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Abstract Satellite gravity gradiometry (SGG) is an ultra-sensitive detection technique of the
space gravitational gradient (i.e., the Hesse tensor of the Earth’s gravitational potential). In this
note, SGG – understood as a spacewise inverse problem of satellite technology – is discussed
under three mathematical aspects: First, SGG is considered from potential theoretic point of
view as a continuous problem of “harmonic downward continuation.” The space-borne gravity
gradients are assumed to be known continuously over the “satellite (orbit) surface”; the purpose
is to specify sufficient conditions under which uniqueness and existence can be guaranteed. In
a spherical context, mathematical results are outlined by decomposition of the Hesse matrix
in terms of tensor spherical harmonics. Second, the potential theoretic information leads us to
a reformulation of the SGG-problem as an ill-posed pseudodifferential equation. Its solution
is dealt within classical regularization methods, based on filtering techniques. Third, a very
promising method is worked out for developing an immediate interrelation between the Earth’s
gravitational potential at the Earth’s surface and the known gravitational tensor.

 Introduction

Due to the nonspherical shape, the irregularities of its interior mass density, and the movement
of the lithospheric plates, the external gravitational field of the Earth shows significant varia-
tions. The recognition of the structure of the Earth’s gravitational potential is of tremendous
importance for many questions in geosciences, for example, the analysis of present day tectonic
motions, the study of the Earth’s interior, models of deformation analysis, the determination
of the sea surface topography, and circulations of the oceans, which, of course, have a great
influence on the global climate and its change. Therefore, a detailed knowledge of the global
gravitational field including the local high-resolution microstructure is essential for various
scientific disciplines.

Satellite gravity gradiometry (SGG) is a modern domain of studying the characteristics, the
structure, and the variation process of the Earth’s graviational field.The principle of satellite gra-
diometry can be explained roughly by the following model (cf. > Fig. ): several testmasses in a
low orbiting satellite feel, due to their distinct positions and the local changes of the gravitational
field, different forces, thus yielding different accelerations. The measurements of the relative
accerlerations between two test masses provide information about the second-order partial
derivatives of the gravitational potential.More concretely, measured are differences between the

t0

t1

⊡ Fig. 
The principle of a gradiometer
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displacements of opposite test masses.This yields information on the differences of the forces.
Since the gradiometer itself is small, these differences can be identified with differentials, so that
a so-called full gradiometer gives information on the whole tensor consisting out of all second-
order partial derivatives of the gravitational potential , i.e., the Hesse matrix. In an ideal case,
the full Hesse matrix can be observed by an array of test masses.

On  March , the European Space Agency (ESA) began to realize the concept of SGG
with the launch of the most sophisticated mission ever to investigate the Earth’s gravitational
field, viz. GOCE (Gravity and Ocean Circulation Explorer). ESA’s -ton spacecraft carries a set
of six state-of-the-art high-sensitivity accelerometers to measure the components of the gravity
field along all three axes (see the contribution of R. Rummel in this issue for more details on
the measuring devices of this satellite). GOCE is producing a coverage of the entire Earth with
measurements (apart from gaps at the polar regions). For around  months GOCE will be
gathering gravitational data. In order to make this mission possible, ESA and its partners had
to overcome an impressive technical challenge by designing a satellite that is orbiting the Earth
close enough (at an altitude of only  km) to collect high-accuracy gravitational data while
being able to filter out disturbances caused, e.g., by the remaining traces of the atmosphere.

It is not surprising that, during the last decade, the ambitious mission GOCE motivated
many scientific activities such that a huge number of written material is available in different
fields concerned with special user group activities, mission synergy, calibration as well as vali-
dation procedures, geoscientific progress (in fields like gravity field recovery, ocean circulation,
hydrology, glacialogy, deformation, climatemodeling, etc), datamanagement, and so on. A sur-
vey about the recent status is well-demonstrated by the “ESA Living Planet Programme,” which
also contains a list on GOCE-publications (see also the contribution by the ESA-Frascati Group
in this issue, for information from geodetic point of view the reader is referred, e.g., to the notes
(Beutler et al. ; ESA ; ESA ; Rummel et al. ), too). Mathematically, the litera-
ture dealing with the solution procedures of problems related to SGG can be divided essentially
into two classes: the timewise approach and the spacewise approach. The former one considers
the measured data as a time series, while the second one supposes that the data are given in
advance on a (closed) surface.

This chapter is part of the spacewise approach, its goal is a potential theoretically reflected
approach to SGG with strong interest in the characterization of SGG-data types and tensorial
oriented solution of the occuring (pseudodifferential) SGG-equations by regularization. Partic-
ular emphasis is laid on the transition from scalar data types (such as the second-order radial
derivative) to full tensor data of the Hesse matrix.

 SGG in Potential Theoretic Perspective

Gravity as observed on the Earth’s surface is the combined effect of the gravitational mass
attraction and the centrifugal force due to the Earth’s rotation. The force of gravity provides a
directional structure to the space above the Earth’s surface. It is tangential to the vertical plumb
lines and perpendicular to all level surfaces. Any water surface at rest is part of a level surface.
As if the Earth were a homogeneous, spherical body gravity turns out to be constant all over
the Earth’s surface, the well-known quantity . ms−. The plumb lines are directed toward the
Earth’s center of mass, and this implies that all level surfaces are nearly spherical, too. How-
ever, the gravity decreases from the poles to the equator by about . ms−. This is caused
by the flattening of the Earth’s figure and the negative effect of the centrifugal force, which is
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maximal at the equator. Second, high mountains and deep ocean trenches cause the gravity
to vary. Third, materials within the Earth’s interior are not uniformly distributed. The irregular
gravity field shapes as virtual surface the geoid. The level surfaces are ideal reference surfaces,
for example, for heights. In more detail, the gravity acceleration (gravity) w is the resultant of
gravitation v and centrifugal acceleration c, i.e., w = v + c. The centrifugal force c arises as a
result of the rotation of the Earth about its axis. We assume here a rotation of constant angular
velocity ω about the rotational axis x, which is further assumed to be fixed with respect to
the Earth. The centrifugal acceleration acting on a unit mass is directed outward perpendicu-
larly to the spin axis. If the ε-axis of an Earth-fixed coordinate system coincides with the axis
of rotation, then we have c(x) = −ω

ε ∧ (ε ∧ x) . Using the so–called centrifugal potential
C(x) = (/)ω

(x + x) we can write c = ∇C.
The direction of the gravity w is known as the direction of the plumb line, the quantity

∣w∣ is called the gravity intensity (often just gravity). The gravity potential of the Earth can be
expressed in the form:W = V +C.The gravity accelerationw is given byw = ∇W = ∇V +∇C.
The surfaces of constant gravity potentialW(x) = const, x ∈ ℝ

, are designated as equipotential
(level, or geopotential) surfaces of gravity. The gravity potential W of the Earth is the sum of the
gravitational potential V and the centrifugal potential C, i.e., W = V + C. In an Earth’s fixed
coordinate system the centrifugal potential C is explicitly known. Hence, the determination of
equipotential surfaces of the potentialW is strongly related to the knowledge of the potentialV .
The gravity vectorw given byw(x) = ∇xW(x)where the point x ∈ ℝ

 is located outside and on
a sphere around the origin with Earth’s radius R, is normal to the equipotential surface passing
through the same point.Thus, equipotential surfaces intuitively express the notion of tangential
surfaces, as they are normal to the plumb lines given by the direction of the gravity vector (for
more details see, for example, Heiskanen andMoritz (), (Freeden and Schreiner ) and
the contribution by H. Moritz in this issue).

According to the classical Newton’sLaw of Gravitation (), knowing the density distribu-
tion ρ of a body, the gravitational potential can be computed everywhere inℝ. More explicitly,
the gravitational potential V of the Earth’s exterior is given by

V(x) = G
∫

Earth

ρ(y)
∣x − y∣

dV(y), x ∈ ℝ

/Earth, ()

whereG is the gravitational constant (G = . ⋅ −m kg− s−) and dV is the (Lebesgue-)
volume measure. The properties of the gravitational potential () in the Earth’s exterior are
appropriately described by the Laplace equation:

ΔV(x) = , x ∈ ℝ

/Earth. ()

The gravitational potential V as defined by () is regular at infinity, i.e.,

∣V(x)∣ = O (


∣x∣

) , ∣x∣ → ∞. ()

For practical purposes, the problem is that in reality the density distribution ρ is very irregular
and known only for parts of the upper crust of the Earth. It is actually so that geoscientists
would like to know it from measuring the gravitational field. Even if the Earth is supposed to
be spherical, the determination of the gravitational potential by integrating Newton’s potential
is not achievable.This is the reasonwhy, in simplifying spherical nomenclature, we first expand
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the so-called reciprocal distance in terms of harmonics (related to the Earth’s mean radius R)
as a series


∣x − y∣

=

∞

∑

n=

n+

∑

j=

πR
n + 

HR
−n−,k(x)H

R
n,k(y), ()

where HR
n,k is an inner harmonic of degree n and order k given by

HR
n,k(x) =


R
(

∣x∣
R
)

n

Yn,k(ξ), x = ∣x∣ξ, ξ ∈ Ω, ()

and HR
−n−,k is an outer harmonic of degree n and order k given by

HR
−n−,k(x) =


R
(

R
∣x∣

)

n+

Yn,k(ξ), x = ∣x∣ξ, ξ ∈ Ω. ()

Note that the family {Yn,k} n=,,. . .
k=, . . .,n+

is an L


(Ω)-orthonormal system of scalar spherical har-

monics (for more details concerning spherical harmonics see, e.g., Müller (), Freeden et al.
(), Freeden and Schreiner ). Insertion of the series expansion () into the Newton
formula for the external gravitational potential yields

V(x) = G
∞

∑

n=

n+
∑

k=

πR
n +  ∫Ωint

R

ρ(y) HR
n,k(y) dV(y) HR

−n−,k(x). ()

The expansion coefficients of the series () are not computable, since their determination
requires the knowledge of the density function ρ in the Earth’s interior. In fact, it turns out
that there are infinitely many mass distributions, which have the given gravitational potential
of the Earth as exterior potential.

