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Abstract. This paper presents novel methodologies for the analysis of
continuous cellular tower data from 215 randomly sampled subjects in
a major urban city. We demonstrate the potential of existing commu-
nity detection methodologies to identify salient locations based on the
network generated by tower transitions. The tower groupings from these
unsupervised clustering techniques are subsequently validated using data
from Bluetooth beacons placed in the homes of the subjects. We then use
these inferred locations as states within several dynamic Bayesian net-
works (DBNs) to predict dwell times within locations and each subject’s
subsequent movements with over 90% accuracy. We also introduce the
X-Factor model, a DBN with a latent variable corresponding to abnor-
mal behavior. By calculating the entropy of the learned X-Factor model
parameters, we find there are individuals across demographics who have
a wide range of routine in their daily behavior. We conclude with a de-
scription of extensions for this model, such as incorporating contextual
and temporal variables already being logged by the phones.

1 Introduction

Every one of the approximately 4 billion mobile phones in use today have con-
tinuous access to information about proximate cellular towers. We believe these
continuous cellular tower data streams can provide valuable insight into a user’s
behavior. Here we introduce a novel method of segmenting, validating and mod-
eling this data. A major contribution of this paper involves the application and
design of community structure algorithms that are appropriate for the identifi-
cation of location clusters relevant to a user’s life. We show that using temporal
data from cellular towers, information every phone has access to, a simple gener-
ative model can be used to infer these salient locations and anticipate subsequent
movements.

There has recently been a significant amount of research quantifying and
modeling human behavior using data from mobile phones. We will highlight a
selection of the literature on GSM trace analysis and subsequently discuss recent
work on location segmentation and movement prediction from GPS data.

Mobile phones are continuously, passively monitoring signals from proximate
cellular towers. However, due to power constraints, a mobile phone typically
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does not continuously send back similar signals alerting the nearby towers of
its particular location. While there has been recent work on analysis of call
data records (CDR) from mobile phone operators [1,2], this data only provide
estimates of locations when the phone is in use. Additionally, the only method
of obtaining continuous cellular tower data without working with an operator is
by installing a logging application on the mobile phone itself.

There have been a variety of projects that have involved installing a mobile
phone application that logs visible cellular towers and Bluetooth devices on a
set of subjects phones including HIIT’s Context project, MIT’s Reality Mining
project [3] and the PlaceLab [4,5] research at Intel Research. Additionally, other
research projects have demonstrated the utility of cellular tower data for a broad
spectrum of applications ranging from contextual image tagging [6] to inferring
the mobility and location of an individual [7,8,9]. Generally this logging software
records between one to four of the cellular towers with the highest signal strength,
however, recent research suggests it is possible to localize a handset down to 2.5
meter accuracies if the number of detected towers is dramatically increased [10].

Dynamic Bayesian Networks (DBNs) have been widely used for quantifying
and predicting human behavior. For analysis of human movement, typically these
models involve location coordinates that are much more precise than cellular
tower data, such as GPS data. These models are trained on general human
movement [11] or more specific data such as transportation routes [12].

As opposed to the previous work above, our dataset comes from randomly
sampled individuals in a large US metropolitan city. We introduce several seg-
mentation algorithms taken from the community structure literature and apply
them to networks of cellular towers. Coupling bluetooth beacon data placed in
the homes of each subject with the tower data, we validate the output of the
community structure algorithms with the community of towers co-present with
the beacon exposures. We then describe several DBNs that use the inferred loca-
tions clusters as states to parametrize and predict subsequent movements. One
such DBN we use for behavioral modeling includes a latent variable, the X-
Factor, corresponding to a binary switch indicative of “normal” or “abnormal”
behavior. We compare the entropy of the learned X-Factor parameters across
different demographics and conclude with ideas for extensions to these models
as future work.

2 Methods

2.1 Data Description

Our data was generated from the phones of 215 subjects from a major US city.
After providing informed consent, these subjects were given phones that logged
the ID of the four cellular towers with the strongest signal strength every 30 sec-
onds. Additionally, the phones conducted Bluetooth scans every minute. Blue-
tooth beacons were deployed in the homes of each subject; as the beacons are
detected only if the phone is within 10 meters of the beacon, detection implies
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the subject is at home. The data was compressed on the mobile phone and
uploaded to a central server after each day.

