

 Business Process Technology

Dirk Draheim

A Unified View on Business Processes,
Workflows and Enterprise Applications

Business Process Technology

laws and regulations and therefore free for general use.

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

Dr. Dirk Draheim
Universität Innsbruck

Technikerstr. 23
6020 Innsbruck

draheim@acm.org

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Springer Heidelberg Dordrecht London New York

e-ISBN 978-3-642-01588-5
DOI 10.1007/978-3-642-01588-5
ISBN 978-3-642-01587-8

Cover design: KuenkelLopka GmbH

© Springer-Verlag Berlin Heidelberg 2010

Austria

Library of Congress Control Number: 2010932874

Zentraler Informatikdienst (ZID)

Foreword

In the last decade there has been an explosion of interest in the modeling and
automation of business processes, and competence in this area is seen as in-
creasingly critical to business competitiveness and stability. However, this has
lead to a parallel explosion in solution approaches and technologies leading to
a state-of-the-art that is highly disjointed and confused. In particular, there is
a mismatch between business process modeling technologies on the one hand,
which focus on allowing domain experts to describe business processes in a
graphical, easy-to-use way, and workflow engines on the other hand which
focus on automating the enactment of business processes in association with
human users. Not only is there little consensus on concepts and terminology,
there is also little connection between commercial solutions and established
computer science theory. This is where Dirk Draheim’s book makes its con-
tribution. First, it clarifies the conceptual differences and similarities between
the many different business process technologies available today and lays the
foundation for a unified understanding of the field. Second, it explores the re-
lationship between these technologies and traditional principles of computer
science such as structured programming. And third, it lays out a vision for the
future of business process technology and its optimal use in business process
improvement and enterprise systems development.

Most books on business process technology either take a very broad but
high-level view of the challenges and solutions in this area or provide a very
detailed but narrow view of a specific issue or technology. It is rare to find a
book that manages to do both. Dirk Draheim combines his experience with
the wide-range of practical technologies currently used to automate business
processes with his deep understanding of computing science formalisms to
show how the former can be given a stronger theoretical foundation. Finally
the best part of the book is saved until the end. In the final chapter Dirk
Draheim proposes “Typed Workflow Charts” as a new formalism for modeling
and automating business processes. This represents a genuinely innovative
step forward which is likely to have a big impact on the way business processes
are specified and automated in the future.

Mannheim, July 2010 Colin Atkinson

Author’s Preface

Is it possible to specify business processes in a technology-independent and ex-
ecutable manner? That is the question this book addresses. There are different
communities addressing business processes each with different objectives, tools
and terminology – business process reengineering, business process modeling,
task modeling, business process management, workflow management. We seek
for a unified understanding of the phenomena addressed by these communities.
There is a huge potential for automation in today’s Enterprises. An integrated
platform for specifying and controlling processes in an enterprise would be an
enabling technology to use this potential. However, there are severe challenges
that must be overcome before such a platform can be designed. First, there
are structural frictions in today’s business process modeling and today’s busi-
ness process implementations, i.e., lack of operational semantics and lack of
a canonical implementation. Second, current business process management
(BPM) and workflow technologies are not fully integrated with the applica-
tion programsthat implement the dialogues of an enterprise application.

Business process models do not have a precise operational semantics in the
sense of a fixed set of rules that describe the state changes in the system un-
der consideration. There is no canonical mapping between the activities of the
business processes and the dialogues that support these activities. The work-
flow paradigm in its current form does not really help in this situation. Up to
now, workflow technology is only really convincing in the field of document
management. Current business process execution and management technolo-
gies arose as enterprise application integration technologies and they are still
used in this manner. However, workflow technology is not yet a proven concept
as a general enterprise resource management technology.

Today’s BPM technology is successfully used in enterprise application
projects in the following sense. As a first step the system analyst identifies the
rules behind the interplay of existing enterprise applications. These rules are
then automated by a BPM product. Today’s BPM technology controls work-
flow states. However, it does not control the dialogues that bridge the work-
flow states – the dialogue states are not seen by BPM technology. This means,

VIII

most importantly, that the dialogues are also not amenable to advanced BPM
tools and techniques like business process simulation and business process
monitoring.

Furthermore, if BPM technology is used to build a workflow-intensive
system from scratch it is not obvious any more how to design the human-
computer interaction. The problem is to fix the right granularity of workflow
states versus dialogue states. Despite some heuristics a systematic treatment
of this question is still missing. We follow a different, more direct approach:
workflow states and dialogue states are unified so that the aforementioned
problem simply does not appear any more. This text aims at characteriz-
ing and mitigating the mentioned gaps. We target a seamless specification of
workflows and dialogues.

Objectives of the Book

We analyze the existing gap between business process modeling, which is a
system analysis activity, and business process automation, which is related to
system design. We also analyze the gaps and tension between current classes
of business process technology, i.e., business process modeling tools, workflow
definition, and integrated development environments. We claim that an anal-
ysis of the aforementioned gaps and tension is necessary before an integrated
business process management platform can be designed. These are some of
the discussions, questions, results and contributions of the book:

• We explain that business process management lifecycle models should be
understood as pools of systematic activities and argue that they can hardly
be interpreted as strictly staged models in Sect. 2.4.1.

• We propose a new model of IT ownership which cleanly separates foresee-
able total costs of ownership and assessable total benefit of ownership in
Sect. 2.6.4.

• We introduce a spiral quality management system model in Sect. 2.7 which
is reductionist in terms of organizational functions but sophisticated in
terms of interfaces between organizational functions.

• We identify three distinguishable aspects of component technology in
Sect. 3.3, i.e., the sub industry aspect, the infrastructure aspect and the
large system construction aspect.

• We explain why today’s emerging CSCW tools should be exploited in
business continuity management in Sect. 3.4.

• We propose the integration of business processes, production processes
and business intelligence by the means of data warehousing technology in
Sects. 3.6.2.

• We distinguish between a global view on workflows, which is the view of
workflow supervisory, and a local view on workflows, which is the view of
the single workers involved in workflow executions, in Sect. 4.1. It turns
out that this distinction helps in the understanding of quality of design

Author’s Preface

IX

of business process specifications and also helps in understanding the gap
between business process modeling and business process automation.

• We report on the informality of business process modeling languages in
Chapter 4 and why this informality is sometimes needed in projects. For
example, we report on the semantic inconsistencies of how events are used
in today’s business process modeling languages in Sect. 4.4.

• We discuss the need for a means to specify arbitrary synchronization in
business process models and workflow definitions in Sects. 4.6 and 9.2.10.

• We coin and define the term of a methodology stakeholder in Sect. 5.1.
We explain the impact of methodology stakeholders on the software engi-
neering practices of real-world projects.

• Throughout the text we foster a visualization independent viewpoint of
business process specification and even more, i.e., a syntax independent
viewpoint or to say it better a concrete syntax independent viewpoint –
see, e.g., the discussion of abstract syntax in Sect. 5.1.3.

• We describe two different semantics of business processes with multiple
start and end events in Sect. 5.2.2, i.e., a self-contained semantics and a
global, context-embedded semantics. We describe that the selection of a
self-contained semantics has an impact on the flexibility in building hierar-
chies and try to find an explanation why a self-contained semantics seems
often to be preferred in practice.

• We identify the reasons why methodology stakeholders stuck to the guide-
line of single entry or exit points for business process specifications – see
Sect. 5.2.3.

• A visualization-independent characterization of uniqueness of interface
points – see Sect. 5.2.4.

• We observe that certain type specifications for data in leveled data flow
diagrams are control flow constraints in Sect. 5.3.

• We investigate the opportunity of bringing the best practices of structured
programming to the field of business process specification in Chapter 6.
This attempt is done in a sophisticated manner. It is accompanied by a
reconsideration of the arguments of structured programming in that we
ideally target to identify the scientifically discussable core – in the sense
of falsifiability [287, 288] – of the structure programming metaphor.

• We explain workflow systems from the viewpoint of human-computer in-
teraction in Sect. 7. We explain workflow systems as three-staged human-
computer interaction. On this basis we are able to distinguish between
terminal/server-style and windows-style workflow systems and analyze
their differences.

• We explain the importance of a general instead of pattern-oriented view-
point on the assignment of resources to activities in workflow automation
in Sect. 7.2.3.

• We identify four well-distinguishable visions for service-oriented architec-
ture, i.e., the enterprise application integration vision, the business-to-
business-vision, the flexible processes vision and eventually the software

Author’s Preface

X

productizing vision – see Sect. 8.1. This clean distinction can help in
projects to identify and prioritize more quickly the actual targets of the
different stakeholders who are advocating a service-oriented architecture
strategy.

• We identify two different styles of service-oriented architecture for enter-
prise application architecture which are basically distinguished from each
other by whether the service tier implements business logic and holds
persistent data and coin the terms fat hub resp. thin hub hub-and-spoke
architecture for these architectural styles – see Sect. 8.2.

• We give a characterization of SOA governance as an approach to massive
software reuse – see Sect. 8.5.2

• We elaborate that software reuse can be distinguished from software use,
i.e., that software reuse is the either a static use of arbitrary software or a
dynamic use of multi-tenant software – see Sect. 8.5.3.

• We introduce the notion of a typed business process modeling. This ap-
proach has typed workflow charts as a basis which are integrated with a
hierarchy of typed business process models – see Sects. 9.2 and 9.4. The
analysis of leveled data flow diagrams in Chapter 5 lays the basis for the
design of a concrete integrated typed business process platform.

• We introduce workflow charts and define their semantics in Sect. 9.2.2.
Workflow charts are typed tripartite directed graphs. Workflow charts ex-
tend and generalize formcharts with respect to the needs of executable
business process specification. This means that workflow charts resolve the
research question posed in Sect. 3.2. Using workflow charts as a domain-
specific programming language means closing today’s gap in workflow def-
inition and application programming.

Acknowledgements

I am grateful to Prof. Dr. Colin Atkinson, Prof. Dr. Ulrich Brüning, and Prof.
Dr. Wolfgang Effelsberg for making this work possible. Thanks to my advisor
Colin Atkinson for his deeply impacting scientific remarks. Thanks to Ulrich
Brüning for introducing me to the University of Mannheim. Thanks to Ulrich
Brüning and Wolfgang Effelsberg for ongoing technical and personal advice.

Thanks to the University of Mannheim for hosting me.
Thanks to Prof. Dr. Josef Küng and Prof. Dr. Gerhard Weiß for reviewing

this text. Their comments essentially improved the text.

Innsbruck, July 2010 Dirk Draheim

Author’s Preface

Contents

1 Introduction . 1
1.1 Relevance of Business Process Technology 2
1.2 Need for Flexible Business Process Technology 6
1.3 Outline of the Book . 7

2 Business Process Excellence . 11
2.1 Business Process Reengineering . 12
2.2 Business Process Optimization . 16
2.3 Business Process Benchmarking . 24
2.4 Business Process Management . 26
2.5 Business Continuity Management . 30
2.6 Information Technology as Mission-Critical Asset 34
2.7 Quality Management Systems . 42

3 Research Opportunities in Business Process Technology . . . 45
3.1 Business Process Platforms . 46
3.2 Executable Specification of Business Processes 48
3.3 Component-Based Development . 50
3.4 Exploiting Emerging Tools for BCM . 55
3.5 Integration of Business and Production Processes 57
3.6 Integration of Business Processes and Business Intelligence . . . 66

4 Semantics of Business Process Models . 75
4.1 Global and Local Views on Business Processes 77
4.2 Transformation of Goods and Information 90
4.3 Exploiting a Business Process Definition . 98
4.4 Events in Business Process Modeling . 100
4.5 Semantics of Events . 104
4.6 Synchronization in Business Process Models 112

XII Contents

5 Decomposing Business Processes . 119
5.1 Motivation for Decomposing System Descriptions 119
5.2 Unique versus Multiple Entry and Exit Points 134
5.3 Parallel Abstraction of Activities and Transferred Data 147
5.4 Towards Parallel Abstraction of Activities and Constraints 152
5.5
5.6 Modeling Variants . 157

6 Structured Business Process Specification 161
6.1 Basic Definitions . 162
6.2 The Pragmatics of Structuring Business Processes 167
6.3 Structured Programming . 181
6.4 Frontiers of Structured Business Process Modeling 191

7 Workflow Technology and Human-Computer Interaction . . . 195
7.1 Two HCI Styles of Workflow Systems . 195
7.2 Actor Assignment in Workflow Automation 210
7.3 Form-Oriented Analysis . 218

8 Service-Oriented Architecture . 221
8.1 The Evolution of Service-Oriented Architecture 222
8.2 Three-Tier Service-Oriented Architecture 224
8.3 Characteristics of Service-Oriented Architectures 228
8.4 Web Services based Service-Oriented Architecture 230
8.5 Service-Orientation as Development Paradigm. 234

9 Conclusion . 243
9.1 Business Processes and Workflows . 243
9.2 Integrating Workflow Definition and Dialogue Programming . . 248
9.3 Towards Integrating Human Activity and Workflow Definition 267
9.4 On Closing the Gaps in Business Process Technology 271

References . 273

Index . 293

Seamless Business Process and Enterprise Application Modeling. . 154

List of Figures

1.1 Business processes, workflows and applications. 1

2.1 Cohesion of business processes. 18
2.2 Extracting a parallel activity. 20
2.3 Running process instances in parallel. 20
2.4 Creating specialized processes for alternative cases. 22
2.5 Creating a specialized activity. 23
2.6 Business process management lifecycle. 26
2.7 The Deming wheel for quality control. 28
2.8 Business continuity management lifecycle. 31
2.9 The stages of the incident timeline. 32
2.10 ITIL v3 best practices stack. 33
2.11 Integration for On Demand Business. 36
2.12 Poll on business problems. 37
2.13 Total impact of IT ownership. 40

3.1 San Francisco framework. 53
3.2 Division of labour and productizing in projects. 56
3.3 Manufacturing execution system. 59
3.4 Production planning system. 61
3.5 Industrial information integration backbone. 65
3.6 Cut-out of the Wal-Mart data warehouse schema. 70
3.7 Completely crosscutting information backbone. 72
3.8 Direct analytical processing for manufacturing data. 73

4.1 Business process definition and supervisory. 80
4.2 Workflow supervisory and automation. 83
4.3 The WfMC workflow reference model. 84
4.4 Complex business process state. 88
4.5 Supervision of production processes. 89
4.6 Example ARIS process chain. 91

XIV List of Figures

4.7 Events in business processes and Petri nets. 102
4.8 Alternatives to express decision points. 103
4.9 Modeling an expiring condition. 106
4.10 An operation process. 107
4.11 Petri net for the start of an operation. 108
4.12 Alternative operation process specification. 109
4.13 A simpler operation process. 110
4.14 Petri net for an operation. 111
4.15 Attempt to model competing processes. 111
4.16 End synchronization of business processes. 112
4.17 Synchronization of business processes. 113
4.18 Synchronization in presence of cycles. 114
4.19 History of a business process instance. 115
4.20 Synchronization in presence of cycles – version (ii). 116

5.1 Building a model hierarchy bottom-up. 121
5.2 A business process model with data flow. 124
5.3 Decomposition with unique start and exit points. 125
5.4 Transforming decompositions that span more than one level. . . . 126
5.5 An explicitly given hierarchy. 127
5.6 Recursion via levels. 128
5.7 Case distinctions in data flow diagrams. 129
5.8 An instance of a business process model with recursion. 129
5.9 Flattening a recursive process specifcation. 130
5.10 Self-recursive business process model. 131
5.11 An instance of a business process model with self-recursion. 132
5.12 Flattening a recursive process specification. 133
5.13 Decomposition with multiple start and exit points. 135
5.14 Alternative control flows for a business process. 138
5.15 Decomposing according to business goals. 143
5.16 Overlapping business goals. 144
5.17 Process specification with duplicated activities. 145
5.18 Example business goal oriented decomposition. 147
5.19 Parallel decomposition of activities and transitions. 148
5.20 Completely symmetric decomposition. 150
5.21 Simple parallel decomposition example. 152
5.22 A combined business process and system model. 155
5.23 Mitigating structural frictions. 156
5.24 Variant Modeling. 157

6.1 Formation rules for D-flowcharts. 163
6.2 Example Non-D-flowchart. 164
6.3 Characterization of bisimilarity. 166
6.4 Business process model that is not structured. 167
6.5 Structured business process models. 168

List of Figures XV

6.6 Structured versus arbitrary business process model. 173
6.7 Listing enriched with arrows. 175
6.8 Business process hiararchy. 177
6.9 Deeper business process hierarchy. 178
6.10 Structured business process model that replaces another. 179
6.11 Business processes without structured presentation. 180
6.12 Cycle that is exited via two paths. 180
6.13 Resolution of process cycles with multiple exits. 181
6.14 Two business processes that are not behavioral equivalent. 193

7.1 Process definition with forms. 198
7.2 Strictly chained forms. 199
7.3 Superform-based dialogue. 200
7.4 Saving screen states. 202
7.5 Exploiting windowing for saving screen states. 203
7.6 Virtual screens, viewports, windows. 204
7.7 Exploiting the root pane of a windowing system as worklist. . . . 205
7.8 Fully exploiting windowing for saving screen states. 206
7.9 Process definition with dialogues. 207
7.10 Terminal-server style workflow system. 208
7.11 Roles attached to a workflow definition. 211
7.12 Unfolding a workflow definition. 212
7.13 Same role attached to multiple activities. 214
7.14 Detailed model with same role attached to multiple activities. . . 215
7.15 Conducting a business trip with complex actor assignment. 216
7.16 General dynamic actor scheduling. 217

8.1 SOA paradigms. 223
8.2 Gartner SOA tier terminology. 226
8.3 Example CORBA service bus. 228
8.4 The web services technology stack. 231
8.5 Web services technologies for business process managment. 232
8.6 Silo software system development. 236
8.7 Iterative silo softare system development. 237
8.8 Division of a project. 238
8.9 Software reuse across project boundaries. 239
8.10 Software reuse from a maintained software product. 239
8.11 SOA governance. 241

9.1 Concrete business process technologies. 247
9.2 Business process model for conducting a business trip. 249
9.3 Workflow chart for conducting a business trip. 250
9.4 Basic workflow chart. 251
9.5 Implicit versus explicit multiple choice. 256
9.6 Deferred server actions as entries to workflows. 257

XVI List of Figures

9.7 Synchronization in workflow charts. 262
9.8 An enterprise system landscape. 266
9.9 Enterprise application integration. 266
9.10 Inserting auxiliary specification. 268
9.11 Synchronizing auxiliary activity against form submission. 269
9.12 Inserting auxiliary specification (ii). 270
9.13 Synchronizing auxiliary activity against worklist selection. 271
9.14 Business process platform mitigating gaps and tensions. 272

Listings

6.1 Textual presentation of the process in Fig. 6.2 164
6.2 Alternative textual presentation of the process in Fig. 6.2 165
6.3 Textual presentation of the business process in Fig. 6.4 167
6.4 Textual presentation of business process (i) in Fig. 6.5 169
6.5 Textual presentation of business process (ii) in Fig. 6.5 169
6.6 ‘go to’-Program for seeking in an array. 182
6.7 Reformulation of the ‘go to’-Program in Listing 6.6 182
6.8 Structured Program for seeking in an array. 184
6.9 Making unique finalizing actions. 186
6.10 Moving special actions into the loop. 187

1

Introduction

The topic of this book is the gaps and tensions between the realms of busi-
ness process modeling, workflow definition and application programming – see
Fig. 1.1. The goal is to eventually realize fully integrated executable business
process specification. In order to approach this goal, first the gaps and ten-
sions between these three fields must be carefully analyzed. We clearly have a
software engineering viewpoint on business processes, as you might guess from
our choice of terminology in Fig. 1.1, i.e., business process modeling in favor
of business process engineering, workflow definition in favor of the currently
widely used term business process management, and application programming
instead of enterprise applications. This means we have a focus on notation and
its semantics.

But please pay attention! We neither neglect the business-related mission
nor the technical issues of enterprise information technology. On the contrary,
we believe that each purely language-oriented approach is likely to fail to
overcome the problems that you are faced with if you aim to create a next
generation business process platform. It is simply not enough to choose a lan-

Business Process
Modelling

gaps and tensions

Workflow
Definition

Application
Programming

Fig. 1.1. Gaps and tensions between business process modeling, workflow control
and dialogue control.

1
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_1,
© Springer-Verlag Berlin Heidelberg 2010

D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

2 1 Introduction

guage that seams to be rich enough to describe business process phenomena
and to define a mapping onto components of a programming technology. It is
not enough, because there are plenty of subtle driving forces in the context
that cannot be simply neglected. These driving forces are (i) non-formality of
business process modeling, (ii) a certain kind of design orientation of applica-
tion programming and (iii) a certain focus of today’s workflow technology on
enterprise application integration (EAI).

The activity of business process modeling has a business process optimiza-
tion facet and a requirements elicitation facet. For neither of these two facets
is specification completeness a necessity, which means, in particular, the busi-
ness process descriptions in this area are usually far from being executable.
The reason for this is simple: the languages and notations used here are not
formal, i.e., they have no formal semantics as is the case for programming
languages. It is wrong to judge this immediately as a flaw, there is also a
reason for this. The languages and notations need only to be as accurate as
needed for supporting tasks in business process optimization and not beyond.
Note that too much accuracy is simply overhead here and can even hinder
the creative activities in this field. Remember that business process optimiza-
tion relies on activating and communicating know-how of business process
experts, best-practices like strategic benchmarking or approaches to learning
organizations. The same is true for requirement elicitation, here again com-
plete accuracy is not necessary. This might puzzle you, because, specification
completeness is usually considered an ideal for requirement specification, see,
e.g., the characteristics of a good software requirements specification (SRS)
listed in IEEE standard 830-1993 [169]. However, again completeness does not
mean need for executability or formality. In practice a good, elaborated text
document to which the different stakeholders have committed as a result of a
requirement elicitation process is considered appropriate.

1.1 Relevance of Business Process Technology

Business process technologies are clearly a major issue in information tech-
nology projects in today’s enterprises. For example, in 2005 business process
management suites were at the peak of inflated expectations in the Gartner
hype cycle report for emerging technologies [126, 125]. Being at the peak is
telling, however, alone the fact that business process management suites are
among the technologies investigated in the report indicates the importance
of the topic for business stakeholders; actually, the technologies considered
in the hype cycle report span a wide range including, e.g., DNA logic and
handwriting recognition.

Moreover, also the topic of business process platforms is among the in-
vestigated topics of the hype cycle providing further evidence for the impor-
tance of business process management. From a vendor’s viewpoint a busi-
ness process platform is a business process management suite that ships with

1.1 Relevance of Business Process Technology 3

commercial off-the-shelf components for a certain domain. From a more con-
ceptual viewpoint business process platform technologies go beyond business
process management suites in that they define a component model for hooking
workflow-based application parts into a business process management tech-
nology, most likely in terms of service-orientation, because service-oriented ar-
chitecture (SOA) is the current trend of component-orientation in the realm
of enterprise computing. So, business process platforms are a vendor’s an-
swer to the increased need for flexibility and adaptivity in business process
management.

Also, a glimpse at the seventh framework program (FP7) of the European
Union [123] shows that the scientific community is also very well aware of the
impact of innovative business process management solutions: “ICT in support
of the networked enterprise” is an objective of FP7 and one of the target out-
comes of this objective are “tools and technologies that enable intra-enterprise
collaboration and the definition and execution of tasks and workflows for op-
eration across multiple domains” [123].

On the Role of Business Processes in an Enterprise

Basically, we have seen four large schools of management in the last century.
The classic Taylorism [339, 340, 341] was a systematic work-organizational ap-
proach, a school of improvement of processes. Taylorism was overcome later
by human-resource orientation [19], followed by a mathematical school or
operations research [253] and systemics or cybernetics [21, 22, 23, 234] even-
tually. Business process orientation in its concrete forms of business process
reengineering and business process management entered the stage in the 1990s
and still has major impact on enterprises and enterprise technologies. So, is
business process orientation a fifth school of management or is it only an im-
plementing discipline or even less, just a terminology? Some would say that
business orientation is a revival of Taylorism, others would say that it starts
where Taylorism has ended an develops it further by bringing a more holis-
tic, organizational viewpoint to it. However, it is a fact that many successful
enterprises are oriented towards business processes today. You can find busi-
ness process orientation implicitly in today’s established quality management
approaches. You can find business process orientation explicitly in concrete
projects that exploit one of the known business process disciplines or tech-
nologies.

Excellent enterprises are managed in an excellent way. Management is
about strategic planning and the management of operations. Management
of operations is about planning, organization, coordination and control [124].
The management of operations is about the management of business processes.
Planning and organization provide the resources and create the structures that
enable an efficient functioning of the business processes. Coordination and
control of daily operations provide business process execution and business
process monitoring. Today’s quality management systems like ISO 9000 are

4 1 Introduction

business process oriented. If a quality management system is well-established
in an enterprise it is not just an auxiliary function. A quality management
system can become so pervasive in an enterprise that it forms the central pillar
of the management system of the enterprise. Quality management systems
are based on a notion of business process management lifecycle. The key
performance indicators that drive the business process management lifecycle
of a quality management system are specified and analyzed in terms of the
defined business processes of an enterprise.

The enterprise resources form the hardware of the enterprise. The business
processes are the software of the enterprise. The management of an enterprise
has a central interest in business process definition. In daily operations the
work is not necessarily transparent, i.e., it is not necessarily following fixed
rules and processes. Work can be done in an ad-hoc manner, it can be based
on routine and word-of-mouth knowledge. It often needs significant efforts to
make the functioning of an enterprise more transparent. Business process doc-
umentation is the first step in a business process definition project that targets
a systematization of daily operations. Actually, business process documenta-
tion alone already causes a power shift to the management of an enterprise.
Knowledge about how things are done in an enterprise is a crucial element
of power. The more the managers know about how employees reach their
targets, the more they will conceptually decouple people from their tasks,
i.e., the more concrete stakeholders will become substitutable and therefore
less important in the company. Therefore, it is often possible to encounter
significant resistance when a business process definition project is executed.
Often, business process projects must be conducted as change processes with
a systematic organizational change management.

Establishing Business Process Technology

Business process technologies comprise tools to analyze, document, spec-
ify, monitor, simulate, support and implement business processes – see also
Fig. 9.1. It is the role of business processes and process orientation in today’s
enterprises that makes business process technology so important. Further evi-
dence for the significance of business process technology is given for us by the
concrete business process technology related projects that we see in industry,
in particular, by our own experience in projects with industrial partners. We
guess that business process technology is an issue in one form or another in
each enterprise of a certain size. Somehow, industrial stakeholders approach
business process technology either top-down or bottom-up. The top-down ap-
proach is a rather strategic one. It is driven by the desire for a general, i.e.,
enterprise-wide information technology reorganization or business process re-
organization. The bottom-up approach is usually technology-driven, i.e., the
need for local improvements in an enterprise IT landscape force stakeholders
to look for appropriate products available to improve the situation. Therefore
there are forced to look into state-of-the-art concepts that these products are

1.1 Relevance of Business Process Technology 5

based on – possibly resulting in a change of mind set. This impact alone but
also some tight coupling of the concerned system with other systems of the
enterprise can yield to a domino effect onto the surrounding system landscape,
likely triggering the decision to proceed rather top-down eventually.

Often, the usage of concrete business process technology emerges step by
step over the years by the need of continuous improvement of support for
the business processes of an enterprise. Often, there is also need for explicit
projects related to business process technology. We have conducted ourselves
a couple of such projects, e.g., with logistics providers, banks and insurance
companies. Such explicit business process projects can have the task to bring
together business process modeling activities with software engineering activ-
ities for business-process applications, to select a concrete business process
management technology, to test the maturity of a concrete business process
management technology, to answer a concrete question in business process
definition, to design the human-computer interaction of a workflow-intensive
system or to define a software component architecture for a concrete business-
process application. The experience from these projects strengthen our opinion
that, on the on hand side, business process technology is here to stay and that,
on the other hand side, there is still a potential to improve business process
technology significantly.

Beyond Business Process Management and Technology

Management is a complex and heterogeneous function in an enterprise. A first
attempt at systematization of management tasks is usually to consider differ-
ent levels of management that somehow correspond to levels in the organiza-
tional hierarchy, e.g., a strategic level, a tactical level and an operational level.
For the sake of the following discussion we want to draw the reader’s atten-
tion to three other different categories of management that we see in today’s
enterprises, i.e., business process management, project management [291] and
knowledge management [233, 334]. These three kinds of management coexist
in an enterprise. The operational level, i.e., the level of daily operations, is the
domain of business process management. The more you move up the levels
in the organization chart, the less work will be defined in terms of processes.
Also at the lower levels of an organization there is a lot of work that is not
amenable to business process management. For example, the work in an R&D
department (research and development department) is a creative task that is
often hard to define and hard to understand. The correct management ap-
proach for a creative R&D department might be what is known as the ‘laissez
faire’ approach to management.

Business process management is about processes that are started over and
over again in order to achieve a defined business objective. Like business pro-
cesses projects are also defined forms of work undertaken by people in an
enterprise to achieve a goal. However, projects are temporary and unique.
You could say that a project can also be considered as the single instance of a

6 1 Introduction

business process. Sometimes, projects are repeated, so then they are actually
not really unique any more. But this is only an artificial discussion. Projects
are different from business processes. They are planned, staffed and controlled
in a different manner. For example, projects are always managed by project
managers, whereas there are not necessarily explicit business process man-
agers in an enterprise that runs defined business processes. However, there is
a potential for unification of business process management and project man-
agement practices and tools in the future. Knowledge management is about
the systematization of know-how in an enterprise. Knowledge management is
not the opposite of business process management; it is orthogonal to business
process management. Business processes also embody a form of knowledge.
Defined business processes are accompanied by additional knowledge that
might not be amenable to a definition as business processes.

The main topic of this book is the integration of business process model-
ing, workflow definition and system dialogue programming in future business
process management platform. Beyond that, there is a potential in integrating
practices and tools for business process management, project management and
knowledge management. The proposed exploitation of Web 2.0. technology for
business continuity management in Sect. 3.4 and the envisioned integration
of production processes, business processes and business intelligence in the
domain of manufacturing in Sects.3.5 and 3.6 are instances of this potential.

1.2 Need for Flexible Business Process Technology

Today’s enterprises must react to new customer demands in highly competi-
tive markets. Due to the globalization of markets with its new opportunities
and threats enterprises must be able to react even more quickly. Informa-
tion technology plays a pivotal role in making enterprises more flexible. We
will talk about information technology as a mission-critical asset also later in
Sect. 2.6.

With respect to flexible information technology, there are two sides to
the story. You can understand improvements to flexibility as an introduction
of new innovative functionality that speeds up the business process manage-
ment lifecycle – for a discussion of the business process management and the
business process management lifecycle, in particular, please have a look at
Sects. 2.4 resp. 2.4.1. Capabilities for monitoring and analyzing running pro-
cesses belong to such functionality that goes beyond IT support for processes
of daily operations. And stakeholders feel the same about tools that help to
model and execute processes more precisely and faster. This means that in
the efforts of top management to make the enterprise more agile, i.e., more
reactive, the application of new innovative technology is considered.

However, also the different perspective is important. Often, the IT system
architecture in an enterprise is experienced as inflexible, i.e., hard to maintain
and change. Sometimes, the processes of an enterprise seem to be hard-wired

1.3 Outline of the Book 7

in the software applications of the enterprise. Often, they are not explicitly
documented, but rather given by the way staff works with the software ap-
plications that support the business processes. A first step in changing the
processes of an enterprise is then an ‘as is’-analysis of the IT systems of the
enterprise and the way they support the business processes of the enterprise.
A concrete problem in large enterprises is that the several functional units,
e.g., the several departments of the enterprise, each may have their own spe-
cific IT support. Then, support for cross-functional processes is often poor;
technologically it is about enterprise application integration. In such cases the
flexibility of the overall IT support of the enterprise suffers, simply because
of the complexity of the underlying overall system architecture.

1.3 Outline of the Book

In Chapter 2 we set the stage by describing why and how enterprises strive
for business process excellence. We explain widely known business process
disciplines, i.e., business process reengineering, business process optimization,
business process management and business continuity management. We make
an attempt to explain the differences and relationships between these dis-
ciplines. However, the more important target of Chapter 2 is to strengthen
the reader’s awareness for business process excellence and its role for today’s
enterprises. Furthermore, the chapter explains the importance of information
technology for achieving business process excellence. The striving for busi-
ness process excellence and the importance of business process technology is
the background against which all the other chapters of the book have to be
understood.

There is still a huge potential for research in business process technologies.
This is so with respect to R&D, i.e., research and development activities which
target new innovative products with as little time-to-market as possible. But
it is also true with respect to more basic research activities with long-term re-
search goals. In Chapter 3 we identify and describe two basic fields that open
research opportunities in business process technology, i.e., executable spec-
ification and component technology. Future business process platforms will
combine executable specification with new concepts of component technology.

There are three kinds of management in modern enterprises, i.e., business
process management, project management and knowledge management. We
believe that there is a potential to design tools that offer integrated support
for these different styles of management. In a first step these tools will be no
general-purpose tools, but domain-specific. As an example for such integrated
management platforms we envision the usage of social software for business
continuity management. As another example for this principle we describe the
design of an industrial information backbone that integrates the fast produc-
tion processes with the slower production planning processes and strategic
decision processes.

8 1 Introduction

In Chapter 4 we look at the informality of business process analysis and
business process modeling. Is the informality of business process modeling a
flaw that should be overcome or is it necessary to stay agile in top-level sys-
tem analysis? Is there a sweet spot between informality and agility? We try
to explain why concrete business process modeling language constructs that
are widely used today are not formal even if they appear as being formal.
With an understanding of informalities in business process modeling pitfalls
can be avoided and modeling languages can be used to their best potential
without the typical natural diffidence. The insight presented in Chapter 4 can
be exploited in projects where general business process models coexist with
specific executable business process specifications, i.e., workflow definitions.
It can also be exploited in the design of integrated business process platforms.
We have a concrete look at the ambiguities of the usage of events in typi-
cal, state-of-the-art business process modeling projects. We discuss the need
for a mechanism to specify arbitrary synchronization phenomena in business
process modeling.

This means that Chapter 4 addresses the vertical gap and vertical tensions
between business process modeling, on the one hand, and workflow definition
and application programming, on the other hand, that have been illustrated
in Fig. 1.1. And so do Chapters 5 and 6. Chapter 5 is about the decomposition
of business process specifications. We treat decomposition of business process
specifications by considering leveled data flow diagrams. The principles and
issues in decomposing business process specifications are basically the same
for business process specifications in general and executable business process
specifications in particular. A key issue in leveled data flow diagrams is that
the operational behavior of a system can usually only be understood by the
finest level of diagrams in the hierarchy. There is a loss of information with
respect to the operational behavior while moving upwards the hierarchy. This
is so for hierarchies built on top of a flat business process analysis model
and those built on top of executable business process models. Furthermore,
we analyze, on the one hand side, the parallel decomposition of activities,
transitions and data and, on the other hand side, the parallel decomposition
of activities, transitions and control flow constraints.

In Chapter 6 we investigate in how far a structured approach can be ap-
plied to business process modeling. In doing so, we try to contribute to a bet-
ter understanding of the driving forces on business process specifications. The
chapter shows that a structured approach can not be applied to business pro-
cess modeling without care. Business process specifications are fundamentally
different from computer programs. In computer programming the structured
approach is well established. The crucial difference is that a computer pro-
gram can be restructured in order to achieve a better design in whatever sense
without changing the semantics of the computer program which is a functional
transformation. However, business processes express a behavior and have an
observational semantics. Therefore, they do not offer the same degree of re-

1.3 Outline of the Book 9

structuring. It is the task of Chapter 6 to characterize this fact and analyze
it further.

Chapter 7 and Chapter 8 are about the implementation level of busi-
ness processes. Chapter 7 analyzes workflow technology. We take a human-
computer interaction viewpoint in characterizing workflow management sys-
tems. We explain how current workflow technology orchestrates applications
and programs that implement system dialogues. This way, the vertical gap
between workflow definition and application programming as visualized in
Fig. 1.1 is implicitly explained. We also have a look at the assignment of ac-
tors to tasks in workflow technologies. Here, we are not interested too much in
concrete IT product features and concrete role models. We are interested in a
basic understanding of the assignment of actors to tasks. Chapter 8 deals with
component technology for programs that implement workflow-based systems.
It does so by discussing the emergence of service-oriented architecture. If you
do not insist on a concrete definitions of component technology, in particular,
on such that need the object-orientated programming paradigm as a basis, it
is fair to say that service-oriented architecture is today’s leading component
approach in the field of business process technology. Again, we have a look
at how current workflow technology orchestrates applications and programs
in Sect. 8.4.1 – see also Fig 8.5 – this time from the perspective of exploiting
concrete web services technologies for building business process management
suites.

Chapter 9 provides the conclusion. It summarizes some of the major in-
sights of the book. For example, it once more discusses a distinction between
business process modeling and workflow definition languages. However, it goes
beyond a mere summary by eventually describing the notion of typed business
process modeling and, even more concrete, introducing a three-staged work-
flow definition language – so called workflow charts. Workflow charts can be
exploited as executable business process models; they can be considered the
top-level syntactical structure of a domain-specific high-level programming
language for business process execution.

2

Business Process Excellence

Businesses are made of processes. Enterprises strive for excellence in busi-
ness processes. Different stakeholders perceive the topic of business processes
differently. You can approach business processes either from a strategic view-
point or a technical viewpoint. This, in the first place, means that business
processes as an object of investigation are so complex that whole sub com-
munities formed to address the topic appropriately. Strategic issues and IT
issues are eventually intertwined if you conduct a business process improve-
ment project. Business processes are supported by IT in today’s enterprises,
so if your target is to improve business processes of an enterprise you are
usually immediately involved in IT issues.

In this chapter we present the strategic view of business processes. We
have seen and still see massive business process reengineering efforts in en-
terprises. Business process reengineering (BPR) [151, 150] is by far not only
about business process optimization or business process redesign. It is a man-
agement issue, actually, it is a top management issue. Business process reengi-
neering is a paradigm at the level of organizational structure, so it is about
business reengineering, and usually about reengineering of large enterprises,
i.e., corporate reengineering. After introducing business process reengineer-
ing and discussing its intention we will have a look at concrete opportuni-
ties to improve processes. Knowing about the motivation of business process
improvement and learning about concrete examples of business process opti-
mization is a good start, however, in concrete process improvement projects a
systematic approach is needed to proceed successfully. With business process
benchmarking we have a concrete approach for this at hand.

A further topic in this chapter is systematic business process management.
Business process management is about a group of activities that make the
business processes of an enterprise the subject of continuous investigation
and improvement – it consists of the definition, execution, monitoring and
optimization of business processes. If you set business process management
into relationship with business process reengineering, you can see it from two
sides. On the one hand, it can be seen as the result of decisions made during

© Springer-Verlag Berlin Heidelberg 2010

11
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_2,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

12 2 Business Process Excellence

business process reengineering being responsible for the fine-tuning of business
processes in daily operations. On the other hand, it can be seen as a tool for
ongoing, continuous business process reengineering. In practice, taking one
of these two viewpoints determines whether business process management
has rather a tactical or strategic emphasis in an enterprise. In any case, the
analysis of benefits of business process management and possible impacts in
general is not part of business process management itself, it really belongs to
strategic efforts outside business process management.

Finally we need to discuss the strategic role of information technology (IT).
Information technology is at the heart of the modern enterprise. As a crosscut-
ting concern it empowers the enterprise both in house and in its context – the
competitive market and the hosting society. Furthermore, there is often po-
tential for improving business processes without exploitation of information
technology. But usually concrete improvements are enabled by information
technology. Information technology can support business processes directly
and indirectly by empowering management and reengineering efforts. Once
the importance of information technology for business process reengineering
and management is recognized and taken for granted, these topics can be
discussed independently of technology. However, eventually when it comes to
the implementation of reengineering results and the establishment of business
process management, concrete information technology must be chosen.

The explanation of business process reengineering, optimization, bench-
marking, management and the enabling IT from a strategic viewpoint sets the
stage for the discussion of business process technologies like workflow prod-
ucts and business process modeling languages and tools. Advances in these
technologies must eventually address business process optimization. What we
are seeking are such advancements that make IT systems flexible and integra-
tive. Here, flexibility means a significant reduction of costs for the redefinition
and construction of enterprise IT systems compared to today’s technologies,
so that there is an observable impact on the reactiveness of business process
management. Another strand of advancement is towards pervasive integra-
tion, i.e., the availability of all information emerging in an enterprise in all
potential processes.

2.1 Business Process Reengineering

In order to give an impression of what business process reengineering is about
we explain it from the viewpoint of business reorganization first. Later, in
Sect. 2.2 we will discuss typical reengineering patterns. These patterns make
clear that business process reengineering is not merely about reorganization;
it is about migration to process-oriented structures – having reorganization
often as a typical result. In a traditional structure the units of the corporation
are functional business units, i.e., marketing, production, procurement, sales,
accounting, human resources, research and development. Now, large compa-

2.1 Business Process Reengineering 13

nies offer several products and several services. So business processes crosscut
the functional units of a traditional hierarchy. This is where business process
reengineering can start. It is about changing the focus to the business pro-
cesses. It proposes to ask for new organizational structures that eventually
enable continuous business process optimization. For example, it would be
possible to radically change the organizational structure and make the main
processes the top-level units of the enterprise. Now, the managers of the re-
sulting units are no longer department managers or area managers, instead
they are process managers in charge of the outcome of one process. Before
such a restructuring each of the units was involved in each of the crosscutting
processes. This means responsibility was spread with the risk of overhead and
not exploiting potential specialization.

Now, after making the main processes top-level units, each of the units
reflects the former hierarchical structure inside, i.e., having groups for the
various functions. In this way, the functions can be specialized and optimized
by streamlining them to activities that add value. Such reorganization can
already make sense for small and medium enterprises (SMEs). For example,
imagine a small software development and IT consulting company that is
organized as a number of profit centers. Now, having a top-level sales de-
partment neighboring the profit centers would most likely be an anti-pattern.
Usually, it would be more appropriate to have sales persons in each of the
profit centers for obvious reasons. However, in general there is no evidence
that a process-oriented reorganization of an enterprise makes it perform bet-
ter, because one has to admit that one may also observe counter effects. Before
the restructuring, the process responsibilities were spread over several units,
now responsibilities for the major business functions are spread over differ-
ent units with potentially similar drawbacks – in a traditional hierarchy the
know-how with respect to a function is gathered and improved over years in
a central unit. At least, it seems to be self-evident that with respect to con-
tinuous process optimization the process-oriented organization is the correct
choice.

2.1.1 Strategic Nature of Business Process Reengineering

The business process reengineering paradigm as introduced in [151] was a
radical approach from the beginning, foreseeing a business revolution. For
example, it is emphasized that business process reengineering is not reor-
ganizing, and it is not restructuring. Instead, it is really about creating a
fundamentally new work organization in the enterprise. However, in practice,
process orientation often evolves in enterprises in a step-wise fashion result-
ing in matrix-like structures having designated stakeholders on a more or less
equal level for both functions and processes. Here, in this book, it is important
to understand that business process engineering is a holistic effort that aims
to empower the enterprise for process improvement.

14 2 Business Process Excellence

Business process reengineering can also go beyond the boundaries of the
enterprise, then having inter-enterprise processes as its object. A typical ex-
ample is the optimization of processes between a manufacturer and one of its
suppliers. Opportunities are the reduction of reconciliation by reducing the
number of contact points or the relocation of responsibilities. Again, informa-
tion technology has proven to be a key enabler for better performing processes
– we have seen the electronic data interchange (EDI) [118] and business-to-
business (B2B) initiatives in this field.

In business process reengineering the restructuring goes hand in hand with
adopting best business practices in general. Therefore, when talking about
business process reengineering to managers usually a group of innovative man-
agement practices on different levels come to their minds that are actually
cornerstones of other prominent management approaches of the 1990s like
total quality management (TQM) [31] or Kaizen [337, 167], e.g., profit cen-
ters, outsourcing, the networked organization, the learning organization, the
paperless office, customer relationship management, continuous improvement,
team work [225].

2.1.2 Power Shifts Triggered by Business Process Reengineering

In the following few paragraphs we try to sketch the tacit understandings
of business process engineering. It may explain why some stakeholders in
enterprises support it whereas others do not.

Business process reengineering changes the way the business is done. This
also has an impact on the group dynamics [216] in the enterprise, i.e., result-
ing in the redefinition of roles and a new perception of roles. Many of the
changes that come along with business process reengineering efforts are, in
principle, well suited to empower employees. So is the reduction of control to
a reasonable level and the increase of people’s responsibility for tasks, which
goes hand in hand with the aforementioned reduction of control. So is also
with the allowance of more decision making in operational tasks – we will see
more examples that prove this statement correct when we discuss concrete
patterns of business process reengineering later in Sect. 2.2.

The efficiency of assembly lines in factories of early industries came along
with a monotony of jobs and alienation of workers. In a modern factory the
degree of automation in the assembly line increases. We have seen a shift from
manufacturing – the second sector of industry – to services and organization –
the third sector of industry – in societies [129]. But this trend can be observed
not only at the level of economies but also in single enterprises, driven by the
demand for more sophisticated products and services, on the one hand, and
the increased degree of automation, on the other hand. So, the problems that
are addressed by business process reengineering in an enterprise stem from
a business culture that lags behind – simplifying a bit, it is not appropriate
to manage the processes in a modern enterprise in a similar manner as an
assembly line. The awareness of this is increasing – people arrived in the

2.1 Business Process Reengineering 15

information society [229, 26], which clearly goes beyond the three classical
industrial sectors.

Business process reengineering is a rationalization approach, it eventually
targets cost savings. However, it does so by encouraging people also to con-
sider solutions that overcome the attitude that people usually associate with
rationalization, i.e., high specialization and strict separation of duties. The
prosperity of employees has early been an objective in approaches to rational-
ization – in the approach of scientific management [338] there is the fundamen-
tal idea that the prosperity of employers and employees are not antagonistic,
on the contrary, there is the conviction that the prosperities of employers and
employees are mutual dependent in the long run and that the interests of both
groups are actually the same. For us, this leads to the following questions.

Does business process reengineering actually empower staff? Does business
process reengineering therefore mean that a power shift [252] from the strate-
gic to the tactical level and from the tactical level to the operational level
occurs? With respect to the first question: if processes in an inelastic business
hierarchy really obey to the imposed rules and control, yes, reengineering is
about actually changing things in daily operations. However, there is some-
times a difference between how things are done and how things are explicitly
done. Then, reengineering is about internal business transparency.

If there is a difference between processes and the explicitly defined pro-
cesses this does not necessarily mean that overall efforts are performed subop-
timally. Often, some additional processes are necessary that are not under con-
trol of the management. Often, it would mean to trap into the anti-pattern of
micro management if the management tries to get into control of all these mi-
cro processes that make up a successful enterprise. The same is true for respon-
sibility. Typically, people in enterprises often feel responsible for their tasks
and beyond, even if they do not have the responsibility formally. Take software
project management as an example for these phenomena. Despite the discus-
sion of sophisticated software processes like the iterative approach [303], spiral
model [35], the two-dimensional Rational Unified Process (RUP) [209] or the
agile software development approach with Extreme Programming (XP) [20]
as prominent representative you see a lot of projects in practice that are sim-
ply managed with a stage-wise process model [27]. Some of these projects are
successful, others are not. In the successful projects there is usually a tacit
commitment of all stakeholders that the stage-wise model with its milestones
is just the manager’s viewpoint on the project, i.e., a foundation for tracking
the project proceedings, but does not enforce a strictly step-wise approach to
work organization.

Enterprises encapsulate know-how, also process know-how. Sometimes, the
knowledge of how things are actually done is not explicitly available in en-
terprises but distributed over teams and stakeholders. Then business process
engineering is also about making explicit the process know-how. This point is
important with respect to the second question we posed, i.e., whether busi-
ness process reengineering enacts a power shift down the enterprise’s hierarchy.

16 2 Business Process Excellence

Making explicit the process know-how in an enterprise is an important inter-
est of those who have personnel responsibility – beyond the immediate cost
savings that can be gained by business process engineering. In the extreme,
through a rigorous definition processes become a kind of software, they then
exist independently from the persons that run them and the persons that run
them become replaceable.

2.2 Business Process Optimization

The notion of division of labor is central to business process optimization.
Division of labor is at the core of industry. The discussion of division of labor
always has an economics facet, but it does not have to be conducted always
only at the level of economies, where it is about the emergence of professions
or industrial branches. Division of labor can also be discussed at the level of
work organization – see, e.g., [323] – and that is the level of discussion that
interests us here.

Division of labor can save costs, because of the extra dexterity that emerges
from added routine or special education connected to the several branches that
are the result of a division of labor. This effect can be observed on different
levels, ranging from the very macro level of industry sectors to the very micro
level of tasks and operations in a factory. However, division of labor can
also cause additional critical costs, because of overhead for organization and
communication. This phenomenon is very well known from the field of project
management [291]. Project management differs from production management
in that projects are limited in time. The costs saving effects of division of
labor can also be observed in projects; however, that is not the point. Often,
a certain task is distributed over the members of a team without the potential
to exploit specialization. Here, division of labor is just needed to get a job
done by a given deadline. In project management it is known that division of
labor always costs extra resources. You can reduce the project time needed by
dividing work, however, at the same time you increase the work time needed
– due to the extra efforts to manage more people in parallel. It is also known
that, sometimes, the overhead of dividing work can even consume the savings
in project duration. That is what is expressed by Brook’s law with respect
to the domain of software project management: “Adding manpower to a late
project makes it even later.” [45].

Not neglecting the trade-off between potential cost-savings and potential
costs of division of work is a center pillar of business process reengineering. In
business process reengineering efforts certain patterns of redesigning processes
have been observed [151]:

• Defining a new job by combining several existing ones.
• Performing work in the context where it arises.
• Balancing centralization versus decentralization.

2.2 Business Process Optimization 17

• Allowing decision making at the operational level.
• Allowing process steps to be performed in parallel wherever possible.
• Identifying efficient versions of business processes.
• Reducing control.

These patterns must not be understood as a cookbook or “How To”-guide.
They can provide some guidance in business process reengineering efforts, be-
cause they are examples of results in successful reengineering projects. How-
ever, they do not replace systematic approaches to reach business excellence
like the ones described in Sect. 2.3.

The patterns explained in this section have their counterpart discussion in
currently emerging business process management technology.

2.2.1 Combining Jobs and Naturally Hosting Work

Combining existing jobs into a new one is at the core of the discussion we
just started on the trade-off between overhead and cost savings of division of
labor. If a task is distributed over several persons it can be, in principle, led
back to a single job done by a single person. What you might loose in doing
so is the potential extra specialization. However, you might also get rid of
overhead in communication between the people involved in getting the task
done. This argument might not work for an assembly line where there is no
communication needed between the several steps. However, it becomes more
and more important the more complex a task is in terms of the amount of
knowledge that emerges in each single instance of the task. Such knowledge
must be transferred from one step to another.

The overhead for communication is perhaps the most directly observable
cost; however, it is not the only one. Distributing a task over several people
might lead to an alienation of the involved personnel. Such alienation might
have a cost. For potentially creative tasks it can be a severe problem if people
loose a holistic viewpoint. For creative people it may be a problem to be
restricted to too specialized operations so that human potential is wasted
from a general viewpoint. Furthermore, quality of the outcome might suffer,
because everybody is concentrated on the concrete operation he is responsible
for, but nobody is responsible for the task as a whole anymore.

We use the term cohesion principle for collecting work pieces that are
scattered around organizational units in the enterprise and assigning them
to a single organizational unit. The cohesion principle is a general pattern
in business process reengineering that can be observed on different levels of
granularity. The combination of jobs just discussed is the application of this
principle to the organizational level of single employees. It can also be applied
to the level of teamwork [225]. Here it means that a task is too complex to be
handled by a single person with either respect to work load but more likely
with respect to expertise needed to get it done. A notion of team can balance
the need for division of labor and the need for responsibility for the task.

18 2 Business Process Excellence

Figure 2.1 once more shows the application of the cohesion principle at the
level of single employees. Figure 2.1 is also meant to illustrate why we have
chosen the term cohesion for the principle. Consider process (i). Assume that
somehow the person in business unit (b) is the process owner, i.e., he starts
the process, finishes the process and is eventually responsible for the outcome
of the process. The majority of the job is done by this person and only some
work is done by some others in business units (c) and (f). It is fair to say that
process (i) actually resides in business unit (b) and that after the business
reengineering in Fig. 2.1 the activities in business units (c) and (f) returned
to the context from which they originally arose. Criteria like the location of
the main part of a process and the main process stakeholder are all very good,
but they are not hard criteria. They can give guidance in reengineering but
eventually the question must be answered as to where it makes most sense
to perform an activity from an overall cost-savings perspective. Eventually,
it is the cost-effectiveness of a process that counts. It could be that there is
strong rationale for getting parts of the process (i) in Fig. 2.1 done in some
other business units and that it makes no sense to remove them from there.
Business process reengineering is just about encouragement – it encourages
reconsidering the way a current business is run.

If the cohesion principle is applied to the level of business units it can
lead to the discussion about process-oriented business reorganization that we
had in Sect. 2.1. At this level the principle can be about reconsidering the
existing organizational structure with respect to business process awareness.

Fig. 2.1. Applying the cohesion principle of business process reengineering.

Business
Process

Reengineering

business units

(i)
(ii)

(i)
(ii)

(a)

(b)

(d)

)f()e()c(

(a)

(b)

(d)

)f()e()c(

2.2 Business Process Optimization 19

Reengineering for the purpose of reorganization is often perceived as business
process reengineering ‘per se’, perhaps because of its generally visible impact.
Reengineering involving the level of business units can lead to a hard reorgani-
zation but it does not have to. Then, reengineering is rather about balancing
centralization versus decentralization. The existing business units remain as
traditional centers of expertise; nevertheless, some responsibility and know-
how is transferred to other business units where the actual processes reside –
actually, the processes in Fig. 2.1 are examples of this because the organiza-
tional hierarchy is not changed due to the business process adjustments.

2.2.2 Decision Making

A typical application of the described principle of combining work pieces into
broader ones that perform more efficiently is to give decision steps in a process
to staff at the operational level.

Often, some decision making is given to extra roles just as a matter of
principle. Allowing decision making at the operational level can have all of the
effects described above, i.e., reducing overhead, reducing alienation, improving
responsibility for the task. And perhaps it is even particularly well-suited to
foster the effects. However, it is not really justified to consider the pattern of
giving decision making from the tactical to the operational level as something
fundamentally different as combining work pieces merely from the operational
level. From a general viewpoint, and, in particular, from a process-oriented
viewpoint it is actually not different – it is just about combining work pieces
and the difference is only in the hierarchical level the work pieces stem from.
This is illustrated in Fig. 2.1. Here, process (ii) spans two different levels in the
organizational hierarchy before reengineering. However, like the reengineering
of process (i) it is eventually just about combining work items into a new job.

2.2.3 Parallelism in Business Processes

Exploiting potential parallelism in business processes yields a speed up [112] –
see Fig. 2.2. Consecutive dependencies should be limited to causal dependen-
cies. Therefore all of the process and task modeling languages and technologies
as well as project planning tools [291] like PERT (Project Evaluation and Re-
view Technique), CPM (Critical Path Method) or the Gantt diagram offer
support for the definition of parallel activities. The problem is that the ex-
tra complexity of processes with parallel activities inhibits the exploitation
of parallelism. It is easier to define a strictly stepwise process. It is easier to
monitor the instances of such a process, because each state of such a process
instance consists only of one activity. It is even easier to follow a stepwise
process, because there is no need for any synchronization mechanism. How-
ever, the considerable time savings created by exploiting parallelism justify
the extra efforts needed to manage parallelism.

20 2 Business Process Excellence

synchronization

causal
dependency

1 2 3 5 6 7 8 944b

1 2 3
5 6 7

8 9
4b

4

parallel split

hidden independent activity

Business
Process

Reengineering

time savings

4

Fig. 2.2. Identifying and extracting a potentially parallel activity.

Nevertheless, the complexity of parallel processes is a hurdle. Consider a
successfully running process. First, it is not easy to determine those chunks of
work of this process that are not strictly causally dependent. Second, it might
be considered a risk to change the process at all. Modern business process
management suites offer various kinds of support for parallel activities – a
comprehensive overview of the process control mechanisms offered by today’s
business process management suites is given by [307].

It is always worth looking at the concept of parallelism, not only directly
for opportunities of parallelizing activities. For example, imagine a process
that is run by one person only. Here, formally there is no difference with
respect to throughput in running several process instances sequentially or
in parallel. However, in practice there can be differences. For example, the
person can start and run a couple of processes A, B and C in parallel, i.e.,
first finishing the first step of each of the process instances, then finishing the
second step of each instance and so on. This can have a the subtle time-saving
effect, i.e., the person gains local routine for the performed steps this way –
see Fig. 2.3 for an illustration.

1A 2A 3A

1B 2B 3B

1C 2C 3C

time savings

1A

1B

1C

2A

2B

2C

3A

3B

3C

process A

process B

process C

process A

process B

process C

sequential process execution

parallel process executionroutine

Fig. 2.3. Gaining routine with tasks by running process instances in parallel.

2.2 Business Process Optimization 21

This argument is similar to the one found for the pattern of retaining
familiar work items found in [308]. The larger the set of processes that are run
that way, the more convincing is the argument. Similarly, the argument is more
convincing when long-running processes are considered. However, the counter
effect may also be observed for this example, i.e., perhaps the person becomes
confused by this parallel approach resulting in additional time needed.

2.2.4 Versions of Business Processes

Parallelization of processes is about identifying chunks of work that are not
causally dependent. Versioning of processes is about identifying alternative
chunks of work in an existing process and eliminating superfluous activity by
distinction of cases.

A business process is a net of activities that work together to achieve
a defined goal, i.e., a defined business objective. Once a business objective is
defined to be supported, this business objective determines the set of activities
that are necessary to achieve this. Sometimes it is possible to distinguish cases
dependent from conditions from the business context. Sometimes not all of
the activities of a business process are actually needed to achieve the defined
goal, but nevertheless all the activities are always executed. A business process
that handles all variants of a multi-faceted scenario without decision points
can be called a bloated process in which some activities are superfluous in
some cases. Then, it makes sense to design a process version for each identified
case consisting of activities that are necessary in the respective case and save
resources this way.

Figure 2.4 shows an example of such bloated process and its reengineering.
Once alternative activities exist you insert decision points. If a decision never
relies on information that emerges during process execution it can be drawn to
the front of the process now deciding between two versions of the subsequent
process. It might be considered a matter of taste whether to consider the
resulting process with its initial case analysis as a complex process or rather
as a bunch of process versions. For example, in Fig. 2.4 it would be possible
to describe the business process with a diagram in which starts with first
and second activity, continues with a decision point and then continues with
activities of each of the two cases.

In Sect. 4.1 we will distinguish between two different viewpoint on business
process, i.e., the viewpoint of business process supervisory, which is the view-
point of the business process modeler, and the local viewpoint of the worker
in a business process. A description of the reengineered business process in
Fig. 2.4 that uses an inner decision point instead of an outer decision point
might be better to understand from the global viewpoint of business process
supervisory, whereas the version of description given in Fig. 2.4 might be bet-
ter for the local viewpoint. It might be easier to clarify the case as the first
activity and to deal with no decision henceforth. Assume that in the case of
the business process in Fig. 2.4 it turns out that the first case always can

22 2 Business Process Excellence

be handed by a certain person and the second case can be handled always by
another person. This information is not given in the upper diagram in Fig. 2.4
and, without further comment, it would not be given in a diagram that defers
the decision point after the first and second activities – at least not for the
first and second activity. However, this important information is given in the
lower diagram in Fig. 2.4 .

Most importantly, the question of where to insert the decision point is
usually not just a matter of taste. This is so, because the decision point itself
is a real-world entity. The choice about where you insert the decision point into
your business process model has an impact on where the decision is actually
made in processes in the real world. A deeper discussion of such real-world
arguments or variants of it like what we call domain-oriented modeling can
be found, for example, in Chapters 4 and 6.

1 2 3 8 9 10

sufficient for
first case

Business
Process

Reengineering

first case

second case

decision
point

4 5 6 7

sufficient for
second case

1 2 3 104 5 8 9 time
savings

1 2 3 106 7 8 9

Fig. 2.4. Creating specialized processes for alternative cases.

There are less obvious scenarios than the one just described, in which
there is potential for time savings. Sometimes, it makes sense to ask whether
in certain cases things can be done differently than in the past. Figure 2.5
shows an instance of such a business process and its refactoring. The issue
here is to generate alternatives by analyzing whether existing activities can
be specialized to more efficient ones in certain lean cases.

The creation of versions of business processes in the above sense somehow
leads to more flexibility. The processes are more flexible in that they react
to more cases in a specialized way. However, it is worth mentioning that
this is not the kind of flexibility which is currently discussed in the area
of adaptive workflow systems – see [294, 296], for example. Here flexibility
means adaptivity, i.e., it means that the workflow management technology
allows for adopting business processes to new requirements during run-time.
As we will discuss in Sect. 2.4, there is an ongoing continuous improvement

2.2 Business Process Optimization 23

process (CIP) in the successful enterprise that consists of monitoring business
processes and adjusting them to new situations – see also Fig. 2.6. Today’s
business process management technologies are suitable for managing versions
of processes, however, current commercially available products do not offer
support for the redefinition and adjustment of processes at run-time, i.e., in
the presence of running processes.

1 2 3 5 6 74

sufficient for lean case

Business
Process

Reengineering

time savings

4b 4c

1 2 3 5 6 74

1 2 3 4b 4c 7

standard case

lean case

decision
point

Fig. 2.5. Creating a specialized activity for a lean case.

2.2.5 Reducing Control

Separation of duties is a best practice, in particular, if we have to deal with
quality control. For example, in software engineering it is common to define
test design and test engineering as separate roles and let people other than
the developers fulfill these roles. It is common sense that code reviews and
code audits should not be made by the developers of the code themselves.

The theme of reducing control is about something different than quality
control. It is about a certain kind of control that stems from a culture of
mistrust against employees. So it is about control against abuse of processes
– be it accidentally or intentionally. For example, an employee could do a
business trip that is actually not necessary or another employee could go
for holiday despite the fact there is currently a peak load in one of his or
her projects. That is why there are holiday and business trip application
forms that are reviewed by management staff. Business process reengineering
encourages contrasting the costs of a potential abuse with the costs of control
that is necessary to prevent the abuse – all against the background of a fair
estimation of the risk of the abuse. Typically, the risk of an abuse is much
lower than initially believed.

24 2 Business Process Excellence

If some control and checks are about accidental abuse, then, removing
the control from managers is hard to distinguish from giving decision making
responsibilities to employees that has been discussed in Sect. 2.2.2.

2.3 Business Process Benchmarking

How can business process excellence in the sense of business process reengi-
neering be reached? How is it possible to move towards an optimal perform-
ing corporate structure? In Sect. 2.2 we already discussed typical patterns of
reengineered business processes. But even with these patterns as background
knowledge the question of how to systematically reengineer business processes
remains open. Clearly, benchmarking is an approach, i.e., so-called strategic
benchmarking [352] or business process benchmarking [53].

Process benchmarking is about conducting an as-is analysis of the existing
business processes and then comparing them to similar business processes of
other companies that are considered to have outstanding performance – typi-
cally market leaders in their domain – and to eventually adopt best practices
to optimize one’s own business processes. For example, groups of benchmark
partners from different domains, i.e., non-competitors, can be formed to con-
duct process benchmarking. This means process benchmarking is more than
process optimization. It eventually targets process optimization, but it is more
than measuring, analyzing and improving processes. The crucial point is the
comparison with others, i.e., not benchmarking against target performances
but benchmarking against performances of others.

2.3.1 Benchmarks in IT Governance

In some domains, there are associations that gather best practices in processes
and conduct standardization efforts. The area of IT governance is a good ex-
ample. Here we have ITIL (IT Infrastructure Library) [56, 267, 189, 305, 210,
54, 55, 268], the ITIL related ISO 20000 [181, 183] and COBIT (Control Ob-
jectives for Information and Related Technology) [187, 188]. COBIT is an
example of process orientation and process definitions. COBIT defines best
practices for IT governance, in doing so it is business-focused. This means
it addresses not only the stakeholders that are directly concerned with IT,
i.e., the IT executives, IT auditors and users, but also the top management
and the owners of the business processes. Furthermore, it is process oriented.
This means that the best practices are defined as processes that are orga-
nized in a process framework. COBIT defines 34 processes that are grouped
into 4 domains, i.e., planning/organization, acquisition/implementation, de-
livery/support, and monitoring.

As an example, let us have a look at a typical process definition, i.e.,
define/manage service levels in the process domain of delivery/support. This
gives an impression of the level of discussion of COBIT. The process definition

2.3 Business Process Benchmarking 25

consists of four pages of text and tables, divided into a process description, a
description of the control objectives, management guidelines and a maturity
model – each one page. The process description explains the function and ra-
tionale of the definition and management of services levels. The description of
control objectives lists concrete actions to take, e.g., the definition of service
level agreements (SLA), the definition of operation level agreements (OLA),
and the monitoring and reporting of service level agreements. The manage-
ment guidelines actually connect the process to the other COBIT processes,
i.e., it is defined what kind of input the process gets from other processes
and what kind of output is delivered to other processes. For example, the
‘define/manage service levels’ process gets an IT service portfolio from the
‘define a strategic IT plan’ process in the planning/organization process do-
main and delivers contract review reports to the ‘manage third-party services’
process. Furthermore, the management guidelines detail the activities of the
control objective description and specify who in the organization is responsible
and accountable for them and who should be kept informed about them. The
maturity model defines maturity levels in the style of the CMM (Capability
Maturity Model) [275, 276, 274], i.e., there are six levels zero to five: initial,
repeatable/intuitive, defined, managed/measurable, optimized.

2.3.2 Organizational Learning

Benchmarking for best practices is an inter-organizational effort; however, it
is also a very promising approach if it is done in-house. Then, such efforts
are usually called organizational learning approaches [77, 280, 63]. Actually,
learning is crucial for enterprises. Crucial parts know-how, i.e., know-how
about processes and best practices in particular, are kept alive by social in-
teraction [88]. Such know-how is communicated from seniors to juniors, of-
ten in daily operations and often ad hoc and in a word-of-mouth fashion.
That means that learning takes place on demand – in processes and projects
whenever problems have to be solved. With organizational learning typically
something different is meant – it is about making explicit these learning ac-
tivities. On the basis of this, learning can be fostered by creating awareness
of it importance. Furthermore, organizational learning is about concrete tools
and methods that support learning in the enterprise.

A prominent approach to organizational learning is, for example, action
learning [297, 298]. In the action learning approach managers, e.g., project
managers, and process stakeholders, e.g., engineers, of the same domain meet
in sessions in order to find solutions to concrete problems. The session is mod-
erated by a facilitator. Action learning assumes that learning is based on pro-
grammed knowledge and targeted questioning. The programmed knowledge
facet is about expert knowledge; it is about the systematic understanding of
best practices and also about mistakes that should be avoided. Action learn-
ing has is roots in efforts of the Mining Association of Great Britain that
brought together coal mining experts in order to learn together and to learn

26 2 Business Process Excellence

from each other. This means action learning techniques are also suitable for
inter-organizational learning. However, unlike process benchmarking, which is
not necessarily but typically about benchmarking against excellent enterprises
in different domains, it is about bringing together knowledge from enterprises
in the same domain.

2.4 Business Process Management

Business process reengineering involves business strategy. However, optimizing
business processes on the operational level – fine-tuning of concrete workflows
in the main processes – is also an important issue. Business process man-
agement is about the controlled execution and continuous improvement of
business processes. The objects of business process management are the busi-
ness processes of an enterprise in general, i.e., business process management
considers both activities that are supported by information technology or ac-
tually executed full-automatically and those that are processed completely
manually. The granularity of activities controlled by business process man-
agement is not canonically fixed. Fig. 2.6 shows a possible business process
management lifecycle model that is similar to the plenty of those used in
practice.

Business
Process

Execution

Business
Process

(Re-)Definition

Business
Process

Monitoring

Business Process Optimization

Fig. 2.6. Business process management lifecycle.

The definition of business processes encompasses the description of the
goals of the business processes and the definition of service level agreements
resp. operation level agreements, in particular, the definition of required per-
formance figures. Furthermore, it encompasses business process modeling, i.e.,
an elaboration of the interplay of business activities and resources. Then busi-
ness process execution means that the defined business processes are actually

2.4 Business Process Management 27

working. It is a matter of taste whether efforts in fine-planning business pro-
cesses – like the definition of workflows in a workflow management tool or the
actual implementation of applications or changes to applications that support
business process activities – belong to business process execution or rather to
business process definition.

Executed business processes are monitored, i.e., data are gathered about
who actually did what, when and why and, ideally, further comments of stake-
holders on what was good and what may be improved. Here, business activity
monitoring [238, 117, 136, 52, 64, 214] (BAM) comes into play. Business activ-
ity monitoring is the real-time extraction, i.e., automatic extraction, of busi-
ness performance indicators (BPIs) from the enterprise applications. Business
activity monitoring is usually understood as a systematic enterprise-wide ef-
fort, i.e., it is not about single extractions of information from a few systems
but about the massive crosscutting extraction of information from as many
enterprise systems as possible. That is why business activity monitoring is
also perceived as an enterprise application integration topic.

In a next cycle of the business process management lifecycle the data that
were gathered during business process monitoring are analyzed and yield to
an improved definition of the business processes. Now, the business process
definition becomes a business process redefinition. In our lifecycle model we
say that optimization consists of business process monitoring and business
process redefinition.

2.4.1 On Business Process Management Lifecycle Models

Lifecycle models – also lifecycles for short – like the one in Fig. 2.6 are used to
explain the building blocks of business process management. Business process
management products – both technologies and consultant services – often
come with their own lifecycle model. Despite the fact that lifecycles, e.g.,
product lifecycles, usually somehow express sequenced phases, business pro-
cess management lifecycles cannot be understood as strictly staged models,
i.e., temporal models, of what is going on. If at all, they express some causality
between the stages in the lifecycle. For example, in Fig. 2.6, business process
monitoring is not done after business process execution but during business
process execution. Similarly, no business process monitoring can be done with-
out executing business processes.

Different lifecycles consist of different building blocks; in particular the
number of building blocks varies greatly. In the lifecycle of Fig. 2.6 we have ag-
gregated several activities like service level agreement definition, business pro-
cess modeling, workflow definition, process implementation, gathering data,
analyzing data and rethinking processes into coarse grained building blocks.
In practice, often lifecycles are used that make these fine-granular activities
explicit, which sometimes makes it even more difficult to understand the or-
dering of the activities in the lifecycle as staging – be it temporal or causal.
For example, it is very common to have a business process optimization stage

28 2 Business Process Excellence

in the lifecycle that occurs typically between business process monitoring and
business process definition. However, as depicted in Fig. 2.6 business process
optimization is rather not an activity in its own but consists of business pro-
cess monitoring and the redefinition of the processes.

Prominent business process management lifecycles are the DMAIC lifecy-
cle of the process-oriented quality strategy Six Sigma and the PDCA lifecycle.
The PDCA lifecycle, also called the Deming wheel [69], Deming cycle or She-
whart cycle is used by established process quality frameworks like CMMi,
ISO 9000 [175, 177], COBIT and ITIL. The PDCA lifecycle –see Fig. 2.7
consist of four steps: plan, do, check, act.

PLAN

objectives

are
fixed

processes

are
run

DO

objectives
are

monitored

CHECK

ACT

improvements
are

made

Fig. 2.7. The Deming wheel for quality control.

2.4.2 Six Sigma

Six Sigma [152, 153, 154] – 6σ – is a method for improving process quality by
minimizing its variation, i.e., by minimizing the variation of considered target
characteristics of the results of the process – see also [319, 320] for the origins
of systematic, statistics-based quality control in industrial manufacturing. Six
Sigma was developed by Motorola and is considered as a leading process
improvement strategy today. A process with little variation is considered more
robust. It is better because the outcome of the process is more predictable
and the quality of its outcome is more reliable. Six Sigma projects are not
restricted to minimizing process variations. The improvement of the quality
of the results of a process can also be a target, but then the method to do this
also involves understanding impacts on the variation of the exiting processes
– observing variations, understanding correlations and minimizing variations
is the fundamental approach of Six Sigma. The name Six Sigma stands for six
times the standard deviation σ. So, the name Six Sigma indicates the ideal

2.4 Business Process Management 29

success of a Six Sigma project: with respect to a considered characteristics —
called CTQ (critical-to-quality characteristics) in Six Sigma – variations of a
result that are not tolerable, i.e., failure outcomes, lie outside the area of six
standard deviations to the left and to the right of the mean value. In the case
of a standard normal variation this means, for example, that only 0.0003 per
cent of the results are still non-tolerable result – so the ideal target of Six
Sigma are zero-failure processes so to speak.

Six Sigma can be used to improve both technical processes, i.e., produc-
tion processes, and non-technical processes, like planning and management
processes. However, improvement of production processes are very typical ex-
amples of Six Sigma projects and this is where Six Sigma originally stems from.
A Six Sigma project follows the so called DMAIC lifecycle consisting of the
following phases: define, measure, analyze, improve, control. During definition
target characteristics are identified and assumptions are made about which
factors might influence the variation of the target characteristics. The target
characteristics and factors must be measurable. During measurement, data
about the defined characteristics and factors are gathered. It is the task of the
analysis to understand which factors actually impact the target characteris-
tics. Standard statistic tools like Minitab are used to conduct the analysis. By
understanding the correlation of characteristics and factors based on statis-
tics Six Sigma can be considered as a sophisticated data mining approach: Six
Sigma not only looks for plain dependencies of stochastic variables but also
has the variations of the variables as input information to its analysis.

Business process management and the Six Sigma approach are hosted by
different communities. It is fair to say that business process management
evolved rather from planning and controlling enterprise resources and Six
Sigma evolved from looking for impact factors on production processes. In
business process management the definition and fulfillment of service-level
agreements is crucial; in the Six Sigma approach the characteristics that are
critical to quality and assumed impact factors of existing processes as well as
their relationship are the object of investigation. The Six Sigma approach to
analyzing processes is very concrete; it looks at the statistical variations. Six
Sigma projects can also be used to improve enterprise resource planning pro-
cesses and, on the other hand, business process management concepts and, in
particular, business process management technologies can be used to establish
a framework for conducting Six Sigma projects [198]. However, in general the
concrete method of analyzing the correlations of statistical variations is not a
must for the improvement of business processes. One thing is very important
about Six Sigma: its success once more indicates the pivotal role of industrial
manufacturing and the production processes in modern enterprises.

30 2 Business Process Excellence

2.5 Business Continuity Management

2.5.1 Threats onto Business Processes

Business continuity is about threats to business processes. It is about those
threats that substantially impact the usual operation of business processes in
a way that prevents the organization or enterprise from fulfilling its mission
with eventually severe impact on costs or revenues. So, the threats dealt within
business continuity considerations are severe incidents that typically do not
stem from the conditions of the respective business model but rather somehow
from the environment the business operates in. Table 3.1 lists some of the
typical threats considered in the area of business continuity. Taken as an
objective, business continuity aims to maximize the stability of the business
against those threats. Therefore, business continuity management [157, 111,
283, 284] is about becoming aware about as many threats as possible and
preparing – with commercially reasonable efforts – the business to handle
them as well as possible.

Table 2.1 results from a poll conducted by the Chartered Management In-
stitute [360] on disruptions experienced in the UK in the year 2007. It clearly
shows that loss of IT heads the list of experienced disruptions. However, the
figures also tell that also those risks that are usually considered as non every-
day risks like extreme weather conditions or fire clearly occur often enough
to be considered for systematic treatment. The table also contains other in-

ex
pe
rie
nc
ed

BC
P
cov

ere
d

BC
P
use

d

Loss of IT 38% 81% 9%
Loss of people 32% 53% 3%
Extreme weather e.g. flood/high winds 28% 58% 5%
Loss of telecommunications 25% 75% 5%
Utility outage e.g. electricity, gas, water, sewage 21% 57% 6%
Loss of key skills 20% 49% 2%
Negative publicity/coverage 19% 36% 2%
Employee health and safety incident 17% 52% 3%
Supply chain disruption 13% 37% 2%
Damage to corporate image/reputation/brand 11% 35% 2%
Pressure group protest 7% 23% 1%
Industrial action 7% 28% 2%
Environmental incident 6% 51% 2%
Customer health/product safety issue/incident 6% 1 % 1%
Fire 6% 68% 2%
Terrorist damage 3% 57% 2%

Table 2.1. Disruptions experienced in UK in 2007 according to a poll conducted
by the Chartered Management Institute with a base of 1257 respondents.

2.5 Business Continuity Management 31

teresting figures. It shows that only a part of the respondents of the poll
have systematically considered the potential disruptions and eventually ad-
dressed them in their business continuity plans. Furthermore, it shows how
many respondents were actually able to use an existing business continuity
plan. The clear gap between these two latter figures is a key argument for fur-
ther research and development of tools and techniques in the area of business
continuity management.

2.5.2 The British Business Continuity Management Standard

Business continuity management spans the whole cycle of analyzing the busi-
ness with respect to critical actions, systematically addressing critical actions,
designing reactions to unavoidable incidents, and exercising and maintaining
those reactions. The British standard BS 25999 [43] is an internationally highly
recognized standard in the area of business continuity management. BS 25999
considers business continuity management as a major crosscutting activity,
which must be truly embedded in the company in the sense of awareness of it
and support for it, in order to be successful.

Figure 2.8 shows the BS 25999 business continuity management lifecycle.
A major activity in the understanding of the organization is business impact
analysis (BIA). Business impact analysis identifies critical action. It is about
determining the impact of failure of critical actions, i.e., eventually it tries to
estimate direct and indirect costs of failure of critical actions. Furthermore,
it has to be understood which incidents can yield to the disruption of critical
actions. A kind of pervasive incident elicitation has to be conducted and then
the probability of each single incident occuring has to be estimated.

The stage of determining the business continuity strategy in Fig. 2.8 is
about the important fact that the preparation against threats is not only
about fixing reactions to possible incidents. It has to be checked whether it is
possible to change the existing business processes in a way that makes them

Understanding
the Organization

Determining
BCM Strategy

Developing and Implementing
BCM Response

Exercising
Maintaining
Reviewing

BCM
program

management

Embedding
BCM in the

Organization

Fig. 2.8. The business continuity management lifecycle according to British stan-
dard BS 25999.

32 2 Business Process Excellence

more stable against the identified threats from the outset. In some cases it
might even be possible to get entirely rid of some of the identified critical
actions. Attempts must also be made to diminish the probability of incidents
and risks wherever possible at reasonable costs. Also insurances against risks
must be considered systematically. Eventually, for those risks for which you
have decided to accept, appropriate responses must be defined. All this is
sometimes summed up roughly by a 4T model of dealing with risks: treat,
tolerate, transfer, or terminate.

Appropriate response to incidents is at the heart of business continuity
management. Figure 2.9 shows the incident timeline as presented by BS 25999.
The overall target of incident response is to resume to normal operation of
the business as soon as possible. As an appropriate response to an incident a
defined emergency mode of operation and services must be entered in which
the absolutely necessary level of processes to fulfill the enterprise’s or organi-
zation’s mission can be guaranteed. The incident timeline shown in Fig. 2.9
distinguishes between three phases, i.e., incident response, business continu-
ity – here in the narrow sense – and recovery. The target is to have concrete
plans for each of the three phases ready to execute. During incident response
stakeholders are informed and necessary immediate actions are taken. The
business continuity phase is about recovering and executing versions of crit-
ical business processes. The recovery phase leads the organization back to
normal operation.

back to normal
as quickly
as possible

Incident Response

Business Continuity

Recovery/Resumption

Fig. 2.9. The stages of the incident timeline according to BS 25999.

2.5.3 IT and Business Continuity Management

Business continuity management does not address information technology out-
age as the only threat. But of course it is an important one, because infor-
mation technology is a mission critical asset – see Sect. 2.6 – and still the
disruption of loss of information technology is the most often experienced
one, e.g., according to Table 2.1.

