
Chapter 14:
Applications of Weighted Automata in Natural
Language Processing

Kevin Knight and Jonathan May

USC Information Sciences Institute,
4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292, USA
knight@isi.edu

jonmay@isi.edu

1 Background . 571

2 WFST Techniques for Natural Language Processing 572

2.1 Example 1: Transliteration . 573
2.2 Example 2: Translation . 578
2.3 Language Modeling . 582

3 Applications of Weighted String Automata 583

3.1 Language Translation . 584
3.2 Speech Recognition . 584
3.3 Lexical Processing . 585
3.4 Tagging . 585
3.5 Summarization . 586
3.6 Optical Character Recognition . 586

4 Applications of Weighted Tree Automata 586

4.1 Open Problems . 590

5 Conclusion . 591

References . 591

1 Background

Linguistics and automata theory were at one time tightly knit. Very early on,
finite-state processes were used by Markov [40, 30] to predict sequences of
vowels and consonants in novels by Pushkin. Shannon [53] extended this idea

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-01492-5 14, c© Springer-Verlag Berlin Heidelberg 2009

571

572 Kevin Knight and Jonathan May

to predict letter sequences of English words using Markov processes. While
many theorems about finite-state acceptors (FSAs) and finite-state transduc-
ers (FSTs) were proven in the 1950s, Chomsky argued that such devices were
too simple to adequately describe natural language [6]. Chomsky employed
context-free grammars (CFGs) and then introduced the more powerful trans-
formational grammars (TGs), loosely defined in [7]. In attempting to formal-
ize TG, automata theorists like Rounds [51] and Thatcher [57] introduced the
theory of tree transducers. Computational linguistics also got going in earnest
with Woods’ use of augmented transition networks (ATNs) for automatic nat-
ural language parsing [59]. In the final paragraph of his 1973 tree automata
survey [58], Thatcher wrote:

The number one priority in the area [of tree automata] is a careful as-
sessment of the significant problems concerning natural language and
programming language semantics and translation. If such problems
can be found and formulated, I am convinced that the approach in-
formally surveyed here can provide a unifying framework within which
to study them.

At this point, however, mainstream work in automata theory, linguistics,
and computational linguistics drifted apart. Automata theorists pursued a
number of theory-driven generalizations [15, 20, 21], while linguists went the
other way and eschewed formalism. Computational linguistics focused for a
time on extensions to CFGs [11, 52], many of which were Turing equivalent.
In the 1970s, speech recognition researchers returned to capturing natural
language grammar with FSAs, this time employing transition weights that
could be trained on machine-readable text corpora [29, 28, 2]. These for-
mal devices had associated algorithms that were efficient enough for practical
computers of that time, and they were remarkably successful at distinguishing
correct from incorrect speech transcriptions. In the 1990s, this combination of
finite-state string formalisms and large training corpora became the dominant
paradigm in speech and text processing; generic software toolkits for weighted
finite-state acceptors and transducers (WFSAs and WFSTs) were developed
to support a wide variety of applications [23, 46].

The twenty-first century has seen a reawakened interest in tree automata
among computational linguists [34, 54, 25], particularly for problems like au-
tomatic language translation, where transformations are sensitive to syntactic
structure. Generic tree automata toolkits [42] have also been developed to sup-
port investigations. In the remainder of this chapter, we discuss how natural
language applications use both string and tree automata.

2 WFST Techniques for Natural Language Processing

In this section, we use two sample applications to highlight ways in which
finite-state transducers are used in natural language processing. The first

Applications of Weighted Automata in Natural Language Processing 573

application is transliteration of names and technical terms, and the second
application is translation of natural language sentences. We conclude with a
discussion of language modeling, an important part of both sample applica-
tions.

2.1 Example 1: Transliteration

Transliteration is the process by which names and technical terms are bor-
rowed from one language to another. For some language pairs, this is a very
simple or even trivial task—Bill Gates is written the same way in English and
Spanish newspapers, and while the English word conception is changed to con-
cepción in Spanish to preserve pronunciation; this is a regular and predictable
pattern. However, the task becomes significantly more challenging when the
language pairs employ different character sets and very different sound sys-
tems. For example, a Japanese newspaper may refer to , using a
sound-based character set called Katakana. If we know how Katakana encodes
Japanese sounds, then we can sound out as anjiranaito. The
transformation from anjiranaito to some English term is still quite difficult,
since among other constraints, Japanese words must end in vowels, and do
not distinguish between l and r as is done in English.

After some thought, and perhaps the use of surrounding context, a bilin-
gual speaker may realize anjiranaito was originally the English name Angela
Knight. Here are more input/output samples:

masutaazutoonamento
Masters Tournament

aisukuriimu
Ice Cream

nyuuyookutaimuzu
New York Times

Due to the large number of potential transliterations, this task is hard,
even for humans. We can address the combinatorial explosion through the
use of finite-state automata [33]. As a first attempt, we might contemplate a
single finite-state transducer that converts a string of Katakana symbols K
into strings of English letters from E , the language of all English letter strings,
with a corresponding probability of conversion for each English letter string
E of P (E|K), and chooses the most likely E in the language:

argmax
E∈E

P (E|K) (1)

The corresponding transducer design looks like this:

574 Kevin Knight and Jonathan May

Katakana ⇒ WFST ⇒ English

This would be a very complex transducer to design. For example, the
Japanese r sound may turn into the English letter R or the English letter
L (or some other letter sequence), and this decision depends on many other
decisions. We also want to guarantee that the English output phrase is well
formed. P (E|K) represents both of these probabilities in one complicated
step. By using Bayes’ law, we can separate the probability associated with
well-formed E from the probability of transformation between K and E:

argmax
E∈E

P (E|K) = argmax
E∈E

P (E)P (K|E)
P (K)

(2)

= argmax
E∈E

P (E)P (K|E) (3)

The corresponding transducer design now looks like this:

WFSA ⇒ English ⇒ WFST ⇒ Katakana

If we move from left to right, we can view this diagram as an explanation
for Katakana strings. These explanations are often called “generative sto-
ries.” According to this story, in order to produce a Katakana string, someone
first generates a well-formed English phrase with probability P (E) (accord-
ing to the WFSA), and then someone converts that phrase into Katakana
with probability P (K|E) (according to the WFST). As generative stories go,
this is actually a fairly realistic explanation of how Katakana words enter the
Japanese vocabulary.