In contrast to previous datasets, every subject in our study was randomly
sampled from a particular city. By offering a smartphone and free service, over
80 percent of the randomly selected individuals agreed to participate in the study.
The demographic information we have about the subjects is evenly distributed
among ethnic groups and income levels, accurately reflecting the distribution
that makes up the city’s inhabitants. No longer constrained to the study of
academics or researchers, our data represents one of the first comprehensive
behavioral depictions of the inhabitants within a major urban city.

2.2 Segmentation via Community Structure

Each phone records the four towers with the strongest signal at 30 second inter-
vals. This data can therefore be represented as a cellular tower network (CTN)
where each node is a unique cellular tower, an edge exists between two nodes if
both towers co-occur in the same record, and each edge is weighted with the total
amount of time (over all records) the pair co-occurred. A CTN is generated for
each of the subjects, which includes every tower logged by the phone during the
5-month period. The nodes in the CTN that have the highest total edge weight
(the node’s “strength”) correspond to the towers that are most often visible to
the phone. Further, a group of nodes with a large amount of weight within the
group, and less weight to other nodes, should correspond to a “location” where
the user spends a significant amount of time. Figure 2 shows a 32-tower subgraph
of one CTN, segmented into five such locations.

To allow for a meaningful comparison, we use three qualitatively different
heuristics for clustering nodes into locations.

Fig. 1. A 32-tower subgraph of one of our cellular tower networks, segmented into five
“locations,” clusters of nodes in which towers frequently co-occur in the phone’s records
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Ncut. The first segmentation algorithm depends on Shi and Malik’s normalized
cut (Ncut) criterion [13], which, like many cut criteria, is NP-hard to optimize.
Our implementation uses a spectral approach to find a bisection of the graph
that minimizes the size of the normalized cut. Applied recursively, a graph can
be split into a specified number of dense clusters. Although originally devel-
oped to segment images, the Ncut method can naturally be applied to net-
works.

Q-Modularity. The second method, drawn from the large literature on detect-
ing “communities” in complex networks [14], depends on Newman and Girvan’s
popular modularity measure Q [15], which measures the density of clusters rel-
ative to a simple, randomized null model.

Q =
m∑

s=1

[
ls
L

−
(

ds

2L

)2
]

(1)

where ls is the number of edges between the nodes within cluster s, L is the
total number of edges in the network, and ds is the sum of degrees of the nodes
in cluster s. While finding the segmentation that maximizes Q is NP-complete,
there has been a significant amount of work towards this goal. Although also
NP-hard to maximize, we use Clauset et al.’s greedy optimizer [16], which has
been shown to perform reasonably well on real-world data.

Threshold Groups. The third method is a simple-minded heuristic: we first
identify the nodes in the upper decile of “strength,” and then perform a breadth-
first search on the induced subgraph. Each connected component in this sub-
graph is labeled as a unique location, and all remaining nodes in the original
graph placed in an additional group.

Although all based on somewhat similar principles, in practice these methods
produce dramatically different segmentations of our CTNs. This is in part be-
cause the first algorithm requires as input the number of segments to be found,
unlike the other two.

2.3 Inference via Bluetooth Beacons

One objective measure of these clusterings is to use independent information
derived from the Bluetooth beacons, installed in the homes of each subject in
the study. Every minute the phone scans for visible Bluetooth devices and if
a beacon is within 10 meters of the phone, it is logged as proximate. Creating
training data from the set of cellular towers detected at the same time as the
bluetooth beacons, we have used several methodologies to infer if a subject is at
home given a particular set of visible cellular towers.

Bayesian Posteriors. It is possible to calculate the posterior probability a
subject is home, P (Lhome), conditioned on the four towers currently detected
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by the phone, Tabcd, using the likelihood, the marginal and the prior probability
of being at home (based on the beacon data).

