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Abstract. Simulated, false location reports can be an effective way to confuse a 
privacy attacker. When a mobile user must transmit his or her location to a cen-
tral server, these location reports can be accompanied by false reports that, 
ideally, cannot be distinguished from the true one. The realism of the false re-
ports is important, because otherwise an attacker could filter out all but the real 
data. Using our database of GPS tracks from over 250 volunteer drivers, we de-
veloped probabilistic models of driving behavior and applied the models to 
create realistic driving trips. The simulations model realistic start and end 
points, slightly non-optimal routes, realistic driving speeds, and spatially vary-
ing GPS noise. 
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1   Trip Simulations For Privacy 

Some location-based services require users to transmit location from their mobile 
device to a central server. These transmissions can be user-initiated and sporadic, 
such as a query to find nearby restaurants. Other location transmissions can be period-
ic and relatively frequent, like those querying for alerts about nearby friends, events, 
and advertising. These location transmissions and the responses from the server could 
be compromised by an attacker, resulting in a potentially sensitive privacy leak. 

One approach to bolstering privacy is to anonymize the location transmissions by 
stripping away any identifying information. The server often still requires a pseu-
donym, however, in order to know how to respond and to whom. It has been shown in 
[6] that an attacker can find a person’s home even with pseudonomized GPS tracks, 
and [10] shows how such an attack can go further and find the actual name of the 
victim based on publicly available street address listings. Even using completely ano-
nymized tracks, with no pseudonym, [4] has shown how to find which location points 
belong together in the same track, effectively creating a pseudonym for each trip. 

Another commonly proposed technique for improving location privacy is obfusca-
tion. This approach degrades the transmitted location in some way that reduces the 
chance that an attacker can find the potential victim’s true location. Obfuscation tech-
niques include inaccuracy and imprecision, introduced for location privacy in [1]. 
Inaccuracy can be achieved by adding random noise to location measurements, and 
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imprecision can be achieved by snapping measurements to a grid. Unfortunately, [10] 
showed that the amount of obfuscation necessary to foil an attack can be very high, 
e.g. an identity attack still worked after adding noise with a 1-kilometer standard 
deviation. Gruteser and Grunwald [3] introduced k-anonymity for location privacy, in 
which point location reports are replaced by regions containing k-1 other people, 
another way of achieving imprecision. While obfuscation can be effective, it necessi-
tates the degradation of the location data, which can be fatal for certain applications. 

One little-explored but promising technique for location privacy is for the user to 
send several false location reports along with the real one. The server would respond 
to all the reports, and the user would ignore all but the response to their actual loca-
tion. With enough false reports, the chances of an attacker picking the true one could 
be reduced to an acceptable level. This technique uses no obfuscation, meaning it 
would still work for location-based services that require accurate and precise point 
reports, such as alerts of nearby friends and location-based advertising. The only 
previous work exploring this idea appears to be that of Kido et al. [9] who explore an 
algorithm for reducing the inevitable increase in communication cost. 

The effectiveness of false reports depends heavily on minimizing the ability of an 
attacker to determine which reports are false. Reporting completely random locations 
is risky, because they may fall at obviously unlikely locations like lakes, oceans, 
swamps, and rugged mountains. Furthermore, since locations from the true report will 
follow a plausible path, the false reports must also be plausible paths. Otherwise, the 
continuity of the true path would be easy to distinguish from the “twinkling” of the 
false reports. 

The Kido paper concentrates on reducing communication costs, so its two pro-
posed false path generation techniques are not emphasized. One of these techniques, 
“Moving in a Neighborhood”, is essentially a random walk model, while the other, 
“Moving in a Limited Neighborhood”, modifies the first to avoid clumping false re-
ports near other users’ true locations. However, Duckam et al. [6] point out sophisti-
cated techniques that can be used to filter out false reports. For instance, they note that 
movement may be constrained to a graph, like a road network. Also, people normally 
move with a goal in mind. Thus, random walk models are likely to be easily identifia-
ble by an attacker who could then strip away all but the true location report. 