By contrast, if we move from right to left in the same diagram, we can
convert a given Katakana string K into English by first sending it backward
through the WFST, which will produce a multiplicity of English phrases that
would transduce to K.1 We can then intersect our multiplicity of phrases with
the WFSA, in an effort to eliminate candidates that are not well formed.

This design, known as the noisy-channel model [53], has several advan-
tages. First, the WFST can be greatly simplified, because it only models
P (K|E), the transformation of short English letter sequences into short Kata-
kana sequences, and it does not need to pay attention to the global well
formedness of the English. For example, an English T may nondeterminis-
tically transduce to a Katakana to or ta. The WFSA takes up the slack by
enforcing global well formedness and assigns a P (E) for any English string E,
independent of any transformation. Also, we may have different resources for
constructing the two devices—for example, we may have a large English dic-
tionary to help us construct the WFSA.
1 These English phrases can be represented as a finite-state acceptor, since the
WFST preserves regularity in both directions.

Applications of Weighted Automata in Natural Language Processing 575

The single WFST that represents P (K|E) is still fairly complex. We would
like to model the transformation in a series of small, easy-to understand steps.
In this example, we break the initial transducer into a chain of three trans-
ducers, in the following design [33]:

WFSA A ⇒ English ⇒ WFST B ⇒ English sounds

⇒ WFST C ⇒ Japanese sounds ⇒ WFST D ⇒ Katakana

According to this design, Katakana strings enter Japanese via the following
path: (1) someone produces an English phrase, (2) that English phrase is con-
verted into English sounds, (3) that English sound sequence is converted into
Japanese sounds, and (4) those Japanese sounds are converted into Katakana
symbols.

We justify this design in our probability model by using the conditional
probability chain rule to break one probability distribution into a chain of
independent distributions:

P (K|E) =
∑

c∈C

P (K|c)P (c|E) (4)

where C is any newly introduced parameter space that we can sum over.
This division can be repeated arbitrarily until we have the appropriate

granularity of conditional probability, and hence WFST that we want for our
model.

The probability model equation then becomes

argmax
E∈E

P (E|K)

= argmax
E∈E

∑

es

∑

js

P (E) · P (es|E)

· P (js|es) · P (K|js)

(5)

where es and js range over English and Japanese sound sequences, respec-
tively.

Now that we have divided one complex automaton into a chain of au-
tomata, they are simple enough that we can build them—Fig. 1 shows frag-
ments. WFSA A (Fig. 1a) nondeterministically generates English word se-
quences. WFST B (Fig. 1b) sounds out English word sequences. Note that
this transducer can be used in either direction—given a sequence of words,
forward application will output a sequence of sounds, and given a sequence
of sounds, backward application will output a sequence of words. WFST C
(Fig. 1c) converts English sounds into Japanese sounds. This is a highly non-
deterministic process: an English consonant sound like T may produce a single
Japanese sound t, or it may produce two Japanese sounds, such as t o (as in
the case of Knight transducing into naito). It is nondeterministic in the re-
verse direction as well, since a Japanese r sound may transduce to an English

576 Kevin Knight and Jonathan May

Fig. 1. Four automata fragments that transliterate English to Japanese [33]

R or L. However, the WFST can make its substitutions largely independent of
context. Finally, WFST D (Fig. 1d) converts a Japanese sound sequence into
Katakana writing. This is fairly deterministic, but requires some linguistic
engineering to cover all the cases.

We can now translate a new Katakana string K by sending it backward
through WFST D, then sending the result (which itself can be represented by
a WFSA) backward through WFST C, and so on, finally intersecting it with
WFSA A. In practice, this yields millions of English outputs, most of which
consist of strange combinations of small (but legal) English words, e.g.,

Ann Gere Uh
Anne Jill Ahh
Angy Rugh
Ann Zillah

Here is where the probabilities from WFSA A and WFST C are important.
If these are set to reflect what happens in the world (i.e., which English phrases
are popular, and which sound substitutions are popular), then each potential

Applications of Weighted Automata in Natural Language Processing 577

English output also comes with a score, and we can ask for the top-scoring
ones (in order):

Angela Knight
Angela Nite
Andy Law Knight
Angela Nate

It turns out that passing our Katakana string through each transducer
sequentially is only one of many possible search strategies. Another approach
is to trivially transform A into a weighted transducer A’ that is the partial
weighted identity transducer with domain equal to the language accepted
by A. We then compose transducers A’, B, C, and D into a single weighted
transducer, offline, then determinize and/or minimize it for deployment [45];
see Chap. 6. A third approach is to employ lazy composition [50, 63], which
executes a parallel search through A’, B, C, D, and K’ (the identity transducer
formed from the trivial automaton that accepts only K) by moving tokens
from state to state in each. When the tokens all reach final states in their
respective machines, an answer is generated; multiple answers can be created
with backtracking or beam techniques.

What all of these strategies have in common is that they try to find the
English word sequence(s) of highest probability, according to (5). Each of the
factors in (5) is broken down further until we reach the probabilities actually
stored on the transitions of our WFSAs and WFSTs. For example, consider
P (js|es). In Fig. 1c, we can see that WFST C converts English sounds into
Japanese sounds via a one-to-many substitution process. Given an English
sound sequence es and a Japanese sound sequence js, our WFST can convert
es to js in several different ways, depending on how the individual English
sounds take responsibility for subsequences of js. Each way can be represented
by an alignment that specifies, for each Japanese sound, which English sound
produced it. For example, there are four ways to align the sound sequences
(L AE M P, r a n p u):

L AE M P

r a n p u

L AE M P

r a n p u

/* lamp */

L AE M P

r a n p u

L AE M P

r a n p u

Each alignment corresponds to a different transducing path through
WFST C. While we may prefer the first alignment, the others may exist with
some small probability. We therefore write the total probability of js given es
as:

P (js|es) =
∑

a

|es|∏

i=1

P (jseqesi
|esi) (6)

578 Kevin Knight and Jonathan May

where alignment a maps each English sound esi onto Japanese sound subse-
quence jseqesi

.
Where do transition probability values come from? It is hard for human

designers to produce these numbers, so we typically learn them from online
text corpora. In the case of WFSA A, we may gather English word frequencies
and normalize them. For example, if we see the word the 1,200 times in a
corpus of 12,000 words, we can assign P (the) = 0.1. In the case of WFST C, we
can collect probabilities from manually aligned sequence pairs. For example,
notice that the English sound M occurs twice in the following database:

L AE M P

r a n p u

S T IY M

s u t i i m u

From this, we may conclude that P (n|M) = 0.5 and P (mu|M) = 0.5.
Of course, it is important to have thousands of such pairs, in order to get
accurate probability estimates.

