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Abstract. We show that accelerometers embedded in a television re-
mote control can be used to distinguish household members based on
the unique way each person wields the remote. This personalization ca-
pability can be applied to enhance digital video recorders with show rec-
ommendations per family-member instead of per device or as an enabling
technology for targeted advertising. Based on five 1-3 week data sets col-
lected from real homes, using 372 features including key press codes, key
press timing, and 3-axis acceleration parameters including dominant fre-
quency, energy, mean, and variance, we show household member identi-
fication accuracy of 70-92% with a Max-Margin Markov Network (M3N)
classifier.

1 Introduction

Personalizing the television watching experience has become a hot topic as service
providers, content creators, and consumer electronics manufacturers all search
for ways to expand their user-base, provide exciting and relevant programming,
increase the effectiveness of advertising [1], incorporate digital home technolo-
gies like interactive TV [2], and distinguish their devices’ features and usability.
Most personalized capabilities and services are not possible, however, without first
knowing who is watching TV. The work presented in this paper addresses this
challenge of distinguishing between television watchers in a household.

Our new method of distinguishing TV viewers applies the lightweight biomet-
ric of analyzing people’s hand motions and button press sequences on remote
controls. This method is effective yet simple enough to be invisible and embed-
ded pervasively. Users can simply grasp the remote control as needed and watch
TV without any effort to explicitly login or identify themselves. Our system ob-
serves people’s hand motion in the background and analyzes whether it matches
existing signatures.

2 Related Work

There are other research and commercial efforts to develop ways to detect and
identify TV viewers. Some existing approaches ask TV viewers to validate their
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identity explicitly. Digital video recorders such as TiVoTM ask users to enter a user-
name and password with an on-screen remote-driven virtual keyboard in order
to access some personalized services. Orca Interactive (www.orcainteractive.com)
uses a custom remote control device to read users’ fingerprints. These logins and
cryptographic-grade biometrics have high accuracy (in particular, a low false-
positive rate) compared to the sensor-based approaches like the one presented in
this paper. They are also quite secure and thus useful for authorizing sensitive
transactions like purchases or subscriptions. But logins and intentional actions are
cumbersome to perform repeatedly and their prompts almost certainly interfere
with natural TV watching behavior. Another approach that is similar to our work
uses computer vision for face detection and recognition. Hwang and colleagues’
work is a good example of this approach [3]. Similar to our approach, facial recog-
nition can be used to identify people in a “background” fashion, without explicit
user input. However, a sense of privacy intrusion can come along with an embed-
ded camera staring at every activity that happens in the livingroom, bedroom, or
wherever the TV is positioned.

Outside the television domain, the work most similar to our contribution
is that of Hodges and Pollack who showed that users manipulating everyday
kitchen appliances (coffee making materials in their experiments) could be dis-
tinguished with approximately 77% accuracy based on their patterns of usage [4].
They applied decision trees for their classification, as did we in our initial work
before we improved our results using a higher-level sequence information with a
Max-Margin Markov Network (M3N) classifier.

There is also quite a bit of work on combining machine learning with physical
sensors to infer what activities someone is engaged in. This activity recogni-
tion research is worth mentioning in that it involves similar components to our
work—namely, machine learning plus sensors like accelerometers—but it does
not specifically focus on determining identity. Three specific examples are Bao
and Intille’s work using body-worn accelerometers to recognize physical activi-
ties [5], Philipose and colleagues’ work where participants wear an RFID bracelet
to sense which objects they are interacting with to infer their Activity of Daily
Living based on web-mined models [6,7], and Consolvo and colleague’s Ubifit
persuasive fitness technology [8,9].

3 Feasibility Study

To consider the feasibility of the entire project, we first conducted a small study
to understand how people use remote controls to watch TV. We recruited five
of our lab colleagues videotaped them watching TV and channel surfing. We
found some interesting patterns in the video recordings, which not only made us
feel more comfortable to proceed in the research, but also inspired some of our
feature selection approach.

Remote Control Orientation. One participant, shown in Fig. 1b, did not
hold the remote control horizontally while switching channels. Another par-
ticipant did not aim the remote control at the TV when switching channels.
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(a) (b) (c)

Fig. 1. Snapshots of different hand motion patterns as captured in our plausibility
study. In comparison to (a), the participant in (b) holds the remote with different
orientation, and the participant in (c) leans his arm on the sofa, which stabilizes his
movements.

