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Abstract. Sample entropy (SampEn) has been applied in many literatures as a 
statistical feature to describe the regularity of a time series. However, as com-
ponents of mechanical system usually interact and couple with each other, 
SampEn may cause inaccurate or incomplete description of a mechanical vibra-
tion signal due to the fact that SampEn is calculated at only one single scale. In 
this paper, a new method, named multiscale entropy (MSE), taking into account 
multiple time scales, was introduced for feature extraction from fault vibration 
signal. MSE in tandem with support vector machines (SVMs) constitutes the 
proposed intelligent fault diagnosis method. Details on the parameter selection 
of SVMs were discussed. In addition, performances between SVMs and artifi-
cial neural networks (ANNs) were compared. Experiment results verified the 
proposed model. 
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1   Introduction 

On line machine condition monitoring and fault diagnosis has been increasingly at-
tracting attention from the research and engineering community worldwide over the 
past decades [1]. Generally, a simple condition monitoring system is approached from 
a pattern classification perspective. It can be decomposed into three general steps: 
data acquisition, feature extraction, and condition classification, among which the 
latter two are of significant importance. 

Due to instantaneous variations in friction, damping, stiffness or loading conditions, 
mechanical systems are often characterized by non-linear behaviors that in turn make 
the vibration signals complex and non-linear. As such, commonly used signal process-
ing techniques including time and frequency domain techniques, as well as advanced 
signal processing techniques, such as wavelet transform and time-frequency represen-
tation, may all exhibit limitations. Therefore, techniques for non-linear dynamic  
parameter estimation provide a good alternative to extracting defect-related features 
hidden in the complex and non-linear vibration signals [1, 2]. Hitherto, a number of 
non-linear parameter identification techniques have been investigated and introduced 
to fault diagnosis, among which correlation dimension is a typical one [3, 4, and 5]. 
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Reliable estimation of correlation dimension, however, usually requires very long data 
set that is difficult or even impossible to be achieved especially in on-line, real-time 
monitoring and diagnosis. A brief review on non-linear dynamic parameters used for 
feature extraction and fault diagnosis can be found in literature [1], and in the same 
literature appropriate entropy (ApEn) was introduced and selected as a tool for rolling 
bearing health monitoring. Although ApEn has found its ways in fields of physiologi-
cal signal and machine vibration signal processing [1,2,6], however due to the bias 
within its estimation, ApEn is heavily dependent on the data length and its estimated 
value is uniformly lower than that expected for short records, and lacks relative consis-
tency as well [7]. In order to overcome the shortcomings of ApEn, Richman and 
Moorman [7] proposed a new kind of entropy, named sample entropy (SampEn) which 
seems much more promising and has attracted a lot of attention [7,8]. 

In a relatively recent paper [9], a new entropy based measure of complexity, which 
is the multiple scale entropy (MSE), was introduced. The authors applied their new 
complexity measure (i.e. MSE) to distinguish between young healthy hearts and con-
gestive heart failure. Moreover, the MSE was able to distinguish atrial fibrillation 
from healthy hearts [9, 10, and 11]. The key to the MSE method lies in a multiscale 
approach [12]. Consider a machine composed of gears, bearings, shafts and other 
mechanical components [13]. Even a modest amount of machine complexity will 
result in measured vibration signals that contain multiple intrinsic oscillatory modes 
due to the interaction of the mechanical components, that implies non-linear dynamic 
parameters applied on single scale (such as ApEn and SampEn of original time series) 
may be insufficient for characterizing machine vibration signals. For this reason, the 
multiscale method was introduced and tried in the present study in the hope of im-
proving performances of traditional non-linear dynamic methods on single scale 
within the context of machine fault diagnosis. To the best of the authors’ knowledge, 
the MSE has not been applied in the field of fault diagnosis so far. Its advanced prop-
erties attract us for a trial of its use. 

After extracting MSE acting as feature vectors, one needs a classifier to fulfill 
automated fault recognition. A number of intelligent classification algorithms, such as 
artificial neural networks (ANNs) and support vector machines (SVMs) have been 
successfully applied to automated machine fault diagnosis [14]. The main advantages 
of SVMs lie in the fact that it can perform better in the processing of small-sample 
sized learning problems and has better generalization due to the replacement of Em-
pirical Risk Minimization used in ANNs by Structural Risk Minimization. Due to 
these merits, SVMs has become a new research hotspot in recent years and have been 
applied successfully in many domains. Hence, SVMs was selected in the present 
study as a fault classifier. 

2   Theoretical Background 

2.1   Multiscale Entropy (MSE) 

MSE was computed according to the procedure published by Costa et al [9, 10, and 11]. 
Given a one-dimensional discrete time series, { }1, , ,i Nx x x , one  can constructed 
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consecutive coarse-grained time series { }( )y τ determined by the scale factor τ , accord-

ing to the equation 
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whereτ represents the scale factor and 1 /j N τ≤ ≤ . In other words, coarse-grained 

time series for scale τ are obtained by taking arithmetic mean of τ neighboring origi-
nal values without overlapping (Fig.1). The length of each coarse-gained time series 
is /N τ . For scale 1, the coarse-grained time series is simply the original time series. 
Then SampEn or ApEn is computed for the coarse-gained time series at each scale 
and plotted as a function of the scale factor. 