Nevertheless, collecting the results from potential theory on the Earth’s gravitational field v
for the outer space (in spherical approximation) we are confronted with the following (mathe-
matical) characterization: v is an infinitely often differentiable vector field in the exterior of the
Earth such that (v) div v = ∇ ⋅ v = , curl v = L ⋅ v =  in the Earth’s exterior, (v) v is regular at
infinity: ∣v(x)∣ = O (/(∣x∣)) , ∣x∣ → ∞. Seen from mathematical point of view, the properties
(v) and (v) imply that the Earth’s gravitational field v in the exterior of the Earth is a gradient
field v = ∇V , where the gravitational potential V fulfills the properties: V is an infinitely often
differentiable scalar field in the exterior of the Earth such that (V) V is harmonic in the Earth’s
exterior, and vice versa. Moreover, the gradient field of the Earth’s gravitational field (i.e., the
Jacobi matrix field) v = ∇v, obeys the following properties: v is an infinitely often differentiable
tensor field in the exterior of the Earth such that (v) div v = ∇ ⋅ v = , curl v = L ⋅ v =  in
the Earth’s exterior, (v) v is regular at infinity: ∣v(x)∣ = O (/(∣x∣)) , ∣x∣ → ∞, and vice versa.
Combining our identities we finally see that v can be represented as theHesse tensor of the scalar
field V , i.e., v = (∇⊗∇)V = ∇

()V.
The technological SGG-principle of determining the tensor field v at satellite altitude is illus-

trated graphically in > Fig. .The position of a low orbiting satellite is tracked usingGPS. Inside
the satellite there is a gradiometer. A simplified model of a gradiometer is sketched in > Fig. .
An array of test masses is connected with springs. Once more, the measured quantities are the
differences between the displacements of opposite test masses. According to Hooke’s law the
mechanical configuration provides information on the differences of the forces. They, however,
are due to local differences of∇V . Since the gradiometer itself is small, these differences can be
identified with differentials, so that a so-called full gradiometer gives information on the whole
tensor consisting out of all second order partial derivatives of V , i.e., the Hesse matrix v of V .



  Satellite Gravity Gradiometry (SGG): From Scalar to Tensorial Solution

mass
anomaly Earth

Gradiometry

GPS satellites

⊡ Fig. 
The principle of satellite gravity gradiometry (from ESA ())

From our preparatory remarks it becomes obvious that the potential theoretic situation
for the SGG problem can be formulated briefly as follows: Suppose that the satellite data
v = (∇⊗∇)V are known continuously over the “orbital surface,” the satellite gravity gradiom-
etry problem amounts to the problem of determining V from v = (∇⊗∇)V at the “orbital
surface.”

Mathematically, SGG is a nonstandard problem of potential theory.The reasons are obvious:

• SGG is ill–posed since the data are not given on the boundary of the domain of interest, i.e.,
on the Earth’s surface, but on a surface in the exterior domain of the Earth, i.e., at a certain
height.

• Tensorial SGG-data (or scalar manifestations of them) do not form the standard equipment
of potential theory (such as, e.g., Dirichlet or Neumann data).Thus, it is – at first sight – not
clear whether these data ensure the uniqueness of the SGG-problem or not.

• SGG-data have its natural limit because of the strong damping of the high-frequency parts
of the (spherical harmonic expansion of the) gravitational potential with increasing satellite
heights. For a heuristic explanation of this calamity, let us start from the assumption that
the gravitational potential outside the spherical Earth’s surface ΩR with the mean radius R
is given by the ordinary expansion in terms of outer harmonics (confer the identity ())

V(x) =
∞

∑

n=

n+
∑

k=
∫

ΩR

V(y) HR
−n−,k(y) dω(y) H

R
−n−,k(x) ()

(dω is the usual surface measure). Then it is not hard to see that those parts of the gravita-
tional potential belonging to the outer harmonics HR

−n−,k of order n at height H above the
Earth’s surface ΩR are damped by a factor [R/(R + H)]

n+. Just a way out of this difficulty
is seen in SGG, where, e.g., second-order radial derivatives of the gravitational potential are
available at a height of typically about  km.The second derivatives cause (roughly speak-
ing) an amplification of the potential coefficients by a factor of order n. This compensates
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the damping effect due to the satellite’s height if n is not too large. Nevertheless, in spite
of the amplification, the SGG-problem still remains (exponentially) ill-posed. Altogether,
the graviational potential decreases exponentially with increasing height, and therefore
the process of transforming, the data down to the Earth surface (often called “downward
continuation”) is unstable.

The non-canonical (SGG)-situation of uniqueness within the potential theoretic framework
can be demonstrated already by a simple example in spherical context: Suppose that one scalar
component of theHesse tensor is prescribed for all points x at the sphere ΩR+H = {x ∈ ℝ


∣ ∣x∣ =

R + H}. Is the gravitational potential V unique on the sphere ΩR = {x ∈ ℝ

∣ ∣x∣ = R}? The

answer is not positive, in general. To see this, we construct a counterexample: If b ∈ ℝ
 with

∣b∣ =  is given, the second-order directional derivative of V at the point x is bT∇⊗∇V(x)b.
Given a potential V , we construct a vector field b on ΩR+H , such that the second-order direc-
tional derivative bT∇ ⊗ ∇Vb. is zero: Assume that V is a solution of () and (). For each
x ∈ ΩR+H , we know that the Hesse tensor ∇ ⊗ ∇V(x) is symmetric. Thus, there exists an
orthogonalmatrixA(x) so thatA(x)T(∇⊗∇V(x))A(x) = diag(λ(x), λ(x), λ(x)), where
λ(x), λ(x), λ(x) are the eigenvalues of ∇ ⊗∇V(x). From the harmonicity of V it is clear
that  = ΔV(x) = λ(x) + λ(x) + λ(x). Let μ = −/(, , )T. We define the vector field
μ : ΩR+H → ℝ

 by μ(x) = A(x)μ, x ∈ ΩR+H . Then we obtain

μT(x)(∇ ⊗∇V(x))μ(x) = μTA(x)
T
(∇ ⊗∇V(x))A(x)μ ()

=



(  )

⎛

⎜

⎝

λ(x)  
 λ(x) 
  λ(x)

⎞

⎟

⎠

⎛

⎜

⎝





⎞

⎟

⎠

=



(λ(x) + λ(x) + λ(x))

= . ()

Hence, we have constructed a vector field μ such that the second-order directional derivative
of V in the direction of μ(x) is zero for every point x ∈ ΩR+H . It can be easily seen that, for a
givenV , there existmany vector fields showing the same properties for uniqueness as the vector
field μ. Observing these arguments we are led to the conclusion that the function V is
undetectable from the directional derivatives corresponding to μ (see also Schreiner a,b).

It is, however, good news that we are not lost here: As a matter of fact, there do exist condi-
tions under which only one quantity of the Hesse tensor yields a unique solution (at least up to
low order harmonics). In order to formulate these results, a certain decomposition of the Hesse
tensor is necessary, which strongly depends on the separation of the Laplace operator in terms
of polar coordinates. In order to follow this path, we start to reformulate the SGG-problemmore
easily in spherical context. For that purpose we start with some basic facts specifically formu-
lated on the unit sphere Ω = {x ∈ ℝ


∣ ∣x∣ = }: As is well-known, any x ∈ ℝ

, x ≠ , can be
decomposed uniquely in the form x = rξ, where the directional part is an element of the unit
sphere: ξ ∈ Ω. Let {Yn,m} : Ω → ℝ

, n = , , . . ., m = , . . . , n + , be an orthonormal set
of spherical harmonics. As is well–known (see, e.g., Freeden and Schreiner ), the system
is complete in L


(Ω), hence, each function F ∈ L


(Ω) can be represented by the spherical

harmonic expansion

F(ξ) =
∞

∑

n=

n+
∑

m=
F∧(n,m)Yn,m(ξ), ξ ∈ Ω, ()
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with “Fourier coefficients” given by

F∧(n,m) = (F,Yn,m)
L


(Ω) = ∫

Ω
F(ξ)Yn,m(ξ) dω(ξ). ()

Furthermore, the (outer) harmonics H
−n−,m : ℝ

/{} → ℝ related to the unit sphere Ω are
denoted by H

−n−,m(x) = H
−n−,m(x), where H

−n−,m(x) = (/∣x∣n+)Yn,m(x/∣x∣). Clearly,
they are harmonic functions and their restrictions coincide on Ωwith the corresponding spher-
ical harmonics. Any function F ∈ L


(Ω) can, thus, be identified with a harmonic potential via

the expansion (), in particular, this holds true for the Earth’s external gravitational poten-
tial. This motivates the following mathematical model situation of the SGG-problem to be
considered next:

