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Preface

The present volume contains the proceedings of the 5th International Workshop
on Formal Aspects in Security and Trust (FAST 2008), held in Malaga, Spain,
October 9-10, 2008. FAST is an event affiliated with the 13th European Sympo-
sium on Research in Computer Security (ESORICS 2008). FAST 2008 was held
under the auspices of the IFIP WG 1.7 on Foundations of Security Analysis and
Design.

The 5th International Workshop on Formal Aspects in Security and Trust
(FAST 2008) aimed at continuing the successful effort of the previous three
FAST workshop editions for fostering the cooperation among researchers in the
areas of security and trust. As computing and network infrastructures become
increasingly pervasive, and as they carry increasing economic activity, society
needs well-matched security and trust mechanisms. These interactions increas-
ingly span several enterprises and involve loosely structured communities of in-
dividuals. Participants in these activities must control interactions with their
partners based on trust policies and business logic. Trust-based decisions ef-
fectively determine the security goals for shared information and for access to
sensitive or valuable resources.

FAST sought for original papers focusing on formal aspects in: security and
trust policy models; security protocol design and analysis; formal models of
trust and reputation; logics for security and trust; distributed trust management
systems; trust-based reasoning; digital assets protection; data protection; privacy
and ID issues; information flow analysis; language-based security; security and
trust aspects in ubiquitous computing; validation/analysis tools; Web service
security/trust/privacy; GRID security; security risk assessment; case studies.

The proceedings consist of an invited paper by Gilles Barthe and 20 revised
papers selected out of 59 submissions. Each paper was reviewed by at least three
members of the Program Committee (PC).

We wish to thank the the PC members for their valuable efforts in properly
evaluating the submissions, and the ESORICS 2008 organizers for accepting
FAST as an affiliated event and for providing a perfect environment for running
the workshop.

October 2008 Pierpaolo Degano
Joshua Guttman
Fabio Martinelli
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Formal Certification of ElGamal Encryption�

A Gentle Introduction to CertiCrypt

Gilles Barthe1, Benjamin Grégoire2,3, Sylvain Heraud3,
and Santiago Zanella Béguelin2,3

1 IMDEA Software, Madrid, Spain
Gilles.Barthe@imdea.org

2 Microsoft Research - INRIA Joint Centre, France
3 INRIA Sophia Antipolis - Méditerranée, France

{Benjamin.Gregoire,Sylvain.Heraud,Santiago.Zanella}@inria.fr

Abstract. CertiCrypt [1] is a framework that assists the construction
of machine-checked cryptographic proofs that can be automatically ver-
ified by third parties. To date, CertiCrypt has been used to prove for-
mally the exact security of widely studied cryptographic systems, such
as the OAEP padding scheme and the Full Domain Hash digital signature
scheme. The purpose of this article is to provide a gentle introduction
to CertiCrypt. For concreteness, we focus on a simple but illustrative ex-
ample, namely the semantic security of the Hashed ElGamal encryption
scheme in both, the standard and the random oracle model.

1 Introduction

CertiCrypt [1] is a framework that assists the construction of machine-checked
cryptographic proofs in the style advocated by provable security [2,3]. Accord-
ing to this style, the interplay between the cryptographic system and the adver-
sary must be specified precisely and the proof of security must be established
rigorously, making explicit all the assumptions used in the process. CertiCrypt
concentrates on the game-playing approach to cryptographic proofs [4,5,6]. This
approach uses techniques that help reduce the complexity of cryptographic proofs
by structuring them in steps of manageable size. To date, CertiCrypt has been
used to prove formally the exact security of widely studied cryptographic sys-
tems, such as the OAEP padding scheme and the Full Domain Hash digital
signature scheme, and to establish results of wide applicability to cryptographic
proofs, such as the PRP/PRF Switching Lemma and the Fundamental Lemma
of game-playing.

CertiCrypt is built on top of the general purpose proof assistant Coq [7], from
which it inherits a high level of trustworthiness and the ability to provide in-
dependently verifiable evidence that proofs are correct. One long-term ambition
of CertiCrypt is to contribute to increase confidence in cryptographic proofs. In-
deed, constructing a correct security proof can be such a delicate task that some
� This work has been partially supported by the ANR project SCALP.

P. Degano, J. Guttman, and F. Martinelli (Eds.): FAST 2008, LNCS 5491, pp. 1–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 G. Barthe et al.

cryptographic systems are notorious for having flawed proofs that stood unchal-
lenged for years. The situation is even worse, as there are concerns about the
trustworthiness of cryptographic proofs in general [4,5]. As a possible solution,
Halevi [5] suggested the construction and use of dedicated tools, and singled out
some desirable features and functionalities of these tools. In a sense, CertiCrypt
provides a first step towards the completion of Halevi’s programme, although it
focuses more in delivering automation, expressiveness and high assurance, than
in providing a user interface to sketch proofs.

The main difficulty in building a tool to certify cryptographic proofs is that
they usually involve a broad set of concepts and reasoning methods, drawing
on probability, group and complexity theory. In the case of the game-playing
approach, proofs additionally rely on programming language semantics and pro-
gram transformation and verification. While all these aspects are covered in Cer-
tiCrypt, this is the first time we address some essential details that arise when
using the tool to build a concrete proof.

The purpose of this article is to provide a gentle introduction to CertiCrypt.
We give a step-by-step presentation of security proofs for (Hashed) ElGamal
encryption, in the hope of helping readers understand some fine-grained details of
the framework. Following Shoup’s introductory paper on game-based proofs [6],
we provide proofs both in the standard model, assuming that the hash function is
entropy smoothing, and in the random oracle model, assuming the hash function
is indistinguishable from a truly random function. These proofs generalize our
earlier proof of ElGamal encryption, which was presented briefly in [1].

2 Provable Security and the Game-Playing Technique

The aim of cryptography is to achieve a particular security goal, independently
of the behavior of adversaries. However, one cannot just enumerate every way an
adversary may behave to break the security goal and design a cryptographic sys-
tem to counter them all. That methodology is bound to fail because adversaries
will behave in unpredicted ways to overcome any anticipated countermeasures.
Therefore, valid proofs must establish security against all feasible adversaries.
As explained below, not all adversaries are feasible, and some restrictions on
their abilities are necessary to construct a security proof. In particular, it must
be assumed that the adversary is not omniscient (i.e. it does not know some
secrets) nor omnipotent (i.e. it cannot perform arbitrarily expensive computa-
tions). Both assumptions will be formalized using access control and resource
usage policies on the one hand, and complexity classes on the other hand.

In the flavour of the game-playing technique that is adopted by CertiCrypt,
the security goal is expressed through a probabilistic program that captures the
interaction between the cryptographic system and an adversary. In the context
of this paper, we shall focus on public-key encryption schemes and on their
semantic security (equivalently, IND-CPA security), which guarantees ciphertext
indistinguishability against chosen plaintext attacks. Informally, a public-key
encryption scheme is semantically secure if any feasible adversary that only
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knows the public key and that chooses a pair of messages (m0,m1), cannot
distinguish a scenario where it is given an encryption of m0 from a scenario where
it is given an encryption of m1. Clearly, a necessary condition for an encryption
scheme to be semantically secure is to be probabilistic, because otherwise an
adversary can just compare the encryption of m0 with the ciphertext it is given to
tell apart both scenarios. In a game-based setting, semantic security is specified
by means of the following probabilistic program:

Game IND-CPA :
(sk, pk)← KG( );
(m0, m1)← A(pk);
b $← {0, 1};
ζ ← Enc(pk, mb);
b′ ← A′(pk, ζ);
d← b = b′

Here, KG is the key generation algorithm of the scheme and Enc the encryp-
tion algorithm, whereas A and A′ are procedures representing an adversary. In
addition to the procedures that appear in the above program, the game may
involve oracles that can be called by the adversary; e.g. in Hashed ElGamal
the adversary is given access to a public hash oracle. The specification of the
IND-CPA game is completed by stating that the adversary belongs to the class of
probabilistic polynomial time (PPT) programs, and that has access to a global
variable to maintain state, read-only access to pk, but does not have access to sk
or b. There are two ways to control access to variables: one can declare a variable
as local, in which case it shall only be accessible in the scope of the procedure,
or global, in which case its access is restricted by an explicit policy.

The IND-CPA property states that the probability of an adversary guessing
which message has been encrypted is not significantly higher than 1/2. The
precise definition involves a security parameter η (which determines the scheme
parameters) and requires that the probability of d = 1 holding at the end of
the game, written PrIND-CPAη [d = 1], is negligibly close to 1/2 as a function of η.
Formally, a function ν :N → R is negligible iff

negligible(ν) def= ∀c. ∃nc. ∀n. n ≥ nc ⇒ |ν(n)| ≤ n−c

We say that a function ν is negligibly close to a constant k when the function
λη.|ν(η) − k| is negligible.

The essence of the game-playing technique is to prove a security property,
such as the IND-CPA security of an encryption scheme, through successive trans-
formations of the original attack game. More precisely, proofs that follow the
game-playing technique are organized as a sequence of transitions of the form
G,A→ G′, A′ where G and G′ are games, and A and A′ are events. The goal is
to establish for each transition PrG[A] ≤ f(PrG′ [A′]), for some monotonic func-
tion f . By combining the consecutive inequalities drawn from each transition,
one can extract from a game-based proof an inequality PrG0 [A0] ≤ f(PrGn [An]).
Thus, if G0, A0 denotes the original attack game and event, one can obtain a
bound of PrG0 [A0] from a bound of PrGn [An].
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In many cases, transitions G,A → G′, A′ are such that PrG[A] = PrG′ [A′].
Such transitions, which are called bridging steps, include semantics-preserving
program transformations. Formally, semantics preservation is defined by means
of probabilistic non-interference [8], since we are only interested in preserving the
observable behavior of games. However, there are many cases in which semantics
preservation is context-dependent; to account for such cases, it is necessary to
resort to a relational logic that generalizes probabilistic non-interference and
that allows to reason modulo pre- and postconditions.

Game-based proofs also rely frequently on failure events, which help bound
the probability loss in transitions by the probability of a flag being raised. One
essential tool to reason about failure events is the so-called Fundamental Lemma:
given two games G1 and G2 whose code only differ after a certain bad flag is
raised (i.e. after an assignment bad ← true, where bad is initially set to false
and always remains raised once set), one can conclude that for any event A,
PrG1 [A ∧ ¬bad] = PrG2 [A ∧ ¬bad]. This implies in turn

|PrG1 [A]− PrG2 [A]| ≤ PrG1 [bad] = PrG2 [bad]

provided both games terminate with the same probability.
Finally, some transitions are justified by security assumptions. For instance,

the proof in Section 4.2 relies on the Decisional Diffie-Hellman assumption or
DDH assumption for short. For a family of finite cyclic groups, this assumption
states that no efficient algorithm can distinguish between triples of the form
(gx, gy, gxy) and triples of the form (gx, gy, gz), where x, y, z are uniformly sam-
pled from Zq, q is the (prime) order of the group, and g a generator. One char-
acteristic of game-based proofs is to formulate these assumptions using games;
the DDH assumption is formulated as follows

Definition 1 (DDH assumption). Consider the games

Game DDH0 :
x, y $← Zq;
d← B(gx, gy, gxy)

Game DDH1 :
x, y, z $← Zq ;
d← B(gx, gy, gz)

and define
εDDH(η) def

= |PrDDHη
0
[d = 1]− PrDDHη

1
[d = 1]|

Then, for every PPT adversary B, εDDH is a negligible function. Note that the
semantics of the above games (and in particular the order q of the group) depends
on the security parameter η.

3 An Introduction to CertiCrypt

The goal of this section is to provide a brief overview of the framework. We first
present the syntax and semantics of the language used to describe games, and
then the tools the framework provides to reason about them.
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3.1 Syntax and Semantics of Games

The lowest layer of CertiCrypt is the formalization of a probabilistic programming
language with procedure calls. Given a set V of variables and a set P of procedure
names, commands can be defined inductively by the clauses:

I ::= V ← E deterministic assignment
| V $← D random assignment
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

where E is the set of expressions and D is the set of distributions from which
values can be sampled in random assignments. Common data types and op-
erators are provided, but in order to adapt to different settings, the syntax is
user-extensible: users can define new data types and operations by providing an
adequate interpretation in terms of Coq constructions. In addition, the syntax
is typed, so that operators and expressions have a total semantics.

Games consist of a main command and an environment that maps a procedure
identifier to its declaration, consisting of a list of formal parameters, a body, and
a return expression (we use an explicit return when writing games, though),

declaration def= {params : V �; body : C; re : E}

Formally, the type of games is C × (P → declaration). The semantics of games
is defined using the measure monad M(X) of Audebaud and Paulin [9]; its type
constructor, unit and binding are defined as:

M(X) def= (X → [0, 1])→ [0, 1]

unit : X →M(X) def= λx. λf. f x

bind : M(X)→ (X →M(Y )) →M(Y )
def= λμ. λM. λf. μ(λ x. M x f)

This monad can be viewed as a specialization of the continuation monad, and
allows to provide a continuation-passing style semantics of games. Intuitively,
an element in M(X) may be interpreted as the expectation operator of a (sub)
probability distribution on X . Thus, the denotation of a game relates an initial
memory to the expectation operator of the (sub) probability distribution of final
memories that results from its execution. The denotational semantics of games
is defined internally by means of a small-step semantics that uses frames to
deal with procedure calls. From a user point of view, however, these details can
be ignored without hindering understanding; the formal definition of small-step
semantics can be found in [1]. The denotation of games is presented in Fig. 1; in
the figure we represent a memory m as a pair (m.loc,m.glob), making explicit its
local and global components. Expressions are deterministic and their semantics
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is given by a function �·�E that evaluates an expression in a given memory and
returns a value. The semantics of distributions in D is given by another function
�·�D; we give as examples the semantics of the uniform distribution on B and on
integer intervals of the form [0..n]. In the figure, we have omitted the procedure
environment E for the sake of readability. In the remainder we will frequently
make no distinction between a game G = (c, E) and its main command c when
the environment where it is evaluated either has no relevance, or is clear from
the context.

�nil� m = unit m
�i; c� m = bind (�i� m) �c�
�x← e� m = unit m{�e�E m/x}
�x $← d� m = bind (�d�D m) (λv. unit m{v/x})
�x← f(e)� m =

bind (�E(f).body� (∅{�e�D m/E(f).params}, m.glob))
(λm′. (m.loc, m′.glob){�E(f).re�E m′/x})

�if e then c1 else c2� m =
{

�c1� if �e�E m = true
�c2� if �e�E m = false

�while e do c� m = �if e then c; while e do c� m

�{0, 1}�D m = λf.
1
2

f(true) +
1
2

f(false)

�[0..e]�D m = λf.
n∑

i=0

1
n + 1

f(i) where n = �e�E m

Fig. 1. Denotational semantics of games

CertiCrypt provides an alternative, more convenient rule for while loops:

�while e do c� m f = sup{�[while e do c]n� m f : n ∈ N}

where [while e do c]n is the n-step unrolling of the loop, i.e.

[while e do c]0 = nil
[while e do c]n+1 = if e then c; [while e do c]n

Note that the function �·� maps M to M(M), but it is trivial to define a seman-
tic function �·�′ from M(M) to M(M) using the bind operator of the monad:
�G�′ μ def= bind μ �G�. One of the major advantages of using the monad M(M)
is that the probability of an event A, represented as a Boolean predicate over
memories, can be readily defined using the characteristic function IA of A:

PrG,m[A] def= �G� m IA (1)

In what follows, we sometimes omit the initial memory m; in that case one may
safely assume that the memory initially maps variables to default values of the
right type.
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3.2 Reasoning about Games

In game-based proofs, bridging steps correspond in a sense to semantics pre-
serving transformations; they are used to restate the way certain quantities
are computed to prepare the ground for a subsequent transformation. Hence, in a
bridging step from G,A to G′, A′ the goal is to establish PrG,m[A] = PrG′,m[A′].
If we take a look at definition (1), this amounts to proving that �G� m IA =
�G′� m IA′ , or generalizing this to a pair of initial memories m1,m2 and arbitrary
functions f, g :M→ [0, 1], that �G� m1 f = �G′� m2 g.

The main tool CertiCrypt provides to establish such equalities is the relational
logic pRHL, which generalizes Relational Hoare Logic [10] to a probabilistic set-
ting. Judgments in pRHL are of the form |= G1 ∼ G2 : Ψ ⇒ Φ, where G1 and
G2 are games, and Ψ and Φ are relations over deterministic states. A judgment
|= G1 ∼ G2 : Ψ ⇒ Φ is valid iff for every pair of initial memories m1,m2 such
that m1 Ψ m2, �G1� m1 ∼Φ �G2� m2 holds. The relation ∼Φ is a lifting of Φ to
measures. If Φ is a PER, the definition of ∼Φ is rather intuitive:

μ1 ∼Φ μ2
def= ∀a. μ1 I[a] = μ2 I[a]

where I[a] is the characteristic function of the equivalence class of a. The defini-
tion of ∼Φ for arbitrary relations is less immediate, and involves an existential
quantification:

range P μ def= ∀f. (∀a. P a⇒ f a = 0)⇒ μ f = 0
μ1 ∼Φ μ2

def= ∃μ. π1(μ) = μ1 ∧ π2(μ) = μ2 ∧ range Φ μ

where the projections of μ are defined as

π1(μ) def= bind μ (λp.unit (fst p)) π2(μ) def= bind μ (λp.unit (snd p))

This definition stems from work on probabilistic bisimulations, and generalizes
lifting to arbitrary relations. Both definitions coincide for PERs [11].

In order to reason about pRHL judgments, CertiCrypt provides a set of derived
rules and a (partial) weakest precondition calculus. The rules can be found in [1].
An important implication of a pRHL judgment |= G1 ∼ G2 : Ψ ⇒ Φ, is that if
two functions f and g are unable to distinguish memories in the Φ relation, i.e.

∀m1 m2. m1 Φ m2 ⇒ f m1 = g m2

then
∀m1 m2. m1 Ψ m2 ⇒ �G1� m1 f = �G2� m2 g (=��)

In particular, if Φ is the equality on the free variables of a Boolean predicate A,
we obtain PrG1,m1 [A] = PrG2,m2 [A]. This property extends to the ≤ relation.

By specializing pRHL judgments to equality predicates on sets of variables,
one recovers probabilistic non-interference: given a set X of variables, define

m1 =X m2
def= ∀x ∈ X,m1 x = m2 x
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Probabilistic non-interference w.r.t. a set I of input variables and a set O of
output variables is defined as |= · ∼ · : =I ⇒ =O, we use |= · �I

O · as a
shorthand.

CertiCrypt provides several tools to reason about non-interference. In partic-
ular, CertiCrypt implements several tactics that help establish non-interference
or reduce it to a simpler goal. For example, the tactic eqobs in implements a
semi-decision procedure for judgments of the form |= c, E �I

O c, E′. Other tac-
tics, such as eqobs hd, eqobs tl, eqobs ctxt, deadcode, and swap simplify the
goal by using functions that take games c1, E1 and c2, E2 and sets of variables
I,O and return c′1, c

′
2 and I ′, O′ such that

|= c′1, E1 �I′
O′ c′2, E2 ⇒ |= c1, E1 �I

O c2, E2

The tactics differ in their strategy to compute c′1, c
′
2 and I ′, O′. Tactic eqobs tl

searches for a maximal common prefix c such that c1 = c; c′1 and c2 = c; c′2,
eqobs hd searches similarly for a maximal suffix, and eqobs ctxt combines
both. The tactic swap rearranges instructions in programs to generate a largest
common suffix while preserving observational equivalence, i.e. c′1 = ĉ1; c and
c′2 = ĉ2; c are permutations of c1 and c2 (and I ′ = I and O′ = O). The tactic
deadcode produces slices of the original commands using the variables in O as
slicing criteria.

In addition, CertiCrypt automates other common program transformations:
expression propagation (ep), variable allocation (alloc), and inlining (inline).
These tactics are shown to preserve non-interference. The tactic sinline com-
bines inline, alloc, ep, and deadcode in one powerful tactic.

To be able to deal with procedure calls the tactics need information about
procedures in the environment of games. This information cannot be computed
recursively due to the presence of adversaries whose code is unknown. Given
two environments E1 and E2, and a procedure f , tactics assume the following
information is given:

– For each environment: a set Wi of global variables that f might modify, sets
Ii and Oi of global variables, and a subset Pi of its formal parameters such
that for every execution of the body of the procedure, the final values of
variables in Oi ∪ fv(Ei(f).re) depend only on the initial values of variables
in Ii ∪ Pi. Formally,

Wi = globals(modifies(Ei(f).body, Ei)) ∧
Pi ⊆ Ei(f).params ∧
|= Ei(f).body, Ei �Ii∪Pi

Oi∪fv(Ei(f).re) Ei(f).body, Ei

(modifies computes an over approximation of the variables modified by a
piece of code.) This information is used by the tactics swap, deadcode, ep,
and inline;

– Relational information: sets I and O of global variables, and a subset P
of the formal parameters of f such that the execution of the body of f
in each environment, starting from memories equal on variables in I ∪ P ,
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results in measures equivalent on O ∪ fv(Ei(f).re). We further require that
E1(f).re = E2(f).re. Formally,

P ⊆ E1.(f).params ∧ P ⊆ E2.(f).params ∧
|= E1(f).body, E1 �I∪P

O∪fv(Ei(f).re) E2(f).body, E2

This information is used by tactics eqobs in, eqobs hd, and eqobs tl.

CertiCrypt provides several mechanisms to build the above information incre-
mentally and automatically when the bodies of procedures in E1 and E2 are
observationally equivalent modulo expression propagation and dead code elim-
ination. It is also possible to derive the information for an adversary from the
information about the oracles it may call. This is possible provided the adversary
is well-formed, since in this case we know that the adversary and any subpro-
cedures it may call respect an access control policy (O,RO,RW): they may
only call oracles in O, read global variables in RO, and read or modify global
variables in RW .

As said before, some transformations performed during proofs are context-
dependent. CertiCrypt allows for a rich specification of the context in which a
transformation is valid using program invariants. Tactics are thus extended to
deal with invariants on global variables; the information they use is specified
instead by judgments of the form

|= c1, E1 ∼ c2, E2 : =I ∧ φ⇒ =O ∧ φ

4 Semantic Security of Hashed ElGamal Encryption

Let G be a cyclic group of prime order q and g a generator, and let (Hk)k∈K be
a family of keyed hash functions mapping elements in G to bitstrings of a certain
length 
. Hashed ElGamal is a public-key encryption scheme whose security is
believed to be related to the discrete logarithm problem in G. Its key generation,
encryption and decryption algorithms are defined as follows:

KG( ) def= k $← K; x $← Zq; return ((k, x), (k, gx))
Enc(k, α,m) def= y $← Zq; h← Hk(αy); return (gy, h⊕m)
Dec(k, x, β, ζ) def= h← Hk(βx); return h⊕ ζ

The plaintext space of Hashed ElGamal is {0, 1}�, in contrast to the original
ElGamal encryption scheme whose plaintext space is simply G.

In the remainder of this section we present game-based proofs of the semantic
security of Hashed ElGamal encryption in two different settings. The first proof is
done in the standard model of cryptography; it assumes that the family (Hk)k∈K

of hash functions is entropy smoothing and reduces semantic security to the
hardness of the DDH problem. The second proof is done in the Random Oracle
Model (ROM); it assumes hash functions behave as perfectly random functions
and reduces semantic security to the hardness of the (list) CDH problem.
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To formalize the proofs in CertiCrypt we first need to extend the syntax and
semantics of games to include the types and operators used in the description
of the scheme that are not already defined. As explained in Sec. 3, this is done
in a modular way. We declare a family of cyclic groups (Gη)η∈N

indexed by the
security parameter and extend the types of the language with user-defined types
for elements in Gη and bitstrings of length 
. We extend D with the uniform
distribution on bitstrings of length 
. We finally extend the language operators
with nullary operators q and g to retrieve the order and a generator of Gη

respectively, binary operators for the product and power in the group, and ⊕
for exclusive or on bitstrings of length 
. For the security proof in the standard
model, we represent the hash function of the scheme as a binary operator taking
a key in K and a value in Gη and returning a bitstring of length 
, whereas in
the proof in the random oracle model we directly encode the hash function as a
procedure and no further extensions are needed.

4.1 Security in the Standard Model

The proof we present next relies on two assumptions: the assumption that the
family of hash functions (Hk)k∈K is entropy smoothing, and the hardness of the
DDH problem in Gη. The latter assumption was already formalized in Sec. 2 as
Definition 1. The former is formally stated below.

Definition 2 (Entropy Smoothing (ES) assumption). Consider the games

Game ES0 :
k $← K; h $← {0, 1}�;
d← D(h)

Game ES1 :
k $← K; z $← Zq;
d← D(H(k, gz))

and define
εES(η)

def
= |PrES0 [d = 1]− PrES1 [d = 1]|

Then, for every PPT adversary D, εES is a negligible function.

To avoid cluttering the description of games, we slightly modify the presentation
of the key generation algorithm: instead of returning the hash key as a component
of the secret and public key, we model it as a global variable k. This will allow
us at the same time to nicely illustrate the use of global variables in CertiCrypt.

Theorem 1 (Security of Hashed ElGamal in the standard model). For
every PPT and well-formed adversary (A,A′),∣∣∣∣PrIND-CPA[d]− 1

2

∣∣∣∣ ≤ εDDH(η) + εES(η)

Furthermore, under the DDH and ES assumptions, PrIND-CPA[d] is negligibly close
to 1

2 .

Figure 2 gives an overview of the proof; proof scripts appear inside grey boxes.
We model the adversary as two procedures sharing state via global variables in
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Game IND-CPA :
(x, α)← KG( );
(m0, m1)← A(α);
b $← {0, 1};
(β, v)← Enc(α, mb);
b′ ← A′(α, β, v);
d← b = b′

�GA
d

Game G1 :
k $← K; x, y $← Zq;
(m0, m1)← A(gx);
b $← {0, 1};
h← H(k, gxy);
v ← h⊕mb;
b′ ← A′(gx, gy, v);
d← b = b′

�GA
d

Game DDH0 :
x, y $← Zq;
d← B(gx, gy, gxy)

Adversary B(α, β, γ) :
k $← K;
(m0, m1)← A(α);
b $← {0, 1};
h← H(k, γ);
b′ ← A′(α, β, h⊕mb);
return b = b′

Game DDH1 :
x, y, z $← Zq;
d← B(gx, gy, gz)

�GA
d

Game G3 :
k $← K; x, y $← Zq;
(m0, m1)← A(gx);
b $← {0, 1};
v $← {0, 1}�;
h← v ⊕mb;
b′ ← A′(gx, gy, v);
d← b = b′

�GA
d

Game G2 :
k $← K; x, y $← Zq;
(m0, m1)← A(gx);
b $← {0, 1};
h $← {0, 1}�;
v ← h⊕mb;
b′ ← A′(gx, gy, v);
d← b = b′

�GA
d

Game ES0 :
k $← K; h $← {0, 1}�;
d← D(h)

Adversary D(h) :
x, y $← Zq;
(m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, h⊕mb);
return b = b′

Game ES1 :
k $← K; z $← Zq ;
d← D(H(k, gz))

sinline l i KG;
sinline l i Enc;
swap i; eqobs in i

eqobs ctxt i;
clean nm i;
apply equiv sub;
apply opt sampling

sinline r i B;
swap i; eqobs in i

sinline r i D;
swap i; eqobs in i

inline l i B;
inline r i D;
ep i; deadcode i;
swap i; eqobs in i

Fig. 2. Game-based proof of semantic security of Hashed ElGamal encryption in the
standard model

GA. The well-formedness condition simply states that the adversary has read-
only access to k and that it cannot call procedures named B or D as these are
the names reserved for adversaries in the reduction. Note that this is without
loss of generality, and the adversary is free to define and call any other private
procedures of its own as long as they are also well-formed. The information i
used by the tactics is thus inferred automatically.
We begin by proving

PrIND-CPA[d] = PrDDH0 [d] (2)

For clarity, we introduce an intermediate game G1 and show that

|= IND-CPA �GA
d G1 and |= G1 �GA

d DDH0
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Since the � relation is transitive,

|= c �I
O c′ |= c′ �I

O c′′

|= c �I
O c′′

[R-Trans]

we obtain |= IND-CPA �GA
d DDH0. Equation (2) follows then from (=��). Next

we show that
PrDDH1 [d] = PrES1 [d] (3)

To this end, we prove first |= DDH1 �GA
d ES1. We illustrate this transition in

detail, showing the intermediate goals obtained after applying each tactic in the
proof script:

x, y, z $← Zq; d← B(gx, gy, gz) �GA
d

k $← K; z $← Zq; d← D(H(k, gz))

inline l i B; inline r i D
x, y, z $← Zq; α← gx; β ← gy; γ ← gz;
k $← K; (m0, m1)← A(α);
b $← {0, 1}; h← H(k, γ);
b′ ← A′(α, β, h⊕mb); d← b = b′

�GA
d

k $← K; z $← Zq; h← H(k, gz);
x, y $← Zq ; (m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, h⊕mb); d← b = b′

ep i
x, y, z $← Zq; α← gx; β ← gy; γ ← gz;
k $← K; (m0, m1)← A(gx);
b $← {0, 1}; h← H(k, gz);
b′ ← A′(gx, gy, H(k, gz)⊕mb);
d← b = b′

�GA
d

k $← K; z $← Zq; h← H(k, gz);
x, y $← Zq ; (m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, H(k, gz)⊕mb);
d← b = b′

deadcode i
x, y, z $← Zq;
k $← K; (m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, H(k, gz)⊕mb);
d← b = b′

�GA
d

k $← K; z $← Zq;
x, y $← Zq ; (m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, H(k, gz)⊕mb);
d← b = b′

swap i
x, y, z $← Zq;
k $← K; (m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, H(k, gz)⊕mb);
d← b = b′

�GA
d

x, y, z $← Zq ;
k $← K; (m0, m1)← A(gx);
b $← {0, 1};
b′ ← A′(gx, gy, H(k, gz)⊕mb);
d← b = b′

eqobs in i

We first inline the calls to B and D in each game. When inlining a procedure
call, the expressions appearing in the list of actual parameters are assigned to
the corresponding formal parameters appearing in its declaration and the return
expression is assigned to the return variable. We use ep to propagate assignments
along the game, and deadcode to eliminate instructions that do not affect —
either directly or indirectly— the value of d. (The tactic sinline would achieve
the same result as this combination of tactics.) At this point the resulting pro-
grams are the same modulo reordering of instructions; we use swap to rearrange
the instructions of the program in the right hand side in the same order as in
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the program in the left hand side. The tactic eqobs in concludes by perform-
ing a dependency analysis to show that in the resulting program the value of d
depends only on the initial value of variables in GA.

Finally, we show that
PrES0 [d] = PrG3 [d] (4)

As before, we introduce an intermediate game G2 and prove |= ES0 �GA
d G2,

and |= G2 �GA
d G3. By [R-Trans] we get |= ES0 �GA

d G3 which together with
(=��) gives (4). The transition from ES0 to G2 is similar to the one detailed
above. However, the transition from G2 to G3 is more interesting since we use
an algebraic property of ⊕ which we call optimistic sampling:

|= x $← {0, 1}�; y ← x⊕ z �{z}
{x,y,z} y $← {0, 1}�;x← y ⊕ z (5)

Let us give a step-by-step trace of the interaction with CertiCrypt:

k $← K; x, y $← Zq;
(m0, m1)← A(gx); b $← {0, 1};
h $← {0, 1}�; v ← h⊕mb;
b′ ← A′(gx, gy, v);
d← b = b′

�GA
d

k $← K; x, y $← Zq;
(m0, m1)← A(gx); b $← {0, 1};
v $← {0, 1}�; h← v ⊕mb;
b′ ← A′(gx, gy, v);
d← b = b′

eqobs ctxt i

h $← {0, 1}�; v ← h⊕mb �{k,x,y,m0,m1,b}∪GA
{k,x,y,b,v}∪GA v $← {0, 1}�; h← v ⊕mb

clean nm

h $← {0, 1}�; v ← h⊕mb �{k,x,y,m0,m1,b}∪GA
{v} v $← {0, 1}�; h← v ⊕mb

apply equiv sub

h $← {0, 1}�; v ← h⊕mb �{mb}
{h,v,mb} v $← {0, 1}�; h← v ⊕mb

apply opt sampling

First, eqobs ctxt is used to remove the common prefix and suffix in the pro-
grams. Then, clean nm removes from the output set the variables appearing in
the input set that are not modified throughout the programs. This is justified
by the rule:

X ∩modifies(c1) = ∅ X ∩modifies(c2) = ∅ X ⊆ I |= c1 �I
O c2

|= c1 �I
O∪X c2

Finally, we apply the subsumption rule

I ′ ⊆ I |= c1 �I
O c2 O ⊆ O′

|= c1 �I′
O′ c2

[R-Sub]

to strengthen the postcondition and weaken the precondition so as to obtain
a goal that suits the statement of optimistic sampling (5), which allows us to
conclude the proof.

The last transition effectively removed the dependency of v on b, and thus the
dependency of b′ on b. It is then easy to prove that

PrG3 [d] =
1
2

(6)
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Indeed, in G3 the variable b is only used to compute h, which is not used anymore.
We can use tactics swap and deadcode to prove that the game is equivalent to
a game where b is sampled after calling A′. Since ∀G e d, PrG;d←e[d] = PrG[e],
we have PrG3 [d] = PrG3 [b = b′]. To conclude, we use the fact that for any game
G and Boolean variables b, b′, PrG;b $←{0,1}[b = b′] = 1

2 , provided G is absolutely
terminating. CertiCrypt provides a semi-decision procedure for absolute termi-
nation which can automatically discharge this condition for G3 based on the
assumption that A and A′ are PPT procedures and thus absolutely terminating.

To summarize, from Equations (2), (3), (4), and (6) we obtain

|PrIND-CPA[d]− 1
2 | = |PrDDH0 [d]− 1

2 |
= |PrDDH0 [d]− PrDDH1 [d] + PrDDH1 [d]− 1

2 |
≤ |PrDDH0 [d]− PrDDH1 [d]|+ |PrDDH1 [d]− 1

2 |
= |PrDDH0 [d]− PrDDH1 [d]|+ |PrES1 [d]− 1

2 |
= |PrDDH0 [d]− PrDDH1 [d]|+ |PrES1 [d]− PrG3 [d]|
= |PrDDH0 [d]− PrDDH1 [d]|+ |PrES1 [d]− PrES0 [d]|
= εDDH(η) + εES(η)

From the above equation, PrIND-CPA[d] is negligibly close to 1
2 under the DDH

and ES assumptions. It suffices to check that the adversaries B and D used in the
reduction are PPT procedures. This is indeed the case because we assumed that
both A and A′ are PPT procedures. In CertiCrypt, the tactic PPT proc proves
this automatically.

4.2 Security in the Random Oracle Model

Hashed ElGamal encryption is semantically secure in the random oracle model
under the Computational Diffie-Hellman (CDH) assumption on the underlying
group family (Gη)η∈N. This is the assumption that it is hard to compute gxy

given gx and gy where x and y are uniformly random elements in Zq. If the DDH
assumption holds for the group family, then it is computationally unfeasible to
test the success of an adversary against CDH (knowing only gx and gy). For this
reason, we consider the following slightly different formulation that is equivalent
in an asymptotic setting.

Definition 3 (List CDH assumption). Consider the game

Game LCDH :
x, y $← Zq;
L← C(gx, gy)

and define
εLCDH(η) def

= PrLCDH[gxy ∈ L]

Then, for every PPT adversary C, εLCDH is a negligible function.

The DDH assumption implies the CDH assumption which in turns is equivalent
to the list CDH assumption. To see this, note that an adversary against list



Formal Certification of ElGamal Encryption 15

CDH whit a non-negligible advantage can be converted into an adversary against
CDH by returning a random element in the result list L; since L is necessarily
of polynomial size, the list CDH advantage of the resulting adversary is still
non-negligible.

Theorem 2 (Security of Hashed ElGamal in the ROM). For every PPT
and well-formed adversary (A,A′),∣∣∣∣PrIND-CPA[d]− 1

2

∣∣∣∣ ≤ εLCDH(η)

Furthermore, under the CDH assumption, PrIND-CPA[d] is negligibly close to 1
2 .

What allows us to achieve semantic security under a (possibly) weaker assump-
tion on the group family is a stronger assumption about the underlying family
of hash functions. In the random oracle model, we model hash functions as truly
random functions represented as stateful procedures. Queries are answered con-
sistently: if some value is queried twice, the same response is given. In this model,
there is no reason to continue viewing hash functions as keyed, so in the following
we drop hash keys in the formalization.

The proof is sketched in Figure 3. The figure shows the sequence of games
used to relate the success of the IND-CPA adversary in the original attack game
to the success of the list CDH adversary C in game LCDH; the definition of the
hash oracle is shown alongside each game. As in the proof in the standard model,
we begin by inlining the calls to KG and Enc in the IND-CPA game to obtain an
observationally equivalent game G1 such that

PrIND-CPA[b = b′] = PrG1 [b = b′] (7)

Then, we perform a nonlocal program transformation: at the beginning of the
game we sample the value h+ that the hash oracle gives in response to gxy.
This is an instance of lazy sampling, a technique automated in CertiCrypt that
is described in greater detail in [1]. We get

PrG1 [b = b′] = PrG2 [b = b′] (8)

We can then modify the hash oracle so to not store in L the response given to a
gxy query; this will later let us remove h+ altogether from the hash oracle. To
do this, define the following relational invariant

φ23
def= (Λ ∈ dom(L) =⇒ L[Λ] = h+)〈1〉 ∧
∀λ, λ �= Λ〈1〉 =⇒ L[λ]〈1〉 = L[λ]〈2〉

where by e〈1〉 (resp., e〈2〉) we mean the value that expression e takes in the left
hand side (resp., right hand side) program. It is easy to prove that oracles H2
and H3 are semantically equivalent under this invariant and preserve it. Since
φ23 is established just before calling A and is preserved throughout the games,
we can prove |= G2 ∼ G3 : GA ⇒ {b, b′} ∧ φ23 by inlining the call to H in game
G2, hence

PrG2 [b = b′] = PrG3 [b = b′] (9)
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Game IND-CPA :
L← [ ];
(x,α)← KG( );
(m0, m1)← A(α);
b $← {0, 1};
(β, v)←Enc(α, mb);
b′ ← A′(α, β, v)

Oracle H(λ) :
if λ �∈ dom(L) then

h $← {0, 1}�;
L← (λ, h) ::L

else h← L(λ)
return h

�GA
{b,b′}

Game G1 :
L← [ ]; x, y $← Zq;
(m0, m1)← A(gx);
b $← {0, 1};
h← H(gxy);
v ← h⊕mb;
b′ ← A′(gx, gy, v)

Oracle H(λ) :
if λ �∈ dom(L) then

h $← {0, 1}�;
L← (λ, h) ::L

else h← L(λ)
return h

�GA
{b,b′}

Game G2 :
h+ $← {0, 1}�;
L← [ ]; x, y $← Zq;
Λ← gxy;
(m0, m1)← A(gx);
b $← {0, 1};
h← H(Λ);
v ← h⊕mb;
b′ ← A′(gx, gy, v)

Oracle H2(λ) :
if λ �∈ dom(L) then

if λ = Λ then
h← h+;

else h $← {0, 1}�
L← (λ, h) ::L

else h← L(λ)
return h

∼GA
{b,b′}∧φ23

Game G3 :
h+ $← {0, 1}�;
L← [ ]; x, y $← Zq;
Λ← gxy;
(m0, m1)← A(gx);
b $← {0, 1};
h← h+;
v ← h⊕mb;
b′ ← A′(gx, gy, v)

Oracle H3(λ) :
if λ = Λ then

h← h+

else
if λ �∈ dom(L) then

h $← {0, 1}�
L← (λ, h) ::L

else h← L(λ)
return h

∼GA
{L,Λ,b,b′}∧(bad=⇒Λ∈dom(L))〈1〉

Game G4 G5 :
bad← false;
h+ $← {0, 1}�;
L ← [ ]; x, y $← Zq;
Λ← gxy;
(m0, m1)← A(gx);
b $← {0, 1};
v ← h+ ⊕mb;
b′ ← A′(gx, gy, v)

Oracle H4,5(λ) :
if λ �∈ dom(L) then

if λ = Λ then
bad← true;
h← h+

h $← {0, 1}�
else h $← {0, 1}�
L ← (λ, h) ::L

else h← L(λ)
return h

Game G6 :
L ← [ ]; x, y $← Zq;
Λ← gxy;
(m0, m1)← A(gx);
b $← {0, 1};
v $← {0, 1}�;
h+ ← v ⊕mb;
b′ ← A′(gx, gy, v)

Oracle H(λ) :
if λ �∈ dom(L) then

h $← {0, 1}�;
L ← (λ, h) ::L

else h← L(λ)
return h

�GA
{L,x,y}

Game LCDH :
x, y $← Zq;
L′ ← C(gx, gy)
Adversary C(α, β) :
L ← [ ];
(m0, m1)← A(α);
v $← {0, 1}�;
b′ ← A′(α, β, v)
return dom(L)

Oracle H(λ) :
if λ �∈ dom(L) then

h $← {0, 1}�;
L ← (λ, h) ::L

else h← L(λ)
return h

Fig. 3. Game-based proof of semantic security of Hashed ElGamal encryption in the
Random Oracle Model

Then, we undo the modification to the hash oracle to prove that games G3 and
G4 are observationally equivalent, i.e. |= G3 �GA

{b,b′} G4, from which we obtain

PrG3 [b = b′] = PrG4 [b = b′] (10)

Games G4 and G5 are syntactically equal to up to the point where the flag bad
is raised. From the Fundamental Lemma described in Sec. 2, it follows that
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|PrG4 [b = b′]− PrG5 [b = b′]| ≤ PrG5 [bad] (11)

We then prove

|= G5 ∼ G6 : =GA ⇒ ={L,Λ,b,b′} ∧ (bad =⇒ Λ ∈ dom(L))〈1〉

Using ep we coalesce the branches in the innermost conditional statement of H5
to recover the original hash oracle. We defer the sampling of h+ in G5 to the
point just before computing v using swap, and we substitute

v $← {0, 1}�; h+ ← v ⊕mb for h+ $← {0, 1}�; v ← h+ ⊕mb

using the equivalence (5) presented in Sec. 4.1. Thus,

PrG5 [b = b′] = PrG6 [b = b′] (12)

and by (≤��),
PrG5 [bad] ≤ PrG6 [Λ ∈ dom(L)] (13)

Observe that in G6, b′ does not depend anymore on b, so we may as well sample
b at the end of the game, thus obtaining

PrG6 [b = b′] =
1
2

(14)

We construct an adversary C against list CDH that interacts with the adversary
(A,A′) playing the role of an IND-CPA challenger. It returns the list of queries
that the adversary (A,A′) makes to the hash oracle. Observe that C does not
need to know x or y because it gets gx and gy as parameters. The success
probability of C is the same as the probability of Λ = gxy being in the domain
of L in G6. Therefore, we finally have that

PrG6 [Λ ∈ dom(L)] = PrG6 [g
xy ∈ dom(L)] = PrLCDH[gxy ∈ L′] (15)

To summarize, from Equations (7)—(15) we obtain

|PrIND-CPA[b = b′]− 1
2 | = |PrG4 [b = b′]− 1

2 |
= |PrG4 [b = b′]− PrG6 [b = b′]|
= |PrG4 [b = b′]− PrG5 [b = b′]|
≤ PrG5 [bad]
≤ PrG6 [Λ ∈ dom(L)]
= PrLCDH[gxy ∈ L′]
= εLCDH(η)

From the above equation and under the list CDH assumption (or equivalently,
under the plain CDH assumption), the IND-CPA advantage of adversary (A,A′)
results negligibly close to 1

2 . To see this, it suffices to verify that adversary C
runs in probabilistic polynomial time. This is the case because adversary (A,A′)
does, and C does not perform any costly computations.
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5 Related Work

ElGamal is a standard example of a game-based cryptographic proof that pro-
vides a benchmark against which other works can be compared. We briefly com-
ment on three proofs that are closely related to ours. For a more general account
of related work, we refer to [1].

The most recent, and closely related is a formalization in Coq of a game-based
proof of ElGamal semantic security by Nowak [12]. While we opt for a deep em-
bedding, Nowak uses a shallow embedding and models adversaries directly as
Coq functions. As a consequence, the resulting framework only provides lim-
ited support for proof automation. For the same reason, Nowak’s formalization
cannot deal with random oracles, so that he only presents the proof of Hashed
ElGamal in the standard model of cryptography. Finally, it is not clear how to
formalize complexity in the context of a shallow embedding, and Nowak’s for-
malization ignores complexity altogether; as a result, security assumptions such
as DDH cannot be modelled faithfully.

An earlier work by Barthe, Cederquist and Tarento [13] provides the foun-
dations of a formal proof of security of Signed ElGamal encryption in Coq. In
contrast to our work, they consider an idealized model of cryptography that ab-
stracts away many details of the system and the security definition. Thus, the
connection between the formalization and the security statement is not as strong
as desired.

Corin and den Hartog [14] developed a (non-relational) Hoare logic for reason-
ing about probabilistic algorithms. They used it to construct a proof of semantic
security of ElGamal encryption, but we are not aware of any other system ver-
ified using this logic. Being based on a mere probabilistic extension of Hoare
logic, their formalism is not sufficiently expressive to model the notion of PPT
complexity, and so security goals and hypotheses cannot be expressed precisely.
More generally, the logic by itself provides no means to reason about context-
dependent program transformations or transformations made in oracles.

6 Conclusion

CertiCrypt is a fully formalized framework that assists the construction of cryp-
tographic game-based proofs. Proofs in CertiCrypt rely on a minimal trusted
base and their correctness can be verified automatically by third parties. In this
paper, we have illustrated some key aspects of CertiCrypt through the formaliza-
tion of semantic security proofs of the Hashed ElGamal public-key encryption
scheme in the standard and random oracle model, and we have highlighted some
essential differences between our proofs and those that appear in the literature.

Acknowledgments. We would like to thank Daniel Hedin for his helpful comments
on an earlier draft of this work.



Formal Certification of ElGamal Encryption 19

References
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Secure Information Flow as a Safety Property�

Gérard Boudol
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Abstract. In this paper we argue that, in the perspective of developing
“security-minded” programming languages, the secure information flow
property should be defined (as well as disciplined access) as a standard
safety property, based on a notion of a security error, namely that one
should not put in a public location a value elaborated using confidential
information. We show that this is the property guaranteed by a stan-
dard security type system, and that, for a simple language, it is strictly
stronger than non-interference. Moreover, we show that this notion of
secure information flow allows us to give natural semantics to various
security-minded programming constructs, including declassification.

1 Introduction

In this work we are concerned with the issue of software security, that is, more
precisely, how to ensure that the software that we execute does not run into
security violations. There are two possible attitudes with respect to software
security:

• a defensive attitude, with the aim of protecting confidential information or
precious resources against untrusted, potentially malicious code;

• a constructive attitude, with the aim of providing tools to design, develop and
maintain secure software.

In the first case, one has to analyze compiled code before executing it, which
can be very difficult (see [5], and subsequent work by the authors), or per-
form run-time security checks to block suspicious behaviour. Clearly, it is some-
times necessary to adopt the defensive attitude, setting severe limitations to
what can be done using foreign code. But obviously, it would be preferable
to get some a priori confidence in the software we run, thus opening more
possibilities for trusted code to perform interesting interactions. Developing
“security-minded” programming languages, such as Jif [15] or Flow Caml [21],
is surely a way to enhance the trust we may have in the software we use.
This is the topic we study, from a semantical perspective, in this paper, fo-
cusing on the confidentiality dimension of security. (As it is well-known, in-
tegrity may be dealt with by duality.) More precisely, we address the following
question: what should we adopt as an appropriate semantics for a program-
ming language that includes constructs designed to dynamically handle security
issues?
� Work partially supported by the CRE FT-R&D no 46136511, and by the ANR-
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Is the Non-interference Property Appropriate?
Access control is a well-established technique to ensure a clear safety property,
namely that the code cannot read (and possibly execute) information unless
it is granted the appropriate access right. Programming constructs have been
proposed and studied to deal with access control at the application level, to
dynamically enhance, restrict or check the current access right granted to the
code (see [3,13,15,17,22]). However, it has been often argued that this is not
enough to ensure end-to-end confidentiality, and that the code should also be
checked for not disclosing confidential information it has the right to read. That
is, one should also control the flow of information implemented by a program
[10]. A static analysis for secure information flow was first proposed in [11], with
a certification mechanism which was later on identified as a type system [25].

Regarding the security property to ensure, a semantical formulation was pro-
posed by Cohen [8], under the name of strong dependency, nowadays referred
to as non-interference, following the terminology of Goguen and Meseguer. This
property states that “variety in a secret input should not be conveyed to public
output.” Then the work on static analysis of secure information flow has largely
focused on developing security type systems for various languages, with the aim
of showing a soundness result, namely that typable programs are non-interfering.
We refer to the survey [19] for a review on the work done (till 2002) in this area.

The non-interference property has been, however, a matter of debate, from var-
ious points of view (see [18]). From the programming point of view, a fundamental
observation is that non-interference rules out, by its very definition, programs that
deliberately declassify information from a confidential level to a more public one.
These programs are quite common and very useful, and therefore we should have
ways to program with declassification. The Jif language [15] for instance includes
such a downgrading facility. In [1] we argued that using declassification requires
two different kinds of guarantees (see [20] for a discussion of the various aspects of
declassification). First, the programmer has to have good reasons to think that it
is safe to declassify a value. This, however, generally requires a semantical anal-
ysis of the program, and is therefore beyond the scope of standard static means.
Second, though perhaps more modestly, the programmer would still like to have
some guarantee, hopefully ensured by static analysis, that, even when using de-
classification constructs, his code does conform to some information flow policy –
a guarantee similar to what we have with standard security type systems. Clearly
however, the standard non-interference criterion is of no help here.

In [1] we have proposed a way to deal with declassification, first by introducing
a programming construct to dynamically relax the flow policy, and then by
defining an extended notion of (termination sensitive) non-interference, based
on the notion of a bisimulation. However, although the programming construct
is, to our view, quite simple to understand, this is admittedly not the case for our
“non-disclosure” property. In particular, it is certainly not easy to find counter-
examples to this property in case type checking fails for instance. This actually
holds even without considering declassification, see [24]. As a matter of fact, it is
generally impossible to find a counter-example to non-interference for programs
that fail to type-check, simply because there is quite a deep mismatch between
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the security type system and the non-interference property. For instance, the
two programs below, where we use the ML notation ! for reading the value from
a memory location (that is, dereferencing in ML jargon):

P ; (vpublic := !usecret ) ; Q (1)

vpublic := (if !usecret then E else E′) (2)

are both rejected by a standard security type system, even though these pro-
grams are in some cases non-interfering. Indeed, the first one is non-interfering
when either P updates the contents of location u or Q updates the contents of
location v, in both cases with a value that does not depend on initial confidential
information, and the second one is non-interfering in the case where E and E′

always return the same value. However, from the intuitive point of view of secure
information flow, both contain a programming error, since both exhibit a (direct
or indirect) flow from secret to public information, and the type system is right
in rejecting these programs: one should not hope to write secure software in this
way. (Of course, in an expressive programming language, this kind of error may
arise in much more subtle ways, see [1].)

Summarizing, we found two reasons why non-interference does not provide us
with an appropriate semantical setting to use, with the purpose of developing
security-minded programming languages: one is that it does not easily account
for dynamic manipulations of the security policy, and the second is that it does
not rely on an intuitive notion of a security error that could be used to explain
why a program is faulty. It is therefore interesting to look for another security
setting, which would allow us in particular to reduce the gap with type systems.

Safe Information Flow
Some work has recently been done to find methods to make the analysis of a
program closer to the non-interference property, see [2,4,23]. Here we aim at re-
ducing the gap in the other way: as we said non-interference, or its refinements,
is not an appropriate security criterion in the programming of secure software.
As a matter of fact, non-interference does not formalize the intuitive notion of
secure information flow, which is, according to [11], that “no execution results
in a flow unless this is allowed by the information flow policy”. Obviously, to
make this definition precise, we have to give a formal meaning to “execution
results in a flow.” That is, we have to give an information-flow-aware semantics
to programs, such that, typically, it is an error to attempt executing a statement
vpublic := E if computing the value of expression E uses confidential informa-
tion, as in the examples above. This has been done long ago by Fenton with
his Data Mark Machine [12], which is a Minsky’s machine where one tracks the
confidentiality level of knowledge that is acquired, by reading at some level into
the memory, while computing a piece of code. A similar idea has been used to
give the semantics of some high-level languages [14,26,27]. This is the way we
shall follow here, as it allows one to define in a natural and simple way the notion
of a security error we are looking for, both from the access control (as in [3,17])
and information flow control point of view. Then the security property – no
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run-time security error – is a standard safety property, which, from a program-
mer’s point of view, is easy to understand. This notion of security was explicitly
stated by Fenton in [12], but, even though one finds in [14,26] a similar idea
of a security error, it seems that since Fenton’s work, this was never officially
adopted as a formal security criterion.

We show that, with respect to the formulation we have of secure information
flow as a safety property, a security type (and effect) system that extends the
one of [1,6] indeed ensures security. This type safety property (which is also sug-
gested in [14,26], for a different language, security semantics, and type system)
is not very difficult, at least when compared to the proofs of non-interference
in [1,16,27] for instance. Moreover, we prove that our safety property is in-
deed, for a simple language (without declassification), strictly stronger than
non-interference, and this shows that the gap with the type system is therefore
reduced. As far as we can see, this has never been proved before. As in [1] we have
in the language the construct (flow F in M) for locally relaxing, by extending it,
the current flow policy, and in our semantics this policy is used to dynamically
check that no illegal information flow is performed1. (Obviously, for typable pro-
grams, the type safety result ensures that these run-time checks are not needed).
To further illustrate the flexibility of the approach, we add a new, dual construct
for dynamically managing the flow policy, namely (revoke F in M), the seman-
tics of which is that the flow policy F is explicitly disallowed when executing M .
These constructs do not cause any particular difficulty when establishing type
safety, but they are obviously beyond the scope of standard non-interference. We
already explained this as regards declassification. For what concerns revocation
of a flow policy, the standard non-interference property is not appropriate either,
for a dual reason, because it would deem a program such as

(revoke public ≺ secret in usecret := ! vpublic)

secure, whereas the assignment clearly violates the current flow policy. We could
also easily add for instance to the language a construct that checks whether
or not a particular flow policy holds at the current state of computation, and
branches accordingly.

Note. For lack of space, the proofs are omitted. They can be found in the full
version of the paper

2 Secure Programs

2.1 Security (Pre-)Lattices

Since the pioneering work of Denning [10], the classical way of abstractly speci-
fying secure information flow is to use a lattice of security levels. The “objects”
– information containers – of a system are then labelled by security levels, and
information is allowed to flow from one object to another if the source object
has a lower confidentiality level than the target one. In this paper we shall base
our study on Core ML, a call-by-value λ-calculus extended with imperative con-
structs, where the “information containers,” to which security levels are assigned,
1 In [1] the operational semantics of (flow F in M) was the one of M .
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are memory locations – “references”, in ML’s jargon (in an extended setting, that
could also be files, entries in a database, or library modules).

We shall use here a slightly more flexible structure for confidentiality levels,
namely the one of a pre-lattice, that is a structure defined as a pair (L,�),
where � is a preorder relation over the set L, that is a reflexive and transitive,
but not necessarily anti-symmetric relation, such that for any x, y∈L there exist
a meet x � y and a join x � y. The pre-lattices we use are defined as follows.
We assume given a set P of principals, ranged over by p, q . . . (From an access
control perspective, these are also called permissions [3,13], or privileges [17,22],
while a “principal” is a set of permissions.) A confidentiality level is any set of
principals, that is any subset 
 of P . The intuition is that whenever 
 is the
confidentiality label of an object, i.e. a reference, it represents a set of programs
that are allowed to get the value of the object, i.e. to read the reference. Then a
confidentiality level is similar to an access-control list (i.e. a set of permissions).
From this point of view, a reference labelled P (also denoted ⊥) is a most public
one – every program is allowed to read it –, whereas the label ∅ (also denoted
�) indicates a secret reference, and reverse inclusion of security levels may be
interpreted as indicating allowed flows of information: if a reference u is labelled

, and 
 ⊇ 
′ then the value of u may be transferred to a reference v labelled

′, since the programs allowed to read this value from v were already allowed to
read it from u.

We follow the approach of [1], where the information flow policy can be dy-
namically updated, thereby modifying the security lattice that is currently in
force during execution. A flow policy is a binary relation over P . We let F , G . . .
range over such relations. A pair (p, q) ∈ F is to be understood as “informa-
tion may flow from principal p to principal q.” We denote, as usual, by F ∗ the
preorder generated by F (that is, the reflexive and transitive closure of F ). Any
flow policy F determines a preorder on confidentiality levels that extends reverse
inclusion, as follows:

� 
F �′ ⇔def ∀q ∈ �′
(∃p ∈ �. p F ∗ q or ∀p ∈ P . p F ∗ q

)
which is denoted � (instead of ⊇) when F = ∅. Clearly {p} �F {q} iff pF ∗ q,
and �F = �F∗ . For any F there is a least security level ⊥ = P , and a greatest
level with respect to �F , namely

�F = { q | ∀p ∈ P . p F ∗ q }
In particular �∅ = ∅, which we denote by �. It is not difficult to see that the
preorder �F induces a pre-lattice structure on the set of confidentiality levels,
where a meet is simply the union, and a join of 
 and 
′ is

{ q | ∀p ∈ P . p F ∗ q or ∃p ∈ �. ∃p′ ∈ �′. p F ∗ q & p′ F ∗ q }
This observation justifies the following definition.

Definition (Security Pre-Lattices) 2.1. A confidentiality level is any subset

 of the set P of principals. Given a flow policy F ⊆ P × P , the confidentiality
levels are pre-ordered by the relation

� 
F �′ ⇔def ∀q ∈ �′
(∃p ∈ �. p F ∗ q or ∀p ∈ P . p F ∗ q

)
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M, N . . . ∈ Expr ::= V | (if M then N else N ′) | (MN) expressions

| M ; N | (ref� N) | (!N) | (M := N)

| (restrict M to �) | (enable � in M) | (test � then M else N)

| (flow F in M) | (revoke F in M)

V ∈ Val ::= x | u� | λxM | tt | ff | () values

Fig. 1. Syntax

The meet and join, w.r.t. F , of two security levels 
 and 
′ are respectively given
by 
 ∪ 
′ and

� �F �′ = { q | ∀p ∈ P . p F ∗ q or ∃p ∈ �. ∃p′ ∈ �′. p F ∗ q & p′ F ∗ q }
One can see that each security level has a minimal representative with respect
to a given flow policy. More precisely, let

�↓F =def { q | ∀p ∈ P . p F ∗ q or ∃p ∈ �. p F ∗ q }

Then we have:

Lemma 2.2
(i) 
 �F 
′ ⇔ 
′ ⊆ 
↓F

(ii) 
 �F 
′ = 
↓F ∩ 
′↓F

2.2 Language

The language we consider is a higher-order imperative language à la ML, ex-
tended with constructs for dynamically granting and testing access rights, as in
[3,13,17,22], and constructs for dynamically manipulating local flow policies, as
in [1,7]. The construct (restrict M to 
) is used to restrict the access right of
M by 
 (this is similar to the “framed” expressions of [13], and to the “signed”
expressions of [17]). This is a scoping construct: the current reading clearance is
restored after termination of M . Dually, the (enable 
 in M) construct is used
to locally extend the read access right of M by 
. The test expression checks
whether a given level is granted by the current evaluation context. The local
flow declaration (flow F in M) enables the policy F to be used, in addition to
the flow policy provided by the evaluation context, while reducing M , usually
for declassification purposes. The (revoke F in M) construct is new. Its effect is
dual to the one of flow, namely, it is to disallow the flow policy F when eval-
uating M , thus enforcing a policy that is more strict than the one granted by
the evaluation context. One could also consider (check F then M else N), that
behaves like M if F is entailed by the current flow policy G (that is, F ⊆ G∗),
and like N otherwise. For more comments on the syntax, we refer to [1,3,13,17].

The syntax is given in Figure 1, where x is any variable, 
 is any confidentiality
level, and F is any flow policy. A reference is a memory location u to which is
assigned a confidentiality level 
. For reasons explained below (and in [1,6]), we
do not regard sequential composition as a derived construct. We let fv(M) be the



26 G. Boudol

set of variables occurring free in M , and we denote by {x �→V }M the capture-
avoiding substitution of V for the free occurrences of x in M , where V ∈ Val .

2.3 Operational Semantics

For the purpose of proving our main results, and more specifically Theorem 1.
below, it is convenient to formalize the operational semantics of the language
following the “big-step” style. In this format, one describes how a pair made of
an expression and an input memory reduces to a value and an output memory.
As usual, a memory μ is a mapping from a finite set dom(μ) of references to
values, and we denote by μ[u� := V ] the memory obtained by updating in μ
the value stored at reference u� into value V . We shall assume we start with a
well-formed configuration, that is a configuration where every reference which
occurs either in the expression or in a value stored in the memory is bound to
a value in the memory (that is, it belongs to the domain of the memory). This
property will be preserved by reduction.

In order to give the semantics of access control constructs, we maintain a cur-
rent reading clearance for the evaluated expression, that is a security level that
we denote by rc. Similarly, to control information flow, we maintain a current
flow policy G. (In an implementation, both these components would be com-
puted by means of a stack inspection mechanism, see [1,7].) As we said in the
Introduction, the semantics has to formalize the fact that one should not store
in a location labelled 
 a value which has been elaborated using, directly or indi-
rectly, information labelled 
′ if 
′ ��G 
, according to the flow policy G that is in
force when the storing operation is attempted. In our setting, “elaborated using
information labelled 
” means that a reference labelled 
 has been read. Then, to
control the flow of information, the semantics will compute, for each expression,
the level of knowledge that is acquired while evaluating the expression. Since
this level may also be used, in the semantics of compound expressions, as an
input for the next computing steps (as explained below), evaluation is starting
with a given security level, traditionally denoted pc, initially ⊥, that represents
the level of knowledge that has been acquired prior to reducing the expression.
Then the operational semantics of our language consists in a relation

rc; G � (pc, M, μ) ⇓m (�, V, ν)

meaning that, starting with a knowledge level pc and a memory μ in the context
of a reading clearance rc and a flow policy G, the expression M reduces to the
value V , having acquired knowledge level 
, and updates the memory into ν. In
Figure 2, we give the main rules of the semantics (the complete specification is
to be found in the full version of the paper).

The superscript m in this relation is meant to indicate that the semantics
is monitored. Indeed, we see that the side effects of an expression – creating,
reading, or updating a reference – are subject to security constraints (put into
boxes in Figure 2), to check that, in the case of !u�, the code is granted the
appropriate reading clearance, and that, in the cases of ref�V and u� := V ,
the code does not implement illegal flows. The current reading clearance rc is
modified when evaluating the constructs restrict and enable, and checked when
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rc; G � (pc, M, μ) ⇓m (�′, λxM ′, μ′)

rc; G � (pc, N, μ′) ⇓m (�′′, V ′, ν′) rc; G � (�′ �G �′′, {x �→V ′}M ′, ν′) ⇓m (�, V, ν)

rc; G � (pc, (MN), μ) ⇓m (�, V, ν)

rc; G � (pc, M, μ) ⇓m (�′, bi, μ
′) rc; G � (�′, Ni, μ

′) ⇓m (�, V, ν)

rc; G � (pc, (if M then N0 else N1), μ) ⇓m (�, V, ν)
b0 = tt , b1 = ff

rc; G � (pc, M, μ) ⇓m (�′, V ′, μ′) rc; G � (pc, N, μ′) ⇓m (�, V, ν)

rc; G � (pc, M ; N, μ) ⇓m (�, V, ν)

rc; G � (pc, N, μ) ⇓m (�′, V, ν) u� �∈ dom(ν)

rc; G � (pc, (ref�N), μ) ⇓m (pc, u�, ν ∪ {u� �→V })
�′ 	G �

rc; G � (pc, N, μ) ⇓m (�′, u�, ν) ν(u�) = V

rc; G � (pc, (!N), μ) ⇓m (� �G �′, V, ν)
� 	 rc

rc; G � (pc, M, μ) ⇓m (�0, u�, μ
′) rc; G � (pc, N, μ′) ⇓m (�1, V, ν)

rc; G � (pc, (M := N), μ) ⇓m (pc, (), ν[u� := V ])
�0 �G �1 	G �

rc; G ∪ F � (pc, M, μ) ⇓m (�, V, ν)

rc; G � (pc, (flow F in M), μ) ⇓m (pc �G (�↓G ∪ F ), V, ν)

rc; G∗ − F � (pc↓G, M, μ) ⇓m (�, V, ν)

rc; G � (pc, (revoke F in M), μ) ⇓m (�, V, ν)

Fig. 2. Big Step Monitored Evaluation (Main Rules)

a test expression is to be evaluated. Similarly, the current flow policy is updated
when evaluating the body of flow and revoke expressions.

Let us now explain how the information flow is controlled. The security level

 that is returned when evaluating an expression is built upon the level of reads
that are performed, as one can see from the semantics of (!N). Indeed, this level
remains identical to the initial pc (up to the current flow policy) when no read is
performed. However, the acquired level 
 that is returned only records the level
of the “significant” reads, those which may influence the value returned by the
expression. To see this, we have to look at the way in which the intermediate
acquired knowledge levels are transmitted – or not – when evaluating compound
expressions. The rule is that, if the fact that an expression M gains control
depends upon the particular value of a previously computed expression N , then
the level of knowledge acquired in computing N is recorded prior to evaluating
M . In particular, evaluating one of the two branches in a conditional branching
depends upon the level acquired when evaluating the boolean predicate. In this
way, the evaluation controls indirect information flow.



28 G. Boudol

In an application (MN), the level acquired in computing the function M is not
transmitted to the evaluation of the argument N2, because the fact that we turn
to evaluate N does not depend on the particular value returned by M . When
we arrive at reducing a redex (λxM ′V ′), both levels acquired in computing the
function and the argument are taken into account, since this particular redex
generally depends on the information used in computing M and N (we refer
to [1] for examples of indirect information flows in this case). On the contrary,
in a sequential composition M ; N , we can safely discard the level acquired
after computing M , since we know that the returned value is not relevant for
computing N . Similarly, when an assignment (M := N) terminates, we restore
the initial pc, since the value that is returned – namely () – does not depend on
any intermediate value. Then for instance any sequence of assignments does not
gain any knowledge, that is, it returns the pc it started with.

Finally, let us comment on the semantics of (flow F in M) and (revoke F in M).
In the case of (flow F in M), since the pc is an upper bound (of prior, relevant
read operations) with respect to the current flow policy, we can keep it to evaluate
M , since

∀�. pc 
G � ⇒ pc 
G ∪ F �

Regarding the level of knowledge that is returned, we have to keep at least the
initial pc (otherwise declassification could affect some read operations outside
of its scope), but we can take the level returned by 
 as what it meant w.r.t.
the more liberal policy G ∪ F , and the way to do this is to take the minimal
representative w.r.t. this policy (see Lemma 2.2). In the case of (revoke F in M),
we have to minimize the initial pc with respect to the restricted policy, and we
know by Lemma 1 (i) that this can be done replacing it by pc↓G since

∀�. pc 
G � ⇒ pc↓G 
G∗−F �

One should notice that the notion of secure information flow that is defined in
this semantics is actually insensitive to the particular values that are involved in a
computation, as it only tracks the places (or regions) – that is, the confidentiality
levels in the memory – from which and where information flows.

As indicated in the Introduction, our semantics takes inspiration in Fenton’s
Data Mark Machine. Similar semantics have been given in [14,26,27] for higher-
order imperative languages, without security-minded constructs. An important
difference however is that we follow a state-oriented approach to information
flow, as in [9,10,12,25], where the security labels are attached to memory loca-
tions, and not to values, as in the above mentioned work (and [16,21]).

The following lemma shows that one can only increase the level of acquired
knowledge by evaluating an expression:

Lemma 2.3. rc;G � (pc,M, μ) ⇓m (
, V, ν) ⇒ pc �G 

To conclude this section, we observe that, since the level of knowledge acquired
while computing an expression is directly accessible in the semantics, one could
have programming constructs that use or modify it. For instance, we

2 With a termination sensitive notion of secure information flow in mind, one would
have to record part of this level, see [1,6].
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considered in [1] a “reclassification” construct, namely [
0↘ 
1]M , that evaluates
M , checks that the level of M is less than 
0 (according to the current flow pol-
icy), and turns it into 
1. This coercion, or cast construct, which could be called
declassification whenever 
1 �G 
0, is more general than the declassification con-
struct that is usually considered (see [15] for instance), since declassify(M, 
) =
[�↘ 
]M . We can derive this construct here:

[�0↘ �1]M =def (let x = ref�0M in !ref�1(flow U in !x))

where U = P×P (although a direct semantics would obviously be more efficient).

2.4 Secure Programs

In this section we define secure programs (from the confidentiality point of view),
which do not run into security errors, or, more accurately, do not violate access
restrictions, nor the current flow policy. A security error is a configuration where
a security check has to fail, and where the monitored evaluation is stuck (since
here we wish to avoid such errors, we are not considering ways of pulling through
them, such as raising an exception). There are three kinds of security violations.
The first one is an access right violation, namely a configuration (pc, (!u�), μ) in
the context of an insufficient reading clearance, that is rc such that 
 �� rc. The
two other ones are attempts at implementing an illegal flow, either by creating
or by updating a reference at confidentiality level 
 with a value elaborated using
information that, according to the current flow policy G, should not flow into
level 
. Typical examples of these are (ref� (! u�′)) and (u� := (! v�′)) with 
′ ��G 
,
and more generally (ref� N) and (u� := N) where the evaluation of N acquires
a level 
′ of information that should not flow at level 
.

To define our notion of a secure program, we introduce an uncontrolled variant
of the operational semantics, denoted ⇓, which is defined exactly as ⇓m except
that we remove the side security conditions (inside the boxes) involved in the
definition of the latter. It is clear that in the definition of ⇓, the security com-
ponents G, pc and 
 do not play any rôle, that is, if rc;G � (pc,M, μ) ⇓ (
, V, ν)
then for any G′ and pc′ there exists 
′ such that rc;G′ � (pc′,M, μ) ⇓ (
′, V, ν).
Therefore, we shall regard the unmonitored semantics as defined on configura-
tions of the form (M,μ). We could give a direct definition of rc � (M,μ)⇓ (V, ν)
(which is the obvious one) but, for lack of space, we omit it. Notice that, in
particular, the expressions (restrict M to r), (enable 
 in M), (flow F in M) and
(revoke F in M) all behave like M in the unrestricted semantics. It should be
clear that the uncontrolled semantics is more permissive than the monitored
ones, that is

rc; G � (pc, M, μ) ⇓m (�, V, ν) ⇒ rc � (M, μ) ⇓ (V, ν)

Our definition of the security property is, roughly, that a program M is secure
if the converse implication holds, that is, if all the security checks made during
the evaluation of M succeed, or, in other words, that these checks are useless
for such a program. However, we have to make this definition relative to a class
of memories, because obviously a program such as ((!u�)()) is only secure if the
memory binds u� to a secure value, that is, in this case, a function V such that
(V ()) is secure.
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Definition (Secure Programs) 2.4. An expression M is secure (from the
confidentiality point of view) w.r.t. a reading clearance rc, a flow policy G and
a class M of memories if and only if

rc � (M, μ) ⇓ (V, ν) ⇒ ∃�. rc; G � (⊥, M, μ) ⇓m (�, V, ν)

for any μ ∈M. This definition is inspired by the one of Fenton in [12]. This is
a definition of a safety property, stating that nothing bad can possibly happen
during execution. (This would be made more obvious by introducing a “small-
step” variant of the semantics, which we omit here.) With this definition, we can
easily explain the meaning of the “security-minded” programming constructs:

Lemma 2.5. For any expression M , the following holds:
(i) (restrict M to r) is rc-secure ⇔ M is rc � r-secure;
(ii) (enable 
 in M) is rc-secure ⇔ M is rc � 
-secure;
(iii) (flow F in M) is G-secure ⇔ M is G ∪ F -secure;
(iv) (revoke F in M) is G-secure ⇔ M is (G∗ − F )-secure.

(The proof is immediate.) We shall see in Section 4 that our secure programs,
when they do not involve dynamic manipulations of the flow policy, also satisfy
the non-interference property. Our security property is strictly stronger than
non-interference, however. Indeed, the program of Example (2) in the Introduc-
tion, with E = tt = E′ for instance, is not secure with respect to a flow policy
G such that secret ��G public. Similarly, the program of Example (1) is insecure
whenever P terminates.

3 Type Safety

Our type system elaborates on the ones of [1,6,7,25], and, as such, is actually a
type and effect system. This is consistent with our “state-oriented” approach – as
opposed to the “value-oriented” approach of [14,16,17,21,22,26,27] for instance –,
where only the access to the “information containers”, that is, to the references
in the memory, is protected by access rights. In particular, a value is by itself
neither “secret” nor “public” (in a richer setting, there would be no such thing
as a secret list of public integers for instance), and the types do not need to be
multiplied by the set of confidentiality levels. Then the types are

τ, σ, θ . . . ::= t | bool | unit | θ ref� | (τ e−−→
�,F

σ)

where t is any type variable and e is any “security effect” – see below. Notice
that a reference type θ ref� records the type θ of values the reference contains,
as well as the “region” 
 where it is created, which is the confidentiality level
at which the reference is classified. Since a functional value wraps a possibly
effectful computation, its type records this latent effect e, which is the effect
the function may have when applied to an argument. It also records the reading
clearance 
 and the flow policy F that are assumed to hold when the function
is called in order to evaluate its body. The judgements of the type and effect
system have the form

rc; G; Γ �M : e, τ

where Γ is a typing context, assigning types to variables and to references, and e
is a security effect, that is a pair (e.r, e.w) of confidentiality levels. The intuition is:
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– rc is the current read access right that is in force when reducing M ;
– G is the current flow policy;
– e.r is the reading level of M . This is an upper bound (up to the current flow

relation) of the confidentiality levels of the references the expression M reads
that may influence its resulting value;

– e.w is the writing level, that is a lower bound (w.r.t. the relation �) of the
level of references that the expression M may update.

According to this, the security effects are ordered componentwise, in a covariant
manner as regards the reading level, and in a contravariant way as regards the
writing level. Then we abusively denote by ⊥ the pair (⊥,�). In the typing rules
for compound expressions, we will use the join operation on security effects:

e �G e′ =def (e.r �G e′.r, e.w ∪ e′.w)

The main rules of the typing system are given in Figure 3. This is essentially the
system of [1,6,7], without the “termination level,” and with a typing rule for the
new (revoke F in M) construct. In order to get simple proofs, we adopt a syntax-
directed style, with no subtyping rule, or more accurately no “subeffecting” rule
(see [25]). We only use “subeffecting” in the (Flow) and (Revoke) rules, where
we allow the reading effect to be weakened, with respect to the flow policy that
has been used to derive this effect. For instance if G = L � H and F = H � L
we have {H} �F ∪G {L}, and therefore if M reads at level H , the expression
(flow F in M) appears to read at level L w.r.t. policy G. Similarly, if G = A � B
we have {A,B} � {A}↓G, and therefore if M reads at both levels A and B,
with no flow policy relating these principals, the expression (revoke G in M)
appears to read at level A w.r.t. policy G. For further explanations, comments
and examples about the type system, we refer to [1,6,7].

In order to show the Type Safety result, asserting that typable expressions
are secure, that is, that one may dispense of run-time checks when evaluating
typable expressions, we have to extend typability to memories, that is, we define
Γ � μ as follows:

Γ � μ ⇔def ∀u�. u� ∈ dom(μ) ⇒ u� ∈ dom(Γ ) & Γ � μ(u�) : Γ (u�)

Theorem (Type Safety) 3.1. Let M be an expression that is typable at
confidentiality level rc, with a flow policy G, in the Γ context, that is, rc;G;Γ �
M : e, τ for some e and τ . Then M is secure w.r.t. rc, G and the class of memories
{μ | Γ � μ }.
Proof Hint. Assuming that rc;G;Γ �M : e, τ and (M,μ)⇓ (V, ν) where Γ � μ,
we show, by induction on the inference of (M,μ)⇓ (V, ν) and by case on M , that
the following holds:

(i) for all pc if pc �G e.w then rc;G � (pc,M, μ) ⇓m (
, V, ν) for some 
.
(ii) for all pc if rc;G � (pc,M, μ)⇓m (
, V, ν) then 
 �G pc�G e.r and Γ ′ � V : τ

with Γ ′ � ν for some Γ ′ such that Γ ⊆ Γ ′.

As usual, there are secure programs, like (if tt then () else v⊥ := !u
), that are
not typable, since typability does not involve semantical considerations.
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rc; G; Γ � M : e, bool rc; G; Γ � Ni : ei, τ e.r 	G e0.w � e1.w

rc; G; Γ � (if M then N0 else N1) : e �G e0 �G e1, τ
(Cond)

rc; G; Γ � M : e, τ
e′

−−→
r,F

σ r 	 rc F ⊆ G∗

rc; G; Γ � N : e′′, τ e.r �G e′′.r 	G e′.w

rc; G; Γ � (MN) : e �G e′ �G e′′, σ
(App)

rc; G; Γ � M : e, τ rc; G; Γ � N : e′, σ

rc; G; Γ � M ; N : (⊥, e.w) � e′, σ
(Seq)

rc; G; Γ � N : e, θ e.r 	G �

rc; G; Γ � (ref� N) : (⊥, e.w � �), θ ref�

(Ref)
rc; G; Γ � N : e, θ ref� � 	 rc

rc; G; Γ � (!N) : e �G (�,), θ
(Deref)

rc; G; Γ � M : e, θ ref� rc; G; Γ � N : e′, θ e.r �G e′.r 	G �

rc; G; Γ � (M := N) : (⊥, e.w � e′.w � �), unit
(Assign)

rc; F ∪ G; Γ � M : e, τ e.r 	F ∪ G r

rc; G; Γ � (flow F in M) : (r, e.w), τ
(Flow)

rc; G∗ − F ; Γ � M : e, τ e.r 	G∗−F r↓G

rc; G; Γ � (revoke F in M) : (r, e.w), τ
(Revoke)

Fig. 3. The Type and Effect System (Main Rules)

4 Non-interference

In this section, our aim is to show that our security property is stronger than non-
interference. Obviously, this cannot hold for programs involving declassification,
and therefore we show this result for programs in a sublanguage, namely the one
given by the following grammar:

M, N . . . ::= V | (if M then N else N ′) | (MN)

| M ; N | (!N) | (M := N)

Even though they do not cause any particular difficulty – as they are orthogonal
to the issue –, we have discarded also the constructs related to access control,
for simplicity. For the same reason, we do not consider here the reference cre-
ation construct. This construct entails some complications in defining the non-
interference property. It should be possible to include it, using the notion of “in
view/out of view” parts of a configuration of [9]. In the rest of this section we
only consider expressions that belong to the simple sublanguage.

Definition (Low Equality of Memories) 4.1. Let 
 be a confidentiality level
and G a global flow policy. Then two memories μ and ν are low equal below 

with respect to G, in notation μ ��

G ν, if and only if they satisfy:
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dom(μ) = dom(ν) & ∀u�′ ∈ dom(μ). �′ 
G � ⇒ μ(u�′) = ν(u�′)

The relation ��
G is clearly an equivalence.

Definition (Non-Interference) 4.2. An expression M (of the simple lan-
guage) satisfies the non-interference property with respect to a flow policy G if
an only if

μ ��
G ν & (M, μ) ⇓ (V, μ′) & (M, ν) ⇓ (V ′, ν′) ⇒ μ′ ��

G ν′

for any 
, μ and ν. Notice that this definition is extremely simple, and does not in
particular mention typing, nor any particular syntax, as opposed to definitions of
non-interference in the “value-oriented” approach of [14,16,26,27] (and also [9]).
As noticed in [20], this definition is still a little too intensional, since it deems the
program of Example (2) insecure in the case where E = λx() and E′ = λx(λyy())
for instance. However, the definition is fine for our purpose, which is to prove
that, for expressions of the simple language, our (intensional) security property
is stronger than non-interference. This is our second main result:

Theorem 4.3. For any expression M of the simple language, if M is secure with
respect to G then M satisfies the non-interference property with respect to G.

5 Conclusion

We have argued that, for the purpose of developing secure software, the non-
interference property is not a good criterion. We proposed to replace it with a
more intensional notion of security, based on a notion of a security error, or se-
curity violation, that should be easy to understand and use from a programming
point of view. We have shown that this intensional notion of a secure program
is indeed closer than non-interference to the programming practice, where type
systems, in particular, provide a very useful tool for developing safe software.
Moreover, we have shown that this approach is well-suited for describing the
semantics of various programming constructs that allow the programmer to deal
with security issues.
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Abstract. Noninterference provides reliable guarantees for the confi-
dentiality of sensitive information, but it is too restrictive if exceptions
shall be permitted. Although many approaches to permitting and con-
trolling exceptional information release have been proposed, the problem
of declassification is not yet satisfactorily solved. The aim of our project
is to provide adequate control for declassification in language-based se-
curity. The main contribution of this article is a novel approach for con-
trolling who can initiate a declassification. Our contributions include a
formal security condition and a sound approach to statically enforcing
this condition. This article complements our earlier work on controlling
where declassification can occur and what can be declassified.

1 Introduction

Before private data is given as input to an application, one would like a guar-
antee that the program is sufficiently trustworthy. The desired guarantee can
be formalized by the noninterference property, which ensures that there is no
danger of undesired information leakage. This is expressed by requiring that the
program’s output to untrusted sinks must be completely independent from any
confidential input. While noninterference constitutes a reliable guarantee about
the flow of information, it is a too restrictive requirement for some domains. For
instance, the output of a password-based authentication mechanism differs for a
given input depending on the stored password, i.e. on a secret. Therefore, such
a mechanism necessarily cannot satisfy the noninterference property.

It is clear that the noninterference property can be relaxed in order to permit
such exceptional information leakage. However, the problem of controlling such
exceptions is not yet satisfactorily solved. To clarify the aims and virtues of pre-
vious approaches, three dimensions of controlling declassification were identified
in [1], namely, what can be declassified, where declassification can occur, and
who can initiate declassification. A recent classification of existing approaches
to controlling declassification [2] shows that we do not yet have an integrated
approach that provides adequate control in all of these dimensions.

In this article, we propose a novel approach to controlling the third dimension
of declassification, i.e. who can initiate declassification. This work complements
our earlier work on controlling the first two dimensions [3]. In addition, we
present prudent principles of declassification that can be used as a sanity check
for new security conditions. Our principles extend and refine the ones proposed
in [2]. The second novel contribution is the security condition WHO that we
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integrate with our earlier condition WHERE to WHERE&WHO, in order to
control who can initiate which declassifications. We prove that WHERE&WHO
satisfies all prudent principles of declassification, the novel as well as the estab-
lished ones. Interestingly, we could show that, in some cases, it is possible to refine
the security policy such that WHERE&WHO can be enforced by the simpler
condition WHERE, which we developed for controlling where declassification
can occur. We also present an approach to statically enforcing WHERE&WHO
by refining the policy and applying a type system for WHERE.

2 A Motivating Example

We consider a program that is used by a video store to control the delivery
of movies to customers. After a customer decides to buy a movie, his payment
data is fetched, and it is forwarded to a bank. The movie is delivered only after
the payment has been confirmed by the bank. Movies can be ordered either via
a web interface or at a vending machine in the store. Regular customers may
become preferred customers, who may obtain a movie also without confirmation
of their payment by the bank. However, this preferred treatment is limited to
orders at the vending machine because the vendor does not have sufficient trust
in the authentication mechanism of the web interface.

The example program is written in a simple imperative language with explicit
I/O-instructions. Execution of an instruction x <- in sets the value of the variable
x to a value read from the input channel in. Execution of x -> out writes the
current value of x to the output channel out . As a convention, names of input
and output channels end with I or O, respectively. Instructions in brackets (like,
e.g., [public:=movie]1) mark assignments that are intended as declassifications.
For now such declassification statements should be read as usual assignments.

if byMachine then % branch on whether purchase at machine
paydatvd <- machineI; % get payment data from vending machine
paydatvd -> bankO; % pass payment data to bank
payOK <- bankI; % get confirmation of payment from bank
if (payOK or isPreferred(paydatvd)) then

[public:=movie]1; % copy movie to public variable
public -> machineO fi % pass movie to machine

else
paydatweb <- webI; % get payment data from web interface
paydatweb -> bankO; % pass payment data to bank
payOK <- bankI; % get confirmation of payment from bank
if payOK then

[public:=movie]2; % copy movie to public variable
public -> webO fi % pass movie to web interface

fi

For the store, it is essential that a movie is not leaked accidently. That is, a movie
is a secret that must be protected from the customer until his credentials have
been confirmed. As a movie is a secret, it must be explicitly declassified before
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it can be delivered to a customer. A preferred customer can initiate this declas-
sification also without the bank’s confirmation by declaring his special status.
However, exceptions should be limited to purchases at the vending machine. It is
the vendor’s policy that a customer’s input at the web interface cannot initiate a
declassification. While our first example program satisfies this security require-
ment, the following program is vulnerable to attacks via the web interface. The
problem with this program is that the check isPreferred(paydat) can depend on
the input from the web interface, which violates the vendor’s policy.

if byMachine
then paydat <- machineI
else paydat <- webI fi;

paydat -> bankO; % pass payment data to bank
payOK <- bankI; % get confirmation of payment from bank
if (payOK or isPreferred(paydat)) then

[public:=movie]1; % copy movie to public variable
if byMachine

then public -> machineO
else public -> webO fi

fi

The objective of this article is to develop a security condition that adequately
controls who can initiate a declassification. In particular, it should reject vul-
nerable programs like our second example, and it should accept secure programs
like the first example. The subscripts at declassification statements (e.g., 1 and
2 in the first example and 1 in the second example) will be used to specify in a
policy which declassification statements may be initiated by whom.

3 Adequate Control of Declassification
We aim for security conditions that formalize the intuitive notion of secure in-
formation flow on a semantic level and that are suitable points of reference for
a soundness argument of a given syntactic security analysis. However, defining
a security condition that adequately captures the security of information flow
becomes non-trivial if exceptional information release shall be permitted. There
is an inherent trade-off between relaxing information flow control in order to per-
mit declassification and reliably ensuring security by rigorous information flow
control. In the following, we present prudent principles of declassification that
can be used as a sanity check for security conditions. The principles extend and
refine the ones proposed by Sabelfeld and Sands [2]. The principles are presented
in Section 3.1. In Section 3.2, we introduce the model of computation and the
programming language used in the rest of the article. The prudent principles are
formalized and specialized to this setting in Section 3.3.

3.1 Prudent Principles of Controlling Declassification

In the following, we use the term noninterference as a place-holder for a security
condition that adequately characterizes information flow security in a setting
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without declassification. In order to apply the principles as a sanity check, this
place-holder must be instantiated with a suitable security condition.
Semantic consistency [2]. The (in)security of a program is invariant under

semantic-preserving transformations of declassification-free subprograms.
Whether a program is secure depends on its behavior. Semantic consistency
ensures that the classification of a program is not effected by syntactic modifi-
cations that do not change the program’s behavior. This principle is desirable
for security definitions, in general, including ones that permit declassification.
Relaxation. Every program that satisfies noninterference also satisfies the

given security condition.
Monotonicity of release [2]. Adding further declassifications to a secure pro-

gram cannot render it insecure.
These principle are reasonable, because the whole purpose of introducing declas-
sification is to accept more programs as secure. The principles relaxation and
monotonicity impose a lower bound on the set of programs that are accepted
by security conditions. This distinguishes them from the principles below, which
impose upper bounds on the set of acceptable programs.
Non-occlusion [2]. The presence of a declassification operation cannot mask

other covert information leaks.
Non-occlusion is crucial, because it summarizes the goal of controlling declassifi-
cation. However, a bootstrapping problem occurs when formalizing this principle
because such a formalization itself would constitute a characterization of secure
information flow, which would need to be checked for non-occlusion. We intro-
duce further prudent principles that can be formalized in the following.
Noninterference up-to. Every program that satisfies the given security con-

dition also satisfies noninterference if it were executed in an environment
that terminates the program when it is about to perform a declassification.

Persistence. For every program that satisfies the given security condition, all
programs that are reachable also satisfy the security condition. If this only
holds for programs that are reached by an execution where the last step is a
declassification, then the given security condition is called weakly persistent.

The principle noninterference up-to ensures that the security condition is not
more permissible than noninterference as long as no declassification occurs. Per-
sistence and weak persistence, both ensure, after a declassification occurred, that
one again obtains the original security guarantee for the resulting configuration.

The fourth principle introduced in [2], conservativity, is subsumed by nonin-
terference up-to and relaxation. Conservativity requires that a security condition
must be equivalent to noninterference for programs without declassification. One
direction of the equivalence is implied by relaxation and the other by noninterfer-
ence up-to. Note, however, that noninterference up-to also establishes guarantees
for programs with declassification while conservativity does not.

While the previous principles provide a check of adequacy for security con-
ditions with declassification, in general, the following principle is especially in-
tended to check the adequacy of the control of who can initiate declassification.
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Protection. A security property complies with protection, if for all programs
satisfying this property, an attacker from whom declassification should be
protected, cannot effect declassification by his behavior.

3.2 Policies, Programs, and a Definition of Noninterference

We capture the intended security guarantees by flow policies:

Definition 1. An MLS policy with exceptions is a triple (D,≤,�), where D is
a finite set of security domains, ≤⊆ D×D is a partial order and �⊆ D×D.

The relation ≤ determines, between which domains information may flow nor-
mally. The relation � determines, between which domains information may
flow exceptionally, i.e. by declassification. An example is the two-level flow pol-
icy ({low , high}, {(low , high), (low , low ), (high , high)},�), which permits infor-
mation flow from low to high but not from high to low . Declassification from
high to low is permitted or not depending on whether high � low or high �� low .

We assume a set of programs Com , a set of variables Var and a set of values
Val . A memory assigns values to variables s : Var → Val . A domain assignment
is a function dom : Var → D. It establishes a connection between memories and
a flow policy by assigning a domain to each variable. We say that an observer has
a security domain D if he can see the values of all variables x with dom(x) ≤ D ,
but not of other variables. Hence, a D -observer can distinguish memories, if and
only if they differ in the value of at least one variable x with dom(x) ≤ D .

Definition 2. For a given domain D ∈ D, two memories s and s′ are D-equal,
denoted by s =D s′, if ∀x ∈ Var . (dom(x) ≤ D ⇒ s(x) = s′(x)).

