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1 Introduction

Weighted automata realise power series—in contrast to ‘classical’ automata
which accept languages. There are many good reasons that make power series
worth an interest compared to languages, beyond the raw appeal to generali-
sation that inhabits every mathematician.

First, power series provide a more powerful mean for modelisation, replac-
ing a pure acceptance/rejection mode by a quantification process. Second, by
putting automata theory in a seemingly more complicated framework, one
benefits from the strength of mathematical structures thus involved and some
results and constructions become simpler, both conceptually, and on the com-
plexity level. Let us also mention, as a third example, that in the beginning
of the theory, weighted automata were probably considered for their ability of
defining languages—via the supports of realised power series—rather than for
the power series themselves. In all these instances, what matters is that the
choice of the semiring S of multiplicity be as wide as possible and our first
aim is to develop as far as possible a theory with a priori no assumption at
all on S.

With this in mind, I have chosen as the main thread of this chapter to
lay comprehensive bases for the proof of the decidability of the equivalence of
deterministic k-tape transducers which is, at least in my opinion, one of the
most striking examples of the application of algebra to “machine theory.” To
that end, I develop in particular the following points:

(a) The definition of rational series over graded monoids (in order to deal with
direct product of free monoids) and not over free monoids only. A side
benefit of the definition of series over arbitrary (graded) monoids is that
it makes clearer the distinction between the rational and the recognisable
series.

(b) The reduction theory of series over a free monoid and with coefficients in
a (skew) field that leads to a procedure for the decidability of equivalence
(with a cubic complexity).

(c) As it is natural for series with coefficients in a field, and since the topo-
logical machinery is set anyway, the star of series is defined in a slightly
more general setting than cycle-free series.

(d) The basics for rational relations with multiplicity, for the weighted gener-
alisation of the often called Kleene–Schützenberger theorem on transduc-
ers as well as of the Myhill theorem (on recognisable sets in a product of
monoids) or of McKnight theorem (on the inclusion of recognisable set in
rational ones in finitely generated monoids).
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The core of this chapter pertains to a now classical part of automata theory,
originating in the seminal paper of M.P. Schützenberger [46] and having been
exposed in several treatises already quoted in Chap. 1: Eilenberg [14], Salomaa
and Soittola [45], Berstel and Reutenauer [5], and Kuich and Salomaa [29].
I have not resisted though to include some more recent developments which are
the result of my own work with my colleagues M.-P. Béal and S. Lombardy: the
derivation of weighted expressions [33], and the connection between conjugacy
and equivalence [3, 4].

The presentation given here (but for the last quoted result that is too re-
cent) is adapted from Chaps. III and IV of my book Elements of Automata
Theory [43], where missing proofs, detailed examples, and further develop-
ments can be found. I am grateful to Reuben Thomas who has translated this
book from French to English and to Cambridge University Press for allow-
ing me to use the material for this chapter. Finally, I want to acknowledge
the always inspiring discussions I have had in the last 10 years with Sylvain
Lombardy.

2 Rational Series and Weighted Rational Expressions

In the preceding chapters, the formal power series that have been considered
are series over a free monoid with coefficients in a semiring S that is almost
always supposed to be complete or continuous, opening the way to straight-
forward generalisations of results and methods developed for languages, that
are series with multiplicity in the Boolean semiring, and classical automata.

Our first purpose is to build a theory where no assumptions are made
on the semiring of coefficients, and as few as possible on the base monoid.
There will be some redundancy with Chaps. 1 and 3, but I have preferred
to write a comprehensive text that naturally flows rather than to interrupt
it with references to results that are always stated under slightly different
hypotheses.

In what follows, M is a monoid and S a semiring, a priori arbitrary.

2.1 Series over a Graded Monoid

For any set E, the set of maps from E to S is usually written SE and canon-
ically inherits from S a structure of semiring when equipped with pointwise
addition and multiplication. When E is a monoid M , we equip SM with an-
other multiplication which derives from the monoid structure of M, and we
thus use different notation and terminology for these maps together with this
other semiring structure—indeed, the ones set up in Chap. 1, Sect. 3.

Any map from M to S is a formal power series over M with coefficients
in S—abbreviated as S-series over M , or even as series if there is ambiguity
neither on S nor on M . The set of these series is written S〈〈M〉〉. If r is a
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series, the image of an element m of M under r is written (r,m) rather than
(m)r and is called the coefficient of m in r.

The support of a series r is the subset of elements of M whose coeffi-
cient in r is not 0S . A series with finite support is a polynomial ; the set of
polynomials over M with coefficients in S is written S〈M〉.

For all r and r′, and all s in S, the following operations on S〈〈M〉〉 are
defined:

(i) The (left and right) ‘exterior’ multiplications1:

sr and rs by ∀m ∈ M (sr,m) = s(r,m) and (rs, m) = (r,m)s.

(ii) The pointwise addition:

r + r′ by ∀m ∈ M (r + r′, m) = (r,m) + (r′, m).

(iii) The Cauchy product :

rr′ by ∀m ∈ M (rr′, m) =
∑

u,v∈M
uv=m

(r, u)(r′, v). (∗)

Addition makes S〈〈M〉〉 a commutative monoid, whatever S and M ; to-
gether with the two exterior multiplications, it makes S〈〈M〉〉 a left and right
semimodule2 on S.

The Cauchy product raises a problem for there could very well exist ele-
ments m in M such that the set of pairs (u, v) satisfying uv = m is infinite,
and hence there could exist series such that the sum on the right-hand side
of (∗) is not defined. Thus, we cannot ensure, without further assumptions,
that the Cauchy product is a binary operation totally defined on S〈〈M〉〉. This
difficulty can be overcome in at least three ways.

The first is to retreat: we no longer consider S〈〈M〉〉 but only the set S〈M〉
of polynomials. If r and r′ are polynomials, the sum in (∗) is infinite but
only a finite number of terms are non-zero; the Cauchy product is defined
on S〈M〉 and makes it indeed a semiring (a semi-algebra on S), a subsemi-
algebra of S〈〈M〉〉 when that is defined.

The second is to assume that S is complete: every sum, even if infinite, is
defined on S, and the Cauchy product of two series is defined for any M . This
is the case, for example, if S is equal to B, B〈〈M〉〉, 〈N∞, +, ·〉 or 〈N∞, min,+〉.
The theory of finite automata over a free monoid and with multiplicity in a
complete semiring has been developed in Chap. 3 of this book.

The third way, which is ours, aims at being able to define weighted au-
tomata, and hence series, without restriction on S, and we are led in this case
1 Which are called scalar products in Chap. 1.
2 For sake of uniformity in this book, I use the terms ‘semimodule’ and ‘semialge-
bra’ whereas in [43] and other publications, I follow the convention of Berstel and
Reutenauer [5] and speak of ‘module’ and ‘algebra’ (over a semiring).
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to make assumptions about M : we suppose for the rest of this chapter that the
monoids are graded, a condition that we shall describe in the next paragraph
and which allows the natural generalisation of the standard construction of
formal power series of a single variable.3 This somewhat different assumption
makes it necessary to restate, and sometimes to reprove again, some of the
statements already established when S is complete.

2.1.1 Graded Monoid

For the Cauchy product to be always defined on S〈〈M〉〉, independently of S,
it is necessary (and sufficient) that, for all m in M , the set of pairs (u, v) such
that uv = m is finite—we will say that m is finitely decomposable. However,
making S〈〈M〉〉 a semiring is not an end in itself: the development of the theory
to come is the characterisation of the behaviour of finite automata by means
of rational operations—a fundamental theorem—and then not only must sum
and product be defined on the series, but so must the star operation, which
implies an infinite sum. This forces us to have some sort of topology on S〈〈M〉〉,
to which we shall return in the next paragraph.

The construction of series on Σ∗, which generalises that of series of one
variable, shows that it is from the length of words in Σ∗ that we build a topol-
ogy on S〈〈Σ∗〉〉. The existence of an additive length is the main assumption
that we shall make about M . Returning to the initial problem, we then seek
an additional condition that ensures that every element is finitely decompos-
able. For reasons of simplicity, we assume that M is finitely generated. This
solves the problem, while allowing us to deal with the cases that interest us.

Definition 2.1. A function ϕ : M → N is a length on M if:

(i) ϕ(m) is strictly positive for all m other than 1M

(ii) ∀m, n ∈ M ϕ(mn) ≤ ϕ(m) + ϕ(n)

We shall say that a length is a gradation if it is additive; that is, if:

(iii) ∀m, n ∈ M ϕ(mn) = ϕ(m) + ϕ(n)

and that M is graded if it is equipped with a gradation.

Every free monoid and every Cartesian product of free monoids is graded.
The definition implies that ϕ(1M ) = 0 and that a finite monoid, more generally
a monoid that contains an idempotent other than the identity (for example,
a zero), cannot be equipped with a gradation.

Proposition 2.2. In a finitely generated graded monoid, the number of ele-
ments whose length is less than an arbitrary given integer n is finite.
3 A fourth method exists that takes out of both the first and the third. It involves
making an assumption about M (we require it to be an ordered group) and consider-
ing only a subset of S〈〈M〉〉 (those series whose support is well ordered). A reference
to that set of series will be made in Sect. 5.3.
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In other words, every element of a graded monoid M can only be written
in a finite number of different ways as the product of elements of M other
than 1M . We can deduce in particular the following corollary.

Corollary 2.3. In a finitely generated graded monoid, every element is fi-
nitely decomposable.

Note that a finite monoid is not graded, but that every element in it is
nonetheless finitely decomposable. From Corollary 2.3, we deduce the propo-
sition aimed at by Definition 2.1:

Proposition 2.4. Let M be a finitely generated graded monoid and S a semi-
ring. Then S〈〈M〉〉, equipped with the Cauchy product, is a semiring, and what
is more, a (left and right) semi-algebra4 on S.

In the following, M is a graded monoid that is implicitly assumed to be
finitely generated. To simplify the notation and in imitation of the free monoid,
we will write the length function as a pair of vertical bars, that is, |m| rather
than ϕ(m).

From the semiring S〈〈M〉〉, one then builds other semirings, by means of
classical constructions; let us quote in particular and for further reference the
following fundamental isomorphism.

Lemma 2.5. Let S be a semiring, M a graded monoid, and Q a finite set;
then the set of square matrices of dimension Q and with entries in the semi-
ring S〈〈M〉〉 is a semiring, isomorphic to that of series over M with coefficient
in the semiring of square matrices of dimension Q and with entries in S; that
is, S〈〈M〉〉Q×Q ∼= SQ×Q〈〈M〉〉.

Remark 2.6. A notion that is often considered in relationship with gradation
is equidivisibility. A monoid M is equidivisible if whenever mn = pq with m,
n, p, and q in M , there exists u such that mu = p and n = uq or m = pu
and un = q. There is then a theorem by F.W. Levi which states that a graded
equidivisible monoid is free (cf. [30]). This notion is also to be compared with
the one of equisubtractivity that is considered below.

2.1.2 Topology on S〈〈M〉〉

The definition to come of the star operation, an infinite sum, calls for the
definition of a topology on S〈〈M〉〉.

Since S〈〈M〉〉 = SM is the set of maps from M to S, it is naturally equipped
with the product topology of the topology on S. If this topology on S is defined
by a distance, the product topology on S〈〈M〉〉 coincides, as M is countable,
with the simple convergence topology :
4 If S is a ring, S〈〈M〉〉 is even what is classically called a graded algebra, which is
the origin of the terminology chosen for graded monoids.
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rn converges to r, if and only if,
for all m in M , (rn, m) converges to (r, m).

We shall reexamine the topology question using only the notion of distance,
more in line with intuition and explain how to define a distance between two
series under the assumption that M is graded. The foregoing reference to
simple convergence topology was nevertheless worthwhile, as it made clear
that the basis of the topology on S〈〈M〉〉 is the topology on S.

Distance on S〈〈M〉〉

A distance on a set E is a map d which relates to every pair (x, y) of ele-
ments of E a positive real number d(x, y), called the distance from x to y (or
between x and y), which satisfies the following properties:

• Symmetry: d(x, y) = d(y, x)
• Positivity: d(x, y) > 0 if x 
= y and d(x, x) = 0
• Triangular inequality: d(x, y) ≤ d(x, z) + d(y, z)

When this triangular inequality can be replaced by

• ∀x, y, z ∈ E d(x, y) ≤ max{d(x, z),d(y, z)}

the distance d is called ultrametric.
A sequence {xn}n∈N of elements of E converges to x if the distance be-

tween xn and x becomes arbitrarily small as n grows; that is, more formally,

∀η > 0 ∃N ∈ N ∀n ≥ N d(xn, x) ≤ η.

Such an element x is unique; it is called the limit of the sequence {xn}n∈N

and we write x = limn→+∞ xn, or simply x = lim xn if there is no ambiguity.
We say that d equips E with a topology.

Remark 2.7. We can always assume that a distance is a real number less than
or equal to 1. If that is not the case, then by taking

f(x, y) = inf{d(x, y), 1},

we obtain a distance f on E that defines the same topology ; that is, a distance
for which the same sequences will converge to the same limits.

Remark 2.8. Whatever E is, we can choose a trivial distance function which
is 1 for every pair of distinct elements. This is equivalent to saying that two
distinct elements are never ‘close’ to each other, and that the only convergent
sequences are those that are eventually stationary. We then say that E is
equipped with the discrete topology.
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We are confronted with two situations which seem fundamentally different.
The first is that of a semiring S such as B, N, Z, N

∞, etc., whose elements are
‘detached’ from each other. The natural topology on these semirings is the
discrete topology. The second is that of semirings such as Q, Q+, R, etc., or
even later S〈〈M〉〉 itself, which can act as a semiring of coefficients for series on
another monoid; that is, semirings on which there is a priori a distance which
can be arbitrarily small. On these semirings as well, we can choose a discrete
topology, but it is more satisfactory to preserve their ‘native’ topology. By
means of the definition of a distance and the topological notions derived from
it, we treat these two situations in the same way.

We first assume that S is equipped with a distance c which is bounded
by 1. The length function on M allows us to put an ordering on the elements
of M and we set

d(r, r′) =
1
2

∑

n∈N

(
1
2n

max
{
c
(
(r, m), (r′, m)

) ∣∣ |m| = n
})

.

We then verify that d is indeed a distance on S〈〈M〉〉, ultrametric when c
is, and that the topology defined on S〈〈M〉〉 by d is, as stated, the simple
convergence topology; that is, the following property.

Property 2.9. A sequence {rn}n∈N of series of S〈〈M〉〉 converges to r, if and
only if, for all m in M the sequence of coefficients (rn, m) converges to (r, m).

Furthermore, choosing a topology on a semiring only really makes sense
if the constituent operations of the semiring, addition and multiplication, are
consistent with the topology—we say they are continuous—that is, if the
limit of a sum (resp. of a product) is the sum (resp. the product) of the limits.
We say in this case that not only is the semiring equipped with a topology,
but that it is a topological semiring. We easily verify that if S is topological,
then so is S〈〈M〉〉. In other words, if {rn}n∈N and {r′n}n∈N are two convergent
sequences of elements of S〈〈M〉〉, we have

lim(rn + r′n) = (lim rn) + (lim r′n) and lim(rnr′n) = (lim rn)(lim r′n).

Note that conversely the fact that the sequence {rn + r′n}n∈N or {rnr′n}n∈N

converges says nothing about whether {rn}n∈N or {r′n}n∈N converges or not.
If S is a topological semiring, then so is SQ×Q and the isomorphism quoted

in Lemma 2.5 is moreover a bi-continuous bijection.

Summable Families

Let T be a semiring5 equipped with a distance which makes it a topological
semiring. We thus know precisely what means that an infinite sequence {tn}n∈N

5 We have temporarily changed the symbol we use for a semiring on purpose: T will
not only play the role of S but also of S〈〈M〉〉 in what follows.
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converges to a limit t when n tends to infinity. We must now give an equally
precise meaning to the sum of an infinite family {ti}i∈I and it turns out to be
somewhat harder. The difficulty arises from the fact that we want a sort of
associativity–commutativity extended ‘to infinity’, and hence to ensure that
the result and its existence does not depend on an arbitrary order put on the
set I of indices.

We shall therefore define an ‘absolute’ method of summability, and a family
will be described as ‘summable’ if we can find an increasing sequence of finite
sets of indices, a sort of ‘kernels’, such that not only do partial sums on these
sets tend to a limit, but above all that any sum on a finite set containing one
of these kernels stays close to this limit. More precisely, we take the following
definition.

Definition 2.10. A family {ti}i∈I of elements of T indexed by an arbitrary
set I is called summable if there exists t in T such that, for all positive η,
there exists a finite subset Jη of I such that, for all finite subsets L of I which
contain Jη, the distance between t and the sum of {ti} for i in L is less than η;
that is,

∃t ∈ T, ∀η > 0, ∃Jη finite, Jη ⊂ I, ∀L finite, Jη ⊆ L ⊂ I

d
(∑

i∈L

ti, t

)
≤ η.

The element t thus defined is unique and is called the sum of the fam-
ily {ti}i∈I .

The sum just defined is obviously equal to the usual sum if I is finite, and
we write

t =
∑

i∈I

ti.

From the definition of a summable family, we easily deduce an associativity
property restricted to finite groupings, but that repeats infinitely.

Property 2.11. Let {ti}i∈I be a summable family with sum t in T . Let K be a
set of indices and {Jk}k∈K a partition of I where all the Jk are finite (that is,
I =

⋃
k∈K Jk and the Jk are pairwise disjoint). Set sk =

∑
i∈Jk

ti for every k
in K. Then the family {sk}k∈K is summable with sum t.

As in the preceding chapters, we say that a family of series {ri}i∈I is
locally finite if for every m in M there is only a finite number of indices i such
that (ri, m) is different from 0S .

Property 2.12. A locally finite family of power series is summable.

This simple property is a good example of what the topological structure
placed on S〈〈M〉〉 imposes and adds. That we can define a sum for a locally
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finite family of series is trivial: pointwise addition is defined for each m, inde-
pendently of any assumption about M . To say that the family is summable is
to add extra information: it ensures that partial sums converge to the result
of pointwise addition.