Related to our work is research on mobility patterns to model the use of wireless 
networks. For mobile networking, mobility simulations are important for wireless 
networking with both fixed base stations [11] and mobile peers [1, 3]. Because fixed 
base stations normally have a large range, the associated mobility models can work at 
the relatively coarse level of cells surrounding each base station, as in [18]. For mo-
bile ad hoc networks (MANETS), however, finer grained simulations are necessary 
due to the short range of the participants’ radios. Such models are used to help simu-
late a collection of wireless nodes, such as automobiles, forming a network with no 
central control. The Random Waypoint model [2] is one of the first simulations rele-
vant to this situation. Here, a subject moves in a straight line toward a randomly cho-
sen waypoint at a randomly chosen speed, then chooses another waypoint and speed, 
etc. Other such mathematical models have been developed since, all aimed at increas-
ing realism. For the case where the mobile nodes are vehicles [8], as in this paper, one 
of the more sophisticated models constrains the vehicles to a road network, either 
random or from a real map [20]. These mathematical models fall short of reality, 
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however, because they lack the degrees of freedom to faithfully simulate real drivers. 
Maximum realism comes from trace-based models that use actual path traces played 
back from real subjects. These are limited, however, because measuring traces is 
relatively expensive, especially for high volumes of traffic in cities. 

We also note that simulated trips for privacy vs. wireless networking have different 
goals, and therefore different criteria. For instance, mobility simulations for wireless 
networking often try to account for group behavior and interactions among mobile 
nodes, because this can affect loads on base stations and present opportunities for 
messages to hop between peers. For privacy, however, our goal is to fool an attacker, 
which means we can give many isolated, false trips that do not need to show any 
regard for each other. 

This paper presents simulated traces based on an actual road network. Our method 
approaches the realism of actual traces by using probabilistic models of driving beha-
vior abstracted from real traces. Our simulated driving trips exhibit these realistic 
characteristics, all derived from a statistical analysis of actual driving traces: 

• Realistic starting and ending points 
• Goal-directed routes with randomness 
• Random driving speeds 
• Spatially varying GPS noise 
We can generate an arbitrary number of these traces, all of which adhere to the sta-

tistical behaviors we see for actual drivers. 
The following sections describe how we model each of these characteristics, pre-

ceded by a description of our measured driving data. 

2   Multiperson Location Survey 

Our statistical behavior models are based on observations of where drivers drive 
measured from GPS receivers. We have been gathering GPS data from volunteer 
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Fig. 1. (a) We analyzed and generated trips inside the 20 kilometer radius circle covering  
the area around Seattle, Washington, USA. (b) Our road network is anchored by nodes that 
occur at intersections, dead ends, and road name changes. 



28 J. Krumm 

measured 
GPS points

1

2

3

inferred 
path

 

Fig. 2. We used a map-matching algorithm to determine which roads correspond to noisy 
GPS points. From [11] 

drivers in our Microsoft Multiperson Location Survey (MSMLS) starting in March of 
2004. Volunteer drivers are loaned one of our 55 Garmin Geko 201 GPS receivers, 
capable of recording 10,000 time-stamped latitude/longitude measurements. The GPS 
receivers are set to an adaptive recording mode that records more points when the 
vehicle is moving and accelerating. The median interval between recorded points is 6 
seconds and 62 meters. 

For this study, we used data from 253 subjects. From these subjects, we have ap-
proximately 2.3 million time-stamped latitude/longitude points comprising about 
16,000 separate trips. We split the sequence of points into individual trips at gaps of 
more than five minutes and at apparent speeds of more than 100 miles per hour. We 
also eliminate trips with fewer than 10 measured points. High apparent speeds and 
unusually short trips often come from random, noise-induced measurements while a 
vehicle is parked. 