We define the set of configurations Conf as the set of all pairs of a program
C (or of the special symbol ε) and a memory s , denoted by 〈|C, s |〉 or 〈|ε, s |〉,
respectively. The operational semantics are given by a deterministic step relation
� between configurations. We partition � into disjoint sub-relations �D1→D2

k

and �O where k ∈ N and D1,D2 ∈ D. A �D1→D2
k -step models the execution

of a declassification instruction with label k, source domain D1, and destination
domain D2. We call such steps declassification steps and �O-steps ordinary steps.

In the following, we assume a flow policy (D,≤,�) and domain assignment
dom . As notational convention we denote elements of D by D , of Com by C, of
Var by x and y, of Val by v, of memories by s and t , of Conf by cnf , and of
instruction labels in N by k, all possibly with indices or primes.

In Sect. 3.1, we used the term noninterference as a place-holder for a secu-
rity condition that characterizes the absence of unintended information flow in a
setting without declassification. We instantiate this place-holder with the strong
security condition, which was originally introduced in [4] for multi-threaded pro-
grams. This is an established definition of security for which there already exist
variants that permit and control declassification [1,3]. Strong security is based
on the PER-approach [5], i.e. information flow security is characterized based
on non-reflexive indistinguishability relations on programs. Two programs are
indistinguishable for a D -observer, if they do not reveal information to D , when
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started in D -equal memories. As strong security does not permit declassification,
the relation � does not occur in the following definition.

Definition 3 (Strong Security for Sequential Programs). A strong D-
bisimulation is a symmetric relation R on programs that satisfies

∀C1, C
′
1. ∀s , s ′, t . ∀C2.

[
(C1 R C′

1 ∧ 〈|C1, s |〉 � 〈|C2, t |〉 ∧ s =D s ′)
⇒ ∃C′

2, t
′ : (C2 R C′

2 ∧ 〈|C′
1, s

′|〉 � 〈|C′
2, t

′|〉 ∧ t =D t′)

]
The relation �D is defined as the union of all strong D-bisimulations. A program
C is strongly secure if C �D C holds for all D ∈ D.

For two programs being strongly D -bisimilar means that individual computation
steps from D -equal memories can be simulated, such that the resulting memories
also are D -equal and the resulting programs also are strongly D -bisimilar.

We instantiate programs and the operational semantics with a simple while
language (WL), augmented with a declassifying assignment. The set Com is
defined by the following grammar.

C ::= skip | x:=Exp | C1;C2 | if B then C1 else C2 fi | while B do C od | [x:=y]k

As further condition we require that no two declassification assignments with the
same instruction label may appear in a given program. That is, an instruction
label uniquely determines the occurrence of a declassification in the program
code. To denote expressions from a language E we use B or Exp. That expression
Exp evaluates to value v in memory s is denoted by 〈|Exp, s|〉 ↓ v. Here, we do not
fully define the language E , but only assume that the evaluation of expressions
is total, atomic, and unambiguous. Moreover, we assume a function vars : E →
P(Var) such that

∀Exp, s , s ′. [(∀x ∈ vars(Exp). s(x) = s ′(x)) ⇒ ∀v. (〈|Exp, s|〉 ↓ v⇒〈|Exp, s′|〉 ↓ v)]

For instance, vars(Exp) could be the set of variables appearing in Exp.

〈|skip, s|〉�O 〈|ε, s|〉
〈|Exp, s|〉 ↓ v

〈|x:=Exp, s|〉�O 〈|ε, [x = v]s|〉
〈|B, s|〉 ↓ v v �= 0

〈|if B then C1 else C2 fi, s|〉�O 〈|C1, s|〉
〈|B, s|〉 ↓ 0

〈|if B then C1 else C2 fi, s|〉�O 〈|C2, s|〉
〈|B, s|〉 ↓ v v �= 0

〈|while B do C od, s|〉
�O 〈|C;while B do C od, s|〉

〈|B, s|〉 ↓ 0
〈|while B do C od, s|〉�O 〈|ε, s|〉

D1 = dom(y) D2 = dom(x) D1 �≤ D2

〈|[x:=y]k, s|〉�D1→D2
k 〈|ε, [x = s(y)]s|〉

dom(y) ≤ dom(x)
〈|[x:=y]k, s|〉�O 〈|ε, [x = s(y)]s|〉

〈|C1, s|〉�O 〈|ε, s′|〉
〈|C1; C2, s|〉�O 〈|C2, s

′|〉
〈|C1, s|〉�O 〈|C′

1, s
′|〉

〈|C1; C2, s|〉�O 〈|C′
1; C2, s

′|〉
〈|C1, s|〉�D1→D2

k 〈|ε, s′|〉
〈|C1; C2, s|〉�D1→D2

k 〈|C2, s
′|〉

〈|C1, s|〉�D1→D2
k 〈|C′

1, s
′|〉

〈|C1; C2, s|〉�D1→D2
k 〈|C′

1; C2, s
′|〉

Fig. 1. Operational semantics of WL
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The instantiation of the step relations is given by the rules in Fig. 1. Most
rules are standard. Exceptions are the rules for declassifying assignments [x:=y]k,
which result in �D1→D2

k steps, if the domains are not ≤-related. Declassifying
assignments with ≤-related domains result in ordinary steps, because the direct
information flow conducted by such instructions intuitively complies with ≤.

For simplicity, we require the right-hand side of declassifying assignments to
be a variable. In Sect. 4.1, we extend WL with statements for input and output.

3.3 Formalization of the Principles

The purpose of a security condition is to formally characterize which programs
obey a given flow policy. Hence, we can view a security condition as a function
from an MLS-policy and a domain assignment to a set of WL-programs. As
a notational convention, we write PROP instead of PROP((D,≤,�), dom) if
(D,≤,�) and dom are determined by the context.

We are now ready to formalize all prudent principles from Sect. 3.1 (with the
exception of non-occlusion as explained before, and of the who-specific principle
protection whose formalization is deferred to Sect. 4.1) by meta-properties of
security conditions. To formalize monotonicity and semantic consistency, we
define a context as a program C, where the hole • may occur as an atomic sub-
program. We use C〈C〉 to denote the program that one obtains by replacing
each occurrence of • with C. As suggested in [2], we define semantic equivalence
between programs by � = �high , where �high is the strong high-bisimulation for
the single-domain policy ({high}, {(high, high)}, ∅).

Definition 4 (Semantic consistency). A security property PROP is seman-
tically consistent, if C′

� C and C〈C〉 ∈ PROP imply C〈C′〉 ∈ PROP for all
commands C,C′ without declassification instructions and for all contexts C.

Definition 5 (Relaxation). A security property PROP is relaxing, if C is
strongly secure implies C ∈ PROP .

Definition 6 (Monotonicity). A security property PROP complies with
monotonicity of release, if

1. C〈x:=y〉∈PROP implies C〈[x:=y]k〉∈PROP for all C, x, y, and k and
2. � ⊆ �′ and C∈PROP((D,≤,�), dom)

imply C∈PROP((D,≤,�′), dom).

The intuition of Definition 6 with respect to declassifying assignments is the
following. If a program C2 is obtained from a given program C1 by replacing
a declassifying assignment with an ordinary assignment and C2 is accepted al-
ready, then C1, (i.e. the same program with additional brackets indicating that
declassification is permissible) should certainly also be accepted.

To formalize noninterference up-to we have to consider executions of programs
under a monitor. Whenever a program is about to execute a declassification
step �D1→D2

k , the monitor terminates the execution. This is similar to changing
the operational semantics by removing the rule for declassification steps with
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the condition D1 �≤ D2, because in the operational semantics an execution is
stopped, if no further transition from the current configuration is possible.

Definition 7 (Noninterference up-to). A security property PROP is non-
interferent up-to, if C ∈ PROP implies that the program C is is strongly secure
if it were executed with a declassification-prohibiting monitor.

Definition 8 (Persistence). A security property PROP is persistent, if C′ ∈
PROP holds for all C′ that are reachable from some C ∈ PROP , i.e. if C ∈
PROP and 〈|C, s |〉�∗〈|C′, s ′|〉 for some C, s , and s ′ implies C′ ∈ PROP .

A property PROP is weakly persistent, if C ∈ PROP , 〈|C, s |〉�∗cnf , and
cnf �D1→D2

k 〈|C′, s ′|〉 for some C, s, s ′, cnf , D1, D2, and k implies C′ ∈ PROP .

The formalizations of the prudent principles in this section will serve as a sanity
check for our new security condition in the next section.

4 Characterization of Security

In this section we define a novel security property to adequately control who
may influence declassification, by his input on a given channel.

4.1 Input and Output

We extend the notions of programs and security with input and output. We
assume two disjunctive sets, a set of input channels I, and a set of output chan-
nels O. Now, the domain assignments assign security domains to channels, too:
dom : (Var ∪ I ∪ O) → D. A D -observer knows the input of channels in with
dom(in) ≤ D and observes the output of channels out with dom(out) ≤ D .
The step relation � additionally has the disjoint sub-relations �chan,v, where
chan ∈ I ∪O and v ∈ Val . A �in,v-step models the input of the value v on the
channel in ∈ I. A �out,v-step models the output of the value v on the channel
out ∈ O. As convention we denote elements of I by in , of O by out , and of
I ∪ O by chan . We extend WL by atomic programs for input x <- in and for
output Exp -> out . The operational semantics contains the following new rules
in addition to the ones in Fig. 1.

〈|x <- in , s |〉�in,v 〈|ε, [x = v]s |〉
〈|Exp, s|〉 ↓ v

〈|Exp -> out , s |〉�out,v 〈|ε, s |〉

〈|C1, s|〉�chan,v 〈|ε, s′|〉
〈|C1;C2, s|〉 �chan,v 〈|C2, s

′|〉
〈|C1, s|〉�chan,v 〈|C′

1, s
′|〉

〈|C1;C2, s|〉�chan,v 〈|C′
1;C2, s

′|〉

Unlike the rest of the operational semantics of WL, the input value v in the
annotation of input steps is not deterministic. To account for that, we need to
adapt the definition of a strong D -bisimulation accordingly. We define strong se-
curity as before (see Definition 3), however, now we define strong D -bisimulations
as symmetric relations satisfying the sub-formula in Figure 2 without the box in



Who Can Declassify? 43

∀C1, C
′
1. ∀s, s ′, t . ∀C2.

(C1 R C′
1 ∧ s =D s ′)

⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∀chan, v.

[
(〈|C1, s|〉�chan,v 〈|C2, t |〉 ∧ dom(chan) ≤ D)

⇒ ∃C′
2, t

′. (〈|C′
1, s

′|〉�chan,v 〈|C′
2, t

′|〉 ∧ C2 R C′
2 ∧ t =D t′)

]

∧

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈|C1, s|〉(� \(⋃dom(chan)≤D,v �chan,v))〈|C2, t |〉

⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∃C′
2, t

′. 〈|C′
1, s

′|〉(� \(⋃dom(chan)≤D,v �chan,v))〈|C′
2, t

′|〉)
∧ ∀C′

2, t
′.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈|C′
1, s

′|〉(� \(⋃dom(chan)≤D,v �chan,v))〈|C′
2, t

′|〉

⇒

⎡⎢⎢⎢⎢⎢⎣
C2 R C′

2

∧

⎡⎢⎢⎢⎣t =D t′ ∨
∃D1,D2 ∈ D. ∃k ∈ N.⎡⎣ 〈|C1, s|〉�D1→D2

k 〈|C2, t|〉
∧ D1 � D2

∧ D2 ≤ D ∧ s �=D1 s′

⎤⎦
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 2. Strong Bisimulation Relations with I/O

dark-gray background. The boxes with light-gray background mark the new ele-
ments of the formula compared to Definition 3. Now, strong D -bisimulations give
different guarantees depending on whether a step is an I/O-step with a D -visible
channel or not. If it is an I/O-step with a D -visible channel (first box with light-
gray background), then the simulating step needs to be an I/O-step on the same
channel and with the same value. However, it is important, that for D -visible
input steps only the step with the same value needs to satisfy the requirements
C2 R C′

2 and t =D t′. This captures the assumption, that a D -observer knows
the input values of D -visible channels. For steps that are not I/O-steps with
D -visible channels, the guarantees are required for all possible step results (last
two boxes with light-gray background). This is necessary, because for input steps
with non-D -visible channels the step result depends on the input value, which
is not known to the observer and which should not be revealed to him.

To specify the input channels that must not effect a declassification step with
a given instruction label, we assign sets of input channels to instruction labels.

Definition 9. A protection labeling is a function prot : N → P(I).

Now we formalize the principle protection. An attacker cannot effect declassifi-
cation k in a program by his behavior if the occurrence of a declassification k
is invariant under change of the attacker’s behavior. Hence, for the definition
we fix the behavior of everybody else. Here behavior of everybody else means,
the input provided by channels that are not in prot(k). In the following for each
P ⊆ I we define P = I\P . We define the sets Bk of behaviors of channels
that are not in prot(k) as lists of input events (in , v) and no-input events ⊥:
Bk = ((prot(k)×Val) ∪ {⊥})∗. For b ∈ Bk we define →b,k⊆ �∗ inductively by
cnf →b,k cnf , if b has length 0, and cnf 1 →b,k cnf 2, if b consists of the prefix b′

and the last element a, and there is a cnf ′ such that cnf 1 →b′,k cnf ′ and either
a = (in, v) ∧ cnf ′ �in,v cnf 2, or a = ⊥ ∧ cnf ′(� \(

⋃
in∈prot(k),v �in,v))cnf 2.

The relation (� \(
⋃

in∈prot(k),v �in,v)) contains any step, that is not an input
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step of a channel, that may effect declassification k. I.e. a behavior b determines
when an input step of a channel in prot(k) occurs and what value is read. The
inputs of channels in prot(k) are not determined by a b ∈ Bk. As abbreviation
we define �k:=

⋃
D1,D2

�D1→D2
k and �k̄:=� \ �k for all k.

Definition 10 (Protection). A security property PROP is protecting, if,
given C ∈ PROP , it holds that

∀k, b ∈ Bk, s , cnf 1, cnf 2, cnf ′1.[(
〈|C, s |〉 →b,k cnf 1 ∧ cnf 1 �k̄ cnf 2

∧ 〈|C, s |〉 →b,k cnf ′1

)
⇒ ¬∃cnf ′

2. (cnf ′1 �k cnf ′2)
]

The intuition is, that whether a given k-labeled execution step occurs or not is
independent from the inputs of all channels from which k should be protected.

4.2 The Security Property for Who

First, to ensure that exceptional information flow only can occur by declassifi-
cation steps, we define a supporting security property characterizing control of
where. The property is defined similar to strong security, however, it permits
declassification by declassification steps, if the exceptional flow complies with
�. The property is an adaption of WHERE in [3] to the language with I/O.
Definition 11 (WHERE with I/O). A strong (D,�)-bisimulation is a sym-
metric relation R on programs that satisfies the whole formula in Figure 2. The
relation �

�
D is the union of all strong (D,�)-bisimulations. A program C has

secure information flow while complying with the restrictions where declassifi-
cation can occur if C �

�
D C holds for all D ∈ D (brief: C is where-secure or

C ∈ WHERE((D,≤,�), dom)).
Declassification is possible, since strong (D ,�)-bisimulations do not always re-
quire the memory states after bisimulation steps to be D -indistinguishable. How-
ever, such exceptions are restricted: they may only occur after declassification
steps �D1→D2

k , where the declassification target is visible to D (D2 ≤ D), the
flow complies with the exceptional flow relation (D1 � D2), and the declassified
information is D1-visible (s =D1 s ′). The restrictions of WHERE on exceptional
information flow offer the possibility to control who may effect declassification
by only restricting further the occurrence of declassification steps.
Definition 12. Let P ⊆ I and k ∈ N. A (P , k)-protecting bisimulation is a
symmetric relation R ⊆ Conf× Conf such that for all cnf 1 R cnf ′1 it holds that
– ∀cnf 2. (cnf 1�∗cnf 2 ⇒ ¬∃cnf 3cnf 2 �k cnf 3) or
– for all cnf 2 with cnf 1 � cnf 2 it is

∃cnf ′2. cnf ′1 � cnf ′2
∧ ∀cnf ′2.⎡⎢⎢⎢⎢⎣

[(cnf 1 �k cnf 2 ∧ cnf ′1 � cnf ′2)⇒ cnf ′1 �k cnf ′2]
∧ [(cnf 1(� \(

⋃
in∈P ,v �in,v))cnf 2 ∧ cnf ′1 � cnf ′2)⇒ cnf 2 R cnf ′2]

∧ ∀in ∈ P , v.

⎡⎣ (
cnf 1 �in,v cnf 2

∧ cnf ′1(� \(
⋃

v′ �=v �in,v′))cnf ′
2

)
⇒ cnf 2 R cnf ′2

⎤⎦
⎤⎥⎥⎥⎥⎦
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Given C, a protection labeling prot : N → P(I), and k, WHOC,prot(k) holds,
iff for all from C reachable programs C′ there is a (prot(k), k)-protecting bisim-
ulation R such that ∀s . 〈|C′, s |〉 R 〈|C′, s |〉. A program C is who-protected if
WHOC,prot(k) holds for all k (brief: C ∈WHO).

Configurations are related by a (prot(k), k)-protecting bisimulation, if there is
no reachable declassification step k, because in this case such a step cannot be
effected by any channel input. Else, if such a step occurs, it has to be simulated
by a step with the same annotation. The results of bisimulation steps also need to
be in the bisimulation relation, except, when the steps are input steps of channels
in prot(k) and have differing values. This exception captures that these channels
may effect declassification. The predicate WHOC,prot(k) initially only requires
configurations with equal memories to be related by a bisimulation. This captures
that there are no restrictions on the influence of initial values of variables on
declassification. Hence, any difference in occurrence of a declassification step k
is not caused by input channels that must not effect declassification.

We define the security property for control of who may effect declassification.

Definition 13 (WHERE&WHO). A program C has secure information flow
while complying with the restrictions where declassification can occur and who
may effect declassification if C is where-secure and who-protected. (brief: C is
where&who-secure or C ∈WHERE&WHO((D,≤,�), dom)).

Example 1. We consider the example from Sect. 2 with the two-level flow policy
where high � low , a domain assignment dom assigning high to movie and low
to every other variable or channel, and prot(1) = prot(2) = {webI}. We first
consider the first program. The variable movie is only read by the declassifying
assignments. The channel webI either is not read at all, or, if the input of bankI is
fixed, the execution of declassification does not depend on the input from webI.
Hence, the program is where&who-secure. Now we consider the second program.
Consider two configurations, both consisting of the branching instruction with
the branch condition (payOK or isPreferred(paydat)), and of memories, where in
both payOK is 0 and in one isPreferred(paydat) is 1 and in the other 0. These con-
figurations, are not ({webI, 1})-protecting bisimilar. However, their bisimilarity
is required by WHO-protection of 1, when we consider an initial memory that
assigns to byMachine the value 0. Hence, this program is not where&who-secure.
This classification of the two programs is according to our intuition.

The property WHERE&WHO complies with all the principles from Sect. 3.

Theorem 1 (Compliance to Principles). WHERE&WHO is
1. semantically consistent.
2. relaxing,
3. monotonic,
4. noninterferent up-to,
5. persistent, and
6. protecting.
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5 Enforcing Who Control by a Type System for WHERE
There are some cases, where WHERE is equivalent to WHERE&WHO. These
are not only the trivial cases, but also cases where restrictions on who are im-
posed. We capture these cases by the following theorem.

Theorem 2. Let C be given. Let range(�) := {D ∈ D|∃D ′ ∈ D. D ′ � D}. If
1. C is where-secure and
2. ∀in ∈

⋃
k∈N

prot(k). ∀D ∈ range(�). ¬
(
dom(in)(≤ ∪�)∗D

)
,

then C satisfies WHERE&WHO.

Since WHERE is parameterized with multi-level flow policies, which can be used
to express integrity aspects, and since WHERE already restricts declassification
within this policy, satisfaction of WHERE with a suitable flow policy can ensure
WHERE&WHO. Inspired by this result, given a protection labeling prot , an
MLS-policy (D,≤,�), and a domain assign dom , we call prot flow-enforced by
(D,≤,�) and dom , whenever the second hypothesis of Theorem 2 is satisfied.
By this theorem, if we have given a policy such that prot is flow-enforced, it just
remains to check that a program is where-secure to check where&who-security.

5.1 Refining Flow Policies

To apply Theorem 2 to a given program and security policy, it might be necessary
to refine the MLS-policy and the domain assignment, in order to capture the
desired integrity aspect.

Definition 14. Given MLS-policies (D1,≤1,�1), (D2,≤2,�2) and domain as-
signments dom1 : (Var ∪ I ∪ O) → D1, dom2 : (Var ∪ I ∪ O) → D2, we call a
function abs : D1 → D2 abstracting, iff

1. abs is surjective,
2. ∀D1,D ′

1 ∈ D1. (D1 ≤1 D ′
1 ⇒ abs(D1) ≤2 abs(D ′

1)),
3. ∀D1,D ′

1 ∈ D1. (D1 �1 D ′
1 ⇒ abs(D1)(�2 ∪ ≤2)abs(D ′

1)),
4. ∀a ∈ (Var ∪ I ∪O). dom2(a) = abs(dom1(a)).

We call (D1,≤1,�1) and dom1 a policy refinement of (D2,≤2,�2) and dom2,
iff there is an abstracting function abs : D1 → D2.

In a refinement of a given policy, security domains may be split up and the flow
relations may impose additional restrictions. However, a refinement must not
relax the restrictions on the flow of information between variables and channels.
For our purpose, only flow-enforcing refinements are relevant.

Example 2. For instance, we consider the first program in Sect. 2 with the policy
and domain assignment we present for the program in Sect. 4. The security
domain of the channel webI is low and low is in the range of �, i.e. prot is
not flow-enforced. However, there is a more restrictive policy, such that prot
is flow-enforced and the program is where-secure: we add a security domain
web, extend the flow relation to ≤′=≤ ∪{(low ,web), (web,web)}, and we assign
web to webI, paydatweb and bankO. The function abs defined by abs(low ) = low ,
abs(web) = low , and abs(high) = high is abstracting, i.e. the new MLS-policy
and domain assignment are a policy refinement.
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Lemma 1. Let (D1,≤1,�1), dom1 : (Var ∪I∪O) → D1, (D2,≤2,�2), dom2 :
(Var ∪ I ∪ O) → D2, and prot : N → P(I) be given. If abs : D1 → D2 is
abstracting then

1. ∀D2. ∀s , s ′. [(∀D1 ∈ D1. (abs(D1) ≤2 D2 ⇒ s =D1,1 s ′))⇔ s =D2,2 s ′], and
2. ∀D2. ∀C,C′.

[
(∀D1 ∈ D1. (abs(D1) ≤2 D2 ⇒ C �

�1
D1

C′))⇒ C �
�2
D2

C′],
where =D1,1 is the D1-equality with respect to ≤1 and dom1 for all D1 ∈ D1, and
=D2,2 is the D2-equality with respect to ≤2 and dom2 for all D2 ∈ D2.

Theorem 3. Let C, (D2,≤2,�2), dom2 and prot be given. If there is a refine-
ment (D1,≤1,�1) and dom1 of (D2,≤2,�2) and dom2 such that

– C ∈ WHERE((D1,≤1,�1), dom1) and
– prot is flow-enforced by (D1,≤1,�1) and dom1,

then C ∈WHERE&WHO((D2,≤2,�2), dom2).

Theorem 3 shows, that even if policies are not beforehand designed to flow-
enforce, flow-enforced protection labelings can be exploited.

5.2 Static Enforcement of WHERE&WHO

We propose an enforcement mechanism for WHERE&WHO in two steps. The
first step is to find a refinement of the given flow policy and domain assignment
such that prot is flow-enforced. The second step is to apply a type system en-
forcing WHERE with respect to the policy refinement, and to apply Theorem 3.

To find a suitable refinement for a given policy, we split up security domains
from that information may flow to security domains in the range of � into
two security domains, with the intuition, that one has high integrity and one
has low integrity with respect to the input channels. We construct the normal
flow relation such that it relates domains of high integrity with the respective
domains of low integrity, however, not the other way round. We construct the
exceptional flow relation such that it has only security domains of high integrity
as source. To input channels, from that declassification should be protected,
we assign security domains of low integrity. To determine for each variable and
output channel, whether it needs to be assigned to the respective domain of low
or high integrity, a type inference based on the type system has to be pursued,
which is out of the scope of this paper. The type system to enforce WHERE is
identical to the one of [3]. A program C is typable, which we denote by � C, if
� C can be derived by the rules in Fig. 3.

Theorem 4 (Soundness of Security Type System). Let � C.

1. C is where-secure.
2. If prot is flow-enforced by (D,≤,�) and dom then C is where&who-secure.

Note that flow-enforced is a property of just the MLS policy, the domain as-
signment, and the protection labeling, that can be checked by checking whether
security domains are related by the transitive closure of ≤ and �.
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∀x ∈ vars(Exp). dom(x) ≤ D

 Exp : D  skip
 Exp : D D ≤ dom(x)

 x:=Exp

dom(y) � dom(x)
 [x:=y]k

 C1  C2

 C1 ; C2

 B : low  C
 while B do C od

 C1  C2  B : D ∀D ′ �≥ D : C1 �
�
D′ C2

 if B then C1 else C2 fi

dom(in) ≤ dom(x)
 x <- in

 Exp : D D ≤ dom(out)
 Exp -> out

Fig. 3. Rules of the Security Type System enforcing WHERE

The rule for conditional branches contains a semantic side condition (∀D ′ �≥
D : C1 �

�
D′ C2). To be able to fully automatize the analysis, we additionally need

a syntactic approximation of this side condition. A simple solution is to require
� B : low . Examples for less restrictive approaches to syntactic approximations
for similar side conditions can be found in [1,6,3].

6 Related Work

The development of adequate control for noninterference-like conditions is an
active research area. In the following discussion, we focus on related work that
targets the control of who can initiate declassification. For other dimensions of
declassification, we refer to the overview on declassification in [2].

Approaches, based on robustness [7,8,9,8] permit any information to leak, as
long as the leak appears for all possible behaviors of attackers. Hence, robust
declassification does not comply to noninterference up-to. Possible behaviors of
an attacker are explicitly defined as programs with limited capability to write
[8]. Different to WHERE&WHO, robust declassification does not differentiate
which channels may influence which declassifications.

A different kind of control of who can be conducted on the basis of autho-
rization. The decentralized label model [10] explicitly defines the flow policy us-
ing ownership labels, that state which principal permits reading to which other
principals for each information. Here, declassification is restricted in that each
principal may only relax the requirements imposed by his label. Abstract nonin-
terference [11] is also claimed to control the dimension who. However, here who
is not used in the sense of who may influence, but in the sense of attackers with
different observational capabilities.

Our prudent principles of declassification extend and, in some cases, refine
the ones in [2]. Interestingly, the conjunction of noninterference up-to and weak
persistence has similarities to noninterference unless in [12].

7 Conclusion

We presented a novel approach to controlling who can initiate declassification.
Our security condition WHO permits to control who can effect a given declas-
sification in a program. We integrated WHO with the previously defined con-
dition WHERE, which controls where in the program and where in the flow
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policy declassification may occur. We argued for the adequacy of the combined
condition WHERE&WHO with the help of prudent principles of controlling de-
classification. We showed that WHERE&WHO can be reduced to WHERE for
some flow policies. Based on this result, we developed a technique for enforcing
WHERE&WHO by, firstly, refining a given flow policy and, secondly, applying
an existing type system for WHERE.
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Abstract. We consider the problem of defining an appropriate notion of non-
interference (NI) for deterministic interactive programs. Previous work on the
security of interactive programs by O’Neill, Clarkson and Chong (CSFW 2006)
builds on earlier ideas due to Wittbold and Johnson (Symposium on Security
and Privacy 1990), and argues for a notion of NI defined in terms of strategies
modelling the behaviour of users. We show that, for deterministic interactive pro-
grams, it is not necessary to consider strategies and that a simple stream model of
the users’ behaviour is sufficient. The key technical result is that, for determinis-
tic programs, stream-based NI implies the apparently more general strategy-based
NI (in fact we consider a wider class of strategies than those of O’Neill et al). We
give our results in terms of a simple notion of Input-Output Labelled Transition
System, thus allowing application of the results to a large class of deterministic
interactive programming languages.

1 Introduction

We consider the problem of defining an appropriate notion of non-interference (NI)
[8] for deterministic interactive programs. By interactive programs we mean programs
which perform channel-based IO, reading and writing primitive values on named chan-
nels over time, as the system executes, in contrast to the simple “batch-processing”
style of computation assumed by much of the work in language-based security. Moving
away from the simple batch-processing model introduces a number of complications
and subtleties. Even so, in this paper we show that a relatively simple stream-based
model of interaction may be adequate for the special (but common) case of deterministic
programs.

Previous work on the security of interactive programs by O’Neill, Clarkson and
Chong [14] builds on earlier ideas due to Wittbold and Johnson [16], and argues for
a notion of NI defined in terms of strategies modelling the behaviour of users. We show
that, for deterministic interactive programs, it is not necessary to consider strategies and
that a simple stream model of the users’ behaviour is sufficient. The key technical result
is that, for deterministic programs, stream-based NI implies the apparently more general
strategy-based NI (in fact we consider a wider class of strategies than those of O’Neill
et al). We give our results in terms of a simple notion of Input-Output Labelled Tran-
sition System, thus allowing application of the results to a large class of deterministic
interactive programming languages.
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2 Overview

We start by considering some motivating examples. These examples show that interac-
tive programs may enable quite subtle covert channels, in which attackers can exploit
information gained from previous outputs in order to leak information via later outputs.
Moreover the examples show that a simple stream-based model of user behaviour may
not suffice to reveal the presence of such channels. We also argue that such channels are
significant even outside the typical “military” scenario in which an insider collaborates
to send secrets to an outsider, by showing how a trusted user may be duped into sending
information on such channels without knowing it.

Following [16] and [14] we then show how such channels can be guarded against
by requiring a more sophisticated notion of NI, one defined in terms of user strategies
rather than input streams.

It is striking that the example covert channels mentioned above all involve the com-
bination of interaction and internal nondeterminism. The main result of this paper is
to show that this is not accidental: for purely deterministic systems, such covert chan-
nels do not arise. We formalise this by showing how input streams can be represented
as a special class of strategy and then showing that defining NI over this restricted
class of strategies is equivalent to the more general notion when the system (though not
necessarily the environment) behaves deterministically. Rather than tie our results to
a specific programming language, we define a simple notion of Input-Output Labelled
Transition System (IOLTS) and sate our definitions and results for any IOLTS. To illus-
trate how programming languages can be modelled in such a setting, we give an IOLTS
semantics for a simple deterministic interactive language.

We conclude with a discussion of the scope and limitations of the chosen definition
of NI and, more generally, of the use of strategies to model a program’s environment.

3 Information Flow in Interactive Programs

We start with two simple examples of interactive programs illustrating ways in which
such programs may be insecure.

The first program is insecure because there is a direct flow from High input to Low
output:

x := 0;
input y from H;
output (x XOR y) to L;

Thesecondprogramisanexampleof indirectflowfromHightoLow.Ifweconsider that
Low and High are feeding a stream of inputs to the program, information about the High
stream can be deduced from the way in which the program is consuming Low’s inputs:

input x from H;
if (x = 0) then input y from L;
input z from L;
output z to L;

For example, suppose the Low input stream starts 01. Then the Low output will be 1 if
High inputs 0, otherwise the Low output will be 0.
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3.1 Two Approaches to Defining Security

Users interact with the programs via input and output on named channels each of which
is associated with a security level in a Denning-style multi-level security classification
system, whereby security levels form a lattice, 〈L,�〉, L = {a, b, c, . . .} [6]. For sim-
plicity’s sake we identify a channel’s name with its security level. We write ↓a for the
set of channels visible to users at level a, ie ↓a = {a′ ∈ L|a′ � a}.

Consider two users with access to channels a and b respectively where a �� b, i.e. the
security policy specifies that no information should flow from channel a to channel b.
We might reasonably try to capture this requirement in two alternative ways:

All outputs on channel b are consistent with all possible inputs on channel a. (1)

Users of channel a cannot send messages to the users of channel b. (2)

These both seem reasonable, but are they equivalent? First, observe that 2⇒ 1: if some
outputs seen by Bob are inconsistent with some possible inputs from Alice, then Bob
can deduce something about the values input by Alice so Alice clearly can send mes-
sages to Bob, hence (by contraposition) 2 implies 1. At first sight it seems as though 1
⇒ 2 should also hold. After all, if what Bob sees tells him nothing about what Alice
has input, surely she cannot send him a message.

In fact, as Wittbold and Johnson show in [16], this reasoning is unsound: some sys-
tems which satisfy property 1 allow Alice to send Bob messages. Let L � H and
suppose that the only values which may be sent on these channels are 0 and 1. Consider
Program 1a:

while (true) do
x := 0 | 1;
input y from H;
output x to H;
output (x XOR y) to L;

Here | is a non-deterministic choice operator, so 0 | 1 evaluates to either 0 or 1, with
the choice being made in a way which is unpredictable to any observer of the running
program. Writing output of value v on channel a as a!v and input as a?v, the possible
traces for the first iteration of the loop are:

H?0 H!0 L!0
H?0 H!1 L!1
H?1 H!0 L!1
H?1 H!1 L!0

Observation of the first L-output thus reveals nothing to L-users about the value of the
first H-input: L-users cannot observe the H-outputs and hence, whether L-users see 0
or 1, both 0 and 1 are possible values for the input on H . This clearly holds for longer
traces as well: no matter how much of the stream of L-outputs is observed, nothing is
learned about which values have been input on H . Program 1a thus satisfies property 1
and, indeed, would seem to be a secure program.
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Now consider the variant Program 1b:

while (true) do
x := 0 | 1;
output x to H;
input y from H;
output (x XOR y) to L;

In this example, the value of x is output before the H-input is demanded. The possible
traces for the first iteration of this variant are:

H!0 H?0 L!0
H!0 H?1 L!1
H!1 H?0 L!1
H!1 H?1 L!0

It clearly remains the case that, in ignorance of the value of x, any observation of an
output on channel L is consistent with both possible inputs on H , and thus property
1 holds also for Program 1b. Crucially, though, with Program 1b, H-users can exploit
their knowledge of x to control what is output on L. This allows H-users to send mes-
sages to L-users, thus violating property 2. For example, if an H-user wants to send a
particular message to L, say x1 . . .xn, behaving as follows will suffice:

for (i = 1 to n) do
input k from H;
output (k XOR xi) to H;

When composed with Program 1b, this behaviour results in the message x1 . . .xn being
delivered on L without error.

Program 1b first appears in this form in O’Neill, Clarkson and Chong’s paper [14].
This was an adaptation of a synchronous nondeterministic state machine used by Wit-
tbold and Johnson [16] to illustrate the same phenomenon. (It is interesting to note that,
in state machine form, the example actually appears much earlier in a paper by Shan-
non [15]. In this paper Shannon showed how, in certain cases, making “side informa-
tion” available at the transmitting point may increase the capacity of a communication
channel.)

Using Program 1b, an H-user is able deliberately to communicate secrets to L-users.
But, even when a user does not intend to leak a secret, such covert channels can still
pose a security risk, since one user’s “cooperation” with another may be unwitting.
Suppose we have two users, Alice and Bob, at incomparable security levels A and B,
respectively. The following example is originally due to David Sands [11].

Alice is interacting with a web site. Alice is assured by the site that her credit card
details are never sent to Bob, and this assurance is backed up by a proof of property 1.
The web site requests Alice to input her credit card and then offers her a “special offer”
code, inviting her to input this code at a later time to obtain a discount or free gift.
Unbeknownst to Alice, this code is actually her own credit card number in encrypted
form. If Alice does enter the code when requested, the system simply decrypts it and
sends it to Bob. In simplified form (a boolean credit card number!), this may be coded
as Program 2:
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input x from A;
k := 0 | 1;
output (k XOR x) on A;
.
.
.
input y from A;
output (k XOR y) on B;

The possible traces for this system are:

A?0 A!0 A?0 B!0 (*)
A?0 A!0 A?1 B!1
A?0 A!1 A?0 B!1
A?0 A!1 A?1 B!0 (*)
A?1 A!0 A?0 B!1 (*)
A?1 A!0 A?1 B!0
A?1 A!1 A?0 B!0
A?1 A!1 A?1 B!1 (*)

Now, since Bob cannot see channel A, both outputs 0 and 1 are consistent with all four
possible input sequences by Alice, hence property 1 is satisfied. Clearly, though, if Alice
behaves as expected - the traces marked (*) - her credit card number is leaked to Bob.

These examples illustrate that a simple security property based on consistency of
one user’s observed outputs with another user’s possible inputs may not be adequate
to provide desirable security guarantees. In particular, it seems that the problem with
property 1 is that it fails to take account of the interactive nature of such systems,
whereby a user’s inputs may depend on previously seen outputs. Wittbold and Johnson
[16] proposed instead a property stated in terms of consistency of observed outputs with
user’s behaviours, modelling behaviours as the strategies by which users provide inputs
based on their observations of the system so far.

This use of a strategy-based security property is very elegant and is successful in
accepting Program 1a while rejecting Program 1b and Program 2. On the other hand,
it is also technically less straightforward than a security property based simply on the
input and output streams of a program. It is striking that the examples above involve
the combination of interactivity and non-determinism. In this paper we consider the
(very common) sub-class of deterministic interactive systems and show that for this
sub-class, stream-based and strategy-based security properties are actually equivalent.
The intuition is that, for a deterministic program, a sufficiently high security user can,
in principle, choose inputs and predict all outputs statically. Thus there should be no
need to model dynamic behaviours of users in order to verify the security property.

3.2 Input-Output Labelled Transition Systems (IOLTS)

As illustrated by the examples above, we are interested in security properties of pro-
grams written in languages with input and output primitives. However, our treatment is
not specific to a given language. Instead we express security properties at the level of
input/output traces.



Non-Interference for Deterministic Interactive Programs 55

Definition 1. An Input-Output Labelled Transition System (IOLTS) is an input-neutral
labelled transition system with a set of labels given by

A ::= τ | a?v | a!v

where a ∈ L and v ∈ V (where V is some unspecified non-empty set of possible
values). By input-neutral we mean that branching on inputs is never restricted for a

state in which input is possible, i.e. for a state s of the LTS: if ∃v.s a?v→ then ∀v.s a?v→ .

Let s range over the states of IOLTSs. Let Tr denote the set of all possible IOLTS traces:

Tr = A∗. Let t, u range over Tr. For t = 
1 · · · 
n ∈ Tr we write s
t� s′ to mean that

there exist states s1, . . . , sn such that s
�1→ s1 · · ·

�n→ sn = s′. We write s
t� to mean

that there exists s′ such that s
t� s′.

Definition 2. An IOLTS is deterministic iff:

1. If s
�1→ s1 and s

�2→ s2 and 
1 �= 
2 then 
1 = a?v1 and 
2 = a?v2, for some
channel a and values v1, v2.

2. If s
�→ s1 and s

�→ s2 then s1 = s2.

3.3 IOLTS Example: A Simple Interactive Imperative Language

The simple interactive imperative language used for the examples above is essentially
the same language defined in [14]. To demonstrate one possible instantiation of an
IOLTS at the language level, we present a semantics for this language and observe
that it does indeed define an IOLTS (see Figure 1). Note that the IOLTS for this particu-
lar language will be deterministic iff the expression evaluation relation is single valued
(which will not be the case if the | operator is admitted).

4 Strategies and Non-Interference

We assume that a user at level a can only observe input/output events on channels b � a
and that no user can see τ actions (modelling internal state transitions), making this a
timing insensitive model. Different traces may thus appear the same to a given user. We
write t =a t′ to mean that two traces look the same to a user at level a. More generally,
for a subset of security levels A ⊆ L, we write t =A t′ to mean that t�A = t′�A, where
t�A is t with all τ events removed and with all IO events b?v and b!v removed except
those for which b ∈ A. Each such =A is clearly an equivalence relation on traces. Note
that, since users at level a can see events at level a and below, =a is shorthand for =↓a

rather than ={a} (wherever we actually intend ={a} we will write this explicitly).

4.1 Strategies

Each user provides inputs on the channel corresponding to his or her security level and
is aware of the history of usage (both inputs and outputs) on all channels at or below



56 D. Clark and S. Hunt

[Skip] 〈skip, σ〉 τ−→ 〈skip, σ〉

[Seq1] 〈skip; c2, σ〉 τ−→ 〈c2, σ〉

[Seq2]
〈c1; c2, σ〉 l−→ 〈c′1; c2, σ

′〉
〈c1; c2, σ〉 l−→ 〈c′1; c2, σ

′〉
l ∈ A

[Assign]
σ  e→ v

〈x := e, σ〉 τ−→ 〈skip, σ[x := v]〉

[If1]
σ  e→ v �= 0

〈if e then c1 else c2, σ〉 τ−→ 〈c1, σ〉

[If2]
σ  e→ 0

〈if e then c1 else c2, σ〉 τ−→ 〈c2, σ〉

[While] 〈while e do c, σ〉 τ−→ 〈if e then (c; while e do c) else skip, σ〉

[In] 〈input x from a, σ〉 a?v−→ 〈skip, σ[x := v]〉

[Out]
σ  e→ v

〈output e to a, σ〉 a!v−→ 〈skip, σ〉

Fig. 1. IOLTS semantics for a simple language

that level. The behaviour of a user in choosing inputs on a channel may be influenced
by this knowledge of the history (as when High uses Program 1 as a covert channel)
and is modeled as a channel strategy: a function from what the user knows to the user’s
choice of the next input on the channel. We allow strategies to be nondeterministic, thus
we define them to be functions from traces to non-empty sets of values:

Definition 3. An a-strategy is a function ωa : Tr → (℘(V)− ∅) such that t1 =a t2 ⇒
ωa(t1) = ωa(t2).

In the special case that ωa is deterministic, we will write ωa(t) = v as shorthand for
ωa(t) = {v}. We use ω for arbitrary (ie possibly nondeterministic) strategies and δ for
deterministic strategies.

A strategy modeling the behaviour of the program’s whole environment is a collec-
tion of individual channel strategies indexed by the security lattice. We say two strate-
gies are equivalent with respect to a given security level if the channel strategies at and
below that level are identical.

Definition 4. A strategy ω is an L-indexed family such that each ωa is an a-strategy.

Let Strat denote the set of all strategies. We write ω =a ω′ to mean ωb = ω′
b for all

b � a.
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The interaction between a program and its environment is modelled by playing a
strategy against a state of an IOLTS to produce a trace of input and output events. Let s
be a state of an IOLTS. Playing strategy ω against state s may produce trace t, written

ω |= s
t�, if t is a possible trace for s and, for every input event a?v in t, v is a value

which may be chosen by ωa when applied to the sequence of events leading up to the
input event. Formally:

Definition 5. ω |= s
t� iff s

t� and v ∈ ωa(t′) for all t′.a?v ≤ t, where≤ is the prefix
ordering on traces.

Strat

Narrow Strategies

Deterministic Strategies

Stream Strategies

SS

NS

DS

Fig. 2. An inclusion hierarchy of strategies

We define three interesting sub-classes of strategy:

DS. The deterministic strategies.
NS. The “narrow” strategies. This is the class of strategies considered in [14] (the term

“narrow” is ours; in [14] they are simply called strategies). These are deterministic
strategies such that the user’s choice is influenced only by events on that particular
channel, not by events on channels at lower security levels. The formal definition
is as follows:

Definition 6 (Narrow Strategy). A strategy ω is narrow iff it is deterministic and,
for all a, if t ={a} t′ then ωa(t) = ωa(t′).



58 D. Clark and S. Hunt

SS. The “stream” strategies. A stream strategy is just a family of streams (one for each
channel) presented as a strategy. Concretely, each time a stream strategy is asked
for an input on a channel it simply returns the next item in the stream for that
channel. Each channel strategy in such a strategy returns a value which depends
only on the number of inputs which have been requested on that channel so far,
since this number is precisely the position in the stream which has been reached. For
a channel a we say that traces t, t′ are a-stream-pointer equivalent, written t ��a t′,
iff t and t′ contain the same number of a-input events. A stream strategy is thus a
family of channel strategies each of which respects stream-pointer equivalence:

Definition 7 (Stream Strategy). A strategy ω is a stream strategy iff it is determin-
istic and, for all a, if t ��a t′ then ωa(t) = ωa(t′)

Figure 2 illustrates how these sub-classes form an inclusion hierarchy. It is straight-
forward to verify that the inclusions shown do indeed hold and are, in fact, strict:
SS ⊂ NS ⊂ DS ⊂ Strat.

4.2 Non-Interference

Our definition of non-interference [8] is framed in terms of strategies and traces. It is a
generalisation of Definition 1 from [14]. The definition says that a state s of an IOLTS
is non-interfering for a given set of strategies if, for each user, any two strategies drawn
from the set which look the same, also produce sets of traces which look the same,
when played against s.

Definition 8. Let W be a set of strategies. A state s of an IOLTS is non-interfering for
W (or W -NI for short) iff

∀ ω1, ω2 ∈ W . (ω1 =a ω2 ∧ ω1 |= s
t1�) ⇒ (∃ t2 . t2 =a t1 ∧ ω2 |= s

t2�)

We say that s is simply non-interfering (or NI for short) if it is non-interfering for the
set of all strategies.

We now explore the relationship between the NI properties corresponding to the sub-
classes of strategy shown in Figure 2. We start with the obvious fact that inclusion of
sub-classes of strategy implies reverse-inclusion of the corresponding NI properties:

Lemma 1. Let W1,W2 ⊆ Strat. If W1 ⊆W2 then W2-NI⇒W1-NI.

We thus immediately have a sequence of inclusions of NI properties which mirrors the
inclusions shown in Figure 2:

Proposition 1. NI ⇒ DS-NI⇒ NS-NI⇒ SS-NI.

In Section 4.3, we establish that DS-NI and NI are actually equivalent. We conjecture
that NS-NI is also equivalent to NI but verifying this is left for future work.

Note that SS-NI is essentially “property 1” from Section 3.1. By considering the sets
of possible traces for the various programs in Section 3.1 it can be established, for exam-
ple, that Program 1a is NI, whereas Program 1b is SS-NI but not NI. It is clear, therefore,
that SS-NI is, in general, a strictly weaker property than NI. Nonetheless, we are able
to show (Section 4.4) that for deterministic IOLTS, SS-NI and NI are equivalent.
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4.3 Non-Interference for Deterministic Strategies

The following theorem says that, to establish non-interference, it is only necessary to
consider deterministic strategies.

Theorem 1. DS-NI⇐⇒ NI.

By Proposition 1, to prove the theorem it is sufficient to show that if s is DS-NI then s
is NI. We prove the contrapositive.

Let s be a state of an IOLTS and suppose that s does not have the NI property. Thus
there must be two (possibly nondeterministic) strategies w,w′, level b and trace t such
that w =b w′ and:

1. w |= s
t�

2. For all t′, if w′ |= s
t′� then t′ �=b t.

The key proof idea is to construct two b-equivalent deterministic strategies which, when
played against s, result in the same NI-violating behaviours as w,w′.

First, we derive a deterministic strategy θ(w) from w, as follows. Let χ : (℘(V) −
∅)→ V be some function such that χ(X) ∈ X . Then:

θ(w)a(u) =
{
v if ∃u′ =a u. u′a?v ≤ t
χ(wa(u)) otherwise

It is necessary to show that θ(w) is well-defined. In particular, we must show:

a) if u′ =a u and u′′ =a u and u′a?v ≤ t and u′′a?v′ ≤ t, then v = v′;
b) if u =a u′ then θ(w)a(u) = θ(w)a(u′).

First we need the following technical lemma:

Lemma 2. Let t1a?v ≤ t2
 be such that t1 ��a t2. Then t2 = t1 and 
 = a?v.

Proof. Let ni be the number of a-input events in ti. Since t1 ��a t2, we have n1 = n2.
Now suppose towards a contradiction that t1a?v �= t2
, hence t1a?v ≤ t2. But then we
would have n1 + 1 ≤ n2, which contradicts n1 = n2. "#

Now we can established well-definedness of θ(w).

Proposition 2. θ(w) is a well defined deterministic strategy.

Proof

a) By assumption of u′ =a u and u′′ =a u we have u′ =a u′′. Clearly u′ =a

u′′ implies that u′, u′′ have the same number of a-input events. Furthermore, by
assumption that u′a?v and u′′a?v′ are both prefixes of t, one must be a prefix of
the other. Thus, by Lemma 2, a?v = a?v′, hence v = v′.

b) Suppose u =a u′. If the first case in the definition of θ(w)a applies to u then, by
essentially the same argument as in a), it must also apply to u′ and give the same
result. If the second case applies, then, since wa is an a-strategy, wa(u) = wa(u′),
hence χ(wa(u)) = χ(wa(u′)). "#
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Next we derive a deterministic strategy λ(w′) from w′. In this case we must ensure that
λ(w′)a = θ(w)a for all a � b, since we want θ(w) =b λ(w′). We define:

λ(w′)a(u) =
{
θ(w)a(u) if a � b
χ(w′

a(u)) otherwise

The proof that λ(w′) is a well-defined deterministic strategy is essentially as for θ(w)
and is omitted. It is immediate from the definition of λ(w′) that θ(w) =b λ(w′).

It remains to show that this pair of strategies constitute a counterexample to DS-NI
and, for this, it suffices to show that:

1. θ(w) produces t when played against s.
2. The set of traces produced by λ(w′) is a subset of those produced by w′.

For the first of these, it is given that s
t�, so we need only show that θ(w)a(u) = v

whenever ua?v ≤ t, and this is clear from the definition of θ(w)a, since u =a u. For
the second, say that strategy ω′ refines strategy ω iff ω′

a(u) ⊆ ωa(u), for all a, u. It
is then immediate from Definition 5 that the refining strategy produces a subset of the
traces of the original when played against the same state. Formally:

Lemma 3. If ω′ refines ω and ω′ |= s
u� then ω |= s

u�.

It is straightforward to verify that θ(w) refines w and hence that λ(w′) refines w′. This
completes the proof that DS-NI⇒ NI.

4.4 Non-Interference for Deterministic IOLTS

Here we establish our main result. That, for deterministic IOLTS, to establish NI it
is only necessary to consider stream strategies. Thus, for deterministic systems, when
reasoning about information flow it can suffice to work with a simple stream-based
semantic model of the environment and a corresponding stream-based definition of NI,
rather than strategies.

Theorem 2. A state s of a deterministic IOLTS is NI iff it is SS-NI.

Corollary 1. For deterministic IOLTS: NI, DS-NI, NS-NI and SS-NI are all equivalent.

Given Proposition 1 and Theorem 1, to prove Theorem 2 it suffices to show that, for
any state s of a deterministic IOLTS, if s is SS-NI then s is DS-NI. Again, we prove the
contrapositive.

Let s be a state of a deterministic IOLTS and suppose that s does not have the DS-NI
property. Thus there must be two deterministic strategies d,d′, level b and trace t such
that d =b d′ and:

1. d |= s
t�

2. For all t′, if d′ |= s
t′� then t′ �=b t.



Non-Interference for Deterministic Interactive Programs 61

The proof mimics the one above for DS-NI ⇒ NI, but this time we derive stream
strategies from deterministic strategies. We derive the stream strategy φ(d) from d as
follows:

φ(d)a(u) =

{
v if ∃u′ ��a u. d |= s

u′a?v�
k otherwise

where k is some (arbitrary) constant in V.
We must show that φ(d) is a well-defined stream strategy. In particular, we must

show:

a) If u′ ��a u and u′′ ��a u and d |= s
u′a?v� and d |= s

u′′a?v′
� , then v = v′.

b) If u ��a u′ then φ(d)a(u) = φ(d)a(u′).

Part b) follows immediately from the definition of φ(d) once we have shown a).
To show a) we make use of a lemma which states an expected consequence of deter-

minism: if we play a deterministic strategy against any state of a deterministic IOLTS,
there will be no branching in the set of traces produced.

Lemma 4. Let s be a state of a deterministic IOLTS and let δ be a deterministic strat-

egy. If δ |= s
t1� and δ |= s

t2� then either t1 ≤ t2 or t2 ≤ t1.

Proof. Suppose, without loss of generality, that length(t1) ≤ length(t2). Proceed by
induction on length(t1) to show that t1 ≤ t2.

If length(t1) = 0 then t1 = ε ≤ t2.

If length(t1) > 0 then t1 has the form t′1
1 and s
t′1� s′1

�1→ s′′1 . Then length(t′1) <
length(t2) and by IH t′1 ≤ t2, hence t′1 < t2. Thus, for some 
2, t′1
2 ≤ t2 and

s
t′1� s′2

�2→ s′′2 . Part 2 of the definition of deterministic IOLTS (Definition 1) entails
(by a simple induction on the length of t′1) that s′2 = s′1. It thus remains to show that

1 = 
2. Suppose towards a contradiction that 
1 �= 
2. By part 1 of Definition 1 we

must have 
1 = a?v1 and 
2 = a?v2. Then, since δ |= s
t′1a?v1
� and δ |= s

t′1a?v2
� ,

we have v1 ∈ δa(t′1) and v2 ∈ δa(t′1). But then, since δ is deterministic, v1 = v2, a
contradiction. "#
Well-definedness of φ(d) then follows:

Proposition 3. φ(d) is a well-defined stream strategy.

Proof. It remains to show that condition a) holds. That is, if u′ ��a u and u′′ ��a u and

d |= s
u′a?v� and d |= s

u′′a?v′
� then v = v′. Now s is a state of deterministic IOLTS and

d is deterministic, so, by Lemma 4, either u′a?v ≤ u′′a?v′ or u′′a?v′ ≤ u′a?v. From
u′ ��a u and u′′ ��a u we also have u′ ��a u′′. Hence by Lemma 2, v = v′. "#
Next we derive a stream strategy ψ(d′) from d′. For a � b we define ψ(d′)a = φ(d)a

and for a �� b we derive ψ(d′) from d′ exactly as we derived φ(d) from d:

ψ(d′)a =
{
φ(d)a if a � b
φ(d′)a if a �� b

The proof that ψ(d′) is a well-defined stream strategy is essentially as for φ(d) and is
omitted. It is immediate from the definition of ψ(d′) that φ(d) =b ψ(d′).
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For the final step in the proof that SS-NI ⇒ DS-NI we introduce the notion of
a-prefix:

Definition 9. Trace u is an a-prefix of u′, written u �a u′, iff u =a u′′ for some
u′′ ≤ u′.

We state without proof some obvious properties of �a:

– If a1 � a2 then �a2 ⊆ �a1 .
– If u ≤ u′ �a u′′ then u �a u′′.
– If u =a u′ then u �a u′.

We will use these freely in the remainder of the proof.
The proof is now essentially completed by the following lemma, which says that,

when played against s, φ(d) and d produce exactly the same sets of traces (including,
in particular, t), whereas every trace produced by ψ(d′) is either also produced by d′

or is not a b-prefix of t.

Lemma 5

1. φ(d) |= s
u� iff d |= s

u�.

2. If ψ(d′) |= s
u� and u �b t then d′ |= s

u�.

Proof. The lemma holds vacuously if u is not a trace of s, so we need only show that

it holds for all u such that s
u�. Let #I(u) denote the number of input events in u. We

proceed by induction on #I(u). Take the two parts in turn:

1. For #I(u) = 0 we have both φ(d) |= s
u� and d |= s

u� by assumption that s
u�.

In the inductive case, #I(u) = n+1, hence u′a?v ≤ u for some u′ with #I(u′) =

n. By IH φ(d) |= s
u′
� iff d |= s

u′
�. Note that, since a?v is the last input event in

u, we have:

(i) d |= s
u� iff (d |= s

u′
�) ∧ (da(u′) = v)

(ii) φ(d) |= s
u� iff (φ(d) |= s

u′
�) ∧ (φ(d)a(u′) = v)

Thus it suffices to show that, if d |= s
u′
� then da(u′) = φ(d)a(u′). Let da(u′) =

w. Then, since s
u′a?v� and the IOLTS is input-neutral, we have s

u′a?w� . Hence,
since u′ ��a u′, by definition of φ(d)a we have φ(d)a(u′) = w.

2. Assume ψ(d′) |= s
u� and u �b t. The base case is as for part 1. In the inductive

case, again we have #I(u) = n+1, hence u′a?v ≤ u for some u′ with #I(u′) = n.

By assumption of u �b t we have u′ �b t, hence by IH d′ |= s
u′
�. Thus it suffices

to show d′
a(u′) = v. We proceed by cases according to whether a � b.

If a �� b, let w = d′
a(u′). Then, since s

u′a?v� and the IOLTS is input-neutral, we

have s
u′a?w� . Thus, by definition of ψ(d′), ψ(d′)a(u′) = w. But, by assumption of

ψ(d′) |= s
u�, we have ψ(d′)a(u′) = v, hence w = v.

If a � b then, from u �b t, we have u′a?v �a t. Thus u′′a?v ≤ t and
u′′ =a u′, for some u′′. Thus da(u′′) = da(u′) = v. But, since d =b d′ and
a � b, we have d′

a = da, hence d′
a(u′) = v. "#
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Proposition 4. φ(d), ψ(d′) are a counterexample to SS-NI.

Proof. By part 1 of Lemma 5, φ(d) |= s
t�. Now suppose ψ(d′) |= s

t′� and t′ =b t.

But then t′ �b t and hence, by part 2 of Lemma 5, d′ |= s
t′�, contradicting the original

assumption that d,d′ are a counterexample to NI. "#

This concludes the proof of Theorem 2.

5 Conclusions

We have defined a notion of Input-Output Labelled Transition System (IOLTS) suitable
for modelling interactive programming languages. Following previous work by Wit-
tbold and Johnson [16] and O’Neill, Clarkson and Chong [14] we have defined a notion
of non-interference (NI) for IOLTS, modelling the users’ input behaviours as strategies.
Our main result has been to show that, for deterministic IOLTS, a simpler definition of
NI, based on a stream model of user input, is equivalent.

5.1 Non-Interference and Nondeterminism

The definition of NI we use in this paper is (essentially) the one used for deterministic
programs in [14]. However, although the definition can also be applied to nondetermin-
istic programs (as our use of it illustrates) it is interesting to note that the authors of
[14] actually modify the definition when they add non-determinism to the language.
(Unfortunately, in modifying it, they render it unable to distinguish between the inse-
cure Program 1b and its secure variant Program 1a). The modification is motivated by
the desire to avoid so-called refinement attacks, in which refining a secure program (re-
moving some nondeterminism) renders it insecure. We chose not to follow this route
since it identifies two uses of nondeterminism which we prefer to differentiate: the use
of nondeterminism to allow under-specification, and the use of nondeterminism as a
programming construct, essentially as a source of deliberate “noise” intended to disrupt
information flows. It is this latter use which is relevant in the covert channel examples
described above.

But there is a possible weakness in the security delivered by our version of NI for
nondeterministic programs. Consider the following example:

input x from H
if (1 | x) then

output 0 to L
else

while (true) do skip

(Recall that | here is nondeterministic choice.) This program is NI by our definition.
Whether it should be regarded as secure depends on our assumptions about the observ-
ability of non-termination in the presence of nondeterminism. If we wish to make the
definition of NI sensitive to the possibility of non-termination in this example, we might
use a more sophisticated definition based, for example, on a form of bisimulation rather
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than trace-equivalence. This approach would suggest transposing the problem into a
process algebraic setting, as explored in [7] (see Section 5.2 for further discussion on
this point). Alternatively, we might consider weakening the definition of NI to make
it, more generally, termination insensitive. In the latter case it would be interesting to
try to adapt the work of [5] to establish computational bounds on the rate at which
information could be leaked.

5.2 Future Work

Our longer term goal is to be able to reason about the security properties of programs in
interaction with their environments in a compositional way. Ideally we do not want to
treat these two actors differently. One stumbling block we face in achieving this is that a
very common environment for a program is another program or even a set of programs.
What is the relationship between programs and strategies?

A strategy is defined in Wittbold and Johnson [16] as a map from the history of inputs
and outputs on a given channel to the next input on that channel. There is no compu-
tational content in that definition and, in general, a strategy could be non-computable
(and clearly not representable by a program). On the other hand, not every program has
a semantics which can be characterised as providing an appropriate input to another
program whenever it is required. In fact the setting in which Wittbold and Johnson in-
troduce strategies is a purely synchronous one in which inputs are always supplied to the
program. So, in particular, a program written in the interactive core imperative language
defined in this paper will not in general define a strategy for another program written
in the same language, or even define a strategy at all. Consider for example a program
which only updates its internal state and never engages with input or output at all.

If we assume the programs are interacting in an asynchronous fashion, a program
which expects input on a given channel may never get it from the other programs in
its environment. Even supposing a program is structured correctly so that it acts as a
strategy for another program (and presumably vice versa) termination problems may
mean that it never produces an expected output. For example:

P1:
input x from H;
input z from L;
output (z XOR x) on H;

P2:
output y on H;
while(x < 0) x--;
output x on L;
input w from H;

Program P2 will provide input for Program P1 on L only some of the time. It could
be described as a partial strategy. Any reasoning about environments formed from pro-
grams would have to take partiality into account.

There are two directions in which we could take this work.
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We could continue to model environments as strategies and ask what kinds of sys-
tems could be strategies for each other and ask what kinds of constraints on the sys-
tems would that require. We have discussed some of the issues above but an interesting
enquiry along these lines is the possibility of modelling the interaction using game se-
mantics [1,2,9].

On the other hand, why constrain the model of the environment to be a strategy? Our
use of IOLTS suggests some more general formal process model might be a suitable
setting for extending our results, building on the foundational work of [7]. A potential
issue to be addressed in this case would be that sequentiality seems to be an essen-
tial characteristic of the deterministic programs on which we have focused. It may be
that security properties such as NDC and BNDC as defined in [7] are so strong as to
effectively rule out many sequential systems of interest.

Orthogonal to these two lines of enquiry is the question of probabilistic models of
the the behaviour of the environment. With respect to strategies, for example, Jürjens
has shown [13] that Gray’s security property Probabilistic Noninterference (PNI) [12]
is a generalisation of Wittbold and Johnson’s nondeducibility on strategies [16] while
Aldini, Bravetti and Gorrieri have analysed probabilistic noninterference using a prob-
abilistic process algebra [3,4].
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Abstract. We present a formal model for analyzing the bandwidth of covert
channels. The focus is on channels that exploit interrupt-driven communication,
which have been shown to pose a serious threat in practical experiments. Our
work builds on our earlier model [1], which we used to compare the effectiveness
of different countermeasures against such channels. The main novel contribution
of this article is an approach to exploiting detailed knowledge about a given chan-
nel in order to make the bandwidth analysis more precise.

1 Introduction

Confidentiality and integrity on the application level heavily depend on mechanisms
to restrict communication in underlying system layers. Even if one closes all commu-
nication channels between two applications, the danger of covert communication re-
mains, i.e., that there are channels that are not intended as communication channels [2].
The problem of identifying covert channels and analyzing their bandwidth has received
much attention by the research community (see, e.g., [3,4,5,6,7]), but covert channel
analysis and mitigation is far from being solved.

Covert channels can be established based on various system-level resources that are
virtualized or otherwise shared between multiple processes. For instance, the physical
memory can be exploited to establish a covert channel as follows: a sender sends a
signal by heavily allocating memory, and a receiver decides whether a signal was sent
or not, depending on the paging rate that he observes when allocating memory. In this
article, we focus on interrupt-related covert channels, i.e., covert channels that are es-
tablished based on the CPU time used for handling interrupts. Unlike many other covert
channels, interrupt-related channels cannot be mitigated by assigning a constant quota
of resource usage to each process. Therefore, it is of particular interest to obtain reli-
able upper bounds on the bandwidth of such channels. More generally, if one cannot
mitigate some covert channels then one should at least be able to assess their dangers.

In this article, we investigate the information-theoretic modeling of interrupt-related
covert channels. The main novel contribution is an approach to exploiting detailed
knowledge about a given channel in order to make the bandwidth analysis more precise.
This contribution is twofold: On the one hand, we demonstrate how to refine a model
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based on detailed knowledge about a given channel, and we show at two concrete ex-
amples that such refinements can result in significantly more precise upper bounds on
the bandwidth. On the other hand, we show that even in the case when the knowledge
needed for a refinement is incomplete, the available knowledge can still be exploited to
improve the bandwidth analysis in a significant way.

In earlier work, we investigated several mechanisms to reduce the bandwidth of
interrupt-related covert channels [1]. The model employed in this article constitutes an
improvement over the earlier model as it faithfully reflects the capabilities of senders
and receivers and is therefore suitable for obtaining reliable upper bounds on the band-
width of interrupt-related covert channels.

To our knowledge, there is no prior work on refining models of covert channels by
exploiting knowledge about probability distributions to improve the bandwidth analysis.
Our work is the first to exploit incomplete knowledge about probability distributions
in the bandwidth analysis of covert channels, in general. We have also implemented
an exploit of interrupt-related channels that works in practice. Using a simple ad hoc
encoding the exploit allows to transmit a four-digit PIN (i.e., approximately 13 bits
of information) in about 30 seconds. However, the focus of the current article is not on
such practical exploitations but rather on sound techniques for analyzing the bandwidth.

2 Modeling Interrupt-Related Covert Channels

In this section, we present the information-theoretic model for analyzing the bandwidth
of covert channels. Before presenting the model, we recall how interrupt-related chan-
nels operate and select a class of such channels as a running example.

2.1 Interrupt-Related Covert Channels

The transmission of information over an interrupt-related covert channel is based on
operations that result in asynchronous interrupt requests. The receiving process contin-
uously probes a clock during its execution in order to notice when it has been preempted
by an interrupt request. For instance, the observation that it was preempted at least once
during a given time-slot could be interpreted as the value 1 and that it was not preempted
as the value 0. To send a 0 over this channel, the sending process only needs to refrain
from executing operations that result in interrupt requests during the receiving process’
time-slot and, to send a 1, it performs such operations. Such an interrupt-related channel
cannot be mitigated by assigning a constant quota of resource usage to each process [1],
a technique that can be used to mitigate many other types of covert channels.

Interrupt-related covert channels can be established based on many different opera-
tions and various hardware devices. To make things concrete, we focus throughout this
article on channels that are based on the transmission of packets via a network interface
card (NIC). We call such an interrupt-related channel an NIC-channel.

More concretely, we consider an NIC that requests interrupts on two occasions: after
a packet has been transmitted to the network and after a packet has been received from
the network. An interrupt request causes the CPU to suspend its current activity in
order to execute an interrupt handler. This behavior can be exploited to establish a
covert channel as follows: The sending process requests the transmission of a packet
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1 2 3 transmission request1
interrupt request2
interrupt handling3

Fig. 1. Covert transmission of a single bit via an NIC-channel

via the NIC. After the NIC has transmitted the packet, it acknowledges the transmission
by an interrupt request. The handling of this interrupt will occur during the receiving
process’ time-slot if the transmission request is issued at the proper time by the sending
process. We illustrate the transmission of a single bit in a simple example scenario
where the sending process and the receiving process are scheduled alternately, and no
other processes are active. In Figure 1, each box in the time-line represents a time-slot
of the process indicated by the label inside the box, i.e., by S and R for the sending
process and the receiving process, respectively. Above the time-line, the occurrence of
a transmission request and the occurrence of an interrupt request are indicated by the
two vertical bars labeled with 1 and 2, respectively. The time interval used for handling
the interrupt is indicated by the gray rectangle labeled with 3.

2.2 The Information-Theoretic Model

We model each NIC-channel as a discrete, memoryless channel C, i.e., as a triple
(IC , OC , PC). Further information about discrete, memoryless channels can be found
in, e.g., [8]. The input alphabet IC models the set of values that can be sent on C, and
the output alphabet OC models the set of values that can be received from C. The chan-
nel matrix PC = (p(o|i))i∈IC ,o∈OC

defines the probability p(o|i) that a given output o
is received given that the input equals i. We first model the transmission from a given
time-slot of the sender to a given time-slot of the receiver before we generalize the set-
ting to multiple time-slots. In the model, we measure time abstractly in discrete time
units, which could, e.g., be microseconds or clock cycles, and assume that all time-slots
of the sending process and the receiving process have a fixed length of l time units.

The Input Alphabet. An input to the channel corresponds to the points in time at
which the sending process requests the transmission of a network packet. Formally, an
input is an ordered list [t1, . . . , tk], where each element ti represents a transmission
request at time ti in the sending process’ time-slot. We measure time relative to the
starting point of the given time-slot and require ti ≤ l for all elements of the list. The
input alphabet is

IC = {[t1, . . . , tk] | ∀i ∈ {1, . . . , k − 1}. 1 ≤ ti < ti+1 ≤ l}.

As an example, the input symbol i = [2, 7, 8] is illustrated by the diagram on the left
hand side of Figure 2. The three vertical bars on top of the sending process’ time-
slot represent the transmission requests after 2, 7, and 8 time units, respectively. An
alternative, but equivalent representation of inputs are bit strings of length l.

The Output Alphabet. An output symbol contains information about interrupt handling
in the receiving process’ time-slot. For each interrupt request that is handled during that
time-slot, the output symbol contains a pair (s, d), where s represents the time at which
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Fig. 2. Input symbol [2, 7, 8] (left diagram) and output symbol [(−1, 3), (4, 4)] (right diagram)

the interrupt request occurs, and d represents the duration of handling this request. This
modeling is conservative as output symbols contain the information when interrupts oc-
cur and how long their handling takes, while the receiver only sees during which time
intervals it was not running on the CPU. We use this approach as it allows us to model
the correspondence between input and output symbols independently of how the system
deals with interrupts that are requested during the handling of another interrupt request.

We formalize an output symbol as an ordered list [(s1, d1), . . . , (sk, dk)]:

OC = { [(s1, d1), . . . , (sk, dk)] |
∀i ∈ {1, . . . , k − 1} . (−K<si≤si+1≤ l ∧ (si =si+1 ⇒ di≤di+1))},

where K is the maximal amount of time that interrupt handling may take. Note that
the lists in the output alphabet are ordered in the sense that either si < si+1 or si =
si+1 ∧ di ≤ di+1 holds for i ∈ {1, . . . , k − 1}. If si = sj holds for i �= j then this
represents that the two interrupt requests occur at the same time. Note that we demand
−K < si instead of 0 < si and si+1 ≤ l instead of si+1 + di+1 ≤ l. This ensures
an adequate treatment of interrupt requests that occur at the boundaries of the receiving
process’ time-slot. That is, our output symbols include interrupt requests that occur
before the receiving process’ time-slot but that are handled at least partially during this
time-slot as well as interrupts whose handling exceeds the receiving process’ time-slot.

As an example, the output symbol [(−1, 3), (4, 4)] is represented by the diagram on
the right-hand side of Figure 2. In the diagram, the vertical bars represent the occurrence
of interrupt requests, and the gray boxes represent the time used for interrupt handling.

The Channel Matrix. While the input alphabet and the output alphabet can be de-
fined for NIC-channels in general, the channel matrix must be defined dependent on the
particular instance of an NIC-channel. We illustrate this for a simple example channel.

Example 1. Assume a scenario where the sending process and the receiving process
are scheduled alternately in a Round-Robin fashion and no other processes are active.
The length of each time-slot shall be 100 milliseconds, the latency of the NIC shall be
10 milliseconds (i.e. an interrupt request occurs exactly 10 milliseconds after a given
transmission request), and handling a single interrupt shall take exactly 1 millisecond.

We choose milliseconds as granularity of time in the model, i.e. one time unit in the
model corresponds to one millisecond in reality. At each time unit, the sending process
either requests a transmission or not. Given an input symbol [t1, . . . , tj , tj+1, . . . , tj+k]
with tj ≤ l− 10 and tj+1 > l− 10, the transmission requests at t1, . . . , tj do not result
in interrupt requests in the receiver’s time-slot and, hence, can be ignored in an input
symbol. Given an input [t1, . . . , tk] with t1 > l − 10 and k ≤ 10, the receiver observes
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the output [(t1− l+ 10, 1), . . . , (tk − l+ 10, 1)], which means that 210 different output
symbols can be generated. The channel matrix can then be defined as follows:

PC [i, o] = p(o|i) =

⎧⎨⎩
1 , if i = [t1, . . . , tj , tj+1, . . . , tj+k], tj ≤ l − 10 < tj+1,

k ≤ 10, and o = [(tj+1−l+10, 1), . . . , (tj+k−l+10, 1)]
0 , otherwise.

The channel in the prior example features a functional dependency between input and
output. That is, for a given input i ∈ IC , the corresponding output o(i) ∈ OC and
a given list element (sj , dj) in the output o(i), there is exactly one corresponding list
element tk in the input i. This is reflected in the model by the fact that no other values
than 0 and 1 occur as entries in the channel matrix.1

Bandwidth Analysis. The capacity CAP(C) of a discrete, memoryless channel C is
defined as an upper bound on the amount of information (in number of bits) that can be
transmitted over C on average with an arbitrarily small error probability. For the formal
definition of capacity and of other basic concepts of information theory see, e.g., [8].

Example 2. In the scenario from Example 1, 210 different output symbols can be gen-
erated. Each of these symbols can be generated by sending an input symbol [t1, . . . , tk]
with t1 > l − 10 and k ≤ 10. Hence, we obtain a capacity of 10 bits per scheduler
round for our simple example channel.

For a contemporary NIC and scheduler, it is plausible that a given time-slot of the
receiving process is only influenced by transmissions in the immediately preceding
time-slot of the sending process. This observation allows us to generalize the model
to multiple scheduler rounds.

Example 3. In Example 1, a scheduling round consists of a time-slot of each of the two
processes. Hence, 5 scheduler rounds occur every second. Since the capacity is 10 bits
per scheduler round (see Example 2), we obtain a capacity of 50 bits per second.

In Examples 1–3, the latency of the NIC as well as the handling time of an interrupt
request are constant. Random effects influencing these time values can be taken into
account by an appropriate definition of the channel matrix.

Example 4. Reconsider the scenario from Examples 1–3, but with a non-constant la-
tency of the NIC. We assume that the latency of the NIC is between 8 and 12 mil-
liseconds, where the probability that the latency equals t milliseconds is denoted as
p(latency = t). For the probability distribution depicted in the following graph, we
obtain a capacity of 2.3 bits per scheduler round, or equivalently 11.5 bits per second.2

6 7 8 9 10 11 12 13 14
t

p(latency = t)

0.
06 0.

25 0.
38

0.
25

0.
06

1 Examples of channels where the dependency between input and output is not functional are
given in Example 4 as well as in Section 3.2.

2 Due to space restrictions, the formalization of the probabilities PC [i, o] used in the analysis
is provided in an appendix to this article which is available on the second author’s website
(http://www.mais.informatik.tu-darmstadt.de/FAST08-app.html).

http://www.mais.informatik.tu-darmstadt.de/FAST08-app.html
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If the number of processes and the behavior of the interrupt mechanism remain constant
over time, like in Examples 3 and 4, then the capacity per second can be calculated by
the formula CAP(C)∗ 1

L∗(n+2) where n is the number of active processes besides sender
and receiver and L is the duration of a single time-slot in seconds. In a more dynamic
setting where, e.g., the number of processes or the dependency between input and output
changes over time, one would need to perform a more complicated calculation, possibly
having to adapt the channel matrix between individual scheduler rounds.

Remark 1. In [1], we defined an information-theoretic model in order to analyze the ef-
fectiveness of various countermeasures against interrupt-related channels. In this model,
we would obtain a capacity of approximately 3.5 bits per scheduler round for the sce-
nario from Examples 1–3 (see Example 5 in [1]). This significant difference in the
capacity is due to a somewhat ad hoc simplification in the model that results in an inac-
curate treatment of the receiving process’ capabilities. In our earlier model, the receiver
could observe less than he can observe in reality and, therefore, the bandwidth analysis
resulted in a capacity that is too low. More concretely, we assumed that the receiving
process could only perceive the accumulated delay caused by all interrupts that occur
in a given time-slot. Unlike our earlier model, the model proposed in this article (in-
cluding all refinements presented in the subsequent sections) provides a suitable basis
for determining reliable upper bounds on the bandwidth as it reflects the capabilities of
senders and receivers in an adequate way.

3 Exploiting Additional Knowledge in a Bandwidth Analysis

Additional knowledge about a particular NIC-channel can be exploited in the band-
width analysis. In this section, we demonstrate how our information-theoretic model
can be refined based on such knowledge. We illustrate how to refine the model with two
examples: the first exploits knowledge about the peculiarities of the NIC and the second
exploits information about the run-time environment of the sender and receiver. In each
case, the objective of refining the model is to increase the precision of the bandwidth
analysis. The fact that the model from Section 2 is conservative already guarantees that
the calculated bandwidths constitute reliable upper bounds. As we demonstrate by con-
crete examples, refinements of the model can lead to significant increases in precision.

3.1 Exploiting Peculiarities of the Network Interface Card

In Section 2, we made the rather conservative assumption that the sender can request
a transmission at each time unit during its time-slot. Let us now consider an NIC that
requires that two subsequent transmission requests are at least Ttr time units apart.
Consequently, the sender can only generate input symbols from the following subset:

I ′C = {[t1, . . . , tk] | ∀i∈{1, . . . , k − 1}. 1≤ ti<ti+1≤ l ∧ ti+1−ti ≥ Ttr} ⊆ IC .

The number of ordered lists over a set {1, . . . , j} where two adjacent elements in a list
have at least a distance of Ttr time units can be computed recursively as follows:

N(j) = j + 1 , if j ≤ Ttr

N(j) = N(j − Ttr) + N(j − 1) , if j > Ttr
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The first equation above reflects the fact that there cannot be two elements in {1, . . . , j}
with a distance of at least Ttr if j ≤ Ttr holds. In this case, the empty list [ ] and the
singleton lists [1], . . . , [j] are the only ordered lists that satisfy the given constraints.
The second equation reflects the fact that the set of ordered lists can be partitioned into
the following two subsets: the lists in which j occurs as the last element (hence, there
are N(j−Ttr) possibilities for the prefix of a list without this last element) and the lists
in which j does not occur (hence, there are N(j − 1) possibilities for such lists).

Example 5. We consider the same scenario as in Examples 1–3 (i.e. l = 100 and
K = 1), but with the additional knowledge that two subsequent transmission requests
must be at least two time units apart (i.e. Ttr = 2). Like before, an input symbol
[t1, . . . , ti, ti+1 . . . , ti+k] with tj ≤ l − 10, tj+1 > l − 10, and k ≤ 10 results in
the output symbol [(ti+1 − l + 10, 1), . . . , (ti+k − l + 10, 1)]. Note that the set of out-
put symbols that can actually occur is only a proper subset of the one in Example 1.
The cardinality of this subset equals N(10) (for Ttr = 2) because only transmission
requests in the last 10 milliseconds of the sender’s time-slot are relevant and because
two transmission requests must be at least 2 milliseconds apart. That is, we obtain a
bandwidth of log2(N(10)) = log2(144) ≈ 7.2 bits per scheduler round.

The above example demonstrates that our refinement of the model leads to an upper
bound on the bandwidth that is significantly lower (reduction by more than 25%) than
in the model from Section 2. This justifies the slightly more complex model that results
from taking restrictions on the sender side into account. Note that the difference in the
bandwidth becomes even greater if larger values of Ttr are used. The capacities for
Ttr ∈ {1, . . . , 9} are depicted in in the following graph. For instance, for Ttr = 6, we
obtain a capacity of approximately 4.4 bits per scheduler round.

0 1 2 3 4 5 6 7 8 9
0
2
4
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8

10

Ttr

CAP

Remark 2. Refinements of the model, like the one just presented, must be constructed
with care. In particular, one must be careful to not endanger the conservativity of the
model. Otherwise, one could obtain bandwidths that are no reliable upper bounds.

We illustrate this by an example. To this end, we consider the same scenario as in
Example 5, but define the set of input symbols that can be generated less carefully than
before. To simplify the bandwidth analysis, we assume that transmission requests occur
only at odd time units. This ensures that two subsequent transmission requests are at
least two time units apart. Under this assumption, only elements from the following
subset of IC can be generated:

I ′′C = {[t1, . . . , tk] | ∀i ∈ {1, . . . , k − 1}. 1 ≤ ti < ti+1 ≤ l ∧ ti, ti+1 are odd}.

Under this assumption, the set of output symbols that can be generated is

O′′
C = {[(t1, 1), . . . , (tk, 1)] | ∀i ∈ {1, . . . , k− 1}. 1 ≤ ti < ti+1 ≤ 10∧ ti, ti+1odd}.
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This set contains 25 different elements. Hence, we obtain a capacity of 5 bits per sched-
uler round. Note how much easier it is to determine the bandwidth here in comparison
to Example 5, where we had to employ recursive equations. However, the calculated
capacity does not constitute a reliable upper bound on the bandwidth of the channel
because there are output symbols (e.g., [(2, 1), (4, 1)]) that can be generated under the
given assumptions in reality, but that do not occur in O′′

C . The deviation from the correct
result is significant (5 bits instead of 7.2 bits in Example 5) and, hence, not acceptable.

This illustrates how careful one must be when exploiting additional knowledge about
a channel in the bandwidth analysis. In particular, one should avoid ad hoc refinements
that simplify the analysis technically because, otherwise, one might obtain significantly
inaccurate results that do not constitute upper bounds on the bandwidth.

3.2 Exploiting Knowledge about Noise

So far, we only considered those interrupt requests in a time-slot of the receiver that
are caused by transmission requests of the sender. In reality, however, other sources of
interrupts could introduce noise into the communication and, thereby, lower the band-
width of the covert channel. For instance, any hardware device that uses interrupt-driven
communication could add to the noise. This includes the NIC, which also generates in-
terrupt requests to signal other events than the successful transmission of a packet to
the network. To simplify the presentation in the following, we focus on noise due to
interrupts that the NIC requests to signal that a packet has arrived from the network.

Since the occurrences of additional interrupt requests depend on the behavior of the
environment of the system, for instance on other clients attached to the network, the
receiving process, in general, does not know in advance when interrupt requests caused
by arriving network packets are handled during its time-slot. To model the occurrences
of these interrupt requests, we use a random variable Env, which takes values in the set

{[(r1, d1), . . . , (rk, dk)] | ∀i ∈ {1, . . . , k − 1}.−K < ri < ri+1 ≤ l},

where the list [(r1, d1), . . . , (rk, dk)] represents occurrences of interrupt requests
caused by arriving network packets at the times r1, . . . , rk with respect to the receiving
process’ time-slot, and the interrupt request at time ri is handled in di time units.

The probabilistic dependency of a channel’s output on the input is captured by the
probability matrix PC in our model of the channel. If no noise disturbs the transmission
over the channel, the dependency between input symbols and output symbols is func-
tional, like in Examples 1–3. In the presence of noise, we usually loose this functional
dependency. For instance, the input symbol [91] could result in the output [(1, 1)], which
is the only possible output in the scenario without noise from Examples 1–3, but it could
also result, e.g., in the output [(1, 1), (3, 1)] where the second list element represents an
interrupt request that signals the arrival of a network packet at time 3.

We introduce some notation for the definition of probability matrices. We write
o1 ⊆ o2 to express that the list o2 contains all occurrences of elements in the list o1.
We use o2& o1 to denote the list that results by removing one occurrence of an element
from the list o2 for each occurrence of this element in o1, given that the element occurs
in o2 (e.g., [(1, 1), (1, 1), (3, 1)]& [(1, 1)] = [(1, 1), (3, 1)]). For a given input i ∈ IC
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and output o ∈ OC , one can determine the list of all elements in o that are caused by
transmission requests in i. We use o(i) ∈ OC to denote this sublist of o.

If an output symbol o ∈ OC occurs for a given input i ∈ IC , then o(i) denotes
the sublist of o that contains all interrupts requests that are generated by transmission
requests in i. Hence, all interrupt requests in o& o(i) must be caused by noise, i.e., by
the arrival of packets from the network. Therefore, we define

PC [i, o] = p(o|i) =

{
0 , if o(i) �⊆ o,

p(Env = o& o(i)) , if o(i) ⊆ o.

Note that o(i) �⊆o implies that o was not generated by i. Hence, PC [i, o]=0 must hold.

Example 6. We consider the scenario from Examples 1–3, but admit noise due to inter-
rupt requests caused by the arrival of packets from the network. We assume that 3 net-
work packets arrive, on average, during a 10 millisecond interval, and that each of the
corresponding interrupt requests is handled within 1 millisecond. Additionally, we as-
sume that the probability that the environment causes an interrupt request at a given
time unit is independent of the same probability for another time unit, i.e.,

p(Env = [(r1, 1), . . . , (rk, 1)]) = 0.3k ∗ (1 − 0.3)l−k.

For this scenario, we obtain a capacity of approximately 5.6 bits per scheduler round.3

Example 6 illustrates that using a more complex model, in which interrupt requests
caused by the arrival of network packets are taken into account, can result in a signif-
icantly more precise upper bound on the bandwidth. Compared to Example 1, where
we obtained an upper bound of 10 bits per scheduler round, the upper bound on the
bandwidth is decreased by 4.4 bits per scheduler round, i.e., by 44%.

Remark 3. One must be careful when choosing a probability distribution for the random
variable Env because an inappropriate choice may result in significant errors in the
calculation. To illustrate this, we reconsider Example 6, but assume that it is likely that
directly after the arrival of a packet from the network, further packets arrive. In such a
scenario, the occurrence of an interrupt that signals the arrival of a packet increases the
likelihood that further interrupts occur immediately afterwards. Therefore, we cannot
assume anymore that the probability that noise occurs at one time unit is independent
from the occurrence of noise at other points in time (which we assumed in Example 6).

Assume, for instance, that packets were always arriving in batches of size 2. Then
one obtains a capacity of approximately 8.7 bits per scheduler round instead of 5.6 bits.
That is, the effect of noise on the bandwidth is significantly reduced. However, note
also that even if the effect of noise is limited in this way, we still obtain some increase
in the precision of the calculated bandwidth (8.7 bits instead of 10 bits).

3 An analytical computation of the capacity in this scenario is too difficult. For an approximation,
we compute capacities here, and in the remainder of the article, using an algorithm due to
Arimoto and Blahut [9,10] that allows the computation of arbitrarily precise approximations
of the capacity of discrete, memoryless channels. The computations are performed using the
authors’ straightforward Java implementation of the algorithm.
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4 Effects on the Analysis of a Countermeasure

In Section 3, we demonstrated that improving the information-theoretic model can have
quite significant effects on the results of a bandwidth analysis. Interestingly, modifi-
cations to the model not only have an effect on the capacity of the channel, but can
also influence the evaluation of the effectiveness of countermeasures against interrupt-
related channels. In the current section, we investigate this second effect at the example
of interrupt-rate limiting. We base our investigation on an earlier evaluation and com-
parison which covered interrupt-rate limiting and five other countermeasures [1].

Interrupt-rate limiting mitigates NIC-channels by interrupting theCPU less frequently.
The technique is used in network interface cards, where interrupt requests are delayed
until a certain number v of packets has arrived, rather than requesting an interrupt for
each packet (see, e.g., [11]). The evaluation of interrupt-rate limiting as a countermeasure
against covert channels in [1] led to two conclusions:

– The countermeasure is capable to reduce the bandwidth arbitrarily close towards 0.
– For high values of v, the capacity is decreasing only slowly.

Both of these observations remain valid for the improved information-theoretic model
that we proposed in Section 2. Nevertheless, the modifications to the model can still
have an observable effect on the effectiveness of the countermeasure, at least in some
cases. We illustrate this more concretely in the remainder of this section.

Effects of Modeling the Receiver Adequately. To elaborate the effects of changing the
output alphabet on the effectiveness of interrupt-rate limiting, let us revisit the scenario
from Examples 1–3. The analysis shows that, at least for this scenario, the change of the
output alphabet has a significant effect on the effectiveness of interrupt-rate limiting.

For the analysis, we integrate interrupt-rate limiting into the model by defining an
appropriate channel matrix. The definition of the probabilities PC [i, o] is fairly straight-
forward. The only subtlety results from the need to take into account that an unknown
number of network packets is pending at the NIC at the beginning of the receiving
process’ time-slot. Like in [1], we assume that the number of pending interrupts is uni-
formly distributed on the set {0, . . . , v − 1}.

The analysis results for the model using the refined output alphabet from Section 2
as well as for the earlier model from [1] are displayed in Figure 3. The solid dots (•)
represent the resulting capacities for the refined output alphabet from Section 2, and the
circles (◦) those for the earlier model. When increasing the parameter v for small values,
the reduction of the capacity is significantly stronger for the model from Section 2. For
instance, increasing the value of v from 1 to 2 reduces the capacity by 39% in the refined
model, but only by 27% in the earlier model. For larger values of v (i.e. for v ≥ 10),
interrupt-rate limiting reduces the capacity in both models nearly to the same level.

Effects of Exploiting Noise and Peculiarities of the NIC in the Model. Unlike the
refinement of the output alphabet from Section 2, the two refinements from Section 3 do
not have an observable effect on the effectiveness of interrupt-rate limiting. In both sce-
narios, we could not identify any significant differences in the reduction of the capacity
when applying interrupt-rate limiting.
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Fig. 3. Effect of the refined output alphabet on the analysis of interrupt-rate limiting

5 Incomplete Knowledge of Probabilistic Behavior

In Section 3, we demonstrated how additional knowledge about a particular covert chan-
nel can be exploited to increase the precision of the bandwidth analysis. When exploit-
ing the bandwidth reduction due to noise in Section 3.2, we assumed the probability
distribution to be known for the additional interrupts that disturb the covert commu-
nication. However, one can easily imagine cases where only incomplete information
about the probability distributions is available. For instance, one might only know the
number of packets that arrive from the network on average, but not what the exact prob-
ability distribution is. In such a scenario, one should refrain from simply choosing one
arbitrary probability distribution from the set of possible distributions. Such an ad-hoc
choice could lead to significant errors in the resulting capacity, as the difference be-
tween the capacities obtained in Example 6 and in Remark 2 prove (5.6 bits versus 8.7
bits per scheduler round). This raises the question whether there is any possibility to
obtain reliable upper bounds on the bandwidth when exploiting incomplete knowledge
about probability distributions for noise in order to increase the precision of the capac-
ity analysis. In this section, we give an affirmative answer to this question and show
how incomplete knowledge about probability distributions can be exploited.

The following example illustrates how reliable upper bounds can be achieved by
performing the analysis in multiple instances of the refined model from Section 3.2.
For the used approach it is essential that the refinement from Section 3.2 is parametric
in the probability distribution of the noise represented by the random variable Env.

Example 7. We consider a scenario, where an interrupt request occurs exactly t time
units after a given transmission request. Handling an interrupt request shall take exactly
one time unit. Furthermore, on average, x interrupt requests are caused by arriving
network packets during the first t time units of the receiving process’ time-slot.

Without considering the additional information about arriving network packets, we
obtain an upper bound on the capacity of t bits per scheduler round.

To obtain a more precise upper bound by using the additional knowledge, we denote
with #Env the number of interrupt requests caused by arriving network packets during
the first t time units of the receiving process’ time-slot, and with μ(#Env) the mean
value of #Env. In the scenario under consideration μ(#Env) equals x. For different
probability distributions of the random variable Env (see Section 3.2), μ(#Env) takes
different values. We denote with D the set of all possible probability distributions of
the random variable Env for which μ(#Env) = x. With the given information that,
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on average, x interrupt requests are caused by arriving network packets during the first
t time units of the receiving process’ time-slot, the distribution of the random variable
Env could be any probability distribution in the set D.