For every series r, the family of series {(r, m)m | m ∈ M}, where m is
identified with its characteristic series, is locally finite, and we have

r =
∑

m∈M

(r, m)m,

which is the usual notation that is thus justified. We also deduce from this
notation that S〈M〉 is dense in S〈〈M〉〉. Property 2.12 extends beyond locally
finite families and generalises to a proposition which links the summability of
a family of series and that of families of coefficients.

Property 2.13. A family {ri}i∈I of S〈〈M〉〉 is summable with sum r if and only
if for each m in M , the family {(ri, m)}i∈I of elements of S is summable with
sum (r, m).

2.2 Rational Series

We are now ready to define the star operation on a series. We must never-
theless introduce here an assumption on the semiring, somehow an axiom of
infinite distributivity. After that, the definition of rational series comes eas-
ily, the double definition indeed, one as a closure under rational operations
and one by means of rational expressions which opens the way to effective
computations.

2.2.1 Star of a Series

We start by considering the problem in arbitrary semirings and not only in
the semirings of series.

Let t be an element of a topological semiring T ; it is possible for the family
{tn}n∈N to be, or not to be summable. If it is summable, we call its sum the
‘star of t’ and write it t∗:

t∗ =
∑

n∈N

tn.

Whether t∗ is defined depends on t, on T , on the distance on T , or on a
combination of all these elements. For example, (0T )∗ = 1T is defined for
all T ; if T = Q, we have (1

2 )∗ = 2 if Q is equipped with the natural topology,
or undefined if the chosen topology is the discrete topology, while 1∗ is not
defined in either case.

Lemma 2.14. Let T be a topological semiring and t an element of T whose
star is defined. We have the double equality

t∗ = 1T + tt∗ = 1T + t∗t. (1)
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Proof. We obviously have t≤n = 1T +tt<n = 1T +t<nt. As lim t<n = lim t≤n =
t∗, and as addition and multiplication are continuous operations on T , we
obtain (1) by taking the limit of each side of the above equation. ��
Remark 2.15. If T is a topological ring, and if the star of t is defined, (1) can
be written t∗ − tt∗ = t∗ − t∗t = 1 or (1 − t)t∗ = t∗(1 − t) = 1 and so t∗ is the
inverse of 1 − t. Hence, the classic identity

t∗ =
1

1 − t
= 1 + t + t2 + · · · , (2)

is justified in full generality. It also means that forming the star can be con-
sidered as a substitute of taking the inverse in poor structure that has no
inverse.

Star of a Proper Series

By reference to polynomials and to series in one variable, we call the constant
term of a series r of S〈〈M〉〉 the coefficient of the neutral element of M in r:
c(r) = (r, 1M ). A power series is called proper if its constant term is zero. The
sum of two proper series is a proper series; the product of a proper series with
any other series is a proper series, since M is graded.

If r is proper, the family {rn | n ∈ N} is locally finite, and thus the star
of a proper series of S〈〈M〉〉 is defined.

Lemma 2.16 (Arden). Let r and u be two series of S〈〈M〉〉; if r is a proper
series, each of the equations

X = rX + u and (3)
X = Xr + u (4)

has a unique solution: the series r∗u and ur∗, respectively.

Proof. In (1), we replace t by r and multiply on the left (resp. on the right)
by u and we obtain that r∗u (resp. ur∗) is a solution of (3) (resp. of (4)).
Conversely, if v is a solution of the equation X = u + rX, we have

v = u + rv =⇒ v = u + ru + r2v = · · · = r<nu + rnv,

for all integers n. Since r is proper, and multiplication continuous, we have
lim rn = lim rnv = 0, from which follows v = lim(r<nu) = (lim r<n)u =
r∗u. ��

From which, we deduce the following proposition.

Proposition 2.17. Let r and u be two proper series of S〈〈M〉〉; the following
equalities (or identities) hold:

(r + u)∗ = r∗(ur∗)∗ = (r∗u)∗r∗, (S)
(ru)∗ = 1 + r(ur)∗u, (P )

∀n ∈ N r∗ = r<n(rn)∗. (Zn)
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Following [12], the identity (S) is called the sum star identity in Chap. 1,
(P ) the product star identity.

Remark 2.18. It follows by Lemma 2.5 that a square matrix m of dimension Q
with elements in S〈〈M〉〉 is a proper series of SQ×Q〈〈M〉〉 if all its elements are
proper series; (we say in this case that m is proper), and hence that the
identities (S), (P ), and (Zn) are satisfied by proper matrices.

Strong Semirings and Star of an Arbitrary Series

The star of an arbitrary series, not necessarily proper, may or may not be
defined. The following proposition allows us to tell the difference between the
two cases. First, we make a timely definition to avoid a difficulty.

Definition 2.19. A topological semiring is strong if the product of two sum-
mable families is a summable family; that is, if the two families {ri | i ∈ I}
and {uj | j ∈ J} are summable with sum s and t, respectively, then the family
{riuj | (i, j) ∈ I × J} is summable with sum st.

All the semirings which we shall consider are strong: semirings equipped
with the discrete topology, the sub-semirings of C

n (equipped with the natural
topology), and the positive semirings. We then easily verify the following
property.

Property 2.20. The semirings of matrices and the semirings of series on a
graded monoid, with coefficients in a strong semiring are strong.

Let r be a series of S〈〈M〉〉; the proper part of r is the proper series that
coincides with r for all the elements m of M other than 1M . It is convenient
to write r0 = c(r) for the constant term of r, and rp for the proper part of r:

(rp1M ) = 0S and ∀m ∈ M\1M (rp, m) = (r,m),

and we write r = r0 + rp (rather than r = r01M + rp). These definitions and
notations are taken in view of the following, which generalises to a series with
coefficients in an arbitrary strong semiring, a result already established for
series with coefficients in a continuous semiring.

Proposition 2.21. Let S be a strong topological semiring and M a graded
monoid. Let r be a series of S〈〈M〉〉, r0 its constant term and rp its proper
part. Then r∗ is defined if and only if r∗0 is defined and in this case we have

r∗ = (r∗0rp)∗r∗0 = r∗0(rpr
∗
0)∗. (5)

Proof. The condition is necessary since (rn, 1M ) = rn
0 and, if r∗ is defined,

the coefficients of 1M in {rn}n∈N form a summable family.
Conversely, assume that {rn

0 }n∈N is summable, with sum r∗0 . For all pairs
of integers k and l, set
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Pk,l =
∑

i0,i1,...,ik∈N

i0+i1+···+ik=l

ri0
0 rpr

i1
0 rp · · · rik−1

0 rpr
ik
0 .

By convention, set P0,l = rl
0 and Pk,0 = rk

p . We verify by inspection that, for
all integers n,

rn = (r0 + rp)n =
l=n∑

l=0

Pn−l,l. (6)

By induction on k, we will show that the family

Fk =
{
ri0
0 rpr

i1
0 rp · · · rik−1

0 rpr
ik
0

∣∣ i0, i1, . . . , ik ∈ N
}

is summable in S〈〈M〉〉, with sum

Qk = (r∗0rp)kr∗0 = r∗0(rpr
∗
0)k.

The ingredients of the proof are depicted in Fig. 1.
In fact, the hypothesis on r0 ensures the property for k = 0, and also that

the family G = {r0
nrp | n ∈ N} is summable in S〈〈M〉〉, with sum r0

∗rp.
The family Fk+1 is the product of the families G and Fk and the assumption
that S, and hence S〈〈M〉〉 is strong gives us the conclusion.

Hence, we deduce that, for each k, the family {Pk,l | l ∈ N} is summable,
with sum Qk. The family {Qk | k ∈ N} is locally finite, hence summable, with
sum

u =
∞∑

k=0

Qk = (r∗0rp)∗r∗0 = r∗0(rpr
∗
0)∗.

We can now easily finish the proof by showing that the ‘doubly indexed’
family {Pk,l | k, l ∈ N} is summable, with sum u. Equation (6) and Prop-
erty 2.11 then ensure that the family {rn | n ∈ N} is summable with sum u. ��

The case of cycle-free series (see Chap. 1 and 3) falls in the scope of
Proposition 2.21. In the same spirit as Remark 2.18, we note that (5) holds
for every matrix m such that the star of its matrix of constant terms is defined.
A particularly interesting case of this is where the matrix of constant terms
is a strict upper triangular, another case of cycle-free series.

Proposition 2.22 (Bloom–Ésik [7]). Let S be a strong topological semiring
and M a graded monoid. Let r and u be series of S〈〈M〉〉 with constant terms r0

and u0, respectively, and such that r∗0, u∗
0, and (r0 + u0)∗ are defined. Then

the identities (S), (P ), and (Zn) hold for r and u.

In other words, with the terminology of Chap. 1, and if one skips the
question of the definition of star, if S is a Conway semiring, so is S〈〈M〉〉.

Remark 2.23. Along the line of Remark 2.15, it holds that if S is a ring, a series
of S〈〈M〉〉 is invertible, if and only if its constant term is invertible.

For the rest of the chapter, S is a strong topological semiring.
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Fig. 1. A graphical representation of Proposition 2.21

2.2.2 The Family of Rational Series

We first characterise rational series ‘from above’ with the definition of rational
operations and of closed families, and then inductively ‘from below’, with the
definition of weighted rational expressions.

S-Rational Operations

The rational operations on S〈〈M〉〉 are:

(i) The S-algebra operations, that is:
• The two exterior multiplications by the elements of S
• The addition
• The product

(ii) The star operation, which is not defined everywhere.

Point (ii) leads us to tighten the notion of closure: a subset E of S〈〈M〉〉 is
closed under star if s∗ belongs to E for every series s in E such that s∗ is
defined.

A subset of S〈〈M〉〉 is rationally closed if it is closed under the rational
operations; that is, if it is a subsemi-algebra of S〈〈M〉〉 closed under the star
operation. The intersection of any family of rationally closed subsets is ratio-
nally closed, and thus the rational closure of a set E is the smallest rationally
closed subset which contains E , written SRat E .

Definition 2.24. A series of S〈〈M〉〉 is S-rational if it belongs to the rational
closure of S〈M〉, the set of polynomials on M with coefficients in S. The set
of S-rational series (over M with coefficients in S) is written SRat M .

If the monoid M is implied by the context, we shall say S-rational series,
or just rational series, if S is also understood.
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Example 2.25.

(i) Let M be the one-generator free monoid {x}∗ and S be a field F. Then
FRat x∗ is exactly the set of series developments of (F-)rational functions
(that is, quotients of two polynomials) and this is where the name ratio-
nal—rather the more common regular (for expressions and languages)—
comes from.

(ii) If S = B, we simply write RatM for BRatM and its elements are the
rational subsets of M .

(iii) If S = N and M = Σ∗×Δ∗, NRat Σ∗×Δ∗ is the set of rational relations
from Σ∗ to Δ∗ with multiplicity in N, which we shall consider later.

Characteristic Series and Unambiguous Rational Sets

The notions introduced so far allow for a precise definition of unambiguity6

(for rational sets) and some illustrative computations. For brevity, let us de-
note by P the characteristic series of a subset P of M (rather than by char(P )
as in Chap. 1).

Definition 2.26. Set S = N and let P and Q be two subsets of M .

(i) The union P ∪ Q is unambiguous if and only if (P ∪ Q) = P + Q.
(ii) The product PQ is unambiguous if and only if (PQ) = P Q.
(iii) The star of P is unambiguous if and only if P ∗ = (P )∗.

A subset of M is unambiguously rational if it belongs to the unambiguous
rational closure of finite subsets of M . The family of unambiguous rational
subsets of M is written URat M .

Then P ∈ URat M if, and only if P ∈ NRat M and then P ∈ SRat M
for any S. It is well known for instance that URat Σ∗ = Rat Σ∗ and that
URat(Σ∗ × Δ∗) is strictly contained in Rat(Σ∗ × Δ∗).

As Σ freely generates Σ∗, we have (Σ)∗ = Σ∗, and thus Σ∗ = ε + ΣΣ∗ =
ε + Σ∗Σ which gives (ε − Σ)Σ∗ = Σ∗(ε − Σ) = ε, and thus Σ∗ = (ε − Σ)−1

if S = Z.
If P is a non-empty prefix-closed subset of Σ∗, the border of P is the set:

C = PΣ\P.

As an example, Fig. 2 shows the prefix-closed subset {ε, b, ba} and its border
{a, bb, baa, bab}.

Let P is a non-empty prefix-closed subset of Σ∗ and let h = pa with p
in P and a in Σ (this is the unique expression of h in this form). There are
two, mutually exclusive, possible cases: h is in C or h is in P . Conversely,
every word of P ∪ C can be written in this way, except ε. Hence, we deduce
the equality between characteristic series:
6 A more or less folklore notion; an early reference for unambiguous rational sets
is [15].
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Fig. 2. A prefix-closed subset and its border

C + P = PΣ + ε,

which we first rewrite as ε − C = P (ε − Σ) then by right multiplication by
Σ∗ = (ε−Σ)−1, as Σ∗−CΣ∗ = P . We thus have proved the following lemma.

Lemma 2.27. Let P be a non-empty prefix-closed subset and C = PΣ\P its
border. Every word f of Σ∗\P can be written uniquely as f = cg with c in C
and g in Σ∗.

Rational S-Expressions

The definition of expressions will provide useful tools and handier ways to
deal with rational series. Let {0, 1, +, ·, ∗} be five function symbols. Naturally,
the functions + and · are binary, ∗ is unary, and 0 and 1 are nullary (they
represent constants). We define, for each s in S, two unary functions, also
written s.

Definition 2.28. A weighted rational expression over M with weight in S, or
rational S-expression over M , is obtained inductively in the following manner:

(i) 0, 1, and m, for all m in M , are rational expressions (the atomic expres-
sions).

(ii) If E is a rational expression and s is in S, then (sE) and (Es) are rational
expressions.

(iii) If E and F are rational expressions, then so are (E+F), (E ·F), and (E∗).

We write SRatE M for the set of rational S-expressions over M .

Remark 2.29.

(i) We can restrict the atomic expressions, other than 0 and 1, to be ele-
ments g of any given generating set G of M without reducing the power
of the definition. That is what we usually do when M is a free monoid Σ∗.

(ii) We could have considered the elements of S to be atoms and not opera-
tors, again without changing the power of the definition, and that would
simplify somewhat some upcoming equations. The chosen way is, how-
ever, more consistent with the upcoming definition of the derivation of
S-expressions over Σ∗.
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We define the depth of an expression E, d(E), as the height of the syntactical
tree of the corresponding expression:

d(0) = d(1) = d(m) = 0, for all m in M,

d((sE)) = d((Es)) = d((E∗)) = 1 + d(E),

d((E + F)) = d((E · F)) = 1 + max
(
d(E), d(F)

)
.

The constant term of an expression E, c(E), is defined by induction on the
depth of E; it is an element of S, computed by the following equations:

c(1) = 1S , c(0) = c(m) = 0S for all m in M,

c((sE)) = sc(E), c((Es)) = c(E)s,
c((E + F)) = c(E) + c(F), c((E · F)) = c(E)c(F), and

c((E∗)) = c(E)∗ if the right-hand side is defined in S.

A rational S-expression may represent an element of S〈〈M〉〉 or not, the
distinction between the two cases being made by the constant term, exactly
as for the star of an arbitrary series and using that result. We shall say that
an expression in SRatE M is valid if its constant term is defined. The series
denoted by a valid expression E, which we write |E|, is defined by induction
on the depth of E by the equations

|0| = 0S , |1| = 1M , |m| = m for all m in M,

|(sE)| = s|E|, |(Es)| = |E|s,
|(E + F)| = |E| + |F|, |(E · F)| = |E||F|, and |(E∗)| = |E|∗.

We verify both that these equations are well defined and that they are
consistent, in the sense that the constant term of the expression E is the
constant term of the series |E|, in parallel, and in the same induction, using
Proposition 2.21. In other words, and in order to define |E|, we shall also have
proved the following.

Property 2.30. For all valid S-expressions E in SRatE M , c(E) = (|E|, 1M ).

Example 2.31. Take M = {a, b}∗ and S = Q. The Q-expression (a∗+(−1b∗))∗

is valid, as is E1 = (1
6a∗ + 1

3b∗)∗ since c(1
6a∗ + 1

3b∗) = 1
2 , and hence c(E1) = 2

is defined; (a∗ + b∗)∗ is not valid.

The set of series denoted by valid S-expressions is rationally closed, and
every rationally closed subset of S〈〈M〉〉 that contains every element of M
(and thus S〈M〉) contains every series denoted by a valid S-expression, which
proves the following proposition.

Proposition 2.32. A series of S〈〈M〉〉 is S-rational if and only if it is denoted
by a valid rational S-expression over M .
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3 Weighted Automata

An automaton over M with weight (or with multiplicity) in S, or S-automaton7

over M is a graph labelled with elements of S〈〈M〉〉, associated with two maps
from the set of vertices to S〈〈M〉〉. We develop and complete this definition. We
build on the identification of a graph with its incidence matrix and the proofs
will be performed systematically with matrix computations. The essence of
an automaton, however, remains that of a graph and the behaviour of on
automaton is defined in the language of graphs. We also continue to use the
graph representation and its vocabulary to aid intuition.

3.1 The Behaviour of a Weighted Automaton

An automaton A over M with weights in S is specified by the choice of the
following:8

• A non-empty set Q of states of A, also called the dimension of A.
• An element E of S〈〈M〉〉Q×Q, a square matrix of dimension Q with entries

in S〈〈M〉〉, called the transition matrix of A; we can view each entry Ep,q

different from 0S as the label of a unique edge which goes from state p
to state q in the graph with vertices Q and we write p

x−→ q, or p
x−→
A

q, if

x = Ep,q. (If Ep,q = 0S , we consider there to be no edge from p to q.)
• Two elements I and T of S〈〈M〉〉Q; that is, two functions I and T from Q

to S〈〈M〉〉: I is the initial function and T the final function of A; they can
also be seen as vectors of dimension Q: I is a row vector and T a column
vector, called respectively the initial vector and final vector of A.

The S-automaton A is written, naturally enough,

A = 〈I, E, T 〉.

We use the familiar conventions to represent S-automata graphically (see
figures below); the values of I labelling the incoming arrows and those of T
the outgoing arrows.

