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Abstract. One of the most challenging aspects in Web Service compo-
sition is guaranteeing transactional integrity. This is usually achieved by
providing mechanisms for fault, compensation and termination (FCT)
handling. WS-BPEL 2.0, the de-facto standard language for Busi-
ness Process Orchestration provides powerful scope-based FCT-handling
mechanisms. However, the lack of a formal semantics makes it difficult
to understand and implement these constructs, and renders rigid analy-
sis impossible. The general concept of compensating long-running busi-
ness transactions has been studied in different formal theories, such as
cCSP and Sagas, but none of them is specific to WS-BPEL 2.0. Other
approaches aim at providing formal semantics for FCT-handling in WS-
BPEL 2.0, but only concentrate on specific aspects. Therefore, they can-
not be used for a comparative analysis of FCT-handling in WS-BPEL 2.0.
In this paper we discuss the BPEL approach to FCT-handling in the light
of recent research. We provide formal semantics for the WS-BPEL 2.0
FCT-handling mechanisms which aims at capturing the FCT-part of the
WS-BPEL 2.0 specification in full detail. We then compare the WS-
BPEL 2.0 approach to FCT-handling to existing formal theories.

1 Introduction

As a standard for Web Service Orchestration, the language WS-BPEL 2.0 [1]
(in the following BPEL) has gained wide acceptance over the past years. BPEL
provides primitives to specify the flow of execution and communication between
a process and its communication partners. Similar to the notion of transaction in
database systems, the successful completion of certain communication sequences
between processes must be ensured in order not to bring the course of busi-
ness between the partners into an inconsistent state. Different to transactions
of database systems, transactions of orchestrations are inherently long running
(Long-Running-Transactions, LRT) with typical durations from hours to days,
for example because of sub-transactions that require human interaction or batch
processing, and may be subject to faults of various kinds. Therefore, the use
of the transaction paradigms as used in database systems, where resources are
locked for exclusive access, becomes infeasible in this context. Therefore BPEL
uses a concept called compensation in order to obtain a more relaxed notion
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of undoing partial executions. Every activity within a transaction possesses an
associated compensation that is (ideally) able to revert its effects. When a trans-
action fails, the effects of all activities executed within that transaction so far
are undone by executing their respective compensations. This makes transac-
tions behave atomically for an external observer: they always either complete
successfully or they appear to have never been started at all. It seems appropri-
ate to execute compensations in the reverse order relative to the execution of
their respective activities. In BPEL this is the default order.

The compensation approach to LRTs is based on the seminal idea of Sagas [7].
[3] provides a formalization of Sagas together with several extensions to the
basic calculus, such as nested transactions, programmable compensations and
exception handling, which are vital ideas of modern Web Service composition
languages like BPEL. A similar approach is pursued in cCSP [5] based on CSP [8].
Different approaches to and other aspects of LRTs, which we will not consider
in our paper, have been studied in [4, 11, 12].

While the theory is thus reasonably well developed, the effective and reliable
use of LRT concepts is of crucial importance for Web Services. Therefore LRT
and compensation are an integral part of BPEL. However, it is difficult to an-
alyze how LRTs are realized in BPEL, since the language does not come with
formal semantics. While desirable formal properties of LRTs are known, they
are uncheckable with the current BPEL specification.

Nested Sagas and cCSP are two recent formal approaches to the foundations of
FCT-handling. However, due to the very different styles of giving semantics that
are used for BPEL and Sagas and cCSP respectively, it seems almost impossible
to faithfully validate to which extent the formal semantics of the calculi and the
BPEL specification coincide without formal proofs.

In this paper, we provide an formalization of fault, compensation and ter-
mination handling in BPEL, following the BPEL documents as faithful as at
all possible. The resulting operational small-step semantics describes BPEL in
a step-wise fashion, which is small-grained enough to be validated as a formal
translation of the specification. Since both our calculus and Sagas or cCSP are
formulated in a process algebraic way, our calculus furthermore seems a natural
choice for a formal comparison.

It turns out that an interesting fragment of BPEL corresponds to Sagas, as
far as basic transaction handling without nesting is considered. This result is
especially interesting since Sagas is designed in a syntactically and semantically
slim and clean way, which makes it an appropriate choice for formal analysis.
As shown in [2], the same subset also coincides with a subset of cCSP. We can
therefore restrict our formal comparison to Sagas.

However, more advanced features of the languages like generalized exception
handling, programmable compensations etc. seem incomparable.

To keep the calculus as simple as possible, we do not consider aspects of
BPEL that are orthogonal to FCT-handling like correlation sets or the binding
of partner links. Furthermore, we only consider control flow primitives that are
also found in Sagas. Section 3 provides a more detailed discussion of our choice.
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We furthermore abstract from time and data. For a formal treatment of these
aspects we refer the reader for example to [13, 10, 18, 17, 14].

In summary, this paper makes the following contributions. It (i) provides a
detailed, low-level semantics for BPEL’s FCT-handling behavior and (ii) uses
this semantics to place BPEL in the context of more abstract foundational work.

In Section 2 we give an overview of existing approaches to the formalization of
BPEL. Syntax and semantics of our calculus BPELfct are presented in Section 3.
We also give a short introduction to the principle of all-or-nothing semantics
in BPEL and how it is realized in our calculus. Section 4 formally compares
BPELfct to nested Sagas and discusses possible extensions and limitations of
our comparative approach. Section 5 concludes our work.