Depending on the branch and the concrete purpose of a computer system,
the impact in costs and revenues of information technology outage can be

2.5 Business Continuity Management 33

substantial for an enterprise. It is said that in banking the total outage of
the core systems, i.e., those that deal with transactions on bank accounts, can
yield to the bankruptcy of the bank already after two or three days. Therefore,
for the core systems of a bank high availability technology like mainframe
computers – often spatially replicated – or high availability clusters are used.
Take a medium enterprise from the industrial production domain as another
example. Here, the logistics applications that enable the company to deliver
these products in extended supply chains are mission-critical. The outage of
these applications do not lead to a bankruptcy of the enterprise immediately
as in the aforementioned banking example, however, actually every day or
even every hour of outage can be directly measured in loss of revenue. Not to
speak about the loss of customer satisfaction and trust and therefore indirect
loss of revenue in the long run. For such medium-critical systems a really
high availability solution might be considered overkill, but still a nearly high
available system is desired. For example, midrange computers might yield a
solution, in particular if there are spatially distributed.

Fig. 2.10. ITIL v3 best practices stack tackling business continuity.

Outage of information technology is a well-perceived threat in business
continuity management. IT continuity management as a systematic approach
to keep IT running exists in parallel to business continuity management efforts
in enterprises. For example, ITIL explains IT service continuity management
as supportive to overall business continuity management in an enterprise [189].
But then, a closer look to IT continuity management shows that mature IT
continuity management efforts contain also the major activities seen in over-
all business management, like business impact analysis and risk analysis, of
course, with a focus on IT outage. Similarly, in IT service continuity man-
agement the same threats as in overall business continuity management are
considered, e.g., extreme weather, utility outage – see Table 2.1. IT outage
is not a threat considered in IT service continuity management, IT outage
is rather the impact of the threats. We believe that ideally teaming together

Service Strategy

Service Design

Service Transition

Service Operation

Service Catalogue Management

Service Level Management

Capacity Management

Availability Management

Continuity Management

IT Security Management

Supplier Management

Event Management

Incident Management

Request Fulfilment

Problem Management

Access Management

34 2 Business Process Excellence

overall business continuity management and IT service continuity manage-
ment would mean to remove redundancies in activities and considered threats
on the level of IT service continuity management.

Figure 2.10 shows an overview of the ITIL service lifecycle [268] with a
focus onto topics related to continuity management. Incident management
deals with the malfunction of single services as perceived by users of services.
A malfunction can indeed be the interruption of a service but also a reduction
of quality of a service, e.g., in terms of usability. Incident management is not
about reaction to major failure of an entire IT infrastructure or data center,
it is about help with everyday incidents of IT services. Systematic incident
management is about routing requests via a help desk, prioritizing request and
reacting to them in a proper manner. Incident management is at the heart of
IT infrastructure management. Therefore, incident management is typically
the first ITIL service operation process in ITIL projects, i.e., the process that
organizations introduce first when they start with ITIL. Problem management
is a service operation process that has been introduced with ITIL version 3.
Problem management is about the systematic collection of causes of incidents
and events in the everyday IT infrastructure management. In ITIL a problem
is not just a synonym for an incident but a source of a kind of incident. The
gathered knowledge can be exploited in the sequel to find ways to prevent
incidents from the outset.

Incident management and problem management are processes of the ser-
vice operation element [54] of ITIL. ITIL sees IT service continuity manage-
ment as the means to resume to normal operation in the case of major failure
of IT infrastructure within predefined times. As a consequence, IT service
continuity management is tackled within the service design element [305] of
ITIL.

2.6 Information Technology as Mission-Critical Asset

Enterprise applications are mission critical for today’s enterprises. Informa-
tion technology improves strategy, tactics and operations. Due to globaliza-
tion the markets change more quickly and enterprises must react to emerging
technologies more rapidly. Information Technology plays a key role in the
transformation of businesses, it is at the heart of changes in enterprises.

In the 1990s there were not only rumors about the new economy [327], also
the old economy was roaring. Internet technology – the important driver of the
new economy – is here to stay and must be considered strategically also in old
economy enterprises [289], because it is not only relevant for new marketing
and sales channels but also for in-house systems. But even without this, we
have seen huge efforts in outsourcing and spin-offs in the 1990s. Note, that
splitting a company needs preparation – this means that there is the need for
business process reengineering beforehand and it usually means the creation
of a decentralized IT system landscape beforehand. In any case, there was an

2.6 Information Technology as Mission-Critical Asset 35

increasing awareness about information technology as a mission-critical asset
of an enterprise. This was the decade when chief information officers (CIO)
operated on the strategic level.

Actually, in practice, business processes can hardly be discussed without
considering the enterprise IT. The overall architecture of the enterprise IT
systems is the issue, i.e., the system landscape. New IT products can be the
enabling technology of improved business processes, on the other hand, we
have to deal with legacy problems, i.e., existing information technology can
slow down business process reengineering efforts.

2.6.1 Flexible and Adaptive Information Technology

Flexibility of business processes has always been and still is regarded as an
important success factor for enterprises – see also Fig. 2.12. An appropriate
information systeminfrastructure [147] is a key enabler for flexible business
processes. Major IT players in the enterprise application domain have been
strategically preparing their products for flexible and adaptive structure and
functionality. Concrete examples of this strategic orientation include IBM’s
Capacity on Demand technique (CoD) in the midrange computer and main-
frame area and SAP’s Netweaver initiative in the commercial off-the-shelf
area.

IBM’s Capacity on Demand is a combined virtualization capability and
licensing model for all e-server platforms, i.e., for i-series, p-series and z-series
computers. Basically, the machine is delivered with more computing power
than the customer actually needs at the moment of delivery. Some of the pro-
cessors are idle, but if the customer needs more, for example, in times of peak
load, he just uses more processors and pays for the extra computing power. In
this way the customer is able to react better to changes in his enterprise’s con-
text. Obviously, this model brings the advantage of immediate and calculable
scalability to individually owned machines that you otherwise only have when
using services of a data center. Actually, the Capacity on Demand capability
is advertised as an enabler for On Demand Business.

2.6.2 Enterprise Application Integration

The On Demand Business business metaphor is IBM’s answer to the chal-
lenges of the new globalized and rapidly changing markets. An ‘on demand’-
business is able to dynamically react to new emerging demands, opportuni-
ties and threats in its internal and external business environment [168]. So
On Demand Business is about flexibility of the enterprise. However, On De-
mand Business is not only a business metaphor it is also a conceptual solu-
tion framework [186]. It describes business transformation approaches and, in
particular, concrete On Demand Business techniques like the aforementioned
Capacity on Demand.

36 2 Business Process Excellence

Purchasing

Manufacturing

Sales Distribution

partners
suppliers

ho
riz

on
ta

l
in

te
gr

at
io

n

vertical integration

integration along
the value chain

Fig. 2.11. Enterprise application integration as seen by IBM’s On Demand Business
strategy.

A central theme in the On Demand Business argument is enterprise appli-
cation integration [147] – three kinds of integration are targeted [168]: vertical
integration, horizontal integration and integration along the value chain, see
Fig. 2.11. Here, vertical integration means the improvement of the informa-
tion flow between the silos in one main process resp. line of business, hori-
zontal integration means the improvement of the information flow between
main processes, and integration along the value chain actually stands for the
improvement of the extended supply chain, i.e., the improvement of the infor-
mation flow between the enterprise, its direct business partners and suppliers
and even beyond with its indirect business partners and suppliers.

Actually, enterprise application integration is said to be the key to the
transformation to an ‘on demand’-business, i.e., the key to achieve reactive-
ness and responsiveness. How does enterprise application integration help with
the flexibility of an enterprise? Because stakeholders at all level of the enter-
prise feel that the flexibility of the enterprise is impeded, basically, by lack of
information or – to more precisely stated – by the inflexibility of the informa-
tion flows. As you will see in later chapters, enterprise application architec-
ture [103, 108] is a major issue in business process management addressed by
many business process technologies.

In a poll [251, 292] on the challenges posed by business processes, approx-
imately 150 IT executives were asked by Forrester Research which concrete

2.6 Information Technology as Mission-Critical Asset 37

business problems they would classify as important or very important with
respect to their current enterprise applications – please have look at Fig. 2.12
for the outcome of this poll. The problem addressed by horizontal integration,
i.e., the inadequate support of enterprise applications for cross-functional pro-
cesses is amongst the top-problems according to the poll visualized in Fig. 2.12.
The counterpart of integration along the value chain can be seen in Fig. 2.12,
e.g., in the enterprise applications’ lack of business process extensibility to ex-
ternal partners and the lack of support for collaboration between employees,
business partners and customers.

Inability to support employees, partner
and customer collaboration

Slow upgrade to new functionality

Lack of visibility and analytic insight
into process results

Limits on process change
due to application inflexibility

High cost compared to value

Mismatch between
application functionality and business requirements

Lack of industry-specific functionality

Inability to extend business
processes to external partners

Inadequate support for cross-functional processes81%

56%

63%

63%

70%

72%

77%

78%

81%

Fig. 2.12. Forrester Research poll on which business problems are important resp.
very important.

2.6.3 Total Cost of Ownership

Several objectives must be met to make a successful and stable system: per-
formance, scalability, availability, security, maintainability. In theory, perfor-
mance has two aspects, i.e., reactiveness and throughput, which are usually
mutually dependent. In theory, scalability is about the costs of extending the
system, if it is not able to handle the given load any more. A system archi-
tecture is scalable, if it is prepared for extension. However, in practice, there
is another understanding of scalability. Scalability just stands for the number
of clients a system can serve. So, in practice, performance rather stands for
the reactiveness of a system – performance and scalability together stand for
the load a system can handle properly. With respect to availability it has to
be distinguished between planned and unplanned downtimes. Planned down-
times are those that are needed for system administration tasks and known

38 2 Business Process Excellence

in advance. Usually, it is only the unplanned downtime that is considered by
availability considerations. Maintainability addresses costs for the actual sys-
tem maintenance, i.e., system administration, and also costs for changes to
the system. In a broader sense maintainability is also about costs for end-user
support services.

If information system products have to be selected, eventually, total cost of
ownership (TCO) [201] must be addressed. The total cost of ownership com-
prises costs for hardware and software, costs of the rollout project and costs
for system maintenance and system administration. Therefore the total costs
of ownership are always calculated for an assumed lifetime of the considered
information system – it is simply not enough to consider the initial purchase
costs of an information system. The costs for system operations including
costs for system maintenance and system administration are hard to predict
and sometimes even hard to determine once the system is running. So, in ad-
vance, costs of an information system sometimes can only be estimated rather
than calculated. This is even more true if risk management aspects come into
play. Then the above definition of total costs of ownership is not completely
adequate any more. This problem arises for all of the aforementioned driving
forces affecting system stability. For example, with respect to availability you
have to estimate the costs of system downtime; or with respect to security you
have to estimate the costs of the case that somebody infringes your system.
From these estimates you must then derive how much more you are willing to
pay for extra availability and extra security.

Formally, e.g., by the Gartner Group, there is a distinction between so-
called direct and indirect costs. Direct costs are budgeted expenses, indirect
costs are unbudgeted expenses. Unbudgeted expenses are those that are un-
foreseen or overlooked. They can stem from technological risks or from ex-
penses hidden in overlooked cost units, residing, e.g., in cost centers other
then the IT department. In this terminology, typical examples of indirect costs
are expenses for end user training and support. Indirect costs can in princi-
ple often be made direct costs by estimating them and making them explicit
by assigning them to an appropriate cost unit connected to the considered
information technology.

Only a holistic treatment of software, middleware, database management
systems, hardware, and system administration can balance the several driv-
ing forces. In such a holistic treatment of information systems the database
technology viewpoint on them has always proven to be a particular mature
one in the past – both in practice and in research. The database commu-
nity helps improving stable system architecture by fostering robust database
technology [322, 242, 30, 142, 5].

2.6.4 Total Benefit of Ownership

Care must be taken in analyses that are done to understand whether a certain
IT strategy should be taken or a certain IT infrastructure should be created.

2.6 Information Technology as Mission-Critical Asset 39

Estimations of the total cost of ownership address only the cost side of these
even more complicated analyses. Return on investment (ROI) is the widely
used term in profit/loss calculations. Formally, it is the ratio of expected profit
to needed capital. In practice, return on investment calculations are done on
different levels of observation, i.e., financing of a businesses, business units,
projects, or technical equipment, e.g., new IT infrastructure. However, with
respect to information technology even the viewpoint of return on investment
calculations with their focus on measurable cash flow is often to narrow to
realistically evaluate the benefits of an optional investment. New opportuni-
ties and additional flexibility created by a new IT infrastructure are yet other
criteria that often have to be considered. An example of an approach that
addresses the real benefits of an IT investment is Forrester Research’s Total
Economic Impact (TEI) method [245], which considers total costs of owner-
ship, the business value and the options that are created by IT in evaluating
it.

As we said in Sect. 2.6.3, indirect costs belong to the total cost of owner-
ship. And actually, in practice stakeholders usually incorporate indirect costs
in realistic calculations. The indirect costs that deal with risks of malfunc-
tion of information technology, i.e., unplanned down times or security threats
can be estimated. However, even if the costs of a single malfunction can be
robustly estimated there is another level of indirection, i.e., the problem of
estimating the probability of such malfunctions. So, if done correctly there
is in general at least a worst case and a best case calculation of total cost
of ownership; ideally, the outcome of the total cost of ownership analysis is
actually deviation of costs.

The problem of mixing certain costs with probabilistic costs in total costs
of ownership is that it opens the door for obfuscation of the certain costs.
Therefore, we propose a different viewpoint depicted in Fig. 2.13. Here, the
total cost of ownership consists of certain measurable, budgeted costs only.
All probabilistic costs – usually indirect costs of uncertain malfunction events
but also all other probabilistic costs – are considered separately from the total
cost of ownership. The probabilistic costs are considered on the side of the
anyhow vague determination of the total benefit of ownership. Some of the
benefits of information technology can only be roughly measured or cannot
be measured at all. They are often nonetheless important. So it is the case
for, e.g., an improved customer relationship on behalf of improved customer
processes and also for an improved overall flexibility of the enterprise gained
by IT which we have discussed in Sects. 2.6.1 and 2.6.2. Furthermore, the
total benefit of ownership is made of assessable profit and cost savings, which
are two sides of the same story. Usually, in the area of business process opti-
mization information technology is considered to contribute to cost savings, if
information technology is the core asset in a new project or production line its
contribution to the profit can be determined. Cost savings and profit together
make up a kind of direct, absolute return on investment which is lowered by
the probabilistic costs in our model.

40 2 Business Process Excellence

Total Impact
of IT Ownership

Total Cost
of Ownership

Total Benefit
of Ownership

Hardware
Costs

Software
Costs

Operations
Costs

Cost
Savings Profit

Quality
of Service

Availability Scalability Security

Probabilistic
Costs

Auxiliary
Benefits

Fig. 2.13. Total impact of IT ownership.

Now, we want to consider the notion of total impact of IT ownership for
the areas of business process reengineering and management which can be
mutual dependent as discussed in the introductory section of this chapter.
Business process reengineering and management lead to better performance
and therefore have their impact. Often, the impacts are directly measurable
in terms of cost savings or time savings. Often, the impacts are not as easily
to determine. Information technology can be used as an enabler of business
process reengineering and management. Now, there are two possible views on
the total cost of ownership calculation for the supporting IT. The first one
sees the decision for the optimizations independently from the decision for a
concrete IT support. Then, consequentially the estimated impacts cannot be
incorporated into the total cost of ownership calculation. This case usually
occurs when a certain kind of optimization is already standard in the sense of
strategic benchmarking, i.e., there is no doubt that the enterprise will benefit
from the possible changes and the choice of technology boils down to the
evaluation of existing products. However, if innovative optimizations that need
new comparatively high cost technology have to be evaluated, it is very likely
to make sense that the estimated impacts are included into the total cost of
ownership calculations.

2.6 Information Technology as Mission-Critical Asset 41

2.6.5 On Client-Server Computing

It is a commonplace to oppose mainframe-based architectures to client-server
architectures in the following way: mainframes are viewed as the still exist-
ing legacy systems that are inflexible silos and client-server computing as the
modern alternative. First, as a minor comment to this, if an enterprise re-
source planning system runs on a single host computer, this is usually not
a mainframe but a midrange computer [325, 93] or another kind of high-end
server. Mainframes are used where extreme system robustness and availability
is required. There they have been used are still used, for example, to run the
mission-critical core systems of a bank [286]. Midrange computer products
are also called servers today and also other high-end servers are used as single
host computers for enterprise IT.

IT system architecture is the architecture of software and host computers,
i.e., it is about the deployment of software components on host computers
and their relationships. This means the client-server paradigm is really not
about a mere software architecture only, it is about software distributed over
separated server machines. It might be the correct observation that often a
legacy silo system on a single host computer is the main reason that a busi-
ness process reengineering project does not take off; but from this it is not
possible to conclude that the reason for this is the deployment of the software
on a single host computer. More likely, it is due to the software design of the
silo application. Very likely, we have to deal with a programming system that
has been written for a single usage scenario on a single machine in such a
situation. This means no productizing [45] has occurred when the system was
developed, i.e., no investment into the creation of generalized software compo-
nents has been undertaken. It is the lack of generalized software components
that hinders future reuse and makes the system inflexible and hard to adapt
to new requirements – it is not the deployment on a single host computer.
Obviously, if a programming system is designed for flexibility and adaptivity
the deployment on a single host computer is no loss.

Client-server architecture has been often motivated as a cost-saving alter-
native to silo system architectures. But please pay attention, this cost-saving
argument is debatable against the full background of total cost of ownership.
With respect to the host architecture aspect the argument of client-server
architecture is not true in general. Of course, a bunch of commodity servers
can easily provide the same computing power as a given midrange computer
for a much lower price. However, if availability and maintainability are major
driving forces in a given scenario, the result of a sincere calculation of the
total costs of ownership can often tell another story. With respect to the pure
software architecture aspect the question that must be answered always is
whether the efforts in productizing actually pay off eventually.

Distributed object computing technologies, i.e., CORBA, DCOM and the
like, that are identified by their communities themselves with client-server
computing, is often used in enterprise application integration, in particular in

42 2 Business Process Excellence

wrapping legacy systems to make them accessible to current application server
technology. For example, the project in [286] that we mention in Sect. 8 uses
CORBA technology to wrap banking applications – some of them are impor-
tant legacy systems based on IMS (Information Management System) transac-
tion monitors and hierarchical databases. In enterprise application integration
projects client-server technology is not used to design a system landscape from
scratch, on the contrary, it is used to wrap and glue existing applications.

But there are reasons why real client-server architecture, i.e., distributed
deployment of software components, is relevant for enterprises. The first issue
is ownership. Based on business culture, enterprise units might want to own
and run their own IT independently. Second, if the target of splitting a com-
pany is the major driving force of corporate reengineering efforts, introducing
a decentralized IT exploiting client-server architecture principles might be
necessary as a preliminary action.

2.7 Quality Management Systems

In this section we discuss a quality management system model that is reduc-
tionist in terms of organizational functions but sophisticated in terms of inter-
faces between the organizational functions. Established quality management
systems [182, 178, 181] are process-oriented. For conformance with concrete
quality management systems the definition of processes is crucial. A mature
– or let us say viable – quality management system, is a spiral feedback con-
trol system, i.e., a feedback control system that itself is subject to controlled
change and therefore evolves in conjunction with the business that it aims to
improve. Cybernetic management models are very elaborated feedback control
systems [21, 22, 23] . Quality management systems are cybernetic. If applied
in the intended manner a quality management system becomes so pervasive
in an enterprise that it becomes the management model of the enterprise.

A mature quality management system consists of two mutual dependent
functions, i.e., a business process steering function and a business process ex-
ecution function. Usually, quality management systems are presented on the
basis of a business process management lifecycle. We have described the no-
tion of business process management lifecycle in Sect. 2.4.1 – see Figs. 2.6 and
2.7. We have already discussed the problem that business problem manage-
ment lifecycles can hardly be understood as strictly staged models against the
practice of business operations in Sect. 2.4.1. Here, in our model we do not use
the term lifecycle but the term feedback control system, partly also in order
to emphasize that, in general, we should also be prepared for continuous or
at least quasi-continuous control with real-time reports and extremely rapid
reaction. We have chosen the term business process steering function to have
a new term that is not in conflict with the names of phases of one of the exist-
ing major business process management lifecycles. Other terms like business
process adjustment function or business process supervision function would

2.7 Quality Management Systems 43

also be possible. For example, in terms of the PDCA lifecycle the business
process steering function consists of checking, acting and planning, whereas
the business process execution function corresponds to the doing phase in the
PDCA lifecycle.

There are two interfaces between the business process steering function
and the business process execution function, i.e., a steering interface and a
feedback interface. For each point in time, the steering interface consists of
a set S of steering parameters St,1, · · · , St,lt , a set T of additional target
agreements Tt,1, · · · , Tt,mt and a set A of additional business improvement
activities At,1, · · · , At,nt . The feedback interface consists of a set K of key
performance indicators Kt,1, · · · ,Kt,ot and a set R of additional performance
reports Rt,1, · · · , Rt,pt .

The steering parameters S are target agreements between stakeholders of
the steering function and stakeholders of the execution function. A steering
parameter is a well-defined, measurable figure of a defined business process.
The target agreements T are further target agreements that cannot be defined
as measurable figures in terms of defined business processes. The business im-
provement activities are all kinds of activities other than target agreements
that are intended to improve the efficiency or effectiveness of the enterprise.
The key performance indicators K are measurable figures about defined busi-
ness processes. The performance reports R are further information about the
performance of the enterprise that cannot be defined as measurable figures in
terms of defined business processes.

The steering function analyzes the performance of the enterprise. It an-
alyzes the environment of the enterprise. It analyzes and adjusts the strat-
egy [326] of the enterprise. It analyzes the key performance indicators and
additional performance reports. It reviews the business processes of the busi-
ness process execution function. It reviews the functioning of the business
process execution function in general. As a result of this, it resets the steer-
ing parameters, negotiates further target agreements and instructs further
business improvement activities. Furthermore, it continuously improves the
steering interface and the feedback interface.

We call a viewpoint that tries to understand as much of the functioning
of an enterprise as possible in terms of the parameter sets S, T , K and R a
mechanical viewpoint. We call a viewpoint that tries to understand as much
of the functioning of the enterprise as possible in terms of the parameter sets
S and K a purely mechanically viewpoint. The gap between a mechanical or
even purely mechanical viewpoint and the actual functioning of the enterprise
should not be neglected in quality management system projects. The parts
of the functioning of the enterprise that are not amenable to a mechanical
viewpoint may contribute substantially to the targeted results and the success
of the enterprise.

3

Research Opportunities in Business Process
Technology

Improvements in business process technology are clearly demanded by the
strategic need of today’s enterprises to become more flexible in the sense of
reactiveness to the more and more rapidly changing business environments.

IT systems in an enterprise are seldom designed from scratch, they evolve
along new demands over the years, so that system landscapes [156] emerge. So,
in practice, the issue of making enterprise IT more flexible is about fostering
the flow of information by enterprise application integration efforts – protec-
tion of investment is the rationale for this pragmatic approach. In research,
we are free to look at the problem with a fresh look – actually from scratch.
Now is the time to systematically analyze the needs, driving forces and ben-
efits of business process technology by looking onto the plethora of concrete
business process management products and their features from a conceptual
viewpoint. In the terminology of current software engineering technology and
software processes it is the task to define a component-based platform for
business processes that unifies modeling, construction, operations and main-
tenance of business process software. Such a goal is not only a mental exercise
for researchers, also industry is foreseeing such new integrative products that
go beyond current business process management suites and the term business
process platform has been coined for them.

With respect to business process technology we have identified two po-
tential fields of research, i.e., executable specification and components. We
delve into these topics in Sects. 3.2 resp. 3.3. They are the major topics of
this book. The topics address the improvement of business process technology
independent from specific business functionality. It is also interesting to invest
research into the dimension of specific business functionalities – again from an
enterprise application integration viewpoint. In particular, we currently still
see a gap between IT support for administration and production processes
in manufacturing enterprises. It should not be forgotten that excellence in
production is a foundation of today’s businesses [155].

Enterprises react to technological trends to stay competitive. In the past,
more and more concrete applications and systems were introduced to address

© Springer-Verlag Berlin Heidelberg 2010

45
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_3,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

46 3 Research Opportunities in Business Process Technology

more and more problems, starting from basic numerical control systems to
today’s manufacturing execution systems [237, 202], from basic accounting
systems to today’s enterprise resource planning systems, from basic report-
ing capabilities to today’s analytical processing systems, from basic electronic
data interchange to today’s logistics management systems. The potential of
automation is still huge in modern enterprises. In general, a focus on the mere
administration side of businesses is too narrow. There are current initiatives
like MESA and ISA-95 that address the integration of business processes and
production processes. We delve into this topic in Sect. 3.5. Having the pro-
duction process in mind can prevent us from making flaws in the design of
future business process platforms from the outset.

3.1 Business Process Platforms

For us, the term business process platform does not stand for some kind of
improved integration of standard components into business process manage-
ment suites. For us, the term business process platform has two aspects, i.e.,
executable specification and component-based architecture. The point is that
the creation of a high-level specification mechanism for business processes
comes first, i.e., we believe that the existence of such a notion of executable
specifications is a precondition for a working component architecture and not
vice versa. This viewpoint differs crucially from how commercial product ven-
dors approach the problem of creating a next generation business process
platform. The approach we see at the vendor’s side follows a certain tradi-
tion of enterprise application integration that has ruled the design of business
process technology in the past, i.e., the understanding of enterprise applica-
tion integration as a step-wise improvement of the information flows in an
enterprise system landscape with the objective to touch existing systems as
little as possible or even not to touch the systems at all instead of radically
refactoring, reengineering or even reconstructing the systems. Therefore the
promises of component architecture for business process management suites
usually do not go beyond the simplification and better support for hooking
realizing software parts together, i.e., the provision of a plug-in architecture.
However, the languages for the construction of software parts are not the focus
of improvement – they are considered as given.

In research, on the contrary, we have the chance to approach things more
fundamentally. We can consider languages and mechanisms for the construc-
tion of software parts and those for gluing software parts together as a whole.
Furthermore, we can view systems from outside, i.e., the viewpoint of sys-
tem specification from an end-user’s viewpoint – we are not restricted to the
viewpoint of the given virtual machine defined by a concrete programming
language. This means that there is a potential to design a domain-specific
language for the specification and construction of business process software
– and if the job is done right, specification and construction are actually the

3.1 Business Process Platforms 47

same, which is expressed by the notion of executable specification. We believe
that only an appropriate notion of compositionality of such an executable
specification mechanism yields a truly powerful component architecture for
business process software.

By the way, it is strange that we have already seen fourth generation (4GL)
languages like RPG (Report Generator) for the midrange computer AS/400
that have been designed for the implementation of business logic and the typi-
cal form-based dialogues of enterprise applications but today’s advertised new
business process management suites all rely on third generation (3GL) lan-
guages for the implementation of the software components they hook together.
And actually we see migration projects in practice from systems that are im-
plemented in such domain-specific technologies to platforms that are based on
a current object-oriented programming language. Superficially, such migration
projects are sometimes motivated by the desire to migrate to object-oriented
technology. However, the argument only works if you take for granted the supe-
riority of object-oriented technologies over older ones. However, the maturity
of domain-specific 4GL languages like the aforementioned RPG should not be
underestimated. There are usually more concrete reasons for such migration
projects. One reason could be simply the better availability of programmers
for a newer non-proprietary programming language. Another could be the
insight that the higher costs of a current system in terms of total costs of
ownership actually do not pay off, because the non-functional requirements
on the system are actually not so high that they justify the costs. Another rea-
son could be the following from many classical legacy problem scenarios: the
functionality of the system has to be made available in the setting of a newer
technology – most probably web technology – and it has been estimated that
re-implementing the system is the cheaper or at least less risky alternative to
wrapping and embedding the system.

We said that the analysis of the driving forces of business process manage-
ment on the problem side and the features of current business process technol-
ogy on the solution side is necessary preparatory work for the design of next
generation business process platforms. We believe that a scientific analysis
must not be misled by the promises of any software engineering metaphor. In
particular, a mere programming language level discussion can easily miss the
point here. A system should be considered as an entirety of software, middle-
ware and hardware – the issue in question is how good these components are
orchestrated and in how far their design is streamlined by overall objectives
and design rationales. We believe that such considerations are important to
reach technology independency eventually. For example, RPG shows its value
as part of the holistically designed AS/400 system [325, 93] – today known
as i-series, ‘System i5’ or ‘System i’ – with its co-designed and co-constructed
operating system, database management system and virtual machine system,
i.e., OS/400 – today known as i5/OS – DB2 and TIMI (Technology Indepen-
dent Machine Interface) respectively. The reason for the system’s robustness

48 3 Research Opportunities in Business Process Technology

is in this case that the hardware and software components are designed for
each other following crosscutting design principles.

3.2 Executable Specification of Business Processes

We have seen steady efforts to make business process specifications executable,
both in academia [134] and industry [247, 272]. There are two non-mutual and
converging communities that foster this trend, i.e., the business process mod-
eling community, e.g., [265], and the workflow management community [164].
Business processes are an issue in enterprises, e.g., [151, 150], even without
executable semantics of processes.

Workflow control has its origins in concrete technologies for computer-
supported collaborative work (CSCW) based on document processing like
Palo Alto’s OfficeTalk [192] in the 1970s or Polymer [232] in the 1980s, on
the one hand, and in more general rapid development frameworks based on
a worklist paradigm like FlowMark [218], on the other hand. A lot of to-
day’s commercial business process management suites [247] actually started
as workflow management products.

3.2.1 Means of Business Process Automation

In principle, the target of executable business process specification can be
approached top-down, by hooking business process modeling tools with exe-
cutable systems, or bottom-up by enriching workflow engines. However, the
gap remains; there is no canonical mapping between the components that
are under the control of workflow technology and the entities addressed by
business process modeling. The view of business process modeling is rather a
global one, i.e., the net of business activities and exchanged information enti-
ties. The view of workflow control, on the other hand, is a local one, looking
at the human computer interaction and having a concrete worklist paradigm
at hand for processing workflows. We believe that the gap between business
process modeling and workflow control should be systematically investigated.
As a quick gain, it is possible to exploit the results of such investigations as
best practices in practical business process projects. In the long run the re-
sults can help in the unification of both levels and the design of an advanced
business process management suite.

A step in bridging the gap between business process modeling and business
process management can be done by an investigation of advanced role-model
concepts from a workflow patterns perspective. There has been a rigorous dis-
cussion of workflow patterns in the workflow community [1] that helped in the
investigation and analytical comparison of existing workflow technology. This
workflow pattern discussion has already been broadened [308] by the consider-
ation of workflow resources, i.e., different users. User and user role models are
at the heart of the workflow paradigm. Considering users and roles can bring a

3.2 Executable Specification of Business Processes 49

human-computer interaction viewpoint to the discussion of workflow patterns
refining the otherwise global, i.e., observational viewpoint of an overall action
flow. The findings of such human-computer interaction focused investigations
can be exploited in the definition of an executable specification language for
business processes. For example, the definition of the single user session of a
submit/response-style system as typed, bipartite state machine can serve as a
basis [89]. Here, the human-computer interaction is form-oriented – it consists
of an ongoing interchange of report presentations and form submissions. In
this setting it is possible to understand the notion of worklist as an interac-
tion pattern in single user session scenarios and to proceed by generalizing the
defined semantic apparatus to a form-oriented workflow definition language.

We believe that a future business process platform should allow for the
executable specification of workflows and dialogues. In such a platform there
will no longer be any artificial distinction between the workflow states and
the states of the dialogues that bridge the workflow states. This means, sys-
tem dialogues and workflows are unified [109]. An immediate major benefit of
this platform is that important BPM techniques like business process moni-
toring and business process simulation are no longer artificially restricted to
some coarse-grained workflow states, they become pervasive. Furthermore, the
business logic is partitioned naturally into services of appropriate granularity
this way. The decision as to which parts of the supported business process
is subject to workflow technology and which parts make up the dialogues is
orthogonal to the specification of the business process, i.e., a posteriori. The
definition can be changed allowing for a yet unseen degree of flexibility in
business process specification.

3.2.2 Inter-Organizational Business Process Automation

It is a further challenge to integrate business process platforms with ap-
proaches for inter-organizational supply chain management and extended
supply chain management [348, 347]. This challenge has a technical and a
conceptual, i.e., business relevant, aspect. The technical challenge is about
distributed deployment. If the component architecture of a business process
platform is done properly support for distributed deployment can be added
easily to the platform. As we will argue in the course of the book we consider
a component architecture as appropriate for a business process platforms if it
allows for the unrestricted decomposition of software at the outermost level
of process specifications.

Support for distributed deployment is good also for intra-organizational
purposes; anyhow, with the correct exploitation of virtualization technol-
ogy [65, 137] there is the chance that the differences between software archi-
tecture [132] and deployment architecture vanish – in particular, in these days
of emerging virtualization technologies for commodity servers like Xen [78] or
VmWare [331]. But as we have mentioned, there is also a business related
challenge of inter-organizational distribution of business processes and this is

50 3 Research Opportunities in Business Process Technology

the challenge of negotiating responsibilities. It will be interesting to see which
kind of information technology can actually support and add value to this
issue.

3.2.3 Executable Specification Communities

The synonyms for executable specification range from old ones like automatic
programming [279] to today’s model-driven architecture [248, 40, 90, 91].

“In short, automatic programming always has been an eu-
phemism for programming with a higher-level language than
was then available to the programmer. Research in auto-
matic programming is simply research in the implementa-
tion of higher-level programming languages.”[279]

Executable specification is about gaining a new level of abstraction in the
description of systems that have an operational semantics. Such endeavors
are typically domain-specific, i.e., phenomena in the program design that oc-
cur often are identified and become new constructs of a new virtual machine.
Therefore it is fair to say that domain-specific languages [349, 79] and even
generative programming [67, 98, 99, 100, 86] are also in the realm of executable
specification. Actually, it is a common misconception about model-driven ar-
chitecture that this approach gains a higher-level of abstraction for general
purpose program system construction. On the contrary, the research commu-
nity in model-driven architecture is very well aware of the fact that the real
work to be done is in defining domain-specific modeling languages that then
can be exploited further to generate systems. The model-driven architecture
approach is rather about setting the stage for the systematic definition of
modeling languages and a kind of standardization of tool support for these
definition efforts, i.e., we think it can be understood somehow as a disciplined
approach to meta case tools [159, 160, 115, 246, 212, 197].

3.3 Component-Based Development

The notion of software component has been discussed as early as the NATO
software engineering conference [256, 51]. Components are about code com-
position. But people associate more than composition mechanisms with the
concept of components. Actually, there are lots of abstraction and composi-
tion mechanisms available in programming languages – routines, procedures,
modules [277], objects. However, the discussion of components goes beyond
the design of composition mechanisms, it also goes beyond the discussion on
how to decompose systems [278] for maximal robustness or reuse. However,
different communities put different emphasis in their discussion on component
technology, so the concept comes with different flavors. There is a sub indus-
try aspect, an infrastructure aspect, and a large system construction aspect.

3.3 Component-Based Development 51

As we will see in due course these aspects are not mutually exclusive. We
need to discuss these three aspects in Sects. 3.3.1 to 3.3.3 in order to gain a
better understanding of current and future trends in component-orientation
for business process management suites.

The notion of business process platform as currently used and foreseen
by industry has component-orientation as a crucial asset. Here, the sub in-
dustry of components is dominating, expressing the vision that next gener-
ation business process management suites are prepared for gluing together
ready-made business logic components. The development of an appropriate
component-model for business processes is driven this way. Our approach to
component-orientation is more fundamental. Our concept of component is re-
ally just composition and composability. The usefulness of composability is
beyond doubt. What we are seeking is a notion of composition which makes
that the composition of arbitrary business process specification immediately
yields a valid new business process specification. It is our conviction that just
“yet another plug-in component architecture” that targets easier deployment
of business process implementations will not bring the promised new quality
of business process technology. Our targeted notion of component-orientation
for business processes is indivisibly connected to the design of a next-level
specification language for business processes – we consider an appropriate
component architecture of business process platforms rather as a by-product
of robust design efforts of a high-level specification language and not as an
independent asset.

3.3.1 Sub Industry Aspect of Component Technology

One important aspect of component technology is that they are about estab-
lishing software sub industries. This is probably the earliest usage of the term
component [241]. This means the term component is used for the division
of programming efforts at the level of software houses. In [241] input-output
conversion, two and three dimensional geometry, text processing, and storage
management are given as examples for possible components supplied by spe-
cialized software houses to other software houses. With respect to this sub
industry aspect frameworks and application programming interfaces (APIs)
clearly are components.

Still, the sub industry aspect is often considered as the defining aspect of
component technology. However, the perception of the topic has changed. In
motivations of component technology research ordinary, i.e., existing applica-
tion programming interfaces are usually not mentioned but rather domain-
specific business logic components. Here the specialization is along industrial
sectors or concrete businesses.

3.3.2 Infrastructure Aspect of Component Technology

In practice, concrete component technologies are about adding technical value
to a specific technological domain by creating an infrastructure for it – we

52 3 Research Opportunities in Business Process Technology

therefore use the term infrastructure aspect. These technological domains
crosscut industrial sectors. Examples of technological domains are the field of
visual programming, the field of distributed object computing and the wide
field of enterprise computing. Component technologies address one such do-
main with a combination of foundational software services and tools. One
very ubiquitous view of component technology is to see it as an extension of
object-oriented programming technology [335].

For the sake of completeness we list the usual examples. SUN’s JavaBeans
are a component technology for visual programming that must not be con-
fused with Enterprise Java Beans (EJB) that are part of the Java EE (Java
Enterprise Edition) standard formerly known as J2EE, which addresses en-
terprise computing. DCOM (Distributed Component Object Model) is an
example of a component technology that addresses distributed object com-
puting. CORBA (Common Object Request Broker Architecture) [264] also
supports distributed object computing, however, it is usually not mentioned
as a component technology in its own right, only together with CCM (CORBA
Component Model) [266] it is perceived as a component technology that ad-
dresses enterprise computing and is similar to Java EE. OSGi (Open Services
Gateway Initiative) is an example of a Java-based component technology that
enables systematic hot deployment of software , i.e., support for dynamic – in
particular also remote – deployment and update. It is initiated and exploited
by the embedded software community. A prominent usage of OSGi is as the
foundation of the integrated development environment Eclipse.

In the domain of enterprise computing, object-oriented application server
technologies like Java EE are perceived as component technologies. Here, com-
ponent technology is seen as an extension of standard object-oriented lan-
guage platforms with features for persistence – most typically in the form of
support for object-relational mapping – distributed programming and trans-
actional processing. For example, in [260] we find this view on component
technology as an extension of object-oriented programming with features for
concurrency, persistence and distribution – among possibly others. Classical
transaction monitors [29, 138, 141] like IBM’s CICS (Customer Information
Control System) [61] or BEA’s Tuxedo (Transactions for Unix, Extended for
Distributed Operations) also offer such features and even beyond – they usu-
ally tightly integrate support for user interface programming and dialogue
control.

An interesting example for a component technology in the domain of en-
terprise computing is IBM’s San Francisco framework [39]. This framework
is interesting because it is a rare example of an initiative that actively incor-
porated the sub industry aspect into its efforts from the beginning. The San
Francisco framework is Java-based. The architecture of the framework consist
of three layers [38], see Fig. 3.1, i.e., the foundation layer, the common busi-
ness objects layer (CBO) and the core business processes layer. Independent
software vendors can construct their solutions – typically for customers in a
vertical domain – by customizing and reusing software entities from each of

3.3 Component-Based Development 53

these three layers. The foundation layer [304] deals with the typical crosscut-
ting problems of the enterprise computing domain, which are, basically, trans-
actions, persistence and security but also others like national language support
(NLS). Furthermore, the necessary support for distributed object computing
is provided, i.e., an object!request broker (ORB), support for externalization
and so on. With respect to distributed object computing the foundation layer
was designed after the OMG standards CORBA and COS (CORBA Service)
– though no formal adherence to these standards was targeted.

Java Virtual Machine

Foundation

Common Business Objects

Core Business Processes

Independent Software Vendor
Solutions

Fig. 3.1. System architecture of IBM’s San Francisco framework.

With the common business objects layer the San Francisco framework
starts to go beyond the discussed infrastructure aspect of component tech-
nology. The software entities provided here contain real business information
and logic as default behavior. The software entities in this layer are rather
general in the sense that they occur in several vertical domains. Examples
for these entities are address, business partner, customer, calendar, time and
currency [39, 193]. Actually also some design patterns [62, 130] for reuse in
the next layer are implemented in the common business object layer. The next
and highest layer of the framework, i.e., the core business processes layer, is
about vertical domains. The software entities in this layer have been designed
with domain experts from several companies in the particular domains. Ex-
amples for vertical domains addressed by this layer are the domain of business
financials with support for, e.g., payable accounts, receivable accounts, and
general ledger, the domain of order management with support for, e.g., sales
and purchase orders, and the domain of warehouse management with support
for, e.g., receiving and shipping of materials [193].

54 3 Research Opportunities in Business Process Technology

3.3.3 Large System Construction Aspect of Component
Technology

Considering all the discussions on component technology we followed in the
past we think it is fair to say that another important aspect of component-
based development is simply that it is about the construction of large systems.
It is common sense among developers that programming large system is fun-
damentally different from programming small systems. The larger a system
becomes the more complex it becomes and you need special mechanisms to
deal with the complexity. All the abstraction mechanisms in programming
languages have the purpose to get complexity under control. The usual ab-
straction mechanisms found in programming languages are sufficient to build
arbitrary layers of abstraction, so, in principle they are sufficient to deal with
programs of any size. On the other hand, also small programs in the sense
of programming in the large can be large enough for requiring the usage of
programming language abstraction mechanisms in order to get into control
of their complexity. So, the question arises: why do we need to discuss mech-
anisms that go beyond the usual programming language abstraction mecha-
nisms? Or to pose the question differently: when is a program large, i.e., large
in the sense of programming in the large [70]? One possible answer could be:
programs are not large, projects [45] are.

In principle, each software system can be programmed by a single devel-
oper; however, often a wanted software system cannot be programmed by a
single developer in a set time frame. Now, projects with more than one per-
son differ fundamentally form single-person projects. There is overhead for
communication, need for system documentation, need for system integration,
and need for project management. Projects with more than one person, i.e.,
team projects are large. And programs that are developed in large projects
are large. By the way, projects with distributed teams, i.e., sub-contractors,
are usually even larger – that’s why they are called mega projects in [135], a
paper on the Boeing 777 software. So, team projects cost extra resources. And
programming in the large actually addresses software programmed with more
than one person. In the original paper [70] on programming in the large, or
to be more precisely, in the paper that coined the term programming in the
large, the notion of a module interconnection language (MIL) is introduced
that should support developers in programming in the large. Two of the gen-
eral objectives of the envisioned module interconnection languages explicitly
address support for dealing with the overhead of division of labor. It is said
that a module interconnection language should serve as a project management
tool and as a means of communication between programming team members.
Other objectives of the envisioned module interconnection languages are to
serve as a tool for designing and concisely documenting large-scale program
structures.

In answering our above question on when is a program large we said that
one possible answer could be that programs are not large, but projects. We

3.4 Exploiting Emerging Tools for BCM 55

deliberately did not say that the answer is that programs are not large, but
projects. Whenever a programmer feels overstrained with dealing with the
complexity of a program he would be tempted to call the program a large
program. This is a fuzzy characterization because defining when a developer
is overstrained is not as easy as defining when a project is large – see above,
we said that a project is large if it consists of more than one person. It would
be superfluous to seek an answer to that question but the fact is that since
the existence of programming languages we have seen a plethora of tools
emerging that help programmers to get control of their code, e.g., profilers,
shape analysis tools, style checkers, documentation generators, refactoring
tools, versioning tools [84] to name a few and, last but not least, integrated
development environments.

The major value added by an integrated development environment (IDE)
is not that it combines several of the aforementioned tools as features but
that it allows the developer to experience the code as a structure of hy-
perlinked code entities. For example, consider the major motivation of the
aspect-oriented programming paradigm, i.e., the problem of maintaining the
call positions of a code entity. This problem is also addressed in integrated
development environments. Here, you can list the call positions of a method
and the integrated development environment supports you in uniformly ma-
nipulating these call positions by its in-built refactoring capabilities. As any of
these mechanisms that go beyond standard programming language features,
also component technologies add value to the task of controlling complexity of
large programs. Even if in academia the discussion of component technology is
sometimes rather focused onto programming language constructs, in practice,
a concrete component technology typically consists of a combination of new
programming language features, tools, and software services.

Actually, in [45] yet another characterization of programs becoming large
is given. There an artifact named “programming system product” is consid-
ered. A program which is implemented by a single person becomes a program-
ming system if it consists of parts implemented by different programmers. In
another dimension a program becomes a programming product if it is devel-
oped for more than one usage context. Different objectives like adaptivity,
reusability and maintainability now become an issue. Brooks coined the term
productizing for the transition from a program to a programming product
– see Fig. 3.2, which also gives estimates for the extra efforts needed for the
transitions in both dimension. With the consideration of productizing the loop
is closed to the sub industry aspect of component technology that we have
discussed earlier.

3.4 Exploiting Emerging Tools for BCM

We have discussed the importance of business continuity management for
enterprises, how it targets the stability of an enterprise’s business processes

56 3 Research Opportunities in Business Process Technology

Generalization
Testing
Documentation
Maintenance

Interfaces
System Integration

Programming
System
Product

Programming
System

Programming
Product

Program

××××3

××××3

Fig. 3.2. Efforts for division of labour and productizing according to Frederik
Brooks [45].

and the basic principles how business continuity can be achieved in Sect. 2.5.
In order to support business continuity management there exists a range of
proprietary tools, e.g., for writing business continuity plans, assessing risks,
analyzing business impacts [32]. These tools usually come as combined struc-
tured editors, database repositories and bunches of templates for plans and
questionnaires.

Both developing and eventually enforcing business continuity plans with
the accompanying activities of risk and impact analysis are usually highly
collaborative efforts if done properly. There are elements of knowledge man-
agement in these tasks and social aspects must not be neglected. Therefore,
it seems natural to use some kind of CSCW tool (computer-supported collab-
orative work) or groupware [143] to get these things done. The several team
collaboration software and social software products [116] that are currently
emerging in the realm of the Web 2.0 metaphor form today’s generation of
CSCW tools.

According to [116] a social software product is expected to provide at least
shared workspaces, management of shared documents, discussion forums, user
profiles – all this supported by appropriate user and access control manage-
ment – to count as a team collaboration and social software. Team collabo-
ration software helps exchanging knowledge and joint building of knowledge
bases. Therefore wikis [240, 215] and web logs (blogs) naturally fall into this
software product category. Other features that fall into the area of team col-
laboration and social software, i.e., features that can be found in concrete
products of this software category are about allocating and tracking tasks,
managing projects, integration of calendars, controlling workflows, social tag-
ging and bookmarking, visualization and analysis of social networks, content
feeds, people search capabilities, in particular with respect to skill manage-
ment, decision support for teams like support for prioritizing items, voting and
ranking. Support for basic groupware features, i.e., email and team-based cal-
endaring, or tight integration with respective products is expected. Also other

3.5 Integration of Business and Production Processes 57

traditional but more advanced groupware features like instant messaging and
video conferencing belong to the repertoire of team collaboration software.

Against the background of all these just mentioned team-supporting soft-
ware features team collaboration software seems a natural candidate as a tool
in business continuity management. Imagine the process of risk assessment,
impact analysis and finally estimation of risk probabilities. The processes for
gathering the necessary information and afterwards categorizing and rank-
ing the information items can be greatly supported by the features found in
today’s team collaboration software products.

Unfortunately, the unconsidered idea to support business continuity man-
agement by web-based team collaboration is naive against the background of
the especially strict security needs of the considered domain. An important
threat considered in business continuity management is always any kind of
intrusion leading to several security actions from facility security to all the
issues of IT security. For potential intruders the plans that deal with any kind
of threats can be of interest. Therefore security requirements of the business
continuity management domain are significantly high. People working in this
domain and conducting the business continuity management often stem from
the security sector or IT security sector. The problem is that people from the
security sector are often biased against web-based technology; they often tend
to work only with tools they have long experience with. Therefore, it can be
challenging to convince stakeholders in the business continuity management
process to use a web-based team collaboration platform. The openness of such
platforms can be easily considered just too insecure. Of course, there are pos-
sibilities to make the usage of a web-based platform secure. The platform itself
can be secured with virtual privacy network technology, but more obviously it
is possible to fully separate a small intranet from the outside world and make
it the basis for the team collaboration platform.

On the other hand, first experience already tells us that the capabilities of
team collaboration and social software are really promising for business conti-
nuity management. At least we know this from one of our own projects where
a simple wiki has been used in order to grasp and communicate the business
continuity plan. Here, the wiki has proven particularly practical because it
immediately integrates the business continuity plan with other existing docu-
mentation of the system architecture in a lightweight manner. A simple plain
wiki system has been used. Mature domain-specific team collaboration soft-
ware would extend the plain wiki software with templates and predefined
workflows for business continuity planning and implementation.

3.5 Integration of Business and Production Processes

There is a huge potential for optimization of processes in today’s industrial
manufacturing. Important targets of improvement are production efficiency
and product quality. Optimization is a complex task. A plethora of data that

58 3 Research Opportunities in Business Process Technology

stems from numerical control and monitoring systems must be accessed, cor-
relations in the information must be recognized, and rules that lead to im-
provement must be identified. Despite concrete standardization efforts exist-
ing approaches to this problem are often low-level and proprietary in today’s
manufacturing projects. The various manufacturing applications in a com-
pany must be turned from isolated spots of information into well-thought out
integrated data sources [47, 16] that make up an overall solution.

The lowest level considered in automatic manufacturing is the automation
level, i.e., the level of machine and device control. However, the automation
level is not merely about automated tasks. For example, machine maintenance,
transportation control and stock control are important issues at this level. The
entities controlled by control computers are machines, cranes, transport belt
systems or other transport mechanisms, chemical processors, converters etc.
This is the level of computer numerical control (CNC), robot control (ROC),
motion control (MC), programmable logic controllers (PLC), cell controllers
(CC), data collection systems (DCS) and so on.

The technical integration of production devices is an issue in its own right.
This is the domain of fieldbus technology like Modbus, CAN (Controller Area
Network), PROFIBUS (Process Field Bus), AS-i (Aktuator Sensor Interface)
– to name a few. Fielbusses are network protocols that have their strength usu-
ally at OSI level 2 – data link layer. A technology that addresses the issue of
vertical integration of production devices immediately at the level of applica-
tion programming interfaces is OPC (‘Openness Productivity Collaboration’
formerly known as ‘OLE for process control’) [269]. The technical integration
of production devices is in a sense a horizontal integration. In the discussion
of this section we are rather interested in the vertical integration of automa-
tion control shop floor control and production planning. However, vertical
and horizontal integration are not completely orthogonal issues. In particu-
lar, a strictly data-centric horizontal integration approach could greatly ease
vertical integration efforts from the outset.

3.5.1 Automatic Shop Floor Control

In a fully automatic plant in today’s manufacturing industry there are au-
tomatic shop floor control systems or process control systems that control
and track the interplay of the machines. This is the level that is often called
SCADA (Supervisory Control and Data Acquisition). To give an impression
we describe a fictional shop floor control system. Though the example sys-
tem is fictional its described functionality is very close to a real world system
from the area of material refinement. However, we abstract from the concrete
domain and from the full complexity of the system, because the terminology
and the details of the concrete domain do not add to the understanding of
the concepts implemented by the software. In this example there is a fully in-
tegrated software control of all processors and transport devices in the plant.
In a control center a supervisor sees a screen similar to the one depicted in

3.5 Integration of Business and Production Processes 59

Fig. 3.3. Material is shipped into the plant in batches. The batches ship in
from another plant in the factory. Each batch has to be processed sequen-
tially by three kinds of converters A, B and C. There are several processors
for each kind of processor, because the processing stages take different amount
of time. For example, processing the batch by one of the B-processors takes
approximately twice as much time as processing the batch by an A-processor.
Therefore, there are twice as many B-processors as A-processors, otherwise,
the B-processor stage would become a bottleneck.

03 05 09 12 14 16

01

02 04 08 11 13

06 07 10 15 17

02
03

01
06
04

05

07
08

09
10

11
12

14

15

13

16
17

02

03

01

06 04

07 05

08

09 11

12

10

14 15

16

17

13

A1

A2

A3

B1
B2

B3
B4
B5
B6

C1

C2

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00

9:23

Fig. 3.3. An example manufacturing execution system.

In the graphical user interface in Fig. 3.3 the material flow proceeds from
left to the right, from the top to the bottom. Actually, the graphical user
interface shows a Gantt diagram of what is going on in the plant. A bar in the
diagram stands for the processing of a batch in a certain processor. There are
no edges connecting the bars in the diagram. The material flow is given by
the numbering of the batches that remains the same throughout the different
processing stages. Just to give an example, we have painted the edges for the
material flow of batch with the number ‘01’ into the diagram. A fat vertical
line on the screen serves as the current-time indicator. The crucial point is
that the diagram on the screen is not just about planning, it is really about
control. If the current-time indicator passes the right end of a bar element, the
corresponding batch is fully automatically removed from the current processor
and moved into the next processor according to the schedule in the diagram.
Workers in the plant are triggered by events on the production process and
not vice versa. Workers can be considered to be embedded into the production
process, i.e., they do not control it.

Even the scheduling, i.e., the assignment of processors to batches is done
automatically by the system. The optimization target is resource utilization.

60 3 Research Opportunities in Business Process Technology

However, the supervisor in the control panel has the opportunity to reschedule
the batches, i.e., to overwrite the default schedule proposed by the system.
Furthermore, he can adjust the processing time per batch and processor. This
way, he can react to exceptional events based on his expert knowledge. For
example, he knows that a certain batch can only be processed on a certain
processor, because this processor has a certain feature that is needed in the
concrete case. Or one of the processors needs to pause for a while, for example,
for maintenance reasons. Or the supervisor recognizes that a certain batch
actually needs more processing time on its current processor than initially
assumed. With respect to this it is necessary to know that the supervisor
has a second screen on his desk which shows a dashboard with miscellaneous
information about the current state of each of the processors.

3.5.2 Manufacturing Execution Systems

At the level of enterprise resource planning systems managers use production
planning systems (PPS) for rough planning of the production. Rough planning
means that managers use aggregate values for capacities and performance of
production resources. Rough planning also means long-term planning, i.e.,
the time units managers deal with during production planning are rather
months, weeks or days at the least. The management needs to give the planned
production schedule to the production department as an internal order and
needs feedback about the actual production in order to compare production
figures with planning figures and to have a hook for high-level quality control
and potential production process optimization. It also needs the feedback to
improve its production planning process by an adjustment of the aggregate
values used during planning.

Without further IT support there is a huge gap between production plan-
ning systems and the automation level. It is the task of manufacturing execu-
tion systems (MES) [202] to bridge this gap – see Fig. 3.4. Most importantly,
with manufacturing execution systems production process planners detail the
rough planning they receive from production planning to a level of detail at
which shop control becomes possible. The time frames manufacturing execu-
tion systems deal with are much smaller than the ones of production plan-
ning systems – they are in the range of days, working shifts or even minutes.
Full-automatic shop control systems allow for real-time planning, control and
monitoring of a plant. Therefore manufacturing execution systems are natural
hosts for shop control systems.

To give an impression of what manufacturing execution systems are about
we list their functions as defined by the industrial standardization body MESA
(Manufacturing Enterprise Solutions Association) [244]:

• Resource allocation and status.
• Operations and detail scheduling.
• Dispatching production units.

3.5 Integration of Business and Production Processes 61

Sun
Sat
Fri

Thu
Wed
Tue
Mo

Machine and Device Control

Manufacturing Execution System

Production Planning System

production
schedule

operational
commands

production
report

operational
response

ISA-95

ISA-88

4
3
2
1

11
10
9
8
7
6
5

18
17
16
15
14
13
12

25
24
23
22
21
20
19

31
30
29
28
27
26

October

Fig. 3.4. Production planning, execution and control system architecture.

• Document control.
• Data collection acquisition.
• Labor management.
• Quality management.
• Process management.
• Maintenance management.
• Product tracking and genealogy.
• Performance analysis.

A manufacturing execution system supports the systematic fulfillment of
the production schedule given by the management and also supports the de-
livery of the production reports needed by the management. It is that in-
tegration aspect between automation level and enterprise resource planning
of manufacturing execution systems that is often emphasized. However, from
the above list it becomes clear that a manufacturing execution system already
adds significant value in the production department even if it were not con-
nected with production planning systems. It supports daily operations with
concrete features – maintenance management and quality management are
good examples. On the other hand, it becomes also clear that a manufactur-
ing system should be connected to the enterprise resource planning somehow;
for example, consider labor management and human resources management.

3.5.3 Current Automation and Business IT Initiatives

We see better and better integration of production systems with enterprise
resource planning systems as the current trend in information technology in
manufacturing enterprises. It is fair to characterize this issue also as targeted

62 3 Research Opportunities in Business Process Technology

integration of production processes and business processes. Actually, it is a
bit odd, because from a conceptual viewpoint production processes are no dif-
ferent from business processes, on the contrary, they are business processes.
However, it is common to use the term business process rather for administra-
tive business processes, i.e., such processes that deal with enterprise resource
planning, and therefore to distinguish them from the technical production
processes.

In the following we use also the term automation and business integration
for the integration of production systems with enterprise resource planning
systems and even beyond with the integration of business intelligence (BI)
systems.

Current initiatives like MESA and ISA (Instrumentation, Systems and
Automation Society) address this vertical system integration issue. STEP
(Standard of Product Model Data) [180] standardizes the description of both
physical and functional aspects of products. ISO 15531 (MANDATE) [184, 66]
provides a conceptual data model for manufacturing resources, manufactur-
ing engineering data, and manufacturing control data. Both STEP and ISO
15531 are examples of standards that pursue a data-oriented viewpoint on the
manufacturing scenario. As depicted in Fig. 3.4 ISA [314] addresses the stan-
dardization of models and terminology of batch processing at the automation
level with ISA-88 [170] and the standardization of the information exchange
between manufacturing execution and enterprise resource systems with ISA-
95 [171, 172], see also [179]. In ISA-95 uses further terminology, in particular it
uses ‘Manufacturing Operations & Control’ for the level of manufacturing ex-
ecution systems and ‘Business Planning & Logistics’ for the level of enterprise
resource planning.

The current trend of production and business process integration again
has the objective to eventually lead to more overall flexibility and reactive-
ness of the enterprise. The features of a manufacturing execution system add
benefit even if they do not lead to a measurable impact on reactiveness of
the manufacturing enterprise. A manufacturing execution system can improve
performance by speeding up the information flow between management and
production and by optimizing the utilization of resources. By its data ac-
quisition and reporting capabilities it can help to improve product quality.
Anyhow, a foreseen improved reactiveness of the manufacturing enterprise
is a major driving force for better integrated manufacturing execution sys-
tems. Major vendors make this argument in their current manufacturing IT
initiatives like SAP with adaptive manufacturing [310]. At the technological
level SAP’s adaptive manufacturing initiative stands for the standardization
of interfaces for third-party software vendors to SAP’s own enterprise resource
planning systems. At the strategic level SAP’s adaptive manufacturing argues
with an envisioned adaptivity of the manufacturing enterprise.

3.5 Integration of Business and Production Processes 63

3.5.4 Industrial Information Integration Backbone

Current initiatives for automation and business integration take the situa-
tion of separate automation systems, manufacturing execution systems and
enterprise resource planning systems as given and concentrate onto the clar-
ification of the roles and responsibilities of these systems and the interfaces
between these systems. This is a classical way of proceeding that we usu-
ally see in system integration trends. Certain classes of systems evolve and
manifest themselves, then integration is about easing and standardizing the
information flows between these systems. It is always worth considering more
radical integration that creates a new class of system from scratch that unifies
the systems that need to be integrated. In the case of automation and business
integration we think it is interesting to think about the design of combined
manufacturing execution and enterprise resource planning systems this way
accomplishing integration from the outset. In such a system the different func-
tionalities can remain software modules or software layers, however, they are
integrated via a shared data model and database for which we coin the term
industrial information integration backbone (IIIB) – see Fig. 3.5.

Arguments for Separation of Automation and Business Systems

There are also reasons to stick with the currently architecture of separate sys-
tems for manufacturing and enterprise resource planning. These are the usual
reasons. One is the protection of investment with respect to exiting systems.
Another is a make-or-buy decision in favor of buying available products and
integrating them instead of building the whole system from scratch. Both en-
terprise resource planning systems and manufacturing execution systems are
complex. Already for each class of system it must be carefully analyzed in
a given scenario whether it is cheaper in the sense of total cost of owner-
ship – see Sect. 2.6.3 – to deploy an existing commercial-off-the-shelf software
system or to build an entirely new one. And these systems are so complex
that there are specialized vendors for each of them – we already mentioned
SAP’s adaptive manufacturing approach to integrate manufacturing execu-
tion systems by third party vendors. Another reason is the desire to address
different levels of quality of service of different applications with appropriate
organizational structures along distributed application servers. For example,
consider availability. Enterprise resource planning systems might not require
high availability in an enterprise, whereas the availability of manufacturing
execution systems – at least the availability of shop floor control systems – is
easily a mission-critical issue. Similarly, there is often what we call an own-
ership issue or self-sustainment issue, i.e., the fact that different IT systems
are built and maintained along the organizational structure of an enterprise
driven by departments that sometimes long for as much independency from
other business units as possible.

64 3 Research Opportunities in Business Process Technology

A further counter argument is simply that the functionalities of a man-
ufacturing execution and enterprise resource planning system is simply too
extensive to be delivered by a single vendor. In particular, the argument is
that there must be specialization of the systems to meet different needs of
different enterprises that stem, e.g., from vertical domains or the concrete
sizes of the enterprises. Obviously, in the indicated field there must be doubt
that it is possible to build a system that can fulfill the needs of all the di-
verse manufacturers – the no one-fits-all problem. All this is a sub industry
argument. At least it could be the argument that because of the large amount
of functionality it is desired to build the optimal solution in a concrete sce-
nario by combining it from different software vendors. With respect to this
counter argument it is interesting to see that ORACLE outlined in [309] its
general product direction for manufacturing execution systems towards a sin-
gle combined ERP/MES application. Actually, in April 2007 Oracle released
the Oracle Manufacturing Execution System as part of its E-Business Suite,
which is an enterprise resource planning system. The solution has been an-
nounced as a product for enterprises that operate in environments of low to
medium complexity.

Arguments for Integration of Automation and Business Systems

All of the above are counter arguments against the concept of an industrial
information integration backbone approach. However, there is a single but
very strong argument for the architecture to integrate manufacturing and
business IT via the database from the outset and this is flexibility. It is just
the principle of data independency, i.e., the principle of centrally designing,
operating and maintaining the data independent from the applications that
exploit them, that improves flexibility of the total information system.

In general, having a database as a central hub for integration is a proven
pattern as is already inherent in the currently widely discussed service-oriented
architecture and explicitly seen in enterprise service bus technology. In the
original enterprise computing related strand of service-oriented architecture
– see Sect. 8.2 for a discussion and Fig. 8.2 in particular – the services in
service-oriented architecture form a hub in a hub-and-spoke architecture of
applications that this way are integrated and use each other in a flexible man-
ner. It is not essential that the services tier in a service-oriented architecture
possesses its own database, i.e., in principle the service tier can be a mere
message generator collecting data from the applications it integrates on the
fly and distributing them. However, it is a typical technical pattern that the
service tier has its own database to persistently buffer data. This is where the
service tier begins to become an enterprise service bus which is also discussed
in Sect. 8.4. The notion of enterprise service bus is a loose concept for enter-
prise application integration that combines persistent messaging, in particular,
publisher-subscribe functionality, with new features like content-based routing
in the realm of web services technology, i.e., enterprise service busses are the

3.5 Integration of Business and Production Processes 65

web-services related instances of message-oriented middleware. And indeed,
established persistent messaging technologies like IBM MQSeries [350] are in
their own right examples of technology for integration of applications via a
database. However, it is fair to say that the driving force for the exploitation
of persistent messaging was not step-wise enterprise application integration
but building lightweight but at the same time still robust alternatives to dis-
tributed transactions in transaction processing systems that are distributed
on a geographical scale.

The counter arguments against the integration backbone discussed ear-
lier are pragmatic reasons that pay tribute to existing system architectures
that evolved. The standardization of message flow between applications makes
the market for these applications more agile by bringing flexibility into the
decision-making of customers in selecting a concrete product, but it does not
address the flexibility of the systems themselves fundamentally.

Like any other approach to design a unified automation and business IT
product the industrial information integration backbone does not address the
aforementioned no one-fits-all problem. However, the integration backbone
is an architectural principle. Not all systems are bought because of careful
build-or-buy decisions. So, if a system is built, for example, for an enterprise
in a special vertical domain, the integration backbone can be a design option.
We just say that in such cases the design efforts should not be automatically
directed and possibly misled by the existing and emerging industrial integra-
tion standards, because those standards arose to improve the message flows
between applications in de-facto scenarios of manufacturing enterprises. They
should not be taken without review of blueprints for building a system from
scratch.

PPS

Machine and Device Control

Manufacturing Execution System (MES)

Production Planning System (PPS)

production
schedule

production
report

Machine and Device Control

MES

operational
commands

operational
response

Industrial
Information
Integration
Backbone

operational
commands

operational
response

Fig. 3.5. Industrial information integration backbone.

66 3 Research Opportunities in Business Process Technology

The discussion of whether using a message-based approach or a data-based
approach to the integration of manufacturing execution systems and produc-
tion planning systems is an instance of a general discussion of distributed
versus centralized systems. The aggregated driving force of such discussions
has to be total cost of ownership – see Sect. 2.6.3. Concrete typical driving
forces in such general discussion can be price, performance and reliability [140].
However, it is not clear from the outset which architecture is cost optimal in a
concrete situation. For example, the robustness of a distributed system built
from low cost components can be better than the robustness of a central-
ized system built from high cost components [228]. As long as the community
lacks a constructive cost model on the basis of standardized software system
components, software architecture will remain heuristics-based.

3.6 Integration of Business Processes and Business
Intelligence

So far, we have discussed in Sect. 3.5 the integration of manufacturing ex-
ecution systems and enterprise resource planning systems. A similar archi-
tectural discussion arises when looking at the integration of enterprise re-
source planning and business intelligence. Beyond the already state-of-the art
point-of-sales analyses their is an ongoing trend in systematic business activity
monitoring (BAM) [117, 236]. The standard architecture enabling analytical
processing in today’s enterprises has separated online transaction processing
(OLTP) and online analytical processing (OLAP) systems. These systems are
really separated, i.e., they consist of software that resides on different servers.
Between these systems there is yet another system, often also on a separate
server, that is responsible for the extraction of data from the transaction
system, the transformation of the data into formats that are suitable for ana-
lytical processing and the transportation – called load – of the data into the
analytical system. This latter man-in-the-middle system is called ETL layer
(extraction, transformation, load). Conceptually the point is that there are
two kinds of system, i.e., systems that are there for daily operations in the
enterprise and systems that are there for analyzing the outcome of these daily
operations and – with the current trend of business activity monitoring – also
for observing the daily operations themselves. In practice, you can find also
systems that combine the three layers onto one server, but these systems are
then ad-hoc solutions in small, uncomplex business environments. If the layers
are run on a single server in practice this is not about creating an innovative
data warehousing architecture like the one we are discussing in the sequel
but just about exploiting available business intelligence products on a simple
server infrastructure wherever possible for occasional analyses. However, what
we are talking about here is systematic analytical processing on a large scale,
so ad-hoc architectural alternatives are not of interest here.

3.6 Integration of Business Processes and Business Intelligence 67

In the discussion of data warehousing architecture the term analytical
processing fits the intention of these systems, whereas, at a first sight, the term
transaction processing may seem to be a bit odd for the systems that support
daily operations. It seems odd, because one connects the term transaction
with technical concepts like ACID transactions or transaction monitors. Even
in this sense, the usage of the word transaction processing system for systems
that support daily operations is a good fit, because it is correct that the
technical notion of transaction is dominant in these systems. Anyhow, the
term transaction processing is quite good, because it can be understood as
hinting not to technical concepts but the ephemeral nature of data emerging
and disappearing in IT systems that support daily operations – we will have
closer look onto this topic in due course.

Again it is compelling – both from a scientific viewpoint but also from
an innovative product viewpoint – to think about a radically different system
architecture that integrates the systems under consideration from scratch. In
such architecture the schemas that form the basis for transactional processing
– called transactional schemas for short in the following – and the schemas that
form the basis for analytical processing – similarly called analytical schemas
– reside in the same integrating database. In such an architecture the ana-
lytical schemas are views on the transactional schemas and the definitions
of the view update mechanisms correspond to the ETL layer of current data
warehousing (DW) architectures. The architectural notion of integrating via
the database in this case pays tribute to the increasing hunger for more and
more data extraction and shorter and shorter update cycles for the analytical
data [44]. The significantly shortening of the extraction and transformation
times in concrete data warehousing architectures is one of two aspects of the
current active data warehousing (ADW) trend, which is an issue both in in-
dustry [149] and academia [257]. The other aspect of active data warehousing
is about closing [343] the loop between analytical and transactional systems,
i.e., feeding back information from analysis to operations automatically and
exploiting analytical data in rules that control business logic and business
processes in IT for daily operations. The closed loop aspect of active data
warehousing is another argument to consider the integration backbone ap-
proach. Together with the foreseen need to exchange information between
transactional and analytical systems eventually in real-time it actually leads
somehow naturally to this approach.

3.6.1 The Origin of Today’s Data Warehousing Architecture

As with most ubiquitous system architectures there are two kinds of reason
why data warehousing architectures today look the way they are. The first
kind of reasons is about how the systems emerged; the second kind of reasons
has to do with concrete pragmatic issues of system operations. Both kinds of
reasons are mutually dependent. With respect to the first, i.e., the evolution
of today’s data warehousing architecture it has to be understood first that

68 3 Research Opportunities in Business Process Technology

there have always been different kinds of let us say functionality groups of
enterprise information systems and different kinds of data. Let us approach
this by taking a data-centric viewpoint.

Classically, it is usual to distinguish between master data, transaction data
and inventory data. Today there is actually one more kind of data, i.e., ana-
lytical data and that is the point as we will discuss later. As you will see, the
distinction between the classes of data is fuzzy and with time the boarders
between them diminishes more and more. The master data of an enterprise
are those data that must be available for usage by many applications over
a long period of time. They are updated seldom and therefore they are also
sometimes called fixed data or basic data. Typical examples of master data
are customer data, supplier data, article data or personnel data. Transaction
data are permanently new arising data. They are captured during the execu-
tion of daily business processes. Examples of transaction data are accounting
transactions, reservations, purchase orders, bills, receipts. The life time of
transaction data is limited from the outset. However, often you can find them
consolidated and aggregated as analytical data in data warehouses. Transac-
tion data are exploited in that they impact the update of inventory data. The
inventory data represent the business figures; they originate from the accumu-
lation of transaction data. Like master data, inventory data are stored for a
long period of time. Typical examples of inventory data are account balances,
business volumes and goods in stock. This means that the notion of inventory
data is more comprehensive than inventory data in the narrow sense, i.e., data
about goods in stock – it is accumulated data about all the goods and values
in the enterprise. In some commercial-off-the-shelf enterprise applications you
will find a more coarse-grained distinction between master data and transac-
tion data only – the inventory data are then usually subsumed under master
data. However, it is actually the existence of inventory data in transaction
processing systems that interests us here, because its consideration is very
instructive in the discussion of data warehousing architecture.

The question is why the different kind of data are distinguished by their
typical duration. Why not just store all transaction data forever? One answer
lies in technical limitations. Storing all transaction data means maintaining
a log of the enterprise life stream [101] and this is just too much data to be
stored. However, with more and more computing server power available – see
the results of the benchmarks by the Transaction Processing Council (TPC),
e.g. [345, 346], and Storage Performance Council (SPC) – the argument be-
comes weaker. For example, for years the retailer Wal-Mart stores data about
each shopping cart, i.e., sales figures and data about the products sold within
one customer transaction, in its data warehouse [355] — have a first look at
Fig. 3.6 – resulting into a data volume of 600 tera bytes in 2006 [14]. Other
reasons for not storing all transaction data can be found in the topic of data
protection and here, in particular, in a need for adherence to law regulations.
Actually, with respect to this issue also the converse is true. Currently, we see
a trend towards systematic business transparency – think of Sarbanes-Oxley

3.6 Integration of Business Processes and Business Intelligence 69

Act (SOX) [34] and Basel II. A lot of enterprise are currently challenged with
implementing crosscutting data auditing [258, 214] mechanisms that ideally
record all data messages exchanged in the enterprise IT for later analysis.

Along the lines of the different kind of data just discussed there have always
been different kinds of functionality in enterprise applications. The first one is
about gathering data from daily operations and processing them. The reports
that are generated in this operations mode are usually lightweight and they
serve only to enable daily operations and transactions. The reports are not
there for business analysis. The second kind of functionality is about generat-
ing complex reports on the basis of inventory data. These reports are needed
in controlling and planning. This means that reports for decision support
could always be found in enterprise applications. Over the time the potential
for systematic multi-dimensional transformation of the transaction data for
supporting decision support has been recognized. Also data mining with its
algorithms to discover correlations and dependencies between stochastic vari-
ables entered the scene. Dedicated decision support systems were built, data
marts that deal with chunks of enterprise data to address particular required
analyses and also holistic data warehouses.

It is a usual phenomenon that enterprise IT systems grow to system land-
scapes, because new needed functionality are not introduced as new features
of existing applications but introduced as additional software and server sys-
tems. So is in the area of analytical data. With the need for a new generation
of analytical capabilities new supplementing decision support systems were
introduced. The organizational pattern behind this is to never touch a run-
ning system. Analytical processing is technically cost intensive, i.e., it longs
for significant extra server computing power. In the aforementioned analyti-
cal processing example of Wal-Mart a 1000 node massively parallel computer
by NCR/Teradata was used in 2006 to deal with the 600 tera byte analyti-
cal data. The Wal-Mart example is an extreme example of a high-end data
warehousing solution – indeed, it is fair to say that Wal-Mart has been the
outrider for data warehousing. However, the example gives an impression of
the relative cost-intensiveness of analytical processing. Still it is not possible
for small and medium enterprises to buy high-end data warehousing solutions.
A new solution must allow for precise determining the risk of burdening an
existing IT infrastructure, which is responsible for supporting daily operations
with a robust quality of service, with extra load for cost-intensive analytical
queries. Therefore, it is the correct architecture to build a separate system for
this solution that is allowed to connect the existing system only occasionally
and for limited durations, typically in times where the transactional system
is known to be rather unused – during the night for example.

3.6.2 Marrying Transactional and Analytical Schemas

Unifying transactional schemas and analytical schemas into a single database
server holds the potential for an unseen degree of connection between trans-

70 3 Research Opportunities in Business Process Technology

POS_TRANSACTIONPCS_MERCHANDISE

DISCOUNT

TENDERFREQ_SHOPPER

UPC_XREF

CUSTOMER

CUSTOMER_TENDER_XREF COUPONCASH

OTHER_TENDERCREDIT_CARD

YEAR_DT
QUATER_DT

MONTH_DT

WEEK_DT
DAY_DT

HOUR_TIME

HOLIDAY

PRODUCT

MERCHANT GROUP

MERCHANT SUBGROUP

DEPARTMENT
CLASS

PRICING REMARKS

VENDOR

RETAIL PRICE
EVENT

STORE
DISTRICT

REGION

DIVISION

STORE_DEPT

FLOOR_LOCATION
OPERATIONAL_DEPT

time dimension operational hierarchy

facts
(point of sale)

product dimension

Fig. 3.6. Cut-out of the Wal-Mart data warehouse schema.

actional and analytical processing – with respect to speed, maintainability
and possible utilization. This is not about throwing together existing prod-
ucts onto the same server. It is about making transactional and analytical
schemas the unified basis for both transactional and analytical applications,
again in the sense of data independency. Transactional schemas and analyt-
ical schemas are just regions of a whole database schema in such a solution.
Programs that transform and transport data between these regions replace
current ETL layers and these programs are just further applications that ac-
cess and manipulate the data in the sense of data independency. Here, in
principle, it does not matter whether these transforming programs reside on
a separate application server or on the database server itself, however, it is
very likely that they will be placed onto the database server exploiting active
database features.

Application Separability

The problem with each combined transactional and analytical solution is that
it must support what we call separability or application separability. Sep-
arability is the possibility to guarantee the robustness or quality of service
of one application independent from the influence of other applications in a
system of applications. For example, operating system processes are a con-
crete mechanism that target separability. In multi-tier system architectures
separability becomes a subtle issue. The classical tiered data warehousing ar-
chitecture naturally supports quite strong separability, because the systems
are actually separated. The connection between the systems is limited to the
times the ETL layer reads from the transactional systems. ETL layer products
support the maintenance of this connection by providing means to schedule
the extraction. For the separability of the envisioned architecture database
management system features are necessary that allow for an advanced prior-

3.6 Integration of Business Processes and Business Intelligence 71

itization of the database tables and the threads accessing these tables along
the lines of a mature access model. Actually, commercial database products
offer such advanced features.

As a proof of concept, a first step in the direction of fully integrated trans-
actional and analytical processing could be undertaken by running existing
database, ETL layer and data warehousing products in separated capsules
of an appropriate virtualization software or of an operating system that na-
tively supports virtualization like i5/OS with its hypervisor. Such an approach
yields separability, however, in the beginning there is obviously no advantage
in terms of tighter interweaving of transactional and analytical processing.
However, once the system is running on the same machine it can be seen as
whole and it can be patched in a very targeted way to try out potential speed
ups of the extraction and load processes. Technically, such an attempt is only
possible if the system is a complete white box to the experimenting develop-
ers. So, natural candidates in such an attempt are open-source products for
the data warehousing technology, e.g., Mondrian (Pentaho analysis services),
for the database technology and, in particular, for the virtualization software,
e.g., Xen [78].

Completely Crosscutting Information Backbone

Systems evolve. New systems with new functionality are added while the im-
pact and value of these systems can not be really estimated at the time of their
introduction. From time to time it can be fruitful to analyze for a certain kind
of enterprise functionality whether the driving forces on the problem side and
the existing architectural patterns on the solution side are fully understood.
If some stage of maturity is reached it is time to think about systematically
designing a unifying architecture from scratch.

In Sect.3.5 we have discussed the integration of manufacturing exececu-
tion systems with enterprise resource planning systems via the database, in
this section we have discussed the integration of enterprise resource planning
systems with analytical processing via the database. This eventually leads to
an extension of the industrial integration backbone so that it spawns all the
different kinds of applications discussed [114]. We have visualized the resulting
architecture once more in Fig. 3.7.

Once such a database backbone is created, in particular, with the unifica-
tion of transactional and analytical schemas, it would be possible to think
about thoroughly applying multidimensional schema design over all levels
of data in the functionality stack. Today, it is state-of-the art to exploit
multi-dimensional schema design for point-of-sales analysis, see the Wal-Mart
database schema in Fig. 3.6. It is possible to ask what has been sold, when,
where, why, by whom, to whom, why? The analytical power lies in the oppor-
tunities to drill down and roll up the dimensions of this question. With respect
to activity monitoring exploiting multidimensional schema design [236] means
to pose similar question about who did what, when, why, with which resources,

72 3 Research Opportunities in Business Process Technology

results, performance etc.? Imagine the analytical potential in combining this
with the data from the production process, eventually leading to an IT system
integration from the top floor to the shop floor.

ERP

Machine and Device Control

Manufacturing Execution System (MES)

Enterprise Resource Planning (ERP)

production
schedule

production
report

Machine and Device Control

MES

operational
commands

operational
responseoperational

commands
operational
response

Business Intelligence (BI)

process
report

planning
rules ADW

BI

Industrial
Information
Integration
Backbone

Fig. 3.7. Completely crosscutting information backbone.