P (Lhome|Tabcd) =
P (Tabcd|Lhome)P (Lhome)

P (Tabcd)
(2)

Gaussian Processes. While the naive Bayesian model above works well in
many cases, simply using the ratio of tower counts co-present with the Blue-
tooth beacon tends to fail if the phone regularly moves beyond ten meters
of the beacon while still staying inside the home. Instead of normalizing by
total number of times each tower is detected, it is possible to obtain addi-
tional accuracy by incorporating the signal strengths from the detected tow-
ers. There are many models for signal strength of a single cellular tower, t.
pt(st|l), one such model uses training data to estimate Gaussian distributions
over functions modeling signal propagation from cellular towers [17]. In our
case, the training data comes from the signals of towers detected at the same
time as the Bluetooth beacon in the subject’s home, and the inference is binary
(home or not home); however, these models are easily extendable for more broad
localization.

Deviations in Tower Signal Distributions. The two models above gen-
erate a probability of being at home associated with a single sample of de-
tected towers (ie: the four tower IDs and their respective signal strengths).
However, during the times when a subject is stationary, the phone continu-
ously collects samples of the detected towers’ signal strengths. These samples
can form ’fingerprint’ distributions of the expected signal strengths associated
with that particular location. It is possible to detect deviations within these
distributions of signal strengths using a pairwise analysis of variance (ANOVA)
with the Bonferroni adjustment to correct for different sample sizes. Training
the home distributions on the times when the beacon is visible (or if there
are no beacons, on times when the subject is likely home such as 2-4am), an
ANOVA comparing this home distribution with a distribution of recent tower
signal strengths makes it possible to identify if the subject is truly at home,
or is at a next-door neighbor’s house. In previous work, such tower probabil-
ity density functions have successfully localized a phone down to the office-
level [3].

2.4 Prediction via Dynamic Bayesian Networks

The clusters of towers identified above can be incorporated as states of a dy-
namical model. Given a sequence of locations visited by a subject, we can learn
patterns in their behaviour and calculate the probability of them moving to dif-
ferent future locations. We start with a baseline dynamical model and introduce
additional observed and latent variables in order to model the situation more
accurately.
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Fig. 2. CTN Segmentation. The giant component of a subject cellular tower network,
segmented into 15 major location clusters (represented by 15 colors) using the Q-
modularity community structure method.

The simplest dynamical Bayesian network we can use for location prediction
is a Markov chain, in which the location yt depends only on the location at
the previous time step, yt−1. The maximum likelihood transition probabilities
p(yt|yt−1) can easily be estimated. Given evidence that a user is in a partic-
ular location at time t, this allows us to calculate the τ -step-ahead prediction
p(yt+τ |yt).

We note that patterns of movement in practice are dependent on the time
of day and the day of week. Subjects typically exhibit different dynamics on
weekday mornings than on Saturday evenings, for example. Figure 3(a) shows an
extended model where the probability of being in a location is also dependent on
the hour of day ht and the day of week dt. In the experiments below, we code ht to
take on the values “morning”, “afternoon”, “evening” and “night”, and code dt to
take on the values “weekday” or “weekend”. After learning maximum likelihood
parameters we can calculate the predicted density p(yt+τ |yt, dt+1:t+τ , ht+1:t+τ )
for new observations from the same user.
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2.5 X-Factors for Abnormality Modeling

While there is strong structure in human behavior, there are also regular devi-
ations from the standard routines. We incorporate an additional latent variable
into our model to quantify the variation in behavior previously unaccounted for
in the fully observed models above.

The model we use for this is shown in Figure 3(b). Here we factorize the
location variable so that it depends on a hidden “abnormality” variable at. The
model can now switch between “normal” and “abnormal” behaviour depending
on whether at is 0 or 1 respectively, as demonstrated in previous physiological
condition monitoring work [18].

We expect abnormal dynamics to be related to the normal dynamics but
with a broader distribution. When estimating these dynamics, we therefore want
to keep relevant structure in the dynamics (e.g. transitions between physically
neighboring locations are still more likely), while allowing wider possibilities in-
cluding non-zero probability of transitions not seen in the training data. We can
achieve this effect by tying the parameters between the normal and abnormal
transition probabilities such that p(yt|yt−1, dt, ht, at = 1) are a smoothed version
of p(yt|yt−1, dt, ht, at = 0). To smooth the transition matrices for every combi-
nation of dt and ht we add a small constant ξ to each entry in the matrix and
renormalize.

