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Abstract. Classification of electroencephalogram (EEG) is an important and 
challenging issue for brain computer interface (BCI) system. In this paper, an 
algorithm based on common spatial subspace decomposition (CSSD) and 
support vector clustering (SVC) is proposed to classify single-trial EEG 
recording during left or right finger movement. The algorithm is tested by the 
dataset IV of “BCI competition 2003”, and the experimental result shows the 
proposed method, only using bereitschaftspotential (BP), rather than both BP 
and event-related desynchronization (ERD), has higher classification accuracy 
than the best one reported in the competition.  

Keywords: Support vector clustering (SVC), Common spatial subspace 
decomposition (CSSD), Electroencephalogram (EEG), Brain computer interface 
(BCI). 

1   Introduction 

Brain computer interface (BCI) is a communication system that allows its users to 
control external devices with brain activity, which does not depend on the brain 
normal output pathways of peripheral nerves and muscles [1], [2]. Currently, the 
electroencephalogram (EEG) signal, one of the non-invasive measurements of brain 
activity, due to its excellent temporal resolution and usability, is a most prevailing 
signal used in BCI system. Therefore, the BCI system based on EEG is widely studied 
and a variety of algorithms have been proposed to indentify intended motions of the 
subjects in EEG recordings.  

In the BCI system design, a common approach is to ask the user to perform tasks 
that are known to produce distinguishable brain activity in most people [3], and task 
involving classification of finger movements, due to its simplicity and easy to 
implement, has been studied by many researchers [3]-[9]. Wolpaw et al [1] 
categorized the BCI systems into five major groups, which are sensorimotor activity, 
P300, slow cortical potentials (SCPs), visual evoked potentials (VEPs), and activity of 
neural cells (ANC). For the finger movement classification task, most of the current 
work extract the features from movement-related potentials (MRPs), e.g., 
bereitschaftspotential (BP),  and changes in brain rhythms, e.g., event-related 
desynchronization/synchronization (ERD/ERS), which can be both viewed as the first 
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category of electrophysiological activities, i.e. sensorimotor activity used in BCI 
system designs.  

Conventional analysis related to movement tasks requires the subject’s training to 
control their brain rhythms for long time, or averaging multiple trials to enhance the 
EEG signal. Another approach is to detect EEG related to movement task from single 
trial, and has attracted more and more attentions due to its simplicity and short 
response time. The signal-to-noise ratio (SNR) of single trial EEG, however, is rather 
low, and therefore lots of algorithms based on single-trial EEG have been investigated 
to resolve this problem.  

To improve the classification accuracy of a BCI system, practitioners have 
proposed various methods. Basically, the literature in this field can be divided into 
three categories. The first approach focuses on how to detect the EEG with more 
information or higher SNR, which is associated with the technique related to signal 
acquisition. The second is studying the use of available information with more 
efficiency by using pre-processing, feature selection and/or extraction technique. The 
third is to explore the classification algorithms to distinguish the complicated features. 
In this paper, we propose a novel classifier based on common spatial subspace 
decomposition (CSSD) and support vector clustering (SVC) to identify the finger 
movement attempts from the single EEG trial. The proposed algorithm is tested by the 
dataset IV of “BCI competition 2003”, and the experimental result shows that the 
proposed method, only using BP, rather than both BP and ERD, has higher 
classification accuracy than the best one reported in the competition by Tsinghua 
University, so that the pre-processing and the feature extraction/selection step will be 
simplified considerably. 

2   Methodology 

In the present research, most of practitioners identify the finger movement intents 
based on the combination of both the BP and ERD to improve the classification 
accuracy [4]-[6]. BP and ERD, with different frequency bands, can be viewed as 

different responses of sensorimotor cortex. However, utilizing both of them for 
classification makes the identification process more complicated and difficult to 
implement. In some situations, simpler method is desirable for the classification task. 
One feature is therefore enough if the performance of the classifier is acceptable. 

CSSD, one of spatial filters, similar to the common spatial pattern (CSP) method, 
proposed by Yunhua Wang et al [10], has shown great usefulness in the finger 
movement classification task [4]-[6]. In this paper, CSSD is also to process and 
extract the feature of multichannel EEG signal. Moreover, SVC is used to design the 
classifier to distinguish the left and right finger movement intents. 

2.1   Bereitschaftspotential 

(Movement-related potentials) MRPs have bilateral distribution and present 
maximum amplitude at vertex. Close to the movement, they become contralaterally 

preponderant [11]. Bereitschaftspotential (BP), also named readiness potential (RP),  
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as a component of MRPs, is low-frequency potential that reflects the dynamic 
changes in motor cortical activity prior to the movement onset. Thus, the feature 
extracted from BP can be utilized in the finger movement task [4]-[6]. In this paper, 
we also utilize the features derived from BP. (For more details about BP, one can 
refer to [12] and [4].) 

