
Towards Ontology-Based Formal Verification

Methods for Context Aware Systems�

Hedda R. Schmidtke and Woontack Woo��

GIST U-VR Lab., 500-712 Gwangju, South Korea
{schmidtk,wwoo}@gist.ac.kr

Abstract. Pervasive computing systems work within, and rely on, a
model of the environment they operate in. In this respect, pervasive
computing systems differ from other distributed and mobile computing
systems, and require new verification methods. A range of
methods and tools exist for verifying distributed and mobile concurrent
systems, and for checking consistency of ontology-based context models.
As a tool for verifying current pervasive computing systems both are
not optimal, since the former cover mainly tree-based location models,
whereas the latter are not able to address the dynamic aspects of com-
puting systems. We propose to formally describe pervasive computing
systems as distributed concurrent systems operating on the background
of a mereotopological context model.

Keywords: context modelling, mereotopology, program verification, on-
tologies.

1 Introduction

Pervasive computing systems can be understood as distributed and mobile con-
current computing systems that are able to react flexibly to changes in their
physical environment [30]. A model of the environment is therefore a fundamen-
tal part of a pervasive computing system, and research on context modelling
methodology has led to novel data structures and ontologies for representing
numerous aspects of context, such as location, time, social structure, computa-
tional structure, and generally the physical properties of the environment. How-
ever, current approaches to verification of pervasive computing systems [4, 27]
based on Ambient Calculus [6] or the theory of Bigraphs [24] are focussed on
tree-based location models, which are inappropriate to represent overlapping
contexts, continuous domains of context, and continuous change. Ranganathan
and Campbell [27] concluded that program verification and verification of con-
text models are complementary tasks. However, important interactions exist and
properties at the interface, where a process queries the context model or uses it
to communicate information to other processes, should be verifiable [27].
� This research is supported by the UCN Project, the MIC 21st Century Frontier R&D

Program in Korea.
�� Corresponding author.

H. Tokuda et al. (Eds.): Pervasive 2009, LNCS 5538, pp. 309–326, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

310 H.R. Schmidtke and W. Woo

We propose a method for verification of pervasive computing systems with
complex context models. We follow the suggestion of Ranganathan and Camp-
bell [27] to separate verification of the context model from verification of the con-
trol structure. We argue that the semantics of context models can be described
adequately within the theory of mereotopology [37], which is used widely in the
area of formal ontology for describing domains such as space, time, partonomies,
and taxonomies. We show that mereotopology is suitable to describe lattices, hi-
erarchical structures that are not trees, and continuous domains, such as ranges
of sensor values and uncertainty regions around GPS coordinates. On this back-
ground, we outline how querying of a context model and communication via
activation of contexts in the context model can be added as new primitives
to the semantics of a programming language. We thus separate the context
model from the state of a program, so that constraints on both parts can be
verified separately. The resulting simple example language is already expres-
sive enough to allow specification of relevant distributed and mobile concur-
rent algorithms that operate with hybrid location models and are triggered by
sensors.

The article consists of three main sections. In the next section (Sect. 2), we
analyse related works on the representation of context from the areas of ubiqui-
tous computing, formal verification methods for context-aware computing, and
from the areas of knowledge representation and ontologies. Then, we outline a
simple variant of the theory of mereotopology and describe how the theory ap-
plies to the problem of context modelling (Sect. 3). We show in Sect. 4 how this
language can be combined with a classical CSP-style programming language.

2 Related Works

Ubiquitous computing became possible after distributed systems and mobile
computing, in particular, the idea of wireless ad hoc networks, had been devel-
oped [30]. Accordingly, location is one of the best understood and most impor-
tant parameters of context. The active map of Schilit and Theimer [31] organises
locations of users and objects in a containment hierarchy of names for regions
organised as a tree. Hybrid location models [20, 22] in addition allow for adding
coordinate information into the hierarchical structure. The hierarchical structure
is realised in [20, 31] with a tree data structure, and in [22] with a more general
lattice structure that in contrast to a tree structure also allows that regions share
sub-regions, that is, that regions can overlap. However, Leonhardt [22] demands
that the leaf nodes of the hierarchical structure, the so-called zones, may not
overlap; the zones thus provide a partitioning of space. A lattice structure based
on partitions has also been suggested by Ye et al. [40]. Schmidtke and Woo
[34] show that a partitioning of space can lead to problems: it imposes restric-
tions on the representation, leads to inflated hierarchies, and does not allow to
properly reflect uncertainty of location information. We discuss in Sect. 3 how
lattice-based location models can be described within the formal framework of
mereotopology.

Towards Ontology-Based Formal Verification Methods 311

A range of approaches for verifying mobile systems that contain a notion of lo-
cation has been suggested in the area of program verification, in particular ap-
proaches building upon pi-calculus [17], and the theories of bigraphs [4, 24], and
ambients [6]. However, the notion of location or domains employed in these ap-
proaches is limited to tree-hierarchies [6] or allows for general graph structures
[17]. Milner [24] suggests to combine a hierarchical tree-structure of localities with
a global, unrestricted network structure. From the perspectives of knowledge rep-
resentation [34] and context modelling [40], however, a tree structure is not suf-
ficient for specifying location: in tree-based hierarchies, overlapping regions are
not allowed and have to be split, and movement of an agent from one region to a
neighbouring region is always discrete. Consequently, Ranganathan and Campbell
[27] argue that proof of correctness with ambients [6] needs to be complemented
with a proof of correctness of the context modelling parts of a pervasive comput-
ing environments, for which they use an ontology described in first-order logic [28].
However, it is not clear how the location model in an ambient specification should
be made consistent with the more refined location model in an ontology [27].