For both WFSA A and WFST C, what justifies this “count and divide”
strategy for estimating probabilities? Here, we have followed the maximum
likelihood principle [18], assigning those scores to our transitions that maxi-
mize the probability of the training corpus. This principle is especially handy
when our training corpus is incomplete. For example, we may only have access
to a plain (unaligned) bilingual dictionary:

L AE M P
r a n p u

S T IY M
s u t i i m u

and many other pairs.
Given any particular set of parameter values, such as P (n|M) = 0.32

(and so on), we can compute P (js|es) for each example pair and multiply
these together to get a corpus probability. Some sets of values will yield a
high corpus probability, and others a low one. The expectation–maximization
(EM) algorithm [12] can be used to search efficiently for a good set of values. In
this case, highly accurate alignments can be generated automatically without
human intervention. Other popular methods of parameter estimation include
maximum entropy [27] and minimum error-rate [13].

2.2 Example 2: Translation

We now turn to our second sample application, automatic translation of sen-
tences. This is more challenging for several reasons:

• There are hundreds of thousands of distinct words, versus dozens of distinct
linguistic sounds.

• Each word may have many context-dependent meanings or translations.

Applications of Weighted Automata in Natural Language Processing 579

• Translation often involves significant reordering. For example, in English,
the verb comes in the middle of the sentence, while in Japanese, it comes
at the end.

• Ensuring that our output is globally well formed requires capturing vast
amounts of knowledge about the syntax of the target language, in addition
to semantic understanding of how the world works.

While the automatic translation problem remains unsolved, substantial
progress has been made in recent years. Much of this progress is due to auto-
matic analysis of large manually-translated documents, such as are produced
each year by the United Nations and the European Union.

We might start with the following design for translation:

Spanish ⇒ WFST ⇒ English

This design is again problematic, because each word must be translated
in the context of all the other words. Therefore, we employ the noisy-channel
model approach from Sect. 2.1:

WFSA ⇒ English ⇒ WFST ⇒ Spanish

In this scheme, the WFST can operate in a largely context-independent
fashion. Sending a particular Spanish sentence backward through the WFST
might yield many target hypotheses, e.g.,

John is in the table
John is on the table
John on is the table

etc.

When we intersect this set with the English WFSA, grammatical hypothe-
ses can be rewarded. Note that the WFSA helps out with both word choice and
word ordering, and we can train this WFSA on vast amounts of monolingual
English text.

How about the WFST? Brown et al. [4] proposed a particular model for
P (s|e) which would assign a conditional probability to any pair of Spanish and
English strings. Knight and Al-Onaizan [32] cast this model as a sequence of
finite-state automata. Figure 2 depicts the operation of these automata, and
Fig. 3 shows automata fragments.

WFSA A (Fig. 3a) generates English word sequences according to some
probability distribution that (we hope) assigns high probability to grammat-
ical, sensible sequences. WFST B (Fig. 3b) decides, for each English word,
whether to drop it, copy it, duplicate it, triplicate it, etc. The decision is

580 Kevin Knight and Jonathan May

WFSA A
⇓

Mary did not slap the green witch
⇑

WFST B
⇓

Mary not slap slap slap the green witch
⇑

WFST C
⇓

Mary not slap slap slap NULL the green witch
⇑

WFST D
⇓

Mary no dió una bofetada a la verde bruja
⇑

WFST E
⇓

Mary no dió una bofetada a la bruja verde

Fig. 2. The generative model of [4] as a cascade of automata

based only on the word itself, with no context information. After each result-
ing word, WFST C (Fig. 3c) inserts a NULL token2 with probability 0.02.
WFST D (Fig. 3d) then translates each word, one for one, into Spanish. Fi-
nally, WFST E (Fig. 3e) reorders the resulting Spanish words. Each transducer
is simple enough to build; all of them are highly nondeterministic.

We do not use this transducer cascade in the forward direction, but rather
in the reverse direction, to translate Spanish into English. We begin by sending
our Spanish input backward through WFST E, to obtain various reorderings,
including what we hope will be an English-like ordering. Ultimately, the results
are intersected with WFSA A, which is designed to prefer well-formed English.
Because of the scale of this problem, translating like this requires pruning the
intermediate results. However, it is likely that we will accidentally prune out
a good hypothesis before the WFSA A has had a chance to reward it. In
practice, therefore, we must perform an integrated search in which all the
automata weigh in simultaneously during the incremental construction of the
English translation.

How are translation probabilities estimated? We first obtain quantities of
manually-translated documents and process them into sentence pairs that are
mutual translations. If we were provided with word alignments, e.g.,
2 The NULL word is designed to generate Spanish function words that have no
English equivalent.

Applications of Weighted Automata in Natural Language Processing 581

Fig. 3. Five automata fragments that translate Spanish to English. WFSA A pro-
duces an English phrase, and WFSTs B–E transform that phrase into Spanish

the green witch

la bruja verde

then we could estimate the parameters of WFSTs B, C, D, and E. For example,
out of 1,000 alignment links connected to the word “green,” perhaps 250 link
to “verde,” in which case P (verde|green) = 0.25. However, we are never
provided with such alignment links, so again, we use the EM algorithm to
guess both links and probability values.

The particular translation model of Fig. 3 was one of the first to be de-
signed, and empirical experiments have revealed many weaknesses. One is
that it translates word to word, instead of phrase to phrase. While it has the

582 Kevin Knight and Jonathan May

Fig. 4. WFSA for a 1-gram letter language model

capability for phrasal translation (as in slap ⇔ dio una bofetada), it does not
execute such substitutions in a single step. More recent models, taking ad-
vantage of more computational power, remedy this. Other problems are more
serious. For example, it is difficult to carry out large-scale reordering with
finite-state machines, and it is difficult to make these reorderings sensitive
to syntactic structure—e.g., the verb in English must somehow move to the
end of the sentence when we translate Japanese. Furthermore, it is difficult to
attain globally correct outputs, since the well formedness of English depends
to some extent on hierarchical, nesting structure of syntactic constituents. For
these reasons, some recent models of translation are appropriate for casting
in terms of tree automata rather than string automata [60, 1, 61, 22, 16, 43,
19], and we investigate such models later in this chapter.