Physical Support. Some participants put their hands on the sofa arm, as
shown in Fig. 1c, which stabilized their hands and induced less vibration
on the remote control. Some participants usually put their arm on their lap.
Another participant regularly left the remote control directly on the coffee
table and switched channels without holding it.

Shaking while Surfing. One participants tended to shake the remote control in
a seemingly unique way while surfing. Specifically, between each button press,
he wiggled the remote while deciding whether to switch to the next channel.

Based on these high-level observations, we hypothesized that hand motion
pattern might be distinguishable if we look at acceleration features before, during,
and after each button press. Features before the press roughly capture the hand
motion when the remote control was picked up or held between surf actions;
features during the press capture distinctiveness in the orientation of remote
as well as the dynamics of actually pressing the buttons; features after a press
capture how the remote falls back to the arm, couch, lap, or table. We use these
characterizations simply as a principled way to create features from the data
stream for use by the machine learning algorithms. As such, it is not important
that these descriptions are precise or exactly capture how all people use remotes.

In addition to our motion pattern observations, the ethnographic literature,
specifically the work of Langan, revealed that females tend to switch to a planned
channel by channel numbers while males tend to surf channels more using channel
up and down buttons [10]. Though this work predates innovations like on-screen
program guides and digital video recorders, which may alter or nullify some
of the potential gender differences, it nonetheless led to our second hypothesis
that capturing data about which keys were pressed and in which sequence may
be valuable. Again, the veracity of these ethnographic claims is probably not
critical since we use them simply as principles to justify including button press
and button timing information as features for the machine learning algorithms.
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4 Data Collection

We created the hardware and software needed to record the acceleration forces
imposed on remote controls and also to capture the button presses. We used this
capability to conduct a real-world data collection study in five households.

4.1 Hardware and Software

We wanted to have no dependency on a particular brand of remote or type
of TV source (e.g. cable, fiber, satellite, broadcast) so we could collect data
on the devices already owned by our participants. Thus, we designed our data
collection hardware to easily integrate into a variety of TV setups. The hardware
and software components are described below and shown in Fig. 2.

Accelerometer Module. Our 3-axis accelerometer module can be attached
and wired into the power source of any remote control. In our deployments,
we would purchase the same model remote control used by the household and
modify it to attach our accelerometer module. At the conclusion of the study
we would return the household’s original remote. The accelerometer module
continuously measures and transmits all the acceleration forces imposed on
the remote control. The module hardware is a custom 3-axis accelerome-
ter board connected to a Telos sensor mote [11], which acts as a relay to
transmit the data to the logging laptop. The module is enclosed in a custom
plastic case. We optimized the module to use as little power as possible and

Fig. 2. Data Collection Components: top, a logging laptop; bottom from left to right,
a video camera pointed at the room to gather ground truth about who was watching
TV, a remote control with our accelerometer module attached, a universal infrared
code receiver
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found that on most remote controls it would last 2-3 days while continuously
recording data.

Infrared Receiver. We use the Tira-2.1 multi-protocol infrared receiver made
by HomeElectronics. In our deployments, we placed this receiver by the
TV to capture the infrared signals caused by button presses on the remote
control. Each infrared code is timestamped and logged by its unique ASCII
code string. Infrared remotes will transmit the same signal several times
(typically three times for a “normal” button press) to make sure the TV
receives the signal, or continuously if the participant keeps pressing a button.

Logging Laptop Computer. A laptop computer receives and logs the accel-
eration and button press data streams. In our deployment it would be placed
next to or behind the participants’ TV operating with its lid closed. Accel-
eration data is wirelessly transmitted to the laptop through another paired
Telos mote plugged into the laptop’s USB port. The infrared code stream is
received through a direct USB connection to the Tira infrared receiver. All
data is timestamped with a precision of 100ns.

Video Camera. The last component is a video camera pointed at the room
where the TV is located. The logging laptop automatically starts capturing
a video clip whenever it receives an infrared button press and stops encoding
the clip after 10 seconds without any additional button presses. We use these
video clips in our experiments to hand-label ground truth about who was
watching TV. To give participants control over their privacy, before returning
the data collection system to the researchers, household members were given
a way to access and review the video files in rapid playback to delete any
video clips they did not wish to share with us. We omitted this data from
our experiments.

