supports daily operations with
concrete features – maintenance management and quality management are
good examples. On the other hand, it becomes also clear that a manufactur-
ing system should be connected to the enterprise resource planning somehow;
for example, consider labor management and human resources management.

3.5.3 Current Automation and Business IT Initiatives

We see better and better integration of production systems with enterprise
resource planning systems as the current trend in information technology in
manufacturing enterprises. It is fair to characterize this issue also as targeted



62 3 Research Opportunities in Business Process Technology

integration of production processes and business processes. Actually, it is a
bit odd, because from a conceptual viewpoint production processes are no dif-
ferent from business processes, on the contrary, they are business processes.
However, it is common to use the term business process rather for administra-
tive business processes, i.e., such processes that deal with enterprise resource
planning, and therefore to distinguish them from the technical production
processes.

In the following we use also the term automation and business integration
for the integration of production systems with enterprise resource planning
systems and even beyond with the integration of business intelligence (BI)
systems.

Current initiatives like MESA and ISA (Instrumentation, Systems and
Automation Society) address this vertical system integration issue. STEP
(Standard of Product Model Data) [180] standardizes the description of both
physical and functional aspects of products. ISO 15531 (MANDATE) [184, 66]
provides a conceptual data model for manufacturing resources, manufactur-
ing engineering data, and manufacturing control data. Both STEP and ISO
15531 are examples of standards that pursue a data-oriented viewpoint on the
manufacturing scenario. As depicted in Fig. 3.4 ISA [314] addresses the stan-
dardization of models and terminology of batch processing at the automation
level with ISA-88 [170] and the standardization of the information exchange
between manufacturing execution and enterprise resource systems with ISA-
95 [171, 172], see also [179]. In ISA-95 uses further terminology, in particular it
uses ‘Manufacturing Operations & Control’ for the level of manufacturing ex-
ecution systems and ‘Business Planning & Logistics’ for the level of enterprise
resource planning.

The current trend of production and business process integration again
has the objective to eventually lead to more overall flexibility and reactive-
ness of the enterprise. The features of a manufacturing execution system add
benefit even if they do not lead to a measurable impact on reactiveness of
the manufacturing enterprise. A manufacturing execution system can improve
performance by speeding up the information flow between management and
production and by optimizing the utilization of resources. By its data ac-
quisition and reporting capabilities it can help to improve product quality.
Anyhow, a foreseen improved reactiveness of the manufacturing enterprise
is a major driving force for better integrated manufacturing execution sys-
tems. Major vendors make this argument in their current manufacturing IT
initiatives like SAP with adaptive manufacturing [310]. At the technological
level SAP’s adaptive manufacturing initiative stands for the standardization
of interfaces for third-party software vendors to SAP’s own enterprise resource
planning systems. At the strategic level SAP’s adaptive manufacturing argues
with an envisioned adaptivity of the manufacturing enterprise.



3.5 Integration of Business and Production Processes 63

3.5.4 Industrial Information Integration Backbone

Current initiatives for automation and business integration take the situa-
tion of separate automation systems, manufacturing execution systems and
enterprise resource planning systems as given and concentrate onto the clar-
ification of the roles and responsibilities of these systems and the interfaces
between these systems. This is a classical way of proceeding that we usu-
ally see in system integration trends. Certain classes of systems evolve and
manifest themselves, then integration is about easing and standardizing the
information flows between these systems. It is always worth considering more
radical integration that creates a new class of system from scratch that unifies
the systems that need to be integrated. In the case of automation and business
integration we think it is interesting to think about the design of combined
manufacturing execution and enterprise resource planning systems this way
accomplishing integration from the outset. In such a system the different func-
tionalities can remain software modules or software layers, however, they are
integrated via a shared data model and database for which we coin the term
industrial information integration backbone (IIIB) – see Fig. 3.5.