2.3 Language Modeling

In the previous sections, we focused on the transducers specific to each ap-
plication. Here, we focus on language modeling, the problem of appropriately
representing P (E), a WFSA that models well-formed English sentences. Lan-
guage models are used in any natural language application concerned with
well-formed final output.

Shannon [53] observed that the generation of natural language text could
be approximated to a reasonable measure by a WFSA that uses states to
encode recently seen context. A simple example is a 1-gram language model
of characters, which simply encodes individual character frequencies. If in a
corpus of 1,000,000 English characters, the letter e occurs 127,000 times, we
estimate the probability P (e) as 127,000/1,000,000, or 0.127. This model can
be represented as a WFSA, as shown in Fig. 4.

A 2-gram model remembers the previous letter context—its WFSA has
a state for each letter in the vocabulary. The transition between state r and
state e outputs the letter e and has probability P (e|r). We can train n-gram
models in this way for any n. If we use such models to stochastically generate
letter sequences, we observe the following results:

1-gram: thdo cetusar ii c ibt deg irn toihytrsen ...
2-gram: rt wo s acinth gallann prof burgaca ...
3-gram: restiche elp numarin cons dies rem ...
4-gram: what the legal troduce inortemphase ...
5-gram: we has decide in secuadoption on a ...
6-gram: thern is able to the bosnia around ...

Applications of Weighted Automata in Natural Language Processing 583

While the 6-gram model generates more word-like items than the 1-gram
model does, it still lacks sufficient knowledge of English grammar. For noisy-
channel applications like translation and speech, a language model needs to
know much more, in order to make decisions involving word choice and word
order. Work in speech recognition in the 1970s and 1980s effectively trained
and used word n-gram models, where the probability of a word depends on the
previous n−1 words; since then, word n-gram models have been the dominant
form of language model used in practical systems. This is somewhat surprising,
given the work of Chomsky in the 1950s and 1960s which claimed that finite-
state string processes were unsuitable for representing human grammars [6, 7,
44]. The largest language model built to date is a 7-gram model, built from
one trillion words of English [3] and used for automatic language translation.

A language model should not assign zero probability to any string. For
example, a 3-gram language model should accept a string even if it contains a
word-triple that was never observed before in training. The process of smooth-
ing reassigns some of the probability from seen events to unseen events. One
simple technique is interpolation smoothing. For the 2-gram case, where we
are calculating the likelihood of seeing word y given that the last recognized
word was x, instead of estimating P (y|x) as count(xy)

count(x) , which might be zero,
we interpolate with the 1-gram probability of y:

P (y|x) = λ1 ·
count(xy)
count(x)

+ (1 − λ1) ·
count(y)

N
(7)

where N is the size of the training corpus. Likewise, P (z|x, y) can be estimated
as λ2

count(xyz)
count(xy) + (1 − λ2)P (z|y). Once the counts have been collected from

a training corpus, the λi values can be set to maximize the likelihood of a
smaller (held-out) smoothing corpus, via the EM algorithm. Language models
are often evaluated on the probability P they assign to a (further held-out)
blind test corpus, or on the perplexity, which is 2

−log(P)
N .

Interpolation smoothing is not the best smoothing method available, but it
can be implemented directly in a WFSA, as shown in Fig. 5. This formulation
is space efficient, requiring only one transition per observed n-gram, rather
than one transition per conceivable n-gram.

3 Applications of Weighted String Automata

In Sect. 2, we saw details of how WFSAs and WFSTs can be used to im-
plement noisy channel models for two applications. In this section, we review
recent work in other areas of natural language processing that uses similar
techniques. In most cases, the structures and designs, though described in
varied ways, are very similar and only differ in the data being modeled.

584 Kevin Knight and Jonathan May

Fig. 5. Fragment of a WFSA for a 2-gram letter language model. At each state {S,
T, H, E}, a decision is made to use 2-gram context by moving to states {S’, T’, H’,
E’}, respectively, or to use 1-gram context by moving to state U

3.1 Language Translation

We described a word-for-word model of language translation in Sect. 2. This
model was implemented in a WFST framework by [32]. A phrase-for-phrase
model was subsequently devised by [47] and implemented in a WFST frame-
work by [37]. Translations from this model are much more accurate, and by
using a WFST toolkit, Byrne et al. [37] are able to build a cascade of transduc-
ers and execute translations using generic finite-state procedures. The most
problematic transducer is the one responsible for reordering—such a general
transducer would be exceedingly large if built offline. In practice, given a
particular source-language sentence, we can encode it and all of its local re-
orderings online as a temporary WFSA, which is then sent through the rest
of the noisy-channel cascade.

3.2 Speech Recognition

Pereira et al. [49] apply the noisy-channel framework to the problem of speech
recognition, i.e., recovering the sequence of spoken words that generated a
given acoustic speech signal. A standard n-gram language model like that
described in Sect. 2.3 is used. The noisy channel transducer, which generates
P (E|S) for a received acoustic speech signal S, is described as a chain of
transducers as follows:

• For each word in S, a variety of phone sequences, i.e., individual units of
speech, may be observed that can be interpreted as the word, with varying
probabilities. For each word, a word-to-phone transducer is constructed,

Applications of Weighted Automata in Natural Language Processing 585

and the closure of these transducers over all words forms the complete
word-to-phone transducer.

• Similar to the word-to-phone model, each phone can be expressed as a
variety of audio signals. Again, the closure of phone-to-audio transducers
for each phone is taken as the complete phone-to-audio transducer.

Once defined, the chain of transducers and the final language model are
weighted with the method of maximum likelihood, directly observing proba-
bilities from available training data, and possibly smoothing. Composition and
decoding are handled entirely by generic automata operations as, for example,
implemented in the AT&T FSM Toolkit [46].