4.2 Data Collection Study

We conducted a real-world data collection study in five households in Seattle
metropolitan area of the United States. The households were recruited through
one of their members working with us as colleagues. Doing completely outside
recruiting seemed unnecessary for this study because all members in each house-
hold except one were not familiar with the project. Furthermore, we did not
see a significant potential for bias even in the one member of each house who
is our colleague since manipulating a TV remote is a simple physical activity.
Everyone in the households already knew how to use a remote control (except
one child who was very young and has not yet learned to use a remote) and
there is no additional learning curve added by our technology, therefore there
is no potential bias where someone who is technically trained might be able to
learn our technology more quickly.

The composition of the five households are different: the first household is
a four person family with two parents, a pre-teen, and a teen; the second is a
couple; the third is a couple with a child who is too young to use remote controls;
the fourth is a house with two graduate student roommates; the fifth is a large
house with four graduate student roommates.
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We asked each household to simply watch TV as they usually do while having
the data collection system installed for one to three weeks. The system collected
data 24 hours a day. Since we knew our sensor module mounted on participants’
remote controls would last around 3 days when wired into a typical remote, we
gave each household several extra sets of batteries and instructions to replace
the batteries in their remote “every other day or whenever they thought about
it.” These informal instructions were sufficient in that we only saw one dropout
in the data across all the households due to a battery dying. Even in this case
we probably did not miss any data because the participant told us that she
immediately replaced the batteries when she realized they were drained, which
is not surprising because her remote would not work without fresh batteries since
it shared power with our module.

We wanted to collect three weeks of data from each household, but the amount
of time we collected data in each house varied between one and three weeks due
to participants’ summer vacation schedules, limited data collection hardware (we
built two complete data collection rigs), and one mother who stopped partici-
pating after two weeks when she decided that the family had watched enough
television for the summer and needed to spend more time on other pursuits.

5 Experimental Method

By iteratively adding features and analyzing their performance, we settled on a
two-level classification technique: button-press-level classification and
session-level classification, the former containing motion-features and button-
features and the latter using motion-features and inter-button-features. Features
for button-press-level classification occur before, during, and after a single but-
ton press. In this classifier, an inference about who is using the remote control is
computed with each button press. At the higher level, session-level classification
aggregates a sequence of button-press-level classifications and also has additional
features that describe the longer sequence of button presses (e.g. the histogram).
In this classifier, an inference about who is using the remote control is computed
at the end of each session window. We will evaluate classification accuracy at
both levels. Our feature extraction routines are implemented in MATLAB.

5.1 Button-Press-Level Classification Features

Classification at the button-press-level makes use of motion-features and button-
features. Motion-features are computed from the accelerometer data. Twelve
different time-windows (three types with four lengths of each type) are first
located in the data stream around the current button press at time t. The three
window types are preceding, centered, and succeeding capturing hand motion
before, during, and after a button press, respectively. The preceding window
has the right end point located at t − 0.5 seconds, the midpoint of the centered
window is anchored at t seconds, and the start point of the succeeding window is
positioned at t + 0.5 seconds. The four window lengths are {0.5, 1, 2, 4} seconds.
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The same set of features is computed for each of the 12 windows. The reason
for having 12 windows is that the window size and type may influence the value
of a extracted feature and, since we do not a priori know the best choice, we
generate a variety and and let the classification algorithms decide the utility of
the features by assigning them importance weights.

For each of the twelve windows we compute the (1) energy, (2) dominant
frequency, (3) magnitude of the fundamental frequency, (4) mean, (5) variance,
(6) maximum, (7) minimum, (8) median (9) range, and (10) correlation coef-
ficient. The first nine features are extracted for each of the x, y, and z axes
of the accelerometer. Energy, describing the total amount of hand motion, is
calculated by the squared sum of the results of Fast Fourier Transform (FFT)
with the DC component excluded. The fundamental frequency is defined as the
frequency with the highest magnitude from the result of FFT (again, with DC
removed), which provides information about shaking. The mean in three axes
serves as an indicator of the remote control’s orientation. In addition, the corre-
lation coefficient is extracted from each of the x-y, y-z, x-z axis pairs, calculated
by (Σaibi − ab)/((n − 1)σaσb) where a and b are sequences of n measurements
with mean a and b and standard deviation σa and σb.

Button-features used by the button-press-level classifier include (1) the in-
frared code of the button press signal, (2) the number of times the code was
sequentially transmitted, (3) the approximate duration of the key press, and
(4) a time-of-day to let the classification algorithms take into account habits
of when particular people in a household watch TV in a day. In Section 4, we
mentioned that a button signal may repeat if a participant keeps pressing the
button. Therefore, we merge multiple sequential button presses into one clas-
sification step to create the the second and third features, which serve as an
approximation of the button press duration.