Using the refined model from Section 3.2, we can compute an upper bound on the
bandwidth for each d ∈ D. Note that when D is too large it becomes infeasible to
calculate the upper bounds for all d ∈ D in this fashion. We denote the upper bound
obtained under the assumption that Env is distributed according to d with UB(d). Then
the maximal value of UB(d), for d ∈ D, is an upper bound on the bandwidth of the
channel, as this is the highest upper bound for those probability distributions of Env
for which μ(#Env) = x.

Assume that t = 2 and x = 0.8. In this case, the set D is small enough such that the
individual computation of UB(d) for all d ∈ D is feasible. To compute these values, we
implemented the analysis for the refined model from Section 3.2 for arbitrary distribu-
tions of Env. In the implementation the probabilities p(Env = [(r1, 1), . . . , (rk, 1)])
are represented with a precision of four digits. To compute the upper bound, we needed
to compute the capacity for approximately 160.000 instances of the model. The re-
sulting upper bound (which equals the maximum of all computed capacities) equals
approximately 1.7 bits per scheduler round.

The preceding example demonstrates that the consideration of additional knowledge
that is not sufficient to instantiate the refined model from Section 3.2 still allows one
to obtain more precise upper bounds. Compared to an analysis where the additional
knowledge is not taken into account, the obtained upper bound is reduced by 15%.

The following example illustrates that exploiting further information can result in
further improvements of the upper bound.

Example 8. We consider the scenario from Example 7, but assume in addition that the
variance of the random variable #Env equals 0.4. Using this additional information, we
denote with D′ the set containing all probability distributions of Env where the mean
value of #Env equals 0.8 and the variance of #Env equals 0.4. By determining the
maximal value of UB(d) for d ∈ D′, we obtain an upper bound on the bandwidth equal
to approximately 1.3 bits per scheduler round.

Remark 4. When we consider the scenario from Example 7, the size of the set D for
which UB(d) needs to be computed during the analysis grows exponentially when t is
increased. This is because interrupt requests during the first t time units in the receiving
process’ time-slot can be caused by the sending process, therefore interrupt requests
caused by arriving network packets that occur up to t time units after the start of the
receiving process’ time-slot influence the channel’s capacity, and, hence, the analysis. In
consequence, if the value of t is too large the brute-force approach used in Examples 7
and 8 is no longer feasible. Luckily, there are more efficient algorithms from the domain
of global optimization [12] that can be used to compute the maximal value of UB(d) for
d ∈ D. More precisely, we showed that the problem to find the maximal value of UB(d)
for d ∈ D in the above scenarios is a convex maximization problem over a linearly
constrained set [13]. For this class of problems algorithms that are more efficient than
the brute-force approach employed in Examples 7 and 8 have been developed [14].
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6 Related Work

Covert channels have been firstly identified in [2]. They have been researched exten-
sively throughout the last 35 years, where the main research areas were covert channel
identification, covert channel analysis, and covert channel mitigation.

The focus of the current article is on covert channel modeling and analysis, not on their
identification and their mitigation. A guide to covert channel identification is provided
in [3], covering various approaches including syntactic information flow analysis (e.g.,
[15,16]) and the shared resource matrix method [17,18]. More recent approaches use
security type systems for the identification of information leaks (e.g., [19,20]). Various
methods for the mitigation of covert timing channels have been proposed [21,22,23,24],
including mechanisms targeted specifically at interrupt-related channels [1].

Concerning the analysis of covert channels, the focus of most previous research has
been on deriving the bandwidth based on information theory. In [25,26] the connection
between notions of noninterference and the capacity of a channel is investigated. Vari-
ous other articles (e.g., [27,28,29,30,31]) investigate how the capacity of certain abstract
classes of channels can be computed. In [28,32] effects of noise on the transmission time
of a symbol over a covert channel are studied. This differs from our treatment of noise
in Section 3.2, where noise affects the output symbol itself. Gray focuses on a particular
class of covert channels in [33,22], where the probabilistic behavior considered in the
analysis originates from two mechanisms for mitigating the channel. This is also the
case in the analysis of the NRL pump, another mitigation mechanism that targets covert
channels exploiting acknowledgments in conventional communication [23,34,24].

In [35], games between an attacker exploiting a covert channel and a jammer disturb-
ing the communication are investigated. Different jamming strategies result in a family
of channel models. In this setting, the jammer completely determines the probability
distributions. This differs from our treatment in Section 5, where we also consider fam-
ilies of probability distributions but assume that each distribution is possible given the
available knowledge. In [36] and [37], models of the NRL pump that are parametric in
the probability distributions are used to assess how parameter variations influence the
capacity of covert channels. However, these models are not used to find upper bounds
on the channel capacity when the concrete parameter values are unknown. We are not
aware of any prior work that derives upper bounds on the bandwidth in a probabilistic
model, where the information about the probability distributions is incomplete.

Most approaches, as also the current article, use information theory for the analysis
of covert channels. However, there are also a few other approaches. For instance, [38]
uses Markov models to compute the bandwidth of a covert channel. An approach that
does not consider a probabilistic setting is based on counting the number of different
sender behaviors that can be distinguished by the receiver [5].

7 Conclusion

In this article, we showed how additional knowledge about particular instances of covert
channels can be exploited to improve the precision of the bandwidth analysis. We
demonstrated with two concrete examples that such improvements can have a rather
significant effect on the calculated capacity. In addition, we showed that and how even
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incomplete knowledge about probability distributions can be exploited in the bandwidth
analysis in a sound way.

The employed information-theoretic model is similar to the model used in [1]. Our
new model constitutes a technical improvement over our earlier model, and allows to
compute reliable upper bounds on the bandwidth of interrupt-related channels.

In parallel to our theoretical investigations, we experimented with practical exploita-
tions of interrupt-related covert channels and NIC-channels in particular. This effort is
on-going, but the results obtained so far already strongly confirm that interrupt-related
covert channels pose a threat that should be taken serious. Using the exploit, the trans-
mission of a 13-bit PIN (i.e. the order of magnitude used in authentication mechanisms
for banking machines) takes approximately 30 seconds. In contrast to our theoretical
analysis which results in upper bounds on the bandwidth, the practical evaluation al-
lows us to obtain lower bounds on the bandwidth of interrupt-related covert channels.

References

1. Mantel, H., Sudbrock, H.: Comparing Countermeasures against Interrupt-Related Covert
Channels in an Information-Theoretic Framework. In: Proc. of the IEEE Computer Secu-
rity Foundations Symposium, pp. 326–340 (2007)

2. Lampson, B.W.: A Note on the Confinement Problem. Communications of the ACM 16(10),
613–615 (1973)

3. Gligor, V.: A Guide to Understanding Covert Channel Analysis of Trusted Systems. CSC-
TG-030, Rainbow Series (Light Pink Book) (1993)

4. Shieh, S.P.: Estimating and Measuring Covert Channel Bandwidth in Multilevel Secure Op-
erating Systems. Journal of Inform. Science & Engineering 15, 91–106 (1999)

5. Lowe, G.: Quantifying Information Flow. In: Proc. of the IEEE Computer Security Founda-
tions Workshop, pp. 18–31 (2002)

6. Beauquier, D., Lanotte, R.: Hiding Information in Multi Level Security Systems. In: Dim-
itrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691,
pp. 250–269. Springer, Heidelberg (2007)

7. Son, J., Alves-Foss, J.: Covert Timing Channel Analysis of Rate Monotonic Real-Time
Scheduling Algorithm in MLS Systems. In: Proc. of the IEEE Information Assurance Work-
shop, pp. 361–368 (2006)

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons,
Inc., Chichester (2006)

9. Arimoto, S.: An Algorithm for Computing the Capacity of Arbitrary Discrete Memoryless
Channels. IEEE Trans. on Information Theory 18(1), 14–20 (1972)

10. Blahut, R.: Computation of Channel Capacity and Rate-Distortion Functions. IEEE Trans.
on Information Theory 18(4), 460–473 (1972)

11. Intel Corporation: Interrupt Moderation Using Intel Gigabit Ethernet Controllers, Applica-
tion Note (AP-450), Revision 1.1 (2003)

12. Horst, R., Tuy, H.: Global Optimization. Deterministic Approaches. Springer, Heidelberg
(1996)

13. Horst, R.: On the Global Minimization of Concave Functions. OR Spectrum 6(4), 195–205
(1984)

14. Benson, H.P.: Deterministic Algorithms for Constrained Concave Minimization: A Unified
Critical Survey. Naval Research Logistics 43(6), 765–795 (1996)

15. Denning, D.E.: A Lattice Model of Secure Information Flow. Communications of the
ACM 19(5), 236–243 (1976)



Information-Theoretic Modeling and Analysis of Interrupt-Related Covert Channels 81

16. Denning, D.E., Denning, P.J.: Certification of Programs for Secure Information Flow. Com-
munications of the ACM 20(7), 504–513 (1977)

17. Kemmerer, R.A.: Shared Resource Matrix Methodology: An Approach to Identifying Stor-
age and Timing Channels. ACM Trans. on Comp. Sys. 1(3), 256–277 (1983)

18. Kemmerer, R.A.: A Practical Approach to Identifying Storage and Timing Channels: Twenty
Years Later. In: Proc. of the Annual Computer Security Applications Conference, pp. 109–
118 (2002)

19. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis. Journal
of Computer Security 4(3), 1–21 (1996)

20. Sabelfeld, A., Myers, A.C.: Language-based Information-Flow Security. IEEE Journal on
Selected Areas in Communication 21(1), 5–19 (2003)

21. Hu, W.-M.: Reducing Timing Channels with Fuzzy Time. In: Proc. of the IEEE Symposium
on Research in Security and Privacy, pp. 8–20 (1991)

22. Gray III, J.W.: On Introducing Noise into the Bus-Contention Channel. In: Proc. of the IEEE
Symposium on Research in Security and Privacy, pp. 90–98 (1993)

23. Kang, M.H., Moskowitz, I.S.: A Pump for Rapid, Reliable, Secure Communication. In: Proc.
of the ACM Conference on Computer and Communications Security, pp. 119–129 (1993)

24. Kang, M.H., Moskowitz, I.S., Chincheck, S.: The Pump: A Decade of Covert Fun. In: Proc.
of the Annual Computer Security Applications Conference, pp. 352–360 (2005)

25. Millen, J.K.: Covert Channel Capacity. In: Proc. of the IEEE Symposium on Security and
Privacy, pp. 60–66 (1987)

26. Moskowitz, I.S.: Quotient States and Probabilistic Channels. In: Proc. of the IEEE Computer
Security Foundations Workshop, pp. 74–83 (1990)

27. Millen, J.K.: Finite-State Noiseless Covert Channels. In: Proc. of the IEEE Computer Secu-
rity Foundations Workshop, pp. 81–86 (1989)

28. Moskowitz, I.S.: Variable Noise Effects Upon a Simple Timing Channel. In: Proc. of the
IEEE Symposium on Security and Privacy, pp. 362–372 (1991)

29. Moskowitz, I.S., Miller, A.R.: Simple Timing Channels. In: Proc. of the IEEE Symposium
on Research in Security and Privacy, pp. 56–64 (1994)

30. Moskowitz, I.S., Greenwald, S.J., Kang, M.H.: An Analysis of the Timed Z-channel. In:
Proc. of the IEEE Symposium on Security and Privacy, pp. 2–11 (1996)

31. Martin, K., Moskowitz, I.S.: Noisy Timing Channels with Binary Inputs and Outputs. In:
Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437,
pp. 124–144. Springer, Heidelberg (2007)

32. Moskowitz, I.S., Miller, A.R.: The Channel Capacity of a Certain Noisy Timing Channel.
IEEE Trans. on Information Theory 38(4), 1339–1344 (1992)

33. Gray III, J.W.: On Analyzing the Bus-Contention Channel under Fuzzy Time. In: Proc. of
the IEEE Computer Security Foundations Workshop, pp. 3–9 (1993)

34. Kang, M.H., Moskowitz, I.S., Lee, D.C.: A Network Pump. IEEE Trans. on Software Engi-
neering 22(5), 329–338 (1996)

35. Giles, J., Hajek, B.: An Information-theoretic and Game-theoretic Study of Timing Channels.
IEEE Trans. on Information Theory 48(9), 2455–2477 (2002)

36. Lanotte, R., Maggiolo-Schettini, A., Tini, S., Troina, A., Tronci, E.: Automatic Analysis of
the NRL Pump. Electr. Notes Theor. Comput. Sci. 99, 245–266 (2004)

37. Aldini, A., Bernardo, M.: An Integrated View of Security Analysis and Performance Eval-
uation: Trading QoS with Covert Channel Bandwidth. In: Heisel, M., Liggesmeyer, P.,
Wittmann, S. (eds.) SAFECOMP 2004. LNCS, vol. 3219, pp. 283–296. Springer, Heidel-
berg (2004)

38. Tsai, C.R., Gligor, V.D.: A Bandwidth Computation Model for Covert Storage Channels and
its Applications. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 108–121
(1988)



Causality and Accountability

Dominic Duggan and Ye Wu

Department of Computer Science, Stevens Institute of Technology
Hoboken, New Jersey 07030, USA

Fax: +1 (201) 216-8249
{dduggan,ywu1}@cs.stevens.edu

Abstract. Noninterference is a standard correctness condition for information
flow control, but achieving it may sometimes be too expensive to be practical,
particularly for distributed applications. A framework is introduced for specifying
what forms of information flow control should be secured. Accountable noninter-
ference requires that there be no information leaks via accountable information
flows. An example application is in delineating sequential and distributed infor-
mation flows, allowing different enforcement mechanisms for each. As such, the
framework allows the specification of mechanism, dual to policy, in information
flow control.

1 Introduction

Decentralized information flow control is emerging as an organizing principle for de-
centralized secure software systems, and recent work is extending this to secure dis-
tributed systems [35]. Following Goguen and Meseguer [15], information flow control
policies are formulated in terms of noninterference:

Given two groups of users G and G′, we say G does not interfere with G′ if for
any sequence of commands w, what users in G′ can observe after executing w
is the same as what users in G can observe after executing PG(w), which is w
with command initiated by users in G removed.

Noninterference is a strong condition, that implicitly prevents covert channels based
on indirect control effects. Language-based security [30] has focused to a large extent
on information flow control, applying techniques from programming languages to per-
form static analysis of software to verify information flow control properties such as
noninterference. In distributed systems, noninterference is often characterized in terms
of process equivalence.

In reality noninterference may too strong a condition for many applications. For ex-
ample, in many situations the information flow control policy changes over time. There
may also be circumstances under which information is allowed to be declassified. There
are also practical barriers to the assurance of noninterference. In language-based secu-
rity, noninterference focuses on preventing covert channels via control flow (assignment
to a low variable based on examining the content of a high variable, for example). This
ignores covert channels that are available through the runtime (e.g. the garbage collec-
tor or thread timing), disk I/O, aspects of the user interface etc. Noninterference for
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distributed processes is particularly difficult, since it must prevent traffic analysis by
low-level attackers, a very strong condition for internet communications. Noninterfer-
ence results for system designs are therefore often cited as “baseline” results, making
strong assumptions (e.g. sequentiality) about the computing environment, with no con-
nection made to the actual practical environments in which one would try to apply such
systems.

We propose an alternative approach to considering the correctness of information
flow control. In this approach, we focus on causality rather than process equivalence.
Causality can be expressed in many ways. For example, Lamport’s happened-before
relation � [24] assumes sequential processes running concurrently, and with events e
and messages m uniquely identified:

1. If event e2 happens after event e1 at process P, then e1 � e2.
2. If event e1 is the sending of message m and e2 is the receipt of m, then e1 � e2.
3. If e1 � e2 and e2 � e3, then e1 � e3.

Stated in terms of causality, noninterference says that a low event cannot depend
causally on a high event: e1 �� e2 if e1 is high and e2 is low.

In this article, we propose a new framework in which different notions of causality
can be used to relax the basic notion of noninterference, reflecting the characteristics
of the operating environment and what is reasonably achievable. This not only brings
the formal model closer to the operating environment, it also allows us to consider
new mechanisms for information control and release based on the explication of these
characteristics. By relaxing the stringency of the information flow control requirements,
while not relaxing the actual security policy, this framework introduces reasoning about
mechanism as well as policy in specifying desired levels of confidentiality.

Our approach considers two relations: a baseline causal relation, and a relaxed subset
of causality that we term accountability. The accountability relation identifies the subset
of the causal relationship between events for which confidentiality should be enforced.
Accountable noninterference then specifies that there should be no accountable causal
relation from high events to low events.

We define these concepts in the next section. We give several examples of these
notions, in the context of distributed message-passing systems, in Sect. 3. We identify
a “perfect” system that identifies causality and accountability, a much more limited
system that is more clearly implementable, based on focusing on sequential causality,
and a hybrid system that combines both notions of distributed and sequential causality.
We give a specification of this hybrid system in Sect. 4. Sect. 5 considers related work,
while Sect. 6 provides our conclusions.

2 Accountability and Accountable Noninterference

In this section, we define the notions of accountability and accountable noninterference,
and provide examples in the rest of the article. We are principally interested in causal
relationships between individual, observable events in distributed systems. This is in a
framework where observable events within a subsystem may be masked from outside
observation in the environment surrounding that subsystem (e.g. a firewall that blocks
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outside messages to or from a particular port or machine). The topology of the system
may be dynamic [26]. We assume that there is an operational description of a system
using a labeled transition system, with transitions of the form

K1
a−−→
Δ

K2

where each transition between processes K1 and K2 is labelled by the observable action
a that is offered to the environment, and a transition context Δ for that action being
offered. Typically this context will have some way of uniquely identifying the event
corresponding to the observable action. That event will typically have a security level,
and be causally dependent on other events, as determined by the context Δ . A traditional
labeled transition system for concurrent and distributed systems focuses only on the
observable action.

The labeled transition system will also have internal events, with such internal transi-
tions denoted by K1 −→ K2. We do not try to track causality for internal events directly,
rather we focus on causal relationships between the observable events. We denote zero
or more internal transitions by K1 =⇒ K2. Then K1

a==⇒
Δ

K2 denotes K1 =⇒ K′1
a−−→
Δ

K′2 =⇒ K2 for some K′1 and K′2, i.e., zero or more internal transitions before and after
an observable event.

Causality and accountability are specified as two dependency relations between
events, identified by transition contexts Δ , where the semantics of the system is pro-
vided in the manner described above:

1. Causality Δ1 � Δ2 has the following property: if K1
a1==⇒
Δ1

K2 and K2
a2==⇒
Δ2

K3, and

Δ1 �� Δ2, then there is some K′2 such that K1
a2==⇒
Δ2

K′2 and K′2
a1==⇒
Δ1

K3. In other words,

we can permute the observation or execution of concurrent events.
2. Accountability Δ1 ��	 Δ2 is a subset of the causality relation: ��	⊆�. It is the

information flow for which a system developer is responsible, in which some infor-
mation flows are ignored for the purposes of correctness.

Accountable noninterference requires that there be no accountable information flow
from high level processes to low level processes. This means that Δ1 ���	 Δ2 for any
high level event Δ1 and low level event Δ2.

We consider some examples of these definitions in the next section.

3 Examples

We now consider some examples of accountability and accountable noninterference.
We work in the context of process calculi and labeled transition systems [19,25], in
particular using Milner’s CCS and pi-calculus [25,26]. CCS and the pi-calculus are
formalisms for reasoning about distributed message-passing systems. For example, the
syntax of CCS is given by:

P,Q ::= α.P | (P | Q) | (P+ Q) | (νa)P | 0



Causality and Accountability 85

where α.P denotes the process that offers action α and then becomes process P, (P |Q)
denotes parallel composition, (P+Q) denotes a nondeterministic selection between be-
haviors P and Q, (νa)P denotes the local hiding of the channel name a within the sub-
system P, and 0 denotes the empty process. Such systems are described operationally
using labeled transitions of the form P

α−→ Q for processes P and Q and observable
action α . The latter may be a message send event on a channel (a) or a message receive
event (a), where a is the name of a communication channel. Such a transition denotes
the transition from process P to process Q on the action (message send or receive event)
α . Process equivalence is defined in terms of observable behavior (behaviors offered to
the observing environment), for example, testing or bisimulation equivalence.

We can then provide several instantiations of the above scheme.

3.1 Global Causality

Our first system identifies causality and accountability: �=��	. Accountable nonin-
terference requires that no low-level event be causally dependent on a high-level event.
Therefore the occurrence of any low-level event can be permuted with the occurence
of a high-level event, so that all low-level events precede high-level events. Therefore,
the traces that result from removing high-level events are causally consistent: they are
low-level events only, with no high-level events preceding them. Thus we obtain the
original characterization of noninterference due to Goguen and Meseguer [15].

Such formalisms assume an interleaving semantics for concurrency: one reasons
about the behavior of such systems in terms of the interleaving of their observable
actions. There are several ways to incorporate causality into such a model. One promi-
nent approach [22,3,11] is to label each observed action with a cause, represented by
a unique event identifier k, and a causal history or set of causees A, in the operational
semantics: P

α−−→
A,k

Q. The syntax of processes is extended to record causes:

P,Q ::= . . . | A :: P | k :: P

These are intended as placeholders for recording causation. The infix operator :: is
essentially a causal dependence operator. The expression A :: P denotes a process P
with a causal history (set of causes) A that precedes execution of that process. This
causal history may be extended by the context within which P executes. The expression
k :: P denotes a process P with a causal dependency on an event uniquely identified
by the event identifier k. Event identifiers are generated by the atomic operations of
the language, viz, message sending and receipt. For example, the operational semantics
includes the transition a.P

a−−→
{},k

P that represents the communication (message receipt)

on the channel a, with this particular communication event uniquely identified by the
cause k. The dependence of further execution of the continuation process P on this cause
is represented by the configuration k :: P.

A process a.P transitions by offering the action a to the observer environment and tran-
sitioning to k :: P, for some new unique event identifier k. Any actions within P have their
causal dependence on this occurrence of the a action recorded by the prefix containing
k. A rule for synchronization between processes, when a message is sent and received,
entails the swapping of the causally preceding events for the message send and receive:
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P1
a−−−→

A1,k1
P′1 P2

a−−−→
A2,k2

P′2

(P1 | P2)−→ ({A2/k1}P′1 | {A1/k2}P′2)
Here the expression {A/k}P denotes the substitution of the event identifier k by the

causal history A in the process P. We omit the details for lack of space. For example,
in the following starting configuration, the message receive event has causal predeces-
sors k1 and k2, and the message send event has causal predecessor k3. These causal
predecessors are exchanged when the processes synchronize:

({k1,k2} :: a.P1
a−−−−−→

{k1,k2},k
{k1,k2} :: k :: P1

{k3} :: a.P2
a−−−−→

{k3},k′
{k3} :: k′ :: P2

({k1,k2} :: a.P1 | {k3} :: a.P2)−→ ({k1,k2,k3} :: P1 | {k1,k2,k3} :: P2)

where we have merged the sets of causal predecessors in the continuations of the two
synchronizing threads. For example, the left continuation is actually {k1,k)2} :: {k3} ::
P1 while the right continuation is actually {k3} :: {k1,k2} :: P2. As a result of swapping
causal histories, the two continuation processes share the same causal histories.

3.2 Local Causality

Our second system reflects a philosophical point of view, that focuses on sequential in-
formation flow control. Our motivation for considering control-flow-based information
flow control is the following. Generally we are interested in lightweight data flow con-
trol in programs, statically (at compile time) making sure that secret data does not leak
by an assignment from a high-security variable to a low-security variable. However fo-
cusing solely on data flow control is severely limited, for the following reason: it misses
flows of data that go through transformations on the data, and in particular in data mar-
shalling. For example, if a program variable has type intH where the annotation H on
the type restricts this variable to be high security, passing it through the Java serializer
will produce a datum of type byte[], an array of bytes without the security annotation
on its type. The following piece of code demonstrates how a marshaller could bypass
restrictions based on data flow control:

booleanH x; fileL f;

if (x) write(f,"true"); else write(f,"false");

We wish to strengthen the security guarantees by propagating data flow controls through
sequential transformations of the data such as marshalling but no further.

Simply preventing the assignment of a high variable to a low variable is insufficient.
Our second system chooses this as a reasonable juncture at which to draw the line for
information flow control (“Security is always a question of economics,” [6]). We track
dependencies through sequential program execution, and in particular through transfor-
mations on the data being protected. However we do not attempt to track dependencies
on data that is transmitted over the network, because we cannot prevent attacks such as
traffic analysis and denial of service. In this case, we have ��	⊆�, with at least the
possibility that the inclusion is strict. The latter will be true if there are communication
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events of the sort that we do not attempt to track through the semantics. This prevents
an information leak such as in the example above, but does not prevent the following
information leak:

booleanH x; fileL f; channel a, b;

( if (x) send(a); else send (b);

| select a ⇒ write(f,"true"); [] b ⇒ write(f,"false"); )

where | denotes parallel composition, and the select statement performs nondeter-
ministic selection between the two input channels a and b. In this example, a “high”
process examines a high variable x and then sends empty messages on either communi-
cation channel a or b, depending on the value of the high variable. A low process then
multiplexes between these two channels, and writes either "true" or "false" to a low
security file depending on which channel it receives communication on. This example is
exactly analogous to the example with the conditional above, where information leaks
indirectly due to a control flow dependency; but in this case, the control flow is based
on external communication. In the scenario where we only track local causality for ac-
countability purposes, the dependency of the file write operations on the examination of
the value of x is not tracked, and therefore accountable noninterference still holds. This
is a form of declassification, but there is no explicit decision to release information at
this point. Rather, the decision has been made, for pragmatic reasons, that we will allow
information to leak in certain situations where it is infeasible or impossible to protect
the data.

Describing this system is relatively straightforward. External transitions have the
form P1

a−−→
k

P2, and we extend the syntax of processes with causal prefixes:

P ::= . . . | k :: P

However synchronization no longer swaps causal sets for the synchronizing threads.
Instead the semantics focuses solely on building up the sequential causal prefix for
each process, ignoring dependencies from other processes.

3.3 Combining Local and Global Communication

Our third system combines the first two systems. In this system, we assume that there
are parts of the communication infrastructure that can be tightly controlled (thread
scheduler in a user-space thread package, kernel in an operating system, router in an
enterprise network), so that it is possible to provide strong guarantees of information
flow control, as in the first system. However this system also communicates with pro-
cesses outside the enterprise network, on the internet, where it is infeasible to expect
this tight level of control. The syntax of processes now includes both local and global
causes, as well as some notion of locality to distinguish between local and global
communication:

P ::= . . . | A :: P | k :: P | 
[P]

where 
[P] denotes a process P executing at a location 
. This system combines aspects
of both of the preceding systems. Local sequential dependencies are the only basis for
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accountability. On the other hand, global dependencies, which include both sequential
dependencies and those dependencies introduced by synchronization), are the basis for
causality.

In this scenario, it may also be useful to allow data to be “released” for commu-
nication outside the trusted enterprise network. This release now becomes a matter of
policy, while the leak of information above in the untrusted space is a matter of mech-
anism (in the sense that release happens because of the weakness of the enforcement
mechanisms).

4 Formal Semantics

In this section we formalize the model of information flow control and accountability
that was introduced at the conclusion of the previous section. This system includes both
public and internal communications. The basic language is the polyadic pi-calculus, an
extension of CCS that allows message payloads. The only kind of data in this system are
message channels themselves, or rather the names of message channels. Such channel
names may be sent as message payloads, for example, a client sending a server a private
reply channel (a proxy object for accepting the reply, in the RMI setting). We choose
a variant of this system where the language is asynchronous [31], to allow interesting
information flows from “low” to “high.” We assume we have the following syntactic
categories:

Channel Names a,b,c Causes k
Channel Variables x,y,z Cause Sets A,B,C

Then define the syntax of the language as follows:

v ∈ Value ::= a | x

P ∈ Process ::= 0 | v0〈−→v 〉 | a(−→x ).P | if v1 = v2 then P1 else P2 |
(P1 | P2) | (νa : LT)P | !P

K ∈ Causal Net ::= P | k :: K | (A,B) :: K | 
[K] | (K1 | K2) | (νa : LT)K

A process consists (as with CCS) of the empty process, the message sending and
message receiving operations, parallel composition and generation of a new channel
name. In addition, the process language contains an operation for checking two chan-
nel names for equality. A couple of other differences from CCS are that (a) messages
contain payloads (tuples of channel names) and (b) message sending is asynchronous.
The latter allow more interesting information flows than the sychronous version of the
system, allowing a low level process to send a message to a high level process without
introducing a causal dependency from high back to low (due to the implicit acknowl-
edgement in synchronous communication).

The syntax of causal nets provides the context in which processes evolve and ex-
change messages. Processes execute at a location 
[K]; a local communication is be-
tween two processes at the same location 
, all other communications are global. There
are also causal prefixes [22,3] k :: K and (A,B) :: K. The former of these are generated
as processes offer communication to the environment, recording the causal context of
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that observable action. The latter of these are introduced during synchronization, when
a process that receives a message has its local cause replaced by the global causes for
the message that it has just received. To understand why local causes are replaced rather
than extended, consider the example at the end of Sect. 3.1. Fundamentally causes, or
event identifiers, only exist as placeholders for establishing dependencies between sub-
systems of an overall system, and are only relevant within the context of that system.
Outside of that system, external observers only see the behavior of the system as a whole,
and so this semantics does not attempt to propagate this causal information beyond the
system boundaries once it is clear what the complete causal history of an event is.

a〈−→b 〉 a〈−→b 〉−−−−−−→
{},{},{},k

0 (RED SEND)

a(−→x ).P
a(
−→
b )−−−−−−→

{},{},{},k
k :: {−→b /−→x }P (RED RECV)

P |!P α−−−−→
A,B,C,k

K

!P
α−−−−→

A,B,C,k
K

(RED REPL)

K
α−−−−→

A,B,C,k
K′

k0 :: K
α−−−−−−−−−−−−−−−→

A∪{k0},B∪{k0},C∪{k0},k
k0 :: K′

(RED LOC CAUSE)

K
α−−−−→

A,B,C,k
K′

(A0,B0) :: K
α−−−−−−−−−→

A∪A0,B∪B0,C,k
(A0,B0) :: K′

(RED GLOB CAUSE)

K
α−−−−→

A,B,C,k
K′ c0 /∈ names(α)

(νc0 : LT)K α−−−−→
A,B,C,k

(νc0 : LT)K′
(RED NEW)

K
(ν−→c :

−→
LT)a(

−→
b )−−−−−−−−→

A,B,C,k
K′ c0 �= a,c0 ∈ {

−→
b }−{−→c }

(νc0 : LT)K
(ν−→c ,c0:

−→
LT)a(

−→
b )−−−−−−−−−−→

A,B,C,k
K′

(RED NEW EXT)

K1
α−−−−→

A,B,C,k
K′1 boundNames(α)∩ freeNames(K2) = {}

(K1 | K2)
α−−−−→

A,B,C,k
(K′1 | K2)

(RED PAR)

K1 ≡ K′1 K′1
α−−−−→

A,B,C,k
K′2 K′2 ≡ K2

K1
α−−−−→

A,B,C,k
K2

(RED STRUCT)

Fig. 1. Dynamic Semantics: External
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K1
(ν−→c :

−→
LT)a〈−→b 〉−−−−−−−−→

A1,B1,C1,k1

K′1 K2
a(
−→
b )−−−−−−−→

A2,B2,C2,k2

K′2 {−→c }∩ freeNames(K2) = {}

(
[K1] | 
[K2])−→ (ν−→c :
−→
LT)(
[K′1] | 
{(A1,B1)/k2}K′2)

(RED LOC SYNC)

K1
(ν−→c :

−→
LT)a〈−→b 〉−−−−−−−−→

A1,B1,C1,k1

K′1 K2
a(
−→
b )−−−−−−−→

A2,B2,C2,k2

K′2 
1 �= 
2 {−→c }∩ freeNames(K2) = {}

(
1[K1] | 
2[K2])−→ (ν−→c :
−→
LT)(
1[K′1] | 
2[{(A1,{})/k2}K′2])

(RED GLOB SYNC)

(if a = a then P1 else P2)−→ P1 (RED INT IFTRUE)

a �= b

(if a = b then P1 else P2)−→ P1
(RED INT IFFALSE)

P |!P−→ K

!P−→ K
(RED INT REPL)

C[ ] ::= [ ] | k0 :: C[ ] | (A0,B0) :: C[ ] | 
[C[ ]] | (νc : LT)C[ ] | (C[ ] | K)

K −→ K′

C[K]−→ C[K′]
(RED INT CONG)

K1 ≡ K′1 K′1 −→ K′2 K′2 ≡ K2

K1 −→ K2
(RED INT STRUCT)

Fig. 2. Dynamic Semantics: Internal

Whereas in the system described in the previous section, these global causes are
represented by a single set, in this system the local cause is replaced by a pair of cause
sets (A,B). The former set A tracks all causal dependencies for the message that was
received, and is the basis for defining the causality relation �. On the other hand, the
latter set B is the basis for defining the accountability relation ��	 when accountability
propagates across local communication but not across global communication.

In general the externally observable transitions of the system have the form

K
α−−−−→

A,B,C,k
K′

where α carries information about the action (message send or receive), A tracks global
dependencies in order to propagate accountability through all communications, B tracks
local dependencies in order to only propagate accountability through local communi-
cations, and C tracks sequential dependencies in a thread of execution. k is the event
identifier for the observable action α .

For the labelled transition system for the semantics, define an action labelling an
observable transition by:

α ∈Action ::= (ν−→c :
−→
LT)a〈−→b 〉 | a(

−→
b )



Causality and Accountability 91

The first of these corresponds to a message that has been sent (offered to the environ-
ment). The message has payload

−→
b and exports locally bound channel names−→c to the

environment where it is received. The second of these corresponds to a message that
has been received, with expected payload

−→
b , using an “early” style of semantics for

synchronization.
We assume some defined metafunctions:

names(α) Set of names (free and bound) in an action
boundNames(α),boundNames(K) Set of names bound in an action or process
freeNames(α), freeNames(K) Set of names free in an action or process
{a/x}P Substitution of a variable with a name

The latter of these functions are defined by cases on the structure of processes, in the
usual manner. We omit the details for lack of space. The rules for externally observable
transitions are provided in Fig. 1. The (RED SEND) rule consumes a message in transit,
offering the contents of that message to the environment; this rule is a manifestation
of the asynchronous message-passing semantics that we assume for the system. The
(RED RECV) rule instantiates the continuation P with an expected message payload of−→
b . This message receive should eventually synchronize with a message send with the

same payload, at which time the sequential cause k will be instantated with the global
and local causes for the sent message.

The (RED LOC CAUSE) and (RED GLOB CAUSE) rules build up the components of
the transition context as a labelled transition propagates through causal annotations. The
first of these adds a sequential cause to all of the causal sets in the transition context,
since such a cause is included in all causal histories of the offered behavior. The latter of
these, the (RED GLOB CAUSE) rule, adds causes from global and local communication
to the cause sets A and B, respectively. No causes are added to C by this rule because
it only records local dependencies. The dependencies recorded in A and B correspond
to those arising from receiving messages from other processes. The remaining rules in
Fig. 1 are standard for propagating messages sent through a context that includes other
processes and local channel name bindings.

Fig. 2 provides the internal transitions rules, and of these the most important are
the first two, for synchronization. Both rules correspond to a message being received.
Since we assume asynchronous communication, there is no implicit acknowledgement
to impose a causal dependency on the message sender. The first rule corresponds to a
local communication, where both sender and receiver are at location 
. The receiver’s
continuation has its sequential cause k2 instantiated with the pair of (global, local) cause
sets (A1,B1) from the sender. Since in this asynchronous system there is no continuation
for the sender, its corresponding cause k1 is ignored.

The second rule, Rule (RED GLOB SYNC), corresponds to synchronization between
two processes at different locations 
1 and 
2. In this case, recording the cause set for
the sender, at the receiver, would introduce an undesired causal dependency from the
receiver to a sender at another network. Since the motivation for this system is to only
track causal dependencies between local communications, the local cause set is instan-
tiated as {}. On the other hand, the global cause set is properly instantiated with A1.
This will be used later to define the causality relation, that tracks all cause relations.
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The rules in Fig. 2 rely on structural equivalence rules to push location identifiers
down past name binding and parallel composition. We omit the straightforward details
for lack of space.

It remains to relate this to our earlier definitions of accountability. At a first approxi-
mation, we can define:

Δ = (A,B,C,k) for a transition K
α−−−−→

A,B,C,k
K′

(A,B,C,k) ��	1 (A′,B′,C′,k′)⇐⇒ k ∈ A′

(A,B,C,k) ��	2 (A′,B′,C′,k′)⇐⇒ k ∈C′

(A,B,C,k) ��	3 (A′,B′,C′,k′)⇐⇒ k ∈ B′

where these accountability relations correspond to the three examples in the previous
section.

However these definitions only record subject dependencies, and not the object de-
pendencies arising from the use of channels in one transition that are generated in an-
other transition. Consider for example (νa : LT)(a().0 | b〈a〉), where any transition on
a requires the transition on b first. Define:

exported(α) =

{
{−→b } if α = (ν−→c :

−→
LT)a〈−→b 〉

{−→b } if α = a(
−→
b )

Then for causality we must define:

Δ = ((A,B,C,k),α) for a transition K
α−−−−→

A,B,C,k
K′

((A,B,C,k),α) � ((A′,B′,C′,k′),α ′)
⇐⇒ k ∈ A′ or exported(α)∩ freeNames(α ′) �= {}

reflecting that the event labelled by k′ used a free name that was generated by the event
labelled by k. This modification must be included into the definition of ��	1, which is
equated with causality. It should be omitted from ��	2, which focuses only on sequen-
tial subject dependencies. There are some design choices in incorporating object depen-
dencies into the definition of ��	3. The most reasonable alternative is to only consider
object dependencies between local communications, but recording this requires adding
a bit more machinery (recording the location where a communication happened in the
labelled transition system). We omit the straightforward details for now, and assume
that object dependencies are omitted from the definition of ��	3.

Proposition 1. The relation � defined above satisfies the definition of a causality re-
lation: if K1

a1==⇒
Δ1

K2 and K2
a2==⇒
Δ2

K3, and Δ1 �� Δ2, then there is some K′2 such that

K1
a2==⇒
Δ2

K′2 and K′2
a1==⇒
Δ1

K3.
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5 Related Work

Declassification 

Uncertainty 

Time 

Askarov and Sabelfeld [2] have proposed “gradual release”
as an alternative to noninterference in information flow con-
trol systems with declassification. According to this policy, a
computation is regarded as a sequential trace with designated
declassification events, and the system is required to assure
noninterference between high and low events between two
consecutive declassification events: Gradual release assumes
sequential execution, and in a concurrent framework some no-
tion of causality is essential to properly relate high and low
events and declassification events. For example, if h is high, l is low and d is a declas-
sification, then h.d.l would be a safe program but (h.l | d) would not, even though both
may produce the trace (h.d.l), an undiscovered information leak.

Focardi and Gorrieri [12,13] introduced nondeterministic noninterference (NNI) and
variants (SNNI, BNNI, etc) as a generalization of noninterference for concurrent and
therefore nondeterministically interacting processes. They also introduce the notion of
BNDC equivalence: a process P is BNDC if what a low level user sees of the system is
not modified by composing that system with any high level process.

Busi and Gorrieri [5] consider noninterference for Petri net semantics, a popular op-
erational model for true concurrency semantics. They show that the notion of BNDC
for Petri nets is completely characterized by causality (high inputs enabling low out-
puts) and conflict (between high and low inputs for a transition). Busi and Gorrieri
demonstrate that not all causalities and conflicts between high and low give rise to
interference (for example, where a transition with high input is already enabled by the
initial marking). These examples are related to work in interleaving models where some
synchronization (for mutual exclusion) is allowed between high and low processes that
access shared variables [14,23].

Crafa and Rossi [9], building on the BNDC notion of correctness, investigate the no-
tion of “controlled information release” in a typed π-calculus extended with an explicit
declassification expression. They allow a low action succeeding a high action, provided
there is an intervening declassification operation. The declassification operation is only
available to “high” (trusted) processes, and “low” processes are not able to view the de-
classification itself. This may require the addition of nondeterminism in some cases to
mask the fact of declassification. Sewell and Vitek introduce the box-π process calculus
to express wrappers encapsulating trusted/untrusted components intended for security
policies enforcement [32]. They present a causal type system that statically captures
legitimate flows between components, although it is not clear what the security guaran-
tees of the system are.

Intransitive noninterference [28,33] has been applied to information flow control to
require intervening processing before information is declassified. An example is adding
a Password level to the standard lattice of Low and High, and allowing flows from
High to Low through Password (requiring a dynamic password check), but not directly
from High to Low. Intransitive noninterference should be viewed as orthogonal to ac-
countable noninterference. Whereas the former involves the specification of a static
declassification hierarchy, the latter is based on the operational behavior of processes.
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Also declassification is not fundamentally part of accountable noninterference; security
policies do not change while data is communicated over less secure channels.

A great deal of work on information flow control has been done in the concur-
rency community. Hennessy and Riely [17,18] develop a security π-calculus for which
they study noninterference properties with respect to may and must testing. Honda and
Yoshida [20] design a sophisticated system with linear and affine types for π-calculus to
investigate noninterference expressed in terms of bisimulation. Boudol and Castellani
[4] present a simple imperative language extended with parallelism to explore nonin-
terference in a probabilistic setting. Ryan and Schneider characterize the absence of
information flow in CSP [29] based on the notion of process equivalence. Bossi, Pi-
azza and Rossi [1] generalize an unwinding framework for the definition of a security
property that entails a noninterference principle described in a simple concurrent lan-
guage. Similar approach related to this line of work can also be found in [8]. Most of
these works are focused on strong noninterference properties usually characterized by
a partial equivalence relation in a typed process language.

6 Conclusions

We have introduced a new approach to reasoning about correctness of information flow
control, based on causal dependencies between events in a distributed systems, and a
notion of accountability that provides a specification of allowable information flows
based on abstracting from some of the flows that are tracked by causality. Accountable
noninterference requires that developers not introduce causal flows that leak informa-
tion, according to the notion of causality represented by accountability.

Some of the motivation provided for this approach is a recognition that noninter-
ference is extremely difficult to achieve in many practical situations. The framework
introduced here provides an opportunity to begin to reason about mechanism as well as
policy. An example would be preventing the leaking of sensitive information outside a
secure private network, even if the leaking is from one “high” principal to another. Un-
der this scenario, data would be labelled both with a security level, say High and Low,
reflecting a security policy, and also with a “sensitivity” level, say Local and Public,
reflecting whether such information can be transmitted (presumably encrypted) over
public networks, which exposes the possibility of hidden channels. In the latter case,
the policy would not change, but the sensitivity level would reflect how securely the
data should be handled. Many other possibilities suggest themselves. For example, if
“high” information is to be allowed to flow over a public network, should it still be en-
crypted for security? There appear to be interesting avenues to pursue in this direction
[28,7].

Although we have not considered explicit declassification, it appears straightforward
to add declassification operations into this framework, generalizing the work of Askarov
and Sabelfeld [2] from the sequential case. The example briefly described above sug-
gests multiple forms of declassification: declassification of data from High to Low, and
revelation of data from Local to Public.

Our framework is operational in nature, building on approaches developed for pro-
cess calculi for reasoning about concurrent and distributed programming languages. For
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now, our notion of causality assumes single synchronization events, in a similar manner
for example to notions of causality for developing and reasoning about distributed algo-
rithms [24]. Other formulations, such as Communicating Sequential Processes (CSP),
Petri nets and multiset rewriting logic [19,27,10], consider synchronizaion on several
events, and it would be interesting to extend the framework based on these notions of
multiway synchronization, particularly the latter two which are concerned with true
concurrency semantics, with potential applications to workflow and multiparty interac-
tion. It may also be interesting to consider a less operational and more logical frame-
work for reasoning about causality, for example, using the notion of counterfactuals
[21]. The theory of causality based on counterfactuals is focused on reasoning from
causes to effects, motivated by applications in empirical reasoning, while our concern
is rather for causal history and the absence of undesirable causal influences. Neverthe-
less causal explanations are an application of the theory of counterfactuals, so this is
certainly an interesting avenue to explore further.

There is also a growing body of work in privacy, focusing not on preventing data
from being released, but assuming the data will be released and focusing instead on
tracking usage of the data and holding parties responsible [34]. There appear to be
promising avenues to pursue here in delineating a connection between our notion of
accountability and notions in the privacy field.
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Abstract. Trust is often conveyed through delegation, or through recommenda-
tion. This makes the trust authorities, who process and publish trust recommen-
dations, into an attractive target for attacks and spoofing. In some recent empiric
studies, this was shown to lead to a remarkable phenomenon of adverse selec-
tion: a greater percentage of unreliable or malicious web merchants were found
among those with certain types of trust certificates, then among those without.
While such findings can be attributed to a lack of diligence in trust authorities, or
even to conflicts of interest, our analysis of trust dynamics suggests that public
trust networks would probably remain vulnerable even if trust authorities were
perfectly diligent. The reason is that the process of trust building, if trust is not
breached too often, naturally leads to power-law distributions: the rich get richer,
the trusted attract more trust. The evolutionary processes with such distributions,
ubiquitous in nature, are known to be robust with respect to random failures, but
vulnerable to adaptive attacks. We recommend some ways to decrease the vul-
nerability of trust building, and suggest some ideas for exploration.

1 Introduction

Background. In analyzing security protocols, we often reason under the assumption
that a protocol participant, say Alice, is honest. This assumption simply means that
Alice acts just as prescribed by the protocol, and does not engage in any other avail-
able runs. Such an assumption is sometimes justified, and sometimes not. When this
assumption about Alice is made by another protocol participant, say Bob, then we say
that Bob trusts Alice. The notion of protocol, according to which Alice is trusted to
behave, is understood in the broadest sense of the word, as a general constraint on par-
ticipants’ behavior. E.g., a conversation protocol may consist of the requirement that
the participants speak the truth, and Bob may trust Alice in that sense. While Alice’s
statements may be true or false, Bob’s trust may go through many shades of gray, and
through some nuances of other colors. Trust is dynamic, and can be many-valued. But
note that it does not depend on any rules outside the specified protocol: e.g., a bank
robbery protocol may involve a requirement that the robbers do not shoot at each other,

so Bob may trust Alice in that sense. In any case, we write B
Φ→
r

A, where Bob is the

trustor, Alice is the trustee, Φ is the entrusted protocol (constraint, property), and r is a
trust rating, which quantifies the level of trust.
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In practice, this general notion of trust is usually restricted to some special cases:

– in web commerce, the seller and the buyer are trusted to act according to the es-
tablished exchange protocols; more generally, trust plays an essential role in web
services and service-oriented architectures at large;

– in access control, various types of principals (people, machines, services, channels)
may entrust each other with various actions, or they may delegate authorities for
such actions to each other [2,17];

– in public key cryptography, it is useful to view keys as principals1, and to view the
key hierarchies as trust relationships [3,19,24,30],

– various peer-to-peer and business-to-business transactions are based on trust, and the
corresponding networks require various types of trust infrastructure [9,14,15,23].

When social relations need to be analyzed, the modeling techniques often proceed
from two different points of view: local and global. E.g. in economics, when the ques-
tions of risk and utility are analyzed from a local point of view, they subsume under
microeconomics; when they are analyzed from a global point of view, they fall under
macroeconomics. Analyses of trust fall into two roughly analogous categories.

Local analyses of the trust relationship B
Φ→
v

A are largely concerned with the log-

ics of Φ, i.e. with the reasoning whereby the trustor B conveys or justifies entrusting
the trustee A with Φ. As explained above, the trust statements internalize principals’
beliefs and interactions, and vary through different forms of uncertainty, which lead to
nonstandard logical features and formalisms. The examples of this kind of approach
include [5,10,11,17,20,21]. E.g., when trust is analyzed in strand spaces [10], a trust re-

lationship B
Φ→
v

A is viewed on the level of a single send-receive interaction, where A is

the sender and B the receiver. This interaction is annotated by a statement Φ, which the
receiver B requires, and the sender A guarantees. By sending the message, A asserts Φ;
when he receives the message, B assumes Φ. The statement that B trusts A thus means
that B relies on A for Φ.

On the other hand, the global analyses of trust usually look at the trust networks

spanned by the trust relationships B
Φ→
v

A between the members A, B . . . of some set

of principals. While the local analyses focus on the logics of the entrusted properties
Φ, the global analyses focus on the network structure and traffic dynamics leading to
trust, and arising from it. The examples include [4,9,19,24,30]. In some cases [9], the
entrusted properties are left implicit, because all trust relationships of interest concern
the sameΦ (e.g.,Φ(A) = ”A is a reliable merchant” or ”A’s keys are not compromised”).
In other cases, the analyzed trust concerns boil down to two [3,19], or four [24] types
of trust relationship, which are simply annotated by different types of arrows. Although
the logics of trust have also been investigated in the context of trust networks [12,13],
many basic questions about trust dynamics remain widely open even when there is only
one entrusted property.

1 Statically, two principals knowing the same keys are indistinguishable by cryptographic
means. Dynamically, they may be distinguishable, e.g., by the fact that at some previous mo-
ment only one of them knew a particular key. Nevertheless, it is often useful and convenient to
treat the keys as first-class citizens of cryptographic protocols, and to distinguish the principals
only when necessary.
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Summary of the Paper. We analyze dynamics of trust networks. It is driven by the
users, who are trying to decide which web merchants to buy from, or in the Public Key
Infrastructure model, which keys to use. The security problem for the user is that a trust
authority, which she consults for trust recommendations, may be corrupt, just like any
merchant, or any key. In order to decide which merchants to trust, the user must decide
which recommenders to trust. And in order to decide which recommenders to trust, she
must try some of the recommended merchants. The problem of the chicken and the egg
arises. In order to protect herself, the user must not accept the trust recommendations
passively, but needs to build up her private trust vectors, perhaps using some public
recommendations on the way. While the public recommendations cover a broader range
of trust objects and interactions, private trust vectors are less likely to be corrupt.

In section 2, we present an abstract model of public trust networks. In section 3, we
analyze dynamics of the private trust building and updating. In section 4 we spell out
the conclusions. In section 5, we discuss the applications, and propose some ideas how
to combine private trust vectors with public recommendations, towards more reliable
trust decisions.

Trust networks, as presented in section 2, consist of two components, echoing the
distinction between the direct and indirect trust. This distinction is a common feature
of most of the trust network models encountered in the literature [3,19,24,30]. Enriched
with additional features, our model can be instantiated to these richer models. However,
in order to present a picture simple enough for our analyses, we also show how to ab-
sorb, in a matrix form of a trust network, the chains of indirect trust, which is conveyed
from one recommender to another, together with the direct trust, which is conveyed
from the recommenders to the shops.

In section 3, we show that, under reasonable assumptions, the process of trust build-
ing asymptotically converges to a power-law distribution of trust vectors. This means
that trust distributions have heavy tails of highly rated trust hubs. One consequence is
that trust distributions are thus resilient to random perturbations. Another consequence
is that they are vulnerable to adaptive attacks on their trust hubs. The proviso is that
the cheaters do not wait too long with their deceit. In our trust model, this proviso is
represented by the assumption that, the more trust a principal accumulates by acting
honestly, the less likely it becomes that he will turn out to be dishonest.

The conclusions are spelled out in section 4. Our analysis of trust dynamics applies
both to users’ private trust vectors, and to recommenders’ public recommendations.
Since the latter are open to attacks, and turn out to obey the vulnerable power law
distributions, they should not be directly used for trust decisions, but combined with the
private trust values. This suggestion is supported by the empiric evidence that the public
trust vectors are often actually subverted[8]. In section 5, we sketch some methods to
combine public and private trust vectors, that need to be explored and evaluated in future
research.

2 Modeling Trust Networks

In many communication networks, it is impossible, or unfeasible to fully authenti-
cate and authorize all interactions. Trust networks provide a supplementary service of
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partial authentication or authorization. In many cases, authentication is bootstrapped by
incrementally strengthening trust.

We begin by an informal description of the conceptual components of a trust net-
work, and later provide the formal definitions. To determine thoughts, we first present
the special case of a web shopping scenario. A shopper visits a virtual network of web
merchants. If she has no prior experience with it, she can seek advice from some recom-
menders. Denote the set of merchants by J and the set of recommenders by U. The rec-
ommenders record and process the merchant ratings, submitted by the users after their
interactions with the merchants. From these ratings, the recommenders derive their rec-
ommendations, and publish them as trust certificates. A trust certificate c is represented

by an expression in the form u
c→
r

i, where u ∈ U is a recommender, i ∈ J a mer-

chant, and r is the trust rating in a previously agreed rating scale R. A recommendation
network A is spanned by such certificates.

In addition to the merchant recommendation certificates u
c→
r

i, a recommender u

may issue the endorsement certificates u
e→
r

v, where v is another recommender. The

endorsement certificates span an endorsement network E. The endorsement chains, rep-
resented by the paths through the endorsement network, allow analyzing the subtle
problems of transitivity of trust.

We call trust network a pair T = 〈A,E〉, where A is a recommendation network, and
E is an endorsement network over the same set U of recommenders. Trust networks can
be presented in many slightly different ways, but they all model the public infrastructure
of trust.

Besides the shopping scenarios, trust networks also model the Public Key Infrastruc-
tures (PKI). In this interpretation, the trust authorities u ∈ U are not recommenders, but

simply keys. The endorsements u
e→
r

v between them are now the delegation certifi-

cates. The objects of trust i ∈ J do not represent the web merchants any more, but the

bindings between some principals’ identities and their keys. A recommendation u
c→
r

i

is now a binding certificate for i, signed by u. More details about this interpretation, and
about other presentations of trust networks, can be found in [3,19,24,30].

We proceed with the formal definitions.

2.1 Recommendation Networks

A recommendation (certificate) network is an edge-labelled bipartite graph

A =
(
R

b�� B
〈∂,�〉 �� U × J

)

where

– J is a set of objects,
– U is a set of trust authorities, or recommenders,
– B is a set of certificates, or recommendations, and
– R is a set of values, usually an ordered rig, where the trust ratings are evaluated.
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A recommendation (certificate) u
c→
r

i is thus represented by an edge c ∈ B of the

graph, with the source node ∂(c) = u and the target node �(c) = i. The value r = b(c)
is the trust rating assigned to i by u’s recommendation c. The same recommender u
may issue several recommendations c1, c2 . . . for the same object i, with the same or
different trust ratings; he may also revoke some of them. The use of these multiple
recommendations may be regulated by various policies, summing up or averaging the
ratings, validating only the last one, and so on. For simplicity, in the present paper
we assume that each trust authority takes care for this, and publishes at each point
in time at most one recommendation for each object, which sums up (or averages)
all its valid recommendations for that object. This allows us to conveniently reduce
recommendation networks to matrices A = (Aui)U×J, where

Aui =
∑

u
c→i

b(c)

The summation is taken in the rig structure of R. A rig R = (R,+, ·, 0, 1) is a ”ring
without the negatives”. This means that (R,+, 0) and (R, ·, 1) are commutative monoids2

satisfying a(b+ c) = ab+ ac and 0a = 0. The typical examples include natural numbers
N, non-negative reals R+, but also distributive lattices, which in general cannot be em-
bedded in a ring. For concreteness, we shall work mostly with R = N or R = R+, i.e.
assume that the trust ratings are nonnegative real numbers. It should be noted, however,
that in some concrete applications more general rigs are needed, e.g. of polynomials or
affine functions over R+.

On the other hand, if the idea that our trust ratings have no upper bound seems
strange, the reader can translate all our constructions to the interval R = [0, 1], with the
rating function β : B �� [0, 1] set to

β(c) = 1 − 2−b(c)

The inverse transform is b(c) = − log2 (1 − β(c)). Being able to switch between these
two equivalent views is useful because each simplifies different aspects of rating: the
ratings over R+ are simpler when there are several parallel recommendations, which
we want to add up, whereas the ratings over [0, 1] are simpler when there is a chain of
recommendations, and we want to multiply them.

Remarks. While R+ and [0, 1] are just special cases of R, one could also raise the
opposite objection, that they are needlessly general, since most real systems accept and
generate their ratings over some very simple lattice (such as � < �� < ���). But data
analysis is never performed within that lattice. E.g., if the ratings are derived from users’
feedback, then they usually need to be balanced, before they are entered in the same data
set, because some users tend to rate more generously than others. In some other cases,
the ratings need to be normalized into a given interval. So the rig operations are usually
necessary. On the other hand, in relational data analysis, R is the boolean algebra {0, 1},
and the full ring structure is not given. So rigs are a reasonable compromise for general
explorations.

2 Rigs are sometimes called semirings. But it seems more reasonable to call semiring an algebra
R = (R,+, ·) where (R,+) and (R, ·) are semigroups, satisfying a(b + c) = ab + ac.
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2.2 Endorsement Networks

We model an endorsement network as an edge-labelled graph

E =
(
R

d�� D
〈∂,�〉 �� U × U

)

where an endorsement (certificate) u
e→
r

v is represented as element e ∈ D with ∂(e) = u

and �(e) = v. The trust rating r = d(c) this time quantifies u’s endorsement of v. Like
before, we reduce this network to a matrix E = (Euv)U×U, where

Euv =
∑

u
e→v

d(e)

Abstractly, an endorsement network is similar to some of the popular network mod-
els, used for analyzing protein interactions, the Web, social groups, etc. (Cf. [18,27],
and the references therein.) Its dynamics can always be analyzed in terms of promotion,
discussed in [28]. In that paper, path completions were introduced to allow analyzing
the multi-hop network interactions within a simple matrix framework. Here, they will
allow us to analyze chains of trust in a similar framework.

2.3 Path Completions of Endorsement Networks

To some extent, trust is transitive: if u trusts w, and w trusts v, then u can accept some
reliance on v. But not too much. Depending on the level of risk, and the presence of al-
ternatives, u might prefer to avoid indirect trust. And in any case, it would be unwise for
her to rely upon someone removed from her by 20 trustees of trustees of trustees. . . Can
we capture such subtleties without complicating the model?

A chain or path u
e→ v in an endorsement network E is a sequence of links u

e1→
w1

e2→ w2 → · · · en→ v. Given an endorsement network E, we would like to define
another such network E# over the same set of recommenders, but with the chains of
the endorsement certificates as the new endorsement certificates. The naive idea is to
simply take all finite chains of network links as the new network links; i.e., the paths
through the old network become the links of the new network. The new network is then
closed under composition: each path from u to v, as a composite of some links through
other nodes, corresponds to a link from u to v. This amounts to generating the free
category over the network graph.

Unfortunately, besides the trust dissipation, described above, this kind of closure de-
stroys a lot essential information in all networks, just like the transitive closure of a
relation does. E.g., in a social network, a friend of a friend is often not even an ac-
quaintance. Taking the transitive closure of the friendship relation obliterates that fact.
Moreover, the popular ”small world” phenomenon suggests that almost every two peo-
ple can be related through no more than six friends of friends of friends. . . So already
adding all paths of length six to a social network, with a symmetric friendship relation,
is likely to generate a complete graph. In fact, the average probability that two of node’s
neighbors in an undirected graph are also linked with each other is an important factor,
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called clustering coefficient [32]. On the other hand, in some networks, e.g. of protein
interactions, a link u → v which shortcuts the links u → w → v often denotes a direct
feed-forward connection, rather than a composition of the two links, and leads to essen-
tially different dynamics. For all these reasons, only some ”short” paths can be added
to a network. This is assured by penalizing the compositions.

As mentioned above, the ratings within R = [0, 1] are more convenient for analyzing
the chains of trust, so we use it in the next couple of definitions.

Definition 1. For a given endorsement network E =
(
[0, 1]

δ�� D
∂ ��
�

�� U
)
, a trust

threshold η ∈ [0, 1], and a composition penalty ε ∈ [0, 1], we define the path completion
to be the network

E
# =

(
[0, 1]

δ�� D#
∂ ��
�

�� U
)

where

D# = {e ∈ D+ | δ(e) ≥ η} and

δ
(
u0

e1→ u1
e2→ u2 → · · · en→ un

)
= εn−1

n∏

k=1

δ(ek)

with D+ denoting the set of all nonempty paths in E, i.e. n ≥ 1.

Remark. A path-complete network E# is closed under the compositions of high-trust
endorsements, but not under the compositions which fall below the trust threshold. It is
not hard to see that the path completion is an idempotent operation, i.e. E## = E#, but
that it may fail to be a proper closure operation, because the endorsements e ∈ E such
that δ(e) < η are not in E#, so that generally E � E#.

2.4 Completions of Trust Networks

At the final step of completing a trust network, we bring the information captured in it
into a more manageable form by folding the completion of the endorsement part into
a new recommendation network. The trust matrix, extracted from this recommendation
network in the same way as before, now captures not only the direct recommendations,
but also a relevant part of indirect trust.

Definition 2. Suppose that we are given a trust network T = 〈A,E〉 with

A =
(
[0, 1]

β�� B
〈∂,�〉 �� U × J

)

E =
(
[0, 1]

δ�� D
〈∂,�〉 �� U × U

)

and moreover a trust threshold η ∈ [0, 1], and a composition penalty ε ∈ [0, 1]. The
endorsement completion of T is the recommendation network

A
# =

(
[0, 1]

β�� B# 〈∂,�〉 �� U × J
)

where

B#
ui =

{〈e, c〉 ∈
∑

v∈U
D∗uv × Bvi | β(e, c) ≥ η} and

β
(
u

e→ v
c→ i

)
= δ(e) · β(c)
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where D∗uv denotes the set of all paths in from u to v in E, including the empty path ø if
u = v, in which case δ(ø) = 1.

Assumption. In the rest of the paper, we work with recommendation networks A = A#,
assumed to be endorsement complete.

In the next section we analyze how individual users build their own trust vectors. The
repercussions of this analysis to public trust networks are discussed in section 5.

3 PrivateTrust

For intuition, we introduce the mathematical model of the process of trust building and
updating in terms of an imaginary shopper trying out some web merchants. The model
is, however, completely general, and we explain later that a recommender also builds
his trust vector by an analogous process.

3.1 Private Trust Vectors and Their Updating

The shopper records her trust in a trust vector τ ∈ RJ. As the time t = 0, 1, 2, . . .
ticks, the shopper interacts with the shops, and subsequently updates τ according to her
shopping experiences. This evolution makes the trust vector into a stochastic process
τ : N �� D(RJ), which expresses the likely distribution of shopper’s trust at time
t as the random variable τ(t) ∈ D(RJ). The stationary distribution of the stochastic
process τ is the likely distribution of trust, which we would like to analyze.

On the side of the recommenders, the shopper may also maintain a trust vector σ ∈
RU. The idea that a trusted recommender recommends reliable merchants is expressed
through the invariant τi =

∑
u∈U σuAui, which should be maintained as τ is updated. This

makes σ : N �� D(RU) into another stochastic process.
Initially, at t = 0, the shopper may assign all merchants the same trust rating τi(0) =

1; or she may assign each recommender the same trust rating σu(1) = 1, and derive
τi(0) =

∑
u∈U Aui.

The stochastic process X : N �� DJ represents shopper’s shopping history. Each
random variable X(t) ∈ DJ selects the merchant with whom the shopper interacts at
time t. We assume that X(0) is distributed uniformly at random, whereas the probability
that the next shop X(t + 1) will be i ∈ J is either proportional to the trust τi(t), or it
is a fixed value α ∈ [0, 1], if i has had a minimal trust rating, and selecting it means
replacing it by a new, untested shop. Formally,

Prob
(
X(t + 1) = i

)
=

⎧
⎪⎪⎨
⎪⎪⎩

α if τi(t) was minimal (so i is now new)

C(t)τi(t) otherwise
(1)

where C(t) = 1−α∑
i∈J τi(t)

is the normalization factor. The minimality of τi(t) means that for
all j ∈ J holds τi(t) ≤ τ j(t). The α-case corresponds to shopper’s habit to, every once in
a while replace an untrusted shop, with a minimal rating, with a new, untested shop.
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After the transaction with the merchant X(t+ 1), the shopper updates her trust vector
τ(t) to τ(t + 1), depending on whether the merchant acted honestly or not:

τi(t + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τi(t) if i � X(t + 1)

0 if i = X(t + 1) is dishonest

1 if i = X(t + 1) is honest, and new (i.e., τi(t) was minimal)

1 + τi(t) if i = X(t + 1) is honest, not new (i.e.,τi(t) not minimal)

The interpretation of the third case is that the label i = X(t+ 1) is reassigned from some
untrusted merchant, which had a minimal trust rating τi(t), to a new merchant, whose
initial trust rating is set to 1 if the initial transaction with was satisfactory. In the fourth
case, the merchant i = X(t + 1) was tried out before, and has accumulated a trust rating
τX(t+1), which is now increased to τX(t+1)(t + 1) = 1 + τX(t+1)(t) because of a satisfactory
transaction.

3.2 Private Trust Distribution

If the trust ratings evolve according to the process just described, how will they, in the
long run, partition the set J of merchants? How many merchants will there be with a
trust rating of 1, how many with a trust rating of 2, and so on? More precisely, we want
to estimate the likely number of elements in each of the sets W(t) = {i ∈ J | τi(t) = },
for  ∈ R, as the time t ticks ahead. So we set up a system of equations, describing the
evolution of

w(t) = |{i ∈ J | τi(t) = }|
where |Y| denotes the number of elements of the set Y. Note that the disjoint union is
∪∈RW(t) = J, and therefore

∑
∈R w(t) = J, where we write J = |J|.

The initial values w(0) are determined by shopper’s choice of τ(0). If she sets τi(0) =
1 for all i ∈ J, then w1(0) = J.

How does w1 change at the time t? We claim that

w1(t + 1) − w1(t) = J · Prob
(
X(t + 1) = i | τi minimal

) · γ⊥
− w1(t) · Prob

(
X(t + 1) = i | τi(t) = 1

)

= Jαγ⊥ − w1(t) · C(t)

To justify this, note that the difference between W1(t + 1) and W1(t) comes about for
one of the two reasons:

– either i ∈ J is added to W1(t), because τi(t) was minimal, and X(t + 1) = i was
selected, with the probability α to be replaced with a new shop from J; and then
that new shop, now called i, provided an honest transaction, the probability of which
is γ⊥; so i is now assigned the trust rating τi(t + 1) = 1;

– or i ∈ J is deleted from W1(t), because τi(t) was 1, and X(t + 1) = i was selected
from W1(t), with the probability C(t) · τi(t); after the transaction, i’s trust rating was
updated either to τi(t + 1) = 2 or to τi(t + 1) = 0, depending on whether he acted
honestly or dishonestly; but i was deleted from W1(t) in any case.
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However, when the ratings  > 1 are updated, it will not be irrelevant whether i acts
honestly or dishonestly. To describe dynamics of this process, we denote by γ ∈ [0, 1]
the probability that a shop with a rating  is honest. With the described process of trust
updating, accumulating a high trust rating  takes time. In order to get a high trust rating,
a dishonest shop has to act honestly for a long time. It is therefore reasonable to assume
that the probability 1−γ that an -rated shop is dishonest decreases to 0 as  increases;
i.e. that lim→∞ γ = 1.

Rating dynamics is now

w(t + 1) − w(t) = w−1(t) · Prob
(
X(t + 1) = i | τi(t) =  − 1

) · γ−1

−w(t) · Prob
(
X(t + 1) = i | τi(t) = 

)

= w−1(t) ·C(t) · ( − 1) · γ−1 − w(t) ·C(t) · 
The difference between W(t + 1) and W(t) again comes from two sources:

– either i ∈ J is added to W(t), because τi(t) was  − 1 and X(t + 1) = i was selected
from W−1(t) with the probability C(t) · ( − 1); and then this i turned out to be
honest, with the probability γ−1, so that τi(t + 1) got updated to 1 + τi(t) = ;

– or i ∈ J is deleted from W(t), because τi(t) was , and X(t + 1) = i was selected
from W(t), with probability C(t) · ; if i acted honestly, his trust rating got updated
to  + 1; if he acted dishonestly, it got updated to 0; in any case, he got removed
from W(t).

Conceptually, the above derivations follow Simon’s master equation method [31]. To
simplify the solution, we use a more contemporary approach of [6,33]. First of all, we
do not seek the solutions for the sizes w(t) of the sets W(t), but rather for the densities
v(t) =

w(t)
J . Since

∑
∈R v(t) = 1, for every t, the functions v(−)(t) : R �� [0, 1]

are probability distributions with a finite support. Together, they thus form a stochastic
process v : N �� DR, described by the difference equations

Δv1(t) = αγ⊥ −C(t)v1(t)

Δv(t) = γ−1( − 1)C(t)v−1(t) − C(t)v(t)

As shown in the Appendix, the steady state of this process turns out to be

υ1 =
αγ⊥
c + 1

υn =
αγ⊥Gn−1

c
B

(

n, 1 +
1
c

)

where Gn =
∏n

=1 γ, the constant c satisfies c
t ≈ C(t) = 1−α∑

i∈J τi(t)
, and B is Dirichlet’s

Beta function. But Stirling’s formula implies that B(x, y) ≈ x−y holds as x → ∞. We
have thus proven that, with a sufficiently fine trust rating scale, and with the probability
of honesty γ increasing with the trust rating  fast enough, the trust ratings obey the
power law [25,26].

In summary, we have proven the following:

Theorem. A trustor maintains trust ratings for a set of J trustees. The ratings take their
values from a sufficiently large set, so that they can strictly increase whenever justified.
They are updated according to the following procedure:
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– Initially, the tustor assigns some fixed ratings (e.g., equal) to all trustees.
– Then the trustor repeatedly tests the trustees:
• with a probability α, she tests an untested trustee, adds it to the set J, and

deletes from it a trustee with the minimal rating;
• otherwise, the turstor tests a previously tested trustee, with a probability pro-

portional to its trust rating.
– After each step, the trustor updates the trust rating  of the tested trustee as follows
• with a probability γ, she increases it (because of a satisfactory outcome of the

test);
• otherwise, she sets it to zero.

If the probability γ of a satisfactory transaction with an -rated trustee increases fast
enough enough to satisfy 1

es ≤ γ ≤ 1 for some convergent series
∑∞
=1 s < ∞, so that

G =
∏∞

=1 γ > 0, then in the long run, the number wn of trustees with the trust rating n
obeys the power law

wn ≈ αγ⊥GJ
c

n−(1+ 1
c )

where c is a renormalising constant c ≈ 1−α
1+αγ⊥

, and γ⊥ is the probability that an untested
trustee will satisfy the test.

Remarks. As explained in section 2.1, the assumption that the trust can always increase
does not mean that the trust ratings have to be unbounded: they can also increase asymp-
totically. This assumption is only needed to assure that the process of trust building will
not become irrelevant after some threshold is reached. In reality, of course, only finitely
many interactions with finitely many shops can be taken into account, but there is a real
sense in which the trust process can always be refined, and trust increased.

The assumption that G =
∏∞

=1 γ > 0 means that the probability 1 − γ, that a shop
with a trust rating  is not trustworthy, quickly decreases as  increases. This assumption
is not satisfied if many untrustworthy shops act honestly for a long time, waiting to
accumulate trust, and then strike. If there are incentives for that, the heavy tail of the
power component of wn is trimmed by the exponential component Gn =

∏n
=1 γ, and

the distribution of trust is exponential.
But this leads to a negative feedback: as they decrease the range of trust distribution,

the dishonest trust hubs actually decrease the vulnerability of the network. The more
persistent attackers there are, the higher the cost of an attack.

Other Interpretations. Although our model was described and motivated as shopper’s
trust process, it seems likely that the stochastic process governing recommender’s trust
vector would be of the same type. The main difference is, of course, that the recom-
mender does not select and test the merchant himself, but builds his trust vector from
the merchant ratings that he obtains as the feedback from the shoppers. However, a
shopper who comes back to submit the feedback is probably the same one who pre-
viously came to obtain recommender’s recommendation. And it is furthermore just as
likely that the shopper has selected the merchant following that recommendation. So
the selection of the merchant whose trust rating will be updated at a time t + 1 was
guided by recommender’s trust vector at time t, just as it was the case with shopper’s
trust dynamics.
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3.3 Robustness and Vulnerability of Private Trust

The upshot of the Theorem just proved is that there is a great variety of trust ratings:
the distribution has a heavy tail. Money attracts money, and trust attracts more trust.
As you extend the circle of merchants and the rating scale, you will find merchants
with higher and higher trust rating. This applies to user’s private trust vectors τ and
σ, as well as to recommender’s public trust vectors, displayed as the rows of the rec-
ommendation matrix A = (Aui)U×J. Moreover, although we did not describe dynamics
of an endorsement network here, it seems certain that it also leads to a distribution of
recommenders’ influence, obeying the power law. The reason is that the endorsement
dynamics is quite similar to promotion dynamics, described in [28], which is a version
of one of the processes studied in Simon’s seminal paper about the power law [31].

The structure and the properties of the distributions that obey the power law have
been extensively analyzed [25,26,27]. As mentioned in the Introduction, because of the
presence of highly rated hubs, such distributions tend to be robust under random per-
turbations, but vulnerable to adaptive attacks on their hubs3. Leaving the mathematical
details aside, the security consequence is that the power law distributions work for the
attacker: he only needs to attack a small number of nodes of high ranking, in order
to gain control over a large part of the system. This phenomenon has been previously
demonstrated on toy models of trust networks, involving the bottleneck nodes [19]. Al-
though the recommender networks, currently deployed on the Web, still do not form
a large network, the same phenomenon — that the main trust hubs become increas-
ingly unreliable — has also been observed in practice: e.g., [8] describes some extreme
examples.

4 Conclusions

The obvious security lessons, arising from our analyses, and supported by the empiric
observations are thus:

– Trust decisions should not be derived from public trust recommendations alone.
They should be based on private trust vectors, that the user should maintain herself.

– Public trust recommendations should be used to supplement and refine private trust.

5 Towards Applications: Combining Private Trust and Public
Recommendations

Hoping that the gentle reader will not be too disturbed by the fact that the paper con-
tinues beyond its conclusions4, in this final section we sketch some ways to implement

3 One way to make this statement precise is to build a random graph with the given trust distribu-
tion as the degree distribution. The methods of [1] can serve for this purpose. The edges of the
obtained graph can be interpreted as the interactions recorded in nodes’ trust ratings. The trust
hubs would then be the graph hubs in the usual sense: highly connected nodes. The robustness
would manifest itself as a high phase transition: the graph remains connected even when many
randomly selected edges are eliminated; and the fragility would mean that the graph falls apart
very easily if some of the hubs are removed.

4 A reviewer of a version of this paper where the above conclusions were not separated in their
own section, objected that the paper ended abruptly, without any conclusions.
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these conclusions. We propose for further exploration two methods for a user of a trust
network to combine her private trust vectors with some public recommendations, in or-
der to obtain more informative trust guidance. Although we attempt to provide intuitive
explanations, understanding the technical details of these condensed ideas may require
some familiarity with LSI and with the vector model.

5.1 Trust Communities

It is often emphasized that trust is relative to a community, or more generally to a module
[28] within a network: e.g., a criminal may be trusted within the community of criminals,
but not within a community of security researchers, and vice versa. The members of the
same community can be recognized by similar trust vectors, or recommendations.

In this section, we briefly summarize how a recommendation matrix can be used to
recognize communities in the space of recommenders on one hand, and in the space of
merchants on the other. The merchants which deserve to be trusted for the same type of
services are likely to be highly recommended by the same recommenders. This groups
them into communities. The user can refine his trust by computing how much he trusts
each community, and how is his trust distributed within each of them. While the public
trust recommendations may be unreliable, and better not followed directly, they pro-
vide reliable and valuable information about the trust communities. By relativizing the
private trust over the trust communities, the user can obtain significantly more precise
guidance, distinguishing between the various forms of trust in the various communities,
even in the model where the entrusted properties are kept implicit.

By suitably renormalizing the data, the similarity between the trust vectors ϕ and
ψ ∈ RJ can be viewed as the angle between the induced recommender vectors

s(ϕ, ψ) = 〈Aϕ | Aψ〉
where 〈x|y〉 = ∑

v∈U xv ·yv is the inner product in the space RU. The angle is often used as
the similarity measure in information retrieval and data mining [22]. It should be noted
that it leads to subtle statistical problems, if applied to diverse samples [29]. The trust
communities, as the subspaces of similar vectors within RJ, can be detected by spectral
methods, using the data mining technique of Latent Semantic Indexing (LSI) [7,16,29].
The idea is to look for the vectors ξ where s(ξ, ξ) attains the extremal values. Since the
transpose AT satisfies 〈Aϕ | Aψ〉 = 〈ϕ | AT Aψ〉, the similarity can be also be expressed as
s(ϕ, ψ) = 〈ϕ | AT Aψ〉. The extremal values of s(ξ, ξ) = 〈ξ | AT Aξ〉 can thus be found as
the eigenvalues {λ1 > λ2 > · · · > λm} of AT A. The communities are the corresponding
eigenspaces, described by the projectors {P1, . . . , Pm}.

There are at least two ways to refine private trust τ using the trust communities
{P1, . . . , Pm}.

Community Specific Private Trust. Instead of using his trust vector τ ∈ RJ to select
the trusted objects, the user can compute the community specific trust vectors

τk = Pkτ

obtained by projecting τ into each of the eigenspaces Pk, k = 1, . . . ,m, i.e. by relativiz-
ing it to the dominant merchant communities. In this way, even if the trust relations
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A → B are not explicitly annotated by the entrusted properties Φ, the user can refine

his trust decisions by recognizing the ”latent” entrusted properties, uncovered as the
dominant trust communities {P1, . . . , Pm}.

Personalized Recommendation Matrix. Intuitively, the spectrum {λ1 > λ2 > · · · >
λm} expresses a notion of cohesion, i.e. the strength of the mutual trust within each of the
communities {P1, P2, . . . , Pm}. On the other hand, the degree to which a user with a trust
vector τ trusts a community Pk can be measured by the similarity s(τ, τk) = 〈τ | Pkτ〉.

The Singular Value Decomposition (SVD) theorem tells that the spectral decompo-
sition AT A =

∑m
k=1 λkPk induces A =

∑m
k=1

√
λkΠk, for the suitable operators Πk. The

personalized recommendation matrix, remixed according to the community trust θ in-
duced by user’s trust vector τ is then Aτ =

∑m
k=1

√〈τ|Pkτ〉Πk. Using this private matrix
is equivalent to using the community specific trust vectors, within each of the trust
communities; but it also allows evaluating trust for combinations of communities.
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Appendix: The Steady State of the Trust Process

The trust process v : N �� DR is described by the difference equations

Δv1(t) = αγ⊥ −C(t)v1(t)

Δv(t) = γ−1( − 1)C(t)v−1(t) −C(t)v(t)

Recall, first of all, from section 3.1 that C(t) = 1−α
S (t) , where S (t) =

∑
i∈J τi(t). The dy-

namics of τ, described at the end of section 3.1, implies that

S (t + 1) =
∑

i�X(t+1)

τi(t) + γX(t+1)
(
1 + τX(t+1)(t)

)
+ αγ⊥

where γ⊥ is the probability that a shopper is satisfied after an interaction with a new
shop. It follows that

ΔS (t) = γX(t+1) − (1 − γX(t+1))τX(t+1)(t) + αγ⊥ ≈ 1 + αγ⊥

is approximately constant and thus S (t) ≈ (1+αγ⊥)t. Hence C(t) ≈ c
t , where c = 1−α

1+αγ⊥
.

With this simplification, and with the martingale assumption of [33] satisfied, the
solutions of the above system of difference equations can be approximated by the solu-
tions of the corresponding differential system

dv1

dt
= αγ⊥ − c

t
v1

dv
dt
=
γ−1c( − 1)v−1 − cv

t

where the discrete time variable t has been made continuous. The steady state of the
stochastic process v : R �� DR can now be found in the form v(t) = t · υ, by
expanding the recurrence

υ1 = αγ⊥ − cυ1

υ = γ−1c( − 1)υ−1 − cυ

into

υ1 =
αγ⊥
c + 1

υ =
( − 1)γ−1c
c + 1

υ−1
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which further gives

υ2 =
αγ⊥
c + 1

· γ1c
2c + 1

υ3 =
αγ⊥
c + 1

· γ1c
2c + 1

· 2γ2c
3c + 1

. . .

υn = αγ⊥

⎛
⎜⎜⎜⎜⎜⎜⎝

n−1∏

=1

γ

⎞
⎟⎟⎟⎟⎟⎟⎠ cn−1 · (n − 1)!

∏n
k=1(kc + 1)

=
αγ⊥Gn−1

c
· (n − 1)!
∏n

k=1

(
k + 1

c

)

=
αγ⊥Gn−1

c
·
Γ(n)Γ

(
1 + 1

c

)

Γ
(
n + 1 + 1

c

)

=
αγ⊥Gn−1

c
· B

(

n, 1 +
1
c

)
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Abstract. We present in this paper a logical model of trust within organizations.
Three forms of trust are investigated: trust in an agent (i.e. interpersonal trust),
trust in a role, trust in an agent qua player of a role. The relationships between the
three forms of trust are investigated. A part of the paper is devoted to the analysis
of trust of an authority (e.g. an employer) in a subordinate (e.g. an employee).

1 Introduction

When looking at human organizations, social scientists have been mostly interested
in individuating the antecedents of collective behavior and collective action between
interacting individuals and roles. A central concern of the field has been identifying
the determinants of intraorganizational cooperation, coordination and delegation [20,2].
Among the different determinants, trust has been recognized as one of the most impor-
tant [7,16].

In this paper, we will study trust and organizations from the perspective of computer
scientists working in the field of multi-agent systems (MAS). Indeed, to provide a for-
mal analysis of trust within the context of organizations is of definite importance for
the theory and development of multi-agent systems. In the recent years, in the MAS
field there has been a growing interest in the theory of organization. Several formal ap-
proaches to the characterization of organizational concepts have been proposed [22,10]
as well as general methodologies for MAS [23,13] which are based on organizational
concepts as their cornerstones and which provide the guidelines for the specification and
the design of MAS environments. In these formal approaches and existing methodolo-
gies, a multi-agent system is conceived as an organization consisting of various interact-
ing roles which can be played by different agents. Although the concept of organization
has been extensively studied in the agent domain, there is still no comprehensive for-
mal account of the issue of trust in agent organizations. For instance, the distinction
between the concept of trust in an agent and the concept of trust in a role is not clearly
and deeply analyzed. Indeed, most of formal models of trust proposed in the agent do-
main have a limited perspective and only focus on trust in information sources in the
specific context of information exchange between agents (e.g. [17,14,8]). The aim of
the present paper is to extend our conceptual and formal model of social trust [18,9] to
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the analysis of trust within organizations. This is in order to fill an existing gap in the
literature about formal models of agents and multi-agent systems.

In particular, we will present in this paper a logical model of trust within the context
of organizations. We model organizations as social entities in which agents play roles.
Individual agents are described in terms of their mental attitudes (beliefs, goals, inten-
tions). In an organization there are different roles to which certain powers are assigned.
When an agent plays a certain role, he inherits the powers assigned to the role. We
study trust at three different levels of generality. We start with the more general con-
cept of an agent i’s trust in another agent j abstracting away from the concept of role
(interpersonal trust). We conceive interpersonal trust as an agent’s disposition which is
reducible to his beliefs and goals. In particular, we define trust in terms of a goal of the
truster and the truster’s belief that the trustee has the right properties (powers, abilities,
dispositions) to ensure that his goal will be achieved. Then, we introduce the concept of
role in order to investigate what it means that an agent i trusts a certain role x and an
agent i trusts another agent j qua player of a certain role x. We focus on the relation-
ships between the three different forms of trust (interpersonal trust, trust in a role and
trust in an agent qua player of a role).

The paper is organized as follows. We start in Section 2 with a presentation of a
modal logic which enables reasoning about actions and mental attitudes of agents (be-
liefs, goals and intentions), and about the roles that the agents play within the context of
the organization. This logic will be used during the paper for formalizing the relevant
concepts of our model of trust. The second part of the paper (Section 3) is devoted to
present the three general concepts of trust that are relevant for a theory of organizations
and for modeling and designing artificial organizations of agents: interpersonal trust
(Section 3.1), trust in a role and and trust in an agent qua player of a role (Section 3.2).
In Section 3.3, the three concepts are applied to the specific case of trust of an authority
(e.g. an employer) in a subordinate (e.g. an employee). We conclude with a discussion
of some directions for future works.

2 A Modal Logic of Mental Attitudes, Actions and Roles

We present in this section the multimodal logic L that we use to formalize the relevant
concepts of our model of trust. L combines the expressiveness of dynamic logic [11]
with the expressiveness of a logic of agents’ mental attitudes [6]. Moreover, it enables
reasoning about the relationships between different roles in the organization.

2.1 Syntax and Semantics

The syntactic primitives of the logic L are the following:

– a nonempty finite set of agents AGT = {i, j, . . .};
– a nonempty finite set of atomic actions AT = {a, b, . . .};
– a set of atomic formulas ATM = {p, q, . . .};
– a finite set of social roles ROLE = {x, y, . . .}.

We add two additional formal constructions in order to specify the relationships be-
tween agents and roles and among different roles.
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– a function Fplay : ROLE −→ 2AGT \ ∅ which maps every role to a non-empty
set of agents;

– a function Fcontrol : ROLE ×ROLE −→ 2AT which maps every couple of roles
to a set of atomic actions.

Given a role x ∈ ROLE and a non-empty set of agents C ∈ 2AGT , Fplay(x) = C
means that C is the set of agents in the organization that play role x. Given two roles
x, y ∈ ROLE and a set of atomic actions X ∈ 2AT , Fcontrol(x, y) = X means that
role x controls the atomic actions X of role y. More generally, the latter construction is
used to specify a concept of right: a ∈ Fcontrol(x, y) means that every agent playing
role x has the right to require (resp. to authorize) an agent playing role y to do action a.
We call the tuple RS = 〈Fplay ,Fcontrol〉 a role structure.

We also introduce organizational actions of the form reqj(a) and authj(a) denoting
respectively the action of requiring (or demanding) j to do the atomic action a and the
action of authorizing (or allowing) j to do the atomic action a. Here we do not consider
the negative counterparts of these organizational actions, that is, the action of forbidding
j to do the atomic action a and the action of authorizing (or allowing) j not to do the
atomic action a.

We define a set ACT of complex actions as the smallest superset of AT such that:

– if a ∈ AT and j ∈ AGT then reqj(a) ∈ ACT and authj(a) ∈ ACT .

Since the sets AGT and AT are supposed to be finite, the set ACT is finite as well. We
note α, β, . . . the elements in ACT .

The language Llang of the logic L is defined as the smallest superset of ATM such
that:

– if ϕ, ψ ∈ Llang , α ∈ ACT , i ∈ AGT , x, y ∈ ROLE and a ∈ AT then ¬ϕ, ϕ ∨
ψ, Afteri:αϕ, Doesi:αϕ, Bel iϕ, Goal iϕ, Obgϕ, Control(x, y, a), Play(i, x) ∈
Llang .

The classical boolean connectives ∧, →, ↔, � and ⊥ are defined from ∨ and ¬ in the
usual manner.

The operators of our logic have the following intuitive meaning. Bel iϕ: the agent
i believes that ϕ; Afteri:αϕ: after agent i does α, it is the case that ϕ (Afteri:α⊥
is read: agent i cannot do action α); Doesi:αϕ: agent i is going to do α and ϕ will
be true afterward (Doesi:α� is read: agent i is going to do α); Goal iϕ: the agent i
wants that ϕ holds; Control(x, y, a): role x controls role y with respect to the action
a; Play(i, x): agent i plays role x; Obgϕ: it is obligatory that ϕ. During the analysis of
trust presented in Section 3, formula Afteri:αϕ will be often read: agent i has the power

to ensure ϕ by doing α. Three abbreviations are given: Cani(α) def= ¬Afteri:α⊥;

Inti(α) def= Goal iDoes i:α�; Permϕ
def= ¬Obg¬ϕ. Cani(α) stands for: agent i can

do action α (i.e. i has the capacity to do α). Inti(α) stands for: agent i intends to do α.
Finally, Permϕ stands for: ϕ is permitted.

Models of the logic L are tuples M = 〈W,RS,A ,D ,B,G ,O,V 〉 defined as
follows.

– W is a non empty set of possible worlds or states.
– RS is a role structure.
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– A : AGT ×ACT −→W ×W maps every agent i and action α to a relation Ai:α
between possible worlds in W . Given a world w ∈ W , if (w,w′) ∈ Ai:α then w′ is
a world which can be reached from w through the occurrence of agent i’s action α.

– D : AGT ×ACT −→W ×W maps every agent i and action α to a relation Di:α
between possible worlds in W . Given a world w ∈W , if (w,w′) ∈ Di:α then w′ is
the next world of w which will be reached from w through the occurrence of agent
i’s action α.

– B : AGT −→ W ×W maps every agent i to a serial, transitive and euclidean
relation Bi between possible worlds in W . Given a world w ∈ W , if (w,w′) ∈ Bi

then w′ is a world which is compatible with agent i’s beliefs at w.
– G : AGT −→W ×W maps every agent i to a serial relation Gi between possible

worlds in W . Given a world w ∈ W , if (w,w′) ∈ Gi then w′ is a world which is
compatible with agent i’s goals at w.

– O is a serial relation between possible worlds in W . Given a world w ∈ W , if
(w,w′) ∈ O then w′ is a world which is ideal at world w.

– V : W −→ 2ATM is a truth assignment which associates each world w with the
set V (w) of atomic propositions true in w.

We distinguish the two types of relations R and D since we want to express both: the
fact that at a given world w an agent performs an action α which will result in a next
state w, the fact that if at w the agent did something different he would have produced
a different outcome.

Given a model M , a world w and a formula ϕ, we write M,w |= ϕ to mean that ϕ
is true at world w in M , under the basic semantics. The rules defining the truth condi-
tions of formulas are just standard for atomic formulas, negation and disjunction. The
following are the remaining truth conditions for Afteri:αϕ, Does i:αϕ, Bel iϕ, Goal iϕ,
Obgϕ, Control(x, y, a) and Play(i, x).

– M,w |= Afteri:αϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Ai:α
– M,w |= Does i:αϕ iff ∃w′ such that (w,w′) ∈ Di:α and M,w′ |= ϕ
– M,w |= Bel iϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Bi

– M,w |= Goal iϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ Gi

– M,w |= Obgϕ iff M,w′ |= ϕ for all w′ such that (w,w′) ∈ O
– M,w |= Control (x, y, a) iff a ∈ Fcontrol(x, y)
– M,w |= Play(i, x) iff i ∈ Fplay(x)

The following section is devoted to illustrate the additional semantic constraints overL
models and the corresponding axiomatization of the logic L.