We follow the suggestion in [27] and propose a coupled semantics of context
modelling and programs, so that inconsistencies and unnecessary complexity can
be avoided. Instead of using one of the above mentioned verification methods,
which come with an in-built location model, we start from a simple textbook
variant [2] of CSP as a widely familiar program verification language and com-
plement it with a context modelling language [35] that allows for the description
of contemporary lattice-based location models. The location model in our ap-
proach is maintained exclusively by the context model, or context knowledge base.
The knowledge base is verified via a mereotopological, first-order logic theory
of context aspects, that is, as an ontology, but not as a computing system. Our
aim is to characterise a formal system that describes a broad range of existing
context-aware pervasive computing systems in both their context modelling and
context adaptation functionality.

With respect to context adaptation, two types of control structures for pro-
cessing of contextual information have been distinguished [18]: triggering of pro-
gram code is needed to start or activate applications in response to changes of
context; and branching of program code is needed to let applications produce
different behaviour depending on content of the context model at a given time.
Dey [10] realised adaptation with a type-system and a condition-based publish-
subscribe mechanism. We show in Sect. 4.2 how such conditions [10] and context
dependent branching and triggering [18] of processes can be formalised.

Ontologies have been suggested as the key technology for adding semantics to
applications. Ontologies for space and time have received considerable interest in
the areas of formal ontologies and qualitative reasoning. One of the predominant
approaches in these areas is mereotopology [37], with successful applications in
robotics, geographical information science, the biosciences, and even for motion
tracking. Surprisingly, it has not yet received much attention in pervasive com-
puting or ambient intelligence [8, 16]. In contrast to point-set topology, which
characterises neighbourhoods in a continuous domain, such as spatial regions or

312 H.R. Schmidtke and W. Woo

temporal intervals, based on sets of extension-less points, mereotopology starts
from extended portions of the world [37], that is, from the neighbourhoods or
contexts themselves. Being independent from the number of dimensions of a do-
main, mereotopology cannot only be applied to describe spatial contexts but
also temporal contexts and sensor value ranges, and can also be used to model
discrete domains as well as concept hierarchies and collections [5].

The primitive relations in mereotopology are that of part-hood (�) and con-
nection (C) between regions, replacing the set-theoretic notion of membership
(∈) between points and sets of points. The theory dates back to works on point-
free geometry by Whitehead, Tarski, and Clarke [37]. It has been applied for
formal ontologies in information systems by Randell et al. [26] and many others;
a recent overview has been given by Varzi [37]. The idea to move away from
point-sets to more meaningful primitive extended entities has not only been suc-
cessful for the spatial domain but also for the temporal domain [1]. Moreover,
results of Galton [14] suggest that concepts of qualitative reasoning, which make
the mereotopological calculi attractive for applications in artificial intelligence
[9], can be generalised, so as to cover the broad range of sensors employed for
establishing context awareness [32]. We illustrate (Sect. 3.2) that concepts of
mereotopology can be used to describe continuous quantitative domains of sen-
sor values, in particular when uncertainty [7, 33] or privacy requirements [11, 29]
are important. In these cases, sensory information may not be given by exact
values or coordinates, but only in the form of intervals or uncertainty regions.

An important aspect in pervasive computing is how to identify and address
specific entities (objects, places, users, services, times etc.) in the environment.
One way to do this is to assign unique identifiers to every entity, for instance
by attaching bar codes or RFID, and to give a web presence to people, places,
and things. This approach poses considerable challenges for privacy, since users
and their smart objects cannot remain anonymous, and it can also lead to ineffi-
ciency [3] caused by unnecessarily lengthy descriptions. A more context-oriented
approach, which respects the privacy principle of locality [21] better, is to connect
smart objects based on their current context [3]. Our model allows to formally
capture such novel address methods. In general, a process in our model activates
a context, whose activation is then transmitted either upward or downward to all
processes that are registered with super-contexts or sub-contexts, respectively
(Sect. 4). We can thus model contemporary methods of inter-process commu-
nication, such as semantic triggering of a processes when a change of state is
detected, and semantic broadcasts, e.g., broadcasts over a certain spatial area,
to a certain community, or to an otherwise anonymous recipient who has certain
properties. Communication via IDs can be modelled realistically as a broadcast
to a very specific context; one could then reason about whether a certain protocol
can ensure formally that only a unique listener is addressed.

It has often been stated [28, 36, 38, 39] that modelling context with OWL,
the de facto standard for ontologies, would not be possible. A main difficulty
is that OWL (version 1.0) does not support to describe a relation as a partial
ordering relation, which would be required to characterise location hierarchies

Towards Ontology-Based Formal Verification Methods 313

such as that of Ye et al. [40], other containment hierarchies, and ordering of
sensor values, since reflexivity and antisymmetry of relations cannot be described
in the description logic SHOIQ underlying OWL-DL. The solution chosen by
many approaches to ontology-based context modelling is to use expressive logical
languages, such as F-Logic [36] or first order logic [28, 38], which come at the price
of less efficient reasoning. An alternative is the context-oriented logical language
(for brevity called CL in this article) proposed in [35], which we use in this
article as a context modelling language (Sect. 4). Although in several ways less
expressive than OWL, CL supports hierarchical reasoning over multiple domains.
The syntax is similar to that of first order logic, and it can easily be embedded
into the first order logic needed to characterise mereotopological structures. CL
is thus compatible with general first order logic ontology frameworks containing
mereotopological notions, such as SUMO [25].

3 Mereotopology as a Theory for Context Modelling

In this section, we describe a mereotopological theory that captures notions
of context found in the literature on context modelling and location modelling
for mobile, ubiquitous, and pervasive computing. The general theory is given
in Sect. 3.1 in the form of a domain-independent first-order logic axiomatisa-
tion. For illustration purposes, examples from the spatial domain and location
modelling are used in this section. Domains beyond location are the topic of
Sect. 3.2, where we introduce a more general first order language for context
modelling and illustrate its applicability with multi-domain examples of context
modelling. In Sect. 4 we outline the more tractable language CL [35], which
serves as a sub-language for describing context and querying context models in
a simple context-aware programming language.