5.2 Session-Level Classification Features

Patterns or frequency in a series of motions and button presses may also ben-
efit user identification. On first glance, however, there is a “chicken and egg”
problem: we want to extract features from consecutive button presses to iden-
tify a person, but we do not know whether a given sequence of button presses
were made by the same person. Fortunately, a little domain knowledge gives us
an effective heuristic: if there is continuous acceleration imposed on a remote
control, then the same person is holding the remote during this period of time.
While no heuristic is ever completely correct, this one turns out to be both rea-
sonable and effective in practice. In examining the video clips we captured to
hand-code the ground truth, we never saw someone operate the remote and then
hand it directly to someone else to operate. Therefore we look for periods where
the remote control is stationary, specifically where the energy of acceleration
drops to near 0 for for more than s seconds, and label this point as a session
boundary and possible transition between users. Based on video analysis, we set
s = 8 and the found that the heuristic effectively segmented the data such that
over 98% of the sessions were indeed occupied by the same person. Using these
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heuristic-derived session boundaries, we can now calculate the following features
session-level features:

Motion-Features. The same set of motion-features described in Section 5.1
are also calculated over the entire session. This captures hand motion in a
“macro” view, spanning across multiple button presses.

Inter-Button-Features. We generate features about all the button presses in
a session including: (1) the number of button presses, the (2) mean and
(3) variance of the intervals in between button presses, and (4) a histogram
(count of appearance) of button presses in the session. The first three features
indicate the frequency of pressing button behaviors, and the histogram shows
the habit which buttons are used more often than the others.

6 Results

We use WEKA [12], a popular suite of machine learning software from the Uni-
versity of Waikato, to test the performance of several machine learning methods
including Naive Bayes Classifier, C4.5 Decision Tree, Random Forest, and Linear
Support Vector Machine (SVM). Our evaluations use ten-fold cross validation.
To bring more realism to our results, cross validation is done over large con-
tiguous blocks of time. For example, dividing the data at the individual button-
press level to evaluate button-press-level classification would artificially boost
accuracy, so we instead divide 5 days worth of data into 10 half-day blocks.

6.1 Button-Press-Level Classification

Table 1 shows the results for identifying users at the granularity of single button
presses. We found few accuracy differences between the various machine learning
algorithms on these data sets so we report Random Forest results for all data
sets. Table 1 also shows statistics about each data set including the number
of participants in the household, the total number of button presses recorded,
the distribution among participants, and the baseline. Since some members of a
household will watch more TV than the others, the baseline is the accuracy that
would result if an oracle knew which person in the household pressed the most
buttons on the remote control and always reported them as the answer. This
baseline oracle would achieve decent accuracy, but a poor F-measure. In gen-
eral, our classification accuracy is 12% better than the baseline (a 35% relative
improvement) with classification at button-press granularity.

6.2 Session-Level Classification

The accuracy of the button press-level result was encouraging, so we believed
that accuracy could be improved further by incorporating temporal relationships
between button presses. Our first attempt was to simply smooth over sequential
button-press-level estimates to try and exploit the theory that two button press
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Table 1. Accuracy of button-press-level identity prediction using a Random Forest
learning algorithm

Statistics Results

Household #Participants #Presses Distribution Baseline F-Measure Accuracy

1 4 8756 0.63/0.33/ 62.8% 0.80/0.52/ 70.96%
0.04/0.01 0.22/0.87

2 2 695 0.82/0.18 81.6% 0.93/0.55 87.48%
3 3 122 0.25/0.75/ 74.6% 0.68/0.89/ 83.61%

N/A N/A
4 2 834 0.72/0.28 72.4% 0.90/0.65 84.53%
5 4 1240 0.36/0.15/ 42.0% 0.69/0.39/ 66.45%

0.07/0.42 0.74/0.70

events that happen closely in time are more likely to be made by the same person.
This simple smoothing approach did not boost accuracy, however, because when
the classifier made a mistake, the confidence measure for the wrong decision was
still high making filtering or majority voting work poorly. Instead we adopted a
more principled way to improve accuracy using the previously described session-
level features.