(i) Isomorphism: Consider the sphere ΩR ⊂ ℝ
 around the originwith radius R > . Ωint

R is the
inner space of ΩR , and Ωext

R is the outer space. By virtue of the isomorphism Ω ∋ ξ ↦ Rξ ∈
ΩR we assume functions F : ΩR → ℝ to be defined onΩ. It is clear that the function spaces
defined on Ω admit their natural generalizations as spaces of functions defined on ΩR .
Obviously, an L


(Ω)–orthonormal system of spherical harmonics forms an orthogonal

system on ΩR (with respect to (⋅, ⋅)
L


(ΩR)). Moreover, with the relationship ξ ↔ Rξ, the

differential operators on ΩR can be related to operators on the unit sphere Ω. In more
detail, the surface gradient ∇∗;R , the surface curl gradient L∗;R and the Beltrami operator
Δ∗;R on ΩR , respectively, admit the representation ∇

∗;R
= (/R)∇∗; = (/R)∇∗, L∗;R =

(/R)L∗; = (/R)L∗, Δ∗;R = (/R
)Δ∗; = (/R

)Δ∗, where ∇∗, L∗, Δ∗ are the surface
gradient, surface curl gradient, and the Beltrami operator of the unit sphere Ω, respectively.
For Yn being a spherical harmonic of degree n we have Δ∗;RYn = −(/R

) n(n + )Yn =

−(/R
) Δ∗Yn .

(ii) Runge Property: Instead of looking for a harmonic function outside and on the (real) Earth,
we search for a harmonic function outside the unit sphere Ω (assuming the units are cho-
sen in such a way that the sphere Ω with radius  is inside of the Earth and at the same time
not too “far away” from the Earth’s boundary). The justification of this simplification (see
> Fig. ) is based on the Runge approach (see, e.g., Freeden a; Freeden and Michel
 as well as the remarks in > Chap.  of this handbook): To any harmonic function V

Earth

ΩR+HΩR

RH

⊡ Fig. 
The role of the “Runge sphere” within the spherically reflected SGG-problem
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outside of the (real) Earth and any given ε > , there exists a harmonic function U outside
of the unit sphere inside the (real) Earth such that the absolute error ∣V(x) −U(x)∣ < ε
holds true for all points x outside and on the (real) Earth’s surface.

 Decomposition of Tensor Fields byMeans of Tensor
Spherical Harmonics

Let us recapitulate that any point ξ ∈ Ω may be represented by polar coordinates in a standard
way

ξ = tε +
√

 − t(cos φε + sin φε), − ≤ t ≤ ,  ≤ φ < π, t = cos ϑ, ()

(ϑ ∈ [, π]: (co-)latitude, φ: longitude, t: polar distance). Consequently, any element ξ ∈ Ωmay
be represented using its coordinates (φ, t) in accordance with ().

For the representation of vector and tensor fields on the unit sphere Ω, we are led to use a
local triad of orthonormal unit vectors in the directions r, φ, and t as shown by > Fig.  (for
more details the reader is referred to Freeden and Schreiner () and the references therein).

As is well–known, the second-order tensor fields on the unit sphere, i.e., f : Ω → ℝ

⊗ℝ

,
can be separated into their tangential and normal parts as follows:

p
∗,norf = (f ξ) ⊗ ξ, ()

pnor,∗f = ξ ⊗ (ξTf), ()

p
∗,tanf = f − p

∗,norf = f − (f ξ) ⊗ ξ, ()

ptan,∗f = f − pnor,∗f = f − ξ ⊗ (ξTf), ()

pnor,tanf = pnor,∗(p∗,tanf) = p
∗,tan(pnor,∗f) ()

= ξ ⊗ (ξTf) − (ξTf ξ)ξ⊗ ξ.

et

e t

er

e

(x)

(h)

e r (h)
e (h)

(x)

(x)j

j

⊡ Fig. 
Local triads εr , εφ , εt with respect to two different points ξ and η on the unit sphere
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Theoperators pnor,nor ,ptan,nor, and ptan,tan are defined analogously. A vector field f : Ω → ℝ⊗ℝ

is called normal if f = pnor,norf and tangential if f = ptan,tanf . It is called left normal if f = pnor,∗f ,
left normal/right tangential if f = pnor,tanf , and so on.

The constant tensor fields itan and jtan can be defined using the local triads by

itan = εφ ⊗ εφ + εt ⊗ εt , jtan = ξ ∧ itan = εt ⊗ εφ − εφ ⊗ εt . ()

Spherical tensor fields can be discussed in an elegant manner by the use of certain differen-
tial processes. Let u be a continuously differentiable vector field on Ω, i.e., u ∈ c()(Ω), given
in its coordinate form by

u(ξ) =


∑

i=
Ui(ξ)εi , ξ ∈ Ω, Ui ∈ C

()
(Ω). ()

Then we define the operators∇∗⊗ and L∗⊗ by

∇

∗

ξ ⊗ u(ξ) =


∑

i=
(∇

∗

ξ Ui(ξ)) ⊗ εi , ξ ∈ Ω, ()

L∗ξ ⊗ u(ξ) =


∑

i=
(L∗ξ Ui(ξ)) ⊗ εi , ξ ∈ Ω. ()

Clearly, ∇∗ ⊗ u and L∗ ⊗ u are left tangential. But it is an important fact, that even if u is
tangential, the tensor fields∇∗⊗u and L∗⊗u are generally not tangential. It is obvious, that the
product rule is valid. To be specific, let F ∈ C()(Ω) and u ∈ c()(Ω) (once more, note that the
notation u ∈ c()(Ω)means that the vector field u is a continuously differentiable on Ω), then

∇

∗

ξ ⊗ (F(ξ)u(ξ)) = ∇

∗

ξ F(ξ) ⊗ u(ξ) + F(ξ)∇∗ξ ⊗ u(ξ), ξ ∈ Ω. ()

In view of the above equations and definitions we accordingly introduce operators o(i ,k) :
C()(Ω) → c()(Ω) (note that c()(Ω) is the class of continuous second-order tensor fields on
the unit sphere Ω) by

o(,)ξ F(ξ) = ξ ⊗ ξF(ξ), ()

o(,)ξ F(ξ) = ξ ⊗∇

∗

ξ F(ξ), ()

o(,)ξ F(ξ) = ξ ⊗ L∗ξ F(ξ), ()

o(,)ξ F(ξ) = ∇

∗

ξ F(ξ) ⊗ ξ, ()

o(,)ξ F(ξ) = L∗ξ F(ξ) ⊗ ξ, ()

o(,)ξ F(ξ) = itan(ξ)F(ξ), ()

o(,)ξ F(ξ) = (∇

∗

ξ ⊗∇

∗

ξ − L∗ξ ⊗ L∗ξ ) F(ξ) + ∇∗ξ F(ξ) ⊗ ξ, ()

o(,)ξ F(ξ) = (∇

∗

ξ ⊗ L∗ξ + L∗ξ ⊗∇

∗

ξ ) F(ξ) + L∗ξ F(ξ) ⊗ ξ, ()

o(,)ξ F(ξ) = jtan(ξ)F(ξ), ()

ξ ∈ Ω.
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After our preparations involving spherical second-order tensor fields it is not difficult to
prove the following lemma.

Lemma .
Let F : Ω → ℝ be sufficiently smooth. Then the following statements are valid:

. o(,)F is a normal tensor field.
. o(,)F and o(,)F are left normal/right tangential.
. o(,)F and o(,)F are left tangential/right normal.
. o(,)F, o(,)F, o(,)F and o(,)F are tangential.
. o(,)F, o(,)F, o(,)F and o(,)F are symmetric.
. o(,)F is skew-symmetric.

. (o(,)F)
T
= o(,)F and (o(,)F)

T
= o(,)F.

. For ξ ∈ Ω

trace o(i ,k)ξ F(ξ) =
⎧

⎪
⎪
⎪

⎨

⎪
⎪
⎪

⎩

F(ξ) for (i, k) = (, )
F(ξ) for (i, k) = (, )
 for (i, k) /= (, ), (, )

.

