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Abstract. Criminals are creatures of habit and their crime activities are
geospatially, temporally and thematically correlated. Discovering these
correlations is a core component of intelligence-led policing and allows for
a deeper insight into the complex nature of criminal behavior. A spatial
bivariate correlation measure should be used to discover these patterns
from heterogeneous data types. We introduce a bivariate spatial corre-
lation approach for crime analysis that can be extended to extract mul-
tivariate cross correlations. It is able to extract the top-k£ and bottom-k
associative features from areal aggregated datasets and visualize the re-
sulting patterns. We demonstrate our approach with real crime datasets
and provide a comparison with other techniques. Experimental results
reveal the applicability and usefulness of the proposed approach.

1 Introduction

Since criminals are creatures of habit, law enforcement agencies can be more
effective if they learn from historical data to better understand perpetrators
habits and locations they choose to commit crimes. Police and policy makers
need an intelligent crime analysis machine that is able to capture the connections
that exist between places and events based on past crimes. These patterns can
then be used to characterize criminal behavior and discover where, when and why
particular crimes are likely to occur. Discovering correlations between crime and
spatial features is a core component of intelligence-led policing, and allows for a
deeper insight into the complex nature of criminal behavior. Crime activities are
geospatially, temporally and thematically correlated therefore a variety of factors
can contribute to the formulation of crime. These factors need to be considered
when interpreting crime datasets.

Several crime data mining techniques have been developed over recent years
[11213l[4], however reasoning about crime datasets has received less attention [56].
One of the drawbacks of these approaches is that they can typically only reason
about positive associative features whereas negative associative features can be
just as important. Several works using spatial association rules mining have been
proposed in order to mine spatial associations in geospatial databases [7I8/9]. The
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main drawback of these approaches is that they capture point-to-point associa-
tion but ignore spatial association.

The increasing availability of heterogeneous datasets, such as those incor-
porating socio-economic and socio-demographic factors, geospatial features and
crime datasets, has increased the need for intelligent analysis. To discover corre-
lations in these heterogeneous data types, a spatial bivariate correlation measure
should be used. Standard bivariate techniques do not account for spatial rela-
tions in their computation and are therefore not well suited to identifying spatial
structures [I0]. Previous efforts in developing a bivariate association measure
have been proposed by Wartenberg [I1] who based their approach on Moran’s
I statistic. However, Lee [12] identifies drawbacks with Wartenberg’s approach
and instead proposes his own bivariate spatial association measure.

In this paper we rank crime and geospatial feature datasets by their spatial
co-patterning (similarity) using bivariate correlation measures. This results in
the discovery of patterns in the form crimeX is more similar to featureY than
featureX . We also show that while Lee’s L index [12] is an effective spatial cor-
relation measure for crime analysis, it achieves inconsistent results when used
with areal aggregated datasets over regions of irregular size and shape. To over-
come this we present a more suitable weights matrix where the spatial lag better
represents neighboring regions of irregular size. Using this weights matrix, we
are then able to extract the top-k and bottom-k associative features. We also
present a graph based visualization method that allows the user to easily extract
patterns of interest.

Research in the area of crime analysis and reasoning, such as the approach
outlined here, can be applied to a wide range of other applications that may
lead to economic, social and environmental advantages. This technique could be
applied to geospatial datasets in several fields including disaster management,
epidemiology, business intelligence, geology, environmental monitoring, market-
ing and e-commerce. For example, in epidemiology, interesting cross correlations
between cancer hotspots and environmental features can be identified.

In Section [ we review existing bivariate spatial association measures, and
perform comparisons between them. Section Bl compares two popular correlation
measures and describes the problem statement. In Section [l we detail the special
properties of areal aggregated crime data and show how the choice of the spatial
weights matrix affects the bivariate correlation measure. Section [ provides ex-
perimental results with real crime datasets and our visualization technique. We
conclude with final remarks and ideas for future work in Section [Gl

2 Bivariate Spatial Association

Spatial association is the degree to which a set of univariate observations are
similarly arranged over space. It quantifies the distribution of patterns among
a dataset, with a strong spatial association occurring when two distributions
are similar, weak association describes little similarity and no association occurs
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when two distributions are dissimilar. Bivariate spatial association measures
quantify the spatial relations among many variables in a set of observations.

Many processes, including crime, involve more than one variable, so allowing for
their dependence on each other is essential in modeling and in understanding their
covariance [13]. Hubert et al. [T4] make a distinction between the relationship within
apair at each location (point-to-point association) and the relationship between dis-
tinct pairs across locations (spatial association). Pearson’s r is a common point-to-
point association measure, while spatial association is often measured by Moran’s
I Pearson’s correlation coeflicient r for variables X and Y is computed by:
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and Moran’s I is given by:
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where 7 and j are two spatial objects and w;; is a general spatial weights matrix
of their locational similarity. The choice of the weights matrix is a critical step
in computing the spatial association [TOJT5].