Arguments for Separation of Automation and Business Systems

There are also reasons to stick with the currently architecture of separate sys-
tems for manufacturing and enterprise resource planning. These are the usual
reasons. One is the protection of investment with respect to exiting systems.
Another is a make-or-buy decision in favor of buying available products and
integrating them instead of building the whole system from scratch. Both en-
terprise resource planning systems and manufacturing execution systems are
complex. Already for each class of system it must be carefully analyzed in
a given scenario whether it is cheaper in the sense of total cost of owner-
ship – see Sect. 2.6.3 – to deploy an existing commercial-off-the-shelf software
system or to build an entirely new one. And these systems are so complex
that there are specialized vendors for each of them – we already mentioned
SAP’s adaptive manufacturing approach to integrate manufacturing execu-
tion systems by third party vendors. Another reason is the desire to address
different levels of quality of service of different applications with appropriate
organizational structures along distributed application servers. For example,
consider availability. Enterprise resource planning systems might not require
high availability in an enterprise, whereas the availability of manufacturing
execution systems – at least the availability of shop floor control systems – is
easily a mission-critical issue. Similarly, there is often what we call an own-
ership issue or self-sustainment issue, i.e., the fact that different IT systems
are built and maintained along the organizational structure of an enterprise
driven by departments that sometimes long for as much independency from
other business units as possible.



64 3 Research Opportunities in Business Process Technology

A further counter argument is simply that the functionalities of a man-
ufacturing execution and enterprise resource planning system is simply too
extensive to be delivered by a single vendor. In particular, the argument is
that there must be specialization of the systems to meet different needs of
different enterprises that stem, e.g., from vertical domains or the concrete
sizes of the enterprises. Obviously, in the indicated field there must be doubt
that it is possible to build a system that can fulfill the needs of all the di-
verse manufacturers – the no one-fits-all problem. All this is a sub industry
argument. At least it could be the argument that because of the large amount
of functionality it is desired to build the optimal solution in a concrete sce-
nario by combining it from different software vendors. With respect to this
counter argument it is interesting to see that ORACLE outlined in [309] its
general product direction for manufacturing execution systems towards a sin-
gle combined ERP/MES application. Actually, in April 2007 Oracle released
the Oracle Manufacturing Execution System as part of its E-Business Suite,
which is an enterprise resource planning system. The solution has been an-
nounced as a product for enterprises that operate in environments of low to
medium complexity.

Arguments for Integration of Automation and Business Systems

All of the above are counter arguments against the concept of an industrial
information integration backbone approach. However, there is a single but
very strong argument for the architecture to integrate manufacturing and
business IT via the database from the outset and this is flexibility. It is just
the principle of data independency, i.e., the principle of centrally designing,
operating and maintaining the data independent from the applications that
exploit them, that improves flexibility of the total information system.

In general, having a database as a central hub for integration is a proven
pattern as is already inherent in the currently widely discussed service-oriented
architecture and explicitly seen in enterprise service bus technology. In the
original enterprise computing related strand of service-oriented architecture
– see Sect. 8.2 for a discussion and Fig. 8.2 in particular – the services in
service-oriented architecture form a hub in a hub-and-spoke architecture of
applications that this way are integrated and use each other in a flexible man-
ner. It is not essential that the services tier in a service-oriented architecture
possesses its own database, i.e., in principle the service tier can be a mere
message generator collecting data from the applications it integrates on the
fly and distributing them. However, it is a typical technical pattern that the
service tier has its own database to persistently buffer data. This is where the
service tier begins to become an enterprise service bus which is also discussed
in Sect. 8.4. The notion of enterprise service bus is a loose concept for enter-
prise application integration that combines persistent messaging, in particular,
publisher-subscribe functionality, with new features like content-based routing
in the realm of web services technology, i.e., enterprise service busses are the



3.5 Integration of Business and Production Processes 65

web-services related instances of message-oriented middleware. And indeed,
established persistent messaging technologies like IBM MQSeries [350] are in
their own right examples of technology for integration of applications via a
database. However, it is fair to say that the driving force for the exploitation
of persistent messaging was not step-wise enterprise application integration
but building lightweight but at the same time still robust alternatives to dis-
tributed transactions in transaction processing systems that are distributed
on a geographical scale.

The counter arguments against the integration backbone discussed ear-
lier are pragmatic reasons that pay tribute to existing system architectures
that evolved. The standardization of message flow between applications makes
the market for these applications more agile by bringing flexibility into the
decision-making of customers in selecting a concrete product, but it does not
address the flexibility of the systems themselves fundamentally.