Information Backbone Compared to Data Mart Architecture

In Sect. 3.5.4 we conducted a discussion about the arguments for the integra-
tion versus arguments for the separation of automation and business systems.
This discussion was conducted against the background of enterprise resource
planning systems and manufacturing systems. It is instructive to repeat this
discussion here with the viewpoint of analytical processing of manufacturing
data. The analytical processing systems in Fig. 3.7 form a business intelligence
layer that is placed on top of the enterprise resource planning systems layer.
Actually, there exists also analytical processing that directly gets its data from
the manufacturing systems. Unlike business intelligence such analytical pro-
cessing is typically not there for supporting strategic planning and decision
support but for supervising and improving the production processes. Analyses
like those found in six sigma projects – see Sect. 2.4.2 – would be typical. If
such systems are also integrated via the information backbone approach this
would result into an architecture depicted in Fig. 3.8. We have already men-
tioned in Sect. 3.5.4 that the information integration backbone architecture
is a hub-and-spoke architecture and this aspect is visualized better in Fig. 3.8
than in Fig. 3.7.

3.6 Integration of Business Processes and Business Intelligence 73

Analytical processing in order to improve the quality of a production pro-
cess means mining production data. It is very typical that the data necessary
for a concrete data analysis are stored in a dedicated data mart. This way a
landscape of data marts grows with one data mart for each kind of analysis. A
practitioner’s argument against a centralized database approach that replaces
the data mart landscape is a performance argument. It is said that bringing
back the analysis data into the production databases would unacceptably slow
down this production database. An analysis is made of complex algorithms
and queries against a data mart and a complex query that gather data from
production databases. If it is possible to do several analyses on some extracted
data it is reasonable with respect to performance to separate the extraction
efforts from the analyses efforts. With a data mart landscape approach such
a separation is enforced by system architecture. But the fact that a concrete
system architecture enforces an architectural principle is not a strong argu-
ment for this system architecture. It is also possible to rebuild the data mart
schemas in a central production database with the same performance benefits
– off-loading in the shell so to speak. The data marts are then realized as
non-updatable views, i.e., as materialized queries. It is often an option to save
computing time by pre-computing results or manifesting part computations
as reusable data – think of all the several kinds of indexes for information
retrieval, for example.

ERP Analytical
Processing

MES

Industrial
Information
Integration
Backbone

Fig. 3.8. Direct analytical processing for manufacturing data.

Nevertheless, it also has to be said that on the basis of current technol-
ogy the integration approach really does not have to be the optimal one in
terms of total cost of ownership. Bringing back data mart as a schema into the
central database can lead to extra costs if the central database only scales up
relatively expensive. If the data mart is, for example, relatively small and does
not require the same service level agreement, it can easily be that the realiza-
tion with an extra commodity server is the best price option. Furthermore,
there might be provisos against integrating the data marts into the central

74 3 Research Opportunities in Business Process Technology

production database by the production database owners. In a concrete case
the dedicated data mart server solution is usually just the standard one in the
sense that it effects the overall systems operations and is easier to estimate.
Again, these counter-arguments against an information backbone approach
must be traded off against its significantly improved conceptual maintain-
ability and flexibility. It remains a research issue here to establish a system
of quantifiable driving forces onto the selection of the costs and risks of the
optimal information system architecture.

4

Semantics of Business Process Models

This chapter is about business process models, their semantics and their non-
formality. It is about business process modeling and its non-formality. The
semantics of business process models is an important topic, because there is a
gap between business process modeling and executable workflow specification.
Basically, there are three overlapping problem areas that lead to this gap:

• Non-formality of business process modeling languages.
• Unawareness of technical business process complexity in business process

modeling languages.
• System design orientation of workflow technologies.

The semantics of business process modeling languages are non-formal. The
subject that they describe, i.e., business processes with all their aspects is,
in general, not amenable for formalization. And even if certain aspects of
business process can be formalized, the activity of business process modeling
in enterprises is non-formal. The non-formality of business process modeling is
justified. Business process modeling is a form of system analysis, it can serve
as an ‘as is’-analysis or a ‘to be’-analysis of the enterprise. System analysts
want to invest only as much as effort into their activity as is necessary to
fulfill the objective of system analysis. Sometimes, only an understanding of
crucial aspects of the business processes is needed at some relatively high level
of detail.

Business processes are supported by information technology. However,
business processes are different form the IT systems that support them. IT sys-
tems have a technical complexity that is often not relevant for an understand-
ing of business processes. Sometimes, technological opportunities and tech-
nical details that could be important in the definition of business processes
are overlooked, because, in general, the technical level is not important from
a business process modeling viewpoint. This means that the unawareness of
technical business process complexity in business process modeling languages
can be considered as intended, but it can harm. In any case it means that

© Springer-Verlag Berlin Heidelberg 2010

75
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_4,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

76 4 Semantics of Business Process Models

there remains a gap between the business process modeling and IT system
specification. This gap becomes more comprehensible if workflow technology
is considered. Concrete workflow technology products follow a concrete de-
sign metaphor, which is either a concrete groupware approach or a concrete
enterprise application integration approach. With respect to formality, the
workflow definition languages that are used in workflow definition tools of
concrete workflow technologies are different to business process modeling lan-
guages in general. Workflow definitions are also a form of business process
specifications but through their interpretation by a concrete technology they
have a formal semantics, which is an executable semantics.

In this chapter we will look at the ambiguities of business process models
that arise in practice in today’s business process modeling projects. Some-
times, concrete business process modeling languages and methodologies come
along with a formal flavor by giving definitions of their modeling elements that
sound very strict, systematic and consistent – formal. However, a closer look
at the definitions sometimes shows that they are not as formal as they appear.
A formal appearance of a definition is not enough if it lacks a formal basis or
context in which the definition can be interpreted. Furthermore, at a closer
look you may encounter that useful business process models do not adhere to
the defined semantics of the used business process modeling languages. Some-
times it is simply not possible to be consistent with the definition of a concrete
modeling element even in small examples. Natural language with all its ambi-
guities is an appropriate tool to describe business processes. Business process
modeling languages are used to support natural language descriptions, not
vice versa. Business process modeling languages visualize business processes.
Visualizations of complex issues are central in good documentations of sys-
tems and so are business process models. However, business process models
alone are not sufficient to describe business processes at the needed level.

The chapter wants to develop problem awareness about the non-formality
of business process modeling languages. It wants to develop problem awareness
about pitfalls of increasing and decreasing the formality of business process
modeling languages. It does so by clarifying important example ambiguities
of business process modeling language. Therefore, we will look at the specifi-
cation of goods and information in Sect. 4.2 and the usage events in business
process models in Sect. 4.4. Throughout the chapter we encourage to distin-
guish between a global supervisory viewpoint and local working viewpoint on
business processes. Against this background we discuss the several intentions
of business process modeling. In order to deepen our understanding about
the semantics of business process models we have also to discuss distinctions
to the semantics of workflow definition languages. The semantics of workflow
definition is also discussed in Sect. 7.1 by a characterization of the interac-
tion of users with workflow management technology and an explanation of the
worklist paradigm.

This chapter is about semantics of business process modeling languages.
Semantics is about languages. Semantics is about talking about languages. In

4.1 Global and Local Views on Business Processes 77

the chapter you will find lengthy discussions about the meaning of terminol-
ogy like the discussion of differences between business processes and workflows.
Such discussions are of practical importance, because system analysis in gen-
eral and business process modeling in particular are about communicating
about systems; they are about talking about systems. The discussion in this
chapter may help in preventing and clarifying common misunderstandings and
language pitfalls in business process management projects.

4.1 Global and Local Views on Business Processes

There are different kinds of views on business processes. A basic difference is
whether you are involved in the definition of a business process as a business
process modeler or business process designer with the need to oversee nets
of activities as a whole or in the execution of a business process as a worker
where it is in principle sufficient to have knowledge about single activities.

Without further explanation the term business process and the term work-
flow could be considered as synonyms. A business process is a well-understood
interplay of activities that targets a certain business objective. A workflow can
be considered as having exactly the same meaning. In practice, the two terms
are actually often used synonymously. Sometimes, you might prefer to use the
term workflow in situations where you rather want to discuss the interplay
of work activities mechanically or schematically without a focus on the work-
flows’ business value. In the workflow technology community as presented by
the Workflow Management Coalition (WfMC) [356] there is a clean distinc-
tion between business processes and workflows. As just defined, a business
process is a net of activities that together achieve a business goal. A workflow
is an automation of a business process. We have cited the original definitions
of the Workflow Management Coalition in Sect. 9.1.1.

The definition of workflow as given by the Workflow Management Coali-
tion needs some remarks. Firstly, a workflow as considered by the workflow
technology community not necessarily an automation of a business process
in the true sense of the word. In enterprises you can find software processes
and system dialogues in IT systems that support business processes to achieve
their goal. These software processes and system dialogues are then also called
workflows and actually they are of major interest for us. These workflows do
not substitute the business processes that they support, they coexist with the
business processes they support. A system dialogue that shows a report to an
employee must not be confused with the activity that is executed by the em-
ployee. Even fully-automatic processes usually only add value in the sense of
accompanying other business processes that involve activities executed by hu-
mans. Furthermore, many processes that are considered fully-automatic must
be accompanied by activities that are executed by humans, for example, ac-
tivities of controlling or supervision. There is also the option that a business

78 4 Semantics of Business Process Models

process is completely substituted by its automation, but this case is not the
main case studied by the workflow technology community.

Secondly, the workflow management community has an even more narrow
meaning about what a workflow is than one might guess from the definition
given by the Workflow Management Coalition, i.e., the implementation of a
software process or system dialogue on the basis of a concrete workflow man-
agement system as defined by the Workflow Management Coalition, i.e., an
interpretation of a workflow definition by an appropriate workflow technology
product and its exploitation to control the flow of information or to orches-
trate other IT applications.

In this book we try to use the term workflow consistently for software pro-
cesses and system dialogues that support business processes. Moreover, we
usually use it for those workflows that are defined for the interpretation by
a workflow management technology. Furthermore, our main focus is human
workflow. In the upcoming examples workers are attached to the activities
of the workflows. Nevertheless, it can be that an activity with an attached
worker runs full-automatically and that the person assigned to it only has an
accompanying role rather than an activity-driving role. Anyway, we are mainly
interested in the human-computer interaction necessary for the functioning of
the workflow. The automatic control of some automatic processes is also im-
portant. Here, workflow definition can be seen as a high-level programming
paradigm. In principle, if a human is also just considered as an entity trans-
forming items a generalized view on human workflow and automatic workflow
is possible immediately. However, for the moment we stay with the notion of
human workflow. We explain our usage of the term business process and the
term workflow once more in Sect. 9.1.2.

We have said that we try to use the term workflow consistently for software
processes and system dialogues that support business processes. Sometimes
we deliberately do not so. For example, in Sect. 7.1.1 we talk about a process
instantiation menu for a menu that gives the user of a workflow management
system the opportunity to start new instances of processes. The name process
instantiation menu is natural, because the workflow that is started is there
for supporting a business process. Also the usage of the terms process and
business process for a workflow are natural in this context. The user of a work-
flow is not interested too much in the distinction between business processes
and workflows. The distinction is rather in the realm of professional jargon or
technical terminology. Once more, we want to point out that today’s workflow
management technologies are sold as so-called business process management
suites. And even the Workflow Management Coalition who distinguishes be-
tween business processes in general and workflows as their automation uses the
term process definition for the workflow definition in their workflow reference
model – see Fig. 4.3.

In practice, the distinction between business process and workflow van-
ishes. For example, former workflow technology products today ship as busi-
ness process management suites. It is always possible to identify the core

4.1 Global and Local Views on Business Processes 79

functionality of business process management suites that deals with the en-
actment and control of automated workflow activities as workflow technology.
However, the word workflow in itself does not require fully automated activity
control.

4.1.1 Business Process Definition

This section is about business process definition. Business process design,
business process modeling and business process specification are used as syn-
onyms for business process specification in this book. Business process defi-
nition stands for the activity of defining a business process as well as for the
artifact that results from this activity. The same is for business process de-
sign. In practice, the terms business process definition, design, modeling and
specification are also almost synonymous. You might want to use the term
business process design if you want to stress the creative aspect of the ac-
tivity. You might want to use the term business process specification if you
want to express that a business process definition is distinguished by an extra
degree of formality.

Business process definitions and workflow definitions are both given as
nets of activities. Business process definitions and workflow definitions even
look the same. For example, the workflow definitions created with a workflow
definition tool of a workflow management product look like business process
models painted with a business process analysis tool. Business process defini-
tions are the result of the activity of business process definition, i.e., in terms
of business process management lifecycles like the ones shown in Figs. 2.6
and 2.7 they stem from the business process definition phase. Workflow defi-
nitions are the result of creating them with a workflow definition tool. It is fair
to say that workflow definition rather belongs to the implementation of busi-
ness processes and therefore it could be said that workflow definition rather
belongs already to the business process execution phase or ‘doing’-phase of
business process lifecycles.

Nevertheless, many things that can be said about business process def-
initions can be applied also to workflow definitions. The aspect of business
process supervisory discussed in a general manner in Sect. 4.1.2 is such an
aspect, but also certain aspects of decomposition, visualization or simulation.
With respect to these general aspects workflows can be considered a special-
ization of business processes.

Figure 4.1 shows the definition of a business process, i.e., a business pro-
cess model. It is a visual definition that is oriented towards BPMN (Business
Process Modeling Notation) [265]. A business process definition is a blueprint
or template for concrete business process instances. In this section we only
consider the most basic human resource mechanism, i.e., a single worker can
be assigned to an activity. More sophisticated role-based mechanisms that can
be found in commercial tools will be discussed in Sect. 7.2. A business process
definition can be seen as the static description of business processes, whereas

80 4 Semantics of Business Process Models

the execution of a business process is coined a business process instance. The
workflow management community also uses the terms build time and run time
of workflows [164]. We will discuss the relationship between business process
definitions and business process instances in more depth in due course.

Fig. 4.1. Business process definition and business process supervisory.

Figure 4.1 shows some business process instances below the business pro-
cess definition. In Fig. 4.1 we use the same notation for the visualization of
business process instances as for business process definitions with the only dif-
ference that entities, i.e., events, activities, and connectors, are grayed. White
color is reserved for those activities that are currently active. In general, there
is a manifold of business process instances running. The visualization of the
business process instances in Fig. 4.1 represents one point in time of the
business process executing system. The current state of a business process
executing system can be understood as the set of currently active activity
instances. The complete state of a business process executing system consists
also of the state of all processed resources.

4.1.2 Business Process Supervisory

Business process instances are subject to business process supervisory. We
use the rather artificial term business process supervisory here for the global
view on the running business process instances. Operationally, business pro-
cess supervisory can be thought as consisting of business process control and
business process monitoring. But the crucial point here is that the viewpoint
of business process supervisory is a global one. There is also another more
local viewpoint on the business processes and this is the viewpoint of workers.
The global viewpoint of all business process instances is actually interchange-
able with the viewpoint of business process design. One is tempted to believe,
that, in principle, the business process designer could concentrate on the single

G

A B C D

E F G H
business process

design

business process
supervisory

V V

A B C D

E F H

V V

A B C D

E F G H

V V

A B C D

E F G H

V V

A B C D

E F H

V V

G

4.1 Global and Local Views on Business Processes 81

business process instance in defining a concrete business process. A business
process is just a systematic, i.e., repeatable, means to transform information
and goods by activities and with resources so that a business value is created.
So, a business process has its interfaces to other business processes in the en-
terprise, in particular, it is triggered by events stemming from other business
processes and therefore the context of a business process must be considered
in its design. But despite this interdependency with other business processes,
a business process designer could define a business process by only consider-
ing a single instance of it. However, this is, at most, only true as long as only
functionality of a business process is considered. If business process design is
about optimizing the performance of how things are done, a global consid-
eration of all business process instances is necessary in order to fully exploit
possible parallelism – see Sect. 2.2.3 on parallelism of business processes.

What interests us here is the point that there are also possible local view-
points on the business processes, i.e., viewpoints on single business processes
and single activities that can forget partly or completely about the context
of these entities. Consider a single worker who is responsible for executing
activities of a business process. Depending on the concrete business process
control that is established, he must be aware to a certain degree of other ac-
tivities and their sequencing in the business process beyond the activity he
is currently executing. Let us assume for a moment an office or plant with-
out any business process automation, in particular, without any IT support
for the control of the business processes. Also in this case the business pro-
cess activities should be coordinated and executed according to the existing
business process definitions. Furthermore, as a thought experiment, let us as-
sume that there is no central authority for controlling the correct execution
of the business processes. Then, every worker has to be informed about the
sequencing of the activities he is responsible for. Furthermore, he also needs to
know the workers that are responsible for activities that need to be triggered
after activities in his own sub business processes. This is all a worker needs
to know to execute his sub business processes. If he has finished an activity
he informs the worker of each activity that needs to be triggered. He can do
this by calling this person, sending him an email, passing a document, passing
goods, tipping on his shoulder or whatsoever. If every worker acts like this
all the defined business processes are executed correctly. The business process
control works as a distributed game even without a central control authority.
Beyond the described knowledge a worker does not to be informed about the
sub business processes executed by others. He has a more local view than the
business process designer.

Now, if there is a central authority to control the business processes the
viewpoint of the single worker can even be more local. At the extreme, the
worker does not have to now anything about the dependencies between the
single business process activities and he also does not have to know anything
about other workers responsible for other activities. The worker is simply
notified by the central business process control authority to perform a certain

82 4 Semantics of Business Process Models

activity and has the duty to report to the authority after he has finished the
activity. It is then the responsibility of the business process control authority
to trigger all workers according to the business process definition and to route
somehow the necessary items – information or goods – between them. Now,
the viewpoint of the single worker has become completely local. Of course,
with respect to his own activities he will learn about their dependencies by
working on them. But he sometimes obviously does not have to do so. An
extreme example is the assembly line. Here the worker is highly specialized
and may have the responsibility for a single activity only. At the extreme, he
does not need to now anything about the functionality of the overall business
process and even not the role of his work in it. The assembly line is already
an example for automation of the central business process authority.

In practice, you will often find a mixture of automatic, semi-automatic
and non-automatic business process control as described above.

Sometimes the appropriate way of organizing work is even not amenable
to formalization as a business process being a fixed net of activities with fixed
resources attached. Team work for rather complex, creative or even chaotic
tasks like prototype construction or crisis management cannot be planned
and structured in way it can be done for routine tasks of daily operations.
Such important, complex value-adding processes in enterprises are addressed
by knowledge management on the conceptual side and by enterprise content
management and by certain strands of computer-supported collaborative work
on the technological side. Team work is also the domain where we currently see
emerging new team collaboration software or social software [116] that some-
how aims at exploiting Web 2.0 [271, 207] assets and topics in the intranets of
enterprises and organizations. However, let us stay with the business process
paradigm and workflow paradigm here.

4.1.3 Business Process Automation

The central business process authority described above in our thought exper-
iment can often be automated. And the workflow product paradigm as de-
scribed by the Workflow Management Coalition with its workflow enactment
service and worklist concept has established a concrete operational seman-
tics for workflow definitions and the automation of workflow control. In this
section we explain the interplay of the workflow instances with the workflow
enactment service and the worklist in a very concrete and at the same time
ad-hoc manner.

Please have a look at Figs. 4.2 and 4.3. Figure 4.2 shows a couple of
business process instances in action and a workflow management system that
supports these business process instances. Even more, the workflow manage-
ment system realizes a workflow control for the applications it orchestrates. It
therefore takes over – in parts or even completely – the role of business pro-
cess control of the business process supervisory viewpoint. Figure 4.3 shows
the so-called workflow reference model [164] of the Workflow Management

4.1 Global and Local Views on Business Processes 83

Fig. 4.2. Workflow supervisory and workflow automation.

Coalition. The workflow reference model defines the notion of workflow man-
agement system. It explains the interplay of workflow or process definitions,
a workflow enactment service, the worklist and controlled applications.

Below the workflow supervisory viewpoint there is another viewpoint
called workflow automation in Fig. 4.2. Let us assume that each of the ac-
tivities is supported by a software application, i.e., in order to execute an
activity the worker has to invoke and finish the system dialogue of a concrete
application. Such a system dialogue can consist of a single report and form
that must be filled out and submitted but it can also be a complex dialogue
consisting of several reports, forms and case distinctions the user must step
through.

Now, workflow automation means that there is a central workflow enact-
ment service that takes over the role of a central workflow authority. The
workflow enactment service keeps track of the workflow system state, i.e.,
it keeps track of all active activities of all active workflow instances. This
workflow system state is called workflow control data in Fig. 4.3. A workflow
instance is created if it is triggered by an outside event or another already
existing workflow instance. If a workflow instance is created all of its first ac-
tivities, i.e., the activities that are directly targeted by the start event in the
workflow definition become active. If an activity becomes active it is added
to the worklist of the responsible worker. For each worker such a worklist is
maintained.

Assume that a worker starts a fresh session by logging into the workflow
application. Fresh session means here that he has finished all activity support-
ing applications before closing the last session. The first thing the worker now
sees is his worklist screen. For each active activity in his worklist the work-
flow management system possesses a hook to the application that is needed

Gworkflow
supervisory

A B C D

E F H

V V

A B C D

E F G H

V V

A B C D

E F G H

V V

A B C D

E F H

V V

G

•Task C
•Task F
•Task E

•Task D
•Task H
•Task D

Dialogue

st
at

e
ch

an
ge

s

ne
w

ta
sk

s

workflow
automation

84 4 Semantics of Business Process Models

to work on that activity. So, the user can choose on which activity he would
like to work on and can enter the appropriate application via the worklist
screen. After the worker has finished the task and exits the system dialogue
of the supporting application he is routed back automatically to his work-
list screen. At the same time, the state of the workflow execution system is
changed. The event of finishing an activity triggers new activities according to
the workflow definition and makes them active. Furthermore, the activity the
worker has been working on has been deleted from the worklist. Furthermore,
new activities that have become active in the mean time are now added to
the worklist screen. The described mechanism guarantees the complete and
correct proceeding of all workflow instances.

Fig. 4.3. The WfMC workflow reference model.

The worklist concept is crucial for the workflow product paradigm. How-
ever, as we will discuss later in Sect. 7.1 it is independent from concrete
clients consuming it. Here, in this section we have presented it through a sim-
ple worklist screen mechanism that is characterized through the fact that the
user either only sees the worklist screen consisting of exactly the application
links for the activated activities or otherwise works with the application for
exactly one of the active activities. More sophisticated usages of the worklist
paradigm are possible. Nevertheless, the described worklist screen mechanism
is actually a widespread implementation of the worklist paradigm.

Workflow
Application

Workflow
Application

Workflow
Application

Workflow
Application

Workflow
Engine

Workflow
Control
Data

Workflow
Relevant Data

Organizational
Role/Model Data

Process Definition

Workflow
Applications

User Interface

Definition Tool

Worklist Handler

Administrator

User

invokes

invokes

invokes

interprets

referencesreferences

update

uses

maintainsrefers to

Work List

generates

interact
via work list

Workflow
Enactment

Service

Workflow
Applications

software components and data of
workflow management system

external
products and daa

4.1 Global and Local Views on Business Processes 85

4.1.4 Business Process Supervisory in the Presence of Business
Process Automation

In Sect. 4.1.2 we have discussed the viewpoint of business process supervisory
as a global one overseeing all business process instances and the global state
of the business process executing system. This viewpoint is an important one
during the business process design activity, but there is actually the task of
business process supervision during the execution of the business processes.
We said that business process supervisory consist of business process control
and business process monitoring. As we have just discussed the basic business
process control can be done automatically, however, there is still need for
further business process monitoring.

In general, monitoring can be more than observing, it is usually about
tracking and controlling objects. This is also the case with business process
monitoring. We have discussed business process monitoring in Sect. 2.4 . Ac-
tually, in this discussion, only the observational aspect of monitoring has
been mentioned. In the lifecycle of business process management depicted in
Fig. 2.6 the role of the business process monitoring stage has been described
as gathering data about running processes in order to exploit this data for an
improved business process redefinition. However, business process monitoring
and workflow monitoring is more than merely gathering information about
the business processes and workflows for later purposes, it is about reacting
to observed abnormal behavior of business processes. For examples, it could
be observed that a certain activity is always handled too slowly by a certain
person compared to some figures given in the workflow definition. Then a ded-
icated business processes supervisor that observes this can react by trying to
identify the problem and solve it. As a more extreme example, it can perhaps
be observed that some activities are actually dangling, i.e., they have not been
started for a long time and have remained idle. A reason can be here that the
responsible worker is ill, did not come to work but it has been forgotten to put
this information into the workflow management application. Another reason
could be that the responsible worker is overloaded with work. In any case the
supervisor can reschedule the work items to other workers.

Actually, commercial workflow management technologies offer the means
to reschedule work items, typically by authorized administrators but even by
the workers themselves. Such rescheduling mechanisms usually require a more
sophisticated role-based definition of human resources for tasks, because with
our basic human resources mechanism used in this section rescheduling of
tasks to workers would result in a redefinition of the workflow.

Dynamic Redefinition of Workflows

The workflow monitoring described is about systematically observing business
processes and exploiting the gained information. This is exploited in two ways.
On the one hand, it can be used to redefine the workflows; on the other hand,

86 4 Semantics of Business Process Models

it can be used to make changes to running workflow instances. This means
it can be used to improve the workflows at build time and to improve the
workflows at run time. The distinction between changes to workflow templates
and changes to workflow instances is clean in the sense that changes to single
instances affect these instances only but changes to a workflow definition affect
all the instances of this workflow – in the future and in principle also at the
time of change.

However, the distinction between changes to build time and run time as-
pects is somehow artificial and depends on a feeling of which kind of changes
can be done immediately or quickly. For example, the opportunity to resched-
ule workers dynamically emerges from loosening a fixed assignment of work-
ers to tasks by a role-based concept which allows for a degree of freedom to
reschedule dynamically. This example makes clear that the distinction be-
tween build time and run time aspects depends on the concrete design of a
given workflow technology. For example, it is possible to design a workflow
technology that understands the workflow definition as a template in the usual
way but allows hooking alternative activities into a single workflow instance
during run-time, a kind of ad-hoc redefinition of workflows so to speak.

A similar issue is addressed by the workflow technology ADEPT in the
AristaFlow project [294, 296]. We said before that a change to the workflow
definition affects all its instances in the future but also in principle those
that are running at the time the workflow definition is changed. The latter
can be particularly useful if you have long-running workflows in your system.
However, such a feature is a research issue. In general, it is a non-trivial
question how to adapt a running workflow instance to a workflow definition
that has been changed in a way that makes sense and it is exactly this question
that is addressed by the ADEPT platform.

4.1.5 Business Process Instances

Up to know we have used the notion of business process instance intuitively
by saying that a business process definition is a template for business process
instances. Actually, the notion of business process instance relies on a notion
of decomposition of the specification of a business process executing system.
The whole specification is cut into pieces which are the single business process
definitions. The specification of a business process executing system can be
seen as a set of business process definitions. In general one business process
definition is limited by a set of start events and a set of end events. So also
the definition of the whole business process specification can be seen as a
single business process definition and indeed it is possible to explain its dy-
namics without the notion of business process instance only in terms of active
activities as done before in Sect. 4.1.3. In presence of a decomposition mecha-
nism, the specification of a business process executing system as a whole can
be called the flat business process model – see Sect. 5.1.2. In Sect. 5.2.2 we

4.1 Global and Local Views on Business Processes 87

will discuss the semantics of cutting a flat diagram into pieces yielding sub
business process specifications.

We will delve into the topic of business process decomposition in Sect. 5.
For the current explanation it is sufficient to consider a business process spec-
ification as a net of activities as usual that is limited by a set of start events
and a set of end events. A concrete modeling technique may impose extra
conditions with respect to start events or end events. For example, it would
be usual to fix that a business process definition must not have multiple start
events, or that it must not have multiple end events. If a business process defi-
nition has multiple start events or multiple end events it is a bit more difficult
to understand it as a functional entity. We already described the concept of
business process instance in Sect. 4.1.3 from the viewpoint of business process
automation. A business process instance of a business process definition is
created whenever an instance of one of the start events of the business pro-
cess definition occurs. Concrete activities are triggered by this start event and
become active. Activities are worked on and new activities become active on
behalf of this. Conceptually, a business process instance is the evolvement of
such business process state once originated by a start event in the past. At one
moment in time, a business process instance is represented by its currently
observable business process state. But a business process instance is more,
it also has a history. Actually, a business process instance can be identified
with its history, i.e., with the history of business process states following each
other since an originating start event. The notion of business process instance
can be formalized by the notion of an identifying business process identity
or token. A new business process instance token is generated once a business
process instance is created by a start event and then this token is passed to
all subsequently triggered activities. All the active and past activity instances
that are tagged with the same business process identifier make up a business
process instance. A concept of business process instance can be further hier-
archized. As we have said, the notion of business process instance itself relies
on a notion of decomposition. Along the lines of a hierarchy of definitions it is
also possible to understand the running business process executing system as
a hierarchy of business process instances and sub business process instances.

It is instructive to say that a business process instance is a business process
run. Figure 4.4 shows a business process definition and a representation of
one of its business process instances. We have chosen an ad-hoc notation for
the business process instance that is oriented towards the business process
definition notation, i.e., activity instances and concrete events are depicted
like activities and events in the business process definition with the difference
that they are double-lined. Currently active activities, which make up the
state of the process instance, are colored white, whereas past activities are
grayed. An activity instance points back to the past activity that has triggered
it. The diagram in Sect. 4.4 has no formal ambition, its mere purpose is to
visualize what the concept of business process instance is about. For example,
the neat tree-structure of the business process instance diagram would be lost,

88 4 Semantics of Business Process Models

if some joins of control flow would occur in the business process definition.
Furthermore, it cannot be decided from the diagram whether the C-activity
instance occurred before or after the second B-activity instance or even after
the second B-activity instance. The latter means that the diagram in Fig. 4.4
is not a complete visualization of the business process instance’s history.

A

VV

B A1

B1

A2
B2

A3
B3

A4

instantiation

C

C

Fig. 4.4. Complex business process state resulting from business process cycle.

However, the example in Fig. 4.4 is good to show that arbitrarily complex
business process states can arise, in this case because there is a loop in the
business process definition. Furthermore, it is well-suited for the discussion of
the semantics of end events. Basically there are two possible semantics, i.e., a
preemptive and a non-preemptive one. In the preemptive semantics the pro-
cess instance is ended, if an end event is reached after the execution of one of
the currently active activities. This means that leaving the active C-activity
in Fig. 4.4 would preempt the active A- and B-activities. The question is how
such preemption is realized with respect to activity instances that are actu-
ally executed. If we are talking about workflows of a workflow management
system there are two options. One option is to allow the open workflow ac-
tivities to finish, the other option is to shut them down. In the latter case
an appropriate rollback mechanisms must be available that supports the re-
spective execution semantics. With non-preemptive semantics activities can
only be ended via end events. A non-preemptive mechanism of end events can
also be exploited for establishing an implicit synchronization. The discussion
of end event semantics is not restricted to business process definitions and
workflow definitions with a single end event, it immediately applies to those
with multiple end events in general.

We said that conceptually a business process instance is a business pro-
cess run. Technically, a business process instance can be identified by the
resources attached to it. In workflow technology such resources are an oper-
ating system process or thread and global variables. From a conceptual and
reductionist viewpoint the aforementioned business process token is also a re-
source attached to a business process. A business process instance functions
as a scoping mechanism for the resources attached to it, i.e., the global state
associated with a business process instance is only global with respect to the
activity instances that belong to this business process instance and it is not

4.1 Global and Local Views on Business Processes 89

visible to any other activity instance in the business process executing system.
If a hierarchical business process instance concept is established, it becomes
even clearer that business process instances have a scoping role. Similarly to
routines, subroutines and nested routine calls in third generation languages
nested business process and workflow definitions can be used to establish hi-
erarchies of scopes.

Fig. 4.5. Supervision of production process instances.

Visualization of business process instances plays a role in practice. For
example, the tools and diagrams developed for project management like PERT
or Gantt diagrams are rather used for planning single instances of business
processes, i.e., single projects. You use and can interpret a project plan also
for several instances of a project, then it becomes a project instance template
and therefore a business process definition. If you use conditions or even loops
in your project definition it has to be understood as a template defining a
multitude of project instances, even if you plan to conduct the project only
once and use conditions only in order to be prepared for different unpredictable
cases. In Sect. 3.5.1 we have discussed a software system for automatic shop
floor control – see Fig. 3.3. The system visualizes the flow of batches of material
through processing stages in a Gantt diagram style. Actually a lot of process
instances are visualized in parallel. Each process instance is identified by a
unique batch number that is processed during the different stages. In Fig. 4.5
a business process definition is reconstructed from the process instances to
the left. Each processing stage becomes a function in the business process
definition and the processors are attached to the functions as resources. The
attachment of resources is done via a role mechanism. The several processors of
each stage form a set and become a role that is attached to the corresponding
function. The typical semantics of such a role mechanism fits the situation,

03 05 09 12 14 16

01

02 04 08 11 13

06 07 10 15 17

02

03

01

06

04

05

07

08

09

10

11

12

14

15

02

03

01

06 04

07 05

08

09

A1

A2

A3

B1

B2

B3

B4

B5

B6

C1

C2

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00

9:23

A

B

C

A1 A2 A3

B1 B2 B3
B4 B5 B6

C1 C2

90 4 Semantics of Business Process Models

it has the meaning that one of the processors takes over the processing of an
incoming batch.

4.2 Transformation of Goods and Information

The purpose of business processes is to transform goods and information.
With respect to business process definitions two interesting questions arise.
How are the transformations of items represented in the business process def-
inition? Is a business process definition actually about specifying transforma-
tions of goods and information or is it only about specifying transformations
of information? The second question might puzzle you. Why is it a question
at all? A lot of information technologies are there for supporting material
transforming processes – think of the production planning systems, manu-
facturing execution systems, and automation software discussed in Sect. 3.5.
So a business process definition should obviously allow for the specification
of transformation of goods and information. However, as we will see not all
modeling language designers have considered the question and some have even
explicitly designed languages for the transformation of information only. In
any case, working on those questions leads us to a consideration of different
possible kinds of semantics of business process definitions. But let us turn to
the other question first, i.e., the question of how to represent the transforma-
tion of items in a business process. In this discussion, we take for granted the
fact that business process specification encompasses both the specification of
information and the specification of goods.

4.2.1 Specifying Item Flows

One way of specifying the transformation of items is on the basis of an item
flow. This option is obvious, because a lot of business processes in the enter-
prise that are amenable to process modeling and workflow technology support
are actually about passing things around from one place to another where they
are processed or transformed. This applies to passing around documents in
an office as well as moving around a workpiece in a shop floor. If a visual
language is used the flow of items can be specified rather explicitly or rather
implicitly. An explicit specification is about annotating the items somehow to
the arcs connecting the activities. You can find such an explicit specification,
for example, in the data flow diagrams of structured analysis that has been
introduced in [300]. Figure. 4.6 is a cutout from an example process chain
diagram in [312] that are used in the enterprise modeling tool ARIS, which
is the leader in the Gartner magic quadrant of business process analysis tools
in 2007 [33, 261]. In such a process chain diagram information objects and
auxiliary deliverables – outputs – are placed into the control flow definition.

Basic visual business process diagrams are in the first place about the con-
trol flow. If they do not explicitly specify the item flow visually, this can be

4.2 Transformation of Goods and Information 91

Customer
order arrived

Order
Planning

Customer
Order

Item

Manufacturing
Orders

Plant

Sales

Production
Plan

Confirmation

Customer
Order

Order
accepted

Order
included

in planning

Order
Processing

Event Function Information Object Business Partner
Organizational Unit Output

Fig. 4.6. Example ARIS process chain.

for two reasons. Either they serve as a visual view on an overall system spec-
ification that defines the item flow somewhere else. Or the defined business
process is deliberately specified incompletely. A reason for underspecification
can be the need to document a preliminary stage in a documentation process
in the sense of documenting ‘to be defined’-requirements (TBD) [169]. On the
other hand, it can mean that with the functions in the flow diagram some
item flow is implicitly specified. Such an implicit specification can be vague if
the diagram is used as a strategic process chain, i.e., as a means to document
processes on an abstract level that aggregates functionalities and items. For
example, if you specify a supply chain to foster strategic discussions about an
enterprise, the names of the single stages of the supply chain management are
sufficient to implicitly define the goods that are transformed. In such a case
a workflow designer may feel that an explicit annotation of items to the con-
nections between stages does not add information but only redundancy. This
argument works here, because from a high level viewpoint only an overview
of the overall business process is wanted that abstracts away from the detail
of the item flow and functions.

Please consider the automatic shop floor control discussed in Sect. 3.5.1
once more – see Figs. 3.3 and 4.5. As we have already discussed in Sect. 4.1.5
the diagram that can be seen on the screen visualizes all process instances
running at the plant. The point is that not only past and current processing
stages are shown, but also future processing stages. This means the diagram
is not only a monitoring view but also a planning and definition view, because
it defines the future behavior of the automatic plant. The bars in the diagram
have two meanings. On the one hand, a bar stands for a function, i.e., the
transformation of a batch of material. In particular, this aspect of the bar
is emphasized by the fact that a bar’s length visualizes the duration of the
processing of the batch of material in a certain stage. On the other hand,

92 4 Semantics of Business Process Models

a bar also stands for the batch of material itself flowing through concrete
processors in the different processing stages. The identification of both the
material and the function that transforms this material via the same visual
element can easily be done in this example, because in the flows there are no
splits. If you have a closer look at Fig. 3.3 you will see that with respect to the
same batch of material – identified by the same number in several processing
stages – there is always only a strictly sequential order of processing. Each
processor has only one kind of product, transforms the product as a whole
and eventually produces a single product that then is transported to the next
processor. In general, processes are more complex and you need some means
to specify how several sub products result from several other sub products.

4.2.2 Global State Transformations

Often, the activities of a business process not only to transform inputs into
outputs, often; they also manipulate a global state as a side-effect. Typically
we speak here of a global state that is made of information objects but not
goods – goods are really shipped around. The business logic and business
rules invoked on behalf of activities in a business process manipulate data in
central databases. With respect to information, the two concepts of data flow
and global state manipulation are mutually interchangeable. If you have a data
flow implementing system, i.e., a message passing system, with global state
we mean here an extra state that complements the data exchanged between
the functional entities. Otherwise, i.e., if the exchanged data are considered
as part of a global state, which is an appropriate basis to define semantics of
message-passing systems, the above statement that data flow and global state
manipulation can be simulated by each other becomes trivial. Anyhow, in the-
ory data passing and global state manipulation are interchangeable. Assume
a system of functions with a mechanism for communicating messages and a
database. You can get rid of the message-passing mechanism by exploiting the
database for interchanging the messages. A sending function tags and stores
a message and calls a function without passing the message as a parameter.
Then, the called function retrieves the message. The information attached to
the message by the calling function must be accurate enough, for example,
by encompassing a time-stamp. On the other hand, you can get rid of the
database by exchanging the global state with each message and communi-
cating former global state changes to every function. The latter is obviously
impractical. But also the first proposed simulation is impractical because in
concrete system architectures [28, 141] a dedicated message-passing mecha-
nism might be necessary to reach a cleaner design in terms of separation of
concerns or might be necessary because of requirements on the deployment
structure of software components.

However, the thought experiment of mutual simulation of message-passing
leads us to another message and data design approach. If you design an enter-
prise application from scratch, it is possible to avoid extra state beyond the

4.2 Transformation of Goods and Information 93

messages exchanged between the client and the system. All you need to do is
to store each message together with information of the context where it arose,
i.e., to store the complete history of exchanged messages. If you do so, you
have all the information you need in future system interaction, because all
the information maintained by a system also stems from interaction with the
system or have been computed from information that stems from interaction
with the system. We have discussed this system metaphor in [89] and have
coined the term user message system model or simply message system model
for short.

The decision to avoid from an information model other than the message
model may appear cumbersome to everybody with experience in information
system modeling and construction. One major characteristics of the principle
of data independency is that the data of the database is designed in a more
sustainable way than the data representation needed in one of the several
applications accessing the database. Also, there is the argument that a good
design of the data in the central database mitigates between the different
formats of the information found in the several accessing applications. The
sustainability of the application independent data and the sustainability of
its data design are perceived as core enterprise assets of a central database.
The first point, i.e., the sustainability of independent data themselves does
not distinguish a pure message system model from a full-fledged information
system model – all information that stems from system interaction is stored
persistently in the message system model. However, there is no application
mitigating effect in storing data in the message system model. Two applica-
tions that, for example, both gather customer data, in general store these data
in different formats and furthermore, there is no prevention against redun-
dancies in the growing data repository this way. All applications in a purely
message-based system must implement complex retrieval functions against
the complete global message log. In doing so they have to deal with many
different data formats and data redundancies.

Nevertheless, the message-based system model is not impractical. It is a
typed approach to structured document flows. Significant amounts of office
work can be reasonably supported by a software system that just enables the
defined exchange and flow of electronic documents. Note that this is the rea-
son for the success of certain kind of groupware products like IBM’s Lotus
Notes Domino Workflow [224, 259] or Microsoft Exchange Workflow Designer
that exactly offer support for such document flow. This is where the message
system model steps in and tries to yield a theoretical foundation. With respect
to those systems that can not be easily realized as document-passing systems
the message based system model can also be exploited. The sustainability of
the data model of the central database is usually explained by a real-world
modeling argument. Real-world modeling arguments are appealing, because
they appear natural, however, beyond evidence that the orientation against
real-world entities leads to particularly robust data models, real-world ar-
guments do not explain why the central data model adds value. Here, the

94 4 Semantics of Business Process Models

message based system model offers a pragmatic justification of information
modeling along the lines of the above discussion, which brought counter ar-
guments against a purely message based model. Information modeling leads
to a trade-off between the data representations in the several applications of
an enterprise reducing redundancies, inconsistencies and complexity in central
enterprise databases. These are the issues addressed by data quality and data
migration projects.

4.2.3 Things and Data in Structured Analysis

Structured analysis [301, 74, 300, 302, 75] is a modeling language and tech-
nique for system analysis in the field of data processing. Structured analysis
has been widely used in practice, for example, in its first form of SofTech’s
SADT (Structured Analysis and Design Technique) but also as IDEF-0 (Inte-
grated Definition Methods) [254] and Modern Structured Analysis [361]. In a
widely used tutorial on structured analysis [68] a special position is taken on
the specification of data and items. Structured analysis as presented in [68] is
based on leveled data flow diagrams that are accompanied by a data dictio-
nary. The data dictionary specifies both the data that are stored in information
storage and data that are exchanged by processing elements – the so-called
functions. The tutorial [68] insists on the reading of such flow diagram as mere
data flow diagrams only. If an arc connecting two functions is labeled with
the name of a work piece this specifies only that some data about the work
piece flows from one processing unit to another. In [300] structured analysis is
introduced explicitly as a method for the domain of data processing. However,
in [300] structured analysis is introduced as a language for describing things
and happenings transforming those things. Data and activities are the means
to describe things and happenings in this approach.

In [300] data and activities are the objects that we deal with in our minds
and refer to things and happenings, which is explained in [300] with help of a
kind of language theoretical discourse. Actually, things are tightly identified
with data and happenings with activities, so that the discussion usually dis-
tinguishes between things/data versus happenings/activities. Further objects
are identified with either the domain of things/data and happenings/activities
– nouns are identified with data, verbs are identified with activities; forms are
identified with data, filling out forms makes up the corresponding activities.
With respect to forms processing there is even a finer distinction between
blank forms and completed forms. A blank form is input to an activity that fills
out a form and a completed form is an output of such an activity. Form-based
systems [139, 89] are particular ubiquitous and important for the domain of
enterprise computing.

4.2.4 Specifying Physical Processes and Data Processing

The answer to the question of whether business process definition is about
specifying only the flow of information or also about the flow of goods depends

4.2 Transformation of Goods and Information 95

on various factors. It depends on the concrete business process technology, the
role that a business process definition plays in such technology and therefore
the semantics of the business process definition language in such technology.

In an enterprise, both goods and information are transformed. Often the
transformation of a workpiece is accompanied by a transformation of data
about this workpiece. Eventually, products and services are delivered. Prod-
ucts are tangible results of a process, whereas services are not. There is a
difference between the transformation or delivery of a tangible entity and the
transformation of information. If you specify a business process in an enter-
prise, in general there is the need to model both the transformation of goods
and information. In particular, in manufacturing enterprises a model of the
mere information side is not sufficient. A business process is modeled as a net
of processors connected by item flows. Assume that an input of a processor in
such business process definition is labeled with the name of an entity. If you
are strict about the semantics of such specification it is not clear from the
outset, whether the specification of the processor is about processing tangible
entities or information. That is why, for example, the event-driven process
chain apparatus, i.e., the ARIS house of business engineering [311, 313, 222],
explicitly distinguishes between a data view and an output view.

The only difference between the specification of goods and the specification
of data lies in the exploitation of these specifications. For example, a data
model can be used as a requirements document to implement a database
and the specification of goods can be used as part of a plant construction
plan. Actually, the semantics of a specification language can be completely
determined by the way it is exploited. Several exploitations are possible for a
specification and this is not only true for the distinction between specification
of data and goods but for each specification in its own right. In a concrete
project all concerned stakeholders should agree upon an understanding of how
a specification is exploited.

You can describe physical processes with data flow diagrams. You then
use data models to describe properties of exchanged work items. You describe
those properties of the work items that are relevant to understand and specify
the process, in particular, that are needed in the specification of the data flow’s
functions. Business processes in an enterprise consist of physical processes
and information processes. So in a system description you have a mix of
physical process descriptions and information process description. You can
use the same kind of language to describe the properties of work items and
the information stored and exchanged in a computer system. This is not a
problem, as long as you make clear the purpose of each part of a specification
document, i.e., whether it is about information that should be processed by
information technology, whether it is about a work piece that has to be worked
on or whether it is about a product or service that has to be delivered. In the
following we want to have a clear notion of data processing or information
processing. With each work there is usually connected some processing of
information, be it supported by information technology or not. For example,

96 4 Semantics of Business Process Models

if a worker is working on a work piece he may physically grasp the dimensions
of the work piece and make some decisions based on this information. However,
when we talk about data processing here we mean that the data is stored in
a computer system and manipulated by software.

A process modeling languages can explicitly distinguish between informa-
tion objects and other deliverables like products and services [221]. When
using a modeling language for documentation purposes only and the used
modeling language does not explicitly distinguish between information ob-
jects and others it is nevertheless possible to distinguish between them. Extra
comments can be used that are attached to the modeling elements or a naming
convention can be introduced. As is always the case with modeling element
in modeling notations, it makes little sense to say that it is possible or not
possible to model something in a given modeling language. You can always
model everything even without a modeling language, e.g., by using paper and
pencil to develop your modeling language on the fly. If you only use a mod-
eling language for documentation purposes only, you can always make the
necessary extensions in an ad-hoc way to properly express properties of the
modeled systems. Modeling languages are not distinguished so much by the
number of their modeling elements but by the amount of standardization of
usage and semantics of the modeling elements they introduce. Things are dif-
ferent for executable languages, i.e., languages that are used in an execution
platform to specify automatic processes or automatic process support. Here,
every modeling element has an observable semantics.

4.2.5 On Real World Modeling

The specification of goods in business process models in Sect. 4.2 must not
be confused with the notion of real world modeling. If a good is modeled in
a business process model as a good it actually stands for this good and not
merely for information about this good. Real world modeling is about infor-
mation modeling, which seems to be a contradiction in itself on a first sight.
But it is not, real world modeling must be understood as a metaphor for a cer-
tain information modeling discipline. Real world modeling understands itself
as information modeling paradigm or data modeling paradigm. A discussion
of real world modeling can shed some light on the role of modeling in projects
in general and also the role of business process modeling in enterprises in
particular. In business process modeling it is sometimes important to express
a real world entity like a real estate, e.g., a concrete shop, store, construc-
tion belt or group of workers. As another common example, the activities in
business process models may reference real activities that happen in the real
world. Often, activities in a business process model stand for an IT system
dialogue or fully-automatic software process, however, often, activities stand
for an observable, doable activity in the real world. An activity in the real
world is not as tangible as a real estate, because it is dynamic, but it may
be a process that transforms tangible, real-world objects. The activities in a

4.2 Transformation of Goods and Information 97

business process model do not stand for information about these real-world
activities, they stand for the real real-world activities themselves.

A discussion of real world modeling or the common understanding of real
world modeling is also important for the discussion of business domain orien-
tation in Sects. 5.1.4, 6.2.5 and 6.4.

Real world modeling is defined as capturing facts about real-world entities.
In the discussion of modeling in general and concrete modeling methodologies
in particular we often come across such a real-word argument somehow adver-
tising a concrete modeling technique or approach. The real-world argument
“per se” is the above statement that a model captures facts about real-world
entities. For example, this real-world argument is used to give a guideline in
modeling, in motivating modeling with a certain modeling approach or to ar-
gue that a certain modeling language is particularly well-suited for modeling.

As a modeling guideline the above real-world argument is quite void from
the pragmatic viewpoint of software system modeling. Should the argument
be exploited to distinguish between real-world entities and information about
real-world entities? In an office you have a means to store and pass around
information even without information technology support. In renewing this
office work you model the information on paper and not the properties of
paper. So, in modeling an information system everything is a candidate for
modeling, also information is a real-world object in the practice of modeling.

One can attempt to reduce the information available in the above example
of an ‘as is’-analysis of a paper-based office to tangible objects of the real
world – even if the information is obtained indirectly by some computations
of direct properties of tangible objects of the real world. The argument would
be that already in the existing office there exists some level of non-real world
objects, i.e., information that corresponds to otherwise real world objects and
that this situation just has a footprint on modeling. But how about systems
that have to deal with tangible objects and information of tangible objects in
parallel? If a modeling approach insist on modeling real-world objects, both
the tangible objects and information about them must be treated equally as
real-world objects if such a system is modeled. So, the real-world argument
does not provide guidance in modeling, because we claim that it actually has
no discriminating power – everything is a real-world object and there is no
risk of modeling something different than real-world objects.

The entity-relationship language [57] is a semantic data modeling ap-
proach [2, 165] that exploits a real-world argument pragmatically. Certain
semantic relationships that often occur in systems like the ‘is a’-relationship
or ‘has a’-relationship are made concrete notational elements of the language.
Object-oriented analysis [321] is another approach that often emphasizes the
real-world argument. Actually, object orientation started as a programming
language paradigm for simulation. The original project title of the program-
ming language Simula [262, 333, 200] was Monte-Carlo compiler. As an ex-
planation of a simulation approach the real-world argument actually makes
sense. The problem is that the real-world argument has been kept in the mo-

98 4 Semantics of Business Process Models

tivation for object-orientation as a general-purpose programming metaphor.
Here, the program system sometimes is still seen as a simulation of otherwise
real-world processes even if the system is actually embedded into business
processes and is supports them in continuous human-computer interactions.
If a program system is used in such a way which is not for mere simulation
purposes structural frictions occur unless it is clearly distinguished between
the real-world, models, simulations, systems, system executions and system
interactions.

Correspondence theory, i.e., the investigation of the correspondence be-
tween a statement about real-world facts and the reality of real-world facts,
has interested philosophers for a long time [290, 6]. The relationships of mind,
language and phenomena is the subject of investigation of language philoso-
phy, e.g., [359, 318] – be it ordinary language philosophy or ideal language
philosophy. However, in order to motivate, explain and use a system specifi-
cation language it is not necessary to delve into language philosophical issues.
We do not need to understand the processes in our mind to make practical
use of a formal language. Even for natural language we do not need language
philosophy for its practical usage. And due to its very nature as a means of
communicating not only definitions, instructions, descriptions and the like but
also ideas, feelings, hopes, questions and so on, natural language is incredible
more complex and incredible less amenable to the formalization of its seman-
tics. If we want to establish a language for system specification all we need to
do is to define how its specifications are exploited. The meaning of a specifica-
tion language, i.e., the definition of the exploitation of its specifications can be
negotiated and it can be taught. Again, it is not necessary to investigate the
processes in our minds that are concerned with such negotiations, teaching
and learning in order to use a system specification language.

4.3 Exploiting a Business Process Definition

We basically see three different kinds of exploitation of a business process defi-
nition or, to say it differently, three different kinds of motivation for specifying
business processes. These different kinds of uses for business process defini-
tions are as system documentation, for system simulation, and as a basis for
automatic execution. In concrete projects, these three aspects do not have to
be mutual exclusive.

4.3.1 Business Process Definitions as Documentation

A business process definition can simply be documentation of a system. Here
we need to distinguish between ‘as is’-analyses or ‘to be’-analyses of processes.
If a business process definition describes an existing system as the result of
an ‘as is’-analysis it can be exploited for the improvement of processes. It can
be used as the basis for discussion of stakeholders in the improvement efforts

4.3 Exploiting a Business Process Definition 99

in order to gain a common understanding of what is going on in the existing
system.

As a result of a ‘to be’-analysis the business process definition is a require-
ments document for the system that has to be build. To a certain degree it can
also be seen as a blueprint for the system that has to be build. If a business
process definition is a specification of merely information processing, there
is in principle a high degree of freedom in realizing the system by concrete
software components as long as the overall transformation is fulfilled. But the
semantics of a business process definition is not only the overall transforma-
tion that results from it. The activities in a business process definition are
usually more than mere abstract entities. Even if they are about information
processing, concrete entities are attached to them as resources, i.e., workers
as human resources or organizational units.

So, a business process definition is not a specification of a system that
realizes the specification’s functionality as a black box, it really is rather a
blueprint of the system that has to be realized and is therefore also a high-
level system architecture specification.

4.3.2 Business Process Definitions in Simulation

Business process definitions can be exploited in system simulation. Here the
future system with all its described entities, be it tangible objects or informa-
tion objects and there interplay are virtually realized by a computer program.
The behavior of the future system can then be observed by executing the
simulation program, in particular, it can be tested whether desired future
key performance indicators will likely be met. The simulation we have just
described is a concrete approach of simulation. It is about really playing a
simulation game with the models of real-word entities, i.e., a Monte-Carlo
simulation like approach. However, this approach can be seen as simulation
in the narrower sense.

In general, simulation can be seen as the field of predicting properties of
the behavior of a modeled system with numerical methods and algorithms. If
properties can be calculated this is better then trying them out by a Monte-
Carlo style simulation – calculating system properties relates to running sys-
tem simulations as proving program properties relates to testing program
properties. Statistics is needed in order to reach models that are rich enough
for simulation purposes. Typical theories that can be exploited are stochas-
tic processes, in particular Markov chains and their application to process
algebra [42], queuing theory [121] or combined theories like stochastic Petri
nets [148].

4.3.3 Business Process Definitions as High-Level Programs

A business process definition can have an executable semantics. We have de-
cided to use the term workflow definition for these executable business process

100 4 Semantics of Business Process Models

specifications. Workflow definition tools are crucial components of concrete
workflow technology products. The definition of a workflow in such a product
is interpreted by a workflow enactment service. According to the definition
tasks are scheduled, documents are routed, business logic is invoked. In such
technologies workflow definitions are computer programs. They are part of
an encompassing program system. Workflow definition can also have an ex-
ecutable semantics with respect to execution of physical processes. Please
consider the control desk screen of the automatic shop floor system in Fig. 4.5
once more. The figure shows process instances and a process definition that
has been recovered from the process instances. The visualization of process
instances is part of the user interface, whereas the process definition is not; it
has been introduced in the figure for conceptual purposes. Via the visualiza-
tion of the process instances the operator can really control the processes in
a drag-and-drop style human computer interaction. Shifting a bar that rep-
resents the future processing of a batch from one processor to another really
means that this batch will be moved to that processor. If the current time
indicator comes to an end of a bar this has the operational semantics of mov-
ing the batch around in the plant to the next processor. This means that the
visualized process instance planning has an executable semantics.

It is possible to say that also the business process definition in Fig. 4.5 has
an executable semantics that it inherits from the executable semantics of the
process instance definitions. But in practice you would hardly agree that this
specification has an executable semantics, because it is not available to the
operator in the same way the process instance definitions are. Assume that the
supervisory control and data acquisition system that is conceptually discussed
in Fig. 4.5 is a quite heavyweight one with transportation belts connecting
large processing machines and processors. In the case of such heavyweight
plant control it typically would make no real sense to have also a process
definition capability in the control system, because an executable semantics
of it is hard to imagine. What should be the meaning of restructuring the
processing stages in a process definition? The transportation belts cannot be
automatically reconstructed. The processing stages and their interplay are
planned and realized for a long-time period.

A requirement for a specification language be regarded as an executable
specification language is that it has a completely defined operational seman-
tics. However, in practice a specification language would not be called exe-
cutable unless all rules of the operational semantics are realized fully auto-
matic.

4.4 Events in Business Process Modeling

In business process modeling languages there are modeling elements for events.
Roughly, it can be distinguished between start events, end events, and in-
termediate events. Start and end events provide a means to decompose an

4.4 Events in Business Process Modeling 101

otherwise flat business process model into a set of defined business processes
that can trigger each other via start events. Intermediate events can be con-
sidered as labels of transitions. They can be used to signalize the finalization
of an activity. A typical usage of intermediate events is as wait states before
join connections. Another typical usage of intermediate events is as condi-
tions in conditional branching constructs. Concrete business process model-
ing languages use events as a hook to informally enrich the semantics of the
language. For example, in BPMN [265] complex operational phenomena like
messaging, timing, error and exception handling, and compensation [131] are
simply turned into a visual presentation by an event.

In common language, events are usually considered as happenings that
occur. Events can have a time duration. Events are observable. Events change
observable properties of the environment. There are events that are consid-
ered to have no time duration. They occur at a point in time. Definitions
like the following can also be found in definitions of concrete business process
modeling languages [312, 265]: an event has no time duration, it is an ob-
servable, immediate change of the state of a system. However, in the practice
of business process modeling intermediate events are also part of the states
of business process instances. In the true sense of the word, the events in a
process model are the transitions between functions and intermediate events
only. Actually, the intermediate events used in commodity business process
modeling languages are a kind of void activities. In general, events in common
business process modeling actually have a start and an end, i.e., they have a
duration.

4.4.1 Strictly Interchanging Functions and Events

Have a look at Fig. 4.7. It shows two versions of a business process model
for handling an incoming customer registration. The left-hand version (i) uses
a notation that uses interchanging functions and events. A description style
like the left-hand version is common for practical business process modeling
projects, for example, event-driven process chains (EPCs) [312] heavily rely on
this modeling style. The right-hand side version (ii) shows a Petri net [281, 295]
description of the same process. Petri nets are place/transition nets [72]. If
the capacity of each place of a Petri net is restricted to one the Petri net is
called a condition/event net, i.e., the Petri net’s places are called conditions
and the Petri net’s transitions are called events. In the Petri net the events
take over the role of the connectors in the common business process model at
the left-hand side. The events of the common business process model become
ordinary places in the Petri net. Using events in the style shown in Fig. 4.7 (i)
usually is often perceived as leading to a high redundancy of nodes. Actually,
the events often only repeat the label text of the preceding function in past
tense. In Fig. 4.7 (ii) the places that correspond to the events in Fig. 4.7
(i) can be removed without loss with respect to accuracy in describing the
intended business process.

102 4 Semantics of Business Process Models

Actually, business process modeling languages do not necessarily foster
a function and event interleaving style of modeling as event-driven process
chains do. It can be argued that the event that a function finishes is an
event worth considering from the viewpoint of business activity monitoring.
Similarly, it is worth considering the time period from the end of one function
and the start of the next function, which is actually represented by the events
in the considered function and event interleaving modeling style. Nevertheless,
these events are canonically given, they simply exist for each function, so there
is no need to model them over and over again. If a business process model
is used as a specification for the entities that are subject to business process
monitoring, the explicit modeling of intermediate places between functions
can be justified. However, it would be motivated only if there is also the
possibility to omit some intermediate states, so that the decision of whether
an intermediate state should be monitored or not is a decision to be made
when specifying business process monitoring.

confirm
registration

registration
confirmed

V

capture
registration

insert
data

data
inserted

registration
captured

V

process
registration

registration
processed

capture
registration

registration
captured

confirm
registration

insert
data

data
insertedregistration

confirmed

process
registration

registration
processed

event or transition

condition or place

(i)
(ii)

Fig. 4.7. Events in business process modeling languages and Petri nets.

4.4 Events in Business Process Modeling 103

4.4.2 Using Events for Expressing Decisions

Intermediate events are also used for the specification of conditions in con-
ditional branching structures of business process models. Figure 4.8 shows
three alternative ways of expressing conditional branching structures in visual
process specifications. The first option is to use a modeling element that is
labeled with a condition. The outgoing branches are labeled with ‘yes’ or ‘no’
indicating whether the condition holds or is broken. This style of specifying
binary decisions is often used in ad-hoc specifications of decision procedures
and high-level algorithms. It has been in widespread use in the flowchart no-
tation [73, 173].

The second option is to use a modeling element that indicates a decision
point and to label the outgoing branches with conditions. Such a construct
can be used not only for binary decisions but scales up to decisions between
arbitrary many alternatives. For example, the BPMN notation [265] uses this
style of expressing decisions. Without further notational semantics the alter-
native conditions must be complete and unique, i.e., in each state one and
only one of the alternative conditions should hold. Otherwise, the construct
can cause parallelism or deadlock. Alternatively, a visual notation can fix an
evaluation order for the conditions of the alternative branches, e.g., from top
to bottom or from left to right. As another option, a visual notation can
provide a means to specify the evaluation order. With both solutions, the al-

cond

cond

default alternative

XOR

cond

cond

event-driven
process chain

BPMN

DIN66001
flowchart(i)

(ii)

(iii)

the condition holds
or is broken here

decision
construct

yes

no

Fig. 4.8. Alternatives to express decision points in visual process specifications.

104 4 Semantics of Business Process Models

ternatives do not have to be unique any more. Similarly, with respect to the
need of completeness of the alternative conditions, a visual notation can allow
for the specification of a default alternative that is taken whenever none of
the specified conditions hold.

A third option shown in Fig. 4.8 is to use a modeling element indicating a
decision point and to introduce events to express the conditions of the several
outgoing branches. This notation is used by event-driven process chains [312].
Actually, this way of specifying a conditional branching structures simply
turns the condition labels used in the second described option in Fig. 4.8 into
events. So, there is no real difference between the second and third option in
Fig. 4.8. The modeling element used to indicate the decision point in Fig. 4.8
is an ‘exclusive or’-connector, an XOR connector for short. The XOR connec-
tor and conditions at the several outgoing branches together form a decision
construct. This is the same for the second described option and for the third
described option. An interpretation of the XOR-connector and the following
events other than one single construct is not intended. Other semantics easily
lead to confusion.

The XOR-connector is usually defined as describing a branching point in
a business process with the meaning that always exactly one of the outgoing
branches is always taken. Assume that we take this definition as a complete
specification of the semantics of the XOR-connector. Then, the semantics of
the XOR-connector would be the semantics of a non-deterministic operator.
Assume, that the first, i.e., upper, branch has been non-deterministically cho-
sen after the timeline has passed the XOR-connector in Fig. 4.8. Assume fur-
ther that the condition actually does not hold as an outcome of the preceding
action. Now the question arises as to what the meaning of the event and the
meaning of the condition in the event actually is. The meaning could be that
the process has simply arrived in an undefined state. Another opinion could
be that the process has arrived in a somehow dangling state that waits for the
condition to become true. Then, the business process specification must allow
for the interpretation of an event as a wait state for a condition to become
true. But this would really be a non standard interpretation of a business
process specification. Even if such a wait state semantics is taken the question
remains whether the condition can actually ever become true. Otherwise the
wait state would be a kind of livelock.

4.5 Semantics of Events

In this section we discuss the semantics of events in their on right, i.e., as parts
of a business process as commonly used in today’s business process modeling
languages and projects. Events are often used as separators to decompose a
large diagram into pieces, or, to say it differently, as interfaces or gateways
to business processes. Section 5.2.2 deals with those aspects of events that
are connected to their usage as start events and end events of sub business

4.5 Semantics of Events 105

process models or business process model abstractions, whereas this section
deals with the basic aspects of events and their semantics.

In the common understanding an event is a happening, it is usually not
only some observable property at some point in time, but an observable change
of a property of the environment. Actually, in the usual understanding of
the word an event is an observable change of a property of the observed
environment and not the result of this change. In general it does not stand
for some persistence of the property which results from the change.

4.5.1 Persistent and Ephemeral Event Effects

In common business process modeling there is usually a tacit understanding
of the fact that the effect of an event is persistent. However, on closer ex-
amination this is a subtle issue. Consider the example in Fig. 4.7 once more.
The event indicating that registration data has been inserted not only has
the semantics of a happening. First, the happening cannot simply occur, it
is the outcome, i.e., the result of the preceding data insertion action. Fur-
thermore, the event also stands for a persisting fact, i.e., the reader of the
business process model has no reason to doubt that the data stays inserted
until the next action is performed, which is the process registration in this
case. This means if the data have been inserted before the registration has
been confirmed, there is a tacit understanding that the insertion of the data
will not be withdrawn until the registration confirmation has been finished
and the process registration has been started. In this example, this discussion
may seem over-sophisticated: why should the insertion of data be withdrawn
in the modeled process while the registration confirmation is still underway
and actually, what should it mean that the insertion of data is withdrawn?

But the concept of data insertion withdrawal is not artificial. For example,
in a real-world business process there could be the concept of expiration of
inserted data, i.e., in the case that the data insertion function which led to the
inserted data event is too long ago before the further registration processing
could be entered. And indeed, the question of how to model this business con-
straint in a straightforward way with standard modeling elements arises. Of
course, it is possible to extend the specification apparatus by an appropriate
notion of time and appropriate modeling elements. For example, timed Petri
nets, e.g., [17, 18, 148], could serve as a basis for such confinement of the
business process modeling language. Another option is to use some wild-card
connector and describe its semantics on the fly with a comment as is shown
in Fig. 4.9.

4.5.2 A Detour on Ordinary Language Specification

The specification option in Fig. 4.9 is an instance of a general theme. Often,
a precise description in ordinary language is a good option as a means of
specification. A description in ordinary language is as precise as its different

106 4 Semantics of Business Process Models

confirm
registration

insert
data

process
registration

V

If the registration has been confirmed
and the data has been inserted
proceed with processing the
registration. If the data has been
inserted and it takes more than 1 day
before the confirmation has been
completed, repeat the data insertion
step in order to check whether the data
is still valid.

Fig. 4.9. Modeling an expiring condition.

understandings in a group of stakeholders. The larger and the more hetero-
geneous the group of stakeholders that has been chosen as a test bed for the
accuracy of a specification the better. In this simple sense of non-ambiguity,
ordinary language description can be very precise indeed.

If ordinary language is used as a specification language there is always the
risk that a specification is misunderstood. Concrete specifications give rise to
ambiguity. One can attempt to overcome this problem by introducing a formal
specification language. A formal specification language fixes the semantics of
specifications in a formal, usually mathematical model. Then, in some sense
there is no ambiguity left in the meaning of a specification. A drawback of
formal specification is that people usually feel a substantial overhead in learn-
ing the formal specification language and also in specifying phenomena with
the more formal language. But there is also another severe problem. The real
target in making a specification language more precise is to clarify the mean-
ing of the specifications with respect to real-world phenomena. Introducing a
token game in some mathematical notation as the meaning of specifications
may help to mitigate the gap between the language and the phenomena they
describe, however, it does not remove the gap. If a formal language is used,
it is still necessary to define the mapping between the entities in its mathe-
matical semantics and the actually described entities and behaviors. The more
complex the environment of the described phenomena is, e.g., in terms of side-
conditions and exceptions, the harder it is to fix this mapping. Sometimes the
environment in its entirety is not pragmatically amenable to mapping onto
the mathematical semantics – it simply does not seem to be amenable to a
formalization.

Sometimes a specification in ordinary language that can be understood
very well by common sense can become a nightmare if one tries to formalize
it, because of the need for formalizing more and more concepts implicit in

4.5 Semantics of Events 107

the ordinary language specification. The more the target environment can be
characterized in terms of a manageable set of well-understood rules, the easier
it is to establish a formal specification language for it.

4.5.3 Managing Ephemeral Event Effects

Let us have a look at some more example phenomena that may be harder to
grasp formally than informally in an every day project. It starts with another
instance of the issue that effects of events are usually considered persistent in
every day business process modeling. We want to give a real-word example
from the healthcare domain. Look at the stub process specification in Fig. 4.10
that defines the start of an operation in a hospital.

operating theatre
available

V

operation
requested

operationsurgeon team
available

Fig. 4.10. Specification of starting an operation process in a hospital.

If an operation has become necessary, it can be started as early as the
surgeon team is available and the operating theatre is available. The business
process model in Fig. 4.10 seems to depict this specification correctly. However,
questions arise. Assume that an operation is requested, but neither the surgeon
team nor the operating theatre is available. Now, a surgeon team becomes
available, but the operating theatre is still in use, be it because there is still
another operation underway or be it because the operating theatre is currently
being cleaned. Now, after some time, the operating theatre becomes available
again. Now, assume that in the mean time the operation team is not available
any more. For example because some of the needed surgeon team members
is needed in another urgent process, or the surgeon team became blocked
as a whole, e.g., because it started an important team meeting. Should the
operation be done or not? Obviously not – it cannot be done because the
operation team is not available. The described situation is rather as modeled
in Fig. 4.11 with a Petri net. In this Petri net one of the events or – to
say it more precisely – one of the conditions described by the events can be
withdrawn.

The discussion shows how events in business process models are usually
used, i.e., as descriptions of conditions that hold, i.e., conditions that are non-
ephemeral. This also explains why the labels of events in business process
models are rather names of state conditions than names of state changes.

108 4 Semantics of Business Process Models

Note that this is also true for our example in Fig. 4.10.The label of the event
is saying that the surgeon team is available which rather hints to a state
description and not the dynamics of a . Otherwise the label should express
that the surgeon teams becomes available. If the focus would be rather on
the state changes than on the resulting state conditions the chosen labels in
Fig. 4.10 are actually flawed from a linguistic viewpoint. Now, as a result it
would be possible to elaborate some style guide with respect to naming of
business process modeling elements, e.g., fixing that a verb should be used in
the labels of events. But it is not our intention here to be normative, we just
want to give an impression of possible pitfalls in the usage of business process
modeling languages that we encounter over and over again in projects.

If there is a commitment that the effect of an event in a business process
specification is persistent the above question simply does not arise. But the
example also makes clear that then an event imposes a business constraint
onto the modeled processes and their environment. In our case the business,
i.e., the hospital, must guarantee that once the appropriate surgeon team has
become available, this surgeon team stays available or at least henceforth some
other appropriate surgeon team is available.

Fig. 4.11. A Petri net specification of starting an operation process.

But what if the modeler actually wants to describe a situation in which
the surgeon team may become unavailable after it has been available and also
the operating theatre may become unavailable again after it has been avail-
able. First, the modeler is actually tempted to model it in the way shown in
Fig. 4.10. If the model in Fig. 4.10 is seen as a visualization of spoken lan-
guage without any strict policy of what is precisely expressed by events the
model can actually be read as the above specification in common language.
It then inherits the ambiguity of natural language specification. The point
is that the natural language specification is not really ambiguous but rather
loose in a certain sense. It clearly states that the operation can only be done

surgeon team
not available

OP theatre
not available OP theatre

available

surgeon team
available

operation

operation
requested

4.5 Semantics of Events 109

if both a surgeon team and an operating theatre are available. It simply does
not specify whether a surgeon team that has become available should stay
available or whether it must immediately be substituted by another one. In
that sense the business process model in Fig. 4.10 with the standard under-
standing of persistent event effects might simply be an over-specification of
what is intended.

Let us assume that the intention is to model disappearing event effects in
our operation example. Figure 4.12 shows an attempt to model the situation
better. In Fig. 4.12 the availability of the surgeon team and the availability of
the operating theatre is modeled as one compound event. The compound event
explicitly expresses the fact that both parts of the events must be observed
simultaneously and in some sense this overcomes the ambiguity of the process
model in Fig. 4.10, which we described above. The compound event gains
its perceived improved preciseness from the usage of ordinary language to
describe it. Interpreted as one compound event in ordinary language most
people would disagree that it allows for the case described above, i.e., that
the effect of one of the part events disappears before the other part events
occurs.

operation
requested V

surgeon team
available

and
OP theatre
available

operation

Fig. 4.12. Alternative specification of starting an operation process.

Visualizing a given sentence in ordinary language by using graphical ele-
ments for some of the words in the sentence does not improve the accuracy
of the sentence in its own right. However, such a graphical presentation of
a sentence appears more formal to many people and therefore also appears
more accurate. Current business process modeling languages are not mere vi-
sualizations of natural language in so far as they try to impose some defined
semantics for the modeling elements, in particular for the connectors, they
offer for modeling. Nevertheless, business process models inherit from the am-
biguity of natural language for two reasons. First, business process models
are always a mixture between defined modeling elements and usage of natural
language, i.e., the functions and events are given names and descriptions in
ordinary language and attempts to fix the semantics of the modeling elements
of a modeling language do not help to improve these namings and descriptions.
The above comparison of the business process model in Figs. 4.12 versus 4.10
is an example for this. Second, despite some written definition of the mean-

110 4 Semantics of Business Process Models

ing of modeling elements, people often just use modeling elements intuitively
and actually just in the sense of a visualization of words in ordinary language.
Another problem with the accuracy of business process models is that the def-
initions of the semantics of modeling elements bear the risk of ambiguity, in
particular, if they are not mathematically founded. Sometimes, the ambiguity
of business process language specifications is obscured by the formal presen-
tation of its semantics. Furthermore, in any case there remains a gap between
the defined semantics of the various modeling elements and the behavior and
properties of the modeled real-world entities and their environment, which can
only be mitigated by a strictly understood and maintained mapping between
the model and the modeled.

Attempts to Grasp Ephemeral Event Effects

Let us approach the disappearing event effects in our operation process ex-
ample more systematically. Figure 4.13 shows a simpler version of the process
that does not consider the availability of the surgeon team but only the avail-
ability of the operating theatre. The situation is less complex but already
shows the issue discussed above. Assume that the operating theatre becomes
available before the operation is requested and becomes non-available for some
reason before an operation is actually requested.

operating theatre
available

V

operation
requested

operation

Fig. 4.13. Specification of an even simpler start of an operation process.

Figure 4.14 shows a Petri net model of the situation in Fig. 4.13. In the
model we introduced a process other then the performance of an operation as
the reason for the operating theatre becoming unavailable, i.e., operating the-
atre maintenance process. It is simply a concurrency problem with potentially
dangling operation and maintenance processes competing for the operating
theatre as a resource. There is no need to explicitly model the unavailability
of the operating theatre as done in Fig. 4.11. The operating theatre is not
available if the corresponding place in the Petri net is not marked. Opera-
tions are triggered by a process that requests the operation. The end of this
process is represented by a place indicating that the operation has been re-
quested. Similarly, there is a place indicating the request for maintenance of
the operating theatre.

The question is now how to transfer the Petri net model in Fig 4.14 into
a model in some ordinary business process modeling language. Figure 4.15

4.5 Semantics of Events 111

operationoperation
requested

OP theatre
maintenance

maintenance
requested

OP theatre
available

Fig. 4.14. A Petri net specification of the operation process.

shows a first attempt. In Fig. 4.15 the events, i.e., the transition bars, of the
Petri net have simply been turned into ‘and’-connectors and the Petri net
place representing the availability of the operating theatre has been turned
into an event. The first of these two straightforward conversions is doable but
the latter is problematic. It is problematic, because the start of the mainte-
nance of the operating theatre makes the operating theatre unavailable. In
the Petri net this side-effect of the maintenance of the operating theatre is
appropriately modeled, because the start of the maintenance consumes the
token from the place that indicates the availability of the operating theatre.
However, in the case of a usual business process modeling language it is not
clear that the starting of an activity has an effect on the properties of the
environment described in the event preceding the activity. Therefore, unless
otherwise clarified in an extra comment, nothing prevents an operation and a
maintenance of the operating theatre from occurring in parallel in the busi-
ness process model given in Fig. 4.15. In that sense, the attempt in Fig. 4.15
is an incomplete specification of the situation.

V

V

operating theatre
available

operation

maintenance
requesting

step

operation
requesting

step

operating
theatre

maintenance

Fig. 4.15. Attempt to model processes competing for a resource.

112 4 Semantics of Business Process Models

4.6 Synchronization in Business Process Models

Business process modeling languages provide means to fork parallel processes
and synchronize parallel processes. Parallelism in business process systems al-
ready comes into play alone by the fact that several instances of a process can
be launched from the environment of the business process system. However,
we are interested in such parallelism that is caused from inside the execution
of a business process instance. In business process modeling languages con-
crete modeling elements are used for this purpose called, e.g., ‘and’-connector,
parallel gateway in BPMN [265] or logical ‘and’-relationship in EPCs [312].
An and-connector with multiple fan-out is used to fork processes, which are
sub process instances from the viewpoint of the currently executing business
process instance. An ‘and’-connector with multiple fan-in is used to join two
process instances. We have used a pair of an ‘and’-connector with multiple fan-
out and an ‘and’-connector multiple fan-in already in diagram (i) in Fig. 4.7.
Initially, the meaning of the ‘and’-connectors in diagram (i) in Fig. 4.7 fol-
lows intuition, however, we have also given a concrete formal semantics of
the business process model in diagram (i) by the Petri net in diagram (ii)
in Fig. 4.7. All this said, the semantics of synchronization in usual business
process modeling languages remains vague. This vagueness of semantics of
synchronization is the main issue of this section.

V

BA

C D

E F

process A

process B

process C

V

Fig. 4.16. End synchronization of two business processes.

Synchronization in business process models is usually understood as a
form of end synchronization. In Fig. 4.16 the initial ‘and’-connector forks two
process instances A and B. The processes A and B can be considered sub
processes of the overall business process. The process instance that finishes
first has to wait for the other process instance to finish. When both process
instances A and B has finished, the overall business process can proceed with
starting the next activity E, i.e., with starting the next sub process named C
in Fig. 4.16. This is how the effect ot the second ‘and’-connector in Fig. 4.16
is usually understood.

Other interpretations of an ‘and’-connector with multiple fan-in would
also be possible. For example, the second ‘and’-connector could also start two
copies of the sub process C after both of the process instances A and B has
been finished. This could be understood as an independent proceeding of both
process instances A and B, each with its own copies of the activities following

4.6 Synchronization in Business Process Models 113

the synchronization point. However, the interpretation of an ‘and’-connector
as an end synchronization and therefore join point of processes that merges
several processes into a single new one is the usual interpretation. In terms of
Petri nets, it is possible to model both kinds of semantics. In general, the places
of place/transition Petri nets [72] can hold an arbitrary number of tokens and
it can be specified howmuch tokens are withdrawn from each place preceding a
transition and how many tokens are put onto each place following a transition
whenever the transition fires. This means, if the business model in Fig. 4.16
is given a place/transition Petri net semantics, the first, usual interpretation
withdraws one token from activity B, one token from activity D and places
one token onto activity E, whereas the second interpretation withdraws one
token from activity B, one token from activity D and places two tokens onto
activity E. Now, the semantics of synchronization starts to become subtle.
What if there are more than one instance of the process A and more than one
instance of the process B are running in parallel, because of some external
triggers not shown in Fig. 4.16? When should an instance of process C should
be started exactly? We will discuss questions like this in more depth in due
course along another example business process model shown in Fig. 4.18.

You can also express a form of synchronization other than end synchro-
nization with the usual semantics of ‘and’-connectors. For example, Fig. 4.17
shows a synchronization of two processes against a synchronization point. The
synchronization point is realized as a combination of an ‘and’-connector with
multiple fan-in and an ‘and’-connector with multiple fan-out. For example,
if process A has been finished its activity B it is resumed until process B
has finished its activity D. Then, both process A and B can be considered as
proceeding each with its next activity.

BA

C D

E F
process A

process B
G H

V VV

Fig. 4.17. Synchronization of two business processes at a synchronization point.