Several works using spatial association rules mining have been proposed in the
data mining community in order to mine spatial associations in massive geospa-
tial databases [7I8/9]. In general, these approaches extend traditional association
rule mining [I6/I7] to the spatial and temporal context. One drawback of these
approaches is that they typically capture point-to-point association but ignore
spatial association. It is argued that to capture spatial co-patterning, a bivariate
spatial association measure should be the combination of both the point-to-point
association and spatial association measures [12]. That is, the bivariate measure
should be a composite of the univariate spatial associations of two variables and
their point-to-point association in a certain form.

There are two main approaches in this regard [ITJ12]. Wartenberg [11] devel-
oped a multivariate extension of Moran’s I univariate spatial autocorrelation mea-
sure to account for the spatial dependence of data observations and their multi-
variate covariance simultaneously. Wartenberg’s approach can be defined as:
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Lee [12] utilizes the concept of spatial lag (SL), which is defined as the composed
weighted averages of neighbors defined by the spatial weights matrix, and is given

as:
% = Zwijxj (4)
J

The SL is then used to introduce the concept of a spatial smoothing scalar
(SSS) that can reveal substantive information about the spatial clustering of a
variable. The SSS ranges from 0 to 1, where more clustered variables have higher
SSS values. The SSS is given by:

Ix (2)

, =SSy iy (3)
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Lee’s L index between two variables can then be defined as the Pearson’s corre-

lation coefficient between their SL vectors multiplied by the square root of the
product of their SSSs:

5SS, = (5)
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3 Correlation Measures and Problem Statement

We evaluate both Lee’s L and Wartenberg’s I bivariate correlation measures
with a synthetic dataset that shows increasing dissimilarity. We use the same
base region of 37 regular sized hexagons that Lee [12] uses to illustrate his
bivariate spatial correlation measure. Lee compares his L index to Wartenberg’s
using simple dataset patterns and argues that Cross-MC should not be used as
a bivariate spatial association measure.

Figure[Istarts with 4 clusters in dataset,, and for each subsequent dataset we
remove 1 cluster. As clusters are removed, dataset,_gq become less similar to the
original dataset,. The density for non cluster regions are uniformly distributed
random values and are the same among datasets. Table[[land Fig. [Ii(e) illustrate
the expected result; when we rank the similarity for dataset,, the bivariate
correlation measure decreases with the number of clusters removed. For this
dataset, both Lee’s L and Wartenberg’s approach show correct results, however
only Lee’s L shows the expected linear decrease in correlation value.

—~
o
N

Correlation Value

A-A A-B A-C A-D

Associations

(e)

Fig. 1. Synthetic hexagon dataset: (a-d) Datasets a — d; (e) Comparison of Lee’s L and
Wartenberg’s 1
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Table 1. Cross correlations from synthetic hexagon dataset

SSSX SSSY ’r‘;(’{, X,y LX,Y IX,Y
a-a 0.208 0.208 1.000 1.000 0.208 0.123
a-b 0.208 0.236 0.863 0.896 0.191 0.119
a-c 0.208 0.336 0.642 0.740 0.170 0.089
a-d 0.208 0.387 0.532 0.595 0.151 0.009

4 Shared Border Aware Weight Matrix

Crime, census and geospatial features are often recorded for regions of irregular
size and shape. Crime datasets can be aggregated to suburb or police districts
and census data using census tracts or collection districts. When the study region
contains such irregular regions, the choice of weight matrix is a critical step in
the computation of spatial association [15].

Figure [2 shows synthetic areal aggregated datasets over suburbs from Bris-
bane, Australia. Regions of grey color are low density while green colored re-
gions are high density. This is a subset of the base regions we use in our real
world experiments in Section Bl To allow for a deeper insight into the com-
plex question of crime analysis we need to discover crime and spatial features
that exhibit strong correlation (similarity). From visual analysis of our syn-
thetic datasets, it can be argued that the ranking of similarity for dataset,
is dataset, — datasety, dataset., datasety. That is, dataset, is more similar to
dataset, than dataset. and datasety. This is because these datasets show a sim-
ilar density (green high density regions surrounded by grey low density regions)
in a similar spatial neighborhood.

