
Non-Interference for Deterministic Interactive
Programs

David Clark1 and Sebastian Hunt2

1 King’s College London
david.j.clark@kcl.ac.uk

2 City University, London
seb@soi.city.ac.uk

Abstract. We consider the problem of defining an appropriate notion of non-
interference (NI) for deterministic interactive programs. Previous work on the
security of interactive programs by O’Neill, Clarkson and Chong (CSFW 2006)
builds on earlier ideas due to Wittbold and Johnson (Symposium on Security
and Privacy 1990), and argues for a notion of NI defined in terms of strategies
modelling the behaviour of users. We show that, for deterministic interactive pro-
grams, it is not necessary to consider strategies and that a simple stream model of
the users’ behaviour is sufficient. The key technical result is that, for determinis-
tic programs, stream-based NI implies the apparently more general strategy-based
NI (in fact we consider a wider class of strategies than those of O’Neill et al). We
give our results in terms of a simple notion of Input-Output Labelled Transition
System, thus allowing application of the results to a large class of deterministic
interactive programming languages.

1 Introduction

We consider the problem of defining an appropriate notion of non-interference (NI)
[8] for deterministic interactive programs. By interactive programs we mean programs
which perform channel-based IO, reading and writing primitive values on named chan-
nels over time, as the system executes, in contrast to the simple “batch-processing”
style of computation assumed by much of the work in language-based security. Moving
away from the simple batch-processing model introduces a number of complications
and subtleties. Even so, in this paper we show that a relatively simple stream-based
model of interaction may be adequate for the special (but common) case of deterministic
programs.

Previous work on the security of interactive programs by O’Neill, Clarkson and
Chong [14] builds on earlier ideas due to Wittbold and Johnson [16], and argues for
a notion of NI defined in terms of strategies modelling the behaviour of users. We show
that, for deterministic interactive programs, it is not necessary to consider strategies and
that a simple stream model of the users’ behaviour is sufficient. The key technical result
is that, for deterministic programs, stream-based NI implies the apparently more general
strategy-based NI (in fact we consider a wider class of strategies than those of O’Neill
et al). We give our results in terms of a simple notion of Input-Output Labelled Tran-
sition System, thus allowing application of the results to a large class of deterministic
interactive programming languages.

P. Degano, J. Guttman, and F. Martinelli (Eds.): FAST 2008, LNCS 5491, pp. 50–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Non-Interference for Deterministic Interactive Programs 51

2 Overview

We start by considering some motivating examples. These examples show that interac-
tive programs may enable quite subtle covert channels, in which attackers can exploit
information gained from previous outputs in order to leak information via later outputs.
Moreover the examples show that a simple stream-based model of user behaviour may
not suffice to reveal the presence of such channels. We also argue that such channels are
significant even outside the typical “military” scenario in which an insider collaborates
to send secrets to an outsider, by showing how a trusted user may be duped into sending
information on such channels without knowing it.

Following [16] and [14] we then show how such channels can be guarded against
by requiring a more sophisticated notion of NI, one defined in terms of user strategies
rather than input streams.

It is striking that the example covert channels mentioned above all involve the com-
bination of interaction and internal nondeterminism. The main result of this paper is
to show that this is not accidental: for purely deterministic systems, such covert chan-
nels do not arise. We formalise this by showing how input streams can be represented
as a special class of strategy and then showing that defining NI over this restricted
class of strategies is equivalent to the more general notion when the system (though not
necessarily the environment) behaves deterministically. Rather than tie our results to
a specific programming language, we define a simple notion of Input-Output Labelled
Transition System (IOLTS) and sate our definitions and results for any IOLTS. To illus-
trate how programming languages can be modelled in such a setting, we give an IOLTS
semantics for a simple deterministic interactive language.

We conclude with a discussion of the scope and limitations of the chosen definition
of NI and, more generally, of the use of strategies to model a program’s environment.

3 Information Flow in Interactive Programs

We start with two simple examples of interactive programs illustrating ways in which
such programs may be insecure.

The first program is insecure because there is a direct flow from High input to Low
output:

x := 0;
input y from H;
output (x XOR y) to L;

Thesecondprogramisanexampleof indirectflowfromHightoLow.Ifweconsider that
Low and High are feeding a stream of inputs to the program, information about the High
stream can be deduced from the way in which the program is consuming Low’s inputs:

input x from H;
if (x = 0) then input y from L;
input z from L;
output z to L;

For example, suppose the Low input stream starts 01. Then the Low output will be 1 if
High inputs 0, otherwise the Low output will be 0.

52 D. Clark and S. Hunt

3.1 Two Approaches to Defining Security

Users interact with the programs via input and output on named channels each of which
is associated with a security level in a Denning-style multi-level security classification
system, whereby security levels form a lattice, 〈L,�〉, L = {a, b, c, . . .} [6]. For sim-
plicity’s sake we identify a channel’s name with its security level. We write ↓a for the
set of channels visible to users at level a, ie ↓a = {a′ ∈ L|a′ � a}.