Figure 4.18 shows yet another simple example of parallelism in business
process modeling. Once more, let us have a look at how the semantics of
an ‘and’-connector with multiple fan-in can be defined. A usual attempt to
specify the semantics of the synchronizing ‘and’-connector, i.e., the ‘and’-
connector annotated with the label δ, is to say the following. Whenever the
activity C and the activity E has been finished, the activity F is started.
A first question arises with respect to this definition. Why do we say “the”
in “the activity has been finished”. The instances of the activities are not

114 4 Semantics of Business Process Models

unique, there may be several copies of them, for example, due to the cycle in
the business process model in Fig. 4.18. A next attempt would be the following.
Whenever an instance of activity C and an instance of activity E has been
finished, an instance of activity F is started. Actually, both the first attempt
and the second attempt are usual explanations of the meaning of synchronizing
‘and’-connectors. For example, the synchronizing ‘and’-connector in Fig. 4.7
is explained for EPCs by [312] in the following way. When events ‘registration
confirmed’ and ‘data inserted’ occur, the function ‘process registration’ is
launched – the vagueness of the notions of event and the occurrence of event
is not and issue here; we have discussed this question already in Sect. 4.5.
The problem with definitions like the one above is that they are, in a certain
sense, incomplete specifications of synchronization as we will discuss now.

V
V

V
V

CB

D E
FA1

2

3

5
3

4

6

7

(i)

V
V

V
V

CB

D E
FA

(ii)

V
V

V
V

CB

D E
FA

(iii)

V

V

V
V

CB

D E
FA

(iv)

3

4

6

8

V

V

V
V

CB

D E
FA

(v)

3

4
9

α
β

γ
δ

α
β

γ
δ

α
β

γ
δ

α
β

γ
δ

α
β

γ
δ

Fig. 4.18. Business process synchronization in presence of cycles.

Figure 4.18 shows a business process model and example of how an instance
of the business process model can evolve over time. Diagram (i) shows that
the business process has been started with an instance of activity A named ‘1’.
Diagram (ii) shows that activity instance ‘1’ has been finished and activity
instances ‘2’ and ‘3’ has been launched in parallel. Diagram (iii) shows that
activity instance ‘2’ has been finished and activity instances ‘4’ and ‘5’ has
been launched in parallel. Diagram (iv) shows that activity instance ‘5’ has
been finished and activity instances ‘6’ and ‘7’ has been launched in parallel.

4.6 Synchronization in Business Process Models 115

Diagram (v) shows that activity instance ‘7’ has been finished and activity
instances ‘8’ and ‘9’ has been launched in parallel.

Let us assume now, that, as a next step, both the activities ‘4’ and ‘8’
finish, but not yet any of the other activities. Now, the question is whether
an instance of the activity F should be started or not. With the definition
give above it should be started, because, following the definition, the activ-
ity F should be launched whenever an instance of activity C and an instance
of activity E has been finished. The question is, whether this effect is the
synchronization effect that the modeler wanted to express with the δ-labeled
connector. The point is that the sub process instance that has been launched
in diagram (iii) has somehow overtaken the activity ‘3’, i.e., the activity in-
stance ‘7’ has been finished before the activity instance ‘3’ and has overtaken
it in that sense. By just looking at the token game you might feel that it is
more correct that activity instance ‘4’ should be synchronized against activ-
ity instance ‘3’. We have sketched this by drawing dashed lines between those
activity instances that seem to be somehow logically connected.

Without knowledge of the concrete business logic it is not possible to decide
whether activity instance ‘4’ should synchronize against activity instance ‘8’
or whether it should wait further until activity instance ‘3’ finishes, a further
instance of activity E is triggered and also eventually finished. One possible
semantics of synchronization would be that an instance of activity C may
only synchronize against an instance of activity E if the latest instance of
activity A in the history of the business process that occurs before the instance
of activity C is also the latest instance of activity A that occurs before the
instance of activity E. With this extra constraint, the activity F could not be
launched as a result of the completion of the activities C and E in diagram (v)
in Fig, 4.18. Figure 4.19 shows the history of the business process instance
being in the state of diagram (v) in Fig. 4.18. Activity instance ‘1’ is the
latest instance of activity A that appears before activity instance ‘4’, whereas
activity instance ‘5’ is the latest instance of activity A that appears before
activity instance ‘8’. Therefore, if the above constraint should not be violated,
activity instance ‘4’ cannot be synchronized against activity instance ‘8’.

1
2

3

4

5

6

7
8

9

Fig. 4.19. History of the business process instance in Fig. 4.18.

If constraints about synchronization like the one above should be express-
ible, the underlying formalism should be rich enough to express business pro-

116 4 Semantics of Business Process Models

cess histories, identities of activity instances and the like. For example, with
colored Petri nets (CPN) [191] such a framework is provided. In Figs. 4.18
and 4.19 we have switched to another color of tokens whenever a new sub
process is created by the instantiation of an initial activity A. We have done
this for the purpose of better visualization – several instances of same activity
can already be distinguished by the different numbers given to the tokens that
represent them.

Another useful means of synchronization for business process scenarios
like the one in Fig. 4.18 might be a form of total synchronization that allows
the proceeding beyond an ‘and’-connector only in cases where all possible
instances of activities that are predecessor of the synchronization point has
been materialized and finished. This is a quite complex constraint that in
general can only be evaluated by the inspection of the whole current business
process system state. For the example business process in Fig. 4.18 such a
constraint would yield a deadlock, therefore, the business process model in
Fig. 4.18 must be modified slightly before the constraint makes sense for it.
Figure 4.20 shows such a modification. In Fig. 4.20 a case distinction has
been inserted after the activity A. Figure 4.20 shows a state of the business
process some steps beyond the state represented analogously for the business
process in diagram (v) in Fig. 4.18. The activity instances ‘3’ and ‘6’ has been
finished and caused the start of the new activity instances ‘10’ and ‘11’. The
activity instance ‘9’ has also been finished. For what comes it is crucial that
the decision point ε has evaluated to false after the completion of the activity
instance ‘9’ so that no further instances of the activities B and D are created.

11

8

V
V

V
V

CB

D E
FA

10

4
α

β

γ
δε true

false

Fig. 4.20. Modified version of the business process model in Fig. 4.18.

For the sake of convenience, without loss of generality, let us assume that
no further instance of activity A is created. Then, after completion of all the
activity instances ‘4’, ‘8’, ‘10’ and ‘11’ the next instance of activity F can
be launched in accordance with the total synchronization constraint as given
above. We do not formalize this total synchronization constraint further here,
however, it should be clear what is intended with it. Informally speaking, the
activity F should not be executed before all of the instances of the activities C
and E that have been launched and might be launched as a result of the re-
cursive enactment of sub processes has been finished their work properly. This
is a synchronization pattern that actually can be found in business process
systems in practice.

4.6 Synchronization in Business Process Models 117

Concrete synchronization in business processes easily become complex.
The direct, strict application of the rather informal semantics of ‘and’-
connectors which launches instances of successor activities whenever instances
of all predecessor activities has been finished might often not be the one you
want to express in a concrete business process modeling scenario. For example,
in presence of recursion it is not yet clear any more which concrete activity
instances to synchronize against each other. In order to avoid this complexity
of recursion, some workflow technology products simply have forbidden loops
in their workflow definition language. But this is not a solution. If your busi-
ness processes follow some natural recursion, you want to model them and you
also want to support this recursion with your workflow technology. However,
recursion is not the only reason for why synchronization in business processes
can become arbitrary complex. Concrete synchronization might also depend
on enterprise resource data in general, on complex state of the business pro-
cess system – have a look at the modeling of the expiring condition in Fig. 4.9
as a simple example – or even data from the enterprise’s environment.

Even if you would identify a lot of recurring patterns of synchronization
and turn them into modeling elements, there would still be need to express
arbitrary synchronizations in terms of the state of a business process and
its history. This means that we believe that there is the need for a general
synchronizing modeling element – like the unfilled circle in Fig. 4.9 – with
multiple fan-in and a means to specify an arbitrary synchronization effect. In
Sect. 9.2.10 we further report on synchronization issues in the more concrete
setting of executable business process specification.

5

Decomposing Business Processes

Business process specifications easily become large. They easily become so
large that it is not possible any more to manage them as a whole. This problem
has an effect on, e.g., requirement elicitation, communication, realization and
maintenance. Therefore hierarchies of business process models emerge, with
modeling elements appearing at higher levels of the hierarchies having more
abstract meanings than those at lower levels. In this chapter we discuss the
parallel decomposition of control flow and data specification.

5.1 Motivation for Decomposing System Descriptions

Building hierarchies does not imply a particular modeling or documentation
process. In particular, hierarchies can be built top-down or bottom-up. Stake-
holders in methodology are often biased in favor of a top-down proceeding.
Methodology stakeholders in the sense of this discussion are people that have
an impact on the definition of the modeling guideline in a concrete project.
A methodology stakeholder might have a concrete quality assurance role or
job in an organization. A methodology stakeholder might also be an exter-
nal consultant, or specialist. Methodology stakeholders are often influenced
by methodologists, i.e., methodology book authors of methodology coaches or
the like. The preference to promote top-down proceedings might stem from
the systematic flavor, which a clean top-down approach implies. If a system
can be specified and realized strictly top-down the system building project
appears to be a mature engineering project. However, in practice you see a
lot of bottom-up steps in specification. In projects you usually have a mixture
of top-down and bottom-up steps that equalize insights and improvements at
different levels of the hierarchy in an iteratively manner until a stable version
of the documentation is reached.

Actually, using the term decomposition for the process and the result of
building hierarchies of system descriptions can inherently mean a top-down

© Springer-Verlag Berlin Heidelberg 2010

119
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_5,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

120 5 Decomposing Business Processes

step as well as a bottom-up step. Let us have a look at the bottom-up direc-
tion first. An existing system description can be decomposed into part systems
that then can be named and used as primitives at a higher level of system
description. Decomposition is then the first action in building a new higher
level in the hierarchy. On the other hand, a single entity in an existing sys-
tem description can be detailed by decomposing it into several new entities.
If the decomposed entity is not replaced by the resulting new entities but a
new lower-level hierarchy is introduced for those entities, then decomposition
stands for a top-down step. An entity in a system specification is a subsystem.
A subsystem is also a system. So, in the latter case we also dealt with the
decomposition of a system. The difference lies in whether we decompose a
system in a white-box manner or a black-box manner. White-box decomposi-
tion already sees subsystems and arranges them to system parts that can then
all become subsystems at a higher level, a black-box decomposition details a
system specification resulting in a description based on new subsystems that
can then become a specification at a lower level.

Black-box decomposition means that you detail out the elements of a given
diagram. Building a model hierarchy bottom-up with white-box decomposi-
tion involves two repeated steps, i.e., decomposition and abstraction, which
is illustrated in Fig. 5.1. In the decomposition step the diagram is divided
into parts. The abstraction step involves naming of the parts that stem from
the decomposition and the definition of there interplay. The definition of the
interplay of the abstractions can be retrieved from the diagram that has been
decomposed. Building a hierarchy bottom-up appears very natural in prac-
tice. Modelers start to build a model at the finest level of granularity which
is necessary to describe appropriately the phenomena under consideration.
They model for a while and then there encounter that the model has become
so large that it is hard to understand, maintain and to develop further. At this
point, they decompose the system into smaller parts that can be understood
easier, build an abstraction and compose these abstractions at a higher level
of the hierarchy and try to understand the system easier at this higher level
of abstraction.

5.1.1 Getting Complexity under Control

In the field of system description, building hierarchies is about getting com-
plexity under control. Abstraction is often mentioned as the key principle in
building hierarchies. Often, abstraction is explained as the omission of details.
As we have already discussed in [89], the omission of details can very well be
observed in abstractions, but in good abstractions, it is often not the crucial
point – at least not in the naive sense of omitting details of concrete entities
at the abstract level. For example, there is one widely acknowledged means
of abstraction that is about parameterization teamed together with informa-
tion hiding, i.e., building a parameterized higher-level entity that stands for
a family of lower-level entities. For example, in mathematical logics the λ-

5.1 Motivation for Decomposing System Descriptions 121

decomposition

abstraction

decomposition

abstraction

Fig. 5.1. Building a model hierarchy bottom-up.

abstraction [59] introduced by Alonzo Church to investigate the intentional
aspect of set-theoretical functions is such a kind of abstraction, but so is modu-
larization [277] as introduced by David Lorge Parnas in software engineering.
In powerful cases, abstraction is often about a kind of targeted translation
of properties of a system into items of an otherwise, perhaps independently
elaborated, theory. For example, by mathematical modeling of the properties
of an airplane mathematical reasoning about the flight characteristics of the
airplane becomes possible. As a consequence of the mathematical modeling of
the airplane, details are omitted. Only those properties are modeled that have
an impact on the flight characteristics. However, in this case the omission of
details is just an obvious by-product and not the crucial point.

In the field of business process modeling and workflow specification the
omission of details is actually the central topic in building hierarchies. But
not merely in the direct sense that on the more abstract level details of the
more concrete level are omitted. Also the converse is true. Abstraction can
also mean that some details are teared from a concrete system description
level resulting in a less information loaded version of the system description.
The information is shifted to a higher level of system description. This is
done by partitioning the concrete system into subsystems with respect to an
interesting property type. The subsystems are named and appear as entities at
a new level of system description. The information about the properties is then
found at the more abstract level of system description, at the level of concrete
system descriptions it can be deleted, this way reducing the complexity at the
concrete level. Sometimes, along these lines building a hierarchy can even be
perceived as adding extra information on behalf of the abstraction instead of
shifting the information. This is so, because the process of building a hierarchy
can be driven by the analysis of the system with respect to a new property
to investigate. Examples for such properties that may drive the building of

122 5 Decomposing Business Processes

a hierarchy may belong to the organizational structure of the enterprise that
is supported by the described business processes or a sales structure imposed
onto such business processes that are sold as services or software services.

5.1.2 Atomic Activities

The crucial primitives of a business process model are the activities. Assume
that a business process is modeled without hierarchy. This means, assume in
particular that it is not modeled as a high-level business process in a top-
down modeling approach. Then the modeler has to fix a level of detail for
each of the activities in his business model. In principle, an arbitrary level
of detail for the single activities is possible, though there seems to be some
tight natural bounds like the single clicks on a computer screen, the single key
strokes on a keyboard or similar basic hand movements. An arbitrary level of
detail is possible for the activities. However, for a particular project, a level of
detail should be fixed by a style guide, at least for the most concrete system
descriptions in the hierarchy, but at best for all the levels in the hierarchy.
For example, with form-oriented analysis [89, 82, 83, 95, 94, 96, 97, 105, 106,
92, 87, 107] we have proposed a style guide for the level of system dialogue
specification. Here, the formcharts have only two kinds of entities that are
wired, i.e., the reports that are shown to the user at the computer screen and
the server actions that appear as interaction capabilities for the user in the
realm of a report.

The activities in a business process model that are not further decomposed
into another business process description, i.e., the activities at the leaves of a
business process description hierarchy, can be called atomic activities. If the
information distributed over all the nodes in a business process hierarchy is
gathered together into a large diagram, the resulting diagram can be called
a flat diagram. Consider a hierarchical business process description that is
complete, in the sense that no leave stands for a description that has to
be detailed by further decomposition of activities at lower levels. In such
complete system description the atomic actions are the ones that are usually
easy to understand in their own right. Their operational semantics is described
somewhere else, but by this additional documentation it should be possible
to understand the whole specification. The meaning of the more abstract
activities at the higher levels in a business process hierarchy is usually harder
to grasp. Often, there is no real operational semantics available any more for
those activities, which sometimes rather represent organizational functions,
i.e., organizational parts than activities in the true sense of the word. It just
lacks a unifying operational semantics framework for those functions that have
a complex internal behavior with a mixture of stakeholders or roles for the
several activities it is made of and a mixture of automatically supported and
otherwise manual tasks.

For example, if several basic activities that are executed by the same person
in a strict sequence one after each other are composed to a new entity at a

5.1 Motivation for Decomposing System Descriptions 123

higher level and if each of these activities has a neat operational semantics the
resulting composed entity is likely to have also some kind of comprehensible
operational semantics. On the other hand, if some unrelated activities from
different persons or even from unrelated processes, i.e., processes that are
started by different events, are mingled together into an abstract entity at a
higher level the risk is greater that the semantics of this abstract entity is
hard to understand.

Many hierarchies can have the same meaning in terms of the interplay of
the atomic activities that they eventually specify. Explained from the bottom-
up viewpoint of an initially given flat diagram without any hierarchy, it is
clear that many process hierarchies preserving its semantics can be built on
top of it. As we will discuss in Sect. 5.6.2, different driving forces with respect
to the analysis of new system facets yield different hierarchies. Precisely in
cases where the hierarchy does not provide extra information beyond the basic
semantics of the flat diagram the choice of hierarchy is arbitrary. There is no
evident or compelling general guideline for how to structure and decompose a
given flat process specification, although, there are some decompositions that
appear much more natural than others – Sect. 6 tries to shed some light onto
this issue.

5.1.3 Leveled Data-Flow Diagrams

In general business process models are dataflow diagrams. They do not merely
specify the control flow between activities but also what data is produced by
an activity and sent to another for subsequent consumption. The specification
of the data that flow from one activity to another can be directly attached
to the respective transition between the activities. Triggered by Douglas T.
Ross, leveled data-flow diagrams have been widely used in practice in the
structured analysis family of methods [301, 74, 300, 302, 75, 68] like SADT
(Structured Analysis and Design Technique of the company SofTech, IDEF-0
(Integrated Definition Methods) [254] and Modern Structured Analysis [361].
Here, we want to reconsider the approach of decomposing control flow and
data flow in synch that has been followed by practitioners for two decades
against the background of business process specification and workflow defini-
tion. The goal is to have a workflow definition as an executable flat business
process specification and to build a hierarchy on top of it to deal with its
complexity.

We start the discussion of parallel decomposition of control and data with
explicit data flow diagrams. We distinguish between explicit data flow dia-
grams and implicit data flow diagrams. Explicit data flow diagrams are stan-
dard. They attach descriptions or labels of data items to the transitions of a
control flow diagram. Implicit data flow diagrams are more reductionist. In
implicit data flow diagrams a data type is connected to each activity in the di-
agram. A transition to an activity implicitly stands for the flow of data items
of the type that is connected to the activity that is targeted by the considered

124 5 Decomposing Business Processes

transition. The major diagrams that has been introduced in form-oriented
analysis [89], i.e., the formchart for dialogue specification and the even more
basic data type interchange model (DTIM) diagram, are such implicit data
flow diagrams. We believe that it is worth considering using implicit data flow
diagrams for business process modeling, for example, because we believe that
they are easier to grasp and more amenable to formal treatment. We discuss
decomposition here on the basis of the usual explicit data flow diagrams for
the reason of convenience. It should be possible to transport most of the ar-
guments from the current discussion to implicit data flow diagrams without
problems.

Fig. 5.2. A business process model with data flow and role specifications.

Figure 5.2 shows an example of a business process model with annotated
data flow. The data items that flow along transitions are labeled with small
Greek letters. The data is specified somewhere else, e.g., in a data dictionary,
entity-relationship model, UML class diagram, relational database schema or
the like. Furthermore, roles are attached to the activities in the model in
Fig. 5.2.

Example Decomposition with Single Entry and Exit Points

Figure 5.3 shows a decomposition of the flat diagram in Fig. 5.2. The flat
diagram is cut into two pieces that become stand-alone process definitions,
each with its an own start and end state. Start states are also called entries,
entry points, start events, initial states etc. End states are also called ex-
its, exit points, end events etc. We choose the term interface points as the
generalization of entry points and exit points.

Both the start states and the end states are depicted by unfilled circles
in Fig. 5.3. The decomposition results in a process hierarchy with two levels.
The two levels are separated from each other by a dotted line. On the higher
level the pieces that the diagram in Fig. 5.2 has been cut into have become
activities. An activity at the higher level is started as usual when it is triggered
by an ingoing activity. It then activates the start node of the business process
specification it stands for. An activity at the higher level refers to a business
process specification it stands for at the lower level. This relationship is given
by a dashed line in Fig. 5.3. The roles assigned to the basic activities of
a business process specification at the lower level are merged together and
assigned to the corresponding composed activity at the higher level.

B

C

D

E

F

G

J

K

L

M

N

O

H IA P

5.1 Motivation for Decomposing System Descriptions 125

The initial transition and the final transition from Fig. 5.2 and the transi-
tion at the cut point can be found at the higher level of the process hierarchy in
Fig. 5.3 together with the respective data flow annotations. Actually, the orig-
inal data flow α-transition from the start state to the A-transition in Fig. 5.2
is now represented in Fig. 5.3 by two transitions, i.e., an α-transition from the
start state to the high-level state AH plus an α-transition from the start state
to the basic A-state in the lower-level diagram. Similarly, the δ-transition, i.e.,
the cut point, is represented by three δ-transitions in the business process hi-
erarchy – one in the higher process level and two in lower level. And so on for
the ω-transition.

Fig. 5.3. Example for decomposition with unique start and exit points.

On the Notation of Business Process Abstraction

We have used a dashed line in Fig. 5.3 to assign a business process speci-
fication to its abstraction on a higher level. Other means of specification of
this relationship are possible. A common one is specification by naming, i.e., a
name is attached to a business process specification that results as a piece from
the decomposition of a larger diagram. Then the name refers to that business
process in other business process specifications. In Fig. 5.3 it is somehow done
in the reverse direction. The name of the business process is introduced at the
higher level specification where it is reduced and is transferred by the dashed
line.

The discussion of the notation for business process abstraction is yet an-
other example for a general theme that we want to foster, i.e., concrete nota-
tion is not the point, content or abstract syntax is the key. Drawing conven-
tions are not about the content of a business process specification. A mature
tool will work internally with a meta model of business processes and will
allow the developer to interact with different styles of concrete syntax and
concrete visualizations.

J

K

L

M

N

O

I P
κ

μ

μ

ν

π
σ

ι

υ

ψ

ω
B

C

D

E

F

G

H
α

A
χ φ

γ

εβ
η

τ

θ

ρ

δ δ

AH IP
δ ωα

126 5 Decomposing Business Processes

5.1.4 Process Hierarchies versus Process Abstraction

So far, in Sect. 5.1 we have talked about decomposition as if it is only about
forming strict hierarchies. In general, abstraction mechanisms are independent
from the possible decomposition structures they are used for and the strict
hierarchy is only one such possible decomposition structure. For example, in
the explanation of the abstraction specification of Fig. 5.3 we have said that
a dashed line in Fig. 5.3 stands for the assignment of a business process spec-
ification to its abstraction on a higher level. Actually, for the small example
in Fig. 5.3 it holds that all business process specifications are used as abstract
entities only at a higher level in the process hierarchy. A strict process hier-
archy is a decomposition structure where the single decompositions form a
directed acyclic graph. This means that in strict process hierarchies an ac-
tivity of a diagram at an inner node can be a basic activity, i.e., an activity
which is not further decomposed into others, or an explorable activity, i.e., an
activity that stands for another business process specification at a lower level.

Strictly Stepped Hierarchies

Some methodology stakeholders impose an even more strict condition for hier-
archies that forbids decompositions spanning more than one level. This means
that – with a given strict order of the levels – an entity must only refer to
entities on the next lower level as its decomposition. Such strictly stepped
decomposition structure may be regarded as having a particular neat and
tidy structure, however, actually it is just about an issue of presentation. By
introducing wrappers for entities at higher levels in the hierarchy there is a
straightforward workaround to transform each strict process hierarchy in the
above sense of a directed acyclic graph into a strictly stepped hierarchy. An
example of such a transformation is depicted in Fig. 5.4.

C D E

B

A

C D E

A

B E-Wrapper

Fig. 5.4. Transforming a decomposition that spans more than one level.

We have said that a strict process hierarchy is a decomposition structure
where the single decompositions form a directed acyclic graph. We assume
that the levels of a strict hierarchy are implicitly given, i.e., that they are
the result of building a hierarchy by decomposing a system. Levels are the

5.1 Motivation for Decomposing System Descriptions 127

result of a usage structure. In general, there is more than one usage path, i.e.,
directed path, to reach a component in a strict hierarchy from a given other
component, because a hierarchy is not a tree but a directed acyclic graph. The
level of a component in a hierarchy can be defined as the length of the longest
usage path from a component at the highest level down to the component.
In Fig. 5.4 the sub business process E resides on the lowest level, because it
is used in the definition of the business process B at the next higher level. If
the business process E would be used by the definition of process A only, it
would belong to the next higher level.

Some modelers might want to have an explicit concept of levels in a hi-
erarchy and a explicit means to define such levels. Figure 5.5 is meant as
an illustration of a hierarchy with explicitly given levels. The dashed lines
in Fig. 5.4 has turned into solid lines in Fig. 5.5. The solid lines in Fig. 5.5
should be considered modeling elements of a modeling language with the pur-
pose to define levels of a hierarchy explicitly. The possibility to define levels
explicitly can be exploited to create levels of conceptual abstraction. The left
diagram in Fig. 5.4 is not a strictly stepped hierarchy. From the viewpoint of
implicitly defined levels, also the left diagram in Fig. 5.5 is a strictly stepped
hierarchy. From the viewpoint of implicitly defined levels, the processes B and
E together form the second level in the hierarchy. Only with an explicit inter-
pretation of the given levels the left diagram in Fig. 5.5 is not strictly stepped
any more. It can be made a strictly stepped hierarchy, just by moving it to
the next higher level, as indicated by the right diagram in Fig. 5.5. The prob-
lem here is that the modeler does not want to move the process to the next
higher level, because the explicitly defined level express some conceptual level
of abstraction and the considered process belongs to the considered level in
the sense of these conceptual levels of abstraction. In this case, a workaround
based on the introduction of a wrapper process can be applied similarly to
the example given in Fig. 5.4.

C D E

A

B

C D

E

A

B

Fig. 5.5. Transforming an explicitly given hierarchy.

128 5 Decomposing Business Processes

Recursion in Business Process Decompositions

Figure 5.6 shows an example where an activity, i.e., the CD-activity at the
higher level refers to a business process specification at the lower level and
this business process specification is based on an activity, i.e., the AB-activity
that refers back to the business process specification at the higher level. Ac-
tually, without knowledge of the start event of the overall specification, which
is determined by the way the specification emerged from a top-down or a
bottom-up modeling process, it is objectively not fair anymore to say that
one of the two levels separated by the dotted horizontal line is the lower one
and one is the higher one. If the layout of the drawing in Figure 5.6 is ne-
glected, the figure shows a completely symmetric situation, in particular, both
of the two business process specification are completely equal with respect to
the fact that they both exploit one abstraction of a business process specifica-
tion from another as an activity. By the layout of the drawing we have fixed
that the business process specification CD is the higher-level one and that
the specification AB is the lower-level one.

A

CD

B
x

C

AB

D

¬x

y

¬y

α β

γ

γ δ ω

ω

ω

ω
α

Fig. 5.6. Recursion via levels.

In Fig. 5.6 we have used a gateway for case distinction. For example in the
upper business process AB we have used a gateway for testing the x-condition
and routing to either the B-activity or to the CD-process. The outgoing edges
of the gateway carry different type of data, i.e., the edge leading to the B-
activity carries data of type β and the edge leading to the CD-process carry
data of type γ. A case distinction gateway with its one ingoing and its two
outgoing edges can actually be considered standing for two edges as is shown
in Fig. 5.7. Diagram (ii) in Fig. 5.7 uses the conditions from the gateway in

5.1 Motivation for Decomposing System Descriptions 129

A

CD

B
x

¬x

β

γ

ω
A

CD

B
x

¬x

β

γ

ω

(i) (ii)

Fig. 5.7. The usage of case distinctions in data flow diagrams.

diagram (i) as what we call flow condition, enabling conditions or activation
condition in form-oriented analysis and Sect. 9. Questions arise with respect
to the semantics of both conditions that are used by case distinction gateways
and those conditions that are directly annotated to edges of data flow diagrams
like the ones in diagram (ii) in Fig. 5.7. When are the conditions evaluated?
Does the evaluation still belong to the activity they are located to or not?
For conditions attached to gateways: is the production of data based on the
evaluation of the conditions? Answers to these questions should be elaborated
if a diagram is used for modeling; and they must be elaborated if a diagram
should be used as a description for the automatic execution of a business
process. However, for an understanding of the following discussion it is not
necessary to elaborate answers to these questions.

Figure 5.8 shows an example business process instance executed for the
business process model in Fig. 5.6. We use the same ad-hoc notation for busi-
ness process instances in Fig. 5.8 that we have already used in Fig. 4.4, i.e.,
elements of a business process instance look like elements of a business process
model up to the fact that they are double lined and that they point back to
the preceding element in the business process instance, because, as we have
discussed in Sect. 4.1.5, we somehow want to express the history aspect of a
business process instance with its visualization. The example business process
instance in Fig. 5.8 starts with an upper AB-process in Fig. 5.6 which starts
a lower CD-process which then recursively starts another AB-process which
then again starts a final CD-process. The process instance of such recursive
process definition can be considered as nested. In the current example, the in-
nermost, i.e., the most recently started, process terminates after a D-activity

A

C

¬x

¬y

A

C D

¬x

y

α

γ

γ

γ

γ

α

α

δ ω

ω

ω

ω

Fig. 5.8. An instance of the business process model in Fig. 5.6.

130 5 Decomposing Business Processes

has been executed and terminates the whole nested process instance on behalf
of this. This means that no further activities of the outer process instances
are executed. This is so, because the business process model in Fig. 5.6 is
end-recursive.

Each strictly hierarchical business process specification can be flattened
into a single large diagram. This is so because a strictly hierarchical business
process specification does not introduce any recursive control flow due to its
acyclic structure. Even no cycles at the same level between abstractions are
possible according to the above definition of strict hierarchy. Therefore, the
flattening merely involves starting at the top-level diagram and recursively
replacing each activity by the business process specification it stands for at
a lower level. Also, some non-strict hierarchical process specifications can be
flattened. Figure 5.9 shows a flattened version of the specification in Fig. 5.6.
The dashed lines that specify the relation between activities and abstracted
business processes in Fig. 5.6 together introduce a control flow cycle. This
control flow cycle can be found in Fig. 5.9. The business process instance in
Fig. 5.8 is also an instance of the business process model in Fig. 5.9, because
the three ω-transitions in Fig. 5.8 can be considered a single ω-transition.
The ω-transition is painted threefold in Fig. 5.8 in order to visualize that we
consider the business process as nested with respect to the business process
specification in Fig. 5.6.

Figure 5.9 once more shows the symmetry of the situation. We have es-
tablished that the specification AB in Fig. 5.6 is the higher-level one only
by the layout of the painting. If we chose to make the specification CD the
higher-level one instead, all we have to do in Fig. 5.9 is to make the start
event target the C-activity instead of the A-activity.

It is easy to transform the process hierarchy in Fig. 5.6 into the diagram in
Fig. 5.9, because both of the process definitions in Fig. 5.6 are end-recursive.
Things would change if, for example, the ω-transition from the CD-activity to
the end point of the higher-level diagram in Fig. 5.6 is changed to target the
B-activity. Then, it would not be possible any more to transform the resulting
specification into a flat diagram that expresses the same behavior in terms of
the used modeling elements and basic activities. This means that allowing for

A B

C D

α β

γ

δ

ω

x

¬x

y

¬y ωα

Fig. 5.9. Flattening the recursive business process specifcation in Fig. 5.6.

5.1 Motivation for Decomposing System Descriptions 131

arbitrary abstractions – or to say it more precisely – allowing for arbitrary
cycles in abstracting structures adds to the expressive power of modeling.

Expressive Power of Recursion for Business Domain-Oriented
Modeling

Unlike the distinction between strictly hierarchical modeling and strictly
stepped hierarchical modeling as presented in Fig. 5.4, the difference between
strictly hierarchical modeling and arbitrary usage of abstraction and therefore
the usage of recursion is not merely a presentation issue. In terms of the same
set of basic activities there are some behaviors that are expressible only with
arbitrary abstraction or extra manipulations on the global data space in order
to encode some information that can be exploited in appropriate constraints
on the control flow.

You can express a repeated behavior of a business process with a cycle
in a business process model without abstraction mechanism, i.e., with what
we call an activity cycle. You can also express repeated behavior by recursive
calls of business processes to abstractions of business processes, i.e., by what
we call cycles in the usage of business process abstraction, abstraction cycles
or business process cycles for short. However, we think that there are some
behaviors that should be expressed better with a business process cycle instead
of an activity cycle. There are some behaviors that need extra mechanisms
to be described without abstraction mechanism, which violates the principle
of domain orientation in business process modeling that we have described in
Sect. 6.2.5 and 6.4.

A

AB

B
x

¬x

α

α

β

β

β

Fig. 5.10. Self-recursive business process model that is not end-recursive.

Figure 5.10 shows a very simple business process cycle. Actually it is an
example of a self-recursive business process definition, i.e., the business process
model invokes itself as AB-activity or AB-sub-process. The process definition
in Fig. 5.10 is not end-recursive. This means that after the execution of an
AB-sub-process there is still some work to do – the B-activity – in the business
process that invoked the AB-sub-process. Fig. 5.11 shows an business process
instance started for the business process model in Fig. 5.10. The sub business

132 5 Decomposing Business Processes

process AB is entered over and over again until the recursion exit condition x
evaluates to true. The effect of the invocation of an AB-sub-process is the
execution of an A-activity, which we assume to be a basic activity. For each
nested invocation of an AB-activity an B-activity has to be executed after
the completion of the invoked AB-activity.

A

A

¬x

¬x

A B

B

A B

B

¬x

x

Fig. 5.11. An instance of the business process model in Fig. 5.10.

Figure 5.12 shows an attempt to express the behavior defined by the busi-
ness process model in Fig. 5.10 with a flat business process specification,
i.e., without the usage of abstraction and recursive call. The business process
model uses a cycle or loop to express the repeated execution of the A-activity.
The recursion exit condition x from Fig. 5.10 becomes the loop exit condi-
tion x in Fig. 5.12. The business process model in Fig. 5.12 must ensure that
the correct number of B-activities is executed after the loop exit condition x
has been evaluated to true. For this reason, an extra mechanism is introduced
that counts the number of times an A-activity is executed. The mechanism
consists out of three extra activities for setting the counter to zero, increasing
the counter and decreasing the counter at appropriate places in the business
process model. The execution of the correct number of B-activities is also
modeled with a loop that exploits the aforementioned counter in its exit con-
dition.

How could we argue that the business process model in Fig. 5.10 is prag-
matically better than the one in Fig. 5.12? Firstly, let us assume that the
activities in Fig. 5.10 somehow express real-world activities, i.e., meaningful
activities in the real world that have to be orchestrated by the business pro-
cess. The business process model Fig. 5.12 introduces new activities. What
does this introduction mean? Should these activities of counting be actually
introduced in the real world? For example, should a worker track the number
of executions on a piece of paper? With respect to this, Fig. 5.10 is easier to
understand. It simply says, that after recursive execution of an AB-activity a
somehow dangling B-activity is executed. It is left open in Fig. 5.10, how the
execution of the B-activity is eventually ensured. But this is no difference of
this scenario to other invocations of activities that occur after the invocation
of an immediate activity, be it a invocation of a sub process or the invocation
of a basic activity. The point is that the mechanism that ensures the correct

5.1 Motivation for Decomposing System Descriptions 133

order of execution is not fixed by the business process model. On the con-
trary, it is assumed that the order defined by the business process model is
followed. However, the business process model in Fig. 5.12 explicitly defines
a mechanism for the correct order of execution of some of its entities.

Secondly, we believe that the business process model in Fig. 5.10 expresses
a conceptual connection of those instances of B-activities with those instances
of A-activities that are invoked in the context of the same sub-process in-
stance. The reader of the business process model in Fig. 5.10 is motivated to
understand that the A-activity of an AB-process is conceptually related to
the B-activity that occurs after the inner recursive invocation of a next AB-
process. If this is that what the modeler actually wanted to express than the
business process model in Fig. 5.10 again should be preferred over the busi-
ness process model in Fig. 5.12, because we think that in Fig. 5.12 it is not
immediately motivated to understand that the first A-activity is conceptually
related to the last B-activity, the second A-activity is conceptually related to
the second last B-activity and so forth.

A B

x

¬x

c:=0
α α

α α

c:=c+1

β

c:=c-1

c=0

c>0

β

β

Fig. 5.12. Flattening the recursive business process specification in Fig. 5.10.

Presentation Issues of Recursion in Business Process Hierarchies

If you establish a recursive call in a business process hierarchy, leveling be-
comes void in a certain sense to a certain degree. We have said that strict
hierarchies are directed acyclic graph and have defined the level of a com-
ponent as the longest usage path to this component moving down from the
root to the component. A level in a hierarchy consists of all those components
that are equal with respect to their longest usage paths from the root. Up to
now, only by the containment in an explicitly defined strictly leveled hierarchy
you could construct a notion of higher versus lower levels for a decomposition
cycle. We have already seen an example in Figs. 5.6 and Fig. 5.9. There, it
would be possible to choose any of the two business process specifications as
the higher-level one depending of whether the start state of the process spec-
ification AB or the start state of the specification CD is chosen as the overall
start state. Even without explicit definition of levels it would be possible to

134 5 Decomposing Business Processes

define an alternative, meaningful notion of level and some kind of weakened
notion of strict hierarchy that is compatible with the usage of abstraction
cycles. The approach is to define that all components of an abstraction cycle
belong to the same level.

Refinement Hierarchies

In practical projects strict hierarchies are promoted by methodology stake-
holders due to the tidy and neat appearance of diagrams. If you hierarchically
organize an already existing complete business process specification bottom-
up this will perhaps end in a strict hierarchy quite naturally. You just grasp
chunks of the diagram entities as features and make them abstractions. You
then describe the interplay of them on a perceived higher level of abstraction.
You proceed this way building several levels of abstraction.

Also, top-down approaches and in particular the concept of refinement on
the process side are typically connected to strict hierarchies on the artifact
side – as if strict hierarchies naturally result from repeated refinements. But
such connection is not really justified. If you start with the description of the
system at a high level and proceed by detailing activities you might easily
come across the situation at one level that you want to recursively call a
business process that you have already defined earlier at a higher level. The
point is that a certain strict interpretation of the notion of refinement actually
leads to strict hierarchies. You might want to argue that – in the true sense
of the word – it is only allowed to refine an entity in terms of new entities,
i.e., entities that have to be created newly on behalf of a refinement step.
Actually, such strict understanding of the notion of refinement would rule out
some directed acyclic graph structures as non valid, i.e., those structures that
are not trees.

5.2 Unique versus Multiple Entry and Exit Points

A crucial point in the flexibility and expressiveness of business process spec-
ifications with respect to hierarchical structure is the question of whether a
business process can have only unique or multiple entries and exits.

5.2.1 Exploiting Multiple Entry and Exit Points

In Fig. 5.3 we have used only process specifications with a unique start and a
unique exit point in the concrete decomposition and hierarchy of the diagram
Fig. 5.2. The problem is that the chosen cut point, i.e., the δ-transition, is
actually the only option to decompose the flat diagram in Fig. 5.2 as long
as we do not allow for auxiliary modeling concepts like the usage of multiple
interface points or multiple paintings of a modeling element. The problem is

5.2 Unique versus Multiple Entry and Exit Points 135

that the chosen partition in Fig. 5.3 might not be the desired or most natural
one. Decomposing in order to get complexity under control is usually not just
about arbitrary partitioning of a diagramwith the target that the specification
that one has to deal with becomes smaller and therefore better to handle. It
is good if the parts that result from the decomposition express a feature or
notion of the real world. This means that the decomposition is usually driven
by some kind of conceptual cohesion of the entities.

The diagram in Fig. 5.2 visualizes a good example for a potential driving
force in the decomposition of a business process specification, i.e., the orien-
tation towards roles. The diagram in Fig. 5.2 has three natural regions with
respect to the two roles. A first one consisting of the activities A through D,
which all have the white role assigned to them, a second middle region with
the activities E through L, which all have the gray role assigned to them, and
a last region consisting of the remaining activities M through P , which again
all have a white role assigned to them. A modeler might want to turn exactly
these regions into part specifications and eventually into process abstractions.
With the restriction to unique interface points he can not do this simply.
Fig. 5.13 shows the solution with the usage of multiple interface points.

Fig. 5.13. Example for decomposition with multiple start and exit points.

If the restriction to unique interface points is dropped, an identification of
interface points must be introduced in order to distinguish them. In Fig. 5.13
all the interface points are uniquely labeled. The transitions of a higher-level
diagram are necessary to specify the interplay of activities from the lower
specification level across process specification boundaries. Via the uniquely
identifiable interface points it is possible to wire transitions from one specifi-
cation with transitions of another one. We delve into the semantics of multiple
interface events, i.e., into the semantics of business process specifications havin
multiple interface points in Sect. 5.2.2.

M

N

O

P xiv
π

υ

ψ

ω
B

C

D

α
Ai

χ
β

τ

E

F

G

H
φ

γ

ε

η
θ

ρ

J

K

L

I
κ

μ

μ

ν

σ

ι

δ
viii

x

xii

ix

xi

xiii

v

vi

vii

φ

γ

ε
ii

iii

iv

ADi

ii

iii

iv

EL

viii

x

xii

v

vi

vii

MP xiv

ix

xi

xiii

φ
γ

ε
μ
ν

μ
ωα

α

μ

μ

ν

136 5 Decomposing Business Processes

The labeling chosen in Fig. 5.13 is a bit more accurate than actually nec-
essary, because the labels must be unique only with respect to the process
specification they belong to and their kind, i.e., entry or exit point. An iden-
tification via the annotated data flow is not always possible, because the data
flow might also be ambiguous as can be seen for the μ-transitions in the exam-
ple of Fig. 5.13. Without the interface point labels ‘viii’ through ‘xi’ it would
not be possible to tell from Fig. 5.13 whether the J-activity or the K-activity
are connected to the M -activity or N -activity.

With respect to the roles the decomposition represented in Fig. 5.13 has
the valuable effect that the role annotations can be dropped from the activities
at the lower level specifications. This is so, because the lower-level specifica-
tions are homogenous with respect to the roles. The annotation of a role to
a specification abstraction at the higher level of the diagram is sufficient, be-
cause such a role specification is valid for all the activities of the corresponding
specification. This is the difference to the decomposition solution presented
in Fig. 5.3. Here the role annotation at the higher level specification is less
informative.

For example, if you are playing the role of a project manager and you want
to divide work on the basis of the process description in Fig. 5.13 you assign
work in terms of the higher-level activities and you are done. The two persons
that you have assigned the activities to can then figure out what to do by
delving into the more detailed process description of their assigned activities
at the lower level. Each person can do this without coordination with the
other person, because the person’s tasks are clearly separated from each other
by the decomposition structure. The same is not true for the specification
in Fig. 5.3. As a project manager you now assign all of the tasks to both of
the persons. The persons together delve into the details of all activities. The
problem is that each of the person can now see details of the process that he
is not actually concerned with, which is a violation of the information hiding
principle.

5.2.2 On the Semantics of Multiple Start and End Events

This section extends and complements the discussion on the semantics of
events in Sect. 4.5. The semantics of multiple interface points is not easy.
Synchronization phenomena have an impact on possible semantics.

A crucial problem is the semantics of start states and in terms of the
enactment of process instances. For a business process with multiple start
states, which is an activity at a higher level in a hierarchy, e.g., the process
and activity EL in Fig. 5.13, it is, basically, possible to fix two kinds of
semantics with respect to multiple start events:

• Closed semantics, extensional-like semantics. A process instance is created
whenever a start event is triggered. The start of a process instance dis-
ables any further triggers to start events in the realm of the execution

5.2 Unique versus Multiple Entry and Exit Points 137

of the current process instance. This semantics is a self-explaining, i.e.,
self-contained from the viewpoint of the single business process.

• Open semantics, intensional-like semantics. After the start of a process
instance all start events remain enabled, they are gateways to the dynam-
ically evolving context of the process instance. The behavior of a process
instance cannot be understood without the context it lives in.

The definitions of open and closed semantics of business process specifica-
tions are tight with respect to how events have to be understood during the
execution of a business process instance. The further parts of the definition
and the arguments based on them are weaker, in particular, for the closed se-
mantics. The behavior of a business process with what we call closed semantics
is actually not really self-contained, i.e., it is not really self-explaining, because
the semantics of a business process has to be understood always in the context
of the system’s state, for example, in the context of the data of an information
system. This means, in particular, that an open semantics with further events
beyond the ones directly modeled in the business process can be simulated
within a business process specification with closed semantics. Exactly for this
reason we have also used extensional-like instead of merely extensional for the
closed semantics and intensional-like instead of intensional for the open se-
mantics. The terminology of extensional versus intensional stems from logics,
where the meanings of statements of an extensional apparatus are not influ-
enced by the usage of statements, whereas, the statement of an intensional
apparatus can, in general, only be understood as parts of their usage.

Building Hierarchies with Closed Semantics

Each start event can be triggered independently from the outside. If we fix
an extensional semantics this means, that once a business process instance
is created, all of the start events are disabled for the lifetime of the process
instance. This also means that the start of a process instance preempts all
regions that are reachable via start events other than the initially triggered.
For example, if the activity EL in Fig. 5.3 is started via the interface point (vi)
it is sure that the activities E and G will not be executed during the lifetime
of the started business process instance and, furthermore, the activity F is
executed exactly one time during the lifetime of the business process instance,
because also the interface point (vi) is disabled henceforth.

If the business process specifications of a modeling language or methodol-
ogy are given a closed semantics in the above sense, this means that not all
decompositions and abstractions are possible any more. This means that there
may be hierarchies built on top of a given flat diagram that do not conserve
the semantics of this flat diagram. As an example, please have a look at the
flat business process specification in Fig. 5.2 and the concrete decomposition
and abstraction of this business process model in Fig. 5.13. With a closed se-
mantics of business process specifications the hierarchy in Fig. 5.13 is a valid

138 5 Decomposing Business Processes

one only under certain assumptions. In Fig. 5.2 there is still ambiguity with
respect to concrete control flow. In Fig. 5.14 we have given three alternatives
of further control flow specification for a sub diagram in Fig. 5.2.

In diagram (i) in Fig. 5.14 the next activity after execution of the A-
activity is uniquely determined by a case distinction gateway. In diagram (ii)
a parallel gateway forks both a B-, C and D-activity after completion of
the A-activity. The strands of execution forked by the parallel gateway in
diagram (ii) are not synchronized before the execution of the H-activity. This
means that each strand of execution starts its own copy of the H-activity
which is indicated by the joining ‘or’-gateway. This is not so for the business
process given by diagram (iii) in Fig. 5.14. Here, a synchronizing ‘and’-gateway
is used instead of the non-synchronizing ‘or’-statements. This means that the
three strands of execution initiated after the execution of the A-activity are re-
joined by the ‘and’-gateway and a single instance of the H-activity is started.
We have used some common notation for the case distinction, the parallel
fork and the synchronization in Fig. 5.14. However, the notation is not the
point. For example, in Sect. 9.2.2 we do without gateways to express the same
aspects of control flow. The point is the meaning of the different control flows
of the business processes based on the diagrams (i) through (iii) and therefore
we have used some commonly accepted notation for them. For example, we
take for granted that the case distinction gateway used in Fig. 5.14 actually
has the semantics of uniquely evaluating the given conditions and the given
fall through branch.

Fig. 5.14. Alternative control flows for a sub business process from Fig. 5.2.

The hierarchy in Fig. 5.13 is based on a cut through the ε-, φ-, and γ-edges
in Fig. 5.2. This cut is a valid cut if the business process in Fig. 5.2 behaves

α
A

B

C

D

E

F

G

H
χ φ

γ

εβ

η

τ

θ

ρ

δ
XOR

c1

c2

else

OR

α
A

B

C

D

E

F

G

H
χ φ

γ

εβ

η

τ

θ

ρ

δv v

(i)

(iii)

α
A

B

C

D

E

F

G

H
χ φ

γ

εβ

η

τ

θ

ρ

δ
OR

v(ii)

5.2 Unique versus Multiple Entry and Exit Points 139

like (i) Fig. 5.14 with respect to the sub diagram specified in Fig. 5.14. Let
us assume that the business process behaves like (i) in Fig. 5.14. If an EL-
activity is started it is guaranteed that no further events (v), (vi) or (vii) that
are relevant for the behavior of the process instance will occur henceforth,
because the case distinction was unique after the A-activity. Therefore, it is
possible to disable the entry points immediately after the start of the process
instance. In the overall system further events (v) through (vii) can occur in
parallel to the current execution of the started EL-activity. These events can
stem from further processes that have been initially started by the very entry
point (i) of the business process specifications. However, these further events
(v) through (vii) are not relevant to the currently considered EL-activity. On
the contrary, each of these events is meant to create a fresh instance of the
EL-activity which again can have a closed semantics.

Now, let us assume that the business process in Fig. 5.2 behaves like (iii)
in Fig. 5.14, i.e., parallel executions are forked and synchronized later. Then
the cut through the ε-, φ-, and γ-edges in Figs. 5.2 and Fig. 5.13 is not valid
any more for a closed semantics. If a EL-activity has been created, the input
interface points cannot be considered disabled any more, because they are
relevant to the behavior of the started sub-process instance.

Now, let us assume that the business process in Fig. 5.2 behaves like (ii)
in Fig. 5.14, i.e., parallel executions are forked but not synchronized before
the execution of the H-activity. The answer to the question whether the cut
through the ε-, φ-, and γ-edge is valid or not depends. The rest of the diagram
has to be analyzed to answer the question, because it is possible that the initi-
ated strands of execution need synchronization later, i.e., after the execution
of the H-activity. If the rest of the diagram, i.e., the part started by the I-
activity and ended with the P -activity also behaves like one of the patterns
(i) or (ii) in Fig. 5.14 it is a valid cut, otherwise it is not. This means, that,
in general, parallel forks do not harm as long as the started process instances
are not synchronized.

With an analysis of the whole diagram and its decomposition following
the lines of the above discussion it can be decided whether a given hierarchy
with closed semantics is valid with respect to a given flat diagram.

Building Hierarchies with Open Semantics

If a business process specification with multiple start events has open seman-
tics this means, that a business process accepts further events via its interface
point after it has been started. The concrete behavior of a business process
with open semantics can only be understood by looking at and analyzing the
whole flat diagram. If you want to understand the behavior of an activity at a
higher level of a model hierarchy, in general – or let’s say better – in the worst
case, you have to recursively unfold all activities of the given level via all lower
level down to the lowest level and reconstruct the flat diagram from these un-
folded diagrams first. Then, you can analyze the resulting diagram and can

140 5 Decomposing Business Processes

understand the behavior of the considered abstract entity as its footprint sub
diagram in the whole flat diagram.

Relevance of the Chosen Business Process Semantics

The chosen business process semantics impacts the decompositionality of busi-
ness processes. However, the chosen business process semantics may also have
further advantages and disadvantages.

With an open semantics the modeler has an unrestricted flexibility in
building hierarchies. The abstractions made are merely viewports onto a di-
agram at a lower level of the hierarchy. With a closed semantics only those
hierarchies can be built that do not contradict the behavior of the underlying
flat diagram. A business process with a closed semantics is a capsule. Once,
it is started, its behavior is not influenced by events from the context. In that
sense its behavior is easier to understand than the behavior of a business pro-
cess with open semantics. With a closed semantics you can define and execute
a meaningful simulation of the system at each level of the hierarchy, i.e., a
simulation in terms of the activities and transition from the given level.

Business processes with only one start event are special cases of business
processes with multiple start events. Business process specifications that have
only a single unique start event do not automatically have a closed semantics.
Once a process with a single start event is start, in general, a further event may
drop in through the entry point. However, if you have a modeling language
with unique start events in practice, you usually assume a closed semantics
for it.

5.2.3 On Reasons for the Restriction to Unique Interface Points

You might ask why one should restrict oneself to the usage of unique entries
and exits for business process specification at all and why it is worth looking
at this restriction. A straightforward answer is the semantic difficulties of
multiple interface points.

Actually, in concrete projects in practice we often see explicit guidelines
that restrict entries and exits to being unique for a business process specifica-
tion. Even without explicit guidelines there is often a tacit understanding of
business process modeling that entries and exits, or at least entries should be
unique. For example, the concrete UML tutorial [190] states that a UML ac-
tivity diagram may have only one start state. As an example for an academic
publication, the paper [119], which aims at formalization of UML activity di-
agrams, gives a definition for activity diagrams that allows for a single start
state and a single end state only. Section 9.3.2 of the specification of the
Business Process Modeling Notation (BPMN) [265] warns the reader that a
process specification with multiple start events may be harder to understand.
The specification also strongly recommends the reader to use multiple start
events only sparingly and advises him that he should be aware of the potential

5.2 Unique versus Multiple Entry and Exit Points 141

difficulties of other modelers in understanding the intent of a diagram with
multiple start events.

So what are the reasons for the deprecation of multiple start states? One
obvious reason may be that modelers want to avoid the extra effort to fix
further notation and semantics for dealing with multiple entries and exits of
a business process specification, in particular, with respect to the interplay
between several business process specifications in a hierarchy. Actually, as we
have seen in Sect. 5.2.2, significant effort is needed to fix extra notation and
semantics for multiple start states; and in practice this effort remains a hurdle.

Another reason might be that business process specification and in partic-
ular also their visual presentations, i.e., the business process diagrams, might
appear more structured to many modelers and therefore have a more sys-
tematic appeal. This argument has two facets, i.e., a local one and a global
one. The local one is about the single business process specification with its
start and exit point. The global one is about the interconnection of several
business process specifications at a higher level in the specification hierarchy.
From the local viewpoint a business process specification with one entry and
one exit point is immediately understandable as a functional transformation.
The data that is given to the process instance at the time of its creation is
eventually transformed into data that leaves the process instance via the sin-
gle exit point. If a process has multiple entry states and multiple exit states
it is slightly more difficult to understand it as a functional transform. In case
of a single entry point the input type of the functional transformation can
be immediately understood as the type of the data item that is annotated to
the incoming transition of the process specification. The same applies for the
output type in case of a single exit point.

5.2.4 Notational Issues of Unique Interface Points

In Fig. 5.3 we have used the same notation for the start state and the end state.
Some modeling notations introduce extra notation in order to distinguish the
entry from the exit point. Such a visual distinction is merely syntactical sugar.
Anyhow, after different symbols has been introduced, a guideline must be
imposed that demands that a start state has no ingoing transitions and a
exit point has no outgoing transitions. Exactly these constraints can be taken
as definitions in case we do not use extra notations for the start and end
event. The start event is the one that has no incoming transitions and the end
event is the one that has no outgoing transitions. As important constraints
there remains the rule that none of the interface points should have incoming
and outgoing transitions at the same time. Actually, no special symbol for
interface points is necessary, in particular in the case when it is assumed that
all process definitions have exactly one entry point and exactly one exit point.
Equally well the symbols for the start event and end event can be dropped
completely resulting in some dangling transitions. This causes no harm. In
general, this discussion once more leads to the observation that a modeling

142 5 Decomposing Business Processes

concept, i.e., the uniqueness of interface points in this case, must in general
not be confused with a similar visualization concept.

Some modeling guidelines allow for the drawing of multiple start states.
Then they introduce a notion of invocation of a process instance according
to the process definition. Then, they give the semantics to the various start
states as each being marked with a token upon creation of a business process
instance. Such a notation and semantics does not add expressiveness com-
pared to a language that allows only to draw a unique start state. As with
all modeling elements it is just the question whether the multiple symbols
introduce a conceptually new modeling element or the several symbols refer
to the same conceptual modeling element. In the above description of a pos-
sible semantics of several start states the choice was made for the reference
to the conceptually same entity. Because the several start events are not dis-
tinguished further they can be interpreted as representing a single start event
that has as outgoing transitions the set union of all those transitions that
leave one of the start state’s symbols.

Semantically, it is not too important to discuss whether the several symbols
represent a single conceptual start state or each one a different start state.
The crucial point is that they share an important meaning, i.e., that they
are all triggered whenever a business process instance is created. Actually,
the several drawings of a start state can be exploited for more sophisticated
semantics. Some properties that are shared by all outgoing transitions of a
start state can be hosted as annotations to the start state. An example of
such a transition property could be the delay after the initial trigger. In the
case that some such properties of transitions clutter a diagram the usage of
multiple states in the described way could help. In general, the motivation
for using several start states for visualizing an undistinguishable start event
are layout based, e.g., to avoid crossing transitions or transitions that appear
too long. Such reasons are not in the realms of specification accuracy, they
are merely about the pragmatics of communicating the contents of a business
process specification.

5.2.5 Decomposition by Business Goal Orientation

In Fig. 5.13 we have seen a decomposition of the business process in Fig. 5.2
that allows for multiple start and end states of the abstractions that result
from the decomposition. The usage of multiple start and end states reveals
more flexibility for decomposing to the developers. In the example in Fig. 5.13
this extra flexibility was exploited for a role orientation in decomposing the
system.

A role is a feature. Orientation towards roles is an instance of what we
have called feature-orientation [89] in the decomposition of a system. Formally
a feature is an arbitrary subset of a system specification. In particular if you
are modeling in the hierarchy in a bottom-up fashion, orientation towards
features is a common pattern. Here, in business process modeling, we do not

5.2 Unique versus Multiple Entry and Exit Points 143

have to stick to the feature terminology and do not have to discuss and justify
it, because we have the notion of business process at hand. Conceptually, a
business process is a net of activities that together achieve a business goal –
please also have a look at the definition of business process [356] as given by
the Workflow Management Coalition that we have cited in Sect. 9.1.1. So in
the sense of feature orientation, business goals are features.

If your business process diagram has become too large and there is need
to decompose it into parts in order to get complexity under control it is a
natural pattern to be oriented towards business goals. Orientation towards
business goals can give guidance in the decomposition of a business process
diagram. The activities of the overall large business process are there for
together achieving an overall business goal. The question is whether it is
possible to naturally identify and define sub goals of this overall business
goal. Then, the diagram can be divided into those sub business processes that
are necessary to achieve each of the sub goals.

Fig. 5.15. Decomposing a business process according to business goals.

Figure 5.15 shows a division of the business process model given in Fig. 5.2
into parts – or let’s say – business sub goals or features. The resulting parts can
be exploited in building a next level of a hierarchy. This creation of a next level
is not unique. Furthermore, there is the problem that you cannot exploit all
parts from a set of overlapping parts. The strict orientation towards business
goals allows for full flexibility of identifying meaningful sub parts of a business
process. The problem of such freedom in finding sub parts is that the found sub
parts may overlap. And so it is in the example in Fig. 5.15. There are three sub-

B

C

D

E

F

G

J

K

L

M

N

O

H I
α

A P
χ φ

γ

ε
β

η

τ

κ

μ

μ

ν

π

θ

ρ

σ

δ

ι

υ

ψ

ω

BP

D G
L O

α

γ

τ

ν

ρ ι
ψ

ω
A AL MO

B E
ε

β

J μ
σ

μχ α ω

θ

ν

144 5 Decomposing Business Processes

processes in Fig. 5.16, i.e., BP , AL and MO. BP overlaps both AL and MO,
whereas AL and MO do not overlap each other. Two possible alternatives of
next levels built on the basis of the three identified sub-processes are shown in
Fig. 5.16. The left one exploits the sub-process BP and the right one exploits
the sub-processes AL and MO. In both of the alternatives we have used not
only abstractions of sub-processes from the lower level at the higher level but
also some of the activities of the lower level. This is possible and just means
that the hierarchy in Fig. 5.16 is not strictly stepped – we have described the
concept of a strictly stepped hierarchy in Sect. 5.1.4.

The two alternative higher level business process diagrams in Fig. 5.15
are possible with an open semantics of business process specifications that we
have described in Sect. 5.2.2.

In general, it is not possible to exploit the process BP in Fig. 5.15 together
with one of its overlapping sub-processes AL or MO without further expla-
nation. For example, let us assume that the business process shows a parallel
control flow after the completion of the A-activity, i.e., that we have to deal
with a situation as given by diagram (iii) in Fig. 5.14. Then, if both sub-
process BP and sub-process AL together occur in a diagram at a higher level
you have a problem in modeling. You somehow need to model a parallel trigger
of BP and AL and without further care and comment this would mean that
too many instances of those activities that belong to the overlapping region
of BP and AL are created.

Figure 5.16 shows a yet simpler business process model with two identi-
fied sub-processes. The two sub-processes overlap, however, it is possible to
combine them in a joint business process specification at a higher level of a
hierarchy without confusion. The flat diagram in Fig. 5.16 is, basically, the
diagram (i) in Fig. 5.14. There are three possible strands of the business pro-

Fig. 5.16. Overlapping business goals that are compatible in a hierarchy.

α
A

B

C

D

E

F

G

H
χ φ

γ

εβ

η

τ

θ

ρ

δα
XOR

c1

c2

else

OR

α
A H

δα
XOR

c1

c2

else

OR

BECF

CFDG

c2

5.2 Unique versus Multiple Entry and Exit Points 145

cess that are uniquely selected after the completion of the A-activity. One of
the strands occurs in both of the sub-processes, however, this poses no prob-
lem for the usage of the two sub-processes in the upper diagram in Fig. 5.16,
because the strands are uniquely selected.

5.2.6 Duplication of Modeling Elements and its Semantics

Figure 5.17 shows an example of a business process model in which some of the
modeling elements, i.e., the H-activity and the I-activity, are painted more
than just once. Such duplication of modeling elements should be supported
by modeling tools. For example, it should be possible to have a means of
copying a modeling element by reference so that the relationship between the
two copies is maintained by the tool henceforth. For example, a renaming of
one of the copies should lead to a renaming of all other copies and a deletion
of a modeling element for which copies exist should not be executed without
caution by the tool and question which of the other copies should be removed
also. It has to be said that semantically there is only one unique conceptual
modeling element, and that all the copies or duplicate paintings of a modeling
element refer to this conceptual modeling element.

The single paintings of a conceptual modeling element may differ from the
conceptual modeling element and the real conceptual modeling element may
be given only by the aggregate information given by all of its paintings. For
example, the conceptual modeling element H in Fig. 5.17 has three ingoing
transitions labeled θ, η and ρ and one outgoing transitions labeled δ. Each
of the paintings of the H-activity has the δ-transition as the outgoing tran-
sitions but none of the paintings has all of the ingoing transitions. Similarly,
each painting of the I-activity shows only one out of three possible outgoing
transitions σ, κ or ι of the conceptual I-activity. The fact that the several
paintings of a modeling element together form a conceptually modeling ele-
ment and the importance of appropriate tool support for this fact is expressed

Fig. 5.17. An alternative business process specification with duplicated activities
yielding more options for decomposition.

It is possible to fix alternative semantics for the multiple paintings of con-
ceptual modeling elements. The first one is a direct, plain semantics and the

B

C

D

E

F

G

J

K

L

M

N

O

H I
α

A P
χ φ

γ

εβ

η

τ

κ

μ

μ

ν

π

θ

ρ

σ

δ

ι

υ

ψ

ω
H

H

I

I
δ

δ
P

P

ω

ω

by dashed borders in Fig. 5.17.

146 5 Decomposing Business Processes

second one is what we call a state history modeling semantics. In the di-
rect semantics a painting of a conceptual modeling element simply expresses
the behavior and capabilities of the conceptual modeling element. For exam-
ple, with a direct semantics, the uppermost occurrence of the I-activity in
Fig. 5.17 would mean that an actor has not only the possibility to progress
with J-activity via the transition σ but also to progress with the K-activity
via the κ-transition or the L-activity via the ι-transition. Such semantics can
be immediately given but has the risk that duplicate paintings of modeling
elements lead to obfuscation of the business process model, because in under-
standing an activity you always should also have a look at all the other copies
of the activities in the diagram.

A state history modeling semantics is another means to interpret several
paintings of a modeling element. We have given such state history modeling
semantics to formcharts in form-oriented analysis [101, 89]. In such semantics
the painting expresses the capabilities of a process dependent from its history.
Actually, the resulting meaning is quite natural. We do not elaborate the
semantics formally hear, but explain it through an example. With a state
history modeling semantics, the uppermost occurrence of the I-activity in
Fig. 5.17 has a narrower semantics as the one described before. The meaning
of the painting is that an actor has only one possibility to progress, i.e., with
the J-activity via the transition σ. This means that in the business process
the path via which the instance of an activity has been reached determines
which opportunities are available next.

With a direct semantics the business process model in Figs. 5.2 and 5.17
are equivalent, i.e., they describe the same business process. With a direct
semantics the business process model in Fig. 5.17 can be considered simply
as a bloated painting of the business process in Fig. 5.2. With a state history
modeling semantics this is not longer true. With a state history modeling
semantics Fig. 5.17 expresses more information about the control flow than
the business process model in Fig. 5.2. The information about the control flow
expressed by Fig. 5.17 can also be expressed with appropriate comments to
or auxiliary constraints imposed onto the business process model in Fig. 5.2,
but as long as this is not done the business process model in Fig. 5.17 is more
expressive.

If a closed semantics of business process is required, the diagram in
Fig. 5.17 interpreted with a state history modeling semantics allows for more
options for semantics-preserving decomposition and abstraction than the di-
agram interpreted with a direct semantics or the diagram given in Fig. 5.2.
Figure 5.18 shows a decomposition of the diagram in Fig. 5.17 that gives an
impression of the flexibility for decomposition of the diagram.

5.3 Parallel Abstraction of Activities and Transferred Data 147

Fig. 5.18. An example business goal oriented decomposition.

5.3 Parallel Abstraction of Activities and Transferred
Data

In the hierarchies built so far there is an asymmetry in the abstraction of
activities and transitions. For example, in Fig. 5.13 there are more abstract or
unfolding activities ABCD, EL and MP at the upper level of the hierarchy
that stand for more concrete or unfolded business processes at the lower level.
The transitions at the upper level remain the same at the higher level as
the transitions at the lower level. This means that respect to the transitions
and the data transferred between the activities the granularity or level of
abstraction remains the same throughout all levels of the hierarchy when
moving upwards from the lowest to the highest level in the hierarchy. Such
asymmetry in the decomposition of nodes and edges is not practical and will
lead to diagrams at the higher levels that are cluttered with transitions that
stem from the lowest level.

The ratio of activities and transitions is naturally given in the flat dia-
gram at the lowest level, however, the higher we move upwards the levels
in the hierarchy the more this ratio can become unbalanced. And it is not
only a question of the number of activities compared to the number of transi-
tions. It is also a question of the conceptual abstraction level. The conceptual
abstraction level of activities might not fit any more to the conceptual ab-
straction level of entities exchanged by the activities. However, it is possible
to identify examples of asymmetry in the conceptual detail level of activities
and exchanged data in a system specification that make sense. For example,
a simple order that is used at the lowest level of the hierarchy of a complex
system model hierarchy may be the appropriate trigger of a complex ordering
process also at the most abstract level of the system model. The same might
be true for simple activities processing complex items or data. It might be

B E

F

J

K

L

M

N

O

H I P

ε

η κ

μ

μ

ν

π

θ σ

δ

ι

υ

ψ

ω

H

H

I

I
δ

δ
P

P

ω

ω

β β
vii

C
α

Ai
χ φ φ

iii vi

D G
γτ ρ ρ

iv vii

BEHIJMP

FHIKNP

HILOP

ACDG
α ω

ω

ω

β

φ

ρ

i
ii

iii
iv

v

vi

vii

148 5 Decomposing Business Processes

possible that a very basic activity for which it makes no sense to decompose
and detail it further, for example a simple remove or copy transaction, pro-
cesses a complex information that is assembled from several data that stem
from several other complex activities.

Fig. 5.19. Parallel decomposition of activities and transitions.

The parallel decomposition of nodes and edges, of activities and transi-
tions, of control flow and data flow has been subject of investigation of struc-
tured analysis [301, 74, 300, 302, 75, 68]. In Figure 5.19 we show an attempt
to express the parallel decomposition of activities and transitions of a business
process model. As usual, the activities in the upper, more abstract diagram
stand for sub-processes in the flat diagram. The transitions in the upper di-
agram now stand for sets of transitions in the lower level of the hierarchy.
As usual dashed lines assign processes from the lower level to activities at
the higher level. Each process has a solid line as a border. Similarly, we now
use dashed lines to assign sets of transitions from the lower level to aggregate
transitions at the higher level. The sets of transitions that are assigned to a
transition at the higher level are visually aggregated with a dashed border.

The sub-processes in the flat diagram can be considered as the result
of dividing the flat diagram into parts. Usually a division of this hierarchy
building step cuts the transitions of the business process model in two pieces so
that all the resulting sub business process diagrams keep all their ingoing edges
an outgoing edges from the flat diagram. In Fig. 5.13 the flat diagram from
which the sub-processes stem is not available. The information, how the single
sub-processes at the lower level are connected with each other is given by the
transitions at the higher level. For this purpose the interface points of the sub-
processes have unique identifiers. In order to understand the connection of the

M

N

O

P xiv
π

υ

ψ

ω
B

C

D

α
Ai

χ
β

τ

E

F

G

H
φ

γ

ε

η
θ

ρ

J

K

L

I
κ

μ

μ

ν

σ

ι

δ
viii

x

xii

ix

xi

xiii

v

vi

vii

φ

γ

ε
ii

iii

iv

AD EL MP
εφγ μμν ωα

α

μ

μ

ν

viii

x

xii

ix

xi

xiii

ii

iii

iv

v

vi

vii

5.3 Parallel Abstraction of Activities and Transferred Data 149

sub-processes in Fig. 5.13 the lower level is not sufficient, i.e., the flat diagram
can only be reconstructed by looking at the whole hierarchical diagram. The
point is that Fig. 5.13 is almost a special case for which it is almost possible to
derive the flat diagram only from the diagram at the lowest level, because the
labeling of the transitions is almost unique. However, the μ-transitions form
the counter example, i.e., the two μ-transitions are not uniquely labeled. It is
not possible to tell from the diagrams at the lower levels in Fig. 5.13 alone
whether the J is connected via its outgoing μ-transition to the M -activity or
to the N -activity in the diagram to the right of it.

In modeling tools you can experience a model hierarchy by clicking on
unfolding modeling elements at one of the higher levels. As a result of clicking
on an unfolding modeling element the unfolded model is shown to the user.
Furthermore, a tool should offer the opportunity to print out the flat diagram
which can be reconstructed form the hierarchy. Furthermore, with a modeling
tool it should be possible to reach a process that is connected to another
one via interface points exactly by navigating via these interface points. This
means that we do not have to delve too much into notational questions or even
detailed questions of uniquely defined concrete syntax here. What counts for us
is the content, i.e., the abstract syntax of models. However, it is also important
to have a look at concepts of model presentation, like the above discussion
of means to experience a hierarchy with a tool. In that sense we also delve
into detail question of concrete syntax from time to time, but only with the
purpose to clarify aspects of abstract syntax and model representation. So it
is, for example, with the explanation of the interconnection of sub-processes in
terms of the problems of the concrete visual ad-hoc syntax chosen in Fig. 5.13
and 5.19.

All this said, we want to point out that also in 5.19 it is not possible
to reconstruct the flat diagram, i.e., all connections between the sub business
process models, from the lower-level diagrams alone. Even worse, the informa-
tion of interconnection is not yet available any more at the higher level. The
necessary information with its unique labeling of interface points at the upper
level in Fig. 5.13 has disappeared by the introduction of aggregate transitions
in Fig. 5.19. The interconnection information must be maintained somewhere
else, which is indicated by auxiliary interface point mappings attached to the
sets of transitions at the lower level.

A Detour on Completely Equal Decomposition of Nodes and
Edges of a Graph

We think that it is of minor importance but worth to mention that the ap-
proach of parallel abstraction of activities and transitions as presented in
Fig. 5.19 is not yet a fully symmetric one. Activities at a higher level stand
for complete business processes at a lower level, which consist of two kinds of
entities, i.e., nodes and edges. However, transitions of a higher level stand for
sets of transitions at a lower level. This means aggregate transitions consist of

150 5 Decomposing Business Processes

only one kind of entities, i.e., edges. This is so, because the diagrams are cut
into pieces by cutting transitions. Such an approach makes sense, because the
business processes stand for behavior which consists of activities exchanging
good and information, whereas transitions stand only for the transferred goods
and information and this should be so at all levels of the hierarchy. Therefore,
a rest of asymmetry in decomposing activities and transitions remains.

In order to illustrate what was just said, we want to sketch a completely
symmetric approach of decomposing graphs and edges now. This sketch is
meant merely as a thought experiment, i.e., it is not meant to be exploited in
a modeling method. It is possible to decompose a graph so that both nodes
and edges stand for full-fledged graphs recursively consisting out of nodes and
edges again. Two rules must be obeyed. Nodes must unfold to graphs that have
only nodes as outermost objects. Edges must unfold to graphs that have only
edges as outermost objects. We do not formalize the notion of outermost object
of a graph here. It should be intuitively clear – please a look at the example
in Fig. 5.20. In order to enable a precise, mathematical definition of the above
rules, a definition of graphs of the kind (N,E, s : E ↪→ N, t : E ↪→ N) with
nodes N , edges E, sources s and targets s is needed in which the functions s
and tmust be defined as partial functions, which is not standard, but necessary
in order to model outermost edges of a graph.

Figure 5.20 shows an instance of the proposed approach of completely
equal decomposition of nodes and edges. It is a very simple example of a graph
that is merely a path, however, it suffices to illustrate the basic principle. An
entity at a higher level can stand for a graph at a lower level that is arbitrary
complex – or arbitrary simple – as long as the above rules are respected. For
example, an entity can also stand for a graph that consists of a single entity
only. So it is for the α-edge, the ω-edge and the H-activity in Fig. 5.19.

G

AB χδ DF γη H ιλ LM ω

γ η

α

B C F GD EA H K LI J M
α β χ γδ ε φ η ι ϕ κ λ μ ω

α BA
β

C
χ δ FD E

ε φ ω
L M

μKI J
ι ϕ κ λH

Fig. 5.20. Completely symmetric decomposition of nodes and edges in a graph.

5.3 Parallel Abstraction of Activities and Transferred Data 151

Typed Transitions

The transitions a data flow diagram carry data. In Sect. 4.2 we discuss the
transformation of goods versus the transformation of data and means to
model both of these phenomena. Here, we assume that the labels attached
to the transitions of a leveled data flow diagram stand for data. Data can
be described by a type system. The usual type systems from programming
languages and modeling languages are, basically, mechanisms to specify sum-
of-product data types. A sum data type is the – usually disjoint – union of
other data types, it consists of the union of data items of other data types.
A product data type consists of tuples of data item of other data types. For
example, in object-oriented programming languages and modeling languages
like the UML [263], classes are used to specify product data types. Sum data
types are introduced by generalization. Sum-like data types are also intro-
duced by associations between classes that have a variable cardinality, e.g., a
one-or-zero cardinality ‘0..1’ or a one-to-many cardinality ‘1..∗’. In other pro-
gramming language type systems product types can be built with records and
sum types can be built with variant records. In structured analysis as given
by [68] a sum type of two types is specified by A|B and the product type of
two types A and B is defined as A +B. The mathematical notation for sum
data types is usually A �B and the mathematical notation for product data
types is usually A×B .

It is possible to describe the data transferred in a data flow diagram not
only with a name but also with a type of one of the common type specification
languages. For example, the labels of the transitions in the data flow diagrams
that we have seen so far in that section can be considered as names of types
that are specified further somewhere else. For example, the types of the data
transferred in structured analysis are usually described in a data dictionary.
The specification of a type describes the constructing of complex data items
and can stem, for example, from data modeling, entity-relationship modeling
or object-oriented modeling. Given a flat data flow diagram, i.e., a data flow
diagram without any leveling, it is easy to understand the data type specifi-
cation attached to a transitions. In a leveled data flow diagram the question
arises, which data type has to be given to an aggregate transition at higher
level of the hierarchy.

Figure 5.21 shows yet another example for parallel decomposition of activ-
ities and transitions that is even simpler than the example given in Fig. 5.19.
If the gateway φ in Fig. 5.21 uniquely selects one strand of execution, it is
fair to say that the data type δε is the sum data type of the types δ and ε.
Whenever an interface event of an activity is triggered, a data item of the data
type that corresponds to the triggering transition is transferred. This is so for
both business process models with closed and open semantics as described
in Sect. 5.2.2, for business processes with open semantics it is so for both
starting events and further, intermediate events. Therefore, if the φ-gateway
is a case distinction, the start of an DE-activity in the higher diagram stands

152 5 Decomposing Business Processes

B

C

β

γ
ε

D

E

φAα

δ ω

ω

AC DE
δεα ω

Fig. 5.21. Simple example for parallel decomposition of activities and transitions.

either for a start of a D-activity or the start of a E-activity in the lower flat
diagram.

Even if the selection of the φ-gateway is not unique, because it is a parallel
fork, it is still fair to say that the data type δε is a sum type, because the single
trigger of an interface event will transfer always only either a δ-item or a ε-
item. Things change, if the δ-transition and the ε-transition are synchronized
in the business process. If the synchronization takes place in the DE-activity
the data type δε can remain the sum data type of δ and ε. However, if the
synchronization takes places in the AC-activity an instance of a δε-transition
should be considered to transfer a combination, i.e., a tuple, of a δ-item and
an ε-item as a single, joint object. Then, it is fair to say that δε -type is
the product type of the type δ and the type ε. To say it differently, if a
modeler uses a product type for an aggregate transition that is constructed
out of the types of the aggregated transitions, this product type introduces a
synchronization constraint onto the control flow of the business process. This
insight is capable of shedding some new light on the way data dictionaries are
built in structured analysis.

5.4 Towards Parallel Abstraction of Activities and
Constraints

In Sect. 5.3 we have discussed the parallel abstraction of activities and data.
We have said that it is possible to pose a constraint on the behavior of the
system by the selection of the data type. Now we consider the hierarchical
decomposition of flow charts that are annotated with explicit constraints on
the control flow. Business process models are flow charts with constraints.
The formcharts introduced in form-oriented analysis [89] are state transition
diagrams with annotated dialogue constraints – see Sect. 7.3. For the sake of
this discussion it is possible to consider formcharts as flowcharts. The same

5.4 Towards Parallel Abstraction of Activities and Constraints 153

is for the workflow charts that we introduce in Sect. 9.2 as a domain-specific
language for workflow specification. We consider flow charts that allow for
parallelism.

We concentrate on flow conditions in this section. Other constraints on
the behavior expressed with a flow chart, e.g., the side effect specifications,
enabling conditions and activation conditions that we discuss for workflow
charts, are also interesting against the background of hierarchical decomposi-
tion. However, we concentrate on flow conditions in this section. In business
process modeling languages there are usually explicit gateways for case dis-
tinctions, parallel split of control and synchronization. For our discussion we
do not need to consider extra gateways. We consider flow charts that are
graphs and have flow conditions attached to the edges. Gateways for case dis-
tinction, parallel split and synchronization can be appropriately expressed in
a flow chart language without extra gateways. We discuss this in the setting
of workflow charts for the parallel split gateway in Sect. 9.2.4 – see Fig. 9.5 –
and for synchronization in Sect. 9.2.10 – see Fig. 9.7.

Consider the following case. Given is a business process model that consists
of four activities A, B, C and D and three edges β, γ and δ from A to B,
C resp. D at the base level. The edges β, γ and δ are annotated with flow
conditions f1, f2 resp. f3. At the second level in the hierarchy the model consist
of three activities A2, BC2 and D2 and two edges βγ2 and δ2 from A2 to
BC2 resp. D2. The activity A2 encapsulates the sub diagram that consists
merely of the base activity A. The activity BC2 consists of the activities B
and C and the activity D2 consist of the activity D. Now it makes sense to
annotate the edge βγ2 with the flow condition (f1∨f2) and to annotate the
edge δ2 with the flow condition f3.

At the base level flow conditions can be considered as operational speci-
fications. This is so, for example, for formcharts and workflow charts. At the
base level the flow conditions play a role in the operational semantics. In our
example, the flow conditions have the following semantics. After completion
of the activity A the flow conditions are evaluated. For all the edges for which
the corresponding flow condition has been evaluated to true the targeted ac-
tivity is triggered. At the higher levels of the hierarchy a flow condition is not
an operational specification. It is derived information. You can say that it is
a derived post condition. This is so because the operational semantics of a
hierarchical flow chart is determined only and completely by the flat diagram
of the base level of the hierarchy. This means, if you look at the behavior
of the business process from the viewpoint of the second level in our current
example, the decision whether activity BC2 or activity D2 is started next is
not done after completion of the activity A2 but inside the execution of activ-
ity A2 after completion of activity A, which is a slight but crucial difference.
The difference will become clearer when we consider another example, which
is a bit more complex, in due course. However, as an effect of the operational
semantics that is given by the flow conditions f1, f2 resp. f3 it is possible to

154 5 Decomposing Business Processes

derive that after completion of the activity A2 the post flow conditions (f1∨f2)
and f3 hold.