A path in A is a sequence of transitions such that the source of each is the
destination of the previous one; it can be written

c := p0
x1−→ p1

x2−→ p2
x3−→ · · · xn−−→ pn.

The label, or result of c, written |c|, is the product of the labels of the transitions
of c. In the above case, |c| = x1x2 · · ·xn.

A computation in A is a path to which is added an arrow arriving at the
source and one leaving from the destination, with their respective labels. The
computation corresponding to the above path is hence
7 Or weighted automaton if S is understood or immaterial.
8 This definition is a priori more general than the one given in Chap. 3; the two will
coincide for finite automata.
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d :=
Ip0−−→ p0

x1−→ p1
x2−→ p2

x3−→ · · · xn−−→ pn
Tpn−−→ .

The label or result of d, still written |d|, is the product of the label of the
incoming arrow, that of the path, and that of the outgoing arrow, in that
order; in our case: |d| = Ip0x1x2 · · ·xnTpn .

The definitions we have made for weighted automata are indeed a gener-
alisation of the classical definitions:

(i) An automaton over Σ is a B-automaton over Σ∗; an automaton over M
is a B-automaton over M .

(ii) The distinction between path and computation, which are often used as
synonyms, may seem useless. But apart from the fact that it is consistent
with our terminology—‘path’ refers to ‘graph’ while ‘computation’ refers
to ‘automaton’, and what distinguishes an automaton from a graph is
precisely that initial and final states are taken into account—it was only
introduced in order to make precise definitions that incorporate the gen-
erality that we have now allowed for I and T . In the majority of cases,
the non-zero elements of I and T will be scalar (that is, elements of S),
usually equal to 1S and the two notions will coincide.

(iii) Along the same lines, the disappearance of the notion of a successful
computation is merely apparent. A state p such that the component Ip

is non-zero (that is, different from 0S〈〈M〉〉) can be called initial, and a
state where Tp is non-zero can be called final. We can then say that a
computation is successful if its source is an initial state and its destination
is a final state.

Definition 3.1. The behaviour of an automaton A = 〈I, E, T 〉 of finite di-
mension Q is defined if and only if for all p and q in Q the family of labels
of paths with source p and destination q is summable. In this case, the family
of labels of computations of A is summable and its sum is the behaviour of A,
written9 |A|. We also say that A accepts or realises the series |A|.

The description of the transitions of an automaton by a matrix is justified
by the fact that a walk over a graph corresponds to a matrix multiplication.
This is expressed by the following proposition.

Lemma 3.2. Let A = 〈I, E, T 〉 be an S-automaton over M of finite dimen-
sion. For every integer n, En is the matrix of the sums of the labels of paths
of length n.

Proof. By induction on n. The assertion is true for n = 1 (and also for n = 0
by convention). The definition of the (n + 1)st power of E is

∀p, q ∈ Q
(
En+1

)
p,q

=
∑

r∈Q

(
En
)
p,r

Er,q.

9 Written ‖A‖ in Chap. 3.
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Every path of length n + 1 is the concatenation of a path of length n with a
path of length 1, that is, a single transition. We can therefore write10

{c | c := p −→
A

q, l(c) = n + 1}

=
⋃

r∈Q

{(d, e) | d := p −→
A

r, l(d) = n, e := r −→
A

q ∈ E},

and hence
∑

{|c| | c := p −→
A

q, l(c) = n + 1}

=
∑

r∈Q

(
{|d||e| | d := p −→

A
r, l(d) = n, e := r −→

A
q ∈ E}

)

=
∑

r∈Q

[(∑
{|d| | d := p −→

A
r, l(d) = n}

)
Er,q

]
.

As
∑

{|d| | d = p −→
A

r, l(d) = n} = (En)p,r by the induction hypothesis, the

lemma is proved. ��

Since the sum of the results of the computations of length n is equal by
definition to the product I · En · T , and since the behaviour of A is equal to
the sum of the results of the computations of all the lengths, the following
statement holds.

Corollary 3.3. Let A = 〈I, E, T 〉 be a S-automaton of finite dimension whose
behaviour is defined, then E∗ is defined and we have |A| = I · E∗ · T .

Example 3.4. The N-automaton over {a, b}∗ defined by

B1 =
〈

(1 0),
(

a + b b
0 a + b

)
,

(
0
1

)〉

is shown in Fig. 3 (left). A simple calculation allows us to determine its be-
haviour:

∀f ∈ Σ∗ (|B1|, f) = |f |b; that is |B1| =
∑

f∈Σ∗

|f |bf = u1.

Another N-automaton is shown in Fig. 3 (right)

C1 =
〈

(1 0),
(

a + b b
0 2a + 2b

)
,

(
0
1

)〉
.

If we use the convention that each word f of Σ∗ is considered as a number
written in binary, interpreting a as the digit 0 and b as the digit 1, and if we
10 The length of a path c is here written l(c).



Rational and Recognisable Series 125

Fig. 3. The N-automata B1 and C1

Fig. 4. The M-automaton S1

write f̄ for the integer represented by the word f , it is easy to verify that f̄
is computed by C1 in the sense that

∀f ∈ Σ∗ (|C1|, f) = f̄ ; that is, |C1| =
∑

f∈Σ∗

f̄f.

Example 3.5. To illustrate the case where S is different from N: let M =
〈N∞, min, +,∞, 0〉 be the ‘tropical’ semiring (cf. Chap. 1, Sect. 2). The M-
automaton S1 over {a, b}∗ and defined by

S1 =
〈

(0 0),
(

0a + 1b ∞
∞ 1a + 0b

)
,

(
0
0

)〉

is shown in Fig. 4. Clearly, the support of |S1| is all of {a, b}∗ and the coeffi-
cient in |S1| of an arbitrary word f of {a, b}∗ is min{|f |a, |f |b}.

Remark 3.6. The behaviour of an automaton was defined by returning to the
essence of an ‘automaton’: a procedure for describing computations. With this
definition, the behaviour of the two automata in Fig. 5(a), (b) are not defined
although in the first case the family {I · En · T}n∈N is summable since all its
terms are zero, and in the second E∗ is defined since E2 = 0.

Such a definition of the behaviour is more ‘robust’ than one that would be
based on the transition matrix and its star only. For instance, it is invariant
under the decomposition of a transition into a strictly longer path. Figure 6

Fig. 5. Two Z-automata with behavioural problems
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Fig. 6. Advocating for a path-based definition of the behaviour of automata

illustrates this point: as the automaton in (a) is obviously equivalent to the
one in (b), those in (c) and (d) should also be equivalent.

In Chap. 3, the behaviour of an automaton is defined under the assumption
that the automaton is cycle-free. Under the same assumption, the behaviour—
as defined here—is always well defined and, by Corollary 3.3, equal to the one
defined in Chap. 3.

Remark 3.7. On the other hand, these examples also lead us to note that the
transition between each pair of states p and q must be unique, and labelled
Ep,q; otherwise, we would be able to ‘decompose’ these entries in such a way
that the family of labels of paths would no longer be summable.

From Lemma 2.5 and Proposition 2.21, we deduce a sort of generalisation
of the same Proposition 2.21.

Proposition 3.8. Let S be a strong topological semiring and M a graded
monoid. The behaviour of an S-automaton over M , A = 〈I, E, T 〉 is defined
if and only if the behaviour of the S-automaton A0 = 〈I, E0, T 〉 is defined,
where E0 is the matrix of constant terms of entries of E, and in that case we
have

|A| = I · (E0
∗ · Ep)∗ · E0

∗ · T.

The example of Fig. 5(b) shows that it is not sufficient that E0
∗ be defined,

nor even that E0 be nilpotent11 for the behaviour of A be defined. On the
other hand, the behaviour of A is defined when E0 is strict upper triangular
since in this case the number of computations in A0 is finite. And this is the
case (up to a renaming of the states) if the automaton is cycle-free.

Definition 3.9. A S-automaton over M , A = 〈I, E, T 〉, is finite if:

(i) The dimension of A is finite.
(ii) The coefficients of E, I and T are polynomials; that is, have finite support.

3.2 The Fundamental Theorem of Automata

One hesitates to say of a proposition, ‘here is the fundamental theorem’. How-
ever, this seems justified for the one that follows: it states completely generally,
11 That is, there exists an n such that E0

n = 0.
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at least under the current assumption that M is a finitely generated graded
monoid and S a strong topological semiring that what one can ‘do’ with a
finite automaton is precisely what one can ‘do’ with rational operations.

Theorem 3.10. A series of S〈〈M〉〉 is rational if and only if it is the behaviour
of some finite S-automaton over M .

Remark 3.11. Theorem 3.10 is usually called Kleene’s theorem, and again in
this handbook (cf. Chap. 3). When M is a free monoid Σ∗, there is no pos-
sibility to distinguish between rational and recognisable sets or series, but at
the level of speech. When M is not free, recognisable sets or series take their
own quality and become a distinct family from the one of rational sets, or
series. We thus have two distinct results: the first one (Theorem 3.10) that
states that in any graded monoid the elements of one certain family—for
which there is no reason to coin two different names—may have two distinct
characterisations: by rational expressions and by finite automata and another
one (Theorem 4.6 below) that states that two families of sets or series, which
are distinct in general, coincide in the case of free monoids.

Since every language of Σ∗ is the behaviour of an unambiguous automaton
(of a deterministic one indeed)—we quoted above that URatΣ∗ = Rat Σ∗—
we then have the following.

Proposition 3.12. The characteristic series of a rational language of Σ∗ is
a S-rational series, for any semiring S.

3.2.1 Proper Automata

We can make Theorem 3.10 both more precise and more general, closer to the
properties used in the proof. For this, we need to define a restricted class of
S-automata.

Definition 3.13. An S-automaton over M , A = 〈I, E,R〉, is proper if:

(i) The matrix E is proper.
(ii) The entries of I and T are scalar; that is, I ∈ S1×Q and T ∈ SQ×1.

It follows from Proposition 3.8 that the behaviour of a proper automaton
is well defined; the following result adds the converse.

Proposition 3.14. Every S-automaton A over M whose behaviour is defined
is equivalent to a proper automaton whose entries, other than the scalar entries
of the initial and final vectors, are linear combinations of proper parts of the
entries of A.

Proof. We first show that A = 〈I, E, T 〉 is equivalent to an automaton B =
〈J, F, U〉 where the entries of J and U are scalar. We set
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J =
(
1 0 0

)
, F =

⎛

⎜⎜⎜⎜⎝

0 I 0

0 E T

0 0 0

⎞

⎟⎟⎟⎟⎠
, U =

⎛

⎜⎜⎜⎜⎝

0

0

1

⎞

⎟⎟⎟⎟⎠
. (7)

Every path in B is a path or a computation in A and the behaviour of B is
defined if and only if that of A is, and in that case E∗ is defined.12 We verify
by induction that, for every integer n greater than or equal to 2,

Fn =

⎛

⎝
0 I · En−1 I · En−2 · T
0 En En−1 · T
0 0 0

⎞

⎠ . (8)

We have J ·U = J ·F ·U = 0, J ·Fn+2 ·U = I ·En ·T , hence J ·F ∗ ·U = I ·E∗ ·T
and 〈J, F, U〉 is equivalent to A.

Next, starting from an automaton B = 〈J, F, U〉 whose initial and final
vectors are scalar, we set

F = F0 + Fp.

The behaviour of B is defined if and only if the behaviour of the automaton
〈J, F0, U〉 is defined, and in this case F ∗

0 is defined, also. We then have

|B| = J · F ∗ · U = J · H∗ · V,

with H = F ∗
0 ·Fp and V = F ∗

0 ·U . Since F ∗
0 is an element of SQ×Q, the entries

of H are linear combinations (with coefficients in S) of entries of Fp and the
entries of V are scalar. ��

3.2.2 Standard Automata

It is convenient to define an even more restricted class of automata and to
show that an automaton of that class can be canonically associated with every
S-expression.

Definition 3.15. An S-automaton A = 〈I, E, T 〉 is standard if the initial
vector I has a single non-zero coordinate i, equal to 1S, and if this unique
initial state i is not the destination of any transition whose label is non-zero.

In matrix terms, this means that A can be written

A =

〈(
1 0

)
,

⎛

⎜⎝
0 K

0 F

⎞

⎟⎠ ,

⎛

⎜⎝
c

U

⎞

⎟⎠

〉
. (9)

12 The automaton B is the normalised automaton A
′ built in Chap. 3 (proof of

Theorem 2.11).
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The definition does not forbid the initial state i from also being final, that is,
the scalar c is not necessarily zero. If A is not only standard but also proper,
c is the constant term of |A|. The proof of Proposition 3.14 itself proves the
following proposition.

Proposition 3.16. Every S-automaton A over M whose behaviour is defined
is equivalent to a standard proper automaton whose entries, other than the
scalar entries of the initial and final vectors, are linear combinations of proper
parts of the entries of A.

We now define operations on standard automata (as in Chap. 3, Sect. 2.2)
that are parallel to the rational operations. Let A (as in (9)) and A′ (with
obvious translation) be two proper standard automata; the following standard
S-automata are defined:

• sA =

〈
(
1 0

)
,

⎛

⎜⎝
0 sK

0 F

⎞

⎟⎠,

⎛

⎝
sc

U

⎞

⎠
〉

and

As =

〈
(
1 0

)
,

⎛

⎜⎝
0 K

0 F

⎞

⎟⎠,

⎛

⎝
cs

Us

⎞

⎠
〉

• A + A
′ =

〈
(
1 0 0

)
,

⎛

⎜⎜⎜⎜⎜⎝

0 K K′

0 F 0

0 0 F ′

⎞

⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎝

c + c′

U

U ′

⎞

⎟⎟⎟⎟⎟⎠

〉

• A · A′ =

〈
(
1 0 0

)
,

⎛

⎜⎜⎜⎜⎜⎝

0 K cK′

0 F H

0 0 F ′

⎞

⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎝

cc′

V

U ′

⎞

⎟⎟⎟⎟⎟⎠

〉

where H = (U · K ′) · F ′ and V = Uc′ + (U · K ′) · U ′

• A
∗ =

〈
(
1 0

)
,

⎛

⎜⎝
0 c∗K

0 G

⎞

⎟⎠,

⎛

⎝
c∗

Uc∗

⎞

⎠
〉

which is defined if and only if c∗ is defined, and where G = U · c∗K + F .
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Fig. 7. The Q-automaton SE1

By construction, sA, As, A+A′, A ·A′, and A∗ are all proper. Straightfor-
ward computations show that |sA| = s|A|, |As| = |A|s, |A + A′| = |A| + |A′|,
|A · A′| = |A||A′| and |A∗| = |A∗|.

With every valid rational S-expression E, we thus canonically associate,
by induction on the depth of E, a proper standard S-automaton SE that we
call the standard automaton of E. Let �(E) denote the literal length of E, that
is, the number of atoms different from 0 and 1 in E. The following proposition
holds.

Proposition 3.17. If E is a valid rational S-expression, then |||SE||| = |E| and
the dimension of SE is �(E) + 1.

Example 3.18 (Example 2.31 continued). Figure 7 shows the Q-automaton
SE1 associated with the rational expression E1 = (1

6a∗ + 1
3b∗)∗ by the con-

struction described above.

3.2.3 Statement and Proof of the Fundamental Theorem

Definition 3.19. We will say that a family of series is proper if it contains
the proper part of each of its elements.13

In particular, the polynomials form a proper family of S〈〈M〉〉.

Theorem 3.20. Let C be a proper family of series of S〈〈M〉〉. A series s
of S〈〈M〉〉 belongs to SRat C if and only if s is the behaviour of a proper
standard S-automaton over M of finite dimension whose (non-scalar) entries
are finite linear combinations of elements of C.

Proof. The proof of Theorem 3.20 splits in the “if” and “only if” parts, which
by Proposition 2.32, essentially amount to show respectively that given a
proper automaton we can compute an equivalent valid rational expression and
conversely that given a valid rational expression we can compute an equivalent
automaton.
13 As opposed to all the series in the family being proper.
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We write D for the family of behaviours of proper standard S-automata
whose entries are linear combinations of elements of C. We first show that D
contains 0S , behaviour of the standard automaton 〈1S , 0S , 0S〉 of dimension 1
and 1S , behaviour of 〈1S , 0S , 1S〉, as well as every element in C: for r in C,
rp is in C since C is a proper family and it holds:

r =
(
1S 0S

)
·
(

0S rp

0S 0S

)∗
·
(

r0

1S

)
.

If A and A′ are two proper standard S-automata whose entries are linear
combinations of elements of C, the above constructions sA, As, A + A′, A ·A′

and A∗ show that D is rationally closed.
Conversely, we start from a proper automaton A = 〈I, E, T 〉 whose behav-

iour is thus defined and equal to |A| = I · E∗ · T . This part then amounts to
prove that the entries of the star of a proper matrix E belong to the rational
closure of the entries of E, a classical statement established in general under
different hypotheses (e.g. [12]). Since we have to reprove it anyway, we choose
a slightly different method. We write |A| = I · V with V = E∗ · T . Since E is
proper and by Lemmas 2.5 and 2.16, V is the unique solution of

X = E · X + T (10)

and we have to prove that all entries of the vector V belong to the rational
closure of the entries of E. Lemma 2.16 already states that the property holds
if A is of dimension 1. For A of dimension Q, we write (10) as a system of
‖Q‖ equations:

∀p ∈ Q Vp =
∑

q∈Q

Ep,qVq + Tp. (11)

We choose (arbitrarily) one element q in Q and by Lemma 2.16 again, it
comes:

Vq = E∗
q,q

[ ∑

p∈Q\{q}
Eq,pVp + Tq

]
,

an expression for Vq that can be substituted in every other equation of the
system (11), giving a new system

∀p ∈ Q\{q} Vp =
∑

r∈Q\{q}
[Ep,r + Ep,qE

∗
q,qEq,r]Vr + Ep,qE

∗
q,qTq + Tp.