Consider two users with access to channels a and b respectively where a �� b, i.e. the
security policy specifies that no information should flow from channel a to channel b.
We might reasonably try to capture this requirement in two alternative ways:

All outputs on channel b are consistent with all possible inputs on channel a. (1)

Users of channel a cannot send messages to the users of channel b. (2)

These both seem reasonable, but are they equivalent? First, observe that 2 ⇒ 1: if some
outputs seen by Bob are inconsistent with some possible inputs from Alice, then Bob
can deduce something about the values input by Alice so Alice clearly can send mes-
sages to Bob, hence (by contraposition) 2 implies 1. At first sight it seems as though 1
⇒ 2 should also hold. After all, if what Bob sees tells him nothing about what Alice
has input, surely she cannot send him a message.

In fact, as Wittbold and Johnson show in [16], this reasoning is unsound: some sys-
tems which satisfy property 1 allow Alice to send Bob messages. Let L � H and
suppose that the only values which may be sent on these channels are 0 and 1. Consider
Program 1a:

while (true) do
x := 0 | 1;
input y from H;
output x to H;
output (x XOR y) to L;

Here | is a non-deterministic choice operator, so 0 | 1 evaluates to either 0 or 1, with
the choice being made in a way which is unpredictable to any observer of the running
program. Writing output of value v on channel a as a!v and input as a?v, the possible
traces for the first iteration of the loop are:

H?0 H!0 L!0
H?0 H!1 L!1
H?1 H!0 L!1
H?1 H!1 L!0

Observation of the first L-output thus reveals nothing to L-users about the value of the
first H-input: L-users cannot observe the H-outputs and hence, whether L-users see 0
or 1, both 0 and 1 are possible values for the input on H . This clearly holds for longer
traces as well: no matter how much of the stream of L-outputs is observed, nothing is
learned about which values have been input on H . Program 1a thus satisfies property 1
and, indeed, would seem to be a secure program.

Non-Interference for Deterministic Interactive Programs 53

Now consider the variant Program 1b:

while (true) do
x := 0 | 1;
output x to H;
input y from H;
output (x XOR y) to L;

In this example, the value of x is output before the H-input is demanded. The possible
traces for the first iteration of this variant are:

H!0 H?0 L!0
H!0 H?1 L!1
H!1 H?0 L!1
H!1 H?1 L!0

It clearly remains the case that, in ignorance of the value of x, any observation of an
output on channel L is consistent with both possible inputs on H , and thus property
1 holds also for Program 1b. Crucially, though, with Program 1b, H-users can exploit
their knowledge of x to control what is output on L. This allows H-users to send mes-
sages to L-users, thus violating property 2. For example, if an H-user wants to send a
particular message to L, say x1 . . . xn, behaving as follows will suffice:

for (i = 1 to n) do
input k from H;
output (k XOR xi) to H;

When composed with Program 1b, this behaviour results in the message x1 . . . xn being
delivered on L without error.

Program 1b first appears in this form in O’Neill, Clarkson and Chong’s paper [14].
This was an adaptation of a synchronous nondeterministic state machine used by Wit-
tbold and Johnson [16] to illustrate the same phenomenon. (It is interesting to note that,
in state machine form, the example actually appears much earlier in a paper by Shan-
non [15]. In this paper Shannon showed how, in certain cases, making “side informa-
tion” available at the transmitting point may increase the capacity of a communication
channel.)

Using Program 1b, an H-user is able deliberately to communicate secrets to L-users.
But, even when a user does not intend to leak a secret, such covert channels can still
pose a security risk, since one user’s “cooperation” with another may be unwitting.
Suppose we have two users, Alice and Bob, at incomparable security levels A and B,
respectively. The following example is originally due to David Sands [11].

Alice is interacting with a web site. Alice is assured by the site that her credit card
details are never sent to Bob, and this assurance is backed up by a proof of property 1.
The web site requests Alice to input her credit card and then offers her a “special offer”
code, inviting her to input this code at a later time to obtain a discount or free gift.
Unbeknownst to Alice, this code is actually her own credit card number in encrypted
form. If Alice does enter the code when requested, the system simply decrypts it and
sends it to Bob. In simplified form (a boolean credit card number!), this may be coded
as Program 2:

54 D. Clark and S. Hunt

input x from A;
k := 0 | 1;
output (k XOR x) on A;
.
.
.
input y from A;
output (k XOR y) on B;

The possible traces for this system are:

A?0 A!0 A?0 B!0 (*)
A?0 A!0 A?1 B!1
A?0 A!1 A?0 B!1
A?0 A!1 A?1 B!0 (*)
A?1 A!0 A?0 B!1 (*)
A?1 A!0 A?1 B!0
A?1 A!1 A?0 B!0
A?1 A!1 A?1 B!1 (*)

Now, since Bob cannot see channelA, both outputs 0 and 1 are consistent with all four
possible input sequences by Alice, hence property 1 is satisfied. Clearly, though, if Alice
behaves as expected - the traces marked (*) - her credit card number is leaked to Bob.