Now, let us consider the following case. Given is a business process model
that consists of five activities A, B, C D and E, two edges γ and δ1 from A
to C resp. D , plus two further edges δ2 and ε from B to D resp. E at the
base level. The edges γ, δ1, δ2 and ε are annotated with flow conditions f1,
f2, f3 resp. f4. At the second level in the hierarchy the model consist of four
activities AB2, C2, D2 and E2 and three edges β2, γ1γ

2
2 and ε2 from AB2

to C2, D2 resp. E2. The activity AB2 encapsulates the sub diagram that
consists of the base activities A and B. The activities C2, D2 and E2 consist
of the activities C, D resp. E. Now it makes sense to annotate the edges β2,
γ1γ

2
2 and ε2 with the flow conditions f1, (f2∨f3) resp. f4.
Let us assume that the activities A and B are always triggered in parallel.

Now, an interpretation of the flow conditions at the second level as operational
specifications makes no sense any more. The completion of the activity AB2

can be caused by the completion of either the activity A or the activity B.
Let us assume, for example, that the completion of the activity AB2 has been
caused by the completion of activity B. In this case the condition f1 may hold.
However, whether the condition f1 evaluates to true or not in this case, the
activity C2 must not be triggered. This means that the operational semantics
of flow conditions at the base level must not be applied to the second level.
However, the derived flow conditions provide useful information for the system
analyst.

5.5 Seamless Business Process and Enterprise
Application Modeling

In projects that introduce IT support for business processes, there are typical
two kinds of overlapping system specification, one kind that models the busi-
ness processes from a business perspective, and another kind that models the
enterprise IT systems from a technological viewpoint. The following situation
is a typical one for a business software vendor. Typically, there are to group of
experts in a software vendor company, one group of software engineers respon-
sible for the development of the system, and one group of business experts
responsible for selling the software and conducting projects in which the ser-
vices are adapted to customer needs and introduced at the customer site. In a
typical software introduction project a business expert conducts requirement
elicitation efforts with the user because the existing software product does
not fit totally. Then, the business experts communicate change requests or
requests for entirely new functionality to the software development team.

Have a look at Fig. 5.22. There is only one system, with one undebatable,
observable behavior of the system – made of the system dialogues provided
by the service applications to the user. However, the problem is that business
experts and software engineers have a different view on this system. The

5.5 Business Process and Enterprise Application Modeling 155

Fig. 5.22. Tyical structural frictions in a combined business process and system
model.

business experts model a functional hierarchy that is oriented towards sales
and communicating of how the system supports business tasks at the user side.
The developers decompose the system dialogues into a component hierarchy in
order to deal with complexity, i.e., they map the activities of the dialogues to
software entities and decompose those software entities further. However, they
not only decompose. Like the business people they also compose dialogues to
hierarchies, however, sometimes with a different result, because their efforts
are driven by technical issues.

Furthermore, the different groups usually use different tools and notations
due to their different background as show in Fig. 5.22. The business experts
might use, for example, event-driven process chains (EPCs) [312], function
trees and task models as notations and Visio, MindMap, and Word as tools.
The software developers might use, for example, UML statecharts and class
diagrams but partly also EPCs as notation and MagicDraw and Word as
tools. In this way, models of the same system evolve in separated notations
and in separated tools. As a result there can be a huge gap when looking at
all models as a whole, a gap that is located in Fig. 5.22 exactly there, were the
system dialogues are visualized in the box in the middle. Try to understand
the problem from the perspective of traceability. If a developer changes some
code in some module, he could indeed derive the impact on business processes,
but only in terms of the software developer models. However, for the business
experts it is not so easy to understand a code change in terms of their business
models. Furthermore, there is an overlap in specified phenomena exactly there,
where the two worlds meet, at the level of business processes and beyond,

SUBMIT

Login

Name

ID

PWD

SUBMIT

Error

Name

ID

PWD

Welcome

Search

You are
welcome !

Articles
Logout

Articles
• Book
• Car
• House
• Article 123123
• Article 09358345

Home
Delete
Change

Delete
Book
Car
House
Article 123123
Article 09358345

Home

Result
• Dog
• Cat
• Mouse
• Fiddle
• Moon

Home
• Cow
• Song
• Carol
• Carot
• Meadow

Change
Book
Car
House
Article 123123
Article 09358345

Home
Delete

Delete Car ?

Delete
YES NO

Change House !

Change

SolidGround

Wall

Window

Door

Roof

Pool

Change House ?

Change

Ground: Solid
Wall: Thick

Window: Glass
Door: Wood

Roof: Red
Pool: 2m Abort

Thick

Glass

Metal

Blue

1m

EPCs
Function Trees
Task Models

EPCs
State Charts

Class Diagrams Word

Word

MindMap

Visio

Magic Draw

Customer System Analyst

System Designer Developer

156 5 Decomposing Business Processes

i.e., there where also the software developers compose hierarchies bottom-
up. Often the same piece of business process is modeled as an EPC by one
expert and as a UML statechart by another. This situation can give rise to
inconsistencies and communication problems between the two groups.

So, the problem is often not quality of the models and system descriptions
– often, these are high both in the business expert and the software developer
group. Typically, the problems are the notational heterogeneity and tool het-
erogeneity. How to approach these problems? As a first step you can select
a canonical set of modeling notations, in particular, a single business process
notation, and select a single integrating tool for all models and system de-
scriptions – see Fig. 5.23. Selecting notations and tools sounds easy, but it
is not, because in selecting you must respect the stakeholders’ expectations
and attitudes. For the notation of the business processes BPMN (Business
Process Modeling Notation) [265] might be a good choice, because the nota-
tional element set of BPMN very much resembles EPCs that many business
experts are used to. Furthermore, BPMN is maintained by the OMG (Object
Management Group) which guarantees a certain sustainability of the notation
and therefore might convince the software developing team.

As a next step you can fix a style guide for seamless modeling, so that the
gap described above disappears. For example, in [357] system modeling with
form-oriented analysis [89] is brought together with modeling of systems based
on service-oriented architecture. We propose to exploit the workflow charts
that are elaborated in Sects. 9.2.2 through 9.2.10 as a basis for developing
such a style guide.

si
ng

le
 s

el
ec

te
d

m
od

el
in

g
to

ol

se
le

ct
ed

bu
si

ne
ss

pr
oc

es
s

no
ta

tio
n

ot
he

r
no

ta
tio

n

Fig. 5.23. Mitigating structural frictions in a combined business process and system
model.

5.6 Modeling Variants 157

5.6 Modeling Variants

Getting a variety of models under control, see Fig. 5.24, is a concrete and
severe problem in lot of software engineering and maintenance projects that
is worth discussing here. Actually, it is an issue that is orthogonal to the main
discussion strand of this book, but the problem is sometimes so pervasive in
projects and finding a smart solution to this problem is such a central question
in these projects that it is sometimes overlooked that the management of
many varieties is an extra problem independent from the need for frictionless
modeling.

Therefore the targeted discussion of this topic in this book can help to keep
these two important issues separate and this can help to keep considerations
on the design of a frictionless modeling approach focused. This is not a minor
issue, because, in real-world projects we observe that people that are under
pressure to deal with the complexity of system variants introduce ad-hoc
concepts to deal with the problem. As a result, these ad-hoc concepts are
actually redundant to existing concepts in the existing project’s modeling
apparatus, introducing new frictions in places where a disciplined, e.g., simply
glossary-based introduction of new terms or viewpoints on the basis of existing
concepts would be sufficient and efficient. And this is a pitfall not only for ad-

SUBMIT

Login

Name
ID

PWD

SUBMIT

Error

Name
ID

PWD

Welcome

Search

You are
welcome !

Articles
Logout

Articles
• Book
• Car
• House
• Article 123123
• Article 09358345

Home
Delete
Change

Delete
Book
Car
House
Article 123123
Article 09358345

Home

Result
• Dog
• Cat
• Mouse
• Fiddle
• Moon

Home
• Cow
• Song
• Carol
• Carot
• Meadow

Change
Book
Car
House
Article 123123
Article 09358345

Home
Delete

Delete Car ?

Delete
YES NO

Change House !

Change

SolidGround
Wall

Window
Door
Roof
Pool

Change House ?

Change

Ground: Solid
Wall: Thick

Window: Glass
Door: Wood

Roof: Red
Pool: 2m Abort

Thick

Glass

Metal

Blue

1m

sales modularization

reference process

custom
er process

(ii)
custom

er process (iii)

natural
on-the-fly
hierarchy

customer process (i)

Fig. 5.24. Variant Modeling.

158 5 Decomposing Business Processes

hoc notations in real-world projects this is a pitfall, but also for the designer
of a standard notation.

5.6.1 Variants in Software Service Support Scenarios

The need for a systematic approach to modeling variants of a system typically
arises in what we call software service support scenarios in this book. This
means that there is a software vendor that sells some software product to a
customer. However, though the product is a standard product in the product
portfolio of the vendor, selling the product to the customer is not enough.
The vendor cares also for the deployment and maintenance of the software
product and, most importantly, for the adaptation of the product to concrete
customer needs. This adaptation involves requirement elicitation activities
with the customer, in particular, an analysis of existing and future business
processes. If the necessary customer processes are not fully supported, new
functionality has to be implemented. Often, existing functionality must be
changed, so that the necessary processes are supported. Eventually, a new
version of the product, i.e., a customer version, results. The choice to name
the described scenario a software service support scenario is a particular good
one, because it is very close to the problems addressed by the IT Infrastructure
Library (ITIL) [56, 267] service support process. Actually, the standardization
of this scenario by a defined process is also an important issue for the software
vendor. However, it is a different issue from the one discussed here and must
not be mingled into this discussion.

For the described scenario, it is not important whether the resulting cus-
tomer version is actually deployed at the customer site or is run by the data
centre of the vendor, i.e., it is not important whether the vendor is a soft-
ware service provider. Similarly, it is not important whether the vendor is
an independent software vendor (ISV) or a full-service commercial-off-the-
shelf (COTS) software house. An independent software vendor is a software
house that offers development of individual software solutions on an individ-
ual project basis. Actually, successful ISVs are often specialized in a certain
sector. Then they usually have a proven code base for the solutions they de-
velop. Often, there is no exact means to distinguish such a code base from
a COTS product and sometimes it may be only a question of the vendor’s
marketing strategy whether to mention this code base as an asset or not, and
if so, whether to sell it as a framework solution or as a COTS product.

The variant problem is indeed also an issue for classical COTS vendors.
This might puzzle the reader, because it is common sense that one of the
disadvantages of COTS software is the assumption that it completely rules
the business processes of the customer that deploys that software – as if there
is no room for an adjustment of the COTS product. Actually, the converse is
true. Part of the business model of a COTS software house is to sell the COTS
product, but for some COTS software houses the services offered on basis of

5.6 Modeling Variants 159

the COTS product has become the more important part of the business model,
and so is the adjustment of the COTS product to the customer’s needs.

5.6.2 Product Variants and Versions

A variant of a product is a version of a product. However, it is not a version
in the usual sense of versioning, i.e., a product state in a software product
lifecycle. Versioning is about the maintenance of deprecated versus actual
versions of a software product, but variants in the described scenario are
versions that fulfill different customer needs.

With respect to modeling, the situation can become even more complex,
because it is sometimes important to maintain different viewpoints on the
same variant of a product, each viewpoint represented by a different model.
As an example, Fig. 5.24 shows a typical scenario. As in Fig. 5.22 the deployed
system is depicted as some system dialogues in a gray box. Modelers have
defined a reference process that corresponds to the initial product that is
sold to a customer. Then in each customer project the product starts its own
life. It is enhanced and parts of it are changed. These enhancements and
changes are documented resulting in this example in an individual business
process model for the customer. However, there exist even more models in this
example. There exists a sales modularization of the system dialogues used by
the sales persons. The sales modularization is a mere functional hierarchy of
the system features and is used for pricing. For each module and sub module
in the hierarchy a price is fixed.

Furthermore, in the example, there is another hierarchy, called the natural
or ad-hoc hierarchy. This ad-hoc hierarchy is also a mere modularization but
is oriented towards building modules with high functional cohesion. The sales
modularization encapsulates experience of sales efforts and its concrete hierar-
chy is the result of strategic decisions to optimize income. Therefore, the sales
modularization is not optimal with respect to complexity governance; it is not
necessarily optimal with respect to understanding of the system functionality,
nor is it optimal to get a quick overview of the system features. These latter
qualities are also a driving force for building the sales modularization in order
to have a solid base for discussion with a lead or new customer. However, the
optimization of income along customer needs and customer behavior is the
eventual target of the sales modularization. The natural hierarchy is free from
these concerns. It is optimized with respect to the governance of the system
and model complexity. It typically stems from an ad-hoc, bottom-up process
to get the system under control. It is a document that is independent from the
reference process and the customer processes; however, it is not orthogonal to
them and must be maintained consistent with them. It can serve as a base for
the design of these other documents. Furthermore, it serves as a functional
view on the reference process, abstracting from control flows and data flows.

Because every product variant is the result of a new independent project
with a customer, the need for mutual maintenance of the differences might

160 5 Decomposing Business Processes

not seem to be a key success factor for the single project and this might be the
reason that it is not done in a lot of projects. It is simply not regarded as an
urgent problem from the single project manager’s point of view. Furthermore
it is overhead. However, maintenance of variants pays off for two reasons, i.e.,
avoiding redundant efforts in product adoption projects and keeping variants
consistent with versioning.

6

Structured Business Process Specification

Isn’t it compelling to apply the structured programming arguments to the
field of business process modeling? Our answer to this question is ‘no’.

The principle of structured programming emerged in the computer science
community. From today’s perspective, the discussion of structured program-
ming rather had the characteristics of a maturing process than the charac-
teristics of a debate, although there have also been some prominent skeptical
comments on the unrestricted validity of the structured programming prin-
ciple. Structured programming is a well-established design principle in the
field of program design like the third normal form in the field of database
design. It is common sense that structured programming is better than un-
structured programming – or let’s say structurally unrestricted programming
– and this is what is taught as foundational knowledge in many standard
curricula of many software engineering study programmes. With respect to
business process modeling, in practice, you find huge business process models
that are arbitrary nets. How come? Is it somehow due to some lack of knowl-
edge transfer from the programming language community to the information
systemcommunity For computer scientists, it might be tempting to state that
structured programming is a proven concept and it is therefore necessary to
eventually promote a structured business process modeling discipline, how-
ever, care must be taken.

We want to contribute to the understanding in how far a structured ap-
proach can be applied to business process modeling and in how far such an
approach is naive [113]. We attempt to clarify that the arguments of struc-
tured programming are about the pragmatics of programming. Furthermore,
we want to clarify that, in our opinion, argumentations in favor of structured
programming often appeal to evidence. Consequentially, our reasoning is at
the level of pragmatics of business process modeling. We try to avoid getting
lost in superficial comparisons of modeling language constructs but trying to
understand the core problems of structuring business process specifications.
As an example, so to speak as a taster to our discussion, we take forward one
of our arguments here, which is subtle but important, i.e., that there are some

© Springer-Verlag Berlin Heidelberg 2010

161
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_6,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

162 6 Structured Business Process Specification

diagrams expressing behavior that cannot be transformed into a structured
diagram expressing the same behavior solely in terms of the same primitives
as the original structurally unrestricted diagram. These are all those diagrams
that contain a loop which is exited via more than one path to the end point,
which is a known result from literature, encountered [37] by Corrado Böhm
and Guiseppe Jacopini, proven for a special case [206] by Donald E. Knuth
and Robert W. Floyd and proven in general [208] by S. Rao Kosaraju.

On a first impression, structured programs and flowcharts appear neat and
programs and flowcharts with arbitrary jumps appear obfuscated, muddle-
headed, spaghetti-like etc. [76]. But the question is not to identify a subset of
diagrams and programs that look particularly fine. The question is, given a
behavior that needs description, whether it makes always sense to replace a
description of this behavior by a new structured description. What efforts are
needed to search for a good alternative description? Is the resulting alternative
structured description as nice as the original non-structured description?

Furthermore, we need to gain more systematic insight into which metrics
we want to use to judge the quality of a description of a behavior, because
categories like neatness or prettiness are not satisfactory for this purpose if we
are serious that our domain of software development should be oriented rather
towards engineering [256, 51] than oriented towards arts and our domain of
business management should be oriented rather towards science [144]. Admit-
tedly, however, both fields are currently still in the stage of pre-paradigmatic
research [223]. All these issues form the topic of investigation of this chapter.

For us, the definitely working theory of quality of business process models
would be strictly pecuniary, i.e., it would enable us to define a style guide
for business process modeling that eventually saves costs in system analysis
and software engineering projects. The better the cost-savings realized by the
application of such a style-guide the better such a theory. Because our ideal is
pecuniary, we deal merely with functionality. There is no cover, no aesthetics,
no mystics. This means there is no form in the sense of Louis H. Sullivan [332]
– just function.

6.1 Basic Definitions

In this section we explain the notions of program, structured program,
flowchart, D-flowchart, structured flowchart, business process model and
structured business process model as used in this chapter. The focus of this
section is on syntactical issues. You might want to skip this section and use
it as a reference, however, you should at least glimpse over the formation
rules of structured flowcharts defined in Fig. 6.1, which are also the basis for
structured business process modeling.

In the course of this chapter, programs are imperative programs which may
contain ‘go to’-statements, i.e., they consist of basic statements, sequences,
case constructs, loops and ‘go to’-statements. Structured programs are those

6.1 Basic Definitions 163

programs that abstain from ‘go to’-statements. Loops, i.e., explicit program-
ming constructs for loops, do not add to the expressive power of a program-
ming language with ‘go to’-statements – in presence of ‘go to’-statements loops
are syntactic sugar. Flowcharts correspond to programs. Flowcharts are di-
rected graphs with nodes being basic activities, decision points or join points.
A directed circle in a flowchart can be interpreted as a loop or as the usage
of a ‘go to’-statement. In general flowcharts it allowed to place join points
arbitrarily, which makes it possible to create spaghetti structures, i.e., arbi-
trary jump structures, like the ‘go to’-statements allows for the creation of
spaghetti code.

It is a matter of taste whether to make decision and joint points explicit
nodes or not. If you strictly use decision and joint points the basic activi-
ties always have exactly one incoming and one outgoing edge. In concrete
modeling languages like event-driven process chains, there are usually some
more constraints, e.g., a constraint on decision points not to have more than
one incoming edge or a constraint on join points to have not more than one
outgoing edge. If you allow basic activities to have more than one incoming
edge you do not need join points any more. Similarly, you can get rid of a
decision point by using several outgoing edges by directly connecting the sev-
eral branches of the decision point as outgoing edges to a basic activity and
labeling the several branches with appropriate flow conditions. For example,
in formcharts [89] we have chosen the option not to use explicit decision and
join points. Our discussion is independent from the detail question of hav-
ing explicit or implicit decision and join points, because both concepts are
interchangeable. Therefore, we feel free to use both options.

A

y

n
C

D
C

D
C

C

D

C

D

C

n

CC
y

(i)
basic activity

(ii)
sequence

(iii)
case

(iv)
do-while

(v)
repeat-until

Fig. 6.1. Semi-formal formation rules for structured flowcharts.

164 6 Structured Business Process Specification

6.1.1 D-Charts

It is possible to define formation rules for a restricted class of flowcharts
that correspond to structured programs. In [208] these diagrams are called
Dijkstra-flowcharts or D-flowcharts for short, named after Edgser W. Dijkstra.
Figure 6.1 summarizes the semi-formal formation rules for D-flowcharts.

Actually, the original definition of D-flowcharts in [208] consists of the
formation rules (i) to (iv) with one formation rule for each programming lan-
guage construct of a minimal structured imperative programming language
with basic statements, sequences, case-constructs and while-loops with basic
activities in the flowchart corresponding to basic statements in the program-
ming language. We have added a formation rule (v) for the representation of
repeat-until-loops and call flowcharts resulting from rules (i) to (v) structured
flowcharts in the sequel.

A B C D

n

y
y

n

Fig. 6.2. Example flowchart that is not a D-flowchart.

The flowchart in Fig. 6.2 is not a structured flowchart, i.e., it cannot be
derived from the formation rules in Fig. 6.1. The flowchart in Fig. 6.2 can
be interpreted as consisting of a repeat-until-loop exited via the α-decision
point and followed by further activities C and D. In this case, the β-decision
point can lead to a branch that jumps into the repeat-until-loop in addition
to the regular loop entry point via activity A, which infringes the structured
programming and structured modeling principle and gives raises to spaghetti
structure. Thus, the flowchart in Fig. 6.2 visualizes the program in Listing 6.1

Listing 6.1 Textual presentation of the business process in Fig. 6.2 with a
jump into the loop.

01 REPEAT

02 A;

03 B;

04 UNTIL alpha;

05 C;

06 IF beta THEN GOTO 03;

07 D;

6.1 Basic Definitions 165

The flowchart in Fig. 6.2 can also be interpreted as consisting of a while-
loop exited via the β-decision point, where the while-loop is surrounded by a
preceding activity A and a succeeding activity D. In this case, the α-decision
point can lead to a branch that jumps out of the while-loop in addition to the
regular loop exit via the β-decision point, which again infringes the structured
modeling principle. Thus, the flowchart in Fig. 6.2 also visualizes the program
in Listing 6.2

Listing 6.2Alternative textual presentation of the business process in Fig. 6.2
with a jump out of the loop.

01 A;

02 REPEAT

03 B;

04 IF NOT alpha THEN GOTO 01

05 C;

06 UNTIL NOT beta;

07 D;

Flowcharts are visualization of programs. In general, a flowchart can be
interpreted ambiguously as the visualization of several different program texts,
because, for example, on the one hand, an edge from a decision point to a
join point can be interpreted as a ‘go to’-statement or, on the other hand,
as the back branch from an exit point of a repeat-until loop to the start
of the loop. Structured flowcharts are visualizations of structured programs.
Loops in structured programs and structured flowcharts enjoy the property
that they have exactly one entry point and exactly one exit point. Whereas
the entry point and the exit point of a repeat-until loop are different, the
entry point and exit point of a while-loop are the same, so that a while-loop
in a structured flowchart has exactly one contact point. That might be the
reason that structured flowcharts that use only while-loops instead of repeat-
until loops appear more normalized. Similarly, in a structured program and
flowchart all case-constructs has exactly one entry point and one exit point.
In general, additional entry and exit points can be added to loops and case
constructs by the usage of ‘go to’-statements in programs and by the usage
of arbitrary decision points in flowcharts. In structured flowcharts, decision
points are introduced as part of the loop constructs and part of the case
construct. In structured programs and flowcharts, loops and case-constructs
are strictly nested along the lines of the derivation of their abstract syntax
tree.

Business process models extend flowcharts with further modeling elements
like a parallel split, parallel join or non-deterministic choice. Basically, we dis-
cuss the issue of structuring business process models in terms of flowcharts, be-
cause flowcharts actually are business process model diagrams, i.e., flowcharts

166 6 Structured Business Process Specification

form a subset of business process models. As the constructs in the formation
rules of Fig. 6.1 further business process modeling elements can also be in-
troduced in a structured manner with the result of having again only such
diagrams that are strictly nested in terms of their looping and branching con-
structs. For example, in such a definition the parallel split and the parallel join
would not be introduced separately but as belonging to a parallel modeling
construct.

6.1.2 A Notion of Equivalence for Business Processes

Bisimilarity has been defined formally in [273] as an equivalence relation for
infinite automaton behavior, i.e., process algebra [249, 250]. Bisimilarity ex-
presses that two processes are equal in terms of their observable behavior.
Observable behavior is the appropriate notion for the comparison of auto-
matic processes. The semantics of a process can also be understood as oppor-
tunities of one process interacting with another process. Observable behavior
and experienced opportunities are different viewpoints on the semantics of a
process, however, whichever viewpoint is chosen, it does not change the basic
concept of bisimilarity. Business processes can be fully automatic; however,
business processes can also be descriptions of human actions and therefore
can also be rather a protocol of possible steps undertaken by a human. We
therefore choose to explain bisimilarity in terms of opportunities of an actor,
or, as a metaphor, from the perspective of a player that uses the process de-
scription as a game board – which neatly fits to the notions of simulation and
bisimulation, i.e., bisimilarity.

A

y C

D

(i) A

A C A D

n

y E

Fn

C Diff

iff

C E

D F

(ii)

(iii)

Fig. 6.3. Characterization of bisimilarity for business process models.

In general, two processes are bisimilar if starting from the start node they
reveal the same opportunities and each pair of same opportunities lead again
to bisimilar processes. More formally, bisimilarity is defined on labeled transi-
tion systems [3] as the existence of a bisimulation, which is a relationship that
enjoys the aforementioned property, i.e., nodes related by the bisimilarity lead
via the same opportunities to nodes that are related again, i.e., recursively,
by the bisimilarity. In the non-structured models the opportunities are edges

6.2 The Pragmatics of Structuring Business Processes 167

leading out of an activity and the two edges leading out of a decision point.
For our purposes, bisimilarity can be characterized by the rules in Fig. 6.3.

6.2 The Pragmatics of Structuring Business Processes

6.2.1 Resolving Arbitrary Jump Structures

Have a look at Fig. 6.4. Like Fig. 6.2 it shows a business process model that
is not a structured business process model. The business process described by
the business process model in Fig. 6.4 can also be described in the style of a
program text as in Listing 6.3.

B C

A
y

n

n

y

Fig. 6.4. Example business process model that is not structured.

In textual representation or interpretation in Fig. 6.4, the business process
model in Fig. 6.4 consists of a while-loop followed by a further activity B, a
decision point that might branch back into the while-loop and eventually an
activity C. Alternatively, the business process can also be described by struc-
tured business process models. Fig. 6.5 shows two examples of such structured
business process models and Listings 6.4 and 6.5 show the corresponding pro-
gram text representations that are visualized by the business process models
in Fig. 6.5.

Listing 6.3 Textual presentation of the business process in Fig. 6.4.

01 WHILE alpha DO

02 A;

03 B;

04 IF beta THEN GOTO 02;

05 C;

The business process models in Figs. 6.4 and 6.5 resp. Listings 6.3, 6.4
and 6.5 describe the same business process. They describe the same business

168 6 Structured Business Process Specification

process, because they are bisimilar, i.e., in terms of their nodes, which are,
basically, activities and decision points, they describe the same observable
behavior resp. same opportunities to act for an actor – we have explained the
notion of equality and the more precise approach of bisimilarity in more detail
in Sect. 6.1.2.

B

A

A

A

C

B

y

n

y

n

yn

B

A

A

C

B

y

n

y

n

n

y

(i) (ii)

Fig. 6.5. Structured business process models that replace the non-structured one
in Fig. 6.4.

The derivation of the business process models in Fig. 6.5 from the forma-
tion rules given in Fig. 6.1 can be understood by looking at its abstract syntax
tree, which appears at tree ψ in Fig. 6.6. The proof that the process models in
Figs. 6.4 and 6.5 are bisimilar is left to the reader as an exercise. The reader is
also invited to find structured business process models that are less complex
than the ones given in Fig. 6.5, whereas complexity is an informal concept
that depends heavily on the perception and opinion of the modeler. For ex-
ample, the model (ii) in Fig. 6.4 results from an immediate simple attempt to
reduce the complexity of the model (i) in Fig. 6.5 by eliminating the A-activity
which follows the α-decision point and connecting the succeeding ‘yes’-branch
of the α-decision point directly back with the A-activity preceding the deci-
sion point, i.e., by reducing a while-loop-construct with a preceding statement
to a repeat-until-construct. Note, that the model in Fig. 6.5 has been derived
from the model in Fig. 6.4 by straightforwardly unfolding it behind the β-
decision point as much as necessary to yield a structured description of the
business process. In what sense the transformation from model (i) to model
(ii) in Fig. 6.5 has lowered complexity and whether it actually or rather su-
perficially has lowered the complexity will be discussed in due course. We will

6.2 The Pragmatics of Structuring Business Processes 169

also discuss another structured business process model with auxiliary logic
that is oriented towards identifying repeat-until-loops in the original process
descriptions.

Listing 6.4 Textual presentation of business process (i) in Fig. 6.4.

01 WHILE alpha DO

02 A;

03 B;

04 WHILE beta DO BEGIN

05 A;

06 WHILE alpha DO

07 A;

08 B;

09 END;

10 C;

Listing 6.5 Textual presentation of business process (ii) in Fig. 6.4.

01 WHILE alpha DO

02 A;

03 B;

04 WHILE beta DO BEGIN

05 REPEAT

06 A;

07 UNTIL NOT alpha;

08 B;

09 END;

10 C;

The above remark on the vagueness of the notion of complexity is not just a
side-remark or disclaimer but is at the core of the discussion. If the complexity
of a model is a cognitive issue it would be a straightforward approach to let
people vote which of the models is more complex. If there is a sufficiently
precise method to test whether a person has understood the semantics of a
process specification, this method can be exploited in testing groups of people
that have been given different kinds of specifications of the same process and
concluding from the test results which of the process specifications should be
considered more complex. Such an approach relies on the preciseness of the
semantics and eventually on the quality of the test method. We will suggest
to consider such a test method approach again in Sect. 6.3 in the discussion
of structured programming, because program have a definite semantics as
functional transforms.

170 6 Structured Business Process Specification

It is a real challenge to search for a definition of complexity of models or
their representations. What we expect is that less complexity has something
to do with better quality, and before we undertake efforts in defining complex-
ity of models we should first understand possibilities to measure the quality of
models. The usual measures by which modelers and programmers often judge
complexity of models like understandability or readability are vague concepts
themselves. Other categories like maintainability or reusability are more con-
crete than understandability or readability but still vague. Of course, we can
define metrics for the complexity of diagrams. For example, it is possible to
define that the number of activity nodes used in a business process model
increases the complexity of a model. The problem with such metrics is that
it follows immediately that the model in Fig. 6.5 is more complex than the
model in Fig. 6.4. Actually, this is what we believe.

6.2.2 Immediate Arguments For and Against Structure

We believe that the models in Fig. 6.5 are more complex than the models in
Fig. 6.4. A structured approach to business process models would make us
believe that structured models are somehow better than non-structured mod-
els in the same way that the structured programming approach believes that
structured programs are somehow better than non-structured programs. So
either less complexity must not always be better or the tenets of the structured
approach must be loosened to a rule of thumb, i.e., the belief that structured
models are in general better than non-structured models, despite some ex-
ceptions like our current example. An argument in favor of the structured
approach could be that our current example is simply too small, i.e., that the
aforementioned exceptions are made of small models or, to say it differently,
that the arguments of a structured approach become valid for models beyond
a certain size. We do not think so. We rather believe that our discussion
scales, i.e., that the arguments that we will give below also apply equally and
even more so for larger models. We want to approach these questions more
systematically.

In order to do so, we need to answer why we believe that the models in
Fig. 6.5 are more complex than the model in Fig. 6.4. The immediate answer
is simply because they are larger and therefore harder to grasp, i.e., a very
direct cognitive argument. But there is another important argument why we
believe this. The model in Fig. 6.4 shows an internal reuse that the models
in Fig. 6.5 do not show. The crucial point is the reuse of the loop consisting
of the A-activity and the α-decision point in Fig. 6.4. We need to delve into
this important aspect and will actually do this later. First, we want to discuss
the dual question, which is of equal importance, i.e., we must also try to
understand or try to answer the question, why modelers and programmers
might find that the models in Fig. 6.5 are less complex than the models in
Fig. 6.4.

6.2 The Pragmatics of Structuring Business Processes 171

A standard answer to this latter question could typically be that the edge
from the β-decision point to the A-activity in Fig. 6.4 is an arbitrary jump, i.e.,
a spaghetti, whereas the diagrams in Fig. 6.5 do not show any arbitrary jumps
or spaghetti-like phenomena. But the question is whether this vague argument
can be made more precise. A structured diagram consists of strictly nested
blocks. All blocks of a structured diagram form a tree-like structure according
to their nesting, which corresponds also to the derivation tree in terms of
the formation rules of Fig. 6.1. The crucial point is that each block can be
considered a semantic capsule from the viewpoint of its context. This means,
that once the semantics of a block is understood by the analyst studying the
model, the analyst can forget about the inner modeling elements of the block.
This is not so for diagrams in general. This has been the argument of looking
from outside onto a block in the case a modeler want to know its semantics in
order to understand the semantics of the context where it is utilized. Also, the
dual scenario can be convincing. If an analyst is interested in understanding
the semantics of a block he can do this in terms of the inner elements of a
block only. Once the analyst has identified the block he can forget about its
context to understand it. This is not so easy in a non-structured language.
When passing an element, in general you do not know where you end up in
following the various paths behind it. It is also possible to subdivide a non-
structured diagram into chunks that are smaller than the original diagram and
that make sense to understand as capsules. For example, this can be done,
if possible, by transforming the diagram into a structured one, in which you
will find regions of your original diagram. However, it is extra effort to do this
partition.

With the current set of modeling elements, i.e., those introduced by the
formulation rules in Fig. 6.1, all this can be seen particularly easy, because each
block has exactly one entry point, i.e., one edge leading into it. Fortunately,
standard building blocks found in process modeling would have one entry
point in a structured approach. If you have, in general, also blocks with more
than one entry points, it would make the discussion interesting. The above
argument would not be completely infringed. Blocks still are capsules, with
a semantics that can be understood locally with respect to their appearance
in a strictly nested structure of blocks. The scenario itself remains neat and
tidy; the difference lies in the fact that a block with more than one entry has a
particular complex semantics in a certain sense. The semantics of a block with
more than one entry is manifold, e.g., the semantics of a block with two entries
is threefold. Given that, in general, we also have concurrency phenomena in
a business process model, the semantics of block with two entry points, i.e.,
its behavior or opportunities, must be understood for the case that the block
is entered via one or the other entry point and for the case that the block is
entered simultaneously. But this is actually not a problem; it just means a
more sophisticated semantics and more documentation.

Despite a more complex semantics, a block with multiple entries still re-
mains an anchor in the process of understanding a business process model,

172 6 Structured Business Process Specification

because it is possible, e.g., to understand the model from inside to outside
following the strict tree-like nesting, which is a canonical way to understand
the diagram, i.e., a way that is always defined. It is also always possible to
understand the diagram sequentially from the start node to the end node in
a controlled manner. The case constructs make such sequential proceeding
complex, because they open alternative paths in a tree-like manner. The ad-
vantage of a structured diagram with respect to case-constructs is that each of
the alternative paths that are spawned is again a block and it is therefore pos-
sible to understand its semantics isolated from the other paths. This is not so
in a non-structured diagram, in which there might be arbitrary jumps between
the alternative paths, in general. Similarly, if analyzing a structured diagram
in a sequential manner, you do not get into arbitrary loops and therefore have
to deal with a minimized risk to loose track.

The discussion of the possibility to have blocks with more entry points
immediately reminds us of the discussion we have seen within the business
process community on multiple versus unique entry points for business pro-
cesses in a setting of hierarchical decomposition. The relationship between
blocks in a flat structured language and sub diagrams in a hierarchical ap-
proach and how they play together in a structured approach is an important
strand of discussion that we will come back to in due course. For the time
being, we just want to point out the relationship between the discussion we
just had on blocks with multiple entries and sub diagrams with multiple en-
tries. A counter-argument against sub diagrams with multiple entries would
be that they are more complex. Opponents of the argument would say that
it is not a real argument, because the complexity of the semantics, i.e., its
aforementioned manifoldness, must be described anyhow.

With sub diagrams that may have no more than one entry point, you
would need to introduce a manifoldness of diagrams each with a single entry
point. We do not discuss here how to transform a given diagram with multiple
entries into a manifoldness of diagrams – all we want to remark here that it
easily becomes complicated because of the necessity to appropriately handle
the aforementioned possibly existing concurrency phenomena. Eventually it
turns out to be a problem of transforming the diagram together with its
context, i.e., transforming a set of diagrams and sub diagrams with possibly
multiple entry points into another set of diagrams and sub diagrams with only
unique entry points. Defenders of diagrams with unique entry points would
state that it is better to have a manifoldness of such diagrams instead of
having a diagram with multiple entries, because, the manifoldness of diagrams
documents better the complexity of the semantics of the modeled scenario.

For a better comparison of the discussed models against the above state-
ments we have repainted the diagram from Fig. 6.4 and diagram (ii) from
Fig. 6.5 with the blocks they are made of and their abstract syntax trees resp.
quasi-abstract syntax tree in Fig. 6.6. The diagram of Fig. 6.4 appears to
the left in Fig. 6.6 as diagram Φ and diagram (ii) from Fig. 6.5 appears to
the right as diagram Ψ . According to that, the left abstract syntax tree φ in

6.2 The Pragmatics of Structuring Business Processes 173

Fig. 6.6 corresponds to the diagram from Fig. 6.4 and the right abstract syntax
tree ψ corresponds to the diagram (ii) from Fig. 6.5. Blocks are surrounded
by dashed lines in Fig. 6.6.

B

A

A

C

B

y

n

n

y

y

n

B

C

A
y

n

y
n

1

2
3

5

6

4
7

1

2

6

7

6 5

4

3

2

1

B

C

B

A

A

ii

6 ii

ii

iv

2

1

C

B

A

Fig. 6.6. Block-structured versus arbitrary business process model.

If you proceed in understanding the model Φ in Fig. 6.6 you first have to
understand a while-loop that encompasses the A-activity – the block labeled
with number ‘5’ in model Φ. After that, you are not done with that part of
the model. Later, after the β-decision point you are branched back to the A-
activity and you have to re-understand the loop it belongs to again, however,
this time in a different manner, i.e., as a repeat-until loop – the block labeled
with number ‘1’ in model Φ. It is possible to argue that, in some sense, this
makes the model Φ harder to read than model Ψ . To say it differently, it
is possible to view model Ψ as an instruction manual on how to read the
model Φ. Actually, model Ψ is a bloated version of model Φ. It contains some
modeling elements of model Φ redundantly, however, it enjoys the property
that each modeling element has to be understood only in the context of one
block and its encompassing blocks. We can restate these arguments a bit more
formally in analyzing the abstract syntax trees φ and ψ in Fig. 6.6. Blocks
in Ψ correspond to constructs that can be generated by the formation rules in
Fig. 6.1. The abstract syntax tree ψ is an alternate presentation of the nesting
of blocks in model Ψ . A node stands for a block and for the corresponding

174 6 Structured Business Process Specification

construct according to the formation rules. The graphical model Φ cannot be
derived from the formation rules in Fig. 6.1. Therefore it does not possess an
abstract syntax tree in which each node represent a unique graphical block and
a construct the same time. The tree φ shows the problem. You can match the
region labeled ‘1’ in model Φ as a block against while-loop-rule (iv) and you
can subsequently match the region labeled ‘2’ against the sequence-rule (iii).
But then you get stuck. You can form a further do-while loop with rule (iv) out
of the β-decision point and block ‘2’ as in model Ψ but the resulting graphical
model cannot be interpreted as a part of model Φ any more. This is because
the edge from activity B to the β-decision point graphically serves both as
input branch to the decision point and as back branch to the decision point.
This graphical problem is resolved in the abstract syntax tree φ by reusing
the activity B in the node that corresponds to node ‘5’ in tree ψ in forming
a sequence according to rule (ii) with the results that the tree φ is actually
no longer a tree. Similarly, the reuse of the modeling elements in forming
node ‘6’ in the abstract syntax tree φ visualizes the double interpretation of
this graphical region as both a do-while loop and repeat-until loop.

6.2.3 Structure for Text-based versus Graphical Specifications

In Sect. 6.2.2 we have said that an argument for a structured business process
specification is that it is made of strictly nested blocks and that each identi-
fiable block forms a semantic capsule. In the argumentation we have looked
at the graphical presentation of the models only and now we will have a look
also at the textual representations.

This section needs a disclaimer. We are convinced that it is risky in the
discussion of quality of models to give arguments in terms of cognitive cat-
egories like understandability, readability, cleanness, well-designedness and
well-definedness. These categories tend to have an insufficient degree of de-
finedness themselves so that argumentations based on them easily suffer a
lack of falsifiability. Nevertheless, in this section, in order to abbreviate, we
need to speak directly about the reading ease of specifications. The judgments
are our very own opinion, an opinion that expresses our perception of certain
specifications. The reader may have a different opinion and this would be in-
teresting in its own right. At least, the expression of our own opinion may
encourage the reader to judge about the readability certain specifications.

As we said in terms of complexity, we think that the model in Fig. 6.4 is
easier to understand than the models in Fig. 6.5. We think it is easier to grasp.
Somehow paradoxically, we think the opposite about the respective text rep-
resentation, at least at a first sight, i.e., as long as we have not internalized too
much all the different graphical models in listings. This means, we think that
the text representation of the models in Fig. 6.4, i.e., Listing 6.3, is definitely
harder to understand than the text representation of both models in Fig. 6.5,
i.e., Listings 6.4 and 6.5. How comes? Maybe, the following observation helps,
i.e., that we also think that the graphical model in Fig. 6.5 is also easier to

6.2 The Pragmatics of Structuring Business Processes 175

read than the model’s textual representation in Listing 6.3 and also easier to
read than the two other Listings 6.4 and 6.5. Why is Listing 6.5 so relatively
hard to understand? We think, because there is no explicitly visible connect-
ing between the jumping-off point in line ‘04’ and the jumping target in line
line ‘02’. Actually, the first thing we would recommend in order to understand
Listing 6.5 better is to draw its visualization, i.e., the model in Fig. 6.5, or to
concentrate and to visualize it in our mind. By the way, we think that drawing
some arrows in Listing 6.3 as we did in Fig. 6.7 also help. The two arrows
already help despite the fact that they make explicit only a part of the jump
structure – one possible jump from line ‘01’ to line ‘03’ in case the α-condition
becomes invalid must still be understood by the indentation of the text.

01 WHILE alpha DO
02 A;
03 B;
04 IF beta THEN GOTO 02;
05 C;

Fig. 6.7. Listing enriched with arrows for making jump structure explicit.

All this is said for such a small model consisting of a total of five lines.
Imagine, if you had to deal with a model consisting of several hundreds lines
with arbitrary ‘go to’-statements all over the text. If it is true that the model
in Fig. 6.4 is easier to understand than the models in Fig. 6.5 and at the same
time Listing 6.3 is harder to understand than Listings 6.4 and 6.5 this may
lead us to the assumption that the understandability of graphically presented
models follows other rules than the understandability of textual representa-
tion. Reasons for this may be, on the one hand, the aforementioned lack of
explicit visualizations of jumps, and, on the other hand, the one-dimensional
layout of textual representations. The reason why we have given all of these
arguments in this section is not in order to promote visual modeling. The
reason is that we see a chance that they might explain why the structural
approach has been so easily adopted in the field of programming.

The field of programming was and still is dominated by text-based spec-
ifications – despite the fact that we have seen many initiatives from syntax-
directed editors through to computer-aided software engineering to model-
driven architecture. It is fair to remark that the crucial characteristics of
mere textual specification in the discussion of this section, i.e., lack of explicit
visualization of jumps, or, to say it in a more general manner, support for the
understanding of jumps, is actually addressed in professional coding tools like
integrated development environments with their maintenance of links, code
analyzers and profiling tools. The mere text-orientation of specification has
been partly overcome by today’s integrated development environments. Let us
express once more that we are not promoters of visual modeling or even visual

176 6 Structured Business Process Specification

programming. In [89] we have de-emphasized visual modeling. We strictly be-
lieve that visualizations add value, in particular, if it is combined with visual
meta-modeling [159, 160, 115]. But we also believe that mere visual specifica-
tion is no silver bullet, in particular, because it does not scale. We believe in
the future of a syntax-direct abstract platform with visualization capabilities
that overcomes the gap between modeling and programming from the out-
set as proposed by the work on AP1 [226, 227] of the Software Engineering
research group at the University of Auckland.

6.2.4 Structure and Decomposition

The models in Fig. 6.5 are unfolded versions of the model in Fig. 6.4. Some
modeling elements of the diagram in Fig. 6.5 occur redundantly in each model
in Fig. 6.4. Such unfolding violates the reuse principle. Let us concentrate
on the comparison of the model in Fig. 6.5 with model (i) in Fig. 6.5. The
arguments are similar for diagram (ii) in Fig. 6.5. The loop made of the α-
decision point and the activity A occurs twice in model (i). In the model in
Fig. 6.5 this loop is reused by the jump from the β-decision point albeit via an
auxiliary entry point. It is important to understand that reuse is not about
the cost-savings of avoiding the repainting of modeling elements but about
increasing maintainability.

Imagine, in the lifecycle of the business process a change to the loop con-
sisting of the activity A and the α-decision point becomes necessary. Such
changes could be the change of the condition to another one, the change of
the activity A to another one or the refinement of the loop, e.g., the inser-
tion of a further activity into it. Imagine that you encounter the necessity
for changes by reviewing the start of the business process. In analyzing the
diagram, you know that the loop structure is not only used at the beginning
of the business process but also later by a possible jump from the β-decision
point to it. You will now further analyze whether the necessary changes are
only appropriate at the beginning of the business process or also later when
the loop is reused from other parts of the business process. In the latter case
you are done. This is the point where you can get into trouble with the other
version of the business process specification as diagram (i) in Fig. 6.5. You
can more easily overlook that the loop is used twice in the diagram; this is
particularly true for similar examples in larger or even distributed models.
So, you should have extra documentation for the several occurrences of the
loop in the process. Even in the case that the changes are relevant only at
the beginning of the process you would like to review this fact and investigate
whether the changes are relevant for other parts of the process.

It is fair to remark, that in the case that the changes to the loop in question
are only relevant to the beginning of the process, the diagram in Fig. 6.5 bears
the risk that this leads to an invalid model if the analyst oversees its reuse
from later stages in the process, whereas the model (i) in Fig. 6.5 does not
bear that risk. But we think this kind of weird fail-safeness can hardly be

6.2 The Pragmatics of Structuring Business Processes 177

sold as an advantage of model (i) in Fig. 6.5. Furthermore, it is also fair to
remark, that the documentation of multiple occurrences of a model part can
be replaced by appropriate tool-support or methodology like a pattern search
feature or hierarchical decomposition as we will discuss in due course. All this
amounts to saying that maintainability of a model cannot be reduced to its
presentation but depends on a consistent combination of presentational issues,
appropriate tool support and defined maintenance policies and guidelines in
the framework of a mature change management process.

B

A

C

B

y

n

A
y

DoA

DoA
+

+

DoA

Fig. 6.8. Example business process hierarchy.

We now turn the reused loop consisting of the activity A and the α-decision
point in Fig. 6.5 into its own sub diagram in the sense of hierarchical decom-
position, give it a name – let us say ‘DoA’ – and replace the relevant regions
in diagram (i) in Fig. 6.5 by the respective, expandable sub diagram activity.
The result is shown in Fig. 6.8. Now, it is possible to state that this solution
combines the advantages of both kinds of models in question, i.e., it consists
of structured models at all levels of the hierarchy and offers an explicit means
of documentation of the places of reuse. But caution is necessary. First, the
solution does not free the analyst to actually have a look at all the places a
diagram is used after he or she has made a change to the model, i.e., an elab-
orate change policy is still needed. In the small toy example, such checking is
easy, but in a tool you usually do not see all sub diagrams at once, but rather
step through the levels of the hierarchy and the sub diagrams with links. Re-
member that the usual motivation to introduce hierarchical decomposition
and tool-support for hierarchical decomposition is the desire to deal with the
complexity of large and very large models. Second, the tool should not only
support the reuse-direction but should also support the inverse use-direction,
i.e., it should support the analyst with a report feature that lists all places of
reuse for a given sub diagram.

178 6 Structured Business Process Specification

B

C

B

y

n

Ado

DoA
+

+

Ado

A
y

DoA

A DoA
+

Fig. 6.9. Example for a deeper business process hierarchy.

Now let us turn to a comparative analysis of the complexity of the modeling
solution in Fig. 6.8 and the model in Fig. 6.5. The complexity of the top-level
diagram in the model hierarchy in Fig. 6.8 is no longer significantly higher
than the one of the model in Fig. 6.5. However, together with the sub diagram,
the modeling solution in Fig. 6.8 again shows a certain complexity. It would
be possible to neglect a reduction of complexity by the solution in Fig. 6.8
completely with the hint that the disappearance of the edge representing the
jump from the β-decision point into the loop in Fig. 6.5 is bought by another
complex construct in Fig. 6.8 – the dashed line from the activity ‘DoA’ to the
targeted sub diagram. The jump itself can still be seen in Fig. 6.8, somehow,
unchanged as an edge from the β-decision point to the activity A. We do
not think so. The advantage of the diagram in Fig. 6.8 is that the semantic
capsule made of the loop in question is already made explicit as a named sub
diagram, which means added documentation value.

Also, have a look at Fig. 6.9. Here the above explanations are even more
substantive. The top-level diagram is even less complex than the top-level
diagram in Fig. 6.8, because the activity A now has moved to its own level
of the hierarchy. However, this comes at the price that now the jump from
the β-decision point to the activity A in Fig. 6.5 now re-appears in Fig. 6.9
as the concatenation of the ‘yes’-branch in the top-level diagram, the dashed
line leading from the activity ‘Ado’ to the corresponding sub diagram at the
next level and the entry edge of this sub diagram.

6.2 The Pragmatics of Structuring Business Processes 179

6.2.5 Business Domain-Oriented versus Documentation-Oriented
Modeling

In Sects. 6.2.1 through 6.2.4 we have discussed structured business process
modeling for those processes that actually have a structured process specifi-
cation in terms of a chosen fixed set of activities. In this section we will learn
about processes that do not have a structured process specification in that
sense. In the running example of Sects. 6.2.1 through 6.2.4 the fixed set of
activities was given by the activities of the initial model in Fig. 6.4 and again
we will explain the modeling challenge addressed in this section as a model
transformation problem.

First, as a further example and for the sake of completeness, we give the
resolution of the model in Fig 6.2 into a structured equivalent in Fig. 6.10.

A B C D

n

y
y

n

B

A

B

C
n

y

Fig. 6.10. Structured business process model that replaces the non-structured one
in Fig. 6.2.

Consider the example business process models in Fig. 6.11. Each model
contains a loop with two exits to paths that lead to the end node without
the opportunity to come back to the originating loop before reaching the end
state. It is known [37, 205, 206, 208] that the behaviors of such loops cannot
be expressed in a structured manner, i.e., by a D-chart as defined in Fig. 6.1
solely in terms of the same primitive activities as those occurring in the loop.
Extra logic is needed to formulate an alternative, structured specification.
Fig. 6.12 shows this loop-pattern abstractly and we proceed to discuss this
issues with respect to this abstract model.

Assume that there is a need to model the behavior of a business process
in terms of a certain fixed set of activities, i.e., the activities A through D
in Fig. 6.12. For example, assume that they are taken from an accepted ter-
minology of a concrete business domain. Other reasons could be that the
activities stem from existing contract or service level agreement documents.
You can also assume that they are simply the natural choice as primitives for
the considered work to be done. We do not delve here into the issue of natural
choice and just take for granted that it is the task to model the observed or
desired behavior in terms of these activities. For example, we could imagine

180 6 Structured Business Process Specification

Fig. 6.11. Two example business processes without structured presentation using
no other than their own primitives.

an appropriate notion of cohesion of more basic activities that the primitives
we are restricted to, or let’s say self-restricted to, adhere to. Actually, as it
will turn out, for our argumentation to be conclusive there is no need for an
explanation how a concrete fixed set of activities arises. What we need for our
current argumentation to be conclusive is to demand that the activities are
only about actions and objects that are relevant in the business process.

BA

C D

y y

n n

Fig. 6.12. Business process with cycle that is exited via two distinguishable paths.

Fig. 6.13 shows a structured business process model that is intended to
describe the same process as the specification in 6.12. In a certain sense it fails.
The extra logic introduced in order to get the specification into a structured
shape do not belong to the business process that the specification aims to
describe. The model in Fig. 6.13 introduces some extra state, i.e., the Boolean
variable δ, extra activities to set this variable so that it gets the desired steering
effect and an extra δ-decision point. Furthermore, the original δ-decision point
in the model of Fig. 6.12 has been changed to a new β∧δ-decision point.
Actually, the restriction of the business process described by Fig. 6.12 onto
those particles used in the model in Fig. 6.12 is bisimilar to this process. The
problem is that the model in Fig. 6.13 is a hybrid. It is not only a business

quality
insurance

handle
workpiece

dispose
deficient

workpiece

finish
workpiece

y y

n n

reject workpiece
due to defects

quality must
be improved

approve
purchase

order

prepare
purchase

order

submit
purchase

order

y y

n n

amount exceeds
threshold

revision is
necessary

)ii()i(

6.3 Structured Programming 181

domain-oriented model any more, it now has also some merely documentation-
related parts. The extra logic and state only serve the purpose to get the
diagram into shape. It needs clarification of the semantics. Obviously, it is
not intended to change the business process. If the auxiliary introduced state
and logic would be also about the business process, this would mean, for
example, that in the workshop a mechanism is introduced, for example a
machine or a human actor that is henceforth responsible for tracking and
monitoring a piece of information δ. So, at least what we need is to explicitly
distinguish those elements in such a hybrid model. The question is whether the
extra complexity of a hybrid domain- and documentation-oriented modeling
approach is justified by the result of having a structured specification.

B

C

y y

n
n

:=false

D

A :=true A

Fig. 6.13. Resolution of business process cycles with multiple distinguishable exits
by the usage of auxiliary logic and state.

6.3 Structured Programming

Structured programming is about the design of algorithms. It is about looking
for an alternative algorithm that has a somehow better design than a given
algorithm but has the same effect. Usually, in the discussion of structured
programming the considered effect of algorithms is a functional transforma-
tion, i.e., the computation of some output values from some input values. If
the effect of a considered algorithm is the behavior of a reactive system things
become significantly more complex and the argumentation becomes harder.

6.3.1 An Example Comparison of Program Texts

Let us have a look at an example program of Donald E. Knuth and Robert W.
Floyd in [204]. The program is given in Listing 6.6. The functionality of the
program is to seek the position of a value x in a global variable array A. If the
value is not yet stored in the array, it is appended as a new value at the end

182 6 Structured Business Process Specification

of the array. Furthermore, the program maintains the length of the A-array
as a global variable m. Furthermore it maintains for each value in the A-array
the number of times the value has been searched for. Another global array B
is used for this purpose, i.e., for each index i the value stored in B[i] equals
to the number of searches for the value stored in A[i].

Listing 6.6 ‘go to’-Program for seeking the position of a value in an array
according to [204].

for i:=1 step 1 until m do

if A[i]=x then go to found fi;

not found: i:=m+1; m:=i;

A[i]:=x;B[i]:=0;

found: B[i]:=B[i]+1;

The program in Fig. 6.6 is not a structured program. Listing 6.8 shows
a structured program, which is an alternative implementation of the pro-
gram in Listing 6.6. The program in Listing 6.8 is also taken from [204].
Knuth compares the programs in Listing 6.8 and Listing 6.6 in order to argue
about structured programming. The formulation of the program in Listing 6.8
slightly differs from the original presentation of the program text in [204] with
respect to some minor changes in the layout. For example, we have put each
statement on a different line and have given line numbers to the lines. Simi-
larly, we have reformulated the program in Listing 6.6 resulting in the program
in Listing 6.7. Despite the changes to the program layout, which can be ne-
glected, the version of the program in Listing 6.7 uses a while-loop instead
of a deterministic for-loop and therefore needs an incrementation of the loop
variable i in the loop body. However, these changes make no difference to
the discussion conducted in the following. We have used a formulation with
a while-loop to make the program more directly comparable to the program
alternative in Listing 6.8.

Listing 6.7 Reformulation of the ‘go to’-Program in Listing 6.6

01 i:=1;

02 WHILE i<=m DO BEGIN

03 IF A[i]=x THEN GOTO 10

04 i:=i+1;

05 END;

07 m:=i;

08 A[i]:=x;

09 B[i]:=0;

10 B[i]:=B[i]+1;

6.3 Structured Programming 183

The program in Listing 6.7 is realized with a while-loop that steps through
the values in array A. In the loop the program compares the current value in
the array with x and if the value equals x the while-loop is exited with a ‘go to’-
statement. The while-loop is exited with a ‘go to’ because the loop variable i
holds the index of the first field that equals x, which is then exploited in the
update of the corresponding field in the B-array in line ‘10’. Furthermore, the
‘go to’ is needed to circumvent the execution of lines ‘07’ through ‘09’ in case
the value x actually exists in array A, because these lines are only there for
handling the case when the value has not been found.

If x exists in A, the program in Listing 6.7 actually finds the first position
of x in the A-array. However, only under the assumption that the following
pre-condition and side-condition hold the values occur at unique positions in
the array, i.e., a value’s first position in the array is a value’s single position.
The necessary side-condition is that the piece of code in Listing 6.7 is the only
means to update the A-array and the variable m. The necessary pre-condition
is that the variablem holds the length of the arrayA, in particular, this means
that the variablem must be set to zero and the array A is considered as empty
before the first run of the program in Listing 6.7. The arraysA and B together
can also be interpreted as a hash map data structure with array A holding
the keys and array B holding the values. In that sense the program has the
functionality of incrementing a key’s value if applied to an existing key x, or
inserting a key and initializing its value to 1 if applied to a key not yet existing
in the hash map.

Listing 6.8 is a reformulation of the program in Listing 6.7 as a structured
program, i.e., an alternative implementation without a ‘go to’-statement. The
condition that leads to an early exit from the loop in Listing 6.7, i.e., an exit
before the loop condition has become false, has now been made part – in its
negated form – of the loop condition in Listing 6.8. Then, after the loop, it is
tested whether the loop has not been ended early by testing for the negation
of the loop condition from Listing 6.7. The test guarantees that the code lines
that are reserved for cases in which value x does not exist in array A are
actually not executed whenever the loop has been exited early.

In [204] Donald E. Knuth argues that the program in Listing 6.7 is an
example of a functionality for which structured programming is inadequate.
In [204] Knuth gives two reasons for the asserted inadequacy. The first reason
is the argument that the program in Listing 6.8 is slightly slower, because of
the extra test of the loop condition after the loop in line ‘05’. Let us assume
that the program is not part of some absolutely time critical application, i.e.,
we do not argue here at the level of machine programming but rather at the
level of application programming. Then we can neglect this first aspect against
the background of today’s computing power. We think that for the most
application domains the overhead of this single statement can be considered as
marginal. Actually, we do not precisely know which of the programs is faster,
because it could be, for example, that the realization of the ‘go to’-mechanism

184 6 Structured Business Process Specification

Listing 6.8 Structured Program for seeking the position of a value in an
array according to [204].

01 i:=1;

02 WHILE (i<=m and (NOT (A[i]=x))) DO BEGIN

03 i:=i+1;

04 END;

05 IF NOT (i<=m) THEN BEGIN

06 m:=i;

07 A[i]:=x;

08 B[i]:=0;

09 END;

10 B[i]:=B[i]+1;

of the concretely used compiler and run-time environment is inefficient so that
it avoidance outweighs the drawback of the extra test.

The second reason given by Knuth in [204] why he believes that the pro-
gram in Listing 6.8 is less adequate than the program in Listing 6.7 is much
more interesting for our discussion here. The reason given is Knuth’s opinion
that the program of Listing 6.8 is less readable than the program in Listing 6.7.
The problem with this argument is that the better readability of Listing 6.7 is
in our opinion not evident. We delve into a discussion of readability of program
texts in general and the readability of the program texts in the Listings 6.6
through 6.8 now in Sects. 6.3.2 and 6.3.3.

6.3.2 Readability of Program Texts

Readability is a concept that is hard to grasp. Readability is a concept that
inherently is about the perception of a person, i.e., about a person’s disposi-
tion. A concept close to readability is the concept of understandability. It is
possible to define some measure for the understandability of a program text.
The question whether such a defined measure is actually objective is another
question. One could instruct the test taker to read the program text and say
‘stop’ immediately when he thinks that he has understood the meaning of the
program. Then, it must be determined whether the person has actually un-
derstood the program. If he has actually understood the program, the test is
valid, otherwise it is not. The defined measurement is not feasible to compare
the understandability of a program by a single person. Once, the person has
read and understood the first version of the program, he has learned some-
thing and this will very likely impact the speed of understanding the second
version of the program positively. But the measurement can be used at a sta-
tistical scale [13] by running the test with several groups to collect the average
understanding periods for the several investigated program versions. Still, the
defined measure is flawed. How to judge fair whether a person has actually
understood the program? If a person simple describes in natural language the

6.3 Structured Programming 185

step-by-step operation of the algorithm this may not be sufficient in order to
be convinced that the person has understood what the algorithm does. What
if people who answer particularly quickly tend to not really understanding the
program?

We think that it is hard to tell whether the program in Listing 6.7 is more
readable or more understandable then the program in Listing 6.8 or vice
versa. Listing 6.6 shows the original version of the program in Listing 6.7.
In our version the line number ‘10’ serves as a label of the statement in
line ‘10’ when it is referenced in the ‘go to’-statement. In the original version
the statement has an explicit label ‘found:’. Furthermore, the statements in
lines ‘07’ through ‘09’ in Listing 6.7 are placed together in a single line in
the original version, which visually emphasizes that these statements logically
belong to the block of logic which is executed in cases where the value x is not
yet stored in the array A. The readability of a program text can be improved
by several means, e.g., line indentation, proper comments, or telling names.
Such actions are usually best if they adhere to a style guide defined for a
project. We think it is hard to tell whether the explicit exit from the loop
with a ‘go to’ in Listing 6.7 or the exit via the loop condition in Listing 6.8 is
more understandable. Actually, we are somewhat biased in favor of the exit
via the loop condition.

Further Attempts to Improve the Readability of a Program Text

Various attempts can be undertaken to improve the readability or understand-
ability of the program in Listing 6.8 further. In the program in Listing 6.9 we
have made the usage of the logic that is needed to handle the single cases of
loop exit unique. In Listing 6.8 the statement in line ‘10’ is used in the case
that the value x occurred in array A to increase the number of times it has
been searched for the value x by one. However, the statement is also used in
the other case, i.e., when the value x has not occurred in the array. Therefore,
the number of times of searches for x is initially set to zero in line ‘08’ in those
cases so that it can be increased correctly to one afterwards. We think that it
is somehow artificial to set the value of search times to an incorrect value first.
Therefore we made the blocks for handling the two cases under consideration
unique in the sense that there is no overlap in case handling any more.

In Listing 6.9 the lines ‘06’ through ‘08’ are only used if x has not occurred
in the array and line ‘11’ is only used if x has occurred in the array. Further-
more, lines ‘06’ through ‘08’ in Listing 6.9 completely handle the case that x
has not occurred in the array, because we changed line ‘08’ so that it imme-
diately sets the value of search the time to the finally correct value of one.
We did something else that improves the readability further in our opinion.
In lines ‘07’ and ‘08’, which assign values to fields of the arrays A and B we
have used the variable m instead of the variable i to index the wanted field.
We think that the usage of m indicates better that we currently access the
last element of each field, which fits better to the containing block.

186 6 Structured Business Process Specification

Listing 6.9 Making unique the finalizing actions that react on the single
conditions of a composed loop condition.

01 i:=1;

02 WHILE i<=m and (NOT (A[i]=x)) DO BEGIN

03 i:=i+1;

04 END;

05 IF NOT (i<=m) THEN BEGIN

06 m:=i;

07 A[m]:=x;

08 B[m]:=1;

09 END ELSE BEGIN

10 B[i]:=B[i]+1;

11 END;

Listing 6.10 shows yet another program solution for the discussed func-
tionality. Here we moved all the specific code that is needed to handle the two
cases leading to the exit of the loop inside the loop. We have done that at the
price of an auxiliary variable ‘stop’ which has the sole purpose to signalize
that the loop should be exited. Both cases that lead to an exit of the loop are
detected and handled completely inside the loop. In the program version in
Listing 6.9 each condition is tested twice, once as part of the complex loop
condition and once again after the loop has been exited. The complex condi-
tion in Listing 6.9 necessarily says something about the reasons why the loop
is eventually exited, because it conducts the respective test. The loop condi-
tion in Listing 6.10 is merely about encoding a control flow issue, however, it
is also possible to introduce a comment explaining why the loop stops after
the statement in line ‘03’ or it is also possible to encode this comment in the
naming of the loop condition variable, e.g., by using a name like

• ‘NotYetCompletelyScannedAndNotYetFound’ or
• ‘((i<=m) AND (NOT A[i]=x))’

instead of the straightforward name ‘stop’. It is up to the reader to decide
whether the program design pattern used in Listing 6.10 is more counter-
intuitive or more intuitive than the one used in, e.g., Listing 6.9 – we do not
really have an opinion about that. The program in Listing 6.10 is important
for another reason. It hints at a general solution to resolve program cycles
that have more than one exit by the introduction of extra state and extra
logic.

6.3.3 Structured Programming and Denotational Semantics

In Sect. 6.3.2 we have discussed the concept of readability of program texts.
We want to talk about readability of programs further but from a more for-

6.3 Structured Programming 187

Listing 6.10 Moving special actions that react on the single conditions of a
composed loop condition into the loop.

01 stop:=false;

02 i:=0;

03 WHILE (NOT stop) BEGIN

04 i:=i+1;

05 IF i>m THEN BEGIN

06 m:=m+1;

07 A[m]:=x;

08 A[m]:=1;

09 stop:=TRUE;

10 END ELSE BEGIN

11 IF A[i]=x THEN BEGIN

12 B[i]:=B[i]+1;

13 stop:=true;

14 END;

15 END;

16 END;

mal viewpoint this time. We take forward the main argument of this sec-
tion, which is vague or informal, but, nevertheless, is an argument. It is
fair to consider programming languages with a standard denotational se-
mantics and their programs as better understandable than programming lan-
guages with a continuation-based semantics. Imperative programming lan-
guages with a standard denotational semantics are those that are com-
pletely block-structured, i.e., those that do not allow for arbitrary jumps,
whereas programming languages with ‘go to’-statements must be treated with
a continuation-based semantics.

The discipline of formal semantics of programming languages could en-
courage us to argue further in favor of the program in Listing 6.8 as better
understandable as the program in Listing 6.7. The program in Listing 6.8 can
be given a standard denotational semantics [328, 285], whereas the program
in Listing 6.7 cannot be given a standard denotational semantics but only a
continuation-based denotational semantics [329, 330].

Basically, there are three different approaches to the formal semantics of
programming languages, i.e., operational semantics [211, 351], axiomatic se-
mantics [161] and denotational semantics [328, 285] which is also called the
Scott-Strachey-approach to the semantics of programming languages. We do
not want to delve into a distinction of these three approaches to semantics of
programming languages. We just give a short statement about the essence of
each of the three approaches. An operational semantics describes the effect
of a program as its interpretation by a machine or, more abstractly, through
the application of a reduction system to it. An axiomatic semantics tries to
characterize the impact of the single building blocks of a program onto the

188 6 Structured Business Process Specification

program state logically by identifying pre- and post-conditions for them. A
denotational semantics directly assigns a mathematical object to a program as
its semantics. Even in the standard case of functional programming languages
or imperative programming languages without jumps, these mathematical ob-
jects cannot be just functions between ordinary sets. The mathematical ob-
jects are more complex, because in general a semantics for such a language has
to deal with recursion, non-termination and higher-order functions. Therefore
the mathematical objects are complete partial orders – or lattices [317] in the
original work on denotational semantics – and continuous functions. Again,
we do not want to delve into a complex discussion of formal semantics here, in
particular, we do not want to delve into the technical aspects of denotational
semantics. What counts is an understanding that denotational semantics is a
mature apparatus in understanding the programs of a programming language
directly as mathematical objects. When we say that the quality of denota-
tional semantics lays in its direct understanding we mean that the semantics
of a program is given by semantic composition of the semantics of its direct
parts.

A major aspect of the denotational semantics of a programming language is
that it is decompositional. As we have said, the semantics of a program can be
understood directly by the application of a semantic function on the semantics
of its sub programs. The semantics of an imperative program is the transfor-
mation of a store. Given an arbitrary store, it transforms it into another store.
A store is a mapping that maps variables to values. The transformation on
stores that is specified by a program can be considered mathematically as a
function between sets. The sets must be special sets, i.e., complete partial or-
ders, and the function must be special functions, i.e., continuous function, so
that the denotational semantics works, however, for us it is sufficient to under-
stand here that the transformations are functions. Stores are also functions.
The source domain of a store is the set of variables and the target domain is
the set of possible values.

The difference between the programs in Listings 6.7 and 6.8 is the follow-
ing. For the program in Listing 6.8 a semantics can be given as a transforma-
tion of stores for all of its sub programs and recursively all the sub programs
of sub programs. This is not so for the program in Listing 6.7, because of
the ‘go to’-statement that jumps out of the loop. In order to deal with this
the sub programs must be described relatively to an extra notion of continua-
tion [329, 330], which binds semantics of exploited programs to labels used in
the exploiting program. The continuation of a program is a second argument
in addition to the store – it is a kind of environment. A continuation-based
semantics transports the operational concept of jumps to the mathematical
structures that denote programs and therefore brings the operational com-
plexity of them to these structures. The current discussion can be considered
as a reformulation of the discussion on decompositional semantics of block-
structured versus arbitrary business process models that we have conducted
in Sect. 6.2.2 and illustrated Fig. 6.6 for the field of programming languages,

6.3 Structured Programming 189

[[01]] = λσ.λv.

{
1 , v = i

σ(v) , else
(6.1)

[[03]] = λσ.λv.

{
σ(i) + 1 , v = i

σ(v) , else
(6.2)

[[02..04]] = νλF.λσ.

{
([[03]] ◦ F)σ , σ(i) ≤ σ(m) ∧ (σ(A))(i) �= σ(x)

σ , else
(6.3)

[[06]] = λσ.λv.

{
σ(i) , v = m

σ(v) , else
(6.4)

[[07]] = λσ.λv.

⎧⎪⎨
⎪⎩
λp.

{
σ(x) , p = σ(i)

(σ(A))(p) , else
, v = A

σ(v) , else

(6.5)

[[08]] = λσ.λv.

⎧⎪⎨
⎪⎩
λp.

{
0 , p = σ(i)

(σ(B))(p) , else
, v = B

σ(v) , else

(6.6)

[[06 · · · 08]] = [[06]] ◦ [[07]] ◦ [[08]] (6.7)

[[05 · · · 09]] = λσ

{
[[06 · · · 08]]σ , σ(i) > σ(m)

σ , else
(6.8)

[[10]] = λσ.λv.

⎧⎪⎨
⎪⎩
λp.

{
σ(B)(σ(i)) + 1 , p = σ(i)

σ(B)(σ(p)) , else
, v = B

σ(v) , else

(6.9)

[[01 · · · 10]] = [[01]] ◦ [[02 · · · 04]] ◦ [[05 · · · 09]] ◦ [[10]] (6.10)

however, this time against the background of a more formal treatment which
is available for programming languages, i.e., denotational semantics.

As an illustration of what we have just explained we glimpse over the
denotational semantics of the program in Listing 6.8 in a step-by-step fashion
now. The denotational semantics of the program in Listing 6.8 is given by the
Eqns. 6.1 through 6.10.

The statement in line ‘01’ assigns the value 1 to the variable i. This is also
expressed by the denotation of the statement that we have given in Eqn. 6.1.
The expression [[01]] is a shorthand notation for the semantics of the line ‘01’,
in which we have used so-called semantics brackets [[and]]. The denotation
of line ‘01’ is a function that takes a store σ – the input store – as an argu-
ment and yields a new result store. The input store and the result store are
both functions that map each variable to a value. The result store maps each
variable v to the value that it is mapped to by the input store σ except for

190 6 Structured Business Process Specification

the variable i which is mapped to the value 1 by the result store independent
of the value it is mapped to by the input store. This is exactly what the se-
mantics of an assignment statement is about, i.e., manipulating the left-hand
variable and keeping all other variables of the store as they are.

The semantics of line ‘03’ is given in Eqn. 6.2. Line ‘03’ is similar to
line ‘01’. Here, the variable that is manipulated is again the variable i, how-
ever, this time it is increased by one, which means that the result store maps
the variable i to the value that it is mapped to in the input store σ plus 1.
The semantics of the while-loop in lines ‘02’ through ‘04’ is given in Eqn. 6.3.
The semantics of [[02 · · · 04]] is defined recursively. It is defined as a function
F that takes a store σ as an input argument. The function first evaluates the
loop condition with respect to the input store. If the loop condition evalu-
ates to false, the function yields the input store as it is as the result store,
which represents adequately the termination of the while-loop. In the case
that the loop condition evaluates to true, the function F is unfolded one time
by applying the semantics of the inner block of the while-loop, i.e., [[03]] in
our case, to the input store, taking the result of this application of [[03]] and
then applying F recursively to this result. You might want to use the explicit
notation F

(
[[03]](σ)

)
for this sequenced application of first [[03]] and than F ,

however, we have decided to express it by a function concatenation
(
[[03]]◦F)

which is then applied to the input store σ as a whole.
You might also want to use a more direct notation for recursive defini-

tion like
(
F ≡DEF G(F)

)
instead of the νλ-notation

(
νλF.G(F)

)
that we

have used in Eqn. 6.3. However, the νλ-notation expresses better that recur-
sive definitions have no operational semantics but the so-called fixed point
semantics in the denotational approach to the semantics of programming lan-
guages. Without further elaboration and explanation the understanding of a
recursive definition is operational, i.e., it relies on a notion of reduction of the
program text which is reduced until a token is reached that leads to the next
reduction of the entire program text. The fixed point semantics is another
viewpoint on recursion. It defines the recursive function

(
F ≡DEF G(F)

)

as the smallest fixed point of the higher oder function
(
λF.G(F)

)
. At a first

sight, the fixed point semantics is less operational, however, it is also somehow
operational by the way the smallest fixed point is constructed as the limit of
the endlessly repeated application of the considered higher order function to
the bottom element ⊥ of its input domain – see the fixed point theorem of
Knaster-Tarski [336] and, e.g., [145] for further reference.

We have said that the stores that are transformed by programs are map-
pings that map variables to values. In our case the store is nested for some
variables, i.e., the array variables. First the application of the store to an ar-
ray name yields a further function that maps position indexes to result values.
Then, the application of this function to a concrete position index yields the
array value. For example, the expression (σ(A))(i) in Eqn. 6.3 stands for the
concrete array value A[i]. According to this, the updates to array values are

6.4 Frontiers of Structured Business Process Modeling 191

modeled in Eqns. 6.5, 6.6, and 6.9. The semantics of the program lines ‘06’
through ‘08’ should be self-explaining now.

The semantics of a sequence of program statements is given by the con-
catenation of the function that they denote. The semantics of the program
that consists of the lines ‘06’ through ‘08’ in Eqn. 6.7 is an example for this.
The semantics of the lines ‘05’ through ‘09’ is now defined by Eqn. 6.8. The
lines ‘05’ through ‘09’ form a case construct. Equation 6.8 checks the case con-
dition on the store. If it evaluates to false the result store remains the same,
otherwise the result store is yielded by the application of the semantics of the
lines ‘06’ through ‘08’ to the store. The semantics of the program line ‘10’ in
Eqn. 6.9 should be again self-explaining. Finally, the semantics of the whole
program is defined as the concatenation of the semantics of its direct program
parts in Eqn 6.10.

In the example we have constructed the program semantics bottom up.
The example has shown that program semantics can be given by composition
of the semantics of its program parts. In the case of programs without ‘go to’-
statements the semantics of all program parts can be given homogenously as
transformation of stores. This is not so for programs with ‘go to’-statements.
This means that this is not so for programs with ‘go to’-statements in general.
Some programs with ‘go to’-statements can also be given a standard semantics.
We call a semantics that is given homogenously as transformation of stores for
all program parts a standard denotational semantics or standard semantics
for short. If a program with ‘go to’-statements has only such circles that
can be exited by no more than one means, it can also be given a standard
semantics. The program in Listing 6.7 has no standard semantics, because
the circle realized by the program while-loop in lines ‘02’ through ‘05’ is a
circle that can be exited by two means, i.e., the loop-condition in line ‘02’
and the ‘go to’-statement in line ‘03’. Therefore, the program in Listing 6.7
must be interpreted as a program of a programming language with ‘go to’-
statements and, as we have said earlier, a programming language with ‘go to’-
statements does not have standard denotational semantics but must be given a
non-standard denotational semantics, e.g., a continuation-based denotational
semantics.

6.4 Frontiers of Structured Business Process Modeling

We are not able to characterize the subset of business processes for which we
believe that structured process descriptions, i.e., structured business process
models, are better. However, we have argued against the hypothesis that this
subset equals the set of all business processes. This means, we say that the
postulation that all business processes should be structured [162] is arguable.
We do not say that the statement is false; this would be to harsh, because the
message that all business processes should be structured is not a statement
with a truth value but a postulation. Furthermore, we argue in a yet informal

192 6 Structured Business Process Specification

setting, which is the pragmatics of system specification methodology. For the
same reason, we would say that it is not appropriate to say that the message
is true.

However, eventually we dare to say: It should not be postulated that all
business processes should be structured. This is a negative result. Neverthe-
less, it is an important result, because it can help modelers in preventing
pitfalls.

Structuring is considered a proven concept in program design. We have
discussed structured programming in Sect. 6.3. The overall question behind
the discussion in Sect. 6.3 is whether structured programming is actually as
proven as it is considered. We have discussed an example program of the es-
tablished computer science author Donald E. Knuth that he actually considers
as a counter-example for structured programming. What interests us here is
merely the fact that an established computer science author argues against
the general validity of the structured programming paradigm. Actually, Knuth
has argued that the non-structured program in Listing 6.7 is somehow better
than the structured program version in Listing 6.8, in particular also because,
in his opinion, it is slightly better readable than the program version in List-
ing 6.8. We have said that we do not think so and that we actually feel that
the structured program version in Listing 6.8 is better readable. In that sense
we have actually defended structured programming. For us, it is important to
show, that the standing of structured programming should not be used with-
out care in the argumentation for a structured approach to business process
modeling.

The arguments that are given in favor of structured programming:

• Improved readability.
• Improved maintainability.
• Improved testability.

With respect to validation the arguments have different levels of formality.
The longer the structured approach is used as the best practice in real-world
projects, the more we rely as a software engineering community in the va-
lidity of its claims. Empirical software engineering [36] with its experiments
could offer tools for the more systematic evaluations of a software engineering
approach, pattern, method and so on. The arguments in favor of a struc-
tured approach must be basically the same for the domain of programming
languages and the domain of business process modeling language. And the
same holds for the claims of structured business process modeling as holds for
the claims of structured programming. Without systematic investigation they
must be proven through experience in real-world projects and feedback from
software engineers in real-world projects.

However, what we have tried to argue in this section is that the standing
of structured programming can not simply be transferred to a structured
business process modeling approach, even if it would be taken for granted
that structured programming is without doubt the best practice in program

6.4 Frontiers of Structured Business Process Modeling 193

design. We summarize the reasons for this in the following. The semantics
of programming languages is different from the semantics of business process
modeling languages. The semantics of a program is a state transformation.
The state transformation of a program is achieved compositionally by the
parts of the program which again have state transformations as semantics. It
does not matter, how a program achieves the overall state transformation with
its inner state transformations. This fact opens a space for program design. A
program with better design, i.e., with improved readability, maintainability,
testability and the like can be taken to replace a program with a weaker
design. Business processes may also manipulate state and therefore may cause
a state transformation as a side-effect. However, they have an observational
semantics. In particular, two business process descriptions are considered as
equal if they are observational equivalent. For a program, the processing does
not count – as long as we have not to deal with reactive programming and
the like. What counts for a program is the result. Two programs are equal if
they evaluate to the same result; they are equal if they stand for the same
state transformation.

Two business process descriptions may not be interchangeable even if they
always have the same effect with respect to a business objective. This is be-
cause each modeling element stands for a real-world activity and a business
process is a plan for doing work. Therefore, the opportunities for reshaping a
given business process description are in general much more restricted than
the possibilities for reshaping a program. You can reshape a program as much
as you want and, in particular, as much as you think it improves the design
of the program text, as long as you ensure that the resulting reshaped pro-
gram has the same semantics. It is even a best practice to abstract from the
implementation, to hide the implementation of functionality. All this does not
immediately hold also for business process modeling. We give a further small
example for the limitation in freedom for reshaping in Fig. 6.14 that works
even without a discussion of structuring principles and structured modeling
languages.

α

A

A

B

C

α

B

C

A
y y

n n

(i) (ii)

Fig. 6.14. Two business processes that are not behavioral equivalent.

