
Chapter 2

The “Thermodynamics” of the City

Evolution and Complexity Science in Urban Modelling

Alan Wilson

2.1 Introduction

The primary objectives of this chapter are twofold: first, to offer a review of

progress in urban modelling using the methods of statistical mechanics; and second,

to explore the possibility of using the thermodynamic analogy in addition to

statistical mechanics. We can take stock of the “thermodynamics of the city” not

in the sense of its physical states – interesting though that would be – but in terms of

its daily functioning and its evolution over time.We will show that these methods of
statistical mechanics and thermodynamics illustrate the contribution of urban
modelling to complexity science and form the basis for understanding the evolution
of urban structure.

It is becoming increasingly recognised that the mathematics underpinning ther-

modynamics and statistical mechanics have wide applicability. This is manifesting

itself in two ways: broadening the range of systems for which these tools are

relevant; and seeing that there are new mathematical insights that derive from

this branch of Physics. Examples of these broader approaches are provided by

Beck and Schlagel (1993) and Ruelle (1978, 2004). The recognition of the power of

the method and its wider application goes back at least to the 1950s (Jaynes, 1957,

for example) but understanding its role in complexity science is much more recent.

However, these methods are now being seen as offering a major contribution. In

general, the applications have mainly been in fields closely related to the physical

sciences. The purpose of this chapter is to demonstrate the relevance of the methods

in a field that has had less publicity but which is obviously important: the develop-

ment of mathematical models of cities. The urban modelling field can be seen, in its

early manifestation, as a precursor of complexity science; and, increasingly, as an

important application within it (Wilson 2000).
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There have been two main phases of development in this branch of urban science

and a third now beckons. The first was in the direct application of the methods of

statistical mechanics in urban analysis in the modelling of transport flows in cities

(Wilson 1967). These models were developed by analogy though it was soon

recognised that what was being used was a powerful general method. A family of

spatial interaction models was derived and one of these was important as the

beginnings of locational analysis as well as the representation of flows in transport

models (Wilson 1970).

The second phase extended the locational analysis to the modelling of the

evolution of structures, with retail outlets providing an archetypal model (Harris

and Wilson 1978). This was rooted in the developments in applied nonlinear

dynamics in the 1970s and not directly connected to statistical mechanics. The

equations were largely solved by computer simulation, though some analytical

insights were achieved. This provides the beginnings of a method for modelling

the evolution of cities – the urban analogue of the equivalent issue in fields such as

developmental biology. It is a powerful example of the possibility of modelling

evolution within complexity science.

The emerging third phase reconnects with statistical mechanics. It was shown

in the evolution modelling that there could be sudden changes in structure at

critical values of parameters. Are these analogues of phase transitions in statistical

mechanics? There was always the possibility that analogies with Ising models

in Physics and their progeny – concerned with the properties of molecules on a

lattice – would offer further insights since these represented a kind of locational

structure problem and some interesting mathematics were associated with these

models. Statistical mechanics is now handling much more complex structural

models and there is a much fuller understanding of phase transitions. This makes

it worthwhile to pursue the analogy again.

The chapter is structured as follows. In Sect. 2.2 we present two archetypal

models – first the transport model and second the retail model – to represent urban

systems of interest. In each case, we combine the description of the models with a

thermodynamic interpretation. In Sect. 2.3, we show how the retail model can be

extended to be an archetypal model of the evolution of urban structure and, again,

the associated thermodynamics. In Sect. 2.4, we explore future challenges.

2.2 The Thermodynamics of Spatial Interaction

2.2.1 Introduction

In this section, we combine presentations of some archetypal models of cities which

have been, or can be, rooted in concepts that are in common with those of statistical

mechanics – representing transport flows and flows to retail centres. We intersperse

these presentations with explorations of thermodynamic and statistical mechanical
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analogies. In Sect. 2.2.2, we introduce the systems of interest and define the key

variables. In Sect. 2.2.3, we present the transport model and in Sect. 2.2.4, the

model of flows to retail centres.

2.2.2 The Archetypal Submodels

Transport planners have long needed to understand the pattern of flows in cities and

a core scientific task is to model these flows both to account for an existing situation

and to be able to predict the consequences of change in the future – whether

through, for example, population change or through planned transport investment

and network development. The models in principle provide the analytical base for

optimising transport policy and investment.

Assume that the city can be divided into a set of discrete zones, labelled 1, 2,

3, . . . , N. Then the core of the modelling task is to estimate the array {Tij}, where Tij
is the number of trips from zone i to zone j. This pattern obviously depends on a

whole host of variables: trip demand at i (origins, Oi), trip attractions at j (destina-
tions, Dj), the underlying transport network and associated congestion effects, and

so on. The network is handled through a matrix of generalised travel costs, {cij}.
We describe the core model in Sect. 2.2.3.