And the property is proved by induction hypothesis. ��

The fundamental theorem states the equality of two families of series (in-
finite objects), but its proof is better understood as the description of two
algorithms. Here, we have chosen on one hand the construction of the stan-
dard automaton of an expression and on the other hand the algorithm known
as the state elimination method for the computation of an expression denoting
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the behaviour of an automaton. In the latter case, the result depends on the or-
der of elimination (the choice of the state q in (11)). The relationship between
the possible different results is given by the following Proposition 3.21. We
shall say that two (S-)expressions E and F are equivalent modulo an identity I
if E can be transformed into F by using instances of I and of the so-called
‘natural identities’ which express that the expressions are interpreted in a
semiring (associativity, distributivity of · over +, commutativity of +).

Proposition 3.21. Let A be an S-automaton of dimension Q. The expres-
sions denoting |A| and obtained by the state elimination method with distinct
orders on Q are all equivalent modulo the identities S and P .

3.3 Conjugacy and Covering of Automata

After the definition of any structure, one looks for morphisms between objects
of that structure, and weighted automata are no exception. Moreover, mor-
phisms of graphs and, therefore, of classical Boolean automata, are not less
classical, and one waits for their generalisation to weighted automata. Taking
into account multiplicity proves, however, to be not so simple. In the sequel,
all automata are supposed to be of finite dimension.

3.3.1 From Conjugacy to Covering

We choose to describe the morphisms of weighted automata, which we call
coverings, via the notion of conjugacy, borrowed from the theory of symbolic
dynamical systems.

Definition 3.22. An S-automaton A = 〈I, E, T 〉 is conjugate to an S-auto-
maton B = 〈J, F, U〉 if there exists a matrix X with entries in S such that

IX = J, EX = XF, and T = XU.

The matrix X is the transfer matrix of the conjugacy and we write A
X=⇒ B.

In spite of the idea conveyed by the terminology, the conjugacy relation is
not an equivalence but a pre-order relation. Suppose that A

X=⇒ C holds; if
C

Y=⇒ B, then A
XY=⇒ B, but if B

Y=⇒ C then A is not necessarily conjugate
to B, and we write A

X=⇒ C
Y⇐= B or even A

X=⇒ Y⇐= B. This being well
understood, we shall speak of “conjugate automata” when the orientation
does not matter.

As JFnU = IXFnU = IEXFn−1U = · · · = IEnXU = IEnT for every
integer n, the following proposition holds.

Proposition 3.23. Two conjugate automata are equivalent.
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Fig. 8. Two conjugate Z-automata

Example 3.24. It is easily checked that the Z-automaton V1 of Fig. 8 is conju-
gate to the Z-automaton W1 of the same figure with the transfer matrix X1:

X1 =

⎛

⎜⎜⎝

1 0 0 0
0 −1 1 0
0 1 1 0
0 0 0 1

⎞

⎟⎟⎠ .

Let ϕ be an equivalence relation on Q or what is the same, let ϕ : Q → R
be a surjective map and Hϕ the Q × R-matrix where the (q, r) entry is 1 if
ϕ(q) = r, 0, otherwise. Since ϕ is a map, each row of Hϕ contains exactly
one 1 and since ϕ is surjective, each column of Hϕ contains at least one 1.
Such a matrix is called an amalgamation matrix [31, Definition 8.2.4].

Definition 3.25. Let A and B be two S-automata of dimension Q and R,
respectively. We say that B is a S-quotient of A and conversely that A is a
S-covering of B if there exists a surjective map ϕ : Q → R such that A is
conjugate to B by Hϕ.

The notion of S-quotient is lateralised since the conjugacy relation is not
symmetric. Somehow, it is the price we pay for extending the notion of mor-
phism to S-automata. Therefore, the dual notions co-S-quotient and co-S-
covering are defined in a natural way.

Definition 3.26. With the above notation, we say that B is a co-S-quotient
of A and conversely that A is a co-S-covering of B if there exists a surjective
map ϕ : Q → R such that B is conjugate to A by tHϕ.

We also write ϕ : A → B and call ϕ, by way of metonymy, a S-covering,
or a co-S-covering from A onto B.

Example 3.27. Consider the N-automaton C2 of Fig. 9 and the map ϕ2 from
{j, r, s, u} to {i, q, t} such that jϕ2 = i, uϕ2 = t and rϕ2 = sϕ2 = q, then

Hϕ2 =

⎛

⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞

⎟⎟⎠

and ϕ2 is an N-covering from C2 onto V2 and a co-N-covering from C2 onto V′
2.
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Fig. 9. C2 is an N-covering of V2 and a co-N-covering of V2

3.3.2 Minimal S-Quotient

Let us first express that in a S-covering ϕ : A → B the image is somewhat
immaterial and only counts the map equivalence of ϕ. From any amalgamation
matrix Hϕ, we construct a matrix Kϕ by transposing Hϕ and by arbitrarily
cancelling certain entries in such a way that Kϕ is row monomial (with exactly
one 1 per row); Kϕ is not uniquely determined by ϕ, but also depends on
the choice of a ‘representative’ in each class for the map equivalence of ϕ.
Whatever Kϕ, the product KϕHϕ is the identity matrix of dimension R (as the
matrix representing ϕ−1ϕ). Easy matrix computations establish the following.

Proposition 3.28. Let A = 〈I, E, T 〉 and B = 〈J, F, U〉 be two S-automata of
dimension Q and R, respectively. A surjective map ϕ : Q → R is a S-covering
if and only if A satisfies the two equations:

Hϕ · Kϕ · E · Hϕ = E · Hϕ, (12)

and
Hϕ · Kϕ · T = T. (13)

In which case, B satisfies

F = Kϕ · E · Hϕ, J = I · Hϕ and U = Kϕ · T. (14)

Theorem 3.29. Let A be a S-automaton of finite dimension over M . Among
all the S-quotients of A (resp. among all the co-S-quotients of A), there exists
one, unique up to isomorphism and effectively computable from A, which has
a minimal number of states and of which all these S-automata are S-coverings
(resp. co-S-coverings).
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Proof. A surjective map ϕ : Q → R defines a S-covering ϕ : A → B if (12)
and (13) (which do not involve B) are satisfied.

To prove the existence of a minimal S-quotient, it suffices to show that
if ϕ : Q → R and ψ : Q → P are two maps that define S-coverings, the map
ω : Q → V also defines a S-covering, where ω = ϕ ∨ ψ is the map whose
map equivalence is the upper bound of those of ϕ and ψ; that is, the finest
equivalence which is coarser than the map equivalences of ϕ and ψ. In other
words, there exist ϕ′ : R → V and ψ′ : P → V such that ω = ϕϕ′ = ψψ′

and each class modulo ω = ϕ ∨ ψ can be seen at the same time as a union of
classes modulo ϕ and as a union of classes modulo ψ. It follows that

E · Hω = E · Hϕ · Hϕ′ = E · Hψ · Hψ′ ; (15)

and if two states p and r of Q are congruent modulo ω, there exists q such
that pϕ = qϕ and qψ = rψ (in fact, a sequence of states qi, etc.). The rows p
and q of E · Hϕ are equal, and the rows q and r of E · Hψ are equal; hence,
by (15), the rows p and r of E · Hω are equal, also.

To compute this minimal S-quotient, we can proceed by successive refine-
ments of partitions, exactly as for the computation of the minimal automaton
of a language from a deterministic automaton which recognises the language.

In what follows, the maps ϕi are identified with their map equivalences;
the image is irrelevant. A state r of Q is identified with the row vector of
dimension Q, characteristic of r, and treated as such. For example, rϕ = sϕ
can be written r · Hϕ = s · Hϕ.

The maps ϕ0 have the same map equivalence as T , that is,

r · Hϕ0 = s · Hϕ0 ⇐⇒ r · T = s · T,

which can also be written

Hϕ0 · Kϕ0 · T = T, (16)

and the same equation holds for every map finer than ϕ0. For each i, ϕi+1 is
finer than ϕi and, by definition, r and s are joint in ϕi (that is, r·Hϕi = s·Hϕi)
and disjoint in ϕi+1 if r · E · Hϕi 
= s · E · Hϕi . Let j be the index such that
ϕj+1 = ϕj , that is, such that

r · Hϕj = s · Hϕj =⇒ r · E · Hϕj = s · E · Hϕj , (17)

which can be rewritten

Hϕj · Kϕj · E · Hϕj = E · Hϕj . (18)

By (16) and (18), ϕj is a S-covering.
Conversely, every S-covering ψ satisfies (13) and is hence finer than ϕ0.

Then for all i, if ψ is finer than ϕi, it must also be finer than ϕi+1. In fact,
if r and s are joint in ψ, it follows that r · Hψ = s · Hψ, and hence also
r · Hϕi = s · Hϕi since ϕi is coarser than ψ, and hence r and s are joint
in ϕi+1: ψ is finer than ϕj , which is thus the coarsest S-covering. ��
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Remark 3.30. Even if the minimal S-quotient of a S-automaton and the min-
imal automaton of a language are computed with the same algorithm, they
are nevertheless fundamentally different: the second automaton is canoni-
cally associated with the language, whereas the first is associated with the
S-automaton we started from, and not with its behaviour.

Remark 3.31. The above construction applies of course if S = B, and thus
shows that the notion of minimal (B-)quotient is well defined even for a non-
deterministic automaton (as we just wrote, this minimal quotient is not associ-
ated with the recognised language anymore). Moreover, it can be checked that
two Boolean automata are bisimilar if and only if their minimal B-quotients
are isomorphic (cf. [2]).

3.3.3 From Covering to Conjugacy

We have defined quotients (and co-quotients) as a special case of conjugacy.
Under some supplementary hypothesis—that is naturally met in cases that
are important to us: N, Z, etc.—it can be established that a kind of converse
holds and that any conjugacy can basically be realised by the composition of
an inverse co-covering and a covering.

In order to state these results, we need two further definitions. A matrix is
non-degenerate if it contains no zero row nor zero column. We call a circulation
matrix a diagonal invertible matrix.

Theorem 3.32 ([3]). Let A be a Z-automaton conjugate to a Z-automaton
B by a non-negative and non-degenerate transfer matrix X. Then there exists
a Z-automaton C that is a co-Z-covering of A and a Z-covering of B.

We can free ourselves from the two hypotheses on the transfer matrix if
we allow a further conjugacy by a circulation matrix.

Theorem 3.33 ([3]). Let A be a Z-automaton conjugate to a Z-automaton
B by a transfer matrix X. Then there exists two Z-automata C and D and a
circulation matrix D, such that C is a co-Z-covering of A, D a Z-covering of
B and C is conjugate to D by D.

Example 3.34 (Example 3.24 continued). The Z-automata X1 of Fig. 10 is a
co-Z-covering of V1, Y1 is a Z-covering of W1, and X1 is conjugate to Y1 by
the circulation matrix where the only −1 entry is at state 1.

The proof of Theorem 3.33 involves indeed two properties. Let us say first
that a semiring has property (SU ) if every element is a sum of units. The
semiring N, the ring Z, and all fields have property (SU). In any semiring
with (SU), every matrix X can be written as X = CDR where C is a co-
amalgamation, R an amalgamation, and D a circulation matrix. In Z, the
dimension of D will be the sum of the absolute value of the entries of X.
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Fig. 10. The co-covering and covering of V1 and W1

Having secured the existence of C, D, and R, the second step consists
in building the automata C and D that will fit in. To that end, we say that
a commutative monoid is equisubtractive if for all p, q, r, and s such that
p+ q = r + s there exist x, y, z, and t such that p = x+y, q = z + t, r = x+ z
and s = y+t. A semiring is equisubtractive if it is so as a monoid for addition.

The semirings N and Z are equisubtractive, and if S is equisubtractive,
then so are S〈Σ∗〉 and S〈〈Σ∗〉〉. The construction of C and D will then follow
from the following property.

Lemma 3.35. Let S be an equisubtractive semiring and let t1, t2, . . . , tn, s1, s2,
. . . , sm be elements of S such that

t1 + t2 + · · · + tn = s1 + s2 + · · · + sm.

There exists an n × m matrix G with entries in S such that the sum of the
entries of each row i is equal to ti and the sum of the entries of each column j
is equal to sj.

Another consequence of the definition of equi-subtractive semiring and of
Lemma 3.35 is to allow a sort of converse to Theorem 3.29. The existence of
a minimal S-covering implies a kind of Church–Rosser property: if we have
two diverging arrows, that is, the upper part of a commutative diagram, we
can construct the lower part of it. The following proposition states that it
is possible to complete a commutative diagram when the lower part of it is
known.

Proposition 3.36 ([43, 3]). Let S be an equisubtractive semiring and let A,
B and C be three S-automata.

(a) If A and B are S-coverings of C (resp. co-S-coverings of C), there exists
a S-automaton D which is a S-covering (resp. a co-S-covering) of both A

and B.
(b) If A is a S-covering of C and B is a co-S-covering of C, there exists a

S-automaton D which is both a co-S-covering of A and a S-covering of B.



138 Jacques Sakarovitch

4 Recognisable Series and Representations

As in the last section, S denotes a strong topological semiring and M a graded
monoid, a priori arbitrary. We shall now consider another family of series
of S〈〈M〉〉, other than SRat M , but that coincide with it when M is a free
monoid Σ∗: this is the Kleene–Schützenberger theorem (Theorem 4.6). We
first define these series by means of representations. We then consider the
Hadamard product of series, which is a weighted generalisation of intersection.
In a third subsection, by considering the series over a Cartesian product of
monoids, we briefly sketch the prolegomena to a theory of weighted relations.
This allows us, among other things, to establish the weighted generalisation
of results on the morphic image of rational sets (Theorem 4.35).

4.1 The Family of Recognisable Series

An S-representation of M of dimension Q is a morphism μ from M to the
semiring of square matrices of dimension Q with entries in S. By definition,
in fact so that we can multiply the matrices, the dimension Q is finite. An
S-representation of M (of dimension Q) is also the name we give a triple
(λ, μ, ν) where, as before,

μ : M → SQ×Q

is a morphism and where λ and ν are two vectors:

λ ∈ S1×Q and ν ∈ SQ×1;

that is, λ is a row vector and ν a column vector of dimension Q, with entries
in S. Such a representation defines a map from M to S by

∀m ∈ M m �→ λ · mμ · ν;

that is, the series r:
r =

∑

m∈M

(λ · mμ · ν)m.

A series r of S〈〈M〉〉 is realised or recognised by the representation (λ, μ, ν).
We also say that (λ, μ, ν) realises or recognises the series r.

Definition 4.1. A series of S〈〈M〉〉 is S-recognisable if it is recognised by an
S-representation. The set of S-recognisable series over M is written SRec M .

Example 4.2 (Example 3.4 continued). Take S = N and M = {a, b}∗. Let
(λ1, μ1, ν1) be the representation defined by

aμ1 =
(

1 0
0 1

)
, bμ1 =

(
1 1
0 1

)
, λ1 =

(
1 0
)

and ν1 =
(

0
1

)
.

For all f in {a, b}∗, we verify that λ1 · fμ1 · ν1 = |f |b, hence the series u1 =∑
f∈Σ∗ |f |bf is N-recognisable.
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Remark 4.3. It is not difficult to check that Definition 4.1 coincides, for S = B,
with the definition of the recognisable subsets of a monoid as the sets that are
saturated by a congruence of finite index [14]. If r is a B-recognisable se-
ries over M , realised by the representation (λ, μ, ν), then μ : M → B

Q×Q

is a morphism from M to a finite monoid. The series r of B〈〈M〉〉, r =∑
m∈M (λ · mμ · ν)m, can be seen as the subset r = Pμ−1 of M where P =

{p ∈ B
Q×Q | λ · p · ν = 1B}. Conversely, a morphism α from M into a finite

monoid N is a morphism from M into the monoid of Boolean matrices of
dimension N (the representation of N by right translations over itself) and
the B-representation that realises any subset recognised by α easily follows.

These definitions and the following two properties of SRec M do not in-
volve multiplication in S〈〈M〉〉, and are hence valid without even requiring
that M be graded.

Proposition 4.4. Every finite linear combination, with coefficients in S, of
S-recognisable series over M is an S-recognisable series.

Proof. Let r and u be two S-recognisable series over M , respectively recog-
nised by the S-representations (λ, μ, ν) and (η, κ, ζ). For all s in S, the series
sr is recognised by the representation (sλ, μ, ν), the series rs by the represen-
tation (λ, μ, νs), and the series r +u by the representation (δ, π, ξ) defined by
the following block decomposition:

δ =
(
λ η
)
, mπ =

(
mμ 0
0 mκ

)
, ξ =

(
ν
ζ

)
. ��

Let ϕ : S → T be a morphism of semirings which extends to a morphism
ϕ : S〈〈M〉〉 → T 〈〈M〉〉 by (rϕ, m) = (r, m)ϕ for all r in S〈〈M〉〉 and all m in M .
If (λ, μ, ν) is a representation of the series r of S〈〈M〉〉, then (λϕ, μϕ, νϕ) is a
representation of rϕ. That is:

Proposition 4.5. Let ϕ : S → T be a morphism of semirings. The image
under ϕ of an S-recognisable series over M is a T -recognisable series over M .

We can now get to our main point.

Theorem 4.6 (Kleene–Schützenberger). Let S be a strong topological
semiring, and Σ a finite alphabet. A series of S〈〈Σ∗〉〉 is S-rational if and
only if it is S-recognisable. That is,

SRec Σ∗ = SRat Σ∗.

We prove the two inclusions one at a time:

SRec Σ∗ ⊆ SRat Σ∗ and SRat Σ∗ ⊆ SRec Σ∗. (19)

Each of the inclusions is obtained from the Fundamental Theorem together
with the freeness of Σ∗ and the finiteness of Σ. This is used in both cases by
means of the following result.
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Lemma 4.7. Let S be a semiring and Σ a finite alphabet. Let Q be a finite
set and μ : Σ∗ → SQ×Q a morphism. We set

X =
∑

a∈Σ

(aμ)a.

Then for all f in Σ∗, we have (X∗, f) = fμ.