3.1 The Language of Mereotopology

The framework of mereotopology in this section mainly follows the explications
given by Varzi [37]. However, our focus is less on philosophical questions of ontol-
ogy than on specifying properties underlying contemporary context models.1 We
assume the standard basic language of first order predicate logic with identity (=)
as given.2

1 We also deviate in syntax: where Varzi [37] – like many other authors in the field of
mereotopology – uses prefix notation, we use mainly infix notation, for instance: we
write x � y instead of Pxy for expressing that x is part of y.

2 For increasing readability of formulae we introduce rules for saving brackets. The fol-
lowing precedence of logical connectives ¬,∧,∨,→,↔ and term connectives ∼,�,	
is assumed. Quantifiers ∀ and ∃ are to be read as having maximal scope, that is, until
the first bracket closing an opening bracket before the quantifier or until the end of
the formula. We highlight the boundaries of atomic formulae, such as [x1 � x2], with
square brackets, so that complex terms and complex formulae are separated clearly.
Sentences are numbered with respect to their function: axioms are indicated with the
prefix A, definitions with D and examples with E.

314 H.R. Schmidtke and W. Woo

Parts. The fundamental notion of mereotopology is the mereological primitive
relation of part-hood (�). In location modelling, the relation � corresponds to
spatial containment and the entities that are ordered by � can be understood
as spatial contexts or regions, whether obtained via symbolic location sensing or
coordinate location sensing.

The relation � is characterised axiomatically as a partial ordering relation,
that is, as reflexive, transitive, and antisymmetric. Reflexivity states that each
x is a part of itself (A1). Transitivity demands that if x1 is part of x2, and
x2 is part of x3, then x1 is also part of x3 (A2). Antisymmetry establishes the
ordering: if x1 is part of x2, and x2 is part of x1, then they must be identical
(A3).

∀x : [x � x] (A1)
∀x1, x2, x3 : [x1 � x2] ∧ [x2 � x3] → [x1 � x3] (A2)
∀x1, x2 : [x1 � x2] ∧ [x2 � x1] → [x1 = x2] (A3)

[x1 � x2]
def⇔ [x1 � x2] ∧ ¬[x2 � x1] (D1)

From the relation �, we can define a strict variant: a proper part x1 of an entity
x2 (relation symbol: �) is a part that does not contain x2 as a part (D1).

Overlap and Underlap. We further define two partial functions: for two en-
tities x1 and x2, the smallest entity that contains both is called the sum (D2),
and the largest entity which they both contain is called here the intersection3

(D3).

[x1 � x2 = x] def⇔ [x1 � x] ∧ [x2 � x] ∧
∀y : [y � x] ∧ [x1 � y] ∧ [x2 � y] → [y = x]

(D2)

[x1 	 x2 = x] def⇔ [x � x1] ∧ [x � x2] ∧
∀y : [x � y] ∧ [y � x2] ∧ [y � x1] → [y = x]

(D3)

∀x : [⊥ � x] ∧ [x � �] (A4)

With respect to common sense spatial intuition, these two functions are partial
functions, since there can be no intersection between regions that do not share a
part, and there can be no sum of two regions if there is no region that contains
them both. It is one of the benefits of mereotopology from a philosophical point
of view that it does not require arbitrary sums and intersections to exist. However
for a lattice structure such as demanded for the hybrid location models [22, 40],
the existence of arbitrary sums and intersections of regions has to be ensured.
A simple way to achieve this is to introduce an empty region ⊥ that is part of
every region and a region � extending over the complete domain (A4).

With these special regions introduced, the relations of overlap and underlap
can be defined: two regions overlap if and only if they share a part that is not
3 We use the term intersection here as a mnemonic and reference to spatial intuition.

The mathematically more appropriate term used by Varzi [37] is product.

Towards Ontology-Based Formal Verification Methods 315

M

N

B
A C

D

A B

C

N

D

M

Fig. 1. Overlap and underlap in a location hierarchy: A and B have C as a common
part and are both part of the region N

identical to the empty region (D4); and two regions underlap if and only if they
are both part of a region that is not identical to the whole domain (D5).

[x1 O x2]
def⇔ ∃x : ¬[x = ⊥] ∧ [x � x1] ∧ [x � x2] (D4)

[x1 Y x2]
def⇔ ∃x : ¬[x = �] ∧ [x1 � x] ∧ [x2 � x] (D5)

[∼ x = y] def⇔ [x � y = �] ∧ [x 	 y = ⊥] (D6)

Additionally, we can define a complement operation (∼): the region y is the
complement of x if and only if the sum of x and y is identical to the whole
domain �, and the intersection is identical to the empty region ⊥ (D6).

In location models, the relation of overlap can be used to span accessibility
graphs: if x overlaps y, then it is possible to go from x to y [40], or to enter y from
x [28]. For a finite set of regions in a location model, the graph of the overlap
relation already allows us to do path planning: if the hallway overlaps with
Alice’s office and Bob’s office, then we can go from Alice’s office to Bob’s office
via the hallway. The notions of overlap and underlap are crucial for modelling
such notions of reachability in a context hierarchy (Fig. 1).

Connection. The above specification is sufficient to characterise containment
hierarchies and we can already specify two regions as being connected by over-
lapping in a shared sub-region. For location modelling [34, 40] however, it can
be more convenient to use a weaker form of connection that does not require the
modeller to be committed to asserting that there is an overlap region, for in-
stance: we might specify two roads as being connected without being committed
to asserting that there is an overlap region; or we might want to contrast viable
and relevant overlap, such as a monitored doorway region shared by a hallway
and an office, with external connection as sharing of boundary parts, such as
two offices separated by a shared wall.