Suppose we now focus on retail trips alone, represented by a matrix {Sij}. These
might be proportional to the spending power at i (eiPi, with ei as per capita

expenditure, Pi, the population) and the attractiveness of retail facilities in j
(which we designate as Wj). The model can then predict a locational vector {Dj}

which is SiSij, the sum of the flows into a retail centre attracted byWj. An ability to

predict {Dj} is valuable for planning purposes, whether in the private (retail) sector

or for public facilities such as hospitals and schools. This model is elaborated in

Sect. 2.2.4. We can use what might be called phase 1 methods to estimate {Sij}, but
this shows the phase 2 task to be the modelling of the dynamics of the structural

vector {Wj}. We indicate an approach to this in Sect. 2.3.

2.2.3 The Transport Model

Transport flows were initially modelled on the basis of an analogy with Newtonian

physics – the so-called gravity model. We use the notation introduced in Sect. 2.2.2.

Tij ¼ KOiDjc
�b
ij ; ð2:1Þ

where k and b are constants. This proved unsatisfactory and various factors were

added to improve the fit to reality. The breakthrough (Wilson 1967) was to recognise

that these had a resemblance to statistical mechanics’ partition functions.
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To show the connection and to facilitate later analysis, we introduce some of the

core concepts of statistical mechanics here. The simplest Boltzmann model is

represented by the microcanonical ensemble. This is a set of copies of the system

each of which satisfies some constraint equations which describe our knowledge of

the macro system. It is assumed that each copy can occur with equal probability but

Boltzmann’s great discovery was to show that one distribution occurs with over-

whelming probability. This distribution can be found by maximising an appropriate

probability function which then turns out to be, essentially, the entropy function.1

For a perfect gas with a fixed number of articles, N and fixed energy, E, if ni is the
number of particles with energy ei, then the most probable number of particles in

each energy level – the most probable distribution – is obtained by maximising the

entropy:

S ¼ �Sini log ni; ð2:2Þ

subject to

Sini ¼ N; ð2:3Þ

Siniei ¼ E; ð2:4Þ

to give

ni ¼ N expð�beiÞ=Si expð�beiÞ; ð2:5Þ

where

b ¼ 1=kT: ð2:6Þ

T is the temperature and k is Boltzmann’s constant.

It is convenient to define the partition function as:

Z ¼ Si expð�beiÞ: ð2:7Þ

It is useful for a future point in the argument to note here that we can link

thermodynamics and statistical mechanics through the free energy, F (and here

we follow Finn 1993) defined in terms of the partition function as:

F ¼ �NkT log Z; ð2:8Þ

and all thermodynamic properties can be calculated from this.

1The detailed justification for this is well known and not presented here.
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The post-Newton, Boltzmann-like, transport model can then be developed on

the basis of such a microcanonical ensemble. Now, instead of a single state label,

i, representing energy levels, there is a double index, (i,j), labelling origin–

destination pairs. The constraint equations then become:

Sj Tij ¼ Oi; ð2:9Þ

Si Tij ¼ Dj; ð2:10Þ

Si Tijcij ¼ C: ð2:11Þ

The “number of particles” constraint – a single equation in physics – is replaced by

the sets of constraints (2.9) and (2.10). C is clearly the urban equivalent of “energy”

for this system and the cij, measures of the cost of travel from i to j, are the

equivalent of energy levels. If cij is measured in money units, then C is measured

in money units also. Then, maximising a suitable “entropy”2

S ¼ �Si Tij log Tij ð2:12Þ

gives, subject to (2.9)–(2.11), the so-called doubly-constrained model:

Tij ¼ AiBjOiDj expð�bcijÞ: ð2:13Þ

The parameter b measures the “strength” of the impedance: if b is large, trips are

relatively short, and vice versa. It can be determined from (2.11) if C is known, but

in practice it is likely to be treated as a parameter of a statistical model and

estimated from data. Ai and Bj are balancing factors to ensure that (2.9) and

(2.10) are satisfied. Hence:

Ai ¼ 1=Sj BjDj expð�bcijÞ; ð2:14Þ

and

Bj ¼ 1=Si AiOi expð�bcijÞ: ð2:15Þ

The inverses of Ai and Bj are the analogues of the partition functions. However, they

do not translate easily (or at all) into thermodynamic form.

It is generally recognised that to make the models work, cij should be taken as a

generalised cost, a weighted sum of elements like travel time and money cost. To

2There are many possible definitions of entropy that can be used here, but for present purposes,

they can all be considered to be equivalent.
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take the thermodynamic analogy further, we do need a common unit and, as noted

earlier and to fix ideas, we take “money” as that unit. These will then be the units of

“energy” in the system.3 Given that the units are defined, then the b parameter,

together with the definition of a suitable Boltzmann constant, k, will enable us to

define temperature through:

b ¼ 1=kT: ð2:16Þ

We are accustomed to estimating b through model calibration. An interesting

question is how we define k as a “universal urban constant” which would then

enable us to estimate the “transport temperature” of a city. Note that with cij having
the dimensions of money, then b has the dimensions of (money)�1 and so from

(2.16), kT would have the dimensions of money. If k is to be a universal constant,

then T would have the dimensions of money. It is also interesting to note that it has

been proved that (Evans 1973), in the transport model, as b!1, the array {Tij}
tends to the solution of the transportation problem of linear programming in which

case C, in (2.11), tends to a minimum. This is the thermodynamic equivalent of the

temperature tending to absolute zero and the energy tending to a minimum.