Proof. The matrix X is a proper series of SQ×Q〈〈Σ∗〉〉, and hence X∗ is de-
fined. We first prove, by induction on the integer n, that

Xn =
∑

f∈Σn

(fμ)f,

an equality trivially verified for n = 0, and true by definition for n = 1. It
follows that

Xn+1 = Xn · X =
( ∑

f∈Σn

(fμ)f
)
·
(∑

a∈Σ

(aμ)a
)

=
∑

(f,a)∈Σn×Σ

(fμ · aμ)fa

=
∑

(f,a)∈Σn×Σ

(fa)μfa =
∑

g∈Σn+1

(gμ)g,

since, for each integer n, Σn+1 is in bijection with Σn × Σ as Σ∗ is freely
generated by Σ. For the same reason, Σ∗ is the disjoint union of the Σn, for n
in N, and it follows, for all f in Σ∗, that

(X∗, f) =
(
X |f |, f

)
= fμ. ��

Proof (of Theorem 4.6). Each of the two inclusions (19) is proved in the form
of a property.

Property 4.8. If Σ is finite, S-recognisable series on Σ∗ are S-rational.

Proof. Let (λ, μ, ν) be a representation which recognises a series r; that is,
(r, f) = λ · fμ · ν, for all f in Σ∗. Let 〈λ, X, ν〉 be the automaton defined by

X =
∑

a∈Σ

(aμ)a.

By Lemma 4.7, we have

r =
∑

f∈Σ∗

(λ · fμ · ν)f = λ ·
(∑

f∈Σ∗

(fμ)f
)
· ν = λ · X∗ · ν.

By the Fundamental Theorem, the series r belongs to the rational closure of
the entries of X. These entries are finite linear combinations of elements of Σ
since Σ is finite: r belongs to SRat Σ∗. ��
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Property 4.9. The S-rational series on Σ∗ are S-recognisable.

Proof. By Theorem 3.20, the series r is the behaviour of a proper finite S-
automaton 〈I,X, T 〉 , such that the entries of X are finite linear combinations
of elements of Σ (and those of I and T are scalar). We can therefore write
X =

∑
a∈Σ(aμ)a where aμ is the matrix of coefficients of the letter a in X.

By Lemma 4.7, we have

∀f ∈ Σ∗ (r, f) = (I · X∗ · T, f) = I · fμ · T,

and the series r is recognised by the representation (I, μ, T ). ��

The two inclusions (19) prove the theorem. ��

4.2 Other Products on Recognisable Series

The two products that we shall now consider, the Hadamard and shuffle prod-
ucts are defined on general series—the second one for series on a free monoid—
but it is their effect on recognisable series which will interest us, and we first
define a product on representations.

4.2.1 Tensor Product of S-Representations

The tensor product of matrices has been defined in Chap. 1. Let A be a matrix
of dimension P ×P ′ and B a matrix of dimension R×R′ (with entries in the
same semiring S); the tensor product of A by B written A⊗B is a matrix of
dimension (P × R) × (P ′ × R′) defined by

∀p ∈ P, ∀p′ ∈ P ′, ∀r ∈ R, ∀r′ ∈ R′ A ⊗ B(p,r),(p′,r′) = Ap,p′Br,r′ .

If S is commutative, the tensor product is also. We shall need the tensor
product to be commutative under more general assumptions. We shall say that
two sub-semirings U and V of a non-commutative semiring S are commutable
if every element of U commutes with every element of V . For example, the
centre of S and any sub-semiring of S are commutable. As another example,
1T ×T and T×1T are two commutable sub-semirings14 in T×T . The following
result has already been quoted (Chap. 1, Theorem 4.7).

Lemma 4.10. Let A, B, C, and D be four matrices with entries in S, re-
spectively of dimension P × Q, P ′ × Q′, Q × R, and Q′ × R′, and such that
all the entries of B commute with those of C. Then

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D).

It then follows:
14 On the other hand, we shall not say that two matrices A and B are commutable
to mean that all the entries of A commute with those of B; this would be too easily
confused with the fact that the two matrices commute, that is, AB = BA.
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Proposition 4.11 (Tensor product of representations). Let U and V be
two commutable sub-semirings of S. Let M and N be two arbitrary monoids
and μ : M → UQ×Q and κ : N → V R×R two representations. The map μ⊗κ,
defined for all (m, n) in M × N by

(m, n) [μ ⊗ κ] = mμ ⊗ nκ

is a representation of M × N in S(Q×R)×(Q×R).

Proof. For all (m, n) and (m′, n′) in M × N , we have
(
(m, n)[μ ⊗ κ]

)
·
(
(m′, n′)[μ ⊗ κ]

)
= (mμ ⊗ nκ) · (m′μ ⊗ n′κ)
= (mμ · m′μ) ⊗ (nκ · n′κ)
= (mm′)μ ⊗ (nn′)κ = (mm′, nn′)[μ ⊗ κ],

since under the proposition’s assumptions, all the entries of m′μ commute
with those of nκ. ��

4.2.2 Hadamard Product

The Hadamard product is to series (sets with multiplicity) what intersection is
to sets, which only really makes sense if the semiring of coefficients is commu-
tative. In the same way that the recognisable subsets of an arbitrary monoid
are closed under intersection, we have the following.

Theorem 4.12. Let S be a commutative semiring and M an arbitrary monoid.
Then SRec M is closed under the Hadamard product.

Under the more precise assumptions of Proposition 4.11, we can state a
more general result.

Theorem 4.13 (Schützenberger). Let U and V be two commutable sub-
semirings of S and M a monoid. The Hadamard product of a U -recognisable
series over M and a V -recognisable series over M is an S-recognisable series
over M .

More precisely, if (λ, μ, ν) recognises r and (η, κ, ζ) recognises u, then r
u
is recognised by (λ ⊗ η, μ ⊗ κ, ν ⊗ ζ).

Proof. First note that, since the map m �→ (m, m) is a morphism from M
to M × M , Proposition 4.11 implies that the map m �→ mμ ⊗ mκ is also a
morphism, and we also write it μ ⊗ κ.

Let r be a series over M recognised by the U -representation (λ, μ, ν) and u
be a series over M recognised by the V -representation (η, κ, ζ). By definition,
we have for all m in M ,

(r
u, m) = (λ · mμ · ν)(η · mκ · ζ) = (λ · mμ · ν) ⊗ (η · mκ · ζ),
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the second equality expressing the product of two coefficients of S as the
tensor product of two 1× 1 matrices. Under the assumptions of the theorem,
we can apply Lemma 4.10 (three times) and obtain

(r
u,m) = (λ ⊗ η) · (mμ ⊗ mκ) · (ν ⊗ ζ) = (λ ⊗ η) · (m[μ ⊗ κ]) · (ν ⊗ ζ) .

Again, according to these assumptions, μ ⊗ κ is an S-representation, the se-
ries r
u is recognisable, and is recognised by the stated representation. ��

As a consequence of Theorem 4.6, the Hadamard product of two S-rational
series on Σ∗ is an S-rational series (if S is a commutative semiring). More-
over, the tensor product of representations of Σ∗ translates directly into a
construction on S-automata over Σ∗ whose labels are linear combinations of
letters of Σ, which is the natural generalisation of the Cartesian product of
automata, and which we can call the Hadamard product of S-automata.

Example 4.14. The N-automaton C2 of Fig. 9 is the Hadamard product of the
N-automaton C1 of Fig. 3 by itself. Therefore, for every f in Σ∗, it holds
f|||C2||| = f

2
.

4.2.3 Shuffle Product

We now suppose that M is a free monoid Σ∗ and that S is commutative
(usually S = N but that is not required). The shuffle product (or Hurwitz
product) of two words of Σ∗, and then by linearity of two series in S〈〈Σ∗〉〉,
has been defined at Chap. 1, mostly for ancillary purposes. Let us recall this
definition as the interest of which goes far beyond the computations it was
used for so far.

Definition 4.15. For all f and g in Σ∗, the shuffle of f and g, written f � g,
is an homogeneous polynomial of S〈Σ∗〉 defined by induction on |f | + |g| by

∀f ∈ Σ∗ f � ε = ε � f = f,

∀f, g ∈ Σ∗, ∀a, b ∈ A fa � gb = (fa � g)b + (f � gb)a,

The shuffle is extended ‘by linearity’ to S〈〈Σ∗〉〉, that is,

∀r, u ∈ S〈〈Σ∗〉〉 r � u =
∑

f,g∈Σ∗

(r, f)(u, g)f � g,

which is defined since the family of polynomials f � g for f and g in Σ∗ is
locally finite.

Example 4.16.

ab � ab = 4aabb + 2abab,

ab � ba = abab + 2abba + 2baab + baba and
(ε + a) � a∗ = [a∗]2.
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Shuffle is an associative, commutative, and continuous product and makes
of S〈〈Σ∗〉〉 a commutative S-algebra. The shuffle of two words is characterised
by the following.

Proposition 4.17. Let χ : Σ∗ → S〈Σ∗ × Σ∗〉 be the morphism (of monoids)
defined by aχ = (a, ε) + (ε, a), for all a in Σ∗. It then follows that

∀h ∈ Σ∗ hχ =
∑

f,g∈Σ∗

(f � g, h)(f, g).

Theorem 4.18. Let S be a commutative semiring. The shuffle of two S-
recognisable series on Σ∗ is an S-recognisable series.

Proof. Let r and u be S-recognisable series on Σ∗, respectively recognised
by the S-representations (λ, μ, ν) and (η, κ, ζ). For all h in Σ∗, the definition
yields

(r � u, h) =
∑

f,g∈Σ∗

(
(r, f)(u, g)

)
(f � g, h)

=
∑

f,g∈Σ∗

(
(λ · fμ · ν)(η · gκ · ζ)

)
(f � g, h)

=
∑

f,g∈Σ∗

(
(λ ⊗ η) ·

(
(f, g)[μ ⊗ κ]

)
· (ν ⊗ ζ)

)
(f � g, h)

= (λ ⊗ η) ·
(
(hχ)[μ ⊗ κ]

)
· (ν ⊗ ζ) by Proposition 4.17.

By the theorem’s assumptions, χ ◦ [μ ⊗ κ] is an S-representation; the series
r � u is recognisable. ��

A consequence of Theorem 4.6 again, the shuffle of two S-rational series
on Σ∗ is an S-rational series (if S is a commutative semiring). As for the
Hadamard product, the construction on representations that underlies the
proof of Theorem 4.18 translates into a construction on S-automata over Σ∗,
which we can call the shuffle product of S-automata.

Formally, if A′ = 〈Q′, Σ, E′, I ′, T ′〉 and A′′ = 〈Q′′, Σ, E′′, I ′′, T ′′〉 are two
proper S-automata over Σ∗ whose labels are linear combinations of letters
of Σ, the shuffle of |||A′||| and |||A′′||| is realised by the S-automaton written A′�A′′

and defined by

A
′ � A

′′ = 〈Q′ × Q′′, Σ, E, I ′ ⊗ I ′′, T ′ ⊗ T ′′〉 ,

where the set E of transitions is described by

E =
{(

(p′, p′′), k′a, (q′, p′′)
) ∣∣ (p′, k′a, q′) ∈ E′ and p′′ ∈ Q′′}

∪
{(

(p′, p′′), k′′a, (p′, q′′)
) ∣∣ p′ ∈ Q′ and (p′′, k′′a, q′′) ∈ E′′}.
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Example 4.19. The Z-automaton W1 of Fig. 8 is the shuffle product of the
obvious two state Z-automata that respectively accept (ab)∗ and (−ab)∗. The
equivalence with V1 in the same figure yields the identity15

(ab)∗ � (−ab)∗ =
(
−4a2b2

)∗
. (20)

4.3 Series on a Product of Monoids

Series on a (Cartesian) product of monoids is a major subject in itself and
their study could occupy a whole chapter of this book: they are the behav-
iour of transducers with multiplicity, of interest both from a theoretical and
applications point of view (cf. Chaps. 7, 11, and 14, for instance). Here, we
confine ourselves to few definitions and results stemming from the canonical
isomorphisms between several semirings of series and with the aim of being
able to state (and to prove) results about the image of series under morphisms
and of comparing the families of rational and recognisable series.

4.3.1 The Canonical Isomorphisms

Polynomials or series in several (commutative) variables can be ordered with
respect to one or another variable. It is a purely formal exercise to verify that
these manipulations generalise to polynomials, or to series, over a product of
monoids.

The semialgebras S〈〈M〉〉 and S〈〈N〉〉 are canonically isomorphic to two sub-
S-semi-algebras of S〈〈M×N〉〉: we identify m with (m, 1N ) and n with (1M , n).
This identification enables us to build the two canonical isomorphisms.

Proposition 4.20. The three S-semi-algebras

S〈〈M × N〉〉, [S〈〈M〉〉] 〈〈N〉〉 and [S〈〈N〉〉] 〈〈M〉〉

are isomorphic. Under these isomorphisms, the three sub-S-semi-algebras

S〈M × N〉, S〈M〉〈N〉 and [S〈N〉] 〈M〉

correspond.

Remark 4.21. Modulo this canonical embedding and if S is commutative, then
every element of S〈〈M〉〉 commutes with every element of S〈〈N〉〉 in S〈〈M×N〉〉.

Definition 4.22. Let r be in S〈〈M〉〉 and u be in S〈〈N〉〉. The tensor product
of r and u, written r ⊗ u, is the series of S〈〈M × N〉〉 defined by

∀(m, n) ∈ M × N
(
r ⊗ u, (m, n)

)
= (r,m)(u, n).

15 Due to M. Petitot (see Sect. 7).
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This definition allows the weighted generalisation of a result and is usually
credited to Myhill.

Proposition 4.23. Suppose that S is commutative. A series r of S〈〈M ×
N〉〉 is recognisable if and only if there exists a finite family {ji}i∈I of series
of SRec M and a finite family {ui}i∈I of series of SRec N such that

r =
∑

i∈I

ji ⊗ ui.

Proof. If j is in SRec M , that is, if j is recognised by the representation
(λ, μ, ν), the map (m, n) �→ mμ is also a morphism and the series j′ of S〈〈M ×
N〉〉 defined by (j′, (m, n)) = λ · mμ · ν = (j, m) is recognisable. Likewise, if
u ∈ SRec N , the series u′ of S〈〈M × N〉〉 defined by (u′, (m, n)) = (u, n) is
recognisable. Definition 4.22 shows that

j ⊗ u = j′ � u′,

which is thus recognisable and Proposition 4.4—hence, we need S to be
commutative—implies that the condition is sufficient.

Conversely, suppose that r is recognised by (λ, μ, ν), a representation
of M × N of dimension Q. By definition of a representation, for all (m, n)
in M × N, it holds (m, n)μ = (m, 1N )μ(1M , n)μ. The map μ′ : M → SQ×Q

defined by mμ′ = (m, 1N )μ is a morphism. For each q in Q, let jq be the series
defined by

∀m ∈ M (jq, m) = [λ · mμ′]q,

which is a recognisable series of S〈〈M〉〉. Likewise, μ′′ : N → SQ×Q defined by
nμ′′ = (1M , n)μ is a morphism and uq defined by

∀n ∈ N (uq, n) = [nμ′′ · ν]q,

is a recognisable series of S〈〈N〉〉. Since for all (m, n) of M × N, we have

λ · (m, n)μ · ν =
∑

q∈Q

[λ · mμ′]q[nμ′′ · ν]q,

it follows that
r =

∑

q∈Q

jq ⊗ uq. ��

4.3.2 Rational Series in a Product

The Fundamental Theorem of (S-)automata for series in S〈〈M ×N〉〉 directly
yields (weighted and generalised version of a theorem by Elgot and Mezei [16])
the following.
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Proposition 4.24. Let G and H be generating sets of M and N, respectively.
A series of S〈〈M ×N〉〉 is rational if and only if it is the behaviour of a proper
finite S-automaton whose coefficients are S-linear combinations of elements
of (G × 1N ) ∪ (1M × H).

Proposition 4.25. The canonical isomorphism from S〈〈M × N〉〉 to
[S〈〈N〉〉] 〈〈M〉〉 sends SRat(M × N) to [SRat N ]RatM .

Proof. From the inclusion

S〈N〉 ⊆ S〈M〉N ⊆ SRat(M × N),

we deduce successively, by liberal use of the canonical embeddings,

SRat N ⊆ SRat(M × N),
[SRat N ]〈M〉 ⊆ SRat(M × N),

[SRat N ]RatM ⊆ SRat(M × N).

Conversely, let r be in SRat(M × N). There exists a proper S-automaton
〈I,X, T 〉 such that r = I ·X∗ ·T and such that the coefficients of X are finite
S-linear combinations of elements of (M × 1)∪(1 × N). We write X = Y +Z,
in such a way that the coefficients of Y are linear combinations of elements
of M × 1 and those of Z are linear combinations of elements of 1 × N (with
coefficients in S). The series r is the result of the automaton 〈I, Z∗ · Y,Z∗ · T 〉
whose coefficients are linear combinations of elements of M × 1, with coeffi-
cients in 1 × SRat N . ��

The specialisation of this proposition when M is a free monoid gives the
weighted version of what is often known as the ‘Kleene–Schützenberger the-
orem for rational relations’ (cf. Corollary 4.29). We shall state it after the
definition of weighted relations.

4.3.3 Weighted Relations

We first need a few more definitions and notation. We write Sc for the centre
of S, that is, the set of elements of S which commute with every element
of S—Sc is a sub-semiring of S. In any case, 1S belongs to Sc, which is thus
never empty.

The scalar product16 of two series r and u in S〈〈M〉〉, written (r, u) is
defined by

(r, u) =
∑

m∈M

(r,m)(u,m),

which may or may not be defined since the family {(r,m)(u,m) | m ∈ M} is
not necessarily summable. It is defined if r or u is a polynomial. The identi-
fication of m with its characteristic series m makes this notation consistent
16 Different from what is called the scalar product in Chap. 1.
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with the notation (r, m) for the coefficient of m in r. Even if S is not com-
mutative, but if r or u belong to Sc〈〈M〉〉, we have (r, u) = (u, r). In this case,
the scalar product is even compatible with left and right multiplication by
arbitrary elements of S:

k(r, u) = (kr, u),
(r, u)k = (u, r)k = (u, rk) = (rk, u).

Definition 4.26. An S-relation from M to N , written θ : S〈〈M〉〉 → S〈〈N〉〉,
or more often θ : M → N , is any series θ of [Sc〈〈N〉〉] 〈〈M〉〉.

The image of every m in M under θ is the series (θ, m) of S〈〈N〉〉, written
more simply mθ.