These examples illustrate that a simple security property based on consistency of
one user’s observed outputs with another user’s possible inputs may not be adequate
to provide desirable security guarantees. In particular, it seems that the problem with
property 1 is that it fails to take account of the interactive nature of such systems,
whereby a user’s inputs may depend on previously seen outputs. Wittbold and Johnson
[16] proposed instead a property stated in terms of consistency of observed outputs with
user’s behaviours, modelling behaviours as the strategies by which users provide inputs
based on their observations of the system so far.

This use of a strategy-based security property is very elegant and is successful in
accepting Program 1a while rejecting Program 1b and Program 2. On the other hand,
it is also technically less straightforward than a security property based simply on the
input and output streams of a program. It is striking that the examples above involve
the combination of interactivity and non-determinism. In this paper we consider the
(very common) sub-class of deterministic interactive systems and show that for this
sub-class, stream-based and strategy-based security properties are actually equivalent.
The intuition is that, for a deterministic program, a sufficiently high security user can,
in principle, choose inputs and predict all outputs statically. Thus there should be no
need to model dynamic behaviours of users in order to verify the security property.

3.2 Input-Output Labelled Transition Systems (IOLTS)

As illustrated by the examples above, we are interested in security properties of pro-
grams written in languages with input and output primitives. However, our treatment is
not specific to a given language. Instead we express security properties at the level of
input/output traces.

Non-Interference for Deterministic Interactive Programs 55

Definition 1. An Input-Output Labelled Transition System (IOLTS) is an input-neutral
labelled transition system with a set of labels given by

A ::= τ | a?v | a!v
where a ∈ L and v ∈ V (where V is some unspecified non-empty set of possible
values). By input-neutral we mean that branching on inputs is never restricted for a

state in which input is possible, i.e. for a state s of the LTS: if ∃v.s a?v→ then ∀v.s a?v→ .

Let s range over the states of IOLTSs. Let Tr denote the set of all possible IOLTS traces:

Tr = A∗. Let t, u range over Tr. For t = �1 · · · �n ∈ Tr we write s
t� s′ to mean that

there exist states s1, . . . , sn such that s
�1→ s1 · · · �n→ sn = s′. We write s

t� to mean

that there exists s′ such that s
t� s′.

Definition 2. An IOLTS is deterministic iff:

1. If s
�1→ s1 and s

�2→ s2 and �1 �= �2 then �1 = a?v1 and �2 = a?v2, for some
channel a and values v1, v2.

2. If s
�→ s1 and s

�→ s2 then s1 = s2.

3.3 IOLTS Example: A Simple Interactive Imperative Language

The simple interactive imperative language used for the examples above is essentially
the same language defined in [14]. To demonstrate one possible instantiation of an
IOLTS at the language level, we present a semantics for this language and observe
that it does indeed define an IOLTS (see Figure 1). Note that the IOLTS for this particu-
lar language will be deterministic iff the expression evaluation relation is single valued
(which will not be the case if the | operator is admitted).

4 Strategies and Non-Interference

We assume that a user at level a can only observe input/output events on channels b � a
and that no user can see τ actions (modelling internal state transitions), making this a
timing insensitive model. Different traces may thus appear the same to a given user. We
write t =a t

′ to mean that two traces look the same to a user at level a. More generally,
for a subset of security levelsA ⊆ L, we write t =A t′ to mean that t�A = t′�A, where
t�A is t with all τ events removed and with all IO events b?v and b!v removed except
those for which b ∈ A. Each such =A is clearly an equivalence relation on traces. Note
that, since users at level a can see events at level a and below, =a is shorthand for =↓a

rather than ={a} (wherever we actually intend ={a} we will write this explicitly).

4.1 Strategies

Each user provides inputs on the channel corresponding to his or her security level and
is aware of the history of usage (both inputs and outputs) on all channels at or below

56 D. Clark and S. Hunt

[Skip] 〈skip, σ〉 τ−→ 〈skip, σ〉

[Seq1] 〈skip; c2, σ〉 τ−→ 〈c2, σ〉

[Seq2]
〈c1; c2, σ〉 l−→ 〈c′1; c2, σ

′〉
〈c1; c2, σ〉 l−→ 〈c′1; c2, σ

′〉
l ∈ A

[Assign]
σ � e → v

〈x := e, σ〉 τ−→ 〈skip, σ[x := v]〉

[If1]
σ � e → v �= 0

〈if e then c1 else c2, σ〉 τ−→ 〈c1, σ〉

[If2]
σ � e → 0

〈if e then c1 else c2, σ〉 τ−→ 〈c2, σ〉

[While] 〈while e do c, σ〉 τ−→ 〈if e then (c; while e do c) else skip, σ〉

[In] 〈input x from a, σ〉 a?v−→ 〈skip, σ[x := v]〉

[Out]
σ � e → v

〈output e to a, σ〉 a!v−→ 〈skip, σ〉

Fig. 1. IOLTS semantics for a simple language

that level. The behaviour of a user in choosing inputs on a channel may be influenced
by this knowledge of the history (as when High uses Program 1 as a covert channel)
and is modeled as a channel strategy: a function from what the user knows to the user’s
choice of the next input on the channel. We allow strategies to be nondeterministic, thus
we define them to be functions from traces to non-empty sets of values:

Definition 3. An a-strategy is a function ωa : Tr → (℘(V) − ∅) such that t1 =a t2 ⇒
ωa(t1) = ωa(t2).