2.2.4 Retail Systems: Interaction Models as Location Models

The next step is to introduce a spatial interaction model that also functions as a

location model. We do this through the singly-constrained “retail” model that is,

retaining a constraint analogous to (2.9), but dropping (2.10). We begin with the

conventional model and introduce a new notation to distinguish it from the transport

model. We use the notation introduced in Sect. 2.2.2

The vector {Wj} can be taken as a representation of urban structure – the

configuration of Wjs. If many Wjs are non-zero, then this represents a dispersed

system. At the other extreme, if only one is non-zero, then that is a very centralised

system. A spatial interaction model can be built for the flows on the same basis as

the transport model. Maximizing an entropy function:

�Sij Sij log Sij; ð2:17Þ

we find

Sij ¼ AieiPiW
a
j expð�bcijÞ; ð2:18Þ

3For simplicity, we will henceforth drop the quotation marks and let them be understood when

concepts are being used through analogies.
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where

Ai ¼ 1=Sk W
a
k expð�bcikÞ; ð2:19Þ

to ensure that

Sj Sij ¼ eiPi; ð2:20Þ

Sij Sij logWj ¼ X; ð2:21Þ

and

Sij Sijcij ¼ C: ð2:22Þ

Equation (2.21) represents a new kind of constraint. It is inserted to generate theWj
a

term in (2.18), but the form of this equation shows that log Wj can be taken as a

measure of size benefits to consumers using j and X an estimate of the total. a is a

parameter associated with how consumers value “size” of retail centres – and is

actually the Lagrangian multiplier that goes with the constraint (2.21). In thermo-

dynamic terms, as we will see shortly, X can be taken as another kind of energy. As

in the transport model, C is the total expenditure on travel. b measures travel

impedance as in the transport model and is the Lagrangian multiplier that associated

with (2.22).

Because the matrix is only constrained the origin end, we can calculate the total

flows into destinations as:

Dj ¼ Si Sij ¼ SieiPiW
a
j expð�bcijÞ=Sk W

a
k expð�bcikÞ; ð2:23Þ

and this is how the model also functions as a location model.4

Wj
a can be written:

Wa
j ¼ expða logWjÞ: ð2:24Þ

If we then assume, for simplicity and for illustration, Wj can be taken as “size” and

that benefits are proportional to size, then this shows explicitly that log Wj can be

taken as a measure of the utility of an individual going to a shopping centre of size

Wj but at a transport cost, or disutility, represented by cij. The significance of this in

4This model, in more detailed form, has been widely and successfully applied.
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the thermodynamic context is that a can be seen (via another Boltzmann constant,

k0) as related to a different kind of temperature, T0:

a ¼ 1=k0T0: ð2:25Þ

It was originally shown in Wilson (1970), following Jaynes (1957), that this

argument can be generalised to any number of constraints and hence any number

of temperatures. It can easily be shown, as in Physics, that if two systems are

brought together with different temperatures, then they will move to an equilibrium

position at an intermediate temperature through flows of heat from the hotter to the

colder body. This also means, therefore, that in this case, there can be flows of

different kinds of heat. In this case, the flow of heat means that more people

“choose” destinations in the “cooler” region.

2.2.5 Deepening the Thermodynamic Analogy

In order to learn more from the thermodynamic analogy, we need to remind

ourselves of some of the core concepts. The two key laws of thermodynamics,

the first and second, are concerned with (a) the conservation of energy and (b) the

fact that a system’s energy cannot be increased without an amount of work being

done on the system which is greater than or equal to the energy gain.

There are a number of so-called thermodynamic functions of state and we briefly

note those needed for our ongoing argument. The internal energy (which we will

equate with our “C”) is particularly important. It normally appears in differential

form, for example as:

dU ¼ dQþ Si Xidxi; ð2:26Þ

where dQ is the flow of heat and SiXidxi represents the work done on the system by

various external forces, {Xi}. The {xi} are system descriptors – variables – so that dxi
measures the change in the variable from the application of the force. Essentially, the

increase in the internal energy is the sum of the heat flow in and the work done. For

example, there may be a change in volume, V, an x-variable, from the application of

pressure, P, an X-force.
We can introduce entropy, S, for the first time (in its thermodynamic form) by

defining it through:

dQ ¼ TdS; ð2:27Þ

so that

dU ¼ TdSþ Si Xidxi: ð2:28Þ
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The second law can then be formulated as:

TdS � 0 ð2:29Þ

(or, “entropy always increases”). For a fluid of volume, V, and pressure, P, the work
done can be represented by PdV, and

dU ¼ TdS� PdV ð2:30Þ

(there is a negative sign because the work done on the system produces a reduction

in volume and so the minus sign turns this into a positive contribution to work). In

other cases, the X and the xmight be the degree of magnetisation brought about by a

magnetic field, for example. The general formulation in (2.26) and (2.28) is

particularly important for our discussion of cities below: the challenge then is to

identify the {Xi} and the {xi} in that case.