SampEn is a refinement of traditionally used regularity measure ApEn statistics. 
Details on the SampEn algorithm can be found in many literatures [15]. Briefly, 
SampEn quantifies the regularity of time series. It reflects the condition probability 
that two sequences of m consecutive data points, which are similar to each other 
(within give tolerance r ), will remain similar when one consecutive point is included 
[15]. The SampEn algorithm underlying the MSE computation requires setting two 
parameters: the tolerance level r and the pattern length m . According to previous 
studies, it has been chosen that 0.15r = × standard deviation of the time series to 
avoid distortion of SampEn values by changes in signal magnitude and 2m = . 
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Fig. 1. The scheme illustrating the coarse-graining of an original time series for scales 2τ =  
and 3τ =   

2.2   Support Vector Machines (SVMs) 

SVM is a classification method derived from Statistical Learning Theory (SLT) by 
Vapnik and Chervonenkis [16]. Its basic idea is to map the original data to a higher 
dimensional feature space and find the optimal hyperplane in the space that maximizes 
the margin between the classes, as illustrated in Fig.2. The essential difference between 
SVMs and ANNs lies in their requirements imposed on the hyperplane. In the case of 
SVMs, it is desired to find the hyperplane with maximal margin and minimal class error 
ratio on training data, whereas in ANNs, only the latter is necessary. According to the 
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SLT, for a trained classifier to predict unseen samples, the actual risk consists of two 
parts, i.e. empirical risk ( e mpR ) and confidence intervalφ . 

empR R φ≤ +  

As such, in order to minimize actual risk, the only satisfaction with minimal class 
error of training data, i.e. minimal e mpR , is not enough. In ANNs, large number of 

training data is required to minimizeφ . Training data, however, is usually limited, 

especially for fault samples of machinery. Therefore, the requirement on maximal 
margin is taken into account in SVMs to account for φ . According to the SLT, maxi-

mal margin will result in minimalφ . Hence, SVMs doesn’t rely much on the amount 

of training data and possesses advantages over ANNs with respect to generalization 
performance. Maximal margin in conjunction with minimal error of training data is 
referred to as minimal structural risk. 

     

Fig. 2. The line with a yellow background illustrating an optimal hyperplane 

3   Experimental Analysis 

3.1   Experimental Setup 

In order to validate the proposed fault diagnosis method, experimental analyses on 
rolling element bearings were conducted. All the bearing data and related system 
analyzed in this paper belong to Case Western Reverse Lab [17].  

The test stand, shown in Fig.3, consists of a 2 hp, three-phase induction motor (left), 
a torque sensor (middle) and a dynamometer (right) connected by a self-aligning  
coupling (middle). The dynamometer is controlled so that desired torque load levels 
can be achieved. The test bearings support the motor shaft at both the drive end and fan 
end. Single point faults were introduced to the test bearings using electro-discharge  
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Fig. 3. Bearing fault test stand 

machining with fault diameters of 7 mil, (1 mil=0.001 inches). Vibration data was 
collected using accelerometers, which were attached to the housing with magnetic 
bases [17, 18]. 

Vibration signals of drive end bearing under 0 hp load collected from good, outer 
race fault, inner race fault and ball fault condition were analyzed. For each condition, 
there are 25 samples and each sample contains 4096 data points. The sampling fre-
quency is 12,000Hz, and the approximate motor speed is 1797 rpm. Hence, motor 
rotates about 11 revolutions over the time interval of 4096 data points. One sample of 
the four conditions was shown in Fig.4. 
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Fig. 4. Vibration signals in time domain of four different bearing conditions 

3.2   Calculation of MSE 

MSE, in essence, is to calculate sample entropy (or other type of entropy like ApEn) 
over a set of scales. For this purpose, prior to the calculation of MSE, there are three 
parameters to be defined, i.e. the tolerance level r , the pattern length m and the maxi-
mal scale factor. Values of r and m have been determined in section 2.1 according to 
previous studies. Maximal scale factor was selected as 50 by experiments. Figure 5 
shows the MSE of the samples depicted in figure 4, from which the four conditions 
can’t be separated linearly, so a nonlinear classifier is necessary.  
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Fig. 5. MSE calculated over 50 time scales for the signals shown in Fig.4 

3.3   Classification with SVMs 

SVMs classify data in the form like a linear function. When linearly inseparable data 
are concerned, SVMs make use of Kernel trick to map the original data to a higher 
dimensional space where the data may be linearly separable. There are various kernel 
functions used in SVMs, such as linear, polynomial, radial basis function (RBF) and 
sigmoid kernel. Since RBF kernel has less hyperparameters and less numerical diffi-
culties, it is a reasonable first choice [19].�

Basic SVMs is developed for binary classification. In practice, however, there are 
many scenarios involving multi-class classification. To this end, a lot of methods have 
been developed such as one-against-rest and one-against-one. For the case of one-
against-rest, there are possibly some data that can’t be classified into any classes or 
will be classified into many classes. To avoid this deficiency, one-against-one para-
digm was adopted. 

