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Abstract. In recent years, law enforcement personnel have been greatly aided 
by the deployment of automated fingerprint identification systems (AFIS). 
These “black-box” systems largely operate by matching distinctive features 
automatically extracted from fingerprint images for their decisions. However, 
current systems have two major shortcomings. First, the identification result 
depends solely on the chosen features and the algorithm that matches them. 
Second, these systems cannot improve their results by benefiting from interac-
tions with expert examiners who often can identify small differences between 
fingerprints. In this paper, we demonstrate by incorporating Relevance Feed-
back in a fingerprint identification system as an add-on module, a persistent 
semantic space over the database of fingerprints for an expert user can be in-
crementally learned. Here, the learning module makes use of a Dimensionality 
Reduction process that returns both a low-dimensional semantic space and an 
out-of-sample mapping function, achieving a two-fold benefits of data com-
pression and the ability to project novel fingerprints directly onto the semantic 
space for identification. Experimental results demonstrated the potential of this 
user-centered framework for adaptive fingerprint identification. 

Keywords: User-centered, Biometrics, Fingerprint identification, Adaptive in-
formation processing, Relevance feedback, Dimensionality reduction. 

1   Introduction 

Biometric authentication based on a person’s physiological and behavioral traits is 
gaining acceptance as a method for uniquely verifying one’s real identity [1]. Among 
these biometric traits: fingerprint, face, speech, iris and hand geometry are the most 
commonly used. Biometric authentication systems have been applied with successes 
in a number of real world applications in law enforcement, border control, welfare 
services, etc. An early example of this technology was the Automated Fingerprint 
Identification System (AFIS). 

                                                           
∗ Correspondence author. 
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However, current systems have two major shortcomings. First, the result of identi-
fication depends solely on the features selected and the algorithm that matches them. 
Second, there is no way of having these systems adapt their outcomes to seasoned 
examiners, who often can identify minute differences between fingerprints beyond 
what is capable of by current systems. In other words, most AFIS have a static proc-
essing architecture that lacks a functionality to capture and reuse knowledge of expert 
examiners in constructing the identification outcome. As an illustration, a simplified 
model of current generation systems is shown in Figure 1. 

 

 

Fig. 1. A simplified model of current Automated Fingerprint Identification System (AFIS) 

Due to both the Features Extractor and the Pattern Matcher being fixed, there is no 
way for improving the identification result even if impressions of the same finger as 
the unknown fingerprint did not turn up initially in the top N images of the ranking 
list. The user would be misled in judging that such a finger/identity does not exist in 
the database based only on the direct outcome of the system. The impact of such 
problem could potentially be minimized if feedbacks from an expert examiner on the 
relevance or irrelevance of certain fingerprints were captured, enabling the system to 
recalculate the ranking list accordingly. Here, we emphasize that the power to accept 
or reject the outcome of relevance feedback lies with the expert user. 

In this paper, we demonstrate by incorporating Relevance Feedback in a fingerprint 
identification system as an add-on module, a persistent semantic space over the data-
base of fingerprints for an expert user can be incrementally learned. Whereas rele-
vance feedback has been extensively researched and applied in document retrieval 
and more recently in content-based image retrieval [2]; however, not much has been 
reported on integrating relevance feedback into biometric authentication systems both 
in research and in practice. One reason could be that in order for biometric authentica-
tion to benefit from relevance feedback, a supervised setting is necessary which is not 
possible in many deployment scenarios. However, in the case of an AFIS, the  
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operating requirement makes it a suitable application for novel integration of rele-
vance feedback and biometric authentication. 

The remainder of this paper is organized as follows. In Section 2, an overview of 
the user-centered framework will be given. In Section 3, the fingerprint features used 
in this research will be briefly described. In Section 4, the major components of the 
proposed framework will be explained. In Section 5, experimental evaluation of the 
user-centered framework will be presented. Lastly, in Section 6, we will conclude and 
mention future directions. 

2   Overview of Proposed Framework 

The User-centered framework is made up of three main components including: Input 
Space Transformation, Relevance Feedback, and Semantic Space Learning. The 
framework is designed to be loosely rather than tightly coupled with other modules of 
the host AFIS as shown in Figure 2. As a result, it could be integrated as an add-on 
module in an existing system with some customizations. 