We can introduce the free energy, F, as:

F ¼ U � TS; ð2:31Þ

and in differential form as:

dF ¼ �SdT � PdV; ð2:32Þ

or in a more general form, from (2.28) and (2.31), as:

dF ¼ �SdT þ Si Xidxi: ð2:33Þ

F can be specified as a function of T and V and then all other properties can be

deduced.

The free energy (Pippard 1957, p. 56) is a measure of the work that can be done –

a decrease in F – by a system in an isothermal reversible change. Given the second

law, it is the maximum amount of work that can be done by a system. We can also

note that by inspection of (2.31), the principle of maximizing entropy, which we

will invoke below, is equivalent – other terms being kept constant – to minimizing

free energy. This notion has been very interestingly exploited by Friston [for

example – see Friston et al. (2006) and Friston and Stephan (2007)] in a way that

we will examine briefly later in Sect. 2.4.

In the case of spatial flow models, we need to recognise two kinds of change

through work being done on the system (or heat flowing). In terms of the transport

elements of either of our archetypal models, this can be a dC change or a dcij
change. The former is a whole system change that means, for example, there is a

greater resource available for individuals to spend on transport – and this will

decrease b and hence increase the temperature; the latter would probably be produced

by a network change – say the investment in a new link. Even with fixed C, if this
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leads to a reduction in cost, we would expect it to generate an increase in temperature.

In terms of the Physics analogy, a positive dC change is equivalent to an increase in

energy. It would be possible in principle to define an external coordinate, xi, and a

generalised force, Xi, so that Xidxi generated dC. It is less easy to find a Physics

analogue for dcij changes – because that would involve changing energy levels.

This analysis enables us to interpret the principal laws of thermodynamics in this

context. “Work done” on the system will be manifested through either dC or dcij
changes. Essentially, what the laws tell us is that there will be some “waste” through

the equivalent of heat loss. Note that an equivalent analysis could be offered for the

retail model for dWj or dX changes.

We should now return to the basics of the thermodynamic analogy and see if

there are further gains to be achieved – particularly by returning to the SiXidxi terms

[from (2.2)]. It is worth noting that a system of interest is described by variables that

divide into two sets: the extensive variables, that are dependent on size, and the

intensive variables that are system properties that are not size dependent. The

volume of a gas, V, is an example of the first; its temperature, T, and pressure, P,
are examples of the second. It is a task of thermodynamics analysis to seek state

equations that relate the key variables. For an ideal gas, there is Boyle’s Law:

PV ¼ nRT; ð2:34Þ

where n is a measure of the number of particles and R is a universal constant.

In the urban case, we have available to us a temperature through the parameter b
(actually 1/kT, an inverse temperature). The next step is to explore whether there is

an xi which is the equivalent of a volume, V. The volume of a gas is the size of the

container. In this case, for simplicity for this initial exploration, we can take the

area, A, of the city as a measure of size.5 This would then allow us to work with

the free energy as a function of T and V – or in the urban case, b and A: F(b, A), say.
We can then explore the idea of a state equation and it seems reasonable to start

with Boyle’s law since people in cities are being modelled on the same basis as an

ideal classical gas. This suggests, by analogy with (2.34) that:

PA ¼ NRT; ð2:35Þ

where N is the total population and R is a constant. In terms of b, this becomes:

P ¼ NR=bkA; ð2:36Þ

where we have taken A to the other side of the equation.6 There are, of course, two

constants, R and k, in this equation which cannot be obtained in the same way as in

Physics, but let us assume for the moment that they can be estimated. Then, (2.36)

5We should explore whether we can determine a measure of A from the topology of the {cij}.
6Note that P appears to have the dimensions of “density” x’money’.
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gives us a definition of an urban “pressure”. It has the right properties intuitively: it

increases if A or b decreases or N increases (in each case, other variables held

constant).

The final step in this exploration of a deepening analogy is to link the thermody-

namics with the statistical mechanics that generated the flow models. In physics,

this is achieved by connecting the free energy to the partition function of the system

of interest. We saw in the transport case that while we could find analogues of

partition functions, the analogy was not exact.7

In the retail case we have dropped one set of “number” constraints and this

suggests that the inverse of the Ai term will function as a partition function.

Consider

Zi ¼ Sk expða logWk � bcikÞ: ð2:37Þ

This looks like a partition function, but as a function for each zone i rather than
for the system as a whole. This is because the consumers leaving a zone can be

treated as an independent system.8 It is perhaps then not too great a leap to make the

heroic assumption that an appropriate partition function for the system is:

Z ¼ SiZi ¼ Sik expða logWk � bcikÞ: ð2:38Þ

We can then seek to work with the free energy and the model at (2.16) and (2.26).

