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Abstract. Prediction of uncertain trajectories in moving objects databases has 
recently become a new paradigm for tracking wireless and mobile devices in an 
accurate and efficient manner, and is critical in law enforcement applications 
such as criminal tracking analysis. However, existing approaches for prediction 
in spatio-temporal databases focus on either mining frequent sequential patterns 
at a certain geographical position, or constructing kinematical models to ap-
proximate real-world routes. The former overlooks the fact that movement pat-
terns of objects are most likely to be local, and constrained in some certain re-
gion, while the later fails to take into consideration some important factors, e.g., 
population distribution, and the structure of traffic networks. To cope with those 
problems, we propose a general trajectory prediction algorithm called E3TP (an 
Effective, Efficient, and Easy Trajectory Prediction algorithm), which contains 
four main phases: (i) mining “hotspot” regions from moving objects databases; 
(ii) discovering frequent sequential routes in hotspot areas; (iii) computing the 
speed of a variety of moving objects; and (iv) predicting the dynamic motion 
behaviors of objects. Experimental results demonstrate that E3TP is an efficient 
and effective algorithm for trajectory prediction, and the prediction accuracy is 
about 30% higher than the naive approach. In addition, it is easy-to-use in real-
world scenarios. 
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1   Introduction 

With the rapid development in the wireless and mobile techniques, law enforcement 
agencies are provided with a large volume of trajectory data in terms of “moving 
objects” in a crime database [1], such as the movement of vehicles and criminals. 
From these data, we can easily obtain the instant information of these objects, i.e., the 
current location and moving direction. Such information can be very helpful for law 
enforcement agencies in various applications such as criminal location analysis and 
border safety control. In general, there exist no apparent rules of moving objects that 
are stored and never used for research purpose. However, these data contain a lot of 
useful movement behaviors [2]. So, how to discover useful information from moving 
objects databases relevant to crime cases and use them to predict trajectories of flee-
ing criminals has become a hot research topic. 

It is important to accurately predict the current position of a moving object at a 
given time instant. For instance, it can help law enforcement agencies accurately track 
criminals who have committed burglaries during a particular time interval. There exist 
several characteristics in terms of trajectory data. Firstly, the trajectories are often 
constrained by streets and highways, so it is impossible for them to move dynamically 
like hurricanes [3]. Secondly, the speed of objects is mainly determined by the current 
road condition and other natural factors (e.g., the weather). Thirdly, there are a variety 
of “frequent routes” which are used more frequently than others. 

Recently, many manufactories equip their mobile products with GPS devices, 
which increases the demand of developing new trajectory prediction technologies [2]. 
Particularly, law enforcement agents can use such technologies to trace criminals. In 
addition, it can be applied to handling traffic planning problems. These requirements 
motivate us to develop an effective, efficient and easy trajectory prediction approach. 

However, it is difficult to accurately and efficiently predict trajectories of moving 
objects due to the following reasons. Firstly, the position information is periodically 
delivered to the central databases, and the periodicity of position acknowledgement is 
apt to be affected by several factors, e.g., signal congestions. Whenever the position 
of an object is unknown, an effective trajectory prediction approach is necessarily 
required [2]. Secondly, the data of moving objects cannot precisely depict its real 
location due to continuous motions or network delays [4].  

The original contributions of this paper include: 
• We proposed to discover hotspot regions where frequent trajectory patterns clus-

tered by processing historical trajectory data of moving objects.  
• We proposed an FP-growth [5] based approach to discover frequent routes of 

moving objects within a certain range. 
• We performed extensive experiments to demonstrate the effectiveness and effi-

ciency of our purposed algorithm by comparing it with the naive approach. 

2   Problem Statement 

The 3D cylindrical model [4, 6] of trajectories is defined beyond temporally annotated 
sequences (TAS) [7, 8] which extended the sequential patterns by adding temporal 
information of locations. Formally, the definition is presented as follows. 
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Definition 1 (Trajectory). A trajectory of objects is composed of a series of triples: 

S={(x1, y1, t1), …, (xi, yi, ti), …, (xn, yn, tn)} (1) 

where ti represents time-stamps, ]1,1[ −∈∀ ni , ti<ti+1. (xi, yi) represents 2D coordinates. 
However, it is difficult to accurately locate moving objects in real-life scenarios. 

So we use a disk area to replace the {xy}-coordinate in Equation 1. In Fig. 1, T1 and 
T2 are treated as the same trajectory if the following equation holds. 

