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Preface

Complex systems analysis has become a fascinating topic in modern research on

non-linear dynamics, not only in the physical sciences but also in the life sciences

and the social sciences. After the era of bifurcation theory, chaos theory, syner-

getics, resilience analysis, network dynamics and evolutionary thinking, currently

we observe an increasing interest in critical transitions of dynamic real-world

systems in many disciplines, such as demography, biology, psychology, economics,

earth sciences, geology, seismology, medical sciences, and so on. The relevance of

this approach is clearly reflected in such phenomena as traffic congestion, financial

crisis, ethnic conflicts, eco-system breakdown, health failures, etc. This has

prompted a world-wide interest in complex systems.

Geographical space is one of the playgrounds for complex dynamics, as is

witnessed by population movements, transport flows, retail developments, urban

expansion, lowland flooding and so forth. All such dynamic phenomena have one

feature in common: the low predictability of uncertain interrelated events occurring

at different interconnected spatio-temporal scale levels and often originating from

different disciplinary backgrounds. The study of the associated non-linear (fast and

slow) dynamic transition paths calls for a joint research effort of scientists from

different disciplines in order to understand the nature, the roots and the conse-

quences of unexpected or unpredictable changes in complex spatial systems.

Complex dynamics also challenges the findings from conventional equilibrium

theory, in particular concerning multi-agent systems. Consequently, the prediction,

analysis, and management of non-linear dynamic phenomena in the context of

complexity analysis is of great importance for decision making in both the private

and the public sector.

In this context, from a methodological viewpoint, in complex systems there is

the need for a unifying framework of analysis that embraces the meaning and use of

interdisciplinary concepts (such as self-organization, criticality, redundancy, resil-

ience and sustainability). At the same time, the universality and ‘simplicity’ of

network centrality and connectivity laws (such as the entropy and power laws)

should be better explored.

The present volume brings together a series of original and innovative contributions

in the area of complex spatial dynamics and networks. A wealth of authors – from

v



different disciplines – were invited to write an original piece of work centring

around the non-linear dynamic nature of spatial and network systems. This book is

the outgrowth of a workshop organized by IPL (Institute Para Limes), the new

Institute for frontier research on complex phenomena of a trans-disciplinary nature,

based in the Netherlands (for details, see www.paralimes.org). The participants

came from all over the world and provided refreshing ideas on the analysis of

complexity and non-linear dynamic evolution in space and in spatial networks.

Their contributions and various enthusiastic ideas laid the foundation for this

publication that aims to be a systematic compilation of carefully selected and

refereed papers on interdisciplinary perspectives on spatial complexity and non-

linear dynamic network development. The editors wish to thank Jan Wouter

Vasbinder, Managing Director of IPL, for his great support in the preparation and

organization of our work.

Bologna/Amsterdam, Aura Reggiani

March 2009 Peter Nijkamp
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Chapter 1

Simplicity in Complex Spatial Systems

Introduction

Aura Reggiani and Peter Nijkamp

1.1 Moving Worlds

In the past decade, complexity has become an important and fascinating domain for

advanced research on nonlinear dynamics, in which a multiplicity of scientific fields

are involved (physics, life sciences, social sciences, economics, geography, and

so forth). Complex systems analysis refers to research at the dynamic interface of –

or the interaction between – small or micro-elements of a system that are

interconnected and determine a macro-level of operation of the system that is not

just the sum of the micro-elements. As a result of self-organizing forces among

interacting micro-units, a dynamic network configuration may emerge that displays

its own dynamics, ranging from “butterfly” effects to scale-free evolution, or from

bifurcations with unexpected phase transitions to preferential attachment in small-

world networks (see Barabási and Albert 1999; Nicolis and Nicolis 2007). The

complexity movement has also had far-reaching impacts on dynamics research in

the spatial sciences.

The space-economy is often interpreted as a standard well-functioning economic

system enriched with the element of space. But space is not just an additional

dimension of the economy: it forms an intrinsic feature of any geographic–economic

system and may lead to the emergence of complex nonlinear and interactive beha-

viours and processes in a geographic setting. The foundation for an interpretation of

the space-economy as an interdependent complex set of economic relationships – at

different geographic scales and with a variety of time dimensions involved – can be

found in the “first law of geography” formulated by Tobler (1970), who stipulates that

everything in space is related to everything else, but near things are more related than

distant things. The solidity of this law needs to be reconsidered in the light of recent

advances in complexity and network theory. In particular, the latest findings in
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network theory show how – for certain network typologies – distant things can be

related by means of “hubs” or “egos” (preferential nodes/attractors). Spatial networks

appear to exert a dynamic impact on an organized space.

One of the striking features in the modern space-economy has been the simulta-

neous occurrence of spatial dynamics (both fast and slow dynamics) and spatial

inertia (for example persistent welfare disparities between regions). Regions and

cities are apparently operating in a complex force field, with asynchronously

emerging key factors that impact on regional or urban development in different

ways and with different growth paces. Examples of such factors are: changing

lifestyles, trends towards a highly mobile society, emerging innovations and crea-

tivity strategies, shifting views on the competences of policy making, the search for

new forms of industrial organization and leadership, the adoption of new technol-

ogies, the design of new forms of urban architecture, and so forth.

This rapidly changing scene of regional and urban development has called for

new research departures, such as: a reliance on experimental psychology/sociology,

design of learning principles for decision makers (based on evolutionary biology),

integration of ethical and sociological notions in policies for a multi-cultural society,

etc. Consequently, regional and urban research has become richer in scope, with

more emphasis on interdisciplinarity, complexity, synergy among research meth-

odologies, conflict management principles, adaptive and evolutionary (notably,

learning) behaviour, and increasing interest in the great potential offered by the

cognitive sciences. This has also had profound impacts on empirical research, in

which computational neural networks, data mining techniques, adaptive and micro-

simulation modelling techniques, or analysis of social and ecological externalities are

playing a more prominent role. This also calls for a more integrated and interdisci-

plinary research perspective. One of the fields which has demonstrated a marked shift

in focus has been the area of regional growth analysis and management, in which

organizational sociology, industrial/urban organization and multi-actor decision

making are playing a central role. This is only one example of recent trends that

demonstrate a reorientation towards complex dynamics in space, in which a multi-

plicity of driving forces exert differential dynamic impacts on human and spatial

systems.

Textbook economics has paid extensive attention to the conditions under which

critical drivers might lead to accelerated growth, with sometimes significant varia-

tion among regions or cities (for example increasing returns to scale, product

heterogeneity and specialization, etc.). All these elements impact on the welfare

and productivity pattern of spatial-economic systems and may be a source of

divergent economic achievements by various regions or cities in the space-economy.

Nevertheless, the analysis of spatial-economic disparities does often not provide us

with a complete picture of all relevant background factors. In other words, many

models trying to explain regional growth and spatial differences therein are semanti-

cally insufficiently specified. In a number of cases, therefore, economists have

resorted to the introduction of complementary explanatory factors, such as X-effi-

ciency factors which refer to often intangible factors (for example personal devotion,

2 A. Reggiani and P. Nijkamp



altruistic behaviour, concern about the future, social engagement, etc.) and which

may offer additional explanations for the performance of various agents (for example

regions, administrations, entrepreneurs, employees, etc.).

In addition, the notion of interactive behaviour and processes as evident from

modern network theory in open systems challenges the use of conventional ceteris

paribus conditions (especially in an interdisciplinary research context). The ceteris

paribus condition has become a central tool in economic research so as to draw

attention on commonalities in behaviour of economic subjects or agents by assum-

ing that certain contextual (or environmental) factors may be seen as constant

across relevant objects of research or over a relevant time horizon. Such factors

ensure a certain order or structure which allows for transferability (or even gener-

alization) in an otherwise chaotic world. This methodological approach means

essentially an abstraction from a highly varied complex real-world economic

system and allows for a focussed investigation of a certain relevant economic

phenomenon (see Andersson et al. 2002; Gough et al. 2008).

Recent advances in complexity theory have shown that complex systems evolve

in different ways, depending on the type of interdependencies among the compo-

nents. Thus the identification of system typologies leading to different equilibrium

solutions and different evolutionary paths might be useful for a critical review of

standard ceteris paribus conditions. In this context, well-known concepts –

emerging from different disciplines – such as learning, emergence, scaling, robust-

ness, etc. may also be revisited and unified in the framework of spatial-economic

science and network theory.

The trend towards a more thorough analysis of nonlinear dynamic spatial

systems and networks finds its parallel in evolutionary thinking concerning spatial

complexity, in which in particular interactions among micro-constituents or actors

are drivers for the complex dynamics of geographical space (see also van den Bergh

2007; Boschma and Frenken 2006). This book aims to offer a panoramic view

of recent advances in spatial complexity, in order to enhance our understanding of

complex spatial networks by simplicity in terms of the basic driving forces of

systemic impacts, as well as in terms of modelling such systems. Simple models

mapping out the evolution of complex networks are undoubtedly a key issue in

spatial economic research.

1.2 Outline of the Book

Starting from the above considerations, this book on “Complexity and spatial
networks: In search of simplicity” aims to highlight the “network embedding”

implications for modern complexity theory – with reference to spatial-economic

analysis – by providing exploratory pathways for novel research lines.

In particular – after this introductory chapter – the volume aims to address three

main issues:

1 Simplicity in Complex Spatial Systems 3



l Part A: Complexity, evolution, and simplicity in space. This first part investi-
gates evolutionary aspects in spatial economics, by showing how “old” concepts

and methods, borrowed from physics, demography and social sciences – such as

thermodynamics, rank-size and Kolmogorov complexity – can be interpreted in

a “novel” interdisciplinary framework and applied to spatial and urban model-

ling. In addition, new concepts such as “polyplexity” are proposed to embed

social space and time, and may thus be suitable for simplifying the representa-

tion of complex social phenomena.
l Part B: Evolutionary networks in a socio-economic context. The second part

examines the concept of “network embedding” in economic and social science,

in the light of planning and policy issues. In particular, learning and noise are

explored in complex social networks; the role of constraints and proximity is

analysed in the firm’s networks, and preferential attachment and space are

highlighted in the dynamic network of transport/commodity flows.
l Part C: Empirical aspects of network complexity in the space-economy. The

third part is devoted to the empirical analysis of network complexity in spatial

economics, by considering simulations/applications in transport and urban/

regional economics. In this context, simulations and applications are presented

with reference to: modal choice in urban transport networks, power generation

networks, urban dynamics and its morphology, regional labour markets, and

regional transport networks.

A final section, Part D: Epilogue, concludes the volume, by offering a synthesis

framework and general suggestions for the future research agenda.

As previously mentioned, Part A focuses mainly on spatial evolution and its

complexity/simplicity aspects. Part A begins with a contribution byWilson (Chap. 2),

who shows how methods from statistical mechanics can be interpreted and applied

to the analysis of urban structure and its evolution, from the perspective of future

interdisciplinary research. Benguigui et al. (Chap. 3) address the current debate on

the “correct” function that accurately describes the size distribution of entities, by

revisiting the rank-size rule and Zipf’s law, which – as is well-known – are strictly

related to fractal and complexity theory. Based on a multiplicative model of

proportionate growth, the authors develop a quantitative comparison to relate the

change in the rank-size curves to the change in the real data of Israeli cities during

the period 1950–2005. Medda et al. (Chap. 4) deal with spillover and cumulative

effects, in the context of urban growth processes. These authors assume a mutual

dependence between transportation costs and urban form, and, by applying the

Turing morphogenetic algorithm, analyse the dynamic processes induced by this

relationship for spatial changes in the city. In particular, they introduce, in their

dynamic model, two specific elements: an accumulative trend of the variables, and

a diffusion process in their variation. The numerical simulation of an illustrative

case study depicts how the entire urban shape can be modified in different ways

by an improvement of the transport system. Next, Kulkarni and Stough (Chap. 5)

focus on the question of how we formally measure the degree of complexity

(simplicity) in spatial systems, by exploring a methodology based on Kolmogorov
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complexity. The visualization of complex data – bymeans of comparative complexity/

simplicity measurement is illustrated – and the mapped results are presented.

Couclelis (Chap. 6) concludes Part A: this author introduces the notion of “poly-

plexity” as a new way of approaching the search for the most complex systems.

Polyplexity takes into account the possibility that the space and time within which

a phenomenon enfolds may themselves be complex.

The issue of evolutionary modelling in complex economic networks is addressed

in Part B. Hommes (Chap. 7) discusses complexity models in economics, by

considering a model with heterogeneous expectations (in particular, the asset

pricing model), in which bounded rationality is disciplined through simple heuris-

tic, adaptive learning and evolutionary selection. The author shows that this model

is consistent with learning to forecast laboratory experiments with human subjects,

while it also explains observed path-dependent stable and unstable outcomes.

Ehrhard et al. (Chap. 8) discuss the issue of homophily and conformity in the

evolution of complex social networks. They propose a stylized model in which

agents are involved in a local coordination game with their neighbours in a

co-evolving network. The social process of network formation exhibits sharp

transitions, hysteresis, and equilibrium multiplicity. The robustness of these con-

clusions is tested by introducing some persistent noise which may disturb both the

establishment of links and adjustments of actions. The role of constraints is further

explored by Ricottilli (Chap. 9); the author shows that constraints might improve

the acquisition of technological capabilities, in a framework of firms interacting in a

cognitive network.

In subsequent chapters, the relevance of space in economic networks is high-

lighted. Frenken (Chap. 10) models social networks emerging from the mobility

decisions of entrepreneurs moving between product divisions within or between

firms, and within or between cities, by focusing on the concept of proximity as

an essential contribution for interpreting these interdependencies. Friesz et al.

(Chap. 11) consider a dual time-scale transportation planning model in which

demand evolves on a day-to-day time-scale and traffic flows on arcs of the trans-

portation network fluctuate on a within-day time-scale. They show how one may

incorporate in such a model a non-traditional sub-model of demand growth based

on the paradigm of preferential attachment familiar from network science and the

notion of learning dynamics from evolutionary game theory. Finally, Donaghy

(Chap. 12) discusses methodological challenges for modelling an economy as a

spatial system oriented towards complexity. In this context, the author sketches a

prototype model, by specifying a non-cooperative dynamic game between shippers

and carriers, with reference to the evolution of commodity flows in the Midwest of

the United States.

Part C is devoted to empirical or operational contributions in complex spatial

networks. Grether et al. (Chap. 13) present a transport network approach where

modal choice is integrated into a multi-agent simulation of travel behaviour and

traffic flows. This approach is tested on the basis of a real-world base case for the

city of Zurich (Switzerland). A sensitivity analysis concerning the “disutility” of

travelling by a non-car mode is also carried out, by highlighting the advantage of
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the microscopic nature of the model. Seel and Waters (Chap. 14) discuss the

complexity issue, by critically reviewing past studies of complexity in the social

sciences and in geography. In particular, the authors pay attention to the problem of

spatializing system dynamics, by developing a system dynamics model of the

Forrester type, in which spatial variations are incorporated. They adopt this

model in order to offer insight into how the deregulated (complex) market for

electrical power in Alberta (Canada) will evolve. The authors emphasize how a

spatially explicit, system-dynamics approach allows an understanding and remedi-

ation of undesirable aspects of the price responses of this market system. Several

forms of investor behaviour are modelled. An unanticipated result of the modelling

exercise shows that boom-and-bust oscillations may be avoided through the intro-

duction of capacity payments that are transparent to electricity users. Urban pattern

formation in network dynamics is examined by Schintler and Galiazzo (Chap. 15).

Here the authors assume that urban areas and their development patterns are

inherently spatial networks of people, firms and institutions, which interact and

adjust vis-à-vis one another over time. To explore this urban network dynamics,

they introduce an approach based on a combination of GIS and graph-theoretic

techniques. Specifically, a Kriging method is used to create a continuous surface of

the phenomenon of interest, for example population density, and raster analysis is

adopted to characterize the underlying network topology. Next, graph-theoretic

techniques (such as betweenness) measure the structural importance of each part of

the network: for instance, population density versus employment density. The

authors apply this approach to three metropolitan areas in the USA to explore

how patterns of population and employment in these cities have changed in relation

to one another over the last couple of decades.

The next three chapters refer to empirical analyses in spatial commuting net-

works. Griffith (Chap. 16) raises the issue of spatial autocorrelation effects within

different spatial interaction model specifications (specifically, unconstrained, singly-

constrained and doubly-constrained spatial interaction models). Spatial filtering

methodology is used in this analysis. The empirical experiments carried out for the

2000 Texas journey-to-work data corroborate the notion that positive spatial autocor-

relation biases the estimation of distance decay effects uncovered with geographic

flows models that fail to account for it. The author concludes his chapter by suggest-

ing that the theme of negative spatial autocorrelation should be explored in order

to gain a better understanding of the complexity of spatial interaction data. Next,

De Montis et al. (Chap. 17) carry out a comparative analysis of the commuting

networks of the two main Italian islands (Sardinia and Sicily), by exploring the

interplay between topological, traffic and demographic characteristics of the two

networks by means of network analysis tools. The authors also highlight the necessity

to investigate four specific research areas in the framework of a possible research

agenda: (a) integration of GIS and complex network modelling; (b) study of the

evolution of networks over time; (c) analysis of comparable and non-comparable

networks, and (d) detection of communities on networks. Patuelli et al. (Chap. 18)

then analyse the evolution of commuting networks in Germany from two perspec-

tives: space and connectivity. The results of their empirical experiments – concerning
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the home-to-work commuting flows among 439 German districts for the years 1995

and 2005 – aim to identify, among the main German attraction districts, the most

“open” and connected ones. These emerging districts can be considered as future

spatial-economic attractors, as well as network interconnectors, that is “hubs”.

Finally, Reggiani (Chap. 19) concludes the book, with an “interdisciplinary”

synthesis of the methodological relationships between spatial economics and net-

work science. The focus here is on similarities and connections concerning the

theoretical foundations, approaches, and functional forms between these two frame-

works, in the light of a unifying conceptualization. Reflections on a new research

agenda for both theoretical and empirical research – with the aim of jointly

exploring the two fields of analysis (spatial economics and networks) – are also

offered. All these complexity studies indicate the need to deepen – in a cross-

disciplinary approach – theoretical, methodological, and empirical investigation

into the field of complexity, evolution and networks in space, an observation also

made by Baofu (2007).
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Chapter 2

The “Thermodynamics” of the City

Evolution and Complexity Science in Urban Modelling

Alan Wilson

2.1 Introduction

The primary objectives of this chapter are twofold: first, to offer a review of

progress in urban modelling using the methods of statistical mechanics; and second,

to explore the possibility of using the thermodynamic analogy in addition to

statistical mechanics. We can take stock of the “thermodynamics of the city” not

in the sense of its physical states – interesting though that would be – but in terms of

its daily functioning and its evolution over time.We will show that these methods of
statistical mechanics and thermodynamics illustrate the contribution of urban
modelling to complexity science and form the basis for understanding the evolution
of urban structure.

It is becoming increasingly recognised that the mathematics underpinning ther-

modynamics and statistical mechanics have wide applicability. This is manifesting

itself in two ways: broadening the range of systems for which these tools are

relevant; and seeing that there are new mathematical insights that derive from

this branch of Physics. Examples of these broader approaches are provided by

Beck and Schlagel (1993) and Ruelle (1978, 2004). The recognition of the power of

the method and its wider application goes back at least to the 1950s (Jaynes, 1957,

for example) but understanding its role in complexity science is much more recent.

However, these methods are now being seen as offering a major contribution. In

general, the applications have mainly been in fields closely related to the physical

sciences. The purpose of this chapter is to demonstrate the relevance of the methods

in a field that has had less publicity but which is obviously important: the develop-

ment of mathematical models of cities. The urban modelling field can be seen, in its

early manifestation, as a precursor of complexity science; and, increasingly, as an

important application within it (Wilson 2000).

A. Wilson
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There have been two main phases of development in this branch of urban science

and a third now beckons. The first was in the direct application of the methods of

statistical mechanics in urban analysis in the modelling of transport flows in cities

(Wilson 1967). These models were developed by analogy though it was soon

recognised that what was being used was a powerful general method. A family of

spatial interaction models was derived and one of these was important as the

beginnings of locational analysis as well as the representation of flows in transport

models (Wilson 1970).

The second phase extended the locational analysis to the modelling of the

evolution of structures, with retail outlets providing an archetypal model (Harris

and Wilson 1978). This was rooted in the developments in applied nonlinear

dynamics in the 1970s and not directly connected to statistical mechanics. The

equations were largely solved by computer simulation, though some analytical

insights were achieved. This provides the beginnings of a method for modelling

the evolution of cities – the urban analogue of the equivalent issue in fields such as

developmental biology. It is a powerful example of the possibility of modelling

evolution within complexity science.

The emerging third phase reconnects with statistical mechanics. It was shown

in the evolution modelling that there could be sudden changes in structure at

critical values of parameters. Are these analogues of phase transitions in statistical

mechanics? There was always the possibility that analogies with Ising models

in Physics and their progeny – concerned with the properties of molecules on a

lattice – would offer further insights since these represented a kind of locational

structure problem and some interesting mathematics were associated with these

models. Statistical mechanics is now handling much more complex structural

models and there is a much fuller understanding of phase transitions. This makes

it worthwhile to pursue the analogy again.

The chapter is structured as follows. In Sect. 2.2 we present two archetypal

models – first the transport model and second the retail model – to represent urban

systems of interest. In each case, we combine the description of the models with a

thermodynamic interpretation. In Sect. 2.3, we show how the retail model can be

extended to be an archetypal model of the evolution of urban structure and, again,

the associated thermodynamics. In Sect. 2.4, we explore future challenges.

2.2 The Thermodynamics of Spatial Interaction

2.2.1 Introduction

In this section, we combine presentations of some archetypal models of cities which

have been, or can be, rooted in concepts that are in common with those of statistical

mechanics – representing transport flows and flows to retail centres. We intersperse

these presentations with explorations of thermodynamic and statistical mechanical
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analogies. In Sect. 2.2.2, we introduce the systems of interest and define the key

variables. In Sect. 2.2.3, we present the transport model and in Sect. 2.2.4, the

model of flows to retail centres.

2.2.2 The Archetypal Submodels

Transport planners have long needed to understand the pattern of flows in cities and

a core scientific task is to model these flows both to account for an existing situation

and to be able to predict the consequences of change in the future – whether

through, for example, population change or through planned transport investment

and network development. The models in principle provide the analytical base for

optimising transport policy and investment.

Assume that the city can be divided into a set of discrete zones, labelled 1, 2,

3, . . . , N. Then the core of the modelling task is to estimate the array {Tij}, where Tij
is the number of trips from zone i to zone j. This pattern obviously depends on a

whole host of variables: trip demand at i (origins, Oi), trip attractions at j (destina-
tions, Dj), the underlying transport network and associated congestion effects, and

so on. The network is handled through a matrix of generalised travel costs, {cij}.
We describe the core model in Sect. 2.2.3.

Suppose we now focus on retail trips alone, represented by a matrix {Sij}. These
might be proportional to the spending power at i (eiPi, with ei as per capita

expenditure, Pi, the population) and the attractiveness of retail facilities in j
(which we designate as Wj). The model can then predict a locational vector {Dj}

which is SiSij, the sum of the flows into a retail centre attracted byWj. An ability to

predict {Dj} is valuable for planning purposes, whether in the private (retail) sector

or for public facilities such as hospitals and schools. This model is elaborated in

Sect. 2.2.4. We can use what might be called phase 1 methods to estimate {Sij}, but
this shows the phase 2 task to be the modelling of the dynamics of the structural

vector {Wj}. We indicate an approach to this in Sect. 2.3.

2.2.3 The Transport Model

Transport flows were initially modelled on the basis of an analogy with Newtonian

physics – the so-called gravity model. We use the notation introduced in Sect. 2.2.2.

Tij ¼ KOiDjc
�b
ij ; ð2:1Þ

where k and b are constants. This proved unsatisfactory and various factors were

added to improve the fit to reality. The breakthrough (Wilson 1967) was to recognise

that these had a resemblance to statistical mechanics’ partition functions.
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To show the connection and to facilitate later analysis, we introduce some of the

core concepts of statistical mechanics here. The simplest Boltzmann model is

represented by the microcanonical ensemble. This is a set of copies of the system

each of which satisfies some constraint equations which describe our knowledge of

the macro system. It is assumed that each copy can occur with equal probability but

Boltzmann’s great discovery was to show that one distribution occurs with over-

whelming probability. This distribution can be found by maximising an appropriate

probability function which then turns out to be, essentially, the entropy function.1

For a perfect gas with a fixed number of articles, N and fixed energy, E, if ni is the
number of particles with energy ei, then the most probable number of particles in

each energy level – the most probable distribution – is obtained by maximising the

entropy:

S ¼ �Sini log ni; ð2:2Þ

subject to

Sini ¼ N; ð2:3Þ

Siniei ¼ E; ð2:4Þ

to give

ni ¼ N expð�beiÞ=Si expð�beiÞ; ð2:5Þ

where

b ¼ 1=kT: ð2:6Þ

T is the temperature and k is Boltzmann’s constant.

It is convenient to define the partition function as:

Z ¼ Si expð�beiÞ: ð2:7Þ

It is useful for a future point in the argument to note here that we can link

thermodynamics and statistical mechanics through the free energy, F (and here

we follow Finn 1993) defined in terms of the partition function as:

F ¼ �NkT log Z; ð2:8Þ

and all thermodynamic properties can be calculated from this.

1The detailed justification for this is well known and not presented here.
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The post-Newton, Boltzmann-like, transport model can then be developed on

the basis of such a microcanonical ensemble. Now, instead of a single state label,

i, representing energy levels, there is a double index, (i,j), labelling origin–

destination pairs. The constraint equations then become:

Sj Tij ¼ Oi; ð2:9Þ

Si Tij ¼ Dj; ð2:10Þ

Si Tijcij ¼ C: ð2:11Þ

The “number of particles” constraint – a single equation in physics – is replaced by

the sets of constraints (2.9) and (2.10). C is clearly the urban equivalent of “energy”

for this system and the cij, measures of the cost of travel from i to j, are the

equivalent of energy levels. If cij is measured in money units, then C is measured

in money units also. Then, maximising a suitable “entropy”2

S ¼ �Si Tij log Tij ð2:12Þ

gives, subject to (2.9)–(2.11), the so-called doubly-constrained model:

Tij ¼ AiBjOiDj expð�bcijÞ: ð2:13Þ

The parameter b measures the “strength” of the impedance: if b is large, trips are

relatively short, and vice versa. It can be determined from (2.11) if C is known, but

in practice it is likely to be treated as a parameter of a statistical model and

estimated from data. Ai and Bj are balancing factors to ensure that (2.9) and

(2.10) are satisfied. Hence:

Ai ¼ 1=Sj BjDj expð�bcijÞ; ð2:14Þ

and

Bj ¼ 1=Si AiOi expð�bcijÞ: ð2:15Þ

The inverses of Ai and Bj are the analogues of the partition functions. However, they

do not translate easily (or at all) into thermodynamic form.

It is generally recognised that to make the models work, cij should be taken as a

generalised cost, a weighted sum of elements like travel time and money cost. To

2There are many possible definitions of entropy that can be used here, but for present purposes,

they can all be considered to be equivalent.
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take the thermodynamic analogy further, we do need a common unit and, as noted

earlier and to fix ideas, we take “money” as that unit. These will then be the units of

“energy” in the system.3 Given that the units are defined, then the b parameter,

together with the definition of a suitable Boltzmann constant, k, will enable us to

define temperature through:

b ¼ 1=kT: ð2:16Þ

We are accustomed to estimating b through model calibration. An interesting

question is how we define k as a “universal urban constant” which would then

enable us to estimate the “transport temperature” of a city. Note that with cij having
the dimensions of money, then b has the dimensions of (money)�1 and so from

(2.16), kT would have the dimensions of money. If k is to be a universal constant,

then T would have the dimensions of money. It is also interesting to note that it has

been proved that (Evans 1973), in the transport model, as b!1, the array {Tij}
tends to the solution of the transportation problem of linear programming in which

case C, in (2.11), tends to a minimum. This is the thermodynamic equivalent of the

temperature tending to absolute zero and the energy tending to a minimum.

2.2.4 Retail Systems: Interaction Models as Location Models

The next step is to introduce a spatial interaction model that also functions as a

location model. We do this through the singly-constrained “retail” model that is,

retaining a constraint analogous to (2.9), but dropping (2.10). We begin with the

conventional model and introduce a new notation to distinguish it from the transport

model. We use the notation introduced in Sect. 2.2.2

The vector {Wj} can be taken as a representation of urban structure – the

configuration of Wjs. If many Wjs are non-zero, then this represents a dispersed

system. At the other extreme, if only one is non-zero, then that is a very centralised

system. A spatial interaction model can be built for the flows on the same basis as

the transport model. Maximizing an entropy function:

�Sij Sij log Sij; ð2:17Þ

we find

Sij ¼ AieiPiW
a
j expð�bcijÞ; ð2:18Þ

3For simplicity, we will henceforth drop the quotation marks and let them be understood when

concepts are being used through analogies.
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where

Ai ¼ 1=Sk W
a
k expð�bcikÞ; ð2:19Þ

to ensure that

Sj Sij ¼ eiPi; ð2:20Þ

Sij Sij logWj ¼ X; ð2:21Þ

and

Sij Sijcij ¼ C: ð2:22Þ

Equation (2.21) represents a new kind of constraint. It is inserted to generate theWj
a

term in (2.18), but the form of this equation shows that log Wj can be taken as a

measure of size benefits to consumers using j and X an estimate of the total. a is a

parameter associated with how consumers value “size” of retail centres – and is

actually the Lagrangian multiplier that goes with the constraint (2.21). In thermo-

dynamic terms, as we will see shortly, X can be taken as another kind of energy. As

in the transport model, C is the total expenditure on travel. b measures travel

impedance as in the transport model and is the Lagrangian multiplier that associated

with (2.22).

Because the matrix is only constrained the origin end, we can calculate the total

flows into destinations as:

Dj ¼ Si Sij ¼ SieiPiW
a
j expð�bcijÞ=Sk W

a
k expð�bcikÞ; ð2:23Þ

and this is how the model also functions as a location model.4

Wj
a can be written:

Wa
j ¼ expða logWjÞ: ð2:24Þ

If we then assume, for simplicity and for illustration, Wj can be taken as “size” and

that benefits are proportional to size, then this shows explicitly that log Wj can be

taken as a measure of the utility of an individual going to a shopping centre of size

Wj but at a transport cost, or disutility, represented by cij. The significance of this in

4This model, in more detailed form, has been widely and successfully applied.
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the thermodynamic context is that a can be seen (via another Boltzmann constant,

k0) as related to a different kind of temperature, T0:

a ¼ 1=k0T0: ð2:25Þ

It was originally shown in Wilson (1970), following Jaynes (1957), that this

argument can be generalised to any number of constraints and hence any number

of temperatures. It can easily be shown, as in Physics, that if two systems are

brought together with different temperatures, then they will move to an equilibrium

position at an intermediate temperature through flows of heat from the hotter to the

colder body. This also means, therefore, that in this case, there can be flows of

different kinds of heat. In this case, the flow of heat means that more people

“choose” destinations in the “cooler” region.

2.2.5 Deepening the Thermodynamic Analogy

In order to learn more from the thermodynamic analogy, we need to remind

ourselves of some of the core concepts. The two key laws of thermodynamics,

the first and second, are concerned with (a) the conservation of energy and (b) the

fact that a system’s energy cannot be increased without an amount of work being

done on the system which is greater than or equal to the energy gain.

There are a number of so-called thermodynamic functions of state and we briefly

note those needed for our ongoing argument. The internal energy (which we will

equate with our “C”) is particularly important. It normally appears in differential

form, for example as:

dU ¼ dQþ Si Xidxi; ð2:26Þ

where dQ is the flow of heat and SiXidxi represents the work done on the system by

various external forces, {Xi}. The {xi} are system descriptors – variables – so that dxi
measures the change in the variable from the application of the force. Essentially, the

increase in the internal energy is the sum of the heat flow in and the work done. For

example, there may be a change in volume, V, an x-variable, from the application of

pressure, P, an X-force.
We can introduce entropy, S, for the first time (in its thermodynamic form) by

defining it through:

dQ ¼ TdS; ð2:27Þ

so that

dU ¼ TdSþ Si Xidxi: ð2:28Þ
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The second law can then be formulated as:

TdS � 0 ð2:29Þ

(or, “entropy always increases”). For a fluid of volume, V, and pressure, P, the work
done can be represented by PdV, and

dU ¼ TdS� PdV ð2:30Þ

(there is a negative sign because the work done on the system produces a reduction

in volume and so the minus sign turns this into a positive contribution to work). In

other cases, the X and the xmight be the degree of magnetisation brought about by a

magnetic field, for example. The general formulation in (2.26) and (2.28) is

particularly important for our discussion of cities below: the challenge then is to

identify the {Xi} and the {xi} in that case.

We can introduce the free energy, F, as:

F ¼ U � TS; ð2:31Þ

and in differential form as:

dF ¼ �SdT � PdV; ð2:32Þ

or in a more general form, from (2.28) and (2.31), as:

dF ¼ �SdT þ Si Xidxi: ð2:33Þ

F can be specified as a function of T and V and then all other properties can be

deduced.

The free energy (Pippard 1957, p. 56) is a measure of the work that can be done –

a decrease in F – by a system in an isothermal reversible change. Given the second

law, it is the maximum amount of work that can be done by a system. We can also

note that by inspection of (2.31), the principle of maximizing entropy, which we

will invoke below, is equivalent – other terms being kept constant – to minimizing

free energy. This notion has been very interestingly exploited by Friston [for

example – see Friston et al. (2006) and Friston and Stephan (2007)] in a way that

we will examine briefly later in Sect. 2.4.

In the case of spatial flow models, we need to recognise two kinds of change

through work being done on the system (or heat flowing). In terms of the transport

elements of either of our archetypal models, this can be a dC change or a dcij
change. The former is a whole system change that means, for example, there is a

greater resource available for individuals to spend on transport – and this will

decrease b and hence increase the temperature; the latter would probably be produced

by a network change – say the investment in a new link. Even with fixed C, if this
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leads to a reduction in cost, we would expect it to generate an increase in temperature.

In terms of the Physics analogy, a positive dC change is equivalent to an increase in

energy. It would be possible in principle to define an external coordinate, xi, and a

generalised force, Xi, so that Xidxi generated dC. It is less easy to find a Physics

analogue for dcij changes – because that would involve changing energy levels.

This analysis enables us to interpret the principal laws of thermodynamics in this

context. “Work done” on the system will be manifested through either dC or dcij
changes. Essentially, what the laws tell us is that there will be some “waste” through

the equivalent of heat loss. Note that an equivalent analysis could be offered for the

retail model for dWj or dX changes.

We should now return to the basics of the thermodynamic analogy and see if

there are further gains to be achieved – particularly by returning to the SiXidxi terms

[from (2.2)]. It is worth noting that a system of interest is described by variables that

divide into two sets: the extensive variables, that are dependent on size, and the

intensive variables that are system properties that are not size dependent. The

volume of a gas, V, is an example of the first; its temperature, T, and pressure, P,
are examples of the second. It is a task of thermodynamics analysis to seek state

equations that relate the key variables. For an ideal gas, there is Boyle’s Law:

PV ¼ nRT; ð2:34Þ

where n is a measure of the number of particles and R is a universal constant.

In the urban case, we have available to us a temperature through the parameter b
(actually 1/kT, an inverse temperature). The next step is to explore whether there is

an xi which is the equivalent of a volume, V. The volume of a gas is the size of the

container. In this case, for simplicity for this initial exploration, we can take the

area, A, of the city as a measure of size.5 This would then allow us to work with

the free energy as a function of T and V – or in the urban case, b and A: F(b, A), say.
We can then explore the idea of a state equation and it seems reasonable to start

with Boyle’s law since people in cities are being modelled on the same basis as an

ideal classical gas. This suggests, by analogy with (2.34) that:

PA ¼ NRT; ð2:35Þ

where N is the total population and R is a constant. In terms of b, this becomes:

P ¼ NR=bkA; ð2:36Þ

where we have taken A to the other side of the equation.6 There are, of course, two

constants, R and k, in this equation which cannot be obtained in the same way as in

Physics, but let us assume for the moment that they can be estimated. Then, (2.36)

5We should explore whether we can determine a measure of A from the topology of the {cij}.
6Note that P appears to have the dimensions of “density” x’money’.
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gives us a definition of an urban “pressure”. It has the right properties intuitively: it

increases if A or b decreases or N increases (in each case, other variables held

constant).

The final step in this exploration of a deepening analogy is to link the thermody-

namics with the statistical mechanics that generated the flow models. In physics,

this is achieved by connecting the free energy to the partition function of the system

of interest. We saw in the transport case that while we could find analogues of

partition functions, the analogy was not exact.7

In the retail case we have dropped one set of “number” constraints and this

suggests that the inverse of the Ai term will function as a partition function.

Consider

Zi ¼ Sk expða logWk � bcikÞ: ð2:37Þ

This looks like a partition function, but as a function for each zone i rather than
for the system as a whole. This is because the consumers leaving a zone can be

treated as an independent system.8 It is perhaps then not too great a leap to make the

heroic assumption that an appropriate partition function for the system is:

Z ¼ SiZi ¼ Sik expða logWk � bcikÞ: ð2:38Þ

We can then seek to work with the free energy and the model at (2.16) and (2.26).

Then, using (2.8):

F ¼ �½N=b� log Z: ð2:39Þ

We can also explore the standard method of calculating state functions from the free

energy:9

P ¼ �ð@F=@AÞT ; ð2:40Þ

S ¼ �ð@F=@TÞA; ð2:41Þ

or, using (2.16):

S ¼ �kb2ð@F=@bÞA: ð2:42Þ

7Can we take AiBj as an i–j partition function? Can we work backwards and ask what we would

like the free energy be for this system? If (2.11) specifies the energy and b (=1/kT) the temperature,

then F=U – TS becomes F=C – S/kb? Then if F=NkT log Z, what is Z?
8ter Haar (1995, p. 202) does show that each subsystem within an ensemble can itself be treated as

an ensemble provided there is a common b value.
9The following equations can be derived from (2.31) with A substituted for V and T=1/kb.
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And, with U=C, using (2.23),

U ¼ F� ð@F=@TÞA ¼ �T2ð@=@T � F=TÞA ¼ ð@=@b � kbFÞA: ð2:43Þ10

In this formulation, A does not appear in the partition function. We might

consider A to be defined by the topology of the {cij} and possibly the spatial

distribution of the Wj and this should be explored further. Indeed, more generally

we might write (2.40) as:

Xi ¼ �ð@F=@xiÞT : ð2:44Þ

It might be particularly interesting to look at the concepts of specific heat. “Heat”

flowing into a city will be in the form of something like investment in the transport

system and this will increase T and hence decrease b but each city will have a

specific heat and it will be interesting to look at how different cities can effectively

absorb investment. This should connect to cost–benefit analysis, possibly through

NPVs. The standard formulae for specific heats can be transformed into the urban

formalism as follows:

CV ¼ ð@U=@TÞV ! �1=kb2ð@U=@bÞA; ð2:45Þ

and

CP ¼ ð@U=@TÞP þ Pð@V=@TÞP ¼ ½�1=kb2ð@U=@bÞP þ Pð@V=@bÞP�: ð2:46Þ

It remains a challenge to calculate these in the urban case.

We should also examine the possibility, noted earlier, of examining some of

these concepts at the level of a zone within city – building on ter Haar’s concept of

subsystems.11

It remains to ask the question of whether there could be phase changes in spatial

interaction systems.12 This seems intuitively unlikely for the spatial interaction

models: smooth and fast shifts to a new equilibrium following any change is the

likely outcome. If the model is made more realistic – and more complicated – by

adding different transport modes, then the position could be different. There could

then be phase changes that result in a major switch between modes at some critical

parameter values (see, for example, Wilson, 1976). However, there is the possibility

of significant phase changes in the structural model and it is to this that we now turn.

10What does this produce for U? And is it possible to do all the calculations implied by

(2.40)–(2.46)?
11It is possible to introduce a bi rather than a b which reinforces this idea.
12We elaborate the notion of phase changes in the next section. Essentially, in this case, they

would be discrete “jumps” in the {Tij} or {Sij} arrays at critical values of parameters such as b.
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2.3 Urban Structure and its Evolution

2.3.1 The Model

We have presented an archetypal singly-constrained spatial interaction model, repre-

senting (among other things) flows to the retail sector. We can now add a suitable

hypothesis for representing the dynamics (following Harris and Wilson 1978):

dWj=dt ¼ eðDj � KWjÞWj; ð2:47Þ

where K is a constant such that KWj can be taken as the (notional) cost of running

the shopping centre in j.13 This equation then says that if the centre at j is profitable,
it grows; if not, it declines. The parameter e determines the speed of response to

these signals.

The equilibrium position is given by:

Dj ¼ KWj; ð2:48Þ

which can be written out in full, using (2.23), as:

SifeiPiWj expð�bcijÞ=SkWk expð�bcikÞg ¼ KWj: ð2:49Þ

The (2.47) are analogous to Lotka–Volterra equations – in the form of species

competing for resources. In this case, we have retail developers competing for

consumers. Because this model combines Boltzmann’s statistical mechanics (B) and

Lotka’s and Volterra’s dynamics (LV), these have been characterised as BLVmodels

and it has been shown that they have a wide range of application (Wilson 2008).

What is clear to the present time is that it is possible to characterise the kinds of

configurations that can arise for different regions of a and b space: for larger a and

lower b, there are a smaller number of larger centres; and vice versa.14 This can be

interpreted to an extent for a particular zone, say j, by fixing all the Wk, for k 6¼ j.
A key challenge is to solve this problem with all the Wjs varying simultaneously.

There are many procedures for solving (2.49) iteratively but we constantly need to

bear in mind the sensitivity to the initial conditions.

The zonal interpretation is shown in Fig. 2.1. The left and right hand sides of

(2.49) are plotted separately and of course, the intersections are the possible

equilibrium points. If a � 1, there is always a possible equilibrium point, but if -

a>1, there are three possible cases: only zero as an equilibrium; one additional non-

zero stable state; and the limiting (a¼1) case that joins the two. The b value also

13K could be j-dependent as Kj (and indeed, usually would be) but we retain K for simplicity of

illustration.
14Clarke and Wilson (1985).
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determines the position of the equilibria. This analysis shows a number of proper-

ties that are typical of nonlinear dynamical systems: multiple (system) equilibria

and strong path dependence – that is, sensitive dependence on initial conditions. It

also shows that as the parameters a and b (and indeed any other exogenous

variables) change slowly, there is the possibility of a sudden change in a zone’s

state – from development being possible to development not being possible, or vice

versa [as depicted by the two KWj lines in Fig. 2.1b, c]. These kinds of change can be

characterised as phase transitions – in this case at a zonal level, but clearly there will

be system wide changes of this kind as well. This analysis is the basis of a very

powerful tool for identifying complex phase transitions. We return to this in the Sect.

2.4.6.

Recall that this analysis is dependent, for a particularWj, on the set {Wk}, k 6¼ j,
being constant. It is almost certainly a good enough approximation to offer insight,

but the challenge is to address the problem of simultaneous variation. The system

problem is to predict equilibrium values for the whole set {Wj} and the trajectories

through time, recognizing the points at which phase changes take place. This is

where newer statistical mechanics models potentially can help.

This analysis exemplifies characteristics of models of nonlinear complex sys-

tems: multiple equilibrium solutions, path dependence and phase transitions and so

demonstrate the contribution of urban modelling to complexity science.

2.3.2 The Thermodynamics of Structural Change

We have seen that the spatial interaction model, whether in its doubly-constrained

(transport) form, {Tij}, or singly-constrained (retail) form, {Sij}, is best represented
by a microcanonical ensemble and we can reasonably assume a rapid return to

equilibrium following any change. We have offered an equation representing the

dynamics of {Wj} evolution but we can now work towards an interpretation of this

model in a statistical mechanics format. It will be represented by a canonical

ensemble. This differs from a microcanonical ensemble in that the energy is

allowed to vary. The return to equilibrium after a disturbance is likely to be much

= >

Fig. 2.1 Zonal analysis of phase transitions
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slower: it takes developers much longer to build a new centre than for individuals to

adjust their transport routes for example. What is more, the two systems are linked

because the structural variables {Wj} are exogenous variables in the retail model

(and there is an equivalent vector in the transport model). In the case of the

structural model, we will have to assume some kind of steady state independent

rapid-return-to-equilibrium for the interaction arrays. We have indicated in the

previous section that there will be discrete changes. We now explore the possible

statistical mechanics’ bases to see if these are in fact phase changes.

In Physics, the energy is most generally represented in a Hamiltonian formula-

tion and so we denote it by H. We can now construct a canonical ensemble in which

each element is a state of the system with potentially varying energy. For each

“system” energy, that part of the ensemble will be a copy of the corresponding

microcanonical ensemble. That is, it can be shown (Wilson 1970, Appendix 2) that

the microcanonical distribution is nested in the canonical distribution for each

energy value in the latter.

We can again work with probabilities, but we denote them by Pr since they relate

to the probability of the system state occurring – and we label a particular state r. We

can then maximise a system entropy to get the result that:

Pr ¼ expð�bHrÞ=Sr expð�bHrÞ: ð2:50Þ

Physicists have modelled the distribution of states of particles on a lattice. An

early example was the Ising model which is concerned with spin systems and the

alignment of spins at certain temperatures that produce magnetic fields. The inter-

actions in the Ising model are only with nearest neighbours and there are no phase

transitions. However, when it is extended to two and three dimensions, there are

phase transitions, but it is very much more difficult to solve. In our case, of course,

we are interested in interactions that extend, in principle, between all pairs. Such

models have been explored in statistical mechanics and, below, we explore them

and seek to learn from them – see Martin (1991).

Locations in urban systems can be characterised by grids and urban structure can

then be thought of as structure at points on a lattice. We can consider zone labels

i and j to be represented by their centroids which can then be considered as the

nodes of a lattice. The task, then, is to find a Hamiltonian, Hr , as a function of the

structural vector {Wj}. We can then write (2.50) as:

Pr ¼ expð�bHrðfWjgÞÞ=Sr expð�bHrðfWjgÞÞ; ð2:51Þ

and we have to find the {Wj} that maximises Pr. Since the denominator is the same

for each r, this problem becomes:

L fWopt
j g

h i
¼ Maxr expð�bHrðfWjgÞÞ: ð2:52Þ

So the immediate issue is to decide on the Hamiltonian. Suppose we take the

measure of profit used in (2.47). Then:
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H ¼ SjðDj � KWjÞ; ð2:53Þ

and the problem becomes:

L fWopt
j g

h i
¼ Maxr exp½�bSjðDj � KWjÞ�; ð2:54Þ

where K is a unit cost for retailers and Dj can be obtained in the usual way.

Substitution then gives:

L fWopt
j g

h i
¼ Maxr exp½�bSjðSifeiPiWj expð�bcijÞ=SkWk expð�bcikÞgKWjÞ�;

ð2:55Þ

which shows what a formidable problem this appears to be. However, scrutiny of

the right hand side shows that we maximise L by maximizing the exponent and

because of the first negative sign, this is achieved by minimising

SjðSifeiPiWj expð�bcijÞ=SkWk expð�bcikÞg � KWjÞ; ð2:56Þ

which then suggests that the equilibrium value for {Wj} occurs when this expres-

sion is a minimum. However, by inspection, we can see that this happens when each

term within Sj is zero:

SifeiPiWj expð�bcijÞ=SkWk expð�bcikÞg ¼ KWj; ð2:57Þ

which is, of course, simply the equilibrium condition (2.48) [or (2.49)]. This then

seems to indicate that a statistical mechanics exposition produces an equivalent

equilibrium condition for the {Wj}.

What we know from the analysis of Fig. 2.1 is that at a zonal level, there are

critical values of a and b, for example, beyond which onlyWj¼0 is a stable solution

for that zone – that is, the expression inside Sj. So we know that there are critical

points at a zonal level at which, for example, there can be a jump from a finiteWj to

a zero Wj (see Dearden and Wilson 2008, for a simulation of this). This implies

there is a set of a and b at which there will be critical changes somewhere in the

system. This is particularly interesting when we compare this situation to that in

statistical mechanics. There, we are usually looking for critical temperatures for the

whole system at which there is a phase transition. Here, there will be many more

system phase transitions, but in each case consisting of a zonal transition (which

then affects the system as a whole – since if aWj jumps to zero, then otherWks will

jump upwards – or vice versa). It would be interesting to see whether the set of

critical as and bs form a continuous curve. If we further add, say, K and the {eiPi},

then we are looking for a many-dimensional surface. It will also be interesting to

see whether there are other systems – ecosystems? – that exhibit this kind of phase

change.
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To take the argument further at the system level, we need to construct an order

parameter. In Physics, at a phase change, there is a discontinuity in the order

parameter and hence indeterminacy in some derivatives of the free energy. An

obvious example in Physics is in magnetism: an ordered system has particles with

spins aligned – ordered – and there can be phase transitions to and from disordered

states. In these cases, the order parameters are straightforward to define. In the

urban case, intuition suggests that it is the nature of the configurations of {Wj} that

we are concerned with. A dispersed system with many small centres can be

considered less ordered than one with a small number of large centres. This

suggests that we should examine N[Wj>x] – the number of Wj greater than some

parameter x. If x is set to zero, this will be a measure of ubiquity of centres and we

know that there will be transitions at a¼1. Or we could set x to be large and seek to
identify configurations with a small number of large centres to see whether they are

achieved through phase transitions as parameters vary.15 There is also the interest-

ing possibility that entropy is used as a measure of dispersion and so –SjWjlogWj

could be used as an order parameter.16

2.3.3 An Alternative Thermodynamic Formulation for the {Wj}

In this analysis so far, we have assumed that {Wj} can be obtained by solving the

equilibrium equations. It is interesting to explore the possibility of a suboptimal

{Wj} via entropy maximizing – something more like a lattice model with eachWj as

an occupation number. We can use the same argument that generates conventional

spatial interaction models and differentiates them from the transportation problem

of linear programming (and, of course, as we noted earlier, it has been shown that as

b!1, the spatial interaction model solution tends to the linear programming

limit). We can proceed as follows. Assume {Sij} is given.17 Then maximise an

entropy function in {Wj} subject to appropriate constraints.

Max S ¼ �SjWj logWj; ð2:58Þ

such that

SijSij logWj ¼ X; ð2:59Þ

15It would be interesting to calculate the derivatives of the free energy – the F-derivatives – to see
whether there is a way of constructing N[Wj>x] out of F. Are we looking at first or second order

phase transitions?
16I am grateful to Aura Reggiani for this suggestion.
17It can be shown that we can carry out an entropy maximizing calculation on {Sij} simultaneously

and that leads to a conventional a spatial interaction model and the same model for {Wj}. The

implication of this argument is that if we obtain a {Wj} model with the method given here, we

should then recalculate {Sij} from an spatial interaction model and then iterate with {Wj}.
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and

SiSij ¼ kWj þ Y; ð2:60Þ

X and Y are constants – X determining the total amount of benefit that consumers

derive from size (or attractiveness) and Y the extent to which the equilibrium

condition (2.48) is being treated as suboptimal. The Lagrangian for this problem is:

L ¼ �SjWj logWj � mSi½Sij � KWj � Y� � aðSiSijÞ=Wj; ð2:61Þ

and setting

@L=@Wj ¼ 0 ð2:62Þ

gives, with some re-arrangement,

logWj þ aDj=Wj ¼ mKj ð2:63Þ

(where we have substituted Dj for SiSij without loss of generality since we are

taking the {Sij} as fixed). These equations could be solved numerically for {Wj} –

and indeed graphically.

It is then interesting to interpret (2.63) and then to look at the a!1 limit. Write

(2.63), by dividing by m, as follows:

ð1=mÞ logWj þ aDj=mWj ¼ Kj: ð2:64Þ

The left hand side is clearly cost per square foot. The first term on the right hand

side is a measure of scale benefits; the second term is revenue per square foot

modified by the factor a/m.
By analogy with the linear programming version of the transport model, as

a!1, we would expect the normal equilibrium condition to be satisfied and

hence Y!0. Equation (2.64) then suggests that as a!1, we must have m!1 in

such a way that a/m!1. The first term in (2.64) then clearly tends to 0 and the

equation then becomes equivalent to (2.48).

2.4 Ongoing Challenges

2.4.1 Introduction

We noted at the outset that there have been three phases of relevant work in urban

science:
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l spatial interaction models – and associated location models – rooted in statistical

mechanics, which work very effectively;
l models of developing and evolving structures, including the recognition of urban

phase transitions;
l the use of newer methods in statistical mechanics to accelerate our understand-

ing of development and evolution.

Within this framework, we have aimed to add thermodynamic interpretations to the

findings of each phase – an area that has been raised in the past but far from fully

developed. How do we now move forward?

2.4.2 Spatial Interaction

These are the models about which we can feel most confident in practice. Only

archetypal models have been presented here, but by now they have been fully

disaggregated and tested in a wide variety of circumstances. However, it is clear

from the argument presented here that there remain possibly interesting areas of

interpretation which can be developed through the thermodynamic analogy. In

particular, it would be valuable to seek an understanding of the urban partition

functions that arise from the more complex “particle number” constraints that are

introduced. There is also scope for a fuller exposition of the thermodynamics of these

models. A start has been made in this chapter but it would be useful, for example, to

expound more fully the external variables that underpin changes in these systems.

2.4.3 Development and Evolution

The structural evolution issues have only been explored to date with archetypal

models. There is a case for exploring, for example, phase transitions with more

realistic disaggregated models and also exploring (in the case of the retail model)

alternative revenue and production (that is, cost) functions to see whether new kinds

of phase transitions would emerge. We should also recognise that there are other

submodels that demand different formulations: for example, economic input–output

models, flows of goods, even energy – leading to real thermodynamics! Finally,

huge progress has been made in the development of comprehensive models and

these also should be explored for phase transitions.

2.4.4 The “New” Thermodynamics and Statistical Mechanics

We noted at the outset that authors such as Ruelle (2004) and Beck and Schlagel

(1993) – and many others – are presenting the mathematics of thermodynamics and

statistical mechanics in a more general format and demonstrating in principle the
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applicability to a wider range of systems. It would be valuable systematically to

translate the models presented in this chapter into these formats to explore the

extent to which further advances are possible. We have only scratched the surface

of possibilities in this chapter and further research is to be encouraged.

2.4.5 Models in Planning

Urban models have long had uses in various forms of planning – public and

commercial – through their forecasting capabilities and, to a lesser extent, through

being embedded in optimisation frameworks. Our understanding of nonlinearities

now puts a bound on forecasting capabilities but in an interesting way. While

forecasting may be impossible in terms of structural variables over a long time

scale – because of path dependence and phase transitions – what becomes possible is

the identification of phase transitions that may be desirable or undesirable and then

one aspect of planning is to take actions to encourage or avoid these as appropriate.

There is a potential new interest, that we have alluded to briefly earlier, which

brings statistical mechanics to bear on urban planning, and that is Friston’s (et al.’s)

work on free energy and the brain. It is interesting to place this model into a

planning framework. The essence of Friston’s argument – for the purposes of

building the analogy – is to model the brain and its environment as interacting

systems, and that the brain, through its sense mechanisms, builds a model of the

environment and that it handles environmental uncertainties through free energy

minimisation. If the brain is replaced by “urban planning system” and its environ-

ment by “the city”, then Friston’s argument resonates with Ashby’s (1956) law of

requisite variety – essentially in this case that the planning system has to model the

city in order to have a chance of success.

2.4.6 Concluding Comments

There have been some spectacular successes in the application of statistical

mechanics to urban modelling and some insights have been achieved in adding

thermodynamic interpretations. However, it is also clear that the potential benefits

of combining the tools from different disciplines in the urban modelling context

have not been fully worked out. What is needed is a coming together of skills, the

building of new interdisciplinary teams: urban modellers, statistical physicists and

the mathematicians who have been generalizing the thermodynamic and statistical

mechanics formalisms. It might also be valuable to add the skills of those who have

been using these tools for modelling in other fields, such as neuroscience. In some

cases, neuroscience being an example, the emphasis has been on taking a statistical

(Bayesian) view and this complements the mathematical one in an interesting way.

