
H. Chen et al. (Eds.): PAISI 2009, LNCS 5477, pp. 112–117, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Chronological Evaluation of Unknown Malcode
Detection

Robert Moskovitch, Clint Feher, and Yuval Elovici

Deutsche Telekom Laboratories at Ben Gurion University
Ben Gurion Univsersity of the negev, Beer Sheva 84105, Israel

{robertmo,clint,elovici}@bgu.ac.il

Abstract. Signature-based anti-viruses are very accurate, but are limited in de-
tecting new malicious code. Dozens of new malicious codes are created every
day, and the rate is expected to increase in coming years. To extend the gener-
alization to detect unknown malicious code, heuristic methods are used; how-
ever, these are not successful enough. Recently, classification algorithms were
used successfully for the detection of unknown malicious code. In this paper we
describe the methodology of detection of malicious code based on static analy-
sis and a chronological evaluation, in which a classifier is trained on files till
year k and tested on the following years. The evaluation was performed in two
setups, in which the percentage of the malicious files in the training set was
50% and 16%. Using 16% malicious files in the training set for some classifiers
showed a trend, in which the performance improves as the training set is more
updated.

Keywords: Unknown Malicious File Detection, Classification.

1 Introduction

The term malicious code (malcode) commonly refers to pieces of code, not neces-
sarily executable files, which are intended to harm, generally or in particular, the
specific owner of the host. Malcodes are classified, based mainly on their transport
mechanism, into five main categories: worms, viruses, Trojans, and a new group
that is becoming more common, which comprises remote access Trojans and back-
doors. The recent growth in high-speed internet connections has led to an increase
in the creation of new malicious codes for various purposes, based on economic,
political, criminal or terrorist motives (among others). A recent survey by McAfee
indicates that about 4% of search results from the major search engines on the web
contain malicious code. Additionally, Shin et al. [12] found that above 15% of the
files in the KaZaA network contained malicious code. Thus, we assume that the
proportion of malicious files in real life is about or less than 10%, but we also con-
sider other options.

Current anti-virus technology is primarily based on signature-based methods,
which rely on the identification of unique strings in the binary code, while being
very precise, are useless against unknown malicious code. The second approach
involves heuristic-based methods, which are based on rules defined by experts,

 A Chronological Evaluation of Unknown Malcode Detection 113

which define a malicious behavior, or a benign behavior, in order to enable the
detection of unknown malcodes [4]. The generalization of the detection methods,
so that unknown malcodes can be detected, is therefore crucial. Recently, classifi-
cation algorithms were employed to automate and extend the idea of heuristic-
based methods. As we will describe in more detail shortly, the binary code of a file
is represented by n-grams, and classifiers are applied to learn patterns in the code
and classify large amounts of data. A classifier is a rule set which is learnt from a
given training-set, including examples of classes, both malicious and benign files
in our case.

Over the past five years, several studies have investigated the option of detect-
ing unknown malcode based on its binary code. Schultz et al. [11] were the first to
introduce the idea of applying machine learning (ML) methods for the detection of
different malcodes based on their respective binary codes. This study found that all
the ML methods were more accurate than the signature-based algorithm. The ML
methods were more than twice as accurate, with the out-performing method being
Naïve Bayes, using strings, or Multi-Naïve Bayes using byte sequences. Abou-
Assaleh et al. [1] introduced a framework that used the common n-gram (CNG)
method and the k nearest neighbor (KNN) classifier for the detection of malcodes.
The best results were achieved using 3-6 n-grams and a profile of 500-5000
features.

Kolter and Maloof [6] presented a collection that included 1971 benign and
1651 malicious executables files. N-grams were extracted and 500 were selected
using the information gain measure [8]. The authors indicated that the results of
their n-gram study were better than those presented by Schultz and Eskin [11].
Recently, Kolter and Maloof [7] reported an extension of their work, in which they
classified malcodes into families (classes) based on the functions in their respec-
tive payloads.