(xi - xi’)
2 + (yi - yi’)

2 ≤ r2 (2) 

where i∈{1,2,…, n}, and r is the radius of the disk. 

 

Fig. 1. The 3D cylindrical model of trajectories 

When a trajectory is given, we can perform trajectory prediction. Generally, there 
are two kinds of information contained in a trajectory, i.e., spatial information and 
temporal information. The former is displayed by coordinates or disks, and the later is 
related to time-stamps. Our prediction algorithm takes into account these two aspects. 

As mentioned in Section 1, the movement of objects is embraced by streets or 
highways, in other words, it is restricted within a map [9]. Once the geographical 
information of items (i.e, streets, and buildings) in a map is given, the position of a 
moving object can be predicted by exploring the streets and highways that can be 
visited in the future. Here, we firstly give two definitions. 
 

Definition 2 (Map). A map is composed of streets, and each street is depicted by the 
following attributes: 

• ID: the identifier number of a street; 
• Str: a polygonal line between two ending points, which consists of several line-

segments.  
Figure 2 is an example of a map, where the number beside each street is the street 

ID, and each street is denoted as the path between two capital letters. 
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Fig. 2. Example of a map 

Definition 3 (Route). A route is a sequence of streets: 

R = {s1, s2, …, si, …, sn} (3) 

where i ∈[1, n], and si has at least one common ending point with si+1. 
For example, in Fig. 2, a route can be indicated as {11, 10, 8, 7, 5}, which means 

some object can move from street 11 to 5 by way of street 10, 8, 7.  
The goal of trajectory prediction is to obtain trajectories as defined in Equation 1, 

so we should find the possible routes of objects and extract its temporal information 
as well. When a moving object arrives at a crossing road, it needs to choose which 
street to go next. Basically, the decision is made on where the object comes from, 
and where it is going. In this model, there exist some hidden rules in this map, i.e., 
traffic rules, population distributions. These rules can be mined from historical 
traffic data.  

As for timestamps, they can be calculated as we know the approximate speed of 
moving objects. The speed is determined by several factors that can be divided in 
to two categories: external factors (i.e., weather, road condition) and internal fac-
tors. We should consider both categories of factors when designing prediction 
methods.  

In addition, we should take into account another question as “do the previous men-
tioned rules exist everywhere in a map?” It is straight-forward that regions with heavy 
traffic most likely contain internal rules. So, in our algorithm, we firstly find hotspot 
areas in a map, and perform predicting in those hotspot areas. 

In general, there are four phases to predict trajectories of moving objects: 
1) Mining hotspot regions in a map from moving objects databases; 
2) Discovering frequent routes from hotspot areas; 
3) Computing the speed of a variety of moving objects in distinct streets; 
4) Predicting the dynamic motion behaviors of moving objects. 
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3   Mining Hotspot Regions 

Mining hotspot regions is an essential step for trajectory prediction, because the rules 
of choosing routes exist in those regions rather than the ones that are rarely visited. 
Historical traffic data in terms of these regions are processed in order to find rules. In 
addition, frequent routes are discovered in those regions. In summary, moving objects 
in hotspot areas are more predictable than the ones outside them. 

Hotspot region mining is treated as a preprocessing phase in our approach. By cal-
culating the visiting frequency of each street, we can find such streets that are fre-
quently visited, i.e., they have higher visiting frequencies than a given threshold. 
Those connected streets are grouped into a hotspot region. Then, all historical data are 
scanned again, and segments of trajectories in those hotspot regions are stored.  

The details of mining hotspot regions from trajectory data are shown in Algorithm 
1. In Algorithm 1, we firstly calculate the visiting frequency of each street in E, and 
sort them in descending order (lines 1-3). Then, we compute the specified frequency 
threshold f (line 4), and delete such streets whose frequency is lower than f (lines 5-7). 
Next, the group of remaining streets forms a hotspot region (lines 9-12). After that, 
we iteratively scan each hotspot region, if two hotspot regions are connected, combine 
them into one region until no more hotspot regions can be amalgamated (lines 13-17). 
Finally, output all hotspot regions (line 18). 

In Algorithm 1, p is the percentage of frequently visited streets, the Sort(·) function 
is used to sort all streets by frequency in descending order. The work mechanism of 
lines 9-18 is grouping all of the connected high-frequent streets.  