It may be helpful to conclude, therefore, with some indications of what remains to

be achieved – but which intuition suggests is achievable!
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The urban “big picture” needs to be completed – for example through the

specification of suitable “external variables” and generalised forces – the Xidxi
terms – for cities. We perhaps made the beginnings of progress by introducing

“area” as a quasi “volume” measure but leaving open the question of whether a

better measure could be found from {cij} topology. We also had some difficulty in

specifying “urban” partition functions because of the usual nature of the “number of

particles”/origin-destination constraints. This is a research question to be resolved.

Potentially the biggest advances to come lie in the modelling of the evolution

and emergence of structures – the {Wj} in the archetypal model. Again, intuition

suggests that the methods down being applied to solids in statistical physics – and

their mathematical generalisations, should enable us to make more progress than we

have achieved so far. However, that progress is not inconsiderable: it has allowed us

to identify phase transitions in urban evolution and to show that they are of a

different character to the most obvious ones in Physics.
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Chapter 3

Macro and Micro Dynamics of the City

Size Distribution

The Case of Israel

Lucien Benguigui, Efrat Blumenfeld-Lieberthal, and Michael Batty

3.1 Introduction

Complex systems evolve and grow from the bottom up. Their key characteristic is

emergence in that the actions of the system’s basic elements are uncoordinated yet

their effects at greater scales appear organized. Hence we say that a complex system

exhibits order at higher scales which is usually measurable using some scale-free

characteristics. In city systems for example, it is clear that there is a hierarchy of

sizes and that these sizes follow a scaling law which can be approximated by a

power law. Within cities, different types of centre also follow such scaling not only

in terms of their sizes but also in terms of their frequency and spacing. Such systems

are sometimes said to exhibit self-similarity which means that if the system is

examined at different scales, it appears the same; that is if a system has a certain

pattern at one scale, this pattern can be transformed to another scale by enlargement

or contraction so that it is impossible to see the difference between the two scales.

Self-similarity is a key feature of geometries that are said to be fractal and in terms of

cities, such fractal patterns have been widely observed (Axtell 2001). In this chapter

we will exploit this fact by examining the pattern of city sizes which have a

characteristic signature which is a power law. This signature which is sometimes

referred to as the rank size rule is one of the most fundamental features of complexi-

ty in that many systems in the physical, natural and social world exhibit such scaling.

The statistics of sizes is a topic studied in many disciplines across the natural and

the social sciences (Batty 2008; Buldyrev et al. 2003; Carvalho and Penn 2004;

Duranton 2006; Chattopadhyay and Mallick 2007). One of the key problems is how

to describe mathematically the function which describes the sizes of the objects

or entities that compose such distributions. The two most common distributions
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in the literature are the power law and the lognormal distribution (Laherrere and

Sornette 1998; Blank and Solomon 2000; Limpert et al. 2001) but it is clear that in

many cases, neither of these distributions replicate the shape or form of functions in

a satisfactory way. In fact, more accurate distributions lie somewhere between these

two options (Limpert et al. 2001; Benguigui and Blumenfeld-Lieberthal 2006).

Among the difficulties concerning the choice of distribution is the problem of the

lower tail. In the past, many applications have simply dealt with the largest entities

usually because data has been available only for the largest, or sometimes because it

is assumed that the most important entities are those that are the largest. The lower

tail, or long tail as it is sometimes called, of the frequency distribution of sizes is

often disregarded – cut off, and it is clear that by changing the size of the lower tail

of the entities’ size distribution, the function which fits the distribution will also

change. It is not easy to choose a criterion to define the cut off for the lower tail and

very often it is chosen arbitrarily.

It is thus a major problem in exploring size statistics to relate the properties of a

particular set of entities (for example, incomes, stock market values, populations of

cities, frequencies of words and letters that comprise languages, etc.) to a function

that describes accurately their size distribution. Several models attempt to solve this

problem by relating the entities’ size distributions to some hypotheses concerning

their behavior (Benguigui and Blumenfeld-Lieberthal 2006). These models, how-

ever, usually examine the size distribution at a particular time, thus grounding the

analysis in comparative statics, often beginning with some arbitrary initial distribu-

tion at the starting point for simulation and iterating the model until some equilib-

rium state is reached.

The purpose of this chapter is twofold; in the first part, we investigate the

dynamics of the size distribution (without searching for an equilibrium) and show

how it is possible to relate the change in the distribution to the properties of the

entities. For that, we use an approach which defines a distribution using a new

exponent a (Blank and Solomon 2000) presenting a simulation based on a model

we have recently developed (Benguigui and Blumenfeld-Lieberthal 2006). In the

second part, we study the dynamics of the Israeli system of cities, first at the macro

level and then at the micro, comparing the micro-dynamics in the real data and in the

simulation.

Most of the existing work in the field looks for an agreement between the

empirical distributions and that given by the models through measures of the

accuracy of the model. This, in fact, seems sufficient in the case of a static

model. When adding dynamics to the model, however, one has to consider not

only the change in the distribution but the temporal variation of the entities as well.

Recently, Batty (Sornette 2000; Batty 2006) proposed the rank-clock representation

to study the micro dynamics of systems with entities that appear to generate

homogeneous rank size distributions at the macro scale. This representation

follows the dynamics of individual entities within the system and here we use it

to check the validity of our work in terms of micro dynamics.

In this chapter, we use the Israeli system of cities as our case study in examining

the validity of our simulation. In the first part of the chapter, we compare the macro
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dynamics of the Israeli system of cities from 1950 to 2005 at seven snapshots of

time showing that the temporal change in the distribution is related to the variation

of the number of cities in Israel through time. In the second part of the chapter, we

compare the micro dynamics of the simulation with the Israeli system of cities from

1950 to 2005. Sections 3.2–3.6 concern the macro dynamics of the simulation and

the real system of cities while Sect. 3.7 presents their micro dynamics.

In the next section, we present the new exponent a and its correlation with the

distributions. In Sect. 3.3, we then cover the data concerning the cities of Israel

followed by an outline of the model (in Sect. 3.4) and its application to Israeli cities

(in Sect. 3.5). In Sect. 3.6, we present the results of the model at the macro level

while Sect. 3.7 concerns the micro dynamics of the simulation in comparison to the

real system of Israeli cities. Finally we discuss the results of the model, introducing

the rank clock analysis which makes comparisons between the model and the real

data. Surprisingly, the model provides a rather good description of the distributions

at the macro level, but fails to give a sufficiently accurate analysis of the individual

changes in the entities at the micro level.

3.2 A New Exponent

Recently, we proposed a phenomenological approach (Limpert et al. 2001) when

analyzing the size distribution of entities. We based our approach on the three

equivalent representations of the size distribution (Benguigui and Blumenfeld-

Lieberthal 2007):

l The density function DðSÞ which gives the number of entities with size between

S and Sþ dS.
l The cumulative function PðSÞ which gives the number of entities with a size

larger or equal (or smaller) than a given S. These two functions DðSÞ and PðSÞ
can also be expressed in relative terms. The two relative functions do not give

the number of entities but rather the percentage (or probability) of the total

number of entities.
l The rank size representation which is transformed into the logarithm of the size

(y ¼ ln Size) and plotted as a function of the logarithm of the rank (x ¼ ln Rank).

The function y xð Þ is called the rank-size curve. When the relationship between

the size and rank of the entities can be expressed by the function y � xn where n
is a power of the function, the distribution is referred to popularly as Zipf’s law

after Zipf (Batty 2007) who presented a graphical and rather trenchant summary

of such relationships This relationship is represented pictorially by a linear

equation plotted as a double logarithmic graph.

Our proposed equation concerns the function y xð Þ. We propose to analyze the rank-

size curve for a system of entities using the following expression:

y ¼ y0 � H 1� að Þm bþ H 1� að Þx½ �a; ð3:1Þ
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where y ¼ yðxÞ: H 1� að Þ is the Heaviside function,1 equal to �1 if a < 1 and to 1

if a � 1. y0; b; and m are parameters and the exponent a can be smaller, equal or

larger than 1. In the case a ¼ 1, Zipf’s law is recovered, that is, there is a linear

relation between x and y. When a 6¼ 1, the curve y xð Þ has different shapes following
the value of a which we call the “shape exponent.” This means that each value of a
defines a particular distribution.

3.3 The Cities of Israel

We have analyzed the rank size distribution of all the settlements in Israel from

1950 to 2005 (Zipf 1949) and found that qualitatively, they all have the same

shape. In Fig. 3.1 we present the rank-size curves of all the settlements in three

selected years 1961, 1983, and 2005. These three curves have the same shape and

the only observed differences are the shifts of the curves upwards with time. The

distribution demonstrates discontinuity around the value of population equal

Fig. 3.1 The rank-size distribution of all the settlements in Israel in the years: 1961, 1983, and

2005. In the inset: the rank size distribution of all the settlements in Israel with population larger

than 1,000

1A Heaviside function is a discontinuous step function which is equal to zero for a negative

variable and one for a positive variable.
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to 1,000. In other words, the distributions can be divided into two parts around this

value. Based on the above, we defined the lower tail of the distribution for all

settlements with population smaller than 1,000 for the entire period. The inset in

Fig. 3.1 presents the rank size curves for the years 1961, 1983, and 2005, after the

exclusion of their lower tails (based on settlements with populations smaller than

1,000).

Similar to several other cases (Limpert et al. 2001), the fit of the distributions to

(3.1) is very good (R2 > 0.97) as demonstrated in Fig. 3.1. Figure 3.2 presents the

variations of the exponent a with time. The exponent a is larger than 1 in 1961 and

changes to values lower than 1 in the following years. In Fig. 3.3 we show the

change in the number of cities (settlements with population larger than 1,000) as a

function of time. The data fits a quadratic equation with good precision.

3.4 The Model

The model we have used is based on a computer simulation that we have recently

presented (Limpert et al. 2001; Benguigui and Blumenfeld-Lieberthal 2006). We

begin with N0 cities with population equal to 1. At the first stage, each city grows by

Fig. 3.2 The variation of the “shape exponent” a between the years 1961 and 2005 for the Israeli

system of cities
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random multiplicative growth: one city is chosen at random and its population is

changed from step T to step T þ 1 as:

S T þ 1ð Þ ¼ g S Tð Þ; ð3:2Þ

where g is a random variable uniformly distributed between gm < 1 and gM > 1

such that the mean

gm þ gM
2

is fractionally greater than 1. At the second stage, if the population of a city

decreases below 1, the city disappears from the system. At the third stage, a new

city is added to the system with the population equal to 1 after K steps. As for the

initial cities, if the size of the new city decreases below 1, it disappears from the

system.

The distributions that this model yields are dependent on the number of steps T
(or in other words, the total growth time) and on the rate of introducing new cities K
(for a given g distribution). If K > 300 and is constant, the exponent a changes as a

step function when, for small T, it is smaller than 1 and for large T it changes to

values larger than 1. For smaller values of K, the exponent a is larger than 1 for

small T and becomes equal to 1 for larger T. A significant property of the model

Fig. 3.3 The change in the number of cities (with population larger than 1,000) between the years

1961 and 2005 for the Israeli system of cities
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involves its statistical basis. For given values of T and K, the results of the model

do not always yield the same parameters. When fitting the resulting rank size curves

of the model to (3.1), a distribution of such parameters emerges.

An important issue in the model is the definition of the time t. It is not equal to
the number of steps (T) since the number of steps (on average) separating two

consecutive choices of the same city in the growth process is dependent on the

number of cities. The unit of time is chosen as the mean number of steps separating

two consecutive choices of the same city. For a number of steps DT, the interval of
time Dt is equal to DT

N or if we consider the continuum limit:

dt ¼ dT

N
: ð3:3Þ

If we add to this the rate of creating new cities, we get:

dN

dT
¼ 1

K
: ð3:4Þ

If K is constant, it is not difficult to show from (3.3) and (3.4) that the variation of

the number of cities with time is exponential, and is given by

N ¼ psN0 exp
t

K

� �

where ps is the probability of a new city surviving, with ps approximately equal

to 0.27.

3.5 Application of the Model to Israeli Cities

In this section, we show how we use the model to interpret the system of cities in

Israel. Our goal is to use the model in order to determine the city size distribution or

more precisely the rank-size function for Israel’s real system of cities. Since we

know the function NðtÞ is quadratic, we had to find the function KðTÞ which fits this
result. For that, the following system of equations needs to be solved:

dt

dT
¼ 1

N
; ð3:5aÞ

dN

dT
¼ 1

K
; and ð3:5bÞ

N ¼ N0 þ N1 t� t1ð Þ2: ð3:5cÞ
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Analytic solutions to this system of equations are complicated, and thus we propose

to find an approximate solution using a heuristic approach. After some systematic

trial and error iteration, we generated the following expression:

K Tð Þ ¼ K0 þ K1T
1=3;

which yields good results, as indicated below. Based on this expression, it is

possible to show that NðtÞ is given by:

N ¼ N0 � 6K2
0

K3
1

� �
þ 3

2K1

� �
T1=3 � K0

K1

� �2

þ 3K2
0

K3
1

� �
ln K0 þ K1T

1=3
� �

; ð3:6Þ

where N0 is an integration constant. Considering that the log term in (3.6) changes

very slowly in its dependence on T, it is possible to add it to the constant term and

get a good approximation using the following simple expression for N:

N ¼ N0 þ N1 T1=3 � T1ð Þ1=3
h i2

; ð3:7Þ
where

T
1=3
1 ¼ K0=K1:

The constants N0 and N1 in (3.7) are dependent on the coefficients K0 and K1 and

also on the integration constant.

To find the relation between the time t and the number of steps T, we integrate
(3.5a) and (3.7) to get:

t ¼ u

N1

þ By�1 u

ffiffiffiffiffiffi
N1

N0

r� �
þ C ln N0 þ N1u

2
	 
þ t0; ð3:8Þ

where

u ¼ T1=3 � T
1=3
1

� �
:

In (3.8), t0 is an integration constant, and the coefficients B and C are dependent on

K0; K1; and N0; N1.

It is possible to consider the second and third terms on the right hand side of (3.8) as

constants: the log term because it changes very slowly in its dependence on N and

hence on T; and the y�1 term because its argument is larger than 1 (considering the real

values of the parameters). The final result suggests that t is linearly dependent on T1=3.

One can choose the integration constant such the model can be written as follows:

t ¼ D T1=3 � T1ð Þ1=3
h i

: ð3:9Þ
From (3.7) and (3.9), it can be deduced that the dependence of N on t is indeed the

quadratic equation we expected.

40 L. Benguigui et al.



In the following steps, we consider K as constant, choose an initial state for

which the number of cities is roughly 150 (see Fig. 3.3) and select the exponent a as

approximately 1.6 (corresponding to the values of a in 1961 as seen in Fig. 3.2). We

found that this corresponds to a state with 50 initial cities, T ¼ 45;000 steps and

K ¼ 80. For larger values of T, we used the following function to describe K as a

function of T:

K ¼ K0 þ K1T
1=3

such that the value of

T1 ¼ K0=K1ð Þ3

is near the value of T in the initial state. Then, we ran the simulation for several

values of T where for each T we found the value of N. We also determined the time

by graphical integration of the function N�1 vs. T, and we plotted the rank-size

curve determining the shape exponent a by fitting the curve using (3.1).

3.6 Macro Analysis of the Model: The Rank Size

Curve and the Number of Cities

The outputs of the model are presented in Figs. 3.4–3.8; Fig. 3.4 presents the

relation N vs. T1=3 where it is clear that the relation in (3.7) is indeed verified.

The relation t vs. T1=3 is presented in Fig. 3.5 where a linear relationship between

Fig. 3.4 Results of themodel: the number of citiesN vs. T1=3, where T represents the number of steps
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Fig. 3.6 Results of the model: the number of cities N vs. the time t. Note that the data fits a

quadratic equation

Fig. 3.5 Results of the model: time t vs. T1=3, where T represents the number of steps
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Fig. 3.8 Results of the model: the rank size distribution of the cities in the model on a log–log

graph

Fig. 3.7 Results of the model: the “shape exponent” a vs. the time t
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time and T1=3 is also verified with the same value of T
1=3
1 found in Fig. 3.4.

Figure 3.6 shows N vs. t where the quadratic relation is also found. Note that the

values of N and of the coefficients N0 and N1 found in the model, are very close to

the ones in the real data. In Fig. 3.7 we present the exponent a vs. t. Here too, there
is a very good quantitative agreement between the model and the real data. Finally,

we show the rank-size curves of the model in Fig. 3.8. These curves are qualitatively

very similar to the ones that resulted from the real data. Based on the above, we

think the model provides a good description of the evolution of the Israeli

system of cities (but clearly only when considering cities with populations larger

than 1,000). More particularly, the qualitative change in the distribution (that is

in the exponent a) is a direct consequence of the variation of the number of

cities with time.

3.7 Microdynamics: The Rank-Clock Analysis

So far, we have focused only on the macro dynamics of the Israeli system of cities.

This means that we ignored the changes that appear within the positions (or ranks)

of individual cities with time, and looked only at the rank size distribution of

the entire system. In this section, we follow Batty (2006) and present an initial

analysis of the micro dynamics of both the Israeli system of cities and the above

simulation model.

We start with the real data of Israeli cities (and settlements) with populations

larger than 5,000 from 1950 to 2005 (Batty 2007). The number of these settlements

increased from 34 in 1950 to 172 in 2005. Figure 3.9 presents the rank clock of

Israel for these years. The cities are colored according to their rank and the time

they first entered the system with red representing cities which enter first through a

spectrum of color – red to yellow to green to blue – for the cities that enter last.

The micro dynamics of this system of cities presents little irregularity, is mostly

stable in structure and shows a system that is rapidly growing with cities rising

rapidly up the ranks but few cities falling out. We can conclude all this in rather

impressionistic terms by simply viewing the color balance of the clock and

comparing this to a system like the US where there is much greater volatility

into and out-of the top ranked cities. There are only a few cases where cities move

toward the center of the rank clock over this period while the cities that existed in

the early stages of the development from 1950 remain the largest cities in the

system (with cities entering earlier nearer the center of the rank clock). Few cities

that were introduced in later years manage to increase significantly and move to

the center of the clock. We can define a number of measures or parameters that

characterize the clock, hence the system of cities. First, the rank shift is a

parameter which indicates the stability of the dynamics of individual entities in

the system. It is defined as:

diðtÞ ¼ riðtÞ � riðt� 1Þj j; ð3:10Þ
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Fig. 3.9 The rank clock representation of the Israeli system of cities (a) between the years 1950

and 2005 and (b) with some specific cities also plotted
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where riðtÞ represents the rank of city i at time t, and riðt� 1Þ represents the rank of
city i at time t� 1. Obviously, this expression is valid only if the examined city is in

the system at both times t and t� 1. The average shift for the entire system is:

dðtÞ ¼
P

i diðtÞ
N

; ð3:11Þ

where N is the number of entities in the system. The average shift for the entire

period studied is defined as:

d ¼
P

t dðtÞ
T

; ð3:12Þ

where the sum is the average shift of the system at different times and T is the entire

period.

In the Israeli system of cities, d was found to be 5.4 which resembles the values

of the same parameter for the USA and the UK. This means that on average, each

city in the system changes its location in the rank list by 5.4 places during the

studied period. When analyzing these changes in rank, we can see that most cities in

Israel presented very few changes in their ranks (see Fig. 3.9), while a small number

of cities changed their ranks considerably. These cities can be divided into three

groups, based on the reasons for their growth; the first group consists of orthodox-

religious settlements, characterized by high annual growth rates (�10%), which can

be explained by the high volume of birth in the orthodox community. El’ad is an

example for such a settlement. It was introduced to the system only in the year 2000

and within the next 4 years changed its rank from 144 to 64 (di tð Þ ¼ 20).

The second group includes several settlements that were united (by government

decision) into one municipality. Following this unification, some of these settle-

ments disappeared from the system, while others increased systematically and

moved towards the center of the rank clock showing rapid change reflected in the

steepness of their slope. Zoran which was united with Qadima in the year 2003,

changed its rank from 152 to 87 within one year (di tð Þ ¼ 65!). Lastly, the third

group consists of the city of Modi’in, the only city in Israel which was completely

planned (in terms of its located population) to be a large city between Tel Aviv and

Jerusalem. Modi’in’s rank changed from 88 to 23 between the years 1997 and 2005

(di tð Þ ¼ 9:3).
When analyzing the results of the model for the Israeli system (see Sect. 3.5),

one finds d ¼ 14:8 which is considerably larger that the value of d for the real data

describing the Israeli system of cities. Figure 3.10 presents the rank clock for this

model and based on this, the findings suggest that the model does not provide a

good description for the micro dynamics of the system. Even before calculating the

value of d, we can see that the rank clock is different from the one of Israel’s real

data as the colors in the clock are mixed and present no organized pattern. However,

the calculated value of d ¼ 14:8 is similar to the case of the top city populations in

the world data set from classical times to the modern day. This value is relatively
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high and indicates that the individual entities of the system presented great changes

in their sizes and ranks over time.

The importance of this comparison is that it shows that even though the model

provides a very good description for the macro dynamics of the Israeli system of

cities, it does not explain their micro dynamics. It appears that further work needs to

be done in order to develop a model that will provide a good description for both the

macro and micro dynamics of a system and this would probably have to include

many more specific spatial factors which characterize the urban development of

Israel during these years. The reason for that lies in the fact that the micro dynamics

of the Israeli system of cities were affected by various reasons (such as government

regularities, as described earlier) that cannot be imitated by the current model. The

model, which is a complex system, is based on many random variables that are all

dependent on one another. In its current version, it is very difficult to depict the

exact variable that controls each aspect of the changes in the micro level of the

system. Thus further work is needed in order to calibrate the model to fit the micro

dynamics of the Israeli system of cities.

Fig. 3.10 The rank clock representation of the model results at equivalent time points to the real

evolution in Fig. 3.9
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3.8 Conclusions

We have presented an adaptation of a simulation model for the growth of entities in

the Israeli system of cities so that we might examine the dynamics of the distribu-

tion through time. Our approach is different from most other approaches to city size

distributions in particular and size distributions in general in that our focus is upon

the micro dynamics as well as the macro statics of cross sectional city size

distributions. We also applied our multiplicative growth model to the cities of

Israel and were partially successful. When considering the ensemble of cities at

the macro scale, that is their rank size distributions, we get a convincing explanation

of the time variation of these distributions which is dependent upon the rate

of creating new cities. However, when studying the micro dynamics of the system,

that is the evolution of individual cities over time, using the rank-clock representa-

tion, it is clear that the relative variation in size and rank of the cities (average shift)

is considerably larger in the model than in the real data. Hence, we believe there is

an inconsistency between the macro and micro aspects of the analysis.

We believe the model presents good results for the description of the macro

dynamics of the system but fails to describe its micro dynamics, thus it needs to be

extended. One option, suggested by Havlin (Private communication), is to consider

the growth of cities with interactions or correlations among themselves. Such

extensions would take the model to one dealing with systems of cities and their

interactions which have meaning in terms of trade and other transportation flows. In

the current model the growth of each city follows (3.2) alone, that is each city grows

independently of every other. The proposal which we will follow in future research

is to introduce enough but not too rich a set of interactions between cities such that

the growth of any one city will be dependent on the growth of others.

Finally, we wish to emphasize that even the known “static models” present some

evolution until they obtain the desired distribution. Until recently (Batty 2006), the

evolution of the individual entities was hardly investigated but it seems necessary to

do so in order to understand the evolution of systems of entities as a whole. In other

words, we believe that dynamics has to be introduced in all models that study the

distribution of sizes. In this chapter, we have cast doubt on the standard scaling that

represents the key feature of complex systems, elaborating this to produce a more

general model of size distributions. There are still many puzzles involved in the

search for key signatures of city systems but we have illustrated that the basic

principles of scaling still hold notwithstanding that the models we have generated

go beyond the simplest form of power law scaling.
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1Chapter 4

2A Morphogenetic Perspective on Spatial

3Complexity

4Transport Costs and Urban Shapes

5Francesca Medda, Peter Nijkamp, and Piet Rietveld

64.1 Introduction

7A modern city is a complex entity characterized by a plurality of behaviour,

8volatility of interactions, and mobility of residents. It is in a permanent state of

9flux due to dynamic forces that impact on its functional structure and its spatial

10configuration (Ingram 1998). Urban dynamics often mirrors fundamental changes

11in a transport system and its spatial spillovers (Crane 2000; Handy 1996). The

12externality dimensions of urban growth often relate to congestion and detrimental

13environmental effects due to car usage (air pollution, noise, accidents); for this

14reason, a proper investigation of evolving urban forms, and their patterns of change,

15could potentially be a means of understanding and combating urban sprawl, reducing

16automobile dependence, increasing the use of alternative transport modes, and sup-

17porting pedestrian mobility.

18In the literature we see that the relationship between transport and urban form

19has been studied extensively. A number of analyses (Cervero and Gorham 1995;

20Friedman et al. 1994; Newman and Kenworthy 1989) investigate the interactions

21between urban form and transport by using aggregate indicators or measures such

22as urban density or urban land rent in relation to trip frequency or average trip

23lengths. Their approaches give rise to significant results between an urban transport

24system and a general characterization of urban form, and may therefore support

25land use policies which might effectively lead to different overall travel patterns

26in the city. Nonetheless, they neither convincingly address the problem of how

27specific characteristics of urban forms correlate with different travel patterns nor

28do they illustrate how urban form influences individual decisions. For example,

29multivariate regression in disaggregate models (Boarnett and Crane 2001), which

30considers socio-economic and travel characteristics of individuals, yields mixed
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31 results on the relationships between urban form and transport, implying that a

32 modification of the urban form (for example from pre-World War II traditional

33 communities to post-World War II dispersed communities) does not always signifi-

34 cantly correspond to realized or anticipated changes in travel behaviour. When

35 investigating whether there are possible benefits a city derives from an improve-

36 ment in urban transport systems in relation to land rents, Mohring (1993) concludes

37 “regrettably, the answer is very little”.
38 The relationship between urban form and transport, and in particular travel

39 behaviour, is markedly complex, because it depends on the characteristics of the

40 urban form (functional–geographic structure of the city, activity-based zoning, etc.)

41 and the characteristics and purposes of the travel under scrutiny (working, shop-

42 ping, by car, by mass transit system, etc.). The objective of this work is to analyse

43 the relationship between urban form and collective transport systems by considering

44 the behaviour of two types of transport costs: the external cost of transport and the

45 private transport cost. Both costs influence individual choices of households in

46 relation to location, and thus will impact on the morphologic structure and dynamics

47 of the city and its shape.

48 Our proposed methodological–conceptual approach applies the essentials of the

49 morphogenetic algorithm based on Turing (1952), which we deploy to study the

50 effects of transport costs on city shape changes. Alan Turing, who encrypted secret

51 codes during World War II, and who is one of the founders of modern computer

52 science, defined near the end of his career an algorithm that analyses the formation

53 of spatial concentration patterns which occur due to different diffusion rates of

54 considered “substances”. What interests us about this formulation is his finding

55 that, contrary to our intuition, diffusion is no longer associated with smooth

56 processes, but is instead related to the creation of peaks of concentrated “sub-

57 stances”. The model we develop in our study assumes a linear city where distance

58 as such is not relevant in the household’s choice of a residential location. These

59 modifications of the standard urban economic model have led us to the definition

60 of a model in which time – and spillover effects of the variables – take precedence

61 in the urban form process. Although our model as defined here is mathematically

62 more complicated than the standard urban economics approach, it can nevertheless

63 adequately capture economic processes such as transport cost interactions, and

64 provide further insights into the dynamics of this urban phenomenon.

65 Because we are developing a dynamic model, the variables determining growth

66 must have an accumulative trend and must therefore increase over time. We also

67 assume that the variables which activate growth not only have an accumulative

68 trend, but that they also determine the increase of the variables which inhibit
69 growth. Stability is achieved when economic variables, which are increasing and

70 therefore determining growth, are constrained by the inhibitor variables. Importantly,

71 if a variable inducing growth is defined in the morphogenetic algorithm of

72 reaction-diffusion as the activator of growth, the definition of the inhibitor

73 may not be so straightforward. The difficulty of the definition arises because

74 the inhibitor does not inherently inhibit growth; it is a variable that may or may

75 not inhibit growth through its interaction with other functions. This complexity
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76aspect is fundamental in our urban economics context, whereby the same

77variables may both stimulate and halt growth.

78In our analysis we first propose the urban dynamic model based on the morpho-

79genetic algorithm and then simulate how the interrelationship between external and

80private transport costs have direct effects on urban form.

814.2 Transport and Urban Morphology

82As in the model defined in Medda et al. (2006), we study the formation of the urban

83shape but we assume a linear city. We divide the city into i¼1, . . . , p districts.

84Households in the city are identical, each has an income Y, and each chooses a

85quantity of housing space of which the rent, R, is an aggregate compound function

86of the number of people living in the district. All households are assumed to travel

87along the city from district to district. Their total number is equal to N; and the

88maximum number of people living in each district is equal to N/p, the starting point
89of our simulation. We assume a fixed urban space occupancy per person, and the

90maximum density in all districts is fixed and equal to D. If at some stage a district

91were to attract and hence have to accommodate a number of people greater than

92N/p, the district would require a larger area for its residents in order to maintain the

93same density level D, and thus it would need to expand. We assume that the growth

94of our linear city is outward and in one direction.

95We assume a mutual dependence between transport cost and population distri-

96bution and will now discuss the composition of these transportation costs. We

97assume that the External Transport Cost (congestion, environmental costs, safety

98costs) (ETC) and the Private Transport Cost (time and money) (PTC) together form

99the Total Transport Cost (TTC).

100The External Transport Cost function is:

ETCi ¼ Ki þ f ðni;tÞ ð4:1Þ

101where Ki ¼ a fixed external sunk cost related to air and noise pollution and other

102intrusion and disturbances caused by the collective use of the transport system;

103f(ni,t) ¼ the congestion cost; this cost comprises the variable travel cost related to

104using the transport system when the number of people living in a particular district

105i is ni (at time t). Travel cost increases when the number of people in the district

106increases; it therefore includes a congestion cost component.

107The Private Transport Cost function is:

PTCi ¼ Hi þ cðFðni;tÞÞ ð4:2Þ

108where Hi ¼ the fixed costs (for example fare or tax) related to use of the collective

109transport system; c(F(ni,t)) ¼ the cost, without congestion, (the congestion cost is
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110 incorporated in (4.1)), of the total travel time for the number of people living in a

111 given district i, including waiting time. This cost is an indirect function of the

112 standard travel time or frequency F of the transport service, offered by the city. We

113 assume a supply response system, which means that the higher the number of

114 people living in a particular district i at time t, the higher will be the supply of

115 infrastructure or the frequency of transport services. This implies that, as the

116 transport system supply or the frequency of transport increases, total travel time

117 will be lower, and thus the total cost related to travel time will decrease.

118 The household in a specific district i will minimize its total transport cost under

119 a given budget constraint as follows:

Min TTCi ¼ ETCi þ PTCi ð4:3Þ

120 subject to: Yi> TTCi + R(ni,t), where R(ni,t) is the rent value, a direct function of the
121 households living in the given district i at time t. The higher the number of people

122 living in the district, the higher will be the rent cost for the household.

123 The relationship between the two transport costs will now be examined through

124 the analytical form embodied in the Turing algorithm, which was developed to

125 study the spontaneous generation of spatial patterns in morphogenetics. The algo-

126 rithm, more commonly known as the reaction–diffusion model, describes how two

127 variables operating in an antagonistic way produce a spatial pattern formation. We

128 may interpret our model from this morphogenetic point of view and observe that the

129 two types of transport costs act as “activator” and “inhibitor” of urban growth.

@T1
@t

¼ R1 T1; T2ð Þ þ D1r2T1 ð4:4Þ

130 and

@T2
@t

¼ R2 T1; T2ð Þ þ D2r2T2 ð4:5Þ

131 where T1 ¼ External Transport Cost (ETC) (inhibitor); T2 ¼ Private Transport Cost

132 (PTC) (activator); R1(T1,T2) and R2(T1,T2) identify the mutual dependencies

133 between the external transport cost (inhibitor) and the private transport cost (activa-

134 tor). Both costs are functions of the number of people living in the district, ni,t, thus
135 R1 and R2 are functions of ni,t. Additionally, R indicates how, by changing the

136 activator (PTC), the inhibitor will react; and because the effect will be a movement

137 of people along the city, the antagonistic behaviour of these two costs represents the

138 origin of urban form change. D1 and D2 are the diffusion coefficients which account

139 for the effects of the transport costs in the city, D2 � D1; the Laplacian operator,

140 r2 � ∂2/∂x2, describes the processes of diffusion in space.

141 After having defined the model in the form of an inhibitor–activator system, we

142 must ensure its stability. The initial condition is a homogeneous steady-state

143 pattern. If this status is perturbed by a change in transport costs, which is illustrated
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144more precisely by sinusoidal perturbations, we need to know whether the “sinusoi-

145dal perturbations will die away and dampen back to the flat, spatially homogeneous

146steady-state, or if they will amplify and create a high-amplitude pattern” (Kauffman

1471993). By imposing the conditions of Lyapunov’s stability theory, we can verify

148that the eigenvalues of the system are positive, and are therefore associated with a

149sinusoidal perturbation which grows until it manifests a spatial pattern formation.1

150In particular, an increase in private transport cost in a specific district of the city will

151have a direct effect on the number of people leaving that district. The movement of

152peoplewill trigger the external transport cost change, whichwill have a corresponding

153impact on the people deciding whether to stay or to leave this specific district. Since

154we have assumed a constant urban density, these two effects will modify the shape

155of the district. Moreover, the two costs behave as two positive “waves” that diffuse in

156the city; their effect will have impacts on all the urban districts, thus modifying the

157whole urban shape. These two diffusion waves will decay over time, reaching a

158new urban form.

1594.3 Numerical Solutions

160The interactions between the variables and, in particular the two transport costs, can

161be described through the sand dune paradox. “Naively, one would expect that the

162wind in the desert causes a structure-less distribution of the sand. However, wind,

163sand and surface structure together represent an unstable system. Sand deposits

164more rapidly behind a wind shelter. This increases the wind shelter which, in turn,

165accelerates the deposition of more sand – a self-enhancing process’ (Meinhardt

1661998). The simulations of our urban complexity model based on transportation and

167land use are conducted through the use of the software program SP (Meinhardt 1998).

168The equilibrium conditions are at t¼0, the Total Transport Cost (TTC) is given

169and constant for all districts and the rent value is equal across all districts. At t¼1,

170the fixed Private Transport Cost Hi in district i (at the extreme left corner of the

171linear city) is assumed to increase (Fig. 4.1).

172Therefore, our urban system tends to move away from the original equilibrium

173states, while the two transport costs will respond in mutually opposing ways. In

174Fig. 4.1 we have assumed that Hi
0 = 0.06 increases to Hi

1 ¼ 0.082 in the specific

175district i which is at the far left side of the linear city (we will assume in all three

176simulations that the shock resulting from changes in the transport cost always

1See for a complete proof, Babloyantz and Hiernaux (1975), Nicolis and Prigogine (1977).
2We start by considering a perturbation which reaches after a period of time a stable state of an

homogenous periodic pattern in the linear city. In this case the following variables have values:

H0 ¼ 0.06; K0 ¼ 0.00; D1
0 ¼ 0.01; D2

0 ¼ 0.35.
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177 happens in this specific district i). The top graph in Fig. 4.1 identifies how, with an

178 increase in the fixed Private Transport Cost, people will relocate over a period of

179 time in new districts, and in particular create four major expansions in the city. The

180 bottom graph in Fig. 4.1 is the reaction mechanism of the change in PTC. The

181 number of people in each district is a function of the External Transport Cost (ETC)

182 in this case. The urban formation related to ETC is antagonistic to the urban

183 formation determined by PTC. As we can observe, the pattern does not diffuse in

184 the entire city, but the impact of the increase of the fixed Private Transport Cost

185 affects only one part of the city.

186 Let us now assume an increase of the fixed PTC, Hi, and also an increase in the

187 fixed ETC, Ki, that is, Hi
0¼ 0.06 increases to Hi

1¼ 0.08 and Ki
0¼ 0.00 increases to

188 Ki
1¼ 0.2. In this case we have multiple interactions, the households move along the

189 linear city, and the effect, rather than to impact only a few districts, is in this

190 simulation diffused throughout the city (Fig. 4.2).

191 We have assumed that the rate of diffusion of the inhibitor, that is the External

192 Transport Cost, is higher than the rate of diffusion of the activator, the Private

193 Transport Cost. We now assume a decrease in the value of the rate of diffusion of

194 the activator fromD1
0¼ 0.01 toD1

1¼ 0.003, while maintaining the value of the rate

Fig. 4.1 Dynamic pattern due to the increase of the fixed Private Transport Cost (PTC). The

horizontal axis in both graphs represents the location of each district in the linear city. The vertical

axis on the top graph represents the number of people living in the district in relation to the

activator, that is PTC. The vertical axis of the bottom graph represents the people living in the

district in relation to the inhibitor, that is External Transport Cost (ETC)

56 F. Medda et al.



195of diffusion of ETC, that is, D2
0 ¼ 0.35 ¼ D2

1. In this case we observe in Fig. 4.3

196that the number of people living in certain districts increases, reaching maximum at

197the expense of the districts nearby. The sharpness of these urban growth peaks

198resulting from PTC is offset by urban growth in the “troughs” of the peaks due to

199the ETC.

200These illustrative examples show how a transport improvement can determine

201a direct impact upon an entire urban shape. Since we analyse a variation in the

202number of people living in the district, we are assuming a consequent change in

203urban land use. Our modelling experiment highlights three consequences, the first

204being that a transport improvement can, according to the hypotheses of our model,

205determine effects not only in the area where the improvement is located, but also

206through spill over effects in distant areas. The second consequence we can derive

207from the model is that transport improvements in different locations in the city can

208determine variations in the initial urban shape and thus the formation of a new

209urban shape. The third consequence is the connection between the two transport

Fig. 4.2 Dynamic pattern due to the increase of the fixed Private Transport Cost (PTC) and of the

fixed External Transport Cost (ETC). The horizontal axis represents the location of all the districts

in the linear city. The vertical axis in the top graph represents the number of people living in

the district in relation to the activator, that is PTC. The vertical axis of the bottom graph represents

the people living in the district in relation to the inhibitor, that is External Transport Cost (ETC)
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210 costs, in particular the reactive mechanisms of the ETC in relation to changes in

211 PTC. An increase in PTC determines an increase in the external cost related

212 to travel.

213 4.4 Conclusion

214 We have argued that the city is analogous to other systems in biology, mathematics

215 and chemistry, in that it is a complex self-organized system which evolves towards

216 order through the modification of its components. By order we mean a status

217 achieved through balance and collaboration of the various components.

218 If we consider the urban shape as a result of a selective process, we can study this
219 process by means of a dynamic urban growth model that examines the spontaneous

220 generation of urban spatial patterns. The simple model we have developed depicts

221 urban shape changes under the impact of transport costs. We have analysed a linear

222 city, subdivided into various districts, and one (collective) transport system.

Fig. 4.3 Dynamic pattern due to the increase of the fixed Private Transport Cost (PTC) and of the

fixed External Transport Cost (ETC), and a decrease of the rate of diffusion of the activator. The

horizontal axis represents the location of all the districts in the linear city. The vertical axis in the

top graph represents the number of people living in the district in relation to the activator, that is

PTC. The vertical axis of the bottom graph represents the people living in the district in relation to

the inhibitor, that is the External Transport Cost (ETC)
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223The innovative aspect of our urban model in relation to the more standard urban

224economics approach is the dynamic framework through which we examine the

225problem of spatial urban growth and the two specific mechanisms that relate the

226pertinent variables: an accumulative trend of the variables and a diffusion process

227in their variation. These two elements, which were lacking in previous urban

228economics approaches, assume a fundamental role when we consider the type of

229impact that a collective transport system improvement can generate. We have

230demonstrated that such an impact not only occurs in the surrounding area where

231we have the improvement, but also in areas distant from the improvement point.

232The impact area of a transport improvement is therefore not limited to a pre-defined

233area calculated by iso-transport cost curves, but actually includes the entire city.

234The final stable status is the result of a dynamic process where antagonistic effects,

235that is the activator and the inhibitor, operate in all points throughout the city. The

236numerical simulation experiments of three illustrative simple case studies have

237highlighted this selective process.

238To achieve these results we have imposed very restrictive assumptions, but

239despite these restrictions, we have nevertheless been able to formulate a model

240that reflects interesting and relevant urban economic mechanisms and offers us a

241fuller picture of the process of urban pattern formation. We are confident that such

242an approach can be the basis for further methodological and empirical inquiry into

243the relationship between economic processes and urban spatial structure.
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Chapter 5

Algorithmic Complexity and Spatial Simplicity

Rajendra G. Kulkarni, Roger R. Stough, and Kingsley E. Haynes

5.1 Introduction

Recently the field of complexity science has emerged as an amalgamation of many

different areas borrowing ideas and attracting researchers from the physical,

biological and social sciences (Holland 1992; Bak 1996; Kohonen 1997; Fabian

1998; Wolfram 1994; Kauffman 2000). Of late, much of this interdisciplinary

research has been facilitated by ideas and tools borrowed from another field,

namely, computer science.

Merging of complexity with computer science has provided researchers with a

variety of tools to test new ideas and theories and carry out simulations that have

offered greater insight into a variety of properties of how complex adaptive

behavior evolves and how simple rules guiding interactions at the micro level

give rise to complex macro behavior as well as to identifying the properties of

self-organization and emergent behaviors.

In this chapter we discuss another aspect of computer science that is slowly

making inroads into complexity research, namely the field of Algorithmic com-

plexity also known as Kolmogorov complexity (Chaitin 1966). Applications of

Algorithmic complexity may offer new insights into problems such as:

1. How to measure complexity?

2. Is such a metric fixed or does it change? And in that case

3. Is there a continuum between complexity and simplicity?

Of the three questions posed in the Introduction, two are addressed in this

chapter. The third question of determining if there is a continuum between com-

plexity and simplicity is much more difficult and beyond the scope of the current

chapter. However, we may be able to point toward a path that addresses this issue

and we hope to respond to that question in the future.
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5.2 Background

Let us begin with an example from the field of astronomy that illustrates in an

exaggerated sense how a seemingly complex problem becomes much more accessible

and hence simpler. Much before the age of the renaissance, for more than a millennium

and half, the field of astronomy was dominated by a complex dichotomous belief

system of sublime heavens and material (corrupt) earth. The mechanics of planetary

motions was described by a very convoluted system of concentric shells with a

stationary earth at the center (http://abyss.uoregon.edu/�js/glossary/kepler.html).

However that complex and inscrutable geocentric view changed into a much

more accessible and hence simpler view with a series of discoveries by Copernicus,

Kepler, Galileo and Newton. The field of astronomy was transformed from a

mysterious, very complex one into a field that gave rise to unified theories of

planetary motions, a field that was more accessible and hence simpler. Newton’s

laws of motion based on a few principles (postulates) have universal applicability

although under a given set of constraints. When the relative speed of objects

approaches the speed of light, a different set of laws and constraints formulated

by Einstein become applicable. And in the realm of the subatomic universe

quantum laws come into play.

The main point of the above illustration is to stress how a complex system can

change into a less complex one with the introduction of empirically tested theories

that are based on a set of axioms; and laws derived from these axioms. A brief

discussion on this point follows.

5.3 Complexity to Simplicity

Suppose one discovers (invents) a solution ‘s’ for a complex problem ‘p’ based on a

theory ‘T’. The theory ‘T’ has been specified by a set ‘A’ of axioms, a set of rules

‘R’ derived from these axioms. Thus with the help of theory ‘T’ a complex problem

may become less so. The process is similar to discovering or inventing algorithms

to solve a specific problem.

However, it may happen that one discovers new aspects of problem ‘p’ that

cannot be solely explained with theory ‘T,’ that is, ‘T’ appears to be incomplete and

suddenly the less complex problem ‘p’ appears to be more complex. To address the

new issues, theory ‘T’ needs to change. This could be accomplished by adding new

axioms and rules or by completely abandoning this theory. In the later case, one can

devise a new theory ‘T1’ with a new set ‘A1’ of axioms and rules ‘R1.’ Based on the

new theory ‘T1’ the complexity of the problem may be reduced but subject to

adding new axioms. The modified ‘T1’ is similar to modification or discovery of

inventing a better algorithm to solve a set of problems. Essentially there is no one

theory (or algorithm) that can explain all possible outcomes of a problem.

In fact there is long history of research going back to Russell’s paradoxes
based on Cantor sets (Stanford Encyclopedia of Philosophy; http://plato.stanford.
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edu/entities/rusell-paradox), Godel’s discovery of incompleteness (Chaitin 1966)

and Turing’s halting problem (Chaitin 1966), that in effect show that any formal

system is incomplete as well as inconsistent to prove or disprove truth of some

phenomenonwhose truthfulness is intuitively obvious. Further, the only way to prove/

disprove such phenomena is to modify the formal system to include new axioms.

From the above discussion it can be argued that complexity is not static but

dynamic in nature. And if it is dynamic, it raises further questions such as “is there a

continuum between complexity and simplicity?” and “is such a continuum linear or

non-linear?” Further, how does one measure complexity and changes in the levels

of complexity? Kolmogorov (Algorithmic) complexity offers some tantalizing

answers to these questions (Haynes et al. 2007).

5.4 Kolmogorov Complexity

The basic idea behind Kolmogorov complexity is simple, if a physical system can

be described in a concise manner then such a system is less complex compared to

one that is verbose.

For example, consider the problem of describing an object or a phenomenon

‘M’. Note that in this chapter any object or phenomenon are to be considered to be

semantically equivalent and thus all further description applies equally to phenomena.

There may be many different ways to describe an object and yet there is one

description that offers the most concise and complete description of that object. The

compressed description has made that object less complex. On the other hand, it may

be that there is no concise and complete description and the only way to describe the

object is to give the full description. The description in the later case cannot be

compressed. What has been discussed here is the complexity of object description,

thus a compressed description is equivalent to a less complex object and vice versa.

Obviously any compression prioritizes some dimensions of an object or concept

over others. Hence there are always alternative compression possibilities, it is

usually the more general ones that are of greater interest and more useful but clearly

any compression and increase in simplicity is done at a cost often in terms of time but

it is expected that the increase in simplicity will offset that cost.

However, these descriptions (compressions) are subject to interpretations (Zhao

and Stough 2005). In that case is complexity of an object subjective? No, if we

could use or do use a formal descriptive language based on binary alphabets.

5.4.1 Formal Descriptive Language

Assume that every letter, word, symbol and expression is described in terms of strings made

of binary alphabets of ‘0’ and ‘1.’ With this assumption one can build a lexicographical

ordering, a sort of lookup table or an interpreter that generates the strings for each letter,
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word and symbol. Thus a description of an object now consists of a series or string of ‘0’s

and ‘1’s. Here is an example of a lookup table that has lexicographical ordering,

U ¼ ½ðe; 0Þ; ð0; 1Þ; ð1; 2Þ; ð00; 3Þ; ð01; 4Þ; ð10; 5Þ; . . .�; ð5:1Þ
where, the first symbol of the pair of symbols in side the parenthesis represents binary

equivalent string of the second symbol.

Coming back to systems with concise descriptions, if such a system description

is based on formal descriptive language that is concise then this system is less

complex. In fact, a concise description is direct result of order or regularity in a

physical system.

What about irregular systems? Descriptions of irregular systems are verbose. Due

to lack of order, such descriptions are akin to very large (infinite) random sequences.

In fact Kolmogorov complexity has its roots in the theories of randomness,

especially the notion of random infinite sequences. It appears that there are an

infinite number of sequences that do not have concise description.

For example, for each n> 0, there are 2n binary strings of length n however there
are only 2(n�1) strings of length less than length n (Ming and Vitanayi 1997). Based

on ‘pigeon hole principle’, there is at least one string of length n that cannot be

compressed. Because n can have infinite values, there are an infinite number of

incompressible strings. As the value of n increases, the difference

diff ¼ ð2n � 2ðn�1ÞÞ ð5:2Þ
increases as

2ðn�1Þ �¼ Oð2nÞ ð5:3Þ
For example, consider a toy problem of strings constructed from n¼ 6 binary digits.

There are 26 possible strings, however only 25 strings are compressible. That leaves

25 strings that cannot be compressed. As the value of n increases, the number of

incompressible stings increases as shown in (5.2).

Of course there are exceptions, for example, objects such as square root of 2 or

value of pi. These concisely expressed objects have binary expansions that are

seemingly random and infinitely long. In a way, existence of such objects illustrates

the concepts behind Godel’s incompleteness theorem or Turing’s halting problem.

Definition 1. The length of a string si given by li ¼ |si|, that is, sum of counts of

‘1’s and ‘0s’.

Now if ‘M’ has n different descriptions then the description with the smallest

length ‘lsi’ would be the most concise and precise. Or there may be a case where all

n descriptions are of same length ‘l’ and third case may be that n¼ 1, that is, there is

only one possible description with length ‘L’. However, this is a crude description
since in any and all of these cases there might be patterns inside the string

suggesting that one could compress the string and thus reduce the length of the

string. If there is no pattern then the description essentially consists of random ‘0s’

64 R.G. Kulkarni et al.



and ‘1s’, an example may be (011010010. . .). On the other hand if there are patterns
then it is possible to compute how different the patterns are from being random.

Our discussion so far has led us to describe objects in terms of strings of binary

alphabets. Further, such descriptions for patterns or the lack of it allows one to find

out whether these strings are random or regular.

Definition 2. The complexity of an object can be expressed as the length of the

smallest description expressed in binary alphabet.

Based on the above definition we could express the complexity of object ‘M’ in

terms of its description as the length of the smallest binary string.

Below is a toy example on how to compute complexity. The process of describ-

ing this example will further formalize the discussion above.

Example 1. Consider a coin tossing experiment. For each toss, if the outcome is a

head, we write ‘1’, otherwise we write ‘0’. The following is one of the possible

outcomes of a large number of coin tosses.

s ¼ 001010001110100010 � � � 000110101000: ð5:4Þ

Though the frequency of number of tails and heads (zeros and ones) turns out to

be nearly 1/2 as the number of coin tosses tends to infinity, the series can never be

predicted to reproduce itself exactly in the same way as is shown above. Hence the

randomness of this series is measured in terms of the length of the series� |s|, or the
number of bits needed to specify the series ‘s’. On the other hand, if with a biased

coin we get only heads (all ones) or only tails (all zeros), obviously a non-random

sequence, its randomness is simply the number of bits needed to specify the number

‘n’. For example, a series with random heads and tails of length 99 would need 99

(binary) bits to specify that series, while a series of 99 ones (or zeros) can be

specified by a maximum of seven binary bits, that is, 99 can be expressed as

0110011 in binary and the length l = | 0110011| is 7.

Zurek (1998) calls it a measure of algorithmic randomness and describes it as,

‘. . . given by the size, in bits, of the most concise message. . .’ The concise message

that Zurek is referring to essentially is a computer algorithm.

Definition 3. Kolmogorov complexity also known as Algorithmic complexity mea-

sures the complexity of a problem by the size of the algorithm that solves the problem.

Thus Algorithmic complexity k of a sequence s is measured in terms of the

number of bits of the smallest program that can regenerate the sequence

(Solomonoff 1997).

kðsÞ ¼ j s�j ð5:5Þ

where the right hand side of the above equation measures the length of the program

s*. Note that a program s* includes the binary code and the binary data to produce

the sequence s.
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Of course, if there is no such a program then the length of the entire sequence ‘s’
in bits becomes the complexity of the sequence and this is so because the entire

sequence is random.

It should be mentioned that there exist programs such as the one that emulates

linear congruential generator algorithm which produces a seemingly random

sequences that cannot be compressed and yet its algorithmic complexity is small.

This is similar irrational numbers and ‘Pi’, discussed in the previous section, whose

expansion is essentially incompressible.

Example 2. Let us apply the idea behind Kolmogorov complexity to the

following traffic situation on a free way (Kulkarni et al. 2000). Imagine a single

lane segment of a freeway with a traffic sensor installed somewhere near the

middle of this segment. Let the output of the traffic sensor be fed to a processor

(computer) for further analysis of traffic patterns, just as the outputs from all other

sensors from different sections of a freeway road network are fed to the processor.

At any instant the traffic sensor detects the presence or absence of a vehicle. Let

the presence of a vehicle be coded as ‘1’ and the absence as ‘0’. If the lane

segment has near free flow traffic, then we may observe a series of ‘1’s and ‘0’s

such as the one shown below:

0000000000110000100100001 � � � 00001: ð5:6Þ

The series in (5.6) shown above has no pattern and appears as a random sequence

of zeros and ones. Next let us imagine extremely congested traffic on the same one

lane link. One of the possible series of observations is given by:

1111111111111111111111 � � � 11111: ð5:7Þ

The series of ‘1’s is clearly not random. To describe the series in (5.7), all one

needs to do is to count the number of ‘1’s ¼ n � 1 ¼ n, an integer number. On the

other hand there is no way to describe the series in (5.6), but to reproduce the entire

sequence as is. To get maximum information from the series in (5.7),

All we need to know is the number ‘n’, representing the number of ones, while

for the series in (5.6), the only way to gain information is to look at the entire

sequence.

This is analogous to the description of Kolmogorov randomness. To quote

Chaitin, “. . .A series of numbers is random if the smallest algorithm capable of

specifying it to a computer has about the same number of bits of information as

the series itself.” (Chaitin 1966). Thus the computer would process the series in

(5.7) in a single step, while the series shown in (5.6) would need as many steps as

there are ones and zeros in the series. In fact, as was shown in Example 1, the

series in (5.6) appears similar to the outcomes of a series of un-biased coin tosses,

while series in (5.7) is similar to a biased coin toss that invariably produces a series of

heads (ones).
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5.5 Complexity and Spatially Distributed Phenomena

In this part of the chapter we explain how to compute complexity of spatially

distributed phenomena that can be visualized by mapping the datasets associated

with such phenomena.

Consider 100 same sized square shaped tiles laid in 10 � 10 grid fashion. If all

these tiles are of same color then the description of the 10 � 10 grid is: 10 � 10

sized grid of color X. Coding each color tile with symbol ‘0’ and laying each row of

10 such symbols next to each other would produce a series that has one hundred ‘0’

symbols as follows:

00000000000 � � � � � � 00000000000 ð5:8Þ

Suppose each of the odd numbered tiles is replaced with a tile of color Y. Coding

each Y colored tile with symbol ‘1’ now would result in alternating ‘1’ and ‘0’s,

such as:

10101010101 � � � � � � 01010101010 ð5:9Þ

Next, suppose we replace randomly one fourth of the 100 tiles, with tile of color

X or Y. One of the possible outcomes of the resulting pattern would be:

1101000101011101 � � � :00101101010 ð5:10Þ

Among the three sequences, sequence (5.8) is less complex than sequence (5.9),

which in turn is simpler than sequence (5.10). In terms of a binary formal system,

the complexity of (5.8) < complexity of (5.9) < complexity of (5.10).

Now consider a 10 � 10 grid where the tiles are of all different color. If we can

represent colors as binary numbers then each tile can be assigned a color binary

number, for example, just 6 binary digits are sufficient to represent 64 colors,

starting with 000000 and ending with 111111. Generating a sequence starting

from top-left tile, one could in theory get a 6,000 digit binary number whose

complexity will be defined in terms of how random or regular the colors are in

the 10� 10 grid. Obviously the level of complexity here is much higher than any of

the sequences listed in (5.8), (5.9) and (5.10).

Next consider visualization of complex data that consists of a very large number

of spatial locations, each of which has attributes whose values can be mapped. To

gain more insight into the spatial patterns one may use attributes associated with

these spatial locations such as demographics, income, businesses, poverty, water

usage, pollution levels, etc. Using attribute values as weights one can generate

density/interpolation (also known as raster) maps to study patterns of spatial

distribution. Analysis of raster maps involves digitizing density/interpolation

values at each location. The entire process, although somewhat routine creates a

complex visual dataset with intricate patterns. How can one determine the complexity
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of these patterns? It is possible to do this based on concepts from Kolmogorov

theory and using compression algorithms which is described below.