In the special case that ωa is deterministic, we will write ωa(t) = v as shorthand for
ωa(t) = {v}. We use ω for arbitrary (ie possibly nondeterministic) strategies and δ for
deterministic strategies.

A strategy modeling the behaviour of the program’s whole environment is a collec-
tion of individual channel strategies indexed by the security lattice. We say two strate-
gies are equivalent with respect to a given security level if the channel strategies at and
below that level are identical.

Definition 4. A strategy ω is an L-indexed family such that each ωa is an a-strategy.

Let Strat denote the set of all strategies. We write ω =a ω
′ to mean ωb = ω′

b for all
b � a.

Non-Interference for Deterministic Interactive Programs 57

The interaction between a program and its environment is modelled by playing a
strategy against a state of an IOLTS to produce a trace of input and output events. Let s
be a state of an IOLTS. Playing strategy ω against state s may produce trace t, written

ω |= s
t�, if t is a possible trace for s and, for every input event a?v in t, v is a value

which may be chosen by ωa when applied to the sequence of events leading up to the
input event. Formally:

Definition 5. ω |= s
t� iff s

t� and v ∈ ωa(t′) for all t′.a?v ≤ t, where ≤ is the prefix
ordering on traces.

Strat

Narrow Strategies

Deterministic Strategies

Stream Strategies

SS

NS

DS

Fig. 2. An inclusion hierarchy of strategies

We define three interesting sub-classes of strategy:

DS. The deterministic strategies.
NS. The “narrow” strategies. This is the class of strategies considered in [14] (the term

“narrow” is ours; in [14] they are simply called strategies). These are deterministic
strategies such that the user’s choice is influenced only by events on that particular
channel, not by events on channels at lower security levels. The formal definition
is as follows:

Definition 6 (Narrow Strategy). A strategy ω is narrow iff it is deterministic and,
for all a, if t ={a} t′ then ωa(t) = ωa(t′).

58 D. Clark and S. Hunt

SS. The “stream” strategies. A stream strategy is just a family of streams (one for each
channel) presented as a strategy. Concretely, each time a stream strategy is asked
for an input on a channel it simply returns the next item in the stream for that
channel. Each channel strategy in such a strategy returns a value which depends
only on the number of inputs which have been requested on that channel so far,
since this number is precisely the position in the stream which has been reached. For
a channel a we say that traces t, t′ are a-stream-pointer equivalent, written t ��a t

′,
iff t and t′ contain the same number of a-input events. A stream strategy is thus a
family of channel strategies each of which respects stream-pointer equivalence:

Definition 7 (Stream Strategy). A strategy ω is a stream strategy iff it is determin-
istic and, for all a, if t ��a t

′ then ωa(t) = ωa(t′)

Figure 2 illustrates how these sub-classes form an inclusion hierarchy. It is straight-
forward to verify that the inclusions shown do indeed hold and are, in fact, strict:
SS ⊂ NS ⊂ DS ⊂ Strat.

4.2 Non-Interference

Our definition of non-interference [8] is framed in terms of strategies and traces. It is a
generalisation of Definition 1 from [14]. The definition says that a state s of an IOLTS
is non-interfering for a given set of strategies if, for each user, any two strategies drawn
from the set which look the same, also produce sets of traces which look the same,
when played against s.

Definition 8. Let W be a set of strategies. A state s of an IOLTS is non-interfering for
W (or W -NI for short) iff

∀ ω1, ω2 ∈ W . (ω1 =a ω2 ∧ ω1 |= s
t1�) ⇒ (∃ t2 . t2 =a t1 ∧ ω2 |= s

t2�)

We say that s is simply non-interfering (or NI for short) if it is non-interfering for the
set of all strategies.

We now explore the relationship between the NI properties corresponding to the sub-
classes of strategy shown in Figure 2. We start with the obvious fact that inclusion of
sub-classes of strategy implies reverse-inclusion of the corresponding NI properties:

Lemma 1. Let W1,W2 ⊆ Strat. If W1 ⊆W2 then W2-NI ⇒W1-NI.

We thus immediately have a sequence of inclusions of NI properties which mirrors the
inclusions shown in Figure 2:

Proposition 1. NI ⇒ DS-NI ⇒ NS-NI ⇒ SS-NI.

In Section 4.3, we establish that DS-NI and NI are actually equivalent. We conjecture
that NS-NI is also equivalent to NI but verifying this is left for future work.

Note that SS-NI is essentially “property 1” from Section 3.1. By considering the sets
of possible traces for the various programs in Section 3.1 it can be established, for exam-
ple, that Program 1a is NI, whereas Program 1b is SS-NI but not NI. It is clear, therefore,
that SS-NI is, in general, a strictly weaker property than NI. Nonetheless, we are able
to show (Section 4.4) that for deterministic IOLTS, SS-NI and NI are equivalent.