Approximately 80% of our GPS data is contained in a 20 kilometer radius circle 
centered in the Seattle, Washington, USA region, so we limited our analysis to this 
area, shown in Figure 1(a). 

3   Simulating Trip Endpoints 

The first step in our simulation is choosing start and end points of a trip. Vehicle trips 
normally start and end near a road, and some parts of a geographic region are more 
popular than others. We attempt to model this behavior, first, by constraining starting  
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and ending points to nodes in a road network. The road network is a graph, in a ma-
thematical sense, where roads are edges and nodes occur at intersections, dead ends, 
and changes in the road name, as shown in Figure 1(b). Our analysis region  
(Figure 1(a)) contains 51,637 nodes and 65,549 edges with an average length of 131 
meters. While actual trips could start or end almost anywhere, our nodes give a con-
venient spatial sampling of the geographic space. An attacker may notice that the 
false trips start only on nodes, but this is mitigated somewhat by the random GPS 
noise we add, described in Section 7. 

Our goal is to compute a probability for each node governing the chances that a 
trip will start or end there. Toward this end, we first examine our GPS data to find the 
node nearest to the start and end of each actual trip. In subsequent sections, we need 
to know the entire sequence of nodes for each trip, which we compute with a proba-
bilistic map-matching technique [11], illustrated in Figure 2. This algorithm takes as 
input a sequence of time-stamped latitude/longitude points and produces a sequence 
of nodes that best represents the trip. The map-matching algorithm uses a hidden 
Markov model to produce a route that simultaneously minimizes the GPS error and 
accounts for the GPS time stamps in light of the road network’s connectivity and 
speed limits. After processing each GPS trip, we have a time-stamped sequence of 
nodes and edges for each one, including the start and end nodes. 

We examined a variety of features of the nodes to compute the probability  
that a node  will be a start or end point of a trip. The features are shown in Table 1. 
All except the “USGS” (United States Geological Survey) and “Roads attached” fea-
tures are actually features of road edges, not nodes. To compute the corresponding 
node feature, we let the attached edges vote for the feature value and take the plurali-
ty. For instance, one of the features is called “Autos allowed”. This will be true if 
most of the node’s connected roads allow cars to drive on them. The meaning of the 
binary features is obvious from their names in Table 1. For these features, Table 1 also 
gives the fraction of the endpoint nodes whose corresponding feature value was 
“true”. For instance, of all the endpoints extracted from the GPS data, a fraction of 

Table 1. These are the features that determine the probability of a node being chosen as an 
endpoint of a trip 

Feature Values “true”  
probability 

Autos allowed true/false 1.000 
Ferry route true/false 0.000 
Paved road true/false 0.997 
Private road true/false 0.050 
Roundabout true/false 0.001 

Through traffic true/false 0.965 
Toll true/false 0.000 

USGS 21 ground types -- 
Roads attached 1,2,3,4,5,6 -- 

Number of lanes 1,2,4 -- 
Road type 7 road types -- 
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0.997 of them were on 
nodes whose plurality of 
attached edges was 
paved. Similarly, no 
routes started or ended 
on nodes whose plurali-
ty of attached edges 
were toll roads or ferry 
routes, which makes 
intuitive sense. 

The “USGS” feature 
pertains to the ground 
cover at the node, e.g. 
urban, grasslands, etc. 
The USGS makes avail-
able free, digital maps of 
the U.S. giving a ground 
cover type for each 30m 
x 30m square of ground 
[7]. The 21 ground cov-
er types and the asso-
ciated probability of an 
endpoint node landing 
on them are shown in 
Figure 3. 

The “Roads attached” feature counts the number of roads attached to the node. The 
number of roads attached and associated probabilities of endpoint nodes occurring 
there are 1 (0.010), 2 (0.152), 3 (0.436), 4 (0.295), 5 (0.014), 6 (0.001).  