The tangent representation theorem (cf. Backus , ) asserts that if ptan,tanf is the tan-
gential part of a tensor field f ∈ c()(Ω), as defined above, then there exist unique scalar fields
F,, F, , F,, F, such that

∫

Ω
F,(ξ) dω(ξ) = ∫

Ω
F,(ξ) dω(ξ) = , ()

∫

Ω
F,(ξ)(εi ⋅ ξ) dω(ξ) = ∫

Ω
F,(ξ)(εi ⋅ ξ) dω(ξ) = , i = , , , ()

and
ptan,tanf = o(,)F, + o(,)F, + o(,)F, + o(,)F,. ()

Furthermore, the following orthogonality relations may be formulated: Let F,G : Ω → ℝ be
sufficiently smooth. Then for all ξ ∈ Ω, we have o(i ,k)ξ F(ξ) ⋅ o(i

′ ,k′)
ξ F(ξ) =  whenever (i, k) /=

(i′, k′). The adjoint operators O(i ,k) satisfying

∫

Ω
o(i ,k)F(ξ) ⋅ f(ξ) dω(ξ) =

∫

Ω
F(ξ) O(i ,k)f(ξ) dω(ξ), ()

for all sufficiently smooth functions F : Ω → ℝ and tensor fields f : Ω → ℝ

⊗ℝ

 can be
deduced by elementary calculations. In more detail, for f ∈ c()(Ω), we find (cf. Freeden and
Schreiner )

O(,)ξ f(ξ) = ξTf(ξ)ξ, ()

O(,)ξ f(ξ) = −∇

∗

ξ ⋅ ptan (ξ
Tf(ξ)) , ()

O(,)ξ f(ξ) = −L∗ξ ⋅ ptan (ξ
Tf(ξ)) , ()

O(,)ξ f(ξ) = −∇

∗

ξ ⋅ ptan (f(ξ)ξ) , ()
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O(,)ξ f(ξ) = −L∗ξ ⋅ ptan (f(ξ)ξ) , ()

O(,)ξ f(ξ) = itan(ξ) ⋅ f(ξ), ()

O(,)ξ f(ξ) = ∇

∗

ξ ⋅ ptan (∇
∗

ξ ⋅ ptan,∗f(ξ)) − L∗ξ ⋅ ptan (L
∗

ξ ⋅ ptan,∗f(ξ))

− ∇∗ξ ⋅ ptan (f(ξ)ξ) , ()

O(,)ξ f(ξ) = L∗ξ ⋅ ptan (∇
∗

ξ ⋅ ptan,∗f(ξ)) + ∇

∗

ξ ⋅ ptan (L
∗

ξ ⋅ ptan,∗f(ξ))

− L∗ξ ⋅ ptan (f(ξ)ξ) , ()

O(,)ξ f(ξ) = jtan(ξ) ⋅ f(ξ), ()

ξ ∈ Ω. Provided that F : Ω → ℝ is sufficiently smooth we see that

O(i
′ ,k′)

ξ o(i ,k)ξ F(ξ) =  if (i, k) /= (i′, k′), ()

whereas

O(i ,k)ξ o(i ,k)ξ F(ξ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

F(ξ) if (i, k) = (, )
−Δ∗F(ξ) if (i, k) ∈ {(, ), (, )

(, ), (, )}
F(ξ) if (i, k) ∈ {(, ), (, )}
Δ∗(Δ∗ + )F(ξ) if (i, k) ∈ {(, ), (, )}.

()

Using this set of operators we can find explicit formulas for the functions Fi ,k in the tensor
decomposition theorem.

Theorem .
Helmholtz decomposition theorem: Let f be of class c()(Ω). Then there exist uniquely defined
functions Fi ,k ∈ C()(Ω), (i, k) ∈ {(, ), (, ), . . . , (, )} with (Fi ,k ,Y)

L


(Ω) =  for

all spherical harmonic Y of degree , if (i, k) ∈ {(, ), (, ), (, ), (, ), (, ), (, )} and
(Fi ,k ,Y)

L


(Ω) =  for all spherical harmonics Y of degree  if (i, k) ∈ {(, ), (, )}, in such a

way that

f =

∑

i ,k=
o(i ,k)Fi ,k , ()

where the functions ξ ↦ Fi ,k(ξ), ξ ∈ Ω, are explicitly given by

F,(ξ) = O(,)ξ f(ξ), ()

F,(ξ) =


O(,)ξ f(ξ), ()

F,(ξ) =


O(,)ξ f(ξ), ()
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F,(ξ) = −
∫

Ω
G(Δ∗; ξ, η)O(,)η f(η) dω(η), ()

F,(ξ) = −
∫

Ω
G(Δ∗; ξ, η)O(,)η f(η) dω(η), ()

F,(ξ) = −
∫

Ω
G(Δ∗; ξ, η)O(,)η f(η) dω(η), ()

F,(ξ) = −
∫

Ω
G(Δ∗; ξ, η)O(,)η f(η) dω(η), ()

F,(ξ) = ∫

Ω
G(Δ∗(Δ∗ + ); ξ, η)O(,)η f(η) dω(η), ()

F,(ξ) = ∫

Ω
G(Δ∗(Δ∗ + ); ξ, η)O(,)η f(η) dω(η). ()

The functions G(Δ∗; ⋅, ⋅) and G(Δ∗(Δ∗ + ); ⋅, ⋅) are the Green functions to the Beltrami oper-
ator Δ∗ and its iteration Δ∗(Δ∗ + ), respectively. For more details concerning the Green
functions we refer to Freeden (b) and Freeden and Schreiner ().

The decomposition (Theorem .) will be of crucial importance to verify uniqueness results
for the satellite gravity gradiometry problem in spherical context.

 Solution as Pseudodifferential Equation

Suppose that the function H : ℝ
/ {} → ℝ is twice continuously differentiable. We want to

show how the Hesse matrix restricted to the unit sphere Ω, i.e.,

h(ξ) = ∇x ⊗∇xH(x)∣
∣x∣=, ξ ∈ Ω, ()

can be decomposed according to the rules of Theorem .. In order to evaluate

∇x ⊗∇xH(x) = (ξ
∂
∂r

+


r
∇

∗

ξ) ⊗ (ξ
∂
∂r

+


r
∇

∗

ξ)H(rξ), ()

we first see that

ξ
∂
∂r

⊗ ξ
∂
∂r

H(rξ) = ξ ⊗ ξ (
∂
∂r

)


H(rξ), ()

ξ
∂
∂r

⊗


r
∇

∗

ξ H(rξ) = −


r
ξ ⊗∇

∗

ξ H(rξ) +

r
ξ ⊗∇

∗

ξ
∂
∂r

H(rξ), ()


r
∇

∗

ξ ⊗ ξ
∂
∂r

H(rξ) =

r
itan(ξ)

∂
∂r

H(rξ) +

r
∇

∗

ξ (
∂
∂r

H(rξ))⊗ ξ, ()


r
∇

∗

ξ ⊗

r
∇

∗

ξ H(rξ) =

r
∇

∗

ξ ⊗∇

∗

ξ H(rξ). ()

Summing up these terms we find (cf. Freeden and Schreiner ())

∇x ⊗∇xH(x)∣
∣x∣= = ξ ⊗ ξ (

∂
∂r

)


H(rξ)∣r= + ξ ⊗∇

∗

ξ (
∂
∂r

H(rξ)∣r= −H(ξ))

+ (∇

∗

∂
∂r

H(rξ)∣r=) ⊗ ξ +∇

∗

ξ ⊗∇

∗

ξ H(ξ) + itan(ξ)
∂
∂r

H(rξ)∣r=. ()
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Using the identities ()–() and the definition of the o(i ,k)-operators we are able to write

∇x ⊗∇xH(x)∣
∣x∣= = o(,)ξ ((

∂
∂r

)


H(rξ)∣r=) + o(,)ξ (

∂
∂r

H(rξ)∣r= −H(ξ))

+ o(,)ξ (

∂
∂r

H(rξ)∣r= − H(ξ))+ o(,)ξ (



Δ∗ξ H(ξ) +

∂
∂r

H(rξ)∣r=)

+ o(,)ξ


H(ξ). ()

In particular, if we consider an outer harmonicH
−n−,m : x ↦ H

−n−,m(x)with H
−n−,m(rξ) =

r−(n+)Yn,m(ξ), r > , ξ ∈ Ω, we obtain the following decomposition of the Hesse matrix on
the sphere ΩR+H , i.e., for x ∈ ℝ

 with ∣x∣ = R + H:

∇⊗∇H
−n−,m((R +H) ξ) = (n + )(n + )


(R + H)

n+ o
(,)
ξ Yn,m(ξ)

− (n + )


(R + H)

n+ (o
(,)
ξ Yn,m(ξ) + o(,)ξ Yn,m(ξ))

−

(n + )(n + )



(R + H)

n+ o
(,)
ξ Yn,m(ξ)

+





(R +H)

n+ o
(,)
ξ Yn,m(ξ). ()

Keeping in mind, that any solution of the SGG-problem can be expressed as a series of
outer harmonics and using the completeness of the spherical harmonics in the space of square-
integrable functions on the unit sphere, it follows that the SGG problem is uniquely solvable
(up to some low order spherical harmonics) by the O(,), O(,), O(,), O(,), and O(,)

components. To be more specific, we are able to formulate the following theorem:

Theorem .
Let V satisfy the following condition V ∈ Pot(C()(Ω)), i.e.,

V ∈ C

()
(Ωex t

) ∩ C

()
(Ωex t

), ()

ΔV(x) = , x ∈ Ωex t , ()

∣V(x)∣ = O (


∣x∣

) , ∣x∣ → ∞, uniformly for all directions. ()

Then the following statements are valid:

. O(i ,k)∇⊗∇V((R + H)ξ) =  if (i, k) ∈ {(, ), (, ), (, ), (, )}.
. O(i ,k)∇⊗∇V((R + H)ξ) =  for (i, k) ∈ {(, ), (, )} if and only if V = .
. O(i ,k)∇⊗∇V((R + H)ξ) =  for (i, k) ∈ {(, ), (, )} if and only if V ∣Ω is constant.
. O(,)∇⊗∇V((R+H)ξ) =  if and only if V ∣Ω is linear combination of spherical harmonics

of degree  and .

This theorem gives detailed information, which tensor components of the Hesse tensor
ensure the uniqueness of the SGG-problem (see also the considerations due to Schreiner
(a), Freeden et al. ()). Anyway, for a potential V of class Pot(C()(Ω)) with vanish-
ing spherical harmonic moments of degree  and  such as the Earth’s disturbing potential (see,
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e.g., Heiskanen and Moritz () for its definition) uniqueness is assured in all cases (listed in
Theorem .).