Table 2] shows that Lee’s L index incorrectly determines that the similarity
ranking is dataset, — datasetq, dataset., dataset,. This is because Lee uses a
simple weights matrix that is defined as the row standardized version of the
binary connectivity matrix where elements that are neighbors have a value of
1 or otherwise a value of 0. Each neighbor is given the same weighting when
calculating the spatial lag vector but with irregular regions this is often not
desirable. For example in Fig. 2 dataset, and dataset. are both neighbors (share

% (a) §§ (b) % (©) % (@)

Fig. 2. Synthetic irregular region dataset: (a-d) Datasets a — d
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Table 2. Cross correlations from irregular dataset

S55x S5Sy rgy rxy Lxy
a-a 1.000 1.000 1.000 1.000 1.000
a-b 1.000 0.865 0.028 0.833 0.027
a-c 1.000 1.000 0.040 0.833 0.041
a-d 1.000 0.741 0.448 0.833 0.388

Table 3. Cross correlations from irregular dataset with modified weights matrix

SSSx SSSy T}y TXY Lxy
a-a 0.994 0.994 1.000 1.000 0.994
a-b 0.994 0.817 0.152 0.833 0.137
a-c 0.994 0.929 0.112 0.833 0.108
a-d 0.994 0.712 -0.107 0.833 -0.0901

a border) with dataset,, however dataset. shares only a very small border. The
spatial weights matrix should be defined so that the common border reflects the
weighting and thus the spatial lag. If ¢ and j are neighbors, we define w as:

w(i, j) = sharedBorder;j /total Border;, (7)

where sharedBorder;; is the shared border between ¢ and j and total Border; is
the total border of .

Given this new spatial weights matrix, Table [§] shows that Lee’s L index
correctly identifies the similarity ranking of dataset, as dataset, — datasety,
dataset., datasety. Discovering patterns of similar crime and geospatial/census
features is a key component to intelligence-led policing and crime analysis.

5 Experimental Results

This section shows the results collected from real crime datasets of urban sub-
urbs of Brisbane, Australia. A steadily growing trend in recorded violent crime
in Australia [I8] has been a major concern not only to policing agencies, but also
tourism agencies and the public. The Brisbane study region (Fig. Bl is highly
dynamic and active and continues to experience significant and sustained popu-
lation growth and an increase in various criminal activities [19]. The Queensland
Police Service (QPS) releases crime data in areal aggregated format due primar-
ily to privacy concerns. We combine these crime datasets with spatial feature
datasets and census datasets so that associative patterns can be discovered. The
smallest geographic unit at which census data is available from the Australian
Bureau of Statistics (ABS) is the Collection District. The ABS produces statis-
tics for other geographic areas by allocating collection districts to each spatial
unit in the particular classification [20].

We use a total of 108 datasets in this experiment; 38 crime datasets, 7 ge-
ographic features (caravan parks, railway stations, reserves, schools, hospitals,
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Fig. 3. Brisbane study region

Table 4. Cross correlations from the Brisbane crime dataset

top-k Lxy

Unlawful Entry With Intent - UNOCCUPIED  0.603
Unlawful Entry With Intent - AGED 25 29 0.580
Unlawful Entry With Intent - UNEMPLOYED  0.564

Other Stealing - OVERSEAS VISITOR 0.551

Other Theft - OVERSEAS VISITOR 0.535
bottom-k

Arson - AGED 85 89 -0.154

Arson - AGED 90 94 -0.152

Liquor (excl. Drunkenness) - SEPARATE HOUSE -0.139

Arson - FLAT UNIT -0.139

Rape and Attempted Rape - reserve -0.135

university /colleges and parks) and 63 census classifications. The crime dataset
from the QPS has three main categories: personal safety (offences against per-
son), property security (offences against property) and other offences. The census
classifications we use include age, dwelling structure, employment status, weekly
income, level of education completed and household mobility indicator (change
of address). The study region encompasses 186 suburbs of Brisbane that had
crime and census data available.

We utilize Lee’s L index with the shared border length weights matrix as de-
scribed in Section[dl We mine the dataset to extract the top-k and bottom-k spa-
tial associative patterns involving salient features or census classifications (for this
experiment k = 5). We restrict the patterns to those involving at least one type of
crime. From the extracted associations shown in Table[] we can see that there is a
strong correlation between the crime Unlawful Entry With Intent and Unoccupied
Duwellings and Unemployed 25-29 year old persons. It can be seen that there is also
a weak association between Arson and persons aged 85-94. This information can
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then be used to further investigate the cause of these specific associative patterns
and also allow for targeted crime prevention efforts.

5.1 Visualization

While the associations shown in Table ]l may be common sense, there may be
interesting, unknown patterns in the larger subset of top-k and bottom-k asso-
ciative patterns. The problem becomes one of information overload; how can the
user find interesting patterns hidden amongst the other patterns.

