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Abstract. Signature-based anti-viruses are very accurate, but are limited in de-
tecting new malicious code. Dozens of new malicious codes are created every 
day, and the rate is expected to increase in coming years. To extend the gener-
alization to detect unknown malicious code, heuristic methods are used; how-
ever, these are not successful enough. Recently, classification algorithms were 
used successfully for the detection of unknown malicious code. In this paper we 
describe the methodology of detection of malicious code based on static analy-
sis and a chronological evaluation, in which a classifier is trained on files till 
year k and tested on the following years. The evaluation was performed in two 
setups, in which the percentage of the malicious files in the training set was 
50% and 16%. Using 16% malicious files in the training set for some classifiers 
showed a trend, in which the performance improves as the training set is more 
updated. 

Keywords: Unknown Malicious File Detection, Classification. 

1   Introduction 

The term malicious code (malcode) commonly refers to pieces of code, not neces-
sarily executable files, which are intended to harm, generally or in particular, the 
specific owner of the host. Malcodes are classified, based mainly on their transport 
mechanism, into five main categories: worms, viruses, Trojans, and a new group 
that is becoming more common, which comprises remote access Trojans and back-
doors. The recent growth in high-speed internet connections has led to an increase 
in the creation of new malicious codes for various purposes, based on economic, 
political, criminal or terrorist motives (among others). A recent survey by McAfee 
indicates that about 4% of search results from the major search engines on the web 
contain malicious code. Additionally, Shin et al. [12] found that above 15% of the 
files in the KaZaA network contained malicious code. Thus, we assume that the 
proportion of malicious files in real life is about or less than 10%, but we also con-
sider other options. 

Current anti-virus technology is primarily based on signature-based methods, 
which rely on the identification of unique strings in the binary code, while being 
very precise, are useless against unknown malicious code. The second approach 
involves heuristic-based methods, which are based on rules defined by experts, 
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which define a malicious behavior, or a benign behavior, in order to enable the 
detection of unknown malcodes [4]. The generalization of the detection methods, 
so that unknown malcodes can be detected, is therefore crucial. Recently, classifi-
cation algorithms were employed to automate and extend the idea of heuristic-
based methods. As we will describe in more detail shortly, the binary code of a file 
is represented by n-grams, and classifiers are applied to learn patterns in the code 
and classify large amounts of data. A classifier is a rule set which is learnt from a 
given training-set, including examples of classes, both malicious and benign files 
in our case. 

Over the past five years, several studies have investigated the option of detect-
ing unknown malcode based on its binary code. Schultz et al. [11] were the first to 
introduce the idea of applying machine learning (ML) methods for the detection of 
different malcodes based on their respective binary codes. This study found that all 
the ML methods were more accurate than the signature-based algorithm. The ML 
methods were more than twice as accurate, with the out-performing method being 
Naïve Bayes, using strings, or Multi-Naïve Bayes using byte sequences. Abou-
Assaleh et al. [1] introduced a framework that used the common n-gram (CNG) 
method and the k nearest neighbor (KNN) classifier for the detection of malcodes. 
The best results were achieved using 3-6 n-grams and a profile of 500-5000  
features.  

Kolter and Maloof [6] presented a collection that included 1971 benign and 
1651 malicious executables files. N-grams were extracted and 500 were selected 
using the information gain measure [8]. The authors indicated that the results of 
their n-gram study were better than those presented by Schultz and Eskin [11]. 
Recently, Kolter and Maloof [7] reported an extension of their work, in which they 
classified malcodes into families (classes) based on the functions in their respec-
tive payloads.  

Henchiri and Japkowicz [5] presented a hierarchical feature selection approach 
which makes possible the selection of n-gram features that appear at rates above a 
specified threshold in a specific virus family, as well as in more than a minimal 
amount of virus classes (families). Moskovitch et al [9], who are the authors of this 
study, presented a test collection consisting of more than 30,000 executable files, 
which is the largest known to us. A wide evaluation consisting on five types of classi-
fiers, focused on the imbalance problem in real life conditions, in which the percent-
age of malicious files is less than 10%, based on recent surveys. After evaluating the 
classifiers on varying percentages of malicious files in the training set and test sets, it 
was shown to achieve the optimal results when having similar proportions in the train-
ing set as expected in the test set. 

In this paper we investigate the need in updating the training set, through a rigor-
ous chronological evaluation, in which we examine the influence of the updates of the 
training set on the detection accuracy. We start with a survey of previous relevant 
studies. We describe the methods we used to represent the executable files. We pre-
sent our approach of detecting new malcodes and perform a rigorous evaluation. Fi-
nally, we present our results and discuss them. 
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2   Methods 

2.1   Data Set Creation 

We created a data set of malicious and benign executables for the Windows operating 
system. After removing obfuscated and compressed files, we had 7688 malicious 
files, which were acquired from the VX Heaven website. The benign files set con-
tained 22,735, including executable and DLL  files, were gathered from machines 
running Windows XP operating system on our campus. The Kaspersky anti-virus 
program was used to verify that these files indeed contain malicious code, or don’t for 
the benign files. 