Learning of this model can be done with expectation-maximization (EM). We
perform a standard E-step to calculate the probability of being in the normal or
abnormal regime at each time frame, then modify the standard M-step to use
the parameter tying above. In the experiments below, we set ξ = .1 by hand,
though in principle this parameter can also be learnt using EM. Increasing ξ
effectively specifies that a sequence has to depart further from normal dynamics
in order to be considered “abnormal”.

Fig. 3. Two DBN models used for location prediction. Shaded nodes are observed and
unshaded nodes are latent; yt denotes location, dt denotes day of week, ht denotes
hour of day, and at denotes abnormal behaviour (all at time t). Panel (a) shows a
fully observed model as a contextual Markov chain (CMC), and panel (b) shows the
X-factor model, where location is additionally conditioned on the latent abnormality
variable.



Methodologies for Continuous Cellular Tower Data Analysis 349

0

10

20

30

40

Lo
ca

tio
n 

ID
10 20 30 40 50 60

0

1

Time (hours)

p(
a t|y

1:
t)

Fig. 4. Inferred points of abnormality using the X-Factor model. Each weekday the
subject moves consistently between home (location 31) and work (location 15), but on
the third day makes some extra, unusual journeys. The locations in this example were
given by the Group Threshold segmentation method.

3 Results and Discussion

3.1 Segmentation Validation

We have shown how data collected from installed Bluetooth beacons can be used
to create a known cluster of towers associated with each subject’s home. We used
this known cluster to validate each segmentation algorithm, selecting twenty lo-
cations for the Ncuts technique. Table 1 categorizes the community detecition
algorithms by how well they detected the “home” towers as defined by the Blue-
tooth beacons, CBT . The home cluster of towers generated by the Threshold
Groups technique incorporated CBT for every subject, P (CBT ⊂ CH) = 100%,
while this was the case for the Q-Modularity technique only 86% of the time.
However, the other important statistic is the ratio of the number of the Bluetooth
home towers, NCBT , to the number of towers in the inferred home cluster, NCH .
This ratio describes how many additional towers were included in the inferred
home location; for example, the Q-Modularity home cluster has a ratio of .18,
indicating that its home cluster contains approximately five times as many tow-
ers as needed. Despite averaging the most number of clusters, the Ncuts home
cluster has a ratio of .0061, implying that a few large clusters tend to dominate
these segmentations.

3.2 Dwell and Movement Prediction

The three DBNs described above were trained on sequences of transitions be-
tween the locations that were inferred by each segmentation method. To com-
pensate for the bias towards self-transitioning (at virtually every instance, the
most likely event will be that the subject does not change locations), we com-
pare the models success only on instances when a subject is about to transition
between inferred locations. The DBNs are tasked with predicting the location
where the subject is about to move. Table2 lists these prediction accuracies for
the three segmentation methods and the two full-observed Markov models. While
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Table 1. Segmentation Validation via Bluetooth Beacons. μNC is the average number
of clusters generated by each segmentation method. P (CBT ⊂ CH) represents the
probability that the set cellular towers associated the Bluetooth beacon at the subject’s
home, CBT , is fully contained in a single cluster, CH . The last column corresponds to
the ratio of the actual number of home towers, NCBT to the number of home towers
inferred by the different segmentation methods, NCH . A small number corresponds to
incorporating a large number of towers within the home cluster.

method μNC (σ) P (CBT ⊂ CH)
NCBT
NCH

Ncuts 20 (0) .93 .0061
Q-Modularity 13.3 (11.7) .86 .18
Threshold Groups 6.8 (13.7) 1.0 .045

Table 2. Transition Accuracy and Dwell Errors. For every instance a subject moves
between two clusters of towers, the DBN can be used to predict the subsequent cluster.
The different accuracies between the segmentation methods are due to not only how
well the clustering techniques performed at identifying the true salient locations, but
also to the number and size of the clusters (described in Table 1). Given these high
accuracies, the inclusion of the temporal observations in the Contextual Markov Chain
(CMC) does not appear to provide significant improvement to the standard Markov
chain (MC).