Example 3. Consider the problem of predicting hurricane paths. Although there

are many scientific explanations of how hurricanes form, including how small

weather disturbances over Ethiopia become the seeds for future hurricanes

(NOAA), there is no single accepted theory that is able to predict the paths

hurricanes follow once they form over the waters of the Atlantic and meander in

a west-north westerly direction towards North America. Like many weather related

phenomena the best one can do is produce a short term forecast of possible paths

illustrated as a cone of probabilities (Fig. 5.1).

The poorly understood and possibly non-linear interaction between very a large

number of known and unknown dynamic variables related to atmospheric and sea

conditions serves as an explanation of the complexity of hurricane path forecasting.

Not unlike the radio astronomers who due to a lack of scientific theory do the

next best thing and that is to study patterns of innumerable very high energy X-ray

and g-ray sources in the sky (http://imagine.gsfc.nasa.gov/docs/introduction/

xray_information.html); one could study patterns formed by paths of all of the

past hurricanes over the last several decades. These spaghetti like tracks shown in

Map 5.1 are of all of the Atlantic hurricanes between 1851 through 2004 (http://

Fig. 5.1 Atlantic hurricane season lasts from June 15 through November 15 with the peak

occurring somewhere between the second week of August and the 2nd week of September
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www.nhc.noaa.gov). So how does one measure how complex these patterns are?

(Maps 5.2 and 5.3).

We could express the digitized map by matrix M(p,q), of p rows and q columns

where each pixel value is coded in binary (0s and 1s) based on the color scheme

which itself is a binary number whose values represent the hue and intensity. Note

that depending on the resolution, one could create a finer grid of digitized map.

Here are more examples of spatially distributed phenomena that can be mapped

and used to study the related complexity.

Example 4. Consider a map of EPA’s (Environmental Protection Agency) toxic

substance discharge in to rivers and streams by location (Map 5.4 in Appendix). The

map has over 11,000 locations, each of which has a record of tons of toxic discharge

Map 5.1 Atlantic hurricane tracks between 1851 and 2005

Map 5.2 Density map of hurricane paths from Map 5.1
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into the nearest river/stream. The discharge data when seen as a table lacks the

visual information (spatial distribution) provided by a map, while a map of points

that show locations does not add much value to our understanding of the data. On

the other hand if we generate a density map weighted by toxic discharge levels, it

starts highlighting problem areas (Map 5.5 in Appendix).

Example 5. Consider another example of the distribution of all businesses in the

core of the Washington, D.C., metro region in 2006. There are over 173K businesses

that employ more than 2.5 million people across 13 jurisdictions (Map 5.6 in

Appendix). The spatial distribution of these 173 k business locations appears on the

surface to have a near uniform distribution. However a density map weighted by

number of employees by location offers a different picture (Map 5.7 in Appendix).

5.6 Inferences from above Examples

In each of these visualization examples, we have generated a complex digitized data

matrix M(p,q), of p rows and q columns where each pixel value is coded in binary

(0s and 1s) based on the color scheme which itself is a binary number whose values

represent the hue and intensity. Matrix M(p,q) can be easily converted into a

sequence R of length p*q by appending all the rows. When R is fed to a compression

algorithm, the output T will depend on the compression algorithm (a fixed value C)
and the sequence R. The process of digitizing maps/objects can be considered as a

fixed size program (algorithm) just like the compression algorithm and thus does

not contribute in determining the degree of complexity.

Using the Kolmogorov entropy definition,

KðCþ RÞ ¼ Cþ Rj j ¼ T: ð5:11Þ

For a given compression algorithm, T is determined entirely by input R.

T / KðRÞ: ð5:12Þ

Map 5.3 Map 5.3 shows a

digitized version of the

hurricane density Map 5.2
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Another way to express the degree of complexity is as follows: Let S1 represent
the length in bits of sequence R. One could test for degree of regularity/order or the
lack of it by compressing this sequence using a standard compression algorithms.

Let S2 represent the length of the compressed sequence R0= T. Let the ratio between
two sequences be expressed as

CR ¼ S2=S1: ð5:13Þ

A value closer to 1 indicates that the sequence S1 is irregular or random and

hence the object represented by that sequence is irregular/random or complex. On

the other hand if the value is closer to 0 then the sequence is highly regular and

hence it represents an object that is less complex (more simple).

Table 5.1 shows results of applying three different compression programs,

namely gzip, bzip2 and a common commercially available version of the compres-

sion program and the ratio CR between compressed and uncompressed file sizes.

5.7 Conclusions and Future Research

Based on the current results, different compression algorithms give different output

determined by the distribution patterns of the phenomena. For the current set of

examples, it appears bzip2 offers better compression than either gzip or commer-

cially available compression program and in general hurricane paths appear to be

less complex than the distribution of Washington, D.C., business locations which in

turn appears to be less complex than the EPA discharge locations. However, it is

conceivable that given examples from different domains, the compressed results

and the CR ratio may vary from one program to the next. It is also important to note

that the data preparation phase which is a proxy for the discovery phase may affect

the results obtained. It is worth mentioning that there are certain number sequences

that cannot be compressed using the standard compressions algorithms. For exmple,

the seemingly random number sequence generated by the linear congruential
generator algorithm is incompressible using standard compression algorithms.

And yet, as was noted earlier, the program to generate such a sequence is very

Table 5.1 Comparison of compression ratios based on compression algorithms

Size in Mbyte bzip2 S2 gzip S2 Commrcl S2 Uncompressed S1

Hurricane paths 1.46 2.36 2.30 15.36

WashDC business 1.52 2.38 2.34 15.38

EPA discharge 1.72 2.65 2.62 15.84

bzip2 CR = S2/S1 gzip CR = S2/S1 Commrcl CR = S2/S1 S2 = S1 ! CR = S2/S1

Hurricane paths 0.096 0.154 0.149 1

WashDC business 0.099 0.155 0.152 1

EPA discharge 0.112 0.172 0.170 1
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small and with small complexity which is not detected using the process out-

lined by (5.11) through (5.13).

In this chapter we have presented a methodology to determine the complexity of

objects. Given a set of similar objects (such as spatial distributions across a region)

one may use the proposed complexity measure to determine levels of complexities

of these objects, which is equivalent to determining the degree of their simplicity.

Future research will involve the issue of determining for a set of objects, if a

continuum exists between simplicity and complexity and also the degree to which

data preparation phase influences the end results.

5.8 Appendix

See Maps 5.4–5.7

Map 5.4 Spatial distribution

of EPA’s toxic release

inventory sites across the U.S.

Map 5.5 Digitized map of

EPA’s toxic release inventory

sites across the U.S.

Map 5.6 Spatial distribution

of business locations in the

Washington, DC metro region
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Chapter 6

Polyplexity

A Complexity Science for the Social

and Policy Sciences

Helen Couclelis

An ant, viewed as a behaving system, is quite simple. The apparent complexity of its
behavior over time is largely a reflection of the complexity of the environment in which it
finds itself. (Simon 1969)

6.1 Introduction

Simon’s famous ant metaphor points to the possibility of two alternative represen-

tations for the same complex phenomenon: the ant’s convoluted path on the beach

may be described as complex behaviour against a simple background, or as simple

behaviour against a complex background (or as a little of both, of course). The

metaphor also supports the intuition that complexity is largely in the eye of the

beholder – a fruitful philosophical position to take, as it encourages the observer

to seek the representation that is the most useful for the purpose at hand rather than

engage in a wild goose chase for “the” correct kind of representation. However,

the ant-on-the-beach scenario falls short in one important respect: it views pheno-

mena as consisting of a system of interest and an environment, whereas in fact

every system description also involves a (usually tacit) underlying spatio-temporal

framework.

I propose the notion of polyplexity as a new way of approaching the study of the

most complex of systems, that is the systems studied in the social and policy

sciences. Polyplexity goes one step further than most conventional approaches to

complex systems by taking into account the possibility that the space and time

within which a phenomenon enfolds may themselves be complex. It proposes a

“divide and conquer” modelling strategy based on apportioning the apparent

complexity of a phenomenon among the three major constituent parts of any system
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Department of Geography, University of California, Santa Barbara, CA, USA

A. Reggiani and P. Nijkamp (eds.), Complexity and Spatial Networks,
Advances in Spatial Science,

DOI: 10.1007/978-3-642-01554-0_6, # Springer-Verlag Berlin Heidlberg 2009

75



representation: the system of interest itself, its environment, and its spatio-temporal

context. Polyplexity suggests that the widely acknowledged greater complexity of

social relative to natural science phenomena may be seen to be due in part to more

complex underlying space–time frameworks. Should this be the case, accounting

for spatio-temporal complexity in addition to system environment complexity in

social science modelling may help simplify the representation of certain systems of

interest.

Social scientists embraced the complexity paradigm fairly early on, making

major contributions of their own along the way. However, despite increasingly

sophisticated models of complex socio-spatial dynamics and agent-based systems,

social science has adopted more or less unquestionably the Cartesian framework of

the natural sciences. The result is in many ways a more elaborate form of “social

physics”, with models such as those simulating the emergent behaviour of growing

sand piles replacing the planetary “gravity model” metaphors of the 1950s and

1960s. On the whole, the space and time of social science remain monotonously

flat. The shortcomings of the current homogeneous, isotropic space–time assump-

tions may be especially evident in the attempts of geographers and others to model

information-age phenomena such as the “death of distance” or the “extensible

individual”. It is conceivable that these taken-for-granted Cartesian assumptions

are hampering progress in a much broader spectrum of social science and policy

research. After several decades of achievements in complex system modelling,

I believe that the field is mature enough to consider exploring approaches more

specifically tailored to the challenges of the “difficult” (as opposed to “hard”)

sciences. One possible direction would be to focus on notions of social space and

time and their potential role in simplifying the representation of complex social

phenomena. This emphasis seems to makes sense because, as Nigel Thrift notes,

“complexity theory is preternaturally spatial” (cited in O’Sullivan 2004, p. 284).

Polyplexity is meant to be an early wobbly step in that direction.

Not surprisingly, complexity is itself a complex notion. There are several

different complexity paradigms highlighting its different aspects: discontinuous

change under smooth parameter variation, self-organization, emergence, path

dependence, feedback, deterministic unpredictability, and so on. These include

Thom’s (1975) catastrophe theory, Prigogine’s (1980) bifurcation theory, Haken’s

(1983) synergetics, chaos theory, and a host of related computational approaches

among which agent-based simulation and cellular automata modelling are especially

popular in the Anglo-American world. Less well explored outside its field of origin

is one of the oldest complexity paradigms, that deriving from Turing’s work on the

mathematical theory of computation (see Copeland 2004). Through its two major

branches of automata theory and formal language theory, the theory of computation

contributes the notion that complex representations can be built gradually from

simpler ones through the systematic expansion of the domains of the operands and

operators considered. Polyplexity hopes to capitalize on this principle though the

details are still nebulous.

Going back to the issue of a complexity science for the social and policy

sciences, there are a number of desiderata, most of which are not very well served
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by more traditional approaches to complexity. For example, it would be really nice

if we were able to handle the following kinds of problems with something like the

power and elegance possible for the description of complex physical processes:

l The description of social processes and events, which involve reasons (telic

considerations) as well as causes
l The representation within the same general framework of multiple perspectives

on – and interpretations of – the same social process or event
l The modelling of emerging institutional structures that are not simply the result

of bottom-up interactions
l The representation of individual decision and choice in highly complex environ-

ments
l The support of decision making in planning and policy under deep uncertainty

and conflict
l Etc. (add your own wish list here)

An overarching desideratum would be the development of a unified perspective on

complex system modelling in the social and policy sciences for handling and

integrating the above kinds of issues.

As an agenda for polyplexity, this sounds extravagant to the point of foolishness

– but who knows? The time may be right for confronting tentative, high-risk ideas

of this kind, such as the notion that polyplexity could perhaps simplify the repre-

sentations of social phenomena and policy problems of interest by relegating some

of their apparent complexity to suitably complex but still manageable spatio-

temporal structures. To be useful though these structures should first be integrated

within some more general and systematic framework. For example, Simon’s ant-

on-the-beach metaphor could be generalized to the “principle of consistently

optimizing behaviour”, stating that “every choice is an optimal choice when exam-

ined against the appropriate background of empirical, logical and spatio-temporal

assumptions”.

In the following pages I discuss the three main components of the notion of

polyplexity. Complex time and complex space are examined in the next section,

and then the notion of “prior structure” is presented as a perspective on modelling

that might conceivably support the philosophical ambitions of polyplexity. The

conclusion, which is by necessity sober and brief, mentions some of the challenges

of pursuing such a program, and summarizes numerous open questions that this

chapter leaves in its wake.

6.2 Complex Time, Complex Space

This is not the right place to review the achievements of complex systems research

in social science. Several of the field’s protagonists are represented in this volume

and can speak for themselves. The breadth of the social scientists’ contributions to

the complex systems paradigm has indeed been quite extraordinary, covering both
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discrete and continuous systems, both the macro- and the micro-perspective, both

statistical and process modelling, both analysis and policy-oriented synthesis, and

both conceptual and applied research. Building on that wealth of previous efforts,

this chapter attempts to glimpse fuzzy visions of the future rather than retread the

brilliant past.

6.2.1 Complex Time

In a book entitled “The economics of time and ignorance”, O’Driscoll and Rizzo

(1985) examine the nature of prediction in economics and conclude that under no

circumstances can prediction be complete because of the existence of “real” time

and “real” ignorance. The authors contrast “real” time with Newtonian time which

is simply a framework for ordering events, a reference line against which events can

be mapped as either points or intervals. A basic property of time-as-framework is

that it does not in itself affect events. In other words, Newtonian time does not bring

change; it only serves to register change as it happens. Time is fully analogous to

(Newtonian, absolute) space, and has the same three basic properties: homogeneity

(all time-points are the same except for their position along the time line); continu-

ous divisibility (implying that neighbouring time points are independent of one

another); and causal inertness (time is independent of its contents: in itself it causes

nothing). In any model based on Newtonian time, even a fully dynamic one, it is the

present as we know it that is sent rolling along the time line. As the great economist

F. H. Hahn observed, in such models “the future is merely the unfolding of a
tapestry that exists now”.1

“Real” time by contrast is characterized by the properties of dynamic continuity,

heterogeneity, and causal efficacy. These properties preclude prediction, hence the

notion of “real” ignorance. Dynamic continuity is based of the two aspects of

memory and expectation. The meaning of each moment depends on its place in

the context of what we remember of the past and expect for the future, just as in the

experience of music each note can only be appreciated relative to those heard a

moment before and those anticipated yet to come. More generally, the timing of an

event changes its nature to the extent that the unique context of other events within

which it occurs affects its role in the determination of subsequent events. This is the

case, for example, with economic agents whose response to events today depends

on what they learned yesterday (which includes the responses of other agents to

yesterday’s events), as well as on what they expect to happen tomorrow (which

includes how they expect other agents will act). The property of heterogeneity of

real time follows from dynamic continuity in that no two instants can be the same,

each one relating to a different set of preceding and succeeding moments and

their remembered or anticipated contents. This makes events in real time genuinely

1Original emphasis, cited in O’Driscoll and Rizzo (1985, p. 52).
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non-repeatable. Thus non-repeatability emerges from an event’s temporal “place

value” – its order in the flow of events. Causal efficacy is a further corollary of the

above in that dynamic, heterogeneous time is causing actions and events to be

different now from what they would have been under the same conditions some

time earlier or later. Related examples also from economics are the notions of time

inconsistency and of discounting, whereby the utility of a given option (say, of buying

insurance or of the government raising interest rates) can vary greatly depending on

the time when the choice must be made. In general, the nature of the uncertainty that

this conception of time implies is much more profound than the two kinds commonly

considered in science: the case where the value of a specific outcome is unknown but

the ex ante probability distribution of outcomes is known, and the case where the

underlying probability distribution itself is not known (random).2 Here we are dealing

with situations where not just the probabilities, but even some qualitative

characteristics of outcomes – all the way to the very nature of the possible outcomes

themselves – cannot be determined ex ante because they are not part of “a tapestry

that exists now”, in Hahn’s famous words quoted above. Under the name of “deep

uncertainty” this latter notion is prominent in the work of a group of researchers

from the RAND corporation advocating a general approach to planning that takes

into account the virtual impossibility of prediction (Lempert et al. 2004).

Real time is much closer to the psychological intuition of a dynamic flow of

ever-changing experiences than to the traditional scientific view of a directed axis

used as a ruler for pegging events. Its significance is obvious for social science

problems involving intentional agents. However what this conception of time

addresses is not just human cognition and action but more generally historicity,

or the claim that the nature of any phenomenon depends to some extent on its place

within a process of historical development. A good example from natural science

would be the significance of a particular mutation in an organism, which may or

may not have an evolutionary value depending on the timing (and placing) of its

appearance. The fact that it is impossible to predict future speciation in biology is

further evidence that the processes of evolution work in real time. The similarity of

real time with the notion of path-dependence in complexity theory is surely not

coincidental.

Historians have their own complex models of historical time. According to a

group of historians involved in a major digital atlas project, modelling time as a

fourth dimension downgrades it into being only a facet of space whereas, in fact,

time operates according to very particular principles.3 This is because at the core of

historical understanding is the event rather than the object or the point process, and

historical events are not described as discrete entities but as networks of other

events linked together by causal and telic relations at different levels of granularity.

2In economics this distinction was made by Knight in his seminal dissertation where he used the

term ‘risk’ to describe the first case from the perspective of a decision maker, reserving the term

‘uncertainty’ for the second case. See Knight (1921).
3This section on historical time draws on the work of the TimeMap project (www.timemap.net/

timelines) by Johnston et al.
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To support such a view multiple lines of real time may be needed, and these would

be punctuated rather than continuous since knowledge of events is episodic and

fragmentary. This historical view of complex time provides the complementary

macro-perspective to O’Driskoll and Rizzo’s mostly individual-level real time, and

in doing so it transposes it to a level that is at least an order of magnitude more

complex. Both these approaches reject the simple one-dimensional view used in

practically all complex systems research in favour of conceptualizations that

emphasize intimate causal and telic linkages among time, events, choices, and

their ever-changing contexts.

The need to broaden the notion of time has also been keenly felt within the hard-

nosed, empiricist geographic information science community. Several models have

been proposed in the context of “temporal GIS” beyond linear time: cyclic time,

branching time, totally- and partially-ordered time, valid and transaction time,

clock- vs. event-driven time, etc. Each of these brings some useful modification

to the simple axis of classical physics but the characteristic Newtonian causal

inertness remains: time is still the neutral framework against which independently

unfolding events are projected, sorted and measured. None of these models (with

the possible exception of some interpretations of branching time) approaches the

dynamic, causally efficient conception of real time that O’Driscoll and Rizzo

believe to be so important in economics and the social sciences in general, and

that historians would like to further develop into a highly complex structure.

6.2.2 Complex Space

From non-Euclidean geometries to relativistic space–time to today’s high-

dimensional spaces of string theory, physics has been a treasure trove of complex

models of space. However, attempts to transfer some of these conceptions to the

social science domain have not on the whole been successful. Social scientists have

had much better luck with relational and network spaces such as those of graph and

network theory or the even more complex multi-dimensional spaces described by

Q-analysis, Galois lattices, self-organizing maps (SOM) and other such techniques

(see for example Gatrell 1983; Freeman and White 1993; Agarwal and Skupin

2008). The connection of these relational spaces with the space of everyday social

life is however somewhat tenuous, since they cannot deal directly with fundamental

quantitative properties of physical space such as distance, direction, shape, the

elementary Euclidean transformations, or spatial autocorrelation.

Notions of complex space also abound in geography and related disciplines and

have often been used to simplify or visually enhance the representation of particular

kinds of phenomena. Space transforms are a particularly prominent family of

complex spaces, and of these, cartographic projections are the most widely

known and used. Other familiar kinds include cartograms, logarithmic spaces,

velocity fields, representations of cognitive maps, and parallel coordinate spaces

(see for example Angel and Hyman 1976; Borden 1996; Gould and White 1974;
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Golledge and Stimson 1997; Inselberg and Dimsdale 1994). Some of these are

explicitly designed to do what Simon’s ant metaphor suggests, that is, they com-

plexify the space so as to simplify the representation of the phenomenon of

interest.4 For example, representations of cognitive maps produced by eliciting

pair-wise distance estimates from subjects are converted through the technique of

bi-dimensional regression into heavily distorted, crumpled and stretched transforms

of actual maps. These representations may then be used to show how errors in

distance perception correlate with sub-optimal spatial choices by individuals or

groups. However, all of the complex space representations mentioned here are

either formulated for very specific kinds of problems, or they are too general. For

polyplexity a middle road would be desirable, whereby classes of social science and

policy problems could be handled by the same general approach to complex space.

A couple of my own attempts at setting up models of complex spaces may be

relevant to polyplexity. The first of these is the concept of proximal space (Couclelis

1997). Proximal space is formed by the set of all locations that have some functional

or other kind of non-explicitly spatial relation with every location of interest at each

time. It is a generalization of the notion of neighbourhood as used in cellular automata

and other kinds of models, whereby proximity is defined not in terms of physical

distance or adjacency but in terms of the special relationship a location has with other

locations. For example, the set of all locations of my physical and virtual social

contacts form the proximal social space of my home location. Proximal space is thus

a network space, but one that is not only rooted in actual geographical space, but also

lends itself to simulation modelling: indeed, it supports a formal generalization of

cellular automata called geo-algebra (Takeyama and Couclelis 1997). This is one

example of how one could simplify the representation of a dynamic process by

relegating some of its complexity to the embedding space. It is possible, though

this has not yet been explored, that a model analogous to proximal space (“proximal

time”) may also be developed for historical time as discussed above. Proximal time

would represent the set of key moments and intervals relevant to a specific event of

interest and its aftermath – say, the times associated with the genesis and subsequent

fate of this chapter, from the original invitation by this volume’s coeditors through the

fallout resulting from its publication. Proximal time as defined here would thus rejoin

O’Driscoll and Rizzo’s notion of the heterogeneity of real time, whereby no two

instants can be the same because each one relates to a different set of preceding and

succeeding moments.

Some earlier work considers not one, but a sequence of interrelated spaces,

seeking to capture their distinguishing characteristics in a systematic and reproduc-

ible manner (Couclelis and Gale 1986). That project explores the meaning of

several more or less vague notions of space used in psychology which include,

beyond the Euclidean, spaces referred to as physical, sensorimotor, perceptual,

4This indeed seems to be the modus operandi of insects (including ants!): “. . .the insects write

their spatial memories in the environment, while the mammalian cognitive map lies inside the

brain.” See Chialvo and Millonas (1995).
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cognitive, and symbolic. In that research we propose a hierarchy of six nested levels

corresponding to the above sequence of notions of space and representing, psycho-

logically, a progression of increasingly complex levels of an individual’s spatio-

temporal awareness. The same empirical experience or phenomenon may be

defined against any one (or all) of these spaces, with different implications each

time. To represent the linkages between levels the model relies on the notion of

selective operators as used in spectral theory, while the first four levels are also

differentiated internally by means of the family of algebraic structures that are part

of group theory. In this model the operands are spatial ‘atoms’ the empirical

interpretations of which vary from level to level (points, locations, positions,

vantage points, or places), and the group-theoretic operators are the links between

atoms, called “moves” but again meaning different things at each level.

Group theory focuses on operations and transformations, rather than operands,

and involves five axioms known as the closure law (G1), the associative law (G2),

the existence of an identity element (G3), the existence of inverses (G4), and the

commutative law (G5). An algebraic structure conforming to all five axioms (for

example the set of integers) is called an abelian group. The other members of the

group family are obtained by dropping one or more of these axioms. Thus axioms

G1–G4 (but not G5) define a group; axioms G1–G3 (but not G4 and G5) define a

monoid; and axioms G1 and G2 (but not G3–G5) define a semi-group. A corre-

spondence between these algebraic structures and the hierarchy of spaces is tenta-

tively set up as shown in Table 6.1, based on certain empirical properties of each

space in the sequence. Thus, for example, in the physical space of everyday

experience – unlike in pure Euclidean space – the commutative property (G5)

does not hold with the force of an axiom because the direction of gravity causes

space to be anisotropic in the up/down direction. (Bodies that are “up” can easily go

“down” but the reverse is usually not true). Similar considerations result in the

elimination of one more, then two more group axioms for sensorimotor and

perceptual space, respectively. Thus sensorimotor space, the space in which living

organisms (and also robots) move, is like physical space in that it lacks the

commutative property, but it also lacks a true inverse (G4) because moves in

sensorimotor space can never be completely reversed. Even if an animal or machine

returns to the exact same location it started from, its state will no longer be exactly

what it was when the move was initiated: it will have become more tired, more

hungry, more worn down, or it will have acquired new bodily experiences: it will

Table 6.1 Concepts of space and corresponding algebraic structures

Concept of space Axioms Structure

G1 G2 G3 G4 G5

Symbolic space 0 0 0 0 0 ?

Cognitive space 0 0 0 0 0 ?

Perceptual space 1 1 0 0 0 Semi-group

Sensorimotor space 1 1 1 0 0 Monoid

Physical space 1 1 1 1 0 Group

Pure Euclidean space 1 1 1 1 1 Abelian group

82 H. Couclelis



have “depleted its batteries” or enriched its sensorimotor memories to some extent.

One level up, perceptual space is in many ways like sensorimotor space, but lacks

the identity element (G3), because even the “stay-as-you-are” move is no guarantee

that perceptual identity will be maintained: it is well known that attention filters

what we perceive at any particular time. Beyond that level the model breaks

down, because it is difficult to give meaning to a space characterized only by the

closure law.

Beside group theory, the other mathematical notion underlying the model is that

of selective operators. A selective operator may be thought of as a sieve or filter that

sorts the entities corresponding to some particular description out of a universeU of

entities.5 This method is used in the model to construct the lower four levels out of

each other, by selecting out of the universe of group properties first two, then three,

then four, then all five group axioms. It is uncertain if the remaining two levels

(cognitive and symbolic) really belong in this hierarchy, since they are not subject

to the constraints of pure Euclidean or of physical space – though they are most

definitely subject to the experience of these spaces.
Regardless of its merit (or lack thereof) as a formalized description of the range

of individual awareness of space, two aspects of this model are relevant to the

notion of polyplexity. First, at the sensorimotor level we find the first intimations of

real time (in the form of the irreversibility of physical effort), and this impression is

reinforced at the next level up, though the details cannot be discussed here. Second,

it hints at the possibility of developing an ordered sequence of mutually consistent

models of space, of varying degrees of complexity, for use in the social and

behavioural sciences. This last point is significant because hierarchies of complex

social spaces keep being proposed in geography and related fields with insistent

regularity. There may be something to that idea that is worth pursuing further.

6.3 Prior Structure, Determination, and Hierarchical

Spatio-Temporal Ontologies

Spatio-temporal ontologies are a hot topic in geographic information science these

days. The motivations are mostly practical, such as the need to improve interopera-

bility among different GIS platforms, but some of the questions raised by that work

are decidedly theoretical, if not philosophical. Similar though less formalized

efforts also originate in geography as researchers attempt to classify and make

5This works as follows: IfOa is the selective operator that selects out ofUwhatever answers to the

description of A, thenOaU is a representation for the set of entities A. Now, A itself may comprise

several other kinds of entities, among which those answering to the description of B may be of

particular interest. In this case, if Ob is the operator that selects the B’s, then ObA= Ob(OaU) is a

way of representing B as a function ofA andU. This procedure can be iterated for as many steps as

necessary, so that if we have a hierarchy of entities A, B, C, D,. . . such that D� C� B� A�U, we

may represent these as: OaU = A, ObOaU = B, OcObOaU = C, OdOcObOaU = D, and so on (see

Larsen 1970).
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sense of the unwieldy variety of available conceptual and quantitative models of

geographical phenomena. The vast majority of these proposals are hierarchical,

involving “tiers” or “levels” or “spaces” of different degrees of complexity and

characterized by very different properties. Here are some quick examples, in

chronological order: (1) Mathematical space, physical space, socioeconomic

space, behavioural space, experiential space (Couclelis 1992); (2) Physical level,

functional level, biological level, intentional level, social level (Guarino 1999);

(3) Physical reality, observable reality, object world, social reality, cognitive agents

(Frank 2003). Or, more specifically regarding the complexity of spatial decision

models: (4) Stimulus–response (basic observation), stimulus–response (controlled

experiment), rational decision, production system, advanced computational process

model (Couclelis 1986). And also: (5) Decision making as a variable, as a proba-

bility function without feedback, as a probability function with feedback, by one

type of agent, by multiple interacting agent types (Agarwal et al. 2002).

Note that even though all the above examples are spatio-temporal hierarchies,

they are not hierarchies of nested spatial and temporal scales, but rather, of

semantically different planes on which qualitatively different kinds of spatio-

temporal phenomena can be described. These and several other similar efforts all

seem to agree that the physical is simple but that the social and mental are complex

and hard, but other than that there are few commonalities in approaches and

perspectives. The last two examples however – (4) and (5), involving decision

making models – do have something interesting in common in that they take an

informational rather than an empiricist approach to the issue. The first explicitly,

and the second implicitly, they both recognize that the same system of interest may

be modelled at different levels of complexity, from elementary to extremely

complex, depending on how much information one is able or willing to include in

the representation. They thus side with the perspective of mathematical computer

science reflected in the hierarchical theory of modelling and simulation by Zeigler

et al. (2001),6 which is itself based on the hierarchy of automata theory (finite

automata, pushdown automata, linear bounded automata, Turing machines) and

the corresponding one of formal language theory (regular, context-free, indexed,

recursively enumerable languages; see Hopcroft and Ullman 1979).

Somewhat along similar lines is the notion of prior structure in modelling that

I briefly explored many years ago (Couclelis 1984). That was part of an attempt to

figure out where the predictive power of some simple (and very unrealistic)

mathematical urban models comes from.7 The idea was that in every complex

system there are a number of constraints, formal as well as empirical, that can be

6Zeigler’s hierarchy of system specifications comprises the following four levels: Input–output

relation observation, input–output function observation, discrete event system, discrete event

network. Couclelis (1986) specifies four models of decision of increasing complexity in term of

that hierarchy.
7There may be some connection between prior structure as discussed here and Bunge’s notion of

“determination” as the basis for causality. If so, my idea would stand on fairly respectable

philosophical ground! See Bunge (1979).
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known a priori to limit the range of observable system states. Empirical constraints

(called historical prior information) derive from certain aspects of the system –

physical, biological, technological, institutional or social – that can be more or less

reliably assumed to remain reasonably constant within the forecasting horizon of

the model. For example: the rate of change in the life expectancy of a population,

the rate of transformation of raw materials into structures, or the fact that there

will still be fewer commuters on the roads on Sundays than on most weekdays.

Such considerations have of course been at the basis of numerical forecasting

techniques for many years and are expressed in the distinction between “fast” and

“slow” variables in dynamic modelling. The notion of prior structure stresses the

importance of being able to specify the level of analysis at which these kinds of

empirically derived constraints become operative.

Much more intriguing however is the second class of constraints, called struc-

tural (or logical) prior information. This derives from the formal invariances that

characterize the fundamental logico-mathematical structures (such as set theory,

topology, number theory and logic) that underlie mathematical and computational

models. As with the case of historical prior information, the nature and amount of

logical prior information available depend on the level of model specification.

Together, empirical and logical prior information make up the model’s prior

structure, that is, the envelope of constraints which incorporates all positive knowl-

edge about the system of interest at a specific level. Within that envelope, all

allowable microstates are equiprobable, but Wilson’s (1970) entropy maximizing

approach can be used to identify the most likely system macrostates. Wilson’s

seminal statistical–mechanical derivation of spatial interaction (formerly “gravity”)

models rescued these from the prevailing crude planetary analogies, while also

providing a philosophically significant insight into the value of an informational –

as opposed to empiricist – perspective.

And what about polyplexity? Well – complex time and complex space, described

in some appropriate, orderly hierarchical sequence, may constitute a third kind of

prior information, along with the historical and logical. Polyplexity would take the

idea of prior structure in models one step further. This would not suddenly render

predictable what is fundamentally unpredictable in complex social systems (the

notion of real time alone settles this issue), but it may tighten the envelope of

constraints within which the genuinely surprising can happen, while also helping to

clarify the limits of modelling in the social and policy sciences.

6.4 Some Concluding Thoughts

An unspoken word behind much of the preceding discussion – a discussion at times

quite dry and technical, is intentionality. Intentionality, along with the human

purposes it drives, is why the notion of real time makes immediate intuitive

sense, it is what guides the weaving of disparate locations and moments into places

and events meaningful to people, and it is what distinguishes cognition and abstract
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thought from the mechanical sorts of awareness represented in, say, the hierarchical

group-theoretic model discussed earlier. Intentionality and the closely associated

notions of purposeful action set limits to what we can model in the social world

since, qua telic concepts, they are not compatible with current causal scientific

paradigms, including the paradigms of complexity. Indeed, social processes and

events involve both “because” and “in order to”, and we yet have no tools to deal

with the latter. Purpose is a major factor in the evolution, adaptation and learning

in social systems, whereas in natural systems that also can evolve, adapt and learn it

clearly is not. The role of purpose in the social world is a defining qualitative

difference between natural and social complex systems. The more advanced

models of artificial cognitive agents are designed to mimic purposeful behaviour;

however, to ask where these agents get their purposes from is to promptly end the

conversation.

Considering how difficult it is to build reliable models of complex natural

systems, what should models of complex social and policy-oriented systems be

expected to do?

For years now several researchers have argued for a softer role for models in

social science and policy, beyond the traditional triad of description–explanation–

prediction. They talk about models as narratives about possible things to come, as

plots around which stories of warning or encouragement may be woven. This is not

just a nonchalant New Age stance but is informed by multiple evidence that valid-

ation of complex system models is not really possible. I sympathize with this view

but feel that it goes too far in abdicating all responsibility in trying to anticipate at

least some aspects of the future. Polyplexity is meant as an effort to figure out what

kinds of things may be known in advance, under what conditions, through what

kinds of representational manipulations, and thus perhaps to help restore a modi-

cum of respect in the predictive power of complex social system models.

There are obviously more questions than answers in what I presented here. Does

the idea of polyplexity make sense in principle? If yes, could it help simplify the

study of the many intractable problems that the social and policy sciences deal

with? Could it handle phenomena of the information age that appear to enfold

against a hybrid physical/virtual space–time? What may be the role of polyplexity

in forecasting and scenario development, especially as used in the policy sciences?

What may be, in particular, the contribution of polyplexity to robust adaptive

planning as defined by Lempert et al. (2004)? Can we figure out how best to

distribute complexity considerations among actor, context, and spatio-temporal

background? What are the computational implications of this approach? How

may familiar, successful models of complex social science systems be usefully

recast in polyplexity terms? Because ideas evolve in real time it is not possible to

predict at this point to what extent these speculations about polyplexity may survive

scrutiny. But writing this chapter was a complex spatiotemporal event closely

linked to a number of other, similar events, all intersecting at the time and place

of the meeting out of which this volume was eventually born. Taken together, these

intertwined trajectories in time, space and ideas may express an emerging message

on complexity and simplicity in social science that no-one could have predicted.
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Part B

Evolutionary Networks in
a Socio-Economic Context



Chapter 7

Complexity, Evolution and Learning

Empirical and Experimental Validation

of Heterogeneous Expectations

Cars Hommes

7.1 Introduction

A paradigm shift in economics is taking place. In traditional, neoclassical econom-

ics a representative agent who behaves perfectly rational has been the main working

hypothesis and mathematical analysis of simple tractable models its main focus. A

problem with this approach is that it requires unrealistically strong assumptions

about individual behaviour, such as perfect knowledge and information about the

economy and extremely high computational abilities to do what is optimal. An

advantage of the neoclassical research programme, partly explaining its success, is

that rationality imposed through optimizing behaviour and model consistent expec-

tations enforces strong discipline on the modelling framework leaving no room for

market psychology and unpredictable, irrational behaviour.

An alternative complexity view is now emerging, based on interaction of many

heterogeneous agents, whose behaviour is only boundedly rational. In this new

behavioural agent-based approach, computer simulation models are the main mod-

elling framework. An advantage is that it becomes possible to describe in detail

individual behaviour at the micro level based on realistic assumptions. The Santa Fe

conference proceedings Anderson et al. (1988) and Arthur et al. (1997a) contain

many contributions within the complexity view. The recent Handbook of computa-
tional economics (Tesfatsion and Judd 2006) contains many chapters describing the

state of the art of agent-based economics. There is however still an important

problem with the bounded rationality research programme: it leaves too

many degrees of freedom. There is only one way (or perhaps a few ways) one

can be right, but there are many ways one can be wrong. To turn the alternative

view into a successful research programme, one has to “tame the wilderness of

bounded rationality”.
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A key feature that distinguishes economics from natural sciences is that market

realizations depend on future expectations and, at the same time, expectations about

future developments are based on current and past realizations. An economy is an

expectations feedback system in which beliefs and realizations co-evolve. Agents

are “smart” and will adapt their behaviour if it benefits them. If all agents are

perfectly rational, in equilibrium individual expectations and realizations must

coincide on average, leading to the neoclassical representative rational agent

model. But if agents are heterogeneous and only boundedly rational, one needs a

convincing theory of heterogeneous expectations. In this chapter we discuss, a

simple story of heterogeneous expectations and some empirical and experimental

validation. Agents can choose from a class of simple heuristics disciplined by

adaptive learning and evolutionary selection. An extensive recent survey of

this approach including many references to related work can be found in

Hommes (2006).

This chapter is organized as follows. Section 7.2 describes a simple example, an

asset pricing model with heterogeneous beliefs, and illustrates how the asset price

dynamics may become unstable when expectations are driven by reinforcement

learning based on past strategy performance. Section 7.3 discusses the empirical

validity of a simple version of the model with two types of traders, fundamentalists

and technical analysts, and how it explains the “dot com bubble” in stock prices in

the late 1990s. Section 7.4 discusses how this approach matches the stylized facts of

learning to forecast laboratory experiments with human subjects. Finally, Sect. 7.5

briefly describes a future perspective.

7.2 An Asset Pricing Model with Heterogeneous Beliefs

As a simple example of a model with heterogeneous expectations we consider the

asset pricing model with heterogeneous beliefs of Brock and Hommes (1998). This

model may be viewed as a simple stylized version of the Santa Fe artificial stock

market model introduced by Arthur et al. (1997b). Agents can invest in a risk free

asset that pays a fixed return 1þ r or in a risky asset that pays uncertain dividends yt
in each period. The market clearing pricing equation is given by

ð1þ rÞpt ¼
XH
h¼1

nhtEhtðptþ1 þ ytþ1Þ þ et; ð7:1Þ

where pt is the price of the risky asset, nht the (time varying) fraction of trader

type h, Ehtð�Þ the belief of type h about next period’s price plus dividend, and et a
noise term representing, for example a small fraction noise traders. In the special

case when all agents are rational the asset price will be equal to the rational,
fundamental benchmark p�t , given by the discounted sum of expected future

dividends
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p�t ¼
Et½ytþ1�
1þ r

þ Et½ytþ2�
ð1þ rÞ2 þ � � � :

This fundamental benchmark is nested as a special case within the general hetero-

geneous agent model. In the case of IID dividends with mean �y, the fundamental

price becomes constant,

p� ¼ �y=r:

Assuming that the beliefs about future dividends are correct (for example because

they can be inferred from past observations of the exogenous dividend process), the

model can be rewritten in deviations

xt ¼ pt � p�

from the fundamental and simplifies to:

ð1þ rÞxt ¼
XH
h¼1

nhtEhtxtþ1 þ et: ð7:2Þ

Strategy choice follows an evolutionary selection principle, that is, “strategies that

have performed better attract more followers”. This can be modelled in several

ways, but we follow Brock and Hommes (1997) where the fractions of belief type

h are determined by the discrete choice model (a random utility model)

nht ¼ ebUh;t�1

Zt�1

; ð7:3Þ

where

Zt�1 ¼
X

j
ebUj;t�1

is normalization factor and Uh;t�1 measures the past performance or fitness (for

example realized profits, forecasting performance, etc.) of strategy h. The parame-

ter b is the intensity of choice measuring the sensitive of agents to differences in

strategy performance. In the extreme case b ¼ 0, agents behave randomly and all

fraction types are fixed with equal weights; at the other extreme, b ¼ 1, all agents

immediately switch to the best predictor (the “neoclassical limit”).

Which ones out of an ocean of possible forecasting rules will agents use? In a

real market, it seems unlikely that many agents will coordinate on a very compli-

cated rule. Therefore, we use simple rules, such as linear rules with only one time

lag (written in deviations
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xt�1 ¼ pt�1 � p�

from the fundamental):

fht ¼ p� þ ghxt�1 þ bh;

where gh is a trend parameter and bh a bias parameter. Another simple rule not

using any fundamental price information is the trend extrapolating rule

fht ¼ pt�1 þ ghðpt�1 � pt�2Þ;

which simply extrapolates the last price change. So far, the parameters in the

forecasting rules have been fixed, but one can introduce adaptive learning to

learn the parameters over time. For example, agents may update forecasting para-

meters by sample average or by employing a recursive ordinary least squares

scheme (OLS-learning), as additional observations become available (see for

example Evans and Honkapohja (2001) for an extensive treatment of adaptive

learning in macroeconomics and Sargent (2008) for a recent discussion of the

importance of learning in macroeconomics and monetary policy).

Figure 7.1 shows simulations of the price fluctuations in an example with four

belief types, including fundamentalists and trend followers, and fitness given by last

period’s realized profits. When the intensity of choice is small, the steady state is

typically stable and the asset prices converge to the fundamental benchmark.

Intuitively this may be understood by observing that for small intensity of choice,

agents are more or less randomly distributed over the different strategies, and as a

result the average forecast is close to the fundamental enforcing convergence to the

fundamental price. In contrast, when the intensity of choice is large agents typically

coordinate on a common strategy and the dynamics destabilizes. In particular,

coordination on a trend following strategy may occur, leading to persistent price

deviations from fundamental. Indeed the asset pricing dynamics in Fig. 7.1 is

characterized by irregular switching between phases of close to the fundamental

price fluctuations with fundamentalists dominating the market and phases of

temporary bubbles when trend following strategies dominate the market. Excess

volatility and temporary bubbles are driven by short run profit opportunities. The

noisy simulation illustrates that even in this simple model the start and burst of the

temporary bubbles are highly unpredictable.

7.3 Empirical Validation

How relevant are these bubble and crash dynamics to real financial market data?

We briefly discuss the estimation of a simple version of the model with two types of

agents, using yearly S&P 500 data; see Boswijk et al. (2007) for a detailed analysis.
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Figure 7.2 shows the logs of yearly S&P 500, 1871–2003, and a benchmark

fundamental price based on dividends with a constant growth rate g. This is the

standard Gordon model and the fundamental benchmark is given by

p�t ¼
1þ r

r � g
yt;

where g is the growth rate of dividends and r is the required rate of return for

investors to hold the risky asset (given by the sum of the risk premium to hold

Fig. 7.1 Chaotic (top) and noisy chaotic (bottom) time series of asset prices (in deviations from the

fundamental price) in an example with four trader types. Prices fluctuate irregularly around the

benchmark fundamental price (which corresponds to 0). Parameters are: g1 ¼ 0; b1 ¼ 0; g2 ¼ 1:1,
b2 ¼ 0:2; g3 ¼ 0:9, b3 ¼ �0:2 and g4 ¼ 1:21, b4 ¼ 0, r ¼ 0:1 and b ¼ 90
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stocks and the risk free interest rate). The corresponding fundamental price to cash

flow ratio

d�t ¼
p�t
yt

¼ 1þ r

r � g
¼ m

is constant along the fundamental (the right plot in Fig. 7.2 allows for one jump in

the fundamental in 1950, due to a jump in the risk premium; see for example Fama

and French (2002)). Figure 7.2 shows that the realized price–dividend ratio shows

large swings around the fundamental benchmark, fluctuating between 10 and 30 for

more than a century, rising to unprecedented values of almost 90 in the 1990s, and

coming down to values below 60 in recent years.

There are two competing views concerning the explanation of swings in price-

to-cash flows. Some attribute them to rational responses to macroeconomic funda-

mentals, while others judge that irrational swings in investor sentiment play a

significant role. Shiller (2000) gives a lucid description of both views, stressing

the relevance of psychological factors.

Boswijk et al. (2007) estimated a simple two-type model of the form

R�xt ¼ ntf1xt�1 þ ð1� ntÞf2xt�1 þ et; ð7:4Þ

where

R� ¼ ð1þ rÞ=ð1þ gÞ; xt ¼ dt � m

is the deviation of the price-to-cash flow from the fundamental, nt and ð1� ntÞ are
the fractions of the two types (depending on past realized profits) and fhxt�1,

h ¼ 1; 2, are the forecasts of the two types of next period’s deviation from the

fundamental (only the first lag was significant). The estimation results yield signifi-

cant estimates f1 ¼ 0:76 and f2 ¼ 1:14, implying that type 1 are fundamentalists

believing in mean reversion of the price towards its fundamental value, while type

2 are trend followers, believing that the price bubble will continue. Figure 7.3

Fig. 7.2 Time series of the log of S&P 500, 1871–2003 and the benchmark fundamental for a

dividend process with constant growth rate
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shows the time variation of the estimated fraction nt of fundamentalists. Significant

heterogeneity with strategy switching and large fluctuations in the fractions of both

types occur. In particular, one observes a low fraction of fundamentalists for 5 or 6

subsequent years in the late 1990s. The average coefficient

ft ¼ fntf1 þ ð1� ntÞf2g=R�

in Fig. 7.3 shows that market sentiment fluctuates considerably over the years, with

average traders believing in explosive asset prices in the late 1990s. This simple

model explains the “dot com bubble” in the late nineties as being triggered by
fundamentals, in the form of good news (a new technology) about the economy, and

strongly amplified by trend following strategies based on reinforcement learning

driven by short run profits.

The PD-ratio has come down to values below 60 in recent years, and one may

ask the question: Will the bubble resume? Figure 7.4 shows prediction of both the

nonlinear model with strategy switching and the linear model with a representative

fundamentalist, believing in average mean reversion. Clearly the nonlinear switch-

ing model predicts much larger swings in price-to-cash flow fluctuations of asset

prices than its linear, representative agent counterpart.

7.4 Learning to Forecast Experiments

Laboratory experiments with human subjects are well suited to discipline the

“wilderness of bounded rationality”. In laboratory markets with carefully controlled

market fundamentals one can investigate which behavioural rules are more likely to

be used by human subjects in different market environments. In this section we

briefly discuss laboratory experiments on expectations formation in the asset

pricing framework of the previous sections. We address the following questions:

Fig. 7.3 Time series of the estimated fraction nt of fundamentalists (left panel) and average market

sentiment ft ¼ fntf1 þ ð1� ntÞf2g=R� (right panel)
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l How do boundedly rational agents form expectations and how do they learn in a

heterogeneous world?
l How do individual forecasting rules interact and what is the aggregate outcome

of individual interaction?
l Will coordination occur, even when there is limited market information?
l Does learning enforce convergence to rationality?

Hommes et al. (2005) performed learning to forecast experiments in an asset

pricing framework similar to that used in Sects. 7.2 and 7.3. Six human subjects

have to forecast the price of a risky asset for 50 periods, and their payment is

inversely related to their forecasting errors. There is expectations feedback, since

the realized market price is determined by aggregation of individual forecasts. After

all individual make a forecast, the computer computes a market clearing price

derived from standard mean–variance maximization demand functions using the

individuals forecasts as inputs. Since subjects only forecast and trading is completely

computerized, agents may be viewed as rational optimizers, given their individual

forecasts. Such a laboratory environment thus produces “clean data” on expecta-

tions, and one can test various expectations hypotheses. Except for the six subjects,

there is a seventh robot trader in the market, who always predicts the fundamental

price and whose weight increases (from 0 to at most 0.2) when prices deviate more

from fundamental.

Subjects thus have limited information about the market. They are told that they

are advisors to a pension fund, which will invest more in the risky asset, when the

Fig. 7.4 Quantiles of 2,000 simulated predictions of the PD-ratio for the nonlinear evolutionary

switching model (left) and the linear, representative agent model (right). Both models are

estimated using data until 2003 and then predict up to 5 years ahead
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subject makes a higher forecast. They also know that the asset price is determined

by market clearing. From the qualitative market information, subjects should be

able to understand that the asset market exhibits positive feedback, that is, higher
forecasts lead to higher realized market prices. Subjects also know the interest rate

r ¼ 0:05 and the mean dividend �y ¼ 3, and could use these to compute the

fundamental price

pf ¼ �y=r ¼ 60:

Furthermore in forecasting ptþ1, they know past realized prices (up to pt�1Þ, their
own past forecasts (up to pet;hÞ and their own earnings (up to et�1;h). However,

subjects do not know market equilibrium equations, the forecasts of others and the

number of pension funds in the market. The information in these experiments is

therefore similar to what is often assumed in models with boundedly rational

traders.

The (unknown) price generating process is given by

pt ¼ 1

1þ r
ð1� ntÞ

petþ1;1 þ � � � þ petþ1;6

6
þ nt p

f þ �yþ et

� �
; ð7:5Þ

where nt is the share of robot traders given by

nt ¼ 1� exp � 1

200
jpt�1 � pf j

� �
; ð7:6Þ

petþ1;h, 1 � h � 6, are the individual forecasts and et is a small noise term. If all

subjects would forecast rationally and use the fundamental price of 60 as their

individual forecast, the realized market prices would be close to 60 with small

random fluctuations around it. This is perhaps not what one would expect right from

the start in a market with limited information, but an interesting question is whether

the market price will at least converge to the fundamental price. It is useful to

briefly mention two other homogeneous agents benchmarks. If all subjects would

use naive expectations, that is, use the last price observation to forecast

petþ1 ¼ pt�1;

starting say with an initial forecast of 50, then realized market prices will converge

monotonically to the fundamental price 60. If on the other hand all subjects use a

simple trend extrapolation rule

petþ1 ¼ ðpt�1 þ 60Þ=2þ ðpt�1 � pt�2Þ; ð7:7Þ

then prices will fluctuate around the fundamental for 50 periods (about six oscilla-

tions). One may wonder how individual subjects would arrive at such a rule, but
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remarkably estimation of the forecasting rules showed that a number of individuals

use a rule very similar to (7.7).

Figure 7.5 shows some typical outcomes of realized prices (left panel) and

individual forecasts (right panel). Three qualitatively different patterns are

observed: (1) monotonic convergence, (2) permanent oscillations, and (3) damp-

ened oscillations. Monotonic convergence is very similar to what would happen if

all subjects use a naive forecast. The permanent oscillations are similar to what

would happen if all subjects use a simple linear AR2 rule such as (7.7). In the

third case of dampened oscillations a strong price trend emerges in the beginning

of the experiment, but the strong trend gets weaker and reverses when

prices deviate too much from their fundamental value. Another striking feature

of the experiment is that in all cases there is strong coordination on a common

prediction rule, as illustrated in the right panel of Fig. 7.5. Coordination however

is path dependent, since different qualitative outcomes are observed in different

markets.

Estimation of individual prediction rules shows that for most subjects (more than

90%) forecasting is well explained by a simple linear model with no more than

three lags in prices and individual forecasts. In fact, for a majority of subjects (more

than 50%) a simple rule with only one or two lags fits the forecasting behaviour

very well. Some simple rules that have been estimated include:

Fig. 7.5 Three typical outcomes of realized prices (left panel) and individual forecasts (right
panel) of the learning to forecast laboratory experiments: (1) monotonic convergence, (2) perma-

nent oscillations, and (3) dampened oscillations
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l Adaptive expectations

petþ1 ¼ wpt�1 þ ð1� wÞpet

(in converging groups)
l Linear rules

petþ1 ¼ aþ b1 pt�1 þ b2 pt�2

(in oscillating groups)
l Trend-extrapolating rules

petþ1 ¼ pt�1 þ gðpt�1 � pt�2Þ

(in oscillating groups)

In order to explain these experiments Anufriev and Hommes (2009) recently

developed a heuristics switching model. There are a number of simple heuristics
and in the beginning agents choose heuristics randomly. Agents evaluate the past
performance of these heuristics based on forecasting accuracy, and subsequently

tend to switch to more successful heuristics. Figure 7.6 shows simulations of the

heuristics switching model reproducing the three different patterns observed in the

laboratory experiments.

The four forecasting heuristics used in the simulations are adaptive expectations, a

weak and a strong trend-extrapolating rule and an anchoring and adjustment heuristic

pe4;tþ1 ¼ 0:5pavt�1 þ 0:5pt�1 þ ðpt�1 � pt�2Þ; ð7:8Þ

where pav is the sample average of all past prices. This rule uses an anchor (the

average of the last observed price and the sample average) and extrapolates a trend

from there. Following the terminology of Tversky and Kahneman (1974), it may be

viewed as a forecasting anchoring and adjustment heuristic.

The price dynamics in the heuristics switching model is given by

pt ¼ 1

1þ rf
ððn1;t pe1;tþ1 þ n2;t p

e
2;tþ1 þ n3;t p

e
3;tþ1 þ n4;t p

e
4;tþ1Þ

� ð1� ntÞ þ pf nt þ �yþ etÞ:
ð7:9Þ

The fractions nh;t, 1 � h � 4, of the four heuristics are determined by a discrete

choice model with asynchronous updating

ni;t ¼ dni;t�1 þ ð1� dÞ exp ðbUi;t�1Þ
P4
i¼1

exp ðbUi;t�1Þ
; ð7:10Þ
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with the fitness measure given by (minus) squared prediction errors, that is,

Ui;t�1 ¼ �ðpt�1 � pei;t�1Þ2 þ �Ui;t�2: ð7:11Þ

The parameter � 2 ½0; 1� represents the memory strength in the fitness measure, the

parameter d 2 ½0; 1� represents the inertia of traders’ switching behaviour (in each

period, only a fraction 1� d of traders will switch strategy) and the parameter

b � 0 is the intensity of choice as before. The fraction nt of robot traders evolves
according to (7.6), as in the experiment.

The only differences in the simulations of Fig. 7.6 are the initial price forecasts

and the initial distribution over the four heuristics. Trends in realized market prices

Fig. 7.6 Simulations of the heuristics switching model. Prices for laboratory experiments and

evolutionary model. Fractions of four forecasting heuristics: adaptive expectations (ADA), weak

trend followers (WTR), strong trend followers (STR), and anchoring adjustment heuristic (A&A).

The simulations only differ in initial price forecasts and initial distribution of strategies
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are more likely when the initial fractions of the weak and strong trend followers are

sufficiently large. Interestingly, the anchoring and adjustment heuristic is important

in keeping the fluctuations alive, since in both the permanent and the dampened

oscillatory cases their fractions becomes large (more than 80%). Coordination of

individual forecasts on simple forecasting heuristics thus explains the three differ-

ent observed aggregate market outcomes. Oscillations may be triggered by initial

prices and small random shocks, are reinforced when the initial fraction of weak

and strong trend heuristics is relatively large and may be sustained by the anchoring

adjustment heuristic.

7.5 Concluding Remarks

We have discussed a simple theory of heterogeneous market expectations, in

which bounded rationality is disciplined through simple heuristics, adaptive

learning and evolutionary selection. This theory matches important stylized

facts in financial market, such as excess volatility and (temporary) bubbles and

crashes. In particular, coordination on trend following strategies, driven by

experience based reinforcement learning, may strongly amplify a rise or decline

in asset prices triggered by fundamental news. As we have seen, the theory

matches for example the “dot com” bubble in stock prices in the late 1990s. The

theory is also consistent with learning to forecast laboratory experiments with

human subjects and explains observed path-dependent stable and unstable out-

comes. In particular, laboratory experiments confirm that coordination on simple

trend following strategies may occur and lead to persistent deviations from

fundamental and fluctuations in asset prices.

In future work the theory should be tested in different market environments.