Figure [ shows the visualization that we developed to help the user extract
interesting patterns. For this example we use the same datasets as described in
Section Bl and extract the top-50 results. Each node (feature) is labeled and its
size is a depiction of the correlation strength, where the size of the circle repre-
sents the largest L index score of its relationships. The edges between nodes in
our visualization depict the top-k associative patterns. The correlation strength
is depicted by the edge thickness and color.

Figure @ clearly shows that the top-50 associative patterns form two clusters,
one revolving around Ouverseas Visitors, Other Dwelling - Improvised home and
the second cluster around Unemployed, Age 25-29, Unoccupied Dwelling, Un-
lawful Entry With Intent, Unlawful Entry Without Violence. The visualization
environment is dynamic so that the user can move and delete any associations
that are not of interest. Figure Bl shows the visualization of the bottom-50 asso-
ciative patterns. In this case the, the visualization easily allows the user to see
that Arson is not caused by People aged 80-100, locations with Flat or Units
and locations of Universities and Colleges.

€M LEDA Graph Editor =le )=
File Edit Graph Layout Window Options Help ! done ‘
UEWIS OTST GOOO

powered by LEDA
nodes: 30 edges: 50 undo: 72/0 33.44 531.49

Fig. 4. Visualization of top-50 associative patterns
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&M LEDA Graph Editor (E=1EoH =

File Edit Graph Layout Window Options Help i done‘

OTST GOOO RESP OTAS OTTH AGED 59

powered by LEDA
nodes: 35 edges: 50 undo: 92/0 23.05 210.42

Fig. 5. Visualization of bottom-50 associative patterns

£™ | EDA Graph Editor ==
File Edit Graph Layout Window Options Help  » gone|

UNEMP_P UNOCCUPIED

AGED_30_34

UNOCCUPIED
DIFFAD1Y_P

YEAR12 AGED_20_24

STFD
UNEMP_P UNOCCUPIED

powered by LEDA
nodes: 24 edges: 20 undo: 144/0 310.13 493.72

Fig. 6. Visualization of selected top-k crime associative patterns
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Users can also select specific crime features to visualize from the top-k/
bottom-k results. Figure [6] shows the associative patterns when the crimes Un-
lawful Entry With Intent, Unlawful Entry Without Violence, Motor Vehicle Theft
and Stealing from Duwellings from the top-50 are selected. In this visualization,
duplicate geospatial and census features are not removed. As part of a crime deci-
sion support system these associative patterns can be used to further investigate
and explain the behavior of crime within the study region.

5.2 Comparison with Density Tracing

We compare the spatial associative patterns discovered by the bivariate spatial
association approach with our previous Density Tracing approach [21]. Density
tracing allows autonomous exploratory analysis and knowledge discovery in areal
aggregated crime datasets by transforming the dataset into a density trace that
shows density change between regions. The results from the two approaches are
not directly comparable, however the associative patterns in the form crimeX
is more similar to featureY than featureX are comparable.

Table 5. Cross correlations using Density Tracing

Patterns dissimilarity
Unlawful Entry With Intent - UNEMPLOYED  0.425599
Unlawful Entry With Intent - AGED 90 94 0.45303
Unlawful Entry With Intent - AGED 20 24 0.459116
Other Stealing - OVERSEAS VISITOR 0.115436
Other Theft - OVERSEAS VISITOR 0.116533

We examine the top-5 patterns from Table ] against Density Tracing. We use
each crime in the top-5 as a reference feature f in the Density Tracing algorithm
and select the most similar non-crime feature. For Unlawful Entry With Intent
we report the three most similar features. From the results in Table [l it can be
seen that for Other Stealing and Other Theft both approaches report the same
most similar associative patterns. The results for Unlawful Entry With Intent
are due to the differences in the way the two approaches calculate similarity.

6 Final Remarks

Since crime activities are geospatial phenomena, they are geospatially, themat-
ically and temporally correlated. Thus, crime datasets must be interpreted and
analysed in conjunction with various factors that can contribute to the formu-
lation of crime. We propose a bivariate spatial association approach for crime
analysis using an enhanced Lee’s L index [I2] to extract the top-k and bottom-k
associative features. We have shown why the choice of spatial weight matrix is
an important consideration for spatial association analysis of crime datasets of
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irregular size and shape. In addition, we introduced a visualization approach
that helps users find interesting patterns.

This research is part of an ongoing project with the aim to build a crime
knowledge discovery machine, as a crime decision support system for large areal-
aggregated crime datasets, that explains the behavior of crime with the first
order effect of crime (concentrations and deviations) and the second order effect
of crime (links and associations). Future work includes incorporating temporal
data into the bivariate approach. We wish to compare the results from this
study to census and crime data for other years. We are also investigating graph
based implementations for computational and memory efficiency. A comparison
between this technique and an Association Rules Mining approach such as [g] is
also planned.
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