Like any other approach to design a unified automation and business IT
product the industrial information integration backbone does not address the
aforementioned no one-fits-all problem. However, the integration backbone
is an architectural principle. Not all systems are bought because of careful
build-or-buy decisions. So, if a system is built, for example, for an enterprise
in a special vertical domain, the integration backbone can be a design option.
We just say that in such cases the design efforts should not be automatically
directed and possibly misled by the existing and emerging industrial integra-
tion standards, because those standards arose to improve the message flows
between applications in de-facto scenarios of manufacturing enterprises. They
should not be taken without review of blueprints for building a system from
scratch.

PPS

Machine and Device Control

Manufacturing Execution System (MES)

Production Planning System (PPS)

production
schedule

production
report

Machine and Device Control

MES

operational
commands

operational
response

Industrial
Information
Integration
Backbone

operational
commands

operational
response

Fig. 3.5. Industrial information integration backbone.



66 3 Research Opportunities in Business Process Technology

The discussion of whether using a message-based approach or a data-based
approach to the integration of manufacturing execution systems and produc-
tion planning systems is an instance of a general discussion of distributed
versus centralized systems. The aggregated driving force of such discussions
has to be total cost of ownership – see Sect. 2.6.3. Concrete typical driving
forces in such general discussion can be price, performance and reliability [140].
However, it is not clear from the outset which architecture is cost optimal in a
concrete situation. For example, the robustness of a distributed system built
from low cost components can be better than the robustness of a central-
ized system built from high cost components [228]. As long as the community
lacks a constructive cost model on the basis of standardized software system
components, software architecture will remain heuristics-based.

3.6 Integration of Business Processes and Business
Intelligence

So far, we have discussed in Sect. 3.5 the integration of manufacturing ex-
ecution systems and enterprise resource planning systems. A similar archi-
tectural discussion arises when looking at the integration of enterprise re-
source planning and business intelligence. Beyond the already state-of-the art
point-of-sales analyses their is an ongoing trend in systematic business activity
monitoring (BAM) [117, 236]. The standard architecture enabling analytical
processing in today’s enterprises has separated online transaction processing
(OLTP) and online analytical processing (OLAP) systems. These systems are
really separated, i.e., they consist of software that resides on different servers.
Between these systems there is yet another system, often also on a separate
server, that is responsible for the extraction of data from the transaction
system, the transformation of the data into formats that are suitable for ana-
lytical processing and the transportation – called load – of the data into the
analytical system. This latter man-in-the-middle system is called ETL layer
(extraction, transformation, load). Conceptually the point is that there are
two kinds of system, i.e., systems that are there for daily operations in the
enterprise and systems that are there for analyzing the outcome of these daily
operations and – with the current trend of business activity monitoring – also
for observing the daily operations themselves. In practice, you can find also
systems that combine the three layers onto one server, but these systems are
then ad-hoc solutions in small, uncomplex business environments. If the layers
are run on a single server in practice this is not about creating an innovative
data warehousing architecture like the one we are discussing in the sequel
but just about exploiting available business intelligence products on a simple
server infrastructure wherever possible for occasional analyses. However, what
we are talking about here is systematic analytical processing on a large scale,
so ad-hoc architectural alternatives are not of interest here.



3.6 Integration of Business Processes and Business Intelligence 67

In the discussion of data warehousing architecture the term analytical
processing fits the intention of these systems, whereas, at a first sight, the term
transaction processing may seem to be a bit odd for the systems that support
daily operations. It seems odd, because one connects the term transaction
with technical concepts like ACID transactions or transaction monitors. Even
in this sense, the usage of the word transaction processing system for systems
that support daily operations is a good fit, because it is correct that the
technical notion of transaction is dominant in these systems. Anyhow, the
term transaction processing is quite good, because it can be understood as
hinting not to technical concepts but the ephemeral nature of data emerging
and disappearing in IT systems that support daily operations – we will have
closer look onto this topic in due course.