Non-Interference for Deterministic Interactive Programs 59

4.3 Non-Interference for Deterministic Strategies

The following theorem says that, to establish non-interference, it is only necessary to
consider deterministic strategies.

Theorem 1. DS-NI ⇐⇒ NI.

By Proposition 1, to prove the theorem it is sufficient to show that if s is DS-NI then s
is NI. We prove the contrapositive.

Let s be a state of an IOLTS and suppose that s does not have the NI property. Thus
there must be two (possibly nondeterministic) strategies w,w′, level b and trace t such
that w =b w′ and:

1. w |= s
t�

2. For all t′, if w′ |= s
t′� then t′ �=b t.

The key proof idea is to construct two b-equivalent deterministic strategies which, when
played against s, result in the same NI-violating behaviours as w,w′.

First, we derive a deterministic strategy θ(w) from w, as follows. Let χ : (℘(V) −
∅) → V be some function such that χ(X) ∈ X . Then:

θ(w)a(u) =
{
v if ∃u′ =a u. u

′a?v ≤ t
χ(wa(u)) otherwise

It is necessary to show that θ(w) is well-defined. In particular, we must show:

a) if u′ =a u and u′′ =a u and u′a?v ≤ t and u′′a?v′ ≤ t, then v = v′;
b) if u =a u

′ then θ(w)a(u) = θ(w)a(u′).

First we need the following technical lemma:

Lemma 2. Let t1a?v ≤ t2� be such that t1 ��a t2. Then t2 = t1 and � = a?v.

Proof. Let ni be the number of a-input events in ti. Since t1 ��a t2, we have n1 = n2.
Now suppose towards a contradiction that t1a?v �= t2�, hence t1a?v ≤ t2. But then we
would have n1 + 1 ≤ n2, which contradicts n1 = n2. ��
Now we can established well-definedness of θ(w).

Proposition 2. θ(w) is a well defined deterministic strategy.

Proof

a) By assumption of u′ =a u and u′′ =a u we have u′ =a u′′. Clearly u′ =a

u′′ implies that u′, u′′ have the same number of a-input events. Furthermore, by
assumption that u′a?v and u′′a?v′ are both prefixes of t, one must be a prefix of
the other. Thus, by Lemma 2, a?v = a?v′, hence v = v′.

b) Suppose u =a u
′. If the first case in the definition of θ(w)a applies to u then, by

essentially the same argument as in a), it must also apply to u′ and give the same
result. If the second case applies, then, since wa is an a-strategy, wa(u) = wa(u′),
hence χ(wa(u)) = χ(wa(u′)). ��

60 D. Clark and S. Hunt

Next we derive a deterministic strategy λ(w′) from w′. In this case we must ensure that
λ(w′)a = θ(w)a for all a � b, since we want θ(w) =b λ(w′). We define:

λ(w′)a(u) =
{
θ(w)a(u) if a � b
χ(w′

a(u)) otherwise

The proof that λ(w′) is a well-defined deterministic strategy is essentially as for θ(w)
and is omitted. It is immediate from the definition of λ(w′) that θ(w) =b λ(w′).

It remains to show that this pair of strategies constitute a counterexample to DS-NI
and, for this, it suffices to show that:

1. θ(w) produces t when played against s.
2. The set of traces produced by λ(w′) is a subset of those produced by w′.

For the first of these, it is given that s
t�, so we need only show that θ(w)a(u) = v

whenever ua?v ≤ t, and this is clear from the definition of θ(w)a, since u =a u. For
the second, say that strategy ω′ refines strategy ω iff ω′

a(u) ⊆ ωa(u), for all a, u. It
is then immediate from Definition 5 that the refining strategy produces a subset of the
traces of the original when played against the same state. Formally:

Lemma 3. If ω′ refines ω and ω′ |= s
u� then ω |= s

u�.

It is straightforward to verify that θ(w) refines w and hence that λ(w′) refines w′. This
completes the proof that DS-NI ⇒ NI.

4.4 Non-Interference for Deterministic IOLTS

Here we establish our main result. That, for deterministic IOLTS, to establish NI it
is only necessary to consider stream strategies. Thus, for deterministic systems, when
reasoning about information flow it can suffice to work with a simple stream-based
semantic model of the environment and a corresponding stream-based definition of NI,
rather than strategies.

Theorem 2. A state s of a deterministic IOLTS is NI iff it is SS-NI.

Corollary 1. For deterministic IOLTS: NI, DS-NI, NS-NI and SS-NI are all equivalent.

Given Proposition 1 and Theorem 1, to prove Theorem 2 it suffices to show that, for
any state s of a deterministic IOLTS, if s is SS-NI then s is DS-NI. Again, we prove the
contrapositive.