Algorithm 1. Mining hotspot regions 
Input: a trajectory data set D, a set of streets E, a threshold p 
Output: a set of hotspot region O = {O1, …, Onum} 

1. for each street e∈E do 
2.     e.freq←ComputeFreq(e); 
3. Sort(E); 
4. f←E.size*p; 

5. for each street e∈E do 
6.     if e.freq<f then 
7.         delete e; 
8. ID←0; 

9. for each street e∈E do 
10.    create a new hotspot region OID; 
11.    O.add(OID); 
12.    ID++; 
13. while (O.size changes) 
14.     for each Oi, Oj in O do 
15.         if (Oi and Oj are connected) then 
16.             Oi.add(Oj); 
17.             delete(Oj); 
18. output O; 
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After constructing the hotspot regions, we process historical trajectories by clear-
ing out trajectory segments that are outside hotspot regions, while storing the seg-
ments in hotspot regions. In the following sections, we will introduce the approach of 
discovering moving rules from hotspot regions. 

4   Mining Frequent Routes Based on FP-Tree 

The main idea of our prediction approach is to discover moving rules of moving ob-
jects in those hotspot regions and use these rules to predict possible trajectories.  

The FP-growth algorithm [5] is an efficient and scalable frequent itemset mining 
method. When treating each street in a hotspot region as an item, these items can be 
organized as a sequence by connecting their ending points. So, the problem of discov-
ering frequent routes is equivalent to mining frequent trajectory patterns that are com-
posed of streets in hotspot regions.  

We modify FP-growth approach to suit the trajectory prediction problem, and we 
name the new method FR_mining (Frequent Route Mining), which includes FP-tree 
construction and mining phases. The FP-tree construction step is analogous to that 
applied in FP-growth, and is given in Algorithm 2. 

 

Algorithm 2. FR_mining 
Function 1: FP-tree construction 
Input: R, a hotspot region contains a 
set of streets and a set of trajectory 
segments; min_sup, the minimum 
support count 
1. for each street si in R do 
2.   count si.freq; 
3.   if (si.freq<min_sup) then 
4.      delete si; 
5. sort R by freq in descending order as L; 
6. create a root node t of the FP-tree and 

label it as “null”; 
7. for each trajectory segment S in R do 
8. select and sort streets in S and put 

them into S’ by the order of nodes in 
L, S’=[s|S*], where s is the first 
street and S* is the remaining nodes 
in L; 

9.    insert_tree([s|S*], t); 
10. output t, L; 

Procedure insert_tree([s|S*], t) 
1. if (t has a child c and c.sid=s.sid) 
2.    c.freq←c.freq+1; 
3. else 
4.    create a new node n; 
5.    n.freq←1; 
6.    n.parent←t; 
7.    find n’ in L, where n’.sid=n.sid; 
8.    if n’.next=null then 
9.       n’.next←n; 
10.    else 
11.       do  
12.          n’←n’.next; 
13.       while (n’.next≠null) 
14.       n’.next←n; 
15. if (S* is not empty) then 
16.    insert_tree([S*], n); 
 

Function 2: Mining frequent routes from FP-tree 

Input: t, the root node of an FP-tree; 
L, a list of streets in a hotspot region 
corresponding to t. 
Output: a set of frequent routes in a 
hotspot region R. 
Method: 
1. Create a set of frequent routes R; 

Procedure FP_mining(t, α) 
1. if (t contains a single path P) then 

2. generate a pattern p=P∪α with 
support_count =the minimum  
freq of nodes in P; 

3.    R.add(p); 
4. else 
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2. FP_mining(t, null); 
3. Reorganize frequent routes in R; 

5.    for each ai in L do 

6.       generate pattern β=ai∪α with   
support_count = the minimum 
freq of nodes in β; 

7. construct β’s conditional    
pattern base and conditional 
FP-tree T’; 

8.       if (T’≠∅ ) then 
9.           FP_mining(T’, β); 
10.       if (R remains unchanged) then 
11.           R.add(β); 

 
In Algorithm 2, we firstly scan all streets in R to calculate how frequently they 

have been visited based on trajectory segments. If the frequency of a street is lower 
than min_sup, remove this street from the hotspot region (lines 1-4). Then, sort the 
remaining streets by frequency in descending order, save nodes’ order in a head list L 
(line 5). Next, create a root node t of the FP-tree, label it as “null” (line 6), and insert 
all trajectory segments in R into t by calling the procedure of “insert_tree(·)” (lines 7-
9). Finally, we output t and L (line 10). 