Then, using (2.8):

F ¼ �½N=b� log Z: ð2:39Þ

We can also explore the standard method of calculating state functions from the free

energy:9

P ¼ �ð@F=@AÞT ; ð2:40Þ

S ¼ �ð@F=@TÞA; ð2:41Þ

or, using (2.16):

S ¼ �kb2ð@F=@bÞA: ð2:42Þ

7Can we take AiBj as an i–j partition function? Can we work backwards and ask what we would

like the free energy be for this system? If (2.11) specifies the energy and b (=1/kT) the temperature,

then F=U – TS becomes F=C – S/kb? Then if F=NkT log Z, what is Z?
8ter Haar (1995, p. 202) does show that each subsystem within an ensemble can itself be treated as

an ensemble provided there is a common b value.
9The following equations can be derived from (2.31) with A substituted for V and T=1/kb.
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And, with U=C, using (2.23),

U ¼ F� ð@F=@TÞA ¼ �T2ð@=@T � F=TÞA ¼ ð@=@b � kbFÞA: ð2:43Þ10

In this formulation, A does not appear in the partition function. We might

consider A to be defined by the topology of the {cij} and possibly the spatial

distribution of the Wj and this should be explored further. Indeed, more generally

we might write (2.40) as:

Xi ¼ �ð@F=@xiÞT : ð2:44Þ

It might be particularly interesting to look at the concepts of specific heat. “Heat”

flowing into a city will be in the form of something like investment in the transport

system and this will increase T and hence decrease b but each city will have a

specific heat and it will be interesting to look at how different cities can effectively

absorb investment. This should connect to cost–benefit analysis, possibly through

NPVs. The standard formulae for specific heats can be transformed into the urban

formalism as follows:

CV ¼ ð@U=@TÞV ! �1=kb2ð@U=@bÞA; ð2:45Þ

and

CP ¼ ð@U=@TÞP þ Pð@V=@TÞP ¼ ½�1=kb2ð@U=@bÞP þ Pð@V=@bÞP�: ð2:46Þ

It remains a challenge to calculate these in the urban case.

We should also examine the possibility, noted earlier, of examining some of

these concepts at the level of a zone within city – building on ter Haar’s concept of

subsystems.11

It remains to ask the question of whether there could be phase changes in spatial

interaction systems.12 This seems intuitively unlikely for the spatial interaction

models: smooth and fast shifts to a new equilibrium following any change is the

likely outcome. If the model is made more realistic – and more complicated – by

adding different transport modes, then the position could be different. There could

then be phase changes that result in a major switch between modes at some critical

parameter values (see, for example, Wilson, 1976). However, there is the possibility

of significant phase changes in the structural model and it is to this that we now turn.

10What does this produce for U? And is it possible to do all the calculations implied by

(2.40)–(2.46)?
11It is possible to introduce a bi rather than a b which reinforces this idea.
12We elaborate the notion of phase changes in the next section. Essentially, in this case, they

would be discrete “jumps” in the {Tij} or {Sij} arrays at critical values of parameters such as b.
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2.3 Urban Structure and its Evolution

2.3.1 The Model

We have presented an archetypal singly-constrained spatial interaction model, repre-

senting (among other things) flows to the retail sector. We can now add a suitable

hypothesis for representing the dynamics (following Harris and Wilson 1978):

dWj=dt ¼ eðDj � KWjÞWj; ð2:47Þ

where K is a constant such that KWj can be taken as the (notional) cost of running

the shopping centre in j.13 This equation then says that if the centre at j is profitable,
it grows; if not, it declines. The parameter e determines the speed of response to

these signals.

The equilibrium position is given by:

Dj ¼ KWj; ð2:48Þ

which can be written out in full, using (2.23), as:

SifeiPiWj expð�bcijÞ=SkWk expð�bcikÞg ¼ KWj: ð2:49Þ

The (2.47) are analogous to Lotka–Volterra equations – in the form of species

competing for resources. In this case, we have retail developers competing for

consumers. Because this model combines Boltzmann’s statistical mechanics (B) and

Lotka’s and Volterra’s dynamics (LV), these have been characterised as BLVmodels

and it has been shown that they have a wide range of application (Wilson 2008).

What is clear to the present time is that it is possible to characterise the kinds of

configurations that can arise for different regions of a and b space: for larger a and

lower b, there are a smaller number of larger centres; and vice versa.14 This can be

interpreted to an extent for a particular zone, say j, by fixing all the Wk, for k 6¼ j.
A key challenge is to solve this problem with all the Wjs varying simultaneously.

There are many procedures for solving (2.49) iteratively but we constantly need to

bear in mind the sensitivity to the initial conditions.

The zonal interpretation is shown in Fig. 2.1. The left and right hand sides of

(2.49) are plotted separately and of course, the intersections are the possible

equilibrium points. If a � 1, there is always a possible equilibrium point, but if -

a>1, there are three possible cases: only zero as an equilibrium; one additional non-

zero stable state; and the limiting (a¼1) case that joins the two. The b value also

13K could be j-dependent as Kj (and indeed, usually would be) but we retain K for simplicity of

illustration.
14Clarke and Wilson (1985).
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determines the position of the equilibria. This analysis shows a number of proper-

ties that are typical of nonlinear dynamical systems: multiple (system) equilibria

and strong path dependence – that is, sensitive dependence on initial conditions. It

also shows that as the parameters a and b (and indeed any other exogenous

variables) change slowly, there is the possibility of a sudden change in a zone’s

state – from development being possible to development not being possible, or vice

versa [as depicted by the two KWj lines in Fig. 2.1b, c]. These kinds of change can be

characterised as phase transitions – in this case at a zonal level, but clearly there will

be system wide changes of this kind as well. This analysis is the basis of a very

powerful tool for identifying complex phase transitions. We return to this in the Sect.