At the session level, we trained two machine learning classifiers: Linear SVMs
and Max-Margin Markov Networks (M3Ns) [13]. The features consist of the
session-level features described in Section 5.2. The SVMs predict using a linear
combination of features. The M3Ns extend the SVMs such that they capture
the temporal relationship between consecutive sessions. More specifically, for
M3Ns we model the fact that the same user usually uses the remote control
several session in a row. Note that at the time we report these results WEKA
does not support the M3N graphical model so we implemented this algorithm
ourselves. As shown in Table 2, this more complex approach leads to better
results than SVMs—Linear SVMs are on average 11% better than the baseline
(a 30% relative improvement) and the M3Ns are on average 17% better (a 46%
relative improvement), which is 6% better than the SVMs. Accuracy for the
third household does not show a large improvement because the training set
is extremely small relative to the other 4 households. Insufficient training data
always impacts accuracy in any supervised machine learning. Even with a tiny
training set, the accuracy is still no worse than the baseline oracle and improves
slightly using the M3N graphical model.

Though it is tempting to do so, the values in Table 1 and Table 2 are not
directly comparable because partitioning button presses into sessions changes
the nature of the problem—specifically, the “baseline oracle” in the session case
knows which person in the household watches the most total TV instead of which
person pressed the most buttons on the remote. With this difference in mind, we
can conclude that temporal modeling and session-level classification does indeed
offer an improvement over button-level classification because the former shows a
17% improvement over its baseline while the latter has an improvement of only
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Table 2. Accuracy of session-level identity prediction. Household three’s accuracy does
not show a large improvement due to insufficient session training data

Statistics Accuracy

Household #Participants #Sessions Baseline SVM M3N

1 4 458 53.9% 61.79% 69.87%
2 2 124 76.6% 90.32% 91.94%
3 3 28* 75.0% 75.00% 78.57%
4 2 90 65.6% 81.11% 88.89%
5 4 340 44.1% 61.78% 72.06%

12% over its baseline (the relative improvement is even greater at 46% versus
35%). Session-level classification is also more realistic because it more closely
matches the ways people actually use and share remote controls.

6.3 Feature Evaluation

The Linear SVMs trained in section 6.2 provide a way to evaluate the importance
of features because an SVM assigns importance weights to its features for class
prediction. The prediction is made by weighted linear combination of features,
i.e. y = argmaxc

∑
k wckxk+bc. We can think of the weight wck as a vote assigned

to a particular feature xk. The feature values themselves are normalized in their
variance to a value between 0 and 1.

The first analysis is to look at how many features are actually important to the
classification. The classifiers were given 372 different features as input, but, as
the rank-order weight plot in Figure 3 shows, only about 10-20 features have high
weight after feature selection. These features contain most of the classification
power for that particular participant.

The rank-order weight analysis in Figure 3, however, does not reveal the fea-
tures’ variance, i.e. whether the set of highly weighted features is the same or
different across participants. To illuminate this issue, Tables 3, 4, 5, and 6 break
down the ten most indicative features for each participant for households 1, 2, 4
and 5, respectively (household 3 is excluded excluded due to its insufficient data).
Each feature has in parentheses its level (Session or Button), followed by a dash,
followed by its feature type (Hand Motion or Button Press Feature). For category
B-M, the feature is abbreviated as feature windowType windowLength axis, e.g.
fundamental frequency extracted in center window of length 2 in y-axis as fund-
Freq center 2 y. Similarly, for category S-M, the feature is abbreviated as fea-
ture axis, e.g. maximum in the session window for the y-axis is max y. In addi-
tion, buttons and their codes are hashed into integers to be uniquely identified.
Finally, there is a special category B/S-B because, for classification at session
granularity, aggregating individual button presses in a session actually generates
a button press histogram that spans features in both session and button level.

Looking across households we can see that the highly weighted features are
definitely not identical but there are some similarities and frequently occurring
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Fig. 3. Weights of the Linear SVM’s features for different participants plotted in rank
order shows that, although there are 372 features input to the classification algorithms,
a small set of them are selected because they contain most of the classification power
for a particular person