When mining a FP-tree, however, the process is distinct from the FP-growth min-
ing approach, as presented in Function 2. Basically, our objective is to find the longest 
frequent route whose support_count is higher than the given threshold. The difference 
lies in Step 2 and Step 6 of the procedure FP_mining(·), it simply generates the largest 
frequent pattern without obtaining their combinations. The purpose of Step 3 in Func-
tion 2 is to reorganize streets in each frequent pattern into a route.  

By processing each hotspot region using Algorithm 2, we can obtain a set of fre-
quent routes for hotspot regions. Given a previous moving route of an object, we can 
compare it with discovered frequent routes and find the most matching one, and then 
use this frequent route to predict trajectories of this object. 

5   Time-Stamped Trajectory Prediction 

In this section, we present and analyze the work mechanism of E3TP, especially for 
the approach of extracting temporal information from trajectory data and obtaining 
timestamps of frequent routes. The E3TP algorithm is detailed in Algorithm 3. 

Algorithm 3. E3TP- Effective&Efficient&Easy Trajectory Prediction 

Input: a historical trajectory data set D, the set of all streets E in a map m, hot-
spot mining threshold p, the minimum support count s for FR_mining, and the 
previous trajectory t of an aiming object 
Output: a time-stamped trajectory t’ of o 
1. Hotspot_mining(D, E, p); 
2. FR_mining(m, s); 
3. SpeedCalculation(D, E); 
4. TrajPredict(t, m, E); 
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In Algorithm 3, Steps 1 and 3 are proposed to discover the movement rules from a 
certain map based on historical data. Steps 1 and 2 have already been introduced in 
Section 3 and Section 4, respectively. In Step 3, we obtain the possible speed for 
moving objects in each street by calculating their average speed. Ordinarily, an object 
moves at a constant speed, so we use the average speed to approximate it. Here, the 
category of moving objects represents its internal characters, and the ID of a street 
indicates its individual features, such as road condition and traffics. The obtained 
rules can be quickly retrieved when needed. 

For predicting trajectories of moving objects, we firstly check whether an object is 
currently in a hotspot region. If so, we extract its previous trajectory, transform it into 
a route, and compare it with existing frequent routes in the hotspot region in order to 
find the most matched one based on Equation 2. Then, we employ kinematical formu-
lations [10] to compute time intervals of visiting a street, and obtain the accurate posi-
tion of objects at given timestamps. In this phase, we suppose that an object moves in 
a uniform speed, with the speed obtained by Step 3. Finally, we output timestamps 
and locations of the object in the form as given in Equation 1. 

6   Experiments and Discussions 

6.1   Experimental Setting and Definition 

In this section, we perform experiments by comparing E3TP with the naïve prediction 
method (called Naïve for short). In general, Naïve does not consider the hotspot min-
ing and frequent pattern mining phases to predict possible routes. It only calculates 
the frequency of visiting each street and chooses the most frequently visited street to 
go when it arrives at a crossroad. Both algorithms were implemented in Java and the 
experiments were conducted on an AMD Athlon X2 5000+, 2.6GHz CPU with 2GB 
of main memory, running on Windows XP professional system. 

All experiments were running on two distinct data sets generated by Brinkhoff’s 
network-based generator [9]. They were generated by the network-based spatio-
temporal data generating approach [9]. The moving objects are represented by its 
{xy}-coordinate in a real-world map. These two maps are shown in Fig. 3. 

(a) The map of Kansas (b) The map of New York  

Fig. 3. Maps for experiments 
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• A part area of Kansas State (denoted as Kansas). 
• A part area of New York State (denoted as NY). 
The parameter r in Equation 2 plays an essential role in determining whether two 

trajectories are equivalent. It has a great impact on the experimental results. Another 
important parameter is t, which decides the visiting time interval of an object’s trajec-
tory. In order to tune these two parameters, we gradually increase the value of r in a 
specified t value, aiming to find a proper r value. 

In this section, we use accuracy defined in Equation 4 to estimate the effectiveness 
of prediction algorithms, and it is given as follows. 

N

n
Naccuracy hit=)(  (4) 

In Equation 4, nhit represents the number of predicted trajectories which match the 
real-world situation, and N is the number of all predicted trajectories. 