Complexity models in economics are often based on heterogeneous expectations,

and a satisfactory theory of heterogeneous expectations is therefore necessary for a

successful research programme on bounded rationality, complexity, agent based

economics and evolution.
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Chapter 8

Homophily, Conformity, and Noise in the

(Co-)Evolution of Complex Social Networks

George Ehrhardt, Matteo Marsili, and Fernando Vega-Redondo

8.1 Introduction

Social networks constitute the backbone underlying much of the interaction con-

ducted in socioeconomic environments.1 Therefore, when this interaction attains

a global reach it must have, as its counterpart, the emergence of a social network

with a wide range of overall (typically indirect) connectivity. Naturally, for such a

social network to emerge, agents must be able to link profitably. But this in turn

demands that they display similar – at least compatible – behaviour. Thus, for

example, they must use coherent communication procedures, share key social

conventions, or have similar technical abilities. Here, we may quote the influential

work of Castells (1996).

Networks are open structures, able to expand without limits, integrating new nodes as long

as they are able to communicate within the network, namely as long as they share the same

communication codes (for example, values or performance goals).

Reciprocally, of course, such a convergence of behaviour is facilitated by

the range of social interaction being global rather than local or fragmented.

This suggests the idea that the buildup of a global social network might be

understood as the outcome of twin cross-reinforcing processes: one that facilitates

the convergence of norms and behaviour, and another that extends the range of
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social connectivity. This mutual reinforcement also suggests that if such a global

transition indeed takes place, it should be relatively fast and resilient.
To explore these ideas, Ehrhardt et al. (2006) – thereafter referred to as EMV –

proposed a stylized model in which agents are involved in a local coordination

game with their neighbours in a coevolving network. Two features characterize the

dynamics. First, we postulated that while links vanish at a constant exogenous rate,

new links are created only between agents who randomly meet and happen to be

“coordinated”, that is, display the same action/strategy in the coordination game.

On the other hand, we assumed that, on the same time scale (that is, at a comparable

rate), agents adjust their action towards that which maximizes the extent of coordi-

nation with their current neighbours. For brevity, we referred to the first feature as

homophily and the second as conformity.
The way in which EMV conceive both homophily and conformity is particularly

stark but also restrictive. In particular, both dynamic forces are implemented

through noiseless mechanisms, which implies that, in the long run, the only links

existing in the network are those connecting agents displaying the same action –

that is, network components are homogeneous. This seems too extreme a setup,

which make one wonder whether the analysis is robust to the introduction of some

noise. Our aim here will be to conduct such a “robustness check” by studying a

model where some persistent noise may perturb both the establishment of links and

the adjustment of actions.

In a nutshell, our conclusion is that neither of these generalizations affects the

main predictions of the model. As in the original benchmark model, we continue to

observe:

1. Sharp qualitative transitions in network connectivity and coordination, as a

discontinuous (upward and downward) response to slight changes in the under-

lying parameters beyond corresponding thresholds.

2. The transitions mentioned in (1) display hysteresis, that is, they are locally

irreversible in the long run, even if the environmental parameters revert to

their original values.

3. As a consequence of (2), there is a sizable range of parameter values for which

the system exhibits long-run multiplicity, which is resolved depending on

history or/and the initial conditions.

EMV observed the phenomenology (1)–(3) as the rate of volatility, the only

significant parameter of the model, was varied gradually along its full range. We

now confirm that, in the generalized model, the same qualitative behaviour con-

cerns changes in the noise parameters now introduced, both concerning homophily

and conformity. In fact, since their implications are fully parallel, we shall focus our

present discussion on the parameter modulating the noise of action adjustment, as

will be explained in detail below.

The remainder of the chapter is organized as follows. Section 8.2 presents the

model, Sect. 8.3 carries out the analysis and motivates it, while Sect. 8.4 concludes

with a recapitulation.
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8.2 The Model

Let there be a certain population of agents, P ¼ f1; 2; . . . ;Ng; who interact bilater-
ally over time as specified by the evolving social network. Time is modelled

continuously, with t 2 0;1Þ. At any t, the state of the system oðtÞ consists of

two items: (1) the social network g(t) that specifies the set of undirected links ij
(¼ji) prevailing at t; (2) the action profile aðtÞ 2 AM, where A ¼ fa1; a2; . . . ; aqg is
the set of q possible actions.

Players adjust both actions and links over time. The dynamics is described by a

continuous Markov process for the state oðtÞ, and is therefore completely deter-

mined by the rates governing all possible transitions o ! o
0
. These transitions

pertain to adjustments that involve (1) link creation, (2) link destruction, (3) action

revision. We now describe each of these in turn.

Link creation: We posit that at a certain positive rate � each agent i receives a
link creation opportunity. When such an opportunity arrives at some t, another agent
j is randomly chosen in the population (all with the same probability). When no link

exists between i and j (that is, ij =2 gðtÞ), the link ij is formed with probability one if

aiðtÞ ¼ ajðtÞ:

Otherwise, the link is formed with probability e, conceived small.

Link destruction: It is assumed that existing links decay at a rate l. This
component of the process may be provided with different (non-exclusive) inter-

pretations. For example, it may be conceived as a reflection of unmodelled envi-

ronmental volatility that affects the value or feasibility – and thus the persistence –

of some of the existing links.

Action revision: At every t, each agent i independently receives at a rate v the
opportunity to revise her current action. If this revision opportunity materializes,

then she chooses every possible action ar 2 A with probability

PrðaiðtÞ ¼ arÞ ¼ 1

H
exp b ajðtÞ ¼ ar : ij 2 gðtÞ� ��� ��� �

; ð8:1Þ

where

H �
Xq

r0 ¼1
exp b ajðtÞ ¼ ar0 : ij 2 gðtÞ� ��� ��� �

is a normalization factor and b � 0 is a parameter that modulates the sensitivity of

agents’ adjustment to conforming (or coordinating) with the local environment. It

can be understood as embodying a desire of the agents to play optimally in a local

coordination game, where the instantaneous payoffs that may be obtained from

each action are linear in the number of neighbours currently displaying that same

choice.
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The above formulation yields the model studied in EMV as a particular case

when

e ¼ 1=b ¼ 0;

that is, when the noise associated to link creation and action revision are both zero.

As advanced, since the two sources of noise lead to totally analogous implications,

we abstract from the former by still making e ¼ 0 while we focus our attention

on the latter by assuming that b is finite. Note that, in this case, (8.1) becomes

the specific exponential form that has been amply used in modern evolutionary

literature to model gradual adjustment and learning in games (see, for example,

Blume (1993), Durlauf (1997), or Young (1998)). It is in the spirit of the well-

known formulation of logistic quantal response equilibrium proposed by McKel-

vey and Palfrey (1995), which has been provided with a natural bounded-rationality

interpretation by Chen et al. (1997). The parameter b modulates the noise imping-

ing on agents’ adjustment. If b ¼ 0, noise is the overwhelming force and all actions

are chosen with the same probability, irrespectively of local conditions and payoffs.

In contrast, in the polar case where b is very large, only if a particular action is a

genuine best response is it chosen with a sizable probability.

8.3 Analysis

For finite b, the model is substantially more complex than the degenerate version

studied in MEV. Consequently, we are unable to obtain an exact characterization of

its stable equilibria and thus have to base our analysis on some simplifying

assumptions. Naturally, this implies that the solution we arrive at can no longer

be regarded as a fully accurate description of the long-run behaviour of the model.

The entailed approximation, however, turns out to be quite effective since, as we

shall explain, it matches very closely the results obtained from numerical simula-

tions for large populations.

The adjustment rule given by (8.1) not only has the precedents in economics

summarized in Sect. 8.2 but is also formally identical to the “spin dynamics”

postulated by the so-called Potts model in statistical physics, itself a generalization

of the canonical Ising model. In this context, 1=b plays the role of the temperature

at which the particle interaction takes place and the q different actions are the

possible spins. (See, for example, Vega-Redondo (2007) for a detailed explanation

of these models and their relationship to the economic and evolutionary literature.)

The Potts model has been studied in detail by physicists and exact solutions for it

exist for low-dimensional lattices as well as trees (cf. Baxter (1982)). Recently,

the analysis has been extended to random networks by Dorogovtsev et al. (2004)

and Ehrhardt and Marsili (2005). We crucially rely on the latter in our present

analysis.
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One of the simplifying assumptions we make is that the network prevailing at

any given point in time is a random network suitably characterized by a degree

distribution

p � fpðkÞg1k¼0

that specifies the fraction of nodes p(k) that display each possible degree k. The
defining property of a random network is the absence of statistical correlations.

Thus, in particular, it is presumed that the degree of a node is stochastically

independent of any of its neighbours. Such a property does not strictly hold in our

present generalized context – only approximately so.2 This is why the random-

network postulate must be viewed, in this case, as a convenient, but not fully

accurate, description of the system at any point in time.

Another simplifying assumption we shall make concerns the relative speed of

action and link adjustment. For technical tractability (and in particular, to rely on

the solutions of the Potts model available in the literature), it is convenient to posit

that the network adjusts much slower than agents’ actions. Formally, this is

captured by making n ! 1. It amounts to assuming that actions adjust at a much

brisker pace than links, so that the current underlying network may be taken as fixed

while the action distribution reaches a stable configuration.

Under these assumptions, the analysis of the model can be decomposed into the

following steps. First, we need to derive the law of motion for the degree distribu-

tion p, which is governed by the subprocesses of link creation and link destruction.

As explained, the latter simply has every existing link disappear at a constant rate l.
Link creation, on the other hand, depends on the probability that any two agents

who meet and have the potential of creating a new link happen to display the same

action. For any given agent/node i, this ex ante probability must generally depend

on its degree zi ¼ k, so we denote it by pðkÞ. In essence, this probability results from
the combination of the following three constituent probabilities:

1. The (unconditional) probability z that, when node i selects another node at

random, the latter belongs to the (unique)3 giant component of the network.

2. The conditional probability gðkÞ that node i of degree k belongs to the giant

component.

2By way of illustration, one of the features of the process that introduces internode correlations can

be explained as follows. First note that the postulated action dynamics leads high-degree nodes to

exhibit, on average, stronger social “conformity” than lower-degree nodes. That is, they have a

higher probability of choosing the action that is in the majority in the population. This in turn

implies that links between high degree nodes will be formed with higher probability (that is, at a

higher rate) than between lower-degree nodes. In the end, therefore, positive degree correlations

will tend to arise, high-degree nodes being more likely to be connected to other high-degree nodes

than what is prescribed by the unconditional average.
3As is well known in the theory of random networks, if a giant component exists in this context, it

is unique.
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3. The conditional probability mðkÞ that, if node i of degree k does belong to the

giant component, its action coincides with that of a randomly selected node in

that component.

The first probabilities, z and y(k) for each k, only depend on the underlying degree

distribution p. The probabilities m(k), on the other hand, depend both on p and the

value of b in (8.1) that modulates the pressure towards local conformity induced by

the action dynamics. To compute the probabilities in (1)–(2), one can directly use

the standard techniques of the modern theory of random networks, as explained, for

example, in Vega-Redondo (2007). And concerning the probability in (3), we may

rely on the aforementioned solution of the Potts model in random networks that has

been developed by Ehrhardt and Marsili (2005).

Thus let z, g(k) and m(k) for each k be the probabilities prevailing at some point in

time when the underlying network is modelled as a random network with degree

distribution p. Then, the probability p(k) that a randomly chosen node of degree k
meets a node that displays its own action is simply given by:

pðkÞ ¼ ð1� zgðkÞÞ 1
q
þ zgðkÞmðkÞ: ð8:2Þ

The second term in the right-hand side of (8.2) corresponds to the event that some

arbitrary node i of degree k happens to be part of the giant component and it meets

another node j in that same component. In that case, the link between i and j is
formed with probability m(k), that is, the probability that both display the same

action.4 The first term, on the other hand, contemplates what happens when either

node i or/and the node j it meets are not in the giant component. Then, with

probability essentially one in a large random network, both nodes are in different

components. This implies that they will only display the same action (and thus form

a link) “by chance”, that is, with probability 1/q since there are q possible actions.

Given the probabilities p(k) specified in (8.2), the evolution of the degree

distribution in time can be modelled through the following differential equation:

_pðkÞ ¼ ðk þ 1Þlpðk þ 1Þ þ 2�pðk � 1Þpðk � 1Þ � klpðkÞ � 2�pðkÞpðkÞ; ð8:3Þ

where we dispense with the time index for notational simplicity. The first two terms

in the right-hand side of (8.3) reflect the inflow into the frequency of nodes of

degree k. This inflow consists of those nodes that had degree kþ1 and lost one of its

links (which happens at a rate l per link), combined with the rate at which nodes

with degree k�1 form a new link. (In the latter respect, note that the factor of

2 accounts for the fact that a link is created if either the node in question receives the

initiating opportunity or some other node does.) On the other hand, the two last

terms embody the opposite flow that decreases the frequency of nodes of degree k
when these nodes either loose or create a link.

4Of course, this presumes that the link between i and j is not already in place, which is an event that
can be essentially ignored in large populations.
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We are interested in characterizing the pair

p� ¼ fp�ðkÞg1k¼0; p
� ¼ fp�ðkÞg1k¼0

that defines a stationary point of the dynamical system. Such a stationarity embo-

dies a twin requirement. First, given p�, the corresponding p� induced by (8.2) must

suitably characterize the long-run coordination probabilities induced by the fast

dynamics governed by (8.1). Second, given p�, the degree distribution p� must

define a stationary point of (8.3). This latter requirement simply amounts to stating

that, for all k ¼ 1; 2; . . .,

ðk þ 1Þlp�ðk þ 1Þ þ 2�p�ðk � 1Þp�ðk � 1Þ ¼ klp�ðkÞ þ 2�p�ðkÞp�ðkÞ:

This defines a system of difference equations that can be solved recursively as

follows:

p�ð1Þ ¼ 2�p�ð0Þp�ð0Þ; ð8:4Þ

along with

p�ðk þ 1Þ ¼ 2�p�ðkÞp�ðkÞ þ klp�ðkÞ � 2�p�ðk � 1Þp�ðk � 1Þ
lðk þ 1Þ ðk ¼ 1; 2; . . .Þ;

ð8:5Þ

once we impose the normalization

S1
k¼0p

�ðkÞ ¼ 1:

To understand the essential gist of the argument, it is useful to make the assumption

that the underlying degree distribution p is Poisson. (This assumption is not exactly

true, but happens to be quite a good approximation for most parameter values in the

interesting range.) Then, we can define the average probability pðc; bÞ that two

randomly selected nodes happen to be well coordinated (and thus will establish a

link), as a function of b (the noise parameter) and the average degree c (the only

parameter characterizing a Poisson degree distribution). The desired stationarity of

the situation then requires that average link destruction be equal to average link

creation, that is,

lc ¼ pðc; bÞ: ð8:6Þ

The situation is described in Fig. 8.1 for different values of l, while we

normalize the rate of link creation � to unity. It shows that when l> l2 there is a

single solution, representing a sparse network. At l2 other two solutions arise, one

of which is unstable. At a further point l1 < l2 the sparse-network solution merges
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with the unstable one and both disappear for l< l1, leaving only a solution with

a stable and dense network. This reproduces the phenomenology summarized in

(1)–(3) in Sect. 8.1 and, as explained, coincides fully with that obtained in EMV for

the noiseless degenerate model.5

To conclude, we focus our discussion on the role played by the new parameter b
that marks the only difference with the EMV model. Interestingly, we find that

changes in b induce the same qualitative pattern of long-run behaviour as observed

before for changes in �. The conclusions – both theoretical and simulations – are

depicted in Fig. 8.2 for two different values of �. (In this case, we find it convenient
to scale time by normalizing the rate l to unity.)

Figure 8.2 shows that, as one implements gradual changes in the noise impinging

on action adjustment (which can be suitably parameterized by 1/b), the long-run
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Fig. 8.1 Graphical illustration of the solutions for the stationarity condition (8.6) for q¼10 and

b¼4, under the assumption that the underlying random network is Poisson. The solutions are

given by intersections of the curve representing the function pðc;bÞ with rays lc for different

values of l. For l¼l1 and l¼l2 the rays are tangent to the curve, thus marking the values that

bound the region l 2 ½l1; l2� where multiple intersections (that is, solutions) exist. Outside this

region, (8.6) displays a unique solution

5Mathematically, the behavior displayed by the model reflects the onset of a bifurcation towards

instability and equilibrium multiplicity as the parameter l enters the region ½l1; l2�. Such a

bifurcation is analogous to that found by Brock and Hommes (1997) as the intensity of choice

(here captured by either a change in the volatility rate l or the choice-sensitivity parameter b)
varies in a suitable range. See also Hommes (2006) for an extensive discussion of the issue.
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behaviour of the system displays the same three features that are obtained for

changes in � That is, both connectivity as well as social conformity exhibit sharp

and resilient transitions across multiple equilibria as the noise level changes

“slightly” around certain thresholds. It is worth stressing that the theoretical pre-

dictions are well supported by numerical simulations, even though, as we have

explained, the analytically solved model can only be conceived as an approximate

description of the system dynamics.

8.4 Conclusion

We conclude, therefore, that the introduction of noise into the model studied by

MEV maintains the essential phenomenology that was encountered there for the

degenerate noiseless version of the model, that is, sharp transitions, hysteresis, and

equilibrium multiplicity are robust features of the long-run dynamics of the process

when the link-destruction or link-creation rates change in a relevant range. In fact,

we have found that analogous behaviour arises as well concerning changes in the

Fig. 8.2 The upper panel plots the average connectivity hki predicted by the model against the

noise level 1=b, for q¼10 and two different values of �, that is, �¼4 (lower curves), �¼10 (higher
curves). The solid lines trace the theoretical prediction while the points represent simulation results

for n ¼ 1,000.The lower panel displays analogous results for the average probability p that two

randomly chosen nodes display the same action
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parameter controlling for the action-revision noise on which we have focused our

analysis here. This suggests that such a phenomenology may well represent a solid

(and, in a sense, universal) pattern to be expected in network formation processes

reflecting the forces of homophily and conformity.

Building upon those insights, there are two different avenues we want to explore

in future research. First, we would like to understand how the model fares when the

mechanism of link creation is endowed with a natural local dimension – for

example, if new linking opportunities are assumed to be found through the “inter-

mediation” of current neighbours, as in Marsili et al. (2004). Second, we would like

to enrich the present abstract modelling approach with features (say, payoffs and

purposeful decision making) that would allow one to study important and concrete

economic problems, for example, the role of R&D collaboration on firm innovation

in oligopolistic industries.
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Chapter 9

Complex Evolution and Learning

The Role of Constraints

Massimo Ricottilli

9.1 A Short Introduction

Searching and learning are key processes in determining the complex evolution of

technological capabilities but take place according to idiosyncratic rules that

constrain the way they unfold. In this respect, constraints are often understood as

barriers hampering efficient functioning. They are, indeed, seen as orienting activity

in specified directions generating performance patterns the upshot of which is likely

to be suboptimal. This view may be thought as applying to the domain of social

undertakings as well as to activities of a biological nature. Constraints are thus

perceived as fetters to efficiency, bounding the required freedom often deemed as

crucial to achieve, if not optimal, at least improving solutions. In a recent paper

(Ricottilli 2008), it has been argued that constraints set to restrain full freedom of

choice, but the argument may well apply to across-the-board functioning of

biological entities, act as focusing devises quite often resulting in better perfor-

mance. The problem at hand takes full contours when dealing with the issue of

searching and learning, that is when problem-solving is set in an evolutionary,

hence dynamic, context. More particularly, this issue is of utmost relevance when

this process is meant to lead to innovation, be it technological or organizational or,

in fact, both. It is a well established fact that a firm’s strategy to survive and thrive in

a market environment does require innovative activity and investment. Although

markets rarely function according to the classical competitive paradigm, they

become contestable precisely thanks to the likelihood of product and process

innovation. It is therefore important that a model of searching and learning take

fully into account the role that constraints are likely to play in these processes.

M. Ricottilli
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In this chapter I wish to report the work that has recently been done on these

matters by a small research group at the University of Bologna.1 It is now an

accepted fact-of-life that searching and learning are cognitive processes of know-

ledge acquisition that are radically uncertain as to their final outcome. It is,

accordingly, a warranted assumption to postulate that, in this context, bounded

rationality holds. They are radically uncertain because paucity of information rules,

computing capabilities are limited and forecasting is therefore severely hindered.

This assumption then implies that agents, more precisely firms in an economic

framework, although in theory facing a normally complex space of possibilities

when searching can effectively explore only a small fraction. The notion of space of

possibilities is, of course, difficult to define. It may nevertheless be taken to

encompass all the conceivable new characteristics that a present state may likely

take given the current stock of knowledge: a clearly partial and ill defined concept

since radical innovations may well lie outside such space precisely since they

cannot be foreseen and presently envisaged. Yet, even this rudimentary conceptual

device may be of help in understanding the complexity that lies at the root of a

searching process. An interesting way to portray it is to consider that any extant

frontier technology is made up by a large number of elements each of which can

lend itself to change and thus give rise to an useful innovation. Assume, for

instance, that there be a number a of conceivable ways of changing each of the

elements that describe such a technology. Let the latter make up a countable set of

cardinality N. Even if, for simplicity’s sake, N is taken to remain constant the

theoretical space of possibilities is: aN , a magnitude that scales exponentially with

N and linearly with a. Exploring and testing for performance each of these likely

configurations in quest of the optimum is clearly an unaffordable task even for the

best equipped and resource-provided firm or organization for N even moderately

large. To further complicate this matter it is important to retain that, historically,

processes of production have lengthened in terms of the components technically

required to obtain a given output; they have, in other words, become more techni-

cally roundabout: N is bound to increase in time. Yet, more complications enhanc-

ing the level of complexity are generated by the interdependence existing between

technologically complementary elements, a fact entailing a thorough reshaping and

fine-tuning of the whole process. What is implied is a complex coevolutionary

pattern of change.

9.2 The Evolution of Technological Capabilities

Recent literature has dealt at length with the evolutionary process leading to the

shaping of technological capabilities. In particular, the approach dating back to the

contributions of Nelson and Winter (1982), Dosi (1988) for an extensive review,

1See, for instance (Andergassen et al. 2005, 2006; Castellani et al. 2007).
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has argued that searching in a space of opportunities is a process that is bounded

both by limited rationality and by the confines of a neighbourhood that be reachable

either spatially or cognitively. More recently, theories that have investigated the

features of networks have forcefully shown that information diffusion and sharing

are necessarily supported by the properties of network architecture (Albert and

Barabási 2002; Jackson 2008).

9.2.1 Search for Information and Knowledge Building

The search for innovations is therefore a knowledge-building process that is

necessarily local and that requires gradual information collection. It is gradual

since information is likely to come from a variety of sources and because it

comes in packets that are first sought then evaluated and finally acquired as part

of a consistent design that upon completion develops into a full fledged innovation.

In order to account for the basic characteristics of this process it is expedient to view

it as taking place according to two distinct but clearly overlapping activities. The

first concerns an in-house, direct effort to autonomously generate new technological

knowledge by single-handed investigation. This is the activity normally carried out

by R&D departments but also by informal, piecemeal trial-and-error searching. The

second is an activity directed at collecting information from spillovers originating

from firms that have innovated and developed cutting-edge technologies. This is a

somewhat artificial distinction but it is useful to highlight the fact that success at

bringing to the fore new methods of production and products much depends on

firms’ interaction while at the same time recognizing that if there were no indepen-

dent effort to conjure up something entirely new mere diffusion and circulation of

ideas would produce no progress. The first activity can usefully be viewed as ruled

by a Poisson stochastic process whilst the second can appropriately be modelled by

information diffusion that occurs with a given strength of interaction.

Because of the assumption of bounded rationality, it is straightforward to retain

that firms cannot search the whole economy in their quest for information but that

only a small section can actually be explored. The following paragraphs report on

the finding of a simulation model that emphasizes this crucial feature of the

innovation process by highlighting the importance of interaction. Firms are accord-

ingly seen as acting out their innovative activity placed in a network of other firms

within which they can draw information although from a normally small neigh-

bourhood. In this context, a network is to be understood as a cognitive environment

taking shape as firms assess and adjust their information-contributing neighbour-

hood. The upshot of this activity is, first of all, an increase in firms’ technological

capability, a quality that is rendered by a quantity measured by a performance index

that cumulates the impact of both independent and interactive searching. The latter

is the result of the transmission of capabilities from neighbouring firms whose

number is assumed, for the purpose of retaining simplicity, as being constant: kin.
The neighbourhood in question is defined as inward since it is the medium gathering
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performance-enhancing information for any given firm and it is distinguished from

the outward neighbourhood that emerges as other firms include it in their own inward
one. A firm’s outward neighbourhood is accordingly defined as made up of all firms

that have chosen it as an information source and evolves as they choose whom to

receive information from. For simplicity’s sake, the model that has been implemented

to simulate the involved dynamics is described by the following equations:

ViðtÞ ¼
XJ
j¼1

aijbijðtÞVjðtÞ þ CiðtÞ; ð9:1Þ

solving for

VðtÞ ¼ ½I �MðtÞ��1CðtÞ: ð9:2Þ

ViðtÞ is firm i technological capability extant at time t, CiðtÞ is its autonomous part

while aij is the broadcasting strength enabling a fraction of VjðtÞ to be passed on to i.
While the latter are assumed to be given parameters, bijðtÞ is the element of the

adjacency matrix determining which j belongs to i’s neighbourhood. MðtÞ is the

resulting matrix2

MðtÞ ¼ ðaijbijðtÞÞ:

Since CiðtÞ is a purely stochastic element, it is simply taken to be a value drawn

from the uniform distribution (0,1): after a waiting time m a firm is randomly chosen

for this purpose.

It is clear that the crux of the matter lies with the updating process that leads

firms to change their inward neighbourhood as they search for better contributors to
their technological capability. While it is rather straightforward to assume that

every now and then, in fact when randomly chosen for the purpose, firms check

for the worst contributing neighbour and then attempt to change it, it is quite clear

that the real task is to device an appropriate protocol to substitute the low performer.

Several procedures can be examined that are consistent with the likely searching

attitudes of firms that are limited by bounded rationality. More specifically, the

relative efficiency of alternative routines can be tried: in this framework a routine is
a procedure that firms are assumed to follow in order to assess, first, their neigh-

bours’ performance in contributing information and, second, to choose a new

neighbour when the low performer is evicted. Evaluating the performance contri-

bution of existing neighbours may simply be rendered by the following criterion:

2It is interesting to note thatMðtÞ can be defined as a cognitive interaction matrix. Its equivalent in

the framework of spatial theory is the flow matrix. Since it is of a cognitive nature, it is clearly an

artificial construction although it can be likened to a formal representation establishing the

linkages within a virtual space of interacting, information-exchanging nodes.
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giðt� 1Þ ¼ arg min
j2GiðtÞ

½aijbij t� 1ð ÞVj t� 1ð Þ� ð9:3Þ

gi being the identified neighbour. A satisfactory replacement choice can be rendered

by a simple improvement rule:

ViðtÞ > Viðt� 1Þ; ð9:4Þ

a procedure that redefines at each time step MðtÞ thus generating a new set of

solutions. The actual choice of a new neighbour, however, can be made in a variety

of ways. Two broad procedures are distinguished. The first defines what can be

called a strong but bounded rationality principle: firms consider the whole economy

for a replacement and randomly draw from the whole set of non-neighbouring

firms. The second is a more constrained protocol: it is recognized that only firms

placed close by, in a cognitive sense, can be understood and their spillovers

fruitfully incorporated. Thus, choice is a random draw from the excluded neigh-

bour’s own neighbourhood. The rewiring process, in this case, obeys a specific

constraint imposed to the searching process by cognitive limits restricting the

virtual space of likely candidates for substitution. This second procedure, however,

can be designed to give rise to mixed routines in which choice is either always local
in the sense just mentioned above or it is a composite rule of both local and global

search. More precisely, calling p the probability of exploring across the entire firm

space at each attempt to change a randomly chosen neighbour, define p � 1
t. When

t¼1, (p ¼1) the search routine is such that firms always look over the whole

economy for a new neighbourhood member but t tends to infinity, t ! 1, when

searching is entirely restricted within their neighbours’ neighbourhood (p ! 0,

they never look over the whole economy). Intermediate values state the number

of times searching occurs inside the firm’s proximate neighbourhood and just once
outside. Choosing a specific routine is of great relevance to the way the network

evolves and finally becomes structured. In turn, the emergent network topology is

expected to have a crucial impact on the economy’s average technological capabil-

ity and on the role some firms are likely to play in broadcasting information and

passing on capability spillovers. Thus, constraints act to shape the network archi-

tecture and ultimately the economy’s technological performance. What follows is a

short report on results obtained from simulating the model.

9.2.2 Spillovers Through an Average Parameter

Simulations3 that are illustrated below have been performed under a very restrictive

assumption, namely that all the aij ¼ a a specified parameter that applies to all

3A detailed description of the simulations that have been carried out appears in Andergassen et al.

(2005) and Andergassen et al. (2006).
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firms. This assumption can be justified by taking a mean-field approach measuring,

in other words, the average strength of capability interaction. A further paper,

Andergassen et al. (2005), attempts to investigate a more knowledge-wise hetero-

geneous environment.

Figure 9.1 illustrates the behaviour of the efficiency index f Tð Þ4 at the terminal

date T plotted against t, the type of routine used. This index is obtained by dividing
the system’s average gain resulting from the actual choice as shown in (9.1) and

(9.2) over the potential maximum one. The three lines correspond to as many

waiting times. It is very interesting to note that the efficiency index rises as the

implemented routine varies from one that targets the global economy to a progres-

sively more local one to reach a maximum at a magnitude roughly set between four

and five. The best searching strategy, therefore, is not the one that adopts a routine

targeting the whole economy, that chooses a new and more performing neighbour

by randomly drawing from the whole set of firms, but one in which local and broad

targeting mingle. A t ¼ 4 or 5 means that it is best to search locally four or five

times and once globally. As searching becomes more local and as it tends to an

exclusively local routine, efficiency falls. The implication is that it pays to constrain

the searching routine to a partially local one but drawing widely from the whole

economy once every a given number of times. The reason behind this result owes to

the fact that firms, as they are randomly drawn to adjust their neighbourhood, tend

to incorporate better capability-contributing firms. Thus, if a firm encounters high

performers when it gets the chance to expel the relatively lowest one of its given

neighbours, sampling randomly from the latter’s neighbours implies a high proba-

bility of meeting an even higher contributor. It follows that searching in one’s own

neighbour’s neighbourhood stands a chance of finding increasingly better spil-

lovers. Yet, given some waiting time, neighbouring firms may be shocked by a

random draw from the uniform distribution; they stand a chance of worsening their

own independently achieved capability Cj. Hence, getting locked in an exclusively
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Fig. 9.1 Efficiency index

fðTÞ; on the y-axis, as a
function of t, on the x-axis,
for mean-waiting time. m ¼ 8

(dots), m ¼ 16 (dashed line)
and m ¼ 32 (continuous line)

4The formal definition of this index can be found in Andergassen et al. (2006).
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local search has an increasing probability of being stuck with performers that are

likely to decrease their technological capability and, thus, it pays to look further for

better substitutes. In the economy as a whole, given a large enough number of firms,

meeting better performers has roughly the same probability of meeting worse ones.

There is then a trade-off between local and global search: shortsightedness and

longsightedness have an important role to play in the quest for higher technological

capability.

It is now important to verify the relative firms’ weight in spreading relevant

information. As it has been seen the routine that is adopted to implement searching

and that constrains it to a specific narrow neighbourhood is very important as to the

results that firms, on average, are likely to achieve. It is, likewise, expected that

routines also play a significant role in the emergence of firms as crucial providers of

information.

Figure 9.2 reports interesting findings. It depicts the distribution of the size of

outward neighbourhoods. The x-axis plots 32 quantiles, from the 0–2 to the 62–64

quantile. A quantile corresponds to howmany firms are likely to look at and retrieve

information from any specific one; the y-axis plots the corresponding frequency.

While data for several waiting times have been collected, overall results do not vary

substantially with the latter; thus, an average m ¼ 32 has been chosen to represent

these findings. The important result that is highlighted by data shown in Fig. 9.2 is

that for routines that blend local and global search, that is for t > 1, there is a

positive probability that the last quantile be filled. The implication is that there exist

one or two firms that have a positive probability of being in the neighbourhood of

the remaining ones and that, therefore, broadcast their technological knowledge to

the rest of the economy. Because of this property, they are dubbed technological

paradigm setters. The emergence of these very special firms is barred in the case of

the across-the-board routine basically for the reason that has already been men-

tioned above. Given the fact that good and bad performers have a roughly equal

probability of being encountered by random searching over the whole economy, it

is unlikely that any particular firm gets locked-in into a neighbourhood of very high

performers in which every one else will finally also get into.
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Fig. 9.2 Distribution of

outward links according to the

chosen routine. The x-axis
plots the quantiles, whilst the

y-axis their frequency
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It is quite apparent that the emergence of paradigm setters and average perfor-

mance be related. Data indicate that the emergence of the former precedes the

achievement of the maximum efficiency for t ¼ 4 or 5 . Indeed, paradigm setters

begin to appear as soon as some locality is introduced in searching (t ¼ 2) high-

lighting the importance of constraints, in this case of routines that confine the

choice of new contributors of technological spillovers to a relatively small neigh-

bourhood. Thus, the probable existence of firms that drive the technological

capability of almost every other firm seems to be a prerequisite for high average

performance. By contrast, while for very local routines paradigm setters are also

very likely to appear, average performance is probably poor on account of lock-in

into badly performing neighbourhoods. This occurrence implies that, in these

circumstances, paradigm setters need not be the highest performers within the

economy: better firms are likely to exist but will never be discovered through a

very local search. If this is the case, technological leadership when searching

routines are very local turns out to be quite inefficient.

9.2.3 Heterogeneous Knowledge

An attempt at testing the behaviour of the model when spillovers do not spread

according to an average parameter a has been made. In following figures data from

simulations have been collected by assuming that the economy is split in blocks of

firms belonging to different cognitive areas. The assumption is that within each area

the broadcasting strength between firms is highest but weakens when transmission

involves firms belonging to different ones. Three cases are actually studied. The

first replicates the experiment reported above in which a single interaction parame-

ter a is assumed. The second considers two blocks in which a1 > a2 defining a

parameter

d ¼ a2
a1
¼ 0:8

whilst the third resets d ¼ 0.6 , the latter being the case of greatest heterogeneity.5

The major difference in respect to the economy in which an unique, average,

spillover broadcasting parameter is considered does not lie so much with the

behaviour of the average technological performance, measured by an efficiency

index, as in the network topology as seen from the outward neighbourhood perspec-

tive. Thus while the data shown in Fig. 9.1 basically hold, Figs. 9.3–9.5 illustrate the

emergent pattern of the outward neighbourhood distribution. It is, clearly, within the

5In the framework of spatial theory, this procedure is equivalent to adding a cost factor to links

between nodes belonging to areas of heterogeneous knowledge. More precisely, matrix M(t) can
be re-arranged such that coefficients belonging to areas of homogeneity be multiplied by d ¼ 1

whilst those belonging to areas of heterogeneity by d < 1. Cost shows up in lower spillover

strength.
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model logic that connectivity between blocks declines as the cognitive distance

increases. Figure 9.3 plots the share of firms that are connected against parameter d.
It is immediately seen that connectivity is lowest when the routine followed to

adjust the inward neighbourhood is global but rises as it becomes increasingly local.

Fig. 9.3 Share of connected firms plotted, on the y-axis, against the degree of heterogeneity d, on
the x-axis, and according to the chosen routine t

Fig. 9.4 Distribution of

outward links according to the

chosen routines when the

heterogeneity degree is 0.8.

Quantiles are on the x-axis,
frequencies on the y-axis

Fig. 9.5 Distribution of

outward links according to the

chosen routine when the

heterogeneity degree is 0.6.

Frequencies on the y-axis and
quantiles on the x-axis
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Evidence is clearest for d¼ 0.8: when d¼ 1 connectivity is, obviously, not an issue

whilst it becomes negligible for d¼ 0.6 . The latter case indicates that the economy

is split in two heterogeneous areas while inter-area connectivity practically dis-

appears. Yet, for moderate heterogeneity (d ¼ 0.8) routines do seem to make a

difference. Global search quite understandably generates low connectivity. Since

blocks possess the same membership cardinality, the probability of drawing an

heterogeneous candidate for replacement according to (9.4) is about 1/2 and given

also that that high and low performers are randomly distributed, an attempt to

include a cognitively distant firm in one’s own neighbourhood will most likely be

frustrated. As routines get to be more local and searching becomes more con-

strained in neighbours’ neighbourhoods, having discovered heterogeneous but high

contributors leads to yet better performers, albeit heterogeneous, a fact that

enhances connectivity.

The connectivity problem is effectively exposed when observing the outward

neighbourhood distributions. Figure 9.4 reports them according to the chosen

routine (t) and for d ¼ 0.8 (moderate heterogeneity).

It is immediate to notice that when t ¼ 1 no paradigm setters emerge whilst for

t > 1 there is a positive but scant probability that they do. But the main feature that

emerges from the data is a relative probability peak in the approximately median

quantile: the one which includes about one half of all firms, that is those placed in

the homogeneous area. The implication is that while there is weak evidence of

global paradigm setters emerging, sectional ones do, that is, paradigm setters within

each of the two blocks of firms. The evidence described above is much more

apparent for d ¼ 0.6, the case of high heterogeneity as shown in Fig. 9.5. The

conclusion is therefore warranted that, quite generally, when technological cap-

abilities are heterogeneous the economy tends, other things being equal, to split into

separated cognitive areas, each with its own paradigm setters. This tendency

towards separation is greater for global routines. The expression “other things

being equal” is to be understood as meaning that only statistical properties have

been observed for given cognitive interaction parameters. The latter are weaker

when heterogeneity is present. Thus, even high, potential contributors may quite

likely be discarded simply because the capability that they can pass on is small

owing to heterogeneity. Interesting results would be obtained if this heterogeneity

draw-back were offset by a risk-taking factor. It is conceivable that firms ready to

take a technological risk by venturing into alien knowledge areas would most likely

increase connectivity. While a formal investigation of this problem is yet to be

made, it is expected that patterns similar to the homogeneity case would emerge.

9.3 Shaping the Cardinality of Inward Neighbourhoods

The experiments that have been carried out above have taken each firm’s inward
neighbourhood cardinality as given. The number of other firms that each is allowed

to observe is set to a conventionally fixed number kin (in the simulations discussed
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above the cardinality is three). Clearly this is a procedure that preempts the

topology of both inward and outward networks. An improving extension of the

analysis discussed in foregoing sections is to deal with the specific problem of

generating the initial number of inward and, consistently, outward neighbours for

each firm present in the economy. Once the network structure has taken shape, it is

then fitting to study how it adjusts when it is finally able to perform the task for

which it is designed, namely to allow for efficient cognitive interaction through

which spillovers travel. It is, clearly, a somewhat artificial procedure since linking

and rewiring are often concomitant processes but it is expedient to separate the two

for analytical clarity. An experiment has been made following an approach accord-

ing to which edges are established as the outcome of a process which gradually tests

and assigns them some measure of strength until a link is finally set up. The issue of

strength building implies a task of weighing prospective partners that ends with

eventual rejection or positive selection. In this sense, it is a competitive process

leading to some firms finally being chosen and others shunned. The model that has

been considered draws inspiration from models that have been adopted in biology

(Castellani et al. 1999; Intrator and Cooper 1992). The mathematical backbone of

this network-building procedure consists in assuming a loss function that cumulates

an index of strength, let it be called uij, that is nevertheless subject to a constant loss
if not brought to its final result: uij ¼ 1, for an effectively active link, uij ¼ 0, for a

definite rejection. Let a be the rate at which the cumulated index loses strength.

Without loss of generality, this function can then be rendered as:

LðuijÞ ¼ �a
Zuij

0

Fðs; yijÞds; ð9:5Þ

in which Fðs; yijÞ depends on the distance of the link strength from a threshold yij.
Fðs; yijÞ is the general function that sets up the rule according to which the ij edges
gain or lose strength. In this formulation the threshold yij that is applied in the

assessment of link ij plays a crucial role since it acts both as a constraint and as a

filter in the partner choice process. It is, accordingly, a determining factor in

shaping the network topology. It can be shown that loss is at a minimum either

when the strength is close to zero or when it is well above the threshold. The

function in question can then be rendered as

Fðs; yijÞ ¼ sðs� yijÞ;

more precisely the strength-building process can follow the dynamics generated by

the following Lotka–Volterra type equation:

uij
� ¼ uijðuij � yijÞ: ð9:6Þ
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At this stage, the crucial question lies with the method to be used in order to

define the all-important threshold. It seems reasonable, in the light of the previous

discussion, that when faced with heterogeneous agents that carry idiosyncratic

knowledge each firm places them in neighbourhoods defined as having similar

technological characteristics. It is equally expedient to assume that firms will not

attempt to link up with those whose knowledge is quite similar and thus whose

spillovers are likely to bear a small impact. The latter firms can be defined as

cognitive neighbours. A rather practical way of dealing with this approach is to

assume firms as vertices of a regular polygon having as their immediate cognitive

neighbours those placed in both their right and left as well as their neighbours’

neighbours up to order p, a magnitude that can be used as a tuning parameter. Thus

each firm turns out having 2p cognitive neighbours. Once the neighbourhood, Ui,

defined, the link-building process can be dealt with by imposing that each firm i
attempts to connect with firm j by setting it against its own cognitive neighbour-

hood, Uj, that is, with firms carrying a similar technological knowledge. The

threshold yij can then be defined as

yij ¼ u2ij þ
X

k2Uj�Ui

ðu2ik þ u2kiÞ: ð9:7Þ

The constraint that here operates is one that limits the eligibility of an edge to

nodes that are not immediate neighbours and that, therefore, are likely to carry

novel technological information. As it is apparent, index k spans the jth neighbour-
hood,Uj, that is to say the nodes in this network that are set in competition for a link

with i, save for the part of j which overlaps with it and for which the latter has no

interest. yij can then be read as the average strength within (Uj � Ui) over which the

ij link must jump if a gain has to materialize. Varying p yields quite different

outward link distributions. Figure 9.6 compiles data concerning a small sample of

firms in which p¼ 2.6 There seems to be a prima facie evidence that the distribution

is a quasi-random one: a result that is explained by the fact that there is little

neighbourhood overlapping and thus each edge gets established quite independent-

ly. Yet, as overlapping rises on account of a higher p, the distribution begins to be

more skewed. Following Figs. 9.6–9.8, are, in fact, obtained by increasing the

tuning parameter p. The last figure shows that when overlapping is very high,

hubs emerge: most firms tending to look up at just two: the initial leaders of the

technological network. The case of high overlapping is interesting since, given (9.6)

and (9.7), it implies considerable competition amongst firms in who is going to link

up with whom. At the same time, it is also a case of greater co-operation since it also

implies greater homogeneity.

6The simulation procedure is detailed in Castellani et al. (2007).
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9.4 Some Short Conclusions

This research work has been aimed at highlighting the role played by constraints

and routines. It has been shown that interaction among firms is crucial in transmit-

ting technological capabilities through knowledge spillovers. A process that is

local, that is, taking place within limited neighbourhoods, as well as routinized,

that is constrained by searching protocols of various content. It is a quite robust

Fig. 9.6 Distribution of outward links and network given 30 firms and 2p ¼ 4 cognitive neigh-

bours. The histogram shows the distribution while nodes and edges the network architecture

Fig. 9.7 Distribution of outward links and network given 30 firms and 2p ¼ 18 neighbours
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finding that routines that perform better in conjuring up average technological

capabilities are not those that randomly explore the whole set of firms in the

economy but rather those that partly concentrate in exploring a limited neighbour-

hood of firms. The best searching protocols are, in fact, those that merge localized

with across-the-board searching: a four or five to one ratio appears from simulations

as the one yielding the highest average efficiency in terms of achieved capability.

Yet, this process of searching from which firms attempt to collect knowledge

spillovers generates the appearance of paradigm setters, a few firms that are

observed by most other firms and to which they necessarily transfer their techno-

logical characteristics. Highly heterogeneous knowledge, by hampering easy un-

derstanding and thus transmission, tends to form technological islands in the sense

that firms confine their observations only to those that belong to the same cognitive

area. Whilst the probability of global paradigm setters becomes, in this case, very

small, local ones do appear within each of these areas.

An important extension of this model of searching concerns the initial construc-

tion of a network topology. Shaping a network implies establishing who links up

with whom: a procedure in which edges gradually form until stable links appear:

Lotka–Volterra-like equations preside over the mathematical framework. The

chapter shows that the definition of a “natural” neighbourhood, namely one in

which technological capabilities are similar and thus in which interaction is of little

impact, bears considerable consequences. In particular, it is shown that when large

overlapping between “natural” neighbours occurs high node competition leads to a

distribution of links in which a few hubs appear: a few nodes that are prone to

provide technological information to most others.

Fig. 9.8 Distribution of outward links and network given 30 firms and 2p ¼ 28 neighbours
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Chapter 10

Proximity, Social Capital and the Simon

Model of Stochastic Growth

Koen Frenken

10.1 Introduction

It is customary to define economic geography as a discipline that deals with the

uneven distribution of economic activity across space. From a historical perspec-

tive, stochastic growth models are of particular use (Simon 1955). Such models

explain the current distribution of activities from the dynamics of the long historical

process that has produced these patterns. This approach might also be labelled

“evolutionary economic geography” (Boschma and Frenken 2006), referring to the

evolutionary economics tradition, since stochastic growth models account for path
dependence in which each event changes the probability of a next event to occur

(Arthur 1989; David 1985).

In geography, stochastic models of urban growth have a long intellectual history.

In particular, The Simon model of the Zipf’s rank-size rule is still regarded as one

of the canonical models of urban size distribution (Batty 2005). A shortcoming of

these urban growth models is that they take spatial entities as the unit of analysis.

Since spatial entities are not behavioural entities, the explanation of urban growth in

such models is not grounded in the micro-behaviour of agents. What is more, the

delineation of spatial entities is a notoriously difficult exercise. Organizational units

are less problematic, because these are the agents of change and relatively easy,

though by no means trivial, to delineate. More recently, some of the urban growth

models have explicit micro-foundations, including neoclassical models (Duranton

and Puga 2004) and agent-based models (Batty 2005).

It is for these reasons that scholars have turned to micro-founded theories. One

such attempt has been to take product divisions as the unit of analysis and define

growth as stemming from product innovations leading to new product divisions

within an existing firm or a new firm, and within an existing city or a new city.
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Reasoning from product divisions allows us to model the firm size distribution and

the city size distribution simultaneously (Frenken and Boschma 2007). It also

allows to model social networks emerging from the mobility decisions of entrepre-

neurs moving between product divisions within or between firms, and within or

between cities. The structure of these networks can be analysed using a spatial

interaction equation as to analyse what types of “proximities” affect the interde-

pendencies between cities and between firms. In this way, we can understand the

formation of higher order entities, particular business groups and city-regions, as a

logical “multilevel” outcome of stochastic growth models.

10.2 Industrial Dynamics and Urban Growth

City size distributions are well approximated by Zipf’s law, which states that the

size of the nth ranked city is 1/n times the size of the largest city (Zipf 1949). To

understand this distribution as the result of a historical growth process, Simon

(1955) modelled city growth by discrete increments (lumps). The probability that

a city receives this lump is proportional to its size and with some small probability

the lump can create a new city. Having the latter probability approach to zero, the

resulting distribution will be Zipf distributed. Notwithstanding the limitations,

Simon’s model provides a useful analytical starting point in thinking about uneven

distributions in geographical space for two reasons. First, the model performs

remarkably well empirically and is extendable as to account for more specific

empirical outcomes. Second, the model is, in essence, an evolutionary model in

that the probability of a particular event to occur is affected by the events that have

taken place in the past (path dependence).
The model, however, lacks micro-foundations as urban growth is modelled as

stemming from exogenous lumps rather than from agents’ decisions. From an

evolutionary perspective, reasoning from spatial units makes it difficult to introduce

explicit firm dynamics into a theoretical framework (Boschma 2004). Yet, firm

dynamics ultimately drive economic growth through the diffusion of routines in the

economic system. An evolutionary approach to economic geography can thus build

on a demographic perspective, which focuses on changing spatial patterns resulting

from entry, growth and exit of firms, or as in the discussion below, on birth

processes alone.

Reasoning from firms, we take product divisions as the unit of analysis, where

each division belongs to a particular firm and is located in a particular city. One can

then derive the firm size distribution by aggregating product divisions into firms and

the city size distribution by aggregating product divisions into cities. In this

framework, firm growth and urban growth occur simultaneously through the estab-

lishment of new product divisions, where the size of a firm or a city is simply

defined as the number of product divisions belonging to a firm or a city, respectively.

In terms of Simon’s model, the lumps that drive growth can be considered as

product innovations that are exploited by entrepreneurs by establishing a new
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product division. By reformulating Simon’s stochastic model as a growth process

fuelled by new product divisions, and by assigning each new product division

simultaneously to a firm and a city, the firm size distribution and the city size

distribution can be derived from one single growth process.

Following Frenken and Boschma (2007), one can introduce two organizational
parameters (p and p*) and two locational parameters (q and q*). With probability

p the employee will commercialize the innovation in-house leading to a new

product division within the parent firm. With probability p* the employee will

commercialize the product innovation in another firm by changing jobs. The

remaining probability (1�p�p*) is the probability that the employee creates a

spinoff firm (which, following the Simon model, should be very small). And,

with probability q the innovation will be commercialized in the city of origin. With

probability q* the innovation will be commercialized in another city. And with the

remaining probability 1�q�q* the innovation will be commercialized in a new

city (which, again, should be very small). The probabilities can be multiplied since

organizational and locational events are orthogonal to each other. For example, a

firm can grow internally (p) but at a different location than the division from which

the idea originated (q*) or even at a new location (1�q�q*).
This reformulation of Simon’s model incorporates nine possible events resulting

from a product innovation (see Table 10.1). As such, the framework provides a rich

repertoire for formal modelling approaches with only four parameters (p, p*, q and

q*). Firms and cities being the aggregates of product divisions, the model will

produce the Zipf law for both the firm size distribution and the city size distributions

in a single model as long as (Frenken and Boschma 2007):

1. (1�p�p*) and (1�q�q*) are close to zero and

2. In case of inter-firm or inter-city mobility, the probability that an employee

chooses a firm or city, respectively, is proportional to its size (otherwise growth

ceases to be proportional to size).

It is the latter assumption that we loosen in the following to account for biased

mobility patterns. The bias we assume comes from the social networks of inventors

who have previously worked together in a product division. As a result, we obtain

correlated growth rates between “networked” firms and cities, which we elaborate

in the form of hypotheses for future empirical research.

Table 10.1 Possible events resulting from a product innovation

(p)(q) Internal firm growth in city of origin

(p)(q*) Internal firm growth in another city

(p)(1�q�q*) Internal firm growth in a new city

(p*)(q) Firm growth though labour mobility in city of origin

(p*)(q*) Firm growth though labour mobility in another city

(p*)(1�q�q*) Firm growth though labour mobility in a new city

(1�p�p*)(q) Spinoff in city of origin

(1�p�p*)(q*) Spinoff in another city

(1�p�p*)(1�q�q*) Spinoff in a new city

Source: Frenken and Boschma (2007)
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10.3 Proximity

Mobility patterns of employees setting up their own product division create links

between divisions. Since the Simon logic prescribes that each existing division has

the same probability to give birth to an entrepreneur as any other division, the

resulting network structure between divisions in the Simon model will be a perfect

tree. Starting from the first product division in the economy, a new entrepreneur is

added to the network at random. Each new division is connected through the parent

division by a link. And, since division give birth to new division randomly, the

resulting structure is a simple random tree where the degree of each node will be

proportional to its age.

The tree-like network structure between divisions can be aggregated at the level

of firms and at the level of cities. Note that this aggregation yields a network

structure including intra- and inter-organizational links and intra- and inter-city

links, respectively. The aggregated network structure at the level of firms or cities

will be different from the random tree obtained at the level of product divisions as

long as (1�p�p*) < 1 and (1�q�q*) < 1. If not, all new product divisions would

lead to new firms and new cities, and the aggregated network at the level of firms

and at the level of cities would yield the exact same network structure.

In the model, we have mobile agents between firms in case p* > 0 and mobile

agents between cities in case q* > 0. In these cases, one has to specify the choice

behaviour of entrepreneurs. The assumption proposed by Frenken and Boschma

(2007) is to assume that the probability that an employee chooses a particular firm

and city is proportional to their size as to ensure that the proportionate growth

feature of the Simon-model is replicated. This assumption is equivalent to random

interaction models, which state that migration flows between entities are propor-

tional to their size1 (Pumain 2006, p. 202).

The assumption of random interaction is obviously too crude, as mobility

patterns are influenced by macroscopic structures. Labour mobility does not take

place randomly; rather, most people move within the firm, or between firms whose

activities are organizationally coordinated. One can measure the extent to which

two organizations are tied by coordination, also called organizational proximity
(Boschma 2005), for example, in terms of co-ownership or interlocking corporate

boards. Thus, one can expect the probability of someone setting up his or her new

product division in a particular firm to be dependent on the organizational proximity

between the sending firm and the receiving firm.

Similarly, mobility between cities does not take place randomly; rather, most

people move within the same city or to neighbouring cities within the region.

Locational inertia stems from many sources (family, friends, local knowledge,

1See Pumain (2006, p. 202): “The proportionality between resident population and inward and

outward migratory flows which is derived from the multiplication of the population at the origin by

the population at destination in the numerator of the model can be seen as merely an application of

a random interaction process”.
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identity). Thus, one can expect the probability of someone moving between two

cities to be dependent on the geographical proximity between two cities.

To include a proximity structure in a simulation model based on the Simon

logic of stochastic growth, one should also include intra-firm and intra-city

mobility (the diagonal of a flow matrix). Obviously, these flows are charac-

terised by the highest degree of organizational and geographical proximity,

respectively. Entrepreneurs who stay within the firm or within the city also

move, yet at the shortest distance possible. Once two proximity dimensions

are introduced in the model, one can dispense with parameters q and q* and

p and p* and replace these by a single organizational proximity parameter

controlling the bias to move to a firm at a particular organizational distance,

and a single geographical parameter controlling the bias to move to a location at

a particular geographical distance.

Empirically, proximity can be introduced in empirical estimations of people

flows between firms and between cities. One way to model such flows is by using

spatial interaction models (Tinbergen 1962; Wilson 1970). In such models, the

strength of flows between two entities is determined by the size of two entities

(MASS), and a vector of proximities. Following our two proximity dimensions

(organizational and geographical) defined above, organizational and geographical

proximity can be introduced in the model to specify the probability that an entre-

preneur who leaves a firm chooses for a particular firm and a particular city

(possibly the same firm and the same city (s)he already worked in). Organizational

proximity (OP) between firms can be expected to increase the probability of labour

mobility between two firms (IFIRMS), and geographical proximity (GP) can be

expected to increase the probability of labour migration between two cities

(ICITIES). The equations to be estimated are:

IFIRMSij ¼ MASSa1i MASSa2j OP
a3
ij þ eij; ð10:1Þ

ICITIESij ¼ MASS
b1
i MASS

b2
j GP

b3
ij þ eij: ð10:2Þ

Such a model could thus, in a simple manner, replicate the existence of “business

groups” that rotate key personnel and “city-regions” as a set of cities within a region

with strong labour market linkages.

10.4 Social Capital

To view economic growth as an ongoing process of product innovations introduced

by entrepreneurs who set up their own product division, allows one to introduce an

explicit evolutionary dynamic of social tie formation. With each creation of a new

product division, a social tie is created between the parent division and the

entrepreneur’s new division (Breschi and Lissoni 2003, 2006). This social tie
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stems from the shared history of employer and former employee. A shared history

here is defined as having worked within the same product division.

One can now understand the set of social ties of a product division as the “social

capital” of a division. The amount of social capital is thus a function of the number

of previous employees who have set up a new product division. As social capital

gives a division access to previous employees, social capital can be thought of as a

channel for knowledge spillovers. In a stochastic growth framework, differences in

social capital among product divisions implies that firm growth and urban growth

are no longer random, but positively dependent on the social capital of its divisions.

If a firm or city harbours divisions with a high amount of social capital, the

probability that these divisions will generate new entrepreneurs is consequently

higher as well.2 Because entrepreneurs are biased to set up their product divisions is

the firm and/or city of origin, firms and cities with more social capital will grow

faster. As the amount of social capital depends on previous growth events, firm

growth and city growth are self-reinforcing.