Henchiri and Japkowicz [5] presented a hierarchical feature selection approach
which makes possible the selection of n-gram features that appear at rates above a
specified threshold in a specific virus family, as well as in more than a minimal
amount of virus classes (families). Moskovitch et al [9], who are the authors of this
study, presented a test collection consisting of more than 30,000 executable files,
which is the largest known to us. A wide evaluation consisting on five types of classi-
fiers, focused on the imbalance problem in real life conditions, in which the percent-
age of malicious files is less than 10%, based on recent surveys. After evaluating the
classifiers on varying percentages of malicious files in the training set and test sets, it
was shown to achieve the optimal results when having similar proportions in the train-
ing set as expected in the test set.

In this paper we investigate the need in updating the training set, through a rigor-
ous chronological evaluation, in which we examine the influence of the updates of the
training set on the detection accuracy. We start with a survey of previous relevant
studies. We describe the methods we used to represent the executable files. We pre-
sent our approach of detecting new malcodes and perform a rigorous evaluation. Fi-
nally, we present our results and discuss them.

114 R. Moskovitch, C. Feher, and Y. Elovici

2 Methods

2.1 Data Set Creation

We created a data set of malicious and benign executables for the Windows operating
system. After removing obfuscated and compressed files, we had 7688 malicious
files, which were acquired from the VX Heaven website. The benign files set con-
tained 22,735, including executable and DLL files, were gathered from machines
running Windows XP operating system on our campus. The Kaspersky anti-virus
program was used to verify that these files indeed contain malicious code, or don’t for
the benign files.

2.2 Data Preparation and Feature Selection

We parsed the files using several n-gram lengths moving windows, denoted by n.
Vocabularies of 16,777,216, 1,084,793,035, 1,575,804,954 and 1,936,342,220, for 3-
gram, 4-gram, 5-gram and 6-gram respectively were extracted. Later each n-gram
term was represented using its Term Frequency (TF), which is the number of its ap-
pearances in the file, divided by the term with the maximal appearances. Thus, each
term was represented by a value in the range [0,1]. To reduce the size of the vocabu-
laries we first extracted the top features based on the Document Frequency (DF)
measure. We selected the top 5,500 features which appear in most of the files, (those
with high DF scores). Later, three feature selection methods: Gain Ratio (GR) [8] and
Fisher Score (FS) [3], were applied to each of these two sets. We selected the top 50,
100, 200 and 300 features based on each of the feature selection techniques. More
details on this procedure and results can be found in [9], in which we found that the
optimal settings were top 300 features selected by Fisher score where each feature is
5-gram represented by TF from the top 5500 features, which we used in this study.

3 Evaluation

We employed four commonly used classification algorithms: Artificial Neural Net-
works (ANN) [Bishop, 1995], Decision Trees (DT) [10], Naïve Bayes (NB) [2]. We
used the Weka [13] implementation for the Decision Trees and the Naïve Bayes and
the ANN tool box in Matlab.

To evaluate the importance of and need for updating the training set, we divided
the entire test collection into the years from 2000 to 2007, in which the files were
created. Thus, we had 6 training sets, in which we had samples from year 2000 till
year 2006. Each training set was evaluated separately on each following year from
200k+1 till 2007. Obviously the files in the test were not presented in the training set.
We present two experiments which vary in the Malicious Files Percentage (MFP) in
the training set, having 50% which is commonly used and 16% which is expected to
maximize the performance, which was the same in the test set (16%) to reflect real
life conditions (in both cases).

 A Chronological Evaluation of Unknown Malcode Detection 115

Decision Trees
Figure 1 presents the results of the chronological evaluation, for the 50% MFP in the
training set. Training on 2000 results below 0.9 accuracy, while training on the next
years improved the accuracy. However, generally a significant decrease in perform-
ance was seen when testing on 2007.

Figure 2 presents the results of the chronological evaluation, in which the MFP in
the training set was 16%. In Figure 2 we see generally a higher performance than in
figure 1. 2004 introduced a significant challenge for the training sets of until 2000 and
2001. In this set of results there is a clear trend which shows that the more the training
set is updated the higher the accuracy in the following years, and even when testing
on 2007 the accuracy was above 0.9, when trained on till 2004, 2005 and 2006.

Fig. 1. For the 50% MFP training set the
more updated the higher the accuracy. A
significant decrease is seen in 2007, while
training on 2006 outperforms.

Fig. 2. For the 16% MFP training set, the
more updated the higher the accuracy. Test-
ing on year 2004 presented a challenge for
the 2000 and 2001 training sets.