2.2   Common Spatial Subspace Decomposition 

In order to utilize more information, one should use all of the electrodes rather than 
only a subset of them. Thus people proposed spatial filters, which combine all the 
electrodes to process multi-channel EEG. CSP [13] is a method belonging to this 
family. Given a binary classification task, CSP seeks a projection direction which 
maximizes the power of one class, and simultaneously minimizes the power of the 
other one. 

Common spatial subspace decomposition (CSSD) is a variation of CSP, and has 
been applied successfully in the finger movement classification task. The aim of 
CSSD is to separate the evoked responses and background spontaneous brain 
activities (specific and common activities), which are overlapped in the scalp 
measurement [10]. Given single-trial multichannel spatial-temporal EEG signal 
matrices LX and RX (evoked by left and right finger movements respectively) with 

dimension N (channels) by T (samples), they can be modeled as follows: 
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where LC and RC are the spatial patterns related to left and right finger movements 

respectively, and CC  represents the spatial pattern specific to the background 

activities. Then LS , RS and CS are the corresponding source activities related to the left 

and right hand movements, and the common condition. One can construct spatial 
filters LF and RF by using CSSD to extract source activities: 

L LS F X=      R RS F X=  (2) 

Then the CSSD algorithm can be described as in the following steps: 

1. Estimate the normalized spatial covariances of the single-trial multichannel EEG 
signal: 
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where trace(X) denotes the summation of the diagonal elements of X. Then 

calculate the averaged normalized covariances LR and RR : 
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where LN and RN are the numbers of the trials corresponding to left and right 

finger movements respectively. 
2. Calculate the eigenvectors 0U and eigenvalues Σ of the matrix R: 

0 0
T

L RR R R U U= + = Σ  (5) 

3. Construct the whiten matrix: 

1/ 2
0
TP U−= Σ  (6) 

4. Transform the covariance matrices: 

T
LLY PR P=     T

RRY PR P=  (7) 

It can be shown [14] that LY and RY share the eigenvectors, i.e. 

T
L L L LY U U= Σ     T

L R R RY U U= Σ  (8) 

L RU U U= =  and L R IΣ + Σ =  (9) 

where LΣ and RΣ are the eigenvalue matrices of LY and RY respectively, and I is 

the identity matrix. Since the eigenvalues are ordered in reverse, the eigenvector 
with the largest eigenvalue for one matrix has the smallest eigenvalue for the 
other, and vice versa. 

5. Design the spatial filter: 
The first and last eigenvectors (denoted as Lu and Ru respectively) are the 

optimal vectors to distinguish the finger movements and the spatial filters 

LF and RF  of left and right finger movements can be therefore designed as: 

T
L LF u P=   T

R RF u P=  (10) 

2.3   Support Vector Clustering 

Inspired by support vector machine, support vector clustering (SVC) was proposed by 
Ben-Hur et al. [15], [16] to find a set of contours as clustering boundaries in the 
original data space. The data are mapped by means of a Gaussian kernel to a high 
dimensional feature space, where the minimal enclosing sphere is found [15]. When 
mapped back to the input space, the sphere represents a complex geometric shape as a 
clustering boundary. 

Let { }ix χ⊆ be a data set of N points, with dχ ⊆ , the input space. Using a 

nonlinear transformation : χΦ → F , where F  is the feature space, we look for the 

smallest sphere of radius R, which encloses the data projection ( )
j

xΦ . This is 

described by the constraints: 

2 2( )jx a RΦ − ≤ ,   j∀  (11) 
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where ⋅ is the Euclidean norm and a  is the center of the sphere. Soft constraints are 

incorporated by adding slack variables jξ : 

2 2( )
j jx a R ξΦ − ≤ + ,   j∀  (12) 

with 0jξ ≥ . This problem can be solved by introducing the Lagrangian: 

22 2 ( )( )j j j j j j
j j j

x aL R R Cξ β ξ μ ξΦ −= − + − − +∑ ∑ ∑  (13) 

where 0jβ ≥ and 0jμ ≥  are Lagrangian multipliers, C is a constant and j
j

C ξ∑ is a 

penalty term. Setting to zero the derivative of L with respect to R, a and jξ , leads to 

1j
j

β =∑  (14) 

( )jj
j

xa β Φ=∑  (15) 

j jCβ μ= −  (16) 

Then the Karush-Kuhn-Tucker conditions yield: 

0j jξ μ =  (17) 