Again it is compelling – both from a scientific viewpoint but also from
an innovative product viewpoint – to think about a radically different system
architecture that integrates the systems under consideration from scratch. In
such architecture the schemas that form the basis for transactional processing
– called transactional schemas for short in the following – and the schemas that
form the basis for analytical processing – similarly called analytical schemas
– reside in the same integrating database. In such an architecture the ana-
lytical schemas are views on the transactional schemas and the definitions
of the view update mechanisms correspond to the ETL layer of current data
warehousing (DW) architectures. The architectural notion of integrating via
the database in this case pays tribute to the increasing hunger for more and
more data extraction and shorter and shorter update cycles for the analytical
data [44]. The significantly shortening of the extraction and transformation
times in concrete data warehousing architectures is one of two aspects of the
current active data warehousing (ADW) trend, which is an issue both in in-
dustry [149] and academia [257]. The other aspect of active data warehousing
is about closing [343] the loop between analytical and transactional systems,
i.e., feeding back information from analysis to operations automatically and
exploiting analytical data in rules that control business logic and business
processes in IT for daily operations. The closed loop aspect of active data
warehousing is another argument to consider the integration backbone ap-
proach. Together with the foreseen need to exchange information between
transactional and analytical systems eventually in real-time it actually leads
somehow naturally to this approach.

3.6.1 The Origin of Today’s Data Warehousing Architecture

As with most ubiquitous system architectures there are two kinds of reason
why data warehousing architectures today look the way they are. The first
kind of reasons is about how the systems emerged; the second kind of reasons
has to do with concrete pragmatic issues of system operations. Both kinds of
reasons are mutually dependent. With respect to the first, i.e., the evolution
of today’s data warehousing architecture it has to be understood first that



68 3 Research Opportunities in Business Process Technology

there have always been different kinds of let us say functionality groups of
enterprise information systems and different kinds of data. Let us approach
this by taking a data-centric viewpoint.

Classically, it is usual to distinguish between master data, transaction data
and inventory data. Today there is actually one more kind of data, i.e., ana-
lytical data and that is the point as we will discuss later. As you will see, the
distinction between the classes of data is fuzzy and with time the boarders
between them diminishes more and more. The master data of an enterprise
are those data that must be available for usage by many applications over
a long period of time. They are updated seldom and therefore they are also
sometimes called fixed data or basic data. Typical examples of master data
are customer data, supplier data, article data or personnel data. Transaction
data are permanently new arising data. They are captured during the execu-
tion of daily business processes. Examples of transaction data are accounting
transactions, reservations, purchase orders, bills, receipts. The life time of
transaction data is limited from the outset. However, often you can find them
consolidated and aggregated as analytical data in data warehouses. Transac-
tion data are exploited in that they impact the update of inventory data. The
inventory data represent the business figures; they originate from the accumu-
lation of transaction data. Like master data, inventory data are stored for a
long period of time. Typical examples of inventory data are account balances,
business volumes and goods in stock. This means that the notion of inventory
data is more comprehensive than inventory data in the narrow sense, i.e., data
about goods in stock – it is accumulated data about all the goods and values
in the enterprise. In some commercial-off-the-shelf enterprise applications you
will find a more coarse-grained distinction between master data and transac-
tion data only – the inventory data are then usually subsumed under master
data. However, it is actually the existence of inventory data in transaction
processing systems that interests us here, because its consideration is very
instructive in the discussion of data warehousing architecture.

The question is why the different kind of data are distinguished by their
typical duration. Why not just store all transaction data forever? One answer
lies in technical limitations. Storing all transaction data means maintaining
a log of the enterprise life stream [101] and this is just too much data to be
stored. However, with more and more computing server power available – see
the results of the benchmarks by the Transaction Processing Council (TPC),
e.g. [345, 346], and Storage Performance Council (SPC) – the argument be-
comes weaker. For example, for years the retailer Wal-Mart stores data about
each shopping cart, i.e., sales figures and data about the products sold within
one customer transaction, in its data warehouse [355] — have a first look at
Fig. 3.6 – resulting into a data volume of 600 tera bytes in 2006 [14]. Other
reasons for not storing all transaction data can be found in the topic of data
protection and here, in particular, in a need for adherence to law regulations.
Actually, with respect to this issue also the converse is true. Currently, we see
a trend towards systematic business transparency – think of Sarbanes-Oxley



3.6 Integration of Business Processes and Business Intelligence 69

Act (SOX) [34] and Basel II. A lot of enterprise are currently challenged with
implementing crosscutting data auditing [258, 214] mechanisms that ideally
record all data messages exchanged in the enterprise IT for later analysis.