The image of every r in S〈〈M〉〉 under θ, denoted rθ, is then obtained ‘by
linearity’. It is defined if and only if the family {(r, m)(θ, m) | m ∈ M} is a
summable family of series of S〈〈N〉〉 and is its sum.

The graph θ̂ of an S-relation θ is the series of Sc〈〈M × N〉〉 which corre-
sponds to θ under the canonical isomorphism. The inverse of θ, namely θ−1,
is the S-relation from N to M , and hence a series of [Sc〈〈M〉〉] 〈〈N〉〉, which
has the same graph θ̂ as θ. It then holds

∀(m, n) ∈ M × N (mθ, n) =
(
θ̂, (m, n)

)
=
(
m, nθ−1

)
. (21)

Remark 4.27. Instead of assuming that the semiring of coefficients is com-
mutative, we have ‘only’ imposed the condition that the coefficients of the
relation, θ̂, belong to the centre of this semiring. This could seem a rather
weak generalisation; in fact, it allows us first and foremost to consider, as S-
relations from M to N , the characteristic relations of relations from M to N ,
even if S is not commutative.

Example 4.28. For every series u in Sc〈〈M〉〉, and in particular for every char-
acteristic series u, the Hadamard product with u (or S-intersection with u) is
an S-relation from M to itself, written ιu: rιu = r
u and rιu is defined for
all r in S〈〈M〉〉.

It is then natural to say that an S-relation from M to N is rational if its
graph is a Sc-rational series of S〈〈M × N〉〉. And the announced specialisation
of Proposition 4.25 then reads as the following corollary.

Corollary 4.29 (Kleene–Schützenberger). An S-relation θ from Σ∗ to N
is rational if and only if there exists an (ScRat N)-representation of Σ∗,
namely (λ, μ, ν), such that for all f in Σ∗, fθ = λ · fμ · ν, that is,

ScRat(Σ∗ × N) ∼= [ScRat N ]Rec Σ∗.

Example 4.30. The rational B-relation from Σ∗ = {a, b}∗ into itself realised
by the transducer of Fig. 11 is also realised by the [BRatΣ∗]-representation
of Σ∗ of dimension 1 (1, μ, 1) with aμ = aa∗ and bμ = bb∗.
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Fig. 11. A transducer to be transformed into a representation

It follows from (21) that the image rθ of a series r in S〈〈M〉〉 by an S-
relation θ from M to N is defined if and only if (r, nθ−1) is defined for every n
in N , and we have

(rθ, n) =
(
r, nθ−1

)
.

Hence, we have the following definition.

Definition 4.31. We say that an S-relation θ : M → N is of finite co-image
if nθ−1 is a polynomial for all n.

The image of any series by a relation of finite co-image is always defined,
and this is the case that we shall only consider here. Regulated relations which
were defined by Jacob starting from their representations as in Corollary 4.29
are relations of finite co-image; they were popularised by a number of authors
inspired by Jacob’s work (cf. Chap. 7, Sect. 4).

Proposition 4.32. Let M and N be two graded monoids. An S-relation θ :
M → N with finite co-image is continuous.

4.3.4 Morphic Image of Recognisable and Rational Series

An S-relation θ : M → N is multiplicative if its restriction to M is a morphism
to S〈〈N〉〉, viewed as a multiplicative monoid. The definition of S-relations
implies in fact that θ is a morphism from M to Sc〈〈N〉〉. In particular, the
characteristic relation θ of a morphism θ from M to N is a multiplicative
S-relation.

We begin with a weighted generalisation of a theorem on recognisable sets.

Proposition 4.33. Let θ : M → N be a morphism of monoids and u an S-
recognisable series on N . Then uθ−1 is an S-recognisable series on M .

Proof. By assumption, there exists (λ, μ, ν), an S-representation of N , such
that for all n in N , (u, n) = (λ · nμ · ν). Whence, for all m in M ,

(
uθ−1, m

)
= (u,mθ) = λ · (mθ)μ · ν.

Thus, the S-representation of M (λ, θμ, ν) recognises the series uθ−1. ��

The hypothesis that the coefficients of an S-relation are taken in Sc allows
us to establish the following.
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Fig. 12. Lifting of S-intersection with r

Proposition 4.34. If θ : M → N is a multiplicative S-relation, then θ is a
morphism of S-semialgebras, from S〈M〉 to S〈〈N〉〉.

Let M and N be two graded monoids. Let θ : M → N be a multiplicative
S-relation; if for all m in M , mθ is a proper series of S〈〈N〉〉, then θ is of finite
co-image, hence is defined on all of S〈〈M〉〉 and is continuous. In particular,
a monoid morphism θ : M → N is continuous if mθ 
= 1N for all m in M and
then the S-relation θ is a continuous morphism of S-semi-algebras from S〈〈M〉〉
to S〈〈N〉〉. It follows that if r is in S〈〈M〉〉, r∗ is defined if and only if (rθ)∗ is
defined and we have (r∗)θ = (rθ)∗. And the following theorem then holds.

Theorem 4.35. Let M and N be graded monoids and θ : M → N a contin-
uous morphism of monoids.

(i) If r ∈ SRat M , then rθ ∈ SRat N .
(ii) If θ is surjective and u ∈ SRat N , then there exists r ∈ SRat M such that

rθ = u.

Example 4.36. Let α : Σ∗ → M be a surjective morphism; a set R of Σ∗ is
a cross-section of Σ∗ for α if α is injective over R and Rα = M , that is, if
M = (R)α. A monoid M is rationally enumerable if such an R exists that is
a rational subset of Σ∗.

It easily comes that M is rationally enumerable if and only if it is an
unambiguous rational subset of itself: M ∈ URat M , that is, M ∈ NRat M
and then M ∈ SRat M for any S.

We prove a last lemma before the result we are aiming at.

Lemma 4.37. Let θ : M → N be a function and r a S-series on N . We have
(cf. diagram in Fig. 12)

θιr = ιrθ−1θ.

Proof. For every m in M, we have

(mιrθ−1)θ =
(
rθ−1
m

)
θ =

((
rθ−1, m

)
m
)
θ

= (r, mθ)mθ = r
mθ = (mθ)ιr. ��
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Theorem 4.38. Let U and V be two commutable sub-semirings of S, u in
V RatN and r in URec N . Then the Hadamard product of u and r is an
S-rational series on N .

Proof. As N is finitely generated there exists a finite alphabet Σ and a sur-
jective continuous morphism θ : Σ∗ → N . By Theorem 4.35(ii), there exists a
series u in V Rat Σ∗ such that

uθ = u.

The coefficients of u commute with those of r, and hence with those of rθ−1.
Lemma 4.37 allows us to rewrite the equality r
u = r
uθ as

r
u =
[
rθ−1
u

]
θ. (22)

Proposition 4.33 ensures that rθ−1 is U -recognisable (on Σ∗), Theorem 4.13
that rθ−1 
u is S-recognisable, hence S-rational, and finally (22) and Theo-
rem 4.35(i) that r
u is S-rational on N . ��

Corollary 4.39. If M is rationally enumerable, then SRec M ⊆ SRat M .

Proof. By hypothesis (cf. Example 4.36), M ∈ SRat M for any S. We have
r � M = r for all r in S〈〈M〉〉 and we apply Theorem 4.38. ��

Corollary 4.39 is the weighted generalisation of a theorem by McKnight
[35], Theorem 4.38, the one of a classical result on subsets of a monoid. As
for subsets also, the morphic image of a recognisable series is not necessarily
recognisable, the inverse morphic image of a rational series is not necessarily
rational.

We stop here with the theory of weighted relations, which could, of course,
be further developed. In particular, the composition and evaluation theorems
hold for weighted rational relations (cf. [24, 45, 43]). But our aim here was
just to set the framework in which we could establish Theorems 4.35, 4.38,
and Corollary 4.39, and in the next section, Corollary 5.32.

5 Series over a Free Monoid

So far, we have developed the theory of rational series under the assumption
that M is graded (so that we knew how to define star). In our presentation,
the Kleene–Schützenberger theorem and recognisable series appeared as a
last touch added to the fundamental theorem of automata in the case of free
monoids. We now require M to be a free monoid and change our point of view:
rational and recognisable series coincide and somehow recognisable series and
their representations become the main subject.

The whole thing takes an algebraic turn. We first give another characteri-
sation of recognisable series, and then under the hypothesis that the semiring
of weights is a field, we develop the theory of reduction (that is, minimisation)
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of representations. In a third subsection, we review a number of applications of
this reduction theory—and first of all, the decidability of equivalence—which
in many instances, do not apply only to the case of weights in a field, but also
in any sub-semiring of a field.

5.1 The Representability Theorem

Representations define recognisable series; we first show how, by means of the
quotient operation, we can recover a representation from a series when it is
recognisable. This is an abstract view since a series is an infinite object; we
then give an effective implementation of this result, starting from a rational
expression that denotes a rational series; this is another proof of one direction
of the Kleene–Schützenberger theorem.

5.1.1 Characterisation of Recognisable Series

The (left) quotient of a series is the generalisation to series of the (left) quotient
of a subset of a monoid (a free monoid in this case).

The free monoid Σ∗ acts by quotient on S〈〈Σ∗〉〉: for all f in Σ∗ and all
series r in S〈〈Σ∗〉〉, the series f−1r is defined by

f−1r =
∑

g∈Σ∗

(r, fg)g, that is, ∀g ∈ Σ∗ (
f−1r, g

)
= (r, fg),

and in particular
∀f ∈ Σ∗ (

f−1r, ε
)

= (r, f). (23)

As the definition says, the quotient is an action, that is,

∀f, g ∈ Σ∗ (fg)−1r = g−1
[
f−1r

]
,

and for every given f , the operation r �→ f−1r is an endomorphism of the
S-semi-module S〈〈Σ∗〉〉: it is additive:

f−1(r + u) = f−1r + f−1u,

and commutes with the exterior multiplications of S on S〈〈Σ∗〉〉:

f−1(kr) = k
(
f−1r

)
and f−1(rk) =

(
f−1r

)
k.

Moreover, it is continuous. These three properties ensure that the operation
of quotient by f is entirely defined on S〈〈Σ∗〉〉 by its values on Σ∗.

Example 5.1. Let r2 = (a∗)2 =
∑

k∈N
(k+1)ak in NRat a∗. For every integer n,

we have (
an
)−1

r2 =
∑

k∈N

(n + k + 1)ak = r2 + na∗.

All quotients of r2 are distinct.
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Example 5.1 shows that, in general, and unlike the case for (recognisable)
languages, the family of quotients of a rational, and thus recognisable series is
not necessarily finite. On the other hand, and despite its simplicity, it exhibits
the property that we seek: of course, there are infinitely many quotients, but
they can all be expressed as the linear combination of a finite number of
suitably chosen series.

Definition 5.2. A subset U of S〈〈Σ∗〉〉 is called stable if it is closed under
quotient; that is, for all r in U and all f in Σ∗, f−1r is still in U .

Theorem 5.3. A series on Σ∗ with coefficients in S is S-recognisable if and
only if it is contained in a finitely generated stable subsemimodule of S〈〈Σ∗〉〉.

To allow later references to parts of the proof of this result, it is split
into more precise properties and definitions. Let us begin with a notation:
Lemma 4.7 shows how close automata and representations are. We shall thus
denote the latter in the same way as the former by uppercase gothic letters.

Definition 5.4. With every S-representation A = (λ, μ, ν) of dimension Q
we associate a morphism of S-semimodules ΦA : SQ → S〈〈Σ∗〉〉 by

∀x ∈ SQ (x)ΦA = |||(x, μ, ν)||| =
∑

f∈Σ∗

(x · fμ · ν)f.

Proposition 5.5. If r is a series realised by A = (λ, μ, ν), then ImΦA is a
stable (finitely generated) subsemi-module of S〈〈Σ∗〉〉 that contains r.

Proof. The subsemimodule ImΦA is finitely generated since SQ is, and it is
stable since for all f in Σ∗ and all x in SQ we have

f−1 [(x)ΦA] = (x · fμ)ΦA,

and contains r = (λ)ΦA. ��

Proposition 5.6. Let U be a stable subsemimodule of S〈〈Σ∗〉〉 generated by
G = {g(1), g(2), . . . , g(n)}. Then every series in U is an S-recognisable series
of S〈〈Σ∗〉〉, realised by a representation of dimension n.

Proof. The set G canonically defines a linear map from Sn onto U :

x = (x1, x2, . . . , xn) �−→ x · G = x1g
(1) + x2g

(2) + · · · + xng(n).

A series u belongs to U means that there exists at least one x in Sn such that
u = x · G.

If U is stable, for every a in Σ, and every i, a−1g(i) belongs to U and there
exists a vector m(i) in S (at least one) such that a−1g(i) = m(i) ·G. Let aμ be
the n× n-matrix whose ith row is m(i). As the quotient by a is a linear map,
for any u in U , u = x ·G it holds a−1u = (x · aμ) ·G. These matrices aμ, for a
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in Σ, define a representation of Σ∗ and as the quotient is an action of Σ∗, for
every f in Σ∗, it holds f−1u = (x · fμ) · G.

From (23), follows then (u, f) = (f−1u, ε) = ((x·fμ)·G, ε) and u is realised
by the representation (x, μ, (G, ε)) where (G, ε) denotes the (column) vector
((g(1), ε), (g(2), ε), . . . , (g(n), ε)). ��

Propositions 5.5 and 5.6 together prove Theorem 5.3.

5.1.2 Derivation of Rational S-Expressions

The derivation of rational S-expressions is the lifting to the level of expres-
sions of the quotient of series and will enable us to effectively implement
Theorem 5.3: the derived terms of an expression denote a set of generators of
a stable subsemimodule that contains the series denoted by the expression.
It will give us the weighted generalisation of Antimirov’s construction on ra-
tional expressions [1]; this is another example where taking multiplicities into
account yield better understanding of constructions and results on languages.

S-Derivatives

For the rest of this subsection, addition in S is written ⊕ to distinguish it
from the + operator in expressions. The addition induced on S〈〈Σ∗〉〉 is also
written ⊕. The set of left linear combinations of S-expressions with coefficients
in S, or polynomials of S〈S RatE Σ∗〉, is a left S-semi-module on S:

kE ⊕ k′E′ ≡ k′E′ ⊕ kE and kE ⊕ k′E ≡ [k ⊕ k′] E. (BK)

In the following, [k E] or k E is a monomial in S〈S RatE Σ∗〉 whereas (k E) is
an expression in S RatE Σ∗.

As it is the case in general for semi-modules, there is no multiplication de-
fined on S〈S RatE Σ∗〉. However, an external right multiplication of an element
of S〈S RatE Σ∗〉 by an expression and by a scalar is needed. This operation is
first defined on monomials and then extended to polynomials by linearity:

([k E] · F) ≡ k (E · F), ([k E] k′) ≡ k (E k′),
([E ⊕ E′] · F) ≡ (E · F) ⊕ (E′ · F), ([E ⊕ E′] k) ≡ (E k) ⊕ (E′ k).

This multiplication on S〈S RatE Σ∗〉 is not associative—since the product
operator in expression is not—but is consistent with interpretation: the series
denoted by the left-hand sides and right-hand sides are equal.

Definition 5.7. Let E be in S RatE Σ∗ and let a be in Σ. The S-derivative
of E with respect to a, denoted by ∂

∂a E, is a polynomial of rational expressions
with coefficients in S, defined inductively by the following formulas.

∂

∂a
0 =

∂

∂a
1 = 0,

∂

∂a
b =

{
1 if b = a,

0 otherwise,
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∂

∂a
(k E) = k

∂

∂a
E,

∂

∂a
(E k) =

([
∂

∂a
E

]
k

)
,

∂

∂a
(E+F) =

∂

∂a
E ⊕ ∂

∂a
F, (24)

∂

∂a
(E · F) =

([
∂

∂a
E

]
· F
)
⊕ c(E)

∂

∂a
F, (25)

∂

∂a
(E∗) = c(E)∗

([
∂

∂a
E

]
· (E∗)

)
. (26)

The derivative of a polynomial of expressions is defined by linearity:

∂

∂a

(⊕

i∈I

ki Ei

)
=
⊕

i∈I

ki
∂

∂a
Ei. (27)

Implicitly, the (polynomials of) expressions are reduced with trivial identities,
for instance,

∂

∂a
E = 1 =⇒ ∂

∂a
(E · F) = F ⊕ c(E)

∂

∂a
F.

Notice that (26) is defined only if (E∗) is a valid expression. The S-derivative
of an expression with respect to a word f is defined by induction on the length
of f :

∀f ∈ Σ+, ∀a ∈ Σ
∂

∂fa
E =

∂

∂a

(
∂

∂f
E

)
. (28)

The definition of S-derivatives of S-expressions is consistent with that of
quotient of series, as expressed by the following.

Proposition 5.8. ∀E ∈ S RatE Σ∗, ∀f ∈ Σ+

∣∣∣∣
∂

∂f
(E)
∣∣∣∣ = f−1|E|.

The Derived Term Automaton

Definition 5.9. The set TD(E) of true derived terms of an expression E
in S RatE Σ∗ is inductively defined by the following rules:

TD(0) = TD(1) = ∅, ∀a ∈ Σ TD(a) = {1},

∀k ∈ S, TD(k E) = TD(E), TD(E k) =
⋃

K∈TD(E)

(K k),

TD(E + F) = TD(E) ∪ TD(F),

TD(E · F) =
[ ⋃

K∈TD(E)

(K · F)
]
∪ TD(F),

TD(E∗) =
⋃

K∈TD(E)

(
K · (E∗)

)
.
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It follows from the definition that TD(E) is a finite set of monomials
of S〈S RatE Σ∗〉, whose cardinal is smaller than or equal to �(E). The rea-
son for the two distinct definitions (Definitions 5.7 and 5.9), which may look
redundant will be explained below.

The expression E itself does not belong necessarily to TD(E) and we define
the set of derived terms of E to be: D(E) = TD(E) ∪ {E}. A mechanical
induction on the depth of the expressions establishes then the following.