Table 3. Top features for predicting participant identify in Household 1

Participant 1 Participant 2

Category Feature Weight Category Feature Weight

(B/S-B) button code/histogram 16 0.545 (B/S-B) button code/histogram 25 0.379
(B/S-B) button code/histogram 15 0.370 (S-M) correlation xy 0.307
(B/S-B) button code/histogram 26 0.370 (B/S-B) button code/histogram 18 0.274
(B-M) fundFreq center 2 y 0.312 (B-M) fundFreq center 0.5 z 0.266
(B-M) fundFreq center 1 y 0.294 (B/S-B) button code/histogram 24 0.255
(B-M) range suceeding 1 z 0.242 (B/S-B) button code/histogram 22 0.248
(B-M) fundFreq center 2 x 0.221 (B-M) energy center 4 y 0.224
(B/S-B) button code/histogram 6 0.207 (B-M) magnitudeFundFreq center 4 y 0.224
(B-M) magnitudeFundFreq center 4 z 0.207 (B-M) correlation center 1 xz 0.190
(S-M) correlation xz 0.205 (B-M) energy center 2 y 0.183

Participant 3 Participant 4

Category Feature Weight Category Feature Weight

(B-M) fundFreq center 4 z 0.138 (B-M) correlation center 0.5 xy 0.074
(B/S-B) button code/histogram 5 0.094 (B/S-B) button code/histogram 18 0.040
(B-M) max preceding 4 y 0.091 (S-M) fundFreq z 0.040
(B-M) correlation succeeding 1 xz 0.083 (B/S-B) button code/histogram 22 0.034
(B/S-B) button code/histogram 27 0.070 (B/S-B) button code/histogram 6 0.033
(B-M) max preceding 2 y 0.067 (S-M) max y 0.031
(B/S-B) button code/histogram 13 0.059 (B/S-B) button code/histogram 5 0.028
(B-M) magnitudeFundFreq center 2 z 0.058 (B/S-B) button code/histogram 28 0.027
(B-M) correlation succeeding 2 xz 0.057 (B/S-B) button code/histogram 7 0.022
(B-M) fundFreq center 0.5 y 0.057 (S-M) range y 0.022
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Table 4. Top features for predicting participant identify in Household 2

Participant 1 Participant 2

Category Feature Weight Category Feature Weight

(B/S-B) button code/histogram 123 0.196 (B/S-B) button code/histogram 143 0.430
(S-M) correlation xy 0.195 (B/S-B) button code/histogram 142 0.393
(B/S-B) button code/histogram 115 0.172 (B-M) correlation succeeding 1 xy 0.136
(S-B) number of presses 0.136 (B-M) fundFreq center y 2 0.117
(B/S-B) button code/histogram 119 0.128 (S-M) min x 0.106
(B/S-B) button code/histogram 121 0.111 (S-M) energy x 0.093
(S-M) correlation yz 0.111 (B-M) range succeeding 2 y 0.089
(S-M) range x 0.102 (B-M) max succeeding 4 x 0.085
(B-M) correlation succeeding 2 xz 0.102 (B-M) max succeeding 2 x 0.085
(B-M) correlation center 1 xy 0.093 (B-M) var succeeding 2 y 0.085

Table 5. Top features for predicting participant identify in Household 4

Participant 1 Participant 2

Category Feature Weight Category Feature Weight

(B-M) fundFreq center 0.5 x 0.217 (B-M) fundFreq center 0.5 z 0.335
(B-M) energy center 4 z 0.184 (B/S-B) button code/histogram 118 0.306
(B/S-B) button code/histogram 181 0.165 (B/S-B) button code/histogram 174 0.237
(B-M) energy center 0.5 x 0.157 (B/S-B) button code/histogram 212 0.195
(S-M) correlation xz 0.153 (B-M) magnitudeFundFreq center 2 z 0.192
(B-M) energy center 0.5 z 0.151 (B-M) energy center 0.5 y 0.188
(S-M) var x 0.147 (B-M) energy center 2 y 0.179
(S-M) energy z 0.145 (S-M) min z 0.168
(S-M) range z 0.136 (B-M) magnitudeFundFreq center 1 z 0.162
(S-B) number of presses 0.125 (B-M) energy center 1 y 0.156

features. For the button-features, the code of the button press signal appears the
most, which indicates the habit of pressing certain button is a good indicator
of who is using the remote. For example, one TiVoTM user in the household
may avoid commercials with the skip-forward-30-seconds button while another
always presses the fast-forward arrow. Unsurprisingly, the session-level inter-
button-press histogram feature also shows up, indicating that the count and
sequence of button presses is also a good discriminator of users. The frequency
of pressing buttons are also distinguishing in some cases. Motion-features at both
the button-press-level and session-level are selected. In particular, the fundamen-
tal frequency, magnitude, and energy are reported several times, meaning the
shaking remote behavior is a distinctive pattern in some cases. The maximum,
minimum, and mean features are listed, showing the orientation of a remote
control can be somewhat indicative. In addition, windowing acceleration with
different types and lengths also helps. In general this analysis gives us reassur-
ance about the results since the selected features seem to match our intuitive
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Table 6. Top features for predicting participant identify in Household 5