“Number of lanes” is the plurality of the number of road lanes on the node’s con-
nected edges. The number of lanes and probabilities are 1 (0.751), 2 (0.241), 4 
(0.009). End points most often occur on single- and double-lane roads. 

“Road type” gives the plurality vote of the type of road connected to the node. The 
probabilities, shown in Figure 4, indicate that highways, ferries, and ramps are unpo-
pular places to start or end a trip. 

To compute the probability of a given node being an endpoint, we use a naïve 
Bayes formulation for the 11 features  from Table 1 that says 

| , , … , |  (1) 

We take the |  values from the feature probabilities described above. 
Using naïve Bayes carries a risk of overweighting some features that have correla-
tions with each other, but it has been shown to work well in practice [13]. With this 
technique, we find that the least popular endpoints are grouped along highways and 
also appear at the ends of unpaved or private roads. 

 

 
Fig. 3. The relative popularity of trip endpoints varies depend-
ing on the ground cover 
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Fig. 5. This distribution of trip times is used to pick random 
trip destinations 
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The preceding 
ysis does not 
guish between the start 
and end point of a trip, 
based on the observa-
tion that each point 
normally serves both 
roles for a typical 
driver. However, hav-
ing chosen a random 
starting point based on 
the probabilities in 
Equation (1), the end-
ing point should not be 
chosen at an arbitrary 
distance away. Intui-
tively, we know that 

most car trips are measured in minutes, not hours, which limits the range of likely 
destinations. To quantify this intuition, we used data from the U.S. 2001 National 
Household Transportation Survey (NHTS) [8]. The NHTS collected data on daily and 
longer-distance travel from approximately 66,000 U.S. households based on travel 
diaries kept by participants. A histogram of trip times from this study is shown in 
Figure 5. 

We designate this 
distribution as  , where  
is the trip time. Having 
chosen a random start-
ing point  from 
Equation (1), we com-
pute the driving times 
to all the other nodes, 
designated as , ., using a 
conventional path plan-
ner. The probability of 
picking a destination 
node  is then 

| , , … , ,| , , … , || , , … , ,  (2) 

 
Fig. 4. Nodes with a plurality of highway, ferry, or ramp 
connections are unpopular places to start or end a trip 
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This is simply the endpoint probability of the candidate destination node multiplied 
by the distribution governing trip times, evaluated at the time it would take to drive to 
the candidate destination. This gives the false trips the same distribution of trip times 
as the NHTS study suggests. 

We use Equations (1) and (2) to randomly chose a start and end point of the trip, 
respectively. We note that the driving times used for computing ,  are 
based on the speed limits in the road network database, which may or may not be 
realistic driving speeds. For choosing a route and ultimately making a time-stamped, 
simulated trip, we need probability distributions governing the speeds that drivers 
actually drive. This is the topic of the next section. 

4   Speeds at Nodes 

For simulating routes and eventually time-stamped location traces, we compute 
probability distributions of actual driving speeds at every node from our measured 
GPS data. For each trip from our GPS loggers, the map-matching algorithm gene-
rates a sequence of time-stamped locations along the road network. From this, we 
compute a sequence of time-stamped distances along the trip, , , 1 … . 
Here there are  points on the trip measured at times . The variable  
represents the accumulated distance along the trip, with 0,  as the total 
length of the trip, and   monotonically non-decreasing with . We note that the ,  representation is different from the more obvious, and ultimately less con-
venient, choice of representing our recorded trips as time-stamped lati-
tude/longitude pairs. 