2.2 Axiomatization

The axiomatizations of the logic L include all tautologies of propositional calculus and
the standard rule of inference modus ponens.1 Operators for actions of type Afteri:α
and Does i:α are normal modal operators satisfying the axioms and rules of inference of
system K.2 Operators of type Bel i and Goal i are just standard normal modal operators.

1 If  ϕ and  ϕ→ ψ then  ψ.
2 This includes necessitation rule and Axiom K: �ϕ

�Afteri:αϕ
; �ϕ

�¬Doesi:α¬ϕ
; (Afteri:αϕ ∧

Afteri:α(ϕ→ ψ))→ Afteri:αψ; (Doesi:αϕ ∧ ¬Doesi:α¬ψ)→ Doesi:α(ϕ ∧ ψ).
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The former are modal operators for belief in Hintikka style [12] satisfying the axioms
and rules of inference of system KD45. 3 The latter are modal operators for goal in
Cohen & Levesque’s style [6] satisfying the axioms and rules of inference of system
KD.4 Thus, we make assumptions about positive and negative introspection for beliefs
and we suppose that an agent have no inconsistent beliefs or conflicting goals. Operators
for obligations of type Obg are supposed to be KD normal modal operators as in SDL
(standard deontic logic) [1].5 Thus, we do not admit contradictory obligations.

We add the following constraint over every relation Di:α and every relation Dj:β of
all L models. For every i, j ∈ AGT , α, β ∈ ACT and w ∈W :

S1 if (w,w′) ∈ Di:α and (w,w′′) ∈ Dj:β then w′ = w′′

Constraint S1 says that if w′ is the next world of w which is reachable from w through
the occurrence of agent i’s action α and w′′ is also the next world of w which is reach-
able from w through the occurrence of agent j’s action β, then w′ and w′′ denote the
same world. Indeed, we suppose that every world can only have one next world. The
semantic constraint S1 corresponds to the following axiom.

AltAct Does i:αϕ→ ¬Doesj:β¬ϕ

Axiom AltAct says that: if i is going to do α and ϕ will be true afterward, then it cannot
be the case that j is going to do β and ¬ϕ will be true afterward.

We also suppose that the world is never static in our framework, that is, we suppose
that for every world w there exists some agent i and action α such that i is going to
perform α at w. Formally, for every w ∈W we have that:

S2 ∃i ∈ AGT , ∃α ∈ ACT , ∃w′ ∈ W such that (w,w′) ∈ Di:α

The semantic constraint S2 corresponds to the following axiom of our logic.

Active
∨

i∈AGT ,α∈ACT Does i:α�

Axiom Active ensures that for every world w there is a next world of w which is reach-
able from w by the occurrence of some action of some agent. This is the reason why
the operator X for next of LTL (linear temporal logic) can be defined as follows:

Xϕ
def=

∨
i∈AGT ,α∈ACT

Does i:αϕ

Note that X satisfies the standard property Xϕ ↔ ¬X¬ϕ (i.e. ϕ will be true in the
next state iff ¬ϕ will not be true in the next state).

The following relationship is supposed between every relation Di:α and the corre-
sponding relation Ai:α of all L models. For every i ∈ AGT , α ∈ ACT and w ∈ W :

S3 if (w,w′) ∈ Di:α then (w,w′) ∈ Ai:α

3 This includes rule of necessitation, Axiom K for every operator Bel i plus the following three
axioms (so-called Axioms D, 4, 5): ¬Bel i⊥; Bel iϕ→ Bel iBel iϕ; ¬Bel iϕ→ Bel i¬Bel iϕ.

4 This includes rule of necessitation, Axiom K for every operator Goal i plus the following
Axiom D: ¬Goal i⊥.

5 This includes rule of necessitation, Axiom K for Obg plus the following Axiom D: ¬Obg⊥.
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The constraint S3 says that if w′ is the next world of w which is reachable from w
through the occurrence of agent i’s action α, then w′ is a world which is possibly reach-
able from w through the occurrence of agent i’s action α. The semantic constraint S3
corresponds to the following axiom IncAct,PAct.

IncAct,PAct Does i:αϕ→ ¬Afteri:α¬ϕ

According to IncAct,PAct, if i is going to do α and ϕ will be true afterward, then it is
not the case that ¬ϕ will be true after i does α. The following axioms relates intentions
with actions.

IntAct1 (Inti(α) ∧ Cani(α)) → Does i:α�
IntAct2 Does i:α� → Inti(α)

According to IntAct1, if i has the intention to do action α and has the capacity to do
α, then i is going to do α. According to IntAct2, an agent is going to do action α
only if he has the intention to do α. In this sense we suppose that an agent’s doing is by
definition intentional. Similar axioms have been studied in [19] in which a logical model
of the relationships between intention and action performance is proposed. IntAct1 and
IntAct2 correspond to the following semantic constraints over L models. For every
i ∈ AGT , α ∈ ACT and w ∈ W :

S4 if ∀(w,w′) ∈ Gi, ∃w′′ such that (w′, w′′) ∈ Di:α and ∃v such that (w, v) ∈ Ai:α
then ∃v′ such that (w, v′) ∈ Di:α

S5 if ∃v′ such that (w, v′) ∈ Di:α then ∀(w,w′) ∈ Gi, ∃w′′ such that (w′, w′′) ∈
Di:α

We also suppose that goals and beliefs must be compatible, that is, if an agent has the
goal that ϕ then, he cannot believe that ¬ϕ. Indeed, the notion of goal we characterize
here is a notion of an agent’s chosen goal, i.e. a goal that an agent decides to pursue. As
some authors have stressed (e.g.[4]), a rational agent cannot decide to pursue a certain
state of affairs ϕ, if he believes that ¬ϕ. Thus, for any i ∈ AGT and w ∈ W the
following semantic constraint over L models is supposed:

S6 ∃w′ such that (w,w′) ∈ Bi and (w,w′) ∈ Gi

The constraint S7 corresponds to the following axiom WR (weak realism) of our logic.

WR Goal iϕ→ ¬Bel i¬ϕ

In this work we assume positive and negative introspection over (chosen) goals, that is:

PIntrGoal Goal iϕ→ Bel iGoal iϕ
NIntrGoal ¬Goal iϕ→ Bel i¬Goal iϕ

Axioms PIntrGoal and NIntrGoal correspond to the following semantic constraints
over L models. For any i ∈ AGT and w ∈W :

S7 if (w,w′) ∈ Bi then ∀v, if (w, v) ∈ Gi then (w′, v) ∈ Gi

S8 if (w,w′) ∈ Bi then ∀v, if (w′, v) ∈ Gi then (w, v) ∈ Gi
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We accept the following axiom relating obligations and beliefs:

BelObg Obgϕ→ Bel iObgϕ

This axiom is based on the assumption that every agent has complete information of
what is obligatory. It is justified by the fact that if it is expected that an agent does
every action which is obligatory, he must have a complete information about what is
obligatory. Axiom BelObg corresponds to the following semantic constraint over L
models: For any i ∈ AGT and w ∈ W :

S9 if (w,w′) ∈ Bi then ∀v, if (w′, v) ∈ O then (w, v) ∈ O

Note that by Axiom BelObg, the definition of the permission operator Perm and Ax-
iom D for Bel i, the following formula can be derived as a consequence: Bel iPermϕ
→ Permϕ. This means that in our logical framework every agent has sound informa-
tion of what is permitted.

We also have specific properties for the actions of requiring and authorizing. We
suppose that, given two agents i and j playing respectively roles x and y in the organi-
zation, if role x controls role y with respect to the action a then: after i requires (resp.
authorizes) j to do a, j has the obligation to do a (resp. has the permission to do a).
Formally:

Control (Play(i, x) ∧ Play(j, y) ∧Control(x, y, a)) →
(Afteri:reqj(a)ObgDoesj:a�∧ Afteri:authj(a)PermDoesj:a�)

Axiom Control corresponds to the following two semantic constraints over L models.
For any i, j ∈ AGT , x, y ∈ ROLE , a ∈ AT and w ∈ W if i ∈ Fplay(x), j ∈
Fplay(y) and a ∈ Fcontrol(x, y) then:

S10 if (w,w′) ∈ Ai:reqj(a) ◦ O then ∃w′′ such that (w′, w′′) ∈ Dj:a

S11 if (w,w′) ∈ Ai:authj(a) then ∃w′′ such that (w′, w′′) ∈ O ◦Dj:a

where ◦ is the standard composition operator between two binary relations.
We call L the logic axiomatized by the axioms and rules of inference presented

above. We write � ϕ if formula ϕ is a theorem of L (i.e. ϕ is the derivable from the
axioms and rules of inference of the logic L). We write |= ϕ if ϕ is valid in all L
models, i.e. M,w |= ϕ for every L model M and world w in M . Finally, we say that ϕ
is satisfiable if there exists a L model M and world w in M such that M,w |= ϕ. We
can prove that the logic L is sound and complete with respect to the class of L models.
Namely:

Theorem 1. � ϕ if and only if |= ϕ.

Proof. It is a routine task to check that the axioms of the logic L correspond one-to-
one to their semantic counterparts on the frames. It is routine, too, to check that all of
our axioms are in the Sahlqvist class. This means that the axioms are all expressible as
first-order conditions on frames and that they are complete with respect to the defined
frames classes, cf. [3, Th. 2.42]. "#
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3 Trust within the Context of Organizations

Trust relationships within the context of an organization can be analyzed at three general
levels of abstraction:

– an agent’s trust in another agent;
– an agent’s trust in a role;
– an agent’s trust in another agent qua player of a certain role.

The former kind of trust, also called interpersonal (or inter-agent) trust, is the trust that
a certain agent i places in a different agent j. This kind of trust is based on i’s ascription
of specific properties to j including powers, abilities and dispositions. We call these j’s
individual properties.

On the contrary, an agent i’s trust in a role x, with respect to the accomplishment of
a given task ϕ, is based on i’s attribution to role x of certain standard values and prop-
erties that are relevant for the achievement of the task ϕ. We call these role properties.
For example, if i says that he trusts policemen with respect to the task of monitoring
dangerous situations, i’s trust in policemen is based on i’s attribution to policemen of
certain role properties that are relevant with respect to the task of monitoring dangerous
situations (e.g. being armed, having the power to arrest suspected people, etc.).

Finally, an agent i’s trust in another agent j qua player of a role x with respect
to a certain task ϕ, is the trust that i places in j due to the fact that j plays role x
and, according to i’s beliefs, role x has certain (role) properties that are relevant for the
accomplishment of task ϕ. In this situation, i’s trust in j qua player of role x is based on
the fact that i transfers the properties of role x (that are relevant for the accomplishment
of task ϕ) to agent j playing role x. Differently from trust in a role, agent i’s trust
in agent j qua player of role x is also based on i’s attribution to agent j of certain
individual properties that are not necessarily properties of the role x. For example, i’s
trust in j qua policeman with respect to the task of monitoring dangerous situations has
two facets. On the one side, it is based on the fact that j plays the role of policeman and,
qua policeman, j inherits the role properties of policemen (e.g. being armed, having
the power to arrest suspected people). On the other side, it is based on i’s attribution of
individual properties to j (e.g. being absent-minded and lazy). The individual properties
of j might conflict with the properties that j inherits from the role of policeman leading
i to negatively evaluate j with respect to the task of monitoring dangerous situations.

3.1 Interpersonal Trust

As we have stressed in our previous works [9], interpersonal trust should be conceived
as a complex configuration of mental states in which there is both a motivational com-
ponent and an epistemic component. More precisely, we assume that an agent i’s trust
in agent j necessarily involves a goal of the truster: if agent i trusts agent j then, nec-
essarily, i trusts j with respect to some of his goals. The core of trust is a belief of the
truster about some properties of the trustee, that is, if agent i trusts agent j then neces-
sarily i trusts j because i has some goal and believes that j has the right properties to
ensure that such a goal will be achieved.
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In our perspective, interpersonal trust is based on the truster’s evaluation of specific
properties of the trustee (e.g. abilities, competencies, dispositions, etc) and of the envi-
ronment in which the trustee is going to act, which are relevant for the achievement of a
goal of the truster. From this perspective, trust is nothing more than the truster’s belief
about some relevant properties of the trustee with respect to a given goal. 6

The following is the precise concept of interpersonal trust as an evaluation that in-
terests us in the present work.

Definition 1. Agent i’s trust in agent j’s action. Agent i trusts agent j to do α with
regard to the achievement of ϕ if and only if i has the achievement goal that ϕ and i
believes that:

– j, by doing α, will ensure ϕ AND
– j has the capacity to do α AND
– j intends to do α.

The formal translation of Definition 1 is:

Trust(i, j, α, ϕ) def= AGoal iϕ ∧ Bel i(Afterj:αϕ ∧ Canj(α) ∧ Intj(α))

where Trust(i, j, α, ϕ) stands for “i trusts j to do α with regard to the achievement of
ϕ”, and formula AGoal iϕ, expressing agent i’s achievement goal that ϕ, is defined as
follows:

AGoal iϕ
def= Goal iXϕ ∧ ¬Bel iϕ

Our concept of achievement goal is similar to the concept studied in [6]. We say that
an agent i has the achievement goal that ϕ if and only if, i wants ϕ to be true in the
next state and does not believe that ϕ is true now. According to definition 1, i’s trust in
j with respect to the achievement of ϕ through action α is based on i’s attribution of
three main properties to j: the power to ensure ϕ by doing α (Afterj:αϕ), the capacity
to do action α (Canj(α)), the intention to do α (Intj(α)).

It is worth noting that in our logic the conditions Canj(α) and Intj(α) together are
equivalent to Doesj:α� (by axioms IncAct,PAct, IntAct1 and IntAct2), so the defini-
tion of trust in the trustee’s action can be simplified as follows:

Trust(i, j, α, ϕ) def= AGoal iϕ ∧ Bel i(Afterj:αϕ ∧Doesj:α�)

Example 1. The two agents i and j are making a commercial transaction. After having
paid j, i trusts j to deliver him a certain product with regard to his goal of having the
product:

Trust(i, j, deliver ,HasProduct(i)).

This means that i has the achievement goal of having the product:

AGoal iHasProduct(i).

Moreover, according to i’s beliefs, j, by delivering him the product, will ensure that he
will have the product, and j is going to deliver the product:

Bel i(Afterj:deliverHasProduct(i)∧ Doesj:deliver�).
6 In this paper we do not consider a related notion of decision to trust, that is, the truster’s

decision to bet and wager on the trustee and to rely on him for the accomplishment of a given
task. For a distinction between trust as an evaluation and trust as a decision, see [9,21].
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The following theorems highlight some interesting properties of the previous notion of
interpersonal trust.

Theorem 2. Let i, j ∈ AGT and α ∈ ACT . Then:

1. � Trust(i, j, α, ϕ)→ Bel iXϕ
2. � Trust(i, j, α, ϕ)↔ Bel iTrust(i, j, α, ϕ)
3. � (Trust(i, j, α, ϕ) ∧ Trust(i, j, α, ψ)) → Trust(i, j, α, ϕ ∧ ψ)
4. � ¬Trust(i, j, α,�)

Proof. We prove Theorems 2.1 and 2.4 as examples. We prove Theorem 2.1 first.
Trust(i, j, α, ϕ) implies Bel i(Afterj:αϕ ∧Doesj:α�) (by def. of Trust(i, j, α, ϕ)).
Afterj:αϕ∧Doesj:α� implies Doesj:αϕ (by Axiom IncAct,PAct and standard princi-
ples of the normal operator Doesj:α). Doesj:αϕ implies Xϕ (by definition of Xϕ). We
conclude that Bel i(Afterj:αϕ ∧Doesj:α�) implies Bel iXϕ (by Axiom K for Bel i).

To prove Theorem 2.4, it is sufficient to prove that Trust(i, j, α,�) implies ⊥.
Trust(i, j, α,�) implies ¬Bel i� (by def. of Trust(i, j, α,�) and AGoal i�). The
latter implies ⊥ (by standard principles of the normal operator Bel i). "#

According to Theorem 2.1, if i trusts j to do α with regard to ϕ then i has a positive
expectation that ϕ will be true in the next state. Theorem 2.2 highlights the fact that
trust is under the focus of the truster’s awareness: i trusts j to do α with regard to ϕ if
and only if, i is aware of this. Finally, Theorem 2.3 shows that trust aggregates under
conjunction: if i trusts j to do α with regard to ϕ and i trusts j to do α with regard to
ψ then, i trusts j to do α with regard to ϕ ∧ ψ. As Theorem 2.4 shows, in our logical
model there is no trust about tautologies. This is for us an intuitive property of trust.

Trust in an Agent’s Inaction. It is worth noting that an exhaustive ontology of trust
must distinguish the concept trust in an agent’s action as defined above (definition 1)
from the concept of trust in an agent’s inaction. The former concept is focused on the
domain of gains whereas the latter is focused on the domain of losses. That is, in the
former case the truster believes that the trustee is in condition to further the achievement
of a pleasant state of affairs, and he will do that; in the latter case the truster believes
that the trustee is in condition to endanger the maintenance of a pleasant state of affairs,
but he will refrain from doing that. The concept of trust in an agent’s inaction can be
defined as follows.

Definition 2. Agent i’s trust in agent j’s inaction. Agent i trusts j not to do α with
regard to the maintenance of ϕ if and only if i has the maintenance goal that ϕ and i
believes that:

1. j, by doing α, will ensure that ¬ϕ AND
2. j has the capacity to do α AND
3. j does not intend to do α.

The formal definition of trust in the trustee’s inaction is given by the following abbre-
viation.

Trust(i, j,¬α, ϕ) def= MGoal iXϕ ∧ Bel i(Afterj:α¬ϕ ∧ Canj(α) ∧ ¬Intj(α))
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where Trust(i, j,¬α, ϕ) stands for “i trusts j not to do α with regard to the mainte-
nance of ϕ”, and formula MGoal iϕ, expressing agent i’s maintenance goal that ϕ, is
defined as follows:

MGoal iϕ
def= Goal iXϕ ∧ Bel iϕ

Our concept of maintenance goal is similar to Cohen & Levesque’s concept [6]: an
agent i has the maintenance goal that ϕ if and only if, i wants ϕ to be true in the next
state and believes that ϕ is true now. That is, an agent i has a maintenance goal that ϕ
if and only if, agent i already has ϕ and has the goal to continue to have ϕ in the next
state. More generally, a maintenance goal is the goal of preserving a certain state of
affairs.

Example 2. Agent j is the webmaster of a public access website. Agent i is a regular
reader of this website and he trusts j not to restrict the access to the website with regard
to his goal of having free access to the website:

Trust(i, j,¬restrict , freeAccess(i)).

This means that, i has the maintenance goal of having free access to the website:

MGoal ifreeAccess(i).

Moreover, according to i’s beliefs, j has the capacity to restrict the access to the website
and, by restricting the access to the website, j will ensure that i will not have free access
to the website, but j does not intend to restrict the access:

Bel i(Afterj:restrict¬freeAccess(i) ∧ Canj(restrict) ∧ ¬Intj(restrict)).
In this situation, i’s trust in j is based on i’s belief that j is in condition to restrict the
access to the website, but j does not have the intention to do this.

Note that, differently from agent i’s trust in agent j’s action, agent i’s trust in agent
j’s inaction with respect to the goal that ϕ does not entail i’s positive expectation that
ϕ will be true. Indeed, Trust(i, j,¬α, ϕ) ∧ ¬Bel iXϕ is satisfiable in our logic. The
intuitive reason is that ¬ϕ may be the effect of another action than j : α.

In the following Section 3.2 we will provide an analysis of trust in a role and trust in
an agent qua player of a role.

3.2 Trust in a Role and Trust in an Agent qua Role Player

It is typical of organizations that an agent playing a certain role delegates the accom-
plishment of a task to another agent playing a different role. For example, an agent play-
ing the role of director of the organization might require another agent playing the role
of secretary the task of organizing a business meeting. Trust in roles plays a prominent
role in organizational performance: it mediates the social interaction between agents
and affects delegation mechanisms within the context of the organization [16,5].

As emphasized at the beginning of Section 3, an agent i’s trust in a role x, with
respect to the accomplishment of a given task ϕ, is based on i’s attribution to role x of
certain standard values and properties that are relevant for the achievement of the task ϕ
(role properties). We here focus on a particular role property, that is, the (role) property
of having the power to accomplish the task. In particular, we define an agent i’s trust
in a role x with respect to certain task as i’s belief that playing role x is a sufficient



Trust within the Context of Organizations: A Formal Approach 125

condition for an agent to have the power to accomplish the task. The precise definition
of trust in a role is the following one.

Definition 3. Agent i’s trust in role x. Agent i trusts role x with regard to the achieve-
ment of ϕ through action α if and only if i has the achievement goal that ϕ and believes
that:

– every agent playing role x, by doing α, will ensure that ϕ.

The formal translation of Definition 3 is:

Trust(i, x, α, ϕ) def= AGoal iϕ ∧ Bel i(
∧

j∈Fplay(x)

Afterj:αϕ)

where Fplay(x) is the set of agents which play role x in the organization. The for-
mula Trust(i, x, α, ϕ) is meant to stand for “agent i trusts role x with regard to the
achievement of ϕ through action α”. The following example clarifies the meaning of
the concept of trust in a role.

Example 3. Suppose that agent i is the editor in chief of a scientific journal. Agent i
trusts the members of his editorial board to review an article submitted to the journal
with respect to his goal of having a good evaluation of the article. Formally:

Trust(i, boardMember , review , goodEvaluation).

This means that i has the achievement goal of having a good evaluation of the article
and believes that every member of the board can provide a good evaluation of the article
by reviewing it:

AGoal igoodEvaluation∧
Bel i(

∧
j∈Fplay(boardMember) Afterj:reviewgoodEvaluation).

One might object that the previous definition of trust in a role x is quite strong since
it requires that every agent playing role x has the power to ensure ϕ by doing α. One
might define weaker forms of trust in a role. For instance, one might suppose that agent
i trusts role x with regard to the achievement of ϕ through action α if and only if i has
the achievement goal that ϕ and believes that the majority of agents playing role x can
ensure ϕ by doing α. This alternative definition of trust in a role based on the concept
of majority can be formally expressed as follows.

Trust(i, x, α, ϕ) def=

AGoal iϕ ∧ Bel i(
∨

C⊆Fplay(x),|C|>|Fplay(x)\C|
(
∧
j∈C

Afterj:αϕ))

The last kind of trust that we consider is an agent’s trust in another agent qua player of
a certain role. In our perspective, i trusts j qua player of role x with respect to a certain
task if and only if, i trusts j because i thinks that j plays role x. As emphasized at the
beginning of Section 3, agent i’s trust in agent j qua player of role x has two facets. On
the one side, it is based on the fact that i transfers some properties of role x (that are
relevant for the accomplishment of the task) to agent j playing that role. On the other
side, it is based on i’s attribution of certain individual properties to j.
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Definition 4. Agent i’s trust in agent j qua player of role x. Agent i trusts agent j qua
player of role x with regard to the achievement of ϕ through action α if and only if:

– agent i trusts role x with regard to the achievement of ϕ through action α (see
definition 3) AND

– i believes that
• j plays role x AND
• j has the capacity to do α AND
• j intends to do α.

According to definition 4, i’s trust in j qua player of role x with respect to the achieve-
ment of ϕ through action α is based on i’s trust in role x and i’s attribution of two
individual properties to j: the capacity to do α and the intention to do α. The definition
can be formally translated as follows:

Trust(i, j, x, α, ϕ) def= Trust(i, x, α, ϕ) ∧ Bel i(Play(j, x) ∧Canj(α) ∧ Intj(α))

where Trust(i, j, x, α, ϕ) stands for “agent i trusts agent j qua player of role x with
regard to the achievement of ϕ through action α”.

As for interpersonal trust, since in our logic the conditions Canj(α) and Intj(α)
together are equivalent to Doesj:α�, the definition of trust in an agent qua player of a
role can be simplified as follows:

Trust(i, j, x, α, ϕ) def= Trust(i, x, α, ϕ) ∧ Bel i(Play(j, x) ∧Doesj:α�)

Before concluding this section, we consider some formal relationships between the
three concepts of trust presented above. For instance:

– is it possible that agent j plays role x and agent i trust role x with respect to the
achievement of ϕ, without i trusting j qua player of role x?

– is it possible that agent i trusts agent j qua player of role x with respect to the
achievement of ϕ without i trusting j?

The answer to the first question is positive. Indeed, an agent i’s trust in an agent j qua
player of a role x with respect to the achievement of ϕ through action α is not only
based on i’s trust in role x but also on i’s attribution of individual properties to j (i.e.
j’s capacity and j’s intention to do action α). Thus, it might be the case that i trusts role
x, under the condition that j plays role x and, i does not trust j qua player of role x. This
is the reason why in our logic L the formula ¬Trust(i, j, x, α, ϕ)∧Trust(i, x, α, ϕ)∧
Play(j, x) is satisfiable. On the contrary, the answer to the second question is negative.
Indeed, it is not possible that i trusts j qua player of role x with respect to the achieve-
ment of ϕ through α and, at the same time, agent i does not trust agent j with respect to
the achievement of ϕ through α: Trust(i, j, x, α, ϕ) → Trust(i, j, α, ϕ) is a theorem
of the logic L. Note also that, in our logical model, interpersonal trust does not neces-
sarily entail trust in an agent qua player of a certain role, that is, i might trust j with
respect to ϕ without trusting j qua player of a role with respect to ϕ. This is the reason
why the formula Trust(i, j, α, ϕ) ∧ Play(j, x) ∧ ¬Trust(i, j, x, α, ϕ) is satisfiable in
the logic L. This is due to the fact that i’s trust in j is not generalized to all agents
playing the same role as j.

In the following Section 3.3, the definitions of trust in a role and trust in an agent qua
player of a role are applied to the specific case of an authority’s trust in a subordinate.
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3.3 Trust of an Authority in an Subordinate

Trust of an authority in a subordinate (e.g. the trust of a leader in a follower, of an em-
ployer in an employee, of a trainer in a player, etc.) is based on the authority’s belief
that the subordinate will effectively try to complete a certain delegated task, that is,
an authority’s trust in a subordinate is based on the authority’s belief that the subordi-
nate will conform to the obligations that the authority has created by means of certain
requests.

In some of our previous papers [18] we have formally characterized the concept of
obedience as a general attitude of the subordinate concerning norm compliance. Let
us reconsider it in the context of the present analysis. We say that a certain agent i is
obedient if and only if, he intends to do a certain action α as a consequence of his
fulfillment of the obligation to do this action. Formally:

Obedi(α) def= Bel iObgDoesi:α� → Inti(α)

where Obedi(α) stands for: i is obedient to do the action α.
The following Theorem 3 shows how the authority’s belief that the subordinate is

obedient intervenes to support the authority’s trust in the subordinate.

Theorem 3. Let i, j ∈ AGT , x, y ∈ ROLE and a ∈ AT then:
� (Play(i, x) ∧ Play(j, y) ∧ Control(x, y, a)∧
Afteri:reqj(a)(Trust(i, y, α, ϕ) ∧ Bel i(Obedj(a) ∧ Canj(a)))) →
Afteri:reqj(a)Trust(i, j, y, a, ϕ)

Theorems 3 has the following meaning. Suppose that agents i and j play respectively
roles x and y in the organization and role x controls role y with respect to the action a.
In this sense, i has authority over j with respect to the action a. Then, if after i requires
j to do a, i will trust role y with respect to the achievement of ϕ through a and i will
believe j to be capable to do a and to be obedient to do a then, after i requires j to do
a, i will trust j qua player of role y with respect to the achievement of ϕ through a.

4 Conclusion

We have presented in a modal logical framework a model of trust within organizations.
We have defined three different forms of trust: interpersonal trust (i.e. trust in an agent),
trust in a role and trust in an agent qua player of a role. The formal relationships be-
tween the three concepts have been investigated. In the last part of the paper we have
considered the special case of an authority’s trust in a subordinate (e.g. an employer’s
trust in a employee). Future works will be devoted to extend our analysis to a notion of
graded trust based on a notion of uncertain belief. Indeed, in the present work we have
only considered a notion of binary trust (i.e. either i trusts j or i does not trust j). Such
a kind of extension will enable us to integrate the cognitive and qualitative analysis of
trust presented in this paper with a quantitative analysis and, to compare our approach
with existing probabilistic approaches to trust (e.g. [15]).
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Abstract. In Decentralized Trust Management (DTM) authorization
decisions are made by multiple principals who can also delegate deci-
sions to each other. Therefore, a policy change of one principal will often
affect who gets authorized by another principal. In such a system of in-
fluenceable authorization a number of principals may want to coordinate
their policies to achieve long time guarantees on a set of safety goals.

The problem we tackle in this paper is to find minimal restrictions to
the policies of a set of principals that achieve their safety goals. This will
enable building useful DTM systems that are safe by design, simply by
relying on the policy restrictions of the collaborating principals. To this
end we will model DTM safety problems in Scoll [1], an approach that
proved useful to model confinement in object capability systems [2].

1 Introduction

Structural (role based) decentralized trust management (DTM) systems address
the problem of access and delegation control in a distributed setting where au-
thorization emanates from multiple sources. The rights of the agents/users in/of
a system are not determined by a single authority but is the effect of policies set
by different parties.

Principals cannot only define roles and authorize other principals as members
of these roles. They can also delegate the authorization of their roles to other
principals. Several powerful role based delegation models and trust management
languages have been proposed for this purpose in the literature, each with their
own balance between simplicity and expressive power. In this paper we will use
RT0, the simplest in the RT [3,4] family of trust management languages, but
our approach can easily be applied to more expressive members of that family.

The Running Example. The following simple example will be used and elabo-
rated throughout this paper. The chair of the Open Conference defines a reviewer
role and a submitter role for the conference. The chair designates Alice as a first
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reviewer. He then delegates all authorization responsibilities for both conference
roles to the members of the reviewer role. This means that the policy of ev-
ery conference reviewer can now influence the conference’s role assignment. The
safety concern the conference chair wants to be guaranteed is a simple mutual
exclusion between the submitter and the reviewer role: no submitter should ever
become also a reviewer.

The Problem. If the reviewers cooperate with each other to manage both
conference roles, it is relatively easy for them to detect a breach of the mutual
exclusion requirement: they would only have to check the members of both roles
and raise alarm when both roles have a common member. However, it is not
trivial for the reviewers to design their policies in such a way that the safety
breach becomes guaranteed impossible.

For instance, it does not suffice for the reviewers to simply refrain from au-
thorizing anyone directly to be a member of both roles. They must also watch
their delegation statements, as these may have indirect effects that may not be
obvious to predict. Disallowing the reviewers to assign anybody to the submitter
role could be sufficient to guarantee the safety concern, but that solution would
be too restrictive for the purpose of the conference.

The problem we want to solve concerning the running example is: in what
way(s) can we restrict the policies of the reviewers no more than necessary to
make sure that the conference roles are mutually exclusive regardless of the
policies of the non-reviewers, while still allowing the submitter role to be filled.

The general form of the problem is as follows. In a DTM system in which every
principal has a policy, and policies are finite sets of monotonic authorizations
and delegations, let the following be given:

– let Pk be the set of principals of which we know the exact policies
– let Pu be the set of principals of which we do not know the policies or have

no reliable way to restrict them, with (Pu ∩ Pk = ∅),
– let Pc be the set of cooperating principals: the ones of which we can restrict

the policies, with (Pc ∩ Pu = ∅)
– a number of safety concerns: what authorizations should not be allowed
– a number of availability concerns: what authorizations should be allowed

The problem is to find all restrictions Ri for the principals in Pc such that:

1. As long as the principals in Pc do not include any of the elements in Ri

into their policy, it is impossible for the principals of Pu to break the safety
requirements.

2. As long as the principals in Pc do not restrict their policies any further than
described above, it is possible for the principals of Pu to reach the availability
requirements .

We call Ri a solution to our problem. In practice, we will only calculate the mi-
nimal sets Ri for which both properties hold, and call them “optimal” solutions.

Property 1 indicates that every solution represents a set of sufficient restric-
tions for the cooperating principals that will guarantee safety, regardless of how
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the non-cooperative principals extend their policies. Property 2 merely indicates
that no solution restricts the policies so strong that, even with maximally per-
missive policies of the principals in Pu, the reachability properties would not be
guaranteed. Solutions are “optimal” if the restrictions are not only sufficient but
also necessary for safety.

The approach we apply here will conservatively (over-)approximate all policies
of the Pu principals to calculate upper bounds to the policies of the Pc princi-
pals. Our safety results are valid, even if the policies of the other principals are
also conservatively approximated. However, this is not the case for availability
requirements. That would require us to approximate the unknown policies from
below and calculate lower bounds for the policies of the cooperating principals,
which we regard as interesting future work.

A solvable problem will typically have multiple solutions, because a restriction
in one principal’s policy may render another restriction unnecessary.

The Proposed Solution. We propose to express and analyze safety problems
in DTM systems using Scoll (Safe Collaboration Language), a formal model
designed for general safety analysis.

First, we show that, thanks to its DataLog based structure and its explicit
support for behavior-based effect analysis, Scoll provides a natural way to model
such problems.

Secondly, we demonstrate how Scollar (Scoll’s analysis tool) can calculate the
minimal restrictions in the behavior of a set of entities that are necessary to avoid
a given set of unwanted effects, without leading to overly restrictive solutions that
prevent another given set of wanted effects. Our entities will be the principals
and the role names of a DTM system. Our behaviors will correspond to the RT0
policies of the principals.

Scoll and Scollar are explained in dept in “Patterns of Safe Collaboration” [1].
The remainder of this paper is organized as follows. We discuss related work

in section 2. In Section 3 we give a quick account on the RT0 language and
express the running example in it. We then give an overview of Scoll in Section 4
while translating our example into Scoll. In Section 5 we calculate and interpret
the solutions to the running example. We conclude in section 6.

2 Related Work

In decentralized trust management [3,4,5,6] decisions are made based on state-
ments made by multiple principals. The decision who can be trusted, e.g. to
access a resource, is not made by a single principal but takes into account in-
formation from multiple principals, i.e. the decision is in part delegated to these
other principals.

Securely sharing statements made by principals can be achieved by certificates
frameworks such as X.509 which provides certified but uninterpreted statements
and systems such as SPKI/SDSI [7] which link statements to authorization. The
PolicyMaker [5] and KeyNote [6] systems separate trust and security concerns,
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allowing the specification of trust relationships in the form of assertions by the
different principals.

In the RT [3,4] family of trust management languages principals express their
trust policies in the form of relationships between the principal’s roles and those
of other principals. The use of simple rules and a sequence of increasingly more
expressive and complex optional language features allows us to express simple
policies easily while also supporting more complex trust relations.

Delegation is very powerful and typically coarse-grained in trust management
systems such as RT. Usually one cannot be certain that whoever you are del-
egating to will know, understand and adhere to your expectations about how
they should use these delegated powers. Therefore you cannot be sure that the
delegation works in the way you intended. RT in itself does not provide the
means to express these intentions, nor to reason about what the policies should
be, given your intentions of bounding the eventual authorization.

This problem does not go away if we treat delegation as a permission in
itself and allow policies to restrict delegation rights as proposed by [8,9]. Even if
such policies are more refined, the original problem remains: what should these
refined policies be, given your intentions to bound the eventual authorization.
Moreover, approaches using delegation-as-permission typically require a more
elaborate and complex enforcement mechanism.

In [10] a different approach is followed; instead of restricting the delegation,
a number of constraints on its consequences are stated explicitly. Cooperative,
trusted parties are then expected to help monitor these constraints. The approach
then calculates a minimal subset of roles whose policy changes must be monitored
to guarantee the early detection of constraint violations. Control over the (conse-
quences of the) delegation should then be kept within this group of trusted parties.

In contrast to this monitoring approach, we propose to define a set of cooper-
ating principals and calculate alternative minimal sets of (RT0) policy rules that
should be disallowed for these principals, to avoid violating the safety constraints.

Certain security analysis problems about safety and reachability were solved
in [11]. That work also focusses on calculating bounds for the algorithmical
complexity of such problems.

In this paper we restrict ourselves to safety problems. We only take availability
constraints into account to make sure that our proposed restrictions do not
make the required availability impossible. The Scoll approach is meant for safety
analysis and thus calculates minimal sets of policy restrictions. Our approach
can therefor not provide real insights about availability, even though that would
be very useful in the context of DTM. It is interesting future work to extend
Scollar to also calculate minimal DTM policies for this purpose.

3 Policies and Safety Concerns in RT0

In this section we first introduce the basics of the trust management language
RT0, see e.g. [12] for details. Next we introduce the notion of incomplete RT0
policies and show how our running example can be expressed. Finally we intro-
duce safety concerns for such policies.
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Table 1. The 4 types of RT0 policy expressions

example type meaning

A.r ← B membership principal A adds principal B to role A.r
A.r ← B.r1 simple A considers every member of B.r1 to

inclusion be a member of A.r
A.r ← A.r1.r2 linking A considers everybody in the r2 role of

inclusion anybody in A.r1 to be a member of A.r
A.r ← B.r1 ∩ C.r2 intersection A considers every member of B.r1 who is also

a member of C.r2 to be a member of A.r

In RT0 principals are uniquely identified individuals or processes, denoted
by names starting with an uppercase. A principal can define roles, which are
denoted by the principal’s name, followed by the role name, separated by a dot.
Role names start with a lowercase. For instance “A.role1” denotes the role named
“role1” as defined by principal A.

A credential is an expression of one of the four types listed and clarified in
table 1. A policy system is a set of credentials. The policy AP of a (group of)
principal(s) A is the subset of S defining roles of A.

RT0 Semantics: Given a system of RT0 policies, the set of principals that are
defined by the system to be members of the role A.r is denoted as [[A.r]] (see [12]
for a formal definition). We will use this notation when expressing safety require-
ments about an RT0 system.

When checking safety requirements we will need to distinguish fixed or con-
trollable parts of the policy and parts of which we cannot be sure. To this end
we add a classification to the principals. We refer to the resulting system as
an incomplete RT0 system to emphasise that to address safety concerns we will
need to consider extensions of the system.

Definition 1 (Incomplete RT0 system). An Incomplete RT0 system is a
RT0 policy system together with a labeling which assigns to each participant one
of the following three labels:

– label k for the principals whose policies are static and completely known.
– label c for the principals whose policy changes we can control and bound if

necessary.
– label u for the principals whose policies are not completely known or can

change beyond our control

We use Pl to denote all principals with label l. An extension of the system is
obtained by adding credentials for Pc or Pu (but not Pk).

Table 2 shows our running example as an incomplete RT0 system with three
principals: Conference, Alice, and Bob.

Conference’s label indicates that her policy is fixed and stable as described
in the first three rules of table 2. In rule 1 Conference adds Alice to Confer-
ence.reviewer. In rules 2 and 3 Conference delegates the authorization decisions
about both her roles to members of her reviewer role.
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Table 2. An incomplete RT0 policy system

Principal label rule nr.

Conference k Conference.reviewer ← Alice 1
Conference.reviewer ← Conference.reviewer.reviewer 2
Conference.submitter ← Conference.reviewer. submitter 3

Alice c Alice.submitter ← Bob 4
Alice. reviewer ← Alice. reviewer. reviewer 5

Bob u

Alice’s label indicates that her policy changes can be controlled. In rule 4 she
adds Bob to Alice.submitter. Rule 5 states that Alice allows her reviewers to
make authorization decision about Alice.reviewer, just as Conference did in rule
2. Bob will become a member of Conference.submitter via the combined effects
of rules 1, 3 and 4.

Bob’s label indicates that we have no definite knowledge about Bob’s policy
and/or we cannot restrict his policy changes.

Safety and Availability Concerns: When defining roles we have will have
certain restrictions on who is allowed to be in what role. These restrictions can
be expressed by constraints on the roles, see e.g. [10]. Here we consider two types
of constraints. The first are Safety constraints which are expressions of the form
[[A1

1.r
1
1 ]] ∩ . . . ∩ [[A1

n.r1
n]] ∪ . . . ∪ [[Am

1 .rm
1 ]] ∩ . . . ∩ [[Am

k .rm
k ]] ⊆ ∅.

The safety requirement in our running example is: mutual exclusion between
Conference’s reviewer and submitter roles. That can be expressed as:
[[Conference.reviewer ]] ∩ [[Conference.submitter ]] ⊆ ∅

The second type of constraints are availability requirements which are expres-
sions of the form [[A1

1.r
1
1 ]] ∩ . . . ∩ [[A1

n.r1
n]] ∪ . . . ∪ [[Am

1 .rm
1 ]] ∩ . . . ∩ [[Am

k .rm
k ]] ⊃ ∅.

That at least one principal should be in Conference.submitter can be expressed
as: [[Conference.submitter ]] ⊃ ∅.
Definition 2. Given an incomplete policy system P, a set of safety and a set of
availability constraints we say that a set of credentials R for roles of principals
in Pc (called a restriction) is a solution if

– any extension of P not containing credentials in R satisfies the safety con-
straints.

– there exists an extension of P not containing credentials in R which satisfies
all the availability constraints.

We say a solution is optimal if any strict subset of R is not a solution.

In the next section we will see how we specify incomplete RT0 systems and safety
and availability concerns in Scoll. After that we will show how to find optimal
solutions.

4 Modeling DTM Safety Problems in Scoll

In this section we will give an intuition about Scoll’s syntax and semantics while
we show how the running example can be modeled.
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Scoll is based on DataLog [13] and was designed to automate reasoning about
the potential effects that can be caused by the (inter-)actions of entities in a
system, and to calculate what limitations (to the system and/or the entities) are
necessary and sufficient to avoid all unwanted effects (safety) without preventing
any wanted effects (availability). For a detailed account on Scoll we refer to [1].

Scoll programs involve a static and finite set of subjects. Every subject conser-
vatively models a (possibly dynamic and infinite) set of actual entities. To model
our running example we have chosen to represent all the potential reviewers with
a single subject Alice, and all potential submitters with a single subject Bob.
Aggregating entities this way is a valid approach when analyzing safety, but it
may represent an over approximation. This means that the policy restrictions
we will calculate are guaranteed to be sufficient but may be refined in situations
where not all reviewers are supposed to have the same policy. While Scoll pro-
vides support for iterative and selective refinement, we will not use this feature
here as we don’t need it to clarify our contributions.

Core Syntax Features: In Scoll all predicate labels and subject constants
start with a lowercase letter. Variables range over all subjects, and start with
a uppercase letter. Predicate labels can contain dot characters to increase read-
ability. Behavior types are denoted in all capitals.

Figure 1 shows how we expressed the running example in Scoll. We can dis-
tinguish six parts in the Scoll program, indicated by keywords in bold. Each part
will now be discussed in detail.

4.1 Part 1: declare

The first part declares the labels and arities of the predicates over the subjects in
the program (see Figure 1). Scoll differentiates between three kinds of predicates:

state predicates modeling the security state,
behavior predicates modeling the intentions subjects can have, and
knowledge predicates modeling the internal state of subjects: what a subject
can “know” or “learn” about the system and about the other subjects.

The state predicates for our running example are clarified in table 3. They
will be used in the system part (Section 4.2) and in the goal part (Section 4.6).

The canActAs predicate expresses role membership and is scenario indepen-
dent. For each safety or availability constraint we add a predicate capturing
violation of the constraint, such as shareMember/3 for the mutual exclusion con-
straint. If the constraint concerns a single role as in [[Conference.submitter ]] ⊃ ∅
we can omit the extra predicate as we can already express role membership.

Table 3. State predicates

predicate example meaning

canActAs/3 canActAs(a,b,r1) A ∈ [[ B.r1 ]]
shareMember/3 shareMember(a,r1,r2) [[ A.r1 ]] ∩ [[ A.r2 ]] �= ∅
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declare
state: canActAs/3 shareMember/3
behavior: member/3 incl/4 link/4 intersect/6
knowledge:

system
/* Simple Member */
A:member(R1,B) => canActAs(B,A,R1);
/* Simple Inclusion */
A:incl(R1,B,R2) canActAs(C,B,R2) => canActAs(C,A,R1);
/* Linking Inclusion */
A:link(R,R1,R2) canActAs(B,A,R1) canActAs(C,B,R2) => canActAs(C,A,R);
/* Intersection */
A:intersect(R,B1,R1,B2,R2) canActAs(C,B1,R1) canActAs(C,B2,R2)
=> canActAs(C,A,R);
/* Mutex */
canActAs(A,B,R1) canActAs(A,B,R2) => shareMember(B,R1,R2);

behavior
NONE {}
UNKNOWN { => member( , ) incl( , , ) link( , , ) intersect( , , , , );}
CONFERENCE { isAlice(X) isReviewerRole(R)=> member(X,R);

isReviewerRole(R) => link(R1,R,R1);}
subject

? alice: NONE
bob: UNKNOWN
conference: CONFERENCE
reviewer: NONE
submitter: NONE

config
conference:isAlice(alice) conference:isReviewerRole(reviewer)

goal
! shareMember(conference,reviewer,submitter)
canActAs(bob,conference,submitter)
canActAs(alice,conference,reviewer)

Fig. 1. Running example : an RT0 based trust problem in Scoll

Behavior predicates express the behavior of the subject in the first argument
of the predicate. Similarly, knowledge predicates express knowledge available to
the subject in the first argument. To emphasize this, behavior and knowledge
predicates will be denoted with their first argument in front of the predicate
label, separated by a colon. For example we use conference:member(reviewer,alice)
rather than member(conference, reviewer, alice) to make it clear that this is a
predicate on conference’s behavior.

The behavior predicates of Figure 1 are clarified in table 4. They correspond
exactly to the RT0 policy expressions of section 3. Instead of representing cre-
dentials (e.g. as in [12]), here they represent the authorization intentions of an
issuer of credentials: his RT0 policy.

Notice that we did not provide a behavior predicate to express the actual use
of a role by a subject. Scoll is very suitable for modeling usage behavior as well,
but we will not explore that in this paper.
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Table 4. Behavior predicates

predicate example meaning in RT0

member/3 a:member(r,b) A.r← B
incl/4 a:incl(r,b,r1) A.r← B.r1
link/4 a:link(r,r1,r2) A.r← A.r1.r2
int/6 a:int(r,b,r1,c,r2) A.r← B.r1 ∩ C.r2

Knowledge predicates model what entities can learn from their own successful
behavior. This knowledge can be used in behavior rules (Section 4.3). We will
only use static, subject specific knowledge that can be declared in the config
part (Section 4.5).

4.2 Part 2: system

This part contains the system rules : DataLog rules that conservatively and
monotonically model all the mechanisms by which subject behavior can result
in changes to the security state as represented by the state predicates.

All Scoll rules use a notation that is closer to logics than to logic program-
ming: the conditions are to the left and the conclusions to the right of a logical
implication sign “=>”. To encourage correct conservative approximations, Scoll
allows only variables in system rules. Knowledge of identity will be modeled
explicitly with static, subject specific predicates in Section 4.5.

System rules typically include behavior predicates in their conditions to ex-
press that a subject’s cooperation is a necessary condition to the state change.
We refer to [2] for an explanation on how this approach can model discretionary
access control. In our example the four types of RT0 credentials each appear as
a behavior condition in a system rule.

The first four system rules in Figure 1 should now be self explanatory. For
every behavior predicate there is a rule that states the conditions in which a
subject’s behavior affects the security state. These four rules have similar effects:
canActAs() facts are added to the security state.

To these scenario independent rules we add a rule capturing the meaning of
each of the predicates used for the constraints: the last system rule derives a
state predicate that will be used later to detect a breach of mutual exclusion:
canActAs(A,B,R1) canActAs(A,B,R2) => shareMember(B,R1,R2);

Remark: In the actual Scoll model of this problem we added some type restric-
tions to the conditions in the system rules, using unary state predicates that are
not shown here. Their only effect is in speeding up the calculation and avoiding
variable bindings that do not make sense. We did not show them here, to avoid
cluttering up the example.

4.3 Part 3: behavior

Behavior rules are DataLog rules that express in what conditions a subject is
ready to show what behavior. The first argument is dropped in every predicate
of a behavior rule: it implicitly refers to the subject who’s behavior is described.
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Two standard behaviors are NONE and UNKNOWN which respectively model
principals which will issue no credentials at all or freely issue any of the pos-
sible credentials. The latter is how we model unknown entities conservatively:
as subjects that always show every possible behavior towards all other subjects.
Notice the use of anonymous variables indicated with underbar “ ”.

In addition we have scenario specific behaviors. For each principal with a k label
we define a corresponding behavior; i.e. a behavior which issues the credentials in
their (fixed) policy. The CONFERENCE behavior type has two rules:

isAlice(X) isReviewerRole(R) => member(X,R); This is the way in which rule 1
of table 2 is expressed in Scoll. Basically we are saying that someone with
this behavior makes Alice a member of their reviewer role. However, as no
constants are allowed in Scoll behaviors, we introduce local knowledge pre-
dicates isAlice/2 and isReviewerRole/2 describing these values and initialize
them in them in the config part (Section 4.5).

isReviewerRole(R)=> link(R1,R,R1);Here we have used a shorthand. Rather than
defining two rules, one for reviewer and one for submitter roles we link any role
R1 thus capturing both rules 2 and 3 of table 2 in a single Scoll rule.

4.4 Part 4: subject

Every subject is listed in this part, and assigned a behavior type from the previ-
ous part. The behavior type should reflect the trust we have in the entity to not
engage in any behavior other than specified in the rules of the behavior type.

? alice:NONE The question mark before alice indicates that we want to find out
how we far we can safely extend alice’s behavior, starting from the NONE
behavior type. All principals with a c label should be marked like this.

bob:UNKNOWN To safely approximate bob’s behavior we assume the worst.
conference:CONFERENCE Subject conference has behavior CONFERENCE
reviewer:NONE Subject reviewer is a role name and has no behavior
submitter:NONE Subject submitter is a role name and has no behavior

4.5 Part 5: config

This part defines the initial configuration: a list of all state facts in the initial
security state and all knowledge facts in the initial subject states. In Figure 1
this part initializes the private knowledge of subject conference.

4.6 Part 6: goal

The final part of a Scoll program is the “goal” part. It lists the facts that should not
become true (safety requirements)preceded by an exclamation mark, and the facts
that should become true (availability requirements)without an exclamation mark.

In the example we want one fact to not become true:
shareMember(conference, reviewer, submitter).

This goal corresponds to the mutual exclusion constraint: nobody should have
both the reviewer role and the submitter role for this conference. Conservative
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modeling should guarantee that the safety properties satisfied in the Scoll model
also hold in the actual system.

The availability goals are added to avoid solutions that restrict Alice’s policy
so much that there is no way for Bob to be in Conference.submitter, or for Alice
to be in Conference.reviewer.

5 Scollar Finds Solutions for DTM Safety Problems

The Scoll program in Figure 1 expresses a mutual exclusion problem combined
with basic availability requirements. Achieving mutual exclusions is generally a
difficult problem in trust management systems. For example, in the RT family
of languages a special construction (manifold roles [3]) is needed. In [10] mutual
exclusion is monitored and detected early, rather than prevented, by introducing
constraints and keeping control within a group of trusted, cooperating agents.

We turned our mutual exclusion constraint into a detectable state-predicate
(Section 4.2), of which a particular fact should be avoided (Section 4.6).

As explained in [14], Scollar uses constraint programming to calculate the
minimal sets of behavior restrictions that guarantee the safety requirements
without preventing the availability requirements. By listing the ways in which
Alice’s policies can be restricted no more than necessary to achieve our safety
goals, without preventing our availability goals, Scoll will tell us what the bound-
aries to Alice’s allowed policies are.

When presented with the problem of Figure 1, Scollar finds two solutions (Fig-
ure 2) that minimize the restrictions on Alice’s policy. To keep the table within
reasonable size for a good overview, we removed the 6-ary predicate intersection()
from the calculations.

solution number 1 2
1 alice:member( reviewer,alice) 0
2 reviewer,bob) 0 0
3 submitter,alice) 0 0
4 alice:incl( reviewer,alice,submitter) 0 0
5 reviewer,bob,reviewer) 0 0
6 reviewer,bob,submitter) 0 0
7 submitter,alice,reviewer) 0
8 submitter,bob,reviewer) 0 0
9 submitter,bob,submitter) 0 0

10 alice:link( reviewer, reviewer,submitter) 0
11 reviewer,submitter,reviewer) 0 0
12 reviewer, submitter, submitter) 0 0
13 submitter, reviewer, reviewer) 0
14 submitter,submitter,reviewer) 0 0
15 submitter, submitter,submitter) 0 0

Fig. 2. Overview of the 2 possible alternatives for restricting Alice’s RT0 policy (ex-
cluding the intersection statements)
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The table in Figure 2 contains a row for every behavior fact (policy , see
table 1) of Alice that is to be avoided in at least one of the two solutions. If the
expression is to be avoided in a solution, it is indicated as a zero in the column
representing this solution.

Let us first check the lines that contain 0 for both solutions. In no circum-
stances should Alice add the corresponding RT0 credentials to her policy.

– line 2: Alice.reviewer ← Bob
Alice should never make Bob a member of Alice.reviewer because, since the
conference’s roles are delegated to Alice, that would immediately violate the
mutual exclusion constraint.

– line 3: Alice.reviewer ← Alice,
Alice should never make herself member of her submitter role (line 3) because,
since the conference’s roles are delegated to Alice, that would immediately
violate the mutual exclusion constraint.

– line 4: Alice.reviewer ← Alice.submitter
Alice should never include here submitter role in her reviewer role.

– lines 5 and 6:
Alice.reviewer ← Bob.reviewer,
Alice.reviewer ← Bob.submitter
Alice should never include any of Bob’s roles in her reviewer role.

– lines 8 and 9:
Alice.submitter ← Bob.reviewer,
Alice.submitter ← Bob.submitter
Alice should never include any of Bob’s roles in her submitter role either.

– lines 11,12,14 and 15:
Alice.reviewer ← Alice.submitter.reviewer,
Alice.reviewer ← Alice.submitter.submitter,
Alice.submitter ← Alice.submitter.reviewer,
Alice.submitter ← Alice.submitter.submitter,
Alice should never link any of her roles via her submitter role.

Solution 1 allows Alice to include herself to her own reviewer role (line 1), at
the cost of further restricting the delegation via that role (lines 7, 10, and 13).
Solution 2 represents the only alternative.

For improved understanding of the results, Scoll allows the user to check out
the individual solutions in detail. The user then gets a complete overview showing
the state, knowledge and behavior facts that would become true for every entity.

The solutions that are found in Scoll correspond to the optimal solutions
(Definition 2).

Theorem 1 (Correctness and completeness). Given an incomplete policy
system with a set of safety and availability constraints and the Scoll program
modeling the system and constraints as described in Section 4 we have that:

– Any restriction set calculated by Scollar is an optimal solution.
– Any optimal solution is found by Scollar.
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6 Conclusions and Future Work

We have shown that trust management research, particularly in DTM, can be-
nefit from general techniques for safety analysis, in particular from analysis tech-
niques that can model entity behavior.

We have shown how authorization and delegation policies can be modeled as
subject behavior in the Scoll language, and how such models can be used to
calculate how the cooperating principals can limit their policies to bound their
direct and indirect consequences in the presence of unknown policies.

We have applied the Scollar tool to calculate the ways to restrict a principal’s
policy no more than necessary to avoid unwanted authorizations effects.

We have shown that Scollar can also take availability requirements into
account when calculating the necessary restrictions. Even if these availability
requirements are not guaranteed in a system of which the Scoll program is a
conservative model, they are useful to detect and avoid solutions that would only
model systems that cannot possibly comply to the availability requirements.

The advantages of Scoll and Scollar thus become available in the domains of
Trust Management as well as Security research:

– The state predicates, behavior predicates and knowledge predicates can be
chosen to model the effects and influences relevant for TM systems.

– The system rules can be chosen in accordance with the protection system
that controls the modeled systems.

– The behavior types can be modeled in accordance with the relevant assump-
tions, trust, and knowledge about the entities or principals in the system.

– The detail of modeling can be adjusted to the requirements, and adapted for
different parties in the same model. Scoll supports mechanisms for refinement
of state, knowledge, and behavior.

Future Work: Since DTM requirements include proving availability as well
as safety, we intend to adapt Scollar in the near future so that it supports
availability and safety equally well.

We could consider modeling use-behavior as well in Scoll, should we want to
bound the role activations of the cooperating principals, or guarantee dynamic
mutual exclusion constraints.

The problem modeled in this paper is relatively simple and calculates a-priori
properties and trust requirements for the cooperating principals. Future work
may also focus on applying the proposed method to analyze trust management
and usage control policies in a runtime system, during (updates in) actual dele-
gation, authorization, and use. Future applications may for instance provide for
dynamic adaptation of authorization, delegation, and use policies in accordance
to knowledge gained from a-posteriori auditing or reputation systems.

The TAS3 project develops trusted architectures for shared services in do-
mains such as healthcare and employability. This architecture implements trust
policies which can depend both on structural and behavioral rules.
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The Poseidon project, which conducts research on secure interoperation in ad
hoc coalitions of heterogeneous parties in the maritime domain, could consider
applying the approach and improving its scalability to match their demands for
safety and trust analysis.

Scoll is available as open source at http://www.scoll.evoluware.eu, in the
hope of attracting researchers and developers to help boost the scalability of the
tool to the level necessary for more demanding research.
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Abstract. This paper introduces a novel approach or architecture for fraud-
resistant and privacy-friendly Electronic Traffic Pricing (ETP). One salient
contribution is that it can satisfy the seemingly incompatible requirements of a
privacy-friendly and so-called “thin” solution.

The proposed approach relies on regularly sending to the traffic Pricing Au-
thority (PA) only hashes of travelled trajectories and hashes of the corresponding
fees due. This makes it possible to achieve that users keep almost all data on the
trajectories they travel and on the amounts they should pay completely hidden
from the PA, without having to rely for their privacy protection on a so-called
Trusted Third Party (TTP). Only a very small percentage of all these privacy-
sensitive data requires that the pre-image trajectories and pre-image fees are re-
vealed to the PA for spot-checking purposes (to detect cheating).

The calculations of the amounts due for trajectories travelled can be done—
at desire—inside or outside the vehicle. Thus, seamless integration of “thin” and
“thick” in one ETP system with one and the same spot-checking approach is made
possible and easy. The calculations can be performed in a privacy-friendly way,
since they do not require any vehicle or On-Board Equipment (OBE) identification.

The proposal can, for example, be used as a declaration-based approach much
in line with current tax declaration traditions in which the individual citizen is
personally responsible. However, the proposal allows for much individual vari-
ation (including delegation) and many additional (commercial) services. For ex-
ample, it is also possible to reduce user responsibility and/or user involvement to
an absolute minimum.

1 Introduction

After years of discussion the Dutch government has decided to introduce distance-
related Electronic Traffic Pricing (ETP) for all vehicles on all roads by means of modern
satellite technology, such as GPS or Galileo. Particularly the inclusion of personal vehi-
cles, requiring an appropriate level of privacy protection, and the choice for time, loca-
tion and vehicle category dependent kilometre tariffs make this approach ambitious and
new in the world (see also [3]). For each individual vehicle detailed time and location
information must be collected and processed without endangering privacy. The correct
amounts due can be calculated with the help of a digital tariff and/or road map. Now
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and then—for example, once per three months—the total amount due for the period (the
“fee”) in question must be revealed to the Pricing Authority (PA) and then collected.
Clearly, the shorter these fee reporting periods, the greater the impact on privacy.

In the Netherlands, this new ETP should replace—in about five years time—the cur-
rent (flat) road tax and the existing special purchase tax for personal vehicles and mo-
torcycles. The main aims of introducing ETP are:

– fairness: the fee one has to pay will depend on one’s actual vehicle use;
– congestion reduction: traffic supply can be influenced via flexible pricing policies;
– environmental impact reduction: kilometre tariffs will partly depend on (environ-

mental) vehicle characteristics.

The techniques for such a form of ETP, like GPS and GSM, are all available. The
challenge is to integrate them in such a way that the system will be reliable, privacy-
friendly, cost-effective, transparent and easy to use, and will allow easy enforcement and
dispute resolution. It may be expected that some of the intended users of the system—
drivers / holders / owners of vehicles that are registered in the Netherlands—are hostile
users and may try to obstruct or abuse the system. At the same time, the system should
be trusted, by the various stakeholders involved.

This paper is not about general requirements for ETP, but focuses on privacy and
security aspects. So far this topic has received relatively little attention in the computer
security community. Our aim is to design a system that is both secure and privacy-
friendly, in which privacy is not treated as a post hoc add-on, but as an essential property
that needs to be built deeply into the architecture of the system. We adopt Mitch Kapor’s
slogan “architecture is politics” (see e.g. also [6]) and wish to design ICT-systems in
such a manner that individual autonomy and control over one’s own user data is offered
and can be ensured, contributing to public trust in the system. After all, centralised
informational control supports centralised societal control. This is a highly relevant
issue, also in ETP.

This paper presents only the main lines of a novel solution and is organised as fol-
lows. Sections 2 and 3 give an informal introduction to the issues in this area via two
possible solutions, as opposite extremes. Sections 4 and 6 describe the main ideas of
the proposed solution and protocol essentials. Section 5 discusses cryptographic tech-
niques used. Sections 7 and 8 discuss some advantages and possible use scenarios.
Finally, Section 9 discusses the proposed solution from a broader perspective.

The main idea of this article is due to the first author (WdJ), see also [4]. The current
elaboration and presentation is the result of joint work.

2 Context

For ETP, vehicles will contain so-called On-Board Equipment (OBE). What this OBE
should do precisely depends on the architecture chosen, but we assume that it can at least:

– determine its own location, e.g. via a Global Navigation Satellite System (GNSS),
such as GPS or (in the future) Galileo;

– communicate with the outside world, e.g. via GSM or WiFi on specific locations;
– store information locally and perform elementary computations.
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One must take into account many aspects, of which we mention only a few here. First,
no physical protection measure can prevent a user from sending false signals to the
GNSS receiver in a vehicle or from blocking the true signals originating from the navi-
gation satellites. Second, the OBE should not only do the right things, but also be pre-
vented from doing any wrong things, like surreptitiously leaking location data, e.g. via
a hidden/covert channel. Third, frequent data transmission from the vehicle may endan-
ger privacy.

Although the OBE must satisfy certain minimal requirements, it can vary much in
type and in additional functionality offered (see Sections 7.1 and 8). We call the OBE:

– “fat” or “thick” when it performs itself the calculation of the fees due1 for registered
road use;

– “thin” if this calculation is performed outside the vehicle (by another device or
organisation).

Thin OBE must be trusted by the parties involved to register correctly. Fat OBE must
additionally calculate correctly. Both are sensitive operations.

In our model we also assume that there is a (traffic) Pricing Authority (PA) that
collects relevant information in its back office and takes care of the collection of fees.
This PA may be subdivided, but is, for our purposes, best regarded as a single unit. We
assume that the (national, road tax) authorities are responsible for the PA.

We also assume that there will be an open standard for the representation of “Traffic
data Parts” or “Trajectory Parts” (TP). In this text a TP is an elementary data structure
with location data aggregated to a path of a certain duration (in our examples: 1 minute),
comprising a number of positions (e.g. 61; one per second, including an endpoint) to-
gether with a time stamp marking the time of the first position.

Road use fees will be calculated on the basis of the relevant TPs. The process to
collect payments and the precise (internal) organisation of TPs are not relevant for this
paper.

3 Two Extremes

In order to further set the scene we shall sketch in this section two possible archi-
tectures for ETP. We shall call them “centralised” and “decentralised”. This aspect of
(de)centralisation refers to the place where the actual location data of vehicles will be
stored: in the back office of the PA or in individual vehicles. In general, central storage
implies that individuals loose control over their location data. For example, at a certain
moment these data could be made available for marketing and surveillance/datamining

1 Actually, it might be better to use the more general term ‘usage’ instead of the more specific
‘fee due’, since usage can also be expressed in other ways, for instance as readings of one or
more counters that each represent the cumulative number of kilometres travelled in a certain
category. For example, one might use three categories: 1) ‘outside rush hours’ or ‘low price’,
2) ‘during rush hour in a moderately congested area’ or ‘normal price’, and 3) ‘during rush
hour in a highly congested area’ or ‘high price’. For simplicity and without loss of generality,
we will focus on the case of fee calculation and not explicitly treat the very similar case of
usage calculation.
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(e.g. for criminal investigations). Hence, in the end the choice between central or decen-
tralised storage is a political one, involving societal issues of power and control. Here
we focus on the technical aspects.

In the centralised architecture the OBE is thin and all intelligence resides with the
PA. The OBE frequently sends, say at least once every day, its collected location data
to the PA. At the end of each period, say each quarter year, the PA calculates the total
fee due.

This architecture is simple, but also rather naive. It will be unacceptable to many
that the PA gets detailed travel information about every vehicle and that the central
database with location data is vulnerable. This database will be an attractive target for
individuals or organisations with unfriendly intentions, like terrorists or blackmailers.
The system administrators who control this database may not always behave according
to the rules, voluntarily or unvoluntarily. In short, the main weak point concerns privacy
and security.

In this approach one needs to have confidence that the thin OBE registers and trans-
fers all actual road use correctly. The PA may enforce this by “spot-checks” based on
observations (e.g. photographs of vehicles and their licence plates) made at random
locations and times. These observations can be compared with the transferred registra-
tions. A fine can be imposed in case of discrepancy. Notice that these spot-checks can in
principle take place without drivers or vehicle equipment noticing. This has advantages,
because it prevents drivers/vehicles from notifying and warning each other about where
to expect spot-checks.

In the decentralised architecture that we sketch next, we assume that the OBE is fat
and thus contains enough intelligence to calculate the fee itself. The main problems
with this architecture have to do with the OBE and its complexity. For example:

– The OBE must contain the tariff and/or road map data to perform the calculations.
Since these crucial data change over time, there must also be a way to update them
both securely and timely. The combination of security and timeliness here is a crit-
ical factor involving serious problems.

– The OBE must now also be trusted to make the right calculations. Hence it requires
more security measures. For example, the OBE uses a separate communication
channel for enforcement of correct road use registration and fee calculation, see
below.

– The OBE, and particularly its software, becomes complex. This makes the OBE
fragile and requires an option to securely update its firmware.

Clearly, the OBE will be more costly due to extra hardware and software required for
the additional functionality and for the additional security measures.

In the decentralised approach the road-side checks involve interrogation of OBE in
order to be able to check that the last few registrations and associated fee calculations
have been performed correctly. For this request-response communication one usually
uses Dedicated Short Range Communication (DSRC). Due to the two-way communi-
cation, spot-checking locations can easily be noticed by vehicle equipment, and then
automatically passed on as warnings to other vehicles. This has a substantially nega-
tive effect on spot-checking effectiveness and thus costs. On the positive side, possible
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discrepancies—such as between the actual (spot-checked) vehicle location and the ve-
hicle locations registered in the most recent (requested) entries of the OBE—may be
observed directly on the spot, and may result in immediate reaction of the authorities at
the spot-checking location.

As extremes, we are thus faced with a simple centralised solution that is highly
privacy-unfriendly and vulnerable to data abuse, and with a complicated and fragile
decentralised solution that offers good privacy protection, at least potentially (if well-
designed and well-implemented). Our novel approach makes it possible to integrate
‘fat’ and ‘thin’ and also to combine the best of these two approaches. It can offer good
privacy protection, even when realised with thin OBE, and it makes it possible to keep
many advantages of the thin approach, even when choosing for fat OBE. In particular,
decentralised and ‘thin’ do not conflict anymore. Hence, the strong relations suggested
(by others and in our text above) between centralised and ‘thin’ and between decen-
tralised and ‘fat’ are no longer valid.

4 Underlying Ideas

The solution of this paper depends on a number of basic ideas and observations.

– The basic traffic data registration (i.e. the TPs) can be protected against fraud by
using ‘non-revealing’ commits and remote spot-checking (i.e. remote from the ve-
hicle). Indeed, commits can be performed without revealing any (privacy-sensitive)
data contents. For example, by sending to the PA only the results of hashing the data
with a secure hash function. Such non-revealing commits can also be used for com-
mitting to fees calculated. Thus, it is not necessary to reveal any privacy-sensitive
data at first.

– Based on a remote (e.g. road-side) observation of a vehicle, the vehicle’s OBE (or
the user’s PC or a party enlisted by the user; see Section 7.1) must later reveal
the actual data concerning a short period around the time of observation. Note that
these actual data (i.e. the TPs) are the pre-images of the hash values that have been
transferred to the PA earlier. In other words, cheating can be detected. All in all,
the only privacy-sensitive traffic and fee data that must be revealed to the PA are
those involved in a spot-check. In fact, the privacy-sensitive data to be revealed for
a vehicle can be limited to a very small percentage (e.g. < 1% or even- 1%) of all
fee and traffic data. Note that one can still apply to the spot-checking process many
usual (or, say, ‘more traditional’) privacy protection measures in order to protect
even this very small percentage as much as possible.

– The identity of a vehicle or of OBE involved is not required for calculating the fee due
for a trajectory part (TP). Hence, traffic fee calculation can be done anonymously.

– Traffic fee calculations can be done anywhere (inside or outside the vehicle) and
even by parties not trusted by the PA. For example, calculations can be performed
by the vehicle user’s PC or by one or more parties enlisted by the vehicle user.
That parties not trusted by the PA can be used for the fee calculations stems from
the fact that the fee is derived information. If the basic traffic data, i.e. the TPs, are
protected against fraud, then it is easy to check later whether calculations have been
performed correctly.
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– Non-revealing fee commits can be organised in such a way that the PA only needs
“local” spot-checks to convince itself of the correctness of the total fee reported.
Spot-checks to verify the correctness of “subfees” calculated for individual TPs
and spot-checks to verify that subfees committed are also included in the total sum
reported.

5 Background about Hashes

A (secure) hash is a function that turns a digital message of arbitrary length into a
garbled message of fixed length (usually 160 or 256 bits). This output value is called the
hash (value) of that message. Other names are ‘digital fingerprint’ or ‘message digest’.
Hashing is a basic operation in cryptology and computer security and is described in
any textbook (see e.g. [7,5]). A (secure) hash function, usually written as h, has two
basic properties:

– it is not feasible, given only an output value v = h(m), to find the “pre-image” m;
– it is not feasible, given a message m, to find a different m′ with h(m′) = h(m).

However, if a value v is given (first) it is easy to check that it is the hash value of a (later)
given message m, simply by calculating h(m) and checking if v = h(m). A hash value
v = h(m) is thus a bit-pattern that is closely related to its pre-image m, but keeps (the
contents of) m excellently concealed. There are standard implementations for such a
function h, such as SHA-256. But here we shall abstract from such concrete functions
and shall simply write h for an arbitrary secure hash function.

5.1 Use of Hashes for Commitment

Hashes (i.e. results h(m) of hash function applications) can thus be used for early com-
mitment to a piece of information without revealing its contents. In our context, this can
be explained in more detail as follows. Suppose the OBE of a vehicle sends to the PA at
time t1 the hash value v = h(m) of a certain piece of information m (e.g. a trajectory
part TP or the subfee due for a TP) that is confidential in the sense that the OBE (or
the vehicle’s user) does not wish to reveal it to the PA, at least not without the need to
do so. Furthermore, suppose that at some later time t2 this OBE must reveal the piece
of information m (i.e. the pre-image of v) to the PA for spot-checking purposes and
does so by sending to the PA bit-pattern x pretending that x is exactly the same as the
bit-pattern m committed earlier at time t1. Then the PA can easily verify whether this
is really true (i.e. that the PA is not cheated) by computing h(x) and checking whether
indeed h(x) = v. Thus, when spot-checked by the PA (say at time t2) the OBE or ve-
hicle user cannot cheat the PA by sending a message (e.g. trajectory or fee) different
from the one committed earlier. In other words, as soon as the PA has received the hash
v = h(m), the message m (and thus its information contents) becomes ‘frozen’ and
‘irreversible’ (more or less: unchangeable/immutable).

5.2 Omission of Cryptographic Details

Finally, we warn the reader that in our presentation many details are omitted, including
many cryptographic details. For example, if party A must supply hashes of confidential
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bit-patterns to B with a very short maximum length (in our context e.g. the fee due
for a TP), then A should first concatenate a fresh random number to each original bit-
pattern2 in order not to endanger its secrecy. The incorporation of a random number in
the pre-image prevents the receiver B from being able to construct a ‘deciphering’ table
by brute force, that is, by computing the hash of all possible pre-images.

6 Approach and Protocol Essentials

This section will elaborate some technical details in order to explain the essence of the
proposed approach. We shall concentrate on the main lines, which are actually quite
simple. Several variations are possible, some of which will also be discussed. We shall
at first assume minimal OBE as described in Section 2, which can only determine its
own location, communicate with the traffic Pricing Authority (PA), and store Trajectory
Parts (TPs).

6.1 Road Use Reporting and Verification

In the approach proposed, commit messages must be sent to the PA regularly. Here we
assume that the OBE of each vehicle (say, with identifier veh-id) daily sends a commit:

OBE −→ PA : 〈veh-id, day, hashday〉 (1)

where the “hash of the day” is a two-level nested hash defined as the hash of 24× 60 =
1440 concatenated hashes of one minute length trajectory parts, i.e.:

hashday = h
(
h(TPday,1) ‖ · · · ‖ h(TPday,1440)

)
(2)

Notice that (1) is a very short message, typically in the order of 40 bytes, that com-
pletely freezes a vehicle’s movements and whereabouts (i.e. parking and/or travelling)
of a particular day (indicated by the variable day) without revealing anything about the
actual vehicle locations (the contents of the TPs of that day). The OBE stores all these
trajectory parts TPday,i forming the pre-images of the hash function h. It does so for all
the reports it sends, until it can safely drop them (see Section 6.4).

It is important to understand that the PA can use observations for spot-checking the
underlying book-keeping. Suppose that the PA has legal proof that a specific vehicle
has been at location 
 between 8:42 and 8:43 AM on February 13th (i.e. in minute 523
of day 44). Within some reasonable period after that day the PA can demand that both
the pre-image (say, x) of the (outer hash of) hash44 and TP44,523 (say, y) must be sent
in. After receiving x and y, the PA verifies:

– whether x really corresponds to (i.e. is really the pre-image of) the fingerprint
hash44 earlier received as commit (2);

– whether y indeed corresponds to (i.e. is really the pre-image of) the 523rd finger-
print present in x—using that hashes have a fixed length;

2 Another detail omitted is that A has to keep the relationship between the original short bit-pattern
and the random number, because otherwise A cannot reveal the correct pre-image later on.
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– whether the trajectory data in y is in correspondence with the observation, that is,
whether location 
 is covered by trajectory part y = TP44,523.

If all three verifications are successful, then the book-keeping regarding the where-
abouts in said minute, as frozen at the time of commit, is in accordance with the
observed reality. If one of the three verifications fails, this indicates a possible fraud
attempt. Of course, more investigation may be needed to exclude certain exceptional
causes, such as an equipment failure that has been reported earlier (and in accordance
with the rules). We will not digress on such issues further.

Reasons for Using the Nested, Two-Level Hash. In the next few paragraphs we di-
gress on the two-level fingerprint hashday as described in (2). Instead of this nested
hash, one could simply transfer the fingerprint of the concatenation of all TPs of the
day in question:

h
(
TPday,1 ‖ · · · ‖ TPday,1440

)
(3)

However, then a spot-check based on car-location-time evidence would require reveal-
ing all TPs of the day in question. Obviously, this would make privacy protection con-
siderably worse. So, our main reason for using nested hashes is the considerably better
privacy protection that can be achieved without changing to a higher frequency of send-
ing commit messages to the PA.

A second reason is that the spot-checking as described—the spot-checking based on
two-level hashes (2)—requires less data to be communicated. For, the pre-image x of
hash hashday consists of 1440 hashes while the pre-image would consist of 1440 TPs
in case of a single-level hash (3) of all TPs of the day in question. Assuming hashes of
32 bytes (256 bits), the 1440 hashes take up 45 KByte. Assuming the 61 positions in a
trajectory part require an average of four bytes each, the 1440 TPs would require about
340 Kbyte.

A third reason is that one might use the hash of each TP to improve fraud resistance
or to reduce the intensity of the spot-checking required, particularly by storing these
inner hashes h(TPday,i) given in (2) more or less safely into an Authority’s Trusted
Element (ATE), inside the OBE. If such is done, we say that the inner hashes are used
for “internal commits”, while the outer hash given in (2) is said to be used for “external
commit”. Of course, the degree of safety offered by internal commits depends on the
quality of the ATE’s physical protection and will never be 100%.

Actually, the above three reasons explain why the first-level (bottom-level or inner)
hashes are present, but do not explain yet why also the outer hash is used in (2). For,
one also could drop this outer hash and simply transfer the concatenation of the hashes
of all TPs of the day in question. However, the concatenation of 1440 hashes takes up
1440 times the number of bytes of one hash. Thus, the outer hashes are only present in
order to reduce the size of the commit messages. Indeed, this comes at the price of hav-
ing to (request for and) transfer during each spot-check an extra pre-image consisting of
the concatenation of the (in our example: 1440) hashes. But spot-checks are performed
for only a small percentage of all commit messages, so the net savings are consider-
able. In short, the outer hashes are there for efficiency reasons, that is, for reducing the
communication costs.
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6.2 Fee Calculation

The subfee due for each individual TP (trajectory part) can be calculated by publicly
available software that uses a publicly available tariff and road map. This software may
be run on the user’s own PC or on computers of many independent Calculation Ser-
vice Providers (CSPs), that is, organisations offering such calculations as a service.
CSPs only have to run the calculation software and are supposed to prevent that this
software—which may have been produced and distributed on behalf of the PA—leaks
in some way any information to the PA or to others in the outside world. CSPs do not
have to be trusted by the PA. Of course this software may also be run inside fat OBE.

The crucial point regarding privacy protection is that fee calculation need not involve
any identity. Actually, one can organise things such that even the vehicle’s category does
not have to be revealed to the CSP.

Sending a TP to a CSP and then receiving back the subfee due can be done via a
number of anonymity guaranteeing servers. (See e.g. Chaum’s mixes [1]). If one fully
trusts one particular CSP—one’s own PC may act as such—all subfee calculations can
be performed by that particular CSP. However, one can also organise that for each TP
the CSP to be used will be chosen randomly from a set of independent (less trusted or
even non-trusted) CSPs. Here we assume that ‘dossier linking’ (i.e. conspiracy) between
a CSP and the PA via the hash of each TP will be hindered by a little trick/variation: for
committing a particular TP one sends to the PA the hash of that TP concatenated with
a random number. All in all, privacy can be protected as long as a sufficient percentage
of the chosen CSPs do not cheat. More countermeasures exist, but are outside the scope
of this article.

6.3 Fee Reporting and Verification

In order to enable the PA to collect payment, for each vehicle the total traffic fee due
must be reported regularly, but—for privacy reasons—not too often. Here we assume
that the OBE quarterly sends a fee report:

OBE −→ PA : 〈veh-id, quarter, feequarter〉 (4)

The PA must be able to check for each vehicle that a) subfees of individual TPs
(i.e. feed,i) have been calculated correctly, and b) all these subfees add up to the re-
ported total fee (i.e. feequarter =

∑
d≤N & i≤1440 feed,iwhere N denotes the number

of days in the quarter). These checks must be carried out in a privacy-friendly way,
revealing as few subfees (and subtotals) as possible. After all, subfees (and subtotals)
show a little bit about an individual’s behaviour, for instance whether or not the vehicle
has been used or not. There are several possible ways to organise such fee reporting
and verification. For illustrative purposes, we will first sketch an interactive way with
a game-theoretic flavour. Then we will sketch our main solution using non-revealing
commits via hashes. Finally, we will suggest possible use of homomorphic encryption
for the hashing.

Interactive Verification. The PA may communicate as follows with an owner of a
particular vehicle (or with a software agent acting on this owner’s behalf).
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– The PA says: “well, so your quarter amount is feequarter”. Tell me the three amounts
of the months that are in this quarter. Of course, the owner should produce amounts
that add up to feequarter .

– The PA then picks one particular month from this quarter and proceeds to ask the
amounts for the weeks in that month. Again they should add up correctly.

– Now the PA picks one particular week from the chosen month and asks the amounts
for the days in that week. Again they should add up correctly.

– The PA continues to ask the amounts of the four quarters of a day, picks one, asks
for the six hour amounts of that quarter day, picks one hour, asks for the four quar-
ter (of an hour) amounts of that hour, picks one quarter, and asks for the three
five-minute amounts of that quarter, and finally picks one five-minute period and
asks for the minute amounts of that period. Of course the questions of the PA are
organised in such a way that the pre-chosen day-minute pair (day, i) is in this five-
minute period.

– Now the PA asks for TPday,i and for the pre-image of the “hash of the day” as
described in (2). The PA performs the checks from Section 6.1 to verify that TPday,i

is indeed the version committed earlier, computes the fee due for TPday,i and checks
whether this amount is indeed equal to the minute amount reported in the previous
step.

By breaking up the path to the pre-chosen day-minute pair in many small substeps the
PA learns relatively little about the fees of all other trajectory parts. In this verification
method it is essential that the questions are posed and answered interactively, because
otherwise the vehicle owner could successfully cheat and adjust amounts outside the
path chosen by the PA (which are not checked) so that (sub)totals still add up correctly.

Non-Interactive Verification Via Hashes. Suppose that during the quarter (see also
Section 7.6) the PA also receives for each day d a “fee hash of the day”:

fee-hashd = h
(
h(feed,1) ‖ · · · ‖ h(feed,1440)

)
(5)

Then checking the correctness of an individual subfee feed,i is easy and very similar
to the spot-checking described in Section 6.1. In this case the PA also asks for both
feed,i and the pre-image of fee-hashd. The spot-check now includes verifying whether
the latter is indeed the pre-image of fee-hashd, verifying whether feed,i is indeed the
pre-image of the i-th hash in the concatenated string of 1440 hashes, computing itself
the fee due for TPd,i and verifying that this amount is indeed equal to feed,i.

However, this is not sufficient yet. For one could cheat by committing correct subfees
and reporting a false sum as total fee. Our solution is to change the list of all h(feed,i)
of a quarter into an “enriched” list representing (in post-order tree walk) the tree of
hashes given in Figure 1, which ‘freezes’ all calculation steps involved. Note that a) the
interactive verification that we described above, implicitly also involves a tree structure,
and b) our ‘freezing’ allows the interactivity to be removed. Now the PA can spot-
check the summation by selecting and checking a number of “triangles” consisting of
an internal node and its children. Hereto one must reveal to the PA the pre-images of
the hashes in these triangles of the form:
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quarter fee
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Fig. 1. Tree representation of hashes of subtotals of subfees, in which for instance the quarterly
fee is the sum m1 + m2 + m3 of the month amounts, and the (second) month amount m2 is the
sum w1 + w2 + w3 + w4 of the week amounts, etc
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All in all, the PA can convince itself in a privacy-friendly manner of the correctness
of the fee report. The sketched approach for committing (sub)fees via a tree of hashes
requires a certain amount of elementary bookkeeping and communication that can be
automated easily. It is not difficult to arrange that, for example, the OBE automatically
does all the work required (without user involvement, if such is desired).

Possible Use of Homomorphic Hashing. Our third approach to fee reporting does
not need a tree of hashes, but is computationally more involved. We will only sketch
it very rudimentarily. Let G be a suitable finite group with modular multiplication and
generator g ∈ G. The discrete log problem refers to the infeasibility of calculating n ∈
N when gn ∈ G is given. Hence, we can use the function x �→ gx as a homomorphic
hash, since gx ·gy = gx+y. The homomorphism property is often useful, for instance in
counting protected votes via multiplication in e-voting, see e.g. [2]. In a similar way one
may use homomorphic hashing in the current setting. Subfees feed,i of trajectory parts
TPd,i can be sent to the PA as gfeed,i . The PA can then multiply these hashed values and
check that

∏
d≤N & i≤1440 g

feed,i = gfeequarter .
There are a number of subtle points that need to be addressed, among which the

following. The amounts feed,i are typically small numbers that should be “blinded” to
prevent that feed,i can be obtainded from gfeed,i by trying a limited number of values.

Blinding can occur by multiplying gfeed,i with g
Rd,i

0 , where Rd,i is a random value (or
actually a well-chosen hash value that also acts as binder) and g0 ∈ G is coprime with
g. Use of g0 (instead of g) hinders interfering with the fee by “shifting” between the
exponents in the product. The sum R of the random values must be submitted together
with feequarter so that the PA can check the equation

∏
d≤N & i≤1440 g

feed,ig
Rd,i

0 =
gfeequartergR

0 .
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6.4 Confirmations

At various stages a user or his/her OBE needs to receive (digitally) signed information
from the PA. For example:

– confirmations of receipt of the trajectory commit messages (2) and of the fee reports
that have been submitted to the PA;

– requests for disclosure of certain TPs or (sub)fees;
– clearance messages stating that all book-keeping (such as pre-images/TPs) can be

dropped up to a certain day.

Confirmation messages typically involve return messages by the PA comprising a time-
stamped and digitally signed copy of the data submitted to and received by the PA. If
such a confirmation message does not arrive within a certain time frame, the OBE may
notify the user. Clearly, OBEs need to be able to check digital signatures of the PA. This
requires that they contain a certificate for the public key of the PA. This public key may
also be used to encrypt messages to the PA. However, as already has been mentioned in
Section 5.2, such cryptographic details are outside the scope of the current paper.

7 Some Properties

This section will explicitly discuss some of the properties of the proposed approach us-
ing non-revealing commits. One main point is that this approach makes privacy-friendly
(decentralised) and fraud-resistant solutions possible, even when using thin OBE. An-
other main point is that existing fat solutions can be improved substantially by adding
the use of non-revealing commits, thus making a number of advantages of ‘thin’ (e.g. re-
lated to spot-checking, costs, monitoring ability and system continuity) also available for
‘fat’. For example, fat solutions can be made less vulnerable to compromise of the OBE’s
physical protection (i.e. to tampering). Below we treat several aspects in more detail.

7.1 Wide Range of Realisation Options

The proposed approach allows much implementation freedom. The only two tasks that
certainly must be performed in the vehicle are determining the relevant traffic data (e.g.
trajectory data) and temporarily registering these data piece by piece (e.g. per minute)
locally. All other work—except the optional ‘internal commits’ (see Section 6.1)—can
be performed, at desire, inside or outside the vehicle.

Clearly, for doing all work (including subfee calculations) inside the vehicle fat OBE
is required. In case of minimal work inside the vehicle, the (thin) OBE must transfer
the relevant traffic data to equipment outside the vehicle taking care of all other work.
This latter equipment may be the user’s own PC or the processing equipment of a party
chosen by the user. However, thin OBE may also do all work with only the exception
of subfee calculations outside the vehicle. The thin OBE then takes care of committing
to the traffic data, distributing automatically and anonymously fee calculations to se-
lected Calculation Service Providers, collecting the results, committing to these results,
reporting the quarterly fee to the PA and reacting to messages from the PA, such as
verification requests. Note that all this processing can be fully automated and can be
performed by OBE, if desired.
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In short, users have a wide range of OBE options to choose from. Their choice may
depend on additional services offered and on how much control they wish to have them-
selves. That is, on whether they wish to trust one or more other parties and, if so, how
much.

7.2 ‘Thin’ and ‘Fat’ Can Be Integrated Gracefully

The proposed approach makes ETP systems possible in which some vehicles use thin and
others fat OBE and in which the same spot-checking approach is used for all vehicles.

7.3 Simple and Effective Spot-Checks

Spot-checks in our approach can be based on random observations, just as in case of
‘conventional thin’ (i.e. the centralised approach from Section 3). During an observa-
tion no real-time communication with the vehicle is required, which greatly reduces
the complexity (and costs) of spot-checking. Furthermore, unnoticed spot-checking is
made possible, at least during daylight. Without further explanation we mention that
unnoticed spot-checks can be much more effective than detectable ones and thus can be
used to (further) reduce the spot-checking costs (or to achieve better fraud resistance at
the same costs).

The simple and effective observation-based spot-checks can be used to monitor the
actual fraud resistance level (see below) and also to replace either all or only part
of spot-checks based on real-time interrogation of the OBE (e.g. via DSRC). If one
chooses for exclusively making use of observation-based spot-checks, one saves the
costs for the hardware and software required for the real-time communication channel
and gives up the ability to stop a vehicle on the spot immediately after an unsatisfactory
interrogation.

An advantage of the proposed approach is that these simple, effective and cost-
efficient observation-based spot-checks can also be used for fat OBE.

7.4 Spot-Checking and Physical Protection Can Work ‘In Parallel’

In our approach (as well as in ‘conventional thin’) spot-checks can produce effect even
if the OBE is not protected at all against manipulation of trajectory data. Indeed, ma-
nipulating the contents of a trajectory data part (TP) does not make much sense as long
as that TP is committed (in case of ‘conventional thin’: transferred to the PA) before the
forger could find out at which locations and times the probability of his vehicle having
been observed is sufficiently low to make the risk of being caught acceptable. Thus, if
the PA manages to keep the times and locations of a considerable part of all random
observations secret until the TPs have been committed (in case of ‘conventional thin’:
have been transferred), then fraudulent TPs may be uncovered by spot-checks. In other
words, the effectiveness of observation-based spot-checks depends on the amount of
increased knowledge that potential forgers can timely acquire on the likelihood of hav-
ing been observed, but not on the physical protection of OBE (against trajectory data
manipulation).

The property just described is very important. It implies that the protection achieved
by spot-checking (say, the logical protection) and the physical protection can work ‘in
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parallel’ and thus provide for two independent layers of protection. In other words,
the total level of fraud resistance is equal to the sum of the fraud resistance achieved
by physical protection and of the fraud resistance achieved by spot-checking. This has
the advantage that one can get rid of the risks that adhere to full reliance on physical
protection measures.

Note that in the decentralised fat approach from Section 3 the logical and physical
protection are ‘serial’, since the (effectiveness of) spot-checking by real-time interroga-
tion of the OBE depends on the physical protection of the OBE.

The ‘parallelism’ property of the proposed approach (and of ‘conventional thin’)
leads to important advantages. In the following we will treat three such advantages
(related to costs, system continuity and monitoring ability). Note that the proposed ap-
proach makes these advantages now also available for fat OBE.

Cost Optimal Balance between Spot-Checks and Physical Protection. In general, a
really high level of physical protection is expensive and in the long run (often) not suffi-
cient to prevent successful manipulation. One problem is that perfect physical protection
does not exist. Another problem is that almost perfect physical protection—fully in accor-
dance with the law of diminishing returns—probably results in high or even prohibitive
costs. In our context a third problem is that—as far as we know—no physical protection
measure can prevent one from sending false signals to the GNSS receiver in a vehicle
and/or altogether blocking the true signals originating from the navigation satellites.

If spot-checking and physical protection of OBE work in parallel, then the desired level
of fraud resistance can be achieved by a combination of both. This offers as advantage that
one can head for a cost optimal balance between spot-checking and physical protection
measures. If the marginal costs for additional physical protection measures (required for
achieving the last few percent of the required level of fraud resistance) are higher than
the marginal costs for the additional spot-checking (required for achieving that same last
few percent), then one can choose for increasing the intensity of spot-checking and for
not applying additional physical protection measures. And if not, then one can increase
the physical protection instead of increasing the spot-checking intensity.