Theorem 5.10. Let D(E) = {K1, . . . ,Kn} be the set of derived terms of an
expression E in S RatE Σ∗. For every letter a in Σ, there exists an n × n-
matrix aμ with entries in S such that

∀i ∈ [n]
∂

∂a
Ki =

⊕

j∈[n]

aμi,jKj .

From (28), it then follows, by induction on the length of words.

Corollary 5.11. For every word f in Σ∗, the S-derivative of any expression E
in S RatE Σ∗ with respect to f is a linear combination of derived terms of E.

The statement of Theorem 5.10 is in itself the definition of an S-representa-
tion AE = (λ, μ, ν) of dimension D(E) if we add

λi =

{
1S if Ki = E,

0S otherwise,
and νj = c(Kj).

We also write AE for the S-automaton 〈λ, X, ν〉 where X =
⊕

a∈Σ aμa and
call it the derived term automaton of E.

Proposition 5.12. Let E be in S RatE Σ∗. Then |AE| = |E|.

Derivation is thus another means to build an automaton from an expres-
sion, different from the one we have seen in the course of the proof of The-
orem 3.20 which yielded the standard automaton of the expression. The two
constructions are related by the following, which is the weighted generalisation
of a theorem by Champarnaud and Ziadi [10].

Theorem 5.13 ([33]). Let E be in S RatE Σ∗. Then SE is an S-covering
of AE.

Remark 5.14. Definitions 5.7 and 5.9 are both based on an induction on the
depth of the expression and then reunited by Theorem 5.10 and Corollary 5.11.
It seems that it could be possible, and more natural, to define the derived
terms of E as the monomials that appear in the S-derivatives of E.

The problem is that this is not always true if S is not a positive semi-
ring: some derived terms may never appear in an S-derivative—as it can be
observed for instance with the Z-expression E5 = (1 − a)a∗ (cf. Fig. 13).
And with such a definition of derived terms, more utilitarian than structural,
Theorem 5.13 would not hold anymore.



Rational and Recognisable Series 157

Fig. 13. Two Z-automata for E5

5.2 Reduced Representations

We now suppose that S is a field, not necessarily commutative, hence a skew
field, or division ring. The preceding considerations about quotients of series
will take on, we might say, a new dimension since the ring of series S〈〈Σ∗〉〉 is
not only an S-algebra, but a left and right S-vector space, and the notion of
dimension of subspaces will give us a new invariant.

5.2.1 Rank of a Series

Definition 5.15. Let S be a division ring. The rank of a series r of S〈〈Σ∗〉〉
is the dimension of the subspace of S〈〈Σ∗〉〉 generated by the (left) quotients
of r.

In this setting, and with no further ado, Theorem 5.3 becomes the following
theorem.

Theorem 5.16. A series r over Σ∗ with coefficients in a division ring is
recognisable if and only its rank is finite.

From Definition 5.4 and Proposition 5.5, it follows that if r is a series
realised by an S-representation A = (λ, μ, ν) of dimension n, the rank of r
is smaller than or equal to dim(Im ΦA) which is smaller than or equal to n,
that is, the rank of a recognisable series r is smaller than, or equal to, the
dimension of any representation that realises it.

Definition 5.17. A representation of a recognisable series r is reduced if its
dimension is minimal, equal to the rank of r.

From Proposition 5.6, it follows that with every base of the subspace gener-
ated by the quotients of r is associated a reduced representation. The reduced
representations will be characterised by means of the following definition.
With every S-representation A = (λ, μ, ν) of dimension Q, we associate the
morphism of S-semi-modules ΨA : S〈Σ∗〉 → SQ defined by

∀f ∈ Σ∗ (f)ΨA = λ · fμ.
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Theorem 5.18. An S-representation A = (λ, μ, ν) is reduced if and only if
ΨA is surjective and ΦA injective.

Proof. Let r be the series realised by A. The morphism

ΨA ◦ ΦA : S〈Σ∗〉 → S〈〈Σ∗〉〉 is such that (f)[ΨA ◦ ΦA] = f−1r

for every f in Σ∗ and Im ΨA ◦ ΦA is the subspace generated by the quotients
of r. For the dimension of Im ΨA ◦ ΦA be equal to n, the dimension of A, it is
necessary and sufficient that the dimension of both ImΨA and ImΦA be equal
to n. The second equality holds if and only if the dimension of Ker ΦA is zero.

��

Remark 5.19. The significance of the map ΨA goes beyond the case of weights
taken in a field. Without linearisation, (Σ∗)ΨA is the reachability set of A. If
S = B, (Σ∗)ΨA is a set of subsets of states of A, namely the set of states of
the determinisation of A (by the so-called subset construction).

5.2.2 The Reduction Algorithm

It is not enough to know that reduced representations exist and to characterise
them. We want to be able to effectively compute them and establish the
following.

Theorem 5.20. A reduced representation of a recognisable series r is effec-
tively computable from any representation that realises r with a procedure
whose complexity is cubic in the dimension of the representation.

For the rest of this section, let A = (λ, μ, ν) be a S-representation of Σ∗

of dimension n (that realises the series r = |||A|||).

Word Base

The effective computation from A of a reduced representation of r is based
on one definition and two propositions that are related but whose scope and
aim are nevertheless rather different.

Definition 5.21. We call word base for A a prefix-closed subset P of Σ∗ such
that the set (P )ΨA = {λ · pμ | p ∈ P} is a base of Im ΨA.

Proposition 5.22. Word bases for A do exist.

Proof. If λ = 0, ImΨA is the null vector space of dimension 0 and the empty
set (which is prefix-closed!) is a word base. Assuming that λ is non-zero, the
family of prefix-closed subsets P of Σ∗ such that {λ · pμ | p ∈ P} is a free
subset of Sn is not empty since it contains at least the singleton {ε}. Every
such subset contains at most k = dim(ImΨA) elements and there exist thus
maximal elements (for the inclusion order) in that family.
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It remains to show that such a maximal element P is a word base, that is,
(P )ΨA generates Im ΨA. By way of contradiction, let f in Σ∗ such that λ · fμ
does not belong to 〈〈〈(P )ΨA 〉〉〉; the word f factorises in f = pg, with p in P ,
and we choose f in such a way that g is of minimal length. The word g is not
empty: g = ah, with a in Σ, and λ · fμ = λ · (pa)μ · hμ. As P is maximal,
λ · (pa)μ belongs to 〈〈〈(P )ΨA 〉〉〉, that is, λ · (pa)μ =

∑
pi∈P xi(λ · piμ). It then

follows

λ · fμ =
( ∑

pi∈P

xi(λ · piμ)
)
· hμ =

∑

pi∈P

xi

(
λ · (pih)μ

)
.

By the minimality of g, every λ · (pih)μ belongs to 〈〈〈(P )ΨA 〉〉〉: contradiction.
��

In the sequel, we do not consider the trivial case λ = 0 anymore.

Proposition 5.23. With every word base P for A of cardinal m is associ-
ated a representation A′ = (λ′, μ′, ν′) of dimension m—effectively computable
from P and A—which is conjugate to A and with the property that ΨA′ is
surjective. Moreover, if ΦA is injective, then so is ΦA′ .

Proof. Let P = {p1 = ε, p2, . . . , pm} be a word base for A and X the m × n-
matrix (with entries in S) whose i-th row is λ · (pi)μ. Let us denote ν′ = X · ν
and by λ′ the (row) m-vector whose entries are all 0 but the first one which
is 1—thus λ′ · X = λ.

For every a in Σ, let aμ′ be the m × m-matrix (with entries in S) whose
ith row is the vector of coordinates of λ · (pia)μ in the base λ · (P )μ, that is,

λ · (pia)μ =
j=m∑

j=1

(aμ′)i,j(λ · pjμ). (29)

Since λ · (pia)μ = (λ · piμ) · aμ, the set of equations (29) for all i may be
rewritten in a more compact way as

aμ′ · X = X · aμ

and A′ is conjugated to A by X.
If P is not a word base for A′, there exist m coefficients αi such that∑i=m

i=1 αi(λ′ · piμ
′) = 0, but multiplying this equality on the right by X yields∑i=m

i=1 αi(λ · piμ) = 0, a contradiction (with the fact that P is a word base
for A).

If ΦA′ is not injective, there exists a non-zero vector y in Sm such that
y ·fμ′ ·ν′ = 0, and thus (y ·X) ·fμ ·ν = 0 for every f in Σ∗. If ΦA is injective,
then y ·X = 0, and thus y = 0 for the same reason as above, a contradiction.

��
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Remark 5.24 (Remark 5.19 continued). Let D be the determinisation of a
classical automaton A (that is, an automaton with weight in B) of dimension Q
by the subset construction. If we form the (Boolean) matrix X whose rows
are the states of D (Boolean vectors of dimension Q), then D is conjugate
to A by X.

Demonstration of the Reduction Theorem (Theorem 5.20)

We first observe that Proposition 5.23 has obviously a dual formulation, which
we rather state on the transpose of the representation A, tA = (tν, tμ, tλ)
where atμ = t(aμ) for every a in Σ and it comes f tμ = t(tfμ) for every f
in Σ∗. We then have the following connection between A and tA.

Lemma 5.25. If ΨtA is surjective, then ΦA is injective.

Proof. If xΦA = 0 then x · fμ · ν = 0 for every f in Σ∗ and x belongs to the
orthogonal of the subspace generated by the vectors {fμ · ν | f ∈ Σ∗} which
is of dimension n by hypothesis: thus x = 0. ��

Starting from a representation A, we first compute a word base for tA

which determines a representation tA′ such that ΨtA′ is surjective, and thus
by Lemma 5.25, ΦA′ is injective. We then compute a word base for A′ which
determines a representation A′′ such that ΨA′′ is surjective and ΦA′′ is injec-
tive: A′′ is reduced. The proof of Theorem 5.20 will be complete when we
have proved that word bases are effectively computable (with the ascribed
complexity).

The foregoing proofs all correspond to effective computations, assuming of
course that the operations in S (addition, multiplication, taking the inverse)
are effective. All the complexities that follow are calculated assuming that
each operation in S has a fixed constant cost, independent of its operands.
Computations in Sn are based on the Gaussian elimination procedure.

Definition 5.26. A sequence of k vectors (v1, v2, . . . , vk) of Sn is an echelon
system if, for all i in [k]:

(i) vi
i = 1S.

(ii) ∀j < i vi
j = 0S.

An echelon system is free, and hence k � n.The following proposition is
classic, at least for commutative fields, and its proof is not really different for
division rings.

Proposition 5.27 (Gaussian elimination). Let S be a skew field and let
us view Sn as a left vector space over S. Let U = (v1, v2, . . . , vk) be an echelon
system and let w be a vector in Sn.

(i) We can decide whether w is in 〈〈〈U 〉〉〉, the subspace generated by U , and in
this case, compute effectively the coordinates of w in U .
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(ii) If w is not in 〈〈〈U 〉〉〉, we can compute effectively w′ such that U ′ = U ∪{w′}
is echelon and generates the same subspace as U ∪ {w}.

The complexity of these operations (deciding whether w is in 〈〈〈U 〉〉〉 and
computing the coordinates of either w or w′) is O(kn).

From this proposition, we deduce the effective nature of the assertions,
constructions, and specifications used in the proofs of this section. More pre-
cisely, the corollary follows.

Corollary 5.28. Let U be a finite set of vectors of Sn and let w be in Sn.

(i) We can decide whether w belongs to 〈〈〈U 〉〉〉.
(ii) We can extract effectively from U a basis V of 〈〈〈U 〉〉〉.
(iii) We can compute effectively the coordinates in V of an (explicitly given)

vector of 〈〈〈U 〉〉〉.

The following proposition and its proof exhibit the computation underlying
Proposition 5.23 (remember, we have defined the border of a prefix-closed
subset at Sect. 2.2.2).

Proposition 5.29. Word bases for A are effectively computable, with com-
plexity O(dn3), where d is the cardinal of Σ.

Proof. We set P0 = {ε} and C0 = ∅. The algorithm to compute a word base P
can be written in the following manner.

If Ek = (PkΣ\Pk)\Ck is non-empty, choose an arbitrary f in Ek and
decide whether λ · fμ belongs to 〈〈〈λ · Pkμ 〉〉〉.

(i) If not, then Pk+1 = Pk ∪ {f} and Ck+1 = Ck.
(ii) If so, then Pk+1 = Pk and Ck+1 = Ck ∪ {f}.

Set k = k + 1 and start again.
The algorithm terminates when Ek is empty and at that moment Ck =

PkΣ\Pk is the border of Pk. The algorithm must terminate since Pk has at
most n elements, so Pk∪Ck has at most ‖Σ‖n+1 elements and this set grows
by 1 at each step of the algorithm.

By construction, Pk is prefix-closed, and each element f of Ck is such
that λ · fμ belongs to 〈〈〈λ · Pkμ 〉〉〉: when Ek is empty, Pk is maximal. ��

5.3 Applications of the Reduction of Representations

We consider here three applications: the decidability of equivalence of S-
automata (for certain S), the generalisation of the recurrence relation on the
coefficients of a rational series over non-commuting variables, and a struc-
tural interpretation of equivalence of S-automata in terms of conjugacy and
covering (again for certain S).
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5.3.1 Equivalence Decidability

Even if a series has not a unique reduced representation (they are all similar),
the existence of reduced representations implies the decidability of equivalence
for automata with weights in a field.

Theorem 5.30. The equivalence of recognisable series over Σ∗ with coeffi-
cients in a (sub-semiring of a) skew field—and thus of rational series—is de-
cidable, with a procedure which is cubic in the dimension of the representation
of the series.

Proof. Let S be a sub-semiring of a skew field F. Two series r1 and r2

of SRec Σ∗ are also in FRec Σ∗ and r1 = r2 holds if, and only if, (r1 − r2)
is a series of FRec Σ∗ of rank 0, and the rank of (r1 − r2) can be computed
effectively. ��

This result, together with the well-known decidability of equivalence of
classical Boolean automata, should not let us think that this is the universal
status. For instance, the following holds.

Theorem 5.31 ([28]). The equivalence of recognisable series over Σ∗ with
coefficients in the semiring M = 〈N∞, min, +〉 is undecidable.

Theorem 5.30 has however far reaching and to some extent ‘unexpected’
consequences, as the following one, discovered by T. Harju and J. Karhumäki.

Corollary 5.32 ([22]). The equivalence of rational series over Σ∗
1 × Σ∗

2 ×
· · · × Σ∗

k with coefficients in N is decidable.

Proof. By Proposition 4.25, a series in NRatΣ∗
1 ×Σ∗

2 × · · · ×Σ∗
k is a series in

[NRatΣ∗
2 ×· · ·×Σ∗

k ]Rat Σ∗
1 . By Corollary 4.29, the latter family is isomorphic

to [NRatΣ∗
2 ×· · ·×Σ∗

k ]Rec Σ∗
1 and the decidability of equivalence follows from

Theorem 5.33. ��

Theorem 5.33. NRatΣ∗
2 × · · · × Σ∗

k is a sub-semiring of a skew field.

This result is the direct consequence of a series of classical results in math-
ematics which we shall not prove here (cf. for instance [11]) but simply state.

Definition 5.34 (Hahn–Malcev–Neumann). Let S be a semiring and G
an ordered group. We write Swo〈〈G〉〉 to denote the set of series on G with
coefficients in S whose support is a well-ordered subset of G.

Theorem 5.35 (Birkhoff–Tarski–Neumann–Iwazawa17). A finite direct
product of free groups is ordered.

Theorem 5.36 (Malcev–Neumann). If S is a skew field and G an ordered
group, then Swo〈〈G〉〉 is a skew field.
17 And possibly others.
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Theorems 5.35 and 5.36 imply that Swo〈〈F (Σ2) × · · · × F (Σk)〉〉 is a skew
field (here F (Σ) is the free group generated by Σ). To deduce Theorem 5.33,
we must also ensure that SRat Σ∗—in fact S〈〈Σ∗〉〉—is included in Swo〈〈F (Σ)〉〉,
respectively that

S〈〈Σ∗
2 × · · · × Σ∗

k〉〉 ⊆ Swo〈〈F (Σ2) × · · · × F (Σk)〉〉;

that is, to be more precise, that we can order F (Σ2) × · · · × F (Σk) in such a
way that the above inclusion is true and this is not difficult either.

Now, by straightforward computations, 1-way k-tape Turing machines are
faithfully modelised by automata over Σ∗

1×Σ∗
2×· · ·×Σ∗

k and two deterministic
such machines are equivalent if and only if the corresponding automata are
equivalent as automata over Σ∗

1 × Σ∗
2 × · · · × Σ∗

k with multiplicity in N.

Corollary 5.37 ([22]). The equivalence of 1-way k-tape deterministic Turing
machines is decidable.

5.3.2 Recurrence Relations

Another consequence of Theorem 5.16 is the generalisation to series over non-
commuting variables of the characterisation by linear recurrences of coeffi-
cients of rational series over one variable (recall also Lemma 2.27).

Theorem 5.38 ([46]). A series r of S〈〈Σ∗〉〉 is recognisable if and only if
there exists a finite prefix-closed subset P and its border C = PΣ\P , such
that for each pair (c, p) in C ×P , there exists a coefficient sc,p in S such that

∀g ∈ Σ∗, ∀c ∈ C (r, cg) =
∑

p∈P

sc,p(r, pg). (30)

Proof. Let P be a word base for an S-representation A = (λ, μ, ν) that recog-
nises r and (λ′, μ′, ν′) the S-representation computed as in Proposition 5.23.
For each c = pa in C and all q in P , we set sc,q = (aμ′)p,q. From (29) follows
that, for all g in Σ∗, it holds:

(r, cg) = λ · pμ · aμ · gμ · ν =
∑

q∈P

aμ′
p,qλ · qμ · gμ · ν =

∑

q∈P

sc,q(r, qg).

Conversely, (30) implies that every quotient f−1r belongs to the sub-
space T generated by p−1r for p in P . This last property is trivially verified
if f is in P and (30) can be rewritten as

∀c ∈ C c−1r =
∑

p∈P

sc,pp
−1r;

that is, the property is verified for f in C. A contrario, suppose that f−1r
does not belong to T ; by Lemma 2.27, we have f = cg and choose f such
that g is of minimal length. By (30), we have, for all h in Σ∗,
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(r, cgh) =
∑

p∈P

sc,p(r, pgh) that is, f−1r =
∑

p∈P

sc,p(pg)−1r.