Since we now know at least in the spherical setting, which conditions guarantee the unique-
ness of an SGG-solution we can turn to the question of how to find a solution and what we
mean with a solution, since we have to take into account the ill–posedness. To this end, we
are interested here in analyzing the problem step by step. We start with the reformulation
of the SGG-problem as pseudo differential equation on the sphere, give a short overview on
regularization, and show how this ingredients can be composed together to regularize the
SGG-data.

In doing so we find great help by discussing how classical boundary value problems in
gravitational field of the Earth aswell asmodern satellite problemsmaybe transferred into pseu-
dodifferential equations, thereby always assuming the spherically oriented geometry. Indeed,
it is helpful to treat the classical Dirichlet and Neumann boundary value problem as well as
significant satellite problems such as satellite-to-satellite tracking (SST) and SGG.

. SGG as Pseudodifferential Equation

Let Σ ⊂ ℝ
 be a regular surface, i.e., we assume the following properties: (i) Σ divides the

Euclidean space ℝ
 into the bounded region Σint (inner space) and the unbounded region

Σext (outer space) so that Σext = ℝ

/Σint, Σ = Σint ∩ Σext with ∅ = Σint ∩ Σext, (ii) Σint

contains the origin, (iii) Σ is a closed and compact surface free of double points, (iv) Σ is locally
of class C() (see Freeden and Michel () for more details concerning regular surfaces).

From our preparatory considerations (in particular, from the Introduction) it can be
deduced that a gravitational potential of interest may be understood to be a member of the
class V ∈ Pot(C()(Σ)), i.e.,

V ∈ C

()
(Σex t

) ∩ C

()
(Σex t

), ()

ΔV(x) = , x ∈ Σex t , ()

∣V(x)∣ = O (


∣x∣

) , ∣x∣ → ∞, uniformly for all directions. ()

Assume that ΩR = {x ∈ ℝ

∣ ∣x∣ = R} is a (Runge) sphere with radius R around the origin, i.e.,

a sphere that lies entirely inside Σ, i.e. ΩR ⊂ ∑

int . On the class L
(ΩR) we impose the inner

product (⋅, ⋅)
L


(ΩR). Then we know that the functions 

R Yn,m (

⋅

R ) form an orthonormal set of
functions on ΩR , i.e., given F ∈ L


(ΩR), its Fourier expansion reads

F(x) =
∞

∑

n=

n+
∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

Yn,m (

x
R
) , x ∈ ΩR . ()

Instead of considering potentials that are harmonic outside Σ and continuous on Σ, we now
consider potentials that are harmonic outside ΩR and that are of class L

(ΩR). In accordance
with our notation we define

Pot(L
(ΩR)) = {x ↦

∞

∑

n=

n+
∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

Rn+

∣x∣n+
Yn,m (

x
∣x∣

) ∣ F ∈ L


(ΩR)} .

()
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Clearly, Pot(L
(ΩR)) is a “subset” of Pot(C()(Σ)) in the sense that if V ∈ Pot(L

(ΩR)), then
V ∣

Σext ∈ Pot(C
()

(Σ)).The “difference” of these two spaces is not “too large”: Indeed,we know
from the Runge approximation theorem (cf. Freeden a), that for every ε >  and every
V ∈ Pot(C()(Σ)) there exists a V̂ ∈ Pot(L

(ΩR)) such that supx∈Σext ∣V(x) − V̂(x)∣ < ε.
Thus, in all geosciences, it is common (but not strictly consistent with the Runge argumenta-
tion) to identify ΩR with the surface of the Earth and to assume that the restriction V ∣ΩR is of
class L

(ΩR). Clearly, we have a canonical isomorphism between L


(ΩR) and Pot(L

(ΩR)),
which is defined via the trace operator, i.e., the restriction to ΩR and its harmonic continuation,
respectively.

. Upward/Downward Continuation

Let ΩR+H be the sphere with radius R + H. The system 
R+HYn,m (

⋅

R+H ) is then orthonor-
mal in L


(ΩR+H). (We assume H to be the height of a satellite above the Earth’s surface). Let

F ∈ Pot(L
(ΩR)) be represented in the form

x ↦

∞

∑

n=

n+
∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

Rn+

∣x∣n+
Yn,m (

x
∣x∣

) . ()

Then the restriction of F on ΩR+H reads

F∣ΩR+H : x ↦

∞

∑

n=

n+
∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

Rn+

(R + H)

n+ Yn,m (

x
R + H

) . ()

Hence, any element 
R Yn,m (

⋅

R ) of the orthonormal system in L


(ΩR) is mapped to a function

Rn
/(R + H)

n /R + H Yn,m(⋅/R + H). The operation defined in such away is called upward
continuation. It is representable by the pseudodifferential operator (for more details on pseu-
dodifferential operators the reader should consult Svensson (), Schneider (), Freeden
et al. (), and Freeden ) as well as > Chap.  of this handbook

ΛR ,H
up : L

(ΩR) /→ L


(ΩR+H)

with associated symbol

(ΛR ,H
up )

∧

(n) =
Rn

(R + H)

n . ()

In other words, we have

ΛR ,H
up (


R
Yn,m (

⋅

R
)) = (ΛR ,H

up )

∧

(n)


R + H
Yn,m (

⋅

R +H
) . ()

The image of ΛR ,H
up is given by Picard’s criterion (cf. Theorem .):

ΛR ,H
up (L


(ΩR)) =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

F ∈ L


(ΩR+H)∣

∞

∑

n=

n+
∑

m=
(

(R + H)

n

Rn )



× (F,


R + H
Yn,m (

⋅

R +H
))



L


(ΩR+H)

< ∞} . ()
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The inverse of ΛR ,H
up is called the downward continuation operator, ΛR ,H

down = (ΛR ,H
up )

−
. It brings

down the gravitational potential at height R +H to the height R:

ΛR ,H
down : ΛR ,H

up (L


(ΩR+H)) /→ L


(ΩR)

with
ΛR ,H
down (


R + H

Yn,m (

⋅

R + H
)) =

(R +H)

n

Rn

R
Yn,m (

⋅

R
) ()

such that the symbol of ΛR ,H
down is

(ΛR ,H
down)

∧

(n) =
(R +H)

n

Rn . ()

It is obvious that the upward continuation is well-posed, whereas the downward continuation
generates an ill-posed problem.

. Operator of the First-Order Radial Derivative

Let F ∈ Pot(L
(ΩR)) have the representation (). If we restrict F to a sphere Ωγ with

radius γ, we have

∞

∑

n=

n+

∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

Rn+

γn+
Yn,m (

x
γ
) , x ∈ Ωγ . ()

Accordingly, the restriction of ∂
∂r F to Ωγ amounts to

∞

∑

n=

n+
∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

−(n + )
γ

Rn+

γn+
Yn,m (

x
γ
) . ()

Thus, the process of forming the first radial derivative at height γ constitutes the pseudodiffer-
ential operator Λγ

FND (FND stands for first-order normal derivative) with the symbol

(Λγ
FND)

∧

(n) = −

n + 
γ

. ()

. Pseudodifferential Operator for SST

The principle of SST is sketched in > Fig.  (note that two variants of SST are discussed in
satellite techniques, the so-called high–low and the low–low method.We only explain here the
high–low variant, for which the GFZ–satellite CHAMP (CHAllenging Minisatellite Payload)
launched in  is a prototype.

The motion of a satellite in a low orbit such as CHAMP, GOCE (typical heights are in the
range –km) is tracked with a GPS receiver. So the relative motion between the satellite
and the GPS–satellites (the latter have a height of approximately ,km) can be measured.
Assuming that the motion of the GPS–satellites is known (in fact, their orbit is very stable
because of the large height), one can calculate the acceleration of the low orbiting satellite.
Since the acceleration and the force acting on the satellite are proportional by Newton’s law,
one gets information about the gradient field∇V(p) at the satellite’s position p. Assuming that
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mass
anomaly

Earth

SST hi-lo

GPS satellites

⊡ Fig. 
The principle of satellite–to satellite tracking (from ESA ())

the height variations of the satellite are small, we obtain data information of ∇V at height H,
that is on the sphere ΩR+H . For simplicity, it is useful to consider only the radial component
from these vectorial data, which is the first radial derivative.