 

 

Fig. 2. Relationship of the proposed framework with modules of the host AFIS 

Besides these three components, an important element of the learning framework is 
the input space X from which the persistent semantic space will be learnt. By a se-
quence of relevance feedback from an expert examiner the state of the input space 
will be updated. The source of data that forms the basis for constructing the initial 
input space is the set of extracted features, one for each fingerprint in the database. 
They are obtained by processing the corresponding fingerprint images by the Features 
Extractor module of the host system. Inside such module, normally a sequence of 
image processing steps are performed such as image enhancement, segmentation of 
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fingerprint regions, detection and extraction of fingerprint features, and possibly 
mapping features to numeric values [3]. 

The proposed framework provides a novel mechanism by which an examiner can 
choose to incorporate his or her subjective knowledge into the construction of the 
persistent semantic space over the fingerprint database. There are four distinct steps in 
the execution of this mechanism, which are summarized as follows. 

First, input to the framework is in the form of a fingerprint x, either by random se-
lection from the database or taken from an unknown identity. These are denoted as 
Mode 1 and Mode 2 in Figure 2, respectively. Mode 1 is useful if the examiner 
chooses to incorporate additional knowledge into the formation of his or her persistent 
semantic space without being presented with an unknown identity. In such case, no 
features extraction is needed as the fingerprint is drawn from the database. In Mode 2, 
the examiner is being presented with a fingerprint from an unknown identity. In this 
case, features of the unknown fingerprint will be extracted by the host system before 
being passed to the framework. 

Second, the examiner interacts with the framework via the Relevance Feedback 
component. Regardless of whether it is operating in Mode 1 or Mode 2, based on the 
fingerprint selected, the framework returns a subset of fingerprints (excluding x) that 
are similar based on the nearest neighbor criterion. The examiner selects as positive 
those fingerprints that are judged similar based on detailed observations. The negative 
selections are those that are judged dissimilar. Given the positive and negative selec-
tions, the corresponding entries in the distance matrix (the representation we used in 
this work) will be adjusted by the Input Space Transformation component, thereby 
transforming the input space X. The relevance feedback loop repeats until the user 
decides to exit. The outcome is a distance matrix that has learnt the semantic judg-
ment of the expert examiner. 

Third, based on the transformed distance matrix, the Semantic Space Learning 
component will either construct (if for the first time) or update the persistent semantic 
space of the expert examiner. To accomplish this, we modeled the learning process as 
a Dimensionality Reduction (DR) problem in which the input space corresponds to the 
D-dimensional features space while the semantic space to a lower-dimensional em-
bedding space of dimension d (d<<D) [4]. Two advantages can be achieved by this 
modeling. First, the amount of computation that is required to operate in the high-
dimensional features space can be significantly reduced by the data compression 
gained from DR. This makes both the learning and use of the semantic space more 
efficient. Second, by utilizing a suitable DR method that supports additionally an out-
of-sample extension [5], a mapping function f that projects an unknown fingerprint 
onto the semantic space without repeating the learning process can be obtained. These 
advantages enable the learning framework to achieve the required efficiency. 

Fourth, based on the state of the semantic space, a list of M fingerprints that are 
closest to the input can be identified. In the case of Mode 2 where the main objective 
is to decide if the unknown fingerprint is similar to any fingerprints stored in the data-
base, this interim list will be passed to the Pattern Matcher module of the host AFIS. 
By the pattern matching process, a top N ranking list will be returned as the identifica-
tion result to the expert examiner for his or her acceptance or rejection. 
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3   Fingerprint Features 

Here, we summarize the steps of the features extraction algorithm used in the paper 
[3]. It employs both global and local ridge characteristics to construct a fixed length 
vector of size D = 512 for every fingerprint called FingerCode. Each FingerCode is 
comprised of an ordered enumeration of the features extracted from the local ridge 
characteristics contained in each sub-image or sector specified by a tessellation. As a 
result, each sector captures the local information and the ordered enumeration of the 
tessellation captures the invariant global relationships among these local patterns. 
Finally, Gabor filters are applied to decompose the local discriminatory characteristics 
in each sector into bi-orthogonal components based on their spatial frequencies. Fig-
ure 3 visualizes the process of features extraction carried out by [3].  