2.2   Data Preparation and Feature Selection 

We parsed the files using several n-gram lengths moving windows, denoted by n. 
Vocabularies of 16,777,216, 1,084,793,035, 1,575,804,954 and 1,936,342,220, for 3-
gram, 4-gram, 5-gram and 6-gram respectively were extracted. Later each n-gram 
term was represented using its Term Frequency (TF), which is the number of its ap-
pearances in the file, divided by the term with the maximal appearances. Thus, each 
term was represented by a value in the range [0,1]. To reduce the size of the vocabu-
laries we first extracted the top features based on the Document Frequency (DF) 
measure. We selected the top 5,500 features which appear in most of the files, (those 
with high DF scores). Later, three feature selection methods: Gain Ratio (GR) [8] and 
Fisher Score (FS) [3], were applied to each of these two sets. We selected the top 50, 
100, 200 and 300 features based on each of the feature selection techniques. More 
details on this procedure and results can be found in [9], in which we found that the 
optimal settings were top 300 features selected by Fisher score where each feature is 
5-gram represented by TF from the top 5500 features, which we used in this study. 

3   Evaluation 

We employed four commonly used classification algorithms: Artificial Neural Net-
works (ANN) [Bishop, 1995], Decision Trees (DT) [10], Naïve Bayes (NB) [2].  We 
used the Weka [13] implementation for the Decision Trees and the Naïve Bayes and 
the ANN tool box in Matlab. 

To evaluate the importance of and need for updating the training set, we divided 
the entire test collection into the years from 2000 to 2007, in which the files were 
created. Thus, we had 6 training sets, in which we had samples from year 2000 till 
year 2006. Each training set was evaluated separately on each following year from 
200k+1 till 2007. Obviously the files in the test were not presented in the training set. 
We present two experiments which vary in the Malicious Files Percentage (MFP) in 
the training set, having 50% which is commonly used and 16% which is expected to 
maximize the performance, which was the same in the test set (16%) to reflect real 
life conditions (in both cases). 
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Decision Trees 
Figure 1 presents the results of the chronological evaluation, for the 50% MFP in the 
training set. Training on 2000 results below 0.9 accuracy, while training on the next 
years improved the accuracy. However, generally a significant decrease in perform-
ance was seen when testing on 2007. 

Figure 2 presents the results of the chronological evaluation, in which the MFP in 
the training set was 16%. In Figure 2 we see generally a higher performance than in 
figure 1. 2004 introduced a significant challenge for the training sets of until 2000 and 
2001. In this set of results there is a clear trend which shows that the more the training 
set is updated the higher the accuracy in the following years, and even when testing 
on 2007 the accuracy was above 0.9, when trained on till 2004, 2005 and 2006. 

 

  

Fig. 1. For the 50% MFP training set the 
more updated the higher the accuracy. A 
significant decrease is seen in 2007, while 
training on 2006 outperforms. 

Fig. 2. For the 16% MFP training set, the 
more updated the higher the accuracy. Test-
ing on year 2004 presented a challenge for 
the 2000 and 2001 training sets.  

 

  
Fig. 3. For the 50% MFP a decrease is in 
2003 and generally the results are low 

Fig. 4. For the 16% MFP there is a slight 
improvement in comparison to the 50% 
MFP 
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Naïve Bayes 
Figure 3 and 4 present the results of the chronological evaluation using the Naïve 
Bayes classifier, for the 50% MFP (fig 3) and 16% MFP (fig 4) training sets. In 2003 
there is a significant drop in the accuracy in both MFPs, which appears only with this 
classifier. The results in general are lower than the other classifiers. The results with 
the 16% MFP are slightly better. However, in both figures the accuracy drops for the 
last years, especially for 2007. 

Artificial Neural Networks 
Figures 5 and 6 present the chronological results for the ANN classifier. The results 
seem better than the Naïve Bayes, especially for the 16% MFP results. In Figure 6 the 
results seem to perform very well along most of the years, out of a significant drop for 
the training set from 2005, especially with the test set of 2007. 

 

  
Fig. 5. For the 50% MFP training set, train-
ing on 2000 performed very low, unlike the 
others 

Fig. 6. For the 16% MFP there is a signifi-
cant improvement in comparison to the 50% 
MFP 

4   Discussion and Conclusions 

We presented the problem of unknown malicious code detection using classification 
algorithms. We described the use of n-grams for the representation where feature 
selection methods are used to reduce the amount of features. We presented the crea-
tion of our test collection, which is 10 times larger than any previously presented. In a 
previous study [9], we investigated the aspects of the percentage of malicious files in 
the training set to maximize the accuracy in real life conditions. 

In this study we referred to the question of the importance of updating the training 
set with the new malicious codes in a yearly time granularity and whether it is impor-
tant to keep samples of old files in the training set from few years ago. Our results 
indicate that when having 16% MFP in the training set which corresponds to the test 
set we achieve a higher level of accuracy, and also a relatively clear trend that as the 
training set is more updated the accuracy is higher. However, this varies according to 
the classifier and one should be aware of this influence in deployment, as sometimes 
it decreases the accuracy. Moreover, it seems to be better to have also files which are 
from several years earlier and to incrementally update the database. 
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