Let s be a state of a deterministic IOLTS and suppose that s does not have the DS-NI
property. Thus there must be two deterministic strategies d,d′, level b and trace t such
that d =b d′ and:

1. d |= s
t�

2. For all t′, if d′ |= s
t′� then t′ �=b t.

Non-Interference for Deterministic Interactive Programs 61

The proof mimics the one above for DS-NI ⇒ NI, but this time we derive stream
strategies from deterministic strategies. We derive the stream strategy φ(d) from d as
follows:

φ(d)a(u) =

{
v if ∃u′ ��a u. d |= s

u′a?v�
k otherwise

where k is some (arbitrary) constant in V.
We must show that φ(d) is a well-defined stream strategy. In particular, we must

show:

a) If u′ ��a u and u′′ ��a u and d |= s
u′a?v� and d |= s

u′′a?v′
� , then v = v′.

b) If u ��a u
′ then φ(d)a(u) = φ(d)a(u′).

Part b) follows immediately from the definition of φ(d) once we have shown a).
To show a) we make use of a lemma which states an expected consequence of deter-

minism: if we play a deterministic strategy against any state of a deterministic IOLTS,
there will be no branching in the set of traces produced.

Lemma 4. Let s be a state of a deterministic IOLTS and let δ be a deterministic strat-

egy. If δ |= s
t1� and δ |= s

t2� then either t1 ≤ t2 or t2 ≤ t1.

Proof. Suppose, without loss of generality, that length(t1) ≤ length(t2). Proceed by
induction on length(t1) to show that t1 ≤ t2.

If length(t1) = 0 then t1 = ε ≤ t2.

If length(t1) > 0 then t1 has the form t′1�1 and s
t′1� s′1

�1→ s′′1 . Then length(t′1) <
length(t2) and by IH t′1 ≤ t2, hence t′1 < t2. Thus, for some �2, t′1�2 ≤ t2 and

s
t′1� s′2

�2→ s′′2 . Part 2 of the definition of deterministic IOLTS (Definition 1) entails
(by a simple induction on the length of t′1) that s′2 = s′1. It thus remains to show that
�1 = �2. Suppose towards a contradiction that �1 �= �2. By part 1 of Definition 1 we

must have �1 = a?v1 and �2 = a?v2. Then, since δ |= s
t′1a?v1
� and δ |= s

t′1a?v2
� ,

we have v1 ∈ δa(t′1) and v2 ∈ δa(t′1). But then, since δ is deterministic, v1 = v2, a
contradiction. ��
Well-definedness of φ(d) then follows:

Proposition 3. φ(d) is a well-defined stream strategy.

Proof. It remains to show that condition a) holds. That is, if u′ ��a u and u′′ ��a u and

d |= s
u′a?v� and d |= s

u′′a?v′
� then v = v′. Now s is a state of deterministic IOLTS and

d is deterministic, so, by Lemma 4, either u′a?v ≤ u′′a?v′ or u′′a?v′ ≤ u′a?v. From
u′ ��a u and u′′ ��a u we also have u′ ��a u

′′. Hence by Lemma 2, v = v′. ��
Next we derive a stream strategy ψ(d′) from d′. For a � b we define ψ(d′)a = φ(d)a

and for a �� b we derive ψ(d′) from d′ exactly as we derived φ(d) from d:

ψ(d′)a =
{
φ(d)a if a � b
φ(d′)a if a �� b

The proof that ψ(d′) is a well-defined stream strategy is essentially as for φ(d) and is
omitted. It is immediate from the definition of ψ(d′) that φ(d) =b ψ(d′).

62 D. Clark and S. Hunt

For the final step in the proof that SS-NI ⇒ DS-NI we introduce the notion of
a-prefix:

Definition 9. Trace u is an a-prefix of u′, written u �a u′, iff u =a u′′ for some
u′′ ≤ u′.

We state without proof some obvious properties of �a:

– If a1 � a2 then �a2 ⊆ �a1 .
– If u ≤ u′ �a u

′′ then u �a u
′′.

– If u =a u
′ then u �a u

′.

We will use these freely in the remainder of the proof.
The proof is now essentially completed by the following lemma, which says that,

when played against s, φ(d) and d produce exactly the same sets of traces (including,
in particular, t), whereas every trace produced by ψ(d′) is either also produced by d′

or is not a b-prefix of t.

Lemma 5

1. φ(d) |= s
u� iff d |= s

u�.

2. If ψ(d′) |= s
u� and u �b t then d′ |= s

u�.

Proof. The lemma holds vacuously if u is not a trace of s, so we need only show that

it holds for all u such that s
u�. Let #I(u) denote the number of input events in u. We

proceed by induction on #I(u). Take the two parts in turn:

1. For #I(u) = 0 we have both φ(d) |= s
u� and d |= s

u� by assumption that s
u�.

In the inductive case, #I(u) = n+1, hence u′a?v ≤ u for some u′ with #I(u′) =

n. By IH φ(d) |= s
u′
� iff d |= s

u′
�. Note that, since a?v is the last input event in

u, we have:

(i) d |= s
u� iff (d |= s

u′
�) ∧ (da(u′) = v)

(ii) φ(d) |= s
u� iff (φ(d) |= s

u′
�) ∧ (φ(d)a(u′) = v)

Thus it suffices to show that, if d |= s
u′
� then da(u′) = φ(d)a(u′). Let da(u′) =

w. Then, since s
u′a?v� and the IOLTS is input-neutral, we have s

u′a?w� . Hence,
since u′ ��a u

′, by definition of φ(d)a we have φ(d)a(u′) = w.