The proposed approach makes this balancing now also possible for ‘fat’.

System Continuity Is Less Vulnerable. Some level of (hardware and software) pro-
tection will be used in OBE implementations. For instance, to make manipulation of
trajectory data sufficiently difficult. But when that protection gets broken at some stage
in the future, this event does not undermine the essence of the system and disrupt it
fundamentally, at a large scale. After all, one can temporarily increase the intensity of
spot-checking to keep the level of fraud resistance (roughly) intact. As soon as the prob-
lems with the physical protection have been solved (which may take quite some time),
one can decrease the intensity of spot-checking to an appropriate level.

In short, the system continuity is less vulnerable, since there is less (vulnerable)
dependence on physical protection measures. This now also works for ‘fat’.

Ability to Monitor the Actual Fraud Resistance Level. Since the observation-based
spot-checking that we have described, works independent of the OBE’s physical
protection, it can be used to monitor the fraud resistance level actually achieved, that is,
the real percentage of violators.
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Suppose that the PA allows multiple traffic pricing Service Providers (SPs) that each
make use of a different type of equipment. Suppose also that each SP guarantees to the
PA a certain level of fraud resistance (e.g. by physical protection only, or e.g. by a com-
bination of physical protection for the OBE and of interrogation-based spot-checking
by or on behalf of the SP). Then the PA can use the observation-based spot-checking
to monitor in the field whether the SPs really succeed in keeping fraud below the level
agreed upon.

The proposed approach makes such monitoring now also possible for ‘fat’.

7.5 Privacy and Data Protection

Sending messages need not be done continually while driving and can be limited to,
say, once a day. Thus, one can allow users to influence the moments and places of
transmission. This is beneficial for privacy protection, because, for instance, a GSM
provider might determine the vehicle’s location at the time of transmission.

Furthermore, privacy-sensitive travel and fee data can be stored decentralised, under
control of participants, instead of in some massive central database of the PA, where
they might be misused in various ways, for instance as result of function creep.

Apart from the total fee due and from the location and fee data involved in spot-
checks, no privacy-sensitive data needs to be revealed to the PA or a TTP. This amount
of data seems to be optimal (for privacy). Note that spot-checks are always necessary,
at least if one does not wish to fully rely on physical protection measures.

Assuming that a certain fixed level of fraud resistance must be achieved, one can
reduce the spot-checking—and thus increase the privacy protection—in proportion as
one increases the physical protection applied to the OBE.

All this is true both for the decentralised fat approach from Section 3 and for our
approach, even when the latter makes use of thin OBE. As a consequence, our ‘thin’
(which is decentralised) offers important advantages over ‘conventional thin’ (i.e. cen-
tralised ‘thin’).

In order to prevent the PA from spot-checking individual vehicles too much, a limit
(i.e. maximum) can be set to the number of spot-checks allowed per vehicle per period.
Furthermore, the PA can also be kept from asking detailed whereabouts (i.e. TPs) of
particular vehicles without having a corresponding observation, by obligating the PA
to specify in requests for TPs both the time of observation and the location of the ob-
served vehicle. Based on the time and location specified, it is easy (e.g. for the OBE) to
automatically detect possible abuse attempts by the PA.

7.6 Communication and Critical Time Paths

In case of ‘conventional thin’, the OBE commits to traffic data parts by transferring
them to the PA. As suggested in Section 7.4, this transferring preferably3 should be
performed before users can find out at which locations and times the probability of
their vehicle having been observed is sufficiently low to make the risk of being caught

3 Otherwise, the logical protection (i.e. the additional independent layer of protection) will be
weak and one must rely (almost) fully on the OBE’s physical protection, which we do not
advocate.
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acceptable. Similarly, in our approach the committing to trajectory parts is (to a certain
extent) ‘time critical’.

If a request for details (i.e. for a TP) is only allowed if the PA has observed the vehicle
at the corresponding time and location (see Section 7.5), then calculating the fee due
for a traffic data part and committing to the result has also ‘time critical’ aspects4.

All communication and other work afterward is not ‘time critical’. Indeed, the com-
munication required for spot-checking is not sensitive for, say, a substantial break down
of the communication system, such as a breakdown of several days. Note that much or
most of the communication can be done at specific moments or places, when a cheap
connection (e.g. WiFi) is available, for instance at home or at a fueling station offering
such connectivity. All this may be used to reduce the communication costs. We do not
wish to discussion the communication costs of different approaches further, because
these costs are rather unclear at this stage. For example, they depend much on the type
of communication channel(s) used. Furthermore, this issue is not crucial for the purpose
of our presentation.

7.7 Individual Responsibility

With our approach it is possible (but not necessary) to give users individual autonomy
by allowing them to take maximal responsibility. This is to a certain extent compara-
ble to the current responsibility of individual citizens for the submittal and correctness
of the contents of tax forms for income and revenue. Indeed, there are some develop-
ments that tax authorities support citizens by providing partly pre-filled forms, but in
the end the responsibility still lies with the citizen. The role of the state is to (statis-
tically/randomly) check these tax reports, to collect the associated fees and to punish
those individuals (or organisations) that do not fulfil their duties.

A system in which the state takes the full responsibility—that is, determines all by
itself (without user involvement) the amount of taxes due—is completely different. Cit-
izens then are turned into passive subjects whose behaviour is being monitored almost
constantly in order to obtain the relevant data for calculating fees. Such a system may
seem more convenient for users, but is definitely also more threatening than the tra-
ditional declaration-based one. It constitutes a fundamental change in the balance of
power and responsibilities.

In the end it is of course a political decision in which direction our societies are
moving. Our approach at least provides a technical basis to uphold individual autonomy
a bit longer.

8 Use Scenarios: Granny, Gadget and Geek

This section will elaborate, to some extent, three different use scenarios of the proposed
ETP approach, which we shall (respectfully) label ‘granny’, ‘gadget’ and ‘geek’.

4 If ample time is available, one might succeed in acquiring almost complete knowledge on
where and when observation teams have been active and then committing to a zero fee for all
TPs where the risk of having been observed is negligible. Note that: a) the PA may provide
for a sufficient number of unnoticed observations as countermeasure, b) external commits may
be seen as less ‘time critical’ if internal commits (see Section 6.1) are used, and c) internal
commits rely on physical protection (just as fat OBE does).
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‘Granny’ is well-aware of painful periods in history and is not happy with the idea
that others (in particular, the state) know her car movements, but she definitely does not
want much ado. She uses computers, in a limited way, but does not (wish to) understand
the internal workings. She simply buys a black box that handles everything for her. Our
‘granny’ chooses for thin OBE that computes and sends the trajectory hashes itself,
distributes fee calculations to selected Calculation Service Providers, sends hashes of
the results (see Section 6.3) to the PA and also automatically handles the verification
requests from the PA. After each quarter the device informs her via a display (or an
SMS or e-mail) how much she has to pay for that quarter. On her request, the device
will show her other aggregations of fee calculations. For example, the fee due for a
particular trip, day or week.

The ‘gadget’ person does not care very much about his privacy. He is willing to ex-
change it for extra services. He chooses some organisation that he trusts and that sells
fancy car navigation systems (including for instance a car assistance or breakdown ser-
vice) with embedded traffic pricing functionality. He buys such a device and signs a ser-
vice contract so that the company will take care of all road fee submissions and checks
on his behalf. The device sends his location information (trajectory parts) to the com-
pany, which handles the hash and fee submissions and the answers to spot-checks. The
company to which he has delegated his road pricing duties thus knows his whereabouts,
but offers additional services in return, like safety surveillance and tailored real-time
congestion information with personalised suggestions for alternative routes.

Our ‘geek’ does not trust anyone. She wants a minimal system in her car that only
stores trajectory parts and communicates their daily hashes to the PA. She frequently
transfers her trajectory parts (pre-images) to her PC, e.g. via WiFi or perhaps even
via a dump on a USB memory stick or on her Bluetooth cell-phone. She uses open
source software to do all the work required. Her software calculates the (sub)fees on
the basis of publicly available map information, sends their hashes (see Section 6.3) as
well as the fee due for each quarter to the PA via the web, and handles all spot-checking
requests from the PA. With every spot-check request concerning a trajectory part, the
software on her PC first checks whether the time and location as specified by the PA
are correct (see Section 7.5). If not, she asks for the photograph to find out whether
this may have been an understandable error of the PA or an abuse attempt. She uses
the additional functionality of her software package to keep a personal record of all her
travels and can visualise them in Google maps (via Tor). She also keeps them to show
to her boss, if needed, to substantiate her occasional reclaims for business trips. Note
that a reasonable possibility is that the open source software package and the required
map information are produced and published on behalf of the PA, say via a web site.

All these three fictitious individuals fulfil, in quite different ways, the duties asso-
ciated with a system for ETP as proposed here. It shows that there is ample room
for individual variation and for contributions and additional services by commercial
organisations.

9 Final Remarks

The main idea in this paper is simple and general. It may be described as follows.
Consumers use certain ‘goods’. Examples are use of transport infrastructure (such as
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a whole road network as described in previous sections, or toll roads, or parking lots,
or a public transportation system) or consumption of, say, electricity. Each consumer’s
usage is measured by equipment in the consumer’s environment, which is ‘potentially
hostile’ for the goods provider. Correct functioning of and reporting by the equipment
may be the responsibility of the consumer, of a party chosen by the consumer (e.g. an
independent equipment provider), of the goods provider (e.g. in certain cases that it
also provides for the equipment or parts thereof) or of any combination of these. Our
approach is useful and suitable for all these cases of individual or shared responsibility.
For the following, let us assume the user is (mainly) responsible. Then the consumer (or
actually equipment on his behalf) commits himself to the measurements by transferring
hashes (fingerprints) of the measured values to the goods provider (or a pricing author-
ity), while keeping secret the measured values. The measured values (i.e. the pre-images
of the hashes) are used for the calculation of fees due (for short periods). These calcu-
lations can be done separately and in a privacy-friendly way and hashes of their results
must also be transferred to the goods provider. Only the total fee due for a longer period
(i.e. the sum of the fees due for many short periods) is reported to the goods provider in
‘readable’ form. The goods provider can guarantee fraud resistance by spot-checking
in a way similar to what has been described in previous sections.

Underlying such an architecture is a certain view on the organisation of our society
in which individuals remain responsible for what they do and their behaviour is not
constantly monitored and checked. To make this view more concrete, consider a toll
gate, for instance at the entrance of a bridge or of a congestion fee area. The traditional
way to organise such a fee is to identify (for instance via license plate recognition or via
some DSRC-tag) each vehicle passing by and to charge a fee on the basis of such obser-
vations. This is in a sense the most obvious solution. It is rather privacy-unfriendly how-
ever, because all passages of individual vehicles are—at least temporarily—registered
in some database (of the authority in question) that is open to various forms of sec-
ondary use. A different solution, in line with the approach presented in this paper, is the
following. The gate constantly broadcasts messages of the form “you are passing this-
and-this gate at this-and-this time and this-and-this tariff table must be applied”, which
are recorded by the OBE of vehicles that pass by. The OBE of these vehicles regularly
transfer hashes of these records to a central authority and also hashes of the fees due for
such passages. Vehicles may be photographed now and then in order to randomly check
the correctness of the total fee reported for a longer period. Thus, only a small subset of
all passages is recorded (temporarily) by the authority.

Which approach do you prefer? In the end this is a societal issue. This paper pro-
vides a technical framework for more privacy-friendly (but also more fraud-resistant)
solutions than are currently being employed.
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Abstract. Privacy is a complex issue which cannot be handled by exclusively
technical means. The work described in this paper results from a multidisciplinary
project involving lawyers and computer scientists with the double goal to (1)
reconsider the fundamental values motivating privacy protection and (2) study the
conditions for a better protection of these values by a combination of legal and
technical means. One of these conditions is to provide to the individuals effective
ways to convey their consent to the disclosure of their personal data. This paper
focuses on the formal framework proposed in the project to deliver this consent
through software agents.

1 Context and Motivations

In the same way as the growing use of photography at the end of the 19th century
prompted Warren and Brandeis seminal paper [31], the changes imposed nowadays by
information and communication technologies require a deep reflection on the funda-
mental values underlying privacy and the best way to achieve their protection [15,27].
Furthermore a multidisciplinary approach is necessary to tackle this challenge because
privacy can neither be apprehended nor guaranteed by exclusively legal or technical
means. As a step in this direction, the collaborative projects PRIAM1 and LISE2 gather
lawyers and computer scientists with the dual goal of putting forward effective (legal
and technical) instruments to protect privacy and to establish liabilities in IT systems.

One of the greatest challenges posed by pervasive computing or ambient intelligence
to privacy is the fact that communications and computations can occur without the
user’s notice (“invisibility principle”). Indeed, most legal instruments for privacy pro-
tection explicitly refer to the unambiguous consent of the person as one of the conditions
for the collection of his/her personal data. But requiring that the user provides his con-
sent before each single data communication would not only be ineffective in terms of
privacy protection (or even counterproductive, as it already is on the Internet, because
the harassed user would end up accepting all requests and relinquishing his privacy
altogether), it would also defeat the very purpose of these systems. Possible ways to
reconcile the principle of unambiguous consent and the essential features of ubiquitous
computing have thus been central to the legal and technical studies conducted in the
PRIAM project.

In this paper we start from the requirements and recommendations resulting from
the legal study and focus on the technical aspects, more precisely on the definition of

1 Privacy Issues in Ambient Intelligence.
2 Liability Issues in Software Engineering.

P. Degano, J. Guttman, and F. Martinelli (Eds.): FAST 2008, LNCS 5491, pp. 162–176, 2009.
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a formal framework for privacy management. The overall approach, which involves
a natural language setting as well as informal and formal descriptions, is sketched in
Section 2. The formal framework itself is defined in Sections 3, 4 and 5 which introduce
respectively the language of events, compliance and global correctness. Section 6 is a
review of related work and Section 7 draws some conclusions.

2 Approach

The fact that a person (“data subject” following the terminology of [28]) must provide
his informed consent before his personal data may be collected (unless otherwise autho-
rized by law) is the cornerstone of most data protection regulations [29]. For example,
Article 7 of the EU Directive 95/46/EC [28] states that

Personal data may be processed only if: (a) the data subject has unambiguously
given his consent; or (b) processing is necessary for the performance of a con-
tract to which the data subject is a party or in order to take steps at the request
of the data subject prior to entering into a contract; or (c) processing is neces-
sary for compliance with a legal obligation to which the controller is subject;
or (d) processing is necessary in order to protect the vital interests of the data
subject, . . . .

In addition, this consent must be informed in the sense that the entity collecting the data
(“controller” following the terminology of [28])3 must provide sufficient information
to the data subject, including “the purposes of the processing for which the data are
intended”.

In situations such as pervasive computing where an action from the user before each
disclosure of data is not practically feasible, the natural question for the computer sci-
entist is then: why not using the technology itself to cure the problems caused by the
technology? In other words, if privacy rights are jeopardized by the highest level of
automation provided by pervasive computing, why not also increasing the level of au-
tomation on the side of the defense of these rights ? This idea leads to the notion of
Privacy Agent, a dedicated software which would play the role of “representative” or
“proxy” of the user and manage his personal data on his behalf [20,21]. Not surpris-
ingly, this possibility triggers a whole bunch of new questions from the legal side: to
what extent should a consent delivered via a software agent be considered as legally
valid? Are current regulations flexible enough to accept such kind of delegation to an
automated system? If it is the case, what technical and legal constraints should be im-
posed on a software agent to be used as a valid representative of a subject? What would
be the consequences of any error (bug, misunderstanding, etc.) in the process? The con-
clusions of our legal analysis of these issues are presented in [22]. The most important
recommendations as far as the present paper is concerned are the following:

1. The technical framework should ensure, as much as possible, that the meaning and
impact of the consent are defined without any ambiguity and properly understood
by all the actors involved.

3 More precisely, [28] defines the controller as the legal entity which determines the purposes
and means of the processing of personal data.
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2. The actors involved are not only the data subject and the controller, but also the soft-
ware agent providers and the Data Authority4. In particular, since software agents
are not granted any legal personality (even though this issue is debated among
lawyers [12,10]), it is the software agent provider who should be liable for the
correct implementation of the privacy policy of the data subject.

3. All actors should be held accountable for their actions and precise procedures
should be put in place to ensure that liabilities can be established after the facts.
Such procedures should be usable in a formal procedure in case of litigation5.

In order to implement the above recommendations, the legal and technical frame-
work put forward in the PRIAM project involves the following ingredients:

1. A restricted natural language (SIMPL: SIMple Privacy Language) used by data
subjects and data controllers to express respectively their privacy requirements and
commitments.

2. Specifications of a subject software agent and a controller software agent (“Subject
Agent”, or “SA”, and “Controller Agent” or “CA” in the sequel). These specifi-
cations are mostly expressed in a formal framework, based on a trace semantics,
complemented with informal requirements.

3. Link between SIMPL policies and software agent specifications.
4. Link between software agent specifications and their implementations.
5. Legal contracts between the Subject Agent provider (respectively the Controller

Agent provider) and the data subject (respectively the controller) referring to the
above items.

The PRIAM framework thus involves different languages (SIMPL, trace language, im-
plementation language) which, we believe, is essential due to the variety of actors in-
volved. The position taken in PRIAM is that, in order to reduce potential sources of
ambiguities:

– The most appropriate language should be used for each purpose.
– Each of these languages should be kept minimal.
– The correspondences between these languages should be defined precisely.

These conditions are necessary to ensure that each actor has the proper understanding
and that these understandings are consistent. For example, the aforementioned links
should ensure that there is no gap between the wishes of a data subject (expressed
through the SIMPL language) and the actual behaviour of his Subject Agent. In any
circumstances, if a disagreement arises concerning the treatment of personal data by
a controller (or the software agent acting on his behalf), then the proposed framework
should make it possible to discover the origin of the problem and to identify the liable
actor.

In this paper, we focus on the formal part of the specification and provide some hints
on the other aspects.

4 In addition, other certification authorities may also be involved, e.g. to authentify or to certify
software agents.

5 As set forth in Article 23 of [28] the controller is liable for damages suffered by the data owner
as a result of unlawful processing of personal data.
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3 Events Language

Before entering into the presentation of the events language used to define the seman-
tics of software agents, it is necessary to start with a quick introduction to the SIMPL
language. Let us call “disclosure policy” and “collection policy” the privacy policies
defined by data subjects and controllers respectively. The following is an example dis-
closure policy statement in SIMPL:

I consent to disclose data of category Cultural to a third party only if the afore-
mentioned third party has provided the following pieces of information pur-
suant to this disclosure of data:

– His identity and such identity belongs to Book Store.
– His verification level and such verification level is at least 2.
– His privacy policy with respect to the aforementioned category of data and

such policy includes the following commitments :
• Use only this data for the following purpose(s): Order Processing.
• Delete this data within a delay of 1 month.
• Transfer this data always accompanied with the present privacy and

only to third parties allowed to receive this data according the present
privacy policy after commitment of such third party to respect this
privacy policy provided I am previously informed of such disclosure
and the identity of the third party.

• Ensure that any valid request from my side to access such data will be
satisfied within a delay of 3 days.

• Ensure that any valid request from my side to delete such data will be
satisfied within a delay of 3 days.

• Ensure that any valid request from my side to modify such data will
be satisfied within a delay of 3 days.

Similarly, the controller can express privacy commitments of the form:

The management of data of category Book Order shall meet, if requested
by their Sticky Policy, the following requirements:

– Use of the data shall be only for the following purpose(s): Order Process-
ing.

– The data shall be deleted within a delay of 3 months after its collection.
– The data may be transferred or disclosed (i) always accompanied with its

Sticky Policy; (ii) only in contexts allowed by this Sticky Policy; (iii) only
to third parties allowed to receive the data according this Sticky Policy
after commitment of such third party to comply with this Sticky Policy.

– Any Valid Request from the owner of the data to access the data will be
satisfied within the delay of 1 week.

SIMPL has a slightly legal flavour because it is the language used to express policies
as they are signed by individuals (subjects and controllers) but users can define their
policies through a friendly interface which relieves them from the burden of writing the
sentences by themselves. The above examples illustrate only some of the possibilities
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of the SIMPL language. A more complete account of the language is conveyed through
the presentation of the semantics domains below.

Following the minimality principle stated in the previous section, we define the se-
mantics of privacy agents (Subject Agents and Controller Agents) in terms of traces of
events. In the following subsections, we introduce some of the most significant events
for, successively, Subject Agents and Controller Agents.

3.1 Subject Agent Events

Subject Agents can communicate with Controller Agents and with the subject himself.
By convention, events E(Id1, Id2, . . .) represent communications from Id1 to Id2:

– DisclosureRequest(Id1, Id2,Category,Veri f ication,Commitment) is a communica-
tion from a CA to a SA : the CA asks for the disclosure of information of category
Category of subject Id2. Id1 is the name of the controller, Veri f ication his verifica-
tion level and Commitment his commitments for the treatment of the requested data.
The verification level can be seen as a trust level granted to the controller by a cer-
tification authority, which may come with a certificate from this authority. For this
information to make sense for the subject, a standard (or widely accepted) ranking
must be available6. The subject can also require that the certificate originates from
specific authorities.

– DataDisclosure(Id1, Id2,Category,Value,StickyPolicy) is the disclosure of data as
a reply to the previous request. Value is the requested value and StickyPolicy its
associated privacy policy. In our framework, a personal data should never be sepa-
rated from its privacy policy. Id1 is the name of the subject and Id2 the name of the
controller.

– SDe f ineDisclosure(DisclosurePolicy, Id) is a communication from a subject to his
SA : the subject defines a new disclosure policy and identity7.

3.2 Controller Agent Events

In addition to the communications with Subject Agents introduced in the previous sub-
section, Controller Agents can interact with their controller (defining a new collection
policy), with third parties (requesting the transfer of personal data collected by the con-
troller) and with applications requesting access to the data. Applications represent ac-
cesses to the data which are local to the controller’s site or device. The following are
examples of Controller Agent events:

– De f ineCollection(CollectionPolicy) is a communication from the controller to the
CA : the controller defines a new collection policy8.

6 The ranking used in the PRIAM project includes level 1 (minimum level) which corresponds
to controllers having committed to comply with automated auditor requests, level 2 which
includes the same commitment for physical audits and level 3 which includes the certification
of the Controller Agent.

7 This feature allows the subject to use different identities (or pseudonyms) at different points of
time.

8 Note that, in contrast with subjects, controllers cannot change their identity. This limitation
makes it easier to implement the accountability requirement set forth in Section 2.
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– Trans f erRequest(Id1, Id2, Id3,Category,Veri f ication,Commitment) is a commu-
nication from the CA of name Id1 to the CA of name Id2. The controller Id1 re-
quests the transfer of data of category Category pertaining to the subject of name
Id3. Veri f ication is the verification level of Id1 and Commitment his commitments.

– Trans f erData(Id1, Id2, Id3,Category,Value,StickyPolicy) is the reply to the pre-
vious request. Value is the value of data Category of the subject of name Id3 and
StickyPolicy its sticky policy.

4 Compliance

The semantics of a software agent is defined in terms of compliant agent traces. An
agent trace is a pair (E,S) with E a finite list of event values E1, . . . ,En and S a finite
list of state values S1, . . . ,Sn.

States are functions from variables to their domains. Any Subject Agent state in-
cludes at least the following variables:

– MyData: function of type Categories → Values representing the personal data of
the subject.

– MyDPolicy: disclosure policy of the subject (belonging to DisclosurePolicies, as
defined below).

– MyIdentity: identity of the subject.
– MyTime: local time of the subject.

It can also include context variables such as MyLoc (localization). Note that time is
simply treated as a state variable here: the faithful implementation of a clock is typically
a commitment which is left in the informal part of the specification.

Controller Agent states include at least the following variables:

– MyImport: personal data with their collection date and sticky policy. Its type is
(Identities⊗Categories) → (Times⊗Values⊗StickyPolicies).

– MyCPolicy: collection policy of the controller (belonging to CollectionPolicies, as
defined below).

– MyIdentity: identity of the controller.
– MyTime: local time of the controller.
– MyLevel: verification level of the controller.

Similarly to Subject Agent states, Controller Agent states can also include context
variables.

Events are tuples of values tagged by their event type. Events can either be internal or
external. External events are events of the types introduced in the previous subsection.
Internal events include other actions which can have an impact on the state of the agent.
For the sake of simplicity (and without loss of generality), we consider only one type
of internal event here: internal.

The parameters of external events take values in the following domains:

DisclosurePolicy : DisclosurePolicies
CollectionPolicy : CollectionPolicies
Id, Id1, Id2, Id3 : Identities
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Category : Categories
Value : Values
Application : Applications
Purpose : Purposes
Commitment : Commitments
Veri f ication : Veri f ications
StickyPolicy : StickyPolicies

The main domains are defined as follows9:
DisclosurePolicies = Categories→ StickyPolicies
CollectionPolicies = Categories→Commitments
StickyPolicies = {(X1,X2,X3,X4)‖

X1 ∈ IdentityPolicies,
X2 ∈Veri f icationPolicies,
X3 ∈Commitments,
X4 ∈Contexts}

IdentityPolicies = {(X ,Y ) ‖ X = ∇ or X ⊆ Nat, Y = ∇ or Y ⊆ Authorities}
Veri f icationPolicies = {(X ,Y ) ‖ X ∈ {∇,1,2,3} , Y = ∇ or Y ⊆ Authorities}
Commitments = {(X1,X2,X3,X4,X5,X6) ‖

X1 ⊆ Purposes,
X2 ∈ Delays,
X3 ∈ {⊥,∇, in f ormation,authorization},
X4, X5, X6 ∈ Delays}

Delays = Nat∇
Identities = Nat⊗Certi f icates
Contexts = (Vars→ Bool)∇
Certi f icates = (Nat⊗Authorities)∇

We use the notation S∇ to denote the set S
⋃ {∇}. The value ∇ represents the absence

of constraint or commitment: for example if the deletion delay is equal to ∇ (X2 in the
definition of Commitments) for a given category in a disclosure policy, it means that
no commitment is required from the controllers with respect to the deletion of data
of that category; if the value of X in the definition of IdentityPolicies is ∇, it means
that no constraint is imposed on the identity of the controllers which are allowed to
receive the data. A disclosure policy associates a sticky policy with each category of
data. Sticky policies involve three constraints on the controllers (X1, X2 and X3) and
one constraint on the context (X4). The first component of identity policies is the set
of identities of controllers allowed to receive the data and the second component is the
set of recognized certification authorities to certify this identity. The components of
Commitments represent respectively: the set of authorized purposes (X1); the deletion
delay (X2); the commitment with respect to transfer of the data to a third party (X3

where ⊥ means no transfer right); and delays for complying with requests from the
data subject (respectively X4 for access requests, X5 for deletion requests and X6 for
modification requests). Certificates contain the actual value of the certificate and the
certification authority.

9 The other domains are pre-defined sets of basic values: for example, Applications = Nat.
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For the purpose of this paper, we use Definition 1 as the compliance property for
Subject Agent traces, which is sufficient to convey the essence of the approach. The
complete definitions of compliance include additional requirements to ensure, for ex-
ample, that agents forward messages towards (and from) subjects and controllers.

Definition 1. A Subject Agent trace (E,S) is said to be compliant if the following con-
ditions hold:
∀ i, Ei = DataDisclosure(Id1, Id2,Ca,Va,Po) ⇒

∃ j < i, ∃ Ve2, ∃ Co2, E j = DisclosureRequest(Id2, Id1,Ca,Ve2,Co2) and
∀ k j < k < i, Ek �= DataDisclosure(Id1, Id2,Ca,∗,∗) and
Si(MyIdentity) = Id1 and Si(MyData)(Ca) = Va and
Po = Si(MyDPolicy)(Ca) = (Id,Ve,Co2,Cx) and
Id2 � Id and Ve2 �Ve and Si �Cx

∀ i,Ei = De f ineDisclosure(Dp, Id) ⇒
Si = Si−1 [MyDPolicy �→Dp; MyIdentity �→ Id]

∀ i, Ei = Internal ⇒
Si(MyDPolicy) = Si−1(MyDPolicy) and
Si(MyIdentity) = Si−1(MyIdentity)

∀ i, Ei = External and Ei �= De f ineDisclosure ⇒ Si = Si−1

Definition 2. The “satisfies” relation � is defined as follows for, respectively, identities,
verification levels and states:

Let Id = (Id1,Cer1), Id′ = (Id′1,Au′1), then Id � Id′ if and only if
(Id′1 = ∇ or Id1 ∈ Id′1) and (Au′1 = ∇ or (Cer1 = (∗,Au1) and Au1 ∈ Au′1))

Let Ve = (Ve1,Cer1), Ve′ = (Ve′1,Au′1), then Ve�Ve′ if and only if
(Ve′1 = ∇ or Ve1 ≥ Ve′1) and (Au′1 = ∇ or (Cer1 = (∗,Au1) and Au1 ∈ Au′1))

S �Cx if and only if Cx = ∇ or (∀y ∈ Domain(Cx), S(y) ⇒Cx(y))

The most important rule for the compliance of Subject Agents is the rule defining the
conditions for data disclosure. First a request for disclosure must have been received
previously by the Subject Agent (and must not have been answered before). In addi-
tion, this request must come from an authorized controller for this category of data
(Id2 � Id), his verification level must be sufficient (Ve2 �Ve) and the current state must
satisfy the context requirement in the disclosure policy for this category of data (Si�Cx).
Last but not least, the controller must commit to the sticky policy for this category of
data (Si(MyPolicy)(Ca) = (Id,Ve,Co2,Cx) with Co2 equal to the commitment in the
DisclosureRequest event). Another important rule is the rule stating that the disclosure
policy and identity must not be modified by internal events10.

The compliance property for Controller Agents, which is not presented here for the
sake of conciseness, characterizes honest behaviours of Controller Agents: for example,
when requesting a data disclosure, the Controller Agent must provide its true identity,
verification level and privacy policy for the category of data requested; the Controller
Agent must ensure that collected data are not kept longer than permitted; it cannot
modify sticky policies, etc.

10 Note that internal events can change other parts of the state : typically, they can modify the
current context (e.g. time or location) and the personal data of the subject.
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The compliance properties apply to software agents individually. Not surprisingly,
the semantics of a complete system (set of software agents) is defined as the sets of the
traces of the software agents composing the system11. The only additional requirement
for a set of traces to be compliant is consistency, which amounts to ensure the matching
of communication events: any communication event E(Id1, Id2,∗,∗, . . .) must match
with the corresponding (identical) event in exactly one other trace in the set.

5 Global Correctness

The compliance conditions stated in the previous section impose constraints on the be-
haviour of software agents. What remains to be shown however is that these constraints
are sufficient to ensure that personal data are appropriately protected by the system.
Property 1 and Property 2 state two desirable properties of the system:

– Property 1 expresses the fact that if a value of a subject is in the data space of a
controller, then this value is associated with a sticky policy Po and the subject has
defined at some stage a privacy policy allowing a controller with this identity to
receive this data with this sticky policy.

– Property 2 states that if the value of a subject is contained in the data space of a
controller and the subject has never defined a privacy policy allowing any controller
to forward this data, then the subject must have disclosed this data to this controller
directly.

Property 1. If Σ is a compliant set of traces of a system of software agents then
∀(E,S) ∈ Σ ,

∃ i, ∃ Id2, ∃ Ca, ∃ Po, Si(MyImport)(Id2,Ca) = (∗,∗,Po)
⇒
∃ (E ′,S′) ∈ Σ , ∃ j,
S′j(MyIdentity) = Id2 and
Po = S′j(MyDPolicy)(Ca) = (Id,∗,∗,∗) and
Si(MyIdentity)� Id

Property 2. If Σ is a compliant set of traces of a system of software agents then
∀(E,S) ∈ Σ ,

∃ i, ∃ Id2, ∃ Ca, Si(MyImport)(Id2,Ca) �=⊥ and
(∀(E ′,S′) ∈ Σ , ∀ j,

S′j(MyIdentity) = Id2 and
S′j(MyDPolicy)(Ca) = (∗,∗,Co,∗)
⇒Co = (∗,∗,⊥,∗,∗,∗))

⇒
∃ (E ′,S′) ∈ Σ , ∃ k, S′k(MyIdentity) = Id2 and
Ek = DataDisclosure(Id2,Si(MyIdentity),Ca,∗,∗)

The complete definition of global correctness includes other properties which can be
defined in a similar way such as the compliance with deletion delays and purpose re-
strictions. A significant benefit of the approach is that the compliance of the set of

11 We assume a finite and fixed set of software agents in this paper.
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software agent traces is sufficient to establish global correctness. For example, Property
1 can be proven by recurrence on the length of the software agent traces and decom-
position into two subcases corresponding respectively to (1) the collection of the data
through direct disclosure from the subject and (2) the collection of the data through
transfer by another controller12. The conclusion follows from the compliance of the
Subject Agent in the first case and from the recurrence hypothesis and compliance of
the sending Controller Agent in the second case. The second property can be proven in
a similar way.

6 Related Work

Privacy policies have triggered a fair amount of interest during the last decade. The
approach followed in [24] consists in extending the access control matrix model to
deal with privacy rules. The extended model has been used to express the HIPAA [14]
consent rules in a formal setting and to check properties of different versions of the
HIPAA. The main extensions to the access control matrix model concern the introduc-
tion of specific operations for notification and logging. The motivations for this project
are thus significantly different from our own goals: as a consequence [24] does not deal
with sticky policies, agent compliance or future obligations (obligations used in [24] are
conditions on the current context). The same access control matrix approach has been
applied to the expression of privacy policies for location-based services [13] based on a
Personal Digital Rights Management (PDRM) architecture. [25] has introduced a very
generic framework encompassing several families of policies including usage control
policies. These controls can be used to enforce some kinds of obligations at different
points of time (which differ according to the families) but typical privacy obligations
such as deletion or compliance with modification requests do not seem to be amenable
to this model.

The Obligation Specification Language (OSL) put forward in [16] is mostly exempli-
fied through DRM policies but can also be used to express privacy policies. It includes
usage requirements such as duration, number of times, purpose, notification, etc. OSL
is a rich language for obligations including different modalities (such as “must” and
“may”) and temporal operators. The semantics of OSL is defined in terms of traces ex-
pressed in the Z notation. The work presented here shares with [16] the trace semantics
approach but differs in terms of scope and focus: we start with a simple language ded-
icated to privacy (deriving from natural language statements) and provide a framework
for the definition of compliant agents acting as representative of the individuals. In con-
trast, the objective of [16] was to propose “a language for expressing requirements from
many application areas of usage control” and thus dos not include any specific provision
for privacy management.

Other contributions aim at providing a formal semantics to existing languages or
frameworks, such as EPAL (Enterprise Privacy Authorization Language [1]) in [3] and

12 The occurrence of a DataDisclosure or a Trans f erData event are the only possibilities to
extend the MyImport data space of a compliant controller.
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[2] or the P3P (Platform for Privacy Preferences [30]) in [23]13. The semantics of EPAL
presented in [3] is a decision procedure for the evaluation of access requests. The se-
mantics is then used to define a notion of refinement of policies (satisfaction of a policy
by another one) and the composition of policies. The approach followed in [23] and
[32] is similar in spirit but uses a relational framework to define P3P privacy policies
and APPEL (A P3P Preference Exchange Language) preferences. Similarly [2] pro-
poses an embedding of EPAL into Prolog to benefit from the unification mechanisms
for solving privacy queries. The formalism proposed in [19] is a first order predicate
calculus built upon an XML framework. This formalism is used to support regulatory
information management and compliance assistance. The main challenge tackled by
these projects is the complexity and subtleties of languages which were not designed
originally with a formal semantics and contain various sources of ambiguities. As a
consequence, these efforts focus on the decision procedure to answer access requests
and do not consider, as presented here, compliance properties of individual software
agents or global correctness properties. Again, the approach followed here is more fo-
cused and top-down (defining a minimal setting to satisfy the legal and technical needs
in order to secure the delegation of user’s consent to software agents).

The semantics models proposed in [6] are based on RNLS (Restricted Natural Lan-
guage Statements), a syntax for describing goals in terms of actors, actions and objects.
Privacy related statements expressed in a natural language have first to be restated (man-
ually) into RNLS. [6] suggests different kinds of quantitative and qualitative analyses
which can then be performed on RNLS statements (for example to assess the level of
privacy protection or to answer specific queries about the access to personal data) and
[5] presents a method for generating natural language policy statements. Examples of
analyses of privacy regulations derived from the HIPAA rules are presented in [7]. [26]
also proposes a “semi-structured English syntax” which is used as an intermediate step
to translate the Canadian FIPPA (Freedom of Information and Protection of Privacy
Act) into EPAL. We share with this trend of work the use of natural language descrip-
tions of privacy policies. However our main target is the definition of privacy policies
(by subjects as well as controllers) and their correct implementation (as opposed to the
analysis or translation of regulations in [6], [7] and [26]). We also share with the Sparcle
project ([8] and [17]) the objective of assisting users to edit privacy policies expressed
in a natural language but the user interface issues have been left outside the scope of
this paper.

The interest of “a-posteriori” policy enforcement has been strongly advocated in
[9] and [11], for example to cope with emergency actions that need to be taken in
unexpected circumstances or to address the lack of control of the subjects in a dis-
tributed environment. The APPEL (A-Posteriori PoLicy Enforcement) core presented
in [11] combines an audit logic with trust management techniques. As in our frame-
work, it makes it possible to define sticky data policies; in addition, it includes provi-
sions for constraining the join of documents and defining policy refinement rules. Trust

13 The work reported in [18] is also related to this paper because it shows how to transform
privacy practices expressed in E-P3P into privacy promises expressed in P3P. In contrast with
our approach this transformation is bottom-up rather than top-down and it does not rely on a
formal semantics.
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and accountability are central in [11] and the formal setting is based on audit logs.
Even though we have focused on the communications between subjects and controllers
agents here (rather than the interactions with the auditor’s agent), we also endorse the
accountability principle and the introduction of automatic audits in the framework. The
audit logic presented in [9] provides a general framework for defining agent account-
ability based on a proof system and proof obligations of the agents (when they are
audited). The main difference between our approach and [9] and [11] is again a mat-
ter of focus: considering our goal to specify agents implementing the requirements of
data subjects and controllers, we deal with specific obligations such as commitments
on actions to be performed in the future (e.g., data deletion), purpose control, rights of
the subject to be implemented by the controller (access, modification, deletion, etc.). In
addition we consider subject as well as controller policies.

7 Conclusions

The work presented in this paper is part of a broader multidisciplinary project which
follows a top-down approach, starting from the legal analysis and defining technical
and legal requirements for the development of an effective solution to privacy issues in
ambient intelligence environments. Due to space considerations, we have focused on
one specific aspect in this paper, namely the specification of privacy agents and only
the concepts necessary to convey the essence of the approach have been introduced.
The complete framework includes, for example, provisions to define hierarchies of cat-
egories and purposes (with cumulative policy constraints), to deliver data with sticky
policies stronger than the required policy (using implication rather than equality for
compliance checking), to define the commitments of the controller in terms of audit
(audit request and audit answer events), etc. Also the actual sets of events, compliance
properties and global correctness properties are richer than the versions presented here.

As far as the legal framework is concerned, the roles of the different actors have
been defined precisely and contract models have been proposed to formalize the com-
mitments of the software agent providers with respect to the subjects and to the con-
trollers. These commitments establish a double link between statements in SIMPL and
software agent implementations: the first link is defined through the formal semantics
introduced in this paper and a refinement relation between abstract execution traces and
actual logs; the second link is expressed in terms of informal constraints. Typical con-
straints which have to be expressed informally concern the faithful implementation of
the clock (variable MyTime in the software agent states) and the delivery of personal
data to applications consistent with the purpose stated in their sticky policy. As far as
the formal path is concerned, the locality property put forward in Section 5 is signifi-
cant both from the technical point of view and from the legal point of view: technically
speaking, it makes it possible to reason at the level of individual software agents; legally
speaking, it means that liabilities can be associated with software agent providers based
on individual commitments.

We believe that the two most important features of the framework presented here
are minimality and generality : we have focused on the needs arising from the legal
analysis for the specific issue of privacy protection and used the minimal technical
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setting to reach our goal. Minimality is a pre-requisite in this context both at the level
of the natural language used to communicate with the users (to minimize the risks of
misunderstanding by a subject or controller) and with respect to the formalization (to
minimize the risk of misunderstanding or rejection of the elements of proof by juridical
experts in case of litigation). Another significant design choice made in the project is the
separation of issues which also corresponds to the legal position to isolate privacy from
economical issues: according to this view, personal data are not considered as assets for
bargaining but values to be protected independently of any other consideration14. As a
result, Subject Agents can be seen as a “Privacy Monitors” in charge of controlling all
disclosures of data, but strictly limited to this role.

Another consequence of this choice of separation of issues is that security is seen
as orthogonal to privacy here: in other words, we have defined privacy as a functional
model which should be complemented by appropriate security measures15. Note that
the framework presented here is flexible enough to refer to security issues though: for
example authentication rules or trust policies can be linked to the framework through
the management of appropriate sets of identities, certification authorities and protocols
can be integrated as conditions before the disclosure of data.
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Abstract. We introduce the notion of parameterised anonymity, to for-
malize the anonymity property of protocols with an arbitrary number
of participants. This definition is an extension of the well known CSP
anonymity formalization of Schneider and Sidiropoulos [18]. Using re-
cently developed invariant techniques for solving parameterised boolean
equation systems, we then show that the Dining Cryptographers protocol
guarantees parameterised anonymity with respect to outside observers.
We also argue that although the question whether a protocol guarantees
parameterised anonymity is in general undecidable, there are practical
subclasses where anonymity can be decided for any group of processes.

1 Introduction

Anonymity refers to the ability of a user to own some data or take some ac-
tions without being tracked down as the owner of that data or the originator of
those actions. This property is essential in group protocols that might involve
sensitive personal data, like electronic auctions, voting, anonymous broadcasts,
file-sharing etc. Due to its relevance and subtle nature, anonymity has been given
many definitions and has been the subject of theoretical studies and formal anal-
ysis work [1,8,9,17,10]. Protocols where anonymity is one of the aims are typically
meant for large groups of users. However, formal verification of anonymity only
treat (small) examples of individual protocols [13,18,19] and claims about the
correctness of anonymity protocols for any group size are generally not made.

In this paper, we propose a parameterised possibilistic definition of anonymity
based on a notion of secret choices of participants. The main inspiration is the
CSP definition in [18], where anonymity is formalized as the impossibility of an
observer to distinguish a protocol behaviour where a participant i acts according
to a choice c from a protocol behaviour where i has taken a different choice d.

We then give a formal correctness proof for Chaum’s Dining Cryptogra-
phers protocol [2], arguably the most well-known example of a protocol where
anonymity is the main requirement. Starting with [18], where DC has been
proved correct for 3 cryptographers, various verification approaches, both process
theoretical and logical, have been applied to it, e.g. [18,1,13] — but only for con-
crete instances, the maximum instance being as large as 15 cryptographers [4].
No formal proof exists so far for an arbitrary number of parties, although a
mathematical argument has already been given by Chaum in the original paper.
We use a recently developed theory where standard verification problems like
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model checking and equivalence checking are encoded as parameterised boolean
equation systems (PBES) [7]. PBESs are usually solved by symbolic approxima-
tion and by discovering equation patterns and invariants [7,16]. In solving the
PBES corresponding to the DC protocol, we make essential use of invariants.

We also formulate the parameterised anonymity problem for n ≥ N processes
(NPA) as the problem of deciding whether, for every instance of a group protocol
description, a different instance can be found whose observable behaviour is
indistinguishable from that of the first one. We show that this is undecidable in
general, but practically usable subsets exists where anonymity can be decided.

We are aware of only one other previous anonymity proof for an arbitrary
number of parties. There [10], the pi-calculus has been used for modeling and
the correctness argument is based on the congruence of observational equivalence
w.r.t. the parallel composition operator. This approach works essentially due to
the absence of communication in the model. The matters get much more complex
when communication is involved, as illustrated also in the current paper. A basic
referendum protocol has been briefly analysed using PBESs in [16].

Decidability of the traditional security properties secrecy and authentication
has been well understood in various models - atomic or complex keys, Dolev-Yao
intruder with (un)bounded message size, (dis)allow equality tests etc. [11]. Re-
cently, the need to answer decidability questions for other security properties like
anonymity, privacy, fairness etc. was recognized [5] and gained interest. For the
case of two-party protocols, effectiveness, fairness and balance of contract-signing
is decidable [12], as well as a property related to anonymity, called opacity [15].

2 Preliminaries

A short introduction to mCRL2. mCRL2 is a process algebraic specifica-
tion language with data types [6]. Processes are built from atomic multi-actions
(e.g. a|b|c is a multi-action where actions a, b and c happen simultaneously).
Behaviour is combined by sequential composition (·), non-deterministic choice
(+) and parallel compositions (‖). There are two special processes: the deadlock
δ and the internal action τ . Actions of parallel processes lead to multi-actions
if they happen simultaneously. The communication operator ΓC is used to let
such actions communicate, under the restriction that they carry the same data
arguments. E.g., if Γ{a|b→c} is applied to a multi-action a|b, it becomes c. The
allow operator ∇V (p) allows only the multi-actions from V occurring in p to
happen. The renaming operator ρR(p) where R is a function from actions to
actions renames the actions in p according to R. The hiding operator τI turns
all occurrences of actions from the set I into the internal action τ .

There are a number of ways to tie processes up with data types. First, both
processes and atomic actions can be parameterised with data elements, as in
P (x, 3) or send(x). Then,

∑
x∈D P (x) denotes alternative (possibly infinite)

choice over data domain D, i.e. for any value x0 ∈ D, the process can behave
as P (x0). Finally, if b is a boolean term and p and q are processes, then the
conditional construct b→p1q is the process ‘if b then p else q’.
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PBES. A parameterised boolean equation is a fixed-point equation having as
left-hand side a predicate variable with data parameters and as right-hand side
a defining predicate formula, which is a boolean expression with quantifiers and
predicate variables. Formally, a predicate formula is defined by the grammar
φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀d:D. φ | ∃d:D. φ | X(e), where b is a data term
of Boolean sort B. X (taken from some domain of variables P) is a (sorted)
predicate variable of sort DX and e is a vector of data terms of the sort DX .
The data variables occurring in a predicate formula are taken from a set D.

Parameterised boolean equation systems (PBES) [7] provide a fundamental
framework for solving verification problems. They can encode model checking
questions [7], checking of various process equivalences [3], static analysis prob-
lems etc. The PBES solution is then the solution to the encoded problem. The
basic PBES solving techniques are successive symbolic approximation of the
system’s equations and instantiation of the data parameters.

PBES invariants. In general, due to their complexity, it is not possible to solve
PBESs automatically, but heuristics and interactive approaches are necessary.
Invariants are predicates over data only (thus, no predicate variables involved),
expressing a fixed relation between data variables. An invariant of a predicate
variable X provides in fact an overapproximation of X ’s solution. In a recent
extended study [16], many useful results and examples on the characterisation
and use of invariants are discussed. For the current paper, we restrict those to the
specific case of a PBES with one maximal fixed-point (ν) equation. An invariant
for a parameterised boolean equation is defined formally as follows:

Definition 1. Let (σX(d:DX) = φ) be an equation and let f be a simple predi-
cate formula. Then f is an invariant of X iff f∧φ ↔ (f∧φ)[(f(e)∧X(e))/X(e)],
where ↔ denotes boolean bi-implication and [(f(e) ∧ X(e))/X(e)] denotes the
substitution of all occurrences of X’s instantiations X(e) (for all possible data
parameters e) with f(e) ∧X(e).

A sufficient characterisation of an invariant for an equation is that it transfers
its truth from the data parameters on the left-hand side to the data parameters
on the right-hand side. Proposition 1 is a variation of this general principle.

Proposition 1 (from [16]). Let (σX(d:DX) = φ) be an equation, with σ ∈
{μ, ν} and φ of the form φ(d) = χ ∧

∧
�∈I(ψ� ⇒ X(gk(d))), for I some index

set, ⇒ denoting the usual logical shortcut, χ, ψ� simple predicate formulae and
g�(d) data terms. Moreover, let f ∈ P be a simple predicate such that, for all
� ∈ I, f(d) ∧ χ ∧ ψ� ⇒ f(g�(d)). Then f is an invariant for the given equation.

Definition 2. Let E ≡ (σX(d:DX) = φ) be an equation and f an invariant for
it. E strengthened with f is the equation E ′ ≡ (σX(d:DX) = f ∧ φ).

Equations strengthened with well-chosen invariants are (much) easier to solve
than the original equations. The main theorem in [7,16] identifies the conditions
that ensure preservation of PBES solutions under strengthening with invariants.
Instantiated for one equation E , this theorem states that the solution of E coin-
cides with the solution of E strengthened with an invariant f , on data domains
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satisfying f . This provides the technical base for the invariant-driven approach to
equation solving. More specifically, once a good invariant is found, that charac-
terizes the reachable data space without restricting it to uninteresting subsets,
the strengthened version of an equation can be solved instead of the original
one. In some specific cases, when an equation fits certain patterns, invariants
can immediately lead to its solution. Such a pattern is described below.

Proposition 2 (from [16]). Let E ≡ (νX(d:DX) = φ) be an equation. Let f
be an invariant for E and assume φ has the form (Ql ∈ {∀, ∃} for any l):

f ∧
∧
�∈I

Q1 e
1
�:E

1
� . . . Qm�

em�
� :Em�

� . (ψ� ⇒ X(g�(d, e1
�, . . . , e

m�
� )))

where, for any � ∈ I, ψ� is a simple predicate formula and g� is a data term that
depends only on the values of d and e1

i , . . . , e
mi

i . Then X has the solution f .

The Dining Cryptographers protocol. This protocol is a metaphor for
anonymous broadcast and the story goes as follows: n cryptographers have din-
ner together. At the end, they learn that the bill has been payed anonymously by
one of them, or by the NSA (National Security Agency). They wish to find out
whether the payer was NSA or not, but if the payer was one of the cryptogra-
phers, nobody should learn her identity. To achieve this, they use the following
protocol: each neighbouring pair of cryptographers generates a shared bit, by
flipping a coin; then each cryptographer computes the exclusive or (XOR, de-
noted ⊕) of the two random bits she shares with her neighbors. Then, if she
hasn’t paid, she publicly announces the result. If she was herself the payer, she
announces the flipped result. Every cryptographer collects all the announcements
and XORs them. The result indicates whether the payer was an insider or not -
true (�) means cryptographer, false (⊥) means NSA.

3 A Parameterised Formalization of Anonymity

We give a formal scalable notion of anonymity, using mCRL2 and taking inspi-
ration in existing process theoretic definitions like the one using CSP in [18]. We
take the general view that anonymity for a participant means hiding parts of his
behaviour or data from possible observers. We consider a passive intruder, who
observes protocol runs but doesn’t have the power to change its course. Group
protocols like the ones we’re interested in can usually be written as a parallel
composition of n parties and an environment process:

Protocol(x)
def
= τIρR∇V ΓC(P (0, x0)‖P (1, x1)‖ · · · ‖P (n−1, xn−1)‖Q(n)) (1)

where x = (x0, x1, . . . , xn−1) is a vector of secret choices. The parameters xi

come from a known, usually small, domain D. The processes P (i, xi) represent
the behaviour of participant i and the process Q(n) is some environmental pro-
cess. The operator ΓC prescribes the communications among the processes. The
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set C contains clauses of the form a|b→c expressing that actions a and b must
communicate to c provided the parameters of a and b are equal. The allow oper-
ator ∇V with V a set of multi-actions each of the form a1| · · · |an, shows which
multi-actions are visible. All multi-actions that are not in V are blocked. The
renaming operator ρR is used to give certain actions a different name. Finally,
the operator τI renames actions in the set I to τ , effectively hiding them.

A typical example of a protocol where anonymity is desired, is a voting proto-
col, where xi represents i’s vote. The essence of anonymity is that the intruder
should not be able to conclude from his observations xi must be i’s secret choice.
More precisely, the intruder should not be able to observe any difference in the
behaviours of the protocol with different values for xi.

Definition 3 (anonymity). Let Protocol be the formal specification of a pro-
tocol, D the domain of secret choices, Restriction : D∗ → {�,⊥} a predicate on
arrays of D elements, ∼ a process equivalence modeling the intruder’s observing
power. We say that Protocol is anonymous for participant i out of n iff

∀x ∈ Dn with Restriction(x)
∃v ∈ Dn s.t. Restriction(v), vi �= xi and Protocol(x) ∼ Protocol(v).

The predicate Restriction is optional and captures possible conditions imposed
by the protocol on the parameter array, describing the situations when the pro-
tocol is expected to guarantee anonymity. For instance, in the Dining Cryptog-
raphers (DC) protocol, D = {�,⊥} and x satisfies the condition that xi = � for
exactly one i (if nobody pays, anonymity is not guaranteed). In voting protocols,
anonymity is expected only in non-unanimous votes, so the restriction there is
that the parameter array should list at least two different values (votes).

The equivalence ∼ is a behavioural congruence (w.r.t. the operators that are
used in the specification and which the intruder can use for his observations)
and should be sufficiently strong, in order to ensure a sound analysis. In gen-
eral, strong, branching or weak bisimulation are suitable. For standard process
operators, failure and trace equivalence are also congruences.

4 A Symbolic Parameterised Correctness Proof for the
Dining Cryptographers Protocol

In this section, we give a formal proof that the DC protocol guarantees anonymity
w.r.t. an external intruder to any participant i (i : 0 ≤ i < n), for any number of
parties n > 1. We consider strong bisimulation equivalence (denoted ↔) as the
equivalence expressing the intruder’s observing power. Mostly, in the literature,
trace equivalence is considered for this purpose. However, strong bisimulation is
a sound choice, since whenever we prove a protocol correct according to it, it
will also be correct in the trace model.

Formal model. We formalize DC as a parallel composition of n processes, each
modelling the behaviour of a cryptographer. The secret choice as discussed in
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Section 3 is the decision to pay or not (the paying bit), represented by the
Boolean values xi ∈ {�,⊥}. The characterizing condition Restriction(x) is that
x should contain exactly one value �, since anonymity should hold when there
is exactly one payer. A cryptographer process executes a series of actions corre-
sponding to the three main steps of the protocol. The decision whether to pay
or not is modelled by the execution of a pay(i, xi) action. Flipping of the ith
coin is modelled as follows: process Crypt(i, xi) executes a flip action and then
shares the result with the right hand neighbour in the ring, by executing tell
while its right hand neighbour gets to know the result of this coin flipping by
executing the action recv. The synchronisation of these two actions results into
the communication action com. The mCRL2 specification looks like this:

DC(x:ChoiceV ector) = ρ{∀i,d.flip(i,d)→flip(i),∀i,d.com(i,d)→com(i)}
∇{flip,tell,com,syncbcast,nsa} Γ{tell|recv→com}

(Crypt(0, x0)‖Crypt(1, x1)‖ · · · ‖Crypt(n−1, xn−1))

Crypt(i:N, xi:B) =
∑

coinL:B( flip(i, coinL)·
(tell((i+1) mod n, coinL)‖∑coinR:B recv(i, coinR))·
CryptAnnounce(n, 0, i, xi ⊕ coinR ⊕ coinL)

The CryptAnnounce(n,m, i, v) process models the third step: broadcasting the
result of i’s local computation (v) and computing the XOR of all broadcasted
values. Since the broadcast implementation is not an actual part of the protocol
and for lack of space, we do not show this subprocess here. Its visible actions are
the synchronous broadcast syncbcast and the protocol’s conclusion nsa. These
actions have been added to the linearized version of the model. The renaming
rules occurring as argument of ρ specify how much of the cryptographer’s actions
is visible for the intruder.

Proof idea. The proof, presented in the rest of the section, proceeds as follows:

– linearisation: First, the parallel composition is eliminated from the model
above, by replacing it with choice and sequential composition. This is a
standard operation for virtually all automatic and manual verifications in
mCRL2 and can be done completely automatically. The result in our case is
the linear process LDC(S, x, v,m, n), shown in Fig. 1. We denote LDCi the
instance of this specification for the case when i is the payer. Then proving
parameterised anonymity becomes the problem of proving that for some fixed
target participant i, there is another participant j such that LDCi ↔ LDCj .
In particular, we will prove that LDCi ↔ LDC(i+1) mod n.

– building a PBES : We encode the above equivalence question as a PBES,
using the translation established in [3].

– solving the PBES : We identify relevant invariants, and use them to prove
that the solution for the PBES is � (true).

– interpreting the solution: This positive solution translates back to a positive
answer for the equivalence LDCi ↔ LDC(i+1) mod n, which justifies parame-
terised anonymity for DC, as will be concluded in Theorem 1.

Linearisation. Eliminating the parallel composition operator from the DC pro-
cess is a tool supported exercise, dictated by the mCRL2 linearisation rules [6].
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LDC(S, x, v, m, n) =

(a)
∑

j∈{0,...,n−1}

∑
b∈{0,1}

Sj≈0 → flip(j)·LDC(S[j ← 1], x[j ← ⊕b], v[j ← b], m, n)

(b) +
∑

j∈{0,...,n−1}
Sj≈1 ∧ Sj+1≈1 → com(j+1)·LDC(S[j ← 2, j+1 ← 3], x[j+1 ← ⊕vj ], v, m, n)

(c) +
∑

j∈{0,...,n−1}
Sj≈1 ∧ Sj+1≈2 → com(j+1)·

LDC(S[j ← 2, j+1 ← 4], x[j+1 ← ⊕vj ], v[j+1 ← xj+1 ⊕ vj ], m, n)

(d) +
∑

j∈{0,...,n−1}
Sj≈3 ∧ Sj+1≈1 → com(j+1)·

LDC(S[j ← 4, j+1 ← 3], x[j+1 ← ⊕vj ], v[j ← xj ], m, n)

(e) +
∑

j∈{0,...,n−1}
Sj≈3 ∧ Sj+1≈2 → com(j+1)·

LDC(S[j ← 4, j+1 ← 4], x[j+1 ← ⊕vj ], v[j ← xj , j+1 ← xj+1 ⊕ vj ], m, n)

(f) +
∑

j∈{0,...,n−1}
mj≈⊥∧∀k.Sk≈4 → syncbcast(j, xj)·LDC(S, x, v[(∀k)k ← ⊕xj], m[j ← 
], n)

(g) +
∑

j∈{0,...,n−1}
Sj≈4 ∧ ∀k.mk≈
 → nsa(j, !vj)·LDC(S[j ← 5], x, v, m, n)

Fig. 1. The linearized specification of the Dining Cryptographers protocol. The follow-
ing shortcuts have been used: ∀j, ∀k denote ∀j∈{0, . . . , n−1}, ∀k∈{0, . . . , n−1}; j+1
denotes (j+1) mod n. Let LDCi denote the protocol instance where cryptographer i is
the payer: LDCi ≡ LDC (S, xi, v, m, n).

The linear process resulted, LDC, is shown in Figure 1. Its parameters are the
number of cryptographers n and a few data arrays of length n, basically obtained
by concatenating the local parameters of the n Crypt processes. For every index
j, Sj (from N) represents the current local state of process Crypt(j, xj). xj , vj

and mj are booleans representing j’s paying bit, j’s currently computed all-XOR
value and a mark whether j broadcasted, respectively. Initially, the array S is
0 everywhere, while v and m are ⊥ everywhere. We denote these default initial
values by S, v, m. Suppose i is the payer. Then the initial choice vector x is ⊥
everywhere except for the ith position which is � (we denote this array xi).

For an array A, we write A[k ← expr ] to denote A after that element Ak has
been assigned the expression expr . In particular, if the assignment involves an
operation op on the old value of Ak, we write A[k ← op expr ]. For instance,
A[k ← �] denotes A updated with the assignment Ak := � and A[k ← ⊕�]
denotes A updated with the assignment Ak := Ak ⊕�. To keep the description
readable, we also write everywhere j + 1 instead of (j + 1) mod n.

The PBES. The strong bisimilarity question LDCi ↔ LDCi+1 is encoded, by
applying the translation rules from [3] and several logical rewritings, to the equa-
tion E shown in Fig. 2. The data parameters of variable E represent in fact two
states 〈S, x, v,m, n〉 and 〈S′, x′, v′,m′, n′〉 of the two linear specifications LDCi
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νE(S, x, v, m, n, S′, x′, v′, m′, n′) =

(a) ∀j.∀b ∈ {0, 1}. (Sj≈0 ⇔ S ′
j = 0 ∧ Sj≈0 ⇒

E(S[j ← 1], x[j ← ⊕b], v[j ← b], S′[j ← 1], x′[j ← ⊕(b ⊕ (j = i))], v′[j ← (b ⊕ (j = i))])

(b) ∧ ∀j. ((Sj≈1 ∧ Sj+1≈1 ⇔ S
′
j ≈1 ∧ S

′
j+1≈1 ) ∧ (Sj≈1 ∧ Sj+1≈1) ⇒

E(S[j ← 2, j + 1 ← 3], x[j + 1 ← ⊕vj ], S
′[j ← 2, j + 1 ← 3], x

′[j + 1 ← ⊕v
′
j ]))

(c) ∧ ∀j. ((Sj≈1 ∧ Sj+1≈2 ⇔ S
′
j ≈1 ∧ S

′
j+1≈2 ) ∧ (Sj≈1 ∧ Sj+1≈2) ⇒

E(S[j ← 2, j + 1 ← 4], x[j + 1 ← ⊕vj ], v[j + 1 ← xj+1 ⊕ vj ],

S′[j ← 2, j + 1 ← 4], x′[j + 1 ← ⊕v′
j ], v′[j + 1 ← x′

j+1 ⊕ v′
j ]))

(d) ∧ ∀j. ((Sj≈3 ∧ Sj+1≈1 ⇔ S ′
j ≈3 ∧ S ′

j+1≈1 ) ∧ (Sj≈3 ∧ Sj+1≈1) ⇒

E(S[j ← 4, j + 1 ← 3], x[j + 1 ← ⊕vj ], v[j ← xj ],

S′[j ← 4, j + 1 ← 3], x′[j + 1 ← ⊕v′
j ], v′[j ← x′

j′ ]))

(e) ∧ ∀j. ((Sj≈3 ∧ Sj+1≈2 ⇔ S ′
j ≈3 ∧ S ′

j+1≈2 ) ∧ (Sj≈3 ∧ Sj+1≈2) ⇒

E(S[j ← 4, j + 1 ← 4], x[j + 1 ← ⊕vj ], v[j ← xj , j + 1 ← xj+1 ⊕ vj ],

S
′[j ← 4, j + 1 ← 4], x

′[j + 1 ← ⊕v
′
j ], v

′[j ← x
′
j, j + 1 ← x

′
j+1 ⊕ v

′
j ]) )

(f) ∧ ∀j. ((mj≈⊥ ∧ (∀k .Sk≈4 ) ⇔ m
′
j ≈⊥ ∧ (∀k .S

′
k≈4 ))

∧ (mj≈⊥ ∧ (∀k.Sk≈4)) ⇒ xj≈x′
j (α(j))

∧ (mj≈⊥ ∧ (∀k.Sk≈4)) ⇒

E(v[(∀k)k ← ⊕xj], m[j ← 
], v′[(∀k)k ← ⊕x′
j], m′[j ← 
]))

(g) ∧ ∀j. ((Sj≈4 ∧ (∀k .mk≈
) ⇔ S ′
j ≈4 ∧ (∀k .m′

k≈
))

∧ (Sj≈4 ∧ (∀k.mk≈
)) ⇒ vj≈v′
j (β(j))

∧ (Sj≈4 ∧ (∀k.mk≈
)) ⇒ E(S[j ← 5], S′[j ← 5]))

Fig. 2. The PBES encoding the equivalence question LDCi ↔ LDCi+1. The same
shortcuts as in Fig. 1 are used. Moreover, only the modified data parameters variables
are shown in the parameter lists of E occurrences. For readability, the guards are
underlined and the guard equivalences are italicized. ≈ is used as equality symbol for
the data parameters and is assumed defined for (arrays of) B and N.

and LDCi+1. Intuitively, this equation enumerates all conditions that need to be
satisfied for the two states to be strongly bisimilar. The first subterm originally
contained an extra existential quantification ∃b′:B, and the update for v′ was
v′[j ← b′]. This quantification has been replaced by a concrete instantiation for
b′, namely b⊕ (j = i) maintaining bisimulation.

Solving the PBES. We start by noticing that the right-hand side of our equa-
tion fits the form of Proposition 1 and that the predicate ι1(d) : (S≈S′∧m≈m′∧
n≈n′) satisfies the condition in Proposition 1, so it is an invariant. All predicate
variables occurring in this section have the same sort as E. However, we will
sometimes write only a sub-list of the parameters, in order to outline the exact
parameters on which a predicate depends. d is the whole list.
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Proposition 1 also immediately holds for the expression κ(d) : (∀j.Sj≈0 ⇒
(xj≈(i=j))), which formalizes the intuition that participant i is the payer in
the run specified by LDCi. Strengthening E with (ι1 ∧ κ) leads to a first signif-
icant simplification: the seven predicates expressing guard equivalences (shown
in italics in the figure) rewrite to �, because they follow from ι1. The resulting
equation E ′ has a form that still fits Proposition 1:

νE(d) = (κ ∧ ι1 ∧ ∀j.α(j) ∧ ∀j.β(j)) ∧
∧

�∈{a...g}
∀j.φ�(d, j) ⇒ E(g�(d, j)). (2)

The main difficulty of a parametric proof is to find the right invariants that
significantly reduce the complexity of the equation, without excluding the rel-
evant solutions. In our case, invariants that are not satisfied by the initial pa-
rameters 〈S, xi, v,m, n, S, xi+1, v,m, n〉 are not useful, because then the solution
of the strengthened equation will not necessarily satisfy the original equation.
Since ι1 holds, we now need a powerful invariant relation between the rest of
the parameters, (x, v, x′, v′). In fact, we are intuitively aiming to properly map
the states of the “actual” protocol behaviour, as modeled by the (S, x, v,m, n)
parameters, to the states of the “alternative protocol” behaviour, captured by
the (S′, x′, v′,m′, n′) parameters. Let mx(Sk, xk, k) denote the following formula:

((Sk≈0)∧(k = i+1) ∨ (Sk ∈ {1, 2}∧(xk⊕ (k = i+1))) ∨ (Sk ∈ {3, 4}∧(xk))),

which can be read as the short routine “if Sk≈0, then return k = i + 1; else if
Sk ∈ {1, 2} then return (xk ⊕ (k = i+1)); else if Sk ∈ {3, 4} then return xk; else
return ⊥”. Moreover, let mV(Sk, vk, k) denote the following formula:

(Sk ∈ {1, 2, 3} ∧ (vk ⊕ (i = k))) ∨ (Sk ∈ {4, 5} ∧ (vk)).

Intuitively, mx and mV are our proposed x-mapping and v-mapping, linking pa-
rameters (S, x) to x′ and, respectively, (S, v) to v′ (k is an index). The central
piece of the correctness proof is showing that these connections are invariant.
We do this in the following lemma.

Lemma 1. The predicates ι2(S, x, x′) : ∀k. x′
k = mx(Sk, xk, k) and ι3(S, v, v′) :

∀k. v′k = mV(Sk, vk, k) are invariants for the equation E ′.
Proof. We will prove, for each subterm ∀j.φ�(d, j) ⇒ E(g�(d, j)) of the right-
hand side of (2), that (ι2(d)∧ ι3(d)∧φ�(d, j)) ⇒ ι2(g�(d, j))∧ ι3(g�(d, j)) holds.
From this we will then conclude using Proposition 1 that ι2 and ι3 are invariants.

The proof is more or less mechanical. For each subterm a . . . g, assuming that
the left-hand side of the implication holds, we rewrite the two terms in the
right-hand side to �. Note that a part of the left-hand side is common to all 7
subterms:

(ι2(d) ∧ ι3(d)) : ∀k. x′
k = mx(Sk, xk, k) ∧ ∀k. v′k = mV(Sk, vk, k) (3)

Let us use 〈S[], x[], v[], S′[], x′[], v′[]〉 as a shortcut for the updates suffered by d
at the currently analyzed subterm. The proof obligation is, for all subterms,

(ι2(d[]))∧ ι3(d[]) : ∀k.x′[]k = mx(S[]k, x[]k, k) ∧ ∀k.v′[]k = mV(S[]k, v[]k, k). (4)
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(a) For this subterm, φ(d, j) ≡ (Sj≈0) and d[] ≡ 〈S[j ← 1], x[j ← ⊕b], v[j ←
b], S′[j ← 1], x′[j ← ⊕(b ⊕ (j = i))], v′[j ← (b ⊕ (j = i))]〉. For k �= j, d[]k = dk.
In particular, this means that x′[]k = x′

k and mx(S[]k, x[]k, k) = mx(Sk, xk, k),
and similarly for v′ and mV. Therefore we only need to prove

(A) x′[]j = mx(S[]j , x[]j , j) (B) v′[]j = mV(S[]j , v[]j , j).

By projecting d[] on j, these equalities rewrite to

(A) x′
j ⊕ b ⊕ (j = i) = mx(1, xj ⊕ b, j) (B) b⊕ (j = i) = mV(1, b, j).

We can now unfold the definitions of mx,mV and obtain:

(A) x′
j ⊕ b ⊕ (j = i) = (xj ⊕ b)⊕ (j = i + 1)

(B) b⊕ (j = i) = b⊕ (j = i)

(B) is trivially true. ι2(d) holds, so we can rewrite x′
j , taking into account that

Sj≈0, and obtain (A)(j = i+1)⊕b⊕(j = i) = (xj⊕b)⊕(j = i+1), which further
rewrites to xj = (i = j). Note that κ(d) can be used as a premise, in conjunction
with any φ�, since it stands as an independent term in the expression (2). Since
in the current situation Sj = 0, κ ensures xj = (i = j).

(b) For this subterm, φ(d, j)) ≡ (Sj≈1 ∧ Sj+1≈1 and d[] ≡ 〈S[j ← 2, j + 1 ←
3], x[j + 1 ← ⊕vj], S′[j ← 2, j + 1 ← 3], x′[j + 1 ← ⊕v′j ]〉. For k /∈ {j, j + 1},
d[]k = dk. This means that x′[]k = x′

k and mx(S[]k, x[]k, k) = mx(Sk, xk, k), and
similarly for v′ and mV. Therefore we only need to prove

(A1) x′[]j = mx(S[]j , x[]j , j) (A2) x′[]j+1 = mx(S[]j+1, x[]j+1, j + 1)
(B1) v′[]j = mV(S[]j , v[]j , j) (B2) v′[]j+1 = mV(S[]j+1, v[]j+1, j + 1).

By projecting d[] on j and j + 1, these rewrite to

(A1) x′
j = mx(2, xj , j) (A2) x′

j+1 ⊕ v′j = mx(3, xj+1 ⊕ vj , j + 1)
(B1) v′j = mV(2, vj , j) (B2) v′j+1 = mV(3, vj+1, j + 1).

Further, we unfold the definitions of mx,mV and obtain:

(A1) x′
j = xj ⊕ (j = i + 1) (A2) x′

j+1 ⊕ v′j = xj+1 ⊕ vj

(B1) v′j = vj ⊕ (j = i) (B2) v′j+1 = vj+1 ⊕ (j + 1 = i)

Instantiation of ι2(d) and ι3(d) for j and j + 1, while taking into account that
Sj≈1∧ Sj+1≈1, leads to the truth of formulae (A1),(B1),(B2). (A2) transforms
to (xj+1 ⊕ (j + 1 = i + 1))⊕ (vj ⊕ (i = j)) = xj+1 ⊕ vj , which obviously holds
since (j + 1 = i + 1) = (j = i), x⊕ x = ⊥ and x⊕⊥ = x.

(c) For this subterm, φ(d, j) ≡ (Sj≈1 ∧ Sj+1≈2) and d[] ≡ 〈S[j ← 2, j + 1 ←
4], x[j + 1 ← ⊕vj ], v[j + 1 ← xj+1 ⊕ vj ], S′[j ← 2, j + 1 ← 4], x′[j + 1 ←
⊕v′j ], v

′[j + 1 ← x′
j+1 ⊕ v′j ]〉. An argument identical to the one at (b) justifies

that we only need to prove

(A1) x′[]j = mx(S[]j , x[]j , j) (A2) x′[]j+1 = mx(S[]j+1, x[]j+1, j + 1)
(B1) v′[]j = mV(S[]j , v[]j , j) (B2) v′[]j+1 = mV(S[]j+1, v[]j+1, j + 1).
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By projecting d[] on j and j + 1, and then applying the definitions of mx,mV:

(A1) x′
j = xj ⊕ (j = i + 1) (A2) x′

j+1 ⊕ v′j = xj+1 ⊕ vj

(B1) v′j = vj ⊕ (j = i) (B2) x′
j+1 ⊕ v′j = xj+1 ⊕ vj

Since Sj = 1 ∧ Sj+1 = 2, the instantiation of ι2(d) and ι3(d) for j gives exactly
(A1) and (B1). By instantiating ι2(d) for j + 1 and ι3(d) for j, (A2) becomes
xj+1 ⊕ (j + 1 = i + 1)⊕ vj ⊕ (j = i) = xj+1 ⊕ vj , which evaluates to �.

(d) For this subterm, φ(d, j) ≡ (Sj≈3 ∧ Sj+1≈1) and d[] ≡ 〈S[j ← 4, j + 1 ←
3], x[j + 1 ← ⊕vj ], v[j ← xj ], S′[j ← 4, j + 1 ← 3], x′[j + 1 ← ⊕v′j ], v

′[j ← x′
j ]〉.

As with the previous subterms, we only need to prove

(A1) x′[]j = mx(S[]j , x[]j , j) (A2) x′[]j+1 = mx(S[]j+1, x[]j+1, j + 1)
(B1) v′[]j = mV(S[]j , v[]j , j) (B2) v′[]j+1 = mV(S[]j+1, v[]j+1, j + 1).

By projecting d[] on j and j + 1, and then applying the definitions of mx,mV:

(A1) x′
j = xj (A2) x′

j+1 ⊕ v′j = xj+1 ⊕ vj

(B1) x′
j = xj (B2) v′j+1 = vj+1 ⊕ (i = j + 1).

Since Sj = 3∧ Sj+1 = 1, the instantiation of ι2(d) for j is exactly formula (A1),
and the instantiation of ι3(d) for j + 1 is exactly formula (B2). By instantiating
ι2(d) for j + 1 and ι3(d) for j, (A2) becomes (xj+1 ⊕ (j + 1 = i + 1)⊕ vj ⊕ (i =
j)) = xj+1 ⊕ vj , which is true, due to x⊕ x = ⊥ and x⊕ 0 = x.

(e) For this subterm, φ(d, j) ≡ (Sj≈3 ∧ Sj+1≈2) and d[] ≡ 〈S[j ← 4, j + 1 ←
4], x[j + 1← ⊕vj], v[j ← xj , j + 1 ← xj+1 ⊕ vj ], S′[j ← 4, j + 1 ← 4], x′[j + 1 ←
⊕v′j ], v

′[j ← x′
j , j + 1 ← x′

j+1 ⊕ v′j ]〉.
The same argument as above ensures that we only need to prove

(A1) x′[]j = mx(S[]j , x[]j , j) (A2) x′[]j+1 = mx(S[]j+1, x[]j+1, j + 1)
(B1) v′[]j = mV(S[]j , v[]j , j) (B2) v′[]j+1 = mV(S[]j+1, v[]j+1, j + 1).

By projecting d[] on j and j + 1, then applying the definitions of mx,mV:

(A1) x′
j = xj (A2) x′

j+1 ⊕ v′j = xj+1 ⊕ vj

(B1) x′
j = xj (B2) x′

j+1 ⊕ v′j = xj+1 ⊕ vj .

Since Sj = 3∧Sj+1 = 2, the instantiation of ι2(d) for j is (A1). By instantiating
ι2(d) for j+1 and ι3(d) for j, (A2, B2) becomes (xj+1⊕(j+1 = i+1)⊕vj⊕(j =
i)) = xj+1 ⊕ vj , which is �, due to x⊕ x = ⊥ and x⊕ 0 = x.

(f) Here, φ(d, j) ≡ (mj≈⊥ ∧ (∀k.Sk≈4)) and d[] ≡ 〈v[(∀k)k ← ⊕xj ],m[j ←
�], v′[(∀k)k ← ⊕x′

j ],m
′[j ← �]〉. We project d[] on a random k. So, we now have

to prove x′
k = mx(Sk, xk, k) and v′k ⊕ x′

j = mV(Sk, vk ⊕ xj , k). The first formula
is true (from ι2(d)). We rewrite the second one using the definition of mV and
(ι2(d) ∧ ι3(d)). The result is vk ⊕ xj = vk ⊕ xj , trivially true.

(g) For this subterm, φ(d, j) ≡ (Sj≈4 ∧ (∀k.mk≈�)) and d[] ≡ 〈S[j ←
5], S′[j ← 5]〉. We project d[] on a random k. So, we now have to prove: x′

k =
mx(5, xk, k) and v′k = mV(5, vk, k). They are both true, due to ι2(d) ∧ ι3(d) and
the fact that mx(4, x, y) = mx(5, x, y) and mV(4, x, y) = mV(5, x, y). "#
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Now we can strengthen E ′ with the invariants proved at Lemma 1:

νE(d)= ι2(d) ∧ ι3(d)
∧κ(d) ∧ ι1(d) ∧ ∀j.α(j) ∧ ∀j.β(j) ∧

∧
�∈{a...g} ∀j.φ�(j)⇒E(g�(d, j)).

Note that ∀j.α(j) ∧ ∀j.β(j) follows from ι2(S, x, x′) and ι3(S, v, v′). Then the
equation is equivalent to νE(d) = ι2(d)∧ι3(d)∧κ(d)∧ι1(d)∧

∧
�∈{a...g} ∀j.φ�(j) ⇒

E(g�(d, j)), which fits the form in the assumption of Proposition 2. Therefore, the
solution is ι1(d)∧ι2(d)∧ι3(d). Since all the used invariants ι1, ι2, ι3, κ are satisfied
by our instance of interest d ≡ 〈S, xi, v,m, n, S, xi+1, v,m, n〉, it follows that the
solution of the original equation E for this instance is �. We can then conclude
that the solution to the encoded equivalence problem LDCi ↔ LDCi+1 is true
and thus, the parameterised anonymity property holds for the DC protocol:

Theorem 1. For any i ≥ 0 and any n > max(i, 1), the protocol DC is anony-
mous for i out of n w.r.t. an external intruder.

As a final remark, we note that the proof can be adapted to accommodate
internal observers, i.e. for the more interesting case when a cryptographer j
is the intruder. Then the mCRL2 model specifying j’s view on the protocol
behaviour would allow visibility of the secret bit xj , thus the set R from ρR

would not contain any renamings for actions of the form flip(j, d), com(j, d)
and com(j − 1, d) (for any d). For checking the condition ∃v . . . from Def. 3,
which in the DC case is ∃xk . . ., we need to make the distinction j �= i + 1
or j = i + 1. In the first case, the proof proceeds exactly as above, since the
weakening of the renaming set does not influence the validity (proof) of the
used invariants. In the second case, we need to choose another k, for instance
(i − 1) mod n and prove, in a very similar way, that LDCi ↔ LDC(i−1) mod n.
Note that in both cases, i,j,k should be different, therefore the assumption n > 2
would be needed.

5 (Un)decidability

We now study the general question: given a multiparty protocol, can it be decided
whether it guarantees anonymity to its participants, whatever their number?

(NPA) Given a domain D, a constant N≥1 and a parameterised protocol
Protocol, decide whether Protocol(x) is anonymous for 0 with at least
N processes present. In other words, decide whether for all n≥N :

∀x∈Dn with Restriction(x)
∃v∈Dn s.t. Restriction(v), v0 �=x0 and Protocol(x)∼Protocol(v).

Note that using index 0 in this definition is not a loss of generality. In most
protocols, the behaviours of honest parties are isomorphic and renaming schemes
can reduce the anonymity question about a participant index i ≥ 0 to NPA.

The following theorem says that for all reasonable weak equivalences (those
satisfying a·τ ·x = a·x), preserving the alphabet of a process, when sequential
programs can be expressed in the specification formalism, there is in general no
hope to decide anonymity.
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Theorem 2. Let ∼ denote any behavioural congruence refining weak trace equiv-
alence satisfying a·τ ·x = a·x. Then NPA is undecidable for any number N≥1 of
processes.

Proof. We encode the question of deciding program termination as an instance
of NPA. Let M be a program translated to mCRL2 (mCRL2 is sufficiently
expressive for this) without visible behaviour — i.e., all its actions are τ steps. Let
us construct a protocol as follows where stop is a visible action and D = {0, 1}:

P (i, xi) = i �≈0 → δ + i≈0→ (xi≈1 → τ ·M ·stop + xi≈0 → τ ·stop)
Q(n) = δ
Protocol(x) = P (0, x0)‖P (1, x1)‖ · · · ‖P (n−1, xn−1)‖Q(n)

By applying the parallel composition laws, this protocol process linearizes to:

Protocol(x) = x0≈1 → τ ·M ·stop·δ + x0≈0→ τ ·stop·δ. (5)

Suppose NPA is decidable. Then we get an answer to whether this protocol
is anonymous or not. NPA can be formulated as ∀n≥1 ∀x ∈ {0, 1}n ∃v ∈
{0, 1}n v0 �= x0 ∧Protocol(x) ∼ Protocol(v). So, according to (5), τ ·M ·stop·δ
∼ τ ·stop·δ. Using the requirements on ∼, this can only be the case iff M termi-
nates. As termination of M is undecidable, NPA is also undecidable. "#
Undecidability holds even for protocols without loops:

Theorem 3. If ∼ denotes strong-, weak- or branching bisimilarity then NPA is
undecidable, even if the protocol specification language does not contain loops (but
contains the choice operator

∑
essentially quantifying over infinite domains).

Proof. We reduce the problem of deciding strong bisimulation between two
mCRL2 processes to NPA. Let M1 and M2 be two arbitrary mCRL2 processes.
In a similar fashion as above, we construct a protocol that, after the linearisation
of the parallel composition, looks as: Protocol(x) = x0 �≈0 →M1·δ + x0≈0 →
M2·δ. A positive answer to NPA means that M1·δ �∼ M2·δ and a negative an-
swer means that M1·δ ∼ M2·δ. According to [14], strong, branching and weak
bisimulation are all undecidable for processes with infinite choice, hence NPA is
undecidable as well. "#
So, unsurprisingly, parameterised anonymity is in general undecidable. However,
in many cases it can still be decided by inspecting a finite collection of processes
only. Let us call the communication function ΓC behaviour preserving for an
equivalence relation ∼ and processes p and q iff ΓC(p) ∼ ΓC(q) implies p ∼ q.
This is for instance the case if C is functional (i.e. C(α) = C(α′) implies α = α′)
and no communication action C(α) occurs in p or in q.

Theorem 4. Consider a protocol as defined (1). Assume D is finite, the set of
hidden actions I is empty, renaming is effectively the identity, the set of allowed
actions V does not block any actions and the communication function is behaviour
preserving for ∼ and parallel combinations of P (i, xi) and Q(n). Moreover, ∼ re-
spects commutativity of the parallel operator. For any N≥1, NPA is decidable iff it
can be decided that, for any n≥N and x1, . . . , xN−1, y1, . . . , yN−1∈D,
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P (0, x0)‖ · · · ‖P (N−1, xN−1)‖Q(n) ∼ P (0, y0)‖ · · · ‖P (N−1, yN−1)‖Q(n). (6)

Proof. The first step is to determine whether for every x with Restriction(x) a
v can be found such that Restriction(v) and v0 �= x0 satisfy (6). As x and v can
only attain a finite number of values, this can be done by explicit enumeration.

Suppose this fails for some x. So, for any v either Restriction(v), v0 �= x0 or (6)
would not hold. In the last case, Protocol(x)�Protocol(v) as ΓC is behaviour
preserving. Thus NPA does not hold for n = N . As NPA should hold for every
n ≥ N processes, we can conclude that NPA is invalid.

Now assume that the procedure above yields a v for every x. We find that as
(6) holds, and as ∼ is a behavioural congruence for which ‖ is commutative:

P (0, x0)‖ · · · ‖P (N−1, xN−1)‖P (N, xN )‖ · · · ‖P (n−1, xn−1)‖Q(n) ∼
P (0, v0)‖ · · · ‖P (N−1, vN−1)‖P (N, xN )‖ · · · ‖P (n−1, xn−1)‖Q(n)

By applying the communication operator ΓC and the ∇V , ρR and τI operators
(which effectively do nothing), all the conditions of NPA are made valid. "#
Verification of (6) might be tricky, as n is an arbitrary number. Unless the be-
haviour of Q is very essentially dependent on n, which it rarely is, this will not
pose a problem for the verification tools of mCRL2 as they are essentially sym-
bolic manipulators. Note furthermore that this decision procedure often does not
apply because the communication operator is not behaviour preserving or the
allow, renaming or hiding operators are not trivial. But as only one side of the
decision procedure requires these properties, it can still be useful to determine
anonymity by just investigating a finite number of processes. The procedure as
sketched here is exponential in N as all vectors x must be investigated. Fortu-
nately, in practical cases we already want to achieve anonymity for small groups
of processes, so N is a fairly small number.

6 Conclusion

We gave a formal correctness proof for the Dining Cryptographers protocol with
an arbitrary number of parties, using the modeling language mCRL2 and its
supporting PBES theory. The model in our proof considers an external passive
intruder, but a very similar proof would work for single internal intruders. Due
to the fact that data plays an explicit central role in PBES equations, compact
symbolic representations are possible, of, e.g., systems consisting of a number of
components with similar behaviour. Finding the right invariants requires, as in
other frameworks, use of intuition and protocol understanding. However, proving
that the proposed predicates are invariants is a mechanical exercise, as well as the
application of those invariants to simplifying and eventually solving the target
PBES. This makes the PBES framework a comfortable and powerful formal-
ism for such complex correctness proofs. We also showed that the parameterised
anonymity problem is undecidable. However, under some restrictions, decidabil-
ity is possible based on the investigation of a small subgroup of processes.
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Abstract. Non-repudiation protocols have an important role in many ar-
eas where secured transactions with proofs of participation are necessary.
Formal methods are clever and without error, therefore using them for ver-
ifying such protocols is crucial. In this purpose, we show how to partially
represent non-repudiation as a combination of authentications on the Fair
Zhou-Gollmann protocol. After discussing the limitations of this method,
we define a new one, based on the handling of the knowledge of protocol
participants. This second method is general and of natural use, as it con-
sists in adding simple annotations in the protocol specification. It is very
easy to implement in tools able to handle participants knowledge. We have
implemented it in the AVISPA Tool and analyzed the Fair Zhou-Gollmann
protocol and the optimistic Cederquist-Corin-Dashti protocol, discover-
ing attacks in each. This extension of the AVISPA Tool for handling non-
repudiation opens a highway to the specification of many other properties,
without any more change in the tool itself.

Keywords: Cryptographic protocols, non-repudiation, fairness, authen-
tication, automatic analysis, AVISPA Tool.

1 Introduction

Authentication and secrecy properties of security protocols have been intensively
studied for years [23], but the interest of other properties such as non-repudiation
and fairness has been raised only in the 1990s with the explosion of Internet
services and electronic transactions.1

Non-repudiation protocols are designed for verifying that, when two parties
exchange information over a network, neither one nor the other can deny having
participated to this communication. Such a protocol must therefore generate
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evidences of participation to be used in case of a dispute. The basic tools for non-
repudiation services have been digital signatures and public key cryptography.
Indeed, a signed message is an evidence of participation and identity of the other
party [14].

The majority of the non-repudiation property analysis efforts in the literature
are manually driven though. One of the first efforts to apply formal methods
to the verification of non-repudiation protocols has been presented by Zhou
et al. in [31], where they have used SVO logic. In [25] Schneider uses process
algebra CSP to prove the correctness of a non-repudiation protocol, the well-
known Fair Zhou-Gollmann protocol. With the same goal, Bella et al. have
used the theorem prover Isabelle [4]. Schneider has defined a rank function for
encoding that in an execution trace, an event happens before another event.
The verification is done by analyzing traces in the stable failures models of CSP.
Among the automatic analysis attempts, we can cite Shmatikov and Mitchell [26]
with Murϕ, a finite state model-checker, to analyze a fair exchange and two
contract signing protocols, Kremer and Raskin [15] with a game-based model,
Armando et al. [3] using LTL for encoding resilient channels in particular, the
work of Gürgens and Rudolph [9] based on the asynchronous product automata
(APA) and the simple homomorphism verification tool (SHVT) [19], raising flaws
in three variants of the Fair Zhou-Gollmann protocol and in two other optimistic
fair non-repudiation protocols [13,29]. Wei and Heather [27] have used FDR,
with an approach similar to Schneider, for a variant of the Fair Zhou-Gollmann
protocol with timestamps.

The common point between all those works is that they use rich logics, with
a classical bad consequence for model checkers, the difficulty to consider large
protocols. For avoiding this problem, Wei and Heather [28] have used PVS [22],
but some of the proofs still had to be done by hand.

Fairness is a property that is more difficult to achieve: no party should be able
to reach a point where he has the evidence or the message he requires, without
the other party also having his required evidence. Fairness is not always required
for non-repudiation protocols, but it is usually desirable.

A variety of protocols has been proposed in the literature to solve the problem
of fair message exchange with non-repudiation. The first solutions were based on
a gradual exchange of the expected information [14]. However this simultaneous
secret exchange is troublesome for actual implementations because fairness is
based on the assumption of equal computational power for both parties, which
is very unlikely in a real world scenario. A possible solution to this problem is
the use of a trusted third party (TTP), and in fact it has been shown that this
is impossible to achieve fair exchange without a TTP [18,20]. The TTP can be
used as a delivery agent to provide simultaneous share of evidences. The Fair
Zhou-Gollmann protocol [30] is a well known example using a TTP as a delivery
agent; a significant amount of work has been done over this protocol and its
derivations [4,10,21,25,31]. However, instead of passing the complete message
through the TTP and thus creating a possible bottleneck, recent evolution of
protocols resulted in efficient, optimistic versions, in which the TTP is only
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involved in case something goes wrong. Resolve and abort sub-protocols must
guarantee that every party can complete the protocol in a fair manner and
without waiting for actions of the other party.

One of these recent protocols is the optimistic Cederquist-Corin-Dashti (CCD)
non-repudiation protocol [6]. The CCD protocol has the advantage of not using
session labels, unlike many others in the literature [14,17,30,25]. A session label
typically consists of a hash of all message components. Gürgens et al. [10] have
shown a number of vulnerabilities associated to the use of session labels and, to
our knowledge, the CCD protocol is the only optimistic non-repudiation protocol
that avoids altogether the use of session labels.

This paper presents a method for automatically verifying non-repudiation
protocols in presence of an active intruder. Our method has been implemented
in the AVISPA Tool [2]2 and we illustrate it with examples. This tool, intensively
used for defining Internet security protocols and automatically analyzing their
authentication and secrecy properties, did not provide any help for considering
non-repudiation properties.