However, topological notions such as boundary, interior, or closure cannot yet
be expressed. At first glance, these notions seem to require a point-set perspective
on regions. However, a purely region-based characterisation can be obtained
if a relation of connection (C) between regions is introduced. Connection is

316 H.R. Schmidtke and W. Woo

characterised as a reflexive and symmetric relation: every non-empty region is
connected to itself (A5); and if x1 is connected to x2, then also x2 is connected
to x1 (A6):

∀x : ¬[x = ⊥] → [xC x] (A5)
∀x1, x2 : [x1 C x2] → [x2 C x1] (A6)

∀x1, x2 : [x1 � x2] → ∀y : [y Cx1] → [y C x2] (A7)

Additionally, we need a bridging principle [37] between the mereological parts
(�) and the topological parts (C) of the theory. Following Varzi [37], we demand
that C is monotonous with respect to �: if x1 is part of x2, then any region y
connected to x1 is also connected to x2 (A7). We can then define the well-known
RCC relations [8, 26]: external connection (EC) is connection without overlap
(D7); a non-tangential proper part (NTPP) is a part x of y that is only connected
to regions z that overlap y (D8); and a tangential proper part (TPP) is a proper
part that is not NTPP (D9).

[xEC y] def⇔ [xC y] ∧ ¬[xO y] (D7)

[xNTPP y] def⇔ [x � y] ∧ ∀z : [xC z] → [y O z] (D8)

[xTPP y] def⇔ [x � y] ∧ ¬[xNTPP y] (D9)

It is clear that O fulfils all three axioms of C, but if we set C to be identical
to O, then the definitions of EC and TPP become empty and NTPP becomes
identical to �. In current location models, overlap and connection are not yet
distinguished.

The idea of a distinction between overlap, as sharing of parts, and connection,
as sharing of something that is not necessarily a relevant element of the domain,
has been generalised in theories of granularity [12, 34]. As context models can
easily become very large, modelling granularity is crucial to ensure scalability of
hierarchical context models, cf. [33] for an approach applicable to mereotopolog-
ically specified context models.

3.2 Beyond Location

The above discussion mentioned mainly location models, and the notion of con-
text is conceived broader in pervasive computing [32]. However, key properties for
context modelling in many other domains are similar hierarchical structures and
a related notion of connection. Mereotopology is a general domain-independent
mathematical theory that can describe such structures. We demonstrate this
claim by presenting hierarchical structures in five other domains.

Following Jang et al. [19], a representation of context should be expressive
enough to answer at least the six questions: who caused a certain interaction with
what where when how and why. Following this mnemonic, we can identify five
domains with corresponding relations, besides spatial containment and spatial
overlap, which are in the following individuated with symbols �where and Owhere.

Towards Ontology-Based Formal Verification Methods 317

We need to model at least: times with a relation of temporal containment �when

of intervals, groups of agents with a containment relation between groups, classes
of objects with a taxonomic subclass relation �what, states, including measured or
inferred states of the environment, structured by an embedded logical entailment
relation �how, and events, including externally available commands and actions
of a system, partially ordered by a causation relation �why.

The contexts we mostly want to reason about have a meaningful extension
in more than one of the six dimensions; a conference, for instance, has a time,
location, and participants. We employ combined relations of general sub-contexts
(D10) and partial sub-contexts (D11):

[x �∀ y] def⇔ [x �when y] ∧ [x �where y] ∧ [x �who y] ∧
[x �what y] ∧ [x �how y] ∧ [x �why y]

(D10)

[x �∃ y] def⇔ [x �when y] ∨ [x �where y] ∨ [x �who y] ∨
[x �what y] ∨ [x �how y] ∨ [x �why y]

(D11)

[x =m y] def⇔ [x �m y] ∧ [y �m x] (D12)

The axioms of Sect. 3.1 hold for all six relations �m if we replace identity (=)
with appropriate equivalence relations =m (D12). Note that our limitation to
a fixed set of relations allows us to avoid distinctions between different types
of entities in the language and facilitates reification. The only types of entities
we employ are contexts as portions of the world around us that can have an
extension in one or more of the six dimensions.4

Temporal Containment and Ordering. The extension from spatial con-
tainment to temporal containment is straightforward if we consider time as a
one-dimensional space. We can express with a relation of temporal containment
that one context is during the time of another (�when), that contexts are syn-
chronous (=when), or temporally overlapping (Owhen). Basic time conflicts can
thus be represented:

[MeetingA �when Aug/1/2008] ∧ [Aug/1/2008 �when ConfB] ∧ (E1)
[MeetingA �where CityA] ∧ [ConfB �where CityB] ∧ ¬[CityA Owhere CityB]

∀c : [c �∀ ConfB] → ¬[c �∀ MeetingA] (E2)

If a calendar contains an entry for a meeting A on the day Aug/1/2008 , and this
day is during the time of a conference B; and A and B take place in two different,
not overlapping city regions (E1), then we can conclude that any context c that
is a proper sub-context of B cannot be a proper sub-context of A (E2).
4 With a more classical AI representation format, we can conceive, for instance,

[a �when b] ∧ [a �where b] to be an abbreviation of [time(a) �when time(b)] ∧
[loc(a) �where loc(b]), where the relations �when and �where are relations restricted
to the types of times and regions, respectively. However, the operators � and 	 would
also have to be replaced by functions �m and 	m yielding the correct types.

318 H.R. Schmidtke and W. Woo

In comparison to the interval-based calculus of time proposed by Allen [1],
our notion of intervals includes not only convex intervals but also arbitrary sums
of intervals, such as generalised intervals [23] and periodically recurring times,
since we allow arbitrary sums and intersections. The directedness of time cannot
be represented with temporal containment alone; but, given the relation �why

denoting causation, partial temporal ordering can be derived (E3):

[xbefore y] ↔ ¬[x Owhen y] ∧ [x �why y] (E3)

The relation �why orders the domain of events, such as items in a plan or other
program-like structures provided by users as required for anticipating situa-
tions and producing pro-active behaviour.5 However, additional axioms would
be needed to reason about relations between temporal structure and causation,
in particular, a distinction between event tokens and event types, cf. Galton [15].

