
H. Chen et al. (Eds.): PAISI 2009, LNCS 5477, pp. 76–88, 2009.
© Springer-Verlag Berlin Heidelberg 2009

E3TP: A Novel Trajectory Prediction Algorithm in
Moving Objects Databases∗

Teng Long1, Shaojie Qiao2,1,3,∗∗, Changjie Tang1, Liangxu Liu4,3,
Taiyong Li1, 5, and Jiang Wu5

1 School of Computer Science, Sichuan University, Chengdu 610065, China
2 School of Information Science and Technology, Southwest JiaoTong University,

Chengdu 610031, China
qiaoshaojie@gmail.com

3 School of Computing, National University of Singapore, Singapore, 117590, Singapore
4 School of Electronic and Information Engineering, Ningbo University of Technology,

Ningbo, 315016, China
5 School of Economic Information Engineering, Southwest University of Finance and

Economics, Chengdu 610074, China

Abstract. Prediction of uncertain trajectories in moving objects databases has
recently become a new paradigm for tracking wireless and mobile devices in an
accurate and efficient manner, and is critical in law enforcement applications
such as criminal tracking analysis. However, existing approaches for prediction
in spatio-temporal databases focus on either mining frequent sequential patterns
at a certain geographical position, or constructing kinematical models to ap-
proximate real-world routes. The former overlooks the fact that movement pat-
terns of objects are most likely to be local, and constrained in some certain re-
gion, while the later fails to take into consideration some important factors, e.g.,
population distribution, and the structure of traffic networks. To cope with those
problems, we propose a general trajectory prediction algorithm called E3TP (an
Effective, Efficient, and Easy Trajectory Prediction algorithm), which contains
four main phases: (i) mining “hotspot” regions from moving objects databases;
(ii) discovering frequent sequential routes in hotspot areas; (iii) computing the
speed of a variety of moving objects; and (iv) predicting the dynamic motion
behaviors of objects. Experimental results demonstrate that E3TP is an efficient
and effective algorithm for trajectory prediction, and the prediction accuracy is
about 30% higher than the naive approach. In addition, it is easy-to-use in real-
world scenarios.

Keywords: trajectory prediction, moving objects databases, criminal tracking
analysis, hotspot regions, frequent sequential routes.

∗ This work is supported by the National Natural Science Foundation of China under Grant No.

60773169, the 11th Five Years Key Programs for Science and Technology Development of
China under Grant No. 2006BAI05A01, the Youth Software Innovation Project of Sichuan
Province under Grant No. 2007AA0032 and 2007AA0028.

∗∗ Corresponding author.

 E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases 77

1 Introduction

With the rapid development in the wireless and mobile techniques, law enforcement
agencies are provided with a large volume of trajectory data in terms of “moving
objects” in a crime database [1], such as the movement of vehicles and criminals.
From these data, we can easily obtain the instant information of these objects, i.e., the
current location and moving direction. Such information can be very helpful for law
enforcement agencies in various applications such as criminal location analysis and
border safety control. In general, there exist no apparent rules of moving objects that
are stored and never used for research purpose. However, these data contain a lot of
useful movement behaviors [2]. So, how to discover useful information from moving
objects databases relevant to crime cases and use them to predict trajectories of flee-
ing criminals has become a hot research topic.

It is important to accurately predict the current position of a moving object at a
given time instant. For instance, it can help law enforcement agencies accurately track
criminals who have committed burglaries during a particular time interval. There exist
several characteristics in terms of trajectory data. Firstly, the trajectories are often
constrained by streets and highways, so it is impossible for them to move dynamically
like hurricanes [3]. Secondly, the speed of objects is mainly determined by the current
road condition and other natural factors (e.g., the weather). Thirdly, there are a variety
of “frequent routes” which are used more frequently than others.

Recently, many manufactories equip their mobile products with GPS devices,
which increases the demand of developing new trajectory prediction technologies [2].
Particularly, law enforcement agents can use such technologies to trace criminals. In
addition, it can be applied to handling traffic planning problems. These requirements
motivate us to develop an effective, efficient and easy trajectory prediction approach.

However, it is difficult to accurately and efficiently predict trajectories of moving
objects due to the following reasons. Firstly, the position information is periodically
delivered to the central databases, and the periodicity of position acknowledgement is
apt to be affected by several factors, e.g., signal congestions. Whenever the position
of an object is unknown, an effective trajectory prediction approach is necessarily
required [2]. Secondly, the data of moving objects cannot precisely depict its real
location due to continuous motions or network delays [4].