Thus, given F ∈ Pot(L
(ΩR)), we get the SST–data by a process of upward continua-

tion and then taking the first radial derivative. Mathematically, SST amounts to introduce the
operator

ΛR ,H
SST : L

(ΩR) /→ L


(ΩR+H)

via

ΛR ,H
SST = −ΛR+H

FNDΛR ,H
up ()

(we use the minus sign here, to avoid the minus in the symbol), and get

(ΛR ,H
SST)

∧

(n) =
Rn

(R + H)


n + 
R + H

. ()

It is easily seen that the Picard criterion (see, e.g., Engl et al. ()) reads for this operator

ΛR ,H
SST(L


(ΩR)) =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

F ∈ L


(ΩR+H)∣

∞

∑

n=

n+

∑

m=
(

(R + H)

n

Rn
R + H
n + 

)



×(F,


R + H
Yn,m (

⋅

R + H
))



L


(ΩR+H)

< ∞} . ()
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. Pseudodifferential Operator of the Second-Order Radial
Derivative

Analogous considerations applied to the operator ∂
∂r on F in () at height γ yields

∞

∑

n=

n+
∑

m=


R (F,Yn,m (

⋅

R
))

L


(ΩR)

(n + )(n + )
γ

Rn+

γn+
Yn,m (

x
γ
) , x ∈ Ωγ . ()

Thus, the second-order radial derivative at height γ is represented by the pseudodifferential
operator Λγ

SND with the symbol

(Λγ
SND)

∧

(n) =
(n + )(n + )

γ
. ()

. Pseudodifferential Operator for Satellite Gravity Gradiometry

If we restrict ourselves for the moment to the second-order radial derivative ∂
∂r V , and assume

that the height of the satellite is H, we are led to the pseudodifferential operator describing
satellite gravity gradiometry by

ΛR ,H
SGG = ΛR+H

SNDΛR ,H
up

so that
(ΛR ,H

SGG)

∧

(n) =
Rn

(R + H)

n
(n + )(n + )

(R +H)

 . ()

In consequence,

ΛR ,H
SGG : L

(ΩR) /→ L


(ΩR+H)

with

ΛR ,H
SGG(L


(ΩR)) =

⎧

⎪
⎪

⎨

⎪
⎪

⎩

F ∈ L


(ΩR+H)∣

∞

∑

n=

n+
∑

m=
(

(R + H)

n

Rn
(R +H)



(n + )(n + )
)



× (F,


R +H
Yn,m (

⋅

R + H
))



L


(ΩR+H)

< ∞} . ()

. Survey on Pseudodifferential Operators Relevant in Satellite
Technology

Until now, our purpose was to develop a class of pseudodifferential operators, which describe, in
particular, important operations for actual and future satellite missions. In what follows, we are
interested in a brief mathematical survey about our investigations. In order to keep the forth-
coming notations as simple as possible, we use the fact that all spheres around the origin are
isomorphic.Thus, we consider the resulting pseudodifferential operators on the unit sphere and
ignore the different heights in the domain of definition of the functions, but not in the symbol
of the operators. Hence, we can use the results of the last chapters directly for the regulariza-
tion of the satellite problems. If one wants to incorporate the different heights, one has only to
observe the factors R and R + H, respectively.
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Operator Description Symbol Order

ΛR,H
up

Upward continuation operator Rn

(R + H)n

−∞

ΛR,H
down

Downward continuation operator (R + H)n

Rn

∞

ΛR
FND

First-order radial derivative at the Earth surface
−
(n + )

R



ΛR
SND

Second-order radial derivative at the Earth
surface

(n + )(n + )

R



ΛR,H
SST

Pseudodifferential Operator for
satellite–to–satellite tracking

Rn

(R + H)n
n + 

R + H

−∞

ΛR,H
SGG

Pseudodifferential operator for satellite gravity
gradiometry

Rn

(R + H)n
(n + )(n + )

(R + H)

−∞

All pseudodifferential operators are then defined on L


(Ω) or on suitable Sobolev spaces

(see Freeden et al. ; Freeden ). The table above gives a summary of all the aforemen-
tioned operators.

In order to showhow these operators work, we give some graphical examples.We start from
the disturbance potential of the NASA, GSFC, and NIMA Earth’s Gravity Model EGM (cf.
Lemoine et al. ). In > Figs. –we graphically show the potential at the height of the Earth
surface, at the height  km and further more the second-order radial derivative at height
 km.

–60 –40 –20 0 20 40 60 80

⊡ Fig. 
The disturbance potential from EGM at the Earth’s surface, at height  km, in m/s
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–40 –20 0 20 40 60

⊡ Fig. 
The disturbance potential from EGM at height  km in m/s

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

⊡ Fig. 
The second-order radial derivative of the disturbance potential from EGM at height  km in
−/s
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. Classical Boundary Value Problems and Satellite Problems

TheNeumann problem of potential theory for the outer space of the sphere Ω (based onL
(Ω)

boundary data) reads as follows: Find V ∈ Pot(L
(Ω)) such that ∂

∂r V ∣Ω = G. Since the trace
of V is assumed to be a member of the class L

(Ω), the appropriate space for G is the Sobolev
space H−(Ω). Using pseudodifferential operators as described earlier, this problem reads in
an L


(Ω)-context as follows: Given G ∈ L


(Ω), find F ∈ L


(Ω) such that

ΛR
FNDF = G ()

with (ΛR
FND)

∧

(n) = −

n+
R , n = , , . . .. Similar considerations show that the Dirichlet prob-

lem transfers to the trivial form Id F = G, where Id is the identity operator with Id∧(n) = ,
n = , , . . ..

Evidently, the classical problems of potential theory expressed in pseudodifferential form
are well–posed in the sense that the inverse operators (ΛR

FND)

−
and Id− are bounded in

L


(Ω). In contrary, the problems coming from SST and SGG are ill–posed, as we will see in

a moment. To be more concrete, SST intends to obtain information of V at the Earth’s surface
(radius R) from measurements of the first radial derivative at the satellite’s height H. Thus, we
obtain the problem: Given G ∈ L


(Ω), find F ∈ L


(Ω) so that

ΛR ,H
SSTF = G ()

with

(ΛR ,H
SST)

∧

(n) =
Rn

(R + H)

n
n + 
R + H

. ()

Similarly, SGG is formulated as pseudodifferential equation as follows: Given G ∈ L


(Ω), find

F ∈ L


(Ω) so that

ΛR ,H
SGGF = G ()

with

(ΛR ,H
SGG)

∧

(n) =
Rn

(R + H)
n
(n + )(n + )

(R +H)
 . ()

For more detailed studies in a potential theoretic framework, the reader may wish to consult
Freeden et al. (). The inverses of these operators possess a symbol which is exponentially
increasing as n → ∞. Thus, the inverse operators are unbounded, or in the jargon of regular-
ization, these two problems are exponentially ill–posed. By a naive application of the inverse
operator on the right–hand side, one cannot expect to obtain a useful solution. Thus, so–called
regularization strategies have to be applied.Therefore, the basic aspects on regularization should
be presented next.

. A Short Introduction to the Regularization of Ill-Posed Problems

For the convenience of the reader, we present here a brief course of basic facts on regularization
in aHilbert space setting, which is useful to understand the solution strategies in the framework
of pseudodifferential equations. The explanations are based on the monographs of Engl et al.
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() and Kirsch (), where much more additional material can be found even for more
general reference spaces, too. .

LetH andK be two Hilbert spaces with inner products (⋅, ⋅)
H

and (⋅, ⋅)
K

, respectively. Let

Λ : H /→K ()

be a linear bounded operator. Given y ∈ K, we are looking for a solution of

Λx = y. ()

In accordance to Hadamard (), we call such a problem well–posed, if the following proper-
ties are valid:

• For all admissible data, a solution exists.
• For all admissible data, the solution is unique.
• The solution depends continuously on the data.

In our setting, these requirements can be translated into

• Λ is injective, i.e.R(Λ) = K

• Λ is surjective, i.e.N(Λ) = {}
• Λ− is bounded and continuous

If one of the three conditions is not fulfilled, the problem () is called ill-posed. It will turn out
that the satellite problems we are concerned with are ill–posed, the largest problem being the
unboundedness of the inverse operator Λ−.

Let us discuss the consequences of the violations of the above requirements for the well–
posedness of (). The lack of injectivity of Λ is perhaps the easiest problem. The spaceH can
be replaced by the orthogonal complement N(Λ)⊥, and the restriction of the operator Λ to
N(Λ)⊥ yields to an injective problem.

From practical point of view, one is very often confronted with the problem thatR(Λ) /= K,
since the right-hand side is given by measurements and is, therefore, disturbed by errors. We
assume now that y ∈ R(Λ) but only a perturbed right-hand side yδ is known. We suppose

∥y − yδ∥
K

< δ. ()

Our aim is to solve
Λxδ = yδ . ()

Since yδ might not be in R(Λ), the solution of this equation might not exist, and we have to
generalize what is meant by a solution. xδ is called least–squares solution of (), if

∥Λxδ − yδ∥
K

= inf{∥Λz − yδ∥
K

∣z ∈ H}. ()

The solution of () might not be unique, and therefore one looks for the solution of ()
with minimal norm. xδ is called best approximate solution of Λxδ = yδ , if xδ is a least–squares
solution and

∥xδ∥
H

= inf{∥z∥
H

∣z is a least–squares solution of Λz = yδ} ()

holds.
The notion of a best–approximate solution is closely related to the Moore–Penrose (gener-

alized) inverse, of Λ (see Nashed ). We let

Λ̃ : N(Λ)⊥ /→R(Λ)
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with
Λ̃ = Λ∣

N(Λ)⊥ ()

and define theMoore–Penrose (generalized) inverse Λ+ to be the unique linear extension of Λ̃−

to
D(Λ+) := R(Λ) +R(Λ)⊥ ()

with
N(Λ+) = R(Λ)⊥. ()

A standard result is provided by

Theorem .
If y ∈ D(Λ+), then Λx = y has a unique best–approximate solution which is given by

x+ = Λ+y.

Note that the best–approximate solution is defined for all perturbed data yδ ∈ K, whereas the
last theorem requires that the right–hand side is an element ofD(Λ+).