Since we need to sample locations at an arbitrary interval, we interpolate ,  
with a one-dimensional cubic spline, which gives  for any , . A conven-
tional cubic spline is not necessarily monotonic, thus the resulting wiggles in the 
spline could have the accumulated distance occasionally decreasing with time. We 
chose the monotonic cubic spline presented by Steffen [15], which is simple to im-
plement and ensures monotonicity with time. Speed along the measured trip is simply 

. 
While  approximates the speed on the trip at any point in time , we still do not 

know which values of  correspond to the nodes in the road network along the driv-
er’s route. We need speed samples at these points in order to compute speed distribu-
tions at all the nodes. We solve this by computing the accumulated distance along the 
trip to each node encountered. From this, we can compute which particular spline 
section pertains to that part of the trip and then find  at that point by solving a cubic 
equation. Thus, each measured trip gives a sample of the drivers’ speeds at each node 
along the way. 

Using a time and distance representation (i.e. ,  as above) proved to be a good 
alternative over using time-stamp coordinates like , lat , long . The time and dis-
tance representation made it relatively easy to interpolate points along the route with-
out the worry of the interpolant wiggling off the road. It also made it easy to compute 
speeds with a simple derivative and, in Section 6, to solve a differential equation for 
filling in simulated locations between nodes. 



 Realistic Driving Trips for Location Privacy 33 

With sampled speeds at each node, we can compute a histogram of speeds for each 
node that was encountered in actual driving by our GPS subjects. However, we want 
speed distributions for all the nodes in our region of study, not just the ones we meas-
ured. Toward this end, we abstract away the particular node, replace it with node 
features, and compute a speed histogram as a function of the feature values. The fea-
tures we choose for each node are the seven possible road classifications (listed in 
Figure 4) and the seven possible speed limits of the approach and departure edges. 
With these features, we can abstract speed distributions from particular, measured 
nodes into all the nodes in our region of study. These features are intentionally sensi-
tive to the characteristics of the edges used to approach and depart from the node, 
because we expect speeds to be sensitive to the context surrounding the node. There-
fore, the same node could have multiple speed distributions depending on the roads 
connected to it. An example speed distribution is shown in Figure 6, which shows the 
speed distribution 
on a node that 
connects a limited 
access highway to 
an off ramp. 

With a four-
dimensional feature 
vector (approach 
road classification, 
approach speed 
limit, departure 
road classification, 
departure speed 
limit), and seven 
possible values for 
each dimension, 
there are 74=2401 
possible features 
vectors. We ob-
served only 434 
(18%) in our GPS 
data. We explain in the subsequent sections how we actually generated random speeds 
for a node depending on the intended purpose. For each feature vector, we had an aver-
age of 2257 observations from our GPS data. 

5 Random Routes 

Given random start and end points from Section 3, we could use a conventional path 
planner to find a reasonable, simulated route between them. However, we know from 
previous research that drivers do not always take the optimal route from the route 
planner’s point of view [12]. Drivers may be unaware of the “optimal” route, they 
may know a better route, or they may have preferences that go beyond the route-
planner’s idea of optimal, i.e. minimum time. We want our simulated trips to appear  
 

 
Fig. 6. Speed distribution observed going from a limited access 
highway (speed limit approximately 26 meters/second) to a ramp 
(speed limit approximately 11 meters/second). The average value 
is 21.4 meters/second, showing that drivers are generally slowing 
down from the highway’s maximum speed limit. This is based on 
377 observations at intersections of this type. 
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realistic to a privacy attacker. Thus they cannot always be optimal from a route plan-
ner’s point of view, because that optimality could be easily detected, even for partial 
trips. (A section of a minimum cost route is still the minimum cost route between the 
section’s start and end points.) 

We inject randomness into our routes by injecting randomness into the cost of all 
the edges. We do this by computing random speeds for the road edges from the speed 
distributions described in the previous section. Specifically, for each node, we draw 
randomly generated speeds from the speed distributions using all the possible ap-
proach/depart pairs for roads connected to the node. If we have not observed a partic-
ular approach/depart pair, we skip it. The speed assigned to the road between a pair of 
nodes is the average of the random speeds drawn for each of the two nodes. We gen-
erate new, random speeds before planning each route, which helps to differentiate 
different trips between the same start and end points. With these random speeds, we 
apply a standard A* search algorithm to find the minimum time route. 