2. Assume ψ(d′) |= s
u� and u �b t. The base case is as for part 1. In the inductive

case, again we have #I(u) = n+1, hence u′a?v ≤ u for some u′ with #I(u′) = n.

By assumption of u �b t we have u′ �b t, hence by IH d′ |= s
u′
�. Thus it suffices

to show d′
a(u′) = v. We proceed by cases according to whether a � b.

If a �� b, let w = d′
a(u′). Then, since s

u′a?v� and the IOLTS is input-neutral, we

have s
u′a?w� . Thus, by definition of ψ(d′), ψ(d′)a(u′) = w. But, by assumption of

ψ(d′) |= s
u�, we have ψ(d′)a(u′) = v, hence w = v.

If a � b then, from u �b t, we have u′a?v �a t. Thus u′′a?v ≤ t and
u′′ =a u′, for some u′′. Thus da(u′′) = da(u′) = v. But, since d =b d′ and
a � b, we have d′

a = da, hence d′
a(u′) = v. ��

Non-Interference for Deterministic Interactive Programs 63

Proposition 4. φ(d), ψ(d′) are a counterexample to SS-NI.

Proof. By part 1 of Lemma 5, φ(d) |= s
t�. Now suppose ψ(d′) |= s

t′� and t′ =b t.

But then t′ �b t and hence, by part 2 of Lemma 5, d′ |= s
t′�, contradicting the original

assumption that d,d′ are a counterexample to NI. ��
This concludes the proof of Theorem 2.

5 Conclusions

We have defined a notion of Input-Output Labelled Transition System (IOLTS) suitable
for modelling interactive programming languages. Following previous work by Wit-
tbold and Johnson [16] and O’Neill, Clarkson and Chong [14] we have defined a notion
of non-interference (NI) for IOLTS, modelling the users’ input behaviours as strategies.
Our main result has been to show that, for deterministic IOLTS, a simpler definition of
NI, based on a stream model of user input, is equivalent.

5.1 Non-Interference and Nondeterminism

The definition of NI we use in this paper is (essentially) the one used for deterministic
programs in [14]. However, although the definition can also be applied to nondetermin-
istic programs (as our use of it illustrates) it is interesting to note that the authors of
[14] actually modify the definition when they add non-determinism to the language.
(Unfortunately, in modifying it, they render it unable to distinguish between the inse-
cure Program 1b and its secure variant Program 1a). The modification is motivated by
the desire to avoid so-called refinement attacks, in which refining a secure program (re-
moving some nondeterminism) renders it insecure. We chose not to follow this route
since it identifies two uses of nondeterminism which we prefer to differentiate: the use
of nondeterminism to allow under-specification, and the use of nondeterminism as a
programming construct, essentially as a source of deliberate “noise” intended to disrupt
information flows. It is this latter use which is relevant in the covert channel examples
described above.

But there is a possible weakness in the security delivered by our version of NI for
nondeterministic programs. Consider the following example:

input x from H
if (1 | x) then

output 0 to L
else

while (true) do skip

(Recall that | here is nondeterministic choice.) This program is NI by our definition.
Whether it should be regarded as secure depends on our assumptions about the observ-
ability of non-termination in the presence of nondeterminism. If we wish to make the
definition of NI sensitive to the possibility of non-termination in this example, we might
use a more sophisticated definition based, for example, on a form of bisimulation rather

64 D. Clark and S. Hunt

than trace-equivalence. This approach would suggest transposing the problem into a
process algebraic setting, as explored in [7] (see Section 5.2 for further discussion on
this point). Alternatively, we might consider weakening the definition of NI to make
it, more generally, termination insensitive. In the latter case it would be interesting to
try to adapt the work of [5] to establish computational bounds on the rate at which
information could be leaked.

5.2 Future Work

Our longer term goal is to be able to reason about the security properties of programs in
interaction with their environments in a compositional way. Ideally we do not want to
treat these two actors differently. One stumbling block we face in achieving this is that a
very common environment for a program is another program or even a set of programs.
What is the relationship between programs and strategies?

A strategy is defined in Wittbold and Johnson [16] as a map from the history of inputs
and outputs on a given channel to the next input on that channel. There is no compu-
tational content in that definition and, in general, a strategy could be non-computable
(and clearly not representable by a program). On the other hand, not every program has
a semantics which can be characterised as providing an appropriate input to another
program whenever it is required. In fact the setting in which Wittbold and Johnson in-
troduce strategies is a purely synchronous one in which inputs are always supplied to the
program. So, in particular, a program written in the interactive core imperative language
defined in this paper will not in general define a strategy for another program written
in the same language, or even define a strategy at all. Consider for example a program
which only updates its internal state and never engages with input or output at all.