We first consider non-repudiation analysis as a combination of authentication
problems, applied to the Fair Zhou-Gollmann protocol. We show the limitations
of this representation and the difficulties for proving non-repudiation properties
using only authentications. Then, we define a method based on the analysis of
agents knowledge, permitting to handle non-repudiation and fairness properties
in a uniform framework. Our approach allows one to specify the logical prop-
erties in a natural way: they correspond to state invariants that are convincing
properties for the user. This method is easy to integrate in lazy verification
systems, such as the AVISPA Tool, and can also be integrated in any system
able to handle agents (or intruder) knowledge. This should permit, contrarily to
more complex logics like LTL, to set up abstractions more easily for considering
unbounded cases. This should also permit to get a more efficient verification
for bounded cases. We illustrate this fact with the analysis of the optimistic
Cederquist-Corin-Dashti protocol.

In this paper, the defined techniques are based on the formal semantics pre-
sented in [7,8] for the AVISPA Tool.

2 Non-repudiation Properties

Non-repudiation (NR) is a general property that is usually not clearly defined.
It is described by protocols designers as a set of required services, depending
on the protocol and the required security level. In particular, non-repudiation
properties may differ whether a trusted third party (TTP) is used or not in the
protocol.

In the following, we recall the classical model independent definitions of non-
repudiation services required by most of the existing security applications (for
e-commerce for example). All these services are defined for a message sent by an
originator agent to a recipient agent, possibly via a delivery agent, a TTP.
2 http://www.avispa-project.org

http://www.avispa-project.org
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Definition 1. The service of non-repudiation of origin, denoted NROB(A),
provides the recipient B with a set of evidences which ensures that the originator
A has sent the message. The evidence of origin is generated by the originator
and held by the recipient. This property protects the recipient against a dishonest
originator.

Definition 2. The service of non-repudiation of receipt, denoted NRRA(B),
provides the originator A a set of evidences which ensures that the recipient B has
received themessage.The evidence of receipt is generated by the recipient and held by
the originator. This property protects the originator against a dishonest recipient.

Definition 3. The service of non-repudiation of submission, denoted
NRSA(B), provides the originator A a set of evidences which ensures that he
has submitted the message for delivery to B. This service only applies when the
protocol uses a TTP. Evidence of submission is generated by the delivery agent,
and will be held by the originator. This property protects the originator against
a dishonest recipient.

Definition 4. Theserviceofnon-repudiationofdelivery, denotedNRDA(B),
provides the originator A a set of evidences which ensures that the recipient B has
received the message. This service only applies when the protocol uses a TTP. Evi-
dence of delivery is generated by the delivery agent, andwill be held by the originator.
This property protects the originator against a dishonest recipient.

Definition 5. A service of fairness (also called strong fairness) for a non-
repudiation protocol provides evidences that, at the end of the protocol execution,
either the originator has the evidence of receipt of the message and the recipient
has the evidence of origin of the corresponding message, or none of them has any
valuable information. This property protects the originator and the recipient.

Definition 6. A service of timeliness for a non-repudiation protocol guaran-
tees that, whatever happens during the protocol run, all participants can reach a
state that preserves fairness, in a finite time.

Note that in general, sets of evidences such as NRO, NRR, NRS and NRD
are composed with messages signed by an agent.

After this informal use of the notion of evidence, let us consider for the sequel
of this paper the following definition.

Definition 7. An evidence for an agent A and a non-repudiation property P
is a message, a part of a message, or a combination of both, received by A that
is necessary for guaranteeing property P .

We will also consider the following definition of a valid service.

Definition 8. A non-repudiation service is valid if is satisfies the correspond-
ing property.
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Remark: In this paper, we consider the evidences given by the protocol designer
as valid: without intervention of an intruder, those evidences are sufficient to
guarantee the non-repudiation service; and in case of a dispute, a judge analyz-
ing them will always be able to protect honest agents. Thus, we suppose that
evidences are correctly chosen, so that a judge can use them for building proofs
protecting honest agents.

3 Non-repudiation as Authentication

It is well known that non-repudiation is a form of authentication [23]. In this
section we use the Fair Zhou-Gollmann protocol to demonstrate that properties
like NRO, NRR,. . . can be at least partially represented by authentication prop-
erties. However we show some strong limitations of this approach, motivating
the introduction of a new approach in the next section.

3.1 Running Example: The FairZG Protocol

In this section we describe the Fair Zhou-Gollmann protocol (FairZG) [31], a fair
non-repudiation protocol that uses a TTP. We have chosen this protocol as a
case study to demonstrate our analysis approach because of the existence of sig-
nificant related work [4,10,21,25]. The protocol is presented below in Alice&Bob
notation, where fNRO, fNRR, fSUB and fCON are labels used to identify the
purpose of messages.

1. A → B: fNRO.B.L.C.NRO
2. B → A: fNRR.A.L.NRR
3. A → TTP: fSUB.B.L.K.SubK
4. B ↔ TTP: fCON.A.B.L.K.ConK
5. A ↔ TTP: fCON.A.B.L.K.ConK

where A (for Alice) is the originator of the message M, B (for Bob) is the recipient
of the message M, TTP is the trusted third party, M is the message to be sent
from Alice to Bob, C is a commitment (the message M encrypted by a key K),
L is a unique session identifier (also called label), K is a symmetric key defined
by Alice, NRO is a message used for non-repudiation of origin (the message
fNRO.B.L.C signed by Alice), NRR is a message used for non-repudiation of
receipt (the message fNRR.A.L.C signed by Bob), SubK is a proof of submission
of K (the message fSUB.B.L.K signed by Alice), ConK is a confirmation of K (the
message fCON.A.B.L.K signed by the TTP).

Non-repudiation properties of origin and receipt are defined by the protocol
designers by the following sets of terms:

NROB(A) = {NRO,ConK}
NRRA(B) = {NRR,ConK}

The main idea of this FairZG protocol is to split the delivery of a message
into two parts. First a commitment C, containing the message M encrypted
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by a key K, is exchanged between Alice and Bob (message fNRO). Once Alice
has an evidence of commitment from Bob (message fNRR), the key K is sent
to a trusted third party (message fSUB). Once the TTP has received the key,
both Alice and Bob can retrieve the evidence ConK and the key K from the TTP
(messages fCON). This last step is represented by a double direction arrow in the
Alice&Bob notation because it is implementation specific and may be composed
by several message exchanges between the agents and the TTP. In this scenario
we assume that the network will not be down forever and both Alice and Bob
have access to the TTP’s shared repository where it stores the evidences and the
key. This means that the agents will be able to retrieve the key and evidences
from the TTP even in case of network failures.

3.2 Non-repudiation of Origin as Authentication

In our example, the FairZG protocol, non-repudiation of origin should provide
the guarantee that if Bob ownsNRO then Alice has sent M to Bob. Proposition 1
shows how this can be partially ensured with a set of authentications.

Definition 9. auth(X,Y,D) is the non injective authentication, and means agent
X authenticates agent Y on data D.

The semantics of such a predicate is standard and can be found in [16]. The next
two lemmas present standard properties of authentication.

Lemma 1 (Subterm property). Given agents A and B, and message M, if
auth(A,B,M), then for each subterm sofM, accessible by composition/decomposition
of M by both agents, auth(A,B,s) is true.

Lemma 2 (Transitivity of authentication). Given agents A, B and C, and
message M, if auth(A,B,M) and auth(B,C,M), then auth(A,C,M).

Proposition 1. Given the FairZG protocol, if auth(B,A,NRO), auth(B,TTP,
ConK) and auth(TTP,A,SubK) are valid, then the non-repudiation service of ori-
gin NROB(A) is valid.

Proof. For the two evidences of NROB(A) = {NRO,ConK}, we have:

– NRO = SigA(fNRO.B.L.{M}K): since auth(B,A,NRO) is valid, there is an
agreement between B and A on SigA(fNRO.B.L.C). From the subterm prop-
erty, this also means an agreement on {M}K, thus A has sent the {M}K that
B holds.

– ConK = SigTTP(fCON.A.B.L.K): as above auth(B,TTP,ConK) implies an
agreement on K between B and TTP. Furthermore SubK=SigA(fSUB,B, L,K),
thus auth(TTP,A,SubK) implies an agreement on K between TTP and A. By
transitivity we have an agreement on K between B and A which means that
A has sent K to TTP, that same K that B got from TTP.
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As A has sent {M}K and K, it means that he has generated M and run the
protocol in order to transmit it to B.

Non-injective authentication is only required for auth(B,TTP,ConK) because
B can ask many times ConK. However since all authentications imply an agree-
ment on the unique session identifier L, this protects from authentication across
different sessions. 


3.3 Non-repudiation of Receipt as Authentication

In our example, the FairZG protocol, non-repudiation of receipt should provide
the guarantee that if Alice owns NRR then Bob has received M from Alice.
Proposition 2 shows how this can be partially done with a set of authentications.

Proposition 2. Given the FairZG protocol, if auth(A,B,NRR), auth(A,TTP,
ConK) and auth(B,TTP,ConK) are valid, then the non-repudiation service of re-
ceipt NRRA(B) is valid.

Proof. For the two evidences of NRRA(B) = {NRR,ConK}, we have:

– NRR = SigB(fNRR.A.L.{M}K): a reasoning as for NRO in Proposition 1 en-
sures that B has received {M}K.

– ConK = SigTTP(fCON.A.B.L.K): auth(A,TTP,ConK) implies an agreement on
K between A and TTP. Furthermore auth(B,TTP,ConK) implies an agreement
on K between B and TTP. This means that there is an agreement on K
between A and B, thus when A holds ConK, B has received or will be able
to receive K.

The proof end is similar to the one of Proposition 1. 


3.4 Limitations and Difficulties

We have just illustrated on the FairZG protocol how to represent some non-
repudiation properties using authentication. This shows that non-repudiation
can be handled by most existing protocol analyzers, as most of them can handle
authentication.

However, this only permits to partially handle non-repudiation:

1. The main problem is to apply Propositions 1 and 2 in automatic tools, since
the authentication property is usually encoded by an annotation pair (for
example “witness”/“request” in AVISPA). In such a situation we cannot
handle dishonest agents since for example with the NROB(A) service, a dis-
honest Bob could forge a fake evidences set without executing the “request”
annotation. In such a case there is no authentication failure but the service
is not valid.

More generally dishonest agents can always act so that authentications in
which they are involved fail or not, by generating wrong authentication “re-
quests”, or wrong “witnesses”. This is the reason why tools like AVISPA do
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not handle authentications involving the intruder. This is also why with our
representation of non-repudiation, the AVISPA tool does not find any error in
the FairZG protocol, while this is possible to prove that the protocol is not fair
when agent A is dishonest [9] (see Section 4.4 for details of this attack).
In order to avoid this kind of problems we need to prove that Bob could only
own NRO if Alice has actually sent the correct protocol messages. This may
be done as for example in [25], [27] or [10] but this is not trivial.

2. Another problem with the handling of non-repudiation as authentications
is that it is difficult to apply to optimistic non-repudiation protocols that
include sub-protocols like abort and resolve as presented in the next section.
One of the main difficulties is that such protocols are non-deterministic.

As a conclusion, proving non-repudiation with the help of authentications
does not seem to be the best way; this is why in the next section we propose
another simple and complete approach for handling non-repudiation.

4 Non-repudiation Based on Agent Knowledge

In this section, we present a new method for considering non-repudiation services
and fairness in a uniform framework: we introduce a logic permitting to describe
states invariants. This logic is a very classical one, except that we define two new
predicates, deduce and aknows that permit to consider agents knowledge in the
description of goals. The aknows predicate is also used as a protocol annotation,
with the following semantics: agent X knows (or can deduce) term t.

All our work is based on the standard formal semantics described in [7,8] for
the AVISPA Tool.

4.1 Description of Non-repudiation Properties

The main role of a non-repudiation protocol is to give evidences of non-repudiation
to the parties involved in the protocol. To analyze this kind of protocol, one must
verify which participants have their non-repudiation evidences at the end of the
protocol execution. For example, if the originator has all its evidences for non-
repudiation of receipt, then the service of non-repudiation of receipt is guaranteed.
If the recipient has all its evidences for non-repudiation of origin, then the service
of non-repudiation of origin is guaranteed. If both parties (or none of them) have
their evidences, fairness is guaranteed. In other words, to analyze non-repudiation,
we need to verify if a set of terms is known by an agent at the end of the protocol
execution.

And for considering a large class of non-repudiation protocols, we shall not re-
strict evidences to a set of terms, but we have to consider them as a combination
of terms using standard logical connectors (conjunction, disjunction, negation).

For considering non-repudiation and fairness properties involving honest and
dishonest agents, we have defined a new predicate that permits to access the
knowledge of protocol participants. This predicate, named aknows (for agent
knows), is used in protocols specifications for annotating transitions and for
defining properties.
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Definition 10 (NR X(Y )). Let A be a set of agents playing a finite number of
sessions of a protocol, T a set of terms sent in the messages of this protocol and
E the subset of terms in T that are part of the evidences of non-repudiation in
the protocol. For agents X,Y ∈ A, NR X(Y ) is a logical combination of terms
t ∈ E that constitute the evidence for a service of non-repudiation NR for agent
X wrt. agent Y .

Definition 11 (aknows). Let A be a set of agents playing a finite number of ses-
sions of a protocol, P the set of processes (ie. instances of protocol roles) involved
in those sessions, and T a set of terms. The protocol annotation aknows(X, p, t)
is a predicate with X ∈ A, p ∈ P and t ∈ T , asserting that agent X, playing a
role of the protocol as process p, knows (or can deduce) the term t.

The semantics of predicate aknows(X, p, t) is that the term t can be composed
by agent X , according to its current knowledge in process p of the protocol,
whether this agent is honest or not. This composability test can be easily done
by any tool that is able to manage agents knowledge or intruder knowledge.

By abuse of notation, we may write aknows(X, p, L), for a logical formula
L combining evidences (NR X(Y ) for example), considering that the predicate
aknows is an homomorphism:

aknows(X, p, L1 ∧ L2) = aknows(X, p, L1) ∧ aknows(X, p, L2)
aknows(X, p, L1 ∨ L2) = aknows(X, p, L1) ∨ aknows(X, p, L2)

aknows(X, p,¬L) = ¬aknows(X, p, L)

Definition 12 (deduce). Let A be a set of agents playing a finite number of
sessions of a protocol and T a set of terms. We define deduce(X, t), with X ∈ A
and t ∈ T , as the predicate which means that X can deduce t from its knowledge.

We will use the same abuse of notation for deduce as for aknows.
The aknows predicate is used in protocol transitions for indicating that an

agent knows an important information; it corresponds to a fact; it has the same
meaning when used in the description of a property, but also indicates that
protocol transitions have really been run.

The deduce predicate is used in properties description for indicating a de-
ducible knowledge.

As a consequence, we can assume that each aknows annotation in protocols
transitions corresponds to a valid deduce predicate on the same information;
this assumption permits to avoid bad annotations.

Definition 13 (well-formedness). The evidence NR X(Y ) is well-formed if
it contains information that uniquely identifies X, Y , M . This set, held by X,
is used for proving to a judge that Y has run the protocol in a coherent way
wrt. X’s run.

Note that in this context, the interesting case to study is when X is dishonest
and has forged the set of evidences, while Y did not run the protocol (eg. has
not sent M for a service of non-repudiation of origin).

We now give the results obtained by this representation.
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Proposition 3. Given a non-repudiation service of B against A about a mes-
sage M with the well-formed evidence NR B(A) for processes pB and pA of B
and A respectively. If the following formulae are true at the end of process pB of
B, then the non-repudiation service is valid.

aknows(B, pB ,NR B(A)) ⇒ aknows(A, pA,M)
deduce(B,NR B(A)) ⇒ aknows(B, pB,NR B(A))

Proof. A sketch of proof is as follows: by the second implication if B is able to
deduce NR B(A) then aknows(B, pB,NR B(A)) is included in its knowledge,
since by well-formedness of NR B(A), NR B(A) and aknows(B, pB,NR B(A))
are related to the same process pB.

And again by well-formedness of NR B(A), it includes all the information
uniquely identifying M , thus the first implication implies an agreement on M
between B and A. Finally as aknows(A, pA,M) is an annotation, this means
that A has followed the protocol, thus he has done what he must do with M .


Remark: Verifying formulae given in the above Proposition is not a problem,
because a priori any theorem prover (able to consider secrecy) can compute
whatever can be deduced by an agent at a given step of the protocol, especially
concerning the deduce predicate [12].

Corollary 1. Given a non-repudiation service of origin for B against A about
message M , involving processes pB and pA of B and A respectively. IfNROB(A))
is well-formed and the following formulae are true at the end of process pB, then
the service is valid.

aknows(B, pB,NROB(A)) ⇒ aknows(A, pA,M)
deduce(B,NROB(A)) ⇒ aknows(B, pB,NROB(A))

Corollary 2. Given a non-repudiation service of receipt for A against B about
message M , involving processes pA and pB of A and B respectively. IfNRRA(B))
is well-formed and the following formulae are true at the end of process pA, then
the service is valid.

aknows(A, pA,NRRA(B)) ⇒ aknows(B, pB,M)
deduce(A,NRRA(B)) ⇒ aknows(A, pA,NRRA(B))

4.2 Description of Fairness

In the literature, authors often give different definitions of fairness for non-
repudiation protocols. In some definitions none of the parties should have more
evidences than the others at any given point in time. Others have a more flexible
definition in which none of them should have more evidences than the others at
the end of the protocol run. In many works it is also not very clear if only suc-
cessful protocol runs are taken into account, or partial protocol runs are valid
as well.
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In this paper we consider the flexible definition of fairness, taking into account
complete protocol runs. By complete protocol runs we mean a run where, even
though the protocol could not have reached its last transition for all agents,
there is no executable transition left, i.e. all possible protocol steps have been
executed, but this does not mean that all agents are in a final state.

We define this standard notion of fairness as a function of non-repudiation of
origin and of non-repudiation of receipt. If both properties, NRO and NRR, are
ensured or both are not valid for a given message M , then we have fairness.

Proposition 4. Given a protocol whose purpose is to send a message from Alice
to Bob, we have the following equivalence concerning the standard definition
of fairness for processes pA and pB of Alice and Bob respectively. If the non-
repudiation is valid for the NRO and NRR services then:

Fairness ≡ (aknows(Bob, pB,NROBob(Alice)) iff aknows(Alice, pA,NRRAlice(Bob)))

This result can be generalized to fairness wrt. a set of non-repudiation services
as follows.

Theorem 1. Given a protocol involving a finite number of agents, given a finite
set of valid non-repudiation services NR, the protocol is fair wrt. NR iff

∀NRS1X1(Y1),NRS2X2(Y2) ∈ NR,
aknows(X1, p1,NRS1X1(Y1)) iff aknows(X2, p2,NRS2X2(Y2))

4.3 Running Example: CCD

For illustrating the analysis method described above, we use in this section a
recent protocol, the Cederquist-Corin-Dashti (CCD) optimistic non-repudiation
protocol [6]. The CCD protocol has been created for permitting an agent A to
send a message M to an agent B in a fair manner. This means that agent A
should get an evidence of receipt of M by B (EOR) if and only if B has really
received M and the evidence of origin from A (EOO). EOR permits A to prove
that B has received M , while EOO permits B to prove that M has been sent by
A. The protocol is divided into three sub-protocols: the main protocol, an abort
sub-protocol and a resolve sub-protocol.

The Main Protocol. It describes the sending of M by A to B and the exchange
of evidences in the case where both agents can complete the entire protocol. If
this direct communication cannot be completed, in order to finish properly the
protocol, the agents execute the abort or the resolve sub-protocol with a trusted
third party (TTP ).

The main protocol is therefore composed of the following messages exchanges,
described in the Alice&Bob notation:
1. A→ B : {M}K .EOOM where EOOM = {B.TTP.H({M}K).{K.A}Kttp}inv(Ka)
2. B → A : EORM where EORM = {EOOM}inv(Kb)
3. A→ B : K
4. B → A : EORK where EORK = {A.H({M}K).K}inv(Kb)
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where K is a symmetric key freshly generated by A, H is a one-way hash function,
Kg is the public key of agent g and inv(Kg) is the private key of agent g (used
for signing messages). Note that we assume that all public keys are known by
all agents (including dishonest agents).

In the first message, A sends the message M encrypted by K and the evidence
of origin for B (message signed by A, so decryptable by B). In this evidence, B
checks his identity, learns the name of the TTP, checks that the hash code is the
result of hashing the first part of the message, but he cannot decrypt the last
part of the evidence; this last part may be useful if any of the other sub-protocols
is used.

B answers by sending the evidence of receipt for A, A checking that EORM

is EOOM signed by B.
In the third message, A sends the key K, permitting B to discover the plain-

text message M .
Finally, B sends to A another evidence of receipt, permitting A to check that

the symmetric key has been received by B.

The Abort Sub-Protocol. The abort sub-protocol is executed by agent A
if he does not receive the message EORM at step 2 of the main protocol. The
purpose of this sub-protocol is to cancel the messages exchange.

1. A→ TTP : {abort.H({M}K).B.{K.A}Kttp}inv(Ka)

2. TTP → A :

⎧⎪⎪⎨⎪⎪⎩
ETTP where ETTP = {A.B.K.H({M}K)}inv(Kttp)

if resolved(A.B.K.H({M}K))
ABTTP where ABTTP = {A.B.H({M}K).{K.A}Kttp}inv(Kttp)

otherwise

In this sub-protocol, A sends to the TTP an abort request, containing the abort
label and some information about the protocol session to be aborted.

According to what the TTP knows about this protocol session, he has two
possible answers: if this is the first problem received by the TTP for this pro-
tocol session, the TTP sends a confirmation of abortion, ABTTP , and stores in
its database that this protocol session has been aborted; but if the TTP has
already received a request for resolving this protocol session, he sends to A the
information for completing his evidence of receipt by B, ETTP .

The Resolve Sub-Protocol. The role of this second sub-protocol is to permit
agents A and B to finish the protocol in a fair manner, if the main protocol
cannot be run until its end by some of the parties. For example, if B does not
get K or if A does not get EORK , they can invoke the resolve sub-protocol.

1. G→ TTP : EORM

2. TTP → G :
{
ABTTP if aborted(A.B.K.H({M}K))
ETTP otherwise

where G stands for A or B.
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A resolve request is done by sending EORM to the TTP. If the protocol
session has already been aborted, the TTP answers by the abortion confirmation,
ABTTP . If this is not the case, the TTP sends ETTP so that the user could
complete its evidence of receipt (if G is A) or of origin (if G is B). Then the
TTP stores in its database that this protocol session has been resolved.

Agents’ Evidences. For this protocol, according to [6], the logical expressions
of evidences are:

NROB(A) = {M}K ∧ EOOM ∧K
NRRA(B) = {M}K ∧EORM ∧ (EORK ∨ETTP )

Note that there are two possibilities of evidences for non-repudiation of receipt,
according to the way the protocol is run.

According to our method, we simply have to annotate protocol steps with
aknows predicates, and then write the logical formula to be verified.

Non-Repudiation of Origin. The following table shows where those annota-
tions take place in the three CCD sub-protocols, for considering non-repudiation
of origin.

NROB(A) Protocol - step
aknows(B, pB, {M}K) Main - 1.
aknows(B, pB, EOOM ) Main - 1.

aknows(B, pB,K) Main - 3.
aknows(B, pB,K) Resolve - 2.

Note that the key K can be obtained either by the third message of the main
protocol, or by the second message of the resolve sub-protocol. One annotation
has to be put in each of those protocol steps.

By Corollary 1, non-repudiation of origin for the CCD protocol is repre-
sented by the following invariant formulae:

aknows(B, pB , {M}K ∧EOOM ∧K)⇒ aknows(A, pA,M)
deduce(B, {M}K ∧ EOOM ∧K)⇒ aknows(B, pB, {M}K ∧ EOOM ∧K)

Non-Repudiation of Receipt. The following table shows where those annota-
tions take place in the three CCD sub-protocols, for considering non-repudiation
of receipt.

NRRA(B) Protocol - step
aknows(A, pA, {M}K) Main - 1.
aknows(A, pA, EORM ) Main - 2.
aknows(A, pA, EORK) Main - 4.
aknows(A, pA, ETTP ) Abort - 2.
aknows(A, pA, ETTP ) Resolve - 2.

For this property, ETTP can be obtained from the second message of the abort
sub-protocol or of the resolve sub-protocol.
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According to Corollary 2, non-repudiation of receipt for the CCD protocol
is represented by the following invariant formulae:

aknows(A, pA, {M}K ∧ EORM ∧ (EORK ∨ ETTP )) ⇒ aknows(B, pB,M)
deduce(A, pA, {M}K ∧ EORM ∧ (EORK ∨ ETTP )) ⇒

aknows(A, pA, {M}K ∧ EORM ∧ (EORK ∨ ETTP ))

Fairness. For analyzing fairness, this protocol requires timeliness, that is each
participant should reach a final state before testing fairness. Fairness for the CCD
protocol is described by the following logical formula, a very simple application
of Theorem 1:

aknows(A, pA,NRRA(B)) ⇔ aknows(B, pB,NROB(A))

Basically the property states that if A knows the EOR evidence ({M}K , EORM ,
and EORK or ETTP ), then B knows the EOO evidence. And symmetrically for
B, if B knows the EOO evidence ({M}K , EOOM and K), then A knows the
EOR evidence.

Experiments. The CCD protocol has been specified in the AVISPA Tool, with
the description of the fairness property given above. The detailed formulae used
in the AVISPA Tool, with an LTL syntax, are:

�

0
@

0
@

aknows(A, pA, {M}K) ∧
aknows(A, pA, EORM ) ∧
(aknows(A, pA, EORK) ∨ aknows(A, pA, ETTP ))

1
A⇒

0
@

aknows(B, pB , {M}K) ∧
aknows(B, pB , EOOM ) ∧
aknows(B, pB , K)

1
A

1
A

�

0
@

0
@

aknows(B, pB , {M}K) ∧
aknows(B, pB , EOOM ) ∧
aknows(B, pB , K)

1
A⇒

0
@

aknows(A, pA, {M}K) ∧
aknows(A, pA, EORM ) ∧
(aknows(A, pA, EORK) ∨ aknows(A, pA, ETTP ))

1
A

1
A

Several scenarios have been run, and two of them have raised an attack,
showing that the CCD protocol does not provide the fairness property for which
it has been designed.

The first attack has been found for a scenario with only one protocol session
where A, an honest agent, plays the protocol with a dishonest agent B (named
i, for intruder). As soon as i has received the first message from A, he builds
EORM and sends it to the TTP as resolve request. Later, when A, not receiving
EORM , decides to abort the protocol, this is too late: the protocol has already
been resolved, the intruder can get M and build the proof that A has sent M ,
and A cannot build the evidence of receipt, as he will never get EORM .

The trace of this attack is the following:

1. A→ i : {M}K .EOOM

2. i→ TTP : RESOLVE
3. TTP → i : ETTP

*** timeout for A ***
4. A→ TTP : ABORT
5. TTP → A : ETTP
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The second attack is a variant where both A and B are honest agents. The
only difference is that B sends EORM to A, but this message is intercepted by the
intruder andnever delivered toA. At this point, the protocol is blocked,both agents
waiting for a message. So, each agentwill ask the help of the TTP for concluding the
protocol: A will invoke the abort sub-protocol and B will invoke the resolve sub-
protocol. And if the resolve request reaches the TTP before the abort request 3,
B will get all his necessary evidences from the TTP, while A, having asked for an
abort, will not be able to get all his evidences even with the help of the TTP.

The originality of this attack is that, at the end:

– A will guess (according to the answer received to his abort request) that the
protocol has been resolved by B, so he will assume that B knows M and
can build the proof that A has sent it; but A cannot prove this;

– B has resolved the protocol and has received from the TTP the information
for getting M and building the proof that A has sent M ; but he does not
know that A does not have his proof;

– the TTP cannot know that A has not received EORM ; so he knows that B
can build its evidences, but he cannot know if A can or not.

So, those attacks show that the CCD protocol is not fair, even if both agents
A and B are honest. The attack is due to a malicious intruder or a network
problem, and the TTP is of no help for detecting the problem.

Correcting the protocol is not difficult, for example by sending EORM to-
gether with ETTP in the abort sub-protocol, when the protocol is already re-
solved. The numerous scenarios that have been tried for this new version have
not raised any attack. This experiment on the CCD protocol is detailed in [24].

4.4 Back to the FairZG Protocol

We have illustrated in Section 3 the representation of non-repudiation proper-
ties by authentications with the FairZG protocol, raising some limitations and
difficulties for an automatic analysis. We have also analyzed this protocol with
our second method, based on agents knowledge.

This protocol is known for having an attack when agent A is dishonest [9]. In-
deed in [31], it is not specified whether or not the TTP should store ConK forever.
And from the TTP point of view, a transaction is closed once both A and B have
retrieved ConK, so he could delete all the information about this transaction.

When the TTP acts in that way, Gürgens and Rudolph have described an
attack: a first session is run until its end between A and B; then, A starts a
second session with B, using the same K and L as in the first session, but with
a different message M2; if B does not remark the similarity of the sessions, he
will answer to A; but once A has got NRR, he can stop the session, not sending
3 Note that this is possible even if channels are protected or pervasive, as agents use

different channels; this is also possible if B has a shorter timeout than A; this notion of
timeout is essential in the implementation of protocols, as demonstrated by Carbonell
et al. in [5].
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the third message of the protocol; at that point, A owns NRR from the second
session and ConK from the first session, and this constitutes the evidences of
receipt of M2 by B; on his side, B will never be able to get ConK from the TTP
and will never know how to decrypt M2.

So, this attack is due to the hypothesis that the TTP does not keep informa-
tion on closed sessions. We have modeled this hypothesis by using two parallel
processes for the TTP, one for each session. And we have found the same attack.

5 Conclusion

Non-repudiation protocols have an important role in many areas where secure
transactions with proofs of participation are necessary. The evidences of origin
and receipt of a message are two examples of elements that the parties should
own at the end of a communication. We have given two very different examples of
such protocols. The FairZG protocol is an intensively studied protocol in which
the role of the trusted third party is essential. The CCD protocol is a more recent
non-repudiation protocol that avoids the use of session labels and distinguishes
itself by the use of an optimistic approach, the trusted third party being used
only in case of a problem in the execution of the main protocol.

The fairness of a non-repudiation protocol is a property difficult to analyze and
there are very few tools that can handle the automatic analysis of this property.

The contribution of this work is twofold. First, we have illustrated with the
FairZG protocol how difficult it is to consider full non-repudiation properties
using only a combination of authentications.

Second, we have defined a new method that permits to handle in a very
easy way non-repudiation properties and fairness in a uniform framework. This
method is based on the handling of agents knowledge and can be used to au-
tomatically analyze non-repudiation protocols as well as contract signing pro-
tocols [26]. We have implemented it in the AVISPA Tool and have successfully
applied it to the CCD and FairZG protocols, proving that they are not fair.
We have also tested other specifications of the CCD protocol, for example with
secure communication channels between agents and the TTP, no attack has
been found; but using such channels is not considered as acceptable, because it
generates an overload of the TTP activity.

Our method, based on the writing of simple state invariants, is of easy use,
and can be implemented in any tool handling agents (or intruder) knowledge.
It should be very helpful for setting abstractions for handling unbounded sce-
narios, and it should be very efficient for bounded verifications, as it has been
the case in our implementation. We hope that this work will open a highway
to the specification of many other properties, without any more change in the
specification languages and the analysis engines.

Our work has been done for analyzing non-repudiation protocols. A comple-
mentary approach has been defined by Guttman in [11], where he describes a
protocol design process, based on authentication tests, permitting to guarantee
some security properties, including some non-repudiation properties. Note that
in the example presented by Guttman, fairness is not considered.
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Abstract. Structural non-interference is a semi-static technique defined
over Petri nets to check the absence of illegal information flows. This
paper presents the main algorithmic features of this new technique and its
implementation in a software tool, called the Petri Net Security Checker.

1 Introduction

Non-interference has been defined in the literature as an extensional property
based on some observational semantics: the high part of a system does not in-
terfere with the low part if whatever is done at the high level produces no visible
effect on the low part of the system. The original notion of non-interference
in [10] was defined, using trace semantics, for system programs that are deter-
ministic. Generalized notions of non-interference were then designed to include
(nondeterministic) labeled transition systems and finer notions of observational
semantics such as bisimulation (see, e.g., [14,6,13,15,8]). The security proper-
ties in this class are based on the dynamics of systems; they are defined by
means of one (or more) equivalence check(s); hence, non-interference checking is
as difficult as equivalence checking, a well-studied hard problem in concurrency
theory.

One relevant property in this class is the bisimulation-based property BNDC
(Bisimulation Non-Deducibility on Composition) proposed by Focardi and Gor-
rieri some years ago [6,8] on a CCS-like [12] process algebra. BNDC basically
states that a system R is secure if it is bisimilar to R in parallel with any high
level process Π w.r.t. the low actions the two systems can perform.

Intuitively, the many definitions of non-interference that have been proposed
try to capture the essence of information flow as an extensional property. On
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the contrary, one may think that there are clear physical reasons for the occur-
rence of an information flow, that can be better understood if one exploits a
computational model where causality of actions and conflict among actions can
be modelled directly. Indeed, this is not the case of labeled transitions systems,
a typical example of an interleaving model, where parallelism is not primitive.

For this reason, in [1,2,3] Busi and Gorrieri have shown that these exten-
sional non–interference properties can be naturally defined also on Petri Nets,
in particular on Elementary Nets [5], a well-known model of computation where
causality and conflict are primitive concepts. More interestingly, they address the
problem of defining statically non-interference for Elementary Nets, by looking
at the structure of the net systems under investigation:

• in order to better understand the relationship between a flow of information
and the causality (or conflict) relation between the activities originating
such a flow, hence grounding more firmly the intuition about what is an
interference, and

• in order to find more efficiently checkable non-interference properties that are
sufficient (sometimes also necessary) conditions for those that have already
received some support in the literature, such as BNDC.

Structural non-interference is defined on the basis of the absence of partic-
ular places in the net. We identify two special classes of places: causal places,
i.e., places for which there are an incoming high transition and an outgoing
low transition; and, conflict places, i.e. places for which there are both low and
high outgoing transitions. Intuitively, causal places represent potential source of
interference because the occurrence of the high transition is a prerequisite for
the execution of the low transition. Similarly, conflict places represent potential
source of interference because if the low event is not executable, then we can
derive that a certain high transition has occurred. The absence of causal and
conflict places is clearly a static property that can be easily checked by a simple
inspection of the (finite) net structure; interestingly enough, this is a sufficient
condition to ensure BNDC.

In order to characterize more precisely BNDC, the notion of causal place and
conflict place is slightly refined, yielding the so-called active causal place and
active conflict place. These new definitions are based also on a limited exploration
of the state-space of the net (i.e. of its marking graph), hence, the absence of
such places is not a purely structural property, rather a hybrid property. When
active causal and active conflict places are absent, we get a property, called
Positive Place–Based Non–Interference (PBNI+ for short), which turns out to
be equivalent to BNDC (proof in [3]). This result is rather surprising because
the two properties are defined in a very different way.

1.1 Contribution of This Paper

In this paper, we investigate the algorithmic properties of PBNI+. First we
show that, given an elementary net with p places, n transitions and f arcs,
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the complexity of checking for the absence of potential causal/conflict places is
O(f + p). Then, once singled out potential causal/conflict places, the check that
such a potential place is active takes O(pn23p) in the worst case, because it is
necessary to build the whole marking graph (that is exponential in the size of the
net). Therefore, depending on the shape of the net, the complexity of PBNI+
varies in the range between O(f + p) and O(pn23p).

It is interesting to observe that BNDC was proved to be decidable in [11] over
labeled transitions systems with an algorithm that is exponential in the number
of the states. Even if the two models are different and so a comparison may
be unfair, we point out that our procedure for deciding BNDC is cubic in the
number of states of the marking graph of the net, which in turn is exponential
in the number of the places of the net.

These algorithms have been implemented in a software tool, called the Petri
Net Security Checker (PNSC for short), which provides functionalities for creat-
ing, editing and executing Petri nets, as well as automatically detecting places
that are potential/active and causal/conflict.

The paper is organised as follows. In Section 2 we recall the basic definitions
about Elementary Net systems, the dynamic non-interference property BNDC
and the structural property PBNI+. In Section 3 we discuss the complexity
of checking PBNI+. In Section 4 we describe the details of the PNSC tool, its
functionalities and its implementation, besides showing its application to a small
case study. Finally, some conclusive remarks are drawn in Section 5.

2 Background

2.1 Elementary Net Systems

Here we introduce basic definitions about the class of Petri Nets we use. Some
familiarity with Petri net terminology is assumed. More details in [5,2].

Definition 1. A transition system is a triple TS = (St,E,→) where

• St is the set of states
• E is the set of events
• →⊆ St× E × St is the transition relation.

In the following we use s
e→ s′ to denote (s, e, s′) ∈→. Given a transition s

e→ s′,
s is called the source, s′ the target and e the label of the transition. A rooted
transition system is a pair (TS, s0) where TS = (St,E,→) is a transition system
and s0 ∈ St is the initial state.

Definition 2. An elementary net is a tuple N = (S, T, F ), where

• S and T are the (finite) sets of places and transitions, such that S ∩ T = ∅
• F ⊆ (S × T ) ∪ (T × S) is the flow relation, usually represented as a set of

directed arcs connecting places and transitions.
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A subset of S is called a marking. Given a marking m and a place s, if s ∈ m
then we say that the place s contains a token, otherwise we say that s is empty.

Let x ∈ S ∪ T . The preset of x is the set •x = {y | F (y, x)}. The postset of x
is the set x• = {y | F (x, y)}. The preset and postset functions are generalized
in the obvious way to set of elements: if X ⊆ S ∪ T then •X =

⋃
x∈X

•x
and X• =

⋃
x∈X x•. A transition t is enabled at marking m if •t ⊆ m and

t• ∩m = ∅. The firing (execution) of a transition t enabled at m produces the
marking m′ = (m\ •t)∪ t•. This is usually written as m[t〉m′. With the notation
m[t〉 we mean that there exists m′ such that m[t〉m′.

An elementary net system is a pair (N,m0), where N is an elementary net
and m0 is a marking of N , called initial marking. With abuse of notation, we
use (S, T, F,m0) to denote the net system ((S, T, F ),m0).

The set of markings reachable from m, denoted by [m〉, is defined as the least
set of markings such that

• m ∈ [m〉
• if m′ ∈ [m〉 and there exists a transition t such that m′[t〉m′′ then m′′ ∈ [m〉.

The set of firing sequences is defined inductively as follows:

• m0 is a firing sequence;
• if m0[t1〉m1 . . . [tn〉mn is a firing sequence and mn[tn+1〉mn+1 then also

m0[t1〉m1 . . . [tn〉mn[tn+1〉mn+1 is a firing sequence.

Given a firing sequence m0[t1〉m1 . . . [tn〉mn, we call t1 . . . tn a transition se-
quence. We use σ to range over transition sequences.

The marking graph of a net system N is the transition system

MG(N) = ([m0〉, T, {(m, t,m′) | m ∈ [m0〉 ∧ t ∈ T ∧m[t〉m′})

A net is transition simple if the following condition holds for all x, y ∈ T : if
•x = •y and x• = y• then x = y. A marking m contains a contact if there exists
a transition t ∈ T such that •t ⊆ m and not(m[t〉). A net system is contact–
free if no marking in [m0〉 contains a contact. A net system is reduced if each
transition can occur at least one time: for all t ∈ T there exists m ∈ [m0〉 such
that m[t〉. In the following we consider contact-free elementary net systems that
are transition simple and reduced.

2.2 A Dynamic Non-interference Property: BNDC

Our aim is to analyse systems that can perform two kinds of actions: high level
actions, representing the interaction of the system with high level users, and
low level actions, representing the interaction with low level users. We want to
verify if the interplay between the high user and the high part of the system can
affect the view of the system as observed by a low user. We assume that the
low user knows the structure of the system, and we check if, in spite of this, he
is not able to infer the behavior of the high user by observing the low view of
the execution of the system. Hence, we consider nets whose set of transitions is
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partitioned into two subsets: the set H of high level transitions and the set L of
low level transitions. To emphasize this partition we use the following notation.
Let L and H be two disjoint sets: with (S,L,H, F,m0) we denote the net system
(S,L ∪H,F,m0).

Among the many non-interference properties defined by Focardi and Gorrieri
in [6,7,8], here we consider BNDC (Bisimulation Non-Deducibility on Composi-
tion). To properly define it over Petri nets, we need some auxiliary definitions:
the operations of parallel composition (in TCSP-like style [4]) and restriction (in
CCS-like style [12]), as well as a notion of low-view bisimulation.

Definition 3. Let N1 = (S1, L1, H1, F1,m0,1) and N2 = (S2, L2, H2, F2,m0,2)
be two net systems such that S1 ∩ S2 = ∅ and (L1 ∪ L2) ∩ (H1 ∪H2) = ∅. The
parallel composition of N1 and N2 is the net system

N1 | N2 = (S1 ∪ S2, L1 ∪ L2, H1 ∪H2, F1 ∪ F2,m0,1 ∪m0,2)

Note that synchronization occurs over those (low or high) transitions that are
shared by the two nets, i.e., a transition t that occurs both in N1 and N2 has
preset (postset), in N1 | N2, given by the union of the disjoint presets (postsets)
in N1 and N2, respectively.

Definition 4. Let N = (S,L,H, F,m0) be a net system and let U be a set of
transitions. The restriction on U is defined as N\U = (S,L′, H ′, F ′,m0), where:

L′ = L \ U
H ′ = H \ U
F ′ = F \ (S × U ∪ U × S)

The non-interference property we are going to introduce is based on some notion
of low observability of a system, i.e., what can be observed of a system from the
point of view of low users. The low view of a transition sequence is nothing but
the subsequence where high level transitions are discarded.

Definition 5. Let N = (S,L,H, F,m0) be an elementary net system. The low
view of a transition sequence σ of N is defined as follows:

ΛN (ε) = ε

ΛN (σt) =
{
ΛN (σ)t if t ∈ L
ΛN (σ) otherwise

Then, a variant of bisimulation [12] can be defined in such a way that only the
low behaviour is considered.

Definition 6. Let N1 = (S1, L1, H1, F1,m0,1) and N2 = (S2, L2, H2, F2,m0,2)
be two net systems. A low–view bisimulation from N1 to N2 is a relation R on
P(S1)× P(S2) such that if (m1,m2) ∈ R then for all t ∈

⋃
i=1,2 Li ∪Hi:

• if m1[t〉m′
1 then there exist σ,m′

2 such that m2[σ〉m′
2, ΛN1(t) = ΛN2(σ) and

(m′
1,m

′
2) ∈ R

• if m2[t〉m′
2 then there exist σ,m′

1 such that m1[σ〉m′
1, ΛN2(t) = ΛN1(σ) and

(m′
1,m

′
2) ∈ R

If N1 = N2 we say that R is a low–view bisimulation on N1.
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p1,1 p2,1

p2,2

p1,3 p2,3

p1,2

h2

h3

l2

l3

l1

s

h1

s

Fig. 1. The net system for a mutually exclusive access to a shared resource

We say that N1 is low–view bisimilar to N2, denoted by N1
Λ≈bis N2, if there

exists a low–view bisimulation R from N1 to N2 such that (m0,1,m0,2) ∈ R.

Now we are ready to define BNDC.

Definition 7. Let N = (S,L,H, F,m0) be a net system. N is BNDC iff for all

high-level nets K = (SK , ∅, HK , FK ,m0,K): N\H Λ≈bis (N | K)\(H \HK).

The left-hand term N\H represents the system N when isolated from high-
level users (hence, the low view of N in isolation), while the right-hand term
expresses the low view of N interacting with the (common transitions of the)
high environment K (note that the activities resulting from such interactions
are invisible by the definition of low view equivalence). BNDC is a very intuitive
property: whatever high level system K is interacting with N , the low effect
is unobservable. However, it is difficult to check this property because of the
universal quantification over high systems.

Example 1. As a simple case study and running example, consider the net in
Figure 1, which represents a mutually exclusive access to a shared resource (rep-
resented by the token in s) by a high-user (left part of the net) and a low-user
(right part of the net). Even if it might appear, at first sight, that the system
is secure (and indeed, it is BSNNI (Bisimulation Strong Nondeterministic Non-
Interference) [8]), actually it is not secure because a low level user can detect if
a high-level user has deadlocked the system. Indeed, if the high-level user repre-
sented in the net K in Figure 2 wants to interact with the user in Figure 1, then
a deadlock is reached after performing the sequence h1h2 and the low level user
can detect this because (s)he is not able to interact with the net. As a matter
of fact, BNDC is not satisfied, as K makes invalid the equivalence check in the
definition of BNDC.

2.3 Structural Non-interference

Consider a net system N = (S,L,H, F,m0). Consider a low level transition l of
the net: if l can fire, then we know that the places in the preset of l are marked
before the firing of l; moreover, we know that such places become unmarked
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Fig. 2. The shared resource net system is not BNDC

after the firing of l. If there exists a high level transition h that produces a token
in a place s in the preset of l (see the system N1 in Figure 3), then the low level
user can infer that h has occurred if he can perform the low level transition l.
We note that there exists a causal dependency between the transitions h and l,
because the firing of h produces a token that is consumed by l. In this case we
will say s is a potential causal place.

l

s

h

N1

s

lh

N2

Fig. 3. Examples of net systems containing causal and conflict places

Consider now the situation illustrated in the system N2 of Figure 3: in this
case, place s is in the preset of both l and h, i.e., l and h are competing for
the use of the resource represented by the token in s. Aware of the existence of
such a place, a low user knows that the high-level action h has been performed,
if he is not able to perform the low-level action l. Place s represents a conflict
between transitions l and h, because the firing of h prevents l from firing. In this
case we will call s a potential conflict place.

In order to avoid the definition of a security notion that is too strong, and
that rules out systems that do not reveal information on the high-level actions
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that have been performed, we need to refine the concepts illustrated above.
In particular the potential causal place is an active causal place if there is an
execution where the token produced by the high level transition is eventually
consumed by the low level transition. Similarly, a potential conflict place is active
if the token that could be consumed immediately by a high level transition can
be later on also consumed by a low level transition. The formal definitions follow.

Definition 8. Let N = (S,L,H, F,m0) be an elementary net system. Let s be
a place of N such that s• ∩ L �= ∅ (i.e., a token in s can be consumed by a low
transition).

The place s ∈ S is a potentially causal place if •s ∩H �= ∅ (i.e., a token in
s can be produced by a high transition). A potentially causal place s is an active
causal place if the following condition holds: there exist l ∈ s• ∩ L, h ∈ •s ∩H,
m ∈ [m0〉 and a transition sequence σ such that m[hσl〉 and s �∈ t• for all t ∈ σ.

The place s ∈ S is a potentially conflict place if s• ∩H �= ∅ (i.e., the token
in s can be consumed also by a high transition). A potentially conflict place is
an active conflict place if the following condition holds: there exist l ∈ s• ∩ L,
h ∈ s• ∩H, m ∈ [m0〉 and a transition sequence σ such that m[h〉, m[σl〉 and
s �∈ t• for all t ∈ σ.

Definition 9. Let N = (S,L,H, F,m0) be an elementary net system. We say
that N is PBNI+ (positive Place Based Non-Interference) if, for all s ∈ S, s is
neither an active causal place nor an active conflict place.

The following non-trivial result, proved in [3], states that the behavioural non-
interference property BNDC is equivalent to the semi-static, structural property
PBNI+.

Theorem 1. Let N = (S,L,H, F,m0) be an elementary net system. Then N is
PBNI+ iff N is BNDC.

An obvious consequence is that if N has no potentially causal and potentially
conflict places, then N is BNDC. Hence, a simple strategy to check if N is BNDC
is to first identify potential causal/conflict places, a procedure that we show in
the next section to be of complexity O(f + p) in the size of the net (p is the
number of places and f of arcs). If no place of these sorts is found, then N is
PBNI+, hence BNDC. Otherwise, any such a candidate place should be better
studied to check if it is actually an active causal/conflict place, a procedure that
requires a limited exploration of the marking graph.

Observe that the net in Figure 1 of our running example is not PBNI+ because
place s is an active conflict (and also active causal) place.

3 PBNI+ Verification Algorithms

Verification of PBNI+ requires two separate steps: first, detection of potential
causal places and potential conflict ones; then, checking if such places are active
(causal/conflict) places.
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We assume to use certain data structures. Precisely, a Net will be a structure
containing an ordered list of places, an ordered list of transitions and a list
of places (subset of the above mentioned places list) representing the initial
marking. We also assume places in the initial marking list maintain the same
order they have in the places list, so that all operations on sets of places (such
as union, intersection and difference) can be done in O(p).

Each place (each transition) has associated its own preset and postset, that are
represented by lists of the opposite elements (transitions or places, respectively).
As for the initial marking list in a Net, we will assume the nodes in the preset
and postset lists appear in the same order they do in the lists they are taken
from, so to be able to perform all operations on sets in linear time w.r.t. the
number of nodes (O(p) or O(n), respectively). For convenience, we will assume a
Net also contains a list of arcs (as specified by the flow relation F , |F | = f), thus
that we can occasionally cycle on it in O(f) time rather than O(np) (inherent
upper bound for f).

3.1 Potential Places Detection

Detecting potential places is a purely structural procedure, easy and computa-
tionally light-weight. Let us consider detection of potential causal places in a net
N with p places and f arcs, and each place has three dedicated boolean vari-
ables for keeping track of the examined arcs: highPre, lowPost and highPost.
This consists of the following steps (each one annotated with an estimate of its
worst-case computational cost):

• for each arc a in the net N : – O(f) times
• if a’s source is a transition t – O(1)

• if t is high then set highPre of a’s target as true – O(1)
• else

• if t is low then set lowPost of a’s source as true – O(1)
• for each place p in the net N : – O(p) times

• if p’s highPre and lowPost are true, then add p to the set of computed
potential causal places – O(1)

Detection of potential conflict places differs slightly, in that it will only set
highPost instead of highPre.

As all inner instructions cost O(1), the final procedure cost will be the sum
of the two cycles, namely O(f + p).

3.2 Active Places Detection

Differently from the above, detection of active places is a complex (hence, also
heavier) procedure because it has to analyze – though partially – the dynamic
behaviour of the net.
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First of all, we need a procedure to build the marking graph, i.e., the state
space of the net.1 We represent such a graph as a list of structures. Each of these
structures is composed of a marking m, (where each marking is a set of places
represented in the same fashion as the initial marking in Net), and of a list of
pairs (t,m′), where t is an enabled transition and m′ is the marking reached by
firing t, i.e., m[t〉m′.

Under these modelling assumptions, the algorithm is composed of the follow-
ing instructions (each annotated with an estimate of its worst-case, computa-
tional cost):

• create the marking list list with the initial marking as its only element –
O(1)

• for each marking m in list: – O(2p) times
• for each transition t: – O(n) times

• if t is enabled at m: – O(p)
· compute the marking m′ reachable from m by firing t – O(p)
· if m′ is not already in list, add (m′, emptylist) to list – O(2p)
· add to the list associated to m the new pair (t,m′) – O(1)

The procedure acts mostly as a breadth-first visit: we add first the initial
marking, and start a cycle exploring the graph. For each marking in the list,
we compute the marking every enabled transition leads to and add the corre-
sponding pair (enabled transition, reached marking) to the currently examined
marking. When we meet a new marking, we add it to the queue and this will be
examined later as the cycle proceeds.

Since the heaviest operation in the innermost cycle is checking whether the
marking graph already contains a marking (O(2p)), the procedure’s cost is bound
to the product of this by the weight of the nested cycles over the places and
transitions of the net. Therefore the procedure’s final cost will be O(n22p)2.

Notice also that this procedure can take any marking as initial marking, which
means that it can compute every possible subgraph rooted in the given marking.
Furthermore, also a procedure for creating a marking graph restricted on a set of
transitions can be easily obtained from the above. It is easy to see this trivially
involves including only one more check and does not change computational costs.

We can now introduce a procedure that searches for active causal places over
the net. Intuitively, we do the following steps:

• find potentially causal places – O(f + p)
• for each place s among these: – O(p) times

1 Notice that, since each marking is a set of places, the marking graph can contain up
to 2p states. Hence, the state space we are dealing with is inherently exponential in
the number p of places.

2 A further optimization could be using a search tree instead of a list for representing
the marking graph, once an appropriate order on the places is introduced such that
induces an order on the markings as well. That would reduce look up time from
O(2p) to O(p), and the whole procedure would cost O(np2p).
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• scan the markings in the marking graph, and single out only those which
are reached through high transitions in •s. – O(22p)

• for each marking m among these: – O(2p) times
• create a new marking graph rooted in m and restricted on all tran-

sitions containing s in their postset – O(n22p)
• search among its markings for one enabling any low transition in s•.

If any is found, add s to the list of active causal places returned –
O(2p)

The active places so found perfectly comply with Definition 8. Indeed, for each
potential causal place we single out all markings reached through a high transi-
tion h in •s, that is m[h〉m′. Then, for each of these, we create a marking graph
rooted in m and restricted on all transitions belonging to •s. In such a marking
graph every marking is reached through a sequence of transitions that do not
produce new tokens in s (s �∈ t• for all t ∈ σ), therefore if we find one that
enables a low transition l ∈s•, we have m′[σl〉, and hence m[hσl〉.

The procedure is as heavy as computing the restricted marking graph (O(n22p))
for each marking (O(2p)) and each place in the net (O(p)), therefore it has a final
cost of O(pn23p) (or O(p2n22p) if the optimization in footnote 2 is implemented).

Finally, a procedure verifying PBNI+ would just call the previous one and
the one to detect active conflict places (which, intuitively enough, has same
computational costs). Needless to say, procedure’s final cost, in the worst case,
is O(pn23p) as well. Note that, since the number of states is O(2p), the procedure
for verifying PBNI+ (hence BNDC ) is actually cubic in the number of states.

Note, moreover, that in practice, the cost of checking PBNI+ is much lower:
(i) it might be the case that there are no potential causal/conflict places and
so in this case the complexity is O(f + p); (ii) the number of potential places
is usually small w.r.t. to p; and, in particular, (iii) the number of reachable
markings of the marking graph is generally much lower than 2p.

4 Petri Net Security Checker

The tool, named Petri Net Security Checker (PNSC for short) [9], was written
in Java [16], using the Eclipse development platform [17].

Figure 4 shows the tool’s interface, which provides the user, in a single working
environment, with different functionalities, that can be grouped into three main
categories: editing, execution and net properties checking.

4.1 Editing

First of all, PNSC allows the user to create, save and open Petri nets. For
these operations the tool uses the Petri Net Markup Language format [18],
the standard format for Petri nets interchange, thus ensuring compatibility with
external programs for further analysis of the nets (e.g. PIPE2 [19]).

By means of an intuitive toolbar, the user can draw the net. This includes
basic operations as drawing places and (both high and low) transitions, draw
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Fig. 4. Petri Net Security Checker main window

arcs between them and set the initial marking of the net. Furthermore, it is
possible to select portions of the net to carry out further operations as deleting,
cutting, copying and pasting.

Being designed for incremental editing of nets in conjunction with checking
their security, we developed different view modes to make comparison easier.
In fact, nets can be cloned and placed side by side to be edited and compared
concurrently, as shown in Figure 5.

Fig. 5. Comparison mode

In addition, the tool keeps track of all editing steps, so that each one can be
undone/redone.

4.2 Execution

It is also possible to graphically simulate net executions (commonly referred to
as token game animation).
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The user can either fire one of the currently enabled transitions (highlighted
in green as in Figure 4 and in Figure 5) by double clicking on it, or he can start
a timed random execution, which consists of firing, at regular time intervals, a
random transition among the enabled ones. In this case also, the tool keeps track
of all firing steps, so that it is possible to step back (and, afterwards, forward)
to previous (respectively, following) markings.

4.3 Properties Check

Finally, the most distinctive functionalities of PNSC pertain to the verification
of the net’s properties.

First, it is possible to check whether a net is simple, reduced and contact
free3. Whenever one of these does not hold, all nodes that do not comply with
it are highlighted in grey (as in Figure 6).

Fig. 6. A not contact-free net

The main functionality of our tool though is finding both potential and active
causal/conflict places in the net, using the algorithms described in Section 3.
When these checks are activated, potential causal/conflict places will be high-
lighted in orange, while active causal/conflict ones will be highlighted in red, as
shown in Figure 7, which depicts the net already discussed in Figure 1.

Furthermore, for each potential/active place found it is possible to pinpoint
and highlight the transitions and markings involved in the causality or conflict
situation from the rest of the net, as in Figure 8, allowing a better inspection of
the problem.

3 These checks are of minor complexity, namely O(np2), O(n2p) and O(pn2p),
respectively.
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Fig. 7. Potential causal/conflict places will be highlighted in orange, active ones in red

Fig. 8. Focus on the active conflict situation

5 Conclusion

In this paper we presented the tool Petri Net Security Checker for building
Petri nets with transitions of two different confidentiality levels and check a
structural security property on them, namely PBNI+.

The tool can actually check also some behavioural security properties, such as
SBNDC and BSNNI [2]. Interestingly enough, PBNI+ is proved to be equivalent
to the behavioural property BNDC which is not obviously decidable; hence, the
algorithms we presented in Section 3 offer a decidability proof for BNDC over
Elementary Net Systems. The only paper we know offering a decidability result
for BNDC is [11] where an exponential (in the number of states) procedure
is presented for labeled transition systems. Our result is actually for a rather
different model (unlabeled elementary net systems) and so it might be unfair to
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make a comparison; nonetheless, our decision procedure is cubic in the number
of states of the marking graph (in turn exponential in the number of places).

We considered, for theoretical reasons in the implementation of our tool, only
Elementary Net Systems, where places can contain at most one token. A natu-
ral generalization of this approach is to consider Place/Transition systems, where
each place can contain more than one token. Such a class of nets is particularly
interesting because the marking graph associated to a finite P/T net system
may be infinite. In [3] Busi and Gorrieri claim that PBNI+ can be easily defined
also on this richer class of nets and checked in a finite amount of time, and
keep on being the same as BNDC and SBNDC also for P/T net systems. This
is particularly interesting because bisimulation is not decidable over P/T nets,
hence BNDC as well as SBNDC are not checkable at all! This extension would
also possibly provide the first result of decidability of a behavioural information
flow security property, like BNDC, on a class of infinite state systems. It is likely
that an extension of PBNI+ to cover P/T nets also could be easily followed by
a corresponding extension of the tool.
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Abstract. In this paper we present a fully formal correctness proof of
a multi-party version of the Needham-Schroeder-Lowe public key au-
thentication protocol. As the protocol allows for an arbitrary number
of participants, the model consisting of all possible protocol executions
exceeds any bounds imposed by model checking methods. By modelling
the protocol in the CSP-framework and using the Rank Theorem we ob-
tain an abstraction level that allows to give a correctness proof in PVS
for the protocol with respect to authentication, for the protocol running
in parallel in multiple instantiations, possibly with different numbers of
agents for each instance.

This specific result shows how, more generally, the formalisation in
CSP and application of the theorem prover PVS make full formal verifi-
cation of multi-party security protocols possible.

1 Introduction

Mathematical modelling of security protocols and their requirements allows to
reason about their correctness, under clearly stated assumptions. With formal
verification methods subtle flaws of security protocols have been discovered and
made expressible (a notable example being [1]).

A well-developed formal verification method is the use of model checkers.
Although the capacity of model checking tools has increased significantly by the
development of both hardware and theory, they require the protocol model to
remain within certain practical bounds. For protocols designed for an arbitrary
number of participants, the trace model can easily grow beyond these bounds.
Therefore, multi-party protocol verification requires a higher abstraction level.

In this paper, we demonstrate how the (interactive) theorem prover PVS (Pro-
totype Verification System) [2] can be successfully used for the verification of a
multi-party authentication protocol. We analyse the generalisation, introduced
in [3], of the Needham-Schroeder-Lowe public key protocol (NSL). It has been
checked for a strong authentication requirement (injective synchronisation [4])
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with the model checker Scyther [5] for some small numbers of participants [6].
While [6] also gives a general proof on paper in terms of the operational seman-
tics underlying Scyther, leaving some steps to intuition, we here present a first
complete machine-checked correctness proof. For the proof, we used the frame-
work in Communicating Sequential Processes (CSP) for security protocols and
the rank function approach to prove authentication properties [7,8,9,10], and
their implementation [11] in PVS. As a contribution to this framework, we up-
dated the implementation for a current version of PVS (from version 3.2 to 4.2)
and made the updated implementation available for use at [12]. Furthermore, we
believe the proof presented here is the first fully formalised correctness proof for
a multi-party authentication protocol, and the first complete correctness proof
in the PVS-implementation to be available.

Related work. The rank function approach has succesfully been applied before
to two-party protocols (NSL in [7], Woo-Lam in [13]). Another multi-party pro-
tocol, the Diffie-Hellman group protocol A-GDH.2, was analysed using the rank
function approach in [14]. However, as [15] proved this protocol to be essentially
flawed, [14] only finds a rank function (and thereby a correctness proof) for a
restricted version of the protocol, assuming a weak intruder. From the failure to
find a valid rank function for the original protocol, an attack was derived.

The theorem prover PVS has also been used before in the context of verifica-
tion of multi-party protocols, viz. in [16] for an intrusion tolerant group commu-
nication protocol. However, there the relevant authentication requirements are
only checked for some concrete instances using a model checker (Murphi). In the
seminal paper [17] on using the theorem prover Isabelle for the verification of
security protocols, a recursively defined multi-party authentication protocol is
verified in an instantiation for 3 agents (loc.cit. Ch.6).

The use of signalling events to specify different authentication properties in
CSP is discussed in [18]. The notion of authentication we prove in this paper
amounts to injective agreement, which is weaker [4] than the property proven
in [6]: injective synchronisation. It is an open question whether our result can
be improved to injective synchronisation within the rank function approach.

Heather and Schneider have developed theory to systematically find a rank
function for a protocol with its corresponding authentication requirements [8].
However, their automated implementation of this theory only works for two-
party protocols (possibly involving a server) and although the theory is certainly
capable of dealing with multi-party protocols, it requires too much effort to apply
manually in our opinion.

Structure of the paper. In the next section, we introduce the multi-party gen-
eralisation of NSL we have verified. In Sect. 3 we describe the components of
the CSP-framework that constitute the protocol model and its requirements, in
order to show in Sect. 4 how these were filled in to build the PVS-proof.

For considerations of space, we assume familiarity with standard security pro-
tocol notions (nonces, public key cryptography, protocol roles) and CSP (cf. [19]
for an extensive account), and we omit PVS-code: the code is available at [12].
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2 A Multi-party Authentication Protocol

In this paper we analyse a generalisation of the well-known Needham-Schroeder-
Lowe public key protocol (NSL)[1]. This generalisation aims to authenticate all
participants of a protocol run to each other. Authentication informally means
that after termination of a protocol run, all users involved are sure of each other’s
identity. This generalisation is a variation of the generalisation given by Cremers
and Mauw [6]. We will refer to the original generalisation as the Generalised NSL
public key protocol (GNSL) and the generalisation used here as GNSL’.1

As an example, an instantiation of the protocol for four users can be seen
in Fig. 1, given as a Message Sequence Chart (MSC).2 The formal protocol
definition, in the style of [6], is shown in Fig. 2.

na

a

nb

b

nc

c

nd

d

{|na, a, c, d|}pk(b)
{|na, nb, a, b, d|}pk(c)

{|na, nb, nc, a, b, c|}pk(d)

{|na, nb, nc, nd, b, c, d|}pk(a)

{|a, c, d, nb, nc, nd|}pk(b)
{|a, b, d, nc, nd|}pk(c)

{|nd|}pk(d)

protocol GNSL’ (instantiated for 4 users)

Fig. 1. The adaptation of the GNSL protocol studied in this paper (GNSL’), instanti-
ated with four users

We see that in the first chain of messages that is sent around (the MsgA’s)
every user adds his nonce to the nonces he has received and forwards them
along with information on the protocol run’s participants. In the second chain
of messages (the MsgB’s) each user gets his nonce back and forwards the other
nonces along. Since each user sends his nonce to the next user in line, encrypted
with that user’s public key, each user personally authenticates his successor, but
delegates authentication of all other users to each of their predecessors.

Because of this delegation, the authentication property only has to hold when
the users involved (in the property) are honest [6]. Honesty of a user means that
1 The original generalisation does not include user identities in the second chain of

messages. User identities are still omitted here in the last protocol message so that the
protocol remains a generalisation of NSL. For the underlying reasons of considering
the protocol version with user identities, please refer to [20].

2 MSC made with [21].
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n0

u0

ni

ui (for 0 < i < q − 1)
nq−1

uq−1

MsgA(0)
MsgA(i− 1)

MsgA(i)
MsgA(q − 2)

MsgA(q − 1)

MsgB(0)
MsgB(i− 1)

MsgB(i)
MsgB(q − 2)

protocol GNSL’

where MsgA(i) = {|[n0 . . . ni], AL(next(i))|}pk(next(i)) 0 ≤ i < q

MsgB(i) =
{ {|AL(next(i)), [ni+1 . . . nq−1]|}pk(next(i))

{|[nq−1]|}pk(next(q−2))

0 ≤ i < q − 2
i = q − 2

next(i) = u(i+1) mod q

AL(x) = [u0, u1, . . . , uq−1]\{x}

Fig. 2. The definition of GNSL’ for a run with q users (2 ≤ q). Slightly adapted from
the definition of GNSL in [6].

he acts according to the protocol, will ignore any messages offered to him that
do not fit into the protocol and is not controlled by the enemy, in the sense
that the enemy does not possess his secret key. The network over which the
protocol is communicating may be in control of an enemy (and arbitrarily many
dishonest users). Note that such a requirement still allows for scenarios such as
the famous attack on the Needham-Schroeder public key protocol (as in that
case the property is ‘authentication of a user a to b’, who are both honest, even
though the attack involves dishonest users) [1].

Note that the order of nonces and identities in the second chain of messages
is reversed when compared to the order in the first chain of messages. This
is to introduce a structural difference between both chains, so a message from
the second chain will not be misinterpreted as a message from the first chain,
and vice versa, assuming messages can be typechecked. Being able to typecheck
messages is a reasonable assumption, as in practice, protocol messages can simply
be tagged with typechecking information [22].

3 Technical Background

In this section, we present the technical background that is necessary for the
treatise of our analysis of GNSL’. To verify its authentication properties, we
have made use of Schneider’s Rank Theorem [10] which applies to a CSP model
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of a network controlled by a Dolev-Yao enemy [23]. Firstly we will introduce this
network, followed by the Rank Theorem and a short discussion on authentication.

3.1 Network Model

Here we present a standard Dolev-Yao network model, i.e. a network that is
controlled by a virtually omnipotent enemy that can block, reroute, duplicate,
fake and eavesdrop on messages. We use the CSP model for this network as
presented in [8], as it is this model to which the Rank Theorem applies. This
model has four parameters, namely

– a message datatype,
– a message generation relation,
– the enemy’s initial knowledge, and
– the user processes.

The first parameter prescribes the types of the messages that are communicated
over the network.

The two subsequent parameters of the network model belong to the process
Enemy , modelling the Dolev-Yao intruder. These parameters are a set of mes-
sages Init , representing the enemy’s initial knowledge, and a message generation
relation � that prescribes which new messages can be derived from existing ones.
S � m denotes that message m can be formed with knowledge of all messages
in set S. This relation is used to model the enemy’s ability to fake messages.
With � as the CSP operator for choice, the entire Enemy process is:

Enemy(S) =
�

i, j ∈ U
∧ m ∈ Message

trans .i.j.m→ Enemy(S ∪ {m})

��
i, j ∈ U ∧

m ∈ Message | S � m

rec.i.j.m→ Enemy(S) .

The last parameter is a set U , which contains the identities of all those who
will use the network. For every identity u ∈ U , there is a CSP process U (denoted
in the upper case of the corresponding lower case user identity) describing the be-
haviour of user u. Each process U communicates by transmitting messages over
channel trans.u and receiving messages over channel rec.u. The ability for users
to perform multiple, concurrent runs of a protocol is modelled by partitioning
nonces among users and then further partitioning them among every protocol
role [8], parametrising the user processes on these nonces and interleaving these
processes over an infinite set of nonces for each role and user. Then, there are
infinitely many processes (one for each nonce). Due to the nature of the parti-
tioning, this models each user being able to perform infinitely many concurrent
runs and being able to act according to any protocol role. Furthermore, by dis-
tinctness of the sets of nonces for each user and role, the perfect cryptography
assumption that each nonce is truly random is incorporated in the model.
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Inspired by the naming conventions of Heather and Schneider [8], upper case
U r(n) will provide the process of user u (lower case) fulfilling role r (from a
set of protocol roles R) in a protocol run using nonce n. User u’s nonce n will
come from the set N r

u , an infinite subset of all nonces N . With � denoting CSP
interleaving, a full user process (for any u ∈ U) is then defined as:

U =
�

r∈R

⎛⎝ �
n∈N r

u

U r(n)

⎞⎠ .

As an example, consider a possible process definition for the initiator role of NSL
(in the right part of Fig. 4):

U initiator (n) =
�

j ∈ U∧
nj ∈ N

trans.i.j.{|n, i|}pk(j) →
rec.i.j.{|n, nj, j|}pk(i) →

trans.i.j.{|nj|}pk(j) →
commit(i, j, n)→ Stop .

In order to model a network with a Dolev-Yao enemy, all communication
passes through the enemy. This is accomplished by putting all user processes
in parallel with the process modelling the enemy (Enemy) and having them
synchronise on the trans and rec events. The CSP description of the network is
given in (1). A visualisation of the network is shown in Fig. 3.

Network =

( �
u∈U

U

)
|[ {trans, rec} ]| Enemy(Init) . (1)

3.2 Authentication

To illustrate the notion of ‘authentication’, we show NSL on the left in Fig. 4.
Its goal as a security protocol is to authenticate user a to user b (and vice

Fig. 3. A graphical representation of a network, where all communication is controlled
by the enemy. u0 to ui represent honest users whereas u{k|i<k} represent users con-
trolled by the enemy.
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na

a

nb

b

{|na, a|}pk(b)

{|na, nb, b|}pk(a)

{|nb|}pk(b)

protocol Stripped NSL
na

a

nb

b

{|na, a|}pk(b)

running(a, b, na)

{|na, nb, b|}pk(a)

{|nb|}pk(b)

commit(a, b, na)

protocol Stripped NSL with signals

Fig. 4. The (stripped) Needham-Schroeder-Lowe public key protocol (NSL)

versa). To formalise such a goal, we add signalling events running and commit
to the protocol (see the right part of Fig. 4), representing respectively a user’s
involvement in and completion of a particular protocol run. Authentication can
then be formalised by demanding that, on any network running the protocol, no
commit -event may have occurred without a corresponding running-event having
occurred [9]. So we define a predicate precedes for sets of events R and T , acting
on a process trace t:

R precedes T ≡ t � T �= 〈〉 ⇒ t � R �= 〈〉 ,

then we want for all possible traces of the Network process, instantiated with
NSL, that

〈∀i, j, n : i, j ∈ User ∧ n ∈ Nonce :
running(i, j, n) precedes commit(i, j, n)〉 .

Note that the informal term ‘authentication’ has many formalised interpreta-
tions [24,18,4]. The formalisation given here corresponds to non-injective agree-
ment [10].

3.3 Rank Theorem

Schneider’s Rank Theorem was first introduced in [7]. Here we use a slightly up-
dated form of the theorem from [10,8], which we shall only briefly elaborate upon.
For more information on the Rank Theorem, please refer to either of [10,8,11].

Theorem 1. With the aforementioned Enemy process, initial knowledge Init,
set of users U (with corresponding processes) and for sets of events R and T , if
I is a predicate on messages (including signalling events) such that:
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R1: 〈∀m : m ∈ Init : I(m)〉
R2: For all sets of messages S, (〈∀m : m ∈ S : I(m)〉 ∧ S � m′)⇒ I(m′)
R3: 〈∀m : m ∈ T : ¬I(m)〉
R4: 〈∀u : u ∈ U : U |[ R ]| Stop sat maintains I〉

then
(�

u∈U U
)
|[ {trans, rec} ]| Enemy(Init) sat R precedes T .

The intuition is that the predicate (or ‘rank function’) I will hold for all ‘safe’
messages (messages the enemy may gain knowledge of). In addition, the pred-
icate will fail for all ‘unsafe’ messages (messages that the enemy must not
obtain).

The first condition, R1, can be interpreted as requiring that the enemy’s initial
knowledge is safe. R2 expresses that no unsafe messages can be derived from a
set of safe messages and R3 demands that the messages in T are considered
unsafe. Condition R4 is a bit more complicated, as it contains the predicate
sat maintains I. The definition of a process P satisfying a specification S is:

P sat S ≡ 〈∀t : t ∈ traces(P ) : S(t)〉 ,

S is therefore a predicate on traces. The maintains I predicate is specific for
this setting and states that all transmission events in a trace must satisfy I,
unless there has been a reception event not satisfying I beforehand. As a whole,
R4 expresses that no user process, when blocked on the events in set R (meaning
it will halt when trying to perform an event from R), may produce an unsafe
message if it has not received one earlier.

The rank theorem turns proving a trace predicate of the form ‘R precedes T ’
into finding a predicate that satisfies conditions R1–R4. As we have chosen to
formalise authentication as such a predicate, our task is reduced to providing
the parameters for the network model and finding such a predicate.

3.4 PVS

The network model and Rank Theorem have been implemented in PVS by
Evans [11]. We have obtained this implementation from him through personal
correspondence and have updated it to the current version of PVS (4.2). Along
with the complete code belonging to this paper (in the same PVS version) it is
available online [12].

4 Verification

In this section we discuss the verification of the GNSL’ protocol, within the
network model of Sect. 3.1. The authentication property to prove is that each
participant in a protocol run with q participants (where 2 ≤ q) is authenticated
to each other participant, even if the protocol is running in a hostile environment
and when arbitrarily many instantiations of the protocol (with any amount of
users) are running in parallel. Code of the PVS theory corresponding to the
analysis is available online [12].
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For application of the rank theorem, we instantiated the network model by
providing the message datatype, message generation relation, the enemy’s initial
knowledge and the user process. Each of these will be provided in the upcoming
subsections. After that, we present a rank function that satisfies the conditions
of the Rank Theorem.

4.1 Messages

This protocol uses standard concepts found in most security protocols (user
identities, nonces, keys, concatenation, encryption). Furthermore, messages in
GNSL’ contain sequences of nonces and user identities of arbitrary length, which
can be elegantly modelled using lists, rather than by using concatenation as this
does not distinguish between types. We therefore introduced a list-type explicitly
for nonces and one explicitly for user identities. This led to the following message
datatype:

Key = SK | PK
Message = U | N | [U , . . . ,U ] | [N , . . . ,N ]

| Message .Message | Key(Message) .

4.2 Message Generation Relation

The message generation relation (�) describes how the enemy may construct a
new message m from the set S of messages he has in his possession. The enemy
can do this through encryption3, by concatenation of messages or by extracting
a part from such a concatenation:

m ∈ S ⇒ S � m
S � m1.m2 ⇔ S � m1 ∧ S � m2

S � k ∧ S � m⇒ S � {|m|}k .

The enemy must also be able to deal with the information contained in lists. He
must be able to extract this information from lists and make new lists containing
known information, so with ++ denoting list concatenation:

S � m⇔ S � [m]
S � l1 ∧ S � l2 ⇔ S � l1 ++ l2

4.3 Proof Goal

We have verified a single instantiation of GNSL’, namely an instantiation for
p users (where p is left unspecified, except that p ≥ 2), running concurrently
with other instantiations of any size. Because p is further left unspecified, all
proofs on this p-instantiation are valid for all instantiations of GNSL’ involving
two or more users.

We observed, looking at Fig. 2, that there are three distinct types of users in
any instantiation of GNSL’:
3 In PVS, decryption is treated as encryption with an inverse key.
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u0: the ‘first’ user in the chain, the ‘initiator’
up−1: the ‘last’ user in the chain

ui (0<i<p−1): a ‘middle’ user, any user between the first and last user (if p = 2,
there is none)

After this observation, we split up the proof into pairs, as shown in Fig. 5, where
each arrow represents a proof of one of the aforementioned categories of users
being authenticated to another category. In this paper, we treat only the proof
of the last user being authenticated to the first user (*). The other proofs are
similar in nature and all have been completed in PVS.

Fig. 5.

Signalling events were added to the user processes, as discussed in Sect. 3.2.
CSP processes for each of the three categories of users, including these signals,
are given in Fig. 6. These processes are combined in the next section to form a
process describing the entire protocol.

Per the protocol definition in [6], its authentication requirements need only
be satisfied if they contain exclusively honest users [6], therefore the set U will
contain a subset of distinct, honest users hu0, . . . , hup−1. The analysis involves
an authentication requirement with these users (in ascending order). Since these
users are arbitrarily chosen and their processes identical, the proof holds for any
authentication involving p honest users [8].

Protocol roles are defined as a numbered tuple (q, i) where q is the size of
the protocol instantiation and i (0 ≤ i < q) enumerates the q distinct roles in
that instantiation. The concrete proof goal, for the protocol extended with the
signalling events, is:

〈∀n : n ∈ N (p,0)
hu0

: runningp−1([hu0, . . . , hup−1], n) precedes
commit0([hu0, . . . , hup−1], n)〉 .

(2)

We have proven this goal by proving it for one particular nonce [8], which we
refer to as nonce n0.

4.4 Enemy’s Initial Knowledge

The enemy’s initial knowledge must reflect that users hu0, . . . , hup−1 are honest.
That means he is not in possession of any of their secret keys. The nonce n0 is
also assumed to be secret and therefore unavailable to the enemy. Apart from
these restrictions, the enemy knows all identities, nonces and keys:

Init = U ∪ N\{n0} ∪Key\{sk(hu0) . . . sk(hup−1)} .
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4.5 User Processes

The last parameter to the network model is the process modelling users running
the protocol. By simply combining the processes shown in Fig. 6 through inter-
leaving, we obtain the process in (3). Because we interleave over the set of nonces
that is constructed as discussed in Sect. 3.1, we are indeed modelling arbitrarily
many users running the protocol in different sized instantiations concurrently.

�
u∈U

⎛⎝ �
q∈{x|2≤x}

⎛⎝ �
i∈{x|0≤x<q}

⎛⎝ �
n∈N (q,i)

u

U (q,i)(n)

⎞⎠⎞⎠⎞⎠ . (3)

By using the reasoning followed by Heather and Schneider in [8] we have
altered the definition of process U (q,0)(n) given in Fig. 6. We have split off the
case when nonce n0 is used and shown that in that particular case, we can fix
the users in the process to be hu1 . . . hup−1. The renewed definition is:

U (q,0)(n) = if n �= n0 → ‘original process’ of Fig. 6
[] n = n0 → as U (p,0)(n) according to the definition of Fig. 6,

but with [u1, . . . , up−1] = [hu1, . . . , hup−1]
fi

(4)

Note that n = n0 also implies that u0 = hu0 and the performed protocol role
is (p, 0), due to the fact that n0 ∈ N (p,0)

hu0
.

4.6 Finding a Rank Function

Since a rank function assigns boolean values to messages (and signalling events),
we say of a message that it has either a ‘false’ or a ‘true’ rank. We have found
a rank function ρ that satisfies conditions R1–R4 of the Rank Theorem by the
reasoning presented in this section.

To satisfy R3, an explicit clause in ρ assigns a false rank to a commit signal
if it corresponds to commit0([hu0, . . . , hup−1], n0). To satisfy R4, the message
received by process HU 0(n0), that outputs this false ranking commit signal,
must be of a false rank. To satisfy R2, one of its atomic parts must rank false
as well. Luckily, nonce n0 is deemed secret, meaning it is not in the enemy’s
initial knowledge, and is therefore given a false rank without the risk of com-
promising R1. Everything else is given a true rank. For list, concatenation and
encryption structures, the rank function acts as expected on their arguments:

ρ(commitx([uv, . . . , uw], n)) ≡ x �= 0
∨ [uv, . . . , uw] �= [hu0, . . . , hup−1]
∨ n �= n0 (5)

ρ(n) ≡ n �= n0 (6)
ρ([nv, . . . , nw]) ≡ n0 �∈ [nv, . . . , nw] (7)

ρ(m0.m1) ≡ ρ(m0) ∧ ρ(m1) (8)
ρ({|m|}k) ≡ ρ(m) . (9)



238 R. Verhoeven and F. Dechesne

However, there is a problem with the way ρ is defined on encryption struc-
tures in (9). Although this definition ensures that the message process HU 0(n0)
receives (containing n0) evaluates to a false rank, it also gives a false rank to
all other messages containing n0. As such messages are passed around in the
protocol run in which users hu0, . . . , hup−1 communicate with each other and
hu0 uses nonce n0, requirement R4 is not met. Therefore these messages, up
to the point where process HU p−1 is blocked on the running-event, need to be
explicitly given a true rank (see Fig. 7). HU p−1 respects R4 because it is blocked
on the running-event before outputting the false ranking message to hu0.

n0

hu0 hui (for 0 < i < p− 1) hup−1

MsgA(0)
MsgA(i− 1)

MsgA(i)
MsgA(p− 2)

runningp−1([hu0, . . . , hup−1], n0)

MsgA(p− 1)

commit0([hu0, . . . , hup−1], n0)

MsgB(0)
MsgB(i− 1)

MsgB(i)
MsgB(p− 2)

Fig. 7. The GNSL’ protocol run with nonce n0 between hu0, . . . , hup−1. The dotted
arrows are the messages which are explicitly given a true rank.

Defining ρ on encrypted messages in such a way necessitates the need for a
false rank to all secret keys of the honest users, as otherwise condition R2 can be
violated by ‘decrypting’ one of said messages to produce n0. The rank function
of (5)–(8) was completed by adding the following clauses:

ρ({|m|}k) ≡ ρ(m)
∨ 〈∃i : 0 < i < p : k = sk(hui)

∧ 〈∃l : l = [nx, . . . , nx+i] :
m = (n0 ++ l).[hu0, . . . , hu i−1, hu i+1, . . . , hup−1]〉〉

(10)

ρ(sk(u)) ≡ u �∈ {hu0, . . . , hup−1} . (11)

Note that the fact that we are prying into the structure of an encrypted
message enforces the typechecking assumption made in Sect. 2.
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4.7 Proof

We verified the fact that ρ found in Sect. 4.6 does indeed satisfy the requirements
of a rank function by transferring our CSP model into Evans’ formalisation of
CSP in PVS [11]. Requirements R1 and R3 can be proved by simply expand-
ing definitions and R2 is proved by structural induction on messages. Require-
ment R4 is proved per protocol role and for each protocol role per event, where it
is proved that a transmission event has true rank when assuming that previous
reception events had true rank. It is the most labour-intensive requirement to
check, as many cases are to be distinguished (e.g. a received message’s assumed
true rank may in fact be false, producing a contradiction, or it might indeed
be true, but for several different reasons, based on the rank function). Using a
theorem prover is useful here, as it enforces the consideration of each possible
case, where it is easy to oversee a case when proving by hand. It can also take
care of bookkeeping, in particular the repeated expansion of definitions.

The amount of interaction required for proving the general multi-party case
turned out to be significantly more than for the standard two-party NSL-protocol,
or for a finite (e.g. 4-user) instantiation of GNSL’, mainly caused by proof obli-
gations following from the message-list datatype. Our use of lists necessitated the
development of a separate PVS theory containing lemmata for lists, specific to
this context.

5 Conclusion and Future Work

We have shown for a specific multi-party authentication protocol, how formali-
sation in CSP and application of PVS make its full formal verification possible.
The existing framework turned out to be adaptable to accommodate the arbi-
trary numbers of participants in the interleaving instantiations of the protocol.
The new element in the PVS-implementation of the protocol specification, was
the addition of a message-list datatype. We have updated the existing PVS-
implementation for the rank function approach to protocol verification, and
made it readily available for further use at [12]. As a general result, this pa-
per demonstrates that the formalisation in CSP and its implementation in PVS
can be used for full formal verification of multi-party security protocols.

We expect that proving security properties of other non-recursive multi-party
security protocols involving the same cryptographic primitives (nonces and
public-key cryptography) can be tackled in an almost identical way as the way
presented in this paper and that much of the PVS code will be reusable in other
analyses.

5.1 Injective Agreement

In this paper, we have proven the authentication property of non-injective agree-
ment for the GNSL’-protocol, by proving the property in (2). Yet we can show
that we have in fact proven the stronger property of injective agreement. For
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injective agreement, we require that each protocol run of an authenticator cor-
responds to a unique run of the authenticee, i.e. the mapping of authenticator
runs to authenticee runs is injective [24]. In a protocol that establishes injective
agreement, an enemy replaying messages of an old protocol run will not cause
an honest user to believe he has successfully concluded a new protocol run.

When using signalling events, proving injective agreement requires that the
number of commit -events never exceed the number of corresponding running-
events in any trace [18]. In the case of our proof goal in (2), it is easy to see that
the commit -event can occur at most once. This is because only honest users can
generate signalling events [9] and the commit -event in question contains hu0’s
secret nonce, so only hu0 can generate it. Since hu0 is assumed to use a nonce
only once, the commit -event can only occur once and since we have already
proven that it is always preceded by at least one corresponding running-event,
we have reached injective agreement.

Recently [25], the operational semantics in terms of which the even stronger
property of injective synchronisation is proven for the protocol in [6], has been
implemented in the theorem prover Isabelle/HOL. Once possible, it would be
highly interesting to formalise the proof of [6] in Isabelle/HOL, and compare
both the proof and the formalisation process with the work presented in this
paper.
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The Append-Only Web Bulletin Board
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Abstract. A large number of papers on verifiable electronic voting that
have appeared in the literature in recent years have relied heavily on the
availability of an append-only web bulletin board. Despite this widespread
requirement, however, the notion of an append-only web bulletin board
remains somewhat vague, and no method of constructing such a bulletin
board has been proposed.

This paper fills the gap. We identify the required properties of an
append-only web bulletin board, and introduce the concept of certified
publishing of messages to the board. We show how such a board can be
constructed in order to satisfy the properties we have identified.

Finally, we consider how to extend the scheme to make the web bul-
letin board robust and able to offer assurance to writers of the inclusion
of their messages.

Although the work presented here has been inspired and motivated
by the requirements of electronic voting systems, the web bulletin board
is sufficiently general to allow use in other contexts.

1 Introduction

A number of verifiable electronic voting systems require specific data to be made
publicly available after or during the election [1,2, 3,4, 5, 6,7,8, 10, 11, 12, 13, 14,
15, 17, 18]. Sometimes the means of publication is left undiscussed; where it is
raised, it is often referred to as an append-only web bulletin board. The existence
of such a publication vehicle is typically assumed, but the required properties of
the web bulletin board are usually not given significant air time, and certainly no
attempt has been made at a systematic treatment or at providing a mechanism
for implementing an append-only web bulletin board. This is perhaps rather
surprising considering the sheer number of papers that rely on the existence of
something along these lines.

Our aim here is to identify the properties that the append-only web bulletin
board needs to possess, and then to show how one can be built.

1.1 The Web Bulletin Board

The basic idea that emerges from reading through the many papers listed above
is as follows. There are three types of agent involved in the system: the web
bulletin board, readers, and writers. The web bulletin board needs to allow various
parties—the writers—to publish information on the board, so that it can be read

P. Degano, J. Guttman, and F. Martinelli (Eds.): FAST 2008, LNCS 5491, pp. 242–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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by any of the readers. The board is append-only in the sense that once something
is published it should never be removed or altered, and when something new is
published it should be placed at the end of the ordered sequence of messages
listed on the board. If something is inserted out of sequence, removed, or altered,
this needs to be detectable.

The board is not responsible for generating the content, of course; that is
down to the parties that write to the board. When they write something, they
provide a digital signature to enable others to verify the origin of the message.
The board is, however, responsible for ensuring that signatures are correct, and
for ensuring that the content of the board does not change after publication. In
the context of a national election, there would presumably be laws governing
these responsibilities, with severe sanctions for contravention.

It is, of course, very hard to build a system that can guarantee that infor-
mation written to it cannot be lost. If the published information is stored in
only one place, and that repository suffers catastrophic failure, it might not be
possible to recover it, though it might be possible to prove that information has
indeed gone missing. For this reason, the first part of this paper looks only at
being able to detect corruption rather than being able to prevent it. This issue
of fault tolerance and disaster recovery is one that we will return to in a later
section.

The possibility of collusion between a writer of a message and the board itself
should be borne in mind. We will ensure that nothing can be published to the
board unless it is signed by both the writer and the board; but even if the two
collude, we should still have protection against insertion, deletion or alteration
of messages.

1.2 Motivation

The main motivating context, as we have suggested, is that of electronic voting.

Electronic voting. In a verifiable electronic voting system, there are usually
various parties who collectively transform the encrypted votes into an election
result. Verifiability of the system then rests on allowing these parties to publish
certain information that enables anyone (voters, the political parties, the media,
election observers, and so on) to check various claims; for example:

– all the encrypted votes [6,7,17] might be published, so that voters can check
that their votes have been included in the process;

– all the decrypted votes might be published (without anyone knowing the
link from encrypted vote to decrypted vote), so that anyone can check the
tallying;

– those involved in the decryption might publish zero-knowledge proofs [19]
or other information as evidence that they have done their jobs without
underhand tactics [6,7].

Other applications. Although electronic voting provides the primary motiva-
tion, our scheme has other applications. For instance:
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1. Auctions. In the auction context the bidder wishes to place a bid at a par-
ticular time, based on a current (opened or closed) bid and receive proof
of receipt of the bid. The auctioneer wants protection against allegations of
malfeasance, and thus needs to publish a proof that the sequence of bids has
not been manipulated in any way.

2. Auditable discussion boards. It may be desirable to create a web-based dis-
cussion board or forum that provides an auditable history of the discussion.

3. System logs. In some contexts, it might be useful to have a verifiable online
log of the activities of a distributed system. Typically, log files are written
as plain text files, with full trust invested in the system writing the log;
sometimes we may wish to weaken the level of trust required in the logger.

4. Petitions. One current fashion seems to be signing of online petitions. How-
ever, there is usually no security provided at all: no-one can verify that the
signatures are not faked, and those who do sign cannot verify that the text
of the petition is not subsequently changed. It would clearly increase trust
in the final signed petition if we could find a way round these problems.

1.3 Roadmap

The contribution of this paper is split into Sections 2 and 3. In Section 2, we
introduce the certified publishing concept, identify the properties required of the
web bulletin board, and show that our system satisfies those properties. Section 3
then discusses how to extend this with more thorough robustness properties.
Finally, we sum up and give conclusions in Section 4.

2 Certified Publishing

The web bulletin board must accept submissions only from accredited writers;
similarly it must protect itself from accountability that arises from the published
data by keeping proof of the origin of messages.

In this section, we start by listing the properties we require of our web bulletin
board; then we introduce our scheme and show that it satisfies these properties.