For each p in P , either pg is in P , or pg = c′g′ with c′ in C, then |c′| > |p|;
hence, |g′| < |g| and (pg)−1r is in T by the assumption of minimality of g.
Hence, f−1r belongs to T , which is a contradiction. Also, r is recognisable by
Theorem 5.16. ��

Remark 5.39. If Σ = {a}, every prefix-closed subset of Σ∗ has the form
P = {ε, a, . . . , aj−1} for some integer j, and C is a singleton: C = {aj}.
Equation (30) becomes

∀n ∈ N
(
r, an+j

)
= sj−1

(
r, an+j−1

)
+ sj−2

(
r, an+j−2

)
+ · · · + s0

(
r, an

)
;

that is, a linear recurrence in its standard form.

Another way to exploit Proposition 5.23, is by ‘computing’ the coefficients
of a reduced representation of a recognisable series as a function of the coef-
ficients of the series itself. Going from the series back to the representation
does not so much correspond to an effective procedure like those described in
Proposition 5.23 and Theorem 5.38, as it expresses a fundamental property
of recognisable series on a field (see an application with Theorem 6.4).

Proposition 5.40 ([46]). Let S be a skew field, r an S-recognisable series of
rank n, and (λ, μ, ν) a reduced representation of r. There exist two sets of n
words: P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} (which we can choose to
be respectively prefix-closed and suffix-closed) and two n× n matrices αP and
βQ such that

∀f ∈ Σ∗ fμ = αP · ((r, pifqj)) · βQ,

where ((r, pifqj)) denote the n × n matrix whose entry (i, j) is (r, pifqj).

5.3.3 From Equivalence to Conjugacy

At Section 3.3, we have seen that it directly follows from the definition that two
conjugate automata are equivalent (Proposition 3.23). For certain semirings S,
this statement can be given a kind of converse, which reads as follows.

Theorem 5.41 ([4]). Let S be B, N, Z, or any (skew) field. Two S-automata
are equivalent if and only if there exists a third S-automaton that is conjugate
to both of them.

The proof of Theorem 5.41 relies on the idea of joint reduction which is
defined by means of the notion of representation. Let A = 〈λ, μ, ν〉 be an S-
representation of dimension Q and the associated map ΨA : Σ∗ → SQ. We have
already seen (Proposition 5.23 and Remark 5.24) that, in the two contrasting
cases of the Boolean semiring and of a field, we can choose a word base P
such that:
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Fig. 14. Structural decomposition of the equivalence of two S-automata

(i) {λ·pμ | p ∈ P} is a set of vectors, which is equal to (Σ∗)ΨA in the Boolean
case, which generates the same S-vector space in the field case.

(ii) There exists an automaton R which is conjugate to A by the transfer
matrix X whose rows are the vectors {λ · pμ | p ∈ P}.

Let now A = 〈λ, μ, ν〉 and B = 〈η, κ, χ〉 be two S-representations of di-
mension Q and R, respectively, and let C be the sum of A and B: C = 〈ζ, π, ω〉
is an S-representation of dimension Q ∪ R, ζ = [λ η] is the horizontal con-
catenation of λ and η, ω = [ ν

χ ] the vertical concatenation of ν and χ, and
π =

[
μ 0
0 κ

]
is the representation whose diagonal blocs are μ and κ. We per-

form the same construction as before on C; we consider the set of vectors
(Σ∗)ΨC = {[λ · fμ η · fκ] | f ∈ Σ∗} and look for a finite set V of vectors [x y]
which, roughly speaking, generates the same S-semi-module as (Σ∗)ΨC.

The computation of V provides indeed at the same time an automaton Z

which is conjugate to C by the transfer matrix Z whose rows are the vectors
in V . If A and B are equivalent, then Z, or a slight modification of it (depend-
ing on which semiring S the computations are currently done), is conjugate
to both A and B by the transfer matrices X and Y, respectively, where X
and Y are respectively the ‘left’ and ‘right’ parts of the matrix Z. In every
case listed in Theorem 5.41, the finite set V is effectively computable, a proof
that has to be done separately for each case (cf. [4]).

Together with the result of decomposition of conjugacy by means of a se-
quence of co-covering, circulation, and covering (Theorem 3.33), and Propo-
sition 3.36 that allows us to build diagrams upward; this result yields a struc-
tural decomposition of the equivalence of two S-automata as shown in Fig. 14.
In the case S = N, this decomposition takes the following form.

Corollary 5.42. Two equivalent N-automata can be transformed, one into the
other, by a chain of two state-splittings (in- and out-) and two state-mergings
(out- and in-).

6 Support of Rational Series

It follows directly from Proposition 4.5 that for any (graded) monoid M , we
have the following corollary.
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Corollary 6.1. If S is a positive semiring, the support of an S-recognisable
series over M is a recognisable subset of M .

The assumption on S is necessary, even in the case where M is a free
monoid Σ∗, as shown by the following example.

Example 6.2 (Example 4.2 continued). We have seen that u1 =
∑

f∈Σ∗ |f |bf
is a Z-rational series, and thus so is r1 =

∑
f∈Σ∗ |f |af . The series z1 =

r1 − u1 =
∑

f∈Σ∗(|f |a − |f |b)f is a Z-rational series. The complement of
supp z1 = {f ∈ Σ∗ | |f |a 
= |f |b} is the language Z1 = {f ∈ Σ∗ | |f |a = |f |b},
which we know is not rational.

In this short section, we study certain conditions which ensure the ratio-
nality of the support of a series, and some closure properties of the family
of languages thus defined. We end with several undecidable properties for Z-
rational series, somewhat surprising in this context where properties seem to
be all decidable and effective.

Recall that a series r of S〈〈Σ∗〉〉 is fundamentally a map from Σ∗ to S.
It is therefore natural to write, for every subset U of S, Ur−1 for the set of
words of Σ∗ whose coefficient in r belongs to U :

Ur−1 = {f ∈ Σ∗ | (r, f) ∈ U}.

The first result concerns locally finite semirings (defined in Chap. 1).

Proposition 6.3. Let S be a locally finite semiring and let r be an S-rational
series over Σ∗. For all subsets U of S, Ur−1 is rational.

Proof. Since r is also recognisable, r is recognised by a S-representation
(λ, μ, ν), of finite dimension Q, that is, μ : Σ∗ → SQ×Q is a morphism. Since S
is locally finite, the image (Σ∗)μ = M is a finite submonoid of SQ×Q. The
language Ur−1 is recognised by the morphism μ : Σ∗ → M , a well-known
characterisation of rational (or recognisable) languages of Σ∗. ��

Another way to state (and to prove indeed) Proposition 6.3 is to re-
mark that if S is locally finite, then the reachability set (Σ∗)ΨA of any S-
representation A is finite—opening the way to the immediate construction
for equivalent deterministic or minimal automata, a basic fact that seems to
have been often overlooked, and thus often rediscovered (cf. also Chap. 12).
To express it in another way again: Counting in a (locally) finite semiring is
not counting.

Proposition 6.3 generalises in a remarkable way if S is a field. But it is not
a trivial remark anymore; it follows from the whole algebraic theory we have
built in this case.

Theorem 6.4 ([46]). Let S be a (skew) field. If r is an S-rational series over
Σ∗ with a finite image, then kr−1 is rational for all k in S.
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Proof. Let (λ, μ, ν) be a reduced representation that recognises r. By Propo-
sition 5.40, the image (Σ∗)μ is a finite sub-monoid of SQ×Q if r has a finite
image and the conclusion follows as in Proposition 6.3. ��

Since the family of supports of S-rational series over Σ∗ strictly contains
RatΣ∗, a natural question is to ask under which operations this family is
closed. The answer certainly depends on S; a fairly complete one can be given
for sub-semirings of R.

Proposition 6.5 ([46]). Let S be a sub-semiring of R. The set of supports of
S-rational series on Σ∗ contains Rat Σ∗ and is closed under union, product,
star, and intersection.

Proof. The first assertion is a restatement of Proposition 3.12. Since SRat Σ∗

is closed under the Hadamard product, we deduce first the closure by inter-
section, then because r and r� r have the same support, it follows that every
support of an S-rational series is the support of an S-rational series with
non-negative coefficients. Then for such series, we clearly have

supp (r + r′) = supp r ∪ supp r′, supp (rr′) = supp r supp r′ and
supp (r∗) = (supp r)∗. ��

The closure under morphisms and inverse morphisms is somewhat more
difficult to establish.

Proposition 6.6 (Fliess [17]). Let S be a sub-semiring of R. The set of
supports of S-rational series over Σ∗ is closed under morphisms and inverse
morphisms.

The set Rat Σ∗ is also closed under complement, but if S is not positive,
the set of supports of S-rational series can strictly contain Rat Σ∗. The clo-
sure under complement is precisely characteristic of membership of RatΣ∗ as
stated in the following result. Besides the reduction theory, its proof is based
upon the strongest version of the iteration theorem (or pumping lemma) for
rational languages, due to A. Ehrenfeucht, R. Parikh, and G. Rozenberg [13],
and itself is based on Ramsey’s theorem.

Theorem 6.7 (Restivo–Reutenauer [38]). Let S be a (sub-semiring of a)
skew field. If a language and its complement are each the support of an S-
rational series over Σ∗, then this language is rational.

We then construct, with this simple model of finite weighted automata,
some series for which we cannot answer some elementary questions, as soon
as the semiring of coefficients contains Z.

Theorem 6.8. It is undecidable if the support of a Z-rational series over Σ∗

is all of Σ∗.
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Proof. Let Δ = {x, y}; the morphism α : Δ∗ → N
2×2 defined by

xα =
(

1 0
0 2

)
and yα =

(
1 1
0 2

)

is injective (cf. the automaton C1 at Example 3.4).
Then let θ : Σ∗ → Δ∗ and θ : Σ∗ → Δ∗ be two morphisms. For i and j

equal to 1 or 2, the series ri,j defined by

∀f ∈ Σ∗ (ri,j , f) =
(
(fθ)α

)
i,j

−
(
(fμ)α

)
i,j

are Z-rational, hence so are the series ui,j = ri,j � ri,j , and the series

u =
∑

i,j

ui,j .

The support of u is not all of Σ∗ if and only if there exists f such that
(u, f) = 0; that is, since α is injective, if and only if fθ = fμ, which we know
to be undecidable (Post Correspondence Problem). ��

With the same construction, we easily obtain the following corollary.

Corollary 6.9. Let r be a Z-rational series over Σ∗. It is undecidable whether:

(i) r has infinitely many coefficients equal to zero.
(ii) r has at least one positive coefficient.
(iii) r has infinitely many positive coefficients.

Corollary 6.10. It is undecidable whether the supports of two Z-rational se-
ries over Σ∗ are equal.

7 Notes

I am grateful to M. Droste, Ch. Reutenauer, and W. Kuich who pointed out
some interesting references to me.

7.1 General Sources

As already mentioned in the Introduction, this chapter is essentially an epit-
ome of Chap. III and of a part of Chap. IV of [43] where more details, proofs,
and examples are to be found. More precise references to some of them are
given below.

A classical, and above all pioneering, reference on the subject is the treatise
by S. Eilenberg [14] whose influence is willingly acknowledged. Each of the
references quoted in the Introduction [45, 29] or in Chaps. 1 and 3 develop a
particular point of view that is worth interest. But the most advanced one is
the book of Jean Berstel and Christophe Reutenauer [5], a new revised edition
of which is now available and anyone really interested in weighted automata
should certainly not miss this work.
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7.2 Notes to Sect. 2: Rational Series

One can say that it is equation (2) that justifies the choice of Eilenberg,
op. cit., to call rational what was called regular in the foregoing literature.
Schützenberger and his school, to which I acknowledge membership, followed
him but one must recognise it has not been a universal move. If the termi-
nology is still disputable for languages, and expressions, I do not think the
question may even be asked when it comes to series. On the other hand and
in the same work, Eilenberg calls a monoid with the property that every
element is finitely decomposable a locally finite monoid. This terminology in-
conveniently conflicts with another accepted meaning of the phrase: a monoid
such that every finitely generated submonoid is finite (cf. [49]).

I was led to define strong semirings, a terminology suggested to me by
J. van der Hoeven, to be able to prove the equivalence between the existence
of the star of an arbitrary series and that of the star of its constant term.

7.3 Notes to Sect. 3: Weighted Automata

The construction of SE is the version given in [33] of the generalisation to
weighted automata of the construction of the Glushkov automaton or position
automaton first given by Caron and Flouret [9].

In a sense the Fundamental Theorem is what Kleene showed for automata
over Σ [26], or its usual weighted generalisation (often called the Kleene–
Schützenberger theorem). However, because these results apply to automata
over free monoids, their standard form—cf. Theorem 2.12, Chap. 3—states
the identity between rational and recognisable languages or series, which no
longer holds for automata (weighted or otherwise) over arbitrary monoids.
Kleene’s theorem was therefore split in two, as it were: one part which holds
for automata over arbitrary monoids and which, considering what the proof
involves, concentrates the substance of the theorem; and one part which holds
only for automata over free monoids and which is nearly a formality; this
distinction seems to appear for the first time in [42].

Proposition 3.21 can be credited to Conway [12] and Krob [27]; an elemen-
tary proof is given in [43, 44].

The matter of Sect. 3.3 is taken from [43] and [3]. Conjugacy of A to B

by X is called simulation from A into B in [7]. In a different setting, this kind
of mapping was called morphism of ‘modules sériels’ by Fliess in [18]. The
definition of S-covering as conjugacy by an amalgamation matrix is a hint for
similarity between S-coverings and state amalgamation in symbolic dynamical
systems [31, Sect. 2.4]. If B is obtained from A by an In-amalgamation, then A

is an N-covering of B. But the converse is not true. Roughly speaking, and with
the notations of Proposition 3.28, A = 〈I, E, T 〉 is an S-covering of B if the
rows with ‘equivalent’ indices of the matrix E·Hϕ are equal while B is obtained
by amalgamation from A if the rows with ‘equivalent’ indices of the matrix E
are equal. The notion of ‘equisubtractivity’ used in Sect. 3.3.3 in order to
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express conjugacy in terms of coverings and co-coverings is very similar to a
property introduced by Tarski in [51] where an extension of Lemma 3.35 to
infinite sums is established.

The presentation of the minimal S-quotient is taken from [43], whereas
the notion itself probably exists in many other works; for instance, two S-
automata are in bisimulation if and only if their minimal S-quotients are
isomorphic.

7.4 Notes to Sect. 4: Recognisable Series

The definition of representations in the form (λ, μ, ν) is due to Fliess [18].
Lemma 4.10 is a classic statement in matrix theory and can be found al-
ready in Gröbner [21] (cf. also [29, Theorem 4.33]). Theorem 4.12 is due to
Schützenberger [48], including the more general formulation of Theorem 4.13.
Theorem 4.18 is also due to Fliess [19]; the proof given here is that of [43].

The ‘shuffle identity’ (20) is an unpublished result of M. Petitot and was
indicated to me by M. Waldschmidt (personal communication); the proof I
gave for it in [43] was the starting point of [3].

The matter of Sect. 4.3, and especially the definition of weighted relations,
is taken from Chap. IV of [43]. Another theory of weighted relations, slightly
different from what I have very briefly sketched here, is that of Jacob [24, 25].
It consists of defining with regulated rational transductions the largest possible
family of relations which satisfy the evaluation and composition theorems and
which correspond to total maps (and hence maps whose composition is also
always defined), and to do that independently of the semiring of coefficients.
This point of view was adopted in related works [45, 29] which popularised
the work of Jacob.

7.5 Notes to Sect. 5: Series over a Free Monoid

Some authors speak of the translation of a series instead of quotient; I have
preferred to use the same term as for languages.

The original work is due to Schützenberger [46, 47]. The characterisation
of recognisable series (Theorem 5.3) is a generalisation, due to Jacob [24], of
the property stated by Fliess for the case of series on a field [18].

The derivation of weighted expressions is a generalisation of V. Antimirov’s
work [1] (where derived terms were called partial derivatives). We note once
more that the introduction of weights clarifies and structures a result on lan-
guages, even if having to take into account that not necessarily positive semi-
rings adds a certain complexity. This presentation is taken from [32]. With
somewhat different techniques, Rutten [40, 41] also proved Theorem 5.10 and
Proposition 5.12.

The original work for reduction of representations is again from Schützen-
berger [46]. The presentation here follows roughly [5] but as in a background
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and owes much to my discussions with S. Lombardy. It keeps the Hankel ma-
trix of a series—which could be given the central role as M. Fliess did in
[18]—as a subliminal object. It is important for the sequel that the theory
is generalised to non-commutative fields. In [20], it was also observed that
Schützenberger’s reduction algorithm applies to the case of series on a skew
field, but with a reference to a previous theory of non-commutative deter-
minants [39]. The cubic complexity of the reduction algorithm was already
established in [8].

The problem of the decidability of equivalence of deterministic k-tape au-
tomata was posed in [37] and was solved for k = 2 by M. Bird [6] by an ad
hoc method, then by L. Valiant [52] as a corollary of the decidability of the
equivalence of ‘finite-turn’ deterministic pushdown automata. The problem
remained open for k � 3 until the solution in [22]. The material for Theo-
rems 5.35 and 5.36 is standard if not elementary algebra, and is explained in
sufficiently comprehensive treatises such as [11]. A self-contained presentation
and proof of this is given in [43, IV.7]. The original proof of Theorem 5.36
by Neumann [36] has been greatly simplified by Higman [23] where he proved
what is often known as ‘Higman’s lemma’. The Russian version of the same
result was proved in [34].

Section 5.3.2 is adapted from [5] and Sect. 5.3.3 from [4]. A result analogous
to Theorem 5.41 holds for functional transducers as well, but this, its proof,
and its consequences somewhat fall out of the scope of this chapter (cf. [4]).

7.6 Notes to Sect. 6: Support of Rational Series

The subject is hardly touched there and the reader is referred once again
to [45] or to [5]. Theorem 6.4 has been generalised to commutative rings by
Sontag [50]. The proof of Theorem 6.8 is taken from [14].
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