Along the lines of the different kind of data just discussed there have always
been different kinds of functionality in enterprise applications. The first one is
about gathering data from daily operations and processing them. The reports
that are generated in this operations mode are usually lightweight and they
serve only to enable daily operations and transactions. The reports are not
there for business analysis. The second kind of functionality is about generat-
ing complex reports on the basis of inventory data. These reports are needed
in controlling and planning. This means that reports for decision support
could always be found in enterprise applications. Over the time the potential
for systematic multi-dimensional transformation of the transaction data for
supporting decision support has been recognized. Also data mining with its
algorithms to discover correlations and dependencies between stochastic vari-
ables entered the scene. Dedicated decision support systems were built, data
marts that deal with chunks of enterprise data to address particular required
analyses and also holistic data warehouses.

It is a usual phenomenon that enterprise IT systems grow to system land-
scapes, because new needed functionality are not introduced as new features
of existing applications but introduced as additional software and server sys-
tems. So is in the area of analytical data. With the need for a new generation
of analytical capabilities new supplementing decision support systems were
introduced. The organizational pattern behind this is to never touch a run-
ning system. Analytical processing is technically cost intensive, i.e., it longs
for significant extra server computing power. In the aforementioned analyti-
cal processing example of Wal-Mart a 1000 node massively parallel computer
by NCR/Teradata was used in 2006 to deal with the 600 tera byte analyti-
cal data. The Wal-Mart example is an extreme example of a high-end data
warehousing solution – indeed, it is fair to say that Wal-Mart has been the
outrider for data warehousing. However, the example gives an impression of
the relative cost-intensiveness of analytical processing. Still it is not possible
for small and medium enterprises to buy high-end data warehousing solutions.
A new solution must allow for precise determining the risk of burdening an
existing IT infrastructure, which is responsible for supporting daily operations
with a robust quality of service, with extra load for cost-intensive analytical
queries. Therefore, it is the correct architecture to build a separate system for
this solution that is allowed to connect the existing system only occasionally
and for limited durations, typically in times where the transactional system
is known to be rather unused – during the night for example.

3.6.2 Marrying Transactional and Analytical Schemas

Unifying transactional schemas and analytical schemas into a single database
server holds the potential for an unseen degree of connection between trans-



70 3 Research Opportunities in Business Process Technology

POS_TRANSACTIONPCS_MERCHANDISE

DISCOUNT

TENDERFREQ_SHOPPER

UPC_XREF

CUSTOMER

CUSTOMER_TENDER_XREF COUPONCASH

OTHER_TENDERCREDIT_CARD

YEAR_DT
QUATER_DT

MONTH_DT

WEEK_DT
DAY_DT

HOUR_TIME

HOLIDAY

PRODUCT

MERCHANT GROUP

MERCHANT SUBGROUP

DEPARTMENT
CLASS

PRICING REMARKS

VENDOR

RETAIL PRICE
EVENT

STORE
DISTRICT

REGION

DIVISION

STORE_DEPT

FLOOR_LOCATION
OPERATIONAL_DEPT

time dimension operational hierarchy

facts
(point of sale)

product dimension

Fig. 3.6. Cut-out of the Wal-Mart data warehouse schema.

actional and analytical processing – with respect to speed, maintainability
and possible utilization. This is not about throwing together existing prod-
ucts onto the same server. It is about making transactional and analytical
schemas the unified basis for both transactional and analytical applications,
again in the sense of data independency. Transactional schemas and analyt-
ical schemas are just regions of a whole database schema in such a solution.
Programs that transform and transport data between these regions replace
current ETL layers and these programs are just further applications that ac-
cess and manipulate the data in the sense of data independency. Here, in
principle, it does not matter whether these transforming programs reside on
a separate application server or on the database server itself, however, it is
very likely that they will be placed onto the database server exploiting active
database features.