 

 

Fig. 3. Fingerprint features are extracted by [3] using a bank of Gabor filters aligned in eight 
different directions including {0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°} 

4   Framework Components 

In this section, each of the three major components of the user-centered framework 
depicted in Figure 2 will be explained. 

4.1   Input Space Transformation 

The main function of this component is to transform the topology among objects of 
the input space X through iteratively updating the distance matrix. The ij-th element 
of this matrix, denoted Mij, measures the Euclidean distance between the FingerCode 
vectors of fingerprints i and j in RD as: 
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Based on these pair-wise distances, the semantics of the input space can be encap-
sulated by the n-by-n real-valued matrix M, where n equals the number of fingerprints 
that are involved.  

The amount of updating is determined by the subjective knowledge input by the 
expert examiner as captured through the Relevance Feedback component, which will 
be described in Section 4.2. Against an input fingerprint x, after one iteration of rele-
vance feedback a list of nret most similar fingerprints in the database is retrieved and 
shown to the examiner. From the list, the examiner can indicate as positive selections 
those that he or she considers similar and negative selections those that are dissimilar. 
The sets of positive and negative selections are denoted by P = {p1, p2, …, pi}and N = 
{n1, n2, …, nj} respectively, with nret = i + j. In addition, there is an adjustable pa-
rameter β ∈ (0,1] that controls the amount of increase or decrease made to the entries 
of the distance matrix after each iteration. The initial values for nret and β used in our 
experiments were 10 and 0.8, respectively. 

Here, it is worthwhile to emphasize that a distance matrix is only one method of en-
capsulating the semantics of an input space. While it is not a goal in this paper to com-
pare the relative performances of different representations, we note that in recent years a 
number of research efforts have proposed alternate representations that are more suit-
able in certain situations. One of these is by using a kernel function as similarity meas-
ure, thereby resulting in a kernel Gram matrix that captures the pair-wise similarity 
between objects in a potentially very high-dimensional features space [6]. Another rep-
resentation would be the use of a pure metric space where only the pair-wise distances 
are known, while the geometrical properties of a Euclidean space is not required. 

4.2   Relevance Feedback 

In the user-centered framework, an expert examiner interacts with the fingerprint 
identification system via the Relevance Feedback component. Relevance feedback, an 
adaptive information processing technique, was first applied in document retrieval in 
the 1960s. It was later adapted and used in content-based image retrieval (CBIR) that 
has a strong link to this research. In its most common form, relevance feedback in-
volves polling the user for feedback on the relevancy of the current retrieval results. 
Based on the feedback, the system learns and improves its performance in the next 
round, iteratively if necessary. 

As described in Section 2, the proposed framework has two modes of operation at 
present. For the initial formation and subsequent updating of the semantic space, 
Mode 1 is used. In this mode, a fingerprint x in the database can either be picked ran-
domly or chosen by the examiner. Based on fingerprint x, a subset of fingerprints 
(excluding x) that are similar based on closest distances is returned by the Input Space 
Transformation component. Through the graphical user interface (GUI), the examiner 
marks as positive selections those fingerprints that are judged similar according to his 
or her subjective knowledge. The negative selections are those that are judged dis-
similar. These feedbacks are passed back to the Input Space Transformation compo-
nent where the corresponding entries in the distance matrix will be decreased or  
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increased accordingly. The relevance feedback loop repeats until the examiner de-
cides to exit the current “learning” session. The outcome is a transformed distance 
matrix that has incorporated the subjective knowledge of the fingerprint examiner. 

Below, we summarize the relevance feedback process by the pseudo code given in 
Figure 4. The inputs include the n-by-n distance matrix, the parameter nret indicating 
the number of fingerprints included in the feedback, and β that determines how much 
the entries of the distance matrix will be increased or decreased.  