Figure 7 shows parts of two routes, one generated with the road network’s built in 
speed limits and the other with random speeds as described above. Both appear rea-
sonable. 

6   Points along Route 

The routes from the previous section demonstrate start points, end points, and routes 
that are reasonable but random. The next element is the time stamps and locations of 
points along the route. We want to simulate a GPS taking measurements at any fre-
quency along the route. One simple alternative would be to take speed limits from the 
original road network representation and apply them to get distance along the route as 
a function of time. However, drivers do not drive at constant speeds along edges, they 
do not undergo step changes in speeds at changes in speed limits, and their behavior 
varies over time. 

 

Fig. 7. A trip starts at the right of the figure and moves toward the lower left. The black 
dots show nodes along the standard path planned using the roads' speed limits. The yellow 
(lighter) dots show a path planned with random speed limits. 
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We use our  
random speed distri-
butions again to gen-
erate random speeds 
at each node encoun-
tered on the random 
route. For each node, 
we know the charac-
teristics of the ap-
proach and departure 
edges, so we use the 
applicable speed 
distribution if we 
have it. If not, the 
computed speed for 
the node is the aver-
age of the nominal 
speeds limits on the 
approach and depar-
ture edges. This gives 
a speed at each node, 
and we do a linear 
interpolation of speed 

between nodes, resulting in a specification giving speed as a function of distance 
along the route. For example, at nodes  and 1, the (distance, speed) pairs along 
the route are ,  and , . We linearly interpolate on distance to get the 
speeds between the two nodes. 

With speed as a function of distance, we have to solve a differential equation to get 
distance as a function of time, which is what we need to generate points along the 
route. For example, with linear interpolation along an edge, we have this relationship 
between speed ⁄  and distance : 

 

 ( 3 ) 

 
With the initial condition that 0 when 0, the solution in terms of  is 
 1

 ( 4 ) 

 
We move along the route in  as we increment  with whatever ∆  we choose. For 

a computed  along the route, we convert to latitude/longitude using our knowledge 
of the lengths and coordinates of the route’s constituent edges. The result of this step 
is a sequence of time-stamped latitude/longitude pairs along the route, sampled at 
whatever frequency we chose. Figure 9 shows the result of this step, where points 
have been filled in at one per second according to randomly chosen speeds. These 
points represent the locations where the simulated driver made GPS measurements. 

 

Fig. 8. GPS noise varies with location. The white dots show all 
the points where we estimated the standard deviation of GPS 
noise. The black dots show the 5% of points with the largest 
standard deviation. 
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7   GPS Noise 

As a final step in simulating data from a real trip, we add noise to the simulated 
latitude/longitude points. This is not to obfuscate the data, but to make it look more 
realistic to a potential attacker. Although there are statistics published on GPS inac-
curacy, e.g. [16], we chose to compute our own statistics from our data. In section 
3, we explained how we matched each measured GPS point to a point on a nearby 
road. We regard the matched point as the driver’s actual location, giving us differ-
ences in distance for computing statistics. Adopting the Gaussian assumption from 
[16], we further assume that the GPS errors have zero mean, leaving only the stan-
dard deviation as the parameter of interest. Our observations show that some GPS 
measurements are outliers, so we use a robust estimate of the standard deviation, the 
median absolute distance (MAD) [14]. The MAD gives a valid estimate of standard 
deviation even if up to half the values are outliers. This is why, even if up to half 
our GPS measurements are outliers or mismatched to a road, we can still compute a 
reasonable estimate of GPS standard deviation. If the GPS errors are , the MAD 
formula is 1.4826 · median| median |     (5) 

Here, since we assume that GPS error has zero mean, we replace median  with 
zero. The factor of 1.4826 makes the estimate consistent for Gaussian distributions. 
We computed 7.65 meters using data from all our subjects. 