Participant 1 Participant 2

Category Feature Weight Category Feature Weight

(B/S-B) button code/histogram 226 0.453 (B/S-B) button code/histogram 308 0.321
(S-M) correlation xz 0.255 (B/S-B) button code/histogram 227 0.153
(S-B) number of presses 0.200 (B-M) magnitudeFundFreq center 2 y 0.129
(B-M) var succeeding 4 x 0.167 (S-M) correlation 0.123
(S-M) variation x 0.155 (B/S-B) button code/histogram 159 0.105
(B-M) range succeeding 4 x 0.151 (B-M) range center 0.5 x 0.094
(S-M) range x 0.130 (B-M) range center 0.5 y 0.080
(B-M) fundFreq center 1 z 0.120 (S-M) correlation xy 0.078
(B/S-B) button code/histogram 148 0.114 (S-M) med z 0.076
(S-M) energy z 0.113 (B-M) range center 0.5 z 0.073

Participant 3 Participant 4

Category Feature Weight Category Feature Weight

(B/S-B) button code/histogram 308 0.191 (B/S-B) button code/histogram 152 0.399
(B-B) button press duration 0.137 (B/S-B) button code/histogram 151 0.352
(B-B) button signal repetition 0.132 (S-M) energy y 0.244
(B-M) magnitudeFundFreq center 1 z 0.076 (S-M) max z 0.219
(S-B) number of presses 0.072 (B-M) var preceeding 1 y 0.174
(B-M) range center 0.5 x 0.071 (B-M) energy center 4 x 0.173
(B-M) magnitudeFundFreq center 1 y 0.069 (S-M) var z 0.169
(B-M) magnitudeFundFreq center 4 z 0.065 (B-M) fundFreq center 1 x 0.164
(B/S-B) button code/histogram 227 0.053 (S-M) range z 0.161
(B-M) range center 2 x 0.050 (S-M) mean z 0.142

ideas about which features would be useful. Although it does not seem to be the
case that a particular subset of features is universally useful for all households,
from the results shown we can conclude that households members do have suffi-
ciently different behavior combinations such that machine learning methods are
able to find a unique feature subset and infer identity.

6.4 Button-Features versus Motion-Features

Tables 3, 4, 5, and 6 reveal a similar number of highly weighted button-press and
hand-motion features, which raises additional interesting questions: Do hand-
motion or button-press features contribute more to the overall accuracy? Are
button-press features alone sufficient to identify users? How does one type of
feature complement the other? To answer these questions we ran the experiments
again with only hand motion features and with only button press features. The
results are shown in Tables 7 and 8.

Table 7 suggests that for button-press-level classification, button-features alone
work as well or better than if motion-features are included. In fact, motion-features
seem to drag down the overall accuracy when combined with button-features. Us-
ing motion-features alone performs similarly to using all features. If this were the
end of the story, the conclusion would be to abandon the accelerometer hardware
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Table 7. Accuracy comparison with subsets of features of button-press-level identity
prediction

Household Accuracy with Accuracy with only Accuracy with only
all features motion-features button-features

1 70.96% 69.82% (↓) 77.58% (↑)
2 87.48% 85.90% (↓) 96.26% (↑)
3 83.61% 96.72% (↑) 87.70% (↑)
4 84.53% 85.61% (↑) 83.21% (↓)
5 66.45% 64.84% (↓) 74.11% (↑)

Table 8. Accuracy comparison with subsets of features of session-level identity pre-
diction

Household Accuracy with only Accuracy with only Accuracy with only
all features motion-features button-features

SVM M3N SVM M3N SVM M3N

1 61.79% 69.87% 58.52%(↓) 60.70%(↓) 57.86%(↓) 57.21%(↓)
2 90.32% 91.94% 86.29%(↓) 87.90%(↓) 90.32%(-) 92.74%(↑)
3 75.00% 78.57% 78.57%(↑) 78.57%(-) 75.00%(-) 78.57%(-)
4 81.11% 88.89% 77.78%(↓) 81.11%(↓) 63.33%(↓) 63.33%(↓)
5 61.18% 72.06% 54.12%(↓) 57.94%(↓) 43.24%(↓) 44.41%(↓)

and simply use a button press logger as the sole input to the classifier. However,
Table 8 shows that there is a different trend in session-level classification—we may
not want to give up the accelerometer quite yet. At the session level, only by using
both types of features can the system achieve top accuracy. In fact, using button-
features alone results in the lowest accuracy, sometimes by a significant margin
(except for household 2 where it merely holds even).