MC Transition CMC Transition MC Dwell CMC Dwell
method Prediction Prediction Error (minutes) Error (minutes)

Ncuts .932 .933 79.1 78.9
Q-Modularity .953 .954 91.0 75.7
Threshold Groups .992 .992 89.2 84.1

the X-factor model provides additional information about the regularity of a par-
ticular behavior, its accuracy is identical to the contextualized Markov model
and was not included in the table. It is of interest that the highest accuracies
did not come from the segmentation methods that provided the largest cluster
sizes (Ncuts), but rather the smallest number of clusters (Threshold Groups).
However, a direct comparison between these accuracies is not possible due to
the differences in the dimensionality of the state spaces. A model with fewer
inferred locations (NC) should be expected to do better because it has less po-
tential for a wrong prediction. In the extreme, a model with a single state will
always be correct, yet obviously adds little value. Therefore, while the Threshold
Groups segmentation method, with an average of 6.8 inferred salient locations
(σ = 13.7), generated accuracies of over 99%, future work in predicting loca-
tion dwell times may provide more conclusive information about the dominance
of one particular segmentation method over the others. Given the extremely
high accuracies using an unconditioned Markov model, incorporating informa-
tion about the time of day and day of the week unsurprisingly adds little addi-
tional value.
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Fig. 5. A sequence of transitions between towers (top) and the average error rates for
predicted transitions (bottom). The X-factor model was tested on approximately one
month of movement segmented using Ncuts into 20 locations. While the top inferred
location is 92% correct for this set of data, the subsequent location is in the top four
locations over 99% of the time.

3.3 Entropic Individuals

By calculating the standard Shannon information entropy metric of the learned
transition probabilities of the X-factor model, H = −∑

p× log2(p), we are able
to quantify the amount of behavioral regularity of each subject. The means and
variances of this entropy metric are segmented across demographics in Table 3.
Of particular note is the high entropy variance, indicating that there are individ-
uals across all demographics whose behavioral patterns are seemingly unstruc-
tured. This finding runs contrary to previous research conducted on university
students and staff which suggested behavioral entropy is correlated with demo-
graphics [3].

3.4 Future Work

This paper has provided the groundwork for the design of increasingly sophisti-
cated models based on data from mobile phones that incorporate contextual and
temporal variables and can use demographic priors for bootstrapping. For exam-
ple, if the discovered Bluetooth devices can be clustered based on co-presense,
it may be possible to classify particular Bluetooth phones as family, colleagues,
and friends, incorporating the proximity of these individuals as observational vari-
ables. Additionally, the phones in this study also sample the ambient audio envi-
ronment periodically to detect the subjects’ media consumption, information that
should also make for an intriguing additional observed variable in the DBN. Lastly,
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Table 3. Demographic Entropy. The entropy of the conditional probability table from
the X-factor model using the Group Threshold method was averaged across demo-
graphics. The results show extremely high variance, with entropic individuals in vir-
tually every demographic as well as subjects with significant structure in their daily
behavior.

demographic (N) μentropy (σ × 102)

Age:
under 35 (107) 30.1 (4.2)
35 and over (108) 28.0 (4.2)

Gender:
Male (136) 28.3 (4.4)
Female (79) 30.3 (3.8)

Income:
over $60,000 (73) 34.2 (4.3)
$60,000 and under (140) 26.4 (4.0)

Education:
College Grad (79) 31.2 (4.3)
No College Degree (125) 27.7 (4.1)

we would like to explore the potential of using demographic bootstrapping to aid
in efficient model parameterization as introduced in similar models [12].

We have demonstrated the potential to repurpose algorithms developed origi-
nally to quantify community structure within graphs to identify salient locations
within a cellular tower network. We have validated these unsupervised clustering
algorithms on a known cluster of towers using the Bluetooth beacon installed
in each of our randomly sampled subjects’ homes. The resultant set of inferred
clusters of towers correspond to salient locations and are incorporated as states
in our DBN models. We introduced the X-Factor model to detect behaviors
that deviate from a given routine by incorporating an additional latent variable
corresponding a normal / abnormal switch. By calculating the entropy of the
transition matrix from this model we were able to quantify the amount of struc-
ture in the daily routines of different demographics. It is our hope that these
analytical methodologies will provide a framework for future studies of this rich
behavioral data, currently being generated by the majority of humans today.
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