Fig. 3. For the 50% MFP a decrease is in
2003 and generally the results are low

Fig. 4. For the 16% MFP there is a slight
improvement in comparison to the 50%
MFP

116 R. Moskovitch, C. Feher, and Y. Elovici

Naïve Bayes
Figure 3 and 4 present the results of the chronological evaluation using the Naïve
Bayes classifier, for the 50% MFP (fig 3) and 16% MFP (fig 4) training sets. In 2003
there is a significant drop in the accuracy in both MFPs, which appears only with this
classifier. The results in general are lower than the other classifiers. The results with
the 16% MFP are slightly better. However, in both figures the accuracy drops for the
last years, especially for 2007.

Artificial Neural Networks
Figures 5 and 6 present the chronological results for the ANN classifier. The results
seem better than the Naïve Bayes, especially for the 16% MFP results. In Figure 6 the
results seem to perform very well along most of the years, out of a significant drop for
the training set from 2005, especially with the test set of 2007.

Fig. 5. For the 50% MFP training set, train-
ing on 2000 performed very low, unlike the
others

Fig. 6. For the 16% MFP there is a signifi-
cant improvement in comparison to the 50%
MFP

4 Discussion and Conclusions

We presented the problem of unknown malicious code detection using classification
algorithms. We described the use of n-grams for the representation where feature
selection methods are used to reduce the amount of features. We presented the crea-
tion of our test collection, which is 10 times larger than any previously presented. In a
previous study [9], we investigated the aspects of the percentage of malicious files in
the training set to maximize the accuracy in real life conditions.

In this study we referred to the question of the importance of updating the training
set with the new malicious codes in a yearly time granularity and whether it is impor-
tant to keep samples of old files in the training set from few years ago. Our results
indicate that when having 16% MFP in the training set which corresponds to the test
set we achieve a higher level of accuracy, and also a relatively clear trend that as the
training set is more updated the accuracy is higher. However, this varies according to
the classifier and one should be aware of this influence in deployment, as sometimes
it decreases the accuracy. Moreover, it seems to be better to have also files which are
from several years earlier and to incrementally update the database.

 A Chronological Evaluation of Unknown Malcode Detection 117

References

[1] Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram Based Detection of New
Malicious Code. In: Proceedings of the International Computer Software and Applica-
tions Conference (COMPSAC 2004) (2004)

[2] Domingos, P., Pazzani, M.: On the optimality of simple Bayesian classifier under zero-
one loss. Machine Learning 29, 103–130 (1997)

[3] Golub, T., Slonim, D., Tamaya, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H.,
Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification
of cancer: Class discovery and class prediction by gene expression monitoring. Sci-
ence 286, 531–537 (1999)

[4] Gryaznov, D.: Scanners of the Year 2000: Heuristics. In: Proceedings of the 5th Interna-
tional Virus Bulletin (1999)

[5] Henchiri, O., Japkowicz, N.: A Feature Selection and Evaluation Scheme for Computer
Virus Detection. In: Proceedings of ICDM 2006, Hong Kong, pp. 891–895 (2006)

[6] Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Pro-
ceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 470–478. ACM Press, New York (2004)

[7] Kolter, J., Maloof, M.: Learning to Detect and Classify Malicious Executables in the
Wild. Journal of Machine Learning Research 7, 2721–2744 (2006)

[8] Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
[9] Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Elovici, Y.: Unknown Malcode Detec-

tion via Text Categorization and the Imbalance Problem. In: IEEE Intelligence and Secu-
rity Informatics (ISI 2008), Taiwan (2008)

[10] Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers, Inc.,
San Francisco (1993)

[11] Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods for detection of new
malicious executables. In: Proceedings of the IEEE Symposium on Security and Privacy,
pp. 178–184 (2001)

[12] Shin, S., Jung, J., Balakrishnan, H.: Malware Prevalence in the KaZaA File-Sharing Net-
work. In: Internet Measurement Conference (IMC), Brazil (October 2006)

[13] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques,
2nd edn. Morgan Kaufmann Publishers, Inc., San Francisco (2005)

	A Chronological Evaluation of Unknown Malcode Detection
	Introduction
	Methods
	Data Set Creation
	Data Preparation and Feature Selection

	Evaluation
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