2.1 Required Security Properties

We identify a number of security properties that an append-only web bulletin
board should satisfy.

A web bulletin board is a sequence 〈wbb1, . . . , wbbn〉, where each wbbi con-
tains a message, along with some metadata about the message. We will leave
this metadata abstract for the moment, and give details in Section 2.2 of what
metadata the web bulletin board publishes in our scheme.

Unalterable history

Definition 21. A web bulletin board has unalterable history if, whenever a
reader retrieves the contents of the board at time T0 and again at time T1, it
is able to check that the board it read at T0 is a prefix of the board at T1, in the
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sense that the board at T1 has the same content as previously, except for possibly
having had messages appended. If this is not the case, the reader can detect that
the board has become corrupted.

Definition 22. A web bulletin board has certified publishing if whenever a
reader retrieves the contents of the board, either he can detect corruption of
the board, or he will have proof, for each message on the board:

1. of who wrote the message;
2. that the writer intended the message to be published with the stated timestamp

and at this point in the board’s sequence of messages.

These guarantees should hold even if the bulletin board and the writer collude.

Proof of timeliness of acceptance. The following guarantees enable agents
to verify that messages were accepted for publication in a timely fashion.

Timeliness is difficult to tie down in a clean fashion, because networks are
usually asynchronous, and we have to allow for latency. Although we would like
to say, for instance, that if a reader checks the board at time T , he should not
subsequently discover a new message published with an earlier date of writing
than T , we must allow for the possibility that a writer has constructed a message
with a timestamp of T − δ for some small δ, and the message is still in transit,
and so has not yet appeared on the board. For this reason, we introduce some
small, fixed security parameter ε that appears as a parameter to the following
definitions. Increasing the value of ε reduces the number of times the board
has to reject a message because its claimed publication date is too old by the
time it arrives, but increases the extent to which the web bulletin board can
deliberately delay decisions on whether to publish a particular message. We do
not anticipate that this will cause problems: it should be possible to choose a
value of the order of a few milliseconds and still have decent protection against
latency. If a message is rejected because the delay exceeds ε, the message can
always be sent again with a fresh timestamp.1

Definition 23. The bulletin board has timely publication if, whenever a reader
views the web bulletin board at a time T , and a message is subsequently published
to the web bulletin board with a claimed publication date that is earlier than T−ε,
the reader can prove that the board has been corrupted.

The above definition is not subsumed under Definition 21. Here, we are dealing
with the time of publication; there, we were dealing with the order. Definition 23
says essentially that once someone has viewed the board, nothing more can be
published to the board with a publication date of before the time of reading.

Definition 24. Suppose that the web bulletin board currently contains λ mes-
sages. Suppose further that writer W attempts at time T to write message m as
1 In fact, we could get away with sending only a fresh timestamp and signature. This

might save a lot of time if the message was very long.



246 J. Heather and D. Lundin

message λ + 1, and that W ′ attempts at time T ′ to write m′ as message λ + 1.
If in such cases the later of the two messages always wins—that is, if whenever
(without loss of generality) T + ε < T ′, and the earlier message m is published to
the board, W ′ can prove that the board has become corrupted—then we say that
the board has early rejection. (If |T − T ′| < ε then we get no guarantees.)

This last point initially seems strange: one might expect the earlier message to
win over the later message. But it makes very little difference which wins, as
long as there is a clear and enforceable policy. The practical upshot of forcing
the later message to take priority is that if the web bulletin board is to claim
that the first message never arrived, it will have to make this decision before
allowing any other writers to submit messages. This prevents the web bulletin
board from collecting a pool of potential next messages from various writers,
and delaying its decision over which to publish until it has received a favourable
one.

2.2 The History

The implementation of the bulletin board in our scheme is as follows. The web
bulletin board stores a sequence 〈wbb1, . . . , wbbn〉, indexed starting from 1, where
each wbbi = 〈mi, Ti,Wi, Hi,WSigni, BSigni〉, where mi is a message, Ti is a
timestamp, Wi is the name of a writer, and Hi is a hash, and WSigni and BSigni

are signed terms. The intention is that Ti will store the writer Wi’s timestamp
at the time of writing message mi, Hi is a hash that identifies the message as
occurring at this point in the sequence, WSigni is the writer’s commitment to
the message, and BSigni is the board’s commitment to accepting the message
for publication.

Definition 25. Such a sequence is called a history.

Definition 26. The web bulletin board is required to ensure that its history al-
ways satisfies the following invariant:

1. Hi = H(mi.Ti.Wi.Hi−1), where H0 = 0;
2. WSigni = SWi(Hi);
3. BSigni = SB(WSigni.Ti

′), with Ti
′ being the web bulletin board’s timestamp

at the time of signing;
4. Ti ≤ Ti

′ < Ti + ε.

A history that has these properties is called a consistent history.

Lemma 21. If a history is consistent, then any prefix of the history is also
consistent.

Proof. The proof is a simple induction on the length of the history.

Definition 27. We will use ‘wbbλ’ to denote the last element of 〈wbb1, . . . , wbbn〉
(that is, the most recent entry on the web bulletin board). The current state hash
is the value of Hλ. This is the hash value that the next writer will need to use
as the third component in constructing Hλ+1.
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2.3 Assumptions

There are various assumptions that are required in order to ensure that the web
bulletin board achieves the security properties we desire.

In practice, the following assumption would normally be ensured by putting
some adequate private key infrastructure (PKI) in place.

Assumption 21. All agents know the public keys of all writers and of the web
bulletin board itself, but each writer’s secret key is known only to that writer,
and the web bulletin board’s secret key is known only to the web bulletin board.

We need further to assume that the cryptography does its job adequately. As-
sumptions 21 and 22 together mean that a message signed with SWi must have
originated with Wi, and a message signed with SB must have originated with
the web bulletin board. Assumption 21 is enough to ensure that anyone who sees
a signed message can verify the signature.

Assumption 22. Signed messages can be produced only by an agent who knows
the signing key.

The most important consequence of the following assumption is that the hash
function we are using is treated as injective. This is obviously not strictly true
of a hash function; however, a good collision-free hash function will effectively
achieve this for us by ensuring that hashes do not accidentally collide, and
that agents are unable to produce two distinct terms that hash to the same
value.

Assumption 23. The terms form a free algebra. Essentially, this means that
concatenation of terms is associative, and that any two syntactically distinct
terms have different values.

2.4 Reading

All information written to the web bulletin board is considered public, and so
anyone can act as a reader. The fact that this is usually termed a web bulletin
board suggests that the transfer is to be done over HTTP, although that will
not concern us here. It is also quite possible that, for efficiency reasons, readers
might want to retrieve only part of the contents of the board rather than the
whole of it, but again, we are not here concerned with questions of how to present
the material to the reader. For the purposes of this paper, we shall assume that
readers retrieve all of 〈wbb1, . . . , wbbn〉 whenever required.

Whenever anything is read from the web bulletin board, it also returns a
signed and dated copy of the current state hash:

Message 1. B → R : 〈wbb1, . . . , wbbn〉 .SB(Hλ.TB)

This makes it impossible for the web bulletin board subsequently to change what
was on the board before this point. If the web bulletin board tries to do so, R
can prove that the board has been corrupted by producing SB(Hλ, TB). We will
return later to this point.
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2.5 Writing

Writing to the board involves three stages: getting the current state hash; sending
the message to the board; getting a receipt. The protocol looks like this:

Message 1. B →W : SB(Hλ, TB)
Message 2. W → B : m.T .W.H.SW (H)
Message 3. B →W : SB(SW (H).T ′)

where H = H(m.T .W.Hλ).
In the first message, the board sends the current state hash Hλ to the writer,

signed and dated. The writer rejects Message 1 if TB is more than ε old.
In Message 2, the writer sends the message he wishes to publish, along with

a newly generated hash, based on the message, the time of writing, the writer’s
name, and the current state hash; he also sends a signed version of this hash. The
web bulletin board rejects Message 2 if T −TB > ε. On receipt of Message 2, the
web bulletin board checks the signature, and thus obtains proof that the writer
really did write the message at this point; it also checks the hash. The writer’s
signature commits to the message, to the timestamp, and to the current state
hash; this guarantees that the writer intended the message to appear as the next
message in the sequence after the one that resulted in this state hash.

Finally, the board sends back a signed and dated copy of the writer’s signed
hash. The writer will reject Message 3 if T ′ − T > ε. The writer also checks the
signature, and gets proof that the web bulletin board has accepted the message
as appearing next in the sequence. If anything else appears in place of m, the
writer can produce m and the web bulletin board’s signature to show that the
web bulletin board has deleted or altered the message.

Of course, when the writer sends Message 2, he has no guarantee of receiving
a Message 3 at all, and thus no guarantee of getting proof that the message has
been accepted.

At the end of the protocol, provided that the signature and the hash are
both correct, and provided that T is fresh, the web bulletin board appends
〈m.T .W.H.SW (H).SB(SW (H).T ′)〉 to the history. The new state hash now be-
comes H .

Proposition 22. If the history was consistent before appending this new mes-
sage, it will still be consistent afterwards.

Proof. By inspection.

2.6 Analysis of Security Properties

We now consider the security properties we set out in Definitions 21 to 24, and
show that our implementation of the bulletin board satisfies those properties.
We start with some preliminary results.

Lemma 23. Any reader who reads the entire history of the web bulletin board
has enough information to check that it is consistent.
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Proof. All signatures are immediately verifiable because by Assumption 21 all
agents have all public keys. The only remaining question is whether the hashes
can be verified; this amounts to asking whether the reader knows the informa-
tion being hashed, in order to reconstruct the hash and check that the values are
equal. But this is trivially true. All agents know H0, because H0 = 0. Then, for
every other hash value Hk+1 = H(mk+1.Tk+1.Wk+1.Hk), the first three compo-
nents inside the hash appear in the clear in entry k+1 of the web bulletin board,
and the last appears in entry k. Finally, anyone can check that Ti

′ − T < ε for
all i.

We define equivalence of histories based on whether the messages they store,
along with the times they were written and the names of the writers, are the
same.

Definition 28. Suppose that we have two web bulletin board histories
〈wbb1, . . . , wbbn〉 and 〈wbb∗1, . . . , wbb∗n∗〉.

Suppose that the ith terms of the histories are 〈mi,Ti,Wi,Hi,WSigni, BSigni〉
for the first history, and 〈m∗

i , T
∗
i ,W

∗
i , H

∗
i ,WSign∗

i , BSign∗
i 〉 for the second. We

say that the two histories are equivalent if and only if

1. n = n∗;
2. for all 1 ≤ i ≤ n, we have mi = m∗

i , Ti = T ∗
i , Wi = W ∗

i .

Remark 1. This notion of equivalence is an equivalence relation.

Lemma 24. Two histories have the same state hash if and only if the histories
are equivalent.

Proof. We first show that two histories with the same state hash are equivalent.
To do this, we prove the contrapositive: that two inequivalent consistent web
bulletin board histories have different state hashes.

Suppose that we have two consistent histories 〈wbb1, . . . , wbbn〉 and 〈wbb′1, . . . ,
wbb′n′〉, where the ith term of the former is 〈mi, Ti,Wi, Hi,WSigni, BSigni〉
and the ith term of the latter is 〈m∗

i , T
∗
i ,W

∗
i , H

∗
i ,WSign∗

i , BSign∗
i 〉. If they are

inequivalent, then they differ on some mi, Ti or Wi, or else the histories are of
different length. Since the two histories are consistent, the state hashes for each
are correctly constructed from these mi, Ti and Wi terms; that is, with the first
history, for each 1 ≤ i ≤ n we have

Hi = H(mi.Ti.Wi.Hi−1)

and similarly for the second web bulletin board.
A simple mathematical induction on n, together with Assumption 23, now

establishes that Hn �= H∗
n∗ .

For the reverse direction, we must show that two equivalent histories have the
same state hash. This is also a simple induction. If the histories are equivalent then
they are of the same length; suppose our two histories are 〈wbb1, . . . , wbbn〉 and
〈wbb′1, . . . , wbb′n〉. Now an induction on n establishes the result. If n = 0, then the
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state hash in each case is 0. Now suppose that the result holds for all histories
of length k. When n = k + 1, the state hash for the first board is Hk+1 =
H(mk+1.Tk+1.Wk+1.Hk), and for the second it is H ′

k+1 = H(m′
k+1.T

′
k+1.W

′
k+1.

H ′
k). But the equivalence of the histories tells us that

mk+1.Tk+1.Wk+1 = m′
k+1.T

′
k+1.W

′
k+1

and the inductive hypothesis tells us that Hk = H ′
k; thus, Hk+1 = H ′

k+1, and
the histories have the same state hash.

We are now in a position to consider the security properties we require of our
web bulletin board.

Unalterable history. Retrieving the contents of the web bulletin board, as
we have already seen, returns to the reader R the sequence 〈wbb1, . . . , wbbn〉 .
SB(Hλ, TB).

By performing appropriate checks when reading the board, the reader can
confirm that the board has not been corrupted. By remembering the signed
state hash SB(Hλ, TB), the reader will have enough information to be able to
detect later if anything he has already read has changed.

Theorem 25. The web bulletin board has unalterable history (Definition 21).

Proof. Suppose a reader retrieves the contents of the board at time T0. He will
receive, along with the contents 〈wbb0n0〉 of the board, SB(Hλ0 , T0). The reader
then checks that Hλ0 is indeed the state hash of 〈wbb0n0〉; he also checks that
〈wbb0n0〉 is consistent. Having made these checks, he need store only
SB(Hλ0 , T0); he need not cache the entire board.

If he later retrieves the contents 〈wbb1n1〉 of the board at T1, he will receive
SB(Hλ1 , T1). He performs the same checks on 〈wbb1n1〉 as he did when he re-
trieved the board the first time.

If all of these checks pass, then 〈wbb1n1〉 is consistent. If n1 < n0 then the
later board is shorter than it was, and the reader will know that the board has
been corrupted, because something must have been deleted for the board to have
shortened. Otherwise, he now considers the sequence consisting of the first n0
elements of 〈wbb1n1〉. This is a prefix of the later board, and so by Lemma 21
this is also consistent.

He now looks at this prefix and considers the last element 〈mn0 , Tn0 ,Wn0 , Hn0 ,
WSignn0, BSignn0〉. The state hash of the prefix is Hn0 . By Lemma 24, the state
hash of this prefix is the same as that of 〈wbb0n0〉 if and only if the prefix is
equivalent to 〈wbb0n0〉; so he checks that Hn0 = Hλ0 . If this is the case, then
he knows that no message or message timestamp or message origin has been
altered, and that nothing has been deleted or inserted before this point. If not,
he will know that the board has been corrupted.

Note that this works even in the presence of collusion between the web bulletin
board and the writers. Even if the writers produce old signatures (with old
timestamps) for the web bulletin board to insert into the sequence, the change
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of history will mean that the state hash of the prefix will change, and the reader
will be able to detect this.

Theorem 26. The web bulletin board has certified publishing (Definition 22).

Proof. When a reader retrieves the contents 〈wbb1, . . . , wbbn〉 of the web bulletin
board, he first checks that the history is consistent. If not, he is able to detect that
the board has been corrupted. If it is consistent, then each element is of the form
〈mi, Ti,Wi, Hi,WSigni, BSigni〉, where WSigni = SWi(H(mi.Ti.Wi.Hi−1)).
This signature is enough to show that writer Wi created the message—by As-
sumption 21, only Wi has the signing key, and the only time a writer signs a
message is when sending one to the board for publication. The writer chooses
the timestamp when creating the signature, so the reader knows that the writer
intended this to be the timestamp associated with the message.

That the writer intended the message to appear at this point in the sequence
is clear from the fact that the writer was prepared to use Hi−1 as the last
component inside the hash to be signed: this value, Hi−1, was the state hash
before mi was added to the history.

Proof of timeliness of acceptance

Theorem 27. The web bulletin board has timely publication (Definition 23).

Proof. If a reader views the board at time T , he will obtain a value of the form
SB(Hλ, TB) from the web bulletin board, with T < TB < T+ε. But this commits
the web bulletin board to the claim that at time TB, the state hash was Hλ.
This, by Lemma 24, corresponds to some particular history 〈wbbλ〉.

Suppose that the board subsequently publishes a new message, not present
in 〈wbbλ〉, with a claimed publication date of T0, where T0 +ε < T . This involves
placing an entry into the history of the form 〈m,T0,W,H,WSign,BSign〉, where
BSign = SB(SW (H(m.T0.H

′).T0
′)), with T0

′ < T0 + ε. But now T0
′ < T0 + ε <

T < TB.
But this commits the web bulletin board to the claim that at time T0

′, the
state hash corresponded to a history that includes this new entry. Since T0

′ < TB,
the history at T0

′ should have been a prefix of the history at TB. But this means
that the history at TB should also have included the new entry, contrary to our
previous assumption.

Theorem 28. The web bulletin board has early rejection (Definition 24).

Proof. Early rejection is an immediate consequence of timely publication and
the fact that writing a message involves first reading the state hash from the
board.

The first message of the writing protocol is

Message 1. B →W : SB(Hλ, TB)

which returns the state hash Hλ to the writer. If another writer now manages to
publish a message using the same state hash but at a time earlier than TB − ε,
the same argument as that used in Theorem 27 will enable the writer to show
that the board has become corrupted.
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2.7 Summary

In this section, we have developed a scheme for implementing the append-only
web bulletin board, and shown that it satisfies the security properties we required
of it.

This is already sufficiently powerful to meet the demands of most, if not all,
of the systems that have assumed the existence of an append-only web bulletin
board. It provides an implementation that guarantees that the bulletin board
cannot manipulate the messages on the board and hope to escape detection.

The bulletin board as presented thus far, however, does not provide any live-
ness guarantees. There is nothing to stop the board from refusing to communicate
with one or more agents. Although the board cannot manipulate the history of
previously published messages, it can certainly prevent them from being pub-
lished or read.

The main motivation for developing an append-only web bulletin board is
that many electronic voting systems require such a board. Most of the voting
systems that have been proposed are rather weak at present on their ability to
recover from disaster, and are unable to cope if one of the core components of
the system crashes or refuses to perform its function; consequently, if the board
were to be used for one of these applications, it would not significantly weaken
the liveness properties of the system as a whole.

However, it is clearly desirable to make the web bulletin board as robust as
possible. It would be better if we could construct a distributed board in such a
way that guarantees can be made about publication and retention of messages
even in the event of one or more machines crashing or becoming compromised.

The aim of the next section is to make some progress towards constructing
such a board.

3 Robust Publishing

Although the writer and the web bulletin board both seek to gain proof from the
other of their correct function, the principal weakness of the scheme presented
thus far in the paper is that the web bulletin board may suffer some catastrophic
failure that prohibits it from fulfilling its duty to publish the data it has accepted
from the writers, or the web bulletin board may stage a denial of service attack,
by refusing to communicate with some or all of the readers or writers, with the
same result.

3.1 Web Bulletin Board Peers

A natural way of improving the scheme is to create a distributed web bulletin
board, consisting of some number of geographically disparate linked peers, each
run by a separate organisation. We can then simply replicate the published data
across all of them, and if one fails, the others can still function and fulfil the
duty of the collective.
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However, although there exist many practical methods for replicating
databases across a set of servers, these do not offer the amount of trust that
we seek. If, for example, a particular web bulletin board peer Bx successfully
replicates the data it has accepted from the writers and issued certificates for
to another peer By this does not necessarily give the writers any higher level
of confidence in the correct publishing of the data, because they have not been
issued a certificate by the web bulletin board collective but merely by a single
peer. If Bx were to fail—perhaps by having its private key compromised!—and
a writer, with a certificate proving the receipt by that peer of a message, were
to complain, there would (still) be no way of recovering the messages that had
not been replicated to other peers. The writer must be guaranteed, at the time
of writing, that its message will survive because it has been replicated to a large
enough number of web bulletin board peers.

The approach we adopt here is to require that as long as some threshold set k
out of n bulletin board peers survive and function correctly, the integrity of the
election should be guaranteed by the collective. In terms of the scheme presented
in the previous section, this means that the certificate issued by the web bulletin
board to the writer is issued by the web bulletin board peers as a collective. This
is facilitated by a threshold cryptography scheme.

3.2 Threshold Cryptography Scheme

For this improved version of the web bulletin board, we will assume that some
particular threshold cryptography scheme, such as ElGamal [9] or Paillier [16],
has been agreed upon, and that each peer has been given a secret share of a
threshold signing key. The scheme that we present here is not dependent on the
particular cryptographic mechanism used.

We require two things from the threshold scheme: first, that it is a public key
scheme, meaning that an encryption under a generally available public key can
only be decrypted by the secret (threshold) private key; and secondly, that the
private key can be split into n parts in such a way that a threshold subset of
k key holders can co-operate to perform the decryption, but k − 1 key holders
together still have no useful information about the threshold key.

3.3 Distributed History: Synchronized

The information stored by each peer is exactly the same information as was
stored in Section 2. The bulletin board’s signing key SB is now the threshold
key, split among the n peers; any k of these can together sign a message.

The rough idea for writing a message is that the writer should send his message
to a peer of his choice; the peer will then form a threshold set of peers who can
sign the receipt; and this signed receipt is then returned to the writer as proof
of acceptance and publication of the message. All of the k peers involved in
signing now add the message to their own history, and the message is also sent
to the other n− k peers for publication on their boards too. Each of those peers
must accept the message as authentic, because it has already been signed by the
threshold key.
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This is nearly sufficient to give us what we want, but there are a couple of
loose ends that want tying up.

Locking the peers. If the peers are to stay synchronized, it is important that
we do not have two messages written concurrently. But we need a threshold set
of peers to sign a message, and this gives us a neat way round the problem.
We start by stipulating that a threshold set must contain more than half of the
peers; that is, that 2k > n. In this way, we can ensure that two threshold sets
can never be constructed concurrently.

Peers should never allow themselves to be part of two signing sets at the same
time. They may still respond to read requests when in the middle of a signing
operation, but they may not respond to other writing requests.

(Coding this would need to be done carefully, of course, to prevent deadlock
when two peers each try to construct a threshold set to get a message signed.)

Publish or be damned. When a message is signed by a threshold set, it must
then be distributed to the other n − k peers. One must ask what happens if a
peer refuses to publish a message on its board.

By this point, the message has been accepted by a threshold set, and is there-
fore deemed to have been certified by the collective. A peer must not refuse to
publish a certified message on its board. If it does so, this constitutes breaking
its contract, and it should thereafter be dropped by the other peers.

3.4 Distributed History: Unsynchronized

Another possibility for maintaining a distributed web bulletin board is to drop
the requirement that all peers should keep track of all of the messages. It is
possible to construct the board in such a way that writing to one peer results in
a signature from a threshold set, and a consequent guarantee that the message
has been replicated to those peers, but not necessarily to all n peers. This involves
changing the structure somewhat from that presented in Section 2. What we get
is a web bulletin board that maintains a local append-only structure, in the sense
that each peer keeps an ordered sequence of messages.

Following this approach has two interesting consequences. First, the writing of
messages need no longer be done strictly sequentially: two or more messages can
be written concurrently. In a very large-scale system, this could be a considerable
advantage, because locking a threshold set of peers might be a time-consuming
operation.

Secondly, in order to make sure one has read all of the messages, one now
needs to consult n−k+1 peers. (Each message is guaranteed to be written on k
boards, so we need to check enough boards to leave only k−1 boards unchecked.)

Whether one chooses the synchronized distributed web bulletin board or the
unsynchronized distributed web bulletin board depends entirely on the nature
of the application. If one requires a strict ordering of all messages to be main-
tained, one must use the synchronized board; this would apply to an auction, or
audited discussion board. For an online petition, the ordering of the signatures
is presumably not crucial, and the unsynchronized board would work well.
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For many electronic voting systems, the ordering of messages is unimportant.
Often what is required is simply a record of all encrypted votes, or some such.
In this context, either option would work, but the unsynchronized board might
be more efficient.

4 Conclusion

In this paper, we have provided a way of implementing the append-only web
bulletin board whose existence has been assumed in so much of the electronic
voting literature.

We introduced the notion of certified publishing, in which a writer and a
bulletin board are protected from false allegations of misconduct. We then in-
troduced our scheme, and demonstrated that it satisfies the properties that one
requires of an append-only web bulletin board.

Finally, in Section 3, we discussed how to distribute the board among a number
of peers to make it robust in the face of system failure or deliberate misconduct.

Future work will focus on the distributed web bulletin board and on its security
properties. We aim to define the liveness properties we would expect of the two
flavours of distributed board, and then prove that they satisfy those properties.

4.1 The Application to Electronic Voting

A robust web bulletin board and the issuing of encrypted receipts are vital compo-
nents of verifiable electronic voting systems. When an encrypted receipt is submit-
ted to the web bulletin board by a voting machine/scanner, the web bulletin board
collective responds with a certificate indicating that the receipt has been received
and published in the robust collective history. This certificate can be printed onto
the voter’s receipt, giving the individual further opportunities to audit the elec-
tion. Furthermore, if the voter is able to verify, using the certificate, that the en-
crypted receipt has been correctly entered onto the web bulletin board, he need
not check the receipt on the web bulletin board after the close of the election. This
improves the security of the whole election: it means that the integrity of the elec-
tion requires a smaller number of voters to check their receipts.
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Abstract. Broadcast mechanism is prevalent in many forms of elec-
tronic networks. Modeling broadcast protocols succinctly and reasoning
about how secure these protocols are is gaining importance as society
increasingly comes to depend on a wide variety of electronic communi-
cations. In this work we present a modified ambient calculus where the
nature of communication is broadcast within domains. We allow reconfig-
urable configurations of communication domains, access restrictions to
domains and the capability of modeling cryptographic communication
protocols in broadcast scenarios.

Keywords: Ambient calculi, process calculi, broadcast, bisimulations,
congruence, security.

1 Introduction

In a world of increasing dependence on electronic communications between re-
configurable and mobile devices, there is a clear need for accurate formal sys-
tems to model these devices and their communications to facilitate guaranteeing
such properties as functionality and security (especially privacy and integrity).
Ambients [9], including boxed ambients [5,2], are formalisms that have been de-
veloped to model such mobile devices and their communication. Ambients have
an associated topology that confines their movement and their communication
options. This topology has traditionally been restricted to tree structures, and
communication and movement have been restricted to adjacent ambients. The
tree structure implies that an ambient can only be “in” one other ambient at
a given time. This poses problems for modeling aspects of networks, such as
routers. A router is most naturally modeled as being “in” multiple domains at
once. Similarly, a laptop with an ethernet connection, a bluetooth connection
and a dialup-modem connection, can be thought of as being “in” three differ-
ent domains at once. The restriction of the topology to tree structures prevents
modeling these devices that way. In this work, we loosen this constraint to allow
the topology to be that of a dynamically reconfigurable directed acyclic graph,
thus allowing one ambient to be in more than one other ambient at a given time,
or possibly none at all.

In theoretical models of systems, and ambients in particular, communication is
often modeled using point-to-point channels. Depending on the particular calcu-
lus, many processes may have access to a given channel, but each communication
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will have a unique recipient. Within such frameworks, modeling broadcast and
multicast communications must be done using multiple unicasts. Let us consider
a π-calculus [15] implementation of a message being broadcasted over a channel.
In order to ensure that this message can be received by every possible recipient,
the message sending action has to be replicated.

Server =!(c〈M〉.nil); Clienti = c(xi).Pi; Network = Server | Client1 | Client2 | . . .

This implementation of a broadcast communication using π-calculus is incorrect
in the sense that it does not enforce receiving the message M simultaneously by
every recipient. One recipient may receive it much later than another recipient.
An adversary can choose to come in any time after the message has been sent to
sniff the message. As a result, it allows for possible behaviors in the model that
can not arise in practice.

Alternatives to this have been devised using broadcast communications. These
include broadcast communication limited to a specified domain. However, in
frameworks with broadcast within a domain, the domains are relatively static
with only at most code moving among them. Because the code alone is mobile,
it carries no identity with it, which limits the ability to concisely and accurately
model the organization of the domains, and model the restriction of access to
the domains by other domains. In our work, we have broadcast communication
within ambients. Messages announced to the ambient are heard by the ambient
and all ambients directly within it. Ambients may restrict access to themselves,
and hence to the privilege of the communication within them, based on the
identity of potential entrants, without requiring that their names be hidden.

Let us now consider a wifi network existing in a home. The wireless network
usually continually broadcasts its identity (SSID) to the rest of the world on its
wavelength. Anyone capable of capturing wireless communication on that wave-
length is capable of listening to this name. The wireless network gets to announce
its name even when no one is listening for it. If the network does not secure itself,
then typically anyone who knows its name, can enter it. Once a rogue computer
enters this network, it can send and receive packets of its own and listen to all
the communication occurring inside the network, as all packets are essentially
broadcasted in a wireless network. In order to be able to prevent indiscriminate
access to the home network, the network should not be allowing everyone to gain
access to itself. The simplest method of access control is Machine Authentication
Code (MAC) filtering, where a computer is allowed access to a network only if it
has a network card with a pre-approved MAC. This can allow the home network
to deny access to an unauthorized computer from the house next door. Also, the
router of the wifi network connects the computers connected to the home wireless
network with the outside world. This router is capable of directly communicating
to the outside internet network and the home computers. Hence, virtually it is
present in multiple communication domains simultaneously. Any computer such
as a laptop belonging to a household member should be allowed access and also
it should be allowed to leave the network whenever the user of the laptop simply
shuts it off. Finally, each computer on the home network should be able to hide
from all other computers whatever it is communicating with the rest of the world.
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This scenario leads to the necessity of a calculus which is able to model (i)
distinct regions of computation; (ii) broadcast communication within the regions
of communication, where all listeners get to listen to the communication simul-
taneously, irrespective of whether the speaker knows of the listeners’ identities
or not, and also irrespective to whether there is anyone actually listening for
the communication or not; (iii) allowing indiscriminate access to a region; (iv)
allowing access control via selective permission to enter a region; (v) allowing
elegant representation of regions being inside multiple domains, for example, as
said before, a laptop computer connected to the home wifi network, may also
be connected to a workplace network via dialup connection; (vi) allowing the
hierarchy of the regions to be a directed acyclic graph with the capability of
modeling that a region can be a standalone region, that is, it may at some times
be adjacent to no other region, (vii) allowing regions to leave other regions at
their free will, without requiring any permission from the regions that it is trying
to leave; (viii) allow regions to engage in cryptographic communication protocols
to be able to secure their data. None of the existing process calculi, especially
the ambient calculi and the broadcast calculi, are capable of modeling all these
aspects of the home wireless network. We list what aspects the other existing
related process calculi can encode in the related works section in Section 6. Our
directed acyclic hierarchy of ambients and broadcast communication is however
a novel combination.

2 Secure Broadcast Ambients

2.1 Syntax of Secure Broadcast Ambients

In order to define the syntax of Secure Broadcast Ambients we use the following
categories of identifiers: ambient names: n,m ∈ Amb, message variables: x ∈
MessVar and key variables: k ∈ Keys. The syntax of Secure Broadcast Ambients
is presented in Table 1. Messages, Processes and Systems are the main syntactic
categories. We only mention interesting aspects of the syntax. Apart from the
variables, a message can be a pair of messages or an encrypted message. Each
ambient contains a process. Processes are built from the usual constructs, such
as replication. parallel combination, and prefixing with actions.

An ambient n can indicate its intention to move into another ambient by a
in m prefix. However, this movement can only be successful if a corresponding
permission is there to allow this move. The corresponding permission can be
either in n allowing specifically n to enter, or in indicating permission for any
ambient. As we shall see in Section 3, the only further restriction placed on
entrance is that an ambient is not allowed to enter a descendant of itself. This
interpretation of ambient movement leads to a directed acyclic graph structure
for the hierarchy of ambients. In Secure Broadcast Ambients, an ambient can be
in multiple ambients at the same time. An ambient may even fail to be in any
ambient, for example, a laptop that has been turned off. An ambient n exits from
the ambient m by the out m action without requiring any permission from any
other ambient, and without affecting the relationship of n to any other ambient.



260 E.L. Gunter and A. Yasmeen

Table 1. Syntax of Broadcast Ambients

Messages:
M, N ::= x message ident

| m ambient name
| (M, N) pairing
| k key
| {M}k encrypted message

Format:
F ::= m ambient name
| {x}k decryption
| (x, y) pairs

Prefixes:

π ::= in μ allow enter
| in m enter
| out m exit
| (x)m input
| νk new key
| 〈M〉m output

Processes:
P, Q ::= nil nil process

| P | Q composition
| !P replication
| π.P prefixing
| cond M is N in P data comparison
| case M of F : P case analysis

Systems:
S ::= nilsystem empty system
| m[P ] ambient
| (x)m(S) broadcast receive
| νk.(S) key restrict
| νm :: L.(S) ambient restrict
| S1|| S2 parallel

Ambient Pattern:
μ ::= any ambient
| m ambient name

The processes have sending and receiving prefixes for communication. We do
not have channels to be used for inter-ambient communication. In our calculus
the name of a parent ambient acts as the broadcast channel for both itself and
its children. This way, any ambient can listen to any conversation that is go-
ing on between any of its parents and their children. Henceforth channels are
synonymous with ambients.

A process can also perform matching, or case analysis on a message much in
the manner of [1]. The case analysis patterns are given by the formats. In this
work we only consider symmetric encryption and so the decryption key is the
same as the encryption key for every encrypted message.

We introduce systems, which are collections of ambients. A system can be an
empty system, an ambient, a system waiting to receive a message or multiple
systems in parallel. Systems can create a new key or a new ambient name with
a given parent list by restriction.

The free variables, free ambient names and free keys of messages, processes
and systems will be denoted by the function fv(), fn() and fk() respectively and
is defined the usual way. We use fi() for their union. Ambient and key restriction,
message input and case analysis are the binding constructs.

We now encode the components in the wireless home network as described in
the introduction using our syntax:

Wifi[!in Laptop .nil]|| Laptop[in Wifi .(x)Wifi.P ]||
Router[!((x)Wifi.〈x〉ISP.nil) | !((x)ISP.〈x〉Wifi.nil)]

The router, Router captures all outgoing packets in the home network, Wifi,
and forwards them to the ISP (its code is omitted here) and vice versa. Currently,
the wireless home network allows only the laptop, Laptop to enter the network.
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The laptop first tries to enter the network and then as an example code we make
it listen on the network.

2.2 Structural Equivalence of Broadcast Ambients

Structural equivalence is defined for each of processes and systems. It is the small-
est equivalence relation containing the rules in Table 2, closed under alpha equiva-
lence (where ν, message receipt and case analysis are the binding constructs), and
the associativity and commutativity of parallel composition of each of processes
and systems, with nil and nilsystem as the respective identities. We omit some rules
that are very similar to rules for ambients and process calculi in general. Rules for
restriction, permutation and pattern matching are very similar to rules provided
in [1]. Decryption is also performed by pattern matching in an abstract fashion as
in [1]. We use bi() to indicate the identifier that is being bound in a restriction. We
sometimes use u as an abbreviation for νm :: L or νk.

The rule (StrSysPar) indicates that one ambient can have multiple scattered
pieces with the same name. However, there will be only one ambient with a par-
ticular name. The last four rules in Table 2 are the rules that enable broadcast
communication. The rule (StrBrdcstListen) allows an ambient to lift the re-
ceive action on a particular broadcast channel of a process within it up to the level
of the ambient system. The rule (StrCombListen) can then be used to combine
the listening systems. It is the principal rule that is used to model broadcast sys-
tems. This rule combines multiple ambients listening on the same channel so that
later on only one transition is needed to send a message simultaneously to all the
ambients listening on this ambient. In addition to being able to send a message to
multiple parties simultaneously, in a broadcast scenario, the broadcaster can send
out a message even if no one is listening on the broadcast channel being used. The
rule (StrNoListen) enables us to model this scenario.

3 Operational Semantics

The operational semantics of Secure Broadcast Ambients relies heavily on the
topological layout of the ambients under consideration. We now introduce con-
figurations, which keep track of the topology of the ambients in a system.

3.1 Configuration

We first introduce the concept of a parent list, Π , for the ambients. The par-
ent list keeps track of the ancestors for each ambient. A parent list is a finite
ordered list of pairs of ambients and ambient lists, written as [m0 :: L0,m1 ::
L1, . . . ,mn :: Ln] where each Li is the list of parent ambients of ambient mi and
for each i and j such that 0 ≤ i, j ≤ n we have that mi �= mj and if i ≤ j ≤ n
then mi /∈ Lj .

We allow our ambients to be decomposed into several parallel pieces as the
structural equivalence rules suggest. Hence, we need to consolidate the hierarchy
information for each ambient, so that all pieces have the same view of their
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Table 2. Structural Equivalence

(StrRepPar) !P ≡ P | !P (StrNil Sys) m[nil] ≡ nilsystem
(StrProcSys) P ≡ Q⇒ m[P ] ≡ m[Q] (StrSysPar) m[P1 | P2] ≡ m[P1]||m[P2]
(StrSysKey) m[νk.P ] ≡ νk.m[P ] (StrKey) νu.νk.S ≡ νk.νu.S
(StrPKey) νk1.νk2.P ≡ νk2.νk1.P (StrResNil) νu.nilsystem ≡ nilsystem
(StrRes Par) νu.(S1||S2) ≡ S1|| νu.S2, if bi(u) /∈ fi(S1)
(StrRes Rec) νu.(x)n.S ≡ (x)n.νu.S if n �= bi(u)
(StrRes Res) νn :: L1.νm :: L2.S ≡ νm :: L2.νn :: L1.S,

if n �= mand m /∈ L1 and n /∈ L2

(StrBrdcstListen) νm :: L.νn1 :: L′
1 . . . νnk :: L′

k.m[(x)n.P ] ≡ νm :: L.νn1 :: L′
1 . . .

νnk :: L′
k.((x)n(m[P ])), if m = n ∨ (m /∈ {n1, . . . , nk} ∧ n ∈ L)

(StrNoListen) (x)n(nilsystem) ≡ nilsystem
(StrNeutral) (x)n.(S1||S2) ≡ S1|| ((x)n.S2) if x /∈ fv(S1)
(StrCombListen) (x)n.S1|| (y)n.S2 ≡ (z)n.(S1[z/x]||S2[z/y]), z fresh in S1, S2

ancestry, and so that no cycle can arise in the hierarchical graph of the ambients.
Hence we introduce the idea of a configuration, Δ. Configurations represent
the partial ordering of the ambients by the parent-child relation, and are a
linearization of that order with parents always occurring to the left.

Definition 1. A configuration is a parent list Π = [m0 :: L0,m1 :: L1, . . . ,mn ::
Ln] with the additional constraint that ∀i.0 ≤ i ≤ n.p ∈ Li ⇒ ∃j.0 ≤ j < i.p =
mj. The set of all first components in a configuration Δ will be denoted by
dom(Δ) = {m | ∃L.(m,L) ∈ Δ}. We define a function # which concatenates
an ambient-parent list pair to a configuration as [m0 :: L0,m1 :: L1, . . . ,mn ::
Ln]#(m :: L) = [m0 :: L0,m1 :: L1; . . . ,mn :: Ln,m :: L] if m /∈ dom(Δ) and
L ⊆ dom(Δ), and otherwise it is undefined. We define Δ#Π as the iterative
folding of # over Π.

We shall refer to the pair of a configuration and a system, Δ � S, as a for-
mation where ambsinsys(S) ⊆ dom(Δ). ambsinsys(S) is a function that returns
all ambients of the form m[P ] syntactically appearing in the system S (def-
inition omitted in this work). The set of all formations will be denoted by
F . Notice that Δ#(m :: L) is a configuration if it is defined. Also notice,
Δ = [m0 :: L0,m1 :: L1, . . . ,mn :: Ln] = [ ]#m0 :: L0#m1 :: L1# . . .#mn :: Ln.
When looking an ambient up in a configuration, we will start at the right, mov-
ing to the left. Because the parents of any ambient are always to the left of this
ambient in the configuration, we are ensured that a configuration always encodes
a directed acyclic graph.

Definition 2. We define a permutation relation perm as the reflexive, symmet-
ric, transitive closure of the following rule: if m /∈ Ln, n /∈ Lm, m �= n then
perm(Δ # m :: Lm # n :: Ln # Π,Δ # n :: Ln # m :: Lm # Π).

This permutation relation creates equivalence classes of configurations that have
the same topological structure that is induced by the hierarchical relationship of
the ambients in the domain of the configurations. Let us now extend the struc-
tural equivalence of systems, ≡, to structural equivalence of formations, where
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Table 3. Barbs

Barb In:

m ∈ dom(Δ) ∧m /∈ Ln

Δ # n :: Ln # Π�
n[in m .P ] ↓ in(n, m)

Barb Co-In:

μ = ∨ (match(n, μ) = false∧
μ /∈ dom(Δ) ∪ Ln)

Δ # n :: Ln # Π � n[in μ .P ] ↓ in(n, μ)

Barb Send:

m ∈ ({n} ∪Δ(n))

Δ � n[〈M〉m.P ] ↓ send m

FormationStructBarb:

Δ1 � S1 ≡ Δ2 � S2 Δ2 � S2 ↓ ξ

Δ1 � S1 ↓ ξ

SysParBarb:

Δ � S1 ↓ ξ

Δ � (S1||S2) ↓ ξ

NewKeyBarb:

Δ � S ↓ ξ

Δ � νk.S ↓ ξ

NewAmbBarb:

Δ # n :: L � S ↓ ξ n /∈ fn(ξ)

Δ � ν(n :: L).S ↓ ξ

two formations Δ1 � S1 and Δ2 � S2 are structurally equivalent if perm(Δ1, Δ2)
and S1 ≡ S2.

3.2 Barbs

Our aim is to provide co-inductive relations that relate two formations that
are externally indistinguishable. However, since we are considering secrecy of
confidential information contained in systems, we want to reason about systems
whose actions are indistinguishable even while sending and receiving different
secrets. In that regard, we now define a predicate traditionally referred to as
barbs that describes the actions a system can be observed to take. These actions
will not indicate what messages (if any) are involved in the actions. We define
the set of barbs exhibited by a system using the rules in Table 3, where we denote
S exhibits a barb ξ in the configuration Δ by Δ� S ↓ ξ. We define the barbs by
descending through the syntax of the systems. Systems are mainly composed of
ambients in parallel. Each ambient contains a process and hence we consider all
the visible actions such processes can take. The empty system does not exhibit
any barb. For the process inside an ambient only movement and communication
actions are observable; other process constructs like pattern matching are not
observable. The barb send m indicates that an ambient wants to send some
message over the channel m. However receiving a message is not a barb in our
system. The reason is that in a broadcast system a broadcaster or sender of a
message can send a message, but whether the message was actually heard by
anyone is not observable. An ambient may even send a message in a channel to
which no one is listening. Similarly, entering, but not exiting, an ambient is an
observable action as exiting does not require any form of permission from the
ambients involved. The barb in (n,m) indicates that the ambient n is trying
to enter ambient m. Similarly, the barb in(n, μ) indicates that the ambient n is
allowing some ambient to enter it. The match operator takes an ambient name
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Table 4. Labeled Transition System

Broadcast Message:

mj ∈ dom(Δ), j = 0, . . . , k ∧ n ∈
k⋂

j=0

({mj} ∪Δ(mj))

Δ � (m0[〈M〉n.P ]|| (x)n(m1[P1]|| . . . ||mk[Pk]))
send m0−−−−−→

Δ � m0[P ]|| (m1[P1]|| . . . ||mk[Pk])[M/x]

Enter:

match(n, μ) ∧ m /∈ Ln ∧ m ∈ dom(Δ)

Δ # n :: Ln # Π � n[in m.P ]||m[in μ .Q]
in(n,m)−−−−−→ Δ # n :: Ln ∪ {m} # Π � n[P ]||m[Q]

Exit:

m ∈ Ln

Δ # n :: Ln # Π � n[out m.P ]
τ−→ Δ #n :: Ln \ {m} # Π � n[P ]

FormationEquiv:

Δ1 � S1 ≡ Δ′
1 � S′

1

Δ′
1 � S′

1
ξ−→ Δ′

2 � S′
2

Δ′
2 � S′

2 ≡ Δ2 � S2

Δ1 � S1
ξ−→ Δ2 � S2

AmbRestrict:

Δ # n :: L � S1
ξ−→

Δ′ # n :: L′ � S2

Δ � νn :: L.S1
ξ−→

Δ′ � νn :: L′.S2

Parallel:

Δ � S1
ξ−→

Δ′ � S′
1

Δ � (S1||S2)
ξ−→

Δ′ � (S′
1||S2)

and a μ and determines whether the μ in the provided permission matches the
name of the ambient which is trying to enter, as match(n,μ) = (μ = ∨ μ = n).

3.3 Labeled Transition Semantics

Using formations, we introduce the labeled transition relation L−→ ⊆ F × L× F
for Secure Broadcast Ambients, where the transitions take one formation to an-
other with the label L where L can either be a barb or the silent unobservable
action τ . The transition semantics is given in Table 4. We now describe some
interesting transition rules. In the Broadcast Message rule, we have a num-
ber of recipients waiting to receive a message being sent to an ambient, n. When
an ambient sends a message to n, the communication completes. However, the
communication should only occur if the configuration implies that the sender is
either n itself or a child of n and the recipients are all children of n or n itself.
Hence, we impose some side conditions for this rule. The first condition ensures
that all ambients mentioned are described by the configuration Δ. The second
condition ensures that n is either the sender or the sender is a child of n. It also
ensures that the recipients are either children of n or n itself. After the commu-
nication, the sender proceeds with the rest of its code and a message variable
substitution occurs for the recipient system. We now consider the ambient en-
try rule. As mentioned earlier an ambient needs specific permission to be able
to enter another ambient. If there is a matching permission then an enter action
is performed. In the rule Enter, n wants to enter ambient m. Ambient m has
a permission prefix which has to either allow any ambient access to enter m or
specifically allow ambient n to enter m. We also impose restrictions so that an
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ambient cannot enter an ambient it is already in. The other condition for this
rule is to ensure that adding m as a parent of n will not introduce a cycle in
the ancestry of n. After gaining entry into the ambient m, the parent list of n
is updated. For the exit action in rule Exit, we check that the ambient request-
ing to exit from an ambient is actually a child of that ambient. The unlabeled
transition system, →⊆ F × F is obtained by simply removing the labels from
the labeled transitions.

3.4 Testing Equivalence

We now define the concept of testing a system in the manner of [1]. Intuitively
it represents all tests an external system can make on any context in order to
gather information about it. A formation Δ�T is a context for a formation Δ′�S
if Δ′◦Δ�(S||T ) is a formation. ◦ is a function which composes two configurations
and returns another configuration. Its formal definition is omitted here. First we
define barb convergence in the manner of [1]. The predicate Δ � S ⇓ ξ is true
when S is a system which can exhibit the barb ξ after zero or more transitions
under the configuration Δ. The rules for barb convergence are as follows:

Barb:

Δ � S ↓ ξ

Δ � S ⇓ ξ

Reduct:

Δ � S → Δ′ � S′ Δ′ � S′ ⇓ ξ

Δ � S ⇓ ξ

Definition 3. A test of Δ � S is a pair containing a formation Δ′ � T and a
barb ξ. Δ � S passes the test (Δ′ � T, ξ) if and only if (Δ ◦Δ′) � (S||T ) ⇓ ξ.

Definition 4. A testing preorder, � for two formations Δ1 � S1 and Δ2 � S2 is
defined as follows: Δ1 � S1 � Δ2 � S2 if for any test (Δ � T, ξ), we have that if
Δ1 � S1 passes the test (Δ � T, ξ) then Δ2 � S2 passes the test (Δ � T, ξ).

Definition 5. Two formations Δ1 � S1 and Δ2 � S2 are testing equivalent, de-
noted by Δ1 � S1 � Δ2 � S2, if Δ1 � S1 � Δ2 � S2 and Δ2 � S2 � Δ1 � S1.

3.5 Barbed Equivalence and Barbed Congruence

As mentioned in [1], testing equivalence, though elegant in concept, is hard to
deal with. Hence we need another co-inductive relation that is easier to deal with
to reason about systems being equivalent as to externally observable actions.
Such a relation will be useful if it implies testing equivalence thereby removing
the need to come up with all possible tests to determine testing equivalence. Let
us define barbed simulation as a binary relation R ⊆ F × F such that for two
formations F1 and F2, F1 R F2 implies that,

– if F1 ↓ ξ then F2 ↓ ξ
– if F1 → F ′

1 then there exists F ′
2 such that F2 → F ′

2 where F ′
1R F ′

2

A barbed bisimulation is a relation R such that both R and R−1 are barbed
simulations. Barbed equivalence, written ∼̇, is the greatest barbed bisimulation.
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Definition 6. Two formations Δ1�S1 and Δ2�S2 are barbed congruent, denoted
by Δ1�S1∼Δ2�S2, if for any context Δ�T , we have that (Δ1◦Δ)�(S1||T )∼̇(Δ2◦
Δ) � (S2||T )

Proposition 1

– Barbed congruence is reflexive, transitive and symmetric.
– Barbed congruence is a congruence on closed systems.
– Structural equivalence implies barbed congruence.
– Barbed congruence implies testing equivalence.

4 Secrecy

Secrecy of confidential information is a big issue in computer networks. The con-
fidential information can be login information for an online banking facility, med-
ical information of a patient or grades of a student in a university online grade
processing system. The importance of confidentiality of these type of information
is tremendous. In this section we focus on whether, during the execution of a com-
munication protocol, any message from a set of (secret) messages is ever disclosed
to ambients who are not trusted or authorized to receive that message. We will use
behavioral congruence to characterize processes with nondisclosure assurance.

In real life scenarios, it is typical to have that some of the agents under
consideration are trusted. For example, in a WPA-enabled Wi-Fi network the
RADIUS authentication server is considered to be trusted; in an online banking
scenario, any authorized client and the server at the bank are considered trusted
and the login information is assumed to be known to both these parties. Hence
we wish to determine whether a system will ever reveal a set of confidential
information to distrusted agents in any possible context. In order to do that we
will introduce the concept of safe contexts. The behavioral congruence that we
have introduced before considers all possible contexts. But in order to determine
whether a system can keep some confidential information secret, we have to
impose the restriction that the context does not already contain the secrets,
because that would imply that the secret has already been revealed to the world
and is no longer a secret. We will concentrate our focus on whether contexts
that do not already know about secrets can possibly distinguish among systems
using different secrets at different times. Our analysis is an adaptation of the
work done by Abadi et al. in [1].

4.1 Safe Contexts and Secrecy in Safe Contexts

Let us now define a formation in which a set of keys are secret from ambients
not in a given set of trusted ambients. A formation (Δ � T ) is safe with respect
to a set of ambients A and a set of secret keys K if ambients not in A only see
confidential messages encrypted with the keys in K which are unknown to them.
This allows us to specify restrictions that will be imposed upon the environments
that will be composed with systems whose secrecy property we wish to check.
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Definition 7. Let A be a set of ambients, K be a set of keys, X be a set of
variables and Δ � T be a formation. Δ � T is safe with respect to A, X and K
denoted by ♣A,X,K(Δ�T ) if Δ�T is a well formed formation, fvĀ(T ) ⊆ X and
fkĀ(T ) ∩ K = {}.

Here by fvĀ(T ) and fkĀ(T ) we indicate the free variables and free keys appearing
in the ambients not in the set A appearing in the form m[P ] in the system T . We
now define substitutions for the free variables appearing in safe contexts where
the substitution functions will only replace each free variable with messages
encrypted with the keys that are secret from untrusted ambients. We call them
safe substitutions.

Definition 8. A substitution function σ : X −→ M is a safe substitution with
respect to a set of variables X and a set of keys K denoted by ΥX,K(σ) if dom(σ) =
X, σ is injective and for all x ∈ X, σ(x) is of the form {M}k where k ∈ K.

The following lemma states that a safe formation is structurally equivalent to
safe formations no matter what safe substitution is applied to it. Similarly a safe
formation only transitions to safe formations irrespective of the safe substitution
applied to it.

Lemma 1. Let A be a set of ambients, X be a set of variables and K be a set
of keys and Δ � T be a formation where ♣A,X,K(Δ � T ). Let σ be a substitution
such that ΥX,K(σ).

– If Δ�σ(T ) ≡ Δ′ �T ′ then there exists a system S such that ♣A,X,K(Δ′ �S),
fv(S) ⊆ fv(T ), fk(S) ⊆ fk(T ), and T ′ = σ(S) such that whenever ΥX,K(σ′),
Δ � σ′(T ) ≡ Δ′′ � σ′(S), where perm(Δ′, Δ′′).

– If Δ�σ(T )
ξ−→ Δ′ �T ′ then there exists a system S such that ♣A,X,K(Δ′ �S),

fv(S) ⊆ fv(T ), fk(S) ⊆ fk(T ), and T ′ = σ(S) such that whenever ΥX,K(σ′),

Δ � σ′(T )
ξ−→ Δ′′ � σ′(S), where perm(Δ′, Δ′′).

Proof. By induction on the structure of T .

The next lemma states that the observable behaviors of a safe formation is
indistinguishable under different safe substitutions.

Lemma 2. Let A be a set of ambients, X be a set of variables and K be a set
of keys. Let σ and σ′ be two substitutions such that ΥX,K(σ) and ΥX,K(σ′). Then
{(Δ � σ(T )), (Δ � σ′(T ))|♣A,X,K(Δ � T )} is a barbed bisimulation.

This lemma along with Proposition 1 allows us to reason about untrusted ambi-
ent systems without having to figure out all possible tests the untrusted ambients
can perform on a system.

5 Example in Secure Broadcast Ambients

We first show how to impose configurations on systems by adding a configuration
on top of part of our encoding for the home network. Assume Router is already in
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the Wifi ambient and Laptop and Wifi are not inside any ambient. A possible con-
figuration can be [Laptop :: empty # Wifi :: empty# Router :: (Wifi; empty)]. Now
the first action Laptop attempts is entering Wifi. However, the formation F0 =
[Laptop :: empty# Wifi :: empty# Router :: (Wifi; empty)] � Wifi[!in Laptop .nil]||
Laptop[in Wifi .(x)Wifi.P ] will not allow this transition as ambient Laptop is try-
ing to enter an ambient which appears later than itself in the configuration.
In order to enable this transition, we permute the configuration to [Wifi ::
empty#Laptop :: empty#Router :: (Wifi; empty)]. This configuration is going
to allow the ambient Laptop to enter the ambient Wifi. Here is the transition:

F0 = [Laptop :: empty# Wifi :: empty # Router :: (Wifi; empty)]�
Wifi[!in Laptop .nil]|| Laptop[in Wifi .(x)Wifi.P ]
≡ F1 = [Wifi :: empty#Laptop :: empty#Router :: (Wifi; empty)]�
Wifi[!in Laptop .nil]|| Laptop[in Wifi .(x)Wifi.P ]→
F2 = [Wifi :: empty # Laptop :: (Wifi; empty)# Router :: (Wifi; empty)]�
Wifi[!in Laptop .nil]|| Laptop[(x)Wifi.P ]

Now in the manner of [1], we show how to reason about ambient systems to deter-
mine whether they are distinguishable from the outside world as to what messages
are being communicated in an encrypted form among them. If the components of
the home network encrypt their messages then usually the router decrypts them
and then forwards them to the worldwide internet network outside the home net-
work. The corresponding code for the router and the Laptop can look like:

Δ = [Wifi :: empty # Laptop :: (Wifi; empty)# Router :: (Wifi; empty)]
S1(M) = Laptop[〈M〉Wifi.nil]
S2 = Router[(x)Wifi. case x of {y}kWifi Laptop

: S(y)]
F (M) = Δ � (νkWifi Laptop.(S1(M)||S2))
S2spec(M) = Router[(x)Wifi. case x of {y}kWifi Laptop

: S(M)]
Fspec(M) = Δ � (νkWifi Laptop.(S1(M)||S2spec(M)))

Now what we would like to have is that for any closed term M , F (M) �
Fspec(M), that is for any closed term, the external world will not be able to
distinguish among whether a system sending a specific message was being con-
sidered or whether a system handling any message was being considered. In
other words the outside world will not be able to distinguish among systems
handling different set of messages, and will get same set of responses from all
possible tests. However, as we have Proposition 1, we do not need to test the
two systems with all possible tests, we only need to determine whether they are
barb congruent or not:

Δ � (νkWifi Laptop.(S1(M)||S2spec(M))) ∼ Δ �(νkWifi Laptop.(S1(M)||S2)

By the definition of ∼, we know that we need to show that for all contexts Δ′�T ,

Δ◦Δ′�(νkWifi Laptop.(S1(M)||S2spec(M)))||T ∼̇Δ◦Δ′�(νkWifi Laptop.((S1(M)||S2)||T )

Without loss of generality we can assume that kWifi Laptop /∈ fk(T ). Then we will
need to show that for all contexts,

Δ◦Δ′ � νkWifi Laptop.(S1(M)||S2spec(M)||T )∼̇Δ◦Δ′ � νkWifi Laptop.(S1(M)||S2||T )
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Since barb equivalence is preserved by restriction (proof not given in this work),
we only need to show that

Δ ◦Δ′ � (S1(M)||S2spec(M)||T )∼̇Δ ◦Δ′ � (S1(M)||S2||T )

To prove that, we use a substitution function σ = {x �→ {M}kWifi Laptop
} where

Υ{x},{kWifi Laptop}(σ). We then introduce a relation S: F1SF2 if and only if F1 =
Δ◦Δ′ � (S2spec(M)||T1σ) and F2 = Δ◦Δ′ � (S2(M)||T1σ) for some T1 such that
♣A,X,K(δ ◦Δ′ � T1) where A = {Router, Laptop}, X = {x} and K = kWifi Laptop.
Here, δ ◦Δ′ � T1σ represents both S1(M) and contexts that they do not already
know of the key being used between the Router and the Laptop, that is kWifi Laptop

is not known by any ambient other than Router and Laptop in them. The rest of
the proof consists of proving that S ∪ ∼̇ is a barbed bisimulation.

6 Related Work

Mobile ambients have been extended in various ways since their introduction. In
[3], boxed ambients removed the ability of ambients to open, and added the abil-
ity for parent and child ambients to communicate by communication channels.
Safe ambients [12] and subsequently NBA(New Boxed Ambients)[4] allowed the
ambient being entered or exited the power to grant (or by omission, deny) the
requested entrance or egress. We removed the egress permission to be able to
model situations where a mobile device is simply turned off.

Let us now consider the existing broadcast calculi like CBS [20] and bπ[7].
They overcome the limitations of CCS and π-calculus respectively, by allowing
one-to-many communication. However, these calculi were not designed to model
regions of computation where the regions are capable of restricting access to
themselves. Hennessy et al. gives a theory of bisimulation equivalence and equa-
tional theory and finitary proof system for both the strong and weak versions
of the bisimulation equivalences for CBS in [10]. The calculus for Higher Order
Broadcast System, HOBS is presented in [19], which is a higher order extension
of CBS. Nanz et al. extend CBS to CBS# in [17], where they confine broadcast
communication to local rooms and impose graphical restrictions on being able
to listen in a particular region. However, their regions are not actively mobile.
Moraru et al. suggests in [16] how the broadcast communication mechanism of
CBS can be extended to the ambient calculus as given in [9]. Prasad suggests
ways of modeling “globally asynchronous, locally synchronous” broadcast com-
munication scenarios using Mobile Broadcasting Systems, MBS in [21]. Mezzetti
et al. present Calculus of Wireless Systems (CWS) in [13], where they extend
CBS to accommodate nonatomic communication action of wireless networks.
Their focus is on modeling wireless communication protocols among usually im-
mobile domains like sensor networks. They use locations and radius to define
transmission regions instead of connectivity graphs like CBS#. Their regions,
like CBS# are also immobile.

Among the process calculi where the method of communication is not broad-
cast, a related work is the work on distributed π-calculus [11] by Hennessy
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et al. where we have locations and code mobility among locations. The topology
of locations is flat in their calculus and they have code movement but not loca-
tion movement. Another related calculus is the m-calculus as given in [22] which
is a higher-order extension of [8]. Their location topology is tree-structured,
with the programmable access control to locations. Another related calculus is
the seal calculus given in [6]. However, seals are different from ambients in the
structure of their hierarchy and because seals are not subjectively mobile like
ambients. Discretionary ambients by Nielson et al. [18] equip safe ambients with
discretionary and mandatory access control.

A related work is that of bigraphs by Milner presented in [14]. Bigraphs are
actually a pair of two graphs, a topograph, describing actual physical location
and a link graph which describes communication links which does not care about
the physical positions. Place graphs are forests of unordered trees whereas our
topology is a collection of directed acyclic graphs. Link graphs allow channels
between arbitrary pair of agents. They do not have to be adjacent in any way.
They lack any mechanism of enforcing access restrictions.

7 Conclusion

We defined Secure Broadcast Ambients which is capable of modeling broadcast
communication within a domain. Our calculus allows a directed acyclic graph
topology of the location of our agents, hence our topology is more flexible than
the usual tree structured one. Our domains or systems are also capable of re-
stricting access to themselves. We then provide co-inductive relations to reason
about whether an ambient system keeps a set of messages secret by using en-
cryption. We provide a scenario which our calculus can model more succinctly
than other calculi. We present the modeling of this scenario in our calculus to
demonstrate the strengths and capabilities of our calculus.

Our calculus however only handles symmetric encryption at this point. Hence
we are not capable of modeling communication protocols requiring asymmetric
encryption. Developing a complete theory for handling asymmetric encryption is
a future goal for us. Also, we intend to apply our calculus for modeling and rea-
soning about workflows specially workflows where confidentiality and integrity of
the data involved is a very significant concern. We have modeled the Automated
Identification and Data Capture (AIDC) workflow for hospital data manage-
ment, being developed at UIUC, using our calculus. We are working towards
proving security properties of such scenarios.
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Abstract. Over the last few years, attack graphs have became a well recognized
tool to analyze and model complex network attack. The most advanced evolution
of attack graphs, called anticipation games, is based on game theory. However
even if anticipation games allow to model time, collateral effects and player in-
teractions with the network, there is still key aspects of the network security that
cannot be modeled in this framework. Theses aspects are network cooperation to
fight unknown attack, the cost of attack based on its duration and the introduction
of new attack over the time. In this paper we address these needs, by introducing
a three-fold extension to anticipation games. We prove that this extension does
not change the complexity of the framework. We illustrate the usefulness of this
extension by presenting how it can be used to find a defense strategy against 0
days that use an honey net. Finally, we have implemented this extension into a
prototype, to show that it can be used to analyze large networks security.

1 Introduction

As networks of hosts continue to grow, evaluating their vulnerability to attacks becomes
increasingly more important. When evaluating the security of a network, it is not enough
to consider the presence or the absence of public vulnerabilities. Inevitably, a large
network will contain undisclosed vulnerabilities that can be the target of undisclosed
attacks called zero day exploits. To setup a defense strategy that mitigates this kind of
attack, network cooperation defense needs to be considered. Using network topological
information along with other information such as average deployment cost and time, an
analyst can produce an anticipation game. The anticipation game framework [5,4] is
the most advanced evolution of attach graphs. This framework is based on game theory
[7] and TATL [8] (Timed Alternating-time Temporal Logic).

Modeling network cooperation strategy cannot be achieved in the current anticipa-
tion games framework, because some rules and strategies need to be restrained to spe-
cific set of services, whereas other need to be global to model network communication.
For example, patching rules should not be applied to a honey-net network. This is why
location restriction needs to be introduced in the framework. Moreover dealing with a
zero day exploit requires taking into account the vulnerability cycle timeline. To do so
one need to be able to express a timeline of events which is a succession of events that
takes place one after the other.

We also extend anticipation games with penalties. Intuitively a penalty is a cost added
for each unit of time a constraint holds. As additional benefit penalty allow to model
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another important relation between time and cost: cost diminishing. A cost diminishing
occurs when the same action is executed multiple times. It also occurs when an on-going
process is done for an extended period. e.g service monitoring.

Finally this extension allows us to model player’s simultaneous actions and event
branching. Event branching is used to model that at a certain point, several options are
available to the player, such as using one kind of patch or an other.

The main contribution of this paper is an extension of the anticipation game frame-
work that allows to model network cooperation, intrusion cost based on their duration,
and the introduction of new event over the time. To the best of our knowledge, our
extended framework is the first which is able to model and analyze those aspects of
network security. We prove that anticipation games with locations and penalties are de-
cidable and that the complexity of the model remains EXPTIME-complete. We also
have implemented our framework into an freely available tool called NetQi [3] to eval-
uate the effectiveness of the approach. In the evaluation section we will show that it
is possible to analyze complex multiple-sites scenarios even on large networks with
thousand of services. To illustrate how our extension works, we provide a running ex-
ample that discusses a network multiple-sites defense strategy that uses a honey-net as
a defense against various types of exploits including zero day ones.

The reminder of this paper is organized as follows. In Sect. 2, we will survey related
work and in Sect. 3 we recall what an anticipation game is. We also detail the game
example that is used as a guideline for the rest of the paper. Sect. 4 presents the notion
of locations. In Sect 5 the timeline of events is illustrated. Sect. 6 introduces the notion
of penalty and cost diminishing. Sect 7 covers the multiple-sites defense strategies that
were found by analyzing the running example with our prototype. In sect. 8 we evaluate
the effectiveness of the approach.We conclude in Sect. 9

2 Related Work

Model checking for attack graphs was introduced by Ammann and Ritchey [17]. They
are used to harden security [14]. Various methods have been proposed for finding attack
paths, i.e., sequences of exploits, including logic-based approaches [15,19,9,18], and
graph-based approaches [21,20,13]. Anticipation game are based on timed automata,
timed games, and timed alternating-time temporal logic (TATL) [8], a timed extension
to alternating-time Kripke structures and temporal logic (ATL) [1]. The TATL frame-
work was specifically introduced in [7]. Game strategies have been used to predict play-
ers actions in numerous domains ranging from economy to war [2,16]. the notion of cost
diminishing appears in [6]. The use of games for network security was introduced by
Lye and Wing [11]. Game theory was used to analyze denial of service in [12]. The an-
ticipation game framework was presented by Bursztein and Goubault-Larrecq [5] and
network strategies for anticipation games were introduced in [4].

3 Anticipation Games

An anticipation game is a timed game [7], the key difference between standard timed
games and anticipation games is the dual-layer structure used in anticipation games.
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Its lower-layer called the Network Layer is used to represent network information. Its
upper-layer called the Attack Layer is a regular TATL game structure used to model
the network state evolution induced by players actions such as exploiting a vulnerability.
An anticipation games can be thought as a graph of graphs where the lower graph is the
network state and the above graph describes the transition between one network state to
an other. The players of an anticipation games are called administrator and intruder
and their actions are modeled by timed rules. Typical actions range from patching, to
exploiting a vulnerability, to firewalling a service. They are called timed rules because
a rule execution requires a certain amount of time to be executed. Each Attack Layer
transition represents the execution of one rule. In an anticipation game a path is called
a play. More formally a play is a path (a sequence of action and states) ρ : s0r0s1r1...

where ∀j : sj
rj→ sj+1, sj and sj+1 are network states, and rj is the rule used to make

the transition. Using a network initial configuration and a set of rules, an anticipation
game is used to answer questions such as : what should I do to counter this type of
attack ?

In the anticipation games framework, a questions is specified in term of strategies
objectives and its answer, the strategy, is the play that fulfill best these objectives.
Strategies objectives are composed of two main parts: a set of constraints and a set of
goals. Constraints are used to express conditions on the network state that a play must
satisfy to be considered as a potential strategy. A typical defense strategy constraint is
that no service is ever compromised during the play and that at the end of the play no
service is vulnerable anymore. Goal are used to select among all the plays that satisfy
the set of constraints the one that is the most relevant by analyzing the cost, reward and
time outcome. A typical defense strategy goal is to minimize the cost of the strategy.

The cost reward and timing used in this paper are not meant to be realistic, they
are only here for example purpose. While interesting, computing the real value of cost,
reward and timing is out of the scope of this paper that aims at providing a mean to
reason on them.

3.1 Network Layer

The Network Layer is composed of two parts. First the Dependency Graph which is
the graph that represents the dependency relations that exist in the network. It is meant
to be static and does not evolve over game execution. Secondly a finite set of states
associated to each Dependency Graph vertex that describes the current network state.
This set of states is meant to evolve over game execution. Formally, let A be a finite
set of so-called atomic propositions A1, . . . , An, . . . , denoting each base property. Each
atomic proposition is true or false at each vertex. E.g., Vuln is true at each vertex that
is vulnerable. Thus each atomic proposition is true or false for each of Dependency
Graph vertices. States on Dependency Graph are then simply functions ρ : A → P(V )
mapping each atomic proposition to the set of vertices that satisfies it. We describe ρ in a
finite way, as a table of all pairs (A, v) ∈ A×P(V ) such that v ∈ ρ(A); hence there are
finitely many states. The Dependency Graph used as an example and the corresponding
set of states are represented in Figure 1.

This Dependency Graph is composed of six real vertices and a virtual one (vertex 1).
The edges are the dependencies that exist between services. Concrete dependencies are
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States 1 2 3 4 5 6 7
ρ(0DayAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

ρ(CustomAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(PubAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

ρ(PatchAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Detected) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Monitored) ⊥ � � � ⊥ ⊥ ⊥

ρ(Vuln) ⊥ ⊥ � ⊥ ⊥ � ⊥
ρ(Compr) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Public) � � � � � � �

Fig. 1. Dependency Graph (left) and Initial set of states (right)

represented with a plain line and virtual dependencies used for the timeline of events
with a dashed line. The role of the virtual vertex and its incoming dependencies is to
model the timeline of events as detailed in Section 5. Concrete dependencies are used
to model that a service is dependent on another. In our example the vertex www (5),
which is a web server, depends on the vertex DB (6), which is a database, to retrieve
user credential for authentication purpose. From a security perspective it means that if
the vertex DB (6) is unavailable by collateral effect the vertex www (5) will be also
unavailable. It also means that the trust relation that exists between those two vertices
may be exploited by an attacker. These dependencies are used in game rules to model
collateral effects and trust abuse. The three dependencies from the company’s network
services to their twins services located in the honey network are used for the multiple-
sites defense purpose. The fake honey-net services are used to lure the attacker and
catch him when he tries to attack them. Using an honey-net allow to catch unknown
attack because the only traffic they get are attacks. Hence if the traffic is not a known
attack, it is likely that its a new type of attack. That is why each company’s services
depend on its honey-net fake twin service to defeat a zero day attack.

The complete set of variables mapping used in the example can be divided into
three parts. The first part is variables 0DayAvail, CustomAvail, PubAvail and
PatchAvail which are used to model the timeline of events.The second part is vari-
ables Detected and Monitored which are used for multiple-sites defense purpose.
Finally the third part is used to describe the network’s initial state. The variable Vuln is
used to model that the company web and email services along with their fake twin ser-
vices located on the honey-net are vulnerable to an unknown vulnerability, The variable
Compr is used to say that no service is compromised. Finally the variable Public is
used to indicate that every service is public (not firewalled).

3.2 Attack Layer

TATL [8] extends ATL [1] with the notion of timed game by adding time cost to tran-
sitions. From the network security perspective this is important because it models that
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player actions on a network require a certain amount of time to be executed. This pre-
vents meaningless strategies such as being able to patch every network vulnerability in
an instant. Hence an anticipation game can be viewed as a race between players where
the fastest wins. This time race introduces a so called element of surprise [7]. For exam-
ple the intruder can take the administrator by surprise if he can exploit a vulnerability
faster than the administrator can patch it. This is coherent with real network security
where you cannot foresee what attacker will come up next.

3.3 Rules of the Game

The actions of each player are described by a set of timed rules. Each rule is of the
form:

Γx : Pre F
Δ, p, a, c−→ P

where F is the set of preconditions that need to be satisfied in order to use the rule. Δ
is the amount of time needed to execute the rule, p is the player who uses the rule, a is
the rule label (string), and c is the rule cost. P is the rule post-condition, that states rule
effects. It is required for F preconditions to hold not just when the rule is selected, but
also during the whole time it takes the rule to actually complete (Δ time units). Γx is
the rule location. Anticipation games use two types of rules [4]. Granting rule use the
=⇒ double arrow and regular rules use the −→ single arrow. A granting rule allows
the player to receive a reward based on the target Dependency Graph vertex value when
the rule is successfully executed whereas regular rules do not grant any reward. Regular
rules are used for temporary actions and for the timeline of events. For example the
following rule is used to model trust abuse attack:

Γ : Pre ♦Compr ∧ ¬Compr
2,I,Trust abuse, 200

=⇒ Compr

It says that the intruder (I) can compromise a non compromised (¬Compr) vertex
by exploiting a trust relation if one of its successors is compromised (♦Compr) in 2
units of time for a cost of $200. The ♦ is a modal operator used to speak of Dependency
Graph successors. The other operators used in rule preconditions and effects are stan-
dard modal operators. If the intruder chooses to use this rule, then to have a successful
rule execution it is required that the preconditions are fulfilled when he chooses to ap-
ply the rule, and also after the 2 units of time required to complete it. This is mandatory
because the network state might evolve due to administrator actions during these 2 units
of time. For example the administrator might have restored the successor vertex. In this
case, the intruder is taken by surprise, and the compromise rule fails.

4 Location

In the original anticipation games [5] a rule can be applied to any Dependency Graph
vertex as long as its set of constraints meets the rule preconditions requirements. How-
ever in many cases such behavior is not suitable. In particular it is not possible to model
network multiple-sites defense analysis without restricting the scope of rules. This im-
possibility is mainly due to the fact that different rules need to be applied to the different
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networks. Therefore we distinguish three type of rules: the transitional ones, the local
ones, and the global ones. Transitional rules are used to model inter-site interaction.
Local rules are used for site specific action. In our example the rule used to model
trust abuse attacks needs to be restricted to company’s network, and timeline of events
rules to the virtual location. Finally global rules are meant to be used on any vertex.
Similarly strategies objectives might be restricted to a given set of vertices. In our ex-
ample finding a defense strategy that prevents service compromising should obviously
not apply to honey-net fake services. In order to restrict rules and strategy objectives
to a given set of vertices, we extend anticipation games with locations. A location is a
non-empty set of services that belongs to the same site. More formally a location is a set
of Dependency Graph vertices represented by an integer. Location integer is added to
every Dependency Graph vertex as a label. Locations are specified in rules and strategy
objectives to restrict their scopes.

4.1 Type of Rule

We use the set of an operational rules depicted in figure 2 in the example. We speak of
operational set because it is used to model attack and defense actions. At the opposite
the set of timeline rules depicted in section 5 is used to model timeline events. This
operational set combines the three types of rules to model multiple site defense. The
three type of rules are more formally defined as:

Definition 1 (Global rule). A rule is global if no location restriction is specified.

Definition 2 (Local rule). A rule is local if the same location restriction is specified
for the rule target vertex and the rule target successor vertex.

Definition 3 (Transitional rule). A rule is transitional if a different location restriction
is specified for the rule target vertex and the rule target successor vertex.

4.2 Global Rules

The first three rules are comparable, as they model the same action: an intruder (I)
that exploits a remote service vulnerability to compromise a public service. The rule

1) Γ: : Pre : ♦0DayAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 3, I, 0 day exploit, 20000
Effect : Compr

2) Γ: : Pre : ♦CustomAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 4, I, Custom exploit, 2000
Effect : Compr

3) Γ: : Pre : ♦PubAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 7, I, Public exploit, 200
Effect : Compr

4) Γ3:3 : Pre : ¬Compr ∧ ♦Compr
=⇒ 2, I, Trust Abuse, 200
Effect : Compr

5) Γ1:1 : Pre Monitored ∧ Compr ∧ ¬Detected
−→ 1, A, Attack Detected, 2000
Effect Detected

6) Γ2:2 : Pre ¬V uln ∧ ¬Public
−→ 1, A, Unfirewall, 100
Effect Public

7) Γ3:2 : Pre ♦Detected ∧ V uln ∧ Public
−→ 0, A, Firewall, 100
Effect ¬Public

8) Γ3:1 : Pre ♦PatchAvail ∧ V uln
−→ 6, A, Patch, 500
Effect ¬V uln

Fig. 2. Set of rules used to model a players action
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preconditions ensure that the targeted service is vulnerable (V uln has to be true) and
remotely accessible (Public has to be true). The rule effects when the execution is
successful is that the vertex becomes compromised (Compr become true). Since these
rules are meant to attack fake and real services they are global (Γ has no index). They
differ because due to the events timeline, they are available at a different time. The
0Day exploit is released first, then the custom exploit and finally the public exploit.
For instance 0DayAvail is set to true for the virtual vertex by a timeline rule after 48
hours. This constraint is used to prevent the intruder from using it earlier in the game.
Accordingly the Custom exploit cannot be used before it is available because until then,
the CustomAvail is set to false for the virtual vertex. The cost of the three rules also
differs researching a vulnerability is more costly than making a custom exploit which
is more costly than simply using a public exploit. The conjunction of cost and timeline
allows us to model the trade-off between the advantage awarded by an undisclosed
vulnerability exploit and the investment required to find it.

4.3 Local Rules

Rules 4, 5, and 6 are local rules. Their Γ index is of the form n : n where the first
n is the vertex location and the second n is the successor location. Rule 4 says that
if a service is not compromised (¬Compr) and if one of its successor is compromised
(♦Compr) then it can be compromised by the intruder (I) in 2 hours for $200. This rule
must be local because otherwise erroneous actions are possible: as visible in diagram 1
a dependency exists between each company’s service and its corresponding honey-net
service. When the trust abuse rule is not restricted to a local scope these relations can
be used for trust abuse. As a result a compromised honey-net service can be used to
compromise a company’s service by trust abuse, which is clearly an erroneous action.
This is why this rule needs to be restricted to the company’s network context to be
executed only on services where real trust relation exists. Rule 5 is local to the honey-net
network. It states that if a service is monitored (Monitored), compromised (Compr)
and an alert has not been already raised (¬Detected) then an alert is raised. The time
required to trigger the rule also includes the alert propagation time in order to achieve
simultaneous service firewalling execution as explained in Section 5. The Monitored
set is used as detailed in Section 6 to compute monitoring ongoing process cost. The
rule 6 is local to the company’s network because since the firewall rule applies only
to the company’s network this one should only apply to it as well. It states that if a
service is not public (¬Public) and not vulnerable (¬V uln) then it can be made public
(Public).

4.4 Transitional Rules

Rules 7 and 8 are transitional rules. Their Γ index is of the form n : m where n is
the vertex location and m the successor location. They are used for multiple-sites in-
teraction. In the example there are two kinds of such interactions. First the interaction
between the honey-net (location 2) and the company’s network (location 3). This in-
teraction allows the company’s network to defend itself against unknown attacks by
firewalling a company’s service when the corresponding honey-net service experience
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an attack. This interaction is described by the rule 7 which states that if an attack is
detected on a remote location (♦Detected) and the vertex is public (Public) and vul-
nerable (Vuln) then it can be firewalled by the administrator. The location restriction
ensures that only company’s network will be affected by the rule. It also ensures that
the successor belongs to the honey-net. The other transitional rule is the patching rule. It
is restricted to the company network location because honey-net services are not meant
to be patched. Its successor has to be the virtual location because this is where the time-
line of events evolves. The timeline information is needed to know when the patch is
available. This rule can only be transitional: if it is global, it can be applied to honey-net
and if it is local it does not work because the timeline of events evolution take place in
the virtual location.

4.5 Strategy with Location

Definition 4 (Strategy). A strategy is the tuple S : (name,P,O,R, C,L) where name
is the strategy name, P its owner, O is the strategy objectives set, R is the objectives
priority strict order, C is the set of constraints for the play and L is the set of constraint
for the location.

In our example the following defense strategy objectives are used:

S : (Defense strategy, Admin,MIN(Cost) ∧MAX(OCost), OCost >
Cost,�¬Compr,¬2)

They are used to find the play for the administrator that primarily maximizes intruder
cost (MIN(OCost)), and secondarily minimizes the administrator cost (MIN(Cost)),
and ensures that no service in every location except the honey-net location (¬2) is ever
compromised (�¬Compr). Adding the opponent cost maximization objective aims at
finding the (weakly) dominant strategy.

Definition 5 (weakly) dominant strategy. A dominant strategy is the strategy that
beats every opponent strategy (strict dominance) or at least maximizes the number of
strategies beaten (weak dominance).

The strategy returned for these objectives can be view as the play where the opponent
plays his best game against the targeted player. Model-checking strategies constraints
against Anticipation games with location is still decidable.

Lemma 1. Model-checking strategies constraints against Anticipation games extended
with locations is decidable.

5 Using a Timeline of Events

Being able to model a timeline of events is mandatory because many network security
scenarios need it. For instance the classical vulnerability cycle [10] follows a timeline
of events: the patch for a given flaw is developed only after the vulnerability is
either reported, or caught in the wild and reverse engineered. Similarly an attack can be
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detected by a misuse IDS only after its signature has been added to the database.
Such a timeline of events can be modeled in anticipation games by using a combina-
tion of rules, states and dependencies. The key idea is to add a virtual vertex in the
dependency graph that is used to model the timeline of events evolution thanks to a set
of states. An additional set of dependencies from real services to this virtual vertex is
added in order to be able to use timeline of events state in rule preconditions and effects
(as in the Dependency Graph depicted in figure 1). Locations are used to ensure that the
virtual vertex is the only one used in timeline of events evolution rules. Otherwise, every
timeline rule will apply successively to every vertex leading to an erroneous strategy.

5.1 Discreet Timeline of Events Illustration

The multiple-site defense example uses a timeline of events inspired by the standard
vulnerability cycle represented in diagram 3 which is modeled by the four sets and four
rules presented in figure 3. Intuitively in this model states are used to model which
points have been reached so far and rules are used to advance in the timeline. One dis-
tinct state is required for each event because states are Boolean values. Accordingly
each state used for the timeline of events is set to false in initial conditions. The rule
execution time represents the time interval between two consecutive events. For exam-
ple the custom exploit is available 14 days after the vulnerability is discovered (global
time), and 12 days after the zero day exploit (relative time). The availability of the cus-
tom exploit is modeled by the rule 2. This rule states that if the Custom exploit is not
available (¬CustomAvail) and the zero day is (0DayAvail) then after 288 units of
time (12 days) the attacker will have access to custom exploit.

Using a relative time allows us to model branching. For example if the timeline
presented above is not sufficient, because one wants to model multiple ways to dis-
close the vulnerability and make the custom exploit available, then it is possible to use
multiple rules that have the same effect but different preconditions, time, and cost. For
example to model that the disclosure is the result of an intrusion caught by the honey-net

1) Γ1:1 : Pre ¬0DayAvail
−→ 48, I, O day exploit Available, 0
Effect 0dayAvail

2) Γ1:1 : Pre ¬CustomAvail ∧ 0DayAvail
−→ 288, I, Custom exploit available, 0
Effect CustomAvail

3) Γ1:1 : Pre ¬PubAvail ∧ CustomAvail
−→ 48, I, Public exploit available, 0
Effect Pub

4) Γ1:1 : Pre ¬PatchAvail ∧ CustomAvail
−→ 48, I, Patch available, 0
Effect 0dayAvail

Fig. 3. Vulnerability timeline of events (left) and the set of rules used to model timeline evolution
(right)
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and reverse engineered the following rule can be used with the proper set of
dependencies:

Γ1:2 : Pre Detected
288, A, Reverse Engineering , 500−→ EffectCustomAvail

This transitional rule states that if a honey-net service is compromised then in 12 day
the administrator staff is able to reverse engineer it for a cost of $500. Branching was
not introduced in the example for the purpose of clarity.

Another type of timeline of events occurs when multiple actions take place at the
same time. In the multiple-site defense this occurs when the attack on the honey-net is
caught: every site has to use the firewall simultaneously. Otherwise the time required
to firewall x sites is equal to x × t where t is the time required to firewall one site. To
have a constant time regardless of the number of sites a state is used as a validation
point. In the example this is the state Detected. The time required to firewall the site is
modeled by the rule 5 of figure 2. Once this rule is executed the administrator is able to
use simultaneously as many firewall rules as she wants. This is achieved by setting the
firewall rule time to 0.

6 Linking Cost and Time

In the original anticipation games model with strategies [4], costs are bounded to rule
executions: each time a player executes a rule, his cost increases. This is a natural way to
model that player action has a cost. However this approach has an important limitation:
it does not allow to model costs that are time dependent. Such cost exists for on-going
processes which are prominent in network security. Two well known examples of such
on-going processes are service DOSing (Denial Of Service)[12], and intrusion detection
monitoring. The longer they last, the higher the cost is. To model this type of cost,
anticipation games need to be extended with the notion of penalty. Intuitively a penalty
is a cost that is added for every unit of time a constraint holds on a given dependency
graph vertex. More formally a penalty is defined as follows:

Definition 6 (Penalty). A penalty is the tuple P : (P,N,C,F) where P is the player
targeted by the penalty, N ∈ N

∗ is the Dependency Graph vertex where the constraint
has to hold, C is the constraint that needs to be satisfied to trigger the penalty, and
F(x) is the function F(x) : N

∗ → N that takes as parameter the integer x which is
the number of units of time elapsed since the penalty has been triggered and returns
the corresponding cost for this unit of time. The total cost generated by the penalty is
therefore the sum of all the costs returned by the penalty function.

Here is how penalty can be used to model a DOS cost. Assume that the Dependency
Graph vertex 5 is a HTTP service used to sell company products. Every hour, the
amount of income generated by this service is $1000. Therefore for every unit of time
the service is unavailable (¬ Avail) because of the DOS, the company loses $1000 of
income. This can be modeled by adding the following penalty to the game:

P : (Administrator, 5,¬Avail, f(x) → 1000)
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which states that for each unit of time where the vertex 5 (www service) is not available
the administrator cost is increased by 1000. The use of such penalty allows the incident
strategy cost minimization objective to take into account the relation between the loss
of income and the time elapsed. In the running example we use the same kind of penalty
to compute the cost associated with the action of firewalling a public service. The use
of a function based on the number of units of time elapsed allows to use various cost
models such as an exponential cost or a diminishing cost model as presented above.

Another important time/cost relation to consider is when the cost diminishes over the
time [6]. This reduction occurs when the same action is performed multiple times, or
when an on-going process is run for an extended period of time. Performing the same
action again and again is a common practice in network security. For instance the action
of patching similar services or the action of reusing the same exploit. In this context the
cost of the first use is more expensive than later ones. In the patching case, the first
use is more expensive because it requires to download and test the patch. In the exploit
case, the first use requires the attacker to develop and test the code whereas subsequent
exploitations only require it to be launched. This type of cost reduction is modeled in
anticipation games by using two rules with different costs and a timeline of events to
ensure that the cheaper rule is only used after the most expensive one has been used. To
model a diminishing supervision cost with a lower bound the following kind of penalty
can be used:

P : (Administrator, 5,Monitored, f(x) → int(1000/x) + y)

Where x is the number of time units elapsed, y ∈ N is the lower bound cost and
int(x) the standard function that returns a rounded integer from a float. We use two
kinds of penalties in the example. The first kind is induced by monitoring honey-net
service, we assume that monitoring a honey-net service costs $10 by hour. Accordingly
we add three penalties to the analysis, one for each honey-net service. For example the
following penalty is added for the vertex 2:

P : (Administrator, 2,Monitored, f(x) → 10)

6.1 Decidability and Complexity of the Extended Model

Even if adding penalty allows to model a brand new range of cost, from the decidability
perspective, extending the framework with penalty does not change the decidability.

Lemma 2. Model-checking strategies constraints against Anticipation games extended
with penalty is decidable.

From Lemma 1 and Lemma 2 it follows:

Theorem 1. Model-checking strategies constraints against Anticipation games
extended with penalties and locations is decidable.

Which is the central theoretical result. Additionally we prove that locations and penal-
ties does not change the anticipation games complexity bound which is a key result for
the practicality of the approach:

Theorem 2. Model-checking strategies constraints over anticipation games extended
with penalties and locations remain EXPTIME-Complete.
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7 Multiple Sites Strategies Illustration

We use the Dependency Graph, Set of states, and rules sets presented above to illustrate
how multiples-sites defense analysis can be achieved in anticipation games thanks to
strategies. To do so we consider the two following cases. In the first case the company’s
network does not rely on honey-net information to detect zero day attacks and there-
fore the honey-net is removed from the simulation. In the second case, the interaction
between the honey-net and the company’s network occurs. This is the exact configura-
tion described earlier during the paper. For both cases, we run the analysis to find the
administrator dominant strategy objective as introduced in 4:

S : (Defense strategy, Admin,MIN(Cost) ∧MAX(OCost), OCost >
Cost,�¬Compr,¬2)

When the honey-net is not present the only type of attack that can be countered is
the public exploit attack one. This is done by patching the vulnerable service as soon as
the patch is available. This defense strategy is presented in figure 4. In this figure, rule
names have been abbreviated. Column abbreviations are Ts for time, Pl for player,
Ac action, Ta target vertex, S successor vertex, Pa payoff and C for cost. A denote the
administrator player and I for the intruder.

The row one of the table on the left is read as follows: at time 0 the Intruder (I)
selects (sel) the rule 0day avail on vertex 2, there is no successor involved (⊥).
The intruder reward and cost are not yet intialized (-). Accordingly the line 2 states

Ts Pl Ac Rule Ta S Pa C

0 I sel 0day avail 2 ⊥ - -
48 I exec 0day avail 2 ⊥ 0 0
48 I sel Custom avail 2 ⊥ - -
336 I exec Custom avail 2 ⊥ 0 0
337 I sel Public avail 2 ⊥ - -
337 A sel Patch avail 2 ⊥ - -
385 I exec Public avail 2 ⊥ 0 0
385 I sel Compr public 7 2 - -
385 A exec Patch avail 2 ⊥ 0 2700
385 A sel Patch 7 2 - -
391 A exec Patch 7 2 1 3500
392 I fail Compr public 7 2 0 200

Ts Pl Ac Rule Ta S Pa C

0 I sel 0day avail 2 ⊥ - -
48 I exec 0day avail 2 ⊥ 0 0
48 I sel Compr 0 day 4 2 - -
51 I exec Compr 0 day 4 2 1 20000
52 I sel Compr 0 day 7 2 - -
52 A sel Attack catched 4 ⊥ - -
52 A exec Attack catched 4 ⊥ 0 2000
52 A sel Firewall 7 4 - -
52 A exec Firewall 7 4 0 4800
54 I fail Compr 0 day 7 2 1 40000
54 I sel Custom avail 2 ⊥ - -
342 I exec Custom avail 2 ⊥ 1 40000
343 I sel Public avail 2 ⊥ - -
343 A sel Patch avail 2 ⊥ - -
390 I exec Public avail 2 ⊥ 1 40000
391 A exec Patch avail 2 ⊥ 0 4000
391 A sel Patch 7 2 - -
397 A exec Patch 7 2 1 4500
397 A sel UnFirewall 7 ⊥ - -
398 A exec UnFirewall 7 ⊥ 1 4803

Fig. 4. Defense strategy without Honey-net (left) Defense strategy with honey-net (right)
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that at time 48 the intruder (I) execute (exec) the rule 0day avail on vertex 2, his
current cost is 0 and his current reward is 0. And so on.