The original contributions of this paper include:
• We proposed to discover hotspot regions where frequent trajectory patterns clus-

tered by processing historical trajectory data of moving objects.
• We proposed an FP-growth [5] based approach to discover frequent routes of

moving objects within a certain range.
• We performed extensive experiments to demonstrate the effectiveness and effi-

ciency of our purposed algorithm by comparing it with the naive approach.

2 Problem Statement

The 3D cylindrical model [4, 6] of trajectories is defined beyond temporally annotated
sequences (TAS) [7, 8] which extended the sequential patterns by adding temporal
information of locations. Formally, the definition is presented as follows.

78 T. Long et al.

Definition 1 (Trajectory). A trajectory of objects is composed of a series of triples:

S={(x1, y1, t1), …, (xi, yi, ti), …, (xn, yn, tn)} (1)

where ti represents time-stamps,]1,1[−∈∀ ni , ti<ti+1. (xi, yi) represents 2D coordinates.
However, it is difficult to accurately locate moving objects in real-life scenarios.

So we use a disk area to replace the {xy}-coordinate in Equation 1. In Fig. 1, T1 and
T2 are treated as the same trajectory if the following equation holds.

(xi - xi’)
2 + (yi - yi’)

2 ≤ r2 (2)

where i∈{1,2,…, n}, and r is the radius of the disk.

Fig. 1. The 3D cylindrical model of trajectories

When a trajectory is given, we can perform trajectory prediction. Generally, there
are two kinds of information contained in a trajectory, i.e., spatial information and
temporal information. The former is displayed by coordinates or disks, and the later is
related to time-stamps. Our prediction algorithm takes into account these two aspects.

As mentioned in Section 1, the movement of objects is embraced by streets or
highways, in other words, it is restricted within a map [9]. Once the geographical
information of items (i.e, streets, and buildings) in a map is given, the position of a
moving object can be predicted by exploring the streets and highways that can be
visited in the future. Here, we firstly give two definitions.

Definition 2 (Map). A map is composed of streets, and each street is depicted by the
following attributes:

• ID: the identifier number of a street;
• Str: a polygonal line between two ending points, which consists of several line-

segments.
Figure 2 is an example of a map, where the number beside each street is the street

ID, and each street is denoted as the path between two capital letters.

 E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases 79

Fig. 2. Example of a map

Definition 3 (Route). A route is a sequence of streets:

R = {s1, s2, …, si, …, sn} (3)

where i ∈[1, n], and si has at least one common ending point with si+1.
For example, in Fig. 2, a route can be indicated as {11, 10, 8, 7, 5}, which means

some object can move from street 11 to 5 by way of street 10, 8, 7.
The goal of trajectory prediction is to obtain trajectories as defined in Equation 1,

so we should find the possible routes of objects and extract its temporal information
as well. When a moving object arrives at a crossing road, it needs to choose which
street to go next. Basically, the decision is made on where the object comes from,
and where it is going. In this model, there exist some hidden rules in this map, i.e.,
traffic rules, population distributions. These rules can be mined from historical
traffic data.

As for timestamps, they can be calculated as we know the approximate speed of
moving objects. The speed is determined by several factors that can be divided in
to two categories: external factors (i.e., weather, road condition) and internal fac-
tors. We should consider both categories of factors when designing prediction
methods.

In addition, we should take into account another question as “do the previous men-
tioned rules exist everywhere in a map?” It is straight-forward that regions with heavy
traffic most likely contain internal rules. So, in our algorithm, we firstly find hotspot
areas in a map, and perform predicting in those hotspot areas.

In general, there are four phases to predict trajectories of moving objects:
1) Mining hotspot regions in a map from moving objects databases;
2) Discovering frequent routes from hotspot areas;
3) Computing the speed of a variety of moving objects in distinct streets;
4) Predicting the dynamic motion behaviors of moving objects.

80 T. Long et al.

3 Mining Hotspot Regions

Mining hotspot regions is an essential step for trajectory prediction, because the rules
of choosing routes exist in those regions rather than the ones that are rarely visited.
Historical traffic data in terms of these regions are processed in order to find rules. In
addition, frequent routes are discovered in those regions. In summary, moving objects
in hotspot areas are more predictable than the ones outside them.

Hotspot region mining is treated as a preprocessing phase in our approach. By cal-
culating the visiting frequency of each street, we can find such streets that are fre-
quently visited, i.e., they have higher visiting frequencies than a given threshold.
Those connected streets are grouped into a hotspot region. Then, all historical data are
scanned again, and segments of trajectories in those hotspot regions are stored.