3.3 Lexical Processing

In most natural language applications, it is necessary to cut an information
stream into word units. This is especially hard in languages without white-
space, such as Chinese. Sproat et al. [56] show how to automatically break
Chinese into words by constructing a series of WFSTs. Word-internal units
must also be processed. We saw this in the case of transliteration (Sect. 2.1).
Another problem is morphological analysis, in which a word is analyzed into
morphemes, the smallest units of language that carry meaning. Languages
like Turkish and Finnish are written with very long words that must often
be broken into what would be equivalently represented by separate articles,
prepositions, and nouns in other languages. For many other languages, simply
finding the root form of an inflected word is a challenge. One of the most
successful early introductions of finite-state processing into natural language
processing was for morphology [31], and a weighted approach can be found
in [9].

3.4 Tagging

A wide variety of natural language problems can be cast as tagging problems,
in which each word of input is assigned a tag from some finite set. The classic
example is part-of-speech tagging, which seeks to disambiguate the syntactic
category of each word in a sentence. Given the sentence The flag waves in the
wind, the tagger must realize that flag and wind are nouns, even though both
can be verbs in other contexts (e.g., wind a watch). Finite-state methods are
often applied to this task [8]; within the noisy channel framework, we can build
an n-gram WFSA to model grammatical tag sequences, and a one-state WFST
to model substitutions of words by tags. Another common tagging problem is
to locate named entities (such as people, places, and organizations) in texts.
Here, each word is tagged as either B (word begins a new entity), I (word
is inside an entity), or O (word is outside an entity). This ternary tagging
scheme covers cases where two entities may be adjacent in text. A sequence
like Japan gave Russia the Kuriles would be tagged B O B B I.

586 Kevin Knight and Jonathan May

3.5 Summarization

Text summarization is the shrinking of a document or set of documents into
a short summary that contains a useful subset of the information. One appli-
cation of summarization, headline generation, drops unnecessary words from
an input text and performs limited transformation of the remaining words to
form an appropriate news headline. The noisy-channel framework is followed
to accomplish this task in [62], where the source is considered to be emit-
ting a series of compressed sentences in “headlinese” which are then passed
through a transducer that inserts extra words and transforms some words to
form grammatical expanded sentences. Zajic et al. [62] tweak their results by
introducing various penalties and feature weights onto the transducer arcs;
these can be modeled by modifying weights accordingly or by introducing
additional transducers that explicitly encode the transitions.

3.6 Optical Character Recognition

The automatic conversion of hard-copy printed material to electronic form
is useful for preserving documents created before the digital age, as well as
for digitizing writing that is still generated in a nondigital manner, e.g., con-
verting handwritten notes. Scanner technology has progressed considerably in
recent years thanks to probabilistic recognition techniques, which are repre-
sentable in the noisy channel framework. Here, the noise metaphor is readily
apparent; clear, uniformly represented characters are garbled by the noisiness
of the printed page, incorrectly struck typewriter keys, or the human hand’s
inconsistency. Kolak et al. [36] use this approach, and built their final system
with the AT&T FSM toolkit [46], thus using automata operations directly.
The chain of transducers in this case first segments the words into characters,
then groups the characters into subword sequences, and finally transforms the
sequences into noise-filled sequences.

4 Applications of Weighted Tree Automata

String WFSTs are a good fit for natural language problems that can be char-
acterized by left-to-right substitution. However, their expressiveness breaks
down for more complex problems, such as language translation, where there
is significant reordering of symbols, and where operations are sensitive to
syntactic structure.

The usefulness of hierarchical tree structure was noticed early in linguis-
tics, and automata theorists devised tree acceptors and transducers [51, 57]
with the aim of generalizing string automata. Recently, natural language re-
searchers have been constructing weighted syntax-based models for problems

Applications of Weighted Automata in Natural Language Processing 587

Fig. 6. Example of a syntax-based translation model [34]

such as language translation [61, 60, 1, 22, 16, 43], summarization [35], para-
phrasing [48], question answering [14], and language modeling [5]. It has there-
fore become important to understand whether these natural language models
can be captured by standard tree automata.

Figure 6 shows a syntax-based translation model that can be contrasted
with the string-based model depicted in Figs. 2 and 3. In the upper left of
the figure is an English tree, and in the lower right is a Japanese tree. In
between, we see a top-down model of transformation in which pieces of English
syntax are matched and replaced with pieces of Japanese syntax. Ultimately,
individual English words and phrases are replaced with Japanese ones. This
transformation can be carried out by a top-down tree transducer with ε-
transitions, as defined by [51, 57], a fragment of which is shown in Fig. 8.
This type of transducer is theoretically quite powerful, employing rules that
copy unbounded pieces of input (as in Rule 4) and rules that delete pieces of
input without processing them (as in Rule 34). It is well known that copying
and deleting complicate matters—for example, the class of transformations
induced by copying transducers is not closed under composition, which is a
significant departure from the string case.

Figure 7 shows some natural transformations that arise in translating one
human language to another. In the first example, an English noun-phrase
(NP1) must be moved after the verb when we translate to Arabic. A standard
noncopying tree transducer cannot handle this case, because it is necessary to
“grab and reorder” structures that are deep in the input tree (such as VB and
NP2), while the standard transducer can only get hold of the direct children

588 Kevin Knight and Jonathan May

Fig. 7. Examples of reordering made possible with a syntax-based translation model

of an input node. For this reason, [24] introduces a class of top-down tree
transducers whose rules have extended left-hand sides. An example of such a
rule is

q S(x0:NP VP(x1:VB x2:NP)) -> S(q x1, r x0, s x2)

In [19], Galley et al. give algorithms for acquiring such tree transducers
from bilingual data. The English side of this data must be automatically
parsed; this is typically done with statistical techniques such as in [10]. At
the time of this writing, the largest such transducer has 500 million rules,
and the empirical performance of the associated translation system compares
favorably with string-based methods. Currently, work at the intersection of
tree automata and natural language processing is active:

• On the empirical side, researchers aim to improve tree-based translation
by building better models of translation and better rule-extraction algo-
rithms. To further those goals, the availability of a toolkit for manipulat-
ing tree automata and tree transducers, such as [42], is important. Similar
toolkits for string automata and transducers [46, 23] have enabled better