Our observations also show that GPS error varies with location, with higher errors 
perhaps coming in areas with more obstacles to prevent a clear view of the GPS satel-
lites. With this in mind, we compute a separate GPS error standard deviation for each 
node we observed in our GPS data. Specifically, for each GPS point matched to a 
road, we associate that error to the nearest road node and compute each node’s stan-
dard deviation from its associated errors. 

Figure 8 shows in black the 5% of nodes with the highest GPS error. Although 
there is no obvious pattern, there are several clear clusters of points, indicating areas 
of extended disruption, caused possibly by trees or buildings. 

To add realistic GPS noise to our traces, for each point, we first generate a random 
direction with a uniform distribution, ~ 0,2 . We then find the  associated with 
the nearest node and generate a random magnitude ~ 0, . The point is then 
moved by ∆ , ∆ cos , sin . Figure 9 shows a section of one of our trac-
es, with and without added noise. 

Adding noise is the last step of our process. We note that this is the only step that 
does not abstract away the specific training region. Our simulated start and end points, 
routes, and speeds are based on generic features that could be extracted from any city 
without taking GPS data there (i.e. the road network and USGS ground cover data). A 
simple alternative to site-specific training for GPS noise would be to use the same 
value of  everywhere. A more interesting alternative would be to learn a model that 
infers  as a function of relevant features, perhaps USGS ground cover and the densi-
ty of nearby buildings. 
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8   Summary 

To summarize, this is the list of steps used to generate a false trip: 
 

1. Trip endpoints – Use features from Table1 to compute the probability of 
each node serving as a trip endpoint. The start of the trip is chosen according 
to these probabilities. The end of the trip is chosen according to the same 
probabilities, augmented with the probability distribution of trip times given 
in Figure 5. This gives realistic starting and ending points and realistic trip 
times. 

2. Trip speeds – Based on simple learning from GPS traces, compute probabilis-
tic speed distributions for each node as a function of the posted speed limits 
and types of road approaching and departing each node. For example, Figure 6 
gives a speed distribution for going from a limited access highway with a cer-
tain speed limit to a ramp with another speed limit. 

3. Random routes – Given a random start and end of a trip, generate a route. In-
stead of using posted speed limits to compute the minimum time route, we 
use speeds randomly drawn from the speed distributions in the previous step. 
This makes the routes somewhat random and unpredictable, but still reason-
able. 

4. Points along route – Draw another set of random speeds at nodes along the 
computed route. Linear interpolation gives the speed at any point along the 
route, and solving a simple differential equation gives distance along the route 
as a function of time. 

5. GPS noise – Add spatially varying GPS noise to the previously computed 
points on the route. The spatial variation was computed based on our sam-
pled GPS data. 

 

Fig. 9. The larger black dots show points sampled at a rate of one per second, filled in 
along edges according to randomly generate speeds. The smaller, white dots have had 
spatially varying, GPS noise added to them.
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9   Discussion 

The steps outlined in the preceding sections constitute a method for generating realis-
tic, false trips for location privacy. Some false trips generated from the method are 
shown in Figure 10. As a way to enhance privacy, the technique’s ultimate utility 
comes in whether or not an attacker could distinguish the false trips from real ones. 
The likely attack method would be to find some characteristic of real trips and test to 
see which trips pass the test. The current method incorporates the major characteris-
tics of everyday trips. 

Techniques like this should be subjected to scrutiny from unbiased researchers pos-
ing as attackers. If they find an unmodeled characteristic that distinguishes false trips 
from true trips, that characteristic should be incorporated into the simulation. Toward 
this end, we have made available 1000 simulated trips and 10 real trips from our test 
area available on a public Web site1. The simulated trips come from the technique 
described in this paper. This site also contains a movie showing the progress of the 
1000 false trips on a map. The movie shows that most trips start and end in more 
urban areas, with fewer in less populated regions. 