Why is this trend different from the one in Table 7? We made a hypothesis that
in button-press-level classification there might be more momentary deviation
in motion-features. Hence, they worsen the overall accuracy when combined
with button-features. In contrast, in session-level classification motion-features
are calculated in the span over several button presses, which smoothes out the
momentarily noise happened in the button-press level. The motion-features are
therefore more informative and contribute the overall accuracy in session-level
classification. We can also look at this from another perspective. The session-
level motion-features may reveal patterns of moving the remote while pressing
a series of buttons, which is less prone to having high variance.

7 Future Work

A potential confounding factor in our results, though not one we believe to be sig-
nificant, is that our accelerometer module did change the shape of participants’
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remote controls. Though we always attached the sensor module in a place where
it did not interfere with any of the normal hand positions, it may still have changed
our participants behavior in some way. Toward this end it would be beneficial in fu-
ture studies to shrink the acceleration module significantly and embed it inside the
void space in the remote’s plastic so the overall form of the remote is unchanged.

Though we are pleased with how well acceleration and button presses seem
able to identify users, there are many other features, sensors, and sources of
information that we would like to add to try and improve the accuracy. For
example, hand shape, detected using pressure sensors or capacitive field sensors,
may be a very good indicator of who is using the remote. Program guide infor-
mation is another potential source of input as different people in a household
may be attracted to different TV shows or categories of TV show. To test these
new sensors and ideas, we plan to follow this work with a longer study of least 8
families over more than 1 month. In this new deployment we will also evaluate
an application that makes use of this new personalization capability, specifically
a digital video recorder that can recommend TV programs to each household
member instead of the control case where recommendations are provided based
on the behavior of the entire household.

Television users are probably not willing to go through a training phase where
they repeatedly tell the system who is using the remote with each button press.
Therefore, our approach would be much more practical if we could apply semi-
supervised machine learning to the problem. Specifically, if we could automat-
ically cluster sequences of similar button presses and sessions we could reduce
the burden to the point where the user must only be infrequently prompted
to verify their identity to provide a training label for the machine learning. The
prompts would gradually decrease as the models improved. Even better would be
a completely unsupervised learning technique where, given the number of users
in a household, the system clusters and learns the models completely on its own,
perhaps learning the users’ names out-of-band by observing a login name (e.g.
when the user is making an online purchase) that correlates with a particular
cluster. Semi- and un-supervised learning are only possible if there are sufficient
distinguishing features in the data. In the future, we plan to test the feasibility
of these approaches on this type of data as well as study the tradeoff between
the labeling effort by users and the learning curve of the system.

8 Conclusion

We have built and evaluated the technologies to test the hypothesis that ac-
celerometers embedded in a television remote control can distinguish household
members based on the unique way each person wields the remote. Based on
real TV watching data collected from five households with 2-4 people of vari-
ous demographics in each household for 1-3 weeks we achieved user identifica-
tion accuracy of 70-92% by including both button press-level and session-level
features in a Max-Margin Markov Network (M3N) classifier. We analyzed the
feature selection finding that only 10-20 of the 372 features hold most of the
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distinguishing power for a given household and participant, but the actual fea-
tures vary somewhat by participant. We also found that button press features
alone (without motion data) work well in a simple classifier that triggers with
each button press, but to get the greater accuracy from inferring over longer
sessions, both button press and motion features are desirable.

Though more accuracy is always better, we believe our results are already suffi-
cient to enable useful TV personalization applications such as improved targeted
advertising and digital video recorders that provide program recommendations
per user instead of per device. Additional sensors, such pressure sensors or capac-
itive field sensor to detect users’ hand shapes, may boost accuracy even further
and a semi-supervised learning approach would make the system more deploy-
able. Ultimately, combining our approach with an existing heavyweight mecha-
nism such as login-password or secure biometrics could result in a complete TV
personalization system that is natural and invisible for everyday personalization
enhancements while supporting infrequent but authentication-critical situations
like financial transactions.
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