Applications of Weighted Automata in Natural Language Processing 589

/* translate */

1. q.s S(x0, x1) →0.9 S(q.np x0, q.vp x1)
2. q.s S(x0, x1) →0.1 S(q.vp x1, q.np x0)
3. q.np x →0.1 r.np x
4. q.np x →0.8 NP(r.np x, i x)
5. q.np x →0.1 NP(i x, r.np x)
6. q.pro PRO(x0) →1.0 PRO(q x0)
7. q.nn NN(x0) →1.0 NN(q x0)
8. q.vp x →0.8 r.vp x
9. q.vp x →0.1 S(r.vp x, i x)
10. q.vp x →0.1 S(i x, r.vp x)
11. q.vbz x →0.4 r.vbz x
12. q.vbz x →0.5 VP(r.vbz x, i x)
13. q.vbz x →0.1 VP(i x, r.vbz x)
14. q.sbar x →0.3 r.sbar x
15. q.sbar x →0.6 SBAR(r.sbar x, i x)
16. q.sbar x →0.1 SBAR(i x, r.sbar x)
17. q.vbg VBG(x0) →1.0 VP(VB(q x0))
18. q.pp PP(x0, x1) →1.0 NP(q.np x1, q.p x0)
19. q.p P(x0) →1.0 PN(q x0)
20. q he →1.0 kare
21. q enjoys →0.1 daisuki
22. q listening →0.2 kiku
23. q to →0.1 o
24. q to →0.7 ni
25. q music →0.8 ongaku
26. r.vp VP(x0, x1) →0.9 S(q.vbz x0, q.np x1)
27. r.vp VP(x0, x1) →0.1 S(q.np x1, q.vbz x0)
28. r.sbar SBAR(x0, x1) →0.1 S(q.vbg x0, q.pp x1)
29. r.sbar SBAR(x0, x1) →0.9 S(q.pp x1, q.vbg x0)
30. r.np NP(x0) →0.1 q.pro x0
31. r.np NP(x0) →0.8 q.nn x0
32. r.np NP(x0) →0.1 q.sbar x0
33. r.vbz VBZ(x0) →0.7 VB(q x0)

/* insert */

34. i NP(x0) →0.3 PN(wa)
35. i NP(x0) →0.3 PN(ga)
36. i NP(x0) →0.2 PN(o)
37. i NP(x0) →0.1 PN(ni)
38. i SBAR(x0, x1) →0.7 PS(no)
39. i VBZ(x0) →0.2 PV(desu)

Fig. 8. Fragment of a top-down tree transducer with ε-transitions implementing a
syntax-based translation model [34]

590 Kevin Knight and Jonathan May

model development where the domain of strings is involved. Similarly, tree
automata toolkits allow the reenvisioning of previous models in a clean
transducer framework [25] as well as the rapid development of new models
[41].

• On the algorithms side, researchers create more efficient procedures and
data structures for executing tree-based inferences. For example, in [26],
Huang and Chiang present efficient algorithms for extracting the k most
probable trees from a context-free grammar, which is useful for extract-
ing the k-best translations from a large set of hypotheses encoded as a
grammar. In [24], Graehl and Knight give EM algorithms for training tree
transducers. In [41], May and Knight show improvements from determiniz-
ing weighted tree automata. In [38], Maletti gives an O(mn4) algorithm
for minimizing a weighted tree automaton with m rules and n states.

• On the theory side, researchers investigate which automata models both
(1) fit natural language phenomena, and (2) possess good theoretical prop-
erties. There is still much work to be done—for example, transformations
induced by extended left-hand side transducers are not closed under com-
position, even in the noncopying, nondeleting case. Researchers have also
been investigating connections between tree automata and synchronous
grammars [55]; the latter of which have been developed independently in
the natural language community.

Another area of promise is syntax-based language modeling [5]. Here, we
build a probability distribution over all English trees, rather than all English
strings.3 We hope to concentrate probability on objects that are grammatically
well formed. Returning to our noisy-channel framework, we can then envision
a language model represented by a regular tree grammar [20] and a channel
model consisting of a cascade of tree transducers.

4.1 Open Problems

Knight and Graehl, in [34], presented a list of open problems pertinent to the
use of weighted tree automata in natural language processing applications.
Although some of those problems have since been at least partially solved
(for example, in Tiburon [42] we have an instantiation of a useful, generic
tree transducer toolkit, and the properties of extended tree transducers were
studied in [39]) some still remain and new problems often arise, such as:

• Eppstein [17] presents an algorithm for finding the k best paths through
a WFSA which runs in O(m + n log n + k) time, while [26] present an
algorithm for finding the k best derivations of a weighted tree automaton
which runs in O(m+nk log k) time. It is unknown whether the separation
of k and n can be achieved in the tree case.

3 We can still get the probability of a string by summing over all the trees who have
that yield.

Applications of Weighted Automata in Natural Language Processing 591

• Is there an algorithm for minimizing deterministic weighted tree automata
that improves on the O(mn4) runtime of [38]?

• Is there an algorithm to determine whether two instances of a class of
weighted tree transducers may be composed to form a single instance of
that class that captures the same sequential transformation, even though
the class itself is known to be not closed under composition?

• Is there a class of weighted tree transducers that (a) is expressive enough
to capture natural language translation phenomena, (b) is closed under
composition, (c) allows for unbounded output, (d) admits an algorithm
for efficient weight training from input/output examples, and (e) preserves
regularity?

• Can we cast other existing NLP models in the language of tree machinery,
as was done in [25] for the model of [61], and can we extend these models
in interesting ways?

5 Conclusion

In this chapter, we have surveyed some of the natural language applications in
which weighted automata play a role. We expect the number of applications
to grow over the coming years as automata theorists, linguists, and engineers
collaborate to solve difficult problems, and as computational power grows to
support new research avenues. Thatcher’s vision, that we may use automata
to solve problems, model behavior, and make advances in the natural language
domain seems realized in current research efforts, and we have high hopes for
the future.

References

1. H. Alshawi, S. Douglas, and S. Bangalore. Learning dependency transla-
tion models as collections of finite-state head transducers. Computational
Linguistics, 26(1):45–60, 2000.

2. J.K. Baker. The DRAGON system—An overview. IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-23(1):24–29, 1975.

3. T. Brants, A.C. Popat, P. Xu, F.J. Och, and J. Dean. Large language
models in machine translation. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning, Prague, Czech Republic, June 2007,
pages 858–867. Association for Computational Linguistics, Stroudsburg,
2007.