A theory as outlined above, would provide an alternative explanation for endo-

genous growth and increasing returns to scale different from the one proposed by

Krugman (1991) based on economies in production. Such an explanation is com-

patible with the argument by Boschma and Frenken (2006) that endogenous growth

stems from recombination if one assumes that social capital supports the recombi-

nation of knowledge residing in different people.

So far, we have only assumed that organizational and geographical proximity

matter in that it biases mobility decisions towards more proximate organizations.

However, one can also assume that the “quality” of social capital is higher when

social ties between parent firm and previous employees are organizational and

geographically proximate, since social ties are easier to maintain within organiza-

tions and between similar organizations, and within cities or between proximate

cities. This means that the probability of a product division generating an entrepre-

neur becomes not only dependent on the number of its social ties but also its quality.

Importantly, the joint effect of organizational and geographical proximity of the

quality of social ties is expected to reflect substitutability (Boschma 2005; Ponds

et al. 2007). When the entrepreneur sets up a business within the parent firm,

organizational proximity is maximum. As a consequence, the social ties with the

previous product division can be easily maintained even at large distance. This

allows multi-locational firms to exploit their innovations at the best location

without losing too much “social capital” involved in the relation between entrepre-

neur and his/her previous division. When the entrepreneur decides to remain in the

city of origin, (s)he can easily maintain the social ties between the parent division

even if it leaves the firm. This allows cities to exploit innovations in different

organizational formats while profiting from the social capital involved in the

2Put differently, the probability of a product division producing a new entrepreneur who sets up his

or her own product division is proportional to the number of previous employees who set up an

own product division, an example of preferential attachment where the probability that a node

acquires a new link is proportional to the node’s degree (Barabási and Albert 1999).
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relation between entrepreneur and his/her previous division. It thus provides us with

a simple logic of why cities and multi-locational firms can be advantageous loci of

growth.

Similarly, such substitution effects can exist when entrepreneurs move to similar

organizations in “business groups” (allowing them to migrate over larger distance)

and to nearby cities in “city-regions” (allowing them to move to different firms). As

for multi-locational firms, business groups allow for the exploitation of innovations

at different locations without losing too much social capital. And, city-regions

allows, as do cities, for the exploitation of innovation in different organizational

format while still providing sufficient geographical proximity to support social

capital. Thus, both forms of proximity are expected to contribute to the probability

of innovation, yet their combined effect will be less than the sum of their effect

separately reflecting proximities are substitutes.

10.5 Concluding Remarks

The framework proposed here builds on the general framework laid down by

Frenken and Boschma (2007). Our perspective combines industrial dynamics and

urban growth in a “proximity” perspective. Empirically, this approach can rely on

traditional spatial interaction equations/methodologies. Theoretically, it would

allow a further extension of the role of multi-locational firms (facilitating the

maintenance of social capital between previous colleagues over large distance)

and multi-organizational cities (facilitating the maintenance of social capital

between previous colleagues between different firms). By doing so, the now

popular concepts of “network society” (Castells 1996), “global city regions”

(Scott 2001) and “global pipelines and local buzz” (Bathelt et al. 2004) can be

further elaborated analytically and analysed systematically using data on labour

mobility and labour migration.
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Chapter 11

Evolutionary and Preferential Attachment

Models of Demand Growth

Terry L. Friesz, Changhyun Kwon, and David Bernstein

11.1 Introduction

It is widely acknowledged that, to create models for transportation planning that

recognize the essential dynamic character of passenger network flows, one must

consider two time scales: the so-called within-day time scale and the day-to-day

time scale. Substantial progress has been made in modelling within-day dynamic

flows for fixed trip matrices; one of the most widely acknowledged models for this

purpose is the dynamic user equilibrium model proposed by Friesz et al. (1993) and

studied by Xu et al. (1999), Wu et al. (1998), Friesz et al. (2001), Bliemer and Bovy

(2003), and Friesz and Mookherjee (2006). In this chapter we propose two day-

to-day models of demand growth compatible with a differential variational inequality

formulation of the Friesz et al. (1993) model. The first of these employs dynamics

inspired by evolutionary game theory, while the second uses the perspective of

preferential attachment familiar from the network science and social network

literature to create a model of demand growth. Additionally, numerical experiments

to compare and contrast the two proposed theories of demand growth are described,

along with hypotheses that one might address via such experiments.

11.2 Dynamic User Equilibrium

First, however, we need to make a few comments about modelling and computing

dynamic flow patterns on traffic networks. Dynamic traffic assignment is the name

given to the determination of time varying traffic flows for road networks.

T.L. Friesz (*)
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When those flows obey a differential Nash-like equilibrium relative to departure

rates and route choice, we say we have a dynamic user equilibrium flow pattern. To

define a dynamic user equilibrium, we introduce the notion of an effective path

delay operatorCpðt; hÞ, which expresses the unit path delay for departure time t and
traffic conditions h. The vector h is time dependent and its pth component is hpðtÞ,
the departure rate from the origin of path p at time t. A dynamic user equilibrium

flow pattern has the property that

h�p > 0; p 2 Pij ) Cpðt; h�Þ ¼ vij; ð11:1Þ

where Pij is the set of paths that connect origin–destination pair i; jð Þ 2 W, while

W is the set of all origin–destination pairs. Furthermore, vij is the minimum travel

delay that can be experienced for i; jð Þ 2 W. Embedded within each effective path

delay operator Cpðt; hÞ is a notion of arc delay (congestion) for the arcs compris-

ing a given path and a penalty for early/late arrival. In fact the path delay

operators are really a shorthand for a separate model, frequently called a network

loading model, which determines the propagation of flows through a given

network, as well as the path delays experienced, in response to a given vector

of departure rates.

Additionally all path-specific departure rates are non-negative so we write

h ¼ hp : p 2 P
� � � 0; ð11:2Þ

where P is the set of all network paths. As a consequence

Cpðt; h�Þ > vij; p 2 Pij ) h�p ¼ 0:

as can easily be proven from (11.1) by contradiction. We next comment that the

relevant notion of flow conservation is

X
p2Pij

ðT
0

hp tð Þdt ¼ Qij 8 i; jð Þ 2 W;

where Qij is the fixed travel demand (expressed as a traffic volume) for i; jð Þ 2 W.

Thus, the set of feasible solutions is

L ¼ h > 0 :
X
p2Pij

ðT
0

hp tð Þdt ¼ Qij 8 i; jð Þ 2 W

8<
:

9=
;: ð11:3Þ

Friesz et al. (1993) show that a dynamic user equilibrium is equivalent to the

following variational inequality:
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find h� 2 L such that

X
p2P

ðT
0

Cpðt; h�Þ hp � h�p
� �

dt � 0 8h 2 L

9>>=
>>;
: ð11:4Þ

Suffice it to say that algorithms exist for solving (11.4); these include the fixed point

algorithm presented in this chapter.

11.3 Demand Dynamics

Consider a transportation network for which a setW of origin–destination pairs (i, j)
have been defined. Let

t 2 U � 1; 2; :::; Lf g

be one typical discrete day, and take the length of each day to be D, while the

continuous clock time t within each day is

t 2 t� 1ð ÞD; tD½ �

for all

t 2 1; 2; :::; Lf g:

The entire planning horizon spans L consecutive days. As noted above, we assume

the travel demand for each day changes based on the previous day.

11.3.1 The Dual Time Scale Model

Let us suppose we have a demand growth model of the abstract form

Qtþ1
ij ¼ Fij Qt

ij; h
t; y

� �
8 i; jð Þ 2 W; t 2 0; 1; 2; :::; L� 1f g

Qt
ij � 0 8 i; jð Þ 2 W; t 2 0; 1; 2; :::; Lf g

Q0
ij ¼ K0

ij 8 i; jð Þ 2 W;

whereQt
ij is the travel demand between origin-destination pair i; jð Þ 2 W during day t.

Then a dual time scale model of dynamic user equilibrium with endogenous

demand growth is
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findQ � 0 and h� 2 LðQÞ such that

P
p2P

Ð T
0
Cpðt; ht�Þ

�
htp � ht�p

�
dt � 0 8t 2 U; ht 2 LtðQtÞ

Qtþ1
ij ¼ Fij Qt

ij; h; y
� �

8ði; jÞ 2 W

Q0
ij ¼ K0

ij 8ði; jÞ 2 W

9>>>>>>>>=
>>>>>>>>;

: ð11:5Þ

This model may be solved by time stepping, so that exactly one variational

inequality is faced for each value of t.

11.3.2 An Ad Hoc Model of Demand Growth

We postulate that the travel demands Qt
ij for day t between a given OD pair

i; jð Þ 2 W are determined by the following system of difference equations:

Qtþ1
ij ¼ Qt

ij � stij

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; h�Þð �dt

Pij

�� �� � t � D � wij

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775

þ

8t 2 0; 1; 2; :::; L� 1f g

ð11:6Þ

with boundary condition

Q0
ij ¼ ~Qij; ð11:7Þ

where ~Qij 2 <1
þ is the fixed travel demand for the OD pair i; jð Þ 2 W for the first day

and wij is the so-called fitness level. The operator x½ �þ is shorthand from max 0; x½ �.
The parameter stij is related to the rate of change of inter-day travel demand. The

above system of difference equations assumes that the moving average of effective

travel delay plus any imposed toll is the principal signal that influences demand

learning.

11.3.3 Replicator Dynamics for Demand Growth

The model (11.6) does not precisely capture the structure proposed by Hofbauer and

Sigmund (1998) for the fundamental dynamics of evolutionary game theory,

namely replicator dynamics. For a state variable Q, replicator dynamics have the

structural form
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_Q

Q
¼ a fitness� averagefitnessf g; ð11:8Þ

where a is a constant of proportionality and the notion of fitness of a given system is

given a broad interpretation. We may modify the story behind (11.6) to more

closely correspond with (11.8) by writing

Qtþ1
ij � Qt

ij

Qt
ij

¼ atij wij �

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; h

� tð Þ½ �dt

Pij

�� �� � t � D

8>>><
>>>:

9>>>=
>>>;

8t 2 0; 1; 2; :::; L� 1f g

ð11:9Þ

with the same boundary condition (11.7). We now introduce a specific definition of

instantaneous fitness. In particular, we assume instantaneous fitness for a given

origin–destination pair i; jð Þ 2 W is

wij � vij ¼ min
p2Pij

Cp t; h� tð Þ½ �: ð11:10Þ

In words, instantaneous fitness is least travel delay achieved at the end of the

previous discrete time period (yesterday) and hence known at the start of the current

discrete time period (today). Obviously (11.9) may be manipulated to give

Qtþ1
ij ¼ Qt

ij � atij

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; h

� tð Þ½ �dt

Pij

�� �� � t � D � vij

8>>><
>>>:

9>>>=
>>>;
Qt

ij

8t 2 0; 1; 2; :::; L� 1f g:

ð11:11Þ

If information technology is increasing the speed of access to data about least travel

delay, then the length of each “day” can be shortened, as the notion of day used

herein is arbitrary. If one wishes to assure demand does not become negative, then

(11.11) is replaced by

Qtþ1
ij ¼ Qt

ij � atij

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; h

� tð Þ½ �dt

Pij

�� �� � t � D � vij

8>>><
>>>:

9>>>=
>>>;
Qt

ij

2
6664

3
7775

þ

8t 2 0; 1; 2; :::; L� 1f g:

ð11:12Þ
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11.4 Demand Dynamics Based on Preferential Attachment

In network science affinity networks are widely thought to evolve according to the

notion of preferential attachment. Bianconi and Barabási (2001) suggest an im-

proved form of preferential attachment they call quenched noise. In that model they

denote the connectivity of node i by kiðtÞ and postulate an associated fitness

parameter �i that accounts for differences among nodes with regard to their

potential to attract and sustain attachments. They view network growth as a process

whereby a new node with its distinct fitness is added randomly to a network during

each period of time considered. The probability that a new node will connect to

node i already present in the network is taken to be

pi ¼ �ikiP
j

�jkj
: ð11:13Þ

Accordingly node i will increase its connectivity at the rate

@ki
@t

¼ m
�ikiP
j

�jkj
; ð11:14Þ

where m is the number of new arcs added upon introduction of a new node. An

initial condition must be associated with each (11.14) in order for the system of

partial differential equations created in this fashion to be numerically solved.

Our interest in the above version of the preferential attachment model lies in the

fact that it suggests a relationship between an underlying social network and the

formation of travel demand. In particular onemay partition, without loss of generality,

the nodes of an affinity network into spatially related subsets of nodes that correspond

to origins or destinations; when a given social network node is both an origin and

a destination, a copy of it can be made and included as a member of both categories.

Thus, arcs added to the social network, in light of the partition just described, join

origin–destination pairs. As each arc of the affinity network represents a “travel

relationship”, it also represents an increment to the corresponding origin–destination

travel demand. In this way, the Bianconi–Barabási network growth model,

when applied to a social network, becomes a model of travel demand growth.

The above observations not withstanding, it is not really possible to directly

employ the mathematical analysis surrounding the quenched noise model within a

dynamic traffic assignment or congestion pricing model because the Bianconi–

Barabási model lacks the spatial and agent detail needed for transportation network

modelling. As a consequence, we need to provide a separate articulation of travel

demand induced by affinity network growth, based on preferential attachment, that

involves the variables and concepts introduced in previous sections and includes

randomness. To that end we propose the following model:
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Qtþ1
ij ¼ Qt

ij þ stij
�ijQ

t
ijP

k2N0

�kjQ
t
kj

8t 2 0; 1; 2; :::; L� 1f g; ð11:15Þ

where all notation is as before but now fitness is doubly subscripted and appears as

�ij for each ði; jÞ 2 W and we use N0 to denote nodes that are origins. Importantly

each stij is a random variable that is naturally suited for treatment by a learning

process. Note also that (11.15) is a discrete time version of preferential attachment,

in that demand growth is greatest for origin–destination pairs with the largest

current demand. Variations of (11.15) are easily constructed. For instance

Qtþ1
ij ¼ Qt

ij þ stij

P
k2N0

�kjQ
t
kj

P
ðk;‘Þ2W

�k‘Q
t
k‘

8t 2 0; 1; 2; :::; L� 1f g ð11:16Þ

considers all origin–destination pairs in assessing the probability of a new incre-

ment in demand for a given pair.

Note that both model (11.15) and model (11.16) have the property that demand

grows monotonically, which cannot be deemed realistic for all time. Thus, a needed

modification is the introduction of a term that corresponds to the retirement of

individuals from the underlying social network; if the rate of such retirements is rtij,
then (11.15) and (11.16) may be re-stated, respectively, as

Qtþ1
ij ¼ Qt

ij þ stij
�ijQ

t
ijP

k2N0

�kjQ
t
kj

� rtijQ
t
ij

2
64

3
75
þ

8t 2 0; 1; 2; :::; L� 1f g; ð11:17Þ

Qtþ1
ij ¼ Qt

ij þ stij

P
k2N0

�kjQ
t
kj

P
ðk;‘Þ2W

�k‘Q
t
k‘

� rtijQ
t
ij

2
64

3
75
þ

8t 2 0; 1; 2; :::; L� 1f g; ð11:18Þ

where we have introduced the �½ �þ operator to assure demand does not become negative.

The retirement rates rtij may be determined empirically, by a separatemodel or randomly.

The random approach seems more in keeping with notion of preferential attachment

we have borrowed from network science to describe the addition of new demand.

11.5 Demand Learning via the Kalman Filter

In this section we will base our remarks on the ad hoc model (11.6). However, it

should be clear that a completely analogous discussion of demand learning may be

crafted for each of the demand models suggested above. The model parameters stij
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will typically be unknown to the modeller and follow stochastic distributions.

Assuming that the modelling error and observation error follow normal distribu-

tions, in this section, we adapt a well-known forecasting method, so-called Kalman

filtering. Recall the ad hoc day-to-day dynamics for travel demand:

Qtþ1
ij ¼ Qt

ij � stij

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; x h�; g�ð Þ½ �dt

Pij

�� �� � t � D � wij

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775

þ

8t 2 0; 1; 2; :::L� 1f g:

ð11:19Þ

Each parameter stij is treated as fixed during the solution process, but it is stochastic

and its real value is unknown. After one day is completed, we want to update the

model parameter stij to obtain a better estimate of demand for the next planning

horizon. The dynamics of stij are assumed to be

stþ1
ij ¼ stij þ xtij;

where xtij is a random noise from a normal distribution N 0;Bij

� �
. The matrix Bij is

known and called the process-noise covariance matrix.

The value of the parameter stij cannot be observed directly but only through the

change of realized travel demand, which can be defined as

ztij � DQt
ij ¼ Qtþ1

ij � Qt
ij:

Note that

DQt
ij ¼ �stij

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; x h�; g�ð Þ½ �dt

Pij

�� �� � t � D � wij

8>>><
>>>:

9>>>=
>>>;

þ ot
ij; ð11:20Þ

and ot
ij is a random noise of observation from a normal distribution N 0;Rij

� �
: The

matrix Rij is known and called the measurement noise covariance matrix. Referring

to Sect. 12.6 Bryson and Ho (1975), we obtain the Kalman filter dynamics

�stþ1
ij ¼ ŝtij ¼ �stij þ Vt

ij ztij � Ht
ij�s

t
ij

h i

Pt
ij ¼ Mt

ij

� ��1

þ Ht
ij

� �T
Rt
ij

� ��1

Ht
ij

� ��1

Mtþ1
ij ¼ Pt

ij þ Bt
ij;
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where

Vt
ij � Pt

ijH
t
ij Rt

ij

� ��1

Ht
ij � �

P
p2Pij

Pt�1

j¼0

Ð jþ1ð Þ�D
j�D Cp t; x h�; g�ð Þ½ �dt

Pij

�� �� � t � D � wij

8>>><
>>>:

9>>>=
>>>;
;

and �stij is the a priori estimate of stij (before observation) and ŝ
t
ij is the a posteriori estimate

(after observation). When estimation process based on the above dynamics is com-

pleted, we have �stþ1
ij , which is the value of sij used in the next discrete time interval.

11.6 Conclusions

We have proposed some dynamics for the growth of travel demand in vehicular

traffic networks. Clearly, these ideas are preliminary; they are meant to promote

discussion and tomotivate future research. A great deal of work still needs to be done.

11.6.1 Numerical Experiments

The models proposed above were constructed to conform with evolutionary game

theory and the dynamics of preferential attachment in social networks. However,

we do not know what spatial and temporal patterns of traffic flows and network

usage at the link level will result from these models. In particular, we do not know if

individual demand growth models, drawn from the family of models we have

described, will display statistical tendencies to promote or diminish stability,

resiliency, sustainability, congestion, the price of anarchy, the Braess paradox,

and social cohesion.

For example if the rate of retirements in model (11.17) is described as a feedback

mechanism driven by link-level congestion occurring on the transportation net-

work, can preferential attachment dynamics maintain the level of connectivity of a

community (origin) with other communities (destinations) sufficient to assure

adequate employment and/or other means of sustainability? If the answer to this

question were “no” based on numerous simulations, then empirical studies to

ascertain whether demand does in fact grow by preferential attachment are needed.

If such growth mechanisms are found to occur in the real world, then policies that

deter demand growth by preferential attachment are warranted. Many other ques-

tions and hypotheses may be proposed and considered using the dual time scale

model (11.5) together with one of the demand growth models of Sects. 11.3.2,

11.3.3 and 11.4.
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11.6.2 Other Network Growth Processes

The Bianconi–Barabási network growth model is only one of many that have been

discussed in the network science literature. Several others are also worth considering

in the current context. Erdos and Renyi (1959) start with a set of nodes and simply

assume that each pair of nodes is connected by an arc with probability p. In the current
setting, this corresponds to a situation in which the demand between an origin–

destination pair increases by a fixed amount with probability p. One can complicate

this model by specifying the number of destinations associated with each origin (that

is, by specifying the degree of each origin). The properties of the ensemble of graphs

that have a given degree distribution have been studied by Molloy and Reed (1998),

Newman et al. (2001), Chung and Lu (2004) and others. Finally, one might want

to construct the network based on attributes of the network. For example, one might

assume that realizations with lower cost are more likely to occur [as in the cost

efficiency theory of Smith (1983)] or one might make assumptions about the topolog-

ical properties. These kinds of ensembles have been studied by Strauss (1986).

References

Bianconi G, Barabási A (2001) Competition and multiscaling in evolving networks. Europhys Lett

54(4):436–442

Bliemer M, Bovy P (2003) Quasi-variational inequality formulation of the multiclass dynamic

traffic assignment problem. Transp Res Part B 37(6):501–519

Bryson AE, Ho YC (1975) Applied optimal control. Hemisphere Publishing Company

Chung F, Lu L (2004) The average distance in a random graph with given expected degrees.

Internet Math 1(1):91–113

Erdos P, Renyi A (1959) On random graphs. Publicationes Mathematicae Debrecen 6 (290)

Friesz TL, Mookherjee R (2006) Solving the dynamic network user equilibrium problem with

state-dependent time shifts. Transp Res Part B 40:207–229

Friesz TL, Bernstein D, Smith T et al. (1993) A variational inequality formulation of the dynamic

network user equilibrium problem. Oper Res 41:80–91

Friesz T, Bernstein D, Suo Z et al. (2001) Dynamic network user equilibrium with state-

dependent time lags. Netw Spatial Econ 1:319–347

Hofbauer J, Sigmund K (1998) Evolutionary games and replicator dynamics. Cambridge Uni-

versity Press

Molloy M, Reed B (1998) The size of the giant component of a random graph with a given degree

sequence. Comb Probab Comput 7(03):295–305

Newman M, Strogatz S, Watts D (2001) Random graphs with arbitrary degree distributions and

their applications. Phys Rev E 64(2):26118

Smith T (1983) A cost-efficiency approach to the analysis of congested spatial-interaction

behavior. Environ Plann A 15:435–464

Strauss D (1986) On a general class of models for interaction. SIAM Rev 28(4):513–527

Wu J, Chen Y, Florian M (1998) The continuous dynamic network loading problem: a mathe-

matical formulation and solution method. Transp Res Part B 32(3):173–187

Xu Y, Wu J, Florian M et al. (1999) Advances in the continuous dynamic network loading

problem. Transport Sci 33(4):341–353

150 T.L. Friesz et al.



Chapter 12

Modelling the Economy as an Evolving

Space of Flows

Methodological Challenges

Kieran P. Donaghy

12.1 Introduction

The spatial economy has increasingly come to be viewed, in the felicitous phrase of

Manuel Castells (2000), as a space of flows. The mental picture we have of this

economy is a motion picture, not a still shot. Moving along the links of various

networks are ever greater quantities of people, goods, material, money, and infor-

mation. Settlements, in turn, appear as increasingly interdependent nodes through

which these vast quantities pass. The acceleration of flows through space can be

accounted for largely by technological advances in communication and transporta-

tion and the emergence of far-flung value chains, which are driven by economizing

behaviour, and abetted by increasingly liberal trade agreements and industrial

deregulation (Wolf 2004).

Many authors have commented on how the spatial economy would seem to

manifest characteristics of complex systems – and there are indeed similarities.

Steven Durlauf, who has written extensively on economic complexity (both theoreti-

cal and empirical), defines complex systems as “those [systems composed] of a set of

heterogeneous agents whose behaviour is interdependent and may be described as a

stochastic process” (Durlauf 2005, p. 226). Durlauf sees the following four properties

as distinguishing complex systems from other systems characterized by stochastic

processes and interdependencies.

l Nonergodicity (also known as path dependence) or the property that conditional

probability statements describing the system do not uniquely characterize the

average or long-run behaviour of the system;
l Phase transition, or the property that small changes in parameters bring about

qualitative changes in aggregate properties;1

K.P. Donaghy
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1See Anderson (1972).
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l Emergent properties, or properties that exist at a higher level of aggregation than
the original description of the system; and

l Universality, or the property that the presence of a system characteristic is robust

to alternative specifications of the system’s microstructure (see Durlauf 2001,

2005).2

While these properties are potentially helpful in explaining and understanding

spatial economic systems, their presence in such systems does not imply with

necessity that these systems are complex.3 In fact, it is an open question as to

whether or not complexity in social systems has been established. Durlauf remarks

that empirical evaluations of complexity are fraught with identification problems,

although he sees the social interaction literature as containing the strongest

evidence that forces giving rise to complexity are present. Ostrom’s (2000) work

on the resolution of collective action problems, Pettit’s (1996) on the “Common

Mind” and Schelling’s (1960, 1971) on spatial segregation and the avoidance of

calamitous international conflagrations all suggest compelling candidate examples.

Still, the four properties Durlauf has identified do provide a useful benchmark for

evaluating empirical work on complexity. And if the systems we are modelling are

potentially complex, these properties ought to be realizable within our models.

Whether or not a “complexity sighting” has been positively confirmed, there are

considerable methodological challenges to modelling an economy as a spatial

system inclined toward complexity. In this chapter I will discuss a number of

these and then illustrate how we might begin to take on some of these challenges

in the case of modelling the evolution of commodity flows in the Midwest United

States.

12.2 Methodological Challenges

If, for the sake of argument, we accept Durlauf’s definition of a complex system and

view the aggregate behaviours of (possibly, interdependent) networks involving

many heterogeneous interdependent actors as our explanandum, or “that which is to
be explained”, we immediately encounter a number of challenges. Perhaps the first

is to

2There are, of course, other lists of properties characterizing complex systems. David K. Campbell’s

is as follows: nonlinearity, interaction, irreducibility (behaviour is lost if the system is

broken up into parts), hierarchies (multiple scales in space–time), emergent /self-organizing

behaviour (more is different), many nearly equivalent configurations, adaptation, life-like

behaviour (learning), intelligent agents using if/then rules (Campbell 2000).
3Durlauf observes ‘The disparate empirical strategies that have been employed to provide

evidence on economic complexity have yet to integrate theoretical models of complexity with

data analysis in such a way as to show how a given aggregate property is associated with

interactions between agents in a way that allows for a plausible finding that a given environment

is in fact complex’ (2005, p. 240).
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1. Agree on what stylized facts or empirical regularities are to be explained and
what would count as an acceptable explanation

If our investigations are motivated by policy concerns – say, for example, building

and maintaining infrastructure to accommodate burgeoning flows of freight – we

must concur on which of possibly many systems properties will be taken as

indicators of system performance and identify which causal mechanisms need to

be modelled. A second but related challenge is to

2. Identify stable relationships or the “deep structure” of the system

To be identifiable as a system, even a stochastic path-dependent evolutionary

system must have some aspects which confer an enduring integrity to it through

however many permutations it may pass. Without such a structure in mind, a

modeller is just tracking passing phenomena. We may need to sharpen and reexam-

ine the definitions of stability we apply to the study of dynamical systems (see

Rotmans 2006). A third challenge facing modellers of an economy viewed as a

space of flows involving interdependent heterogeneous actors is to

3. Integrate within the same framework different conceptualizations of networks by
the agents involved

For example, firms involved in far-flung production networks and firms involved in

freight logistics will view transportation infrastructure networks very differently –

the former, focusing on nodes, will see potential sites for the disaggregated opera-

tions of sourcing, assembly, and distribution, whereas the latter, focusing on links,

will see the means by which freight can be routed between distant nodes. Both

perspectives are essential to a well formulated model of a dynamic game between

shippers and carriers.

As Durlauf (2005) points out, any discussion of economic complexity entails

identifying how system effects (possibly externalities of various sorts or emergent

phenomena) result from the purpose-driven economizing behaviour of interacting

agents.4 Hence a fourth challenge our modellers face is to

4. Relate micro-behavioural decision making and interaction by different types of
agents to system effects

Assuming we can overcome problems of identification and representation alluded

to above, we know that determining whether or not a causal explanation is accept-

able minimally entails making a fair comparison with other models based on

competing explanations – that is, validating individual models of complex systems

is important but does not constitute proving a theory, even provisionally (see Miller

1987). Hence we are challenged to

4Some theorists of complexity would seem to argue against the possibility of doing just this. See

Markose (2005) after Hayek (1945).
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5. Formulate models that enable fair comparisons of competing explanations

Two related challenges follow logically. The first is to

6. Determine which of the available competing explanations is better supported by
the data

While obvious, the sixth challenge is very demanding, since we often lack sufficient

spatial time-series observations to estimate together the parameters of a complex

economic systems model. At this point in time we cannot test empirically the

logical implications of our most advanced theoretical formulations – spatial

computable general equilibrium models; we can only view them as sources of

interesting and suggestive information that is complementary to the outputs of

other models. Work by Brock and Durlauf (2001) on discrete choice with social

interactions between agents in well circumscribed neighbourhoods is an exception.

This sixth challenge, then, calls for particularly creative responses. The second

challenge that logically follows from the fifth is to

7. Determine, when we encounter any of the benchmark indicators of system
complexity, whether or not such markers of complexity as “lock-in”, “path
dependence”, “power laws”, or “red queen effects” are really occurring or if
something else is going on

There may be several observationally equivalent but logically incompatible expla-

nations. As dynamic systems modellers who operate with a practical interest in

understanding how systems operate – so that we can anticipate how policy inter-

ventions might steer system behaviour – our primary objective should probably not

be to identify genuine manifestations of complexity, unless positively identifying

these manifestations contributes to our ability to manage systems. With policy

interventions in mind, an eighth challenge to modellers of the economy as a

space of flows and path dependent development is to be able to

8. Identify the extent to which there is local autonomy in interdependent networks

What capacity remains for local or regional policy to make a difference – say,

regarding networks for freight movement? Alternatively, if not at the local level, at

what level of spatial resolution might policy interventions make a difference?

In the balance of this short chapter, I shall discuss an example of recent work,

which illustrates an attempt to meet some of the challenges set out above.

12.3 Modelling the Evolution of Commodity-Flow

Patterns in the Midwest United States

Developments in transportation and communications technologies have enabled

firms to exploit economies of scale and scope by fragmenting production processes

and dispersing activities to least-cost locations (Jones and Kierzkowski 2001).
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Consequently, the production of most goods worldwide now takes place in a

distributed pattern over many locations in which semi-finished goods are shipped

from one specialized establishment to another. What activities are carried out

and where they agglomerate appear to be path dependent – initial advantages

are reinforced due to scale effects (Venables 2006). And with the increased use

of just-in-time inventory management methods, all production is becoming

more transport intensive. The obverse of this development is that most freight

shipments are now between establishments of firms operating in the same industry.

As a consequence, the industrial cores of many regional economies have

become hollowed out and regional economies, both near-by and far-flung, have

become increasingly interdependent through global supply chains (Munroe

et al. 2007).

While the stylized facts of this story of the evolution of goods movement are

generally acknowledged to be accurate, this story is a difficult one to model

formally. Why should we be concerned to do so? Some familiar reasons are to

l Test theories (causal explanations)
l Forecast further evolution of goods movement for transportation infrastructure

planning purposes and
l Conduct thought experiments of possible policy interventions

But also, a broad-based community of politicians, planners, municipal administrators,

environmental groups, port facility managers, shippers, carriers, freight handlers,

and labour unions is concerned about these developments, in large part because they

lack a clear sense of how these interdependent developments are related and what

they portend. Moreover, the design of effective policies to accommodate antici-

pated increases in freight movement and to promote public/private partnerships that

can abate and mitigate deleterious externalities, requires a better understanding of

how cost and incentive structures affect the form and functioning of supply chains.

While empirically supported theoretical explanations of fragmentation at the firm

and industry levels, public/private partnerships at urban and regional levels, and

network externalities at the systems level are available, we still lack theories and

models that explicitly link micro-behavioural decision making of producers (or

shippers) and carriers with impacts on nodes as well as links in transportation

networks (that is, with aggregate flows).

The principal objective of a recent research project, undertaken by the author

jointly with Geoffrey Hewings, Gianfranco Piras, and Jürgen Scheffren at the

University of Illinois – see Donaghy et al. (2006) – is to elaborate an empirically

oriented framework that can characterize in large the evolution of goods move-

ment, in which the current state of affairs, or a stylized version thereof, can arise.

In so doing, we have drawn on contributions to the literatures on fragmentation

(Jones and Kierzkowski 2001), the new economic geography (Krugman and

Venables 1995), dynamic networks (Nagurney and Dong 2002), and commodity

flow modelling (Wilson 1970; Batten and Boyce 1986; Friesz et al. 1998; Boyce

2002; Ham et al. 2005). A prototype model is sketched in the appendix to this

chapter. In particular, we specify a non-cooperative dynamic game between
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shippers and carriers. The specification is such that both economies of scale and

scope can be captured (if present) and competing explanations involving interde-

pendent actors – for example, those of the new economic geographers (aggrega-

tionists), theorists of fragmentation (disaggregationists), and other theorists can

be confronted with data.

Data availability remains the biggest concern checking modelling ambitions,

especially with respect to calibration of parameters (but see Donaghy et al. 2006 for

a discussion of possible solutions to the challenges encountered). Numerical solu-

tions to the dynamic games framed by the model also will not be trivial but may be

obtained in the case of large-scale models by employing a dynamic variational-

inequality approach (see Nagurney and Dong 2002 for details). One may also be

able to solve the explicit set of first-order necessary conditions for smaller-scale

versions of the dynamic optimization problems as in Donaghy and Schintler (1998),

using a custom package, such as Wymer’s (2004) continuous-time systems model-

ling tools, WYSEA. Operationalization of the framework elaborated above is

presently proceeding with a small proof-of-concept model and with a larger

model of the Midwest United States.

12.4 Conclusions

In the foregoing we have identified a number of challenges that face modellers

attempting to characterize an economy in terms of spatial-dynamic networks. We

have also discussed a model that would enable us to meet some of these challenges –

including:

l Integrating different conceptualizations of networks by the agents involved (in a

dynamic game)
l Relating micro-behavioural decision making and interaction by different types

of agents to system effects
l Formulating models that enable fair comparisons of competing explanations,

hence
l Determining which of the available competing explanations is better supported

by available data

The other four challenges identified

l Agreeing on what empirical regularities are to be explained and what would

count as an acceptable explanation
l Identifying stable relationships or the “deep structure” of the system
l Determining if benchmark indicators of complexity – when encountered –

indicate real complexity and
l Identifying the extent to which there is local autonomy in interdependent net-

works
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are less easy to meet and will require further discussion within the scientific

community, such as is promoted in this volume.5

Appendix. A

Dynamic Commodity Flow Model of Donaghy et al. (2006)

We adopt the following notation to characterize network flows. Nodes of the

network through which goods are shipped are indexed by l and m. Links joining
such nodes are indexed by a and routes comprising contiguous links are indexed by r.
The length of some link a connecting two nodes is denoted by da. If link a is part

of route r connecting nodes l and m, an indicator variable dalmr assumes the value

1.0. It is 0 otherwise. The length of a given route from some node l to another

node m, Dtmr, is given by the sum of link distances along the route:

Dlmr �
P
a
dad

a
lmr: ð12:1Þ

Turning to quantities shipped through the network, we index sectors engaged in

production in the spatial economy by i and j. Types of final demand will be indexed

by k. Let Xi
l denote the total output (in dollars) of sector i produced at node l, xijlm

denote interindustry sales from sector i at location l to sector j at location m, and

FDik
lm denote final demand of type k at location m for sector i’s product at location l.

The physical flow of sector i’s product from l to m along route r is hilmr . This
quantity is obtained by converting the value flow along route r from dollars to tons

by means of the ratio of total annual interregional economic flow to total annual

physical flow, qix. The total physical flow of all commodities shipped on a link a via
all routes using the link is given by

fa �
P
i

P
lmr

hilmrd
x
lmr; ð12:2Þ

and the periodic flow capacity of link a is denoted by ka. Conditions that the

network must satisfy at any point in time are as follows.

Material balance constraint

Xi
l ¼

P
m

P
j

xijlm þP
m

P
k

FDik
lm; 8i; 8l: ð12:3Þ

5But see Donaghy and Richard (2006) on identifying the deep structure of an evolving system of

demand for international currencies, and Piras et al. (2007) on explicitly testing for types of

evolutionary dynamics.
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Conservation of flows constraint

P
r
hilmr ¼

P
j

xijlm=q
i
x þ

P
k

FDik
lm=q

i
x; 8i; 8l; 8m:: ð12:4Þ

Link capacity constraint
P
i

P
lmr

hilmrd
a
lmr ¼ fa � ka; 8a: ð12:5Þ

Non-negativity and feasibility conditions

fa � 0; 8a; hilmr � 0; 8i; 8l; 8m; 8r; xijlm > 0; 8i; 8j; 8l; 8m: ð12:6Þ

Equation (12.3) ensures that shipments from industry i in location l do not exceed

production by the industry in that location, while (12.4) reconciles physical and

value flows. Inequality (12.5) ensures that flows along links do not exceed capa-

cities and the conditions given in (12.6) ensure that the distribution of goods

throughout the network is feasible.6

In the sequel we shall assume that at each location l the behavior of all establish-
ments engaged in production in a given industrial sector can be characterized by a

representative establishment.7 Following Dixit and Stiglitz (1977), we further

assume that firms operating the establishments act as monopolistic competitors of

the Chamberlinian sort: they are output-level and input-price takers and they set

output prices by a mark-up over marginal cost (which equals average cost in

equilibrium). For a firm with an establishment producing in sector i at location l,

the mark-up, pil, is given in terms of the price-elasticity of demand for Xi
l, s

i
l, as

pil ¼ ½sil=ðsil � 1Þ�:

Under the assumption of Chamberlinian monopolistic competition, the spatial

markets in which firms compete are sufficiently competitive – barriers to entry

are sufficiently low – so as to drive to a very low margin, if not zero, profits earned

by firms from production of commodities at all locations.

Each local representative establishment is assumed to produce its output according

to a two-level C.E.S. – constant elasticity of substitution – technology (Sato 1967).

This fungible output can be used in production of other commodities or absorbed in

final demand (in the forms of household and government consumption, investment,

6The assumption that all xijlmare positive is an assumption of convenience to ensure that marginal

products, specified in (12.9) below, are defined. But given the level of sectoral aggregation of

available commodity-flow data, this should be of no consequence.
7Hence we are allowing for the possibility that firms may have multiple establishments located in

different areas.
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and export). At the first level, inputs of each industrial type procured locally and

non-locally are aggregated into input bundles:

cijm ¼ gijm
P
l

yijlmðxijlmÞ�eijm

� ��1=eijm

; 8i; 8j; 8m: ð12:7Þ

In (12.7), cijm is a bundle of inputs produced by representative establishments

operating in industry i at various locations l used by the representative establish-

ment in industry j in its production activities at location m. The parameters

gijm; y
ij
lm; and eijm have standard interpretations as scale, factor-intensity and substitu-

tion parameters (see Ferguson 1969).

At the second level of the production function, total output by a representative

establishment in a given industry in a given location is produced from the

commodity bundle aggregates at the first level and labor and capital services,

Ljm and Kj
m. At the second level, we allow explicitly for the possibility of increas-

ing returns to scale in production at the establishment, regardless of the number

of varieties aggregated in the commodity bundles, by employing a generalized

C.E.S. function in which kjm � 1:0 is the scale parameter (see Henderson and

Quandt 1980).

Xj
m ¼ bjm

P
i

aijmðcijmÞ�rjm þ aLjm ðLjmÞ�rjm þ aKjm ðKj
mÞ�rjm

� ��kjm=r
j
m

: ð12:8Þ

Again, the parameters of this function have their standard interpretations. The

marginal product (in terms of good j) at location m of a unit of good i produced
at and shipped from location l is

@Xj
m

@xij
lm

¼ @Xj
m

@cijm

@cijm
@xij

lm

¼ kjmaim

ðbjmÞr
j
m=kjm

ðXj
mÞðk

j
mþrjmÞ=kjm

ðcijmÞðr
j
mþ1Þ

yij
lm

ðgijmÞe
ij
m

cijm
xij
lm

� �eijmþ1

: ð12:9Þ

To make further progress with an explanation of economic behavior, we need to

introduce prices as well as technology. Let pjm denote the f.o.b. (or mill) price of a

unit of industry js output at location m and pilm the delivered price of a unit of

intermediate good i at m. Then, defining wj
m and uccjm as the wage rate and user cost

of capital in industry j at locationm, the mill price of this good under Chamberlinian

monopolistic competition is given by

pjm ¼ pjm
P
i

P
l

pilm � xijlm þ wj
m � Ljm þ uccjm � Kj

m

� �
=Xj

m; 8j; 8m: ð12:10Þ

The delivered price at location m of a good i produced at location l, pilm, includes the
unit cost of transport by a carrier from location l to location m, #ti

lm, which is set by
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the carrier. Collecting these various price components, the delivered price of a unit

of good i at location m will be

pilm ¼ pil þ #ti
lm; 8l;8m; 8i: ð12:11Þ

Defining several new variables for the time rates of change in installed capacity (net

of depreciation), in interindustry and interregional commodity flows, in employ-

ment, and the f.o.b. goods price that is,

Ijm ¼ _Kj
m; axijlm ¼ _xijlm; aLjm ¼ _Ljm; and apjm ¼ _pjm;

the intertemporal optimization decision of a representative establishment in sector j

at location m is to choose Ijm; a
xij
lm; a

Lj
m and apjm so as to minimize the present value of

costs of operation at and adjustment to equilibrium levels of capital, intermediate

goods, and labor:8

ðt1
t0

e�lsjmt

(X
i

X
l

pilm �xijlmþwj
mL

j
mþuccjmK

j
mþqjmI

j
mþ

oKj
m

2
ðI� uKjm ðKj

m ��Kj
mÞÞ2

þ
X
i

X
l

oxij
lm

2
ðaxijlm� uxijlmðxijlm ��xijlmÞÞ2þ

oLj
m

2
ðaLjm � uLjm ðLjm ��LjmÞÞ2

þopj
m

2
ðapjm � upjmðpjm ��pjmÞÞ2 dt; ð12:12Þ

subject to the following identities

_Kj
m ¼ Ijm; ð12:13Þ

_xijlm ¼ axijlm; 8i; 8l; ð12:14Þ

_Ljm ¼ aLjm ; ð12:15Þ

_p j
m ¼ apjm ;

9 ð12:16Þ

and (12.3) and the non-negativity condition on xijlm in (12.6). In objective functional

(12.12), lsjm denotes the temporal discount rate of representative establishment j in
location m, the equilibrium price level is given by (12.10), and the (atemporal)

8We assume adjustment for a variable y(t) towards a target value y*(t) according to dy(t)/dt ¼ a
(y*�y). For description of such an adaptive approach based on decision rules see Marcellino and

Salmon (2002) and Scheffran (2001).
9Note that there are now four state equations (12.13)–(12.16). Note also that the objective

functional, which involves derivatives of what would be logical control variables for the shippers,

introduces integral action.
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equilibrium (cost-minimizing) levels of capital, intermediate goods, and labor are

given by

xijlm� ¼ yijm

ðgijmÞe
ij
m

kjm
pjm

aijm

ðbjmÞr
j
m=kjm

pjm
pi
lm

ðXj
mÞðk

j
mþrjmÞ=kjm

ðcijmÞðr
j
mþ1Þ

� �1=ð1þeijmÞ
cijm; ð12:17Þ

Ljm� ¼ kjm
pjm

aLjm

ðbjmÞr
j
m=kjm

pjm
wi
m

� �1=ð1þrjmÞ
ðXj

mÞðk
j
mþrjmÞ=ðkjmþkjmr

j
mÞ; ð12:18Þ

Kj
m� ¼ kjm

pjm

aKjm

ðbjmÞr
j
m=kjm

pjm
uccim

� �1=ð1þrjmÞ
ðXj

mÞðk
j
mþrjmÞ=ðkjmþkjmr

j
mÞ:10 ð12:19Þ

We now make an assumption analogous to that made above concerning representa-

tive establishments: we assume that at each location l there is a representative
carrier which (1) takes as given quantities of goods to be transported from l to other
locations m and the prevailing cost structure of goods movement, and (2) sets prices

of carriage by commodity, origin, and destination and determines the routing

pattern. The intertemporal optimization decision of a representative carrier at

location l is, then, to determine a time-varying schedule of prices, #ti
lm, for shipping

commodities from its respective location l to establishments and sources of

final demand (households, government agencies, etc.) at all other locations m,

xijlm and FDik
lm, and time-varying flows of commodities along available routes r,

hilmr, so as to maximize the present value of its anticipated stream of net revenues

over the time horizon t0 to t1,

Ð t1
t0
e�lcl t

P
i

P
m
#ti
lmð

P
j

xijlm þP
k

FDik
lmÞ �

P
i

P
m

P
r
hilmrDlmrp

ti
lmr

( )
dt; ð12:20Þ

subject to (12.4) and inequalities (12.5) and (12.6). In (12.20), lcl is the temporal

discount rate of the representative carrier at location l. Also in (12.20), ptilmr denotes
the cost to the carrier of delivering a ton of commodity i from location l to location
m via route r, and is assumed to be determined by the following cost relationship,

10Note that, with the generalized C.E.S. technology with increasing returns to scale at the second

level, the rate of technological substitution between input bundles remains the same as in the case

of constant returns to scale, as does the expansion path. Consequently, the cost function dual to the

technology manifests all the usual regularity properties of a well-behaved cost function. These

properties include the cost function being non-negative in input prices and output, non-decreasing
in input prices and output, concave and continuous in input prices, positively linear homogeneous
in input prices (so only relative prices matter), and supportive of Shephard’s lemma (see Chambers

1988).

12 Modelling the Economy as an Evolving Space of Flows 161



ptilmr ¼ pt � Dx1i�1
lmr hi

x2i�1
lmr ; where x1i; x2i < 1:0; 8i; 8l; 8m; 8r; ð12:21Þ

where pt denotes the industry average ton-mile price of shipping a commodity. Cost

relationship (12.21) implies that unit transport costs decline with distance and with

total weight of shipment.

We shall further assume that volumes of final demand for goods at various

locations are affected by the prices carriers set (through the delivered price) and that

carriers are aware of this dynamic. The implied feedback relationship can be

captured by defining final demand of type k at location m for good i produced at

location l as

FDik
lm ¼ F

~
D

ik

lmðpilm=�pilmÞ�bik
lm ; ð12:22Þ

in which F
~
D

ik

lm is the volume of exogenously given final demand of type k at location
m for good i produced at location l when the (normalized) delivered price is

constant and �pilm is a period-average or reference delivered price.11

When taken over all producers and carriers, the first-order necessary conditions

for the solution to the above joint intertemporal optimization problem – including

the network constraints (12.3)–(12.6) – correspond to a non-cooperative (Nash)

game in which each player takes all others’ strategic behaviors as given (the first-

order conditions are provided in the appendix to Donaghy et al. 2006). Given the

curvature properties of the functional forms employed, a solution to the non-

cooperative game should exist and should be unique (questions about the stability

of the solution remain). Variations on the game set out above can also, and will be,

investigated.

Note that the present set-up differs from the usual commodity-flow model

formulation in that producers are minimizing transportation costs of inputs used

in production along with other input costs, instead of minimizing shipping costs of

supplying the market (cf. Boyce 2002). Carriers seek maximal profits through

optimal route selection. The present set-up also differs from other formulations of

dynamic games of shippers and carriers in that considerations of transportation

costs influence production decisions (cf. Friesz and Holguin-Veras 2005).

Realism would dictate that in applied research on the evolution of goods

movement and associated systems effects, transportation modes such as rail, air,

or water should also be explicitly introduced, as Ham et al. (2005) have done for a

static model of interregional commodity shipments and transportation network

flows. This should not present great difficulties and would enable the basic model

to support simulation and dynamic gaming exercises whose intent is to examine

infrastructure policies.

11The definition of FDik
lm given in (12.22) should be substituted for all occurrences of the variable

in other relationships of the model.
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A more satisfying and more complete modeling framework would account for

the evolution of final demand components (including exports) and the evolution of

labor markets. An expenditure system for a representative household could be

introduced along the lines of a modified almost ideal demand system (MAIDS)

(see Cooper and McLaren 1992). Capacity expansion of establishments should also

be related to purchases of capital goods from other producers. Changes along these

lines would bring the model within the ambit of spatial computable general

equilibrium frameworks.
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Part C

Empirical Aspects of Network
Complexity in the Space-Economy



Chapter 13

Effects of a Simple Mode Choice Model in a

Large-Scale Agent-Based Transport Simulation

Dominik Grether, Yu Chen, Marcel Rieser, and Kai Nagel

13.1 Introduction

The traditional transportation planning forecasting process is the four-step process,

consisting of the following four steps (for example, Ortúzar and Willumsen 1995):

1. Trip generation, where sources and sinks of travel are computed

2. Destination choice, where sources and sinks are connected to trips. This results

in the so-called origin–destination (OD) matrix

3. Mode choice, where the trips are differentiated by mode

4. Assignment, where routes are found for the trips, taking into account that much-

used streets become slower (“congested assignment”).

It has been clear for quite some time now that this approach is at odds with

anything that is time dependent. At best, separate runs of the four step process are

made for, say, morning peak, mid-day, evening peak, and night. Within the periods,

everything is “static” (or steady-state), in the sense flow rates are constant through-

out the periods.

The biggest barrier to time dependence is arguably the assignment step, for

which a lot of mathematical theory is known (for example, Sheffi 1985). Much of

that mathematical theory, however, is no longer valid when physical queues, i.s.

spillback that uses up physical space, are introduced DaganzoAssign-w-queues.

Physical queues, however, seem indispensable for a more realistic description of

the traffic system. One way to address this problem is dynamic traffic assignment

(DTA) (Peeta and Ziliaskopoulos 2001; Bliemer 2003; Mahut et al. 2003).

Although there are different formulations, a standard formulation is to have

time-dependent OD matrices, for example, one matrix for every hour. This sequence

of matrices is then loaded onto the network, in such a way that traffic that does not
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arrive during one time slice is carried into the next time slice, and routes are

assigned such that some normative behavioural model (for example, a Nash equi-

librium) is reached.

In order to generate these time-dependent OD demand matrices, there seem to be

two mainstream approaches:

l Lohse (1997) (also see Lohse et al. 2006), now implemented into the software

VISEVA (PTV www page, accessed 2004; Beuck et al. 2007), generates sepa-

rate OD matrices for different “trip purpose pairs”, Trip purpose pairs are, for

example, home!work, home!shop, work!leisure, work!home, etc., that is,

the trip purposes at both ends. These OD matrices are then multiplied, for every

time period, with a weighting function that describes how much traffic of this

specific trip purpose pair happens at that time period. For example, home!work

traffic probably mostly happens in the morning, while work!leisure traffic

probably mostly happens in the afternoon. The data for this can be derived

from time use surveys.
l The second mainstream approach to generate time-dependent OD demand

matrices is activity-based demand generation (for example, Bowman et al. 1999;

Bhat et al. 2004; Pendyala and Kitamura 2005; Arentze and Timmermans 2000;

Timmermans 2005) generates travellers’ daily plans, and transport appears as a

derived demand to connect activities at different locations. There are many

methods to achieve this, ranging from random utility modelling (Bowman et al.

1999; Bhat et al. 2004) to (partly) rule-based approaches (Arentze and Timmermans

2000).

In both cases, any feedback of congestion effects to the demand generation is

done using aggregated quantities such as aggregated link travel times, or zone-to-

zone impedances (Ettema et al. 2003; Lin et al. 2008). This can fail rather badly,

since the aggregation errors can lead to implausible behavioural responses. For

example, a router using link travel times that are aggregated into 15 min bins can, at

the onset of congestion, predict rather wrong travel times, and in consequence try to

avoid congestion that in synthetic reality does not exist when the vehicle is actually

there (Raney and Nagel 2004).

An alternative is to use the iterations which are already done on the level of the

route assignment routine and to extend them to other choice dimensions. De Palma

and Marchal (2002) describe an early step in this direction, where not only routes

but also departure times are adjusted individually for each trip, based on perfor-

mance in previous iterations. MATSim (MATSIM www page, accessed 2008) takes

this approach further:

l The simulation system does not only consider trips, but full daily plans and in

consequence individual travellers.
l Additional choice dimensions are added one by one. Time choice has been added

in earlier work (Balmer et al. 2005); in this chapter, the addition of mode choice

will be described.
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This addition of mode choice will be achieved in the following way:

1. Each agent obtains multiple initial plans, one for every mode.

2. The agents try those plans in different settings, modify the time and routing

structure of those plans, etc.

3. The agents eventually settle down on a set of plans that suits their needs best.

Conceptually, MATSim agents individually follow genetic algorithms (GA)

(Goldberg 1989; Holland 1992), where the MATSim plans correspond to the genes

in a GA, the execution of the traffic flow simulation together with the scoring that

follows corresponds to the computation of the fitness function in a GA, the MATSim

selection between different plans corresponds to selection in a GA, and the algorithms

that modify existing MATSim plans correspond to mutation operators in a GA. The

MATSim system as a whole, consisting of these adaptive agents, is a co-evolutionary

adaptive system (Hraber et al. 1994; Palmer et al. 1994; Arthur 1994; Hofbauer and

Sigmund 1998; Drossel 2001). This abstract computational system is then filled with

meaning from transport engineering and travel behaviour research. For example, the

traffic flow simulation is constructed from transport engineering principles (for exam-

ple, Gerlough andHuber 1975); the scoring function and the related selection operation

follows a utility-based approach (for example, Ben-Akiva and Lerman 1985); and the

generation and mutation of the plans follows concepts from travel behaviour research,

in particular activity-based demand modelling (for example, Timmermans 2005).

The chapter is organized as follows. Section 13.2 describes the overall approach,

concentrating on conceptual aspects, the co-evolutionary adaptation, and the scor-

ing. Section 13.3 then describes the mode choice model. Section 13.4 describes a

specific scenario, related to an illustrative study using data from the Zurich metro-

politan area. The scenario consists of the geographic and socio-demographic input

data and the specific simulation runs that were undertaken. Finally Sect. 13.5

summarizes the results and provides an outlook to future work.

13.2 Simulation Structure

The following describes the structure of the simulation that is used. It is the standard

structure of MATSim, as described at many places (Raney and Nagel 2006b; Balmer

et al. 2005). Readers familiar with the MATSim approach can skip this section.

13.2.1 Overview

Our simulation is constructed around the notion of agents that make independent de-

cisions about their actions. Each traveller of the real system is modelled as an individ-

ual agent in our simulation. The overall approach consists of three important pieces:

l Each agent independently generates a so-called plan, which encodes its inten-

tions during a certain time period, typically a day.
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l All agents’ plans are simultaneously executed in the simulation of the physical

system. This is also called the traffic flow simulation or mobility simulation.
l There is a mechanism that allows agents to learn. In our implementation, the

system iterates between plans generation and traffic flow simulation. The system

remembers several plans per agent, and scores the performance of each plan.

Agents normally choose the plan with the highest score, sometimes re-evaluate

plans with bad scores, and sometimes obtain new plans by modifying copies of

existing plans.

A plan contains the itinerary of activities the agent wants to perform during the day,

plus the intervening trip legs the agent must take to travel between activities. An

agent’s plan details the order, type, location, duration and other time constraints

of each activity, and the mode, route and expected departure and travel times of

each leg.

The task of generating a plan is divided into sets of decisions, and each set is

assigned to a separate module. An agent strings together calls to various modules in

order to build up a complete plan. To support this “stringing”, the input to a given

module is a (possibly incomplete) plan, and the output is a plan with some of the

decisions updated. This chapter will make use of two modules only: “activity times

generator” and “router”. Other modules will be the topic of future work. Once the

agent’s plan has been constructed, it can be fed into the traffic flow simulation. This
module executes all agents’ plans simultaneously on the network, allowing agents

to interact with one another, and provides output describing what happened to the

agents during the execution of their plans.

The outcome of the traffic flow simulation (for example, congestion) depends on

the planning decisions made by the decision-making modules. However, those

modules can base their decisions on the output of the traffic flow simulation (for

example, knowledge of congestion). This creates an interdependency (“chicken and

egg”) problem between the decision-making modules and the traffic flow simula-

tion. To solve this, feedback is introduced into the multi-agent simulation structure

(Kaufman et al. 1991; Bottom 2000). This sets up an iteration cycle which runs the

traffic flow simulation with specific plans for the agents, then uses the planning

modules to update the plans; these changed plans are again fed into the traffic flow

simulation, etc. until consistency between modules is reached.

The feedback cycle is controlled by the agent database, which also keeps track

of multiple plans generated by each agent, allowing agents to reuse those plans at

will. The repetition of the iteration cycle coupled with the agent database enables

the agents to learn how to improve their plans over many iterations.