Figure 6.14 shows two processes. In process algebraic notation [249, 250]
process (i) is α.A.B + ¬α.A.C and process (ii) is A.(α.B + ¬α.C). Now, let
us assume that A has no impact on the outcome of the decision α. If we
interpret the two processes (i) and (ii) as programs of a usual programming
language with A, B and C being statements, this would mean that A is not

194 6 Structured Business Process Specification

manipulating those parts of the system state that is tested by α. If (i) and (ii)
were programs we now could start a discussion on whether we would prefer
the program design of (i) over the program design of (ii). For example, the
inner reuse of activity A in (ii) is a plus, because it improves maintainability.
But (i) and (ii) are business process description and the discussion about
which one has the better design is limited even if α is independent of A and,
therefore, A and B have the same effect with respect to the business objective.
The problem is that also α describes an activity, i.e., a test that is conducted,
that occurs in the real world. And it might be a huge difference whether you
conduct the test at the beginning of the process or conduct it in the middle
after activity A for several reasons. One such reason might be that α tests
some property of a good that flow through A and the good occurs at another
location after A than before A and the location of the good before A is much
more suited for conducting the α-test than the location after the processing
of A.

The described problem of reshaping a business process description –
against the fact that business process modeling must be in first place domain-
oriented and only in second place artifact-oriented – is the basic motive also
in the other examples of this section.

7

Workflow Technology and Human-Computer
Interaction

The purpose of this chapter is to characterize workflow-intensive systems from
a human-computer interaction viewpoint, i.e., it explains how a typical IT
application is experienced by a user. It explains how a typical IT application
structures the work of its user. Therefore the notion of worklist is explained
and how current workflow technology orchestrates applications and programs
that implement system dialogues on the basis of a worklist paradigm. As an
important by-product the chapter contributes to the understanding of the
gap between workflow definition and application programming. The chapter
also discusses how workflow technologies can support the assignment of actors
to tasks. Again, we try to conduct the discussion as product-independent as
possible. What interests us are the basic concepts behind concrete role models
found in today’s workflow technologies.

7.1 Two HCI Styles of Workflow Systems

We distinguish between two kinds of possible workflow systems and coin the
following terms for them:

• Terminal/server-style workflow systems
• Windows-style workflow systems

The two kinds of workflow technologies are distinguished by the degree of
parallelism they reveal to the user of the workflow system. The two workflow
systems styles are not about implementation technology as the chosen names
of terminal/server-style and windows-style might suggest. They are about the
capabilities to visit and arrange the dialogues that make up the workflow
system as experienced by the users. The implementing technology is not the
point. A terminal/server-style workflow system can be implemented with a
windowing toolkit. However, it remains a terminal/server-style workflow sys-
tem. This is similar to the many form-based application generators which

© Springer-Verlag Berlin Heidelberg 2010

195
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_7,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

196 7 Workflow Technology and Human-Computer Interaction

generate rich clients and allow for further development of them usually in an
object-oriented, event-based technology. With these application generators the
resulting rich client nevertheless only realizes a strict submit/response-style
system and not a highly interactive user interface that really exploits the capa-
bilities of the underlying event-based technology. Also vice versa, what we will
define as windows-style workflow system or windows-experience of workflow
consumption can be implemented in a terminal/server-fashion of user interac-
tion. Also other names for the two workflow styles like single-user-single-task
for the terminal/server-style and single-user-multiple-tasks for the windows
style would be appropriate, however, we think that terminal/server-style and
windows-style are highly suggestive terms once the technology-independence
of the notions they represent has been understood.

7.1.1 Degree of Parallelism Revealed to the User

In a workflow system process instances are initially started by a user via
a process instantiation menu. Activity instances are launched to be started
upon the completion of other tasks. The activity that are ready to start are
presented to the user in a worklist, also called activity list or task list. The
worklist allows the user to select an activity instance and to start it. The
process instantiation menu and the worklist structures the work of the user at
the human-computer interface. Further structure is provided by the dialogues
that support the running activities.

Parallelism in workflow systems as experienced by a single user stems
from the possibility to start several process instances as well as from paral-
lel sub processes in workflow definitions. All workflow systems allow the user
to experience parallelism by arbitrarily intertwining the activities from dif-
ferent process instances or different sub process instances, or, to say it more
precisely to intertwine the dialogues that support the activities. However, in
general the granularity of such intertwining is at the granularity of starting
and completing a dialogue supporting an activity. This means it is necessary
to distinguish between such coarse-grained states that are made of the ac-
tivities that are ready to be executed and the fine-grained states that are
made of the state of screens of the dialogues of the workflow system. Ac-
cording to these different kind of states it can also be distinguished between
coarse-grained and fine-grained user interactions. Coarse-grained user interac-
tion creates new process instances and starts or completes activity instances.
Fine-grained user interactions edit forms and trigger server actions that lead
to new screens.

In form-oriented analysis [89] we have considered the single user working
in a single user session of a submit/response-style system. In form-oriented
analysis we have characterized the user interaction as following a two-staged
interaction paradigm. The interactions that trigger server actions and lead to
new screens are considered as coarse-grained in systems that implement a two-
staged interaction and the interactions with the single screens are considered

7.1 Two HCI Styles of Workflow Systems 197

as fine-grained. In the modeling of form-oriented analysis this distinction be-
tween coarse-grained and fine-grained interactions is exploited to describe the
system navigation and behavior in terms of the coarse-grained interactions
and to abstract away from the fine-grained interactions wherever suitable.
Here, in the current strand of discussion we further consider a third kind of
interaction which has been described as more coarse grained and deals with
the navigation via the worklist yielding a three-staged interaction. The fine-
grained user interactions of this discussion, i.e., navigations between screens
and screen interactions are than again distinguished as coarse-grained and
fine-grained as in form-oriented analysis.

The distinctions between the different kinds of interaction help to structure
and develop the discussion on parallelism revealed to the user in the sequel. In
Sect. 7.1.2 we start with a workflow system that is restricted to two out of the
three kinds of interactions just described, i.e., the coarse-grained navigation
via the worklist and the most fined grained interactions with single forms.
This means, that we consider the special case of a workflow system in which
each activity is supported by only one screen and not yet by a complex dia-
logue or application. This special case is not merely interesting for didactical
purposes but has practical relevance. Workflow management system products
and today’s business process management suites combine a rapid develop-
ment tool for screen and form composition with the executable specification
of workflows. If such a technology is not used as a means of meshing together
existing applications but as a software development environment to build a
new information system from scratch this typically results in this special case
of workflow system. In any case you will be able to identify crucial portions
of the workflow system that adhere to this special case. Then in Sect. 7.1.3
we consider workflow systems that contain all of the three described kinds of
user interaction.

7.1.2 Dialogues Realized by Single Form Screens

Figure 7.1 shows a simple workflow definition. The workflow consists merely
of a pure sequence of activities to be scheduled on after the other. Most im-
portantly for the current considerations is the fact that all the activities are
assigned to the same user. Each of the activities is realized by a single screen
that typically includes a form to be filled out and submitted by the user.
In general, an activity can also be realized by a complex dialogue consist-
ing of several screens to be invoked. The considered case with only one form
screen for each activity is particularly simple but is already sufficient to discuss
the distinction between terminal/server-style and windows-style workflow sys-
tems. In currently used workflow definition languages the specification of the
implementing dialogues usually does not belong to the workflow definitions.
In Fig. 7.1 activities are depicted in the style of usual event-driven process
chain notation by rounded rectangles embedded into a start and end event
depicted by a hexagon.

198 7 Workflow Technology and Human-Computer Interaction

The screens and forms that make up the activity support of the workflow
system are depicted by bubbles and rectangles, i.e., in the style of the concrete
formchart notation discussed in [89]. Activities in Fig. 7.1 are labeled with
uppercase letters. Each screen is labeled with the same letter as the activity
it belongs to in lowercase and a form that appears on one of those screens
gets the same letter as the screen it appears on. We have mingled together
freely a notation for workflow definition and the formchart notation for user
interaction definition into one diagram in Fig. 7.1. The forms that the user
can fill out and submit on the various activity screens are not the only user
interaction capabilities that we have depicted in Fig. 7.1. Also the start button
of start link that appears on the worklist page and leads to the selected activity
page is always shown. In the sense of formchart notation all the activities of
the workflow definition part of the diagram in Fig. 7.1 together stand for the
worklist page of the workflow system.

Fig. 7.1. Process definition with one form for each activity as implementing system
dialogue.

Terminal/Server-style Realization

Figure 7.2 shows a human-computer interaction with a terminal/server-style
workflow system that realizes the workflow defined in Fig. 7.1. Let us assume
that, initially, three process instances have been launched and the user can
select to start the first activity of one of the process instances. Yet another
synonym for activity, i.e., task, has been used as a headline of the worklist in
Fig. 7.1. Each of the process instances that has been launched has a unique
identifier ranging from ‘01’ to ‘03’ in the current example. The worklist always
shows all the next possible activity instances of each active process instance.
Each activity instance appears in the worklist with the name of its corre-
sponding activity concatenated to the identifier of its process instance.

Initially, the user in the current example selects the activity ‘A02’ and
starts it by pressing the start button. As a result the corresponding page and
form are represented to the user. The user can edit the form and submit it.
As a result of this he is redirected back to the worklist where he can select

a a

Start

A

b b

Start

B

c c

Start

C

d d

Start

D

7.1 Two HCI Styles of Workflow Systems 199

the next activity. In the worklist the label of the completed activity instance
has been replaced by that of the next activity in the process instance that
is now ready for activation. If an activity is started and the corresponding
form is presented to the user the worklist is inactive, i.e., it is not possible for
the user to start yet another activity in parallel to a started one. Actually, in
the current example presented in Fig. 7.2 it is meant in such a way that with
the selection and start of an activity the worklist really disappears from the
computer screen.

Start

Tasks A02:a
foo1.
bar2.
zapf3.

Submit

A01
A02
A03

Start

Tasks
A01
A03
B02

A01:a
you1.
can2.
try3.

Submit

B01:b
asd1.
ist2.
nun3.

SubmitStart

Tasks
A03
B02
B01

C01:c
fer1.
qwe2.
dd3.

SubmitStart

Tasks
A03
B02
C01

Fig. 7.2. Strictly chained forms of a terminal-server style workflow system.

Drawbacks of Terminal/Server-style Workflow Systems

In Fig. 7.2 the user must wait with the selection and start of a new activity
instance until he has fully filled out the form belonging to the current activity
instance. The work is a strict interchange of selecting from the worklist and
completely finishing activity dialogues. We call this kind of workflow-system
a terminal/server-style of workflow system. The drawback of such workflow
systems is that with the structuring of the workflow into activities the degree
of parallelism revealed to the user is fixed once and forever. If a form is very
long the user might want to start another form in parallel. Actually, this is
not a real strong argument against the terminal/server-style workflow system.
However, it is at least a soft argument against it. It is an argument against
it in the sense of good human-computer interaction principles. For example,
controllability is a dialogue principle of good human-computer interface de-
sign, which is, e.g., described in part 110 on dialogue principles of the ISO
standard 9241 on ergonomics for human-system interaction, i.e., ISO 9241-
110:2006 [185], formerly very well known as ISO standard 9241 on ergonomic
requirements for office work with visual display terminals, part 10, i.e., ISO
9241-10:1991 [176]. In terms of ISO 9241 controllability stands for the ability
of the user to control the direction and pace of the dialogues of a system. The
user interface guidelines [358] of the Microsoft Developer Network (MSDN)
have an even more narrative description of this principle for which they coin
the term ‘user in control’, i.e., a user is in control of the dialogues if he feels
in control of them rather than feeling controlled by them. With respect to
the terminal/server-style workflow system it is fair to state that a user might
rather feeling controlled by a dialogue if he cannot escape from it but rather
is obliged to fully complete it.

200 7 Workflow Technology and Human-Computer Interaction

The blocking of the user from visiting other dialogues in a terminal/server-
style workflow system can easily be experienced as limiting the user’s control-
lability. On the other hand, it can be also experienced as inefficient by a user
to be directed back too often to the worklist where he is able to select the next
dialogue to enter. The ability to select a subsequent activity instance can not
only be a benefit in terms of controllability but also a burden in terms of effi-
ciency. Therefore, in a terminal/server-style workflow system it is a challenge
to find the appropriate balance between controllability and efficiency, i.e., to
find the appropriate granularity of workflow states.

At least if a business process management suite is not used as an en-
terprise application integration technology, there is usually a design space
in partitioning the system into dialogues eventually resulting into workflow
states. In order to give an impression of what has been said, Fig. 7.3 visualizes
the fact that in our current example depicted in Fig. 7.1 it might be possi-
ble to mingle all the dialogues together by simply combining the reports of
the several pages and connecting the forms to one superform without loss of
functionality. We do not delve into the topic of general commensurability or
interchangeability of dialogues here, however, as a side remark to Fig. 7.3 it
should be said that the combination of dialogues might not always be possible
as easily as depicted. For example, it becomes hard if the report on one page
depends on the user’s input to one of the preceding pages in Fig. 7.1.

Fig. 7.3. Alternative activity support by a superform-based dialogue.

A strong argument against the terminal/server-style of workflow systems is
that the blocking of the user imposed by the dialogues can lead to hard delays.
The user should have all information needed to finish a dialogue supporting
an activity ready before he starts it, otherwise he is forced to gather it after
he has started. This means he has to finish all business processes or tasks in
the context of the workflow system supported activity before he can actually
proceed with other activities of the workflow system. In the worst case the
user is blocked by waiting for the opportunity to finish a certain task and to
gather the information necessary to complete the dialogue.

a/b/c/d

a
+
b
+
c
+
d

Start

A

7.1 Two HCI Styles of Workflow Systems 201

Parallelism Revealed by Terminal/Server-style Workflow Systems

The explained drawbacks of terminal/server-style workflow systems stem from
limited support for parallelism. In terms of the discussed three-staged inter-
action model terminal/server-style workflow systems prevent parallelism at
the level of screen interaction and the level of triggering new screens inside
an activity supporting dialogue. Nevertheless, terminal/server-style workflow
systems allow for some degree of parallelism. They allow for quasi-parallelism
at the level of completed dialogues. This means, through the concept of work-
list the user has the freedom of choice in how he intertwines the activities of
the various activated process instances against each other. At the one extreme,
he can choose to finish all the activities of one process instance one after the
other before he starts an activity of another process instance. At the other
extreme he could choose a round-robin style. In our example this amounts
to starting the same kind of activity instance of all of the activated process
instances one after the other before proceeding with another kind of activity
instance.

The statements on the limited support for parallelism only hold for the
single user working in a single user session at the terminal/server-style work-
flow system. With respect to the dialogues supporting different users even a
terminal/server-style workflow system allows for full parallelism. The execu-
tion of a dialogue supporting one user is completely independent from the
execution of all the dialogues supporting other users unless special coordi-
nation efforts are implemented. As we will see in due course, the limitations
on parallelism experienced by the single user can be overcome, however, the
parallelism by a single user will always be a kind of quasi-parallelism. This
is so, because in every solution the finest granularity of quasi-parallelism is
the level of single key strokes – the single user is able to operate at most one
keyboard.

Allowing for More Parallelism

Figure 7.4 shows the human/computer interaction with a system that also re-
alizes the workflow defined in Fig. 7.1. The system supports with its dialogues
the same functionality as the system shown in Fig. 7.2, however, it allows for
more parallelism to be experienced by the user. The difference is in a detail,
i.e., in an additional save button on the pages supporting the single dialogues.
Again, the user starts by selecting and starting the first activity instance of
the process instance with identifier ‘02’. Again, as a consequence, the worklist
disappears from the computer screen and the page supporting the activity
appears.

Then the user partly fills out the form provided on the page but suddenly
decides not to complete filling out the form with all necessary data. Instead
he decides to suspend the work on the current activity and to proceed with
an activity instance of another process instance first. He does so by clicking

202 7 Workflow Technology and Human-Computer Interaction

the save button on the page. As a result the current activity supporting page
disappears and the worklist reappears on the computer screen. However, unlike
the system depicted in Fig. 7.2, the activity ‘A02’ has not disappeared from
the worklist, i.e., in terms of its members the worklist has remained the same
as before the invocation of the activity instance. The only difference is that the
currently visited activity instance is shaded in the worklist, i.e., it is visualized
in a thinner font as well as in italic letters. This means that activity instances
that have never been started are visualized in a different manner than those
that are suspended by the user. These different visualization are not necessary
for the user to achieve his tasks but might help him in structuring his work
and selecting the next activity to work on.

As the next step the user selects and starts the first activity instance of
another process instance, i.e., the process instance with identifier ‘03’. He
completes the appearing form and submits it. As a result the activity in-
stance ‘A03’ is replaced by the next activity instance ‘B03’ of process instance
‘03’. Now, the user chooses to resume the previously suspended activity in-
stance ‘A02’. He selects it in the worklist and restarts it by pressing the start
button – the slight misnomer of the start button with respect to its usage as
a restart or resume button should be no problem here. The page supporting
the activity reappears in the same state it was in when it disappeared when
the activity was suspended by the user. This means that the workflow system
has preserved the result of the fine-grained user interaction on that page. In
particular the data that the user has entered into the form so far are there
again and the user can proceed with working with the page as if it has never
been suspended. After finally submitting the form the activity instance ‘A02’
is replaced by an activity instance ‘B02’ in the worklist.

Work

Tasks
A02:a

foo1.
b2.

3.
Save

A01
A02
A03

Submit
Work

Tasks
A01
A02
A03

A03:a
this1.
isr2.
eally3.

Save

Submit
Work

Tasks
A01
A02
B03

A02:a
foo1.
b2.

3.
Save

Submit

A02:a
foo1.
bar2.
asd3.

Save

Submit
Work

Tasks
A01
B03
B02

Fig. 7.4. Workflow system that allows for saving screen states.

Exploiting Windowing in Allowing for More Parallelism

Figure 7.5 shows the human/computer interaction with yet another system
that realizes the workflow defined in Fig. 7.1. The realizing system exploits a
standard windows engine in its implementation to allow for the desired amount
of parallelism. The worklist does not occupy the whole screen anymore, it is
shown in a window that resides on the root pane of the windows interface.

7.1 Two HCI Styles of Workflow Systems 203

As in the example presented in Fig. 7.4 the user chooses to start activity
instance ‘02’ as the first action. As a result a new window that shows the
activity supporting page pops up. However, the window with the worklist
does not disappear. Furthermore, as a result of starting the activity instance
its label in the worklist immediately becomes shaded to signal that it has
been started. As in the example presented in Fig. 7.1, the user starts working
on the activity instance ‘02’ but decides to suspend it in order to work on
activity instance ‘03’ first. However, because windows technology is exploited
no explicit save button is needed on the activity pages any more. The user
just starts the activity instance ‘03’ and a respective windows pops up and
becomes active. In the example, activity instance windows that are active have
a black horizontal bar at the top, whereas activity instance windows that are
currently inactive have a white bar at the top.

Unlike the example in Fig. 7.1 the user also decides not to completely fin-
ish with activity instance ‘03’ but to resume it like activity instance ‘02’. As
a next step, he resumes activity instance ‘02’. He does so by selecting activity
instance ‘02’ and starting it via the worklist. As a result the window of ac-
tivity instance ‘03’ becomes inactive and the window of activity instance ‘02’
becomes active. The user can switch between the two activity instance win-
dows back and forth to intertwine the work on the single activity instances at
arbitrary fine level of granularity, i.e., down to the level of single key strokes
as already mentioned.

A02:a
foo1.
b2.

3.
Submit

Start

Tasks
A01
A02
A03

Start

Tasks
A01
A02
A03

A02:a
foo1.
b2.

3.
Submit

Start

Tasks
A01
A02
A03

A03:a
this
isr
ea

Submit
Start

Tasks
A01
A02
A03

1.
2.
3.

A03:a
this
isr
eally

Submit

A02:a
foo1.
b2.

3.
Submit

Fig. 7.5. Exploiting windowing for saving screen states of a workflow system.

The system presented in Fig. 7.5 allows for as much as parallelism as the
system represented in Fig. 7.4. However, it does not allow for more parallelism.
The same schedules in terms of key strokes on different activity instance pages
can be realized with both systems. The only difference is a slight change in
comfort. With the system in Fig. 7.4 the user always needs one more click in
order to suspend the current activity and to invoke a new activity instance
page, i.e., the click onto the save button of the current page. In that sense the
system in Fig. 7.4 implements a windows mechanism, which becomes clear if
one perceives the single activity instance pages of the dialogue as maximized
windows, i.e., windows that occupy the whole screen, and the save button as
a window minimizing or shrinking button.

204 7 Workflow Technology and Human-Computer Interaction

The Windows Metaphor

Windowing as described in Alan Kay’s work on the reactive engine [195] con-
sists of two concepts, i.e., virtual screens, and windows management – see
Fig. 7.6. A virtual screen is a screen that is actually too large to be displayed
on a computer terminal. With windowing it is possible to experience a virtual
screen with a viewport that is small enough to be displayed on the computer
terminal. With the viewport’s scrollbars it is possible to scroll through the
virtual screen. Because of this feature it is fair to say that the computer ter-
minal is already a graphical user interface, even if it is only used to run, e.g.,
text manipulating applications. On the other hand, the viewport can be even
smaller than the actual computer terminal, so that it can be placed arbitrarily
on the computer terminal allowing for displaying other things, in particular
other viewports. The containers used to display a viewport on the computer
display are called windows. A virtual screen can be used to display the page
of an application’s dialogues, so, windows can be used to run applications or
sub applications. Many windows can be displayed and managed on the graph-
ical user interface. Windows management is about direct manipulation of the
windows on the computer terminal, i.e., it provides a means to move a window
around, to minimize a window, i.e., to shrink it to an icon, to restore it, i.e.,
to bring back a window from an icon it has been shrunken to, and the like.

virtual screens

windows

viewports

computer terminal

Fig. 7.6. Virtual screens versus viewports versus windows.

If an application or sub application is running inside a window, shrinking a
window completely keeps the window’s screen state for later restoring. There-
fore a window is a virtualization, i.e., a window is virtual computer terminal.
The term virtual screen was reserved by [195] for the background screens that
is larger than the real computer terminal, but a window is actually also a vir-
tual screen in its own right. We have chosen the term windows-style workflow
system for all workflow systems that allow its dialogues to be suspended and
resumed in the restored fine grained screen state they were in when they were
suspended. We have chosen the name because the shrinking and restoring of
windows, which accomplishes exactly this, is such a characteristic feature of
the windows management part of the windows paradigm. We use the name

7.1 Two HCI Styles of Workflow Systems 205

even for those systems that do not fully realize a windowing experience with
all its window management features but at least those that are needed to
reveal the crucial amount of added parallelism to the user.

The insight that windowing is a virtualization concept also shows us the
potential for exploiting application virtualization technology like currently
emerging appliance execution engines to hook together existing applications
in interplay with business process management technology.

Root Pane Serving as Worklist

In the example in Fig. 7.5, an activity instance window can be activated via
the worklist, i.e., by selecting and starting or restarting it. But this is not
the only way to resume an activity instance. Also the built-in feature for
activating windows of the underlying windowing engine can be exploited. An
activity instance window can be activated in the example simply by clicking
on it. Clicking on a currently inactive window, of course, also deactivates
the currently active window. This shows that there is a level of redundancy
between the concept of worklist and the windowing features. Actually it is
possible to get rid of the explicitly implemented worklist completely. This is
expressed by Fig. 7.7. The system represented in Fig. 7.7 is a variant of the
system discussed in Fig. 7.5 that works without an worklist. The idea is simply
that the root pane itself can serve as the worklist.

A03:a
1.
2.
3.
Submit

A02:a
1.
2.
3.
Submit

A01:a
1.
2.
3.
Submit

A03:a
1.
2.
3.
Submit

A02:a
1.
2.
3.
Submit

A02:a
foo1.
b2.

3.
Submit

A03:a
1.
2.
3.
Submit

A01:a
1.
2.
3.
Submit

A02:a
foo1.
b2.

3.
Submit

A02:a
1.
2.
3.
Submit

A01:a
1.
2.
3.
Submit

A03:a
this1.
isr2.
ea3.

Submit

Fig. 7.7. Exploiting the root pane of a windowing system as worklist.

In the system of Fig. 7.7, starting a process instance means that the win-
dow or possibly the windows of its first activity instance resp. instances pop
up on the root pane. In our case three process instances have been started
and therefore three initially inactive activity instance windows reside on the
root pane. Starting or resuming an activity instance is always done by sim-
ply clicking at and this way activating the corresponding window. Suspending
an activity instance is the result of starting or resuming a different activity
instance.

The explicit worklist has its justification from a human-computer interac-
tion viewpoint. It provides the user with an overview of all open tasks and a

206 7 Workflow Technology and Human-Computer Interaction

means to navigate between them at a single designated spot. In the system
Fig. 7.7, we have not yet made use of the standard windows management
features of shrinking and restoring a window. If all of the activity instance
windows in Fig. 7.7 are shrunken to icons this actually results into a kind of
worklist similar to the ones in Figs. 7.4 or 7.5. This is what is actually done
by the system realized in Fig. 7.8. Unlike the system in Fig. 7.7 the system
does not generate the full activity instance windows at the beginning but only
iconized versions of them. Then clicking on the iconized window of an activity
instance resembles very much the selection and start of an activity instance via
an explicitly implemented worklist. The respective activity instance window
pops up and is ready for form editing.

Unlike the windows in Fig. 7.7 the activity instance windows in Fig. 7.8
have a minimizing button at the top-right corner. In the user interaction of
Fig. 7.8 the minimizing button plays the same role as the save button in the
user interaction shown in Fig 7.4.

A01:a
A02:a
A03:a

A01:a

A03:a

1.
2.
3.

A02:a
foo1.
b2.

3.
Submit

A01:a
A02:a
A03:a

A01:a
A02:a

1.
2.
3.

A03:a
this1.
isr2.
ea3.

Submit
A01:a
A02:a
A03:a

A01:a

A03:a

1.
2.
3.

A02:a
foo1.
b2.

3.
Submit

Fig. 7.8. Fully exploiting windowing for saving screen states of a workflow system.

The discussion here is not about proposing that workflow systems should
be realized without an explicitly implemented worklist. The purpose of the
discussion is to clarify the semantics of the worklist concept from a human-
computer interaction viewpoint, i.e., it is about explaining that the essential
functionality of a worklist has the semantics of a root pane gathering activ-
ity instance windows or iconized windows in the framework of a windowing
technology. An explicitly implemented worklist can be made subject to so-
phisticated features for organizing the task items. We have already seen one
such feature in the examples of Figs. 7.4 or 7.5, i.e., the different appearance
of activity instances that have been started in the past and those that have
never been started. The worklist is also the natural place for administrative
task management features like the rescheduling of a task to another role or
person in the organization.

7.1.3 Dialogues Realized by Multiple Screens

So far, in Sect. 7.1.2 we have discussed the difference between terminal/server-
style and windows-style systems merely against the background of the special

7.1 Two HCI Styles of Workflow Systems 207

case of workflow systems with single page and single form dialogues, i.e.,
systems where each of the dialogues that support the activities consists of
exactly one page and form only. Fortunately, all the crucial arguments given
in the discussion so far generalize more or less immediately to the full case of
three-staged interaction.

Fig. 7.9. Process definition with complex activity implementing system dialogues.

Figure 7.9 shows a workflow system description similar to the one in
Fig. 7.1. The actual workflow definition with its activities and the single user
attached to them is the same in Fig. 7.9 and Fig. 7.1. The difference is in the
implementing dialogues. In Fig. 7.9 the dialogues are complex, i.e., they do
not consist of just one page and form each but of three pages and forms each.
The user has to trigger page changes in order to step through the dialogues.

Figure 7.10 shows an example user interaction of a terminal/server-style
workflow system that realizes the workflow description in Fig. 7.9. Once a
user has started a dialogue that belongs to a certain activity instance via the
worklist, the user must step through the entire dialogue. He must completely
fill in all required data in all the forms on all pages of the dialogue. Only when
the user has reached the last page of the dialogue and submitted the last form
is he routed back to the worklist again where he can select and start a new
dialogue.

In the current example we have to deal with all three kinds of user inter-
action that we have identified for workflow systems, i.e., navigation via the
tasks list, navigation across the pages of a dialogue, and interaction with the
single pages of the dialogues. In the examples of Sect. 7.1.2 we only had to
deal with two kinds of user interaction, i.e., navigation via the tasks list and
interaction with the single pages of the dialogues. The blocking of the user en-
countered in the terminal/server-style of the workflow definition in Sect. 7.1.2
now spawns all kinds of interactions of a user with the dialogue in Fig. 7.10.
Despite that, there is no crucial difference. The drawback of blocking seems to
be more severe in the case other work is blocked with a complex dialogue than

a1

a1

toa1

A

a2

a3

a3

a2

b1

b1

tob1

B

b2

b3

b3

b2

c1

c1

toc1

C

c2

c3

c3

c2

d1

d1

tod1

D

d2

d3

d3

d2

208 7 Workflow Technology and Human-Computer Interaction

blocked by work on a single supporting page and form. However, in general it
depends on the design of the dialagues compared. A large, i.e., typically scrol-
lable page and form with, e.g., hundreds of input fields is even more complex
than a concrete complex dialogue, which may simply consist of two very small
pages and forms.

A02:a1
foo1.
bar2.
zapf3.

Submit

ding1.
bats2.
mac3.

Submit

ben1.
ach2.
can3.

Submit

A02:a2 A02:a3 A01:a1
you1.
can2.
try3.

Submit

to1.
und2.
ers3.

Submit

and1.
tha2.
ttt3.

Submit

A01:a2 A01:a3

A A

B01:b1
asd1.
ist2.
nun3.

Submit

aba1.
nix2.
hier3.

Submit

all1.
och2.
den3.

Submit

B01:b2 B01:b3 C01:c1
fer1.
qwe2.
dd3.

Submit

orzu1.
deda2.
bnu3.

Submit

nefg1.
ga2.
tuht3.

Submit

C01:c2 C01:c3

B C

Start

Tasks
A01
A02
A03

Start

Tasks
A01
A03
B02

Start

Tasks
A03
B02
B01

Start

Tasks
A03
B02
C01

Fig. 7.10. Strictly chained process execution in a terminal-server style workflow
system.

With respect to windows-style workflow, systems with complex dialogues
differ from systems with single page dialogues in the complexity of the state
that must be saved and restored when a dialogue is suspended and resumed.
In the examples discussed in Figs 7.5 through 7.8 each of the popped up
windows is the first window of a started sub application. Whether the whole
started dialogue is experienced in the initial window, or the sub application
itself makes heavy use of windowing with popping up dialogues for its own
sub application principally does not matter. However, with activity instance
supporting dialogues that extensively use windowing subtle issues may arise
with respect to the user expectations.

For example, if a dialogue opens several windows it should be enforced
that they are all closed on completion of the dialogue. This could be achieved
by deactivating those buttons that stand for final data submission, i.e., that
stand for the completion of the activity instance, as long as they are auxiliary
windows open in that dialogue. Another solution is to implicitly shut down
these windows and therefore implicitly accept the data gathered by the user
within these windows whenever such a final button is pressed. Both solutions
are kinds of sub dialogue synchronizations. As a pattern, such synchronization
techniques can also be applied to the entire design of the dialogue so that there
are no auxiliary windows open whenever a window contains a final button. A

7.1 Two HCI Styles of Workflow Systems 209

further option to achieve rich dialogues in terms of windowing and avoiding
the issue to have multiple windows open at the end of the dialogue is the
appropriate exploitation of modal dialogues.

7.1.4 Overall Workflow System Design

A workflow system is a system that allows for the execution and coordination
of workflows of several users. In general, the software design of a workflow
system can be freely chosen. However, if workflow technology is reused, the
workflow technology imposes a certain software structure onto the whole work-
flow system. In particular, if workflow systems have no enterprise application
integration background but are built from scratch to support part of an or-
ganization’s business processes, different non-standard software designs often
emerge. This is especially true for how the entirety of workflow rules, i.e., the
workflow definition, is actually enforced in the system.

In a very straightforward workflow system implementation the knowledge
about which further activities have to be followed by which users after comple-
tion of a given activity can be completely distributed over the whole workflow
system implementation code. Such an implementation consists of a bunch of
dialogue implementations for the several activities that have to be supported.
Upon completion of a dialogue the code of that dialogue triggers the next
activities. The code may invoke a dialogue implementation directly enforcing
a certain user to do a certain thing. Most probably, however, the code accesses
the worklist software component responsible for structuring a certain user’s
work and pushes a concrete activity instance to it. Or, equally probably, it ac-
cesses a general worklist manager software component and pushes an activity
instance together with a responsible user to it. With knowledge on workflow
reference models like that of the Workflow Management Coalition [164] in
mind you might want to rule out the described system architecture approach
from the outset. However, you will find this design pattern in enterprise re-
source planning systems that have been built from scratch. You will definitely
find the pattern in scenarios where several stand-alone workflow-intensive sys-
tems are hooked together to fulfill common business processes.

The introduction of workflow enactment service into a workflow system
design can be seen as the action of tearing all the distributed activity con-
tinuations from the code and gathering them at a single spot. Then, how-
ever, a workflow enactment service with its underlying workflow engines is
basically much more than a database maintaining the complex runtime state
of the workflow system. Because all end-user applications are programmed
against this state database and coordinate their coarse-grained dialogue con-
trol against it, the coarse grained dialogue control now has got a hub-and-
spoke architecture which lowers the overall coupling. However, standard work-
flow enactment services offer little, or actually nothing, for the more fine-
grained interaction control concerning page changes and screen interactions.

210 7 Workflow Technology and Human-Computer Interaction

7.2 Actor Assignment in Workflow Automation

Actors can be attached to the activities of business process models and work-
flow definitions. On the level of business process modeling the assignment of
an actor to an activity can have the meaning that the actor is responsible for
activity, that he executes the activity, that he does the work of the activity
and so on. In general, actors can be human actors but also automatic actors
like machines or IT systems. Often, the term resource is used for what we
call actors in this section. We prefer to use the term actor, because it fits the
term activity. The term actor expresses better that the attached resource is
active and that it is responsible for the execution of the activity than the term
resource. Resources in general may also be passive, i.e., resources in general
may also be processed by an activity instead of executing the activity. The
term actor is also used in the Unified Modeling Language. Here it is used in
sequence diagrams, and, in particular, also in activity diagrams which are a
form of flowcharts and are often considered as business process models and
used for business process modeling.

In this section we are interested in human actors and workflow definition.
We are interested in the semantics of assigning human actors to activities of a
workflow definition. If a business process specification is taken as a workflow
definition that is interpreted by a workflow management system, the assign-
ment of an actor to an activity has a very concrete meaning. Whenever an
instance of an activity is activated, a link to the dialogue supporting the ac-
tivity is added to the worklist of the actor that is assigned to the activity. We
have given an in-depth explanation of the worklist paradigm and the oper-
ational semantics of workflow management technology already in Sect. 7.1.1
on the basis of a three-staged interaction viewpoint.

Actually, concrete workflow technologies offer more than the opportunity
to assign a single actor to an activity. Usually, it would not be sufficient to
assign a single concrete actor to an activity. Usually, you have many actors
working on instances of the same activity. Concrete actors must be scheduled
to concrete instances of activities. Often, a high flexibility of this scheduling
is desired. For example, what if an employee is not available, for example, be-
cause of a business trip? How to achieve a good work load balancing? Concrete
workflow management products offer the opportunity to assign a so-called role
or working group instead of a concrete actor to an activity. A role can be a
set of concrete actors together with a selected pattern of choosing a con-
crete actor or a subset of concrete actors from this role. Concrete workflow
management products propose and offer concrete role models and scheduling
patterns. Roles are statically assigned to activities. They restrict the pool of
possible actors to an explicitly defined set. Concrete actors are determined
dynamically, which is also called dynamic staff scheduling.

7.2 Actor Assignment in Workflow Automation 211

7.2.1 Interpretation of Actor Groups

Dealing with roles assigned to activities in business process models has two
aspects. The first one is about the dynamic selection of concrete actors for
an activity instance, i.e., about dynamic staff scheduling. Typical recurring
pattern in dynamic staff scheduling can be identified and turned into rapid
development features in concrete workflow management products. We discuss
dynamic staff scheduling in Sect. 7.2.2. The second aspect of role models is
the orchestration of concrete actors that have been dynamically scheduled for
a given activity instance. If only one actor has been selected this is actually
not a question. Then, the activated task appears as a link in the worklist of
the user. However, if more than one actor has been selected, there are several
alternatives in continuing the process that we will discuss in this section. We
use the term actor group for a set of concrete actors that have been selected
out of a role or working group as the result of dynamic staff scheduling. We
do not use working group, because the term working group is already used by
some concrete workflow technology products for roles.

Fig. 7.11. Roles attached to a workflow definition.

Figure 7.11 shows a simple business process model in which roles X , Y
and Z are attached to the single activities T , U and V . The programs that are
started by the users via their worklists are illustrated as circles PT , PU and
PV . Roles consist of concrete actors, e.g., role X consists of the three concrete
actors A, B and C.

We identify and explain the following interpretations of actor groups:

• Parallel execution of assigned tasks.
– Synchronizing parallel execution.
– Non-Synchronizing parallel execution.

• Preemptive execution of assigned tasks.
– Preemption with session conservation as a special case.

Role X

A
B

C

Role Y

D
E

F

Role Z

G
H

I

T U V

PT PU PV

212 7 Workflow Technology and Human-Computer Interaction

Parallel Execution of Assigned Tasks

Let us assume that more than on actor is dynamically selected from a role.
This can be can be interpreted as the specification of parallelization, i.e., par-
allel fork of as many new activity instances as selected actors. It is not the
question here, whether such parallel interpretation is actually implemented
in workflow technology products today. We explain it here for reasons of sys-
tematization, because it is an option to be implemented and is the obvious
alternative to the preemptive execution of a task that have been assigned to
multiple actors, which is actually implemented in existing workflow technol-
ogy products like Lotus and Websphere MQ – we will discuss the preemptive
execution of tasks in due course after the discussion of the parallel execution.

With a parallel interpretation of scenarios like the one shown in Fig. 7.11
a link to a new instance of the considered activity is posted to the worklist
of each actor. There are two options of interpretation with respect to syn-
chronization, i.e., a synchronizing option and a non-synchronizing option. In
the synchronizing option, all actors selected from role X in Fig. 7.11 must
finish the task T before a link to new instances of activity U is attached to
the worklists of the actors selected for role Y . In the non-synchronizing option
new actors are selected from the role Y and new instances of the activity U
are posted to the selected actors whenever one of the instance of activity T
has been finished.

In order to visualize the difference between the synchronizing and the
non-synchronizing option, let us assume for a moment that the dynamic staff
scheduling mechanism selects always all concrete actors of a role upon acti-
vation of an activity instance – actually, the selection of all of the statically
given actors of a role is the most basic actor scheduling pattern that can
be supported easily by concrete workflow management technologies. Then,
it would be possible to repaint the diagram in Fig. 7.11 without roles but
single actors attached to the activities directly as shown in diagram (i) for
the synchronizing option and diagram (ii) for the non-synchronizing option in
Fig. 7.12.

Fig. 7.12. Repaintings of the workflow definition in Fig. 7.11.

V T V V V

T

T

A

B

C
U

U

U

D

E

F

V T V V

T

T

A

B

C

U

U

U

D

E

F

V U

U

U

D

E

F

V U

U

U

D

E

F

)ii()i(

V

V

V

V

V

V

V

7.2 Actor Assignment in Workflow Automation 213

An example in which the synchronizing option of a parallel interpretation
could be used is a content or document management system with a staged
content creation. In a staged approach to content creation there are authors
and reviewers. After an author has initially created content it is not immedi-
ately published but reviewed first. As the outcome of a reviewing stage the
content is either accepted or passed back to the author with hints on revisions.
It is even possible that there are several levels of review and reviewers. During
a reviewing stage it can be useful that more than one reviewer have a look at
the content in parallel and the several comments and remarks are gathered at
the end of the review stage.

There is even another means to exploit the selection of multiple actors
for a given activity and this is the joint execution of the activity by the
actors. It is possible to imagine a workflow product that enables the simulta-
neous work on documents, reports and forms scheduled to several actors. It
is the CSCW community (computer-supported collaborative work) that has
discussed – among other topics – means of simultaneous editing of documents
and computer conferencing.

Preemptive Execution of Assigned Tasks

The preemptive execution of a task that has been assigned to multiple actors
is actually implemented in concrete workflow management products. Let us
assume that all actors of role X has been selected for task T a link to it
appears in the worklists of each actor. If one of the actors picks the task it
is disabled for the other actors. This means, if another actor chooses a task
that has already been started he is not led to the dialogue supporting the task
T but to a dialogue that informs him that this task is obsolete because it is
already in progress by another actor. When the actor returns to his worklist,
the link to the task should deleted as if he has been executing it. In addition to
this it is possible to imagine that a link to an activity is disabled in a worklist
immediately after it has been selected by another actor for execution. Here,
human-computer interaction aspects come into play. The disabling of a link
from a worklist should not be realized as a removal of the link which, in
general, would provoke a restructuring of the worklist that might confuse a
user that is currently looking at the worklist. The disabling of a link should
be rather realized as a shading of the link.

7.2.2 Selection of Actors

It is possible to identify patterns in the selection of actors from a role and
turn them into a specification feature of a workflow product, i.e., a model-
ing element of the product’s workflow definition language or other means of
specification with the product’s workflow definition tool.

For example, a workflow designer might want to specify priorities for the
actors of a role with the semantics that the system first tries to schedule the

214 7 Workflow Technology and Human-Computer Interaction

activity to the actor or actors with the highest priority. If the actors of one
level of priority are not available, the task is scheduled to actors of the next
lower priority. The system can have the information on whether an actor is
available or not from the enterprise resource planning systems. For example,
an employee is not available when he is on a business trip or certified ill. The
workflow management system might maintain its own explicit data whether
an actor is available or not. It is also possible to provide a means for users
to decline tasks in a worklist explicitly. In this case a task is scheduled to
actors of a certain priority and then, if all of these actors decline to execute
the activity, it is scheduled to actors of a lower level priority.

As another example, the workflow system could try to support load bal-
ancing. An easy approach would follow a round-robin style of scheduling, i.e.,
tasks are assigned to actors sequentially, one after the other. Another ap-
proach could try to apply assumptions on current work loads of actors. For
example, the task could be assigned to the actor with the shortest worklist
– or even better – to the actor with the smallest number of started process
instances plus number of items in the worklist. Such assumptions can only be
fair if knowledge about typical work times of activity instances can be taken
into account. This might not be easy, because in general there are a lot of
different kinds of activities that are posted to worklists and even the work
time of activities of the same kind may vary significantly depending on the
circumstances. Furthermore, all of these heuristic-based approaches of work-
load balancing are necessarily flawed if the workload of employees that work
with a workflow management system does not stem alone from the workflow
management system and is not tracked completely and in real-time by an
appropriate time recording system. The automatic scheduling can be supple-
mented with human scheduling. This means a workflow management system
could send tasks to a meta-worklist or scheduling list of an employee who
has the responsibility to schedule the task to the worklists of the actors. A
human scheduler can apply more rules and up-to-date information about the
real workload of employees.

Fig. 7.13. Business process model with the same role attached to multiple activities.

Other important patterns of actor scheduling exploit knowledge of the
business process state history, in particular, information about who has

T U V

Role X

A
B

C

7.2 Actor Assignment in Workflow Automation 215

worked on a certain activity in the past. Figure 7.13 shows a business process
model in which the same role consisting of more than one actor has been
attached to more than one activity. Let us assume for a moment that the
diagram is actually a general business process model and not yet a workflow
definition given in the concrete visual workflow definition language of a work-
flow management tool. What the modeler actually might wanted to express
with the business process model is the fact that the whole business process
consisting of the activities T , U all V is either executed by one and only one
of the actors A, B or C. Unfortunately, this is not what is expressed by the
business model in Fig. 7.13, although it is natural to understand the model in
that way. This means that this is a source for misunderstanding and mistakes,
in particular if the model is translated into a workflow definition.

Fig. 7.14. Attempt to detail the meaning of the process model in Fig. 7.13.

An attempt to express better what the modeler might wanted to express
is given with the business process model in Fig. 7.14 which exploits the no-
tation for decomposition of business processes that we have used throughout
Chapt. 5. Anyhow, also this pattern of re-scheduling an activity to an actor
that has executed also the preceding activities can be supported by appropri-
ate workflow definition features by a workflow management tool.

7.2.3 On General Actor Assignment in Workflow Automation

Figure 7.15 illustrates the business model for conducting a business trip. Ac-
tually, what is shown in Fig. 7.15 is a crucial cutout of such a business process.
A more complete description of business trip planning and execution is used
as an example in Sect. 9.2.1 which is illustrated in Fig. 9.2. Actually, the
business process model in Fig. 7.15 is a cutout of the business process model
in Fig. 9.2. In Sect. 9.2.1 the assignment of roles and their treatment is not
too important for the discussion so that the complexity of this issue is not

TUV

T U V

Role X

A
B

C

216 7 Workflow Technology and Human-Computer Interaction

discussed there. Here, in this section, it is actually the complexity of the actor
assignment that interests us.

Fig. 7.15. Business process with complex actor assignment for conducting a business
trip.

At the beginning of a business trip process instance an employee applies
for the travel. Then, the travel application is reviewed by a team leader. After
the team leader has accepted the travel application, the employee receives a
notification that he is allowed to make the business trip and actually travels.
The employee and team manager connected to the activities of the described
business trip do not stand for single concrete persons but persons out of
groups of persons. There are many employees and there are also many team
managers. Therefore an employee role which consists of multiple employees
is attached to the activities of travel application and traveling in Fig. 7.15
and similarly a team manager role that consists of many team managers is
attached to the activity of reviewing a travel application. The problem is that
the set of employees has an internal structure. The set of all employees consists
of teams A, B and C. If a member of a certain team is applying for a business
trip the corresponding team manager must review the travel application.

This means that an ordinary role mechanism is not sufficient to handle this
scenario. The set attached to the travel application activity is not a role in the
above described sense but rather a role of a role, because it consists of teams.
A team is also a role which consists of concrete team members. However, the
business process is not described for a single team but for all teams.

Furthermore, also the role of team managers has an internal structure. For
each team manager there is a deputy. In case the team manager is not available
his deputy should overtake the task of reviewing dangling travel applications.

m
an

ag
er

 A

m
an

ag
er

 B

m
an

ag
er

 C

Team
B

Team
C

employee
team

manager

Team
A

Team
B

deputies

travel
application

review
travel

application
traveltravel

accepted

employee

Team
A

Team
C

7.2 Actor Assignment in Workflow Automation 217

In Sect. 7.2.2 we have described the actor scheduling pattern of prioritization
which applies here.

Then, after the travel application has been accepted, the employee is in-
formed. The crucial point is that only the correct employee must be informed,
i.e., the employee that initially has applied for the travel. This is an example of
actor scheduling that is based on the knowledge of the business process state
history that we have also discussed in Sect. 7.2.2. The difference to the con-
crete example pattern described in Sect. 7.2.2 is that the information about
the correct actor cannot be taken from the directly preceding activity but
must be taken from an elder activity.

Fig. 7.16. General dynamic actor scheduling in workflow automation.

Based on our discussion of possible interpretations of groups of actors in
Sect. 7.2.1, the selection of actors in Sect. 7.2.2 and the business process in
Fig. 7.15 we now come to the following conclusion. Dynamic staff scheduling in
workflow automation depends on available enterprise resource data, the state
history of the running and run business processes instances and the definition
of roles – see Fig. 7.16 for an illustration. Conceptually, the defined roles are
less important for the determination of the concrete actors for the next activity
than the enterprise resource data and the workflow history. From a general
viewpoint, a defined role forms a bound onto which actors can be selected. In
that sense they are an extra constraint that is not strictly necessary, but can
be considered as useful.

In general role definitions are as useful as type systems are in programming
languages. In particular roles are as useful as the actor scheduling patterns
that are supported by extra workflow definition mechanisms in concrete work-
flow products. However, independent of how many concrete patterns in actor

dynamic
staffing

enterprise
resource

data

Task

workflow history

218 7 Workflow Technology and Human-Computer Interaction

selection you identify and explicitly support in a workflow technology prod-
uct, in general there is still need for the opportunity to arbitrarily specify
or program the selection of next actors. A workflow technology must provide
such opportunity through appropriate hooks in its workflow definition tool or
application programming interface.

7.3 Form-Oriented Analysis

In form-oriented analysis we consider certain kinds of submit/response-style
systems that occur very often in practice, in particular in the domains of en-
terprise computing and e-commerce and that range, in terms of technology,
from legacy terminal/server-based systems, over form-based client-server sys-
tems in the technology family of Oracle Forms, to web applications [102, 85].
The kind of submit/response-style systems that we consider in form-oriented
analysis appear to the user through dialogues consisting of reports and forms.
It is a repeated game of a client page showing up and offering navigation
capabilities leading again to new client pages. In more detail, it works the
following way. A client page shows up. This client page consists of a report
that presents data to the user, one or more forms and one or more links to
other client pages. In form-oriented analysis we have a unified view of forms
and links, i.e., we consider links as forms that offer no input capability. Ac-
tually, if you have a closer look at links as programming language constructs
in concrete technologies, like web links, i.e., HTML links, you will encounter
that links can also carry data in the form of hidden parameters and that it is
very common to realize selections of items, i.e., form-like interaction capabil-
ities by the means of links. Therefore, we foster a unified view of forms and
links in form-oriented analysis and will not distinguish between them in the
following unless necessary. Submitting a form triggers a server action that has
a side effect on the system data state and eventually leads to one out of more
possible client pages.

Form-oriented analysis is a typed-approach to the specification of human-
computer interaction. Both the client pages and the server actions have types.
The type of the client page describes the kind of data that is shown as a
report on the client page. The type of a server action describes the input
capabilities of the form triggering this server action. A form is a user-editable
function or method. The type of a server action describes the kind of data
that the user can submit to it by a form. The types of client pages and server
actions are accompanied by types of an information model that describes the
inner state of an information system model. Server actions manipulate the
inner data of the information system and reports are written against this
data. It is a proven pattern to specify an information system as a separation
of those data that are exchanged between the user and the system at the
system boarder and those data that are persistently held by the system. In [89]
we have discussed so-called message system models as an alternative that

7.3 Form-Oriented Analysis 219

work without an information system model, partly in order to understand
the reasons for the success of full information system models. In this text, we
always assume that the dialogue model given by a formchart is accompanied
by an information model, even if an information model is not explicitly given
or even needed in the concrete examples. Furthermore, the notion of dialogue
constraints as a means to completely specify the human-computer interaction
on top of the dialogue type structure and also the relationship between the
information model types and the message model types have been elaborated
in form-oriented analysis – see [89] for further reference.

We can summarize Sect. 7.3 as follows. The submit/response-style sys-
tems considered by form-oriented analysis are bipartite state-machines. The
state of a submit/response style system permanently alternates between client
states, also called dialogue states, that are processed by the user and server
states that are processed automatically. Formcharts are typed bipartite di-
rected graphs consisting of client pages representing client states and server
actions representing server states.

8

Service-Oriented Architecture

There have always been two strands of research to improve development and
maintenance of software – both in practice and in academia: executable spec-
ification and reusable components. In the domain of enterprise applications
the issue of executable specification is currently addressed by business process
execution initiatives, the issue of reusable components is currently addressed
by service-oriented architecture.

Actually, motivated by the promises of each of these current mainstream
approaches we see a lot of projects where people try to bring them together,
see e.g. [58, 243, 110]. But then people encounter tensions between the two
paradigms, because they were not designed for each other. How to exploit
service-oriented architecture in a workflow-intensive information system sce-
nario? How to implement workflow logic in a service-oriented manner? Then –
though in principle service-oriented architecture is a technology-independent
paradigm – in concrete projects these questions are sometimes approached
very directly by asking where to establish web service layers in a workflow-
based enterprise application. Basically, there are two alternatives. You can
use web services to wrap units of logic that are controlled by the workflow
engine. In current business process management suites web services are the
usual invocation mechanism for business logic. Similarly, you can use web ser-
vices to integrate system dialogues into the workflow logic. For example, with
business process management suites like the Oracle SOA suite it is possible to
hook together system dialogues – typically developed with a rapid report and
forms development tool – that bridge the workflow states. The other alterna-
tive is to reveal a whole workflow enactment service as a web services layer.
Then, a fat client implements both the worklist as well as the system dialogues
that bridge the workflow states. As you can see, such discussions easily lead
to quite detailed technical questions. At the same time the question arises,
whether wrapping of some code units in the one or other way really brings
the speed ups and cost savings that one might expect from establishing a new
paradigm – service-orientation in this case. So, let us approach the question

© Springer-Verlag Berlin Heidelberg 2010

221
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_8,
D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

222 8 Service-Oriented Architecture

what service-orientation is about and how it can be exploited for business
process technology more conceptually and in particular more systematically.

It is a commonplace now that service-oriented architecture is the natural
candidate to bring the flexibility, agility and adaptivity to business process
management suites and eventually to the enterprises that are supported by
it. How come? Service-oriented architecture emerged as a kind of meta archi-
tecture for enterprise computing foreseeing a new more generalized, flexible
role of single applications in an enterprise. On the technical side, service-
oriented architecture is exposed as clusters of design rationales and architec-
tural principles. The problem is that the single design rationales and architec-
tural principles are motivated from several different strands of thinking, for
example, an overall system architecture viewpoint, a system management and
maintenance viewpoint, a rather step-wise enterprise application integration
viewpoint, and, very importantly, an electronic data interchange viewpoint.

8.1 The Evolution of Service-Oriented Architecture

One of the mainstream perceptions of service-oriented architecture is that it
is a technology independent meta architecture for large-scale enterprise com-
puting [255]. There are other communities that use the service-oriented archi-
tecture metaphor for their technology, for example, OSGi – note that OSGi
stand for Open Service Gateway initiative. Standard applications of OSGi
technology are in the area of embedded systems. Another such example is
Jini [353]. Jini technology has discoverability of services, which is considered
as a key characteristics of service-oriented architecture, as a crucial asset and
indeed Jini is often said to establish a service-oriented architecture [231]. Jini
targets the level of network-connected devices, whereas service-oriented archi-
tecture as discussed in this book targets the creation of information utilities in
large-scale enterprises. We believe that an architectural paradigm should be
discussed always with its domain objectives in mind in order to have a context
to appreciate or criticize the several design principles it imposes. The currently
discussed OASIS reference model for service-oriented architecture [230] men-
tions large-scale enterprise applications as a main driver of service-oriented
architecture, however, it does not mention other drivers and the reference
model in [230] abstracts away from enterprise computing.

Another perception of service-oriented architecture is that it is connected
to the concrete web services stack technology stack. Actually web services
technology has substantially contributed to the wide-spread adoption of
service-oriented architecture. We will delve into the topic of web services based
service oriented architecture in Sect. 8.4.

Nonetheless, once more it is important to point out that service-oriented
architecture began as a technology-independent discussion, e.g., CORBA tech-
nology can be very well used to build a concrete service-oriented architec-
ture [239]. For example, the architecture described in [286] – see Fig. 8.3 –

8.1 The Evolution of Service-Oriented Architecture 223

is based on the notion of a service bus that is implemented with CORBA
technology. Actually, the system discussed in [286] is a very typical example
of a service-oriented architecture as described in [316, 315] – Fig. 8.2. When
we talk about service-oriented architecture in this book we talk about system
architecture concepts for enterprise computing.

As should now have become clear, service-oriented architecture is not a
single paradigm. There are several service-oriented architecture visions and
concepts that emerged over time as depicted in the overview of Fig. 8.1.
Service-oriented architecture emerged as a three-tier architecture for enter-
prise application integration as we will explain in Sect. 8.2. Then the term
service-oriented architecture was hyped by the concrete web-service technol-
ogy establishing the vision of creating a new lightweight, ubiquitous and open
electronic data interchange platform based on this web-services technology. As
a result web-services technology has become a synonym for service-oriented
architecture for many stakeholders in the enterprise computing community.
This is the reason why service-oriented architecture is now recognized as an
enabler for flexible, adaptive business processes, i.e., simply by the wide-spread
usage of web-services technology in state-of the art commercial business pro-
cess management technology products. We deal with the several facets and
usages of web-services technology in Sect. 8.4.

EAI

B2B

Flexible
Processes

Software
Productizing

1996

2000

Fig. 8.1. The evolution of SOA paradigms and visions.

Another strand of argumentation in service-oriented architecture is in the
area of software development methodology and systematics. Here, inspired
by the new tools for component maintenance, and in particular those that
deal with service discoverability, innovators where thinking about new op-
portunities to accelerate the software development process. For example, the
systematic integration of massive reuse of software components into software
development projects was envisioned. Recently, the massive reuse of software
components stemming from the multitude of projects in a large enterprise are
considered, typically in the realm of SOA governance.

224 8 Service-Oriented Architecture

Services as Information Utility

In [28] a trend of enterprise computing facilities becoming a utility was iden-
tified. The vision of an information utility is about decoupling information
services from appliances that can consume these services. It is about over-
coming silo system landscapes and creating a new degree of freedom in using
enterprise applications and databases. In [28] this information utility vision
is discussed from the viewpoint of an implementing middleware. Similarly, in
[316, 315] the concept of a service-oriented architecture is described as being
about avoiding the tight coupling of processinglogic and the data it processes
to concrete applications or processing modesmode.

Only later, a concrete pattern of service-oriented architecture emerged
with the inherent rationale to create some kind of enterprise-wide information
utility. We will discuss these characteristics in Sect. 8.3. In another strand of
work service-oriented architecture evolved into the vision of creating not only
enterprise-wide information utilities but also a world-wide information util-
ity, i.e., an inter-enterprise-wide information technology. We will discuss this
electronic data interchange aspect in Sect. 8.4 on web-services-based service-
oriented architecture.

Service-Component Architecture

The original vision of service-oriented architecture with its three tiers of ser-
vices, applications and clients – see Sect. 8.2 – is rather a hub-and spoke
architecture. The original service-oriented architecture is not a component
metaphor, i.e., it is not about building arbitrary composition hierarchies or
to, say it differently; it is not about assembling – wiring – services. This is
where the Service-Component Architecture (SCA) [354, 24] steps in.

The Service Component Architecture addresses heterogeneous distributed
computing. Heterogeneity is twofold in the case of the Service Component Ar-
chitecture, it accounts for both several different implementation technologies
and several different service binding technologies. Supported implementation
technologies encompass languages of quite different style like C, C++, Java,
PHP, COBOL, BPEL, XSLT, XQuery, SQL. Supported service binding tech-
nologies are, for example, web services, JMS (Java Messaging Service), and
CORBA IIOP.

Furthermore, the Service Component Architecture systematically cares for
the specification of quality of service. In its collection of standards profiles [25]
are defined for security, reliability, personnel responsibilities, i.e., developer,
assemblers, deployers, profile administrators and ACID transactionality [299].

8.2 Three-Tier Service-Oriented Architecture

Figure 8.2 shows Gartner’s original tier terminology of service-oriented archi-
tecture from [316]. The architecture in Fig. 8.2 should be understood as one

8.2 Three-Tier Service-Oriented Architecture 225

out of many service-oriented architectures in the sense of [316]. According to
the many possible different software clients, it is possible to build different
service-oriented architectures. As always with the notion of “architecture”,
the term architecture can be used for the structure of a concrete system with
all its considered components at the chosen appropriate level of abstraction,
but can also be used for the common, i.e., generalized, structure of all the
concrete systems that adhere to a certain architectural concept. In that sense
service-oriented architecture as intended by [316] is rather characterized by
the distinction between tiers A through B and their explanation and Fig. 8.2
with all its concrete clients is an example architecture.

TierA in Fig. 8.2 is a tier of services that realize business logic and access to
data that are common to several applications in the enterprise. Tiers B and C
together consists of the enterprise applications that are software clients to the
tier A of services. We do not delve into the distinction between B and C here,
in [316] it is somehow used to explain the difference between batch and online
users. We want to discuss the role of the service-tier and the options to build
it instead.

In general we want to decide between the following kinds of service-oriented
architecture:

• Fat service hub hub-and-spoke architecture, fat hub-and-spoke architec-
ture for short,

• Thin service hub hub-and-spoke architecture, thin hub-and-spoke archi-
tecture for short.

In the fat hub-and-spoke architecture the service-tier actually implements
some business logic and holds some data. With this architecture business logic
that is necessary for several applications can be realized and maintained at
a single spot, i.e., the service tier. In its extreme form, however, the fat hub-
and-spoke architecture does not allow the service-tier to reuse business logic
or data from the other software applications of tiers B and C. Here, all the
logic and data that is provided by the service tier A must be implemented
by the service tier. In its extreme form the fat hub-and-spoke architecture is
therefore not about the mutual reuse of business logic and data that reside in
the several applications of the enterprise. It is about this mutual reuse only in
the sense that these logic and data can be taken from the several applications
and be brought to the service tier A in a kind of overall system refactoring
and system landscape refactoring step.

The obvious interpretation of the arrows labeled (i) and (ii) in Fig. 8.2 leads
us to the conclusion that the service-oriented architecture introduced in [316]
is actually of the described extreme form of fat hub-and-spoke architecture.
In Fig. 8.2 updates and queries, which are represented by arrow (i), can be
made by the software applications of tier B to the service tier A but not vice
versa. Similarly, as depicted by arrow (ii), results and error messages can be
delivered from the service tier to the applications in the other tiers but not
vice versa. We therefore call this form of fat hub-and-spoke architecture also

226 8 Service-Oriented Architecture

uni-directional hub-and-spoke architecture. Also in the uni-directional hub-
and-spoke architecture there are message flows back and forth between the
service tier and the other tiers. However, with respect to both of the two kinds
of different message flows, i.e., update or query, on the one hand, and result or
error feedback, on the other hand, the message flow is actually uni-directional.
Or to put it the other way round: with respect to a complete cycle consisting
of an update or query and a result or error message all message flows are
uni-directional.

Internet Client
Web Browser

Desktop
PC

Dump
Terminal

Online
Application

Internet Server
Application

Local Batch
Application

Services

EDI
Application

Batch
Application

Mobile
Application

Mobile
Client

Tier A

Tier B

updates
queries

results
feedback

Tier C

Enterprise
Databases

shared business logic
shared data IO

i

iii

ii

iv

Fig. 8.2. Gartner Group tier terminology for service-oriented architecture.

In a thin hub-and-spoke architecture, the service tier does not implement
any business logic and does not hold any data itself. Here, the service tier is
merely a broker for the reuse of logic and data between the several applica-
tions in an enterprise. This means, a thin hub-and-spoke architecture is about
dropping box (iii) and database (iv) from Fig. 8.2. Consequentially, both of
the arrows i and (ii) have to be replaced by bidirectional message flows in
Fig. 8.2.

The discussed thin and fat hub-and-spoke architectures are extremes, how-
ever. In practice a mixture of both styles can be applied in an enterprise appli-
cation integration project. Some of the business logic and data is then realized
in the service tiers, other business logic and data access is just realized by ap-
propriate wrappers in the service tier. The thin hub-and-spoke architecture
leads to bidirectional message flow both for updates and queries and for results
and messages. We therefore call it also a bidirectional hub-and-spoke archi-
tecture. A thin hub-and spoke architecture implies bi-directionality, however,
the converse is not true. If the service-tier realizes some business logic merely
by being a broker, there can also be some direct realization of business logic in

8.2 Three-Tier Service-Oriented Architecture 227

the service-tier. That distinguishes the bidirectional from the uni-directional
hub-and-spoke architecture. A fat hub-and-spoke architecture does not imply
uni-directionality, but vice versa.

A bidirectional hub-and-spoke architecture is the one that is found most
often in practice. In concrete companies other names for the service tier are
often used, for example, ‘data wheel’, ‘business logic pool’ or the like. Even
names that contain a reference to EDI are often used, the term ‘EDI pool’ is a
good example for this. If the service tier is only used for in-house software reuse
purposes, a name containing EDI is strictly speaking incorrect, because elec-
tronic data interchange usually stands for inter-enterprise data interchange.
However, in the true sense of the word electronic data interchange is a correct
characterization of the functionality of a service tier. Business logic can be
triggered by sending a data message via a so-called EDI pool and the answer
of triggered business logic is also just data send back to the requester. Busi-
ness logic can be understood very broad. Even functionality that deals with
application workflow like a workflow system’s task list can be revealed by a
purely data interchanging message interface to the other applications in an
enterprise. From that somehow low-level viewpoint every interaction among
applications can be understood merely as data interchange. Furthermore, of-
ten one of the products that are in the B2B gateway market segment [220] like
Microsoft BizTalk or TIBCO Software, just to name two, are used to build
a service-tier, even, if it is only used for intra-enterprise data communication
purposes.

A bidirectional hub-and-spoke architecture is also a common approach to
the integration of legacy systems with emerging new systems, which is a com-
mon theme in enterprise application integration. Also the currently discussed
enterprise service busses are bidirectional message-oriented middleware prod-
ucts. Figure 8.3 depicts an architecture that has been described in [286]. The
system landscape has been built in order to expose existing banking applica-
tions to new channels imposed by the new e-commerce age, i.e., call centers
and the web, and furthermore, to integrate them with new enterprise resource
planning systems, both SAP and others. The core of the system landscape
consists of legacy systems on the basis of IMS (Information Management Sys-
tem) technology, with IMS hierarchical databases, IMS transaction processing
technology and IMS messaging technology that are all eventually exploited in
COBOL programs.

The three-tier architecture discussed here must not be mixed up with the
widespread known three-tier enterprise application architecture. The three tier
architecture discussed here is an architecture for system landscapes, whereas
the usual three-tier architecture is almost always an architecture of single
enterprise applications. The advantage of a hub-and-spoke architecture for a
system landscape is that business logic and data that is shared by several
applications is controlled and maintained at a single spot. A hub-and-spoke
architecture prevents a uncontrolled growth in the number of connections and
interfaces between the various applications. Furthermore, the hub can be made

228 8 Service-Oriented Architecture

IMS

IMS/DC
IMS-MSG
COBOL

IMS

IMS/DC
IMS-MSG
COBOL

30 million
bank accounts

SAP

Telephone
Banking

Internet
Banking

Application
Server

ERP

CORBA Service Bus

Fig. 8.3. Example CORBA service bus for banking applications.

subject to concrete policies, it can be supported by specialized technology
like enterprise service bus products or as mentioned before by B2B gateway
products.

Sticking to a legacy system to avoid unjustifiable effort is a common theme
that in enterprise application architecture is often called investment protec-
tion. The usage of the term investment protection is a bit odd for this. Another
and perhaps more obvious usage of the term investment protection is as a syn-
onym for risk management in investment planning. The kind of investment
protection that leads to the preservation of an existing system as an integrated
legacy system in a new system landscape can be seen as the consideration of
an originally planned amortization period of an existing system in the plan-
ning of a new system. If the amortization period is not yet over, stakeholders
might be biased against replacing an old system. The investment into the old
system is then considered somehow as an asset that is worth saving in its
own right. This is a bit odd, because the planning of a new system landscape
should be done on the basis of systematic total cost of ownership and total
economic impact analyses. In such analyses, the existing systems can be con-
sidered merely as a pool for software reuse like third-party products that are
considered in build-or-buy decisions. A neutral viewpoint is also necessary
particularly in presence of existing applications.

8.3 Characteristics of Service-Oriented Architectures

In the beginning of the discussion, service-oriented architecture was rather
about the principle of decoupling services from appliances, i.e., the observable
trend of some kind of information utilities emerging in large scale enterprise
architectures. Some definitions of service-oriented architecture, e.g., the one
given in [133] boil down to an explanation of modularization. However, the

8.3 Characteristics of Service-Oriented Architectures 229

objective of a certain level of decoupling of enterprise applications is a unique
selling point of service-oriented architecture one should be aware of. Over time
it has become common sense that there are certain design rules and key char-
acteristics that make up service-oriented architecture. To these belong [49]
coarse-grainedness, interface-based design, discoverability of services, single
instantiation of components, loose coupling, asynchronous communication,
message-based communication. Further such characteristics are strict hier-
archical composition, high cohesion, technology independency, idempotence
of services, freedom from object references, freedom from context, stateless
service design – see, e.g., [60, 120].

Some of the key characteristics usually connected with service-oriented
architecture are know from other paradigms like object-oriented design or
component-based development, others are unique selling points of service-
oriented architecture and others explicitly distinguish service-oriented archi-
tecture from other approaches. For example, single instantiation of compo-
nents explicitly distinguishes service-orientation from component-orientation.
Loose coupling, high cohesion and interface-based design are also targeted by
object orientation. However, in the context of service-oriented architecture,
loose coupling is often understood differently from how it is understood in the
object-oriented community. In the object-oriented community it stands for the
general pattern of minimizing the overall number of any kind of dependencies
between components in a system. In service-oriented architecture it is often
understood as the availability of a dynamic binding mechanism.

Discoverability of Services

The issue of discoverability of services is often seen as crucial for service-
oriented architecture. What is meant is special support for discovering in the
form of appropriate registries and tools [48]. Discoverability of services touches
the assembly and eventually the organization of development and maintenance
of services, a strand of work that is currently addressed by SOA governance .
On the other hand, discoverability is at the core of the business-to-business
vision of service-oriented architecture, yet another aspect that is discussed in
due course in Sect. 8.4.

Research Potential in Service-Oriented Architecture Principles

The SOA principles can add value to enterprise applications, e.g., discoverabil-
ity can greatly improve reuse, targeting coarse-grainedness can guide code pro-
ductizing efforts and message-orientation is the proven pattern in enterprise
application integration. The problem is, however, that the SOA principles are
by no means silver bullets [45, 46] for enterprise application architecture, least
of all the combination of them. This means, the circumstances under which
the SOA principles add value and how they can be exploited must be analyzed
carefully. It is important to recognize that with respect to enterprise system

230 8 Service-Oriented Architecture

architecture the promise of SOA, i.e., the creation of an information utility,
is an objective rather than a feature of the approach. Best practices have to
be gathered in order to make SOA work in projects. There is also a demand
for heuristics like SEI’s (Software Engineering Institute) SMART (Service-
Oriented Migration and Reuse Technique) technique [217] to estimate and
mitigate risks of using SOA and SOA technology in concrete projects.

8.4 Web Services based Service-Oriented Architecture

Web services technology helped make service-oriented architecture a main-
stream theme. After its huge success, Internet technology seemed to be the
natural candidate for the service binding mechanism of service-oriented archi-
tecture. Concrete new products of major software vendors like IBM’s Web-
sphere and Microsoft’s .NET were based on the web services technology stack.
These products with their integrated development environments allowed for
easy distributed programming via the web. In its original definition, service-
oriented architecture is a set of technology independent concepts, in particular,
it is independent from the web services stack. However, in practice service-
oriented architecture is often discussed with web services in mind. Here, in
concrete projects they are often very concrete technical aspects like the eas-
ier interplay with firewalls that influence the decision to use service-oriented
architecture in favor of another technology.

The web services technology stack – see Fig. 8.4 – has SOAP (Simple
Object Access Protocol) [41] on top of HTTP as the basic remote method
invocation mechanism. The Web Services Description Language (WSDL) is
used for the specification of web services signatures, i.e., it provides the web
services type system in terms of programming language technology.

The crucial point with the web services technology stack is that it goes be-
yond WDSL. It has UDDI (Universal Description, Discovery and Integration)
on top. The UDDI standard was intended to build global yellow pages for
subscription and description of services by enterprises. With UDDI, service-
oriented architecture became an electronic data interchange (EDI) initiative.
The term business-to-business was coined with Internet technology and typi-
cally B2B is used for web services based electronic data interchange, whereas
EDI is used for electronic data interchange based on established formats like
the X12 transaction sets or UN/EDIFACT [174] – EDIFACT (Electronic Data
Interchange For Administration, Commerce, and Transport) for short. As an
EDI initiative, the goal of the web services stack was to create a lightweight,
open alternative to existing, established value-added networks. It is this new
envisioned EDI the term B2B is used for. Established EDI scenarios are often
asymmetric from a business-to-business viewpoint. A very typically exam-
ple is provided by large manufacturers or large retailers that requests their
smaller supplierssupplier to be connected to them by EDI. At the same time

8.4 Web Services based Service-Oriented Architecture 231

established EDI is known to be quite heavyweight – technologically and or-
ganizationally [118] – to adopt.

However, improved inter-organizational EDI is currently addressed more
visibly by other standardization bodies like UN/CEFACT (United Nations
Centre for Trade Facilitation and Electronic Business)and OASIS [348, 347]
(Organization for the Advancement of Structured Information Standards),
which are experienced in the EDI domain. In the original strand of work on
B2B, i.e., with UDDI as a world-wide yellow pages mechanism for service-
enabled enterprises, B2B did not take off.

The problem with EDI is that parts of its heavyweightedness cannot
be overcome simply by a new technology stack. This is the issue of pre-
negotiations between EDI participants before an EDI connection is actually
established. These negotiations are business related and cannot be automated,
they encompass the negotiation of prices, quality of servicesof service, and con-
tract penalties. Furthermore the results of these negotiations must be made
justifiable. Paper-based trading has a long legal tradition but electronic trad-
ing had to become mature before a robust legal foundation for it could be
provided. Furthermore, it must not be overlooked that the success of estab-
lished EDI was only partly due to the creation of a technological infrastructure
for electronic data interchange. Another success factor of established EDI ini-
tiatives was the standardization of business messages, which is a technology
independent asset for the community. The original B2B initiative forgot about
message standardization in the beginning.

HTTP

SOAP

WSDL

UDDI

HTTP

SOAP

WSDL

U
D

D
I

JB
I

B
PE

L
B

PE
L4

Pe
op

le

Fig. 8.4. The web services technology stack then and now.

Today more proprietary standards and technologies are based on WDSL
representing two aspects of enterprise system architecture, i.e., enterprise ap-
plication architecture and business process execution. JBI [342] (Java Business
Integration) is an attempt to standardize the notion of enterprise service bus

232 8 Service-Oriented Architecture

(ESB), which is a currently widely discussed approach to enterprise applica-
tion architecture. BPEL is a currently discussed language for the execution of
automatic workflow.

8.4.1 Web Services-based Business Process Execution

SOA technology and business process technology are converging [219]. The
relationship between SOA and business processes has been somehow misrep-
resented, because despite its name, the SOA-based Web Services Business
Process Execution Language [344, 122] (WS-BPEL) – BPEL for short – does
not support crucial workflow concepts like user roles needed for business ex-
ecution in today’s business process management suites. BPEL is just a high-
level programming language with web services as its primitives. Thus BPEL
is a language for the execution of automatic workflow, however, it is not a
language for the execution of human workflow. Therefore, concrete BPEL-
based business process management products add there own, proprietary
workflow concepts to BPEL. This need is also addressed by BPEL4People
(WS-BPEL Extension for People) [203, 4]. The current SOA-based business
process management suites tackle the problem of how to exploit SOA tech-
nology in workflow-intensive applications; however, in doing so they do not
towards raising the level of abstraction to executable specification of business
processes.

BPEL
BPEL4PEOPLE

WSDL

ESB

Q
ue

ue Business
Logic

Client
Presentation

Visual Programming Interface

Business Process Management Suite

Rapid Development Tool

Forms Designer

Programming Interface

W
ra

pp
er

SOAP

Auxiliary Applicationfull
application
embedding

service
embedding

service
embedding

Fig. 8.5. Exploitation of concrete web services technologies for building business
process management systems.

Figure 8.5 shows the typical exploitation of concrete web services technolo-
gies by contemporary business process management product. We distinguish
several means to glue together software components with a business process

8.4 Web Services based Service-Oriented Architecture 233

management suite in Fig. 8.5, i.e., full application embedding, service embed-
ding and dialogue embedding. In the scenario in Fig. 8.5, the business process
management suite is used to combine several existing applications to a new
one and to enrich them with new system dialogues that are developed with
technology provided by the business process management suite itself. The
new application logic is developed in the business process management suite
with a visual programming language and tool. Here, a visual form of the web-
service technology BPEL and a proprietary extension for human workflow is
typically used allowing new system dialogues to be hooked into the visual pro-
gram. For the development of these new system dialogues the business process
management suite offers support via a rapid development tool that typically
ships with a visual programming tool for form-based computer screens. The
new dialogues can also be implemented without the rapid development tool
that ships with the business process management suites. They are then new
auxiliary applications in the sense of the drawing in Fig. 8.5

Application can be integrated into the new developed application by ac-
tually embedding their dialogues. We call this style of application integration
‘full application embedding’ in order to distinguish it from reusing merely
the business logic of an existing application. For dialogue embeddings of aux-
iliary applications no elaborate high-level standard mechanisms exist. They
can be accomplished rather directly with program calls on the operating sys-
tem level with its low-level program parameter passing mechanisms. Often,
auxiliary applications are prepared with message-based application program-
ming interfaces that then can be used to call the desired dialogues. For this,
the web-service technology WSDL would be the current language of choice in
building the necessary wrappers. We have not depicted this in Fig. 8.5.

It is possible to integrate only the business application into the new de-
veloped application – called service embedding in Fig. 8.5. Here WSDL is
typically used for building the wrappers and web-services technology SOAP
is the transmission protocol of choice. One important issue that leads to a
business process management project is often that users are not satisfied any
more with the HCI layer of the existing applications. Existing applications are
often built with one of the many proprietary rapid development tools of the
1980s. So the goal is then to replace the HCI layer by new web-based dialogues
or new state-of-the-art rich client interfaces with a modern look-and-feel. On
the other hand, the target of replacing the existing system dialogues is usu-
ally not the only reason for a business process management project. Usually,
there is actually the need for new application logic. At the same time the
programs that make up the dialogues can make up a significant code base
that cannot be replaced in one go. Therefore a typical migration path would
start with building new application logic around the existing applications on
the basis of full application embedding and would then proceed with the step-
by-step replacement of the existing dialogues eventually resulting in complete
homogenous service embedding.

234 8 Service-Oriented Architecture

8.5 Service-Orientation as Development Paradigm

There is yet another facet of service-oriented architecture that is currently
widely considered. It is the software development and operations aspect. What
many IT stakeholders in enterprises expect from SOA is the transformation of
the many software applications into a code base that is open for reuse in their
future enterprise application development projects. This expectation is about
breaking silo applications into services. And it is about software productizing
in current and future software development projects. Software productizing is
a term used by Frederik Brooks in citeBro75 – see Fig. 3.2.

8.5.1 Designing Services for Reuse

Software productizing refers to various extra initiatives that can be performed
to make software a product, e.g., well-documented, well-tested and therefore
deliverable to buyers, and more general in the sense of being prepared for
adaptation to different contexts and platforms. We therefore use the term
software productizing here for the extra effort needed to make a piece of
software more generally usable, i.e., to make it reusable for other software
products than the one it is currently developed for. If, at the time develop-
ment, a developer already has some other concrete applications in mind, for
example, some applications that are also currently under development or ap-
plications that are planned, the extra efforts in generalizing a piece of software
can lead to a quick win. Otherwise, software productizing is about anticipat-
ing potential future software development. Then, software productizing must
involve analyzing which kind of future applications the several pieces of cur-
rently developed software could be useful for. This involves an analysis of how
the design of these applications will probably look or it involves efforts for
this family of future potential applications. There is an obvious tradeoff be-
tween these software productizing efforts and the costs saved by reusing the
resulting generalized pieces of software. Software productizing in the discussed
sense is somehow conceptually opposite to the current trends of agile software
development, which its courage-driven design [20, 80, 81, 146] and continuous
refactoring.

SOA governance [163, 235, 362] is the entirety of efforts that contribute
towards making the promises of service-oriented architecture a reality [163].
Definitions of SOA governance contain high-level descriptions of the problems
encountered in projects that try to make service-oriented concepts a reality
in an enterprise. Typical SOA governance definitions put a focus onto the
operations of software services, i.e., monitoring, controlling and measuring
services [163]. However, in SOA governance projects it is often expected that
a SOA governance expert gives some advise on how to organize the IT de-
velopment to enable better reuse [363] of existing software across all project
boundaries. This heavily affects software process and development team orga-
nization issues. For example, initiatives like the Smart SOA [166] best prac-

8.5 Service-Orientation as Development Paradigm 235

tices catalogue – which by the way must not be mixed up with SEI’s SMART
(Service-Oriented Migration and Reuse Technique) approach – try to address
these issues. In practice, there is often a very straightforward understanding
of SOA governance in terms of features of tools that support service-oriented
architecture [196]. The most typical tools are service registries and service
repositories.