4. P.F. Brown, S.A.D. Pietra, V.J.D. Pietra, and R.L. Mercer. The mathe-
matics of statistical machine translation: Parameter estimation. Compu-
tational Linguistics, 19(2):263–312, 1993.

592 Kevin Knight and Jonathan May

5. E. Charniak. Immediate-head parsing for language models. In Proceed-
ings of the 39th Annual Meeting of the Association for Computational
Linguistics, Toulouse, France, July 2001, pages 116–123. Association for
Computational Linguistics, Stroudsburg, 2001.

6. N. Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 2(3):113–124, 1956.

7. N. Chomsky. Syntactic Structures. Mouton, The Hague, 1957.
8. K.W. Church. A stochastic parts program and noun phrase parser for

unrestricted text. In Second Conference on Applied Natural Language
Processing Proceedings, Austin, TX, February 1988, pages 136–143. Asso-
ciation for Computational Linguistics, Stroudsburg, 1988.

9. A. Clark. Memory-based learning of morphology with stochastic trans-
ducers. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, PA, July 2002, pages 513–520.
Association for Computational Linguistics, Stroudsburg, 2002.

10. M. Collins. Head-driven statistical models for natural language parsing.
PhD thesis, University of Pennsylvania, Philadelphia, PA, 1999.

11. M. Dalrymple. Lexical Functional Grammar. Academic Press, New York,
2001.

12. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

13. R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wi-
ley, New York, 1973.

14. A. Echihabi and D. Marcu. A noisy-channel approach to question an-
swering. In Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics, Sapporo, Japan, July 2003, pages 16–23.
Association for Computational Linguistics, Stroudsburg, 2003.

15. S. Eilenberg. Automata, Languages, and Machines. Academic Press, New
York, 1974.

16. J. Eisner. Learning non-isomorphic tree mappings for machine translation.
In The Companion Volume to the Proceedings of 41st Annual Meeting of
the Association for Computational Linguistics, Sapporo, Japan, July 2003,
pages 205–208. Association for Computational Linguistics, Stroudsburg,
2003.

17. D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652–673, 1998.

18. R.A. Fisher. On the “probable error” of a coefficient of correlation deduced
from a small sample. Metron. International Journal of Statistics, 1:3–32,
1921.

19. M. Galley, M. Hopkins, K. Knight, and D. Marcu. What’s in a trans-
lation rule? In Proceedings of the Human Language Technology Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: HLT–NAACL 2004, Boston, MA, May 2004, pages 273–280.
Association for Computational Linguistics, Stroudsburg, 2004.

Applications of Weighted Automata in Natural Language Processing 593

20. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest,
1984.

21. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, volume 3, Chapter 1, pages
1–68. Springer, Berlin, 1997.

22. D. Gildea. Loosely tree-based alignment for machine translation. In Pro-
ceedings of the 41st Annual Meeting of the Association for Computational
Linguistics, Sapporo, Japan, July 2003, pages 80–87. Association for Com-
putational Linguistics, Stroudsburg, 2003.

23. J. Graehl. Carmel finite-state toolkit. http://www.isi.edu/licensed-sw/
carmel, 1997.

24. J. Graehl and K. Knight. Training tree transducers. In Proceedings of the
Human Language Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics: HLT–NAACL 2004,
Boston, MA, May 2004, pages 105–112. Association for Computational
Linguistics, Stroudsburg, 2004.

25. J. Graehl, K. Knight, and J. May. Training tree transducers. Computa-
tional Linguistics, 34(3):391–427, 2008.

26. L. Huang and D. Chiang. Better k-best parsing. In Proceedings of
the Ninth International Workshop on Parsing Technology, Vancouver,
Canada, October 2005, pages 53–64. Association for Computational Lin-
guistics, Stroudsburg, 2005.

27. E.T. Jaynes. Information theory and statistical mechanics. Physical Re-
view (Series II), 106(4):620–630, 1957.

28. F. Jelinek. Continuous speech recognition by statistical methods. Proceed-
ings of the IEEE, 64(4):532–556, 1976.

29. F. Jelinek, L.R. Bahl, and R.L. Mercer. Design of a linguistic statistical
decoder for the recognition of continuous speech. IEEE Transactions on
Information Theory, IT-21(3):250–256, 1975.

30. D. Jurafsky and J.H. Martin. Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, 2nd edition. Chapter 4: N-grams. Prentice Hall, En-
glewood Cliffs, 2009.

31. R. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

32. K. Knight and Y. Al-Onaizan. Translation with finite-state devices. In
Machine Translation and the Information Soup: Third Conference of the
Association for Machine Translation in the Americas, AMTA’98, Lang-
horne, PA, October 1998, volume 1529 of Lecture Notes in Computer
Science, pages 421–437. Springer, Berlin, 1998.

33. K. Knight and J. Graehl. Machine transliteration. Computational Lin-
guistics, 24(4):599–612, 1998.

34. K. Knight and J. Graehl. An overview of probabilistic tree transducers
for natural language processing. In Computational Linguistics and Intelli-
gent Text Processing 6th International Conference, CICLing 2005, Mexico

http://www.isi.edu/licensed-sw/carmel
http://www.isi.edu/licensed-sw/carmel

594 Kevin Knight and Jonathan May

City, Mexico, February 2005, volume 3406 of Lecture Notes in Computer
Science, pages 1–24. Springer, Berlin, 2005.

35. K. Knight and D. Marcu. Summarization beyond sentence extraction:
A probabilistic approach. Artificial Intelligence, 139(1):91–107, 2002.

36. O. Kolak, W. Byrne, and P. Resnik. A generative probabilistic OCR model
for NLP applications. In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter of the Association for
Computational Linguistics, Edmonton, Canada, May–June 2003, pages
55–62. Association for Computational Linguistics, Stroudsburg, 2003.

37. S. Kumar and W. Byrne. A weighted finite state transducer implementa-
tion of the alignment template model for statistical machine translation.
In Proceedings of the 2003 Human Language Technology Conference of
the North American Chapter of the Association for Computational Lin-
guistics, Edmonton, Canada, May–June 2003, pages 63–70. Association
for Computational Linguistics, Stroudsburg, 2003.