 

 

Fig. 4. Pseudo code of the relevance feedback process 

4.3   Semantic Space Learning 

In this research, the “learning” of the persistent semantic space is modeled as a di-
mensionality reduction process that projects the higher-dimensional features space 
onto a lower-dimensional semantic space. The two-fold benefits are data compression 
and a mapping mechanism that can project an unknown fingerprint onto the semantic 
space without repeating the entire learning process. This is used when the proposed 
framework is operating under Mode 2 in which the fingerprint examiner is being pre-
sented a fingerprint of an unknown identity x’. Taking its feature vector as input, the 
framework projects it onto the semantic space by using the learnt mapping function. 
From this, the closest m fingerprints can be identified and passed as input to the Pat-
tern Matcher module of the host system to obtain the top n ranking list for the exam-
iner’s evaluation. 
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Whereas traditional linear methods like Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA) have been used in dimensionality reduction, a 
number of new techniques have been proposed recently for dealing with the inherent 
non-linearity that exists in the relational structure among complex objects like those 
of biometric data [6]. In addition to the lower-dimensional representation for the input 
data, some of the DR methods can return a direct out-of-sample mapping function by 
which novel input can be projected onto the latent space while others make use of 
estimation techniques that are more universally applicable. 

In this paper, due to our choice of representing the input space as a distance matrix, 
we have selected two representative methods, namely Multi-Dimensional Scaling 
(MDS) and Laplacian Eigenmaps (LE), as candidates for the learning of the persistent 
semantic space because they make use of the distance matrix in their DR process. The 
former is a global non-linear method while the latter is a local non-linear method, 
according to the taxonomy given in [4]. However, as both of these methods do not 
return an out-of-sample mapping function directly, we resort to using an estimation 
technique to achieve the similar objective. 

In order to assess the improvement in identification accuracy due to relevance 
feedback, we will compare the results obtained by MDS and LE (both employing 
relevance feedback) with PCA and Locality Preserving Projections (LPP) (both not 
employing relevance feedback) in our empirical experiments. First, the reason for 
selecting PCA in our comparison is that it is often used as a benchmark while being 
able to return a linear mapping function for projecting novel input onto the semantic 
space. Second, the reason for including LPP in our comparison is that while it em-
ploys a distance matrix (an extension of LE) in its DR process, it is not required to 
have the matrix updated. Furthermore, it can return a linear mapping function for out-
of-sample extension directly. 

5   Experimental Evaluation 

To demonstrate the potential of the proposed framework for improving identification 
accuracy, several experiments were conducted on a subset of the MCYT-Fingerprint-
100 (Ministerio de Ciencia y Tecnología, Spanish Ministry of Science and Technol-
ogy) sub-corpus collected by the Biometric Research Laboratory - ATVS of the Uni-
versidad Politecnica de Madrid under the MCYT project [7]. The MCYT-Fingerprint-
100 sub-corpus consists of ten prints, each having 12 impressions, of 100 people 
taken using two different acquisition devices, making a total of 24,000 (100 × 10 × 12 
× 2) fingerprints.  

For our experiments, we randomly chose 50 fingers out of the sub-corpus, resulting 
in a database of 1,200 (50 × 12 × 2) fingerprints. In these experiments, 1,100 finger-
prints (i.e., 11 × 2 impressions from each finger) comprised the training set while the 
remaining 100 fingerprints as the test set. The test fingerprints will be used as query 
in our experiments. We used three parameters nc = 50, ns = 24, and tns = 22 to denote 
the number of fingers (or classes), the total number of impressions for each finger, 
and the number of impressions for each finger in the training set, respectively. 

In performing our experiments, we addressed the limitation of not being able to in-
volve actual fingerprint examiners at this stage by developing a software module to 
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simulate the quality of relevance feedback (right versus wrong decisions) that would 
have been given by either a normal or a strong expert. To accomplish this, in our 
simulation we made use of a random number r generated from a normal distribution 
with mean μ = 0 and standard deviation σ = 1 that obeys the 68-95-99.7% rule (Fig-
ure 5). For each fingerprint that appears in the list of most similar m fingerprints after 
each iteration of relevance feedback, we decide if the expert would make a right or 
wrong decision based on the following two simple rules: 

Normal expert:   1≤r    (right),   1>r    (wrong) (2) 

 Strong expert:    2≤r    (right),   2>r    (wrong) (3) 

In other words, for similar fingerprints that were wrongly judged as dissimilar, 
their distances from the novel input will be increased (divide by β) while dissimilar 
fingerprints that were incorrectly judged as similar will be decreased (multiply by β). 