A serious problem for ill–posed problems occurs when Λ− or Λ+ are not continuous. This
means that small errors in the data or even small numerical noise can cause large errors in
the solution. In fact, in most cases the application of an unbounded Λ− or Λ+ does not make
any sense.The usual strategy to overcome this difficulty is to substitute the unbounded inverse
operator

Λ− : R(Λ) /→H

by a suitable bounded approximation

R : K /→H.

The operator R is not chosen to be fixed, but dependent on a regularization parameter α.
According to Kirsch () we are led to introduce the following definition:

Definition .
A regularization strategy is a family of linear bounded operators

Rα : K /→H, α > ,

so that
lim
α→

RαΛx = x for all x ∈ H,

i.e. the operatorsRαΛ converge pointwise to the identity.

From the theory of inverse problems (see, e.g., Kirsch ) it is also clear that if Λ : H → K

is compact and H has infinite dimension (as it is the case for the application we have in
mind), then the operators Rα are not uniformly bounded, i.e., there exists a sequence (α j)

with lim j→∞ α j =  and
∥Rα j∥L(K,H) →∞ for j →∞. ()

Note that the convergence of RαΛx in Definition . is based on y = Λx, i.e., on unper-
turbed data. In practice, the right-hand side is affected by errors and then no convergence is
achieved. Instead, one is (or has to be) satisfied with an approximate solution based on a certain
choice of the regularization parameter.
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Error

Total error

RaΛx – x 
δ Ra L(K,H)

a

H

⊡ Fig. 
Typical behavior of the total error in a regularization process

Let us discuss the error of the solution. For this purpose, we let y ∈ R(Λ) be the (unknown)
exact right–hand side and yδ ∈ K be the measured data with

∥y − yδ∥
K

< δ. ()

For a fixed α > , we let
xα ,δ = Rα yδ , ()

and look at xα ,δ as an approximation of the solution x of Λx = y. Then the error can be split as
follows:

∥xα ,δ − x∥
H

= ∥Rα yδ − x∥
H

()
≤ ∥Rα yδ − Rα y∥

H

+ ∥Rα y − x∥
H

≤ ∥Rα∥
L(K,H) ∥y

δ
− y∥

K

+ ∥Rα y − x∥
H

,

such that
∥xα ,δ − x∥

H

≤ δ∥Rα∥
L(K,H) + ∥RαΛx − x∥

H

. ()

We see that the error between the exact and the approximate solution consists of two parts:
The first term is the product of the bound for the error in the data and the norm of the reg-
ularization parameter Rα . This term will usually tend to infinity for α →  if the inverse Λ−

is unbounded and Λ is compact (cf. ()). The second term denotes the approximation error
∥(Rα −Λ−)y∥

H

for the exact right–hand side y = Λx.This error tends to zero as α →  by the
definition of a regularization strategy. Thus, both parts of the error show a diametrically ori-
ented behavior. A typical picture of the errors in dependence on the regularization parameter α
is sketched in > Fig. . Thus, a strategy is needed to choose α dependent on δ in order to keep
the error as small as possible, i.e., we would like to minimize

δ∥Rα∥
L(K,H) + ∥RαΛx − x∥

H

. ()

In principle, we distinguish two classes of parameter choice rules: If α = α(δ) does not
depend on δ, we call α = α(δ) an a priori parameter choice rule. Otherwise α depends also
on yδ and we call α = α(δ, yδ) an a posteriori parameter choice rule. It is usual to say a
parameter choice rule is convergent, if for δ →  the rule is such that

lim
δ→

sup{∥Rα(δ ,yδ)y
δ
− T+y∥

H

∣yδ ∈ K, ∥yδ − y∥
K

≤ δ} =  ()

and
lim
δ→

sup{α(δ, yδ) ∣yδ ∈ K, ∥y − yδ∥
K

≤ δ} = . ()
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We stop here the discussion of parameter choice rules. For more material the interested reader
is referred to, e.g., Engl et al. () and Kirsch ().

The remaining part of this section is devoted to the case that Λ is compact, since then we
gain benefits from the spectral representations of the operators. If Λ : H → K is compact, a
singular system (σn ; vn ,un) is defined as follows: {σ 

n}n∈ℕ are the nonzero eigenvalues of the
self–adjoint operator Λ∗Λ (Λ∗ is the adjoint operator of Λ), written down in decreasing order
with multiplicity. The family {vn}n∈ℕ constitutes a corresponding complete orthonormal sys-
tem of eigenvectors of Λ∗Λ.We let σn >  and define the family {un}n∈ℕ via un = Λvn/∥Λvn∥

K

.
The sequence {un}n∈ℕ forms a complete orthonormal system of eigenvectors of ΛΛ∗, and the
following formulas are valid:

Λvn = σnun , ()

Λ∗un = σnvn , ()

Λx =

∞

∑

n=
σn(x, vn)

H

un , x ∈ H, ()

Λ∗y =
∞

∑

n=
σn(y,un)

K

vn , y ∈ K. ()

The convergence of the infinite series is understood with respect to the Hilbert space norms
under consideration. The identities () and () are called the singular value expansions
of the corresponding operators. If there are infinitely many singular values, they accumulate
(only) at , i.e., limn→∞ σn = .

Theorem .
Let (σn ; vn ,un) be a singular system for the compact linear operator Λ, y ∈ K. Then we have

y ∈ D(Λ+) if and only if
∞

∑

n=

∣(y,un)
K

∣



σ 
n

< ∞, ()

and for y ∈ D(Λ+) it holds

Λ+y =
∞

∑

n=

(y,un)
K

σn
vn . ()

The condition () is the Picard criterion. It says that a best–approximate solution of Λx = y
exists only if the Fourier coefficients of y decay fast enough relative to the singular
values.

The representation () of the best–approximate solution motivates a method for the con-
struction of regularization operators, namely by damping the factors /σn in such a way that the
series converges for all y ∈ K. We are looking for filters

q : (,∞)× (, ∥Λ∥
L(H,K)) /→ ℝ ()

such that

Rα y :=
∞

∑

n=

q(α, σn)
σn

(y,un)
K

vn , y ∈ K,

is a regularization strategy.The following statement is known from Kirsch ().
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Theorem .
Let Λ : H → K be compact with singular system (σn ; vn ,un). Assume that q from () has the
following properties:

(i) ∣q(α, σ)∣ ≤  for all α >  and  < σ ≤ ∥Λ∥
L(H,K).

(ii) For every α >  there exists a c(α) so that ∣q(α, σ)∣ ≤ c(α)σ for all  < σ ≤ ∥Λ∥
L(H,K).

(iii) lim
α→

q(α, σ) =  for every  ≤ σ ≤ ∥Λ∥
L(H,K).

Then the operator Rα : K →H, α > , defined by

Rα y :=
∞

∑

n=

q(α, σn)
σn

(y,un)
K

vn , y ∈ K, ()

is a regularization strategy with ∥Rα∥
L(K,H) ≤ c(α).

The function q is called a regularizing filter for Λ. Two important examples should be
mentioned:

q(α, σ) =
σ 

α + σ  ()

defines the Tikhonov regularization, whereas

q(α, σ) = {

, σ 
≥ α,

, σ 
< α, ()

leads to the regularization by truncated singular value decomposition.

. Regularization of the Exponentially Ill-Posed SGG-Problem

We are now in position to have a closer look at the role of the regularization techniques
particularly working for the SGG-problem.

In (), the SGG-problem is formulated as pseudodifferential equation: Given G ∈ L


(Ω),

find F ∈ L


(Ω) so that ΛR ,H

SGGF = G with

(ΛR ,H
SGG)

∧

(n) =
Rn

(R + H)

n
(n + )(n + )

(R +H)

 . ()

Switching now to a finite dimensional space (which is then the realization of the regularization
by a singular value truncation), we are interested in a solution of the representation

FN =

N

∑

n=
F∧(n,m)Yn,m . ()

Using a decomposition of G of the form

G =

∞

∑

n=
G∧(n,m)Yn,m , ()

we end up with the spectral equations

(ΛR ,H
SGG)

∧

(n)F∧(n,m) = G∧(n,m), n = , . . . ,m, m = , . . . , n + . ()
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In other words, in connection with () and (), we find the relations

F∧(n,m) =

G∧(n,m)

(ΛR ,H
SGG)

∧

(n)
, n = , . . . ,m, m = , . . . , n + . ()

For the realization of this solution we have to find the coefficients G∧(n,m). Of course, we are
confronted with the usual problems of integration, aliasing, and so on.

The identity () also opens the perspective for SGG-applications by bandlimited regu-
larization wavelets in Earth’s gravitational field determination. For more details we refer to
Schneider (), Freeden et al. (), Freeden and Schneider (), Glockner (), and
Hesse (). The book written by Freeden () contains non-bandlimited versions of (har-
monic) regularization wavelets.Multiscale regularization by use of spherical up-functions is the
content of the papers by Schreiner () and Freeden and Schreiner ().

 Future Directions

The regularization schemes described above are based on the decomposition of the Hesse ten-
sor at satellite’s height into scalar ingredients due to geometrical properties (normal, tangential,
mixed) as well as to analytical properties originated by differentiation processes involving phys-
ically defined quantities (such as divergence, curl, etc). SGG-regularization, however, is more
suitable and effective if it is based on algorithms involving the full Hesse tensor such as from
the GOCEmission (for more insight into the tensorial decomposition of GOCE-data the reader
is referred to the contribution of R. Rummel in this issue, in addition, see Rummel and van
Gelderen () and Rummel ().