Application Separability

The problem with each combined transactional and analytical solution is that
it must support what we call separability or application separability. Sep-
arability is the possibility to guarantee the robustness or quality of service
of one application independent from the influence of other applications in a
system of applications. For example, operating system processes are a con-
crete mechanism that target separability. In multi-tier system architectures
separability becomes a subtle issue. The classical tiered data warehousing ar-
chitecture naturally supports quite strong separability, because the systems
are actually separated. The connection between the systems is limited to the
times the ETL layer reads from the transactional systems. ETL layer products
support the maintenance of this connection by providing means to schedule
the extraction. For the separability of the envisioned architecture database
management system features are necessary that allow for an advanced prior-



3.6 Integration of Business Processes and Business Intelligence 71

itization of the database tables and the threads accessing these tables along
the lines of a mature access model. Actually, commercial database products
offer such advanced features.

As a proof of concept, a first step in the direction of fully integrated trans-
actional and analytical processing could be undertaken by running existing
database, ETL layer and data warehousing products in separated capsules
of an appropriate virtualization software or of an operating system that na-
tively supports virtualization like i5/OS with its hypervisor. Such an approach
yields separability, however, in the beginning there is obviously no advantage
in terms of tighter interweaving of transactional and analytical processing.
However, once the system is running on the same machine it can be seen as
whole and it can be patched in a very targeted way to try out potential speed
ups of the extraction and load processes. Technically, such an attempt is only
possible if the system is a complete white box to the experimenting develop-
ers. So, natural candidates in such an attempt are open-source products for
the data warehousing technology, e.g., Mondrian (Pentaho analysis services),
for the database technology and, in particular, for the virtualization software,
e.g., Xen [78].

Completely Crosscutting Information Backbone

Systems evolve. New systems with new functionality are added while the im-
pact and value of these systems can not be really estimated at the time of their
introduction. From time to time it can be fruitful to analyze for a certain kind
of enterprise functionality whether the driving forces on the problem side and
the existing architectural patterns on the solution side are fully understood.
If some stage of maturity is reached it is time to think about systematically
designing a unifying architecture from scratch.

In Sect.3.5 we have discussed the integration of manufacturing exececu-
tion systems with enterprise resource planning systems via the database, in
this section we have discussed the integration of enterprise resource planning
systems with analytical processing via the database. This eventually leads to
an extension of the industrial integration backbone so that it spawns all the
different kinds of applications discussed [114]. We have visualized the resulting
architecture once more in Fig. 3.7.

Once such a database backbone is created, in particular, with the unifica-
tion of transactional and analytical schemas, it would be possible to think
about thoroughly applying multidimensional schema design over all levels
of data in the functionality stack. Today, it is state-of-the art to exploit
multi-dimensional schema design for point-of-sales analysis, see the Wal-Mart
database schema in Fig. 3.6. It is possible to ask what has been sold, when,
where, why, by whom, to whom, why? The analytical power lies in the oppor-
tunities to drill down and roll up the dimensions of this question. With respect
to activity monitoring exploiting multidimensional schema design [236] means
to pose similar question about who did what, when, why, with which resources,



72 3 Research Opportunities in Business Process Technology

results, performance etc.? Imagine the analytical potential in combining this
with the data from the production process, eventually leading to an IT system
integration from the top floor to the shop floor.

ERP

Machine and Device Control

Manufacturing Execution System (MES)

Enterprise Resource Planning (ERP)

production
schedule

production
report

Machine and Device Control

MES

operational
commands

operational
responseoperational

commands
operational
response

Business Intelligence (BI)

process
report

planning
rules ADW

BI

Industrial
Information
Integration
Backbone

Fig. 3.7. Completely crosscutting information backbone.