In concrete SOA governance projects there is the need for a diversity of
specialized tools, technologies and techniques like an appropriate service devel-
opment and operations infrastructure, a service versioning concept, a service
development and operations process, tools for service analysis, development,
profiling and monitoring. A good example for the complex needs in a SOA
governance project is the concrete enriched meta-model for web services elab-
orated in [71], which contains information about the origin of a serive, the
developer in charge of a web service, the staging state a of service, versions
and releases of services, coupling of services, the usage structure of clients
and services, auxiliary text documentation, UML representations of WSDL
specifications, UML statecharts for service behavior descriptions, the service
deployment structure and documentation of generated Java stubs.

8.5.2 Towards Massive Software Reuse

Figure 8.6 shows what we call silo development. The situation that is shown
in Fig. 8.6 is such that there are several software development projects in
an organization, however, each of the projects is completely encapsulated and
conducted separately from the other projects. At this point we can assume that
each single project involves the several distinguishable stages of requirement
elicitation, design, implementation and operation without loss of generality.
Concrete successful projects have a concrete and usually more sophisticated
software engineering process model. But for the purpose of explaining the issue
of massive reuse across projects the coarse-grained stagewise model that we
use here in the following is appropriate. Once more, we want to emphasize that
we always follow a descriptive, informative approach instead of a prescriptive,
normative one, in particular, when we are talking about software engineering
processes. The point here is that there is typically a long period of operation
and maintenance in the whole software lifecycle compared to the relatively
short stages of analysis, design and implementation.

Iterative Projects

If the operation phase in a software lifecycle were about keeping the appli-
cation running, some bug fixing and helping users, the visualization of the
software projects in Fig. 8.6 would fit reality quite well. However, in real-
ity the operation phase is actually also a software maintenance phase. And

236 8 Service-Oriented Architecture

Project
A

Project
B

Project
C

Fig. 8.6. Stagewise development of silo software systems.

maintenance in general covers much more than bug fixing. It involves han-
dling change requests and implementing functionality that fulfils new require-
ments that emerge during operation. So, there is some fully-fledged software
engineering with requirement elicitation, design, and implementation in the
operations phase. If there is a critical amount of software engineering during
operations the situation is modeled more appropriately by an iterative soft-
ware development process as shown in Fig. 8.7. Figure 8.7 shows one of the
silo projects from Fig. 8.6.

The difference is that the project now consists of several iteration projects.
The overall projects starts with some requirement elicitation, design and im-
plementation work until a first stable version can be launched. In parallel
to the operation of the first version a new project for the next iteration is
started. In that project new requirements are gathered, the design may be
refactored, and then existing functionality is changed and new functionality
is added according to the new requirements as an implementation step. All
this can be seen as a reuse scenario. The new version of the system is actually
a new system that reuses parts of the former version. A significant amount
of the former system is usually reused. If only a few lines of new code are
actually added to a very large software system you might say that this is not
really an example of software reuse but just a small change to the system.
But for us it is important to insist that we deal with reuse here. We do so be-
cause of the setting of our discussion which is iterative software development.
Therefore, all arguments concerning reuse in the sense of software engineering
and the software system lifecycle in particular apply here, and they do so
independently from the question of how large the reused part of software is
compared to the new software added. Furthermore, the described scenario is
a reuse on the several levels of artifacts. Code is reused as well as existing
requirement descriptions and existing design. The crucial point is that once
the new version of the system is ready to be launched, the former version of
the system is shut down, depicted as a big cross in Fig. 8.7.

8.5 Service-Orientation as Development Paradigm 237

reuse

reuse

Project

Fig. 8.7. Iterative development of a silo software system.

Mega Projects

We have said that an iterative project consists of several iteration projects as
depicted in Fig. 8.7. During the overall lifecycle of the software product more
and more iteration projects may be conducted. It would be possible to say that
an iteration project is a sub project of the iterative project it stems from. We
deliberately do not use the word sub project for an iteration project, because
we want to reserve the word sub project for another phenomenon in project
management, which is worth considering with respect to the complexity of
enterprise-wide software development. Large projects easily become so large
that it is necessary to create a number of sub projects, which is depicted in
Fig. 8.8. The usual reason is that the project is too large to be handled by the
available human resources in terms of number or skills of the company that
conducts the project [135]. Then, sub projects have to be defined that can
be given away to sub-contractors. Now, a systematic division of labor across
several, usually distributed teams must be managed. The lack of resources
may not be the only reason for creating a sub project structure. Another
reason can be that the project is simply too large to be managed without
a leveled management approach. The crucial point is not the distribution of
labor over sub teams, but the organization of these sub teams. Sub projects
have the characteristics of full-fledged projects. This means, each sub projects
has its own project manager and its own project management infrastructure.

After the overall large project in Fig. 8.8 has been started a requirement
elicitation takes place as a first phase. Some of the design is done. At least
a coarse-grained design which allows for the division of the whole project
into sub projects has to be done. Then the sub projects are distributed to
sub teams. This distribution means extra efforts. The initial design must be
particularly consistent and robust, because once the sub projects are running
it is hard to change things. At the same time the sub product description must
be sufficiently accurate. In each sub project further design is done and then
implementation takes place. Eventually the results of the single sub projects
have to be integrated. Again, this integration means extra efforts.

238 8 Service-Oriented Architecture

integrationdistribution

Project

Fig. 8.8. Division of a project into sub projects.

SOA Governance for Ubiquitous Reuse

In an iterative project each iteration project reuses artifacts from the former
iteration project. The projects in an enterprise are usually iterative projects,
however, the single iterative projects can still be silo projects so that the reuse
is limited to all the single projects. Things change fundamentally if we allow
for reuse across project boundaries, which is depicted in Fig. 8.9. The reuse
across project boundaries must be managed. It is exactly that reuse, which
gives rise to SOA governance.

Why is the reuse across project boundaries fundamentally different from
the reuse inside a single project? Each of the projects has its own project
management, its own software tools and repositories, its own development
process and so on. If there should be reuse across project boundaries appro-
priate projects unifications must be conducted and, furthermore, extra orga-
nizational structure must be created. The more there is reuse across project
boundaries the more the boundaries actually vanish and eventually the set of
different projects must be handled as one huge project. All this is true from
the static viewpoint of the mere code base, or more generally, from the view-
point of the artifact base. Nonetheless it is also true for the dynamic viewpoint
of running and evolving systems, which is depicted in Fig. 8.10.

Figure 8.10 depicts a situation where a project reuses software from a prod-
uct that evolves iteratively in another project. Assume that the new project B
reuses some software while the first iteration of the iterative project A is still
underneath. Now, assume that a next iteration of project B has been started
and has just finished its implementation phase. The code is now to be de-
ployed and made operative. Usually, as shown in Fig. 8.7 the deployment of
the new version in an iterative project would mean that the old version is
replaced, i.e., that the old version is shut down. However, in the described
scenario here this cannot be done without care.

Assume that in the new iteration the application has been changed at a
place that effects software that is reused by project B. As a first problem, the
stakeholders in project B must become aware that changes to the software in
project A have happened and then they must be able to determine whether

8.5 Service-Orientation as Development Paradigm 239

SOA
Governance

Project
A

Project
B

Project
C

re
us

e

re
us

e

Project
D

Fig. 8.9. Software reuse across project boundaries.

the changes are relevant to the software of their project. This determination
consists of two steps. First, they need to understand whether the changes are
in any of the parts that have been reused. Then they have to decide, whether
the changes should be adopted or not. For example, if the changes are rather
bug fixes, project B very likely wants to adopt them. On the other hand, if
the changes have been made on behalf of users of software product A that
want the software to behave differently, it can also be, that these changes are
not necessary and not appropriate for software product B.

Project
A

re
us

e

re
us

e

Project
B

Fig. 8.10. Software reuse from a maintained software product.

Assume that the stakeholders of projectB want to adopt a software change
in project A. Then they need to distinguish between the two kinds of ways
of realizing the reuse. One option is that software of project A was copied to
project B where its copy has become a new part of the code base. Then this
copy must be renewed by a new copy of the changed piece of software. But
that is not all. In general, the product in project B needs also to be refactored.
This is obviously so when the interface of the replaced software components

240 8 Service-Oriented Architecture

has been changed. Beyond merely structural changes product B must also be
refactored carefully with respect to the behavioral changes.

The other option for the realization of reuse in Fig. 8.10 is that product B
calls the application parts it needs as services. In the case the stakeholders
of project B want to adopt a change to the software of project A they do
not have to copy code, because it is there and running, but the real part of
adoption, i.e., the refactoring of their product so that it fits the new version
has still to be done.

We now turn to the really interesting case which makes things completely
different from the silo project development. It is the case that stakeholders in
project B do not want to adopt a certain change. In that case a version of the
old software must be kept running in parallel to the new version. In Fig. 8.10
we have depicted a solution where project A is responsible for the operation of
the old version of the software, so that project B can keep using it as service
by calling it. With respect to complexity this differs a little from a solution
that copies the old version to project B, because the result remains the same,
i.e., two versions of a software part are run and maintained henceforth in
parallel.

Similarly, things become more complicated if a piece of software copied
from product A to B is changed sometime after its deployment by project B.
Then a careful co-evaluation of both the changes in project A and project B
is necessary and both kinds of changes have to be brought together by the
developers in project A. This leads us to yet another observation with respect
to reuse. So far, we have only considered the impact of changes to a software
component on software that reuses this software. In general, however, also
the other direction is relevant. A software piece can also be subject to change
because of its usage in another project than the one it originally stems from.
All these problems are exactly the problems of software variants as described
in Sect. 5.6 from the viewpoint of modeling. To realize the potential of all
the software in an enterprise as a common code base for reuse the borders
between the projects must be removed. At the next level all the projects with
their sub projects and iteration projects can be seen as one huge project as
depicted in Fig. 8.11. It is the complexity of this general software development
problem that must be properly managed by initiatives like SOA governance
that promise to contribute to enterprise-wide software engineering.

8.5.3 Software Use versus Software Reuse

There is a huge potential of software reuse in large companies. On a global
scale, there is even more potential for reuse through emerging service-orienta-
tion. One of the widely recognized visions of service-oriented architecture was
the retrieval of services in global repositories as described in Sect. 8.4. This vi-
sion was tightly connected to the concrete UDDI standard of the web-services
technology stack. This kind of service retrieval and use had the focus on elec-
tronic data interchange, i.e., business-to-business computing. It was not in the

8.5 Service-Orientation as Development Paradigm 241

Projects
Subprojects

Iterations
reuse

Fig. 8.11. SOA governance as ubiquitous reuse.

first place about software reuse in the sense of SaaS (Software as a Service).
It is a promising idea to see the global code base as a repository for reuse –
see [7, 8] for a discussion and concrete supporting technology.

The topic of the discussion of Sect. 8.5.2 has been software reuse in devel-
opment projects and actually IT stakeholders want SOA experts to say some-
thing about software reuse. However, the earlier visions of service-oriented
architecture concerning the fields of enterprise application integration, elec-
tronic data interchange, and flexible business processes were not originally
visions about software reuse. In a strict sense the field of reuse is always also
about design for reuse, i.e., the discipline of anticipating the reuse of a piece
of software. For example, we believe that this viewpoint is wide-spread in
the object-oriented software pattern community – note, that according to the
subtitle of [130] design patterns are about reusable object-oriented software.
SOA governance in the sense of best practices and tools is relevant for all the
discussed SOA visions and not only the software productizing vision.

9

Conclusion

Many of today’s enterprises consider business process orientation as a key en-
abler. Due to globalization today’s markets are highly competitive. Enterprises
must be prepared to react quicker to new threats. They want to be prepared
to react quicker to new opportunities. They must react quicker to changing
and new customer demands. A mature business process management teamed
together with a flexible IT infrastructure becomes more and more important
in many successful enterprises.

In Fig. 1.1 we have called the reader’s attention to the gaps and tension
that exist between business process modeling, workflow definition and appli-
cation programming. The book analyzed these gaps and tensions. Now, this
chapter eventually addresses these gaps and tensions by proposing a typed
approach to business process specification. The chapter introduces a concrete
typed workflow specification language – the so-called typed workflow charts.
These can be exploited as a domain-specific programming language and facil-
itate tight integration between workflow definition and system dialogue pro-
gramming. Furthermore, typed workflow chart specification is amenable to
integration with business process modeling.

9.1 Business Processes and Workflows

It is common to make a distinction business process modeling and workflow
definition. With business process modeling in Fig. 1.1 we mean a system
analysis activity, i.e., an ‘as is’-analysis or a ‘to be’-analysis of the business
processes an organization is made of. With a workflow definition in Fig. 1.1
we mean the specification of a workflow created with the workflow defini-
tion tool of a workflow system technology. In this sense a workflow definition
is a high-level program, which is typically a visual program. This means, a
workflow definition is a somehow executable business process model or speci-
fication. It is executable in the sense that it can be interpreted by a so-called
workflow enactment service teamed together with a so-called workflow engine

© Springer-Verlag Berlin Heidelberg 2010
and Enterprise Applications, DOI 10.1007/978-3-642-01588-5_9,

243D. Draheim, Business Process Technology: A Unified View on Business Processes, Workflows

244 9 Conclusion

that maintains workflow state and steps through workflow definitions with the
help of a worklist client. The worklist paradigm has been explained in depth
in Sect. 7.

9.1.1 Usual Distinctions between Business Processes and
Workflows

Just from the meaning of the words the terms business process and work-
flow can be used as synonyms. And actually, the terms business process and
workflow are often used as synonyms. The Workflow Management Coalition
(WfMC) cleanly distinguishes between business processes and workflows [356].
In [356] business processes are explained as the more general concept of a net
of business activities whereas a workflow is a automation of a business pro-
cess. Let us have a look at the definitions of business process and workflow as
given by the Workflow Management Coalition. The notion of business process
is defined as follows:

“A set of one or more linked procedures or activities which
collectively realize a business objective or policy goal, nor-
mally within the context of an organizational structure
defining functional roles and relationships.”[356]

The notion of workflow is defined by the Workflow Management Coalition
as follows:

“The automation of a business process, in whole or part,
during which documents, information or tasks are passed
from one participant to another for action, according to a
set of procedural rules.”[356]

To define a workflow merely as an automation of a business process would
be quite an ambiguous definition. The above definition of workflow as given by
the Workflow Management Coalition is more elaborate than just stating that
a workflow is an automation of a business process but, nevertheless, it remains
ambiguous in the following sense. Automation of a business process can be
understood as the replacement of an existing, not yet automated business
process by a new fully automatic one. For example a handcraft process of
a workshop production could be replaced by a fully automatic production-
line. What interests us more than the full automation of a business process
are certain automatic parts of a business process that deal with supervisory
control. This is so for fully-automatic and semi-automatic business processes.

We think that in the view of workflow technology, which is at the center
of discussion in the workflow community which the Workflow Management
Coalition aims to represent, it is fair to remark that there is a notion of work-
flow that is not the automation of a business process itself but an automatic
process in an enterprise application, i.e., a state-based human-computer dia-
logue, that supports an otherwise existing business process. A business process

9.1 Business Processes and Workflows 245

does not exist completely independently from the workflows that support it,
precisely because it is supported by these workflows. However, in general a
business process can be considered independently from its supporting work-
flow in an enterprise application. Sometimes, the workflow support of the
business process speeds up the workflow makes it easier to learn and to follow
for humans, makes it more robust against erroneous execution and so on. But
all of these important advantages are just quality properties of the concrete
semi-automatic implementation of the business process and the business pro-
cess often could exists without this concrete workflow support, for example, it
could exist with another kind of workflow support or even without workflow
support at all.

Fortunately, when talking about business process technology and workflow
technology in particular, we do not have to think too much about the meaning
of automation of business processes in general. We have a concrete meaning of
workflow at hand, which stems from the considered technology class, i.e., the
workflow management system as given by the workflow management reference
model of the WorkflowManagement Coalition in [356]. We have visualized this
workflow management reference model in Fig. 4.3.

9.1.2 This Book’s Distinction between Business Processes and
Workflows

In this book we use the term business process for the value-adding processes
an organization is made of and the term workflow for the automation of such
process. Even more concretely, we usually use the term workflow for a certain
kind of IT support for a concrete business process, i.e., a piece of software that
enables a business process and controls its correct and complete execution.
Even more concretely, we usually use the term workflow for such IT support
that is realized with a workflow management system.

Anyhow, we do not mind whether you want to distinguish between the
terms of business process and workflow or not. However, we want to make
clear that it is often important to distinguish between business processes in
general and the automation of business processes, independently from the
question whether you want to use the terms business process and workflow
for this distinction. For example, for us it is very important to distinguish
between the activity of understanding and describing business processes in
general, on the one hand, and the definition of a workflow in the definition
tool of a workflow technology, on the other hand. We use the term business
process modeling for the former notion and the term workflow definition for
the latter.

It is worth mentioning that the Workflow Management Coalition uses the
term process definition for what we call workflow definition. The terms and
business model and business definition sound more equal to each other than
the terms business process model and workflow definition. Furthermore, the

246 9 Conclusion

term workflow definition hints at the concept of a workflow management sys-
tem that interprets workflow definitions as programs in a high-level, visual
programming language, i.e., we think that the term workflow somehow brings
a flavor of executability. Therefore we prefer the term workflow definition over
the term process definition. There are other terms that make sense for what we
call a workflow definition, e.g., executable business process model, executable
business process specification, workflow specification and so forth.

9.1.3 Tool Support for Business Processes – Business Process
Technologies

There is no need to use special-purpose tools and technologies to automate
business processes. For example, you can use a general-purpose drawing tool to
support your business process modeling efforts. And you do not need workflow
management technology to develop a workflow-intensive software application.
However, there are special-purpose business process technologies as shown in
Fig. 9.1.

There are tools whose purpose is to support business process modeling and
others to support business process automation. Actually, Fig. 9.1 shows three
kinds of tools, i.e., business process modeling tools, business process manage-
ment suites and workflowmanagement systems. Business process management
suites and workflow systems together stand for the class of special-purpose
business process tools explicitly supporting business process automation. You
can also use the terms workflow technology or workflow management system
technology and the like for the kind of tool named workflow management sys-
tem in Fig. 9.1. Actually, the term business process management suite and
workflow management system in a sense mean the same class of tools. The
point is that workflow management system is the traditional name for a sim-
ilar kind of system. Established workflow technology vendors renamed their
products and call them business process management suites today. However,
you would usually expect features from a business process management suite
that go beyond the automation of business processes. Such features are, for
example, advanced capabilities for process analysis like monitoring tools for
the executed workflows and simulation tools for the workflow definitions as
sketched in Fig. 9.1.

Those tools that support business process automation also offer a means
to visually specify business process models, which is given by their workflow
definition tool. However, tools for business process automation usually do not
count as business process modeling tools. This is justified, if a business process
automation tool does not offer the full range of features for business process
description that you might except from a business process modeling tool. For
example, a typical business process modeling tool might offer support for a
lot of different kinds of diagrams, for example, support more than hundred
of different kinds of modeling language standards and quasi-standards would
be an educated guess. The point is that with a business process modeling

9.1 Business Processes and Workflows 247

tool you usually do not want to model only the narrow aspect of business
processes as a net of business activities, but also all other kinds of aspects of
the enterprise.

Fig. 9.1. Concrete business process technologies.

Actually, with respect to the needs of analysis and modeling there is no
real limitation in flavor or aspects for which system an analyst might want to
have integrated support in a business process modeling tool: data, organiza-
tional structure, the deployment structure of enterprise applications, strategic
plans and so forth. Alone for the aspect of pure business process modeling,
you would expect support for the different accepted modeling language stan-
dards and quasi-standards, i.e., event-driven process chains like the one in
Fig. 4.6, BPMN, UML activity diagrams and so forth. In terms of different
types of diagrams in general, you would expect support for: entity-relationship
(ER) diagrams, all the different kinds of object-oriented diagrams from dif-
ferent kinds of modeling methods like UML or OMT [306], old-fashioned but
nonetheless established and still widely used kinds of diagrams like SADT or
IDEF-0 , supply chain diagrams like the uppermost diagram in Fig. 9.1, dia-
grams for Norton and Kaplan’s balanced score cards [194], organization charts
and so forth – the list is really open-ended.

A mature business process modeling tool should allow for the modeling
of these aspects and should allow the analyst to control the complexity that
arises from the interrelationships between the several aspects. A concrete fea-
ture that you might except from a mature business process modeling tool is
the maintenance of all the models in a way that is independent from concrete
syntax, i.e., the maintenance of a model repository, and support for tracking
and balancing between the model elements of different kinds of models. Fur-
thermore, against the background of the many kinds of diagrams and concrete

Workflow
Management

Systems

Business
Process

Management
Suites

Business
Process
Modelling

Tools

A

V

B

V

E F

16,2 %

31,1 %

52,7 %

15

21

39

25

14

19

30

37

22

16

34

28

0

5
10

15
20
25

30
35
40

Monitoring

V

V V

Simulation

248 9 Conclusion

modeling elements that are possibly needed in your organization you might
except support for meta-modeling so that your business process modeling tool
is open for extensions or changes to the offered diagrams or even the addition
of an entirely new kind of diagram. Actually, there are some business process
modeling tools that offer meta-modeling capabilities, either as a service pro-
vided by the tool vendor, or as an explicit feature available to the user, where
the latter is rather the case for tools from academia [212, 197] but also for
some commercial tools [159, 160, 115, 246].

Actually, there is no reason why a tool for business process automation
should not also support the features that you might except from a business
process modeling tool. And actually, we believe that these two classes of tools
will be unified in the future. However, a distinction between the two classes
seems to be here to stay for a while. For example, the Gartner Group dis-
tinguishes between two markets, i.e., the market of business process analysis
tools, which is just another name for business process modeling tools, and the
market of business process management suites resulting in two separate magic
quadrants published by Gartner [261, 158].

9.2 Integrating Workflow Definition and Dialogue
Programming

In this section we now integrate workflow definition and dialogue programming
by the introduction of a typed-approach to business process specification,
typed business process analysis for short. The key artifact that we introduce
is the typed workflow chart. The typed workflow chart is an extension of the
formchart that addresses the needs of workflow definition. Similarly, typed
business process analysis is a generalization of form-oriented analysis [89, 82,
83, 95, 94, 96, 97, 105, 106, 92, 87, 107] that addresses the needs of business
process specification. The framework of typed business process analysis is
also amenable to the integration of business process modeling in general and
workflow definition in particular as we will detail in Sect. 9.4. Once more
we want to make clear our distinction between business processes modeling
and workflow definition that we already discussed in Sect. 9.1 – a workflow
definition is a special kind of business process model, usually the most detailed
one in a hierarchy of business processes, that specifies the top-level structure
of the dialogues of a workflow management system.

9.2.1 An Introductory Example

We have given an example business process model that deals with the
tasks of business travel application, review, support and report in Fig. 9.2.
The business process model oriented towards an event-driven process chains
(EPC) [312] with their typical usage of events to represent case distinctions.

9.2 Integrating Workflow Definition and Dialogue Programming 249

Fig. 9.2. Business process model for conducting a business trip.

Before an employee may travel he must apply for it. The application is
reviewed by a responsible team manager. For some employees, the application
can be rejected. For other employees the application can not be rejected by the
team manager, however, it can be sent back to the applicant for changes and
improvement. The rejection of an application is notified to the applicant. The
detail information that there is a distinction between employees with respect
to rejection and revision of travel applications is absent from the business
process model in Fig. 9.2. The rules about how an employee’s application has
to be treated with respect to rejection and revision are known and applied
by the supporting IT system. Also this fact is not represented in the business
process model in Fig. 9.2.

If the application is accepted the employee may travel. In parallel to the
allowance the secretary will start supporting the employee with travel arrange-
ments and further administrative tasks. After the employee has finished the
business trip, he has to declare the travel expenses.

Figure. 9.3 is the workflow definition – given as a workflow chart – of the
IT system that supports the above described business process. A workflow
chart specifies a human-computer interaction. Circles in the workflow chart
stand for computer screens showing information and providing forms for data
input. White rectangles stand for forms that appear on computer screens.
Gray rectangles stand for links in user worklists or task start menus. An
employee starts a workflow instance by clicking on a travel application link in
his task start menu. The travel application page is shown to the user. The page
has a travel application form. The application page will be reused later for
the revision of the application. Then, a travel withdraw form will be shown.
Now, the travel withdraw form is not yet shown, because the user is the first
time on this page. This fact is expressed by the so-called enabling condition
attached to the edge from the travel application page to the withdraw form.

After the employee has submitted the travel application form, a link to
the review of the travel application appears in the worklist of the team man-

travel
expense

report
travel

application
review
travel

application

improve
travel

application

travel

travel
rejected

revision
needed

travel
accepted

team manager

employee

employee employee employee

v

support
travel

secretary

travel
improved

travel
withdrawn

team manager

employee

250 9 Conclusion

ager. If the team manager chooses this link from his worklist, the system will
determine, whether it is possible to reject or to return the application. This
is expressed by the so called flow conditions attached to the outgoing edges of
the review travel application link. The flow conditions are mutual exclusive,
so that the determination of the next page is unique.

If it is possible to reject the application a page is shown to the manager
with a rejection form plus an acceptance form. If it is possible to return
the application a page is shown to the manager with a revision form and
an acceptance form. Both the rejection and the revision form, as well as the
acceptance form provide means to input information necessary like comments,
hints, change requests and so on. If the manager rejects the application a
link to an appropriate notification message appears in the worklist of the
applicant. If the manager returns the application to the user a link to the
travel application page appears in the worklist of the employee that allows the
employee to revisit his application and to change and improve the application
according to the recommendations made by the manager, which are then also
shown on the travel application page.

If the manager has submitted the acceptance form, a link to the corre-
sponding travel expenses report task appears in the worklist of the employee
and a link to a travel support task appears in the worklist of the secretary.
When the secretary selects this link, a client page with all the information
about the new travel that he needs to support the traveler is shown to him.
He can leave this client page via a ‘continue’-link after which the link to the
travel support information page reappears in his worklist or via a ‘delete’-link
which removes the task from the worklist.

After an employee has finished his travel, he selects the link to the cor-
responding travel expense report task. On the corresponding page he can fill
out an appropriate travel expense form. The travel itself is not represented in
the workflow chart in Fig. 9.3.

Fig. 9.3. Workflow chart for conducting a business trip.

team manager

travel
application

travel
application

travel
application

form

review
travel

application

employee

revision
form

rejection
form

acceptance
form

travel
expense

report

travel
expense

report

support
travel

travel
data

travel
expense

form

continue

withdraw
travel

accept or
return

accept or
reject

withdrawn
travel

information

team manager

improve
form

employee

employee

secretary

employee
rejected

travel
information

true

true

it is possible
to reject

the application

it is possible
to return

the application

delete

the page
has been
revisited

9.2 Integrating Workflow Definition and Dialogue Programming 251

9.2.2 Typed Workflow Charts

A workflow chart is a tripartite directed graph. There are three kinds of nodes,
i.e., client pages, immediate server actions and deferred server actions. Each
client page is only followed by immediate server action, each immediate server
action is followed only by deferred server actions and each deferred server
action is only followed by client pages. Figure 9.4 shows a correct workflow
chart. We consider typed workflow charts, which means that a type is assigned
to each node in the workflow chart. We assume in the following that all the
workflow charts are typed, so that we use the terms typed workflow chart and
workflow chart synonymously.

Fig. 9.4. Basic workflow chart.

The types used for the nodes of a workflow chart can be arbitrary com-
plex sum-of-product types, e.g., the class diagrams of usual object-oriented
modeling methods serve as a good basis – see Sect. 5.3 for a discussion of
sum-of-product types. The types can be arbitrary complex, i.e., they can be
arbitrarily nested; however, a type of a node must be at least a product type.
It can be an empty product type; however, it must not be a basic type. In
our examples, we usually assign a type to a node by giving the type the name
of this node – in [101] we went even a step further and directly interpreted a
class diagram as a formchart.

The workflow chart is annotated with further specification information of
various kinds. As in form-oriented analysis different kinds of dialogue con-
straints are used, as indicated by the si, fi and gi in Fig. 9.4. We will not
give a comprehensive explanation of all kinds of dialogue constraints that
are necessary to completely specify a workflow management system, but re-
fer to form-oriented analysis [89] for a comprehensive reference. However, we
will discuss extra concepts in dialogue constraint writing needed for workflow
specification in the following. Furthermore, users or user roles are attached to
the workflow chart, as indicated by r1 through rm in Fig. 9.4. Users or user
roles are attached only to deferred server actions as we will again explain in
Sect. 9.2.4.

A

s1

sm

B1

C1

Cm

D1

Dp

E1

Ek

f1

fp

g1

gkBn

r1

rm

unique choice

multiple choice

252 9 Conclusion

9.2.3 From Client Pages to Immediate Server Actions

A client page of a workflow chart is like a client page in a formchart – see
Sect. 7.3 for an introduction to formcharts. The type of a client page describes
the report shown to the user in an abstract sense. An immediate server action
that is attached to a client page describes a form that appears on that client
page. The user can fill out a form and submit it. The type of a server action
describes the edit opportunities offered to the user by the corresponding form.
For each attribute of a record type a concrete value must be provided before
submission of the form. The concrete value must be provided by the user or
automatically by a hidden parameter mechanism. It can be elaborated how a
concrete type specifies concrete edit opportunities. For example, if an attribute
has a basic infinite type, this can be interpreted as an input field in the form
that has to be filled out by the user. As another example, if an attribute has
a finite type, i.e., an enumeration type this can be interpreted as a selection
menu. In [89] we have proposed one concrete means of interpretation of types
as edit opportunities.

There may be more than one immediate server action connected to a
client pages as shown by the server actions B1 through Bn in Fig. 9.4. The
user can submit only one form. Only the data filled into the submitted form
is transferred to the server. Data that has been filled into or selected in forms
other than the one submitted is lost after submission.

9.2.4 From Immediate Server Actions to Deferred Server Actions

An immediate server action processes the values it has received upon invoca-
tion by the user. In general the server action has a side effect on the informa-
tion system state. After completion of an immediate server action, the user is
led to his worklist. The edges from immediate server actions to deferred server
actions are annotated with conditions as shown by the conditions s1 through
sn in Fig. 9.4. We call edges from immediate server actions to deferred server
actions activation edges. We call the conditions annotated to activation edges
show conditions or activation conditions. Given an activation edge and its ac-
tivation condition, the deferred server action targeted by the activation edge
is called the corresponding deferred server action of the activation condition,
i.e., each Ci is the corresponding deferred server action of each si in Fig. 9.4.

The Semantics of Activation Conditions

The semantics of an activation condition is the following. If and only if an
activation condition evaluates to true a new link to the corresponding deferred
server action is created and added to a user’s worklist, i.e., a new link to the
corresponding deferred server action is shown to a user – this is the reason
why we call activation conditions also show conditions. Which user’s worklist
the new link is added to? This depends on the role annotated to the targeted

9.2 Integrating Workflow Definition and Dialogue Programming 253

deferred server action and the concrete role model used. Let us assume that
we are dealing with a single-user role model, i.e., a role model in which each
role is actually a single, fixed user. This means, the role annotation assigns a
concrete single user to each deferred server action. In the context of such a
single-user role model the link of an activated deferred server action is added
to the worklist of the user that is annotated to the deferred server action.

Let us assume that we have to deal with a more complex role model in
which a role stands for a set of concrete users. If we have to deal with such
complex role model we have the choice to fix the semantics of workflow acti-
vation. One choice is that a link to the activated deferred action is added to
the worklist of each concrete user in the set defined by the user role which is
annotated to the deferred action. So, it is indeed not necessary to restrict the
semantics to an alternative where an activated workflow is activated uniquely
for only one user. However, if we chose to add an activated workflow to more
than one worklist we have to fix semantics for this somehow distributed acti-
vation link that is created this way. A usual solution would be a preemptive
semantics that deletes workflows from worklists once a workflow is actually
started. Another possible solution lies in a completely different interpretation
of the situation in which more than one copy of workflow instances is actu-
ally created and distributed over the users. Another option for dealing with a
multiple-user role is to choose one concrete user from the set of users when-
ever a deferred action is activated. In this case a concrete mechanism for the
selection of the concrete user should be defined – see Sect. 7.11.

All this said, we now fix the trivial single-user role model for workflow
charts. We do this only for the sake of simplifying the upcoming discussion of
workflow charts, i.e., without loss of generality. We therefore speak about a
user attached to a deferred server action instead of talking about a user role or
role attached to a deferred server action. However, once the semantics of the
workflow chart is understood for the single-user role model, workflow charts
can be extended by other, more complex user role models and appropriate
semantics can be given to them.

With the single-user role model fixed we can now give the following defi-
nition. If and only if an activation condition evaluates to true a new link to
the corresponding deferred server action is created and added to the worklist
of the corresponding user.

Worklist Implementation Issues

The above definition of the semantics of activation conditions does not specify
when the newly created link is actually shown to the user. It is fair to state
that the new link is shown to the user as soon as possible, but what does that
mean? Actually, the question depends on the implementation of the work-
flow management system. In Sect. 7 we have identified a distinction between
terminal/server-style workflow systems and windows-style workflow systems.

254 9 Conclusion

In a terminal/server-style workflow system the user has no access to the
worklist as long as he is working with a system dialogue. For the workflow
chart this means that with a terminal/server-style implementation, the work-
list is not available when the user sees and works with a client page. As soon
as the user returns to his worklist all new links that has been added to it in
the mean time are presented to him. In a window-style implementation the
user always has access to the worklist. If the worklist is currently shown to
the user the question is whether the links that are added to it are immedi-
ately presented to the user or not. This is an issue for both terminal/server-
implementations and windows-style implementations. The option that a link
is not shown immediately to the user means that we must distinguish between
a notion of worklist and a notion of shown worklist. The worklist in general
is a conceptually worklist of all activated deferred server action, whereas the
shown worklist is the list of deferred actions that are actually shown to the
user.

The question of whether to show a new link immediately or not is in
the first place a human-computer interaction question, in the second place a
technological question. If the user looks at the worklist it might be confusing
if the worklist changes, in particular, when links are added relatively often.
For example, if links are added at the beginning of the list or, based on some
criteria like alphabetical order or task numbers, somewhere in the middle
of the worklist, an addition of a link may make it difficult to read the list,
because lines can always be re-arranged suddenly. If links are added to the
end of the list and the list is too long to be presented on the screen in one go,
the addition may not have the desired effect of an immediate addition, i.e.,
immediate information about new available tasks. A compromise might be to
enable a reloading of the worklist and to inform the user with some kind of
flag whenever new tasks arrive.

The Multiple Choice of Deferred Actions

After completion of an immediate server action an arbitrary number of the
connected activation conditions can evaluate to true. In Fig. 9.4 we have
used the term multiple choice for this scenario. The multiple choices give rise
to extra parallelism. Parallelism means that the user can influence how to
intertwine defined sequences of activities, i.e., sequences of client pages and
server actions. The user can influence this intertwining by the selection of the
next task from the user list, i.e., by the selection of the next deferred server
action. In order to have a choice there must be more than one task in the
worklist. Even if the evaluation of activation conditions after immediate server
actions were always unique instead of multiple, there would exists parallelism,
because the task in a user’s worklist may stem also from arbitrary many other
users. It is also possible to allow automatic events or events from outside the
workflow system to trigger new workflow instances, which would also give rise

9.2 Integrating Workflow Definition and Dialogue Programming 255

to parallelism. Therefore we say that multiple choice of deferred actions give
rise to extra parallelism, i.e., it is not the only source of parallelism.

The multiple choice of deferred server actions after the completion of an
immediate server action is deterministic. The multiple choice is done auto-
matically based on the system state and concrete conditions, it is therefore
not an example of non-determinism. It is a common misunderstanding to
believe that parallelism always comes with non-determinism. You can have
completely deterministic systems that deal with forms of parallelism. The
user’s choice of the next deferred action from his worklist might be classified
as non-deterministic. An observer that knows little about the rules that the
user’s decision is based on, would classify this selection as non-deterministic.
If there exists such rules and the more the outside observer knows about these
rules, the observer would tend to classify this selection also as deterministic.
The same discussion applies to events that trigger workflow instances from the
system’s environment. Observers classify choices as non-deterministic if they
do not understand the decision rules. If an observer does not understand the
decision rules of a choice the user might at least understand the distribution
of concrete choices, i.e., the choice is amenable to treatment with probability
theory. Even if an observer understands the distribution of concrete choices,
he would still classify a choice as non-deterministic, unless he also understands
the decision rules behind the choice.

An arbitrary subset of the activation conditions that belong to one imme-
diate server action can evaluate to true after completion of that immediate
server action. This means, in particular, that also none of the activation con-
dition may evaluate to true. Indeed, it can happen that a user’s worklist
becomes empty. Then, the user must start new tasks or must wait for new
tasks triggered by other users or external events. We assume that the workflow
system provides a start menu, i.e., a list of links to deferred actions that serve
as entry points to workflow instances – see also Sect. 9.2.6 for a discussion
of the creation of workflow instances. It is possible to introduce a modeling
element, a start marker, let’s say a small circle, to denote those deferred server
actions that should serve as entry points for the initial creation of workflow
instances. The information given by the start markers can then be exploited
in constructing the user’s start menus.

It is not necessary to introduce explicit modeling elements for generating
parallelism, called, e.g., fork or split connectors or gateways in common busi-
ness process modeling languages. You can express all kinds of forking with a
set of conditions which are all evaluated independently from each other. Ex-
plicit modeling elements can be introduced as syntactic sugar. Fig. 9.5 shows
two versions to express the same multiple choice. The first one uses activation
conditions only, the second one uses also a fork gateway and a decision gate-
way. All the activation conditions that are constantly true in the first version
are replaced by the introduction of the fork gateway in the second version.
The two activation conditions s and ¬s from the first version are transferred
to the branches of the decision gateway in the second version.

256 9 Conclusion

s

B1

C1

C5

C2

C3

C4

¬s

true true
true B1

C1

C5

C2

C3

C4

v

s¬s

Fig. 9.5. Implicit versus explicit multiple choice.

9.2.5 From Deferred Server Actions to Client Pages

A deferred server action usually appears as a link in worklists. In general,
it would be possible to have worklists that consist of forms instead of links,
so that the user can enter some initial data before starting the selected next
task. However, in today’s workflow technologies worklists consist of links that
lead to task. This does not mean that the type of a deferred server action is
necessarily the empty type. A link can carry hidden parameters as we have
discussed in Sect. 7.3 and so is also for those links that trigger deferred server
actions.

Like immediate sever actions, a deferred server action also processes some
logic and may have a side-effect onto the state of the information system. The
edges leading from a deferred server action to a client pages are annotated
with so-called flow conditions, see the fi and gi in Fig. 9.4. These flow con-
ditions serve the same purpose as the flow conditions in the formcharts of
form-oriented analysis. After an deferred server action has been executed, all
the connected flow conditions are evaluated. In contrast to immediate server
actions, this evaluation must be unique, i.e., exactly one of the flow conditions
must be evaluated to true. Basically, there are two options to ensure that ex-
actly one of the flow conditions is evaluated to true. It is possible to require
from the workflow designer that he writes the flow conditions in such a way
that they are mutually exclusive and complete for each system state. Another
option is to introduce a means to specify an order for the flow conditions and
a means to specify a default, fall through edge.

9.2.6 The Workflows given by a Workflow Chart

Each deferred server action can be considered the entry point to a workflow;
it can be considered the entry point of an automated business process. If an
activation condition evaluates to true, an instance of a workflow is activated.
What does activation of a workflow instance mean? We have a strict human-
computer interaction oriented answer to this question. A workflow instance
is activated if it shows up in a worklist. We say that the workflow instance
represented by a link in a worklist is activated but not yet started. The user can
start a workflow instance by selecting the corresponding link in the worklist.
Figure 9.6 shows how workflows are represented by deferred server actions.

9.2 Integrating Workflow Definition and Dialogue Programming 257

Each deferred server action in the large workflow chart at the top of Fig. 9.6
can be interpreted as the start of a sub workflow definition. In Fig. 9.6 we
have used small circles as start markers and small double-lined circles as end
markers for workflow definitions. The smaller diagrams in Fig. 9.6 each show
one sub workflow definition of the large workflow chart.

A G H B I J C K L D M N

Q F R S

E O P

F R SE O PD M N

G H B I J

C K L D M N

Q F R S

E O P

G H

B I J C K L D M N

Q F R S
E O P

Fig. 9.6. Deferred server actions as entries to workflows.

We have a continuation-based or nested viewpoint with respect to work-
flows, i.e., workflow definitions and workflow instances. A workflow consists
of a starting deferred server action, followed by a client page, followed by an
immediate server action, recursively followed by a workflow. A workflow is
usually seen as an entity that serves the user to achieve a certain goal. This
understanding of workflow – see also the Workflow Management Coalition’s
definition of business process given in Sect. 9.1 once more – somehow contra-
dicts the just-given definition. Given a concrete workflow definition, in general,
you would not see each of its inner workflows in the sense of our definition as
independent workflows in the usual sense.

The notion of achievable goal is somewhat vague and depends upon the
viewpoint of the observer; however, it should not be neglected. Therefore, the
workflow definition language should provide a way to divide the whole flat
workflow chart into parts, which are then the top-level workflow or let us say
tasks. The usage of start markers and end markers could be used for this
purpose.

The specification of tasks could be, for example, exploited in the naming
of client pages, so that a user always is aware of the context task he is working
in. Similarly, the task name could also be exploited in the naming of the links
occurring in worklists. A link could consist, for example, of a task name plus a
task identifier plus the name of the targeted deferred server action. The name
of the initial deferred server action, i.e., the deferred server action that is the
entry point to a task, can be taken as the name of the task. Alternatively,
the workflow definition language could provide a means to specify an extra
name for a task. The task identifier can be generated whenever a task is

258 9 Conclusion

started and can be propagated to the subsequent inner workflows of the task.
A task can be considered finished when there are no dangling activities of the
task, i.e., open client pages or processing server actions that belong to a task
specification.

We do not delve further into this topic of task specification. This means
that we do not want to elaborate a full task specification mechanism and its
effects here. A purpose of the discussion of tasks was to illustrate that further
useful notions can be built on top of the workflow chart concept. And indeed,
in Sect. 9.2.7 we will discuss a further possible exploitation of the workflow
chart in Sect. 9.2.7, i.e., the interpretation of sub workflow charts as complex
dialogues, which is very important, because it overcomes the strict separation
of workflow definition and application programming.

9.2.7 The Interplay of the Dialogue Client and the Worklist Client

A workflow chart is executed or interpreted by the interplay of two kinds of
clients. The first one is the worklist client or worklist processor, the second
one is the so-called dialogue client or dialogue processor. The worklist client
presents the worklist to the user and enables the selection of a concrete sub-
sequent task in the form of a link to a subsequent deferred server action.
Upon selection of a task the worklist client hands over to the dialogue client.
The dialogue further processes the workflow chart. The dialogue client ren-
ders the report data of the client page and shows the forms connected to it.
It enables input to the forms and submits the data to the selected immediate
server action. Then, as a default behavior, the dialogue client hands over to
the worklist client. In Sect. 7 we have explained that workflow systems follow
a three-staged interaction paradigm. The worklist client stands for the first
stage of interaction, i.e., selection of a task from the worklist, and the dia-
logue client stands for the second stage of interaction, i.e., editing of the input
capabilities of the client page, and the third stage of interaction, i.e., selection
of a navigation path and submission of data.

We have said that the dialogue client hands over to the worklist client as
a default. This is not necessarily so however. Let us start with the following
scenario. After a user has triggered an immediate server action, and after
completion of this immediate server action, an arbitrary number of deferred
server actions is selected for further processing. Here, if the selection is unique
with respect to the user who triggered the immediate server action this user’s
dialogue can be continued, i.e., the worklist processor stage can be skipped.
It can be skipped, because there is no ambiguity and therefore no need for
user intervention from a dialogue processing viewpoint. If the processing stays
with the dialogue processing client this means that the uniquely determined
deferred server is actually executed immediately. Then the next client page is
determined uniquely, which is always the case; because we have said that flow
conditions are always uniquely evaluated.

9.2 Integrating Workflow Definition and Dialogue Programming 259

We fix the term dialogue for a single-user human-computer interaction
that is two-staged in the sense of form-oriented analysis and formcharts. In a
dialogue we consider only the interactions with a client page, i.e., the editing
and submission of a client page’s forms. This does not mean that you can, in
principle, model or program worklist within the two-staged interaction par-
adigm [15]. It means that we consider a dialogue model as being interpreted
by a dialogue processor only. The simplest dialogues consist of one client page
and its connected forms. Rapid development tools in some business process
management suites support exactly the development of such one-step dia-
logues leading to a report with a form that leads back to the worklist upon
submission.

Complex dialogues consist of many different client pages and server actions
wired together. A dialogue model is characterized by the fact that the server
processing stage uniquely determines the next client page for the single user.
Therefore, those parts of a workflow chart in which the activation conditions
that are evaluated uniquely relatively to the triggering user are candidates
for being interpreted as mere dialogues. This observation can be exploited in
various ways as we will see in due course.

9.2.8 Dynamic Detection of Dialogues

It is possible to detect at run-time whether the evaluation of activation con-
ditions with respect to the current user is unique or not. On the basis of this
it can be decided dynamically whether the user is directed to his worklist or
to the next client page. With such dynamic scheduling of the two clients, the
number of visits to worklists can be reduced significantly for some concrete
workflow definitions. Imagine a workflow definition in which the interaction
for each user is actually determined completely uniquely with respect to the
system responses and the only kind of parallelism stems from forking parallel
tasks to other users. In such system all the visits of the worklist are super-
fluous. At least they are superfluous at first sight. Actually, it is exactly the
same example that also shows us the risks of such an approach of dynamic
client scheduling. A user might be involved too long in his dialogue before it
is finishes and he gets the chance to see tasks that arrived in the mean time.

Another point of criticism against the dynamic scheduling approach is the
obvious potential violation of an important dialogue principle, i.e., conformity
with user expectations [176]. Imagine a user has been used to being routed to
a worklist after a certain client page and is suddenly directed to a subsequent
client page. He might be confused or miss the opportunity to select the next
concurrent task himself.

The worklist is a tool to reveal parallelism to the user. The interplay
between the worklist client and the dialogue client should be designed inten-
tionally. It should be designed with care. Despite its risk, the opportunity
of having a dynamic client scheduling shows the potential of dialogues that

260 9 Conclusion

are contained in the workflow chart. We discuss the explicit specification of
dialogues on the basis of workflow charts in Sect. 9.2.9,

9.2.9 Explicit Specification of Dialogues

The dialogues that are contained in a workflow definition open a design space
for the system modeler. The system modeler once more comes into the role
of human-computer interaction designer. In this section we outline possible
means of explicit specification of dialogues in workflow charts.

It is possible to design a modeling element for immediate server actions
with the unique evaluation of conditions at outgoing edges per user. With
such modeling elements it should be possible to fix an evaluation order and
to specify a fall through edge for each subset of outgoing edges targeting the
same user.

When the modeler uses immediate server actions with unique choice to
distinguish them from server actions with multiple choice, this extra infor-
mation can be used to determine the dialogues in a workflow definition, i.e.,
to identify those parts that should be processed without the worklist client.
However, we think it is better to introduce a means to explicitly specify the
dialogues in a workflow chart. This could be introduced as a graphical model-
ing element like a dashed line surrounding a sub diagram of a workflow chart.
It could also be introduced for textual specification by a language construct
for referencing a bundle identifier or a kind of block structure. The latter must
be done with care if modeling elements of workflow charts should be used or
re-used in more than one defined dialogue.

If there is a means to specify the dialogues of a workflow chart explicitly
this has the following advantage. The user can and should always use imme-
diate server actions with unique choice whenever he knows that the choice
is unique and not arbitrary. He can defer the design of the dialogues, i.e.,
the division of the workflow chart into parts that should be processed only
with the dialogue client. He can also re-design the dialogue structure with
more freedom and without loss of knowledge concerning unique evaluation,
i.e., without loss of knowledge about evaluation orders and fall through edges.
It only remains to add that a means to specify the dialogues alone, i.e., with-
out a construct for specifying the unique evaluation order per user, is not
sufficient, exactly because the evaluations in a dialogue must be made unique.

A sub diagram specifying a dialogue must not span more than one user. A
sub diagram specifying a dialogue must not span more immediate server ac-
tions with multiple choice of activation conditions. Both of these requirements
can be statically checked. As already mentioned, in the presence of immedi-
ate sever actions with unique choices per user dialogues can be inferred and
proposed to the modeler. In a sense, dialogues are dynamically recognizable
as we have discussed in Sect. 9.2.8. Statically recognizable dialogues are those
for which the uniqueness of activation of deferred server actions can be rec-
ognized statically. The uniqueness of activation of deferred server actions is

9.2 Integrating Workflow Definition and Dialogue Programming 261

non-decidable. Therefore, there is a need for some means of specifying these
unique choices. For those dialogues that are statically recognizable, it is, as al-
ways with statically recognizable properties like programming language types,
a matter of taste whether you want to choose an inference or static specifi-
cation approach. We think that a mixture might be the best, i.e., an explicit
specification of the dialogues, but support by a tool that proposes the different
possible dialogues.

9.2.10 Synchronization Issues

In business process modeling languages parallelism and synchronization is in-
troduced by explicit modeling elements, i.e., an ‘and’-gateway with multiple
fan-out for forking parallel sub processes and an ‘and’-gateway with multiple
fan-in for joining parallel sub processes. We have discussed the modeling of
parallelism and synchronization in Sect. 4.6 . In Sect. 9.2.4 we have explained
that there is no need for explicit modeling elements for forking parallel activi-
ties in workflow charts and have illustrated this in Fig. 9.5. Similarly, there is
no need for explicit specification of synchronization in workflow charts. First,
we need to explain what synchronization means in workflow charts.

Synchronization in workflow charts means that the appearance of a de-
ferred server action in a worklist is delayed further until a certain synchro-
nization condition is met. Synchronization shows only in a delayed appearance
of a deferred server action in a worklist. In particular it does not show as a
resumption after the processing of an immediate server action. After a user
has clicked a link on his current client page or submitted a form the triggered
immediate server action may take some time to process but after completion
of this processing the user is led immediately to his worklist where he can
choose some further task. This means the appearance of the worklist is never
synchronized against any other event in the workflow system.

Arbitrary synchronization can be implemented by a combination of server
action side effects and activation conditions. Figure 9.7 shows how a stan-
dard synchronization is specified with a workflow chart. Diagram (i) shows
the workflow chart and diagram (ii) shows a corresponding business process
model. Each activity in the business model in diagram (ii) corresponds to a
starting deferred server action of the same name as the activity with index
S like ‘start’, a client page of same name with index P like ‘page’ and an
immediate server action representing a form of same name with index F like
‘form’. The left forking ‘and’-gateway in diagram (ii) corresponds to the set of
constantly true activation conditions at the edges leading from the immediate
server action AF to its connected deferred server actions. We have explained
the realization of the parallel fork connector already in Sect. 9.2.4 and Fig. 9.5.

The synchronizing right ‘and’-connector in diagram (ii) is realized by the
set of server side and activation condition specifications shown in diagram (i).
Two variables b and c are introduced which express whether the deferred
server actions BF and CF has been completed. Before the parallel activities

262 9 Conclusion

Fig. 9.7. Standard example for synchronization in workflow charts.

B and C are entered, the two variables b and c are set to false. Let us assume
that, without loss of generality, the immediate server action BF is completed
first. After its business logic related processing it sets the variable b and tests
the variable c. The test of the variable c serves as activation condition. If
the test of the variable c evaluates to false, this means that the deferred
server action CF has not yet been completed. As a result, the deferred server
actionDS does not occur in the corresponding user’s worklist. In Sect. 9.2.4 we
have already discussed that it is possible that none of the outgoing activation
conditions of an immediate server action evaluates to true. Also, in the current
case, the evaluation of the variable c to false does not mean that the current
user is blocked. The current user is led to his worklist after the evaluation of
the variable c. As we have already mentioned, synchronization shows only as
a resumed appearance of deferred server actions in a worklist.

Now, when the immediate server action CF is also completed eventually,
it analogously sets variable c to true and tests the variable b. The setting of
the variable c is unimportant – it is only important in the symmetric case.
However, the variable b evaluates to true, which means that the deferred server
action DS is now sent to the corresponding user’s worklist. As an important
detail it is necessary to mention that the two actions of setting the variable b
and testing the variable c as well as the two actions of setting the variable c
and testing the variable b must be both realized as a compound atomic action.

In Sect. 4.6 we have discussed the semantics of synchronization in business
process models. The discussion in Sect. 4.6 fully applies to the synchronization
in executable business process specifications. It is important to have a means

A

B

C

D

v

AP

BS BFBP

CS CFCP

DS DFDP

v

AS

Side effect:
b:=true;

Activation condition:
c

Activation condition:
b

tru
e

true

Side effect:
b:=false;
c:=false;

Side effect:
c:=true;

AF

(i)

(ii)

9.2 Integrating Workflow Definition and Dialogue Programming 263

to realize arbitrary synchronization. In workflow charts it is given by the
mechanism of activation conditions. Synchronization can be realized by the
interplay of side effects and several activation conditions. No extra mechanism
is necessary. No special concurrent activation condition is needed. It is possible
to introduce special gateways that express common synchronization patterns
as syntactic sugar. This is similar to the possible introduction of a forking
gateway as illustrated in Fig. 9.5.

For the synchronization realized in Fig. 9.7 it would be possible to intro-
duce an explicit ‘and’-construct with multiple fan-in. This leads to exactly the
same discussion that we have had in Sect. 4.6. With the current realization
the transition from the immediate server action CF to the deferred server
action DS is synchronized against the completion of an arbitrary instance of
the immediate server action BF . Therefore, the current realization shows also
another odd effect. If a further task A has been finished in the above describe
scenario, the variable b is reset to false. So the occurrence of the deferred server
actionDS is further delayed and the eventual occurrence of the deferred server
action is a synchronization of more than two threads. Actually, this may be
the synchronization semantics that has been actually intended. If not, the
correct one can be realized by introducing identifiers for sub process instances
that are passed around, referencing these identifiers in activation conditions,
exploiting further enterprise resource data and so on. The example once more
shows the following. The introduction of a concrete synchronization gateway
can solve one concrete synchronization pattern. What is needed more than vi-
sual representations of concrete synchronization patterns is a means to specify
and implement arbitrary synchronization.

9.2.11 Benefits of Integrating Workflow Definitions and
Formcharts

With workflow charts we follow a unified workflow and human-computer in-
teraction approach. When we consider workflows we are interested in how
workflows materialize as human computer interaction. The worklist paradigm
introduces a concrete human computer interaction pattern based on the no-
tion of worklist. We have analyzed the worklist paradigm in Sect. 7. The
worklist provides a top-level structure for the human computer interaction of
a workflow system and the semantics of the worklist itself can be given in
terms of human computer interaction, i.e., in terms of user interaction with
the worklist. Workflow charts unify workflow definition and the definition of
system dialogues. Workflow charts can be exploited in the following ways:

• Technology independent specification.
• Tpyed automatic programming.
• Flexibility in restructuring the workflow and dialogue design.
• Visibility of dialogue states to workflow technology.

264 9 Conclusion

Conceptual Specification versus Automatic Programming

The workflow chart language has been designed for the reason of high-level
programming, i.e., as the basis for a high-level programming language as
we will discuss further in a second. However, workflow charts can also be
used as an abstract or let us say conceptual system modeling language. With
conceptual modeling language we mean a non-executable specification lan-
guage in this section, i.e., a language that serves only for the purposes of
system planning and system documentation. Used as a conceptual modeling
language workflow charts are technology-independent, i.e., they can be used
independent from the implementing technology – the model driven architec-
ture (MDA) [324] community uses the terminology of platform-independent
model (PIM) to characterize the considered level of system modeling.

Using a workflow chart as a conceptual system model means that the
workflow chart exists as an additional artifact to those descriptions and pro-
grams that are used in the implementing technologies. The workflow charts
can add value if the description and programs of the implementing technolo-
gies are somehow not sufficiently abstract. For example, they can be used, if
a plain programming language system is used as the implementing technol-
ogy. Then, the workflow charts provide the viewpoint which is essential for a
workflow-intensive system, i.e., the structure of the system dialogues following
the worklist paradigm. They can add value if more than one implementing
technology is used. For example, they can be used as an umbrella specifica-
tion if some parts of the overall workflow system are implemented in another
technology than other parts of the system. They can be used in a redocu-
mentation scenario, where it is the target to get the documentation of the
functionality of a legacy system or a legacy system landscape under control.
They can be used to bridge the gap between business process models and
conceptual enterprise application models as outlined in Sect. 5.5. If used as
conceptual modeling language, workflow charts grasp the essential structure
of a workflow-intensive system.

The workflow chart specification language has been designed with the tar-
get to create an executable business process specification language. As pre-
sented in this section workflow charts are not yet an executable business pro-
cess specification language, however, they can be considered the crucial core of
such a specification language. A full-fledged executable specification language
can be obtained, basically, by elaborating a programming language for the
dialogue constraints, the side effect specifications and a concrete specification
of the type system. The result of such elaboration is a high-level programming
language. In the past, also the term domain-specific language has been used
for such specialized high-level programming languages.

With programming language we do not mean only text-based, i.e., ASCII
programming language. With programming language we also mean visual pro-
gramming languages and programming tools that realize a programming inter-
face, e.g., syntax-directed editors and integrated development environments.

9.2 Integrating Workflow Definition and Dialogue Programming 265

For example, in our case it is easy to imagine to integrate workflow charts as
the workflow definition language of the workflow tool of an existing workflow
management technology. Therefore, it might be better to say programming
mechanism instead of programming language. It is another discussion, which
programming technology is here to stay, we strictly believe in the future of
more and more abstract programming platforms that are oriented towards
abstract programming language syntax. We do not delve into the elaboration
of an executable business process specification language based on workflow
charts. What is important for us is to propose workflow charts as the crucial
core of such technologies, i.e., to propose workflow charts as the starting point
for the design of such technologies.

Flexibility in Restructuring the Workflow and Dialogue Design

In a workflow technology that fully exploits workflow charts as definition lan-
guage, the system dialogues and the intermediate workflow states are specified
at the same level with the same language. This is different in today’s work-
flow technologies. In today’s workflow technologies the system dialogues are
programmed in a programming language, often with the help of a rapid de-
velopment tool. The intertwining of the resulting programs is specified with
the usually visual workflow definition language. If you want to restructure the
workflows and the system dialogues you have to refactor both the programs
of the system dialogues and the workflow definition. With a tool based on
workflow charts the redesign of the dialogues amounts to a refactoring of the
explicit specification of the dialogues as explained in Sect. 9.2.7.

Visibility of Dialogue States to Workflow Technology

In Sect. 7, we have explained the worklist paradigm and have analyzed it from
the viewpoint of human-computer interaction. A user’s worklist can be consid-
ered a top-level dialogue pattern which wires the rest of the dialogues that the
user can experience. In the past, workflow technologies has been products that
are either oriented towards rapid development of document flow from scratch
or products that have been used for enterprise application integration. The
current business process management suites are rather products that are in
the tradition of enterprise application integration.

Figs. 9.8 and 9.9 serve the purpose to visualize the typical usage of work-
flow technology for enterprise application integration. Systems emerge in en-
terprises. If enterprises are large, more than one IT system is implemented to
support the business processes of the enterprise. One, but not the only reason
for this can be that the several functional units of the enterprise implement
their own IT systems. Other reasons might be that systems are not developed
but bought and there is no single product that supports the many business
processes of the enterprise or that the enterprise decides to support certain

266 9 Conclusion

Fig. 9.8. An enterprise system landscape before integration.

businesses by a certain IT systems that yield unique selling points for the en-
terprise. Therefore business processes are often supported by more than one
IT system, for example, if business processes span more than one functional
unit. This is the situation depicted in Fig. 9.8.

From time to time the system landscape and the interplay of the several
IT systems becomes so complex that there is the need for reconsidering its
architecture. In particular, the complexity shows in a poor IT support for the
interplay between the several IT systems. One solution is the total refactoring
of the whole IT system landscape, i.e., a refactoring of all business processes
and a new implementation of the IT support as a single new superior system.
Usually, such a total refactoring would be much too cost- and time inten-
sive. The other solution is to analyze carefully the interplay of the existing
IT systems and to implement extra IT support for this interplay. Workflow
technology can now be used to implement this extra IT support as shown in
Fig. 9.9.

Fig. 9.9. Enterprise application integration with the help of workflow technology.

Business process management suites offer more than workflow definition
and rapid development for the integrating of enterprise applications. As de-
picted in Fig. 9.1 they offer advanced features, e.g. for business process moni-

E

F

A

V

V

C

V

HV

G

I

D

B

9.3 Towards Integrating Human Activity and Workflow Definition 267

toring or business process simulation. With respect to this advanced features
the system dialogues in the gray boxes in Fig. 9.9 are actually black boxes.
The internal states of these IT systems are not visible to the advanced features
of business process management suites without further efforts. If a business
process management suite is used for the purpose of enterprise application
integration this structural friction is naturally there. If you want to use a
business process management suite in order to develop an IT system from
scratch, the invisibility of the dialogue states for advanced analytical tools
of the platform can be considered unsatisfactory. The usage of a business
process technology as the initial enterprise application development platform
embodies the trend of making business processes executable. A business plat-
form based on workflow charts unifies workflow states and dialogue states and
therefore opens the dialogues for full analysis by advanced features from the
outset.

Flexibility Beyond the Limit of Client Page Interaction

We have said that we are not interested here in the elaboration of a concrete
executable business process specification language or mechanism. However, we
have also said that we believe in the future of abstract-syntax oriented pro-
gramming environments in the future [226, 227]. In such a platform programs
are created and changed by direct manipulation of the abstract syntax of the
programs. Direct manipulation of abstract syntax of a program means that
the program trees are presented to the user similar to the representation of a
file system in a modern GUI-based file explorer. Each programming element
has a unique, opaque identifier. Programming elements can be easily created
and moved around. Similar to syntax-directed editors it is never possible to
create a syntax-violating program.

If the envisioned business process platform is built as an abstract program-
ming platform the above described flexibility in restructuring the system and
visibility of items become available at the granularity of client page construc-
tion and interaction. For example, with such a technology it would be easy
to move a sub part of a report to another client page. As another example, it
would be possible to analyze the interaction with a single form and the single
elements it consists of.

9.3 Towards Integrating Human Activity and Workflow
Definition

Workflow charts can be given a unique, complete semantics in terms of the
reaction of an IT system to the action of a human user. In general, a business
process model is a mix of human-computer interaction and further, auxiliary
activities. It is possible to abstract from the auxiliary activities and try to

268 9 Conclusion

understand the business process merely in terms of the IT system that sup-
ports it. The more a business process is supported by an IT system, the better
it can be usually understood in terms of the IT system. However, often the
modeler wants to specify further activity explicitly. This further activity can
be human activity or automatic activity, i.e., machine-based activity that is
hard to grasp in terms of human computer interaction. Basically, we discuss
the specification of auxiliary functionality in terms of human activity in this
section for ease of understanding.

One ad-hoc manner to describe the way people work is in natural language.
The description can be given structure by an underlying workflow chart spec-
ification. For example, it would be possible to decompose an overall workflow
chart into pieces and sub workflows that naturally correspond to certain hu-
man task that are amenable to a meaningful description in natural language.
The auxiliary human activity based business process can also be described
with a combination of business process modeling language plus comments in
natural language as it is best practice in many successful business process
documentation projects. The several modeling elements can then be set into
relation with the specification elements of the corresponding workflow defini-
tion. We call such an approach a tracking approach, because it is similar to
the successful usage of tracking tools in tracking requirements against code in
today’s software engineering projects.

This systematic structuring of an auxiliary specification along the struc-
ture of a workflow chart specification can even be generalized to hierarchies
built on top of a basic workflow definition. We want to outline a different
approach in this section. We have a look at the direct mixture of workflow
charts with auxiliary elements and the difficulties in defining possible semantic
interpretations. We only look at flat diagrams. This means that all the aux-
iliary elements are basic elements in the sense of model hierarchies. The flat
diagrams discussed in this section can be made subject of building hierarchies
with all its aspects as discussed in Chapter 5.

A

B1

B2

I

J

H
c1

c2

A

B1

B2

e1

e2

(i)

(ii)

Fig. 9.10. Inserting auxiliary specification between client pages and immediate
server actions.

9.3 Towards Integrating Human Activity and Workflow Definition 269

Please have a look at the simple example in Fig. 9.10. Diagram (i) in
Fig. 9.10 is a pure workflow chart, whereas diagram (ii) in Fig. 9.10 enriches
diagram (i) with further modeling elements that represent human activity.
The workflow chart elements are depicted and used as introduced and de-
scribed in Sect. 9.2 – see Fig. 9.4. The additional activities are grayed in
diagram (ii). Diagram (i) expresses that the user sees a client page A that
offers two forms B1 and B2 as immediate interaction options. In addition to
this diagram (ii) is meant to express that the user has to perform some human
tasks before he is allowed to submit one of the forms B1 or B2. Therefore the
business process model given by the activities H , I, J , the connecting edges
and the flow conditions c1 and c2 should be compatible with the notion of
workflow definition.

The problem is to elaborate an appropriate notion of compatibility. If the
two flow conditions c1 and c2 represent a complete and unique selection the
given business process model implicitly specifies how the user selects between
the two interaction options given by the two forms. If the two flow conditions
c1 and c2 represent a multiply choice it is an option to classify the business
process model as incompatible with the workflow definition and therefore to
classify the resulting whole diagram (ii) as invalid. It is also an option to
dynamically interpret the user’s selection of the form as independent from the
evaluation of the flow conditions in those cases in which none of them or both
of them evaluate to true. Questions arise. Should the user wait for completion
of both of the activities I and J in the case that both of the flow conditions
evaluate to true? Does the evaluation of both of the flow conditions to false
represent an early exit from the overall business process and workflow?

Furthermore, it might be requested that the flow conditions c1 and c2
are somehow compatible with the enabling conditions e1 and e2 expressed in
diagram (i). The enabling conditions are evaluated immediately before the
client page A is shown to the user. A form is only offered to the user if the
corresponding enabling condition has been evaluated to true. The enabling
conditions e1 and e2 are not yet represented in diagram (ii). The question is
whether they can appropriately represented as part of the flow conditions c1
and c2. Anyhow, Fig. 9.12 proposes a solution on how to represent the enabling
conditions.

A BI

J

H
true

DC E
true

w
or

kl
is

t

Fig. 9.11. Synchronizing auxiliary activity against form submission.

270 9 Conclusion

Figure 9.11 shows a more complex example. After the client page A is
shown to the user he starts with activity H . After he has finished activity H
he starts with activities I and J in parallel. This parallelism might be a form
of quasi-parallelism or even true parallelism, in particular, if the worker of
activity J is different from the worker on activity I. After the form B has
been submitted it is possible that the worklist reveals even more parallelism
to the user. The edge of the human activity J to the form E can be implicitly
understood as synchronizing against the submission of the form E via page D
represented by the edge between the client page D and the form E. It appears
natural to require that it should not be possible to submit a form that does not
occur as part of a client page. With this synchronizing interpretation of edges
leading from a human activity to a form it is possible to repaint diagram (ii)
in Fig 9.10 as the diagram in Fig 9.12.

A

B1

B2

I

J

H
c1

c2

e1

e2

Fig. 9.12. Alternative insertion of auxiliary specification between client pages and
immediate server actions.

Similarly, diagrams can be used to express the synchronization of human
tasks against the selection of a task from a worklist. Figure 9.13 shows an
example for this. The diagram could be interpreted as follows. After com-
pletion of activity K the user should proceed with the selection of task C1

from the worklist and after completion of activity L the user should proceed
with the selection of task C2 from the worklist. Similar questions with respect
to the possible semantics arise for the diagram in Fig. 9.13 as has arisen for
diagram (ii) in Fig. 9.10. For example, it is possible to interpret the firing of
the edge from activity K to task C1 as an additional activation condition to
the activation condition a1.

The semantics of the combined business process models and workflow
charts remains vague in this section. The purpose of the section was to give an
impression of the opportunities to elaborate workflow charts further to deal
with further phenomena. It also shows that the semantics of the workflow
charts form a robust backbone for the understanding of workflow intensive
systems.

9.4 On Closing the Gaps in Business Process Technology 271

A BIH
true

C1

true

w
or

kl
is

t

C2

K

L
J

a1

a2

c1

c2

Fig. 9.13. Synchronizing auxiliary activity against worklist selection.

9.4 On Closing the Gaps in Business Process Technology

We have motivated the need for more flexible business process technology.
Flexible business process management is hindered by the gaps and tension
between today’s tools for business process management that can be divided
into tools for business process modeling, workflow execution and application
programming as indicated in Fig. 1.1. Business process modeling exists in its
own right. Workflow definition and application programming together form
the level of business process automation. Future business process management
platforms will overcome these gaps and tension – see Fig. 9.14. Now is the
time to understand the gaps and tensions in business process technologies and
to recommend concrete improvements.

In Sect. 9.2 we have proposed a typed workflow definition language, the
workflow chart. The workflow chart can be exploited as a domain-specific pro-
gramming language [349] for workflows. It integrates the definition of work-
flows with the programming of user dialogues from the outset and in this way
overcomes the unnatural separation of workflows and dialogues in today’s
business process management suites. An integrated development environment
based on workflow charts will open up the full design space of dialogues in a
workflow system and will significantly improve such important software en-
gineering principles as maintainability, testability [104] and reuse of program
artifacts. A prototypical version of such integrated development environment
is currently being implemented.

The typed approach can be extended from workflow definitions to business
processes in general. Section 5 gives an idea about the options in designing
such typed business processes, which are actually leveled data flow diagrams.
An elaborated approach of typed business processes can help in mitigating
the gap between business process modeling and business process automation.
However, a conceptual gap between business process modeling and business
process automation, which we have characterized in Sect. 4 and 6, will always
remain, because there is a practical need for the informality of business pro-
cess languages. Nevertheless, with or without a strictly typed approach the gap

272 9 Conclusion

between modeling and automation can be mitigated significantly. Tracking is
the key. Tracking is the systematic establishment of meaningful associations
between entities of several kinds of software artifacts, which in this case are
on the one hand business process models and workflow definitions and pro-
grams on the other hand. Tracking is also about the maintenance and targeted
evaluation of this extra information.

Business Process
Modelling

integration and tracing

Workflow
Definition

Application
Programming

Fig. 9.14. Business process platform mitigating gaps and tensions between business
process modeling, workflow control and dialogue control.

The design of an integrated business process platform from scratch is the
best means of realizing tracking [12]. Another way of achieving of such tool
integration is by realizing a hub-and-spoke tool architecture with a more or
less powerful tracking tool as a man-in-the-middle. This alternative of an
explicit tracking tool is justified. The clear advantage is a wider, i.e., open
usage, because the tracking tool can be designed for the integration of several
tools, in particular already existing ones. With explicit tracking tools, software
engineers have the opportunity to compose a tool suite that fits their concrete
needs best. The currently promising approach for the design of a powerful
tracking tool is the multi-dimensional, view based modeling approach called
orthographic modeling [11, 9, 10].

Designing a business process platform from scratch obviously has the ad-
vantage of unrestricted possibilities in shaping it. For example, it could be
oriented strictly towards a typed approach to business processes. We are con-
vinced that in the future we will see both improved fully integrated business
process platforms, conceptually well-understood explicit tracking tools as well
as a combination of both.

References

1. W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski.
Advanced Workflow Patterns. In: Proceedings of CoopIS 2000 – 7th Inter-
national Conference on Cooperative Information Systems, Lecture Notes in
Computer Science 1901, Springer, 2000.

2. J.R. Abrial. Data Semantics. In: Data Base Management. North-Holland, Am-
sterdam, 1974, pp. l–59.

3. L. Aceto, K.G. Larsen. An Introduction to Milner’s CCS. BRICS, Department
of Computer Science, Aalborg University, March 2005.

4. A. Agrawal et. al. WS-BPEL Extension for People (BPEL4People), version
1.0, Active Endpoints, Adobe Systems, BEA Systems, IBM, Oracle, SAP, June
2007.

5. R. Agrawal et.al. The Claremont Report on Database Research, May 2008.
6. Aristotle. Metaphysics.
7. C. Atkinson, O.Hummel. Supporting Agile Reuse Through Extreme Harvest-

ing. In: Proceedings of XP 2007 – the 8th International Conference on Agile
Processes in Software Engineering and Extreme Programming, Lecture Notes
in Computer Science 4536. Springer, 2007.

8. C. Atkinson, P. Bostan, O. Hummel, D. Stoll. A Practical Approach to Web
Service Discovery and Retrieval. In: Proceedings of ICWS 2007 – the 5th IEEE
International Conference on Web Services. IEEE Press, 2007.

9. C. Atkinson, D. Brenner, P. Bostan, G. Falcone, M. Gutheil, O. Hummel M.
Juhasz and D. Stoll. Modeling Components and Component-Based Systems
in KobrA. In (A. Rausch, R. Reussner, R. Mirandola, F. Plasil, Eds.): The
Common Component Modeling Example – Comparing Software Component
Models, Lecture Notes in Computer Science 5153, Springer, 2008.

10. C. Atkinson, D. Stoll and P. Bostan. Supporting View-Based Development
through Orthographic Software Modeling. In: Proceedings of ENASE 2009
– the 4th International Conference on Evaluation on Novel Approaches to
Software Engineering, 2009.

11. C. Atkinson and D. Stoll. Orthographic Modelling Environment. In: Proceed-
ings of FASE’08 – Fundamental Approaches to Software Engineering, Lecture
Notes in Computer Science 4961, Springer, 2008.

274 References

12. D. Auer, D. Draheim, V. Geist. Extending BPMN with Submit/Response-
Style User Interaction Modeling. In: Proceedings of CEC’09 - the 11th IEEE
Conference on Commerce and Enterprise Computing, 2009

13. E. Babbie. The Practice of Social Research, 8th edition. International Thomson
Publishing Servicesm, August 1997.

14. C. Babcock. Data, Data, Everywhere. Information Week, January 2006.
15. S. Balbo, D. Draheim, C. Lutteroth, and G. Weber. Appropriateness of User

Interfaces to Tasks. In (Alan Dix, Anke Dittmar, Eds.): Proceedings of TA-
MODIA 2005 - 4th International Workshop on Task Models and Diagrams for
User Interface Design – For Work and Beyond, ACM Press, 2005.

16. S.K. Banerjee. Methodolgy for Integrated Manufacturing and Control Sys-
tem Design. In A. Artiba and S.E. Elmaghraby (Editors): The Planning and
Scheduling of Production Systems, Methodologies and Applications, Chapman
& Hall, 1997.

17. M. Barad. Decomposing timed Petri nets of open queueing networks. In: Jour-
nal of the Operational Research Society, vol. 45, no. 12, 1994, pp. 1385-1397.

18. M. Barad. Timed Petri Nets as a Verification Tool. In (D.J. Medeiros, E.F.
Watson, J.S. Carson, M.S. Manivannan, Editors): Proceedings of WSC’98 –
Winter Simulation Conference, IEEE Computer Society Press, pp. 547–554.

19. C.I. Barnard. The Functions of the Executive. Harvard University Press, 1938.
20. K. Beck. Extreme Programming Explained – Embrace Change. Addison-

Wesley, 2000.
21. S. Beer. Fanfare for Effective Management – Cybernetic Praxis in Govern-

ment. The 3rd Richard Goodman Memorial Lecture, Delivered at Brighton
Polytechnic, Moulsecoomb, Brighton, 14th February 1973.

22. S. Beer. The Heart of Enterprise – Companion Volume to: The Brain of the
Firm. John Wiley & Sons, 1994.

23. S. Beer. The Brain of the Firm – Companion Volume to:The Heart of Enter-
prise. John Wiley & Sons, 1994.

24. M. Beisiegel et.al. Service Component Architecture – Building Systems using
a Service Oriented Architecture. Joint Whitepaper, version 0.9. BEA, IBM,
Interface21, IONA, Oracle, SAP, Siebel, Sybase, November 2005.

25. M. Beisiegel et.al. ASCA Policy Framework, SCA Version 1.00. BEA, Cape
Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress, Red Hat, Rogue
Wave, SAP, Siemens, Software AG, Sun, Sybase, TIBCO, March 2007.

26. D. Bell. The Coming of Post-Industrial Society. Basic Books, 1976.
27. H.D. Benington. Production of Large Computer Programs. In: Proceedings of

the ONR Symposium on Advanced Programming Methods for Digital Com-
puters, June 1956.

28. P.A. Bernstein. Middleware: a Model for Distributed System Services. Com-
munications of the ACM, vol. 39, no. 2, February 1996, pp. 86–98.

29. P.A. Bernstein, E. Newcomer. Principles of Transaction Processing – For the
Systems Professional. Morgan Kaufmann, 1997.

30. P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J.
Gray, J. Held, J. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. Naughton,
H. Pirahesh, M. Stonebraker, J. Ullman. The Asilomar Report on Database
Research. ACM SIGMOD Record, vol. 27, no. 4, December 1998.

31. D.H. Besterfield. Total Quality Management. Prentice Hall, 1995.

References 275

32. L. Bird. Selecting the Tools to Support the Process. In (P. Barnes, A. Hiles;
Editors): The Definitive Handbook of Business Continuity Management. Wi-
ley, 2007, pp. 263–279.

33. M.J. Blechar. Magic Quadrant for Business Process Analysis Tools. Gartner
RAS Core Research Note G00148777. Gartner, June 2007.

34. J. Bloem, M. van Doorn, P. Mittal. Making IT Governance Work in a Sarbanes-
Oxley World. John Wiley & Sons, 2006.

35. B.W. Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, vol. 21, no. 5, pp.61–72, 1988.

36. B. Boehm, H.D. Rombach, M.V. Zelkowitz. Foundations of Empirical Software
Engineering: The Legacy of Victor R. Basili. Springer, 2005.

37. C. Böhm, G. Jacopini. Flow Diagrams, Turing Machines and Languages With
Only Two Formation Rules. Communications of the ACM, vol. 3, no. 5, 1966.

38. K. A. Bohrer. Architecture of the San Francisco Frameworks. IBM Systems
Jouranl, vol. 37, no. 2, Industrial Business Machines, 1998.

39. K. Bohrer, V. Johnson, A. Nilsson, B. Rubin. Business Process Components
for Distributed Object Applications. Communications of the ACM, vol. 41,
no. 6, June 1998, pp. 43–48.

40. B. Bordbar, D. Draheim, M. Horn, I. Schulz, and G. Weber. Integrated Model-
Based Software Development, Data Access and Data Migration. In: Proceed-
ings of MoDELS/UML 2005 - ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems, Lecture Notes in Com-
puter Science 3713, Springer, October 2005.

41. D. Box et al. Simple Object Access Protocol (SOAP) 1.1 – W3C Note, May
2000.

42. E. Brinksma, H. Hermanns. Process Algebra and Markov Chains. In: Lec-
tures Notes of the School on Formal Methods and Performance Analysis 2000,
Lecture Notes in Computer Science 2090, Springer 2001.

43. British Standards Institution. Business Continuity Management – Part 1: Code
of Practice. British Standard BS 25999–1:2006, BSI Group, 2006.

44. S. Brobst. The Future of Data Warehousing. DEXA Keynote at DaWaK’07
– the 9th International Conference on Data Warehousing and Knowledge Dis-
covery, September 2007.

45. F.P. Brooks. The Mythical Man-month – Essays on Software Engineering.
Addison-Wesley, 1975.

46. F. P. Brooks. No Silver Bullet – Essence and Accidents of Software Engineer-
ing. IEEE Computer, vol.20, no.4, April 1987.

47. J. Browne, J. Harhen, J. Shivnan. Production Management Systems. Addison-
Wesley, 1996.

48. A.W. Brown. CASE in the 21st Century – Challenges Facing Existing Case
Vendors. In: Proceedings of STEP’97 – the 8th International Workshop on
Software Technology and Enginering Practice. IEEE Press, 1997.

49. A.W. Brown, S. Johnston, K. Kelly. Using Service-Oriented Architecture and
Component-Based Development to Build Web Service Applications. Santa
Clara, CA: Rational Software Corporation, 2002.