Logical Relations between States. In context modelling, important notions
of states include status information, such as “on vacation,” and sensory data,
such as data from physiological or temperature sensors “temperature is higher
than 25◦C.” States can be understood as reified propositions of an embedded
logic, similar to a monadic predicate logic. A relation �how, which has the proper-
ties of a mereological containment relation, is the relation of implication between
such formulae. For states, the operators 	 and � can be understood as conjunc-
tion and disjunction operators of the reified logic. An expression such as (E4)
can be used for specifying the state of a context called Measured, reduced to the
aspect of temperature, as being in the interval [25,30]. A corresponding formula
in monadic predicate logic would be (E5).

[Measured 	 Celsius �how ≥25 	≤30] (E4)
∀x : Measured(x) ∧ Celsius(x) → ≥25(x) ∧ ≤ 30(x) (E5)

We specify the computation of numerical comparisons, such as ≥25 in Sect. 4.2.
By combining states and times, we can represent a state Temp changing over
time:

∀x : [x =when t1] → [x 	 Temp �how Cold] (E6)
∀x : [x =when t2] → [x 	 Temp �how Warm] (E7)

Taxonomic Knowledge. A mereological axiomatisation of taxonomic knowl-
edge has been discussed in detail by Bittner et al. [5]. Appropriate hierarchical
relations for �who and �what are group inclusion on groups of agents and the
subclass relation on classes of objects. With this interpretation, the properties of
partial ordering relations, as stated above, are intuitively plausible. An example
5 A candidate relation for �why that fulfils the requirements of a partial ordering

relation would, for instance, be the reflexive and transitive hull of the transition
relation between programs in the verification of concurrent programs (cf. the relation
−→∗ in Sect. 4.2).

Towards Ontology-Based Formal Verification Methods 319

for transitivity of �who, for instance, is given in (E8): a group of users Admin
included in the group of users Staff is also included in any group that includes
the latter, such as NotificationRecipient . Knowing that Bob is in the group of
administrators, we know that he is eligible to receiving a notification (E9).

[Admin �who Staff] ∧ [Staff �who NotificationRecipient]
→ [Admin �who NotificationRecipient]

(E8)

[Bob �who Admin] → [Bob �who NotificationRecipient] (E9)

In our mereological framework, a single agent, such as Bob, or a single object in
an interaction is always interpreted as a group of one agent or object. That is,
Bob is interpreted not by a token (userID, name, etc.) corresponding to the user
Bob but by a group containing only one individual. This may seem as a counter-
intuitive by-effect of the mereological axiomatisation. However, this property has
distinct advantages, for instance for obfuscation: if we do not distinguish between
individuals and groups, every application needs in principle to be enabled to
handle coarsened information [29]. Also, application objects are addressed by
class not by ID, so that interoperability and greater flexibility of applications
can be ensured easier.

4 Programming Dynamic Behaviour in a Context

We describe the syntax (Sect. 4.1) and semantics (Sect. 4.2) of a simple context-
aware programming language for specifying pervasive computing systems that
operate on the background of a context model. We use a widely known simple
textbook variant [2] of an imperative concurrent programming language, so as
to illustrate our approach with a particularly familiar example. Our aim is to
present a methodology of how the semantics of a given language can be aug-
mented with context-awareness.

For adding context-awareness to programs, a mechanism is needed with which
the context-aware program can access the context model. We assume in the
following that such an interface is provided by an ontology language in which
queries to a knowledge base can be formulated. However, we do not restrict how
the knowledge base is realised, whether as a database [18], a graph-based data
structure [22], or as a logical reasoning mechanism [28, 35].

As a representation language, we use the context-oriented logical language
(CL) proposed by [35], since it is most similar to the first order logical language
used above for reasoning about context-models. The main difference between the
two languages is that CL does not allow quantification over variables. We give
an abstract grammar for CL derived from the definitions in [35] and extended it
with numerical expressions and context terms for numerical comparison.

4.1 Syntax

We assume two predefined data types: a simple number type (number) and
a data type of alphanumeric character strings (alphanum) for names of atomic

320 H.R. Schmidtke and W. Woo

context terms. CL allows for arbitrarily complex context terms (D15). Numerical
expressions (N) are numbers, numerical variables and arithmetic expressions
constructed from these (D13).

N
def= number | NVar | −N | N + N | N − N |

N ∗ N | N ÷ N | N mod N

(D13)

NumCT def= ≤N | ≥N | #N | <N | >N (D14)

CT def= alphanum | NumCT | CTVar |
CT 	 CT | CT � CT | ∼CT

(D15)

CLF def= [CT �m CT] | CLF ∧ CLF | CLF ∨CLF |
¬CLF | CLF → CLF | true | false

(D16)

Numerical comparison in the style of Dey [10] can be described with numerical
context terms (NumCT) that consist of a numerical expression prefixed with
one of the symbols #, ≤, ≥, <, > (D14). Intuitively, numerical context terms
denote portions of a numerical domain: the interval (5, 7] can be expressed with
the term >5 	 ≤7 as the intersection of the intervals (5,∞) and (−∞, 7]. The
context term #5 denotes the interval [5, 5]. In order for these expressions to
receive the intended numerical meaning, we need to augment the semantics of
CL terms with numerical computations (Sect. 4.2).

Context terms can be related with respect to one or more aspects of the
six categories. For simplicity, we include only the fundamental six containment
relations �m, where m ∈ {when, where, who, what, how, why}, and consider the
formulae [c =m d], [c Om d] to be abbreviations of the more complex formulae by
which they are defined above. CL allows not only atomic formulae, but also for
arbitrarily complex combinations constructed with the propositional connectives
∧,∨,→,¬ and two special formulae true and false (D16).

We characterise a simple imperative language for modelling distributed con-
current processes and supplement it with an additional type for context terms.