In the following sections we describe the used modules in more detail.

13.2.2 Activity Time Allocation Module

This module is called to change the timing of an agent’s plan. At this point, a simple

approach is used which applies a random “mutation” to the duration and end time
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attributes of the agent’s activities. For each such attribute of each activity in

an agent’s plan, this module picks a random time from the uniform distribution

(�30 min + 30 min) and adds it to the attribute. Any negative duration is reset to

zero; any activity end time after midnight is reset to midnight.

Although this approach is not very sophisticated, it is sufficient in order to obtain

useful results. This is consistent with our overall assumption that, to a certain

extent, simple modules can be used in conjunction with a large number of learning

iterations (for example, Nagel et al. 2004). Since each module is implemented as a

“plugin”, this module can be replaced by a more enhanced implementation if desired.

13.2.3 Router

The router is implemented as a time dependent Dijkstra algorithm. It calculates
link travel times from the events output of the previous traffic flow simulation (see

Sect. 13.2.4). The link travel times are encoded in 15 min time bins, so they can be

used as the weights of the links in the network graph. Apart from relatively small

and essential technical details, the implementation of such an algorithm is straight-

forward (Jacob et al. 1999; Lefebvre and Balmer 2007). With this and the knowl-

edge about activity chains, it computes the fastest path from each activity to the

next one in the sequence as a function of departure time.

13.2.4 Traffic Flow Simulation

The traffic flow simulation simulates the physical world. It is implemented as a

queue simulation, which means that each street (link) is represented as a FIFO (first-

in first-out) queue with two restrictions (Gawron 1998; Cetin et al. 2003). First,

each agent has to remain for a certain time on the link, corresponding to the free

speed travel time. Second, a link storage capacity is defined which limits the

number of agents on the link. If it is filled up, no more agents can enter this link.

Even though this structure is indeed very simple, it produces traffic as expected

and it can run directly off the data typically available for transportation planning

purposes. On the other hand, there are some limitations compared to reality – for

example, the number of lanes, weaving lanes, turn connectivities across intersec-

tions or signal schedules cannot be included into this model.

The output that the traffic flow simulation produces is a list of events for each

agent, such as entering/leaving link, left/arrived at activity, and so on. Data for

an event includes which agent experienced it, what happened, at what time it

happened, and where (link/node) the event occurred. With this data it is easy to

produce different kinds of information and indicators like link travel time (which,

for example, will be used by the router), trip travel time, trip length, percentage of

congestion, and so on.

13 Effects of a Simple Mode Choice Model 171



13.2.5 Agent Database: Feedback

As mentioned above, the feedback mechanism is important for making the modules

consistent with one another, and for enabling agents to learn how to improve their

plans. In order to achieve this improvement, agents need to be able to try out

different plans and to tell when one plan is “better” than another. The iteration cycle

of the feedback mechanism allows agents to try out multiple plans. To compare

plans, the agents assign each plan a “score” based on how it performed in the traffic

flow simulation.

Our framework always uses actual plans performance for the score. This is in

contrast to all other similar approaches that we are aware of. These other

approaches always feed back some aggregated quantity such as link travel times

and reconstruct performance based on those (for example, URBANSIM www page,

accessed 2007; Ettema et al. 2003).

The procedure of the feedback and learning mechanism is described in detail by

Balmer et al. (2005). For better understanding, the key points are restated here.

1. The agent database starts with at least one complete plan per agent, with one plan

marked as “selected”.

2. The simulation executes these marked plans simultaneously and outputs events.

3. Each agent uses the events to calculate the score of its “selected” plan and

decides, which plan to select for execution by the next traffic flow simulation.

When choosing a plan, the agent database can either:

– Create a new plan by sending an existing plan to the router, adding the

modified plan as a new plan and selecting it,

– Create a new plan by sending an existing plan to the time allocation module,

adding the modified plan and selecting it,

– Pick an existing plan frommemory, choosing according to probabilities based

on the scores of the plans. The probabilities are of the form

pj ¼ ebUj=
X

i
ebUi ;

where Uj is the score (utility) of plan j, and b is an empirical constant. This is the

familiar logit model (for example, Ben-Akiva and Lerman 1985).

4. Next, the simulation executes the newly selected plans, that is, it goes back to 2.

This cycle continues until the system has reached a relaxed state. At this point,

there is no quantitative measure of when the system is “relaxed”; we just allow the

cycle to continue until the outcome seems stable.

13.2.6 Scores (¼ Utilities) for Plans

In order for adaptation to work in a meaningful way, it is necessary to be able to

compare the performance of different plans. This is easiest achieved by assigning
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scores to plans. This is the same as the fitness function in genetic algorithms, or the

objective function in optimization problems. Note once more that every agent has

its own scoring function, and attempts to optimize for her-/himself.

In principle, arbitrary scoring schemes can be used (for example, prospect theory;

Avineri and Prashker 2003). In this work, a utility-based approach is used. The

approach is related to the Vickrey bottleneck model (Arnott et al. 1990), but is

modified in order to be consistent with our approach based on complete daily plans

(Charypar and Nagel 2005; Raney and Nagel 2006a). The elements of our approach

are as follows:

l The total utility of a plan is computed as the sum of individual contributions:

Utotal ¼
Xn
i¼1

Uperf;i þ
Xn
i¼1

Ulate;i þ
Xn
i¼1

Utravel;i;

where Utotal is the total utility for a given plan; n is the number of activities,

which equals the number of trips (the first and the last activity on a day are

“stitched together”); Uperf;i is the (positive) utility earned for performing activity

i;Ulate;i is the (negative) utility earned for arriving late to activity i; andUtravel;i is

the (negative) utility earned for travelling during trip i. In order to work in

plausible real-world units, utilities are measured in Euro.

l A logarithmic form is used for the positive utility earned by performing an

activity:

Uperf;iðtperf;iÞ ¼ bperf � t�;i � ln
tperf;i
t0;i

� �
;

where tperf is the actual performed duration of the activity, t* is the “typical”

duration of an activity, and bperf is the marginal utility of an activity at its typical

duration. bperf is the same for all activities, since in equilibrium all activities at

their typical duration need to have the same marginal utility.

l t0,i is a scaling parameter that is related both to the minimum duration and to the

importance of an activity. If the actual duration falls below t0,i, then the utility

contribution of the activity becomes negative, implying that the agent should

rather completely drop that activity. A t0,i only slightly less than t*,j means that

the marginal utility of activity i rapidly increases with decreasing tperf,i, implying

that the agent should rather cut short other activities. This chapter uses

t0;i ¼ t�;i � expð�z=t�;iÞ

where z is a scaling constant set to 10 h. With this specific form, the utility at the

typical duration,
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Uperf;iðt�;iÞ ¼ bperf � z

is independent of the activity type.1

l The (dis)utility of being late is uniformly assumed as:

Ulate;i ¼ blate � tlate;i;

where blate is the marginal utility (in Euro h�1) for being late, and tlate, i is the
number of hours late to activity i.

l The (dis)utility of travelling is uniformly assumed as:

Utravel;i ¼ btravel � ttravel;i;

where btravel is the marginal utility (in Euro h�1) for travel, and ttravel;i is the

number of hours spent travelling during trip i.
In principle, arriving early or leaving early could also be punished. There is,

however, no immediate need to punish early arrival, since waiting times are already

indirectly punished by foregoing the reward that could be accumulated by doing an

activity instead (opportunity cost). In consequence, the effective (dis)utility of

waiting is already �bperf . Similarly, that opportunity cost has to be added to the

time spent travelling, arriving at an effective (dis)utility of travelling of

�jbtravelj � bperf .
No opportunity cost needs to be added to late arrivals, because the late arrival

time is spent somewhere else. In consequence, the effective (dis)utility of arriving

late remains at blate. These values (bperf ; bperf þ jbtravelj, and jblatej) are the values

that need to be compared to the values of the parameters of the Vickrey model

(Arnott et al. 1990).

13.2.7 Discussion of the Scoring Function

In our investigations, it turns out that the following aspects of the scoring function

are of prime importance:

l The typical duration, t�;i of each activity type.
l The height of the utility function at its typical duration, that is, Uðt�;iÞ, for each

activity type.
l The slope of the utility function at its typical duration, for each activity type.

1This “consequence” is actually the motivation for the specific mathematical form of the activity

performance utility contribution. The reason for this motivation is not relevant to this chapter, but

is described in Charypar and Nagel (2005).
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l The curvature of the utility function at its typical duration, for each activity type.

In consequence, at first glance it seems that there are four free parameters

per activity type. Fortunately, this number can be reduced by the following

arguments:

l In order to be optimal, the activity durations need to be selected such that all

slopes (¼ marginal utilities) are the same, at least in the absence of constraints

such as opening times or other influences such as strongly variable travel times.

This implies that one can, as a first approximation, set all slopes at the typical

duration to the same value. This ends up being the marginal utility of leisure time

(Jara-Dı́az et al. 2004), which can be estimated.
l By the same argument, it should be possible to estimate “typical durations” of

activity times from time use surveys: If marginal utilities are the same, then the

typical durations need to be set such that the typical durations from time use

surveys are recovered – In our current work, the typical durations are directly

taken from actual durations from time use surveys in Switzerland (see below).
l As long as activity dropping is not possible, the absolute height of the utility does

not matter. This justifies the arbitrary setting of

Uperf;iðt�;iÞ ¼ bperf � z:

It also means that the absolute level of our agent score is meaningless, and only
differences between scores can be interpreted as utility differences.

The curvature at the typical durations remains as the most problematic parameter.

This parameter determines the flexibility of an activity: a large curvature means that

the marginal utility increases strongly when the activity duration is reduced,

implying that time should rather be saved somewhere else. Conversely, the margin-

al utility decreases strongly when the activity duration is increased, implying that

additional time should rather be spent somewhere else. The above utility function

has a second derivative of �bperf=t�;i. This means that, with the above utility

function, no free parameter is left to separately adjust the curvature at the typical

duration. The second derivative is inversely proportional to the typical duration,

meaning that longer activities always have more flexibility than shorter activities.

13.3 Mode Choice Model

This section will present and characterize the mode choice model. This will be

achieved by two additional elements in MATSim:

l An extension of the scoring function, now taking into account the (dis)utility of

travel by non-car modes
l A mechanism to generate non-car plans
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All agents will carry on to maximize personal utility but the calculation of this

utility depends on chosen mode.

13.3.1 Extension of Scoring Function

The disutility of travelling from Sect. 2.6 is

Utravel;i ¼ btravel � ttravel;i;

where ttravel;i is the travel time in hours spent for trip i and btravel is the marginal

utility of travel. To include alternative modes, it is sufficient to make the (dis)utility

of travel dependent on the mode. A simple approach to do this is to use different

valuations of the time for the two modes:

Utravel; mode; i ¼
bcar:ttravel;i; if trip i is by car

bnon-car:ttravel;i if trip i is not by car;

�

where bcar and bnon-car are the marginal utilities of travelling by car or not by car

(in Euro h�1), respectively, and ttravel;i is the number of hours spent travelling

during trip i. For the time being this leaves out all more complicated aspects of

non-car travel valuations, such as changing vehicles, schedule restrictions, waiting

times, etc.

The task is now to select values for those marginal utilities. For this, it is

important to note once more that bcar and bnon-car are not values of time by

themselves, but they are additional marginal disutilities caused by travelling, in

addition to the marginal opportunity cost of time. This is consistent with economet-

ric approaches (Jara-Dı́az and Guerra 2003).

13.3.2 Generating non-Car Plans

Besides the separate scoring of the non-car travel, it is necessary to generate plans

that use the non-car mode. In all investigations described in this chapter, this is done

by giving all travellers an additional initial plan that uses the non-car mode on all

trips. The duration of every non-car trip is assumed to take approximately twice as

long as the car mode at free speed.2

2The algorithm to construct the trip durations of the non-car mode was later modified to take

exactly twice as long as the car mode at free speed. This explains differences between this chapter

and other publications on the same subject. Eventually, these estimates need to be replaced by real-

world data.
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This is based on the (informally stated) goal of the Berlin public transit company

to generally achieve door-to-door travel times that are no longer than twice as long

as car travel times. This, in turn, is based on the observation that non-captive

travellers can be recruited into public transit when it is faster than this benchmark

(Reinhold 2006). For the purposes of the present chapter, it is assumed that all non-

car modes very roughly have the shared characteristics that they are slower than the

(non-congested) car mode – this will be further disaggregated in future work. In the

same vein, both for car and for non-car trips there are no separate considerations of

access and egress.

The non-car plan can undergo time adaptations as all other plans can. In

consequence, it is quite possible that an agent will end up having multiple car

plans and multiple non-car plans. If one mode scores consistently worse than the

other mode, most plans of that mode will eventually be deleted. However, the plans

deletion mechanism is programmed in a way that the last plan of every mode needs

to be kept. In this way, it is ensured that travellers maintain the option to switch

modes at all times.

13.4 Zurich Scenario

13.4.1 Network

The scenario covers the area of Zurich, Switzerland, which has about 1m inhabi-

tants. It is shown in Fig. 13.1. The network is a Swiss regional planning network,

which includes the major European transit corridors. It consists of 24,180 nodes and

60,492 links.

The links have attributes (flow capacity, free speed, number of lanes,. . .) suitable
for static traffic assignment. These turned out to be generated with a view towards

national forecasts, and were thus not sufficiently detailed within the city of Zurich

with its dense road network. Thus, all links within a circle with radius 4 km around

the centre of Zurich have their attributes modified as follows:

l Links corresponding to primary roads in OpenStreetMap3 get a capacity of at

least 2,000 vehicles per hour. If the original capacity is higher than that, the

capacity is not changed.
l Links corresponding to secondary roads in OpenStreetMap keep their original

capacity (usually between 1,000 and 2,000 veh h�1).
l All other links get a capacity of at most 600 veh h�1. If the original capacity is

lower, it is not changed.
l A few single links are manually adjusted based on local knowledge.

3See http://www.openstreetmap.org.
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13.4.2 Population, Initial Demand

The simulated demand consists of all travellers within Switzerland that cross at

least once during their day an imaginary boundary around Zurich. This boundary is

defined as a circle with a radius of 30 km and with its centre at “Bellevue”, a central

place in the city of Zurich. To speed up computations, a random 10% sample was

chosen for simulation, consisting of 181,725 agents.

The travellers have complete daily activity patterns based on microcensus

information (Balmer et al. 2006; Meister et al. 2008). Such activity patterns can

include activities of type home, work, education, shopping, and leisure. Each agent

gets two plans based on the same activity pattern. The first plan uses only “car” as

transportation mode, while the second plan uses only “non-car”.

This demand was then extended with people crossing the borders of Switzerland

and travelling within the region of Zurich, either because they live in neighbouring

countries but work in Switzerland, because they live in Switzerland but work

outside, or because they travel through Switzerland on transit. Again, a 10% sample

Fig. 13.1 Switzerland network, area of Zurich enlarged
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was taken, adding 5,759 agents to the demand. This part of the demand is important

to get more realistic traffic volumes especially on highways. These agents of our

population have no option to switch from mode car to non-car. We will refer to

them as “transit” traffic in the following paragraphs.

To specify opening and closing times for the facilities where activities are

performed, activities are classified by type, that is, it is distinguished between

home, work, education, shop and leisure activity types. Opening and closing

times for the facilities where those types are performed are shown in Table 13.1.

13.4.3 Simulation Runs and Base Case

The simulation is run for 250 iterations, to retrieve a relaxed state in which the

initial plans are adapted to the traffic conditions. In each iteration, 10% of the agents

adapt routes and 10% adapt activity times. With the remaining probability of 80%,

agents select one of the existing plans as described in Sect. 2.5. In doing so they can

choose between modes car or non-car. This is done until iteration 200 is reached. In

the last 50 iterations route and time adaption is switched off and 100% of the agents

select plans based on the experienced performance. Thus all agents stop to try new

options and return to the plans that have been experienced as best ones. The used

parameter values are summarized in Table 13.2.

For the Zurich region, data from 159 traffic counting stations is available. The

hourly measured traffic volumes can be compared with the amount of traffic of the

bnon�car ¼ �3Euro h�1

scenario simulation runs. This comparison is shown in Fig. 13.2. Most important is

the curve using squares for data point representation which is calculated for each

hour by following formula:

Table 13.2 Behavioural parameters used in the scenario

Parameter Value

bperf 6 Euro h�1

bcar �6 Euro h�1

bnon�car �3 and –6 Euro h�1

b (existing plans) 4

Table 13.1 Activity opening and closing times used in the scenario

Activity type Opening time Closing time

Home 00:00 24:00

Work 06:00 20:00

Education 06:00 20:00

Shop 08:00 20:00

Leisure 00:00 24:00
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Simulated traffic volume� Real traffic volume

Real traffic volume
�100:

During the night, that is from 00:00 a.m. till 07:00 a.m., the simulation deviates

from reality with 50 to 100%. However the simulation results for the daytime,

that is from 07:00 am till 09:00 pm, have a relative deviation of about 30%. After

09:00 pm the deviation is 40% or slightly higher.

13.4.4 Sensitivity

In order to test the model’s sensitivity, exactly the same set-up was run again, from

the same initial conditions, but this time with a bnon-car of�6 Euro h�1. Since at this

point the model does not differentiate between public transit and other non-car

modes, such a change is a bit difficult to interpret in practical terms, but it might be

loosely taken as a price increase of all non-car modes.

350100

300

250

200

150

100

50

0

–50

–100

–150

–200

–250

Hour

M
ea

n 
re

l e
rr

or
 [%

]
M

ean abs {bias, error} [veh/h]

1

90

80

70

60

50

40

30

20

10

0
2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24

Mean rel error Mean abs error Mean abs bias

Fig. 13.2 Realism of the bnon-car ¼ �3 Euro h�1 simulation run. One hundred and fifty nine traffic

counting stations provide real traffic counts for the Zurich area. The three curves show mean

relative error (squares), mean absolute error (dots) and the mean absolute bias (triangles) when
comparing the traffic volumes of the base case with the real values
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The results of the two simulation runs of the Zurich scenario are summarized

in Table 13.3. The first and second column contain the data for the bnon-car of �3

and �6, respectively. The third column contains the difference between the

bnon-car ¼ �3 and the bnon-car ¼ �6 values.

The first line contains the number of agents used for simulation. The next two

lines contain indicators for the performance of the system as a whole. While the

average trip duration increases a non-significant 2 s, the average score decreases by

0.84 Euro. This is plausible, since an effective price increase in the system without

compensation elsewhere needs to lead to a decrease in utility.

13.4.5 Winner–Loser Analysis

It is immediately possible to identify the winners and losers of a policy. An example

of such an analysis, which shows the spatial distribution of losers, is Fig. 13.3. The

map pictures the greater Zurich area, whereby each dot or cross symbolizes an

agent’s home location. Colorization is based on the relative change using the

bnon�car ¼ �3 scenario as base and the bnon�car ¼ �6 scenario as compare case.

Crosses stand for agents that lose more than 1% utility.

A look at the spatial distribution of the losers in Fig. 13.3 shows that losers are

more likely to reside at the border of the city area. In the base scenario, where

bnon-car is set to �3, non-car travelling is a profitable option for them. Changing

bnon-car to �6 forces them to either “pay” more, or to switch to car, which results in

more congestion on streets and thus longer travel times for everybody.

This is reflected by Fig. 13.4. Gray dots symbolize home locations of agents that

stay at the chosen mode despite the change of bnon-car. Crosses depict the agents

changing from car to non-car while car pictograms stand for the contrary mode

swap. One can see that most of the agents living in the city area stay with their

original non-car mode. Residents living at the borders of the metropolitan area tend

to switch more often from non-car to car. The reason is that most of their trips

Table 13.3 Results for the Zurich scenarios with a bnon-car of �3 and �6

bnon-car ¼ �3 bnon-car ¼ �6 Difference

Size of population 181,725 181,725 0

Avg. trip duration (s) 714 716 þ2

Avg. score (EUR) 177.36 176.53 �0.84

Car rate (%) 42.31 60.25 þ17.94

Non-car rate (%) 54.62 36.68 �17.94

Transit rate (%) 3.07 3.07 0

The third column displays the difference, that is, values of bnon-car ¼ �3 scenario are subtracted

from the scenario for bnon-car ¼ �6
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Fig. 13.3 Map of the greater Zurich area. Each dot or cross locates a home location of an agent.

Crosses stand for agents losing more than 1% of utility due to the raise of bnon-car

Fig. 13.4 Map of the greater Zurich area. Dots, car pictograms and crosses symbolize home locations

of agents in respect to themode change due to the raise ofbnon-car. Note that agents living at the border of
the metropolitan area are most likely forced to switch from non-car to car (car pictograms)
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are longer than the trips of their inner city counterparts. And with longer trips,

the change of bnon�car has a stronger effect, and the time advantage of the car

(in non-congested conditions) plays a larger role.

These images are meant as a first illustration of what will be possible with

microscopic methods. Future analysis should probe more deeply into the details of

the behavioural mechanics. For example, one could imagine the following approach:

1. Introduce the policy measure but force every traveller to behave as before. This

should identify those people who presumably feel most threatened by a policy

measure; let us call them “directly affected”.

2. Allow all agents to re-compute their route choice once. In the example discussed

in this chapter, this would presumably lead to a relatively large initial mode

change reaction.

3. Let the system relax along all relevant choice dimensions by doing a large

number of iterations. In the example discussed in this chapter, this would

presumably lead to some of the initial mode changes being reversed, because

of increased congestion in the car mode. The final result would identify the

distribution of winners and losers after the system has adapted to the policy

measure. It may be important to find out in how far the gains and losses have

shifted from those that were “directly” affected to those that are now indirectly

affected (for example, via increased car mode congestion).

13.5 Conclusion

In this chapter, a mode choice model for the MATSim framework was presented.

The model provides a possibility to analyse car vs. non-car travel decisions. To

achieve this, our scoring function was extended by one parameter, bnon-car. In
addition, initial plans using the non-car mode were generated by assuming that

they take approximately twice as long as the car in an empty network. Nothing more

is needed to simulate mode choice. The parameter bnon-car can be interpreted as the

agents’ disutility of using the non-car mode; it needs to be compared with a similar

parameter for the car, bcar.
The model was applied to the city of Zurich. Starting from a plausible base case,

the parameter bnon-car was doubled. As expected, car usership went up. Because of

the agent-based approach, it was easy to allocate gains and losses to the agents’

home locations; the result was shown in a graphical way. Similarly, the geographic

distribution of mode switchers was shown.

In the longer run, the simple model for the non-car mode will be replaced by a

detailed model that includes the effects of the actual public transit schedule. That

model will then be able to compute the populations’ reaction to changes in the

schedule, the routing, the fare system, etc.
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Chapter 14

Complex, Adaptive Systems, Through

Time and Across Space

Alberta Power Generation

Kevin Seel and Nigel Waters

Given how rumours drive markets, and the way investors flock like sheep and follow the

words of various gurus [traditional, market equilibrium theory] . . . is clearly unrealistic

(New Scientist, Editorial, 2008, 199, #2665, p. 5).

Dynamics and surprise are everything. Waldrop (1992, p. 271).

“Imagine what happened to my Tatiana? She up and rejected Onegin . . . I never expected it
of her!” Pushkin.

14.1 Introduction

Complexity does not mean complicated (Nijkamp 2007; Waldrop 1992, pp. 11–12).

Confusion arises since complexity is a word in common use but in science it has a

special meaning (O’Sullivan 2004). The first part of this chapter will consider the

various definitions of complexity that have appeared in the literature. The second

part will discuss a case study of the deregulation of the Alberta, Canada, electrical

power generation industry, illustrating the dynamics of a complex system.

During the past few decades the geographical, social (especially economics;

see the pioneering work of Arthur 1989) and natural sciences (biology, chemistry

and physics) have all been subject to calls for a greater use of the methods

and approaches of complexity science for, according to Richards (2002, p. 99),

“complexity is one of the fastest growing and [most] pervasive branches of science”.

Despite flickering fires of enthusiasm for the use of these techniques over the years

(Mayer 1990), these calls have not produced a consistent and sustained body of

research. There is no overwhelming paradigm shift. Two recent articles, one in

physical geography and one in human geography have urged a renewed interest
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(O’Sullivan 2004; Richards 2002) and now formal statements recommending the

development of complexity in the various sub-disciplines of geography are common

(for example, in land development, Doak and Karadimitriou 2007, in economic

geography, Boschma and Martin 2007, and in the study of space and place, Manson

and O’Sullivan 2006, among others).

This chapter will review these two commentaries in particular and provide a

critique of complexity as it is being used in geography and geographic information

science and allied disciplines. In the past, researchers have adopted a diversity of

attitudes toward complexity science. Few were initially supportive, many were

openly hostile (Brian Arthur’s seminal 1989 paper was rejected by three leading

journals: Waldrop 1992), and some were prescient (Hicks arguing in 1939 that it

would lead to the “wreckage. . . of the greater part of economic theory”), while

most, it will be argued here, have been far too cautious in assessing the potential of

complexity analysis. Even now, it is not the majority of researchers that appreciates

the rich cornucopia of rewards that awaits those scholars willing to combine the

tools of complexity science with the traditional methods of their disciplinary

sciences.

14.2 Part 1: Complexity Defined

Manson (2001), states that complexity has been defined in three ways: algorithmic

complexity; deterministic complexity and aggregate complexity. Others, including

Richards (2002, p. 99) have suggested that complexity “may be viewed simply as

incorporating the continuum between ‘order’ and ‘chaos’”. Here we will follow

Manson’s framework in analysing how complexity science has in the past, and how

it might in the future, contribute to geographic information science. In particular,

we will pay attention to the problem of spatializing system dynamics.

14.2.1 Algorithmic Complexity

Although O’Sullivan (2004, p. 283) subsequently dismisses algorithmic complexity

as having “no obvious application to geography”, and presumably to social science

in general, Manson (2001) is less hasty in his judgment noting that algorithmic

complexity has two components. The first component concerns the difficulty of

solving a problem couched in mathematical terms. This aspect of algorithmic

complexity, Manson suggests, is less useful to geographers and yet solution com-

plexity, frequently expressed in terms of the so-called “big O notation” (Black

2007), has been, for example, a sine qua non for those social scientists presenting at
the triennial ISOLDE (International Symposium on Locational Decisions, http://

isolde.geog.ucsb.edu/isoldeXI_about.php) Conferences ever since their inception

in 1978.
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ISOLDE researchers (an unusual mix of primarily geographers and operations

research specialists) frequently begin their talks by stating how their new algorithm

solves a problem in a fast, polynomial time when the problem was previously

thought to be intractable other than by complete enumeration. Since there are vast

classes of problems in transportation geography (Waters 2005) where this is

important it is difficult to support O’Sullivan’s dismissive view.

Manson is more positive concerning the second aspect of algorithmic theory,

which relates to the simplest computational representation of a system that will

reproduce its behaviour. Determination of this manifestation of the system structure

is usually aided by information theory which has been more widely deployed in

social science research. Manson promotes the importance of the classification of

remotely sensed imagery and the impact of ecological structure on biodiversity, a

topic that has seen a resurgence of interest with Costanza and Voinov’s (2004) work

on landscape simulation modeling (see the discussion below). Despite his support

for this research, Manson ignores the work of Wilson’s entropy maximizing

models (1974) and its associated and extensive literature, including the ubiquitous,

four-step transportation planning model that became associated with this work.

Manson (2001, p. 406) argues that a major limitation of the application of

algorithmic complexity to social and environmental problems is that it “may

incorrectly equate data with knowledge”. This is similar to Clifford Geertz’s plea

for “thick description”, a concept he popularized but which he acknowledged was

originally developed by Ryle (Geertz 1973, p. 6). Interestingly, Ryle in explaining

the language of philosophy uses cartography as a simile (see Tanney 2007). It will

be shown in the case study in the second part of this chapter that providing

electricity users with continuous data on the cost of the electricity consumption

can help to optimize the functioning of the system, dampening the effect of the

positive feedback loops within the system.

Likewise in Plato’s Phaedrus, Socrates tells the story of how the god, Theuth,

placed his invention of writing before the Egyptian king Thamus. The king argued

that the new technology did not guarantee wisdom but merely “a conceit of

wisdom” (Rockwell 1999; Postman 1993). From the vantage point of more than

two millennia we can see now that writing did indeed provide the opportunity for

endless wisdom, although few would deny that the loss of an oral tradition had its

own problems and did much to disparage traditional, indigenous knowledge;

Clayton and Waters 1999).

Debate over the value of data per se has reached the popular press with discus-

sions over the value of Google’s search engine and its ability to provide instanta-

neous access to vast repositories of data and articles. Carr (2008) asks rhetorically

and provocatively whether Google is making us stupid and he too alludes to Plato’s

Phaedrus. That technology changes us is generally accepted in such modern

folklore as Fubini’s “Law” (Herremans et al. 2007) but in an era where data mining

tools and software are widely used throughout industry and indeed academia

(Miller and Han 2008; Miller 2007) it is surprising to see Manson ignoring this

treasure trove of applications of the tools of complexity and related forms of

analysis.
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Again the popular press appears to be rushing in enthusiastically where academic

angels fear to tread. Wired Magazine (2008, p. 7) introduced a series of short

articles on data mining of massive petabyte data sets with this comment: “Solving

scientific problems used to require grand theories. Now it just requires number

crunching. Welcome to the Petabyte Age”. Examples that are provided include the

Europe Media Monitor (EMM 2008). This website tracks news in 35 languages

worldwide. A graph is provided that shows the top ten stories over the previous four

hours. The EMM website may itself become part of the news system since news

organizations may visit the site to know the stories they should reference, thus

setting up a positive feedback loop. Indeed this is exactly what occurred when, in

September, 2008, a Google news bot crawled on to the Sun Sentinel’s website and

picked up a 6-year-old story from December 10, 2002, stating that United Airlines

was seeking bankruptcy protection. The article was accessed by Income Security

Advisors and distributed to a Bloomberg stock market information site. Since the

story was assumed to be current United’s stock fell 75% from $12 to $3 before

rebounding when the truth became known.1

Consequently, we disagree with Manson (2001) and argue that data is indeed

knowledge, it is just a different kind of knowledge. This aspect of complexity is

already extensively exploited and will have increasing importance in the coming

years. Excellent examples are provided in the Handbook of Geographic Information

Science (Fotheringham and Wilson 2007) by Skupin and Fabrikant (2007) and by

Gahegan (2007). Their chapters on Spatialization and multivariate geovisualization

show how data mining techniques can reveal patterns in the data with no under-

standing of the intrinsic characteristics of the variables (Waters 2009). Fubini’s so

called “Law”, mentioned above, argues that people initially use new technologies to

do the same things as before only faster. Eventually they come to use the technology

to do new things and these new things change the way society functions and indeed

change society itself: hence first we change technology and then technology

changes us (Herremans et al. 2007).

In the case study discussed in Part 2 of the chapter we show how data relating to

the real time cost of electricity can be used by consumers to curb peak demand and

dampen the boom-and-bust cycles in the construction of generating capacity.

14.2.2 Deterministic Complexity

For Manson (2001) deterministic complexity has four primary characteristics:

(1) the use of deterministic mathematics and mathematical attractors; (2) feedback

processes, both positive and negative; (3) sensitivity to initial conditions; and

(4) chaos. It is deterministic complexity that would appear to hold most promise

1See http://www.alootechie.com/content/google-chicago-tribune-blame-each-other-collapse-united-

airlines-stock-price.
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for the social sciences and is the basis of our case study of the Alberta electrical

power generation industry.

With respect to the first of these characteristics, May (1976, p. 460) provided a

seminal treatment describing simple mathematical models of, for example, popula-

tion growth (14.1):

X tþ1 ¼ aXt ð1� XtÞ; ð14:1Þ

where Xt is the current population and Xt+1 is the future population that is dependent

on Xt (0< X< 1) and on a, a growth rate parameter in the range: 0< a< 4. When a
lies in the range 1–3, the population of such a system exhibits equifinality in that it

will settle on a given value equivalent to (1–1/a regardless of the initial population

value at time t (Manson 2001). This final steady state value is known as an attractor.

The population will die out if a is less than 1 and grow without check if a is larger

than 4.

Despite the importance of these findings they are not included in the earliest

texts on modelling in geography and related sciences (for example, Thomas and

Huggett 1980; Burghes and Borrie 1981). Indeed their importance was not realized

by the broader academic community until the 1980s. Bennett and Chorley (1978,

pp. 395–397) are among the pioneers who did include an extensive discussion of the

application of these models in physical–ecological systems.

The second aspect of deterministic flexibility includes feedback processes.

Where there are negative feedback processes the system will exhibit stable beha-

viour such as that shown by an attractor. Positive feedback produces a situation

where a population may grow until the system collapses or where the population

declines at an exponential rate until it ceases to exist. Equation (14.1) describes a

simple system and additional variables can both make the system more complex

and introduce additional loops that exhibit complexity in their behaviour making

prediction of the system’s state increasingly difficult. Ford (1999a) describes a

variety of real world systems that are suitable for modelling using a system

dynamics approach and this is the approach used in our case study below.

When a is a little over 3.8 the system becomes completely random and chaotic

and has no discernible attractor (Manson 2001; May 1976, p. 462). Since a

deterministic equation describes the system behaviour it is not truly chaotic but is

described as deterministically chaotic. Other values of a greater than 3 and less than
4 allow the system to oscillate between various attractors and become highly

sensitive to small changes in the initial value of a.
This third characteristic of deterministic complexity has been described in

Wilson’s work (Wilson 1981) on catastrophe theory and the study of rapid

jumps in the system behaviour known as bifurcations. Despite the promise of this

research in the early 1980s it did not spawn the expected paradigm shift and few

researchers exploited the field, thoughWolfram (2002) is a notable exception. Even

the study of dynamic systems along with their structure and feedback processes

while hugely popular at the time of the publication of the Club of Rome Report by

Meadows et al. (1972) resulted inwaves of criticism (Cole et al. 1973; Vargish 1980).
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Once you have “cried wolf” it is difficult to regain trust and once the direst

predictions of the original limits to growth study had proven unlikely to be realized

it appeared hard for Meadows et al. (1992) to gain support for the more modest

prognostications that were produced by their World3 models. These outcomes

included the suggestion that human use of resources and production of pollutants

had by the early 1990s reached unsustainable levels; that in a world where it was

“business as usual” there would be an uncontrollable per capita decline in energy

use, and food and industrial production; and that to prevent this there would have to

be a reduction in population growth and material consumption together with an

increased efficiency in the factors of production, both energy and materials.

Meadows et al.’s 1992 book, Beyond the Limits, sounded a note of optimism,

declaring that a sustainable future was possible but that it would take a revolution in

our social systems and systems of productions, a revolution that would need to be as

profound as the agricultural and industrial revolutions that went before. Moreover, it

would require a revolution that was as rapid as prior revolutions were gradual.

What Limits to Growth and Beyond Limits to Growth provide is, in the words of

Geoffrion (1976), insight and not numbers. This is a view echoed by Nijkamp and

Reggiani (1995, p. 185) when they note the importance of the logical structure of

the system dynamics models used by Meadows and her colleagues. In the years

since the second of these volumes was published, there has been little cause for

optimism and even the simplest and most straightforward of Meadows’ findings

have gone unheeded as population growth continues its unchecked rise.

In the same paper, Nijkamp and Reggiani describe the mechanics of the bifurca-

tion process and review the literature on catastrophe theory but despite noting the

initial popularity of this theory and despite citing an extensive literature they too

indicate that applications of the methodology were difficult (Nijkamp and Reggiani

1995, pp. 185–186):

A weak element in catastrophe models is that the identification, explanation and estimation

of critical turning points is extremely difficult since their occurrence is too irregular to be

captured with sufficient statistical evidence by normal time series. As a consequence

catastrophe theory has often been used for illustrative expositions rather than for predictive

purposes. . .

To some extent recent work with system dynamics models has made the study of

rapid change in system outputs and behaviour easier to study (Ford 1999a; and see

the discussion of the Alberta electrical power generation industry below) but

realistic models that capture the structural properties of real world systems are

time consuming to build.

Chaos and fractals, the fourth characteristic of deterministic complexity, have

received widespread attention in the geographical literature. Perhaps the best

explanation of the usefulness of these tools, at least in physical and environmental

geography, is given by Phillips (1999, p. 19) who notes that “deterministically

chaotic systems are sensitive to minor variation in initial conditions and to small

perturbations, such that miniscule changes or variations grow over time”. To say
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the least, this is disconcerting since minor errors and lack of precision in input

parameters can produce drastically different output as recounted by Edward Lorenz

(1963, 2002) and his description of the so-called “butterfly effect” and as explained

in most descriptions of chaos theory (Richards 2002).

In urban geography the most exhaustive treatments have come from Batty and

Longley (1994) who have shown that the boundaries of cities exhibit self-similarity

across all scales. A recent discussion by Batty incorporates a more explicit treat-

ment of the concepts of complexity as they relate to cities (Batty 2005). The

property of scale invariance has been exploited in the recent analysis of networks

of all types and especially for analysing the structure of the internet (Schintler et al.

2005; Waters 2006).

14.2.3 Aggregate Complexity

Aggregate complexity relates to the interactions among components of a system.

For O’Sullivan this is the most beguiling of Manson’s definitions of complexity. It

might be argued that the greater the interaction between entities in a system the

greater the likelihood of system homogeneity. New modelling methodologies such

as geographically weighted regressions are only necessary when the relationships

between dependent and independent variables vary across space (Waters et al.

2007) and this is less likely to occur in a well integrated system. Across small

well, integrated neighbourhoods variables that explain voting behaviour in the

Canadian 2006 Federal Elections have been shown to be similar (Mawa 2009)

but over larger regions and across the country powerful explanatory models

may show considerable differences (Li 2009) making simple, global solutions

unacceptable.

14.3 Part 2: Complexity Applied

14.3.1 Modelling Complexity through Time and Across Space:
A Case Study of the Deregulated Alberta Electrical
Power Generation Industry

14.3.1.1 Modelling Approaches: Privileging Space or Privileging Time

Costanza and Sklar (1985, p. 47) observe that complexity can be modelled and

articulated in three ways: “Dynamic models are those articulated in time: spatial

models are articulated in space; and compartment models are articulated in the

system components (state variables)”. Even today most models are articulated
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(realized and constructed) primarily in one of these three ways but most commonly

either across space or through time. Susan Crow in a paper presented to the Fourth

GIS and Environmental Modeling Conference held in Banff in 2000 (Crow 2000)

describes the mechanics of these two primary methods of modelling complexity.

The first of these approaches, that which privileges space, can be implemented

using ESRI’s Model Builder (http://www.esri.com). The spatial modelling is ex-

plicit within the GIS framework but time is handled through the “stacks of maps”

approach. The second method where time is paramount can be modeled using

Costanza and Voinov’s (2004) spatial modeling environment (SME). Here a system

dynamics model is implemented for a given spatial unit and the model is then

duplicated across a set of spatial cells. This is the approach used in the present study

where three regional cells are modelled separately and then linked together.

We will now describe a similar approach to the modelling of the Alberta,

Canada, electrical power generation industry. The model uses system dynamics

together with an explicit spatial component to provide insights into how the

deregulated electrical power generation market will evolve over the long term.

Hirsh (1999) provided an early discussion that deregulation in the US electrical

utility system might not be the panacea that eagonomics would have postulated.

Indeed it might be argued that in moving to deregulated power markets Alberta paid

little heed to the difficulties encountered in the UK and California (Watts 2001) and

other jurisdictions and also ignored the lessons learned in the real estate, construc-

tion, mining, oil and gas and airline industries among others.

Building on the work of Baumol and Benhabib (1989), Berry (1991) has

suggested that economies may be chaotic systems that can be described by deter-

ministic, first order, nonlinear difference equations that produce extremely complex

behaviours over time. Baumol and Benhabib (1989) state that there are various

reasons for studying chaos including the importance of studying uncertainty in that

small changes in system variables can have dramatic impacts on system behaviour

(the butterfly effect) and the characterization of the full range of possible system

behaviours including dramatic oscillations, the so-called boom-and-bust cycles. In

addition, models that exhibit chaotic behaviour, as with all dynamic models, can be

used to disprove universally held propositions such as “the allegation that profitable

speculation is always and necessarily stabilizing. . . . Similarly, it was shown that

slight lags in response can undermine apparently rational countercyclical policy”

(Baumol and Benhabib 1989, p. 80). Our case study below supports both of these

conclusions. Berry uses moving average techniques and Baumol and Benhabib’s

methodology for identifying chaotic behaviour to support his analysis of long-wave

rhythms in the US economy. Writing in 1991 his best prediction was that the labour

market would “bottom out” in 1995 with the next growth cycle beginning “in the

first decade of the twenty-first century” (Berry 1991, p. 191). With hindsight we

know that the global melt down was delayed by a little more than a decade, perhaps

partially justifying King’s criticism of Berry’s book (King 1993). Nevertheless

Berry’s thesis that a dramatic collapse would occur has proven correct. That it has

been exacerbated by investor “herd behaviour” or flocking (Waldrop 1992) and
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a lack of regulation of, for example, the derivatives market2 provides support for the

modelling approach used below and some of our conclusions.

It might have been suspected that decisions that were made by private market

agents would be taken with their own selfish interests and profit maximization in

mind rather than deferring to the interests of the public. What was perhaps less

obvious is that these decisions were often neither rational nor well informed and

reflected short term behaviour. Market participants have been influenced by per-

ception, “herd” mentality and other psychological factors. The decisions of those

involved in the power supply industry and the construction of electrical power

generation plants often interact through complex, highly dynamic and counter-

intuitive patterns of feedback that involve all of the other players in the system.

One difficulty that the industry faced was the long lead times that power construc-

tion requires. Once a need is determined, once the demand is apparent for increased

power generation and a decision is made to build a new power plant, that plant must

be designed, the site must be selected, environmental regulations must be satisfied

and the construction and commissioning of the plant have to occur, all before the

power becomes available to the consumer. Consequently the time between the

signal to act, the decision to act and the action being completed may be in the order

of several years.

Other factors have confounded the supply of deregulated electrical power. These

include the unusual properties of the “commodity” of electricity which is created

and destroyed on demand, for the most part cannot be stored and is subject to

complex processes of economics, engineering and physics, all of which interact in

unpredictable ways. In modelling the behaviour of the deregulated system in

Alberta a number of research questions were addressed. First, if the market func-

tioned as intended why did investors not bring capacity into service to benefit

from the extremely high power prices that existed in the year 2000 and later?

Second, could investors be expected to bring online new power plants in a steady

and timely fashion to keep pace with growth in Alberta’s demand? Third, would

power plant construction, by contrast, appear in a series of waves of boom and bust

similar to other deregulated industries? The null hypothesis would be that the

market would function as desired with stable prices (Fig. 14.1) while the alternative

hypothesis would see “boom and bust” cycles appear in the amount paid for

electricity (Fig. 14.2).

14.3.1.2 A System Dynamics Simulation Model of the Deregulated

Alberta Electrical Market

To build a realistic model of the deregulated Alberta electrical power generation

market a system dynamics model was developed. This is the approach that was used

2See http://www.washingtonpost.com/wp-dyn/content/story/2008/10/14/ST2008101403344.html,

the Washington Post article.
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Fig. 14.2 The Alberta market functioning with “boom and bust” cycles

Fig. 14.1 Alberta market functions as desired
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in The Limits to Growth studies and derives from the work of Forrester (1971). The

assumptions are that the system behaviour is determined by system structure and

that this structure is comprised of interconnected two-way feedback loops. Creating

a realistic model required: a detailed representation of the actual physical system

that incorporated the key feedback dynamics between modelled elements; depiction

of the various forms of investor behaviour and a method for testing strategies to

minimize the effect of the anticipated boom and bust cycles. Following Geoffrion

(1976) we were seeking insight not numbers. The model captures the supply side,

wholesale markets and transmission components of the Alberta electrical power

generation system as described in the Alberta Advisory Council on Electricity

(AACE) Report (2002). The model was given the acronym APPCON (Alberta

Power Plant CONstruction model) contains 4,000 lines of code and is programmed

using the iThink software from High Performance Systems (1990). For complete

details see Seel (2004).

The APPCON model incorporates the primary components of the spatial struc-

ture of the Alberta electrical power generation system including three regional

models (for north eastern, central and southern Alberta with two transmission

corridors between the first and second and the second and third of these regions)

and interprovincial transfers, both east and west. Generation types modelled include

coal, gas turbines, cogeneration, wind and hydro although there is no representation

of any large hydro plant. Figure 14.3 shows the primary elements of the modular

design of the model while Fig. 14.4 shows how the model is spatialized between the

three regions. Figure 14.5 provides an overview of the core model dynamics

showing the key feedback processes as causal loop diagrams.

Figure 14.6 shows all the primary feedback loops within the structure of the

APPCON model. Two of these loops are “reinforcing”, positive feedback loops

while the remaining three are “balancing”, negative feedback loops. The positive

feedback loops are those that model Arthur’s (1989, 1996) phenomenon of increas-

ing returns. The behaviour of the model is both moderated and “complexified” by

the influence of the two negative feedback loops. As Waldrop (1992, p. 36) has

noted, when discussing Arthur’s work: “that’s why you get patterns in any system: a

rich mixture of positive and negative feedbacks. . .it’s the mix of these two forces

that produces the complex pattern . . .”. In the figures below the “+” signs indicate

positive feedback and the “�” sign a negative feedback relationship between the

variables. The double hatch marks on the connector arrows indicate a time delay, an

important factor in reproducing suboptimal responses of the investors in the model.

Figure 14.6, illustrating the R1 positive feedback loop, shows how new generat-

ing capacity is added to the power generation system in response to increases in

demand. As demand for electricity in one of the three regions increases, the Alberta

Power Pool dispatches additional capacity thus lowering the capacity reserve

margin. When the annual capacity margin drops to 15% of total installed capacity

this is considered to be the signal for new investment in capacity to be introduced

(CERI 2002). This does not immediately translate into new construction as new

plants must be designed, financed and approved by the investors. The delay may be

from one to several years as the new plant must be proposed, sited, permitted,
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constructed and commissioned before it is made operational and the new capacity

becomes available to the consumer.

Linked to the R1 loop and shown in Fig. 14.6 is the reinforcing, positive

feedback that describes how new generation additions are a function of potential

profitability. Dispatched generation is organized in a “merit order” from least to

most expensive. As demand continues to rise the dispatched power becomes

increasingly expensive making investment in new generation capacity increasingly

attractive. Since there is a lag of one to several years between the “signal” for

increased capacity and the arrival of that capacity to the consumer the use of

increasingly expensive generating capacity will continue making investment

appear more and more desirable. The negative feedback loops are also shown in

Fig. 14.6. The first, the B1 loop, models the introduction of new generating capacity

Fig. 14.3 High level structure showing modular design of the APPCON model
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and will add to the reserve margin reducing the attraction of investing it yet more

capacity.

The second balancing loop, B2, illustrates investor behaviour. As new genera-

tion is proposed and enters construction, it will have an influence on the propensity

of investors to enter the market. The amount off influence depends on the level of

“conservatism” of the investor. Three levels of conservatism are modelled, pre-

counters, followers and believers, listed in order from most to least conservative.

Fig. 14.4 Alberta regions and transmission corridors modeled in APPCON
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More is said about investor behaviour below. The model, as constructed to this

point, has the potential to generate undesirable “boom-and-bust” price cycles. As

demand for power rises with industry expansion and population growth, price will

also rise, creating the price boom. This triggers new power plant construction that,

due to construction lags, may lead to subsequent over expansion of the power

supply as investors react to the opportunities provided by price spikes and hence the

potential for the boom-and-bust cycles to appear. Two policy mitigation strategies

were embedded in the model. The first part of this loop tests the effects of a real-

time, conservation response by consumers to price spikes that occur during times of

peak load. In this loop consumers respond to price spikes by curtailing demand,

essentially by delaying appliance use and thus reducing peak demand and prevent-

ing the capacity reserve margin dipping below the critical 15% level. Although

CERI (2002) has suggested that consumers already exhibit some of this behaviour,

Fig. 14.5 Causal loop diagram: primary feedback loops in the APPCON model
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this aspect of the model had the goal of testing a more formal and widespread

consumer response to price spikes.

A second intervention strategy incorporated into the B3 loop was a continuous

capacity payment (CCP) that would provide additional incentives for investors to

bring capacity online earlier by providing additional revenue to cover the capital

and other fixed costs not covered by the energy price. The CCP helped to spread the

costs of price spikes over all hours of the day and over each day of the year.

14.3.2 Modelling Investor Behaviour

Following Ford (2001) three types of investor behaviours were included in the

APPCON Model. The first group were the believers who are the most aggressive in

that their investment behaviour ignored all power generating capacity that had been

either approved or was under construction. Precounters were the most rational or
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conservative of the investor types modelled in that they took into account all capacity

that was on hold, under approval or under construction. Finally, the third group of

investors were the followers who exhibited a “herd mentality” or the “flocking”

behaviour discussed by Waldrop (1992, p. 42). These investors would only commit

after others had invested in plants that were already under construction.

Figure 14.7 shows one of a series of validation runs (see Seel 2004, for others) in

which a base case scenario is projected into the future and additional capacity is

added to the system. Over the historical record the model provides a 90% fit. Three

experimental scenarios were initially explored: 100% precounters, 100% believers

and a 50:50 mix of followers and precounters. The simulations were carried out

over a 15 year time period using four time steps per day. The approval process took

12 months for all gas fired generation, 24 months for coal fired and 6 months for

wind turbines. With gas and wind turbines 5% of the applications were refused

while for coal this figure was 10%. Delays prior to construction were built into the

process, 3 months for wind, 6 months for gas and coal fired generation. Construc-

tion itself took 6, 18, 36 and 48 months for wind, gas, cogeneration and goal power

plants, respectively. Energy imports were set at 800 MW from British Columbia

and 150 MW from Saskatchewan. All figures were based on historical analysis and

experimentation and sensitivity analysis of earlier runs of the simulation model for

the recent historical record.

14.3.2.1 Results of the Simulations

For the 100% precounter scenario there is a correction in the southern Alberta

(SAB) region in 2003 and then capacity comes online in a steady progression
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Fig. 14.7 Validation of the base case scenario with capacity additions (90% fit)
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similar to what was expected under the null hypothesis shown in Fig. 14.1. The

100% believers’ scenario exhibits two construction booms, the first in 2002–2005

and the second in 2011–2013. The mixed scenario with an even split of followers

and precounters produces a huge boom in the years 2002–2003 and then an “echo”

in 2006–2007.

Investigations of the product mix using the base case scenario exhibited a long

“golden age” for gas up until 2007 and then a re-emergence of coal as a primary

method of generation for the baseload.

The 2000–2001 price spikes occurred in all scenarios and are perhaps unavoid-

able but the presence of investors that assumed the follower behaviour caused the

greatest dampening of the spikes while precounters resulted in the highest overall

prices. Using a $10 per megawatt capacity payment produced the smoothest

introduction of new capacity ahead of demand. The complexity of the behaviour

of the system is revealed by the fact that values either above $10 or below this figure

had little effect in smoothing out the price spikes.

Most interesting of all was the introduction of price sensitive demand into the

model. This resulted in up to 750 MW of load being curtailed in the peak demand

periods in 2001 and 2003 using the base case scenario. Consequently there was a

much smaller, delayed construction boom that required almost 1,600 MW less

capacity by 2013.

14.3.3 Discussion

It appears likely that something similar to the rational, precounter mindset was

initially anticipated when conceiving Alberta’s deregulated power generation market.

However, the APPCON model has shown that the presence of other investor

behaviours can have a dramatic effect on market evolution and result in varying

degrees of boom and bust cycles. The boom-and-bust outcome, and thus the alterna-

tive hypothesis (Fig. 14.2), was shown to exist for the base case scenario and also

when it was modified with the believer and precounter: follower scenarios. The

desired, null hypothesis (Fig. 14.1) that avoided the boom and bust oscillations was

produced in the 100% precounter scenario and in the base case simulation that

introduced capacity payments.

Rhetorically, our first research question may be posited again: why did investors

fail to bring into production capacity that would take advantage of the extremely

high prices that emerged in the year 2000 and later. The answer appears to be that

the price spikes that occurred in 2000 and 2001 were unavoidable due to the long

lead times that were required to construct new capacity in the post-deregulated

market. It may be concluded, in concert with Ford (1999b), that the momentum of

previous energy policies and the long delays before new remedies become fully

effective implies that short-term supply problems and price volatility during the

transition process cannot be solved but may only be weathered.
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The second research question asked whether investors would bring online new

power plant generation in a smooth and steady flow. The APPCON model showed

that the market exhibited counter intuitive behaviour, or a “surprise” element, and

that the boom-and-bust cycles could be mitigated through the use one of the

following two strategies: first, a capacity payment of $10 per megawatt or second

the introduction of conservation strategies by consumers in periods of peak demand

(such a strategy assumes that the consumers are informed of the cost of electricity at

all times).The ability of system dynamics models to yield results that have this

surprise component is one of their most useful features (Forrester 1991; Mass 1991;

and see Thompson et al. 1990, for a typology of surprise).

14.4 Conclusion

This chapter has reviewed and examined past studies of complexity in the social

sciences with particular emphasis on those applications in geography where the

ramifications of differences in behaviour across space may be significant. In the

second part of the chapter one of the most promising methodologies discussed in

the first part, system dynamics, has been extended to incorporate spatial variations

in the deregulated market for electrical power in Alberta, Canada. This market

exhibits many of the characteristics of those systems described in the discussion of

complexity, including positive and negative feedback loops and counter-intuitive

behaviour. A spatially explicit, system dynamics approach allows for an under-

standing and remediation of undesirable aspects of the price responses of this

system. It is hoped that such approaches are a way forward for research in other

systems that resist traditional, reductionist forms of analysis.
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Chapter 15

Measuring and Visualizing Urban

Network Dynamics

A GIS and Graph-Theoretic Approach

Laurie A. Schintler and Giacomo Galiazzo

15.1 Introduction

An urban area is a complex, dynamic system of networks through which informa-

tion, capital and power propagate across and within nodes of activities. While

innovations in information technology are making it easier for transactions in

these networks to occur over greater distances, the importance of spatial proximity

in such networks is still very much relevant. Economic, social and other types of

benefits drive activities to co-locate, where one may view the process as one of

preferential attachment. The physical agglomeration of activities that arises out this

process, at any point in time, is what we characterize in this chapter as the

“backbone” of region. We hypothesize that such a feature is not static, but rather,

it shifts in space over time in response to changing constraints and circumstances.

In this chapter, we develop a technique to identify and visualize the backbone of

an urban area. The approach creates a giant component based on the gridded

distribution of activities in a region, from which a backbone is extracted based on

the structurally most important grid cells, or nodes, that comprise the component.

The conceptual underpinning that is used to establish the designation is based on

social network theory. According to our model, a backbone is ultimately defined by

the grid cells in the giant component that have the highest level of centrality. To

demonstrate the viability of the approach and the insight that can be gained through

its application, we apply the technique to the Metropolitan Statistical Areas (MSAs):

Cedar Rapids (Iowa), Chicago and Phoenix. We look specifically at population and

employment distributions for 1990 and 2000 using U.S. Census data summarized at

the census tract level.
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15.2 Overview of Methodology

Again, the backbone of a region is identified through two processes: the designation

of a giant component and the ranking of nodes in the component according to some

measure of centrality. A giant component is, by definition, a set of regularly-shaped

cells that are minimally connected, where the network topology of the component is

defined by the adjacency of the cells in space. In our case, a component is defined

more specifically by the set of cells that are minimally linked at some critical

threshold for the density of the activity of interest. In particular, the densities of the

cells that comprise the component are either equivalent or higher than the critical

cut-off point.

One of the requisite inputs to the process is a grid that contains densities of the

activity of interest – for example, population or employment. Two sources of

information for producing such a grid include remote sensing or satellite imagery

and polygon-level data.

Remote sensing and satellite imagery provide visual representations of structures,

vegetation and other physical features in a region. There are different approaches

for using the contents of the images to draw information on a distribution of activities.