22 ( )( ) 0j j jx aR ξ βΦ −+ − =  (18) 

Using these relations, the Lagrangian can be turned into the Wolfe dual form W 
that is a function of the variable jβ : 

2( ) ( ) ( )j j i j i j
j j

W x x xβ β β= Φ − Φ ⋅ Φ∑ ∑  (19) 

Since the variables jμ do not appear in the Lagrangian they may be replaced with 

the constraints: 

0 j Cβ≤ ≤ ,   j = 1,…,N (20) 

The inner product ( ) ( )i jx xΦ ⋅Φ can be computed by using an appropriate Mercer 

kernel ( , )i jK x x . Since the polynomial kernels do not permit tight contours 

representation of a cluster, it is suggested to choose Gaussian kernel 
2 2( ) exp( / )i j i jK x x x x σ= − −, [15], and we therefore adopt the Gaussian kernel in 

our experiment.  
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Finally, by using the kernel trick, the Lagrangian W can be written as follows: 

,

( , ) ( , )j j j i j i j
j i j

W K x x K x xβ β β= −∑ ∑  (21) 

For j Cβ = , the corresponding points are called bounded support vectors (BSVs), 

and the points with 0 j Cβ< < are referred to as support vectors (SVs). SVs lie on 

cluster boundaries, BSVs lie outside the boundaries and all other points lie inside 
them. It should be noted that, due to constraint (14), when 0C ≥ , no BSVs exist.  

At each point x the distance of its image in the feature space from the center of the 
sphere is:  

2

,

( ) ( , ) 2 ( , ) ( , )j j i j i j
j i j

R x K x x K x x K x xβ β β= − +∑ ∑  (22) 

One advantage of SVC is that it can form arbitrary clustering shapes other than 
hyperellipsoid and hypersphere. Furthermore, it has the capability to deal with the 
noise and outliers, and for SVC, there is no requirement for prior knowledge to 
determine the system topological structure [17]. 

3   Experiments 

The algorithm proposed is evaluated on the dataset IV in BCI Competition 2003 [18], 
which is provided by Fraunhofer-FIRST, Intelligent Data Analysis Group, and Freie 
Universität Berlin, Department of Neurology, Neurophysics Group. The dataset is 
recorded from a normal subject during a no-feedback session. The task is to press 
with the index and little fingers the corresponding keys in a self-chosen order and 
timing ‘self-paced key typing’. The EEG is collected by 28 electrodes at the positions 
of the international 10/20-system. The duration of the signal is 500ms ending 130 ms 
before a keypress, and the sample rate is 100Hz. There are 416 trials in the dataset, 
including 316 training trials and 100 testing trials. 

3.1   Data Preprocessing 

The use of a preprocessing stage before feature extraction or classification has been 
proven to be useful [11]. In order to increase the SNR of the EEG and utilize the 
information more efficiently, two types of filters, i.e. frequency and temporal filters 
are used.  

Since the BP of finger movement dominates in the low frequency band, a low-pass 
filter is applied to extract the BP of the finger movement from the EEG. The cutoff 
frequency is 7Hz, which was used in the previous work [4]. It should be noted that the 
filter used here is the zero-phase filter to avoid phase shift.  

For the temporal filter, there are two parameters to be determined, i.e. the starting 
time and the window size. In this paper, they are chosen by four-fold cross-validation 
on the training data. Moreover, there are another two parameters of SVC, i.e. the 
width σ of the Gaussian kernel and the penalty parameters C. To resolve the problem, 
we firstly determine the parameters of the SVC by experience, and choose the optimal 
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parameters for the temporal filter to extract most obvious differences between the two 
finger movements. Based on the designed filter, we select the parameters of SVC by 
using grid search for simplicity. Then, we redesign the filter again based on the 
selected parameters of SVC. After finite times of iterations, we can obtain an 
approximate optimal solution of the parameters. The classification accuracies with 
different starting times and window sizes are shown as follow:  
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Fig. 1. The performances of the classifiers with different starting times and window sizes 

Here, the parameters of SVC classifier, C and σ, are 0.1 and 1024 respectively. 
From Fig.1 it can be observed that the best classification accuracy is achieved at about 
-190 ms before a keypress, and the corresponding window size is about 60 ms.  

3.2   Feature Extraction 

The CSSD is applied to design a spatial filter to exploit the information from all the 
electrodes. Based on equation (10) we estimate the spatial filters LF and RF by using 

the training data, and then for each testing data X, we define [ ]  L Rf x x= as the 

feature vector, where L Lx F X= ⋅ and R Rx F X= ⋅ . It has been shown [4] that Lx of left 

trials and Rx of right trials have larger amplitudes than that of the contrary patterns, 

which makes the high accuracy classification possible. 