50. P. Buneman, S. Khanna, W.-C. Tan. Why and Where: A Characterization
of Data Provenance. In: Proceedings of ICDT 2001 – the 8th International
Conference on Database Theory, Lecture Notes in Computer Science 1973
Springer 2001.

276 References

51. J. N. Buxton, B. Randell. Software Engineering – Report on a Conference
Sponsored by the NATO Science Committee, Rome, October 1969. NATO
Science Committee, April 1970.

52. F. Buytendijk, D. Flint. How BAM Can Turn a Business Into a Real-Time
Enterprise. Technical Report AV-15-4650. Gartner Research, March 2002.

53. R.C. Camp. Business Process Benchmarking – Finding and Implementing Best
Practices. Irwin Professional Publishing, 1995.

54. D. Cannon, D. Wheeldon. Service Operation – ITIL Version 3. Stationery
Office Books, May 2007.

55. G. Case. Continual Service Improvement – ITIL Version 3. Stationery Office
Books, May 2007.

56. Central Computer and Telecommunications Agency. IT Infrastructure Library
– Service Support. Renouf, 2000.

57. P.P.-S. Chen. The Entity-Relationship Model – Toward a Unified View of Data.
ACM Transactions on Database Systems, vol.1, no.1, pp.9–36, March 1976.

58. L. Chow, C. Medley, C. Richardson. BPM and Service-Oriented Archtiecture
Teamed Togehter: A Pathway to Success for an Agile Government. In (L.
Fischer, Editor): 2007 BPM and Workflow Handbook. Future Strategies, 2007,
pp. 33–54.

59. A. Church. The Calculi of Lambda-Conversion. Annals of Mathematics Stud-
ies. Princeton University Press, 1944.

60. M. Colan. Service-Oriented Architecture expands the Vision of Web Services
– Characteristics of Service-Oriented Architecture. IBM Corporation, April
2004.

61. B.P. Collins, J.E. Nicholls, I.H. Sørensen. Introducing Formal Methods: the
CICS experience with Z. Technical Report TR 12.2777, IBM Hursley Park,
December 1990.

62. J. Coplien, D. Schmidt. Pattern Languages of Program Design. Addison-
Wesley, 1995.

63. B.Cornu, A.Karpati, A.Strehler, J.Andersen, I.Cortelazzo, D.Draheim,
R.Messner, G.Rößling, S.de Vries. Report of the Working Group on Collab-
orative Learning at SECIII. In (Tom J. van Weert and Robert K. Munro,
Editors): Informatics and the Digital Society. Kluwer Academic Publishers,
January 2003.

64. J.M. Correia. What BAM Looks Like Now and in the Future. ID Number
LE-16-0431. Gartner, April 2002.

65. R. J. Creasy. The Origin of the VM/370 Time-Sharing System. IBM Journal
of Research and Development, vol. 25, no. 5, September 1981, pp. 483-490.

66. A.F. Cutting-Decelle, J.J. Michel. ISO 15531 MANDATE: A Standadized Data
Model for Manufacturing Management. In International Journal of Computer
Applications in Technology, vol. 18., nos 1-4, 2003.

67. K. Czarnecki, U. Eisenecker. Generative Programming – Methods, Tools, and
Applications. Addison-Wesley, 2000.

68. T. DeMarco. Structured Analysis and System Specification. Prentice Hall,
1979.

69. W. E. Deming. Out of the Crisis. MIT, Center for Advanced Educational
Services, 1982.

70. F. DeRemer, H. Kron. Programming-in-the-Large Versus Programming-in-the-
Small. In: Proceedings of the International Conference on Reliable Software.
ACM Press, 1975, pp. 114 – 121.

References 277

71. P. Derler, R. Weinreich. Models and Tools for SOA Governance. In (D. Dra-
heim, G. Weber, Editors): Proceedings of TEAA 2006 – International Con-
ference on Trends in Enterprise Application Architecture, Lecture Notes in
Computer Science 4473, Springer, 2006.

72. J. Desel, W. Reisig. Place/Transition Petri Nets. Lecture Notes in Computer
Science 1491, Springer, 1998, pp. 122–173.

73. Deutsches Institut für Normung. Deutsche Industrienorm DIN 66001.
Sinnbilder für Datenfluß und Programmablaufpläne. DIN, September 1966.

74. M.E. Dickover. Principles of Coupling and Cohesion for Use in the Practice of
SADT. Technical Publication 039. SofTech Inc., 1976.

75. M.E. Dickover, C.L. McGowan, D.T. Ross. Software design using SADT. In:
Proceedings of the 1977 Annual Conference. ACM Press, 1977, pp. 125–133.

76. E.W. Dijkstra. Go To Statement Considered Harmful. Communications of the
ACM, vol. 11, no. 3, pp.147–148, 1968.

77. N. Dixon. The Organizational Learning Cycle. McGraw-Hill, 1994.
78. B. Dragovic et.al. Xen and the Art of Virtualization. In: Proceedings of SOSP

2003 – the 19th ACM Symposium on Operating Systems Principles. ACM
Press, 2003.

79. D. Draheim and G. Weber. Strongly Typed Server Pages. In: Proceedings
of The Fifth Workshop on Next Generation Information Technologies and
Systems, LNCS 2382, Springer, June 2002.

80. D. Draheim. Learning Software Engineering with EASE. In (Tom J. van Weert
and Robert K. Munro, Editors): Informatics and the Digital Society. Kluwer
Academic Publishers, January 2003.

81. D. Draheim. A CSCW and Project Management Tool for Learning Software
Engineering. In: Proceedings of FIE 2003 - Frontiers in Education: Engineering
as a Human Endeavor. IEEE Press, 2003.

82. D. Draheim and Gerald Weber. Storyboarding Form-Based Interfaces. In: Pro-
ceedings of INTERACT 2003 - Ninth IFIP TC13 International Conference on
Human-Computer Interaction. IOS Press, 2003.

83. D. Draheim, G. Weber. Modeling Submit/Response Style Systems with Form
Charts and Dialogue Constraints. In: Proceedings of the Workshop on Human
Computer Interface for Semantic Web and Web Applications, LNCS 2889.
Springer, 2003.

84. D. Draheim and L. Pekacki. Process-Centric Analytical Processing of Version
Control Data. In: Proceedings of IWPSE 2003 - International Workshop on
Principles of Software Evolution. IEEE Press, 2003.

85. D. Draheim, E. Fehr and G. Weber. Improving the Web Presentation Layer
Architecture. In (X. Zhou, Y. Zhang, M.E. Orlowska, Editors): Web Technolo-
gies and Applications, LNCS 2642. Springer, 2003.

86. D. Draheim, C. Lutteroth and G. Weber. Factory: Statically Type-Safe Inte-
gration of Genericity and Reflection. In: Proceedings of the 4th International
Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing. ACIS, 2003.

87. D. Draheim, E. Fehr and G. Weber. JSPick - A Server Pages Design Recovery
Tool. In: Proceedings of CSMR 2003 - 7th European Conference on Software
Maintenance and Reengineering. IEEE Press, 2003.

88. D. Draheim, G. Weber. Co-Knowledge Acquisition of Software Organizations
and Academia. In: Proceedings of LSO 2004 – The 6th International Workshop

278 References

on Learning Software Organ3tions. Lecture Notes in Computer Science 3096.
Springer, June 2004.

89. D. Draheim, G. Weber. Form-Oriented Analysis – A New Methodology to
Model Form-Based Applications. Springer, October 2004.

90. D. Draheim, M. Horn, I. Schulz. The Schema Evolution and Data Migra-
tion Framework of the Environmental Mass Database IMIS. In: Proceedings
of SSDBM 2004 - 16th International Conference on Scientific and Statistical
Database Management. IEEE Press, 2004.

91. D. Draheim and G. Weber. Specification and Generation of Model 2 Web
Interfaces. In (M. Masoodian, S. Jones, B. Rogers, Eds.): Computer Human
Interaction. LNCS 3101, Springer, 2004.

92. D. Draheim, C. Lutteroth and G. Weber. Generator Code Opaque Recovery of
Form-Oriented Web Site Models. In: Proceedings of WCRE 2004 - The 11th
IEEE Working Conference on Reverse Engineering. IEEE Press, 2004.

93. D. Draheim. Book Review: Frank Soltis, Fortress Rochester – The Inside Story
of the IBM iSeries. In: IEEE Annals of the History of Computing, vol. 27, no.
4, IEEE Press, October 2005.

94. D. Draheim. Description of the ER2005 Tutorial 7: Modeling Enterprise Ap-
plications. In (Jacky Akoka et.al., Eds.): Perspectives in Conceptual Modeling,
LNCS 3770, Springer, 2005.

95. D. Draheim, G. Weber. Modelling Form-Based Interfaces with Bipartite State
Machines. Journal Interacting with Computers, vol. 17, no. 2. Elsevier, 2005,
pp. 207-228.

96. D. Draheim, C. Lutteroth and G. Weber. Robust Content Creation with Form-
Oriented User Interfaces. In: Proceedings of CHINZ 2005 - 6th International
Conference of the ACM’s Special Interest Group on Computer-Human Inter-
action, ACM International Conference Proceeding Series, vol. 94, ACM Press,
2005.

97. D. Draheim, C. Lutteroth and G. Weber. A Source Code Independent Reverse
Engineering Tool for Dynamic Web Sites. In: Proceedings of CSMR 2005 -
9th European Conference on Software Maintenance and Reengineering. IEEE
Press, March 2005.

98. D. Draheim, C. Lutteroth and G. Weber. A Type System for Reflective Pro-
gram Generators. In: Proceedings of GPCE 2005 - Generative Programming
and Component Engineering, LNCS 3676, Springer, 2005.

99. D. Draheim, C. Lutteroth and G. Weber. Generative Programming for C#.
ACM SIGPLAN Notices, vol. 40, no. 8., ACM Press, August 2005.

100. D. Draheim, C. Lutteroth and G. Weber. Integrating Code Generators into
the C# Language. In: Proceedings of ICITA 2005 - The 3rd International
Conference on Information Technology and Applications. IEEE Press, 2005.

101. D. Draheim, C. Lutteroth, G. Weber. Finite State History Modeling and its
Precise UML-Based, Semantics. In: Advances in Conceptual Modeling - The-
ory and Practice. LNCS 4231, Springer, November 2006.

102. D. Draheim, G. Weber. ER 2006 Tutorial: Conceptual Modeling for Emerging
Web Application Technologies. In: Advances in Conceptual Modeling - Theory
and Practice. LNCS 4231, Springer, November 2006.

103. D. Draheim, G. Weber (Editors). Trends in Enterprise Application Architec-
ture, LNCS 3888, Springer, March 2006.

References 279

104. D. Draheim, J. Grundy, J. Hosking, C. Lutteroth, G. Weber. Realistic Load
Testing of Web Applications. In: Proceedings of CSMR 2006 - 10th European
Conference on Software Maintenance and Reengineering. IEEE Press, March
2006.

105. D. Draheim, C. Lutteroth, G. Weber. Graphical User Interfaces as Documents.
In: Proceedings of CHINZ 2006 - 7th International Conference of the ACM’s
Special Interest Group on Computer-Human Interaction, ACM International
Conference Proceeding Series, ACM Press, July 2006.

106. D. Draheim, P. Thiemann, G. Weber. A Spreadsheet Client for Web Applica-
tions. In Proceedings of NGITS 2006 - The Sixt Workshop on Next Generation
Information Technologies and Systems, LNCS, Springer, July 2006.

107. D. Draheim, G. Weber. The Core NSP Type System. In: Proceedings of WMR
2006 – Workshop on Web Maintenance and Reengineering, CEUR Workshop
Proceedings, 2006, to appear.

108. D. Draheim, G. Weber (Editors). Post-Proceedings of the 2nd International
Conference on Trends in Enterprise Application Architecture, Springer LNCS,
June 2007.

109. D. Draheim. Plenary Talk: Towards Seamless Business Process and Dialogue
Specification. In: Proceedings of SEKE’2007 – the 19th International Confer-
ence on Software Engineering & Knowledge Engineering. Knowledge Systems
Institute Graduate School, ISBN 1-891706-20-9, July 2007.

110. D. Draheim, T. Koptezky. Workflow Management and Service-Oriented Ar-
chitecture. In: Proceedings of SEKE 2007 - The 19th International Conference
on Software Engineering and Knowledge Engineering. July, 2007.

111. D. Draheim. Possible Objectives of the RIESCA Project – Kind of Protocol
on the RIESCA Kick-Off Workshop, 17th and 18th June 2008, Espoo.

112. D. Draheim, C. Nathschläger. A Context-Oriented Synchronization Approach.
Electronic Proceedings of the 2nd International Workshop in Personalized Ac-
cess, Profile Management, and Context Awarness: Databases (PersDB 2008)
in Conjunction with the 34th VLDB Confercence, pages 20-27, 2008.

113. D. Draheim. Frontiers of Structured Business Process Modeling. In (A.
Hameurlain, J. Küng, R. Wagner): Transactions on Large-Scale Data- and
Knowledge-Centered Systems I, Springer, 2009.

114. D. Draheim, O. Mangisengi. Integrated Business and Production Process
Warehousing. In (D. Taniar, Editor): Progressive Methods in Data Ware-
housing and Business Intelligence - Concepts and Competitive Analytics. IGI
Global publication, 2009.

115. D. Draheim, M. Himsl, D. Jabornig, J. Küng, W. Leithner, P. Regner, T.
Wiesinger. Concept and Pragmatics of an Intuitive Visualization-Oriented
Metamodeling Tool. In: Journal of Visual Languages and Computing, vol.
21, no. 4, Elsevier, August, 2010.

116. N. Drakos. Magic Quadrant for Team Collaboration and Social Software. Gart-
ner RAS Core Research Note G00151493. Gartner, October 2007.

117. H. Dresner. Business Activity Monitoring: New Age BI?, Gartner Research
LE-15-8377, April 2002.

118. M.A. Emmelhainz. EDI: A Total Management Guide. Van Nostrand Reinhold,
1993.

119. R. Eshuis, R. Wieringa. A Formal Semantics for UML Activity Diagrams –
Formalising Workflow Models. Technical Report CTIT-01-04, University of
Twente, Department of Computer Science, 2001.

280 References

120. T. Erl. SOA: Principles of Service Design. Prentice Hall, July 2007.
121. A.K. Erlang. Telefon-Ventetider – Et Stykke Sandsynlighedsregning. Matem-

atisk Tidsskrift, 1920.
122. J. Evdemon, D. Jordan (Editors). Web Services Business Process Execution

Language Version 2.0. OASIS standard wsbpel-v2.0-OS, OASIS, April 2007.
123. ICT – Information and Communication Technologies – Work Program 2007-08,

CORDIS – Community Research & Development Information Service, 2007.
124. H. Fayol. Administration industrielle et générale – prévoyance organisation-

commandement- coordination- contrôle. Extrait de la Société de l’Industrie
Minerale. Dunod, 1916.

125. J. Fenn. Understanding Gartner’s Hype Cycles – 2007. Gartner Research ID
Number G00144727, Gartner, July 2007.

126. J. Fenn, A. Linden. Gartner’s Hype Cycle Special Report for 2005, Gartner
Research ID Number G00130115, Gartner, August 2005.

127. M. Fleury, F. Reverbel. The JBoss Extensible Server. In (M. Endler, D.
Schmidt, Editors): Proceedings of Middleware 2003 — ACM/IFIP/USENIX
International Middleware Conference, Lecture Notes in Computer Science
2672, Springer, 2003.

128. J.N. Foster, G. Karvounarakis. Provenance and Data Synchronization. In:
IEEE Data Engineering Bulletin, vol. 30, no. 4, IEEE Press, 2007.

129. J. Fourastié. La grande métamorphose du XXe siècle. Essais sur quelques
problèmes de l’humanité d’aujourd’hui. Paris, Presses universitaires de France,
1961.

130. E. Gamma et al. Design Patterns – Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

131. H. Garcia-Molina, K. Salem. Sagas. In: ACM SIGMOD Record, vol. 16 , no. 3,
ACM Press, 1987.

132. D. Garlan, M. Shaw. An Introduction to Software Architecture. Technical Re-
port CMU/SEI-94-TR-21, Carnegie Mellon University, Software Engineering
Institute, January 1994.

133. Gartner. The Gartner Glossary of Information Technology Acronyms and
Terms. Gartner, 2004.

134. D. Georgakopoulos, M. Hornick and A. Sheth. An Overview of Workflow Man-
agement: From Process Modeling to Workflow Automation Infrastructure. Dis-
tributed and Parallel Databases, 3, pp. 119-153, 1995.

135. W. Gillette. Managing Megaprojects: a Focused Approach. In: Software,
vol. 13, no. 4, IEEE, 1996.

136. M. Govekar, R. Schulte. BAM Architecture: More Building Blocks Than You
Think. Technical Report AV-15-5070. Gartner Research, April 2002.

137. R.P. Goldberg. Survey of Virtual Machine Research. IEEE Computer Maga-
zine, vol. 7, no. 6, IEEE Press, 1974, pp. 34–45.

138. J. Gray. The Transaction Concept: Virtues and Limitations. In: Proceedings
of VLDB’1981 – the 7th International Conference on Very Large Databases.
IEEE Press, 1981.

139. J. Gray. An Approach to End-User Application Design. In (A. Whinston, Ed-
itor): Data Base Management and Applications. D. Reidel Publishing Com-
pany, 1981.

140. J. Gray. The Cost of Messages. Tandem Technical Report 88.4, Part No. 14661.
Tandem Computers, March 1988.

References 281

141. J. Gray, A. Reuter. Transcation Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

142. J. Gray et al. The Lowell Database Research Self Assessment, June 2003.
143. J. Grudin. Computer-Supported Cooperative Work: History and Focus. Com-

puter, vol. 27, no. 5, IEEE Press, May 1994, pp. 19–26.
144. L. Gulick. Management is a Science. Academy of Management Journal, no. 1,

1965, pp. 7–13.
145. C.A. Gunter. Semantics of Programming Languages – Structures and Tech-

niques. The MIT Press, 1992.
146. G. Guta, W. Schreiner, D. Draheim. A Lightweight MDSD Process Applied

in Small Projects. In: Proceedings of SEAA 2009 – the 35th Euromicro Con-
ference on Software Engineering and Advanced Applications, IEEE Computer
Society 2009.

147. L. Haas. Building an Information Infrastructure for Enterprise Applications.
In (D. Draheim, G. Weber, Editors): Trends in Enterprise Application Archi-
tecture, Lecture Notes in Computer Science 3888, January 2006.

148. P.J. Haas. Stochastic Petri Nets – Modelling, Stability, Simulation. Springer,
2002.

149. B. Hahn, C. Ballinger. Tpump in Continous Environment – Assembling the
Teradata Active Data Warehous Series. Active Data Warehouse Center of
Expertise, April 2001.

150. M. Hammer. Beyond Reengineering: How the Process-Centered Organization
is Changing Our Work and Our Lives. HarperCollins Publishers, 1996.

151. M. Hammer, J. Champy. Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. HarperCollins Publishers, 1993.

152. M.J. Harry. The Vision of Six Sigma, 8 volumes. Tri Star Publishing, 1998.
153. M.J. Harry. Six Sigma: A Breakthrough Strategy for Profitability. In: Quality

Progress, May 1998, pp. 60–64.
154. M.J. Harry, R. Schroeder. Six Sigma – The Breakthrough Managment Strategy

Revolutionizing the World’s Top Corporations. Doubleday, 1999.
155. R. Hayes, S. Wheelright. Restoring our Competitive Edge: Competing

Through Manufacturing, John Wiley and Sons, 1984.
156. A. Hess, B. Humm, M. Voss, G. Engels. Structuring Software Cities A Multi-

dimensional Approach. In: Proceedings of EDOC 2007 – the 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference. IEEE Press,
2007.

157. A. Hiles. The Definitive Handbook of Business Continuity Management, 2nd

edition. Wiley, January, 2008.
158. J.B. Hill, M. Cantara, M. Kerremans, D.C. Plummer. Magic Quadrant for

Business Process Management Suites, 2009. Gartner RAS Core Research Note
G00164485. Gartner, February 2009.

159. M. Himsl, D. Jabornig, W. Leithner, D. Draheim, P. Regner, T. Wiesinger,
J. Küng. An Iterative Process for Adaptive Meta- and Instance Modeling. In:
Proceedings of DEXA 2007 – 18th International Conference on Database and
Expert Systems Applications. Springer, September 2007.

160. M. Himsl, D. Jabornig, W. Leithner, D. Draheim, P. Regner, T. Wiesinger,
J. Küng. Intuitive Visualization-Oriented Metamodeling. In: Proceedings of
DEXA 2009 - 20th International Conference on Database and Expert Systems
Applications. Springer, September 2007.

282 References

161. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

162. A. Holl, G. Valentin. Structured Business Process Modeling. In: Proceedings
of IRIS 27 – Information Systems Research in Scandinavia, 2004.

163. K. Holley, J. Palistrant, S. Graham. Effective SOA Governance. IBM White
Paper, IBM Corporation, March 2006.

164. D. Hollingworth. The Workflow Reference Model. Technical Report TC00-
1003, Workflow Management Coalition, Lighthouse Point, Florida, USA, 1995.

165. R. Hull, R. King. Semantic database modeling: Survey, applications, and re-
search issues. ACM Computing Surveys, vol. 19, no. 3, pp.201–260, 1987.

166. IBM Corporation. Smart SOA: Best Practices for Agile Innovation and Opti-
mization. IBM White Paper. IBM Corporation, November 2007.

167. M. Imai. Kaizen: The Key to Japan’s Competitive Success. McGraw-Hill, 1986.
168. Industrial Business Machines. On Demand Business Executive Guide. IBM

Corporation, 2004.
169. Institute of Electrical and Electronics Engineers. IEEE Standard 830-1993,

Recommended Practice for Software Requirements Specifications, Software
Engineering Standards Committee of the IEEE Computer Society, New York,
1993.

170. The Instrumentation, Systems, and Automation Society. Enterprise-Control
System Integration – Part 1: Models and Terminology. American National
Standard ANSI/ISA-88.01-1995. ISA, October 1995.

171. The Instrumentation, Systems, and Automation Society. Batch Control – Part
1: Models and Terminology. American National Standard ANSI/ISA-95.00.01-
2000. ISA, 2000.

172. The Instrumentation, Systems, and Automation Society. Enterprise-Control
System Integration – Part 3: Activity Models of Manufacturing Operations
Management. American National Standard ANSI/ISA-95.00.03-2005. ISA,
2005.

173. International Organization for Standardization. International Standard ISO
1028:1973. Information processing – Flowchart symbols. ISO, 1973.

174. International Organization for Standardization. International Standard ISO
9735. Electronic Data Interchange for Administration, Commerce and Trans-
port (EDIFACT) – Application Level Syntax Rules. ISO, 1988.

175. International Organization for Standardization. International Standard ISO
9000-3:1991(E). Quality management and quality assurance standards –
Part 3: Guidelines for the application of ISO 9001 to the developement, supply
and maintenance of software. ISO, 1991.

176. International Organization for Standardization. International Standard ISO
9241-10. Ergonomic Requirements for Office Work with Visual Display Termi-
nals (VDTs) – Part 10: Dialogue Principles. ISO, 1991.

177. International Organization for Standardization. International Standard ISO
9001:1994(E). Quality systems – Model for quality assurance in design, devel-
opement, production, installation and servicing. ISO, 1994.

178. International Organization for Standardization. International Standard ISO
9000:2005(E). Quality Management Systems – Guidelines for Performance Im-
provements. ISO, 2000.

179. International Organization for Standardization. International Standard
CEI/IEC 62264-1:2003. Enterprise-Control System Integration – Part 1: Mod-
els and Terminology. ISO, March 2003.

References 283

180. ISO Technical Committee TC 184/SC 4. ISO 10303-1:1994 Industrial Automa-
tion Systems and Integration – Product Data Representation and Exchange –
Part 1: Overview and Fundamental Principles. International Organization for
Standardization, 2004.

181. International Organization for Standardization. International Standard
ISO/IEC 20000-1:2005(E). Information Technology – Service Management –
Part 1: Specification. International Organization for Standardization, 2005.

182. International Organization for Standardization. International Standard ISO
9000:2005(E). Quality Management Systems – Fundamentals and Vocabulary.
ISO, 2005.

183. International Organization for Standardization. International Standard
ISO/IEC 20000-2:2005(E). Information Technology – Service Management –
Part 2: Code of practice. International Organization for Standardization, 2005.

184. ISO Technical Committee 184/SC 4. ISO 15531-32:2005. Industrial Automa-
tion Systems and Integration – Industrial Manufacturing Management Data:
Resources Usage Management - Part 32: Conceptual Model for Resources Us-
age Management Data. International Organization for Standardization, 2005.

185. International Organization for Standardization. International Standard ISO
9241-110. Ergonomics for Human-System Interaction – Part 110: Dialogue
Principles. ISO, 2006.

186. International Technical Support Organization. The Solution Designer’s Guide
to IBM On Demand Business Solutions, 3rd edition. Redbook SG24-6248-02,
Industrial Business Machines, September 2005.

187. IT Governance Institute. COBIT 4.1 – Framework, Control Objectives, Man-
agement Guidelines, Maturity Models. ISBN 1-933284-72-2, IT Governance
Institute, 2007.

188. IT Governance Institute. COBIT Quickstart, IT Governance Institute, 2007.
189. M. Iqbal, M. Nieves. Service Strategy – ITIL Version 3. Stationery Office

Books, May 2007.
190. G. Jalloul. UML by Example. Cambridge University Press, 2004.
191. K. Jensen, L.M. Kristensen, L. Wells. Coloured Petri Nets and CPN Tools

for Modelling and Validation of Concurrent Systems. International Journal on
Software Tools for Technology Transfer, vol. 9, Springer, 2007, pp. 213–254.

192. J. Johnson, T.L. Roberts, W. Verplank, D.C. Smith, C. Irby, M. Beard, and K.
Mackey. The Xerox Star: A Retrospective. Computer 22(9), pp. 11-26, 28-29,
September 1989.

193. V. Johnson, B. Rubin. The San Francisco Project: Business Process Com-
ponents and Infrastructure. ACM Computing Surveys, vol. 32, no. 1, March
2000.

194. R.S. Kaplan, D.P. Norton. The Balanced Scorecard: Translating Strategy into
Action. Harvard Business School Press, 1996.

195. A. Kay. The Reactive Engine. PhD thesis, University of Utah, September 1969.
196. L.F. Kenney, D.C. Plummer. Magic Quadrant for Integrated SOA Governance

Sets, Gartner RAS Core Research Note G00153858. Gartner, June 2008.
197. S. Kent and O. Patrascoiu. Kent Modelling Framework Version – Tutorial,

Computing Laboratory, University of Kent, December 2002.
198. S. Khoshafian. Business Process Management for Six Sigma Projects. In (L.

Fischer, Editor): 2006 BPM and Workflow Handbook. Future Strategies, 2006.
199. S. Khoshafian. BPM Center of Excellence Manifesto. In (L. Fischer, Editor):

2007 BPM and Workflow Handbook. Future Strategies, 2007, pp. 73–84.

284 References

200. B. Kirkerud. Object-oriented Programming with Simula. Addison-Wesley,
1989.

201. B. Kirwin. CIO Update: To Control TCO, It Must Be Measured and Managed.
ID Number IGG-04162003-02. Gartner Group, April 2003.

202. J. Kletti. Manufacturing Execution System - MES. Springer, 2007.
203. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C.v. Riegen,

P. Schmidt, I. Trickovic. WS-BPEL Extension for People – BPEL4People.
IBM, SAP, 2005.

204. D.E. Knuth. Structured Programming with go to Statements. Computing Sur-
veys, vol. 6, no. 4, Association of Computing Machinery, December 1974

205. D.E. Knuth, R.W. Floyd. Notes on Avoiding ‘go to’ Statements. Re-
port No. 148, Computer Science Department, Stanford University, 1970.

206. D.E. Knuth, R.W. Floyd. Notes on Avoiding ‘go to’ Statements. In: Informa-
tion Processing Letters, vol. 1, no. 1, February 1971, pp. 23–31, 177.

207. J. Kolbitsch, H. Maurer. The Transformation of the Web: How Emerging Com-
munities Shape the Information we Consume. In: Journal of Universal Com-
puter Science, vol. 12, no. 2, 2006, pp. 187–213.

208. S. Rao Kosaraju. Analysis of Structured Programs. In: Proceedings of the 5th

Annual ACM Symposium on Theory of Computing, 1973, pp. 240–252.
209. P. Kruchten. The Rational Unified Process. Addison-Wesley, 1999.
210. S. Lacy, I. Macfarlane. Service Transition – ITIL Version 3. Stationery Office

Books, May 2007.
211. P.J. Landin. The Next 700 Programming Languages. Communications of the

ACM, vol. 9, no. 2, pp. 157–165, March 1966.
212. J. Lara , H. Vangheluwe. Using AToM as a Meta CASE Tool. In: Proceed-

ings of the 4th International Conference on Enterprise Information Systems,
Universidad de Castilla-La Mancha, Ciudad Real (Spain), April 2002.

213. Y. Lee, Y. Kim, H. Choi. Conflict Resolution of Data Synchronization in
Mobile Environment. In: Proceedings of ICCSA 2004 – the 4th International
Conference on Computational Science and Its Applications, Lecture Notes in
Computer Science 3044, Springer, 2004.

214. C. Lettner, C. Hawel, T. Steinmaurer, D. Draheim. Complex Event Process-
ing for Sensor-based Data Auditing. In: Proceedings of ICEIS’08 – the 10th

International Conference on Enterprise Information Systems, 2008.
215. B. Leuf, W. Cunningham. The Wiki Way – Quick Collaboration on the Web.

Addison-Wesley, April 2001.
216. K. Lewin. Resolving Social Conflicts : Selected Papers on Group Dynamics.

Harper & Row, 1948.
217. G. Lewis, E. Morris, L. O’Brien, D. Smith, L. Wrage. SMART: The Service-

Oriented Migration and Reuse Technique, Technical Note CMU/SEI-2005-
TN-029, SEI – Software Engineering Institute, Carnegie Mellon University,
September 2005.

218. F. Leymann, D. Roller. Business process management with FlowMark. Pro-
ceedings of IEEE Compcon, March 1994.

219. F. Leymann, D. Roller, and M.T. Schmidt. Web Services and Business Process
Management. IBM Systems Journal 41, 2002.

220. B.J. Lheureux, P. Malinverno. Magic Quadrant for B2B Gateway Providers,
Gartner RAS Core Research Note G00157460. Gartner, June 2008.

References 285

221. B. List, B. Korherr. A UML 2 Profile for Business Process Modelling. In: Per-
spectives in Conceptual Modeling – Proceedings of the ER’2005 Workshops.
Lecture Notes in Computer Science 3770, Springer, 2005.

222. B. List, B. Korherr. An Evaluation of Conceptual Business Process Modelling
Languages. In: Proceedings of the 2006 ACM Symposium on Applied Com-
puting. ACM Press, 2006, pp. 1532–1539.

223. T.S. Kuhn. The Structure of Scientific Revolutions. University Of Chicago
Press, December 1996.

224. Lotus Development Corporation. Domino Workflow – Automating Real-World
Business Processes. White Paper. Lotus Development Corporation, 1999.

225. R. Luecke. Creating Teams with an Edge – The Complete Skill Set to Build
Powerful and Influential Team. In: The Harvard Business Essentials Series.
Harvard Business School Press, 2004.

226. C. Lutteroth. AP1 – A Platform for Model-based Software Engineering. In
(D. Draheim, G. Weber, Eds.): Proceedings of TEAA 2006 - 2nd International
Conference on Trends in Enterprise Application Architecture, Lecture Notes
in Computer Science 4473, Springer, 2007.

227. C. Lutteroth. AP1 – A Platform for Model-based Software Engineering. PhD
thesis, University of Auckland, March 2008.

228. J. Lyon. Design Considerations in Replicated Database Systems for Disaster
Protection. In: Digest of Papers of COMPCON’88 – the 33rd IEEE Computer
Society International Conference. IEEE Press,pp. 428–430.

229. F. Machlup. The Production and Distribution of Knowledge in the United
States. Princeton University Press, 1962.

230. C.M. MacKenzie, K. Laskey, F. McCabe, P.F. Brown, R. Metz, B.A. Hamilton
(Editors). Reference Model for Service Oriented Architecture 1.0, Committee
Specification 1, document identifier soa-rm-cs, OASIS Open, August 2006.

231. Q.H. Mahmoud. Service-Oriented Architecture (SOA) and Web Services: The
Road to Enterprise Application Integration (EAI). Sun Microsystems, April
2005.

232. D.E. Mahling, N. Craven and W.B. Croft. From office automation to intelligent
workflow systems. IEEE Intelligent Systems 19(3), 41-47, 1995.

233. R. Maier, T. Hädrich, R. Peinl. Enterprise Knowledge Infrastructure. Springer,
2005.

234. Fredmund Malik. Managing Performing Living – Effective Management for a
New Era. Campus, 2006.

235. P. Malinverno. Service-Oriented Architecture Craves Governance. ID Number
G00135396, Gartner Research, January 2006.

236. O. Mangisengi, M. Pichler, D. Auer, D. Draheim, H. Rumetshofer. An Activity
Warehouse Model Based on Business Activity Monitoring Requirements, In:
Proceedings of ICEIS 2006 – International Conference on Enterprise Informa-
tion Systems, June 2006.

237. M. McClellan. Applying Manufacturing Execution Systems. CRC Press, 1997.
238. D. McCoy. Business Activity Monitoring: Calm Before the Storm. ID Number

LE-15-9727. Gartner Research, April 2002.
239. D. McCoy, Y. Natis. Service-Oriented Architecture: Mainstream Straight

Ahaed. ID Number LE-19-7652. Gartner Research, April 2003.
240. D. McCracken, A. Newell. The ZOG Human Computer-Inferface System – A

Renewal Proposal to the Office of Naval Research for the period 1st March

286 References

1983 to 1st October 1984, Renewal of Grant N00014-76-0874: ZOG: An Inter-
active Programming Environment Using a Graph-Structured, Rapid-Response
Guidance System. Carnegie-Mellon University, May 1983.

241. M.D. McIlroy. Mass Produced Software Components. In (P. Naur, B. Randell,
Editors): Software Engineering – Report on a Conference Sponsored by the
NATO Science Committee, January 1969, pp. 138-150.

242. P. McJones (Editor). The 1995 SQL Reunion: People, Projects and Politics.
SRC Technical Note 1997-018, Digital Systems Research Center, August 1997.

243. A. McNamara, M.A. Chishti. Business Integration Using State-Based Asyn-
chronous Services. In (L. Fischer, Editor): 2006 BPM andWorkflow Handbook.
Future Strategies, 2006.

244. Manufacturing Enterprise Solutions Asssociation. MES Explained: A High
Level Vision, White Paper no. 6. MESA International, September 1997.

245. D. Merriman. Total Economic Impact: Really Understanding the IT
Cost/Benefit Equation. Giga Information Group, 2003.

246. MetaCase. Domain-Specific Modelling: 10 Times Faster Than UML. White
Paper, MetaCase Consulting, Finland, January, 2001.

247. D. Miers, P. Harmon and C. Hall. The 2006 BPM suites report. Business
Process Trends, 2006.

248. J. Miller, J. Mukerji. MDA Guide, Version 1.0.1, Object Management Group,
2003.

249. R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science 92, Springer, 1980.

250. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
251. C. Moore, C. Teubner. Making Sense Of The Business Process Management

Landscape. Forrester Research, May 2006.
252. R. Morel, D. Draheim, M. Pilloud, M. Farooq. Recommendations of the Work-

ing Group on Social Issues and Power Shifts at SECIII. In (T.J. van Weert and
R.K. Munro, Editors): Informatics and the Digital Society. Kluwer Academic
Publishers, January 2003.

253. P.M. Morse, G.E. Kimball. Methods of Operations Research. MIT Press, 1951.
254. National Institute of Standards and Technology. Integrated Definition for

Functional Modeling (IDEF0), Draft Federal Information Processing Stan-
dards Publication 183. U.S. Department of Commerce, December 1993.

255. Y.V. Natis. Service-Oriented Architecture Scenario, Gartner Research ID
Number AV-19-6751, Gartner, April 2003.

256. P. Naur, B. Randell (Editors). Software Engineering – Report on a Conference
Sponsored by the NATO Science Committee, Garmisch, October 1968. NATO
Science Committee, January 1969.

257. M. Nguyen, A. Tjoa. Zero-Latency Data Warehousing for Heterogeneous Data
Sources and Continuous Data Streams, iiWAS’2003 - The 5th International
Conference on Information Integrationand Web-based Applications Services,
p. 55 - 64, 2003.

258. M. Nicolett, K.M. Kavanagh. Magic Quadrant for Security Information and
Event Management. ID Number G00147559. Gartner, May 2007.

259. S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, J. Roele. Using Domino
Workflow, IBM SG24-5963-00, IBM International Technical Support Organi-
zation, May 2000.

260. O. Nierstrasz, S. Gibbs, D. Tsichritzis. Component-oriented Software Devel-
opment. Communications of the ACM, vol. 35, no. 9, September 1992.

References 287

261. D. Norton, M. Blechar, T. Jones. Magic Quadrant for Business Process Analy-
sis Tools, 2010. Gartner RAS Core Research Note G00174515. Gartner, Febru-
ary 2010.

262. K. Nygaard, O.-J. Dahl. The Development of the SIMULA Languages. The 1st

ACM SIGPLAN Conference on History of Programming Languages, pp.245–
272. ACM Press, 1978.

263. Object Management Group. OMG Unified Modeling Language Specification,
version 1.5, March 2003.

264. Object Management Group. Common Object Request Broker Architecture:
Core Specification, version 3.0.3, formal/04-03-12, Object Management Group,
March 2004.

265. Object Managament Group. Business Process Modeling Notation (BPMN)
Specification, Final Adopted Specification, dtc/06-02-01, February 2006.

266. Object Managament Group. CORBA Component Model Specification, OMG
Available Specification, version 4.0, formal/06-04-01 dtc/06-02-01, April 2006.

267. Office of Government Commerce. ICT Infrastructure Management. Bernan,
2002.

268. Office of Government Commerce. Official Introduction to the ITIL Service
Lifecycle. Stationery Office Books, August 2007.

269. OPC Foundation. OPC Common 1.10 Specification, OPC Foundation, 2006.
270. Oracle. Adding Mobile Capability to an Enterprise Application With Oracle

Database Lite. White Paper. Oracle, June 2007.
271. T. O’Reilly. What Is Web 2.0 – Design Patterns and Business Models for the

Next Generation of Software. O’Reilly Media, September 2005.
272. N. Palmer. Workflow and BPM in 2007: Business Process Standards see a new

Global Imperative. In (L. Fischer, Editor): 2007 BPM and Workflow Hand-
book. Future Strategies, 2007.

273. D. Park. Concurrency and Automata on Infinite Sequences. In: Proceedings
of the 5th GI-Conference on Theoretical Computer Science, Lecture Notes in
Computer Science 104, Springer, 1981, pp. 167–183.

274. M.C. Paulk. How ISO 9001 Compares with the CMM. IEEE Software, vol. 11,
no. 1, pp. 74–83, January 1995.

275. M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber. Capability Maturity Model,
Version 1.1. IEEE Software, vol. 10, no. 4, pp.18–27, 1993.

276. M.C. Paulk, C. Weber, S. Garcia, M.B. Chrissis, M. Bush. Key Practices of the
Capability Maturity Model Version 1.1. Carnegie Mellon Software Engineering
Institute, Technical Report CMU/SEI-93-TR-025, February 1993.

277. D.L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, vol. 15, no. 5, 1972, pp.330–336.

278. D.L. Parnas. On the Criteria To Be Used in Decomposing Systems into Mod-
ules. Commun. Communications of the ACM, vol. 15, no. 12, 1972, pp. 1053–
1058.

279. D.L. Parnas. Software Aspects of Strategic Defense Systems. Software Engi-
neering Notes, ACM Sigsoft, vol. 10, no. 5, ACM Press, 1985.

280. M. Pedler, J. Burgoyne, T. Boydell. The Learning Company: a Strategy for
Sustainable Development. McGraw-Hill, 1991.

281. C.A. Petri. Kommunikation mit Automaten. Dissertation. Schriften des
Rheinisch-Westfälischen Institutes für instrumentelle Mathematik an der Uni-
versität Bonn, 1962.

288 References

282. M. Pichler, H. Rumetshofer, W. Wahler. Agile Requirements Engineering for
a Social Insurance for Occupational Risks Organization: A Case Study. In:
Proceedings of RE’06 – 14th IEEE International Requirements Engineering
Conference, IEEE Computer Society, pp. 246–251.

283. R. Pirinen, J. Rajamäki. Rescuing of Intelligence and Electronic Security Core
Applications (RIESCA). Working Draft, Laurea University of Applied Sci-
ences, June 2008.

284. R. Pirinen, J. Rajamäki, L. Aunimo. Rescuing of Intelligence and Electronic
Security Core Applications (RIESCA). In: WSEAS Transactions on Systems,
vol. 7, no. 10, October 2008.

285. G. Plotkin. LCF Considered a Programming Language. Theoretical Computer
Science, vol. 5, 1977, pp. 223–255.

286. M. Pohlmann, M. Schönefeld. An Evolutionary Integration Approach using
Dynamic CORBA in a typical Banking Environment. Case Studies Workshop
of the 6th European Conference on Software Maintenance and Reengineering,
March 2002.

287. K. Popper. Logik der Forschung, Springer, 1934.
288. K. Popper. The Logic of Scientific Discovery, Routledge Publishers, 1959.
289. M.E. Porter. Strategy and the Internet. Harvard Business Review, March,

pp.63–78, 2001.
290. Plato. Cratylus.
291. Project Management Institute. PMBOK Guide – A Guide to the Project Man-

agement Body of Knowledge, 2000 Edition. Project Management Institute,
2000.

292. J. Pyke. BPM in Context: Now and in the Future. In (L. Fischer, Editor):
2007 BPM and Workflow Handbook. Future Strategies, 2007.

293. E.S. Raymond. The Cathedral and the Bazar. O’Reilly & Associates, 1999.
294. M. Reichert, P. Dadam. ADEPTflex-Supporting Dynamic Changes of Work-

flows Without Losing Control. Journal of Intelligent Information Systems, vol.
10, no. 2, Springer, 1998 pp. 93-12.

295. W. Reisig. Petri nets: an Introduction. Springer, 1985.
296. S. Rinderle, M. Reichert, P. Dadam, P. Flexible Support Of Team Processes

By Adaptive Workflow Systems. Distributed and Parallel Databases, vol. 16,
no. 1, Springer, 2004, pp. 91-116.

297. R. Revans. What is Action Learning ? In: The Journal of Management Devel-
opment, vol. 1, no. 3., pp. 64-75. MCB Publications, 1982.

298. R. Revans. The ABC of Action Learning. Lemos & Crane, 1998.
299. I. Robinson (Editor). ACID Transaction Policy in SCA, SCA Version 1.00.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress, Red
Hat, Rogue Wave, SAP, Siemens, Software AG, Sun, Sybase, TIBCO, Decem-
ber 2007.

300. D.T. Ross. Structured Analysis (SA): A Language for Communicating Ideas.
IEEE Transactions on Software Engineering, vol. 3, no. 1, pp. 16–34, January
1977.

301. D.T. Ross, J.W. Brackett. An Approach to Structured Analysis. Computer
Decisions, vol. 8, no. 9, September 1976, pp. 40–44.

302. D.T. Ross, K.E. Schoman. Structured Analysis for Requirements Definition.
IEEE Transactions on Software Engineering, vol.3, no. 1, pp. 6–15, January
1977.

References 289

303. W.W. Royce. Managing the Development of Large Software Systems. Proceed-
ings of the IEEE WESCON Conference, August 1970, pp.1–9. IEEE, 1970.

304. B. S. Rubin, A. R. Christ, K. A. Bohrer. Java and the IBM San Francisco
Project. IBM Systems Journal, vol. 37, no. 3, Industrial Business Machines,
1998.

305. C. Rudd, V. Lloyd. Service Design – ITIL Version 3. Stationery Office Books,
May 2007.

306. J. Rumbaugh, M. Balaha, W. Premerlani, F. Eddy, W. Lorenson. Object-
Oriented modeling and design. Prentice Hall, 1991.

307. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, N. Mulyar. Workflow
Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22,
BPM Center, 2006.

308. N. Russell, W.M. P. van der Aalst, A.H.M. ter Hofstede, D. Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In:
Proceedings of CAiSE 2005 – the 17th Conference on Advanced Information
Systems Engineering, Lecture Notes in Computer Science 3520, Springer, 2005,
pp. 216-232.

309. A. Sankaramurthy. Oracle MES Solution for Discrete Manufacturers – Lower
Your Costs and Improve Visbility Through a Single Integrated ERP/MES
Solution. Oracle Corporation, November 2006.

310. SAP. Manufacturing Strategy: an Adaptive Perspective. SAP White Paper,
SAP 2003.

311. A.-W. Scheer. Embedding Data Modelling in a General Architecture for In-
tegrated Information Systems. In: Proceedings of ER’92 – the 117th Inter-
national Conference on the Entity-Relationship Approach. Lecture Notes in
Computer Science 645, 1992.

312. A.-W. Scheer. ARIS – Business Process Modeling. Springer, 1999.
313. A.-W. Scheer, O. Thomas, O. Adam. Process Modeling Using Event-Driven

Process Chains. In (M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede,
Editors): Process-Aware Information Systems – Bridging People and Software
through Process Technology. John Wiley & Sons, 2005, pp. 119–146.

314. B. Scholten. Integrating ISA-88 and ISA-95. ISA, 2007.
315. R.W. Schulte. “Service Oriented” Architectures, Part 2. Gartner Research ID

Number SPA-401-069. Gartner, 1996.
316. R.W. Schulte, Y.V. Natis. “Service Oriented” Architectures, Part 1. Gartner

Research ID Number SPA-401-068. Gartner, 1996.
317. D.S. Scott. Data Types as Lattices. In: Society for Industrial and Applied

Mathematics (SIAM) Journal on Computing, vol. 5, no. 3, pp. 522–587, 1976.
318. John R. Searle. Speech Acts: An Essay in the Philosophy of Language, Cam-

bridge University Press, 1969.
319. W.A Shewhart. Economic Control of Quality of Manufactured Product. D.

Van Nostrand Company, 1931.
320. W.A. Shewhart. Statistical Method from the Viewpoint of Quality Control.

The Graduate School of Agriculture, 1939.
321. S. Shlaer, S.J. Mellor. Object-Oriented Systems Analysis: Modeling the World

in Data. Pearson Education, Yourdon Press Computing Series, March 1988.
322. A. Silberschatz, M. Stonebraker, and J.D. Ullman. Database Research;

Achievements and Opportunities into the 21st Century. SIGMOD Record
25(1): 52–63, 1996.

290 References

323. A. Smith. An Inquiry into the Nature And Causes of the Wealth of Nations,
Book 1 – Of the Causes of Improvement in the Productive Powers of Labour,
And of the Order according to which its Produce is Naturally Distributed
among the Different Ranks of the People. The Glasgow Edition of the works
of Adam Smith, vol. II, edited by R.H. Campbell and A.S. Skinner. Oxford
University Press, 1976.

324. R. Soley. Model Driven Architecture. Object Management Group, November
2000.

325. F. Soltis. Fortress Rochester . The Inside Story of the IBM I series. 29th Street
Press, July 2001.

326. C.W. Stern, M. S. Deimler. The Boston Consulting Group on Strategy: Classic
Concepts and New Perspectives. Wiley & Sons, June 2006.

327. J.E. Stiglitz, The Roaring Nineties: A New History of the World’s Most Pros-
perous Decade. September, 2003.

328. J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1981.

329. C. Strachey and C.P. Wadsworth. Continuations: A Mathematical Semantics
for Handling Full Jumps. In: Higher-Order and Symbolic Computation, vol. 13,
no. 1–2, April 2000.

330. C. Strachey and C.P. Wadsworth. Continuations: A Mathematical Seman-
tics for Handling Full Jumps. Technical Monograph PRG-11, Oxford Univer-
sity Computing Laboratory, Programming Research Group, Oxford, England,
1974.

331. J. Sugerman, G. Venkitachalam, B.-H. Lim. Virtualizing I/O Devices on
VMware Workstation’s Hosted Virtual Machine Monitor. In: Proceedings of
the 2001 USENIX Annual Technical Conference. The USENIX Association,
2001.

332. L.H. Sullivan. The Tall Office Building Artistically Considered. In: Lippincott’s
Magazine, no. 57, March 1896, pp. 403–409.

333. Svensk Standard. Databehandling – Programsprak – SIMULA, SS 636114,
1987.

334. K.E. Sveiby, T. Lloyd. Managing Knowhow – Add Value by Valuing Creativity.
Bloomsbury, October 1989.

335. Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. ACM Press, 1998.

336. A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Application. In:
Pacific Journal of Mathematics, vol. 5, pp. 285–309, 1955.

337. O. Taiichi. Toyota Production System: Beyond Large-Scale Production, Pro-
ductivity Press, 1988.

338. F.W. Taylor. Scientific Management – Comprising: Shop Management, The
Principles of Scientific Management, Testimony Before the Special House Com-
mittee, Harper & Row, 1911.

339. F.W. Taylor. Shop Management. In (F.W. Taylor): Scientific Management
– Comprising: Shop Management, The Principles of Scientific Management,
Testimony Before the Special House Committee, Harper & Row, 1911.

340. F.W. Taylor. The Principles of Scientific Management. In (F.W. Taylor): Sci-
entific Management – Comprising: Shop Management, The Principles of Sci-
entific Management, Testimony Before the Special House Committee, Harper
& Row, 1911.

References 291

341. F.W. Taylor. Hearings Before Social Committee of the House of Representa-
tives to Investigate the Taylor and Other Systems of Shop Management Under
the Authority of House Resolution 90. In (F.W. Taylor): Scientific Manage-
ment – Comprising: Shop Management, The Principles of Scientific Manage-
ment, Testimony Before the Special House Committee, Harper & Row, 1911.

342. R. Ten-Hove, P. Walker. Java Business Integration 1.0 Final Release, Specifi-
cation JSR 208. Sun Microsystems, August 2005.

343. T. Thalhammer, M. Schrefl, and M. Mohania, M.: Active Data Warehouses:
Complementing OLAP with Analysis Rules. Data & Knowledge Engineering
39, 2001.

344. S. Thatte (Editor). Specification: Business Process Execution Language for
Web Services Version 1.1, May 2003.

345. TPC. TPC Benchmark W (Web Commerce). Transaction Processing Perfor-
mance Council, 2000.

346. TPC. TPC Benchmark H (Decision Support), Standard Specification, Revision
2.6.0 Transaction Processing Performance Council, 2006.

347. UN/CEFACT. UN/CEFACT’s Modeling Methodology (UMM): UMM
Meta Model – Foundation Module Version 1.0, Technical Specification.
UN/CEFACT, 2006.

348. UN/CEFACT and OASIS 2001. ebXML Business Process Specification
Schema, Version 1.01. Business Process Project Team, UN/CEFACT, OASIS,
2001.

349. van Deursen, A., Klint, P., J. Visser. Domain-Specific Languages: An Anno-
tated Bibliography. ACM SIGPLAN Notices, vol. 35, no. 6, ACM Press, 2000,
pp.26–36.

350. D. Wackerow. MQSeries Primer. IBM MQSeries Enterprise Application Inte-
gration Center, October 1999.

351. C.P. Wadsworth. Semantics and Pragmatics of the λ-Calculus. Ph.D. Thesis,
Oxford University, 1971.

352. G.H. Watson. Strategic Benchmarking – How to Rate Your Company’s Per-
formance Against the World’s Best. Wiley, 1993.

353. J. Waldo. The Jini Architecture for Network-Centric Computing. Communi-
cations of the ACM, vol. 42., no. 7.

354. R. Weaver. The Business Value of the Service Component Architecture (SCA)
and Service Data Objects (SDO). Business Value White Paper, version 0.9.
International Business Machines, November 2005.

355. P. Westerman. Data Warehousing – Using the Wal-Mart Model. Morgan Kauf-
mann Publishers, 2001.

356. Workflow Management Coalition. Workflow Management Coalition Terminol-
ogy & Glossary, Document Number WFMC-TC-1011, WfMC, February 1999.

357. O. Weiß. Integrated System Modelling Using the Form-Oriented Analysis: Fo-
cusing SOA and Model-Driven Techniques on Simple System Usage. Vdm
Verlag Dr. Müller, 2008.

358. Windows User Experience Team. Microsoft Windows User Experience: Official
Guidelines for User Interface Developers and Designers. B&T, 1999.

359. L. Wittgenstein. Tractatus Logico-Philosophicus. Kegan Paul, Trench, Trub-
ner & Co., 1922.

360. P. Woodman. Business Continuity Management. ISBN 0-85946-480-6, Char-
tered Management Institute, March 2007.

292 References

361. E. Yourdon. Modern Structured Analysis. Yourdon Press, Prentice Hall, 1989.
362. T. Ziebermayr. A Framework for Enhanced Service Reuse in an industrial

SOA-Context. Dissertation, Institute for Application Oriented Knowledge Pro-
cessing, Johannes-Kepler-University Linz, March 2010.

363. T. Ziebermayr, R. Weinreich, D. Draheim. A Versioning Model for Enterprise
Services. In: Proceedings of WAMIS 2007 - 3rd International Workshop on
Web and Mobile Information Services. IEEE Press, May 2007.

Index

6σ, see Six Sigma
λ-abstraction, 121
λ calculus, 121
σ, see standard deviation
.NET, see Microsoft .NET
‘as is’-analysis, see as-is-analysis
‘go to’, see go-to
‘to be’-analysis, see to-be-analysis
3GL, see third generation language
3NF, see third normal form
4GL, see fourth generation language
4T model, 32

a posteriori, 49
abstract syntax, 125, 165

tree, 165
abstraction, 54, 120
academia, 48, 248
accountability, 25
accounting, 12

system, 46
transaction, 68

ACID, see Atomicity Durability
Isolation Consistency

acquisition, 24
action learning, 25
active database, 70
activity, 79

instance, 196
list, 196

adaptive manufacturing, 62
adaptivity, 22, 41, 55
ADEPT, 86

agile software development, 15, 234
Aktuator Sensor Interface, 58

Alan Kay, 204
algorithm, 181

alienation, 14, 17
Alonzo Church, 121

analytical
data, 68

processing, 46, 67
AP1, 176

API, see application programming
interface

appliance, 205
application, 204

program, VII

programming, 1, 183
interface, 51

separability, 70
server, 52

ARIS, 90
house of business engineering, 95

AristaFlow, 86
array, 181

AS-i, see Aktuator Sensor Interface
as-is-analysis, 98, 243

AS/400, 47
aspect-oriented programming, 55

assembly line, 17

atomic activity, 122
Atomicity Durability Isolation

Consistency, 224

automatic workflow, 78, 232
automation, VII, 14, 62, 244

294 Index

availability, 37

B2B, see business-to-business
BAM, see business activity monitoring
Basel II, 69
basic data, 68
batch

application, 225
user, 225

BCM, see business continuity manage-
ment

BCP, see business continuity plan
BEA, 52
behavior, 181
best practices, 230
BI, see business intelligence
BIA, see business impact analysis
bill, 68
bisimulation, 166
BizTalk, see Microsoft BizTalk
black-box, 120
block, 172

structure, 172
blog, see web log
Boeing 777, 54
bottom-up, 119
BPEL, see Web Services Business

Process Execution Language
BPEL4People, see WS-BPEL Extension

for People
BPI, see business performance indicator
BPM, see business process management
BPMN, see Business Process Modeling

Notation
BPP, see business process platform
BPR, see business process reengineering
branch, 16
Brook’s law, 16
BS 25999, 31
budgeted expenses, 38
build-or-buy decision, 65, 228
business

activity monitoring, 27, 66
continuity, 30, 33
management, 30
management lifecycle, 31

engineering, 95
environment, 35
functionality, 45

impact analysis, 31
information, 53
intelligence, 62
logic, 47, 53
pool, 227

metaphor, 35
partner, 36
performance indicator, 27, 99
problem, 37
process
abstraction, 135
adjustments, 19
awareness, 18
behavior, 162
definition, 80
description, 25, 136
domain, 25
excellence, 12
execution, 27, 208
improvement, 28, 29
instance, 19, 79, 196
instantiation menu, 78, 196
management, VII, 2, 26
management concepts, 29
management lifecycle, 6, 26
management suite, 2
management technology, 29
modeling, VII, 1, 75
modeling language, 75
monitoring, 27
optimization, 11
paradigm, 82
platform, 2
redesign, 11
reengineering, VII, 11
reengineering per se, 19
reorganization, 4
run, 87
software, 47
stakeholder, 25
step, 17
supervisory, 80
version, 21

reengineering, 11
reorganization, 12
transformation, 35
transparency, 15
value, 77

Business Planning & Logistics, 62

Index 295

Business Process Modeling Notation,
79, 140, 156

business-to-business, 14, 229, 230
gateway, 227

C, 224
C++, 224
calendaring, 56
call center, 227
CAN, see Controller Area Network
Capability Maturity Model, 25
Capacity on Demand, 35
CBD, see component-based develop-

ment
CC, see cell controller
CCM, see CORBA Component Model
cell controller, 58
centralization, 16
changing markets, 35
Chartered Management Institute, 30
chemical processor, 58
chief information officer, 35
CIO, see chief information officer
CIP, see continuous improvement

process
class diagram, 155, 235
client, 37, 84, 224

page, 218
client-server, 218

architecture, 41
computing, 41
paradigm, 41

CMM, see Capability Maturity Model
CNC, see computer numerical control
coach, 119
COBIT, see Control Objectives

for Information and Related
Technology

COBOL, 224
CoD, see Capacity on Demand
code, 55

audit, 23
base, 158
entity, 55
review, 23

cohesion, 17, 135
colored Petri net, 116
commensurability, 200
comments, 185

commercial-off-the-shelf, 63, 68, 158
common business objects, see IBM San

Francisco framework
Common Business Oriented Language,

see COBOL
Common Object Request Broker

Architecture, 41, 52, 222
communication, 17, 54
compensation, 101
competitive market, 6
compiler, 184
complexity, 54, 169
component

architecture, 49
technology, 54

component-based development, 50
compound event, 109
computer

numerical control, 58
terminal, 204

computer-supported collaborative work,
48, 56, 213

computing power, 35
concurrency, 52, 110
condition, 103
condition/event net, 101
connector, 101
construction, 46, 54
content, 125
content-based routing, 64
continuous improvement, 14

process, 23
contract, 179

penalty, 231
review report, 25

control, 17
computer, 58
flow, 90, 123
objective, 25

Control Objectives for Information and
Related Technology, 24

controllability, 199
Controller Area Network, 58
converter, 58
CORBA, see Common Object Request

Broker Architecture
IIOP, 224

CORBA Component Model, 52
CORBA Service, 53

296 Index

core business processes, see IBM San
Francisco framework

corporate reengineering, 11
Corrado Böhm, 162
correlation, 29
COS, see CORBA Service
cost savings, 17
COTS, see commercial-off-the-shelf
CPM, see Critical Path Method
crisis management, 82
Critical Path Method, 19
critical-to-quality, 29
CSCW, see computer-supported

collaborative work
CTQ, see critical-to-quality
current-time indicator, 59
curricula, 161
customer, 53

demand, 6
process, 39, 158
registration, 101
relationship, 39
management, 14

version, 158

D-flowchart, 162
DAG, see directed acyclic graph
daily operations, 15, 82
data

auditing, 69
centre, 158
collection system, 58
dictionary, 124
flow, 123
diagram, 90

independency, 64, 93
link layer, 58
mart, 69, 73
migration, 94
processing, 95
protection, 68
quality, 94
type, 123
interchange model, 124

view, 95
warehousing, 67, 69
wheel, 227

database
community, 38

design, 161
management system, 38, 70
schema, 70
technology, 38

David Lorge Parnas, 121
DB2, 47
DBMS, see database management

system
DCOM, see Distributed Component

Object Model
DCS, see data collection system
deadline, 16
deadlock, 103
decentralization, 16
decision

making, 17
point, 103, 163
support, 69

decomposition, 49
deliverable, 90
delivery, 24
Deming

cycle, see PDCA
wheel, see PDCA

deployment, 41
architecture, 49

design
orientation, 2, 75
pattern, 53, 241
rationale, 47

detail scheduling, 60
device control, 58
dialogue, 47

control, 1, 272
embedding, 233
principle, 199

direct
costs, 31, 38
manipulation, 204

directed acyclic graph, 126
distributed

object computing, 41
programming, 52

Distributed Component Object Model,
41, 52

division of labor, 16, 54
document, 90

control, 61
processing, 48

Index 297

documentation generator, 55
Donald E. Knuth, 162, 181
Douglas T. Ross, 123
downtime, 37
drag-and-drop, 100
drill down, 71
DTIM, see data type interchange model
DW, see data warehousing
dynamic binding, 229

e-commerce, 218
e-server, 35
EAI, see enterprise application

integration
Eclipse, 52
economics, 16
economy, 14
EDI, see electronic data interchange
EDIFACT, see Electronic Data In-

terchange For Administration,
Commerce, and Transport

education, 16
EJB, see Enterprise Java Beans
electronic

data interchange, 14, 46, 227, 230
trading, 231

Electronic Data Interchange For
Administration, Commerce, and
Transport, 230

email, 56
emergency mode, 32
empirical software engineering, 192
employee, 14, 15
employer, 15
empowerment, 14, 15
enabling technology, 35
encouragement, 18
end

event, 100, 124
recursion, 130

end-user, 46
support, 38

engineer, 25
engineering, 162
enterprise

application, VII, 244
architecture, 232
integration, VII, 2, 45

computing, 52, 218

modeling tool, 90
resource planning, 46
service bus, 64

Enterprise Java Beans, 52
enterprise service bus, 231
entity-relationship model, 124, 247
entry point, 124
enumeration, 252
EPC, see event-driven process chain
equivalence relation, 166
ER model, see entity-relationship model
ergonomics, 199
ERP, see enterprise resource planning
error

handling, 101
message, 225

ESB, see enterprise service bus
ETL layer, see extraction, transforma-

tion, load layer
EU, see European Union
European Union, 3
event, 100

-driven process chain, 155
effect, 105

event-driven process chain, 95, 247
evidence, 184
exception, 60

handling, 101
exclusive or, 104
exit point, 124
expert knowledge, 25
expertise, 17
extended supply chain, 36, 49
Extensible Stylesheet Language

Transformation, 224
external business environment, 35
extraction, transformation, load layer,

66
Extreme Programming, 15

facilitator, 25
facility security, 57
factory, 14, 16
falsifiability, IX
fat client, 221
fat hub-and-spoke architecture, 225
feature, 204

orientation, 142
financials, 53

298 Index

firewall, 230
fixed data, 68
flexibility, 22, 41
flowchart, 103, 162
FlowMark, 48
FOA, see form-oriented analysis
for-loop, 182
form, 162, 198

submission, 49
form-oriented analysis, 196, 218
formchart, 198
Forrester Research, 36, 39
foundation layer, see IBM San Francisco

framework
fourth generation language, 47
FP7, see seventh framework program
framework solution, 158
Frederik Brooks, 55, 234
fresh session, 83
full application embedding, 233
function, 121, 155
functional

business unit, 12
transformation, 181

functionality, 162

Gantt diagram, 19, 59
Gartner, 226, 248

hype cycle, 2
global

scale, 240
variable, 181
yellow pages, 230

globalization, 6, 34, 35, 243
go-to

-program, 182
-statement, 162, 183

graphical user interface, 59, 204
group dynamics, 14
groupware, 56, 93
GUI, see graphical user interface
Guiseppe Jacopini, 162

hardware, 38, 47
hash map, 183
HCI, see human-computer interaction
healthcare, 107
heuristics, 230
hexagon, 197

hierarchical database, 42, 227
hierarchy, 119
high availability, 63

cluster, 33
technology, 33

high-end server, 41
high-level programming language, 232
hospital, 107
host computer, 41
HTTP, see Hypertext Transfer Protocol
hub-and-spoke architecture, 64, 72
human

computer interaction, 48, 100
potential, 17
resources, 12
workflow, 232

human-computer interaction, 195, 218
human-system interaction, 199
hype cycle, see Gartner hype cycle
Hypertext Preprocessor, see PHP
Hypertext Transfer Protocol, 230
hypervisor, 71

i-series, see IBM i-series
i5/OS, 47, 71
IBM, 35

CICS, 52
i-series, 35, 47
Information Management System, 42,

227
Lotus Notes, 93
MQSeries, 65
p-series, 35
San Francisco framework, 52
common business objects, 52
core business processes, 52
foundation layer, 52

Websphere, 230
z-series, 35

iconized window, see windows icon
IDE, see integrated development

environment
IDEF-0, see Integrated Definition

Methods
IIIB, see industrial information

integration backbone
impact factor, 29
imperative programming, 162
implementation, 24

Index 299

IMS, see IBM Information Management
System

in-house system, 34
incident

management, 34
timeline, 32

independent software vendor, 52, 158
indirect costs, 31, 38
Industrial Business Machines, see IBM
industrial information integration

backbone, 63
industrial sector, 14, 52
industry, 48

sector, 16
information

flow, 36
hiding, 120, 136
model, 93
processing, 95
system, 35, 64, 161
modeling, 93

utility, 224
Information Management System, see

IBM Information Management
System

information technology, see IT
initial state, 124
instant messaging, 57
Instrumentation, Systems and Automa-

tion Society, 62
Integrated Definition Methods, 94, 123,

247
integrated development environment,

52, 55
interface point, 124
intermediate event, 100
internal business environment, 35
Internet, 230

Inter-ORB Protocol, see CORBA
IIOP

inventory data, 68
investment

planning, 228
protection, 228

ISA, see Instrumentation, Systems and
Automation Society

-88, 62
-95, 62

ISO

9000, 28
9241, 199
10303, 62
15531, 62

ISV, see independent software vendor
IT, 12

executive, 36
Infrastructure Library, 24
product, 35
reorganization, 4
security, 57
service portfolio, 25

IT Infrastructure Library, 34
version 3, 33

ITIL, 158, see IT Infrastructure Library
ITIL v3, see IT Infrastructure Library

version 3

Java, 224, 235
EE, see Java Enterprise Edition
Enterprise Edition, 52

Java Business Integration, 231
Java Messaging Service, 224
JavaBeans, 52
JBI, see Java Business Integration
JMS, see Java Messaging Service
job, 17
join, 101, 163

key performance indicator, see business
performance indicator

key stroke, 201
keyboard, 201
know-how, 13

transfer, 19
knowledge, 17

management, 56
transfer, 161

KPI, see key performance indicator

label, 108
labeled transition system, 166
labor management, 61
language, 98
language philosophy, 98
lead, 159
learning organization, 14
legacy

problem, 35

300 Index

system, 41, 227

line indentation, 185
line of business, 36
linguistics, 108
livelock, 104
load, 37

login, 83
logistics management

system, 46
look-and-feel, 233

loop, 162
loose coupling, 229
LTS, see labeled transition system

machine

control, 58
maintenance, 58
programming, 183

magic quadrant, 248

main process, 36
mainframe, 33, 41
maintainability, 37, 55
maintenance, 157, 159

management, 61
make-or-buy, 63
management, 11

guidelines, 25
manager, 25

manpower, 16
manufacturer, 14
manufacturing, 45
Manufacturing Enterprise Solutions

Association, 60
manufacturing execution system, 46, 60
Manufacturing Operations & Control,

62
marketing, 12
Markov chain, 99
master data, 68

materialized query, 73
mathematical

logics, 120
modeling, 121
reasoning, 121

maturity model, 25
MC, see motion control
MDA, see model driven architecture
mega project, 54, 237

MES, see manufacturing execution
system

MESA, see Manufacturing Enterprise
Solutions Association

message
-oriented middleware, 65, 227
passing, 92
standardization, 231
system model, 93

meta model, 125
methodologist, 119
methodology, 119

stakeholder, 119
Microsoft

.NET, 230
BizTalk, 227
Exchange, 93

middleware, 38, 47
midrange computer, 33, 35, 41
migration path, 233
MIL, see module interconnection

language
mind, 98
MindMap, 155
Mining Association of Great Britain, 25
Minitab, 29
mission-critical, 35, 41
modale dialogue, 209
Modbus, 58
model driven architecture, 264
Modern Structured Analysis, 94, 123
modularization, 121
module interconnection language, 54
Mondrian, 71
monitoring, 24
Monte-Carlo

compiler, 97
simulation, 99

motion control, 58
Motorola, 28
MS, see Microsoft
MS Visio, 155
MS Word, 155

National Cash Register, see NCR
national language support, 53
NATO software engineering conference,

50
natural language, 109

Index 301

NCR, 69
Netweaver, 35
networked organization, 14
new economy, 34
NLS, see national language support
non-determinism, 165

OASIS, see Organization for the
Advancement of Structured
Information Standards

object
orientation, 47
request broker, 53

Object Management Group, 53, 156
Object Modeling Technique, 247
object-oriented programming, 52
object-relational mapping, 52
observable behavior, 166
office, 90
OfficeTalk, 48
OLA, see operation level agreements
OLAP, see online analytical processing
old economy, 34
OLTP, see online transaction processing
OMG, see Object Management Group
On Demand Business, 35
one-fits-all, 64
online

analytical processing, 66
transaction processing, 66
user, 225

OPC, see Openness Productivity
Collaboration

Open Services Gateway Initiative, 52
Open Systems Interconnection Basic

Reference Model, 58
open technology, 57
Openness Productivity Collaboration,

58
operating system

process, 88
thread, 88

operating theatre, 107
operation level agreements, 25, 26
operational

level, 15
semantics, VII, 122

operations, 15
ORACLE, 64

Oracle
E-Business Suite, 64
Manufacturing Execution System, 64

ORB, see object request broker
order management, 53
Organization for the Advancement of

Structured Information Standards,
231

organizational
hierarchy, 19
learning, 25
structure, 11, 122
unit, 17

OS/400, 47
OSGi, see Open Services Gateway

Initiative
OSI, see Open Systems Interconnection

Basic Reference Model
output, 95
outsourcing, 14, 34
overhead, 54

p-series, see IBM p-series
Palo Alto, 48
paper-based trading, 231
paperless office, 14
parallelism, 19, 103
parameterization, 120
PDCA, 28
peak load, 23, 35
pentaho analysis services, see Mondrian
performance, 37

analysis, 61
indicator, see business performance

indicator
persistence, 52
persistent messaging, 64
personnel, 17

responsibility, 16
PERT, see Project Evaluation and

Review Technique
Petri net, 101

condition, 101
event, 101
place, 101
transition, 101

PHP, 224
PIM, see platform-independent model
place/transition net, 101

302 Index

planned downtime, 37
planning, 24
platform-independent model, 264
PLC, see programmable logic controller
plug-in, 46
Polymer, 48
power shift, 15
pre-paradigmatic research, 162
pricing, 159
problem, 34

management, 34
process, see business process

algebra, 99
control systems, 58

Process Field Bus, 58
processing, 224
procurement, 12
product

genealogy, 61
tracking, 61

production, 12
management, 16
planning system, 60
process, 29, 45, 62

productizing, 41, 55
PROFIBUS, see Process Field Bus
profiler, 55
profit centers, 14
profit/loss calculation, 39
program, 181

layout, 182
programmable logic controller, 58
programmed knowledge, 25
programming

in the large, 54
language, 47
community, 161

product, 55
system, 41
product, 55

project
duration, 16
management, 16, 54
tool, 54

manager, 25
time, 16

Project Evaluation and Review
Technique, 19, 89

prosperity, 15

protection of investment, 45, 63
prototype construction, 82
purchase

costs, 38
order, 68

quality, 28, 231
assurance, 119
management, 61
of service, 63, 224

quasi-parallelism, 201
queuing theory, 99

rapid development, 48, 233
Rational Unified Process, 15
rationalization, 15
re-implementation, 47
reactive engine, 204
reactiveness, 37
receipt, 68
reconstruction, 46
redocumentation, 154
reengineering, 46
refactoring, 46, 225

tool, 55
refinement, 134
relational database, 124
repeat-until-loop, 164
report, 49
Report Generator, see RPG
reporting, 25
requirement elicitation, 158
research and development, 12
resource, 16
responsibility, 14
retailer, 230
return on investment, 39
reusability, 55
reuse, 41, 229
rich client, 196, 233
risk management, 38, 228
Robert W. Floyd, 162, 181
robot control, 58
ROC, see robot control
ROI, see return on investment
role, 135
roll up, 71
root pane, 202
round-robin, 201

Index 303

routine, 16, 20, 89
RPG, 47
run-time, 22

environment, 184
RUP, see Rational Unified Process

S. Rao Kosaraju, 162
SaaS, see Software as a Service
SADT, see Structured Analysis and

Design Technique
sales, 12, 122

channel, 34
modularization, 159

San Francisco framework, see IBM San
Francisco framework

SAP, 35, 227
Sarbanes-Oxley Act, 69
SCA, see Service Component Architec-

ture
SCADA, see Supervisory Control and

Data Aqcuisition
scalability, 37
scientific management, 15
screen, 198
scrolling, 204
second sector, 14
security, 37, 57

sector, 57
SEI, see Software Engineering Institute
semantics, 48, 166
separability, see application separability
server action, 218
service

continuity management, 33
embedding, 233
level, 24
agreements, 25, 26

lifecycle, 34
operation, 34

Service-Component Architecture, 224
service-oriented architecture, 3, 64

governance, 229, 234
Service-Oriented Migration and Reuse

Technique, 230, 235
set theory, 121
seventh framework program, 3
shape analysis tool, 55
Shewhart cycle, see PDCA
shop floor, 90

control, 58
silo, 41

development, 235
system, 224

silver bullet, 229
Simple Object Access Protocol, 230,

233
Simula, 97
simulation, 166
Six Sigma, 28
SLA, see service level agreements
small and medium enterprises, 13, 33
SMART, see Service-Oriented Migration

and Reuse Technique
Smart SOA, 234
SME, see small and medium enterprises
SOA, see service-oriented architecture
SOAP, see Simple Object Access

Protocol
social

interaction, 25
software, 56, 82

society, 12, 14
SofTech, 123
software, 38, 47

architecture, 41, 49
component, 41
design, 41
engineering, 1, 121
metaphor, 47
study programme, 161

entity, 53
house, 51, 158
process, 15
product, 158
lifecycle, 159

project management, 15, 16
requirements specification, 2
service, 158
provider, 158
support, 158

solution, 158
use, 240
vendor, 158

Software as a Service, 241
Software Engineering Institute, 230
SOX, see Sarbanes-Oxley Act
spaghetti code, 163
SPC, see Storage Performacne Council

304 Index

specialist, 119
specialization, 16, 17
specification, 107
spin-off, 34
spiral model, 15
SQL, 224
SRS, see software requirements

specification
staff, 19

empowerment, 15
stakeholder, 11, 25
standard deviation, 28
standardization body, 231
Stanford University Network, see SUN
start event, 100, 124
state change, 108
statechart, 155, 156, 235
statistical variation, 29
stepwise process, 19
stochastic

Petri net, 99
process, 99

stock control, 58
Storage Performance Council, 68
strategic level, 15
strategy, 15, 35
streamlining, 13
strict order, 126
structured

analysis, 90, 94, 123
programming, 161, 181

Structured Analysis and Design
Technique, 94, 123, 247

Structured English Query Language,
see SQL

structured flowchart, 164
style

checker, 55
guide, 108

sub application, 204
sub business process, 81
sub industry, 51
sub team, 237
sub-contractor, 54
submit/response-style system, 196
subroutine, 89
SUN, 52
Supervisory Control and Data

Acquisition, 58

supplier, 14, 36, 230
supply chain management, 49
support, 24
surgeon team, 107
synchronization mechanism, 19
syntax, 162
system

administration, 38
architecture, 41
documentation, 54
extension, 37
integration, 54
landscape, 35, 45, 224
maintenance, 38
metaphor, 93
operations, 38

System i, see IBM i-series
System i5, see IBM i-series
System p, see IBM p-series
System p5, see IBM p-series
System z, see IBM z-series
System z5, see IBM z-series
Systems, Applications & Products, see

SAP

tactical level, 15
tactics, 15
target characteristics, 28, 29
task, 17, 198

list, 196
modeling, VII, 155

TBO, see total benefit of ownership
TCO, see total cost of ownership
team, 17

collaboration, 82
software, 56

member, 54
project, 54
work, 14, 82

technical process, 29
Technology Independent Machine

Interface, 47
technology stack, 231
Teradata, 69
terminal/server-style workflow system,

195
test taker, 184
text manipulation, 204
the 1990s, 34

Index 305

thin hub-and-spoke architecture, 225

third

generation language, 47, 89

normal form, 161
party vendor, 63

sector, 14

three-staged interaction, 197

throughput, 20, 37
TIBCO Software, 227

tier, 226

tight coupling, 5, 224

time

critical, 183
duration, 101

frame, 54, 60

timed Petri net, 105

TIMI, see Technology Independent
Machine Interface

timing, 101

to-be-analysis, 98, 243
top

floor, 72

management, 11

top-down, 119
total

benefit of ownership, 38

cost of ownership, 38, 41, 228

economic impact, 39, 228

quality management, 14
TPC, see Transaction Processing

Council
TPN, see timed Petri net

TQM, see total quality management

transaction

data, 68

monitor, 52
processing, 67

set, 230

Transaction Processing Council, 68

transactional processing, 52
transport

belt, 58

mechanism, 58

transportation control, 58

Tuxedo, 52
two-staged interaction, 196

typed workflow chart, see workflow
chart

UDDI, see Universal Description,
Discovery and Integration

UML, 155, see Unified Modeling
Language

UN/EDIFACT, see Electronic Data
Interchange For Administration,
Commerce, and Transport

unbudgeted expenses, 38
uni-directional hub-and-spoke architec-

ture, 226
Unified Modeling Language, 124, 155,

235
United Nations Centre for Trade Facil-

itation and Electronic Business,
231

Universal Description, Discovery and
Integration, 230

University of Auckland, 176
updatable view, 73
usage

context, 55
scenario, 41

user, 48, 83
interaction, 197
interface guidelines, 199
message system model, see message

system model
session, 196

utilization, 59

value-added network, 230
VDT, see visual display terminal
versioning, 55, 159
vertical domain, 53
video conferencing, 57
viewport, 204
virtual

privacy network, 57
screen, 204

virtualization, 35, 49
visual

display terminal, 199
language, 90
programming, 52

visualization, 109
VmWare, 49

wait state, 101
Wal-Mart, 68

306 Index

web
application, 218
log, 56
services, 64, 230, 232
stack, 230

Web Services Business Process
Execution Language, 224, 232

Web Services Description Language,
230, 233

Web 2.0, 82
Websphere, see IBM Websphere
WfMC, see Workflow Management

Coalition
while-loop, 165, 183
white-box, 120
windows, 204

engine, 202
icon, 204
interface, 202
management, 204
maximizing, 203
metaphor, 204
minimizing, 203
shrinking, 203

windows-style workflow system, 195
work time, 16
workflow, 83

activity, 81
application, 83
build time, 80
chart, 248
control, 48

definition, 1
enactment service, 83
management, VII, 48
technology, 22

paradigm, VII, 82
pattern, 48
reference model, 84
run time, 80
specification, 75
supervisory, 83
technology, VII, 75

Workflow Management Coalition, 77,
84, 209, 244

worklist, 48, 196
workpiece, 90
wrapping, 47
WS-BPEL, see Web Services Business

Process Execution Language
WS-BPEL Extension for People, 232
WSDL, see Web Services Description

Language

X12, 230
Xen, 49, 71
XPU, see Extreme Programming
XQuery, 224
XSLT, see Extensible Stylesheet

Language Transformation

yellow pages, 231

z-series, see IBM z-series

	Business Process Technology
	Foreword
	Author’s Preface
	Contents
	List of Figures
	Listings
	1 Introduction
	2 Business Process Excellence
	3 Research Opportunities in Business ProcessTechnology
	4 Semantics of Business Process Models
	5 Decomposing Business Processes
	6 Structured Business Process Specification
	7 Workflow Technology and Human-ComputerInteraction
	8 Service-Oriented Architecture
	9 Conclusion
	References
	Index