Li and Weng (2005) summarize some of these techniques and how they are used to

derive population density distributions. One method mentioned in the article involves

counting dwelling units on the imagery and then applying a statistic on the average

number of persons per dwelling unit to arrive at a spatial distribution for the popula-

tion. Pixel counts or other remote sensing variables can also be used to characterize a

population distribution in a region.

The use of remote sensing and satellite imagery, though, has some drawbacks.

First, the accuracy of the activity distribution that is extracted depends heavily on

the spatial resolution of the image and on the assumptions that are used to translate

structures into people. Second, the process of extraction can be computationally

intense and time consuming. Of course, this issue is becoming increasingly irrele-

vant with advancements in computing power and innovations in image processing

techniques and algorithms. A final concern is that the temporal and geographic

breadth of high resolution imagery is still very limited.

An alternative to image processing techniques is to use data that is summarized

based on polygons. At least for locations in the United States, such data is widely

available for a variety of geographies. A continuous density surface can be created

from such data by doing spatial interpolation using the polygons (Tobler 1979). In

this chapter, do interpolation on the weighted centroids of polygons. More specifi-

cally, kriging is employed as a method of interpolation. Kriging offers some

advantages over other simple polynomial interpolation or methods based on inverse

distance weights. It also provides minimum variance in the prediction errors and it

can be used to interpolate between the surfaces of two distinct variables (Goodvearts

1997; Wackernagel 2003). The latter is referred to as cokriging.

As a means to establish the critical threshold that goes into defining a compo-

nent, we utilize three-dimensional imagery. Fig. 15.1 illustrates the approach for
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a hypothetical region and density distribution. The heights of the peaks in the

diagram reflect densities at different locations, with steeper spikes indicating higher

values, and the dark plane that intersects the surface represents the density threshold.

In Fig. 15.1, there are three parts of the surface that are higher than threshold and

those parts are not physically connected with one other. In this case, a lower

threshold must be considered in order to arrive at a connected surface, where the

lattice structure underlying the resultant surface represents a network with the least

level of connection among its parts. The left-hand graphic in Fig. 15.2 shows the

point at which the plane intersects the surface in such a way that a giant component

is defined and the conversion of the component to a regular quadrant grid is shown

to the right.

The structural properties and relative importance of the nodes (or quadrants) that

define the network can be established through graph-theoretic measures of centrality.

With these measures, a subset of the cells with the highest values, are extracted

to define a backbone. Figure 15.3a, b illustrates the process, with the resultant

backbone indicated in black on the map depicted in Fig. 15.3a, b.

Fig. 15.2 The emergence of the fully-connected lattice from a cut-off threshold

Fig. 15.1 The cut-off threshold and activity surface for a hypothetical region
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15.3 Case Studies

In our experiments, betweenness is used as an indicator of nodal importance. The

betweenness of a node measures how many shortest paths that node is involved

respect to the total number of shortest paths through the network (Freeman 1979;

Wasserman and Faust 1994). Rook’s rule is used to establish the adjacency of

cells in the quadrant grid for the graph analysis. Two sets of analyses are

performed using the Cedar Rapids, Chicago and Phoenix metropolitan areas.

The first examines how population backbones in those cities have shifted over

the time period from 1990 to 2000 and the second does a cross-sectional compari-

son of population and employment backbones for the year 2000. In all cases, a

backbone is ultimately defined by the top 10% cells ranked according to between-

ness in the respective component.

15.3.1 Comparison of Population Backbones Over Time

The population density surfaces used in this analysis are based on U.S. Census

population data summarized at the census tract level. To generate the surfaces,

kriging was applied to the centroids of the tracts weighted by population.

15.3.1.1 Cedar Rapids

The interpolated population surfaces for Cedar Rapids show that the city experi-

enced some growth between 1990 and 2000, with more areas of the region filling in

over time. Figures 15.4a, b show the surfaces for the two time periods. In Fig. 15.4c,

the components of the two interpolated surfaces are compared. “Light grey”

represents the population surface for 1990, “the darkest shade of grey” is the surface

for 2000 and “the medium shade of grey” is the overlap between the two surfaces.

The minimal amount of “medium grey” in Fig. 15.4c implies that there were

substantial changes in the spatial distribution of population in Cedar Rapids over

time.

Fig. 15.3 Giant component and backbone for hypothetical region
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A comparison of the backbones for the two time periods show shifts in the location

and pattern of the structurally most important parts of the city. The backbone for 1990

is characterized as a single row that extends from the western parts of the city to points

east (see Fig. 15.5a). In contrast, the pattern for 2000 is more truncated and seems to

follow double branch structure (Fig. 15.5b). The shifts in the patterns are reinforced in

Fig. 15.5c, which overlays the two backbones and shows in green the lack of overlap

between the two structures.

15.3.1.2 Chicago

The population density surfaces for Chicago, like Cedar Rapids, show population

growth over the decade being studied (see Fig. 15.6a, b). The surfaces also indicate

a shift in population away from the downtown and suburbs located inward to

locations on the western periphery of the city. This conclusion is reinforced in

Fig. 15.6c, which compares the two components for population.

The analysis shows substantial shifts in the population backbones. In 1990, the

areas identified as being structurally important are fragmented, with some located

in the northern parts of the city and others to the east and southwest (Fig. 15.7a).

The pattern changes quite considerably in 2000, where the backbone is exhibited as

a continuous band stretching from the eastern portions of Chicago to points west

and north (Fig. 15.7b). The shift is visible in Fig. 15.7c, which depicts very little

overlap in the two backbones.

Fig. 15.5 Population backbones for Cedar Rapids (1990 and 2000)

Fig. 15.4 Population surface maps and components for Cedar Rapids (1990 and 2000)
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15.3.1.3 Phoenix

Population in Phoenix grew quite considerably during 1990 and it expanded

outward in nearly all directions from the city, as depicted in Figs. 15.8a, b. Figure.

15.8c shows very little overlap in the population components and further support for

a shift in population from the inner core to the periphery.

The backbones for Phoenix for 1990 and 2000 (see Figs. 15.9a, b) appear to have

similar structures, with both taking the shape of a ring. Over that time period,

however, the backbone appears shifts slightly outward. Further evidence of this

shift is shown in Fig. 15.9c.

15.3.2 Comparison of Population and Employment Backbones

This section summarizes the results of the cross-sectional study, which compares

population and employment patterns within each of the three cities. The analysis

uses 2000 census tract level employment figures from the Census Transportation

Planning Package, as well as the population data that was used in the preceding

analysis. Every census tract is, thus, assigned two values: one for population and the

other for employment.

For each city, we used kriging to generate interpolated surfaces for both popula-

tion and employment and cokriging to generate a third surface using the isotropic

data. The cokriging uses population as the primary variable. The cokriging surface

represents a correction brought to the population interpolation by the information

Fig. 15.6 Population surfaces and components for Chicago (1990 and 2000)

Fig. 15.7 Population backbones for Chicago (1990 and 2000)
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included in the employment dataset. The cokriging results show that the auto- and

the cross-variograms are not proportional to the same basic model at any of the data

locations (Isaaks and Srivastava 1989). Therefore, this results in a surface that is

different from the kriging surfaces that are generated separately for population and

employment.

15.3.2.1 Cedar Rapids

The kriging results for Cedar Rapids show that the patterns of population and

employment in that city were highly spatially coincident in 2000. One slight

exception is in the downtown area, where employment is more prominent than

population. A generally strong spatial correlation between population and employ-

ment is supported by the cokriging surface, which is shown in Fig. 15.10a. In that

Fig. 15.10 Activity surfaces and backbones for Cedar Rapids (2000)

Fig. 15.8 Population surfaces and components for Phoenix (1990 and 2000)

Fig. 15.9 Population backbones for Phoenix (1990 and 2000)
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diagram, the “lightest grey” represents the surface for population, “the darkest

shade” is that for employment and the “medium shade” is the cokriging surface.

There is also strong a strong spatial association between the backbones asso-

ciated with population and employment, as depicted in Fig. 15.10b. In particular,

there are common parts along the center of the southern band running east and west

and along portions of the northern band running parallel to that.

15.3.2.2 Chicago

In the analysis of Chicago, the patterns of employment and population were found

to be quite different from one another. The kriged surfaces show that population

forms a ring through the middle of the city, while employment is primarily

concentrated in the downtown and western suburbs (see Fig. 15.11a). The topologi-

cal analysis shows that the structurally important population nodes in Chicago form

a ring around the central city and employment forms a buffer around the population.

Additionally, some isolated structurally important employment nodes at locations

in the far western suburbs (Fig. 15.11b).

15.3.2.3 Phoenix

In Phoenix, the population and employment surfaces created with the kriging

technique appear to be somewhat different from one another (see Fig. 15.12a).

While there are some areas of overlap between the two activities in the middle

portion of the city, population is nearly absent from the central city and employ-

ment is lacking from the far periphery of the city. The patterns for the employment

and population backbones are generally consistent with what was found for the two

activity’s respective components. Structurally important areas of employment form

a ring inside a ring for population (see Fig. 15.12b).

Figure 15.13 shows the three auto- and cross-covariance surfaces that were used

as weights for the development of the kriging surfaces for Phoenix. From these

diagrams, it is possible to verify that the weight that employment brings to the

Fig. 15.11 Activity surfaces and backbones for Chicago (2000)
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cokriging surface is considerable. This is especially evident from the anisotropy

component.

15.3.2.4 Measures of Correlation for the Components and Backbones

Measures of spatial correlation were also generated using the quadrant values from

the kriging and the betweenness scores associated with the graph-theoretic analysis.

We generated two sets of coefficients: one for the kriging results and the other for

the betweenness scores (see Table 15.1).

For Cedar Rapids, the coefficient for the population and employment compo-

nents show moderate correlation (0.28), whereas, for the structurally important

locations defined by the backbones, there is a stronger correlation. The correlation

coefficients for Chicago show similar results to those found for Cedar Rapids in the

case of the population and employment components. An interesting contrast with

Cedar Rapids, though, is that for Chicago the correlation between structurally

important employment and population clusters is extremely small (0.04). Lastly,

for Phoenix, there is a moderate correlation (0.53) between the population and

employment components. The association between the respective backbones is

very minimal (0.06).

Fig. 15.13 Auto- and cross-covariance surface for Phoenix

Fig. 15.12 Activity surfaces and backbones for Phoenix (2000)
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15.4 Directions for Future Research

The exploratory analysis presented in this chapter raises some interesting questions

and directions for future research. One area of further research could focus on

aspects of the technique that is introduced in this chapter. First, perhaps most

importantly, it would be important to verify that the results we found from the

experiments are not an artifact of the vector-to-raster conversion. This might be

accomplished by experimenting with different spatial interpolation techniques, but

also through an analysis using employment and population data with greater spatial

resolution than the census tract data that we used for the analysis. It is important to

examine the sensitivity of the results to the assumptions that go into defining the

backbone. For example, how does the shape and location of a backbone change

with different cut-offs for the betweenness scores – for example, top 20% versus

10%? Also, how might the results change when other measures of nodal importance

are used?

It is also important to understand how the results of the analysis should be

interpreted and how they are consistent with other studies of activity distribution

in metropolitan areas (for example, Griffith and Wong 2007). Potential universal-

ities in the results when more cities are considered could also be examined. For

instance, would we find other cities to show a value of 0.5 for the correlation

between their employment and population components, as we found for the cities of

Cedar Rapids, Chicago and Phoenix? Further, what is the role that constraints play

in defining what is seen in a city in terms of the location and shape of an activity

backbone? To what extent does land use regulations and zoning, physical features

such as lakes or mountains or road infrastructure play a role in characterizing where

structurally important concentrations are located? Lastly, further thought should be

given to the practical interpretation of a backbone and what it can tell us about the

spatial network dynamics of a city.
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Chapter 16

Spatial Autocorrelation in Spatial Interaction

Complexity-to-Simplicity in Journey-to-Work Flows

Daniel A. Griffith

16.1 Introduction

Carey (1858) and Ravenstein (1885) first proposed, through analogy, the gravity

model of Newtonian physics as a description for economic and social spatial

interaction, with Sen and Smith (1995) furnishing a comprehensive treatment of

this model more than a century later. In the late 1960s, Wilson spelled out an

entropy maximizing derivation of the gravity model, including the use of row and

column totals as additional information for modeling purposes (that is, the doubly-

constrained version), followed by a utility maximization derivation of it by

Niedercorn and Bechdolt (1969). Flowerdew and Atkin (1982) and Flowerdew

and Lovett (1988) articulated linkages between the Poisson probability model and

spatial interaction. Within this same time interval, Anas (1983) established a

linkage between the doubly-constrained gravity model and a logit model of joint

origin-destination choice, which indirectly relates to a Poisson specification that

includes a separate indicator variable for each origin and each destination (that is,

2n 0–1 binary variables, each having a single 1 and n-1 0s). Curry (1972; also see

Curry et al. 1975, 1976) followed by Griffith and Jones (1980), first raised the issue

of spatial autocorrelation effects embedded in spatial interaction. These investiga-

tions were followed by a formulation of the network autocorrelation concept (see

Black 1992; Black and Thomas 1998; Tiefelsdorf and Braun 1999). More recently,

LeSage and Pace (2008), Griffith (2008), and Fischer and Griffith (2008) have

returned to the issue of spatial autocorrelation effects embedded in spatial interac-

tion, specifying spatial autoregressive and spatial filter versions of the uncon-

strained gravity model, but in terms of attribute geographic distributions. Chun

(2007) moves beyond this conceptualization to that of more explicitly spatially

autocorrelated flows.

D.A. Griffith
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This chapter addresses an extension of the Griffith and Fischer-Griffith specifi-

cation to the doubly-constrained spatial interaction model in a manner that is

informed by the work of Chun. Questions of interest include:

1. How can network and geographic distribution spatial autocorrelation effects be

distinguished?

2. Can eigenvectors portraying geographic distribution spatial autocorrelation

effects also capture network autocorrelation effects?

3. What role do the origin and destination weights play in accounting for spatial

autocorrelation in a doubly-constrained spatial interaction model?

4. Can eigenvectors portraying spatial autocorrelation be efficiently and effectively

approximated for sizeable sparse geographic weights matrices?

Explorations of these questions are presented in terms of a selected journey-to-work

dataset (Texas, USA), in an attempt to glean new insights furnished by spatial

filtering methodology. An ultimate goal is to better understand complexity features

of spatial autocorrelation latent in spatial interaction whose recognition is inspired

by linear combinations of eigenfunctions derived from surface partitionings por-

traying this spatial autocorrelation. In doing so, specification simplicity is sought.

16.2 Conceptual Foundation

Spatial filtering of georeferenced counts data involves specifying a geographically

heterogeneous mean and variance in order to capture spatial autocorrelation

(Griffith 2002). Spatial filtering seeks to transform a variable containing spatial

dependence into one free of spatial dependence by partitioning the original

georeferenced attribute variable into two synthetic variates: a spatial filter variate

capturing latent spatial dependency that otherwise would remain in the response

residuals, and a nonspatial variate that is free of spatial dependence. Griffith (2000)

proposes a transformation procedure that depends on the eigenfunctions of matrix

(I – 11T/n)C(I – 11T/n) – where I denotes the identity matrix, 1 is an n-by-1 vector of

ones, T denotes matrix transpose, and C is a binary 0–1 geographic weights matrix

(that is, cij ¼ 0 if areal units i and j are neighbors, and cij ¼ 0 otherwise; cii ¼ 0) –

a term appearing in the numerator of the Moran Coefficient (MC) spatial

autocorrelation index, and is based on the following theorem (Griffith 2003):

The first eigenvector, say E1, is the set of numerical values that has the largest MC

achievable by any set for the spatial arrangement defined by the geographic connectivity

matrix C. The second eigenvector is the set of values that has the largest achievable MC by

any set that is uncorrelated with E1. The third eigenvector is the third such set of values.

And so on. This sequential construction of eigenvectors continues through En, the set of

values that has the largest negative MC achievable by any set that is uncorrelated with the

preceding (n�1) eigenvectors.

As such, Griffith (2000) argues that these eigenvectors furnish distinct map

pattern descriptions of latent spatial autocorrelation in georeferenced variables.
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The spatial filter is constructed by using judiciously selected eigenvectors as

regressors (for example, selected with a stepwise Poisson regression routine from

a candidate set representing at least a minimum level of spatial autocorrelation,

perhaps of a particular nature), which results in spatial autocorrelation being filtered

out of the residuals of georeferenced variables, with the regression residuals repre-

senting spatially independent variable components. Of note is that these eigenvec-

tors representing distinct map patterns are both mutually orthogonal and mutually

uncorrelated in their numerical form, a property that is corrupted by the weighting

involved in computing Poisson regression parameter estimates.

Analyzing the spatial autocorrelation contained in the geographic distributions

of origin and destination attributes overlooks their links through the network of

flows that constitutes spatial interaction. These origin/destination variables can be

linked to the individual flows data dyads through Kronecker products: EK � 1

and 1� EK, which result in the addition of an origin and a destination term

(that is, eik þ ejk). The net result essentially is two sets of indicator variables, the

first set containing one variable for each origin and the second set containing one

for each destination. Consequently, the same spatial autocorrelation effects are

captured by these eigenvectors as are by the 2n indicator variables associated

with a doubly-constrained model specification.

Chun (2007) argues that a more conceptually appealing specification posits, for

example, correlation between the flow between the pair of locations i and j in a

tessellation and each flow that originates at each location that is a neighbor of origin

i, and terminates at each location that is a neighbor of destination j (that is, the

spatial filter term takes on the form eikejk). Asymptotically, this specification results

in the n2-by-n2 connectivity matrix for flows being defined by the Kronecker

product Cn2 ¼ Cn � Cn, where Cn2 is the n
2-by-n2 binary 0–1 connectivity matrix

for the n2 spatial interaction flows, and Cn is the n-by-n connectivity matrix for the

tessellation of n origins/destinations. As with most geographic weights matrices,

Cn2 is very sparse. It also is quite sizeable. For example, the 254-by-254 Cn matrix

for Texas becomes a 64,516-by-64,516 Cn2 matrix. Current desktop computer

technology suggests that this is sizeable, often being unable to handle Cn2 matrices

larger than 10,000-by-10,000 (that is, cases involving 100-by-100 Cn matrices).

Although this upper limit will continue to increase as computer technology con-

tinues to advance, the Kronecker product Cn2 ¼ Cn � Cn allows this restriction to

be circumvented. This Kronecker product specification yields the origin and desti-

nation variates Ei � Ej and Ej � Ei for constructing spatial filters. Because a

minimum level of spatial autocorrelation should be represented by a given eigen-

vector, say 0.25 (that is, roughly 5% of the variance of an eigenvector’s values is

attributable to redundant information resulting from the presence of spatial auto-

correlation), and the eigenvalues of Cn � Cn are the pairwise products of the

individual eigenvalues of Cn, this threshold value should be increased to 0.5 (that

is, 0.52 = 0.25) for each of the eigenvectors in a Kronecker product. The net result of

this specification is a dramatic reduction in computational intensity.
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16.3 An Empirical Grounding

Texas is partitioned into 254 counties, resulting in 64,516 flow dyads (of which

52,243 had a 0 flow in 2000). The total journey-to-work flows for 2000 by county

within the state total 9,229,209. Inter-county distance is calculated with the geo-

metric centroids of these counties. The following doubly-constrained entropy

maximizing model specification has been calibrated [using a modified version of

the algorithm outlined by Foot (1981, p. 90)]:

Fij ¼ kAiOiBjDje
�g dij ;

where Fij is the journey-to-work flow between counties i and j, Oi is the total flows

originating in county (that is, workers), Dj is the total flows terminating in county j

(that is, jobs), dij is the inter-county centroid distance separating counties i and j, Ai

are the n origin-balancing factors, Bj are the n destination-balancing factors, g is the
distance-decay parameter, and k is a constant of proportionality. Iterative calibra-

tion resulted in the average distance traveled to work for the observed and predicted

flows matching to ten decimal places, and estimates of the Ai and Bj terms, whose

largest values were restricted to being exactly 1 (which results in k being other than

1) for nonlinear estimation stability reasons.

Next, a Poisson regression was executed. The sum variable LN(Oi) + LN(Dj)

was included as an offset variable, and the three covariates included were dij,

LN(Ai), and LN(Bj) – terms are expressed in their logarithmic forms because

Poisson regression estimates the expected value of LN(Fij). Estimation results,

which are identical to those obtained with the preceding iterative algorithm (except

for rounding error), include

The associated pseudo-R2 for the predicted and observed flows is 0.995, which

decreases to 0.942 when the six extreme flows (that is, >200,000) are set aside, but

considerable overdispersion is present (deviance statistic ¼ 106.5). Figure 16.1

displays a plot of the predicted and observed flows. Of note is that n2 observations

(that is, flow pairs) are used to estimate 2n + 4 parameters.

The Ai and Bj values relate to the origin- and destination-specific indicator

variables for a generalized linear model (GLM) specification (Fig. 16.2) as follows:

LN Aið Þ � 8:30152þ 0:99981Iorigin; and

LN Bj

� � � �8:33247þ 1:00001Idestination;

k̂ 1.0273

Ai exponent 1.0003

Bj exponent 0.9997

ĝ 3.6735
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where the Poisson regression model was specified with no intercept, 254 origin

indicator variables, and 253 destination indicator variables (that is, the 254th had its

coefficient set to 0). An equivalent specification is to include an intercept term and

set the 254th origin indicator variable coefficient to 0.

The logarithms of the variables Oi, Dj, Ai and Bj were found to mimic a bell-

shaped curve reasonably well, but not perfectly. Maps of these four variables appear

in Fig. 16.3. Visual inspection of the maps portraying the total number of workers

and of jobs reveals that not only are they similar, but they also highlight the three

major urban areas of Austin, Dallas, and Houston. Visual inspection of the maps

portraying the Ai and Bj balancing factors reveals a swath of high emissivity

through the centre of the state, with low emissivity in the major metropolitan

areas and the more remote western counties, and an east-west differentiation of

attractivity, with the western counties being more attractive while the eastern

counties are more self-serving.
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Fig. 16.2 Scatterplots of the balancing factors versus the GLM indicator variable coefficient

estimates. The gray lines denote perfect correspondence. Left (a): GLM coefficients versus

LN(Ai). Right (b): GLM coefficients versus LN(Bj)

Fig. 16.1 Scatterplots of the predicted (vertical axis) and observed (horizontal axis) 2000 inter-

county journey-to-work flows within Texas generated with a doubly-constrained gravity model

specification. The gray lines denote the lines of perfect correspondence. Left (a): for all 64,516
flows. Right (b): for 64,510 flows, after the six outliers have been removed
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16.4 Spatial Autocorrelation in the Texas Journey-to-Work

Flows Data

Levels of spatial autocorrelation, as well as spatial filter descriptions of the Ai, Oi,

Bj and Dj terms, are reported in Table 16.1. The log-transform of each variable

displays weak-to-moderate positive spatial autocorrelation. The products AiOi and

BjDj represent the doubly-constrained balancing of flows to ensure that the number

of workers predicted as leaving a county exactly equals the number of workers

observed in that county, and the number of jobs predicted for a county exactly

equals the number of jobs observed in that county. The Ai and Bj values are

computed as distance-discounted functions of neighboring values, resulting in

their containing spatial autocorrelation by construction (that is, they are autoregres-

sive in mathematical form). Especially the BjDj term appears to involve a

canceling of at least some spatial autocorrelation effects. Because the Kronecker

products EK � 1 and 1� EK construct eigenvectors that behave like origin and

destination indicator variables, no eigenvectors can be selected by a stepwise

Poisson regression analysis as additional covariates for the doubly-constrained

gravity model specification.

Fig. 16.3 Geographic distributions of the journey-to-work flows covariates; light gray to black

denotes low to high. Top left (a): total number of workers by county. Top right (b): total number of

jobs by county. Bottom left (c): Ai values by county. Bottom right (d): Bj values by county
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This finding is in stark contrast to the construction of origin and destination

spatial filters for an unconstrained gravity model specification (that is, the balancing

factors are not included). Eigenvectors selected, from a candidate set of 65

portraying positive spatial autocorrelation, for origin- (45) and destination-based

(48) spatial filter descriptions using flows as the response variable are reported

in Table 16.2, and represent moderate-to-strong positive spatial autocorrelation

(respectively, MC ¼ 0.773 and 0.776, and Geary Ratio (GR) ¼ 0.232 and 0.179).

Three of the common eigenvectors (that is, E1, E9, and E57) also are common

eigenvectors in Table 16.1. Figure 16.4 displays the geographic distributions of

Fig. 16.4 Geographic distributions of the flows-based spatial filters; light gray to black denotes

low to high. Left (a): origin-based spatial filter. Right (b): destination-based spatial filter

Table 16.2 Summary of spatial filter construction for the unconstrained gravity model flows

Eigenvectors Origin spatial filter Destination spatial filter

Common E1–E5, E7, E9, E12, E15, E17, E20, E26, E27, E29, E30, E32, E33, E36–E38, E44, E46, E48,

E50, E52–E54, E57, E60, E61, E63

Unique E6, E13, E18, E19, E24, E31, E39–E41, E55, E56,

E58, E62, E65

E8, E10, E11, E14, E16, E21–E23, E25,

E28, E34,

E35, E43, E45, E49, E51, E64

Fig. 16.5 Scatterplots of the log-balancing factors (vertical axis) versus the corresponding flows-

based spatial filters (horizontal axis). The gray lines denote the lines of perfect correspondence.

Left (a): origin pairs. Right (b): destination pairs
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these two spatial filters, and Fig. 16.5 displays the relationships between these

spatial filters and their corresponding log-balancing factors; the origin pair has an

R2 of 0.355, whereas the destination pair has an R2 of 0.601. Unfortunately, these

spatial filters fail to preserve origin and destination totals; to do so, they would have

to correlate perfectly with their corresponding log-balancing factors. These attri-

bute-based spatial filters also fail to fully account for spatial autocorrelation in the

flows (see Fischer and Griffith 2008).

16.5 Some Features of Complexity in Spatial Flows

An unconstrained gravity model furnishes a respectful benchmark description of

the Texas journey-to-work data using Poisson regression, yielding a pseudo-R2

value of 0.984. Removing the six extreme flows reduces this value to 0.878 (see

Fig. 16.6). It also has considerable overdispersion (deviance statistic ¼ 119.7),

and has a typical Poisson V-shaped prediction spread with increasing flow size.

Because this extra-Poisson variation could not be captured with a negative binomial

model specification, quasi-likelihood techniques were employed for estimation

purposes. The estimated origin and destination totals exponents are, respectively,

0.4901 and 0.6695; both indicate that, on average, the total number of workers and

the total number of jobs in a county need to be markedly deflated in order to predict

inter-county flows. The distance decay parameter estimate is 3.8519.

The simple unconstrained gravity model overlooks any spatial autocorrelation

that is present. Respecifying it to include spatial filters that account for spatial

autocorrelation results in a Poisson regression model that includes 45 eigenvectors

constituting the origin-base spatial filter, and 48 eigenvectors constituting the

destination-based spatial filter; these eigenvectors were selected with a backward

stepwise Poisson regression procedure.1 Each of these candidate eigenvectors has

1None of the 88 candidate eigenvectors portraying negative spatial autocorrelation were selected.

Fig. 16.6 Scatterplots of the predicted (horizontal axis) and observed (vertical axis) 2000 inter-

county journey-to-work flows within Texas generated with an unconstrained gravity model

specification. The gray lines denote the lines of perfect correspondence. Left (a): for all 64,516
flows. Right (b): for 64,510 flows, after the 6 outliers have been removed
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an adjusted MC (MC/MCmax, where MCmax ¼ 1.10825 is the maximumMC for the

surface) of at least 0.25. Here the pseudo-R2 is 0.994, which reduces to 0.936 when

the six extreme flows are not included (see Fig. 16.7). The estimated origin and

destination totals exponents are, respectively, 0.6533 and 0.7671, again indicating a

need to deflate these numbers; but they both have moved closer to a value of 1 (the

assigned value when they are included as offset values in the doubly-constrained

specification). And, the distance decay parameter estimate is 3.6377, a noticeable

decrease from the corresponding simple gravity model result. Unfortunately, con-

siderable overdispersion persists here (deviance statistic ¼ 109.5).

16.6 Additional Features of Complexity in Spatial Flows

Respecifying the spatial interaction model to include both indicator variables and

selected eigenvectors Ei � Ej and Ej � Ei more directly addresses spatial autocor-

relation in flows. Now, using the criterion of MC/MCmax > 0.5 (that is, 0.52 ¼ 0.25

for the Kronecker product vectors), the number of candidate eigenvectors extracted

from Cn is 35, resulting in 352 ¼ 1,225 candidate eigenvectors for matrix Cn2 .

Parameter estimation still requires the sum LN(Oi) + LN(Dj) to be included as an

offset variable; the 2n indicator variable coefficients need to be estimated simulta-

neously with the spatial filter based upon spatial interactions.

The spatial-interaction-based spatial filter is constructed with 723 of the 1,225

candidate eigenvectors (Fig. 16.8). This spatial filter only marginally increases the

pseudo-R2 value, increasing it to 0.998, which decreases to 0.977 when the six

extreme flows are set aside (Fig. 16.9). The most noticeable results are: a marked

decline in overdispersion (deviance statistic = 35.3, which still is excessive); and, a

marked decline in the distance decay parameter, to 1.1146 (the pairwise 90%, 95%

and 99% confidence intervals for this estimate and that for the doubly-constrained

specification do not overlap). A comparison of Figs. 16.7 and 16.9 reveals that the

predicted and observed flows now are more similar, with much less deviation in the

smaller values, once spatial autocorrelation is accounted for. Meanwhile, the new

Fig. 16.7 Scatterplots of the predicted (horizontal axis) and observed (vertical axis) 2000 inter-

county journey-to-work flows within Texas generated with an unconstrained gravity model

specification containing origin- and destination-based spatial filters. The gray lines denote the

lines of perfect correspondence. Left (a): for all 64,516 flows. Right (b): for 64,510 flows, after the
6 outliers have been removed
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indicator variable coefficient estimates fail to conform to a bell-shaped curve (see

Figs. 16.10a, c; the most conspicuous deviations are in their tails), and fail to align

with their doubly-constrained gravity model counterparts (Fig. 16.10b); this finding

holds for their respective spatial filter descriptions, too (Figs. 16.10d, e). The spatial

autocorrelation displayed by the geographic distributions of these coefficients

remains positive and moderate, with 36 vectors included in the origin and 33 vectors

included in the destination spatial filter (see Table 16.2; respectively, these spatial

filters have MC = 0.453 and 0.447); globally, this level is roughly equivalent to that

for the doubly-constrained gravity model origin balancing factor result, whereas it is

substantially less than that for the doubly-constrained gravity model destination

balancing factor result. But the map patterns are quite different (Figs 16.4a, b vs.

16.10f, g). A comparison of results reported in Tables 16.2 and 16.3 reveals that

many of the common eigenvectors across the spatial filters span both pairs. In both

cases the residual spatial autocorrelation is nonsignificant (respectively, zMC ¼ 0.6

and 1.5), and each of the constructed spatial filters has a MC ¼ 0.7 and account for

about two-thirds of the geographic variance displayed by the coefficients.

The spatial-interaction-based spatial filter is constructed with a linear combina-

tion of products of pairs of origin and destination eigenvectors, and hence has n2

elements. Frequencies of these eigenvectors across the selected Kronecker products

Fig. 16.9 Scatterplots of the predicted (horizontal axis) and observed (vertical axis) 2000 inter-

county journey-to-work flows within Texas generated with a doubly-constrained gravity model

containing a spatial filter spatial autocorrelation adjustment specification. The gray lines denote

the lines of perfect correspondence. Left (a): for all 64,516 flows. Right (b): for 64,510 flows, after
the 6 outliers have been removed

Fig. 16.8 Geographic distributions of the three common eigenvectors; light gray to black denotes

low to high. Left (a): E1 (global pattern).Middle (b): E9 (regional pattern). Right: E57 (local pattern)
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appear in Table 16.4. Summarizing this synthetic vector by reducing it to an origin

as well as a destination version is complicated by the mathematical property of a

zero mean for each of the individual eigenvectors: calculating means by origin and

by destination yields 0 for all areal units. Therefore, the median together with the

standard deviation are used here to construct summary versions; these two measures

covary in this case (Figs. 16.11a–c). Because each eigenvector has a variance of 1/n

by construction, these variances primarily relate to the sum of squared regression

coefficients estimated for each Kronecker product eigenvector. Of note is that

fragmented, rather than relatively smooth, geographic patterns are displayed by

these spatial filters, as well as their respective variances (Figs 16.11d–f). Because

Fig. 16.10 The spatial-interaction-based spatial filters; light gray to black denotes low to high for the

maps. Top left (a): normal quantile plot for origin spatial filter. Top middle (b): scatterplots of median

spatial filters versus their respective standard deviations (left – origin; right – destination). Top right
(c): normal quantile plot for destination spatial filter. Middle left (d): geographic distribution of the

median origin spatial filter.Middle right (e): within-county standard deviation for origin-aggregated
spatial filter. Bottom left (f): geographic distribution of the median destination spatial filter. Bottom
right (g): within-county standard deviation for destination-aggregated spatial filter
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this fragmentation may be an artifact of how these spatial filters are being summar-

ized here, future research needs to address this particular visualization topic.

Finally, the indicator variable coefficients continue to preserve the row and

column totals that serve as constraints in a doubly-constrained gravity model

specification. The spatial filter constructed here accounts for spatial autocorrelation

in flows between neighboring counties to an origin and neighboring counties to the

origin’s destination. The indicator variables account for flows from a given origin to

all destinations, and all origins into a given destination, and as such has been kept

separate from the posited spatial autocorrelation structure employed here. These

indicator variables better align observed and estimated flows (Figs. 16.6 and 16.1),

with the spatial filter improving upon this alignment as well as minimizing impacts

of outlier flows (Figs. 16.7 and 16.9). Although the final Poisson regression model

estimation here involves 1,233 parameters, the average number of degrees of

freedom per parameter estimate is roughly 52, which should be sufficient for robust

results. Of note is that none of the eigenvectors tends to dominate the constructed

Table 16.3 Summary of the spatial-interaction-based spatial filter construction for the doubly-

constrained gravity model specification

Eigenvectors Origin spatial filter Destination spatial filter

Common E2, E4, E5, E8, E11, E12, E15, E16, E19, E22, E23, E29, E31, E34, E38, E39, E46, E47, E49,

E54, E56, E57, E61, E63

Unique E1, E6, E7, E10, E14, E17, E20, E25,

E32

E3, E13, E18, E21, E24, E27, E30, E35–E37, E44,

E62

Table 16.4 Frequencies of eigenvectors appearing in the Kronecker products

Cn eigenvector

number

Origin

frequency

Destination

frequency

Cn eigenvector

number

Origin

frequency

Destination

frequency

1 26 19 19 23 19

2 23 20 20 18 14

3 23 25 21 21 21

4 16 19 22 20 24

5 23 18 23 21 27

6 18 26 24 15 25

7 27 29 25 17 19

8 22 17 26 25 20

9 21 20 27 17 19

10 19 14 28 18 24

11 23 22 29 22 24

12 18 23 30 17 21

13 24 13 31 20 18

14 17 11 32 22 14

15 21 20 33 24 28

16 21 24 34 22 23

17 23 17 35 21 26

18 15 20
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spatial filter, which may well be why its origin and destination visualizations (Figs

16.11d and 16.11f) are so fragmented

16.7 Implications and Concluding Comments

Results for the spatial-interaction-based spatial filter gravity model are an improve-

ment upon those for the doubly-constrained specification. The decrease in the

distance decay parameter estimate for the Texas journey-to-work flows by account-

ing for spatial autocorrelation in these flows is consistent with Curry’s (1972)

Fig. 16.11 Spatial filters for the amalgamated indicator variable coefficients adjusted for spatial-

interaction-based spatial autocorrelation; light gray to black denotes low to high for the maps. Top
left (a): normal quantile plot for origin spatial filter. Top middle (b): scatterplots of adjusted and

unadjusted amalgamated indicator variable coefficients (left – origin; right – destination). Top
right (c): normal quantile plot for destination spatial filter. Middle left (d): scatterplots of the

adjusted and unadjusted origin spatial filters, and their corresponding adjusted and unadjusted

residuals. Middle right (e): scatterplots of the adjusted and unadjusted destination spatial

filters, and their corresponding adjusted and unadjusted residuals. Bottom left (f): geographic
distribution of the origin spatial filter. Bottom right (g): geographic distribution of the destination

spatial filter
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arguments that the presence of unaccounted for spatial autocorrelation biases

the estimated distance decay parameter in a simple gravity model specification.

One implication from the analysis reported here is that the constructed spatial filters

account for a considerable amount of extra-Poisson variation displayed by flows in

geographic space. Estimating a doubly-constrained gravity model yields balancing

factors that automatically account for most, if not all, spatial autocorrelation effects

attributable to the geographic distributions of relevant origin and destination attri-

butes; but it fails to adequately account for spatial autocorrelation in the flows

themselves. And, spatial autocorrelation latent in flows includes global, regional,

and local map pattern components (see Table 16.4).

With regard to the four initial posed questions upon which the Texas journey-to-

work experiment findings shed light:

l Network spatial autocorrelation can be handled successfully with a Kronecker

product of the eigenvectors of matrix Cn, essentially introducing an interaction

effect between them, whereas spatial autocorrelation latent in geographic dis-

tributions can be handled by including origin- and destination-specific indicator

variables (which actually are from the sum of Kronecker products) that preserve

row and column total constraints.
l Employing a Kronecker product of the eigenvectors portraying geographic

distribution spatial autocorrelation effects also captures network autocorrelation

effects.
l The origin and destination weights of a doubly-constrained gravity model

account for spatial autocorrelation effects attributable to the geographic distri-

butions of relevant origin and destination attribute variables.
l Kronecker products of the eigenvectors of matrix Cn can be used to portray

spatial autocorrelation in spatial interaction flows, allowing efficient and effec-

tive approximation of the eigenvectors needed to be extracted from sizeable

sparse geographic weights matrices.

All in all, findings from this case study support the use of spatial filtering method-

ology to account for spatial autocorrelation effects in geographic flows data.

In conclusion, experimental findings reported here confirm Curry’s (1972)

conjecture that spatial autocorrelation biases the estimation of distance decay

effects uncovered with geographic flows data; for the 2000 Texas journey-to-

work data, this bias is by a factor of about 3, and hence is nontrivial.

16.8 Future Research

The analysis summarized here suggests two important themes for future research

whose findings would contribute to simplifying the complexity of spatial interac-

tion data. First, a more thorough exploration is needed of relationships between

origin- and destination-specific indicator variables and Kronecker products of the

eigenvectors of matrix Cn to account for spatial autocorrelation latent in it. This
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contention builds upon the innovative technical specification outlined by LeSage

and Pace (2008), and the novel conceptual specification suggested by Chun (2007).

And it results in a model specification that is much simpler than that proposed by

Bolduc et al. (1992, 1995, 1997). Another journey-to-work case study for Germany

(Griffith 2009) is underway to further address this issue. But more research is

needed about this topic.

Second, a mixture of positive and negative spatial autocorrelation contributes

substantially to geographic complexity, and separating effects of these two factors

would contribute to a better understanding of the complexity of spatial interaction

data. Accordingly, the theme of negative spatial autocorrelation should be

addressed in future work. No evidence could be found with the Texas journey-to-

work flows case study indicating that negative spatial autocorrelation materialized

in it. Confirming an absence of negative spatial autocorrelation effects in general, if

this is the case, would contribute to an understanding of spatial interaction com-

plexity. Nevertheless, because negative spatial autocorrelation materializes under

conditions of geographic competition, the notion of competing destinations asso-

ciated with spatial interaction suggests that negative spatial autocorrelation could

materialize in geographic flows. A spatial filter that is a linear combination of

eigenvectors representing negative spatial autocorrelation should be able to capture

this effect. More research, both conceptual in nature and with case studies, is

needed about this topic.
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Chapter 17

Complex Networks Analysis of Commuting

Recent Advances and a Research Agenda

Andrea De Montis, Alessandro Chessa, Michele Campagna, Simone Caschili,

and Giancarlo Deplano

17.1 Introduction

The emerging new science of networks is providing an elegant paradigm for the

characterization of the broad area of complex systems. New research perspectives

have been opened in the study of many real phenomena and processes, and recently

fields like urban, regional, and environmental sciences have gained new insights

from the tools provided by network science. The complex networks analysis (CNA)

becomes a useful framework in these fields to disentangle problems of a complex

and unpredictable nature.

At the end of the last millennium, the availability of large data sets and the

parallel explosion of computer processing power have made a systematic and

intensive application of CNA to the study of very large networks(Pastor-Satorras

and Vespignani 2004; Albert and Barabási 2002) possible. According to CNA,

complex behaviours are signalled by the emergence of some characteristics that can

be featured in terms of statistical properties.

CNA provides new insights into the study of new classes of networks that behave

differently with respect to the usual random graph networks, where each pair of

nodes is connected with a certain probability p. For example, small world networks

differ from random networks in that the clustering coefficient – an index of local

connectedness of a node – is remarkably higher then the expected random case,

while the diameter of the system – equal to the maximum distance between a pair

whatsoever of nodes – scales very slowly with the size (measured by the number of

nodes of the system); scale free networks differ in that the probability distribution

of their degree – a measure of the number of first neighbours of a node – is much

broader than the random case, with a divergent variance. Scale free networks

growth mechanism can be described by the so called preferential attachment

A. De Montis (*)

Dipartimento di Ingegneria del Territorio, Sezione Costruzioni e Infrastrutture, Università degli
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model (Barabási and Albert 1999): new nodes tend to grasp the highest advantage

from the system they join by linking with nodes that present a very large degree

value, the “hubs” of the network.

Beyond the simulations, CNA has been applied to a number of real systems, such

as food webs, human interactions, the Internet, the world wide web, the spread of

diseases, population genetics, genomics and proteomics. In each of these cases, the

analyst inspects active systems characterised by elements (the nodes) connected

through different kinds of interactions (the links). For a review of these applica-

tions, see Albert and Barabási (2002) and Newman (2003).

Recently also in many fields grouped under the label of regional science, a

number of scholars have applied the paradigm of complex network analysis to

model urban (Batty 2001; Jiang and Claramunt 2004), regional and socio-

economic systems (Barrat et al. 2004a; Latora and Marchiori 2003; Schintler

et al. 2005; O’Kelly 1998; Reggiani et al. 2009). Some authors have inspected the

influence of geographical space on the network properties (Gorman and Kulkarni

2004; Gastner and Newman 2004; Crucitti et al. 2006; Campagna et al 2007).

Some applications refer to the study of infrastructures and of commuting beha-

viour (Guimera et al 2003a; Latora and Marchiori 2002; Chowell et al. 2003; Sen

et al. 2003; Strano et al. 2007; Porta et al. 2008).

In this chapter, we aim at developing a research agenda on our operative CNA

tools, applied to commuting systems, with a glance at policy making and planning.

The contents of this chapter are outlined as follows. In the next section, we recall

some results recently obtained by applying CNA to study topological, traffic and

spatial properties of commuting in insular Italy. In the third section, based on the

obtained results, we propose a research agenda on the following main topics: (a)

integration between geographic information science (GIS) and CNA to study the

spatial properties of a system, (b) the evolution of networks in time, (c) the adoption

of CNA as a tool to compare systems, and (d) community detection on real

networks. In the fourth section, we present our concluding remarks as well as

some outlook reflections.

17.2 Complex Network Analysis Applied to Commuting:

A Review of Recent Advances

17.2.1 The Sardinian Inter-Municipal Commuting Network
(SMCN)

De Montis et al. (2007) has studied the inter-municipal commuting system of

the Island of Sardinia, Italy. In that study, the authors inspected workers’ and

students’ daily movements, by adopting a network representation, the Sardinian

inter-Municipal Commuting Network (SMCN) characterised by N ¼ 375 vertices,
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each one corresponding to a town, and E ¼ 8124 edges, each one representing how

many people commute between two extreme towns.

The authors have analysed the SMCN by representing it as an undirected graph.

They have gone beyond the study of the mere topology, by also considering its

traffic: through a weighted undirected network (Barrat et al. 2004a) representation

they have processed the regional origin destination table, a dataset that reports the

daily work and study-led movements among Sardinian municipalities.

Hereafter, we report the most important results obtained in that study.

In Fig. 17.1, the Sardinian inter-Municipal Commuting Network (SMCN) is

represented: in this simplified picture, the nodes (black points) correspond to the

towns, while the links correspond to a flow value larger than 35 commuters between

two towns (De Montis et al. 2008).

The analyses of the topological features show that the SMCN belongs to the

class of random networks, since the curve of the probability distribution of the

degree k is bell-shaped with a mean value <k> � 40. The study of the clustering

coefficient (Watts and Strogatz 1998) averaged over the degree k, C(k), a measure

of the level of connectedness among first neighbours of a node, uncovers properties

common in other technological networks. In particular, small (with small k) muni-

cipalities are locally densely interconnected, while large municipalities provide a

large set of connections for remote regions otherwise disconnected. This evidence

is confirmed also by the analysis of the average degree of the nearest neighbours

(Barrat et al. 2004a), which signals a disassortative mixed behaviour: the hub towns

Fig. 17.1 Geographical and

topologic representation of

the Sardinian inter-Municipal

Commuting Network

(SMCN) (De Montis et al.

2008)
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are preferentially connected to small degree (less central) municipalities acting as

star-like vertices of the SMCN.

On the side of the analysis of the weighted network, the study finds that the

complementary cumulative probability distributions of both weight w (equal to the

number of commuters flowing between two towns) and strength s (equal to the total
traffic handled by a municipality) display a power-law regime over a wide spectrum

of degree values (Fig. 17.2). In this case, no characteristic value of the distribution is

found and the SMCN can be included in the class of scale-free weighted networks.

The spectrum of the strength s averaged over the values of the degrees reveals a

super linear behaviour implying that the higher the number of connections to a town

the larger the traffic per connection handled. This means that there are probably

hidden properties that control and show the behaviour of the network.

The inspection of the disparity of a node, which measures possible inequalities in

the distribution of the traffic flow among the connections of each node, confirms the

actual structure of the real network: a fairly high number of commuters are

exchanged between hub towns through a very small number of backbone connec-

tions constituting the dorsal “highways” of that system as a topological network.

In the next section, a selection of results is reported about the comparison

between the Sicilian and the Sardinian inter-Municipal Commuting Networks

(SiMCN and SMCN).

17.2.2 The Sicilian vs. The Sardinian Inter-Municipal
Commuting Network

De Montis et al. (2009) have compared the commuting systems of the two main

Italian islands (Sardinia and Sicily) adopting a CNA to discover similarities and

dissimilarities in those systems.

In Tables 17.1 and 17.2 we summarise the topological properties of the two

networks under study. In Table 17.1, N stands for the number of nodes, E for the

number of edges, k for the degree, and l for the average shortest path length between
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Fig. 17.2 Log–log plot of the complementary cumulative probability distribution of the weight

w (on the left) and of the strength s (on the right) (De Montis et al. 2007)
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two nodes whatsoever measured in terms of number of edges. In Table 17.2, P(k)
stands for the probability distribution of the degree k, and C(k) for the spectrum of

the clustering coefficient, measuring the level of local connectedness of a town with

a given degree k.
The curve of the probability distribution of the degree P(k) is bell shaped for

both Sardinia and Sicily with a characteristic and defined mean value: hence those

networks belong to the broader class of random graphs. A similar trend of the

clustering coefficient spectrum C(k) confirms a common property of the local

structure in many infrastructure networks: hub towns tend to connect otherwise

disconnected regions, while small degree k towns are locally very densely

connected. The average clustering coefficient <C> for the SiMCN is nearly

twice as high as it is for the SMCN: this is a sign of a difference in the local

structure. Overall in Sardinia a star-like scheme dominates the topology, while in

Sicily it is loop-like.

Some traffic properties are outlined in Table 17.3 and pictured in Fig. 17.3. It is

possible to note that the weights are very heterogeneous, having a maximum value

three orders bigger than the mean value. The complementary cumulative probability

distributions of the weights in both cases present a power law behaviour over a broad

range of values. The behaviour of the complementary cumulative probability distri-

bution of the strength s fits again a power law line with a slope exponent close to two

in both the SMCN and the SiMCN: these systems can be classified as scale free

weighted networks.

This implies that it is not possible to find a typical value characterizing the

probability distribution of both the weight and the strength. This statistical evidence

supports the emergence of two phenomena in both the insular systems: it is not

possible to find typical values both of the commuter flow between a pair of towns

Table 17.2 Comparative overview of topological properties of the SMCN and SiMCN, part

2 (De Montis et al. 2009)

P(k) C(k) <C>

SMCN Bell shaped Downward sloping 0.26

SiMCN Bell shaped Downward sloping 0.52

Table 17.1 Comparative overview of topological properties of the SMCN and SiMCN (DeMontis

et al. 2009)

N E kmin kmax <k> <l> lmax

SMCN 375 8124 8 279 40 2.0 3

SiMCN 391 9993 1 280 51 1.98 4

Table 17.3 Comparative overview of the traffic properties of the SMCN and the SiMCN

(De Montis et al., 2009)

<w> wmax P(w) P(s)

SMCN 27 13953 Power law with exp � 1.8 Power law with exp � 2.0

SiMCN 37.6 10233 Power law with exp � 2.1 Power law with exp � 2.2
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whatsoever and of the total amount of commuter traffic handled. The distribution of

these two traffic variables can be considered scale invariant.

Regarding the properties described in Table 17.4 on the analysis of the interplay

between traffic, topologic and demographic characteristics, the similarities between

the SMCN and SiMCN can be detected. In both cases, a super-linear behaviour in

the spectrum of the strength s is found with respect to the degree k: in these

networks the traffic per connection increases when the degree k increases. In

other terms, the higher the topologic centrality of a town is, the higher its traffic

centrality is (almost twice as much in both systems). The analysis of the interplay

between topological, traffic and demographic properties of the networks reveals a

common behaviour, since for both networks town population pop (ISTAT 2001b)

scales faster than the degree k: the higher the degree, the higher the population

(nearly twice as much). This trend might be a sign of hidden phenomena connected

to economies of scale typical of the historical regional development.

From these preliminary results, we would posit that the Sardinian and the

Sicilian inter-municipal commuting networks display similar general and local

statistical properties in many cases. This implies that, as far as this study is

concerned, similar geographical settings lead to common network properties.

17.2.3 The Influence of Space on Commuter Networks

In order to analyse the influence of spatial location on commuting networks,

Campagna et al. (2007) have approached the characterization of the spatial features
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Fig. 17.3 Log–log plot of the complementary cumulative probability distribution of the weight

w (on the left) and of the strength s (on the right) for the SiMCN (De Montis et al. 2009)

Table 17.4 Comparative overview of interplay properties of the SMCN and SiMCN (De Montis

et al. 2009)

<s>(k) <Pop>(k) <Pop>(S)

SMCN Upward sloping with

exp � 1.9

Upward sloping with

exp � 1.7

Upward sloping with

exp � 0.9

SiMCN Upward sloping with

exp � 1.8

Upward sloping with

exp � 1.4

Upward sloping with

exp � 0.8
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of the SMCN in terms of analysis of the mutual location between municipalities by

studying the statistical distribution of commuting distances (Fig. 17.4).

For this purpose, they have considered two networks that are similar to the

SMCN, as they display the same set of nodes representing Sardinian towns as well

as the same number of links. By contrast, these systems are different from the

SMCN, when regarded as weighted networks, since they show two diverse attri-

butes (the weights of the network) for the set of edges. In the case of the Sardinian

inter-Municipal Euclidean distance Commuting Network (SMECN), the weight is

equal to the length of the segment ideally connecting two towns, while in the

Sardinian inter-Municipal Shortest-path distance Commuting Network (SMSCN),

to the length of the shortest road path between two towns.

The results of analysis of the complementary cumulative probability distribution

of the weights – that is, Euclidean distances (We) and of the Shortest road distances

(Wr) – are illustrated in Fig. 17.5. The shape of the curve, for both these networks,

indicates the emergence of an exponential decay behaviour.

A different result has been obtained from the inspection of the strength Se
(strength of SMECN) and Sr (strength of SMSCN). The strength of a node combines

the information about its connectivity and the intensity of each connection. In the

case of spatial distances, this measure represents the total distance covered by

town’s commuters to reach it. As Fig. 17.6 shows, the complementary cumulative

probability distribution of both Se and Sr display a heterogeneous behaviour in

which a not negligible number of hubs are present.

In Fig. 17.7, we report the results obtained from the analysis of the strength

<Se>(k) and <Sr>(k) averaged over all nodes with a given degree k. It is possible
to observe a super linear behaviour over a wide range of degrees with an exponent

b� 1.3 for both networks. In this case, the sum of the distances covered through the

Fig. 17.4 On the left, a global view of the Sardinian inter-urban road network. On the right, 3D

visualizations of the SMECN and SMSCN models (Campagna et al. 2007)
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available connections – that is, a proxy measure of the commuting footprint of each

town – grows slightly faster than the number of connections.

Independency of strength and degree would yield a value b = 1 (Barrat et al.

2004a); by contrast this result reveals that there is a super linear correlation between

the space (in terms of distances) and the topology in both networks. A comparison

of this result with the corresponding findings obtained by De Montis et al. (2007),

who measure an exponent b � 1.9, signals that in the present case the strength

grows slower than the degree. In the case of the SMCN, the total amount of traffic

handled by a town increases on average more (almost twice as much) than the

corresponding number of first neighbours of that town. On the contrary, in the

SMECN and SMSCN this correlation is not strong as much as in the previous case:

the sum of the distances covered through the available connections grows (only)

slightly more than the number of connections.
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In Table 17.6, we summarise the results of the analysis above.

As a general result, the analysis confirms the results found by De Montis et al.

(2007) and reveals strong connections between the traffic properties of the system,

in terms of commuting flows, and geographical properties.

In particular, it is now worthwhile to develop on a difference emerging between

a-spatial and spatial networks. The SMCN, an a-spatial network, displays

heterogeneous probability distributions P(W) and P(S), where w stands for the

number of commuters associated to each edge and s for the total amount of

commuters handled in each node (town). By contrast, the spatial networks

SMECN and SMSCN seem to belong to a hybrid class of systems: in fact, they

are both homogeneous, with respect to the probability distribution of the distance

based weights P(We) and P(Wr), and heterogeneous, with respect to the probability

distribution of the distance based strengths P(Se) and P(Sr).
The ambivalence can be explained as follows. Sardinian road system is closed,

as bounded by the coastal fringe, so that road distance values range approximately

Table 17.5 SMCN, SMECN, and SMSCN: a synthesis of the relevant properties (Campagna et al.

2007)

Description Code W Dataset Source

A- spatial

network

Sardinian inter-

municipal

commuting

network

SMCN Commuters’

traffic

between

pairs of

municipalities

ODT ISTAT (1991)

Spatial

networks

Sardinian inter-

Municipal

Euclidean

distance

Commuting

Network

SMECN Euclidean

distance

between

pairs of

municipalities

Geographical

coordinates

of town

centres

Centro

Interregionale

(2007)

Sardinian inter-

municipal

shortest

road

distance

commuting

network

SMSCN Shortest path

road length

for each

pair of

municipalities

Geographical

coordinates

of town

centres and

roads

geodatabase

Centro

Interregionale

(2007)

Table 17.6 Statistics of the SMCN, SMECN, and SMSCN (Campagna et al. 2007)

Code P(W) P(S) S(k)

A- spatial

network

SMCN Power-law

(scale free

network)

Power-law

(scale free

network)

Super-linear behaviour

(line fit exponent b�1.9)

Spatial

networks

SMECN Exponential

(random

network)

Power-law (scale

free network)

Super-linear behaviour

(line fit exponent b�1.3)

SMSCN Exponential

(random

network)

Power-law

(scale free

network)

Super-linear behaviour

(line fit exponent b�1.3)
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between 1 and 400 km. This may be one of the main causes leading to statistical

distributions P(We) and P(Wr) that are scattered randomly around a typical mean

value. On the other side, distance based strengths stand as measures of the total

length of the roads covered by commuters around each town and depend on a more

volatile combination of traffic and topological local features. This is the main

reason why in this case the corresponding probability values P(Se) and P(Sr) span
over quite a broad range and fit power law distributions.