The details of mining hotspot regions from trajectory data are shown in Algorithm
1. In Algorithm 1, we firstly calculate the visiting frequency of each street in E, and
sort them in descending order (lines 1-3). Then, we compute the specified frequency
threshold f (line 4), and delete such streets whose frequency is lower than f (lines 5-7).
Next, the group of remaining streets forms a hotspot region (lines 9-12). After that,
we iteratively scan each hotspot region, if two hotspot regions are connected, combine
them into one region until no more hotspot regions can be amalgamated (lines 13-17).
Finally, output all hotspot regions (line 18).

In Algorithm 1, p is the percentage of frequently visited streets, the Sort(·) function
is used to sort all streets by frequency in descending order. The work mechanism of
lines 9-18 is grouping all of the connected high-frequent streets.

Algorithm 1. Mining hotspot regions
Input: a trajectory data set D, a set of streets E, a threshold p
Output: a set of hotspot region O = {O1, …, Onum}

1. for each street e∈E do
2. e.freq←ComputeFreq(e);
3. Sort(E);
4. f←E.size*p;

5. for each street e∈E do
6. if e.freq<f then
7. delete e;
8. ID←0;

9. for each street e∈E do
10. create a new hotspot region OID;
11. O.add(OID);
12. ID++;
13. while (O.size changes)
14. for each Oi, Oj in O do
15. if (Oi and Oj are connected) then
16. Oi.add(Oj);
17. delete(Oj);
18. output O;

 E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases 81

After constructing the hotspot regions, we process historical trajectories by clear-
ing out trajectory segments that are outside hotspot regions, while storing the seg-
ments in hotspot regions. In the following sections, we will introduce the approach of
discovering moving rules from hotspot regions.

4 Mining Frequent Routes Based on FP-Tree

The main idea of our prediction approach is to discover moving rules of moving ob-
jects in those hotspot regions and use these rules to predict possible trajectories.

The FP-growth algorithm [5] is an efficient and scalable frequent itemset mining
method. When treating each street in a hotspot region as an item, these items can be
organized as a sequence by connecting their ending points. So, the problem of discov-
ering frequent routes is equivalent to mining frequent trajectory patterns that are com-
posed of streets in hotspot regions.

We modify FP-growth approach to suit the trajectory prediction problem, and we
name the new method FR_mining (Frequent Route Mining), which includes FP-tree
construction and mining phases. The FP-tree construction step is analogous to that
applied in FP-growth, and is given in Algorithm 2.

Algorithm 2. FR_mining
Function 1: FP-tree construction
Input: R, a hotspot region contains a
set of streets and a set of trajectory
segments; min_sup, the minimum
support count
1. for each street si in R do
2. count si.freq;
3. if (si.freq<min_sup) then
4. delete si;
5. sort R by freq in descending order as L;
6. create a root node t of the FP-tree and

label it as “null”;
7. for each trajectory segment S in R do
8. select and sort streets in S and put

them into S’ by the order of nodes in
L, S’=[s|S*], where s is the first
street and S* is the remaining nodes
in L;

9. insert_tree([s|S*], t);
10. output t, L;

Procedure insert_tree([s|S*], t)
1. if (t has a child c and c.sid=s.sid)
2. c.freq←c.freq+1;
3. else
4. create a new node n;
5. n.freq←1;
6. n.parent←t;
7. find n’ in L, where n’.sid=n.sid;
8. if n’.next=null then
9. n’.next←n;
10. else
11. do
12. n’←n’.next;
13. while (n’.next≠null)
14. n’.next←n;
15. if (S* is not empty) then
16. insert_tree([S*], n);

Function 2: Mining frequent routes from FP-tree

Input: t, the root node of an FP-tree;
L, a list of streets in a hotspot region
corresponding to t.
Output: a set of frequent routes in a
hotspot region R.
Method:
1. Create a set of frequent routes R;

Procedure FP_mining(t, α)
1. if (t contains a single path P) then

2. generate a pattern p=P∪α with
support_count =the minimum
freq of nodes in P;

3. R.add(p);
4. else

82 T. Long et al.

2. FP_mining(t, null);
3. Reorganize frequent routes in R;

5. for each ai in L do

6. generate pattern β=ai∪α with
support_count = the minimum
freq of nodes in β;