2.4.6.

Recall that this analysis is dependent, for a particularWj, on the set {Wk}, k 6¼ j,
being constant. It is almost certainly a good enough approximation to offer insight,

but the challenge is to address the problem of simultaneous variation. The system

problem is to predict equilibrium values for the whole set {Wj} and the trajectories

through time, recognizing the points at which phase changes take place. This is

where newer statistical mechanics models potentially can help.

This analysis exemplifies characteristics of models of nonlinear complex sys-

tems: multiple equilibrium solutions, path dependence and phase transitions and so

demonstrate the contribution of urban modelling to complexity science.

2.3.2 The Thermodynamics of Structural Change

We have seen that the spatial interaction model, whether in its doubly-constrained

(transport) form, {Tij}, or singly-constrained (retail) form, {Sij}, is best represented
by a microcanonical ensemble and we can reasonably assume a rapid return to

equilibrium following any change. We have offered an equation representing the

dynamics of {Wj} evolution but we can now work towards an interpretation of this

model in a statistical mechanics format. It will be represented by a canonical

ensemble. This differs from a microcanonical ensemble in that the energy is

allowed to vary. The return to equilibrium after a disturbance is likely to be much

= >

Fig. 2.1 Zonal analysis of phase transitions
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slower: it takes developers much longer to build a new centre than for individuals to

adjust their transport routes for example. What is more, the two systems are linked

because the structural variables {Wj} are exogenous variables in the retail model

(and there is an equivalent vector in the transport model). In the case of the

structural model, we will have to assume some kind of steady state independent

rapid-return-to-equilibrium for the interaction arrays. We have indicated in the

previous section that there will be discrete changes. We now explore the possible

statistical mechanics’ bases to see if these are in fact phase changes.

In Physics, the energy is most generally represented in a Hamiltonian formula-

tion and so we denote it by H. We can now construct a canonical ensemble in which

each element is a state of the system with potentially varying energy. For each

“system” energy, that part of the ensemble will be a copy of the corresponding

microcanonical ensemble. That is, it can be shown (Wilson 1970, Appendix 2) that

the microcanonical distribution is nested in the canonical distribution for each

energy value in the latter.

We can again work with probabilities, but we denote them by Pr since they relate

to the probability of the system state occurring – and we label a particular state r. We

can then maximise a system entropy to get the result that:

Pr ¼ expð�bHrÞ=Sr expð�bHrÞ: ð2:50Þ

Physicists have modelled the distribution of states of particles on a lattice. An

early example was the Ising model which is concerned with spin systems and the

alignment of spins at certain temperatures that produce magnetic fields. The inter-

actions in the Ising model are only with nearest neighbours and there are no phase

transitions. However, when it is extended to two and three dimensions, there are

phase transitions, but it is very much more difficult to solve. In our case, of course,

we are interested in interactions that extend, in principle, between all pairs. Such

models have been explored in statistical mechanics and, below, we explore them

and seek to learn from them – see Martin (1991).

Locations in urban systems can be characterised by grids and urban structure can

then be thought of as structure at points on a lattice. We can consider zone labels

i and j to be represented by their centroids which can then be considered as the

nodes of a lattice. The task, then, is to find a Hamiltonian, Hr , as a function of the

structural vector {Wj}. We can then write (2.50) as:

Pr ¼ expð�bHrðfWjgÞÞ=Sr expð�bHrðfWjgÞÞ; ð2:51Þ

and we have to find the {Wj} that maximises Pr. Since the denominator is the same

for each r, this problem becomes:

L fWopt
j g

h i
¼ Maxr expð�bHrðfWjgÞÞ: ð2:52Þ

So the immediate issue is to decide on the Hamiltonian. Suppose we take the

measure of profit used in (2.47). Then:
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H ¼ SjðDj � KWjÞ; ð2:53Þ

and the problem becomes:

L fWopt
j g

h i
¼ Maxr exp½�bSjðDj � KWjÞ�; ð2:54Þ

where K is a unit cost for retailers and Dj can be obtained in the usual way.

Substitution then gives:

L fWopt
j g

h i
¼ Maxr exp½�bSjðSifeiPiWj expð�bcijÞ=SkWk expð�bcikÞgKWjÞ�;

ð2:55Þ

which shows what a formidable problem this appears to be. However, scrutiny of

the right hand side shows that we maximise L by maximizing the exponent and

because of the first negative sign, this is achieved by minimising

SjðSifeiPiWj expð�bcijÞ=SkWk expð�bcikÞg � KWjÞ; ð2:56Þ

which then suggests that the equilibrium value for {Wj} occurs when this expres-

sion is a minimum. However, by inspection, we can see that this happens when each

term within Sj is zero:

SifeiPiWj expð�bcijÞ=SkWk expð�bcikÞg ¼ KWj; ð2:57Þ

which is, of course, simply the equilibrium condition (2.48) [or (2.49)]. This then

seems to indicate that a statistical mechanics exposition produces an equivalent

equilibrium condition for the {Wj}.