The defense efficiency can be improved by taking preventive action when the vulner-
ability is disclosed. For instance by firewalling the vulnerable service. This is however
not a suitable course of action in most case because this also prevent access from le-
gitimate users. When the honey-net is used, the defense strategy can mitigate zero day
attacks as long as the honey-net is targeted first by the intruder, as detailed in figure
4 (on the right). Even with the introduction of an honey-net, the intruder has a strictly
dominant strategy that involves attacking company’s network services first This is con-
sistent with real world honey-net purpose that aims at mitigate 0 day attack by catching
unknown threats without the guaranty catch them all.

8 Evaluation

To evaluate the effectiveness of anticipation games to analyze complex multiple-sites
scenarios, we have implemented the full framework in a tool written in C for perfor-
mance reasons. Evaluations were conducted on a Linux core 2 desktop using the tool
built-in benchmark option. The game used in the evaluation is the one presented in this
paper with more company networks and more services per network. Benchmark results
are summarized in the table below. Time is in second. The prototype includes many
optimizations to delay the execution time blowup. It follows that it is possible to find
the optimal strategy for 50 services divided into 4 sites and 1 honey-net. When more
services are added, the execution time blowup as predicted by the theoretical complex-
ity bound. That is why for larger network, we have designed an heuristic that is able to
find an approximate strategy by using a dynamic rules ordering algorithm. The strategy
returned by this algorithm is sound, it satisfies the strategy constraint, but there is no
guarantee that it is the best one. However on small examples, it appears to be so. This
evaluation shows that anticipation games is suitable to analyze complex scenarios even
on very large networks.

Analysis Num of service Num of network Analysis time in sec
Exact 30 2 0.03
Exact 40 3 0.1
Exact 50 4 1020

Appro 2000 1 0.48
Appro 5000 4 0.82
Appro 10000 3 2.26

9 Conclusion

We have introduced an extension for anticipation games that allows to analyze network
cooperation and cost over the time. We have also proved that this extension does not
change anticipation games complexity. Finally we have shown with our prototype that
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anticipation games with this extension can be used in practice to model complex sce-
nario even when each network have thousand services. As a future direction of work,
we will focus on dependency graph static analysis to improve the scalability of the exact
solution.
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Abstract. In the landmark paper on the theoretical side of Polymer,
Ligatti and his co-authors have identified a new class of enforcement
mechanisms based on the notion of edit automata, that can transform
sequences and enforce more than simple safety properties.

We show that there is a gap between the edit automata that one can
possibly write (e.g. by Ligatti himself in his running example) and the
edit automata that are actually constructed according the theorems from
Ligatii’s IJIS paper and IC follow-up papers by Talhi et al. ”Ligatti’s
automata” are just a particular kind of edit automata.

Thus, we re-open a question which seemed to have received a definitive
answer: you have written your security enforcement mechanism (aka your
edit automata); does it really enforce the security policy you wanted?

Keywords: Formal models for security, trust and reputation, Resource
and Access Control, Validation/Analysis tools and techniques.

1 Introduction

The explosion of multi-player games, P2P applications, collaborative tools on
Web 2.0, and corporate clients in service oriented architectures has changed the
usage models of the average PC user: users demand to install more and more
applications from a variety of sources. Unfortunately, the full usage of those
applications is at odds with the current security model.

The first hurdle is certification. Certified application by trusted parties can run
with full powers while untrusted ones essentially without any powers. However,
certification just says that the code is trusted rather than trustworthy because
the certificate has no semantics whatsoever. Will your apparently innocuous ap-
plication collect your private information and upload it to the remote server [16]?
Will your corporate client developed in out-sourcing dump your hard disk in a
shady country? You have no way to know.

Model carrying code [18] or Security-by-Contract [4] which claim that code
should come equipped with a security claims to be matched against the platform
policies could be a solution. However this will only be a solution for certified code.
� Research partly supported by the Project EU-FP7-IP-MASTER.
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To deal with the untrusted code either .NET [12] or Java [7] can exploit the
mechanism of permissions. Permissions are assigned to enable execution of po-
tentially dangerous functionalities, such as starting various types of connections
or accessing sensitive information. The drawback is that after assigning a per-
mission the user has very limited control over its usage. An application with a
permission to upload a video can then send hundreds of them invisibly for the
user (see the Blogs on UK Channel 4’s Video on Demand application). Con-
ditional permissions that allow and forbid use of the functionality depending
on such factors as the bandwidth or some previous actions of the application
itself are currently out of reach. The consequence is that either applications are
sandboxed (and thus can do almost nothing), or the user decided that they are
trusted and then they can do almost everything.

To overcome these drawbacks a number of authors have proposed to enforce
the compliance of the application to the user’s policies by execution monitor-
ing. This is the idea behind security automata [5,8,1,17], safety control of Java
programs using temporal logic specs [10] and history based access control [11].

In order to provide enforcement of security policies at run time by monitoring
untrusted programs we want to know what kind of policies are enforceable and
what sorts of mechanisms can actually enforce them. In a landmark paper [2]
Bauer, Ligatti and Walker seemed to provide a definitive answer by presenting a
new hierarchy of enforcement mechanisms and classification of security policies
that are enforceable by these mechanisms.

Traditional security automata were essentially action observers that stopped
the execution as soon as an illegal sequence of actions was on the eve of being per-
formed. The new classification of enforcement mechanisms proposed by Ligatti
included truncation, insertion, suppression and edit automata which were con-
sidered as execution transformers rather than execution recognizers. The great
novelty of these automata was their ability to transform the “bad” program
executions in good ones.

These automata were then classified with respect to the properties they can
enforce: precisely and effectively enforceable properties. It is stated in [2] that
as precise enforcers, edit automata have the same power as truncation, suppres-
sion and insertion automata. As for effective enforcement, it is said that edit
automata can insert and suppress actions by defining suppression-rewrite and
insertion-rewrite functions and thus can actually enforce more expressive prop-
erties than simple safety properties. The proof of Thm. 8 in [2] provides us with a
construction of an edit automaton that can effectively enforce any (enforceable)
property.

Talhi et al. [19] have further refined the notion by considering bounded version
of enforceable properties.

1.1 Contribution of the Paper

If everything is settled why we need to write this paper? Everything started
when we tried to formally show “as an exercise” that the running example of
edit automaton from [2] provably enforces the security policy described in that
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paper by applying the effective enforcement theorem from the very same paper.
Much to our dismay, we failed.

As a result of this failure we decided to plunge into a deeper investigation and
discovered that this was not for lack of will, patience or technique. Rather, the
impossibility of reconciling the running example of a paper with the theorem
on the very same paper is a consequence of a gap between the edit automata
that one can possibly write (e.g. by Ligatti himself in his running example)
and the edit automata that are actually constructed according Thm. 8 from [2]
and Thm. 8 from [14] and the follow-up papers by Talhi et al. [19]. ”Ligatti’s
automata” are just a particular kind of edit automata. Figure 3 later in the
paper shows that we were trying to prove the equivalence of automata belonging
to different classes, even though they are the “same” according to [2].

The contribution of this paper is therefore manyfold:

– We show the difference between the running example from [2] and the edit
automata that are constructed according Thm. 8 in the very same paper.

– We introduce a more fine grained classification of edit automata introducing
the notion of Delayed Automata and related security properties and relation
between different notion of enforcement.

– We further explain the gap by showing that the particular automata that
are actually constructed according Thm. 8 from [2] are a particular form of
delayed automata that have an all-or-nothing behavior and that we named
Ligatti’s automata.

The remainder of the paper is structured as follows. At first we sketch the differ-
ence between the edit automaton from the running example and Thm. 8 from [2]
(§2). Then we present the basic notions of policies, enforcement and automata
in Section 3. We give a more fine grained classification of edit automata intro-
ducing the notion of Delayed Automata (§4). Section 5 explains relation between
different notions of enforcement and types of edit automata. Finally we conclude
with a discussion of future and related works (§6).

2 The Example Revised

Example 1 (Verbatim from [2]). To make our example more concrete, we will
model a simple market system with two main actions, take(n) and pay(n),
which represent acquisition of n apples and the corresponding payment. We let
a range over all the actions that might occur in the system (such as take, pay,
window-shop, browse, etc.) Our policy is that every time an agent takes n apples
it must pay for those apples. Payments may come before acquisition or vice versa,
and take(n); pay(n) is semantically equivalent to pay(n);take(n). The edit au-
tomaton enforces the atomicity of this transaction by emitting take(n);pay(n)
only when the transaction completes. If payment is made first, the automaton
allows clients to perform other actions such as browse before committing (the
take-pay transaction appears atomically after all such intermediary actions).
On the other hand, if apples are taken and not paid for immediately, we issue
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a warning and abort the transaction. Consistency is ensured by remembering
the number of apples taken or the size of the prepayment in the state of the
machine. Once acquisition and payment occur, the sale is final and there are no
refunds (durability).”

In order to formally define the allowed and prohibited behavior described in
the market policy we present: 1) a predicate P̂ over sequences of executions; 2)
the expected output for every input sequence according the original example in
Table 1.

Let us explain the expected output of some examples form Table 1,
e.g. sequence 7:

– It contains take(1) action and browse action after it.
– Since there is no pay(1) action, the policy is violated. We expect the action

take(1) be suppressed and output the warning action instead.
– The browse action does not violate the policy hence we output it.
– Next actions pay(2);take(2) do not violate the policy.
– Therefore the output is warning;browse;pay(2);take(2).

In the sequences 13-15 the text of original example leaves opened a number of
interpretations. It is clear that good sequences must have a pair of take(n) and
pay(n) as the text implies, but it is not clear whether we allow interleaving of
pay(n) and pay(m). The text seems to imply that this is not possible so we
mark them as violations.

We say that expected output is defined if either a take-pay transaction is
completed (after the last pay(n) action there is a take(n) action) or the trans-
action is violated (after take(n) action there is an action different from pay(n)).

Table 1. Sequences of actions for market policy

No. Sequence of actions σ Expected output P̂ (σ)
1 take(1) · ×
2 pay(1) · ×
3 take(1);browse warning; browse ×
4 pay(1);browse browse ×
5 pay(1); take(1) pay(1);take(1) √
6 take(1);browse;pay(2) warning;browse ×
7 take(1);browse;pay(2);take(2) warning;browse;pay(2);take(2) ×
8 take(1);browse;pay(1) warning;browse ×
9 take(1);browse;pay(1);take(2) warning;browse ×
10 take(1);browse;pay(1);take(2);browse warning;browse;warning;browse ×
11 take(1);browse;pay(1);take(2); warning;browse; ×

browse;pay(2) warning;browse
12 take(1); pay(2); take(2) pay(2);take(2) ×
13 pay(1);browse;pay(2) browse ×
14 pay(1);browse;pay(2);take(2) browse;pay(2);take(2) ×
15 pay(1);browse;pay(2);take(2);browse browse;pay(2);take(2);browse ×
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But it is not clear how the sequence 14 should be transformed because we don’t
know if the pay(1) action should still be followed by the take(1) action or it
should be simply suppressed.

The edit automaton that, as authors of [2] say, effectively enforces the market
policy is shown in Fig. 1. But the definition of effective enforcement includes the
notion of property P̂ : the predicate over the sequences of actions and this pred-
icate is not given explicitly in [2]. That is why following the example in English
we are presenting the Table 1 as a market policy. Assuming that our presentation
of the policy corresponds to the Example 1, the given edit automaton [2] should
effectively enforce the policy in Table 1.

According to the Thm. 8 of [2], any property P̂ can be effectively enforced by
some edit automaton. We will construct such automaton according to the proof
of this theorem (for more details about construction see technical report [3]).

After construction we discovered that edit automaton that effectively enforces
P̂ (Fig. 1) and the one constructed by the proof of Theorem 8 (some edit au-
tomaton that effectively enforces P̂ ) produce different output for the same input.
Let us show in Table 2 some cases of input and output of both automata.

Analysing the Table 2 we find out that the transformed sequences of actions
are not always the ones expected from the edit automaton. So the question arises:

Fig. 1. An edit automaton that “effectively” enforces the market policy [2]

Table 2. Difference in output for edit automata

No. Input Output
EA from Fig. 1 [2] Constructed EA

by Thm.8 [2]
1 pay(1); take(1) take(1);pay(1) pay(1);take(1)
2 take(1); browse; pay(1); warning;browse ·

take(2); browse; pay(2)
3 take(1); pay(2); take(2) warning ·
4 take(1); browse; pay(2); take(2) warning;take(2); pay(2) ·
5 pay(1); browse; pay(2); take(2); browse browse; warning ·
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Why the output is predictable in some cases and unpredictable in the others? The
answer to this question is:

1. Both edit automata produce the expected output when the input sequence
is legal (sequence 1 in the example)

2. The edit automaton constructed following the proof of Thm. 8 [2] is a very
particular kind of the edit automaton.

When the sequence is illegal the output of both edit automata is unexpected. In
Fig. 2 we show the relation between input and output for edit automaton from
Fig. 1 [2] and edit automata constructed by Thm.8 [2] with respect to the ”good”
and ”bad” traces. In case of ”bad” input sequences edit automaton constructed
by Thm.8 [2] outputs only the longest valid prefix: so either it outputs some
valid sequence (ex.1 in Tab.2) or suppresses all the sequence (ex.2-5 in Tab.2).
While edit automaton from Fig. 1 [2] always outputs some ”good” sequence of
actions even if the longest valid prefix is an empty sequence (ex.2-5 in Tab.2).

Fig. 2. Relation between input and output for edit automaton from Fig. 1 [2] and edit
automaton constructed by Thm.8 [2]

In order to explain this difference we analyze different classifications of edit
automata that explain the behavior of the edit automaton constructed following
the proof of Thm. 8 and the edit automaton from Fig. 1 [2]. For example,
all theorems referring to edit automata in [19] are about the particular kind of
automaton that is constructed following the proof of Thm. 8 [2].

3 Basic Notions of Policies, Enforcement and Automata

Similarly to [2] we specify the system at a high level of abstraction, where the
set Σ is the set of program actions; the set of all finite sequences over Σ is
denoted by Σ∗ , similarly the set of all infinite sequences is Σω , and the set Σ∗

∪ Σω is a set of all finite and infinite executions. Execution σ is a finite sequence
of actions a1, a2, ..., an. In scope of this paper we assume only finite executions
leaving infinite sequences of actions to be considered in future work.
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With · we denote an empty execution. The notation σ[i] is used to denote the
i-th action in the sequence (begin counting at 0). The notation σ[..i] denotes the
subsequence of σ involving the actions σ[0] through σ[i], and σ[i + 1..] denotes
the subsequence of σ involving all other actions. We use the notation τ ;σ to
denote the concatenation of two sequences.

As showed in Section 2 the constructed edit automaton following the algorithm
in [2] and edit automaton presented in [2] are different. We give the original
definition of edit automata from [2]:

An Edit Automaton E is described by a 5-tuple of the form 〈Q, q0, δ, γ, ω〉 with
respect to some system with actions set Σ. Q specifies possible states, and q0 is
the initial state. The partial function δ : (Σ × Q) → Q specifies the transition
function; the partial function ω : (Σ ×Q) → {−,+} has the same domain as δ
and indicates whether or not the action is to be suppressed (-) or emitted(+);
the partial function γ is an insertion function, γ : (Σ×Q)→ Σ∗×Q. The partial
functions δ and γ have disjoint domains.

(σ, q) τ−→ E(σ′, q′) (1)

(σ, q) a−→ E(σ′, q′) if σ = a;σ′ ∧ δ(a, q) = q′ ∧ ω(a, q) = + (2)

(σ, q) ·−→ E(σ′, q′) if σ = a;σ′ ∧ δ(a, q) = q′ ∧ ω(a, q) = − (3)

(σ, q) τ−→ E(σ, q′) if σ = a;σ′ ∧ γ(a, q) = τ ; q′ (4)

(σ, q) ·−→ E(·, q) otherwise (5)

Assuming that the function γ always inserts all necessary actions that have
to appear before the a action, we can rewrite the case of insertion as statement
(4) and then statement (2). We consider that after inserting some actions τ at
the next step the automaton will accept the current action a (if inserting τ ; a
makes the output illegal then one can simply suppress a without inserting τ).
Hence, the equation (4) can be represented as follows:

(σ, q)
τ ;a−→ E(σ′, q′) if σ = a;σ′ ∧ γ(a, q) = τ ; q′ (6)

In this way, the sequences σ and σ′ are not relevant in the definition of tran-
sitions. Loosely speaking this was a Mealy-Moore transformation [9]. In order to
give a formal definition in our notations, we will use the σS sequence to define
the sequence that was read but is not in the output yet.

Definition 1 (Edit Automata (EA)). An Edit Automaton E is a 5-tuple
of the form 〈Q, q0, δ, γo, γk〉 with respect to some system with actions set Σ. Q
specifies possible states, and q0 ∈ Q is the initial state. The partial function
δ : (Q × Σ) → Q specifies the transition function; the partial function γo :
(Σ∗ × Q) → Σ∗ defines the output of the transition according to the current
state and the sequence of actions that is read but not in the output yet; the
partial function γk : (Σ∗ ×Q) → Σ∗ defined the sequence that will be kept after
committing the transition. The dependence between the transition, output and
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keep function is following: if δ(q, a) is defined then γo(q, a, σ) and γk(q, a, σ)
must be defined for all σ.

(q, σS)
γo(q,σS ;a)−→ E(q′, γk(q, σS ; a)) (7)

In order for the enforcement mechanism to be effective all functions δ, γk and
γo should be decidable.

Proposition 1. The Definition 1 of edit automaton has the same expressive
power of the original definition [2].

The proofs of all propositions and theorems are in the technical report [3].

4 A New Classification of Automata

Let us now give a deeper look at the automaton constructed according the proof
of Thm. 8 [2]. In this construction at every state the automaton has emitted
the sequence σ′, and σ′ is the longest valid prefix of the input sequence σ. In-
deed, Table 2 shows that this statement holds for edit automaton constructed
by Thm. 8 and it doesn’t hold for the edit automaton from Fig. 1 [2]. Therefore,
in order to understand what kind of edit automaton is in Fig. 1 we need to give
a formal definition of this kind of automaton. This automaton outputs some
valid prefix only when the sequence can become valid again in the future (e.g.
for the sequence take(1);pay(1);take(2) after reading take(1);pay(1) the au-
tomaton will output these actions, and after reading the take(2) action it will
still output the valid prefix take(1);pay(1)). And it outputs some corrected
sequence (current valid prefix and some other sequence) if the sequence cannot
become valid in the future(in example 2 of Table 2 after reading take(1);browse
actions the automaton outputs another action warning).

This corresponds to the following intuition:

Remark 1. The automaton constructed according to the proof of Thm. 8 in [2]
just delays the appearance of input actions until the input has built up a correct
sequence again.

Formally, we propose a notion of wider class of such automata called Delayed
Automata. They simply output some prefix of the input. These class will be
the container of other less trivial cases when the property P̂ will be called into
account.

Definition 2 (Delayed Automata). Delayed automaton A is an edit automa-
ton that is described by a 5-tuple of the form A = 〈Q, q0, δ, γo, γk〉, where the
transition is defined as in equation (7) with the restriction that it always outputs
some prefix of the input:

σS ; a = γo(q, σS ; a); γk(q, σS ; a) (8)
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In order to give a formal definition of the automata from Thm. 8 [2] for any
property P̂ we present also a wider class of automata called All-Or-Nothing
Automata. These automata always output a prefix of the input (hence it is
a particular kind of the Delayed Automata). Moreover, at every step of the
transition either it outputs all suspended inputs or suppresses the current action.

Definition 3 (All-Or-Nothing Automata). All-Or-Nothing automaton A is
an edit automaton described by a 5-tuple of the form A = 〈Q, q0, δ, γo, γk〉, where
the transition relation is defined as in equation (7) with the following restrictions:

– This automaton outputs a prefix of the input: the statement (8) holds.
– At every step of the transition either it outputs the whole suspended sequence

of actions or suppresses the current action:

γo(q, σS ; a) =

{
σS ; a
·

(9)

The next step is the refinement of this class towards what we call Ligatti Au-
tomata for P̂ . These automata always output a prefix of the input (hence it
is a particular kind of the Delayed Automata) and they are particular kind of
All-Or-Nothing automata. Moreover, they output the longest valid prefix. The
definition of Ligatti Automaton for property P̂ given below was made according
to the construction of edit automaton given in the proof of Thm. 8 [2].

Definition 4 (Ligatti Automata for property P̂ ). Ligatti automaton E
for property P̂ is an edit automaton described by a 5-tuple of the form E =
〈Q, q0, δ, γo, γk〉, where the set of states Q = Σ∗ (every state contains the already
accepted sequence σ) and the transition relation is defined in a similar way as
in equation (7):

(σ, σS)
γo(σ,σS ;a)−→ E(σ; γo(σ, σS ; a), γk(σ, σS ; a)) (10)

With the following restrictions:

– The automaton outputs a prefix of the input (the statement (8) holds)
– Either it outputs the whole suspended sequence of actions or suppress the

current action (the statement (9) holds).
– Output is a valid prefix of the input

P̂ (σ; γo(σ, σS ; a) (11)

– If the current sequence is valid then it outputs the whole sequence:

If P̂ (σ;σS ; a) then γo(σ, σS ; a) = σS ; a. (12)

At every state a Ligatti automaton for property P̂ keeps the sequence σ that
was read till the current moment in order to decide whether P̂ (σ;σS ; a) holds.
This explains why Q= Σ∗. In our definition a Ligatti Automaton for property
P̂ is obviously a particular kind of Edit Automatfon. We will show that this
statement holds in the original definition as well.
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Proposition 2. The Ligatti Automaton for property P̂ is an Edit Automaton
according to Ligatti’s own Definition.

Let us now show the inverse of this claim: the edit automaton constructed fol-
lowing the proof of Thm. 8 [2] is a Ligatti Automaton for property P̂ .

Proposition 3. The Edit automaton constructed following the proof of Thm. 8
in [2] for property P̂ is a Ligatti Automaton for P̂ .

In a nutshell, the difference between edit automata and Ligatti automata for
property P̂ is the following: edit automata suppress and insert arbitrary ac-
tions according to the given rewriting functions ω and γ while Ligatti automata
for property P̂ can only insert those actions that were read before; suppressed
actions either will be inserted when the input sequence becomes valid or all
subsequent actions will be suppressed. Thus Ligatti automata for property P̂
outputs the longest valid prefix of the input sequence.

Since the automaton constructed following the proof of Thm. 8 [2] is a Ligatti
automaton for property P̂ while the automaton given in [2] (Fig. 1) is an edit
automaton, the difference between their behaviors is not clear.

Still, the automaton of Fig. 1 is not a completely arbitrary edit automaton
and we propose a notion of Delayed Automaton for property P̂ . If the sequence
is valid it outputs a valid prefix of the input, otherwise it can output some valid
sequence (i.e. fixing the input).

Definition 5 (Delayed Automata for property P̂ ). Delayed automaton A
for P̂ is an edit automaton that is described by a 5-tuple of the form A =
〈Q, q0, δ, γo, γk〉, where the transition is defined in the same way as in equation
(7) with the following restrictions:

If P̂ (σ;σS ; a) then

– Output is a prefix of the input (the statement (8) holds) and
– Output is a valid prefix of the input (the statement (11) holds).

Later in Fig. 3 we will pictorially describe the situation. However, in order to
explain more relations present in that picture we need first to define the notion
of enforcement in the next section.

5 A New Classification of Enforcement Properties

The principles of soundness and transparency were presented in [2] in order
to be able to compare different enforcement mechanisms. Let us first see an
intuitive description of these mechanisms. The notion of soundness requires all
the observable output of enforcement mechanism to be valid. The notion of
transparency means that an enforcement mechanism must preserve the semantics
of executions that are already valid. The notion of precise enforcement by [2]
obeys both of these properties. According to that definition, the automaton in
question outputs program actions in lock-step with the target program’s action
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stream if the action stream σ is valid. Suppose that at the current moment the
automaton reads i-th action in the sequence, and the sequence σ[..i + 1] is not
valid. Then the automaton will not output any other actions.

In order to formalize the behavior where the automaton suppresses some
actions and later insert them when the sequence turns out to be legal, we present
the notion of Delayed precise enforcement.

Definition 6 (Delayed Precise Enforcement). An edit automaton A with
starting state q0 delayed precisely enforces a property P̂ on the system with
action set Σ iff ∀σ ∈ Σ∗ ∃q′ ∃σ′ ∈ Σ∗.

1. (σ, q0)
σ′
−→ A(·, q′), and

2. P̂ (σ′), and

3. P̂ (σ) ⇒ σ = σ′ ∧ ∀i ∃j. j ≤ i ∃q∗. (σ, q0)
σ[..j]−→ A(σ[i + 1..], q∗).

There is another notion of enforcement called ”effective=enforcement” [14], which
also obeys the properties of soundness and transparency.

Definition 7 (Effective=Enforcement). An automaton A with starting state
q0 effectively= enforces a property P̂ on the system with action set Σ iff ∀σ ∈
Σ∗ ∃q′ ∃σ′ ∈ Σ∗.

1. (σ, q0)
σ′
−→ A(·, q′), and

2. P̂ (σ′), and
3. P̂ (σ) ⇒ σ = σ′

Let us show the relation between delayed precise enforcement and effective=en-
forcement.

Theorem 1. If edit automaton A delayed precisely enforces a property P̂ then
it effectively=enforces property P̂ .

Let us come back to Example 1. As it is said in [2] the given edit automaton
(Fig. 1) effectively=enforces the market policy. But since the market policy is
given only in natural language and the predicate P̂ is not given, statement ”An
edit automata effectively enforces the market policy” is stretching the definition.

Let us show in Fig. 3 all edit automata and its’ particular subclasses presented
above. The following theorems show the relation between different types of edit
automata.

Proposition 4. If edit automaton A is a Delayed Automaton then it is not
necessary that A is a Delayed Automaton for property P̂ .

Proposition 5. If edit automaton A is a Delayed Automaton for property P̂
then it is not necessary that A is a Delayed Automaton.

From the Thm. 4 and Thm. 5 we can conclude that classes of Delayed Automata
and Delayed Automata for P̂ have some common subclass but none of them
include the other.
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Fig. 3. The classes of Edit Automata

Theorem 2. If edit automaton A effectively=enforces property P̂ then A is a
Delayed Automaton for property P̂ and it is not necessary that A is a Delayed
Automaton.

Proposition 6. If edit automaton A is a Delayed Automaton for property P̂
then it is not necessary that A effectively=enforces property P̂ .

From Thm. 2 and Proposition 6 we conclude that the class of edit automata
that effectively=enforces property P̂ is a particular class of Delayed Automata
for P̂ and is not a proper subset of Delayed Automata.

Thm. 1 shows that edit automata that delayed precisely enforce property P̂
are a particular type of edit automata that effectively=enforce P̂ . The key point
is that in the definition of delayed precise enforcement it is left open how illegal
input is transformed.

Let us have a look at the 2d and 3d conditions of precise enforcement [2]:

P̂ (σ′)

P̂ (σ) ⇒ ∀i ∃q′′. (σ, q0)
σ[..i]−→ A(σ[i + 1..], q′′)

These conditions mean that the automaton will produce an output in a step-
by-step fashion with the monitored action stream and will output only a valid
prefix. As soon as input sequence becomes illegal, the automaton will stop out-
putting. Therefore, in case of precise enforcement for illegal input, it will output
some valid prefix σ′ = σ[..k] such that ∀i. i ≤ k. P̂ (σ[..i])∧¬P̂ (σ[..k+1]). In case
of delayed precise enforcement for illegal input the output will be some valid
prefix σ′ = σ[..k] such that ∀i. i ≤ k. P̂ (σ[..i]).

Theorem 3. Edit automaton A delayed precisely enforces a property P̂ if and
only if A is a Delayed Automaton, A is a Delayed Automaton for P̂ and it
effectively=enforces property P̂ .

Proposition 7. Delayed automaton A that delayed precisely enforces property
P̂ is not necessarily a Ligatti Automaton for P̂ .
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Proposition 8. All-Or-Nothing automaton A is a Delayed Automaton but not
necessarily a Delayed Automaton for property P̂ .

Theorem 4. All-Or-Nothing automaton A delayed precisely enforces a property
P̂ if and only if A is a Ligatti Automaton for property P̂ .

Now we will define type of edit automaton constructed following the proof of
Theorem 8 in [2] for property P̂ and type of edit automaton presented by the
authors in [2] (Fig. 1).

As the Proposition 3 states, edit automaton constructed following the proof
of Theorem 8 in [2] for property P̂ is a Ligatti Automaton for P̂ . The edit
automaton given in Fig. 1 [2] is an edit automaton that effectively=enforces P̂ :
the 2d condition of effective=enforcement is fulfilled (automaton always outputs
the valid sequence) and the 3d condition is valid because in case of valid input it
always outputs all the sequence. The edit automaton given in Fig. 1 [2] is not a
Delayed Automaton because it does not always output some prefix of the input
(see examples 2-5 in Tab.2)

Therefore we can conclude that both automata from Theorem 8 [2] and from
Fig. 1 [2] are edit automata that effectively=enforce property P̂ . But when one
wants to construct such an automaton and follows the proof of Theorem 8 [2],
he obtains Ligatti Automaton for P̂ that delayed precisely enforces P̂ .

6 Related Work and Conclusions

Schneider [17] was the first to introduce the notion of enforceable security poli-
cies. The follow-up work by Hamlen et al. [8] fixed a number of errors and char-
acterized more precisely the notion of policies enforceable by execution monitors
as a subset of safety properties. They also analyzed the properties that can be en-
forced by static analysis and program rewriting. This taxonomy leads to a more
accurate characterization of enforceable security policies. Ligatti, Bauer, and
Walker [2] have introduced edit automata; a more detailed framework for reason-
ing about execution monitoring mechanisms. As we already said, in Schneider’s
view execution monitors are just sequence recognizers while Ligatti et al. view
execution monitors as sequence transformers. Having the power of modifying
program actions at run time, edit automata are provably more powerful than
security automata [13].

Fong [6] provided a fine-grained, information-based characterization of en-
forceable policies. In order to represent constraints on information available to
execution monitors, he used abstraction functions over sequences of monitored
programs and defined a lattice on the space of all congruence relations over ac-
tion sequences aimed at comparing classes of EM-enforceable security policies.
Still his policies are limited to safety properties over finite executions.

Martinelli and Matteucci [15] have shown how to synthesize program con-
trollers that monitor behavior of the untrusted components of the system. Given
the system and a security policy represented as a μ-calculus formula the user
can choose the controller operator (truncation, suppression, insertion or edit
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automata). Then he can generate a program controller that will restrict the
behavior of the system to those specified by the formula.

When a security policy is represented by a predicate P̂ over set of finite exe-
cutions we can conclude that both automata from Thm. 8 [2] and from Fig. 1 [2]
are edit automata that effectively=enforce property P̂ . If one wants to construct
such an automaton and follows the proof of Thm. 8 [2], he obtains a Ligatti
automaton for P̂ that delayed precisely enforces P̂ . A problem that is present
in the construction of Thm. 8 is that it assumes an oracle that can tell for each
sequence σ whether P̂ (σ) holds or not.

A security policy in Thm. 8 [2] is a predicate P̂ on all possible finite sequences
of executions, but in this case the edit automaton which effectively enforces this
policy is only of theoretical interest: following the proof of Thm. 8 only infinite
states automata can be constructed.

In summary, we have shown that the difference between the running example
from [2] and the edit automata that are constructed according Thm. 8 in the very
same paper is due to a deeper theoretical difference. In order to understand this
difference we have introduced a more fine grained classification of edit automata
introducing the notion of Delayed Automata. The particular automata that are
actually constructed according Thm. 8 from [2] are a particular form of delayed
automata that have an all-or-nothing behavior and that we named Ligatti’s
automata after their inventor.

Hence, the construction from Talhi et al. [19] only applies to Ligatti’s au-
tomata. Given a Ligatti automaton they can extract the Büchi automaton that
represent the policy effectively enforced by the Ligatti automaton. What hap-
pens if the automaton is not a Ligatti automaton? For example the automaton
from Fig. 1? Proposition 6.24 [19] simply does not apply. It needs to be shown
whether given a general edit automaton one can construct a Büchi automaton
so that the latter represents the policy that is effectively enforced by the former.
We leave this question open for future investigation.

What remains to be done? Our results shows that the edit automaton that
you can actually write (e.g. by using Polymer) does not necessarily correspond
to the theoretical construction that provably guarantees that your automaton
enforce your policy. A first step would be to find a construction that given a
security policy represented as a Büchi automaton gives the Ligatti automaton
that effectively enforces it.

So we fully re-open the most intriguing question that the stream of papers
on execution monitors seemed to have closed: you have written your security
enforcement mechanism (aka your edit automata); how do you know that it really
enforces the security policy you specified?
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Abstract. When delegation in real world scenarios is considered, the
delegator (the entity that posses the privileges) usually passes the privi-
leges on to the delegatee (the entity that receives the privileges) in such
a way that the former looses these privileges while the delegation is ef-
fective. If we think of a physical key that opens a door, the privilege
being delegated by the owner of the key is opening the door. Once the
owner of the key delegates this privilege to another entity, by handing
over the key, he is not able to open the door any longer. This is due to
the fact that the key is not copied and handed over but handed over to
the delegatee.

When delegation takes place in the electronic world, the delegator
usually retains also the privileges. Thus, both users have them simulta-
neously. This situation, which in most cases is not a problem, may be
undesirable when dealing with certain kind of resources.

In particular, if we think of finite resources, those in which the number
of users accessing simultaneously is finite, we can not allow that a user
delegating his access privilege is also granted access when the delegation
if effective.

In this paper we propose an approach where each user is delegated an
access quota for a resource. If further delegating of the delegated quota
occurs, this is subtracted from his quota. That is, when delegating, part
of the quota remains with the delegator and another part goes to the
delegatee. This allows a more fairly access to the resource. Moreover, we
show that this approach can also be applied to any kind of resources by
defining appropriate authorization policies.

1 Introduction

When delegation in real world scenarios is considered, the delegator (the entity
owning the privileges) usually passes the privileges on to the delegatee (the entity
that receives the privileges) in such a way that the former looses these privileges
while the delegation is effective. If we think of a contact-less ID card used for
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opening a door, the privilege being delegated by the owner of the card is opening
the door. Contact-less ID cards are meant to be tamper resistant and hence non
feasible to be copied. Then, once the owner of the card delegates this privilege
to another entity, by handing over the key, he is not able to open the door any
longer. This is due to the fact that the key is not copied and handed over but
just handed over to the delegatee.

When delegation takes place in the electronic world, the delegator usually
retains the privileges. Thus, both users hold the privilege simultaneously . This
situation, which in most cases is not a problem, may be undesirable when dealing
with certain kind of resources. Current solutions for privilege management with
support for delegation (see PolicyMaker [3], KeyNote [2], SPKI [4], PMI [7]) do
not address this situation.

In particular, if we think of finite resources, those in which the number of
users accessing simultaneously is finite, we can not allow that a user delegating
his access privilege is also granted access when the delegation is effective.

In our approach each user is delegated an access quota for a resource and
when further delegation occurs the delegated quota is subtracted from his given
quota. Thus, when delegating, part of the quota remains with the delegator
another part goes to the delegatee.

In this paper we propose a model useful for delegating rights or authorization
in order to use a specific resource that can be split in several parts. Granting
a part of a resource can be seen as granting a percentage of it. Thus, when
issuing credentials together with the resource we should specify the percentage,
or quota, of it that is being delegated. Our model uses Markov’s chains, widely
used as a statistics model [8, 13].

This quota percentage can be compared with a trust value in the sense that the
higher it is, the more power the holder of the credential has. In fact, the approach
presented in this work is similar, and related, to some existing approaches for
trust management. One of these methods is PageRank [12] that represents a way
of ranking the best search results based on a page’s reputation. Flow models such
as Advogato’s reputation system [9] or Appleseed [14, 15] use of transitivity. In
these type of systems the reputation of a participant increases as a function of
incoming flow and decreases as a function of ongoing flow.

The paper is organized as follows. In Section 3 we describe two scenarios
where our model could be applied. The model is presented in Section 4 and its
complexity in Section 4.2. Section 6 outlines the future work and concludes the
paper.

2 Related Work

As we mentioned in the introduction, current delegation schemes used in au-
thorization systems do not fully take into consideration the scenario where the
delegated privilege can not or must no be shared between the delegator and the
delegatee. Some works have defined the privilege transfer scenario, but nothing
has been mentioned about the quota based approach.
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PolicyMaker [3] is a general and powerful solution that allows the use of any
programming language to encode the nature of the authority being granted as
well as the entities to which it is being granted. KeyNote [2] is a derivation of
PolicyMaker, and has been supported by IETF.

Blaze, Feigenbaum and Lacy introduced in [3] the notion of Trust Manage-
ment. In that original work they proposed the PolicyMaker scheme as a solution
for trust management purposes. It addresses the authorization problem directly,
without considering two different phases (one for authentication and another for
access control).

Keynote [2] uses a specific assertion language that is flexible enough to handle
the security policies of different applications. Assertions delegate the authoriza-
tion to perform operations to other principals. KeyNote considers two types of
assertions called policies and credentials.

In both approaches, once users obtain privileges they can delegate it to any
other user while also being able to use it at the same time. This is why none of
these solutions can be used in our scenarios.

SKPI [4] was proposed by the IETF working group. The SPKI certificate
contains at least an Issuer and a Subject, and it can contain validity conditions,
authorization and delegation information. The delegation information is used to
specify the maximal length of a delegation path. When set to 0 delegation is
not allowed. This approach does not deal neither with finite resources nor with
privileges that can not be shared.

Privilege Management Infrastructure (PMI) is defined in X.509 ITU-T Rec-
ommendation [7] as the framework for the extended use of attribute certificates.
The Recommendation establishes four PMI models, one of them is the Delegation
model. Initially, the Source of Authority (SOA) assigns or delegates the privilege
to Attribute Authorities (AA). These can delegate the privileges to other AAs
or to end entities (EE). AAs and EEs can use their delegated privileges and
present them to the Privilege Verifier (PV) that verifies the certification path
to determine the validity of the privileges. The mechanism used to contain the
delegation statements is the attribute certificate. The extensions field is used by
the authorities to include the delegation policy.

Even though PMIs do not directly deal neither with finite resources nor with
privileges that can not be shared, we can take advantage of the extension mech-
anism in order to be able to manage them.

3 Applicability Issues or Scenarios

The type of scenarioswhere the quotamodel scheme canbe applied are thosewhere
an entity has all the access to a resource and it could hand over shares of the access
to this resource to some other entities. In this section we will outline two cases.

3.1 Residential Network Scenario

Let us assume a residential environment where the residents could use limited
resources such as file space in a shared hard disk or the internet connection
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bandwidth. Those resources are shared among users in the residential environ-
ment according to some parameters such as how much they contribute to the
residential network (e.g. money or hardware) or another less objective parame-
ters such as friendship or trust relationships.

How are new users introduced to the residential network? How are resources
assigned to them? All these questions could be answered according to the initial
network configuration.

We assume a simple scenario where there are only two users in the residential
network and a new user wants to access its services, in particular, the shared
space and the bandwidth. In case both initial users had the same relevance in the
network, both of them will own a half of the space and a half of the bandwidth.
Then, one of them, or both, will hand over some of his space and bandwidth to
the new user.

The easiest way for the new user to use the resources is to make an arrange-
ment with one of the initial users in order to share his part of the network. This
arrangement may involve some payment from the new user. In case the initial
user shares half of his resources with the new user, the new configuration will
include 3 users with a share of 50%, 25% and 25%. This process can be repeated
in order to include new users in the system.

The situation is even more interesting when a new user knows two current
users and obtains from them a part of their shares. In this case the share of
the new user will be the sum of the parts handed to him. Thus, a new user can
accumulate more quota by dealing with existing users.

The structure of the network could then be encoded as a weighted trust graph.
This makes easier to define a central authorization module that takes as input
the graph of the network and controls access to the resources in the network.

3.2 Grid Organization

Another scenario where the quota delegation policy is applicable is the follow-
ing. Let us assume a grid composed of different organizations sharing multimedia
resources. Each organization has a participating quota that determines the in-
fluence in the authorization process in order to use the resources.

When making authorization decisions this hierarchy, and the participation in-
dexes of quota, have to be taken into account. There are several ways of doing this.

Each entity may issue different certificates, and those will be weighted accord-
ing to their participation index.

Each entity participating in the grid has a share of quota. This share of quota
could be handed over to external users. Usually, each organization would keep
some of this quota for its use and will ‘sell’ the surplus of resources. This process
could take place in a cascade effect. That is, if an external organization has
bought a participation in a particular resource, this organization could also sell
a portion to another external organization.

As consecutive sales advance, the quota that the new organizations obtain
decreases. That means that more external organizations to the grid will have
less influence on managing rights to access the resources of the grid.
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There should also be a policy of access for each resource established by the
grid and a common agreement where the minimum quota needed for accessing
such a resource is reflected. Depending on the nature of the resource, this quota
will be higher or lower. For instance, if the resource is a cluster, a request for
a minute slot of use requires a lower quota than for using it for longer. Also, if
there are two or more users competing for the same resource the quota can be
used in order to prioritize the access to the resource.

4 A Quota Approach for Delegation

In Section 3 we have presented a scenario where the entities participating in
a grid delegate rights management to another organizations, from inside and
outside the grid. In this section we will introduce a mathematical model that
formalizes the situation of the scenarios described above. We will call this model
the Quota Delegation Model.

Since organizations in lower levels have been delegated less quota as we de-
scend one level in the chain, we are interested in the exact quota that any orga-
nization retains. The quota is a real number in the interval [0, 1], representing a
percentage of the total quota where 1 corresponds to 100%. A user expresses the
quota delegated to other entities relatively to the actual quota they obtain. The
actual quota that a user delegates to another one is computed by multiplying
the relative quota (encoded in the delegation quota credential) and the actual
quota of the delegator. The absolute quota of a user is computed by summing up
all the absolute quotas delegated by all the users of the system. In this section
we will provide with an iterative mechanism for computing the absolute quota
of each user.

In order to compute the quota of a certain organization we will use the product
of all the quota of the links in the chain from the root node to the node we want
to compute, minus the quota that this entity delegates. In fact, for each entity we
can distinguish the delegated quota, which is the quota that reaches this entity
trough delegation paths, and the actual quota of this entity that is computed
by subtracting the quota delegated to other entities from the delegated quota of
this entity.

If there are several chains for delegating quota to organizations, the final quota
will be the addition of all the quotas obtained from all the different chains.

Loops are not allowed in our quota delegation model and have to be solved
outside of it. For instance, if entity X has delegated some of its quota to entity
Y and later, Y wants to delegate some of its quota to X , then there are two
possibilities:

– If the absolute quota that Y wants to delegate toX is greater than the absolute
quota X delegates to Y , then the quota delegation credential from X to Y
should be removed from the system and a new quota delegation credential
from Y to X should be added, where the delegated quota corresponds to the
difference between the absolute quota that Y wants to delegate to X and the
absolute quota delegated from X to Y expressed relatively to the quota of Y .
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– If the absolute quota that Y wants to delegate to X is lower than the ab-
solute quota X delegates to Y , then the current quota delegation credential
from X to Y should be removed from the system and a new quota delegation
credential from X to Y should be added. Then the delegated quota corre-
sponds to the difference between the absolute quota delegated from X to Y
and the absolute quota that Y wants to delegate to X expressed relatively
to the quota of X .

In both cases the resulting quota delegation graph has no loops.
We have initially used attribute certificate credentials [7, 5] to implement our

Quota Delegation Model. The privilege delegated is encoded as an attribute and
the value of the attribute is set to the quota. All the credentials have to be passed
to a central server which checks that the quota assignments that each user does
for each privilege is fair, i.e. the quotas of each credential issued by the same
user and regarding the same privilege sum less than 1, which represents 100% of
the quota. This central server stores all the delegated quotas in a matrix form.

If we establish an equivalence between nodes or organizations and states, and
between the quota that an entity X hands over to Z and the statistical concept
of transition from one X to Z, our particular problem could be modelled as a
discrete Markov’s chain where the number of phases or stages corresponds to
the length of the chain that we consider.

4.1 Computational Model

The initial organization or entity that first holds all the quota is called the
initiator and it will be the initial state of the Markov’s chain. The values of the
quotas could be placed in a matrix such as the addition of the elements in each
row is lower or equal than 1 (‘almost’ a stochastic matrix). The reason is that
the addition of all quota could never be greater than 1 but it can be less, i.e.,
there could be states without any assigned quota. Therefore, in order to make
this matrix a stochastic matrix we should add an additional state, namely, the
state of the non-assigned quota. This new state will mean a new column and row
for the matrix of the states where the values in the columns are calculated in
such a way that the addition of the values in the row is 1. If we call this matrix
A, the associated stochastic matrix A∗ is as follows:⎛⎜⎜⎜⎝

1−
∑n

j=1 a1,j

A
...

1−
∑n

j=1 an,j

0 · · · 0 1

⎞⎟⎟⎟⎠
The state of ‘non-assigned’ quota is a non-transition state as once it has been

reached no other state can be reached afterwards.
This matrix can be expressed in its canonical form as(

A R
0 I

)
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where A is the matrix of quota delegation that contains all the transition states;
R is the matrix that contains the non-assigned quota by entities and I is the
identity matrix of length 1. As there are no loops in the quota delegation graph,
the matrix A is upper triangular or at least we can make it upper triangular by
reordering the nodes using a topological sort algorithm over the quota delegation
graph. Therefore, the matrix of the chain, N , is calculated as follows:

N = (I −A)−1

Next we will show that the element nij of N is the share of quota that entity
i hands over to entity j.

An element a
(k)
ij of matrix Ak represents the percentage of quota that node i

hands over node j indirectly, if we only consider chains of length k. Also, An = 0
if n is greater or equal than the size of the matrix, as this is an upper triangular
matrix. Therefore, we can define matrix Â as

Â =
∞∑

i=1

Ai =
n−1∑
i=1

Ai

The elements of Â can be calculated in the following way:

âij =
n−1∑
s=1

a
(s)
ij

Â = (âij)

The elements âij of Â are the addition of all the quota that node i hands over
to node j for chains of any length.

Next we will show that N = I + Â, i.e., I + Â is the inverse of I −A. In order
to do this, we will show that the matrix is invertible from the right-hand side
(it is analogous from the left-hand side).

(I −A)(I + Â) = (I −A)(
n−1∑
s=0

As)

=
n−1∑
s=0

As −
n∑

s=1

As

= I +
n−1∑
s=1

As −
n−1∑
s=1

As −An

= I

This gives us two ways of obtaining the percentage of quota handed over by
entity i to entity j. Either by calculating the element ij of matrix N or by
calculating the element (i, j) of matrix Â.

In both cases, we can use the first row of those columns to form the vector of
quota delegation from the initiator.
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Definition 1 (quota delegation vector). The quota delegation vector is the
vector v consisting of all the quota delegation values from the initiator to the rest
of the entities. The first element is set to 1.

In order to obtain the actual quota that remains in each entity, we have to
subtract the quota it delegates from the quota it has been delegated. This can
be easily done by multiplying the corresponding element of the quota delegation
vector, vi, by the element ri of the column vector R.

By multiplying the column vector R by v, element by element, we obtain the
quota distribution over the entities. The sum of all the elements of this vector is 1.

4.2 Efficiency Analysis

The quota delegation model presents a feature that, in some cases, could be an
advantage and, in some others, a disadvantage depending on the nature of the
system. This feature is that if all the available quota has been assigned and we
would be interested in assigning quota to a new entity, this should be taken away
from the previously assigned quota.

Taking quota away could affect the entities which already had them assigned
and therefore, the quota should be re-distributed again. This re-distribution will
affect more to entities closer to the entity that it is the root of the quota. Thus,
if we establish an order where the entity origin of the quota is of order 1 and the
other entities’ order follows from the order how the quota is assigned, as higher
the order is, less impact will have the new distribution on this entity.

Taking into account all the above considerations we can make some remarks
concerning the complexity of the calculation of matrix Â. First, the consecutive
powers of matrix A have mainly zeros as their elements. Thus, for example, while
A is an upper triangular matrix, the elements of the diagonal a2

ii+1 of the matrix
A2 = (a2

i j) are all 0. Also, if the size of the matrix A is n then An−1 has only
one element which is not 0. This element is an

1n. Thus, in order to calculate the
elements of the diagonal âi,i+k of matrix Â, we only need elements of the powers
of A which are less or equal than k.

Next, we will see how many elemental operations we need in order to calculate
those elements.

Let dk be the diagonal k for k ∈ {1, . . . , n− 1} of any matrix A = (Aij). This
diagonal has n− k elements which are

dk(A) = {aj j+k}n−k
j=1

The number of operations needed in order to calculate dm(Ap) is (m − p +
1)(n−m) multiplications and (m−p)(n−m) additions (the detailed explanation
is beyond the scope of this paper).

Therefore, the number of multiplications needed in order to calculate Â and the
number of additions needed in order to calculate the powers of A are respectively

(n + 1)n(n− 1)(n− 2)
24

and
n(n− 1)(n− 2)(n− 3)

24
(1)
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In order to calculate dm(Â) we have to add the non-null diagonals dm(Ap), i.e.,
m − 1 diagonals. Since these diagonals have n − m elements, the number of
additions for adding the consecutive powers of A is

n(n− 1)(n− 2)
6

(2)

From those results we can calculate the total number of additions that are re-
quired for calculating Â and the total number of operations. Those two numbers
are respectively

n(n3 − 2n2 − n + 2)
24

and
n(n3 − 2n2 − n + 2)

12

As a remark we can say that this algorithm for calculating the distribution of
quota for n entities is of the order O(n4).

If we used the matrix N instead, we can determine the complexity of the
method by analyzing the complexity of the calculation of the inverse of I −A.

This matrix is invertible and its inverse is I+ Â. It is also upper triangular. In
this case, we could solve as n systems of simultaneous equations (I −A)xi = bi,
where bi are the consecutive columns of matrix I in order to calculate the inverse.
This inverse will be the matrix, in columns, (I − A)−1 = (x(1)‖ . . . ‖x(n)). We
can deduce that the inverse matrix is also upper triangular by observing the
sub-system of the n− i equations of each system,⎛⎜⎝0 1 · · · −ai+1 n

...
...

...
0 0 · · · 1

⎞⎟⎠
⎛⎜⎜⎝

x
(i)
i+1
...

x
(i)
n

⎞⎟⎟⎠ =

⎛⎜⎝0
...
0

⎞⎟⎠
therefore, x(i)

j = 0 for j > i. Thus, resolving the remaining i equations of the
system they can be simplified as follows⎛⎜⎜⎜⎝

1 −a12 · · · −a1i

0 1 · · · −ai+1 i

...
...

...
0 0 · · · 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x
(i)
1

x
(i)
2
...

x
(i)
i

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠
This triangular system of i equations can be resolved by performing i2 oper-

ations by using the substitution method. Thus, the final number of operations
needed for calculating the inverse of I −A will be

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

This means that by using the matrix N we can reduce the complexity to
O(n3).
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5 Quota Based Delegation and Authorization Policies

Our quota based delegation model is mainly focused on facilitating delegation
of access to resources that can be measured and consequently divided among
users according to the specified quota percentage. Examples of such a kind of
resources are the Internet connection bandwidth (see Section 3.2), file storage
space, CPU load in cluster environments, etc. In those cases there is not need
for a specific authorization policy to be used against the certificates, as they
encode both things. The rights are already included in the credential, therefore
we do not need to contrast it with an authorization policy. However, not all
the resources are easily split and furthermore, sometimes it is undesirable to
include the resource in the credential. In those cases, we use a role or group
membership attribute and split this attribute among the users in the system.
The grid scenario is a clear example of this situation. In those cases, we do need
an authorization policy, therefore actual privileges or rights can be derived from
the quota membership to a particular attribute. In Figure 1 we illustrate how
those two scenarios are characterized according to where more effort is needed,
either in the definition of credentials or in the definition of the authorization
policies.

Fig. 1. Characterization of the two scenarios

Even though we have made a distinction here between these two examples,
there might be cases where it is not that easy to make it. For the definition of
the authorization policy we take as an input the quota or the percentage of the
attribute that the user holds, and the higher it is, the more privileges it will be
delegated.

The authorization problem can be also tackled by using negative statements,
such as ‘this user will never access this resource’. As each user is delegated a quota
of the resource, an authorization credential can be given a weight associated to
the quota of the issuer. Then, positive authorization credentials, i.e., those grant-
ing some privileges but not delegating them, can be counted as positive votes for
authorization decisions and negative ones as negative votes. Those votes are pro-
portional to the quota of the issuers of the credentials, in such a way that at the
end, we can sum up all the positive votes and subtract from them all the negative
ones. If the result is positive the authorization request will be granted. However,
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this is just a simple authorization policy. More complex solutions can be defined,
such as requesting a lower bound for the delegated quota.

5.1 Example

Let us assume a grid of four organizations X , Z, V and W . Let us also assume
that the X is the user who initially possesses 100% of the quota of a given
resource, i.e. X is the owner of the resource and wants to contribute a share of it
to the grid. X hands over a third of the quota to V and another third to W . V
and W also delegate 3/4 of their quota to Z. We are interested in calculating the
exact quota that each entity in the grid retains after all the quota delegations
are effective.

In order for the matrix A to be upper triangular, we can establish the following
order of the nodes: X → 1, V → 2, W → 3 and Z → 4.

Figure 2 shows the distribution of the quota. The Figure on the left-hand
side describes how the quota originally is distributed among peers and, on the
one on the right-hand side the distribution of quota is represented as a States
Transition Diagram (STD) of the associated Markov’s chain which includes the
‘non-assigned’ quota states.

(a) Original Assignment (b) STD of the associated
of quota Markov’s chain

Fig. 2. From quota assignment graph to Markov’s chain STD

The matrix representing the quota assigned is as follows

A =

⎛⎜⎜⎝
0 1

3
1
3 0

0 0 0 3
4

0 0 0 3
4

0 0 0 0

⎞⎟⎟⎠
From this matrix we can obtain the stochastic matrix by including the non-

assigned quota in the last row and column.
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A∗ =

⎛⎜⎜⎜⎜⎝
0 1

3
1
3 0 1

3
0 0 0 3

4
1
4

0 0 0 3
4

1
4

0 0 0 0 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
The fifth row and column correspond to the state of non-assigned quota.
In order to calculate the quota that X hands over Z we should calculate, in

Markov’s processes terminology, the probability of going from state X to Z. We
will use matrix N for doing it.

N = (I −A)−1 =

⎛⎜⎜⎝
1 1

3
1
3

1
2

0 1 0 3
4

0 0 1 3
4

0 0 0 1

⎞⎟⎟⎠
In order to obtain the actual quota belonging to each user, we have to subtract

the quota that has already been delegated. We can do this by multiplying the
first row of this matrix by the column of the non-assigned quota, element by
element.

(1,
1
3
,
1
3
,
1
2
)× (

1
3
,
1
4
,
1
4
, 1) = (

1
3
,

1
12

,
1
12

,
1
2
)

Therefore, the shares of assigned quota of all the participants are the cor-
responding elements of this vector. Note that the sum of the elements of this
vector is one, therefore the quota property holds.

If we implement an authorization policy such as the simple one defined in the
previous section in such a way that Z and W decide that access to a third party
has to be granted, it does not matter what X and Y state, as the votes of Z and
W count more than 50%. Thus, the decision will be to grant access.

6 Conclusions and Future Work

In this work we have presented a delegation mechanism for finite resources or en-
vironments where there could be a conflict of interest among the entities involved
in the decision making process.

By specifying quotas in credentials we allow for fair delegation among the
participants, as we can control that a resource is never overflowed by a mas-
sive access from participants. When using the quota delegation mechanism in
conjunction with attributes, instead of with proper resources, fairness is not
the main objective but solving disputes between participants about which other
users are granted some privileges.

Currently we are exploring how this quota can be included in standard X.509
attribute certificates in a more coherent manner. We are using ideas from [10,1].
For doing this, we should first implement a mechanism such that a user is not
allowed to issue credentials for more than 100% of his quota.
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The trivial solution consists of storing all the credentials in a central server
that performs consistence checking over delegated quota. However, we believe
that distributed solutions, or at least semi-distributed solutions, can be achieved.

We are also focusing our efforts on exploring the field of encrypted databases
[11, 6] in order to try to implement a quota service database where each user
stores all the quota delegation credentials in an encrypted manner. Thus, this
quota service database, that may also be distributed, could answer consistence
queries, i.e. the delegated quota does not exceed the 100% of the own quota,
without revelling information neither about the delegated entities nor the actual
quota being delegated to them, to the privilege verifier.

The privilege verifier would therefore be able to compute at least a lower
bound for the delegated quota, based on a subset of the actual delegation paths.
In order to determine a lower bound of the delegated quota to a user, it should
be feasible to verify with the Quota Service Database that the specified quotas
in each of the credentials paths are part of fair assignment of quota. That is, the
summation of all the quotas of credentials of a given issuer for the same privilege
should never exceed 100%.

Furthermore, the Quota Service Database would allow us to use both, push
and pull mechanisms for authorization. By using the quota service database, the
privilege verifier can check that the credentials a user has sent to in order to
attest his quota are all the existing one.
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Abstract. The paper considers the addition of access control to a number of
transactional memory implementations, and studies its impact on the informa-
tion flow security of such systems. Even after the imposition of access control,
the Unbounded Transactional Memory due to Ananian et al, and most instances
of a general scheme for transactional conflict detection and arbitration due to
Scott, are shown to be insecure. This result applies even for a very simple policy
prohibiting information flow from a high to a low security domain. The source
of the insecurity is identified as the ability of agents to cause aborts of other
agents’ transactions. A generic implementation is defined, parameterized by a
“may-abort” relation that defines which agents may cause aborts of other agents’
transactions. This implementation is shown to be secure with respect to an in-
transitive information flow policy consistent with the access control table and
“may-abort” relation. Using this result, Transactional Memory Coherence and
Consistency, an implementation due to Hammond et al, is shown to be secure
with respect to intransitive information flow policies. Moreover, it is shown how
to modify Scott’s arbitration policies using the may-abort relation, yielding a class
of secure implementations closely related to Scott’s scheme.

1 Introduction

Multicore architectures have become ubiquitous in the design of microprocessor chips,
and they require developers to produce concurrent programs in order to gain a full ad-
vantage of the multiple number of processors. Parallel programming, however, is very
challenging. It requires programmers to carefully coordinate and synchronize objects
that access shared data in order to ensure that programs do not produce inconsistent, in-
correct or nondeterministic results. Locks, semaphores, mutexes, and similar constructs
are difficult to compose, and their incorrect application may introduce undesirable ef-
fects such as deadlocks, priority inversion, and convoying.
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Transactional Memory (TM) avoids these pitfalls, and simplifies parallel program-
ming by transferring the burden of concurrency management from the programmers to
the system designers, thus enabling programmers to safely compose scalable applica-
tions. Consequently, transactional memory is considered to be a promising alternative
method for coordinating objects and numerous new implementations have been pro-
posed recently (see [11] for an excellent survey).

A transaction is a sequence of operations that are executed atomically – either all
complete successfully (and the transaction commits), or none completes (and the trans-
action aborts). Moreover, committed transactions should be serializable – there should
be a permutation of the operations of the committed transactions where the operations
of each transaction are consecutive and in their original order. Transactional mem-
ory allows transactions to run concurrently as long as atomicity and serializability are
preserved.

Shared memory systems are often decomposed into security domains, with access
control mechanisms used to restrict actions, such as reading and writing memory loca-
tions not associated to these domains. This can be for reasons of structural decomposition
as well as to enforce an information flow security policy. The latter has been a particular
concern in military security applications. An intransitive noninterference policy can be
viewed as a specification of the permitted causal influences in such architectures.

A great deal of research has focused on construction of multi-level secure systems,
but, in practice, such systems continue to be plagued with known insecurities. An al-
ternative that has been advocated is to build a multilevel secure system as a distributed
system comprised of single-level systems [13,14]. Multicore processors offer the poten-
tial for such architectures for secure systems to be realised on a single chip. However,
appropriate controls on features such as transactional memory will be required to re-
alise this possibility. To our knowledge, the literature on transactional memory has not
yet turned to consideration of how access control should be managed in such systems.

In this paper we develop a model of access control in transactional memories, in
which transactional memory systems can be seen as extensions of Rushby’s [15] access
control model that add operations for opening, closing and aborting transactions. We
then study the extent to which the theory of information flow in access control sys-
tems carries over to the extension. A standard memory system with an access control
table can be associated with a “minimal” information flow policy (which is, in gen-
eral, intransitive). It can be established that a system satisfies the associated minimal
information flow policy. We study whether this is also the case for transactional memo-
ries, where we focus on different approaches to transactional memory implementation.
Specifically, we consider Transactional Memory Coherence and Consistency (TCC) [8],
Unbounded Transactional Memory (UTM) [2], and a general scheme for conflict de-
tection and arbitration [16]. Some of these implementations turn out to be secure with
respect to the policy associated to arbitrary access control tables, others turn out to be
insecure even for the very simple information flow policy involving two agents H and
L with information flow from H to L prohibited.

Finally, we identify the source of the insecurity to be the ability of one agent’s ac-
tivity to cause another agent’s transaction to abort and propose a fix to the classical ac-
cess control policy that avoids this type of insecurity. We define a generic transactional
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implementation that incorporates this idea. This result is then used to prove the secu-
rity of TCC as well as a modification of Scott’s arbitration rules so as to obtain secure
variants for all instances of Scott’s scheme.

A Simple Example. To demonstrate the ideas of this paper, consider Unbounded Trans-
actional Memory (UTM) that eagerly updates the main memory with new values while
maintaining copies of old values in a transaction log. A conflict between pending trans-
actions occurs when one tries to read a block that was written by another, or write a
block that was read or written by another. The arbitration policy is to abort the younger
transaction, i.e., the one that started while the other was already pending.

Suppose a single memory block, x, and two security domains, H (high) and L (low),
where H can only read x and L can both read and write x. As commonly assumed, the
permitted information streams are from each domain into itself and from L to H. Let
α be a trace of the system where H opens a transaction, then L opens a transaction,
and then H reads x. Now, assume L attempts to write x. According to UTM, since
this implies a conflict and L’s pending transaction is younger than H’s, L’s transaction
would be aborted. From this, L would be able to infer that H has an older pending
transaction that read x. Consequently, in this case, UTM allows information flow from
H into L, contrary to policy.

The violation of the security policy occurred because of L’s ability to infer infor-
mation about H from its failure to perform an action successfully, and not, as is usual
the case in memory systems, from its ability to read a value written by H. This leads
us to the observation that, to avoid such forbidden information flow, one should alter
the arbitration policy as to avoid aborting transactions of lower security clients in lieu
of actions performed by their higher security peers. As we show in the sequel, in this
particular case it suffices to abort the older H if aborting the younger L would lead to
security violation, and to follow the usual arbitration policy in all other cases.

Overview. The rest of the paper is organized as follows: Section 2 describes the formal
model and recalls the definitions that we use from the theory of information flow se-
curity. Section 3 gives a general description of transactional memory system, enhances
transactional memory systems with an access control table and proves several imple-
mentation of them to be insecure. Section 4 presents a generic secure protocol, and
shows security of some transactional memory systems that implement the generic pro-
tocol. Section 5 shows how to fix the systems shown insecure in Section 3 so as to be
secure. Section 6 reviews the data base literature related to our results. Finally, Section 7
provides some conclusions and discusses future work.

2 Model and Access Control

Several different abstract system models have been used in the literature on noninter-
ference. In this paper, we use an action-observed model [15], where the observations
are outputs received on performing an action. In later sections we refine this model in
order to capture specific detail of interest in transactional memory systems.

Let D be a set of security domains, or agents, and let O be a set of outputs, or
observations. An action-observed security system (AOSS) is a deterministic machine
of the form 〈S, s0, A, step, out, dom〉, where
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1. S is a set of states (typically, the set of all assignments to some set of variables V ),
2. s0 ∈ S is the initial state,
3. A is a set of actions,
4. dom : A → D associates each action to an element of the set of security domains
D,

5. step : S ×A→ S is a deterministic transition function, and
6. out : S×A→ O is a function such that out(s, a) is the output received by domain

dom(a) when action a is performed in state s.

We write s · α for the state reached by performing the sequence of actions α ∈ A∗

from state s, defined inductively by s · ε = s for ε the empty sequence, and s · αa =
step(s · α, a) for α ∈ A∗ and a ∈ A.

A non-interference policy captures when “actions of agent p1 are permitted to inter-
fere with agent p2,” or “information is permitted to flow from domain p1 to domain p2.”
See Section 6 for a brief survey on the history of non-interference. Formally, a nonin-
terference policy is a binary relation � over D, with p � q intuitively meaning that
“actions of agent p are permitted to interfere with agent q.” Since a domain should be
allowed to interfere with, or have information about, itself, � is always assumed to be
reflexive.

The simplest nontrivial noninterference policy (and the one most studied in the litera-
ture) is the one mentioned in Section 1, that comprised of two security domains L (low
security) and H (high security), with information permitted to flow from L to H but
not the other way around. Formally, this policy is captured by the (transitive) relation
�= {(L,L), (H,H), (L,H)}.

As mentioned in Section 1, access control systems can naturally be associated to
intransitive noninterference policies (we give the construction at the end of this sec-
tion). Such policies can be given a number of different semantic interpretations. We use
here the notion of TA-Security [12] (which avoids some unintuitive information flows
allowed in [15]; see [12] for a discussion).

Formally, given sets L and I , let H(L, I) be the smallest set H containing L and
such that if x, y ∈ H and i ∈ I then (x, y, i) ∈ H . Intuitively, the elements of H(L, I)
are binary trees with L-labeled leaves and I-labeled interior nodes. Given a policy �,
define, for each agent p ∈ D, the function tap : A∗ → H({ε}, A) inductively by
tap(ε) = ε, and, for α ∈ A∗ and a ∈ A:

tap(αa) =
{

(tap(α), tadom(a)(α), a) dom(a) � p
tap(α) otherwise

Informally, the definition builds an operational model of the maximal permitted flow
of information, where an action adds to the maximal permitted information of domains
with which it is permitted to interfere – the fact that the action occurs, as well as all
information available to its domain at the time it occurs.

An AOSS is TA-secure with respect to � if for all α, α′ ∈ A∗, and p ∈ D, if
tap(α) = tap(α′) then out(s0 · α, a) = out(s0 · α′, a) for every a ∈ A such that
dom(a) = p. That is, a system is secure if the output of an action returns no more
information than the maximal information permitted to be known to its agent.
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A simple example of an AOSS is a standard memory equipped with a read/write
access control table. Let Loc be a set of memory locations, Val a set of values that
these locations may store, and let R : D → P(Loc) and W : D → P(Loc) represent
the locations that each agent is permitted to read and write, respectively. Consider a
system in which the set of states is the set of all assignments s : Loc→ Val , and there
are two types of actions: readp(x) (a read request by agent p ∈ D on location x ∈ Loc)
writep(x, v) (a request by agent p ∈ D to write value v in location x ∈ Loc.) These
actions have the expected semantics: readp(x) returns the value of x unless x �∈ R(p),
in which case it returns err . Similarly, writep(x, v) updates x by v (and returns ack )
unless x �∈ W(p) (in which case it returns err ).

We remark that, given the access control structure T = (R,W) on such a standard
memory, we may define a policy �T by p �T q iff p = q orW(p)∩R(q) �= ∅. (Gen-
erally, �T is not guaranteed to be transitive.) Intuitively, if p �T q then information
flow from p to q cannot be prevented, since there is some location that p may write and
q may read. Conversely, it can be shown [12] that this relation captures precisely the
information flow policies enforced by the access control structure, in the sense that the
memory system is TA-secure with respect to a policy � iff �T⊆�. In the sequel we
examine the extent to which this result generalizes to transactional memories.

3 Transactional Memories

Transactional memory systems extend standard memory systems by allowing only for
atomic and serializable sequences of operations. Transactional memories vary in their
atomicity and serializability policies and in the implementation details by which they
guarantee these policies. Consequently, they vary in the data structures they maintain
(i.e., set of states) and the algorithms they employ (i.e., “step” function). See [4] for a
treatment of issues, which we ignore here.

Assume a set of clients that direct transactional requests to a memory system that
assigns a value from a set Val to every location x in a set Loc of locations. For every
client p, let the set of actions a with dom(a) = p (also referred to as p-actions) be:

– �p – An open transaction request.
– readp(x) – A request to read from address x ∈ Loc.
– writep(x, v) – A request to write the value v ∈ Val to address x ∈ Loc.
– �p – A close transaction request.
– ��p – An abort transaction request.

Most current transactional memory implementations assume that each client can read
from, and write to, every memory location. Here we take the view that clients are re-
stricted in the locations they may access. Hence, we associate each client p with two
subsets of Loc, R(p) and W(p), that indicate which locations p can read from and
write to.

The memory provides a response to each action: ack acknowledges that a non-read
has been carried out successfully, a value v ∈ Val is returned in response to a successful
read, err signals that the action is invalid, and aborted signals that the transaction
within which the action occurs must be aborted. An action is invalid when either it is
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a local violation of the transactional sequence, (for example, when a client issues a ��
and its previous action is also an ��), or when it attempts to access memory locations
that are forbidden. Determining when a transaction is to be aborted depends, however,
on the history of the transactional accesses and the transactional policies enforced.

A conflict occurs when concurrent transactions access the same location and at least
one writes to it. When a conflict occurs, at least one of the participating transactions
should be aborted. An implementation has an eager conflict detection if it detects con-
flicts as soon as they occur, and a lazy conflict detection if it delays the detection until
one of the transactions requests to commit. Arbitration policies determine which trans-
action should abort.

Under eager version management the memory is updated with every acknowledged
write action (which implies that aborts may require a roll-backs), and under lazy ver-
sion management memory updates are delayed until the write-ing transaction com-
mits (which entails no roll-backs). Note that eager version management may not be
combined with lazy conflict detection.

In [16], Scott studied various notions of conflicts. Let ≺ denote the precedence rela-
tion on events of a given trace, e ≺ e′ meaning that e occurred before e′ (in the trace).
Let Tp and Tq be concurrent (interleaved) transactions of agents p and q, respectively.
The best known of Scott’s conflicts are (1) lazy invalidation where Tp and Tq conflict if
a write of one transaction may invalidate a read of the other, i.e., if for some memory ad-
dress x, we have readq(x), writep(x, ) ≺�p≺�q (Here the read and write can occur
in either order); (2) eager W-R where Tp and Tq conflict if they have a lazy invalidation
conflict, or if for some memory address x, we have writep(x, ) ≺ readq(x) ≺�p,
and (3) eager invalidation where Tp and Tq conflict if they have an eager W-R conflict,
or if for some memory address x, we have readq(x) ≺ writep(x, ) ≺�q. Scott also
studies two arbitration policies. An eagerly aggressive policy aborts the transaction that
opened first, and a lazily aggressive commits a transaction if only if it does not conflict
with previously committed transactions.

Example 1. Unbounded Transactional Memory (UTM), proposed in [2], is a hardware
transactional memory (HTM) that eagerly updates the main memory with new values
while maintaining copies of old values in a transaction log. The description of UTM is
outlined in Section 1.

To cast a transactional memory as a AOSS, we assume that the setD of security domains
includes the set of clients, the set O of outputs includes Val ∪{err , ack , aborted}, and
the set V of variables includes the set Loc of memory locations.

Given a sequence of actions α = a1 . . .an and a state s, we define the trace of α
from s to be the sequence trace(α, s) = (a1, o1), (a2, o2), . . . , (an, on), where oi =
out(s·(a1 . . .ai−1), ai) for i = 1 . . .n. The trace indicates the sequence of outputs that
are obtained for the sequence of actions α when initiated at s. We call a pair (a, o) an
event. We say that p ∈ D has a pending transaction at α if for some i ∈ [1..n], (ai, oi) =
(�p, ack ), and (aj , oj) is neither (�p, ack) nor (��p, ack) for all j ∈ [i + 1..n], i.e., p
has a open transaction which has neither aborted nor committed at α. Similarly, p has
a pending aborted transaction at α if it has a pending transaction and for the maximal

 ∈ [1..n] such that a� is a p-action, o� = aborted .
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Some properties of the output function out are relevant for our discussion. As de-
scribed above,out returns err when an action violates a reasonable transaction sequence
or attempts to access forbidden memory locations. More formally, for a sequence of ac-
tions α and a p-action a, out(s0 · α, a) = err iff one of the following holds:

1. a is �p and p has a pending transaction in α;
2. a is not �p and p has no pending transaction in α;
3. a is readp(x) and x �∈ R(p);
4. a is writep(x) and x �∈ W(p);

(Note that an err output depends solely on local history of agents; If one assumes agents
attempt only syntactically “legal” actions, err can be removed.)

An aborted output depends on the implementation details. For simplicity’s sake, we
require that once an action generates an aborted output, all subsequent actions of the
same transaction which do not attempt to abort it, also generate an aborted output. That
is, to simplify the exposition, it is assumed that if p has an open aborted transaction in
α and a is a p-action which is not ��p, then out(s0 · α, a) = aborted . The other cases
for which out returns aborted are implementation dependent.

When the transactional memory receives an action, it first checks whether it is syn-
tactically valid, returning err if it is not. It then checks whether an aborted output is
due. For all other cases, it outputs ack , or some value v ∈ Val if the action is a read
action, which, again, depends on the transactional memory implementation. (For exam-
ple, in UTM, the value is the last value written, while in other implementations it may be
the last value written by a committed transaction). We assume that actions that return
err because of an access violation do not update states. That is, that if a = readp(x)
and x �∈ R(p), or if a = writep(x) and x �∈ W(p), then for every state s, s · a = s.

Consider a transactional memory, and let T = (R,W) be its access control table.
As we did above, for a standard memory, we may define the policy �T on D to be
the minimal policy consistent with T . More precisely, we have p �T q iff p = q or
W(p)∩R(q) �= ∅. In the case of standard memories, this relation captures precisely the
possible flows of information in the system. This proves no longer to be the case when
we add the transactional memory structure. In fact, UTM from Example 1, as well as five
out of the six combinations of [16]’s conflict and arbitration policies lead to insecure
transactional memories, even after we impose access control:

Theorem 1. The following transactional memory protocols are not TA-secure with re-
spect to �T :

1. UTM as defined in Example 1;
2. Protocols with eagerly aggressive arbitration and conflict detection which is lazy

invalidation, eager W-R, or eager invalidation;
3. Protocols with lazily aggressive arbitration and conflict detection that is either ea-

ger W-R or eager invalidation.

Consequently, the only combination of [16]’s conflict and arbitration policies that The-
orem 1 does not cover is that of lazy invalidation conflict and a lazily aggressive arbi-
tration. This is the focus of the next section.
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4 A Secure Protocol

While standard memories equipped with an access control table T are TA-secure with
respect to �T (and, consequently with any policy � that contains �T ), the results of
Section 3 show that, once transactional features are added to a memory, this is no longer
the case, since aborts provide a covert channel. All security breaches of Section 3 stem
from allowing the output of a one client’s action to depend on another’s past events it
should have no access to. Here we propose a remedy to this situation, by restricting
the output function so it depends only on the parts of the history that can safely impact
the issuer of the action. Our key idea is to equip transactional memories not just with
an access control table, but also with an additional control mechanism, that provides
a way to constrain this covert channel. After describing the restriction, we present a
generic protocol that uses the restriction, which we show to be secure. We also show
that a well known protocol, TCC, is TA-secure by showing it to be an implementation
of the generic protocol. Since TCC employs a lazy invalidation conflict detection and a
lazily aggressive arbitration, it shows that the only combination of [16]’s conflicts and
arbitrations that is not covered by Theorem 1 has a TA-secure implementation.

Let �ma (may abort) be a reflexive binary relation on D. Intuitively, if p ��ma q,
then in the event of a conflict between a transaction of p and a transaction of q, it is p’s
transaction that should be aborted, else we would have p activity causing an abort of an
q transaction, which the relation prohibits.

The Generic Protocol. We introduce a protocol that uses the relation �ma to impose
the desired properties of out. The protocol is “full information” in the sense that it
stores, for each client, all the information of actions of clients that may cause it to
abort, in the order in which the actions occur. Security of this protocol implies that any
implementation of it that allows for less information to be stored is also secure. We refer
to this protocol as the generic protocol. It is general enough to allow for detection and
arbitration of Scott-like transactional memory mechanisms. We show that this generic
protocol is secure with respect to a minimal information flow policy derived from the
access control and abort restrictions.

The generic protocol is presented as an AOSS. We follow the general model of Sec-
tion 3, and include, for every client p ∈ D, an event sequence Cachep consisting of
sequences of events of the form (a, o) where o �= err and a is a q-event for some q such
that q �ma p. Thus, the set V of the system’s variables consists of:

• For each x ∈ Loc a variable mem[x] of type Val , representing the persistent mem-
ory. Initially, mem[x] = v0 for all x ∈ Loc, where v0 ∈ Val is some default initial
value.

• For every p ∈ D, a sequence Cachep, initially empty. At each point in time,
Cachep consists of actions (and their responses) of p as well as those of clients
that may abort it.

To give operational meaning to the may-abort relation, we construct the implementation
so that a client’s transactions can be aborted based only on information locally avail-
able in the client’s cache, and restrict the flow of information into the client’s cache to
comply with the relation �ma.
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We furthermore paramaterize the implementation by means of a cache policy
whereby each client manages its local cache. This policy, C, is represented by a pair
of functions Cp = (doomedp, cleanp) for each p ∈ D, where doomedp is a boolean
function that takes Cachep and an p-action a and returns true iff p’s pending transac-
tion should be aborted if a is performed. The function clean defines how each client
updates its cache when aborting or committing a transaction. It takes Cachep, and re-
turns a subsequence of it that includes no p-events.

The function doomed is assumed to be monotonic: if doomedp(C, a) = true, then
so is doomedp(C; (a, aborted), b) for any p-action b other than ��p. That is, appending
further events after a transaction becomes doomed cannot change the fact that it is
doomed.

Based on an access control table T = (R,W) over the set of locations Loc, a may-
abort relation �ma and a cache policy C, we construct a transactional memory system
TM (T ,�ma, C). The states of the system are based on the variables described above.
Fig. 1 describes the steps and output of the generic implementation. For readability, we
included only the actions whose output is not err (recall that an err output is a result
only of actions that the issuing clients can determine as erroneous). The first column
is the action, say a. Then second column describes conditions under which a is taken.
They are to be read as in a case-statement: the line corresponding to the first condition
that holds is to be used. Thus, each can be interpreted as a predicate over states. The
third column is out(s, a) – the output returned when action a is taken from state s
that satisfies the associated predicate. The fourth column describes the update to the
variables between the current state s and its successor s′ = step(s, a). We use the
following two abbreviations: For a set of clients Q ⊆ D, let

Update(Q) :=
∧
q∈Q

Cacheq := Cacheq; (a, out(s, a))

Thus, Update(Q) is the result of appending the action and its output to all clients
in Q. For all clients p ∈ D, Apply(Cachep,mem) is executed by taking, for each
x ∈ Loc, the most recent occurrence of (writep(x, v), ack ) in Cachep, and executing
mem[x] := v. If no such event exists, that mem[x] remains intact. We restrict the set of
system states to those reachable from the initial state by means of a sequence of these
actions.

The following theorem implies that the only way that information may flow between
two clients in the generic implementation is by direct reading of written variables and
by aborts of one of the client’s transactions.

Theorem 2. Given an access control table T , a may-abort relation �ma, and a cache
policy C, the system TM (T ,�ma, C) is TA-secure with respect to the policy �T
∪�ma.

An immediate corollary of Theorem 2 is that TM (T ,�ma, C) is TA-secure with re-
spect to any policy � that contains both �T and �ma.

Theorem 2 can be similarly proved for protocols that record less information than the
generic protocol above. For example, if p performs read or write actions on locations not
observable by q, then such operations need not be recorded in q’s cache. Other variants
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action (a) case (use first that applies) output updates

�p ack Update({q : p �ma q})
readp(x) doomedp(Cachep, readp(x)) aborted Update({q : p �ma q})

Cachep has writep(x, v) not v Update({q : p �ma q})
proceeded by writep(x,−)
Cachep contains (readp(x), v) v Update({q : p �ma q})
otherwise mem[x] Update({q : p �ma q})

writep(x, v) doomedp(Cachep, writep(x, v)) aborted Update({q : p �ma q})
otherwise ack Update({q : p �ma q})

��p ack Update({q : p �ma q}) ;
Cachep := cleanp(Cachep)

�p doomedp(Cachep, �p) aborted Update({q : p �ma q})
otherwise ack Apply(Cachep, mem);

Cachep := cleanp(Cachep)

Fig. 1. Steps of generic implementation

(that still maintain the soundness of Theorem 2, with some modifications to its proof
and system definitions) are protocols where the clean functions do not necessarily wipe
out the most recent transaction of a client.

Consider now the case of Scott’s scheme with a lazy invalidation and lazily aggres-
sive arbitration: a conflict occurs when a transaction that writes to some memory loca-
tion commits while there is another transaction that had read from this memory location,
and it is arbitrated by aborting the reading transaction. Note that [16] is implicitly con-
fined to lazy version management, which implies lazy conflict detection. We denote
such a transactional memory system by MLazy . That is, given a set of locations Loc,
MLazy is the transactional memory system over the locations Loc in which the states are
just sequences of actions, the initial state is the empty sequence ε, and the step func-
tion is defined by concatenation: step(α, a) = αa. The observations in this system are
uniquely defined once we specify that the system is a transactional memory system with
lazy invalidation conflict, lazily aggressive arbitration, and lazy version management:
out(α, a) is the unique output value implied by this specification when the sequence α
is followed by action a. (We assume here that the output of any read in a transaction, but
the first one, is handled by the local cache rather than by access to the main memory.)

An example of a MLazy system is the Transactional Coherence and Consistency
(TCC) system of [8]. There, each client executes its transaction speculatively in its
cache, and at commit, updates the memory and broadcasts all the write locations of
the entire transaction to the other clients, notifying them about those locations that have
been updated. When a client receives the broadcast, it aborts its current transaction if
the broadcast indicates that some memory location read in the current transaction had
been updated by the transaction of the broadcasting client.

Theorem 3. For each access control table T , the systems MLazy(T ) and TCC(T ) are
TA-secure with respect to the policy �T .

Thus, the one case of Scott’s schema where we did not show insecurity is in fact secure.
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5 Securing the Insecure Implementations

The may-abort relation of Section 4 can also be used to enforce security on transactional
memory systems that are not inherently secure, for example, the five schemata that are
shown insecure in Theorem 1.

Recall the conflicts studied here (see Section 1). According to the definition of the
relation �T (Section 3), if p �T q then there is a potential for a conflict between
pending transactions of client p and client q. Since in the case of a conflict one of the
transactions must be aborted, it is only reasonable to assume that p �T q implies that
at least one of p �ma q or q �ma p holds.

The arbitration policies determine, in a case of a conflict, which of the conflicting
transactions should abort. As we saw, however, some such aborts may lead to security
violations. We propose to remedy the situation by altering the arbitration rule, taking
into account the �ma relation. The policies are identical to Scott’s when the client
selected for abort may be aborted by the other according to the �ma relation; it makes
opposite decision in other cases.

Assume that pending transactions Tp and Tq conflict, and Tp attempts to close. The
proposed arbitration policy is:

eagerly aggressive. Let r ∈ {p, q} be the client whose transaction opened first, and let
r̄ be the other client. If r̄ �ma r, then abort Tr, and otherwise abort Tr̄. That is,
if the client whose transaction opened later may abort the one whose transaction
opened earlier (and is about to close), then abort the latter’s transaction. Other-
wise, abort the transaction that opened later (which is consistent with traditional
arbitration).

lazily aggressive. If p �ma q, then abort Tq. Otherwise, abort Tp.

We now show that, with these revised arbitration rules, all six combinations of conflict
and arbitration policy lead to secure implementations. Given an access control table T ,
a Scott conflict rule CONF, and a modified arbitration rule ARB with respect to the may-
abort policy �ma, let M(T , CONF, ARB,�ma) be the transactional memory system
that applies the access control policy T and makes abort decisions by resolving conflicts
generated by CONF according to arbitration rule ARB wrt �ma.

Theorem 4. Suppose that T is an access control table and �ma is a may-abort rela-
tion such that if p �T q then p �ma q or q �ma p.

Then the system M(T , CONF, ARB,�ma) is TA-secure with respect to the policy
�T ∪ �ma.

6 Related Work

The notion of noninterference was proposed by Goguen and Meseguer [6] in order to
provide an abstract characterization of information flow. The original theory was for
transitive security policies (where, if information is permitted to flow from A to B and
from B to C, it is permitted to flow from A to C). Intransitive noninterference policies,
for which the semantics of [6] is insufficient, are gaining renewed significance in the
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context of the MILS (Multiple Independent Levels of Security and Safety) approach to
high-assurance systems design [1,17]. This approach envisages the utilization of recent
advances in, e.g., the efficiency of separation kernels, to increase the degree of compo-
nentization of systems, enabling secure systems to be built from a mix of small, trusted
and more complex, untrusted components [14], with global security properties assured
from the separation property and a verification effort focused on the trusted compo-
nents. An intransitive noninterference policy can be viewed as a specification of the
permitted causal influences in such an architecture. As we have noted, access control
structures in shared memory systems are also associated with implicit noninterference
policies, that are generally intransitive.

Haigh and Young [7], generalized the work of [6] to intransitive policies. Their the-
ory was refined by Rushby [15], who also presented results showing that for a certain
class of access control systems, if the read/write constraints in the system are compat-
ible with an information flow policy then the system is in fact information flow secure
with respect to that policy (which is, in general, intransitive). The definitions and the-
ory of intransitive noninterference have recently been clarified by van der Meyden [12],
whose definitions we follow here.

A significant body of literature exists on multilevel secure databases, in which the
issue of transaction processing has been addressed. The area is surveyed in [3]. Covert
channels that are similar to those identified in this paper are known for many of the
traditional database transaction processing protocols. Closest to the transactional mem-
ory protocols we have considered are the multi-version (corresponding to lazy version
management) optimistic schedulers (which, like transactional memory, do not delay
requests, but execute them speculatively). Keefe et al [10] discuss a multi-version opti-
mistic protocol with the following rule for aborts: “A transaction attempting to commit
is aborted if its read set conflicts with the write set of another transaction that committed
after it started.” They show that this protocol, is secure for ”class 2-SS” transactions,
which are transactions that may write to variables of a higher security level, but in-
volve only a single subject, i.e. agent. With respect to Scott’s scheme, this amounts to
lazy invalidation, but the arbitration rule differs from Scott’s rules. Note that it causes
unnecessary aborts when the reads all occur after the commitment of the closed trans-
action. Downing et al. [5] discuss another optimistic protocol that seems to be more
closely related to TCC(T ).

There are some differences to our work, however. The database literature has con-
centrated on transaction scheduling on uniprocessor systems whereas the motivation for
our study of transactional memory is multi-processor systems. The literature on multi-
level database transactions assumes a partially ordered set of security levels, which
corresponds to a transitive security policy. In this respect our work is more general in
that we deal with intransitive policies, and note that these arise naturally from access
control tables and the may-abort relation.

On the other hand, the database literature has considered several issues that we have
not attempted to address. These include transactions involving multiple agents, and
transactions for a single agent operating at multiple security levels - we have treated
just transactions operating with respect to a single security classification. Distributed
transaction processing issues such as atomic commitment protocols have also been
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studied from the perspective of information flow security. We have assumed here that
each transaction executes on a single processor. It would also be interesting to consider
such questions in the context of transactional memory.

7 Conclusion and Future Work

Mechanisms for shared use of resources in concurrent systems, such as locks and
caches, are well-known to be potential sources of covert communication channels. Our
results show that transactional memory, while it may help to reduce the requirement for
mechanisms such as locks, may well open up new covert channels.

We first extended Rushby’s access control model to transactional memory by adding
operations for opening, closing and aborting transactions, and obtained a model of ac-
cess control for transactional memories. We then studied the theory of information flow
as applied to this model. Several well-known implementations were shown to be inse-
cure. UTM was found to be insecure even for the very simple information flow policy
involving two agents H and L with information flow from H to L prohibited. We also
examined various combinations of conflict and arbitration functions that were intro-
duced by Scott. Similarly to UTM, five out six combinations that were explored were
found to be insecure for the very simple information flow policy that involves two
agents.

The first straightforward conclusion from these results is that just extending imple-
mentations with an access control table is not sufficient for obtaining a secure sys-
tem, and further methods and restrictions must be applied. It is worth pointing out that
through our research we reviewed many implementations that do not even provide basic
means for preventing restricting information flow between clients. Some implementa-
tions, e.g., DSTM [9], allow clients to directly abort transactions of other clients, or to
modify their local data without any additional mechanism that prevents them from abus-
ing it to signal (and thus pass information) the other clients. We therefore suggest that
the issue of security should be considered at the early stages of design of transactional
memory.

We have proposed the specific mechanism of adding a “may-abort” relation to the
implementation. Based on this idea, we defined a generic implementation that is pa-
rameterized by an access control table and a may-abort relation as well as a cache man-
agement policy. We showed that all instances of this generic implementation are secure
with respect to a policy derived from the access control table and may-abort policy.
Using this result, we proved the security of the well known implementation TCC, which
employs lazy version management and lazy conflict detection and executes transactions
speculatively in the clients’ caches. We were also able to propose a modification of
Scott’s arbitration policies that ensures security of all instances of Scott’s scheme, by
conditioning aborts to comply with the may-abort policy.

The most natural next step is to consider additional implementations from the per-
spective of our results. We note that UTM, since it employs eager version manage-
ment, is not an instance of the generic implementation, which is based on lazy-version
management. It would be of interest to also develop a generic secure implementation
that covers variants of implementations based on earger version management. Another
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direction is to explore other sources that may potentially lead to insecurity in transac-
tional memory, e.g., overflow in HTM.

The field of transactional memory is very open and relatively little formal work has
been done. We have studied a particular formal model here, but others are conceivable.
In particular, one could take a very different view as to what constitutes the interface
of a transactional memory that should be studied from the point of view of informa-
tion flow. For example, whereas we have considered aborts to be observable and left
it open that an aborted transaction might be abandoned (rather than retried), one could
consider a level of abstraction at which aborted transactions are automatically retried
by the transactional memory system and the outcome of transactions is only visible at
the interface once the transaction has successfully committed. Given our asynchronous
semantics, the information flow violations that we have identified would probably not
occur at this level of abstraction, though they would still be reflected as observable
latencies on a timed model. Whatever one’s opinion of such matters, our work demon-
strates that information flow errors are an issue in transactional memories, and gives
insight into how they might be resolved.

Finally, we note that the formal notions of security we have applied are based on
an asynchronous model of computation, and do not take timing channels into account.
With caches being a key implementation detail of transactional memory, temporally
sensitive notions of information flow also need to be considered.
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