3.3   SVC Discrimination 

After extraction of the features, the SVC classifier is applied to classification. The key 
idea of the SVC classifier is to find a clustering center for each type of finger 
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movement, and classify the movements by comparing the distance between the input 
data and the clustering center of each class in the feature space. SVC can form 
arbitrary clustering shapes and does not require prior knowledge to determine the 
system topological structure, therefore it is suitable for the finger movement 
classification task since the distribution of the extracted feature is complicated. 

The explicit expression of the clustering center in the feature space cannot be 
solved. For each input data, the distance from the center of the sphere in the feature, 
however, can be calculated by (22). In this experiment, SVC algorithm is applied for 
each class of training data, and the corresponding parameters jβ for each class are 

calculated by maximizing W in (21) respectively. In the testing stage, we calculate the 
distance between the input point and each clustering center by using (22), and assign 
the label of the closest center. As mentioned above, there are still two parameters, σ 
and C, for SVC to be selected carefully. Table 1 shows the cross-validation 
performances of the SVC classifiers with different parameters. The best performance 
is shown in bold font. The starting and window size of the temporal filter here are  
-200 ms and -60 ms respectively.  

Table 1. The performances of the SVC with different pairs of parameters C and σ (%) 

σC 4-1 1 4 42 43 44 45 46 47 48 

0.01 50.3 50.3 55.7 57.9 70.3 68.7 75.0 77.5 77.5 77.8 
0.02 50.3 50.3 55.7 58.2 71.8. 73.1 75.6 77.8 77.8 80.4 
0.05 52.2 52.2 52.5 60.1 76.3 75.6 84.2 83.5 82.9 82.6 
0.1 52.2 52.2 52.2 63.3 78.2 83.1 86.4 84.2 82.9 83.8 
0.2 52.2 52.2 52.5 62.7 78.2 77.8 82.3 82.9 81.6 82.3 
0.4 52.2 52.2 52.2 57.6 76.3 74.7 71.8 80.4 82.6 81.6 
0.8 52.2 52.2 52.2 60.4 75.6 73.1 69.0 79.1 80.1 79.4 
1 52.2 52.2 52.5 65.2 72.8 72.8 60.8 71.5 73.1 73.7 
2 49.7 49.7 52.5 64.9 69.9 70.9 62.7 71.8 71.8 75.0 

3.4   Experimental Results 

Table 2 shows the performances of the classifiers with some selected parameters, 
where t1 and t2 represent the starting time and the ending time of the temporal filter 
respectively. The parameters of the temporal filter in fourth column of the table, i.e.  
t1 = -190 ms, t2 = -160 ms, were used in [4]. The best result of the classifier achieved 
in this paper, with t1 = -200 ms, t2 = -140 ms, C = 0.1, and σ = 1024, is 86%.  

As observed in Table 2, the classification accuracy of the classifier is sensitive to 
the parameters of the SVC classifier. Moreover, the optimal choice of them depends 
on the starting time and the ending time of the temporal filter. This is mainly because 
that the preprocessed data are not normalized out of consideration for avoiding losing 
information. Therefore, how to design the optimal classifier independent of data 
preprocessing is the main challenge for further research.    
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Table 2. The effects of different parameters on classification accuracies 

       t1,t2(ms)   
C, σ 

(-350,-200) (-250,-150) (-200,-140) (-190,-160) (-190,-130) 

0.01, 4-1 51% 51% 51% 51% 51% 
0.1, 45 70% 80% 86% 84% 82% 
0.1, 47 74% 82% 84% 83% 81% 
0.2, 45 54% 78% 80% 81% 79% 
0.4, 47 59% 77% 83% 82% 77% 
1, 48 53% 79% 76% 80% 36% 

4   Conclusion 

This work proposes a novel method based on CSSD and SVC to classify the single-
trial EEG signal during the finger movement. The performances of the classifiers with 
different parameters are also investigated. Since SVC requires no prior knowledge in 
determining the system topological structure and clusters in the feature space, it is 
suitable for classifying the features extracted from EEG. The proposed method, 
utilizing only one feature, i.e. BP, achieves the accuracy of 86%, better than 84% 
reported in [4], using both features (BP and ERD) extracted from EEG. Its simplicity 
makes the implementation at a low cost. In addition, the method proposed here can be 
easily extended for multi-class EEG classification task.  

As for the future work, the development of efficient algorithm to determine the 
optimal parameters of SVC, and the design of the classifiers which are more 
insensitive to different data preprocessing strategies would be a focus. Moreover, new 
feature extraction and representation methods immune to different subjects are also 
very meaningful. 
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