S
def= skip | CTVar := CT | NVar := N | S ;S |

do NChoice od | if NChoice fi
(D17)

NChoice def= CLF � S | NChoice � NChoice (D18)

P
def= S ;do GChoice od (D19)

GChoice def= CLF ; IO � S | GChoice �GChoice (D20)

IO def= CT ?CTVar | ↑CT | ↓CT (D21)

PSyst def= P | PSyst‖PSyst (D22)

We allow assignment to context term variables and numerical variables in pro-
grams (D17). In non-deterministic choice (D18) and guarded commands (D20),
Boolean expressions are replaced with CL-formulae. A pervasive computing sys-
tem (D22) consists of one or more processes (D19) running in parallel. The

Towards Ontology-Based Formal Verification Methods 321

most prominent difference is the set of IO-commands (D21): the command ct ? x
listens for activation of a context, the commands ↑CT and ↓CT send an ac-
tivation upward through the hierarchical context knowledge base, to all more
general contexts, or downward, to more specific contexts.

We can now, in a very simple manner, describe context-aware algorithms.
Example E10 shows a template for a sensor-like component that consists simply
of a loop that activates a context reflecting the current temperature by sending
the sensed value v in a way that accuracy (±1) and unit (Celsius) are reflected.
Example E11 is a corresponding template for an actuator, as a process executing
some action, such as turning a heater on, in response to being activated by a
context TooCold.

〈sense v〉; do true; ↑(≥(v − 1) 	 ≤(v + 1) 	 Celsius) � 〈sense v〉 od (E10)
skip; do true; TooCold ?x � 〈execute action〉 od (E11)
γ = {[≤17 	 Celsius �how TooCold]} (E12)

With a knowledge base γ specifying that an environment is too cold when the
temperature is lower than 17◦C (E12), the process (E11) should be triggered
if v < 16 holds after 〈sense v〉. We can prove such properties if a semantics is
given.

4.2 Semantics

We describe an operational semantics for the language [2]. The basic notion in
the semantics is a transition relation −→⊆ Γ ×Γ between configurations Γ of a
computing system. The main idea is that the transition relation describes how
one step of execution of a program in a state moves the program on and changes
the state. The relation −→∗ is the transitive and reflexive closure of −→.

A configuration in our framework is represented as a triple 〈S, σ, γ〉, where
S is a program, process, or pervasive system to be run, σ is a state, and γ a
context knowledge base. A terminal configuration 〈E, σ, γ〉 is a configuration, in
which the program to be run is the empty program E, where E ; S and S ; E are
the same as S. A state σ is a substitution function, which can be thought of as
a mathematical realisation of a list of variable bindings. For instance, applying
σ = [x : 0 | y : 2] to the numerical expression (x + y) results in the numerical
expression (x + y)σ = (0 + 2), whereas applying σ = [x : 0 | y : 2] to the context
term ≤(x + y) results in the context term expression ≤(x + y)σ = ≤(0 + 2).

We define an interpretation function In : N → R representing evaluation of
numerical expressions and an interpretation function Ic that assigns a value to
numerical context terms based on In. For x ∈ number , In(x) trivially maps x to
the number in R that it represents. The compound numerical expressions map
to their corresponding evaluations (D23). To give a meaning to the numerical
context terms we characterise them as corresponding to the orderings <, ≤, >,
≥ on the domain R (A8-A10).

322 H.R. Schmidtke and W. Woo

In(x + y) = In(x) + In(y) In(x − y) = In(x) − In(y)
In(x ∗ y) = In(x) ∗ In(y) In(x ÷ y) = In(x) ÷ In(y)

In(−x) = −(In(x)) In(x mod y) = In(x) mod In(y)

(D23)

∀x, y ∈ N : [≤x �∀ ≤y] ↔ In(x) ≤ In(y) (A8)
∀x, y ∈ N : [≥x �∀ ≥y] ↔ In(x) ≥ In(y) (A9)

∀x ∈ N : [>x = ∼≤x] ∧ [<x = ∼≥x] ∧ [#x = ≤x 	 ≥x] (A10)

The transition relation can be characterised using axiom schemata and infer-
ence rules. The rules for assignment of numerical variables (A11) and context
variables (A12) rely on the above interpretation functions. The standard con-
structs skip (A13) and sequential composition (A14) receive standard seman-
tics extended with the parameter γ representing the knowledge base, which can
change independently from the program.

〈v := e, σ, γ〉 −→ 〈E, [σ | v : In(e)σ], γ′〉, if v ∈ NV ar and e ∈ N, (A11)
〈v := e, σ, γ〉 −→ 〈E, [σ | v : Ic(e)σ], γ′〉, if v ∈ CTV ar and e ∈ CT (A12)

〈skip, σ, γ〉 −→ 〈E, σ, γ′〉 (A13)
〈s0, σ, γ〉 −→ 〈s′0, σ′, γ′〉

〈s0 ; s1, σ, γ〉 −→ 〈s′0 ; s1, σ′, γ′〉 (A14)

The CL formulae in non-deterministic choice (A15) and loops (A16) are evalu-
ated with respect to the knowledge base γ.

〈if φ0 � s0 � . . . �φn � sn fi, σ, γ〉 −→ 〈si, σ, γ′〉, if γσ |= φi for any φi (A15)
〈if φ0 � s0 � . . . �φn � sn fi, σ, γ〉 −→ 〈E, fail, γ′〉, if γσ �|= φi for all φi

〈do φ0 � s0 � . . . �φn � sn od, σ, γ〉 −→
〈si ;do φ0 � s0 � . . . �φn � sn od, σ, γ′〉, if γσ |= φi for some φi

(A16)

〈do φ0 � s0 � . . .� φn � sn od, σ, γ〉 −→ 〈E, σ, γ′〉, if γσ �|= φi for all φi

All input and output is related via the knowledge base within whose scope
a process is working. The command c ? v registers a process with the context
c. The process then waits for a context term related to c to be activated by
the knowledge base and stores the activated context it received in a context
variable v. The command ↑ t activates all processes registered to contexts c
that are in some aspect higher in the hierarchy [t �∃ c] (A17); likewise, ↓ t
activates processes registered to contexts below the context t (A18). Upward and
downward activation are non-blocking operations that can always be executed
and do not change the state σ (A19, A20).