7. construct β’s conditional
pattern base and conditional
FP-tree T’;

8. if (T’≠∅) then
9. FP_mining(T’, β);
10. if (R remains unchanged) then
11. R.add(β);

In Algorithm 2, we firstly scan all streets in R to calculate how frequently they

have been visited based on trajectory segments. If the frequency of a street is lower
than min_sup, remove this street from the hotspot region (lines 1-4). Then, sort the
remaining streets by frequency in descending order, save nodes’ order in a head list L
(line 5). Next, create a root node t of the FP-tree, label it as “null” (line 6), and insert
all trajectory segments in R into t by calling the procedure of “insert_tree(·)” (lines 7-
9). Finally, we output t and L (line 10).

When mining a FP-tree, however, the process is distinct from the FP-growth min-
ing approach, as presented in Function 2. Basically, our objective is to find the longest
frequent route whose support_count is higher than the given threshold. The difference
lies in Step 2 and Step 6 of the procedure FP_mining(·), it simply generates the largest
frequent pattern without obtaining their combinations. The purpose of Step 3 in Func-
tion 2 is to reorganize streets in each frequent pattern into a route.

By processing each hotspot region using Algorithm 2, we can obtain a set of fre-
quent routes for hotspot regions. Given a previous moving route of an object, we can
compare it with discovered frequent routes and find the most matching one, and then
use this frequent route to predict trajectories of this object.

5 Time-Stamped Trajectory Prediction

In this section, we present and analyze the work mechanism of E3TP, especially for
the approach of extracting temporal information from trajectory data and obtaining
timestamps of frequent routes. The E3TP algorithm is detailed in Algorithm 3.

Algorithm 3. E3TP- Effective&Efficient&Easy Trajectory Prediction

Input: a historical trajectory data set D, the set of all streets E in a map m, hot-
spot mining threshold p, the minimum support count s for FR_mining, and the
previous trajectory t of an aiming object
Output: a time-stamped trajectory t’ of o
1. Hotspot_mining(D, E, p);
2. FR_mining(m, s);
3. SpeedCalculation(D, E);
4. TrajPredict(t, m, E);

 E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases 83

In Algorithm 3, Steps 1 and 3 are proposed to discover the movement rules from a
certain map based on historical data. Steps 1 and 2 have already been introduced in
Section 3 and Section 4, respectively. In Step 3, we obtain the possible speed for
moving objects in each street by calculating their average speed. Ordinarily, an object
moves at a constant speed, so we use the average speed to approximate it. Here, the
category of moving objects represents its internal characters, and the ID of a street
indicates its individual features, such as road condition and traffics. The obtained
rules can be quickly retrieved when needed.

For predicting trajectories of moving objects, we firstly check whether an object is
currently in a hotspot region. If so, we extract its previous trajectory, transform it into
a route, and compare it with existing frequent routes in the hotspot region in order to
find the most matched one based on Equation 2. Then, we employ kinematical formu-
lations [10] to compute time intervals of visiting a street, and obtain the accurate posi-
tion of objects at given timestamps. In this phase, we suppose that an object moves in
a uniform speed, with the speed obtained by Step 3. Finally, we output timestamps
and locations of the object in the form as given in Equation 1.

6 Experiments and Discussions

6.1 Experimental Setting and Definition

In this section, we perform experiments by comparing E3TP with the naïve prediction
method (called Naïve for short). In general, Naïve does not consider the hotspot min-
ing and frequent pattern mining phases to predict possible routes. It only calculates
the frequency of visiting each street and chooses the most frequently visited street to
go when it arrives at a crossroad. Both algorithms were implemented in Java and the
experiments were conducted on an AMD Athlon X2 5000+, 2.6GHz CPU with 2GB
of main memory, running on Windows XP professional system.

All experiments were running on two distinct data sets generated by Brinkhoff’s
network-based generator [9]. They were generated by the network-based spatio-
temporal data generating approach [9]. The moving objects are represented by its
{xy}-coordinate in a real-world map. These two maps are shown in Fig. 3.

(a) The map of Kansas (b) The map of New York

Fig. 3. Maps for experiments

84 T. Long et al.

• A part area of Kansas State (denoted as Kansas).
• A part area of New York State (denoted as NY).
The parameter r in Equation 2 plays an essential role in determining whether two

trajectories are equivalent. It has a great impact on the experimental results. Another
important parameter is t, which decides the visiting time interval of an object’s trajec-
tory. In order to tune these two parameters, we gradually increase the value of r in a
specified t value, aiming to find a proper r value.