What we know from the analysis of Fig. 2.1 is that at a zonal level, there are

critical values of a and b, for example, beyond which onlyWj¼0 is a stable solution

for that zone – that is, the expression inside Sj. So we know that there are critical

points at a zonal level at which, for example, there can be a jump from a finiteWj to

a zero Wj (see Dearden and Wilson 2008, for a simulation of this). This implies

there is a set of a and b at which there will be critical changes somewhere in the

system. This is particularly interesting when we compare this situation to that in

statistical mechanics. There, we are usually looking for critical temperatures for the

whole system at which there is a phase transition. Here, there will be many more

system phase transitions, but in each case consisting of a zonal transition (which

then affects the system as a whole – since if aWj jumps to zero, then otherWks will

jump upwards – or vice versa). It would be interesting to see whether the set of

critical as and bs form a continuous curve. If we further add, say, K and the {eiPi},

then we are looking for a many-dimensional surface. It will also be interesting to

see whether there are other systems – ecosystems? – that exhibit this kind of phase

change.
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To take the argument further at the system level, we need to construct an order

parameter. In Physics, at a phase change, there is a discontinuity in the order

parameter and hence indeterminacy in some derivatives of the free energy. An

obvious example in Physics is in magnetism: an ordered system has particles with

spins aligned – ordered – and there can be phase transitions to and from disordered

states. In these cases, the order parameters are straightforward to define. In the

urban case, intuition suggests that it is the nature of the configurations of {Wj} that

we are concerned with. A dispersed system with many small centres can be

considered less ordered than one with a small number of large centres. This

suggests that we should examine N[Wj>x] – the number of Wj greater than some

parameter x. If x is set to zero, this will be a measure of ubiquity of centres and we

know that there will be transitions at a¼1. Or we could set x to be large and seek to
identify configurations with a small number of large centres to see whether they are

achieved through phase transitions as parameters vary.15 There is also the interest-

ing possibility that entropy is used as a measure of dispersion and so –SjWjlogWj

could be used as an order parameter.16

2.3.3 An Alternative Thermodynamic Formulation for the {Wj}

In this analysis so far, we have assumed that {Wj} can be obtained by solving the

equilibrium equations. It is interesting to explore the possibility of a suboptimal

{Wj} via entropy maximizing – something more like a lattice model with eachWj as

an occupation number. We can use the same argument that generates conventional

spatial interaction models and differentiates them from the transportation problem

of linear programming (and, of course, as we noted earlier, it has been shown that as

b!1, the spatial interaction model solution tends to the linear programming

limit). We can proceed as follows. Assume {Sij} is given.17 Then maximise an

entropy function in {Wj} subject to appropriate constraints.

Max S ¼ �SjWj logWj; ð2:58Þ

such that

SijSij logWj ¼ X; ð2:59Þ

15It would be interesting to calculate the derivatives of the free energy – the F-derivatives – to see
whether there is a way of constructing N[Wj>x] out of F. Are we looking at first or second order

phase transitions?
16I am grateful to Aura Reggiani for this suggestion.
17It can be shown that we can carry out an entropy maximizing calculation on {Sij} simultaneously

and that leads to a conventional a spatial interaction model and the same model for {Wj}. The

implication of this argument is that if we obtain a {Wj} model with the method given here, we

should then recalculate {Sij} from an spatial interaction model and then iterate with {Wj}.
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and

SiSij ¼ kWj þ Y; ð2:60Þ

X and Y are constants – X determining the total amount of benefit that consumers

derive from size (or attractiveness) and Y the extent to which the equilibrium

condition (2.48) is being treated as suboptimal. The Lagrangian for this problem is:

L ¼ �SjWj logWj � mSi½Sij � KWj � Y� � aðSiSijÞ=Wj; ð2:61Þ

and setting

@L=@Wj ¼ 0 ð2:62Þ

gives, with some re-arrangement,

logWj þ aDj=Wj ¼ mKj ð2:63Þ

(where we have substituted Dj for SiSij without loss of generality since we are

taking the {Sij} as fixed). These equations could be solved numerically for {Wj} –

and indeed graphically.

It is then interesting to interpret (2.63) and then to look at the a!1 limit. Write

(2.63), by dividing by m, as follows:

ð1=mÞ logWj þ aDj=mWj ¼ Kj: ð2:64Þ

The left hand side is clearly cost per square foot. The first term on the right hand

side is a measure of scale benefits; the second term is revenue per square foot

modified by the factor a/m.
By analogy with the linear programming version of the transport model, as

a!1, we would expect the normal equilibrium condition to be satisfied and

hence Y!0. Equation (2.64) then suggests that as a!1, we must have m!1 in

such a way that a/m!1. The first term in (2.64) then clearly tends to 0 and the

equation then becomes equivalent to (2.48).