Towards Ontology-Based Formal Verification Methods 323

〈↑ t, σ, γ〉 −→ 〈E, σ, γ′〉
〈c ? v, σ, γ〉 −→ 〈E, [σ | v : Ic(t)σ], γ′〉 , if γ |= [t �∃ c], v ∈ CTVar (A17)

〈↓ t, σ, γ〉 −→ 〈E, σ, γ′〉
〈c ? v, σ, γ〉 −→ 〈E, [σ | v : Ic(t)σ], γ′〉 , if γ |= [c �∃ t], v ∈ CTVar (A18)

〈↑ c, σ, γ〉 −→ 〈E, σ, γ′〉, where c ∈ CT (A19)
〈↓ c, σ.γ〉 −→ 〈E, σ, γ′〉, where c ∈ CT (A20)

We can then specify communication between parallel processes via the knowl-
edge base in a standard way. If none of the conditions of the process can be
fulfilled, the process finishes (A21). If one of the conditions φi holds and the IO-
command ioci that it guards can be executed, the body si is executed (A22). For
simplicity, parallel composition is characterised in the same way as sequential
composition, except that the order of execution is irrelevant (A23).

〈do φ0 ; ioc0 � s0 � . . . �φn ; iocn � snod, σ, γ〉 −→ 〈E, σ, γ′〉,
if γσ �|= φi for all φi

(A21)

〈ioci, σ, γ〉 −→ 〈E, σ′, γ′〉
〈do φ0 ; ioc0 � s0 � . . .� φn ; iocn � snod, σ, γ〉 −→
〈si ;do φ0 ; ioc0 � s0 � . . . �φn ; iocn � snod, σ′, γ′〉

, (A22)

if γσ |= φi for some φi

〈p0, σ, γ〉 −→ 〈p′0, σ′, γ′〉
〈p0‖p1, σ, γ〉 −→ 〈p′0‖p1, σ′, γ′〉 and

〈p1, σ, γ〉 −→ 〈p′1, σ′, γ′〉
〈p0‖p1, σ, γ〉 −→ 〈p0‖p′1, σ′, γ′〉 (A23)

We can now prove that given a knowledge base γ that contains (E12) and a
system consisting of the two processes (E10) and (E11), the 〈execute action〉 is
reached if v < 16 holds for the sensed value v. The crucial step in the proof is that
of activation of a context term. The sensor activates all contexts above the term
≥(v − 1) 	 ≤(v + 1) 	 Celsius. The mereotopological axiom for transitivity (A2)
together with the definition of 	 (D3) and the axioms for the interpretation of
numerical context terms (A8-A10) then entail ≥(v− 1)	≤(v +1)	Celsius �how

≤17 	 Celsius. We can infer that the context ≤17 	 Celsius is activated, and
it follows that ≥(v − 1) 	 ≤(v + 1) 	 Celsius �how TooCold holds (A2). From
the knowledge base γ (E12), we finally obtain that the context TooCold is also
activated. By (A17) and (A22), the process (E11) can therefore proceed to the
〈execute action〉 statement.

The parameter γ allows us to model changes in the external world and the
context knowledge base independent from changes of the computational state σ.
The facts that the physical context of a program can change during execution
and that this change highly influences the program are the primary difference
between context aware computing systems and classical distributed computing
systems. Consequently, we need a proof theory that allows us to reason not
only about changes evoked by the program, but also about changes evoked in
the external world. A user carrying a mobile device leaving a room or a room
becoming warmer are not the result of a computation process but of processes

324 H.R. Schmidtke and W. Woo

external to the computational system. Computational processes might be able
to influence physical processes: a user might be alarmed with a signal to leave
a room, a room may warm up after a heater turned on. However, a theory of
computational processes should not be burdened with modelling the processes
in the physical reality together with computational processes: the user might not
be able to hear the signal because he is wearing a noise protection device, the
heater might be out of order. In the simple example, γ remained unchanged over
the whole execution. For more realistic scenarios and to obtain robust perva-
sive computing systems, we need to evaluate under which stability assumptions
proper execution can be guaranteed. Tractable theories of physical reality, as
investigated in the field of knowledge representation within the areas of naive
physics and qualitative reasoning [13, 14], can be used to formulate and efficiently
reason about such stability conditions.

5 Conclusions

We described context-aware computing as a proper extension of distributed com-
puting with ontology reasoning. Our description is faithful to principles employed
in existing context-aware computing frameworks, so that it can be used to eval-
uate and develop pervasive computing systems with a wide range of frameworks.
The proposed theory integrates developments from two areas providing formal
models relevant for pervasive computing: the area of formal ontologies for infor-
mation systems and the area of formal verification of programming languages.

For formally specifying context models, we proposed to apply mereotopolog-
ical theories. We showed that key ideas of mereotopology, such as hierarchical
organisation and overlap are meaningful for many aspects of context relevant in
pervasive computing, such as for modelling uncertainty, ensuring privacy through
obfuscation, and context-based address methods beyond unique ids.

Our approach allows to describe context-aware algorithms and pervasive com-
puting systems on a high level of abstraction. The state of a system, which can
be directly influenced by a computational process, is cleanly separated from ex-
ternal physical processes reflected in an external knowledge base to which the
process is connected. We showed for the familiar example of a CSP-style pro-
gramming language, how a language can be extended with high-level concepts
of context-awareness. However, the method is general enough to be applicable
also to other programming languages.