17.3 Complex Network Analysis Applied to Commuter

Systems: A Research Agenda

Motivated by the results outlined above, in this section we propose a research

agenda to fully exploit the potential of CNA to model and analyse territorial

phenomena for policy making and planning.

Hereafter we focus on the following research questions (see Fig. 17.8): (a)

integration between geographic information science (GIS) and CNA to study the

spatial properties of a system, (b) the evolution of networks in time, (c) the adoption

of CNA as a tool to compare systems, and (d) community detection on real

networks.

17.3.1 Integration between GIS and CNA

In this section, we aim at giving a tentative framework of GIS–CNA integration to

show possible ways to take into account the spatial dimension and to help to enrich

the understanding of those phenomena which are clearly influenced by space, yet

are too often described only in terms of a-spatial variables.

Network modelling in a GIS environment has been widely used to represent real

world physical infrastructures such as roads, cables, or pipelines. In these cases, the
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Fig. 17.7 Log–log plot of average strength as a function of the degree (Campagna et al. 2007)
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components are features characterised as having a spatial dimension prevailing over

the others.

CNA has indeed been used to model different systems according to different

relationships with space: “pure” spatial physical structures (for example, transport

network systems, pipelines), phenomena for which space matters but is not explicitly

considered in the model (for example, World Wide Web network), and phenomena

for which the spatial dimension is of minor relevance and can reasonably be omitted

(for example, movie co-acting network).

While on the one hand GIS have been proven to supply reliable support in

physical network modelling, such as in transport planning and utility management,

and are widely adopted, the diffusion of the GIS application to CNA is less common

in those disciplines or problems where the spatial dimension of the network is

considered to be of lesser importance.

The integration of models typical of CNA in a GIS environment can thus be

developed according to different approaches each of which underlines a different

kind of support GIS offer to CNA. It spans from the representation of the CNA

results, to feeding CNA input dataset, or to modelling the complex network itself.

In more detail, possible integrations can be outlined as follows:

l Spatial Representation of CNA analysis output: in the simplest case, the results

of a CNA can be represented in cartographic form. An example of this kind of

CNA-GIS integration can be found in the work of Colizza et al. (2007,

Fig. 17.6), where results of CNA are plotted with GIS software.
l GIS feeding CNA models, type I: in this case, spatial properties of the nodes/

links are stored in a geodatabase and exported as input data for CNA algorithms

(such as link weights in weighted complex networks analysis): when weights in a

complex weighted network model show spatial dependence, they can be calcu-

lated through overlay or other spatial analysis functions to take into account the

influence of surrounding objects/fields. An example of this approach is offered

by Campagna et al. (2007) for the commuter network at the regional level

described in Sect. 17.2.3 and by Chiricota et al. (2008) for the national commuter

network of France.

Fig. 17.8 Research agenda on CNA: a flow chart
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l GIS feeding CNA models, type II: when the system under analysis is inherently

spatial in essence, the resulting network model can be fully represented and

analysed in a GIS environment. In this case, some programming may be devel-

oped within the GIS to calculate CNA measures.

Although further work is under development by the authors to better formalise the

GIS–CNA integration, the overview given is intended as an early call to stimulate

both scientists and GIS developer communities to be aware of and possibly join our

early efforts.

17.3.2 Time Evolution of Complex Networks

A second topic of interest concerns the inspection of a complex network evolving in

time. Until the end of the 1990s, the Erdös and Rényi random model (E-R model)

was undoubtedly the best model to represent complex networks. Yet, the E-R model

is based on two assumptions: the number of elements (nodes) is fixed a priori and it
does not change during its life-time; there is also no distinction among nodes.

By contrast, Barabási and Albert (1999) brought up a new network modelling

discussion about the rudiments of E-R model by clarifying two properties: they

evolve in time and they have preferential attachments. Looking at real world

phenomena, it is often possible to observe much the same behaviour. Starting

from this similarity between complex network and real world phenomena, how is

it possible to model the time evolution of these systems? Is it reasonable to give a

deterministic or just qualitative description of real world phenomena?

Using the aB-A model we are able to describe systems characterised by prefer-

ential attachment and high connectivity. Some of the most enthralling questions for

research in territorial and regional fields are: do also those rules regulate a territorial

system? Can we state that a territorial system could be modelled as a network and

that it is similar to a B-A model? In the case of weighted networks can we use the

approaches proposed by Jost and Joy (2002) and by Barrat et al. (2004b)? Our

findings show similar patterns among territorial systems and complex networks.

Thus it is reasonable to think that the complex network paradigm, applied to

regional and urban systems, can describe an evolution in time of regional pheno-

mena. In the case of B-A model the network evolution has been described by the

variation in the number of nodes and their preferential attachment. For weighted

networks, both models proposed by Jost and Joy (2002) and Barrat et al. (2004b)

aimed at simulating the systems’ evolution based on two coupled mechanisms: the

topological growth and the weights’ dynamics. Thus, they provided two models that

took into account the interplay between topology and traffic in a network. The time

evolution of a territorial system needs some rudiments to be fully modelled:

l The minimum amount of time for a window observation
l To fix the network features that can describe its evolution
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Serrano et al. (2007) studied the world trade network. In order to take into account

the network evolution in a 40 year time period, they used three observations: 1960,

1980, and 2000. Actually to better understand the change of such real world

phenomena one may need to consider observations over a shorter period of time.

In the case of the SMCN, the analyst is able to study the dynamics of a complex

system starting from census data – the origin destination table (ISTAT 2001a)

describing commuting movements among Sardinian towns – available for 1981,

1991, and 2001 (every decade). The SMCN, as a municipal transportation network,

presents a fairly high degree of robustness and a very weak tendency to increase

the number of nodes. Thus it is pointless to apply a complex network model, like the

B-A, to the case of commuting (as modelled in this chapter). On the other side, it

might be worth investigating the patterns of the fluctuations, in time, of network

measures, such as the degree, the clustering coefficient, the weight, and the

strength.

In the case of commuter movement in a European lagging behind region such as

Sardinia, it is reasonable to guess that, even in a mid-century, some topological

properties – that is, the number of nodes – of the network will change only slightly.

By contrast, we expect that the same traffic properties will vary – that is, number of

commuters moving in the whole network and weight measuring the commuter flow

conveyed on each single edge.

17.3.3 Comparative Analysis through Complex Network Theory

The complex network theory starts from the assumption that we are not able to

model the single interactions between each pair of elements of a large system.

Hence we study these systems taking into account their overall properties. The

power laws give a description of scale invariance features and have been used as

universal rules. The concept of “universality” stems from the assumption that there

are properties for a large class of systems that are independent of the dynamical

details. According to the concepts introduced in the field of statistical mechanics, in

physics and mathematics these laws control complex systems and phase transitions.

Also we can find the power law and universality behaviour in economical systems,

social networks, and fluctuation of goods (Barabási 2000).

In this theoretical framework we aim at modelling a territorial system as a

network in order to analyse real phenomena and support urban and regional

planning at different scales of observation (local, regional, and national).

Our first studies follow this path: we took into account a bounded regional system

(Sardinia is an island) and gave a description of dynamics of socio-economical

features by using the commuter movements between Sardinian towns. This model-

ling approach has highlighted both some hidden properties and trivial ones.

Territorial systems are influenced by many relevant variables so that we often

define them as complicated systems: are they also complex systems? Are they

composed by interacting elements characterised by universal laws?
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We plan to test the assumption that spatial systems – even in different geograph-

ical settings – display similar characteristics obeying to constant rules that, when

properly proved, may lead to the definition of universal laws. We have begun to

compare two similar – that is, insular – regional commuter systems of Sardinia and

Sicily. While the results confirm that the two commuter systems are similar, we are

aware of the need to check our thesis out studying other dissimilar regional systems.

We will study some non-insular systems from another part of Italy. Our inspec-

tion will cover northern Italy which has a better economical situation and also a

better transportation system than the south. These new case studies should confirm

or confute our thesis: there are hidden universal laws that underlie the network of

commuter movements we have observed in insular Italy.

Forthcoming inspections will look upon the influence of our modelling approach

at different space scales.

It would be very interesting also to verify whether similar statistical properties –

that is, power law behaviour, small-world effect, and presence of hubs – may be

observed at a larger scale of observation. If this is the case, the same phenomena

recovered in a regional commuter network should be found also for a national

system. The opposite result might mean that, in Italy, regional commuting networks

are typical, obey to local characteristics and rules and do not parallel the general

features of the national system.

17.3.4 Community Detection on Commuter Networks

Very promising research on CNA concerns the detection of communities. A

community in a network may be defined as a set of nodes that present a high

number of internal links and few links toward the nodes of other communities.

Many authors have proposed methods and algorithms to develop community

detection on networks, while others have discussed theoretical and operative limits

(Danon et al. 2005; Newman 2004, 2006; Palla et al. 2005; Radicchi et al. 2004;

Guimerà et al. 2003a, b; Rosvall and Bergstrom 2007; Fortunato and Barthélemy

2007; Arenas et al. 2007).

Research on communities has also involved the realms of regional science,

geography and planning, for many purposes. Cluster analysis and other related

methods have been considered and tested throughout by many scholars, since the

pioneering studies of Berry (1964) and Fischer (1979). Recently, the interest has

revamped among geographers for regionalization methods also provoked by the

advances in geographic information science (Noronha and Goodchild 1992).

We believe network community detection may contribute to seeking finer

methods for classifying homogeneous sub regions. This may be achieved integrat-

ing traditional clustering methods by explicitly taking into account the relational

properties of the entities (the nodes). The other way around, territorial settings

may provide us with a useful real world case study for testing the versatility of

community detection over complex networks.
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Motivated by these background reflections, we will be studying the communities

of the commuting networks above and comparing them to the current relevant

administrative bodies. Hopefully the pattern of productive basins, constructed on

the self-organised daily movements of students and workers, will inspire decision

makers to calibrate the boundaries of administrative subdivisions accordingly.

17.4 Conclusion and Outlook Remarks

In this chapter, we have presented some retrospective thoughts on recent results

obtained by applying complex network analysis (CNA) to the study of commuter

networks sited in insular Italy.

These encouraging results have led us to reflect on a possible research agenda

that comprehends four main research areas: (a) the integration between GIS and

CNA, (b) the study of the evolution of networks in time, (c) the analysis of

comparable and non-comparable networks, and (d) the detection of communities

on networks.

We will direct our efforts in such a way that the research agenda above will serve

as a guideline for our future works, under the assumption that integration is

definitely needed between CNA and the more operational theories of regional

science, policy making and planning.
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Chapter 18

Spatial and Commuting Networks

A Unifying Perspective

Roberto Patuelli, Aura Reggiani, Peter Nijkamp, and Franz-Josef Bade

18.1 Introduction

A wide literature is devoted to the study of the relevance of space, encompassing

several fields and disciplines, such as geography, economics, epidemiology, envi-

ronmental and regional sciences. For example, space-time modelling has been a

relevant focus of research in spatial economics starting from Hägerstrand (1967)

and Wilson (1967, 1970). While the former paid attention to the modelling of

spatial diffusion phenomena, the latter unified movements of spatial flows under the

umbrella of statistical and information theory, by means of spatial interaction

models. In these models, the relevance of spatial structure emerged in the asso-

ciated cost/impedance functions. In parallel, starting from Zipf (1932) and Simon

(1955), the importance of spatial structures (homogeneous or heterogeneous) has

been discussed extensively in the literature, by focusing on the relationships

between urban growth, agglomeration economies, and commuting costs (see,

among others, Krugman 1991; Rossi-Hansberg and Wright 2006). A point of

concern is that, in these spatial (growth and interaction) models, the effects of

spatial topology and connectivity are only implicitly included, but never explicitly

considered and discussed.

Tied to the spatial topology and connectivity issue is the network concept, which

received a great deal of attention in social sciences and spatial economics in the past

decades. Examples are the popular ideas of social complex networks (Barabási

2003; Vega-Redondo 2007), the network economy (Shapiro and Varian 1999), and

the knowledge economy (Cooke 2001). Networks are based on the existence of

interactions – at multiple levels/layers – between agents, giving rise to synergy

effects. The effects of these interactions are often investigated and modelled in the
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form of, for example, network externalities or spillover effects (Yilmaz et al. 2002).

The labour market literature is no exception: spatial matching processes have been

widely studied in a social network framework (Montgomery 1991), as well as

commuting, which has been modelled in both urban and regional contexts (for

example, see van Nuffel and Saey 2005; Russo et al. 2007; Reggiani and Bucci

2008). In addition, network-based results can be tied to widely used econometric

techniques (see, for instance, the relation between topological accessibility and

spatial weights matrices, discussed in Mackiewicz and Ratajczak 1996).

The commuting literature has long been interested in problems of urban shape

and regional networks of cities, in particular with regard to monocentricity and

polycentricity (Button 2000). Cases of the latter are found at increasingly larger

spatial scales, leading to the idea of “network cities” (Batten 1995), in which

horizontal city-relations emerge (Wiberg 1993; van der Laan 1998), also because

of improved transportation infrastructure and accessibility. In this framework,

network modelling approaches to the analysis of commuting flows are worth

noting. Russo et al. (2007) analyse commuting flows in Germany to identify

“entrepreneurial cities” in Germany. Van der Laan (1998) and van Nuffel and

Saey (2005) investigate the emergence of multinodality in the Netherlands and in

the Flanders, respectively. In particular, van der Laan finds that increasing hori-

zontal relations emerge for regions with modern economic structures, while the

hierarchical status quo is preserved for peripheral, less advanced regions.

In line with the above developments, the present chapter investigates, for the

case of Germany, the relevance of the volume and distribution of commuting

flows, as well as of the commuting network’s connectivity and topology. We aim

to assess how network topology and its changes over time affect the geographic

commuting system and its hierarchies. The reason for studying the commuting

network in a connectivity perspective is inspired by the idea that the distribution

of commuting can help explain other relevant economic phenomena, such as

the convergence or divergence of labour market indicators (see for example

Patacchini and Zenou 2007) or production levels. In this regard, the value

added of network analysis is that it allows inspecting – in an intuitive fashion –

commuting-induced topology and accessibility. Therefore, we aim to further

inspect the connectivity perspective, to improve our understanding of the spatial-

economic perspective.

The chapter is structured as follows: Sect. 18.2 briefly reviews recent develop-

ments in the field of network analysis. Sect. 18.3.1 illustrates a preliminary spatial

analysis of commuting flows in Germany, with reference to the “open” cities (that

is, to the cities with high propensity to mobility), while Sect. 18.3.2 presents the

results of the network modelling experiments, by focusing on the network connec-

tivity properties. Sect. 18.4 presents then a comparative multicriteria analysis that

synthesises the dynamics of the different hierarchies – concerning the German

“open” districts – emerging from the spatial and network approach. Finally, Sect.

18.5 concludes the chapter with some final remarks and directions for future

research.
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18.2 Spatial and Network Analysis: Recent Perspectives

Recent developments in spatial analysis call for a better understanding of the

influence of space in the dynamics of economic growth patterns (for example,

agglomeration economies). Relationships between agglomeration economies, frac-

tal patterns, and rank size rules can be found, among others, in Batty (2005), and

Chen (2004), while spatial equilibrium models consisting of a system of mono-

centric cities (city network) have also been adopted (see, for example, Abdel-

Rahman 2003). However, these models have rarely embedded network concepts.

Here below we briefly discuss recent developments in network analysis and, in

particular, their implications for regional networks. The focus is on recent works

published by Barabási and Albert (BA) (1999), which radically changed the pre-

existing frameworks for the analysis of large networks, by developing the concept

of “scale-free (SF) networks”, and by providing a model that helps explaining their

(topological) properties.

SF networks are usually discussed vis-à-vis “random networks” (see, for exam-

ple, the conventional Poisson random graph, Erdös and Renyi 1960). SF networks –

first formalised by Price (1965, 1976) – are characterised by the presence of a few

nodes (“hubs”) with a high number of connections (“links”) to other nodes (a high

“degree”), and by a vast majority of nodes exhibiting a low number of links. The

term “scale-free” refers to the statistical properties deriving from the above char-

acteristics (see Newman 2003) and implies a great heterogeneity of the degree

distribution.

The probability distribution of the nodes’ degree x (its “degree distribution”) for
SF networks tends to decay following a power function:

PrðX ¼ xÞ � x�a: ð18:1Þ

For large x, the value of the exponent a in SF networks converges to 3 (Bollobás

et al. 2001). A direct relation follows between the power law and Zipf’s law (Zipf

1932), a distribution relating the degree of the nodes to their rank (Adamic 2000).

According to Zipf, the relation between these two variables is as follows:

x � r�b; ð18:2Þ

where r is the rank of the node concerned. The value of the exponent b is expected

to be 1. Following from the mathematical relation of the Pareto distribution (which

can be interpreted as a rank size rule) and power-law distributions (Adamic 2000),

the relation between (18.1) and (18.2) is given by:

a ¼ 1þ 1=b: ð18:3Þ

On the basis of the above considerations, we apply� in our empirical experiments�
(18.2) (in logarithmic terms), by then extrapolating the value of a according to (18.3).
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In contrast to SF models, random networks (RNs) belong to a long-established

class of networks (Rapoport 1957; Erdös and Renyi 1960). In an RN, the links

between nodes in the network are expected to arise randomly. As a result, the

probability of a node having degree x, Pr(X = x), follows, for a large-enough number

of nodes, a Poisson distribution, implying a homogeneous distribution of connec-

tions. Consequently, most of the nodes have a similar number of links and impor-

tance.

In our empirical application, we test whether the German commuting network

shows SF or RN characteristics, that is, if it is heterogeneous or homogeneous.

Consistently with (18.2), we adopt, in the RN case, the exponential equation (18.4),

where the degree of the nodes x is sorted in decreasing order:

x ¼ ke�br: ð18:4Þ

By synthesizing, the empirical evidence of rank size rules in urban economics,

biology, and other fields is strictly related to the underlying connectivity network

properties expressed by the associated power law. In other words, the rank size rule

advocated in spatial economic science and the power law advocated in social

sciences can be considered as two sides of the same coin, and hence interpreted

in a unifying perspective.1

The above analytical frameworks are tested, for the case of the German com-

muting network, in Sect. 18.3.2, subsequently to a preliminary spatial analysis.

18.3 Case Study: Dynamics of German Commuting

18.3.1 Spatial Analysis: The “Open Cities”

Before analysing the network properties of spatial commuting patterns, we will

synthesise the characteristics of the German database from a regional/spatial

perspective.

The data employed in our analysis refer to the registered residence and work-

place of all dependent employees in Germany, at two points in time: 1995 and 2005.

The data are aggregated in 439 German administrative districts, called Kreise
(NUTS-3), and were collected by the Federal Employment Services (Bundesanstalt
für Arbeit, BA) within social security services.2 We can then form an origin-

destination (OD) matrix, of dimension 439 � 439, which has, for each cell (i, j),
the number of employees living in district i and working in district j. In addition,

we classify the German districts with regard to their levels of urbanisation and

1See also Chap 19 by Reggiani, in this volume.
2Since the data are directly gathered at the single firm level, it is reasonable to expect low and non-

systematic measurement errors.
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surrounding agglomeration3 (BBR– Bundesanstalt für Bauwesen und Raumord-
nung) (Böltgen and Irmen 1997).

As indicators of the propensity to mobility of the districts, we employ indicators

of incoming and outgoing mobility, which we refer to as inward and outward

openness (authors’ adaption from van der Laan 1998). The inward openness of a

district indicates to which extent it attracts outside workers, and is computed, for a

generic district j, as the ratio between the number of employees of the district j
residing in other districts, and the total number of employees of district j:

X
i 6¼j

eij

.X
i
eij:

Similarly, the outward openness can be defined as the percentage of residents who

commute outside of their district, and is computed as:

X
j 6¼i

eij

.X
j
eij:

As a synthetic indicator of mobility (openness), we compute the average of inward

and outward openness. This synthetic openness measure represents the capacity of a

district to be “mobile” and, consequently, “active”. Van der Laan (1998, p. 238)

identifies high values of openness as possible signs of a “multi-nodal urban region”.

In Fig. 18.1, central cities (CBDs) and highly urbanised districts mainly emerge

as the most “active” in both 1995 and 2005. The Munich Landkreis results as

the most “open”. The higher concentration of population and economic activities

(located within or in the surroundings of the main cities) – or a mobile population

exploring new work opportunities – might explain this result (van Oort 2002).

Notable exceptions – with low openness values – are Berlin and the CBD of

Munich, due to their larger areas, which tend to contain commuting with the district

boundaries. Over the ten year period we observe a generalised increase in the

propensity to mobility, while a bigger positive variation can be found for the Berlin

area.

In this context, it could be interesting to explore whether the most “open” cities

seen above are also connected together in a city-network pattern. In summary, given

the mobility characteristics of the districts, it might be relevant to explore how these

are affected by the underlying connectivity networks, also in the light of the

findings supporting multinodality, recently presented in the literature (Batten

1995; van Nuffel and Saey 2005). The next section investigates this aspect.

3The districts are classified as follows: (1) central cities in regions with urban agglomerations; (2)

highly urbanised districts in regions with urban agglomerations; (3) urbanised districts in regions

with urban agglomerations; (4) rural districts in regions with urban agglomerations; (5) central

cities in regions with tendencies towards agglomeration; (6) highly urbanised districts in regions

with tendencies towards agglomeration; (7) rural districts in regions with tendencies towards

agglomeration; (8) urbanized districts in regions with rural features; and (9) rural districts in

regions with rural features.
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18.3.2 Network Analysis: The “Connected” Cities

18.3.2.1 Connectivity Distribution

An initial analysis of the network underlying the commuting activities can be

carried out by considering the statistical distribution of the data. In order to identify

the (network) attractiveness and the propensity to mobility of the districts, we

propose two exploratory approaches, based on the so-called indegree and on the

inward openness. First, the number of inward connections per district (indegree) is
examined, that is, from how many districts commuters come. From this viewpoint,

which regards the logical topology of the commuting network, it is relevant if there
is (any) commuting between two districts i and j, whatever its extent. Secondly, we
examine the inward openness of the districts (as defined above). In this case we

consider the commuting inflows, that is, the weights tied to the links. In this case,

the total inflows of each district are standardised by the number of jobs available

in-place.

We next interpolate our data with a power function and an exponential function

(see (18.2) and (18.4)). Table 18.1 shows the resulting R2 coefficients and the values

Legend
German NUTS-3 districts
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Fig. 18.1 Maps of openness of districts, 1995 and 2005 (Patuelli et al. 2009)

Table 18.1 R2 values and exponents for power and exponential interpolations of incoming

connections (indegree) and inward openness, 1995 and 2005

Year Indegree Inward openness

Power law Exponential Power law Exponential

1995 0.7002 0.9739 0.8027 0.9871

(exponent) (0.2442) (0.0022) (0.4623) (0.0039)

2005 0.6046 0.9316 0.7820 0.9859

(exponent) (0.2589) (0.0025) (0.4000) (0.0034)

Source: Patuelli et al. (2009)
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of the function exponents. For the case of the indegree distribution, an exponential

distribution fits well the degree decay, although with a sharp cut-off at the end, and its

exponent also remains extremely low in time. The R2 for the power function is lower

and also decreasing over time. On the other hand, its coefficient is more meaningful

from an economic point of view. Transforming the indegree power-law coefficient

according to (18.3), we obtain coefficients much greater than 3, suggesting random

network characteristics (that is, a homogeneous pattern). Overall, these findings

suggest the existence of a highly interconnected (logical) commuting network. How-

ever, the ambiguity between exponential and power law suggests that no clear

agglomeration-pattern can be inferred in the case of the indegree distribution.

As for the indegree distribution, the distribution of the inward openness remains

fairly stable in the 2 years considered, and the exponential function better inter-

polates the data. However, the power function also has a high R2. In addition, the

exponent values for the power interpolation are now higher (0.40–0.46), which

implies transformed power-law coefficients greater than4 3. Overall, this prelimi-

nary data exploration shows that the exponential function is a better fit to both the

indegree and the inward openness distributions, thus suggesting – according to

these variables – an equilibrated network. This result is indeed in agreement with

the associated rank size rule (18.2), since power-law coefficients smaller than 1

indicate an even spatial distribution of the two variables at hands (indegree and

openness) (Brakman et al. 2001).

18.3.2.2 Network Indices

After exploring the data and their distribution, we provide a set of synthetic indices,

which describe three principal aspects exploring the network under different per-

spectives: (a) centralisation; (b) clustering; and (c) variety/dispersion.

Network centralisation is an aggregate assessment of the degree of inequality of

a network. It may be computed on the basis of individual node centrality measures.

The “centrality” of a node may be seen as a measure of its structural importance.

The centrality index presented here may be called indegree centralisation, and is

based on the concept of relative degree centrality of nodes, which measures the

“visibility” of a node. This concept can be linked to the one of “hub” (Latora and

Marchiori 2004), since the most visible nodes can be considered as hubs. The index

only considers direct connections (indirect connections can only be considered if

the transportation infrastructure is included in the analysis), and, in our case, only

inward connections are considered (hence, the denomination “indegree centralisa-

tion”), in order to show the nodes’ attractiveness for outside workers. Relative

4Our result would vary if we imposed a minimum threshold on the flows associated with each

network link. A threshold set at three would support a finding of scale-free characteristics of the

commuting network.
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indegree centrality (rici) is computed, for each node i, as the ratio between the

observed and the maximum possible number of connections of a node (n – 1):

rici ¼ indegreei=ðn� 1Þ;

where n is the total number of nodes. Consequently, the aggregate network indegree

centralisation (NIC) index is computed, similarly to Freeman (1979), as:

NIC ¼
X
i2N

ðric� � riciÞnðn� 2Þ;

where ric* is maxi (rici).
The second index we compute refers to network clustering. Network clustering

coefficients have been used extensively in network analysis (see, for example, Watts

and Strogatz 1998) in order to determine the level of interconnectedness of networks.

In order to compute a clustering coefficient for a node, we need to define its neighbour-

hood, which is given – if first order relations only are considered – by the nodes directly

connected to the node concerned. A clustering coefficient for node i is then computed

as the ratio of the number of links existing between its neighbours and the maximum

number of links that may exist between the same (neighbours): ci ¼ li
�
l�i ; where li

and l�i are the actual and possible number of links in node i’s neighbourhood, respec-
tively. A synthetic network clustering coefficient is then computed as the average of the

single nodes’ coefficients. Clearly, if n-order neighbours are considered, a node’s

neighbourhood is represented by all the nodes that can be reached in n hops.
As a third index, in order to assess the variety/dispersal of the nodes, we use an

entropy indicator. Entropy is a concept derived from information theory (Shannon

1948) and widely used in spatial-economic science (Wilson 1967, 1970). Entropy is

employed here as an indicator of the probability that the flows observed are

generated by a “stochastic spatial allocation process” (Nijkamp and Reggiani

1992, p. 18). Higher entropy levels indicate that the flows are more homogeneous

and dispersed over the network. The indicator E is computed as:

E ¼ �
X

ij
pij ln pij;

where

pij ¼ tij
�
Oi:

In pij, tij is the number of commuters between districts i and j, while Oi is the

outflows of district i.
Table 18.2 presents the results obtained for the German commuting network for

the three indices described above, for the years 1995 and 2005. Though without

dramatic changes, the network shows two distinct trends over 10 years. On the one

hand, the network becomes less centralised, while the entropy increases. These
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results imply a more distributed structure of the network. On the other hand, the

clustering coefficient of the network grows, suggesting a tendency towards greater

interconnectivity. These results seem to confirm the findings emerging in our spatial

analysis (Sect. 18.3.1), highlighting the network’s tendency towards a multinodal

structure (van der Laan 1998).

A graphical representation of the tendency towards greater interconnectivity in

the commuting network can be obtained, for 1995 and 2005, on the basis of the

“k-core” concept (Fig. 18.2), again from an inward connections viewpoint. A k-core
is a subgraph (or more) in which each node has a minimal degree (in our case,

indegree) of k, that is, each node in the k-core has connections with at least k other
nodes in the subgraph (Holme 2005). For a more meaningful computation and a

readable graph, we select a subsample of the data, consisting of the flows above the

arbitrary threshold of 1,000 individuals per OD pair. We find � for both 1995 and

2005 � k-cores of level 4, comprising first 13 and then 33 districts.

For the year 1995, the small core of 13 districts identifies a local and heavily

interconnected network, headed by Düsseldorf and Dortmund, showing intense

horizontal (local) relations. The fact that other districts do not appear in the

4-core does not mean that they have no reciprocal flows of commuters with the

core districts. Simply, these other nodes do not feature the minimum levels of

interconnectedness and flows of the core nodes, although they can show several

flows much greater than 1,000 individuals. Frankfurt is a clear example. If we

consider the year 2005, a larger graph of 33 districts is found. Here, the Düsseldorf/

Dortmund cluster increases, and it represents most of the core. But it is noteworthy

to cite the function of Frankfurt, which now acts as a hub, connecting the Frankfurt

(code 6412) local cluster to the main Düsseldorf/Dortmund cluster.

Overall, the results of the network analysis seem to confirm the multinodal

structure of the German commuting network (especially at the local level), while

a b

Fig. 18.2 “4-cores” in the commuting network: (a) 1995; (b) 2005 (Patuelli et al. 2009)

Table 18.2 Descriptive indices for the German commuting network, 1995 and 2005

Indices 1995 2005

Indegree centralisation 0.33 0.31

Clustering 0.59 0.63

Entropy 8.23 8.38

Source: Patuelli et al. (2009)
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also suggesting an increased connectivity among the major centres � as centrality

decreases over time � and, consequently, a tendency towards two layers of multi-

nodality: (a) at the local level; and (b) at the regional level (the city-network level).

As also seen by van Nuffel and Saey (2005, p. 326) and by van der Laan (1998,

p. 244), these relations between the main centres do not overshadow local links –

which still carry most of the mobility � but complement them.

18.4 Multidimensional Synthesis: The Network

of the “Open” and Connected Cities

As a final step of this research endeavour, it is worthwhile to map out the hierarchies

of the districts and their persistence over time, in order to identify the main relevant

centres from both a spatial and a network viewpoint. We aim to offer a “synthetic”

measure of the multiple spatial and connectivity dimensions observed above, by

using a multidimensional method well known in the spatial-economic literature,

known as multicriteria analysis (MCA). The synthetic assessment of the district

characteristics – from the spatial and the connectivity perspectives – allows us to

define a dominance rank of the districts concerned, and to investigate the changes

which occurred in this rank over the period 1995–2005.

In order to look at the most representative districts only, we select a subsample

of districts (“alternatives”) to be employed in our MCA, using a synthetic connec-

tions-flows (CF) index, computed, for each district i, as

ðCFÞi ¼ ½Ci=maxiðCiÞ��½Fi=maxiðFiÞ�;

where Ci and Fi are the number of incoming connections (the indegree) and the

inward openness of district i, respectively. The index is the product of the two

normalised indicators Ci and Fi, and is constrained from 0 to 1. It aims to provide a

balanced assessment of the openness and connectedness of the districts, that is, from

the conventional spatial interaction perspective and from the network perspective,

respectively. On the basis of the CF index, we select 26 districts (listed in Table

18.3), which appear among the top 30 districts for both 1995 and 2005. Such a large

group of “open” districts (26 of 30) over a 10-year period suggests an overall stability

of the upper tier of the districts, according to the CF index. The districts selected,

with a few exceptions, are urban districts – that is, central cities of type 1 and 5.

We carry out the MCA5 on the basis of two aggregate assessment criteria

(macro-criteria): spatial mobility (inward and outward openness) and connectivity

(relative indegree centrality and clustering coefficients). We proceed in two steps: first,

5We employ the regime multicriteria method Hinloopen and Nijkamp (1990). In detail, three

scenarios have been considered: (a) equal weights to all criteria; (b) ascending weights; and (c)

descending weights. A final MCA of the rankings obtained provides the final results. We assume

the hypothesis of no correlation between the criteria employed in the MCA.

266 R. Patuelli et al.



by carrying out an MCA for each macro-criterion6 and, second, by carrying out a

final MCA which synthesises the two previous analyses.

With respect to the MCA based on spatial-economic indicators (spatial mobility

macro-criterion), the results (presented in Table 18.3) show that Munich (Land-
kreis) steadily occupies the first position. Moreover, the ranking of the top districts

is rather stable over the period considered. The results of the secondMCA, based on

the connectivity macro-criterion, provide – in 1995 – a different ranking, as the

main cities are dominant. As seen earlier for the k-core analysis, Düsseldorf

emerges from a network perspective. Further large cities, such as Frankfurt, Stutt-

gart and Munich, follow. We can also note that, with the exception of Munich, the

districts that headed the spatial MCA rankings only perform intermediately in the

connectivity MCA.

The final MCA results, synthesising the two preceding analyses, can be sum-

marised along a few main observations. The district of Munich (Landkreis) – which
also happens to be the richest German district according to per capita GDP –

emerges as the most dominant for both 1995 and 2005, while a reshuffling in the

rank of the districts can be observed over the 10-year period. Other districts seem to

emerge. In particular, these are: Wiesbaden (from 7th to 2nd), Mannheim (14th to

6th), Frankfurt (12th to 8th), Stuttgart (15th to 11th), Düsseldorf (18th to 13th) and

Karlsruhe (21st to 14th). The progress observed for these districts is mainly due to

the connectivity macro-criterion. In other words, their high clustering coefficients

show that the above districts are oriented towards stronger agglomeration patterns,

in addition to their openness.

The findings summarised here lead us to propose a reinterpretation (or integra-

tion) in an economic sense of the concept of hub (for conventional hub definitions,

see Barabási 2003), on the basis of a node’s capacity of not only attracting

connections from many other nodes, but also of generating an increased propensity

to mobility. This double role by a few main nodes may drive the network towards

multinodal characteristics.

However, although the districts emerging in the above analysis are the most

“open” and “active”, they still cannot be considered as the main “attractors”. If we

want to explore this characteristic, we then have to use, in the CF index computa-

tion, different variables (such as inflows or workplaces), in order to detect the

relevance of the destinations, as the attraction models in the transport literature

suggest.7

6The two macro-criteria employed here clearly identify two different types of phenomena: Spear-

man’s correlation between the rankings resulting from the spatial and connectivity MCAs is equal

to –0.369 for 1995 and to –0.311 for 2005. This is confirmed by the cross-correlations between the

spatial and the connectivity criteria, which range – in absolute values – from 0.066 to 0.501.
7In this context, had inflows and outflows been employed as criteria within the spatial mobility

macro-criterion, a ranking similar to the one obtained for the connectivity macro-criterion would

have emerged.
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18.5 Conclusions

This chapter has attempted to provide a novel analysis of commuting data and their

trends, investigating both the spatial distribution of work mobility and the underly-

ing logical commuting network. We have analysed data on journey-to-work trips

for 439 German districts, for the years 1995 and 2005.

From a spatial perspective, we searched for the most mobile and “open” centres,

with a particular focus on the openness of different typologies of districts. From the

network perspective, we first considered the distributional properties of mobility

indicators such as inward openness and indegree. We then computed aggregate

indicators showing the evolution of the commuting network structure. Overall, we

found evidence of the presence, in addition to a local and strongly interconnected

network, of a regional network, which, however, does not overshadow established

local patterns (see, for example, the results of the k-core analysis).8

In order to provide a unifying perspective, we synthesised the two (spatial and

network) analyses by carrying out a multicriteria analysis (MCA). The MCA

allowed us to observe, through a systematic assessment of the various indicators

computed that the German districts are stable at the spatial mobility level, that is,

with regard to their hierarchies. In addition, the results of the connectivity-based

MCA show that the clustering coefficient indicator appears to influence most

network connectivity, as suggested by Watts and Strogatz (1998).

A number of further research directions can be traced, in order to push further

(or to fully exploit) the multidisciplinarity of the analytical approach proposed

here. From the theoretical viewpoint, a deeper investigation of the influence of

distance, travel time and accessibility, as well as of labour market characteristics,

on commuting would be commendable. In this regard, and in order to better

understand the relationship between the spatial economy and its underlying inter-

action networks, further research should frame our approach within more extensive

regional labour market theoretical models (for example, the one developed by

Blanchard and Katz (1992)). A further investigation of local commuting networks

and agglomeration economies could be sought by integrating power-law-based and

Zipf’s-based evidence. Behavioural analysis at a micro-level (or taking into ac-

count different socio-economic groups) would also be fruitful, in order to test the

aggregate behaviour.

From the methodological viewpoint, additional topological characteristics, such

as betweenness-based centrality measures, should be investigated by means of a

joint network/physical infrastructure analysis. Moreover, incorporating physical

infrastructure would allow us to fully exploit network analysis tools, and to inspect

widely relevant policy issues, such as infrastructure criticalities and bottlenecks.

8If high-degree nodes were found to be also connected to each other, then highly interconnected

clusters could emerge, possibly leading, according to Holme (2005), to a core-periphery network

structure (Chung and Lu 2002). Most importantly, Holme shows that transportation networks

(more generically, geographically-embedded networks) tend to share this characteristic.
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An integration of spatial and network-based measures into spatial econometric

interaction models (see, for example, Griffith in this volume) should also be sought,

in particular in order to investigate the relationship between clustering and network

autocorrelation.

From the empirical viewpoint, the study of pre- and post-unification commuting

networks in Germany, as well as of alternative geographical settings (for example,

islands; see Chap 17 by De Montis et al. in this volume) and aggregation levels,

could provide much needed information on the different long-run evolution of

commuting networks.

All in all, the integrated “space-network” approach seems to offer novel path-

ways for the analysis of commuting and the associated interacting economic

activities.
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Chapter 19

From Complexity to Simplicity

Interdisciplinary Synthesis and Future Perspectives

Aura Reggiani

19.1 Conceptual Background

“Near is beautiful” was argued by Miller (2004, p. 248) in his essay on “Tobler’s

First Law and Spatial Analysis”. The awareness has also grown that relations

among things that are near can generate complex spatio-temporal phenomena.

The simplicity of Tobler’s law1 invokes reflections on the complexity2 of interact-

ing phenomena and the ‘simple’ laws which have been articulated in the scientific

literature when attempting to ‘decode’ these phenomena. Certainly, from a spatial

economic viewpoint, Tobler’s law is consistent with the minimum cost-distance

principle. In addition, Miller sheds light on the meaning of ‘near’ and ‘distant’: near

is central to the space-economy, it is a more flexible and powerful concept than is

often appreciated, and it could be expanded to include both space and time. Thus,

not only (near or distant) space, but also the time component is fundamental in the

analysis of the interacting economic phenomena. In parallel with Tobler, Häger-

strand (1967) pointed to the relevance of joint space-time diffusion processes, and

Wilson (1967) linked spatial interaction with statistical information principles and

entropy laws. An associated microeconomic foundation of spatial interaction mod-

elling was subsequently developed by Anas (1983) on the basis of random utility

theory (McFadden 1974). Later on, Nijkamp and Reggiani (1992) linked dynamic

entropy with (dynamic) spatial interaction models.

A. Reggiani

Department of Economics, Faculty of Statistics, University of Bologna, Bologna, Italy

1“Everything is related to everything else, but near things are more related than distant things”
(Tobler, 1970, in Miller, 2004, p. 284; see also the introductory Chap 1 by Reggiani and Nijkamp

in this volume).
2We can identify and describe in a meaningful way the fundamental feature of complexity as

follows (Bossomaier and Green 2000, p. 5): “The essence of complexity is the outcome should not
be obvious from the simple building blocks”. For a discussion on the concept of complexity, see

also Chap 5 by Kulkarni et al., Chap 6 by Couclelis, Chap 12 by Donaghy, and Chap 14 by Seel

and Waters, in this volume.

A. Reggiani and P. Nijkamp (eds.), Complexity and Spatial Networks,
Advances in Spatial Science,

DOI: 10.1007/978-3-642-01554-0_19, # Springer‐Verlag Berlin Heidelberg 2009
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The clear methodological interrelationships between the above-mentioned

theories and models call for further reflections on the complexity of space-time

phenomena and the simplicity of the laws describing these phenomena. The primary

idea of complexity concerns the mapping of a system’s non-intuitive behaviour,

particularly the evolutionary patterns of connections among interacting components

of a system whose long-run behaviour is hard to predict (Casti 1979). But, particu-

larly at a dynamic level, it is noteworthy that May’s law (May 1976) – describing

the evolution of a population in discrete terms by means of a simple logistic

equation – shows irregular and chaotic (and thus unpredictable) characteristics

for certain values of the parameters and initial conditions. Also the ‘complex’

interacting evolution of two species can be described by the ‘simple’ Lotka–

Volterra equations, whose analytical form is based on two interrelated logistic

equations, and, surprisingly, the dynamic logistic equation turns out to be to be

the dynamic form (under a certain condition of the utility function) of the associated

logit model, and hence of the related spatial interaction model of the Wilson type

(Reggiani 2004).

The recent enormous interdisciplinary interest in network3 concepts, analysis, and

modelling – arising from the study of complex interconnected dynamic systems –

again underlines the ‘simplicity law’. Networks often show common behaviour,

based on their topological characteristics, and this behaviour is mainly derived

from exponential/power forms, which are strongly related to the equations that

govern spatial interaction (see Table 19.4 in Sect. 19.2). In other words, the topologi-

cal properties of a network can give useful insights into: how the network is

structured; which are the most ‘important’ nodes/agents; and how network topology

can influence the conventional spatial economic laws (such as equilibrium theory,

spatial interaction theory, etc.). However, this topology structure is again expressed

by very simple laws, and in most cases these laws can be interpreted in a spatial

economic framework. For example, if we find – in certain complex network typol-

ogies – the well-known Albert and Barabási (1999) power-law model, we may infer a

rank-size rule of the Zipf (1949) type; or, if we calculate the redundancy of a node, in

order to test the ‘structural’ holes (Burt 1992) in a network, we end up with a function

strictly related to the entropy concept – concerning spatial economic systems –

developed by Wilson (1970).

By considering whether different network topologies/typologies affect the

evolutionary trajectories of complex spatial systems, the following methodological

questions can be considered as fundamental points of concern:

l How do network structures affect interaction?
l How do changes in networks lead to changes in equilibrium structure?
l Are utilities a function of network structures?
l Do the functional forms of utility functions depend on the network structures?

3Networks can be interpreted as complex interconnected space-time systems, given the nonlinear

characteristics of the network structure. For a brief review on complexity and networks, see among

others, Chap 1 in Reggiani and Nijkamp (2006).
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In this framework, it is still an open research issue which specific and novel con-

tributions network analysis can offer to spatial economic analysis, and – vice versa –

whether the solidity of spatial economic laws needs to be reconsidered in the light of

recent advances in complexity and network theory. Hence, a dual analysis is neces-

sary, in order to explore potential connections between these two approaches. In this

respect, a synthesis of preliminary reflections is presented in the subsequent sections.

19.2 Spatial Economic Analysis and Network Analysis:

A Dual Perspective

Spatial structures matter, according to different distributions of the centres/

industries (on the basis of the Zipf’s/Gibrat’s law4), as witnessed by an extensive

literature,5 starting from Simon (1955) to Krugman (1996), Gabaix (1999),

Duranton (2002), and Batty (2005), among others. These authors investigate the

economic meaning of Zipf’s/Gibrat’s law, in particular exploring how agglomera-

tion economies can be consistent with the city-size distribution and its growth (see

also Rossi-Hansberg and Wright 2006).

Topological structures matter, according to different types of connectivity

(Barabási and Oltvai 2004). It should be noted that, recently, there have been a

great number of contributions which deal with topology, connectivity and networks

in economic and social sciences (Goyal 2007; Friesz 2007; Naimzada et al. 2009;

Vega-Redondo 2007; Vervest et al. 2009). By referring to Barabási’s work, in

essence, the statistical distribution of the links between centres/nodes can be

expressed as follows:

l (a) Poisson distribution6: random network
l (b) Power distribution7: scale-free network (with the possibility of hubs8)

4The proposition established by Gibrat (1931) is that the proportionate growth process (that is, the

growth rate of a city’s population does not depend on the site of the city) gives rise to the log-

normal distribution, and not to the power distribution (that is, Zipf’s law; see Eeckhout 2004).
5See also Chap 3 by Benguigui et al. as well as Chap 10 by Frenken, in this volume.
6Poisson distribution:

P kð Þ / e� kh i kh ik
k!

;

where P(k) is the probability that a chosen node – in a certain network – has exactly k links.

Random networks are also called exponential, because the probability that a node is connected to k
other sites decreases exponentially for large k.
7Power law distribution: P kð Þ / k�g, where g is the exponent.
8Hubs are the preferential nodes/attractors in a network (hub: a single vertex with a large number

of connections). A hub configuration/hierarchy exists for 2 � g< 3, according to Barabási and

Oltvai (2004).
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It would be interesting therefore to look at the similarities and differences between

these two fields of analysis (spatial economics and networks), in the light of their

fundamental simple laws (Table 19.1).
Surprisingly, the rank size coefficient equal to 1 means that Zipf’s law holds. On

the right side of Table 19.1, the power law coefficient equal to 2 means a hub-and-

spoke network, according to Barabási and Oltvai (2004). By combining these two

findings we might test whether the largest cities in Zipf’s law are the hubs in the

network connectivity of cities, for example, by considering the existence of com-

muting (whatever the volume) to be a link.

Further, we can certainly infer – in spatial economics – an analytical relationship

between Zipf’s law, the rank-size rule, and Wilson’s (1967) spatial interaction

models (SIMs)9 (see also Brackman et al. 2001).

In addition, SIMs emphasise the homogeneity or heterogeneity of centres by

means of different forms of the associated (negative) impedance cost functions f(tij)
(see also Olsson 1980; Parr 1985; Richardson 1969). To summarise, the following

association between decay form and spatial structure seems to emerge, as shown in

Table 19.2.

It should be noted that the topological/connectivity structure has not been

explicitly taken into account in SIMs, even though it is certainly “hidden” in the

flow and time/cost matrix.

For example, recent empirical experiments concerning commuting in Germany

show how accessibility functions based on the above deterrence forms (a) and (b)

Table 19.1 Dual analysis

Spatial economic analysis Network analysis

Spatial structure Topological structure

Statistical distribution of city population

(Rank-size rule)

Statistical distribution of nodes (with k links)

Rank-size coefficient (minus or greater than 1) Power law coefficient (minus or greater than 2)

Homogeneity vs. Heterogeneity Homogeneity vs. Heterogeneity

Table 19.2 The association between decay form and spatial structure (the coefficients b and g
represent the time/cost-sensitivity parameters)

Deterrence form Spatial structure

a) f ðtijÞ ¼ e�btij (Exponential-decay) Homogeneity of centres (regular/isotropous space)

b) f ðtijÞ ¼ t�g
ij (Power-decay) Heterogeneity of centres (agglomeration economies)

9In general an (unconstrained) SIM reads as follows:

Tij ¼ KOiDjf ðtijÞ;
where the flows Tij represent the flows (commuting, trade, ideas, etc.) from origin i to the

destination j. They are a function of the outflows Oi and of the inflows, Dj, as well as of the

deterrence function f ðtijÞ; tij is the travel time (or travel cost) between i and j; the parameter K is a

scaling factor.
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can give rise to completely different hierarchical orders and patterns. In particular,

accessibility based on the exponential-decay function shows smooth patterns (likely

due to regular connectivity structures), while accessibility based on the power-

decay function displays high levels of discrepancy (likely due to the presence of

“privileged” nodes (hubs), to which all the other nodes prefer to be attached). In

other words, the exponential-decay function in accessibility seems to capture the

hypothesis of a homogeneous network, while the power-decay function in the

accessibility seems to grasp the hypothesis of a hub network (Reggiani 2008).

The various analytical forms of the impedance function applied to interaction/

movement and the statistical distribution of the nodes seem therefore to constitute

two sides of the same coin. In more general terms, we can consider a “methodologi-

cal” synthesis scenario, as in Table 19.3, which highlights that economic variables

might be better interpreted by jointly exploring the associated connectivity struc-

ture (and vice versa).

The related theoretical foundations, approaches, and functional forms are sum-

marised in Table 19.4. It should also be noted here that the theoretical foundations

and emerging approaches in spatial economics (such as gravity models/spatial

interaction models/logit models) are analytically compatible and thus intrinsically

connected, as mentioned in the previous section.

Furthermore, Table 19.4 indicates the use of the exponential and the power

function in both disciplines (spatial economics and network analysis).

Much interesting “debate” on the exponential versus the power form in model-

ling interacting activities has already taken place in the past literature. It should be

noted that the SIM embraces not only the exponential form but also the power form,

Table 19.4 An interdisciplinary synthesis: relevance of exponential/power forms in spatial

economics and network analysis

Theoretical

foundations

Emerging

approaches

Functional

forms

Spatial economics

Newton’s law (1960s)

(macro-level)

Gravity model Power form (decay function)

Entropy maximization

(macro-level) (1970s)

Spatial interaction model Exponential/power form

(decay function)

Utility maximization

(micro-level) (1980s)

Logit model Exponential form

(utility function)

Network analysis

Complex networks

(micro-macro level) (1990s)

Random/scale-free

network

Exponential/power form

(statistical distribution)

Table 19.3 Synthesis scenario: two sides of the same coin

Spatial Economic analysis Network analysis

(Complex) interactions between nodes (Complex) interactions between nodes

Focus on the related economic variables Focus on the related links

Focus on the economic meaning of the

functional forms

Focus on the connectivity patterns of the

functional forms
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if, by maximizing an entropy function, the cost constraint is expressed in a

logarithmic form. In this context, Haynes (1974) stressed the advantage of the

exponential-decay form for modelling both human and animal activities as opposed

to the power model.

On the other hand, Bak (1996) and Pumain et al. (2006), among others, indicated

the relevance and ubiquity of the power law in nature, as well as in urban economics,

and hence its role as a “transversal tool” to many sciences.

In the spatial economic field, the essential analytical difference is that the expo-

nential-decay exhibits a straight line in its semi-logarithmic transformation, while the

power-decay is transformed into a straight line by considering its logarithmic

transformation. All in all, the difference between these two functions consists of

semi-logarithmic versus logarithmic axes. Consequently, it seems that either the

semi-logarithmic or the logarithmic expression10 of two variables under analysis is

able to identify and fit – at an aggregate level – the interacting phenomena between

these two variables.

In the network field, we might also observe a strict relationship between the

power law and the exponential distribution, by means of what are called “combina-

tions of exponentials” (Newman 2005).

It is interesting to note here that, in the evolution of the economic network a

“complexity” view is based on the interaction represented by heterogeneous agents

who behave boundedly rational. In this context, strategy choice might follow an

evolutionary selection principle of the dynamic logit type.11 Here the b parameter,

interpreted as the “intensity of choice”, indicates the “random” or “preferential”

behaviour of agents (from zero to very large values, respectively). The same

happens in the context of the evolution of the social network, in the presence of

noise.12 Here, gradual adjustment and learning in games is modelled by the logit

form, where the b parameter indicates the sensitivity of agents’ adjustment to their

local environment. Again the b parameter, for very low values close to zero,

modulates the actions chosen with the same probability (that is, random network).

All in all, the role of the b parameter in economic network analysis is relevant

(see Table 19.5).

Table 19.5 The association between the b parameter in the exponential logit form and the

economic network of agents

b Parameter in the exponential logit form Economic networks (agents)

(b = 0) Random behaviour of agents

(b = 1) Preferential behaviour of agents

10Of course, the combination of exponential and power in the decay function is also possible, as,

for example, in the Tanner function (for example, see March, 1971).
11See Chap 7 by Hommes.
12See Chap 8 by Ehrahardt et al.
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The relationship in Table 19.5 shows a clear connection with the exponential-

decay form in Table 19.2. There the “space” is expressed by the time/cost interac-

tion matrix between the zones, while here it is “hidden” in the utility of the agents.

Again (the dynamic) logit form turns out to be a simple model which “decodes”

complexity and seems to be the “core model” in different disciplines.

Empirical applications concerning these matters show the possibility of mapping

out: “simple” logit/spatial interaction models by means of a multi-agent simulation

approach for the transport mode choice13; and dynamic spatial interactions between

urban form and transport,14 between population and spatial employment,15 and

between commuting and spatial employment.16

The methodological considerations outlined above, mainly concerning the

“ubiquity” of the exponential/power form in several disciplines, call for reflections

on the underlying economic meanings and theories (see Tables 19.4 and 19.5), and

hence for synergy and cross-fertilization between these three scientific fields

(spatial economics, network economics and network science). For example, it is

necessary to have more understanding of the linkages between the theories in

spatial economics (for example, between maximization of entropy at the aggregate

level and maximization of random utility at the micro-level) and of the theories

underlying network analysis. Consequently, a series of research issues need to be

investigated in this context.

19.3 Towards a Research Agenda

19.3.1 Methodological Issues

Some methodological questions can now be highlighted with reference to the

synthesis presented in Tables 19.1–19.4, and hence to possible research topics

connecting spatial economics and network analysis:

l Agglomeration of economic activities and connectivity: Are the centres – more

important from the economic viewpoint or more “open” to innovation, growth

and mobility – also the more connected? And vice versa: If the infrastructure

network is randomly or scale-free connected, is this also the case for the

associated economic variables/activities?
l Utility models and topological structures: Do topological structures (for example,

random and scale-free networks) influence individual/aggregate utility/choice

functions? And hence, which choice models/utility functions are associated with

13See Chap 13 by Grether et al.
14See Chap 4 by Medda et al.
15See Chap 15 by Schintler and Galiazzo.
16See Chap 16 by Griffith, Chap 17 by De Montis et al., and Chap 18 by Patuelli et al.
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random/scale-free networks? If we conjecture that a logit model underlies a

random network (depending on the b parameter), likewise a “nested logit”

model might underlie a scale-free network.
l Entropy and constraints: Entropy seems to be fundamental in the three fields of

analysis (that is, spatial economics, network economics, and network science),

since it can be considered as an “order parameter”17 for identifying the concen-

tration of the network. However, further reflection on the maximization of

entropy, cost constraints, and emerging equilibrium models is necessary.
l Structural holes: Structural holes (Burt 1992) are the missing nodes connecting

the networks. They can be filled by hubs, but how can they be analytically

identified? Which is the related utility function?
l Interdisciplinary integration: Finally, would be it possible to consider an inte-

gration of the two field of analysis: for example, by considering different types

of decay functions in the preferential attachment in a scale-free network?

The above research issues are obviously not exhaustive. Essentially, they indicate

that a strong interdisciplinary effort is needed, in order to capture and map out the

dynamics and complexity of spatio-temporal patterns and phenomena, and under-

stand their relevance for scenario analyses and policy strategies.

19.3.2 Policy Issues

The interest – in both disciplines (that is, spatial economics and network science) –

concerning the analysis and modelling of network connectivity and evolution, also

reflects the relevance of this theme from a policy viewpoint. For example, decision

tools that strongly influence the topology and dynamics of the network might

include the cost/utility functions of enlarging the network and/or the cost of adding

a new node/link.

Thus new policy issues that can be raised in this context are, among others:

l New strategies in relation to innovative scenarios in connectivity networks (for

example, as a result of the death/emergence of hubs, new clustering and orga-

nizations, new locations of firms, etc.).
l The construction of (dynamic) optimization problems based on collective utility

functions (for example, max interaction/entropy) subject to some constraints (for

example, random/scale free network indicators, in addition to individual or

aggregate cost functions). It is interesting to note here the relevance of the

constraints.18

l The ‘empirical’ research of the b parameters (previously discussed) in order to

extrapolate network behaviour, in the light of suitable forecasting.

17See also Chap 2 by Wilson in this volume.
18See also Chap 9 by Ricottilli, and Chap 11 by Friesz et al., in this volume.
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l The identification of the (economic and social) accessibility with each type of

network (random, preferential, etc.).
l The evaluation of new (dynamic) emerging scenarios (new configurations of

connections and interactions, new forms of accessibility, etc.).

The research agenda summarised above might be a platform from where to depart

for both original theoretical and empirical research, with the aim of jointly explor-

ing the two fields of analysis (spatial economics and networks). In this context, the

role of micro-behavioural attitudes deserves particular attention, and there is also a

need for “dynamic” data provision, together with appropriate statistical tests for the

verification of the underlying spatial economic and network processes/patterns.

Meta-analysis on the transferability of results might then lead to the inference of

the final “simple” law(s) that can unify complexity in the findings.
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