 

 

Fig. 5. Simulate normal and strong experts in the experiments using the 68-95-99.7% rule of 
normal distribution with mean μ = 0 and standard deviation σ = 1 

Furthermore, to ensure that our experimental results are repeatable, the following 
three conditions were adhered consistently in our experiments: 

1. A sequence of fingerprints (each identified by a unique number in the data-
base) was generated beforehand, and used in the experiments that involve 
relevance feedback;  

2. The dimensionality of the semantic space (d = 6) is estimated by a Maximum 
Likelihood Estimator based on the training set; and 

3. k = 12 as the number of nearest neighbors used in MDS, LE and LPP to con-
struct the neighborhood graph in their DR process. 

5.1   Experiment #1 

This experiment compares visually the mapping of the set of FingerCode vectors 
from the input space (D = 512) to the semantic space (d = 6) by different DR  
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methods. In Figure 6, the left column plots the initial semantic space in the first two 
dimensions for 7 of the 50 fingers used in experiments for sake of illustration. The 
right column shows the updated semantic space after projecting the test set using 
OOS extension. 

Method Initial Semantic Space Updated Semantic Space 

PCA

MDS

LE

LPP

 

Fig. 6. Left column plots the initial semantic space in the first two dimensions for 7 of the 50 
fingers used in experiments for sake of illustration. Right column plots the updated semantic 
space after projecting the test set (some highlighted in dotted circles) using OOS extension. 
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5.2   Experiment #2 

The second experiment attempts to compare the difference between a normal and a 
strong expert by their effects on the identification accuracy measured using the k-NN 
classification errors. The left sub-figure of Figure 7 shows the result by the normal 
expert while the right sub-figure the result by the strong expert, respectively. In these 
figures, only MDS and LE that incorporated relevance feedback into their DR process 
are shown. The baseline refers to the k-NN classification errors obtained by using the 
default Euclidean distance in the initial high-dimensional features space. Note that, a 
suffix like “rf_10” meant the result obtained after 10 iterations of relevance feedback. 

From the plots of Figure 7, it is reasonable to conclude that there is no significant 
difference in identification accuracy between a normal and a strong expert (as defined 
earlier in this section) based on our experimental setup. Based on this comparison, we 
have therefore decided to simulate a normal expert in the final experiment as this 
would be more representative of the real world situation. 

 

  

Fig. 7. Comparison of a normal expert (left plot) and a strong expert (right plot) on their identi-
fication accuracy based on k-NN classification errors for “relevance feedback” enabled MDS 
and LE 

5.3   Experiment #3 

In the final experiment, we compare the identification accuracy obtained by applying 
PCA, LPP, MDS, and LE. One might recall that both PCA and LPP return a linear 
mapping for out-of-sample extension directly albeit without incorporating relevance 
feedback, while both MDS and LE do in this experiment. 

In Figure 8, one can observe that PCA performed worse than the baseline for all 
values of k while LPP did significantly worse. For MDS, one can notice that there is 
no significant improvement in identification accuracy even after going through 30 or 
50 iterations of relevance feedback. On the other hand, while LE started out having 
worse performance than the baseline, PCA and MDS; after 100 iterations of relevance 
feedback, it has already achieved better accuracy than the baseline for k > 6; while 
after 150 iterations, it has better accuracy for k > 4. A conclusion based on the results 
of this empirical experiment could be drawn here. That is, certain DR methods like 
LE is capable of obtaining more improvement in accuracy than others such as MDS, 
which also exploited relevance feedback. 
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Fig. 8. Comparison of identification accuracy of MDS, LE and their “relevance feedback” 
enabled extensions with PCA and LPP 

6   Conclusions 

In this paper, we have introduced a user-centered framework for adaptive fingerprint 
identification that can be incorporated as an add-on module in a host AFIS. This is 
achieved by exploiting relevance feedback to capture an expert examiner’s subjective 
knowledge into the formation of a persistent semantic space over the fingerprint data-
base in which the accuracy of identification might be potentially improved.  

Several experiments were conducted on a subset of the MCYT-Fingerprint-100 
sub-corpus to simulate the performance of the proposed framework. The experimental 
results demonstrated the framework’s potential for adaptive fingerprint identification.  

Future works include potential collaboration with Australian Federal Government’s 
CrimTrac Agency in implementing the proposed framework in their AFIS for actual 
testing and developing approaches for adaptation to larger fingerprint databases. 
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