While ours is one of the first efforts to produce realistic trips for location privacy, 
there are published criteria for trip simulation. One list of criteria comes from a sur-
vey of vehicular simulation techniques for mobile ad hoc networks [5]. Their five 
“macro-mobility” criteria apply to our technique: 

                                                           
1 http://research.microsoft.com/en-us/um/people/jckrumm/RealisticDrivingTrips/data.htm 

 

Fig. 10. These are ten false trips generated by our method 
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• Graph – Vehicular models that move on a map-derived graph, like ours, are 
considered more realistic. 

• Initial Destination and Position – Our endpoints are not random. They are 
restricted to the graph and represent characteristics of the endpoints we ob-
serve in data. 

• Trip Generation – Endpoints can be generated based on likely activities of 
drivers (e.g. shopping, entertainment). Our models do not account for this. 

• Path Computation – Our computed routes are based on random, but plausi-
ble, road speeds and thus demonstrate variability similar to actual drivers. 

• Velocity – We take driving speeds from probability distributions based on 
our GPS data. 

Another list of criteria, for a related purpose, comes from Duckham et al.’s [2] 
speculation on how a privacy attacker might attempt to refine obfuscated location 
data. The same refinement techniques could be applied to filter out false reports: 

• Maximum/minimum/constant Speed – Road speeds that deviate signifi-
cantly from normal are suspicious. Our trips use speeds derived from obser-
vations. 

• Connected Refinement – An attacker would check that a sequence of loca-
tion reports adheres to a connected graph of locations. Our false trips are 
consistent with the road network. 

• Goal-directed Refinement – A trip that wanders aimlessly is unlikely. Our 
trips move toward a goal, but they do not always follow the optimal path ac-
cording to published speed limits, thereby enhancing realism. 

The benchmark for privacy-related, false trips is the random walk methods in Kido 
et al. [9], which is the only previous attempt we know of. Our trips are sensitive to the 
road network, the locations where drivers start trips, their destinations, the random-
ness of their routes, and the speeds they drive. While this is a significant improvement 
over previous work, there are more trip features to consider: 

• Time Sensitivity – All our models disregard the time of day, day of the 
week, etc. It is likely that trip characteristics vary with time. For instance, 
commuters normally leave residential areas in the morning to drive to com-
mercial areas. However, our goal is to simulate plausible trips, not aggregate 
traffic flows, so time sensitivity is not critically important. It would be easy 
to retrain our driver behavior models with different time slices. 

• Stops – Without knowledge of the locations of stop signs, stop lights, and 
traffic slowdowns, we could not adequately model stops during a trip. While 
our speed distributions do admit very slow speeds, we do not explicitly mod-
el stops nor their durations. 

• GPS Outliers – We know that GPS receivers occasionally produce outliers, 
sometimes repeatedly whenever they return to a certain place. We do not at-
tempt to model this. 

Increasing realism is not the only way to improve the effectiveness of false reports. 
It is also worth considering making the true report look more like a false one in order 
to confuse an attacker. For instance, if the false reports lack fidelity on a micro scale 
(e.g. lane selection before a turn, brief stops), it may be easier to simply add more 
noise to the false and true reports to cover minor infidelities. Decreasing precision 
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and accuracy of location reports is an acknowledged method for protecting privacy 
[1], and it can make it more difficult for an attacker to distinguish real trips from false 
ones. Likewise, instead of adding outliers to the false reports, it may be easier to filter 
outliers from the real reports. 

Still unresolved is when a privacy-minded client would report false trips – conti-
nuously, only while the client is actually moving, random times? It would be possible 
to build a higher level process that invokes our realistic trips at realistic times of the 
day to simulate movement and stop patterns over extended periods of time. 

10   Conclusion 

Generating false trips is one way to enhance location privacy. We generate false trips 
by abstracting probabilistic models from real trips and using these probabilities to 
generate random start and end points, random routes, random speeds, and random 
GPS noise. 
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