In this section, we use accuracy defined in Equation 4 to estimate the effectiveness
of prediction algorithms, and it is given as follows.

N

n
Naccuracy hit=)((4)

In Equation 4, nhit represents the number of predicted trajectories which match the
real-world situation, and N is the number of all predicted trajectories.

6.2 Parameter Settings

As introduced in the previous sections, there are four important parameters that need
to be specified first, including p (introduced in Algorithm 1), min_sup (see Algorithm
2), r (as shown in Equation 2) and t (the time interval during which prediction accu-
racy is evaluated). Due to the differences between these two data sets, these parame-
ters should be specified separately. The properties and parameter settings of these two
data sets are presented in Table 1.

Table 1. Properties of data sets and parameter settings

Parameter Kansas NY
Map width (pixel) 437,998 563,287
Map height (pixel) 348,693 435,186

Number of moving objects 8,000 8,000
p 0.2 0.2

min_sup 28 32
r (pixel) 2,000 2,000

Time interval t (time unit) 15 15

Table 1 indicates that each data set contains 8,000 moving objects. We use the
historical data of 4,000 objects to build movement rules for each map, and the other
4,000 objects are employed to estimate the accuracy of our proposed algorithms. By
trade-off, p is set to 0.2 for both data sets. When p equals 0.2, the minimum values
of min_sup for both data sets are determined by f, because it is the minimum visit-
ing frequency in terms of all streets in hotspot regions. We choose to use this mini-
mum value in order to perform more accurate predictions. The setting of r depends
on the scale of both maps (it is set 2,000 pixel based on these two maps), and t is set
to 15 time units, which is large enough to compare both algorithms, i.e., Naïve and
E3TP.

 E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases 85

6.3 Performance Analysis of Movement Rules Extraction

This section analyzes the time trend and memory cost in terms of hotspots region
construction and frequent pattern mining phases as the number of trajectories grows.

0

20

40

60

80

100

120

140

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of trajectories

E
xe

cu
ti

on
 ti

m
e(

se
c)

Kansas

NY

Fig. 4. Runtime comparison of hotspots region construction and frequent routes mining

0

1

2

3

4

5

6

7

8

9

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of trajectories

M
em

or
y

co
st

(M
B

)

Kansas

NY

Fig. 5. Memory cost of hotspots region construction and frequent routes mining phases

Fig. 4-5 show the time performance comparison and memory cost of movement
rules extraction and frequent pattern mining between Naïve and E3TP, respectively,
where the x axis is the number of trajectories, and the y axes represent the runtime and
memory cost, respectively. According to Fig. 4, the execution time of hotspots region
construction and frequent routes mining phases increases in an approximate linear
manner with the number of trajectories growing. The reason is that most prediction
time lies in trajectory processing and route searching, and the time complex approxi-
mates O(n). As for Fig. 5, the memory cost does not increase drastically as the num-
ber of trajectories increases. Because redundant trajectory information is cut off when
transforming historical trajectory data into frequent routes.

86 T. Long et al.

6.4 Prediction Accuracy Estimation

Prediction accuracy is used to estimate the performance of both Naive and E3TP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300

Number of predicted trajectories

A
cc

ur
ac

y
of

 p
re

di
ct

io
n

E3TP

Naive

Fig. 6. Prediction accuracy comparison between E3TP and Naïve on Kansas data set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300

Number of predicted trajectories

A
cc

ur
ac

y
of

 p
re

di
ct

io
n

E3TP

Naive

Fig. 7. Prediction accuracy comparison between E3TP and Naïve on NY data set

In Fig. 6 and Fig. 7, the x axis represents the number of predicted trajectories, and
the y axis is the percentage of trajectories that “hit” (match) the real-world situation
by setting parameters as introduced in Section 6.2. By Fig. 6 and Fig. 7, E3TP
outperforms the naive method with a big gap of 32% on Kansas data set and 30% on
NY data set, respectively. This is because E3TP provides a better solution of finding
possible routes of moving objects with high- frequent patterns in a certain region. In
addition, we predict the motion curves of moving objects by taking into account both
the road condition and the internal characteristics of moving objects, which helps
improve the accuracy of calculating timestamps.