Our context initiates another approach to tensor spherical harmonics. Based on cartesian
operators (see Freeden and Schreiner ()), the construction principle starts from operators
õ(i ,k)n , i, k ∈ {, , } given by

õ(,)n F(x) = ((n + )x − ∣x∣∇x) ⊗ ((n + )x − ∣x∣∇x) F(x), ()

õ(,)n F(x) = ((n − )x − ∣x∣∇x) ⊗∇x F(x), ()

õ(,)n F(x) = ((n + )x − ∣x∣∇x) ⊗ (x ∧∇x) F(x), ()

õ(,)n F(x) = ∇x ⊗ ((n + )x − ∣x∣∇x) F(x), ()

õ(,)n F(x) = ∇x ⊗∇xF(x), ()

õ(,)n F(x) = ∇x ⊗ (x ∧∇x) F(x), ()

õ(,)n F(x) = (x ∧∇x) ⊗ ((n + )x − ∣x∣∇x) F(x), ()

õ(,)n F(x) = (x ∧∇x) ⊗∇x F(x), ()

õ(,)n F(x) = (x ∧∇x) ⊗ (x ∧∇x) F(x) ()

for x ∈ ℝ
 and sufficiently smooth function F : ℝ

→ ℝ.
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Elementary calculations in cartesian coordinates lead us in a straightforward way to the
following result.

Lemma .
Let Hn , n ∈ ℕ, be a homogeneous harmonic polynomial of degree n. Then, õ(i ,k)n Hn is a
homogeneous harmonic tensor polynomial of degree deg(i ,k)(n), where

deg(i ,k)(n) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

n −  for (i, k) = (, )
n −  for (i, k) ∈ {(, ), (, )}
n for (i, k) ∈ {(, ), (, ), (, )}
n +  for (i, k) ∈ {(, ), (, )}
n +  for (i, k) = (, )

. ()

(deg(i ,k)(n) < means that õ(i ,k)n Hn = ).

Applying the operator õ(,)n to the inner harmonic x ↦ ∣x∣nYn(x/∣x∣), we are able to deduce
the following relation after some easy calculations

õ(,)n rnYn(ξ)∣r= = (n + )(n + )o(,)Yn(ξ) − (n + )o(,)Yn(ξ) − (n + )o(,)Yn(ξ)

−



(n + )(n + )o(,)Yn(ξ) +



o(,)Yn(ξ). ()

(compare with the identity ()).
Assuming that {Yn,m}n=,. . . ,m=,. . . ,n+ is an orthonormal set of scalar spherical harmonics

as before, we are led to introduce the following tensor spherical harmonics

ỹ(i ,k)n,m = (μ̃(i ,k)n )

−/
õ(i ,k)Yn,m , ()

n = ̃ik , . . . ,m = , . . . , n + , where

̃ik =
⎧

⎪
⎪
⎪

⎨

⎪
⎪
⎪

⎩

, (i, k) ∈ {(, ), (, ), (, )}
, (i, k) ∈ {(, ), (, ), (, ), (, )}
, (i, k) ∈ {(, ), (, )}

. ()

and

μ̃(,)n = (n + )(n + )(n − )(n − ), ()

μ̃(,)n = n, ()

μ̃(,)n = (n + )(n + )(n − )(n − ), ()

μ̃(,)n = n(n − )(n + )(n − ), ()

μ̃(,)n = n
(n − )(n + ), ()

μ̃(,)n = n(n + )(n + ), ()

μ̃(,)n = n
(n + )(n + ), ()
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μ̃(,)n = n
(n + )(n + ), ()

μ̃(,)n = n(n + )(n + ). ()

They are suitable for the solution of tensorial problems due to the following result involv-
ing the spaces l(Ω) and c(Ω) of square-integrable and continuous tensor fields on Ω,
respectively.

Theorem .
Let {Yn,m}n=,,. . . , m=,. . . ,n+ be an L(Ω)-orthonormal set of scalar spherical harmonics. Then,
the set

{ỹ(i ,k)n,m }

i ,k=,,, n=̃ i k ,. . ., m=,. . . ,n+
, ()

as defined by () forms an l(Ω)-orthonormal set of tensor spherical harmonics which is closed
in c(Ω) with respect to ∥ ⋅ ∥c(Ω) and complete in l(Ω) with respect to (⋅, ⋅)l(Ω).

Finally we introduce the tensor outer harmonics of degree n, order m, and kind (i, k) by
(see Freeden and Schreiner ())

h(,);R
−n−,m(x) =


R
(

R
∣x∣
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These definitions (in particular the one of kind (, )) offer an easy way to represent the
gravitational potential V in the exterior of the sphere with radius R in terms of the gravitational
tensor∇⊗∇V at the satellite’s height H. We start with the observation that
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R
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Using the orthonormal basis {/R Yn,m} of the space of square-integrable functions on ΩR and
{/(R + H) ỹ(i ,k)n,m } of the space of square-integrable tensor fields on ΩR+H, the relation ()
can be rewritten as
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In other words, the transformation of the potential at height R to the Hesse tensor at height
R +H can be expressed by a pseudodifferential operator λ̃

R ,H
SGG with the tensorial symbol
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where

Λ̃(,);R ,H∧SGG (n) =
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R
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and

Λ̃(i ,k);R ,H∧SGG (n) = , (i, k) /= (, ).

Hence, the foreward direction of the SGG problem is described by the pseudodifferential
operator λ̃

R ,H
SGG, so that the SGG problem leads to the pseudodifferential equation

λ̃
R ,H
SGGV = h. ()

In order to formulate this equation more concretely, we show how the potential V is related to
its Hesse tensor at height H:

V(x) =
∞

∑

n=

n+
∑

k=
(∇⊗∇V ;h(,);R+H

−n−,k )

l(ΩR+H)
(μ̃(,)n )

−/
(

R + H
R

)

n+ 
∣x∣n+

Yn,m (

x
∣x∣

) .

()

Obviously, the last formula may serve as point of departure for (regularization) solution
techniques to determine V at the Earth’s surface from the full Hesse tensor v = ∇ ⊗ ∇V
at the satellite altitude. Furthermore, as described in Freeden and Schreiner (), it is not
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difficult to define tensor zonal kernels in accordance with this expansion. In particular, they
allow multiscale regularization (solution) schemes based on wavelet methods.

 Conclusion

Although an impressive rate of the Earth’s gravitational potential can be detected globally at
the orbit of a satellite (like GOCE), the computational drawback of satellite techniques in
geoscientific research is the fact that measurements must be performed at a certain altitude.
Consequently, a “downward continuation” process must be applied to handle the potential at
the Earth’s surface, hence, a loss of information for the signal is unavoidable. Indeed, “down-
ward continuation” causes severe problems, since the amount of amplification for the potential
is not known suitably (as an a priori amount) and even small errors in the measurements may
produce huge errors in the potential at the Earth’s surface.

However, it is of great advantage that satellite data are globally available, at least in princi-
ple. Nevertheless, from a mathematical point of view, we are not confronted with a boundary
value of potential theory. Satellite techniques such as SST and/or SGG require the solution of an
inverse problem to produce gravitational information at the Earth’s surface, where it is needed
actually. SST/SGG can be formulated adequately as (Fredholm) pseudodifferential equation of
the first kind, which is exponentially ill-posed, and this fact makes indispensable the devel-
opment of suitable mathematical methods with strong relation to the nature and structure of
the data.

In this respect it should be mentioned that each approximation’s theoretic method has
its own aim and character. Even more, it is the essence of any numerical realization that it
becomes optimal only with respect to certain specified features. For example, Fourier expansion
methods with polynomial trial functions (spherical harmonics) offer the canonical “trend-
approximation” of low-frequency phenomena (for global modeling), they offer an excellent
control and comparison of spectral properties of the signal, since any spherical harmonic relates
to one frequency.This is of tremendous advantage for relating data types under spectral aspects.
But it is at the price that the polynomials are globally supported such that local modeling
results into serious problems of economy and efficiency. Bandlimited kernels can be used for
the transition from long-wavelength to short-wavelength phenomena (global to local model-
ing) in the signal. Because of their excellent localization properties in the space domain, the
non-bandlimited kernels can be used for the modeling of short-wavelength phenomena. Local
modeling is effective and economic. But the information obtained by kernel approximations
is clustered in frequency bands so that spectral investigations are laborious and time consum-
ing. In other words, for numerical work to be done, we have to make an a priori choice. We
have to reflect the different stages of space/frequency localization so that the modeling process
can be adapted to the localization requirements necessary and sufficient for our geophysical or
geodetic interpretation.

In conclusion, an algorithm establishing an approximate solution for the inverse SGG-
problem has to reflect the intention of the applicant. Different techniques for regularization
are at the disposal of the numerical analyst for global as well as local purposes. Each effort
does give certain progress in the particular field of pre–defined interest. If a broad field of
optimality should be covered, only a combined approach is the strategic instrument tomake an
essential step forward. Thus, for computational aspects of determining the Earth’s gravitational
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potential, at least a twofold combination is demanded, viz. combining globally available satellite
data (including the SGG-contribution) with local airborne and/or terrestrial data and combin-
ing tools and means of constructive approximation such as polynomials, splines, wavelets, etc.
Altogether, in numerical modeling of the Earth’s gravitational potential, there is no best uni-
versal method, there exist only optimized procedures with respect to certain features and the
option and the feasibility for their suitable combination.
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