Information Backbone Compared to Data Mart Architecture

In Sect. 3.5.4 we conducted a discussion about the arguments for the integra-
tion versus arguments for the separation of automation and business systems.
This discussion was conducted against the background of enterprise resource
planning systems and manufacturing systems. It is instructive to repeat this
discussion here with the viewpoint of analytical processing of manufacturing
data. The analytical processing systems in Fig. 3.7 form a business intelligence
layer that is placed on top of the enterprise resource planning systems layer.
Actually, there exists also analytical processing that directly gets its data from
the manufacturing systems. Unlike business intelligence such analytical pro-
cessing is typically not there for supporting strategic planning and decision
support but for supervising and improving the production processes. Analyses
like those found in six sigma projects – see Sect. 2.4.2 – would be typical. If
such systems are also integrated via the information backbone approach this
would result into an architecture depicted in Fig. 3.8. We have already men-
tioned in Sect. 3.5.4 that the information integration backbone architecture
is a hub-and-spoke architecture and this aspect is visualized better in Fig. 3.8
than in Fig. 3.7.



3.6 Integration of Business Processes and Business Intelligence 73

Analytical processing in order to improve the quality of a production pro-
cess means mining production data. It is very typical that the data necessary
for a concrete data analysis are stored in a dedicated data mart. This way a
landscape of data marts grows with one data mart for each kind of analysis. A
practitioner’s argument against a centralized database approach that replaces
the data mart landscape is a performance argument. It is said that bringing
back the analysis data into the production databases would unacceptably slow
down this production database. An analysis is made of complex algorithms
and queries against a data mart and a complex query that gather data from
production databases. If it is possible to do several analyses on some extracted
data it is reasonable with respect to performance to separate the extraction
efforts from the analyses efforts. With a data mart landscape approach such
a separation is enforced by system architecture. But the fact that a concrete
system architecture enforces an architectural principle is not a strong argu-
ment for this system architecture. It is also possible to rebuild the data mart
schemas in a central production database with the same performance benefits
– off-loading in the shell so to speak. The data marts are then realized as
non-updatable views, i.e., as materialized queries. It is often an option to save
computing time by pre-computing results or manifesting part computations
as reusable data – think of all the several kinds of indexes for information
retrieval, for example.

ERP Analytical
Processing

MES

Industrial
Information
Integration
Backbone

Fig. 3.8. Direct analytical processing for manufacturing data.

Nevertheless, it also has to be said that on the basis of current technol-
ogy the integration approach really does not have to be the optimal one in
terms of total cost of ownership. Bringing back data mart as a schema into the
central database can lead to extra costs if the central database only scales up
relatively expensive. If the data mart is, for example, relatively small and does
not require the same service level agreement, it can easily be that the realiza-
tion with an extra commodity server is the best price option. Furthermore,
there might be provisos against integrating the data marts into the central



74 3 Research Opportunities in Business Process Technology

production database by the production database owners. In a concrete case
the dedicated data mart server solution is usually just the standard one in the
sense that it effects the overall systems operations and is easier to estimate.
Again, these counter-arguments against an information backbone approach
must be traded off against its significantly improved conceptual maintain-
ability and flexibility. It remains a research issue here to establish a system
of quantifiable driving forces onto the selection of the costs and risks of the
optimal information system architecture.


	3 Research Opportunities in Business ProcessTechnology
	3.1 Business Process Platforms
	3.2 Executable Specification of Business Processes
	3.2.1 Means of Business Process Automation
	3.2.2 Inter-Organizational Business Process Automation
	3.2.3 Executable Specification Communities

	3.3 Component-Based Development
	3.3.1 Sub Industry Aspect of Component Technology
	3.3.2 Infrastructure Aspect of Component Technology
	3.3.3 Large System Construction Aspect of ComponentTechnology

	3.4 Exploiting Emerging Tools for BCM
	3.5 Integration of Business and Production Processes
	3.5.1 Automatic Shop Floor Control
	3.5.2 Manufacturing Execution Systems
	3.5.3 Current Automation and Business IT Initiatives
	3.5.4 Industrial Information Integration Backbone
	Arguments for Separation of Automation and Business Systems
	Arguments for Integration of Automation and Business Systems


	3.6 Integration of Business Processes and Business Intelligence
	3.6.1 The Origin of Today’s Data Warehousing Architecture
	3.6.2 Marrying Transactional and Analytical Schemas
	Application Separability
	Completely Crosscutting Information Backbone
	Information Backbone Compared to Data Mart Architecture