2.4 Ongoing Challenges

2.4.1 Introduction

We noted at the outset that there have been three phases of relevant work in urban

science:
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l spatial interaction models – and associated location models – rooted in statistical

mechanics, which work very effectively;
l models of developing and evolving structures, including the recognition of urban

phase transitions;
l the use of newer methods in statistical mechanics to accelerate our understand-

ing of development and evolution.

Within this framework, we have aimed to add thermodynamic interpretations to the

findings of each phase – an area that has been raised in the past but far from fully

developed. How do we now move forward?

2.4.2 Spatial Interaction

These are the models about which we can feel most confident in practice. Only

archetypal models have been presented here, but by now they have been fully

disaggregated and tested in a wide variety of circumstances. However, it is clear

from the argument presented here that there remain possibly interesting areas of

interpretation which can be developed through the thermodynamic analogy. In

particular, it would be valuable to seek an understanding of the urban partition

functions that arise from the more complex “particle number” constraints that are

introduced. There is also scope for a fuller exposition of the thermodynamics of these

models. A start has been made in this chapter but it would be useful, for example, to

expound more fully the external variables that underpin changes in these systems.

2.4.3 Development and Evolution

The structural evolution issues have only been explored to date with archetypal

models. There is a case for exploring, for example, phase transitions with more

realistic disaggregated models and also exploring (in the case of the retail model)

alternative revenue and production (that is, cost) functions to see whether new kinds

of phase transitions would emerge. We should also recognise that there are other

submodels that demand different formulations: for example, economic input–output

models, flows of goods, even energy – leading to real thermodynamics! Finally,

huge progress has been made in the development of comprehensive models and

these also should be explored for phase transitions.

2.4.4 The “New” Thermodynamics and Statistical Mechanics

We noted at the outset that authors such as Ruelle (2004) and Beck and Schlagel

(1993) – and many others – are presenting the mathematics of thermodynamics and

statistical mechanics in a more general format and demonstrating in principle the
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applicability to a wider range of systems. It would be valuable systematically to

translate the models presented in this chapter into these formats to explore the

extent to which further advances are possible. We have only scratched the surface

of possibilities in this chapter and further research is to be encouraged.

2.4.5 Models in Planning

Urban models have long had uses in various forms of planning – public and

commercial – through their forecasting capabilities and, to a lesser extent, through

being embedded in optimisation frameworks. Our understanding of nonlinearities

now puts a bound on forecasting capabilities but in an interesting way. While

forecasting may be impossible in terms of structural variables over a long time

scale – because of path dependence and phase transitions – what becomes possible is

the identification of phase transitions that may be desirable or undesirable and then

one aspect of planning is to take actions to encourage or avoid these as appropriate.

There is a potential new interest, that we have alluded to briefly earlier, which

brings statistical mechanics to bear on urban planning, and that is Friston’s (et al.’s)

work on free energy and the brain. It is interesting to place this model into a

planning framework. The essence of Friston’s argument – for the purposes of

building the analogy – is to model the brain and its environment as interacting

systems, and that the brain, through its sense mechanisms, builds a model of the

environment and that it handles environmental uncertainties through free energy

minimisation. If the brain is replaced by “urban planning system” and its environ-

ment by “the city”, then Friston’s argument resonates with Ashby’s (1956) law of

requisite variety – essentially in this case that the planning system has to model the

city in order to have a chance of success.

2.4.6 Concluding Comments

There have been some spectacular successes in the application of statistical

mechanics to urban modelling and some insights have been achieved in adding

thermodynamic interpretations. However, it is also clear that the potential benefits

of combining the tools from different disciplines in the urban modelling context

have not been fully worked out. What is needed is a coming together of skills, the

building of new interdisciplinary teams: urban modellers, statistical physicists and

the mathematicians who have been generalizing the thermodynamic and statistical

mechanics formalisms. It might also be valuable to add the skills of those who have

been using these tools for modelling in other fields, such as neuroscience. In some

cases, neuroscience being an example, the emphasis has been on taking a statistical

(Bayesian) view and this complements the mathematical one in an interesting way.

It may be helpful to conclude, therefore, with some indications of what remains to

be achieved – but which intuition suggests is achievable!
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The urban “big picture” needs to be completed – for example through the

specification of suitable “external variables” and generalised forces – the Xidxi
terms – for cities. We perhaps made the beginnings of progress by introducing

“area” as a quasi “volume” measure but leaving open the question of whether a

better measure could be found from {cij} topology. We also had some difficulty in

specifying “urban” partition functions because of the usual nature of the “number of

particles”/origin-destination constraints. This is a research question to be resolved.

Potentially the biggest advances to come lie in the modelling of the evolution

and emergence of structures – the {Wj} in the archetypal model. Again, intuition

suggests that the methods down being applied to solids in statistical physics – and

their mathematical generalisations, should enable us to make more progress than we

have achieved so far. However, that progress is not inconsiderable: it has allowed us

to identify phase transitions in urban evolution and to show that they are of a

different character to the most obvious ones in Physics.
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