 E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases 87

7 Conclusion and Further Work

Traditional trajectory prediction algorithms mainly focus on discovering frequent
movement patterns of moving objects without constraints, which is far from the real-
world situations. In this paper, we addressed the characteristics of motion behaviors
of moving objects, including the key factors in route selection and the distribution
rules of frequent trajectory patterns. By experiments, we compare the proposed trajec-
tory prediction algorithm based on FP-tree, called E3TP, with probability-based naïve
method, and show the advantages of our solution. Most importantly, E3TP can be
used to prediction the fleeing criminals in order to help security agencies trace crimi-
nal suspects.

For further research, we will improve the proposed frequent routes discovery algo-
rithm to be more suitable and effective for mining large scale of spatial and temporal
data, and develop other data mining approaches, i.e., Genetic Algorithms [11, 12],
neural networks [13], immune algorithms [14], to accurately find the most possible
route. In addition, stochastic theories can be utilized to depict the distribution rules of
moving objects’ speed. Finally, trajectory prediction of moving objects in non-hotspot
region will be seriously considered in our future study.

References

[1] Qiao, S., Tang, C., Jin, H., Dai, S., Chen, X.: Constrained K-Closest Pairs Query Process-
ing Based on Growing Window in Crime Databases. In: 2008 IEEE International Confer-
ence on Intelligence and Security Informatics, ISI 2008, Taipei, pp. 58–63 (2008)

[2] Morzy, M.: Mining frequent trajectories of moving objects for location prediction. In:
Perner, P. (ed.) MLDM 2007. LNCS, vol. 4571, pp. 667–680. Springer, Heidelberg
(2007)

[3] Lee, J., Han, J., Whang, K.: Trajectory Clustering: A Partition-and-Group Framework. In:
SIGMOD 2007, Beijing, China, pp. 593–604. ACM, New York (2007)

[4] Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The geometry of uncertainty in
moving objects databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino,
E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 233–250. Springer,
Heidelberg (2002)

[5] Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
SIGMOD 2000: Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pp. 1–12. ACM, New York (2000)

[6] Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty in
moving objects databases. ACM Trans. Database Syst. 29(3), 463–507 (2004)

[7] Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally annotated se-
quences. In: SDM 2006: Proceedings of the 6th SIAM International Conference on Data
Mining, pp. 346–357. SIAM, Bethesda (2006)

[8] Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining sequences with temporal an-
notations. In: SAC 2006: Proceedings of the 2006 ACM symposium on Applied comput-
ing, pp. 593–597. ACM, New York (2006)

[9] Brinkhoff, T.: A framework for generating network-based moving objects. Geoinfor-
matica 6(2), 153–180 (2002)

88 T. Long et al.

[10] Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 8th edn. Wiley, Chiches-
ter (2007)

[11] Qiao, S., Tang, C., Peng, J., Fan, H., Xiang, Y.: VCCM Mining: Mining Virtual Commu-
nity Core Members Based on Gene Expression Programming. In: Chen, H., Wang, F.-Y.,
Yang, C.C., Zeng, D., Chau, M., Chang, K. (eds.) WISI 2006. LNCS, vol. 3917, pp. 133–
138. Springer, Heidelberg (2006)

[12] Qiao, S., Tang, C., Peng, J., Hu, J., Zhang, H.: BPGEP: Robot Path Planning based on
Backtracking Parallel-Chromosome GEP. In: Proceedings of the International Conference
on Sensing, Computing and Automation, ICSCA 2006, DCDIS series B: Application and
Algorithm, vol. 13(e), pp. 439–444. Watam Press (2006)

[13] Qiao, S., Tang, C., Peng, J., Yu, Z., Jiang, Y., Han, N.: A Novel Prescription Function
Reduction Algorithm based on Neural Network. In: Proceedings of the International Con-
ference on Sensing, Computing and Automation, ICSCA 2006, DCDIS series B: Applica-
tion and Algorithm, vol. 13(e), pp. 939–944. Watam Press (2006)

[14] Shao-jie, Q., Chang-jie, T., Shu-cheng, D., Chuan, L., Yu, C., Jiang-tao, Q.: SIGA: A
novel self-adaptive immune genetic algorithm. Acta Scientiarum Natralium Universitatis
Sunyatseni 47(3), 6–9 (2008)

	E3TP: A Novel Trajectory Prediction Algorithm in Moving Objects Databases
	Introduction
	Problem Statement
	Mining Hotspot Regions
	Mining Frequent Routes Based on FP-Tree
	Time-Stamped Trajectory Prediction
	Experiments and Discussions
	Experimental Setting and Definition
	Parameter Settings
	Performance Analysis of Movement Rules Extraction
	Prediction Accuracy Estimation

	Conclusion and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