38. A. Maletti. Minimizing deterministic weighted tree automata. In Pro-
ceedings of the 2nd International Conference on Language and Automata
Theory and Applications, pages 371–382. Universitat Rovira I Virgili, Tar-
ragona, 2008.

39. A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The power of extended
top-down tree transducers. SIAM Journal on Computing, 39(2):410–430,
2009.

40. A.A. Markov. Essai d’une recherche statistique sur le texte du roman
“Eugene Onegin” illustrant la liaison des epreuve en chain (Example of
a statistical investigation of the text of “Eugene Onegin” illustrating the
dependence between samples in chain). Izvistia Imperatorskoi Akademii
Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg),
7:153–162, 1913. English translation by Morris Halle, 1956.

41. J. May and K. Knight. A better n-best list: Practical determinization
of weighted finite tree automata. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Conference, New York, NY,
June 2006, pages 351–358. Association for Computational Linguistics,
Stroudsburg, 2006.

42. J. May and K. Knight. Tiburon: A weighted tree automata toolkit. In
O.H. Ibarra and H.-C. Yen, editors, Proceedings of the 11th International
Conference of Implementation and Application of Automata, CIAA 2006,
Taipei, Taiwan, August 2006. volume 4094 of Lecture Notes in Computer
Science, pages 102–113. Springer, Berlin, 2006.

43. I.D. Melamed. Multitext grammars and synchronous parsers. In Proceed-
ings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, Ed-
monton, Canada, May–June 2003, pages 79–86. Association for Compu-
tational Linguistics, Stroudsburg, 2003.

Applications of Weighted Automata in Natural Language Processing 595

44. G.A. Miller and N. Chomsky. Finitary models of language users. In
R.D. Luce, R.R. Bush, and E. Galanter, editors, Handbook of Mathe-
matical Psychology, volume II, pages 419–491. Wiley, New York, 1963.

45. M. Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–312, 1997.

46. M. Mohri, F.C.N. Pereira, and M.D. Riley. AT&T FSM li-
brary. http://www.research.att.com/∼fsmtools/fsm, 1998. AT&T Labs—
Research.

47. F. Och, C. Tillmann, and H. Ney. Improved alignment models for statis-
tical machine translation. In Proceedings of the 1999 Joint SIGDAT Con-
ference of Empirical Methods in Natural Language Processing and Very
Large Corpora, College Park, MD, June 1999, pages 20–28. Association
for Computational Linguistics, Stroudsburg, 1999.

48. B. Pang, K. Knight, and D. Marcu. Syntax-based alignment of multiple
translations: Extracting paraphrases and generating new sentences. In
Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguis-
tics, Edmonton, Canada, May–June 2003, pages 102–109. Association for
Computational Linguistics, Stroudsburg, 2003.

49. F. Pereira, M. Riley, and R. Sproat. Weighted rational transductions
and their application to human language processing. In Human Language
Technology, Plainsboro, NJ, March 1994, pages 262–267. Morgan Kauf-
mann, San Mateo, 1994.

50. M. Riley, F. Pereira, and E. Chun. Lazy transducer composition: A flexible
method for on-the-fly expansion of context-dependent grammar network.
In Proceedings, IEEE Automatic Speech Recognition Workshop, Snowbird,
UT, December 1995, pages 139–140.

51. W.C. Rounds. Mappings and grammars on trees. Theory of Computing
Systems, 4:257–287, 1970.

52. I.A. Sag, T. Wasow, and E.M. Bender. Syntactic Theory, 2nd edition.
CSLI Publications, Stanford, 2003.

53. C. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379–423, 1948. 623–656

54. S.M. Shieber. Synchronous grammars as tree transducers. In Proceedings
of the Seventh International Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+ 7), Vancouver, Canada, May 2004, pages
88–95.

55. S.M. Shieber. Unifying synchronous tree adjoining grammars and tree
transducers via bimorphisms. In 11th Conference of the European Chap-
ter of the Association for Computational Linguistics, Trento, Italy, April
2006, pages 377–384. Association for Computational Linguistics, Strouds-
burg, 2006.

56. R. Sproat, W. Gales, C. Shih, and N. Chang. A stochastic finite-state
word-segmentation algorithm for Chinese. Computational Linguistics,
22(3):377–404, 1996.

http://www.research.att.com/~fsmtools/fsm

596 Kevin Knight and Jonathan May

57. J.W. Thatcher. Generalized2 sequential machine maps. Journal of Com-
puter and System Sciences, 4(4):339–367, 1970.

58. J.W. Thatcher. Tree automata: An informal survey. In A.V. Aho, edi-
tor, Currents in the Theory of Computing, pages 143–172. Prentice Hall,
Englewood Cliffs, 1973.

59. W.A. Woods. Transition network grammars for natural language analy-
sis. Communications of the Association for Computing Machinery,
13(10):591–606, 1970.

60. D. Wu. Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora. Computational Linguistics, 23(3):377–404, 1997.

61. K. Yamada and K. Knight. A syntax-based statistical translation model.
In Proceedings of the 39th Annual Meeting of the Association for Compu-
tational Linguistics, Toulouse, France, July 2001, pages 523–530. Associ-
ation for Computational Linguistics, Stroudsburg, 2001.

62. D. Zajic, B. Dorr, and R. Schwartz. Automatic headline generation for
newspaper stories. In Proceedings of the ACL-02 Workshop on Text Sum-
marization (DUC 2002), Philadelphia, PA, July 2002, pages 78–85. Asso-
ciation for Computational Linguistics, Stroudsburg, 2002.

63. B. Zhou, S.F. Chen, and Y. Gao. Folsom: A fast and memory-efficient
phrase-based approach to statistical machine translation. In Proceedings
of the IEEE/ACL 2006 Workshop on Spoken Language Technology, Palm
Beach, Aruba, December 2006, pages 226–229, IEEE Press, New York,
2006.

	Chapter 14: Applications of Weighted Automata in Natural Language Processing
	Background
	WFST Techniques for Natural Language Processing
	Example 1: Transliteration
	Example 2: Translation
	Language Modeling

	Applications of Weighted String Automata
	Language Translation
	Speech Recognition
	Lexical Processing
	Tagging
	Summarization
	Optical Character Recognition

	Applications of Weighted Tree Automata
	Open Problems

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