6.2   Parameter Settings 

As introduced in the previous sections, there are four important parameters that need 
to be specified first, including p (introduced in Algorithm 1), min_sup (see Algorithm 
2), r (as shown in Equation 2) and t (the time interval during which prediction accu-
racy is evaluated). Due to the differences between these two data sets, these parame-
ters should be specified separately. The properties and parameter settings of these two 
data sets are presented in Table 1.  

Table 1. Properties of data sets and parameter settings 

Parameter Kansas NY 
Map width (pixel) 437,998 563,287 
Map height (pixel) 348,693 435,186 

Number of moving objects 8,000 8,000 
p 0.2 0.2 

min_sup 28 32 
r (pixel) 2,000 2,000 

Time interval t (time unit) 15 15 

 

Table 1 indicates that each data set contains 8,000 moving objects. We use the 
historical data of 4,000 objects to build movement rules for each map, and the other 
4,000 objects are employed to estimate the accuracy of our proposed algorithms. By 
trade-off, p is set to 0.2 for both data sets. When p equals 0.2, the minimum values 
of min_sup for both data sets are determined by f, because it is the minimum visit-
ing frequency in terms of all streets in hotspot regions. We choose to use this mini-
mum value in order to perform more accurate predictions. The setting of r depends 
on the scale of both maps (it is set 2,000 pixel based on these two maps), and t is set 
to 15 time units, which is large enough to compare both algorithms, i.e., Naïve and 
E3TP.  
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6.3   Performance Analysis of Movement Rules Extraction 

This section analyzes the time trend and memory cost in terms of hotspots region 
construction and frequent pattern mining phases as the number of trajectories grows.  
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Fig. 4. Runtime comparison of hotspots region construction and frequent routes mining 
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Fig. 5. Memory cost of hotspots region construction and frequent routes mining phases 

Fig. 4-5 show the time performance comparison and memory cost of movement 
rules extraction and frequent pattern mining between Naïve and E3TP, respectively, 
where the x axis is the number of trajectories, and the y axes represent the runtime and 
memory cost, respectively. According to Fig. 4, the execution time of hotspots region 
construction and frequent routes mining phases increases in an approximate linear 
manner with the number of trajectories growing. The reason is that most prediction 
time lies in trajectory processing and route searching, and the time complex approxi-
mates O(n). As for Fig. 5, the memory cost does not increase drastically as the num-
ber of trajectories increases. Because redundant trajectory information is cut off when 
transforming historical trajectory data into frequent routes.  
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6.4   Prediction Accuracy Estimation 

Prediction accuracy is used to estimate the performance of both Naive and E3TP.  
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Fig. 6. Prediction accuracy comparison between E3TP and Naïve on Kansas data set 
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Fig. 7. Prediction accuracy comparison between E3TP and Naïve on NY data set 

In Fig. 6 and Fig. 7, the x axis represents the number of predicted trajectories, and 
the y axis is the percentage of trajectories that “hit” (match) the real-world situation 
by setting parameters as introduced in Section 6.2. By Fig. 6 and Fig. 7, E3TP 
outperforms the naive method with a big gap of 32% on Kansas data set and 30% on 
NY data set, respectively. This is because E3TP provides a better solution of finding 
possible routes of moving objects with high- frequent patterns in a certain region. In 
addition, we predict the motion curves of moving objects by taking into account both 
the road condition and the internal characteristics of moving objects, which helps 
improve the accuracy of calculating timestamps.  
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7   Conclusion and Further Work 

Traditional trajectory prediction algorithms mainly focus on discovering frequent 
movement patterns of moving objects without constraints, which is far from the real-
world situations. In this paper, we addressed the characteristics of motion behaviors 
of moving objects, including the key factors in route selection and the distribution 
rules of frequent trajectory patterns. By experiments, we compare the proposed trajec-
tory prediction algorithm based on FP-tree, called E3TP, with probability-based naïve 
method, and show the advantages of our solution. Most importantly, E3TP can be 
used to prediction the fleeing criminals in order to help security agencies trace crimi-
nal suspects.  

For further research, we will improve the proposed frequent routes discovery algo-
rithm to be more suitable and effective for mining large scale of spatial and temporal 
data, and develop other data mining approaches, i.e., Genetic Algorithms [11, 12], 
neural networks [13], immune algorithms [14], to accurately find the most possible 
route. In addition, stochastic theories can be utilized to depict the distribution rules of 
moving objects’ speed. Finally, trajectory prediction of moving objects in non-hotspot 
region will be seriously considered in our future study. 
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