If we assume the programs are interacting in an asynchronous fashion, a program
which expects input on a given channel may never get it from the other programs in
its environment. Even supposing a program is structured correctly so that it acts as a
strategy for another program (and presumably vice versa) termination problems may
mean that it never produces an expected output. For example:

P1:
input x from H;
input z from L;
output (z XOR x) on H;

P2:
output y on H;
while(x < 0) x--;
output x on L;
input w from H;

Program P2 will provide input for Program P1 on L only some of the time. It could
be described as a partial strategy. Any reasoning about environments formed from pro-
grams would have to take partiality into account.

There are two directions in which we could take this work.

Non-Interference for Deterministic Interactive Programs 65

We could continue to model environments as strategies and ask what kinds of sys-
tems could be strategies for each other and ask what kinds of constraints on the sys-
tems would that require. We have discussed some of the issues above but an interesting
enquiry along these lines is the possibility of modelling the interaction using game se-
mantics [1,2,9].

On the other hand, why constrain the model of the environment to be a strategy? Our
use of IOLTS suggests some more general formal process model might be a suitable
setting for extending our results, building on the foundational work of [7]. A potential
issue to be addressed in this case would be that sequentiality seems to be an essen-
tial characteristic of the deterministic programs on which we have focused. It may be
that security properties such as NDC and BNDC as defined in [7] are so strong as to
effectively rule out many sequential systems of interest.

Orthogonal to these two lines of enquiry is the question of probabilistic models of
the the behaviour of the environment. With respect to strategies, for example, Jürjens
has shown [13] that Gray’s security property Probabilistic Noninterference (PNI) [12]
is a generalisation of Wittbold and Johnson’s nondeducibility on strategies [16] while
Aldini, Bravetti and Gorrieri have analysed probabilistic noninterference using a prob-
abilistic process algebra [3,4].

Acknowledgments

This work was supported by EPSRC research grant EP/C545605/1 & EP/C009746/1
(Quantitative Information Flow). Thanks to Aslan Askarov, Catuscia Palamidessi,
Andrei Sabelfeld and David Sands for their encouragement and comments on early
versions of this work. We also thank the anonymous reviewers for their very helpful
criticisms and suggestions for improvement.

References

1. Abramksy, S., McCusker, G.: Game semantics. In: Berger, U., Schwichtenberg, H. (eds.)
Logic and Computation: Proc. 1997 Marktoberdorf Summer School. NATO Science Series.
Springer, Heidelberg (1998)

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for pcf. Information and Com-
putation, 409–470 (December 2000)

3. Aldini, A.: Probabilistic information flow in a process algebra. In: Larsen, K.G., Nielsen, M.
(eds.) CONCUR 2001. LNCS, vol. 2154, pp. 152–168. Springer, Heidelberg (2001)

4. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis of prob-
abilistic noninterference. J. Comput. Secur. 12(2), 191–245 (2004)

5. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninterference
leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283.
Springer, Heidelberg (2008)

6. Denning, D.E.: A lattice model of secure information flow. Comm. of the ACM 19(5), 236–
243 (1976)

7. Focardi, R., Gorrieri, R.: A classification of security properties for process algebras. J. Com-
puter Security 3(1), 5–33 (1995)

8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Symposium on Secu-
rity and Privacy, April 1982, pp. 11–20 (1982)

66 D. Clark and S. Hunt

9. Harmer, R., Mccusker, G.: A fully abstract game semantics for finite nondeterminism. In:
Proceedings of the Fourteenth Annual Symposium on Logic in Computer Science, LICS
1999, pp. 422–430. IEEE Computer Society Press, Los Alamitos (1999)

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Principles
Of Programming Languages (January 2008)

11. Hunt, S., Sands, D.: Just forget it – the semantics and enforcement of information erasure.
In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 239–253. Springer, Heidelberg
(2008)

12. Gray III, J.W.: Toward a mathematical foundation for information flow security. In: Proc. of
the 1991 Symposium on Security and Privacy, pp. 21–35. IEEE, Los Alamitos (1991)

13. Jürjens, J.: Secure information flow for concurrent processes. In: Palamidessi, C. (ed.) CON-
CUR 2000. LNCS, vol. 1877, pp. 395–409. Springer, Heidelberg (2000)

14. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive pro-
grams. In: CSFW, pp. 190–201. IEEE Computer Society, Los Alamitos (2006)

15. Shannon, C.E.: Channels with side information at the transmitter. IBM journal of Research
and Development 2(4), 289–293 (1958)

16. Wittbold, J.T., Johnson, D.M.: Information flow in nondeterministic systems. In: IEEE Sym-
posium on Security and Privacy, pp. 144–161 (1990)

	Non-Interference for Deterministic Interactive Programs
	Introduction
	Overview
	Information Flow in Interactive Programs
	Two Approaches to Defining Security
	Input-Output Labelled Transition Systems (IOLTS)
	IOLTS Example: A Simple Interactive Imperative Language

	Strategies and Non-Interference
	Strategies
	Non-Interference
	Non-Interference for Deterministic Strategies
	Non-Interference for Deterministic IOLTS

	Conclusions
	Non-Interference and Nondeterminism
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