After the determination of the type of kernel function and the multi-class method, 
there are still two parameters to be determined, i.e. penalty parameter C and RBF 
width parameter γ . This can be solved by cross-validation and grid-search [19]. As 
stated above, there are 25 samples for each bearing condition respectively. Among 
them are randomly selected 10 samples as training data, remainder 15 samples as 
testing data. Because of less training data, a two-fold cross-validation was imple-
mented to determine the C and γ . For a given value of C and γ , the 10 training sam-
ples were split into two subsets each containing 5 samples. Then, the second subset 
was predicted by the SVMs trained with the first subset, and vice versa. The sum of 
the two prediction accuracy was used as a performance metric to evaluate the 
given C and γ . The values of C and γ within a prescribed range ( 5:1:15 15:1:32 , 2C γ− −∈ ∈ in 

this paper) achieving the highest prediction accuracy will be selected for future appli-
cations [19]. The validation prediction accuracies (testing accuracy) of the  
total 21 19 399× =  pairs of C and γ are shown in Fig. 6; where there are 373 cases 
reaching a testing accuracy of 100%. So many optimal values make it confused for 
the selection. In practice, if there are no other more training data available, any pair of 
the optimal C and γ is a possible candidate. In order to examine the performances of 
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all the possible 373 candidates, their classification rates on testing data are shown in 
Fig. 7. Among all the cases, there are 35.92% getting a rate of 100%, and 45.83% 
getting a rate of 98.33%, 11.26% getting a rate of 96.67, as well as 4.29% getting the 
lowest rate of 93.33%. As such, all of the 373 candidates produced very promising 
results in the classification of testing data. The details on the classification regarding 
the testing data of three couples of C and γ representing three kinds of classification 
accuracy are depicted in Table 1. For all the three cases, there are no samples of fault 
bearing misclassified into good condition, which implies a small risk of the proposed 
fault diagnosis method.   

 

Fig. 6. Classification rate of various pairs of C and γ in cross-validation 
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Fig. 7. Classification rate on testing data with various pairs of C and γ from the optimal values 
determined by cross-validation 



 An Intelligent Fault Diagnosis Method Based on Multiscale Entropy and SVMs 731 

A three-layer BP neural network with 80 and 4 nodes in middle and output layer 
respectively was also investigated. As showed in Table 2, a total of 11 samples were 
misclassified with a classification rate of 81.67%, among which 6 fault samples were 
treated as good condition. This will lead to a rather larger risk than SVMs. Proper 
increase of the node number of middle layer will give a possible raise to the accuracy. 
Nevertheless, due to the high dimension of feature characteristics (i.e. MSE over 50 
scales), too many nodes in middle layer will render the training and testing speed very 
slow, which doesn’t suit on-line and real-time application.  

Table 1. Confusing Matrix of SVMs with different values of C and γ indicated by lines vertical 
to the horizontal axis in Fig.7 at points 61, 198 and 367 

                   13 132 , 2C γ −= =  3 -62 , 2C γ= =  9 22 , 2C γ= =  

Condition A B C D A B C D A B C D 

A 14 0 1 0 13 0 2 0 12 1 2 0 

B 0 15 0 0 0 15 0 0 0 15 0 0 

C 0 0 15 0 0 0 15 0 0 0 15 0 

D 0 0 0 15 0 0 0 15 0 0 1 14 

Accuracy 98.33% 96.67% 93.33% 

A--Good condition, B--Outer race fault, C--Inner race fault, D--Ball fault. 

Table 2. Confusing Matrix of a three-layer BP network 

Condition A B C D 

A 15 0 0 0 

B 0 15 0 0 

C 2 2 11 0 

D 4 0 3 8 

Accuracy 81.67% 

A--Good condition, B--Outer race fault, C--Inner race fault, D--Ball fault.   

4   Conclusions 

Experiments verified the effectiveness of the combination of multiscale entropy 
(MSE) and SVM. MSE can extract the nonlinear information hidden in vibration 
signals over multiple scales. SVMs are superior in terms of good generalization per-
formance as well as less dependence on the amount of training data. In comparison 
with SVMs, the accuracy rate of BP network is slightly lower. The rather higher accu-
racy of both SVMs and BP in turn demonstrated the effectiveness of the features 
extracted by MSE. How to determine the maximal scale factor to which MSE will be 
calculated is an open question. In this work, it’s selected as 50 by trials. 
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