References

[1] Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23,
123–154 (1984)

[2] Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs.
Springer, Heidelberg (1991)

[3] Beigl, M., Zimmer, T., Decker, C.: A location model for communicating and pro-
cessing of context. Personal and Ubiquitous Computing 6(5/6), 341–357 (2002)

Towards Ontology-Based Formal Verification Methods 325

[4] Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T.T., Niss, H.: Bigraphical
models of context-aware systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS
2006. LNCS, vol. 3921, pp. 187–201. Springer, Heidelberg (2006)

[5] Bittner, T., Donnelly, M., Smith, B.: Individuals, universals, collections: On the
foundational relations of ontology. In: Varzi, A., Vieu, L. (eds.) Third Conference
on Formal Ontology in Information Systems. IOS Press, Amsterdam (2004)

[6] Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Sci-
ence 240(1), 177–213 (2000)

[7] Chalmers, D., Dulay, N., Sloman, M.: Towards reasoning about context in the
presence of uncertainty. In: Workshop on Advanced Context Modelling, Reasoning
and Management, Nottingham, UK (2004)

[8] Chen, H., Perich, F., Finin, T., Joshi, A.: SOUPA: Standard ontology for ubiq-
uitous and pervasive applications. In: International Conference on Mobile and
Ubiquitous Systems: Networking and Services (2004)

[9] Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

[10] Dey, A.K.: Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology (2000)

[11] Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for loca-
tion privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005.
LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

[12] Euzenat, J.: Granularity in relational formalisms - with application to time and
space representation. Computational Intelligence 17(3), 703–737 (2001)

[13] Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24(1-3), 85–168
(1984)

[14] Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)
[15] Galton, A.: Operators vs. arguments: the ins and outs of reification. Synthese 150,

415–441 (2006)
[16] Gottfried, B., Guesgen, H.W., Hübner, S.: Spatiotemporal reasoning for smart

homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes, pp. 16–34
(2006)

[17] Hennessy, M.: A Distributed Pi-Calculus. Cambridge University Press, Cambridge
(2007)

[18] Henricksen, K., Indulska, J.: Developing context-aware pervasive computing appli-
cations: Models and approach. Pervasive and Mobile Computing 2, 37–64 (2006)

[19] Jang, S., Ko, E.-J., Woo, W.: Unified user-centric context: Who, where, when,
what, how and why. In: Ko, H., Krüger, A., Lee, S.-G., Woo, W. (eds.) Personalized
Context Modeling and Management for UbiComp Applications, vol. 149, pp. 26–
34 (2005) CEUR-WS

[20] Jiang, C., Steenkiste, P.: A hybrid location model with a computable location iden-
tifier for ubiquitous computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp
2002. LNCS, vol. 2498, pp. 246–263. Springer, Heidelberg (2002)

[21] Langheinrich, M.: Privacy by design - principles of privacy-aware ubiquitous sys-
tems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS,
vol. 2201, pp. 273–291. Springer, Heidelberg (2001)

[22] Leonhardt, U.: Supporting Location Awareness in Open Distributed Systems. PhD
thesis, Imperial College, London, UK (1998)

[23] Ligozat, G.: Generalized intervals: A guided tour. In: Proceedings of the ECAI
1998 Workshop on Spatial and Temporal Reasoning, Brighton, UK (1998)

[24] Milner, R.: Bigraphs and their algebra. Electronic Notes on Theoretical Computer
Science 209, 5–19 (2008)

326 H.R. Schmidtke and W. Woo

[25] Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: A large ontology
for the semantic web and its applications. In: AAAI 2002 Workshop on Ontologies
and the Semantic Web (2002)

[26] Randell, D., Cui, Z., Cohn, A.: A spatial logic based on region and connection. In:
Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San
Francisco (1992)

[27] Ranganathan, A., Campbell, R.H.: Provably correct pervasive computing environ-
ments. In: PerCom, pp. 160–169 (2008)

[28] Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of on-
tologies in a pervasive computing environment. The Knowledge Engineering Re-
view 18(3), 209–220 (2003)

[29] Rashid, U., Schmidtke, H.R., Woo, W.: Managing disclosure of personal health
information in smart home healthcare. In: Stephanidis, C. (ed.) International Con-
ference on Universal Access in Human-Computer Interaction, Held as Part of HCI
International, pp. 188–197. Springer, Heidelberg (2007)

[30] Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications, 10–17 (2001)

[31] Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile
hosts. IEEE Network 8(5), 22–32 (1994)

[32] Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location.
Computers and Graphics 23(6), 893–901 (1999)

[33] Schmidtke, H.R., Woo, W.: A formal characterization of vagueness and granularity
for context-aware mobile and ubiquitous computing. In: Youn, H.Y., Kim, M.,
Morikawa, H. (eds.) UCS 2006. LNCS, vol. 4239, pp. 144–157. Springer, Heidelberg
(2006)

[34] Schmidtke, H.R., Woo, W.: A size-based qualitative approach to the representa-
tion of spatial granularity. In: Veloso, M.M. (ed.) Twentieth International Joint
Conference on Artificial Intelligence, pp. 563–568 (2007)

[35] Schmidtke, H.R., Hong, D., Woo, W.: Reasoning about models of context: A
context-oriented logical language for knowledge-based context-aware applications.
Revue d’Intelligence Artificielle 22(5), 589–608 (2008)

[36] Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A context ontology language
to enable contextual interoperability. In: Stefani, J.-B., Demeure, I., Hagimont,
D. (eds.) DAIS 2003. LNCS, vol. 2893, pp. 236–247. Springer, Heidelberg (2003)

[37] Varzi, A.C.: Spatial reasoning and ontology: Parts, wholes, and locations. In:
Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Log-
ics, pp. 945–1038. Springer, Heidelberg (2007)

[38] Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling
and reasoning using owl. In: PerCom Workshops, pp. 18–22. IEEE Computer
Society Press, Los Alamitos (2004)

[39] Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive com-
puting systems. The Knowledge Engineering Review 22, 315–347 (2007)

[40] Ye, J., Coyle, L., Dobson, S., Nixon, P.: A unified semantics space model. In:
Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp.
103–120. Springer, Heidelberg (2007)

	Towards Ontology-Based Formal Verification Methods for Context Aware Systems
	Introduction
	Related Works
	Mereotopology as a Theory for Context Modelling
	The Language of Mereotopology
	Beyond Location

	Programming Dynamic Behaviour in a Context
	Syntax
	Semantics

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