2 Related Work

Several formalizations of BPEL and its FCT-handling mechanisms exist. For an
overview see [6]. Most algebraic approaches either consider BPEL4WS, the pre-
decessor of BPEL, or do not give full account to all features of FCT-handling in
BPEL. [13] and [9] provide feature-complete semantics for BPEL. However, their
graph-based semantics seem a less natural choice for the intended comparison
with the algebraic calculus Sagas.

[15, 11, 12] show how compensation handling can be reduced to event han-
dling in the webπ-calculus. However, their approach relies on statically specified
compensation handlers. Thus BPELs default compensation and all-on-nothing
semantics (cf. Section 3.2) are not represented in their model. In [14] a nearly
complete encoding of the BPEL scope construct into the webπ∞-calculus is given,
although without termination handler. That calculus is derived from the webπ-
calculus and consequently suffers from the problems mentioned above.

In [19], Qiu et al. introduce the calculus BPEL formalizing a subset of
BPEL4WS. Our calculus was inspired by BPEL. However, as we will show
in Section 3.2, their calculus cannot deal with all-or-nothing semantics to its
full extent.

3 The BPELfct Calculus

Being a real-word language, BPEL comes with a huge number of primitives
needed to design business processes, for example partner links and correlation
sets for communication purposes, many different control flow primitives and
FCT-handling mechanisms, to only mention a few. It is in general not easy to
decouple these mechanism and analyze them in isolation. For example, the FCT-
handling mechanism we want to consider cannot be separated completely from
the control flow primitives. When a faulted transaction needs to be compen-
sated, this may be done in default compensation order, which means executing
the compensations in reverse order relative to the execution order of their respec-
tive activities. This order is of course dependent of the control flow primitives
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provided. For example consider the flow construct with condition links. This con-
struct can be easily encoded in a graph-based language such as Petri-nets, but is
difficult to encode in algebraic languages like the one we use. Sagas, the calculus
we will compare BPEL to in this paper only offers control flow primitives for
sequential and parallel execution. Note that parallel execution as understood in
Sagas, corresponds to the flow construct without using condition links. There-
fore, we also restrict the set of control flow primitives to those supported in
Sagas. However, if a control flow primitive as well as the resulting default com-
pensations can be encoded with process algebraic operators, we are confident
that our calculus can be extended to comprise this control flow primitive.

3.1 Syntax

BPELfct is a formalization of BPEL focused only on fault, compensation and
termination (FCT) handling. We assume an infinite set of basic activities Act.
The language of BPELfct is defined as follows

Syntax of BPELfct

S ::= 0 | A | τA | τ | exit | S ; S | S + S | S ‖ S | !A | ! | ↑ | {S : S : S : S}
P ::= {|S : S|} PT ::= � | ∅ | �
C ::= S | P α, β ::= (C, α, β)m | α ; β | α ‖ β

where A ∈ Act, m ∈ {n, f, n′, f ′, c, t}

Initial Terms (BPEL0
fct):

S0 ::= 0 | A | exit |S0 ; S0 |S0 +S0 |S0 ‖S0 | !A | ! | ↑| ({S0 : S0 : S0 : S0}, 0, 0)n

P 0 ::= ({|S0 : S0|}, 0, 0)n′

S denotes a BPEL activity and P a process. PT , α and β are not part of
BPEL and only needed for the semantics. The language BPEL0

fct is the sub-
set of BPELfct that can be directly translated to BPEL expressions and vice
versa. It does not include the semantically necessary intermediate representa-
tions. All basic BPEL activities are abstracted to atomic activities A which
are assumed to be taken from an arbitrary set of names Act. τ denotes an in-
ternal action, that is not part of BPEL, but is used in BPELfct to denote
the occurrence of some event that is not visible to an observer. In case this
unobservable event originates from a named fault !A, we write τA. Observable
(named) faults are signalled by the action ! (!A). For a external observer faults
are never observable and always appear as τ or τA. We only need them for the
inference rules. Unnamed faults ! (which appear simply as τ from an external
observers perspective) and named silent actions τA are only introduced in the
language to allow for a nice comparison of BPELfct with Sagas. In order to
model BPEL itself they are not needed. The set of all actions is denoted by
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Act = Act∪{!, τ, exit}∪{!A | A ∈ Act}∪{τA | A ∈ Act}. 0 can be considered the
completed activity. Please note that completion/termination at process level is
indicated by an element from PT . Activities can be executed in sequence ( ; ) or
in parallel (‖). The parallel construct corresponds to the flow activity of BPEL.
Nondeterministic choice (+) allows us to abstract from orthogonal aspects such
as data. All primitives so far are standard in process algebra. The other activ-
ities are introduced to model the FCT part of BPEL. We again abstract from
details and use !A (!) in combination with nondeterministic choice to model faults
communicated by partner Web Services as well as run-time errors. ↑ triggers the
default compensation mechanisms. {S : SF : SC : ST } denotes a scope, consisting
of four components: the main activity S, the fault handler SF , the compensation
handler SC and the termination handler ST , which are again arbitrary activities.
When no compensation handler is specified, the default compensation handler ↑
is assumed. If no fault handler is specified, the default handler ↑; ! is assumed,
which first compensates all already executed activities enclosed by the scope and
then rethrows the fault to the directly enclosing scope or process.

Compensation contexts are sequences and parallel constructs of compensation
closures (S, α, β)m. They denote installed compensations of successfully com-
pleted scopes, where S is the compensation handler itself and β is the set of
compensations that can be activated by ↑ inside of S. α is used to collect com-
pensations of scopes that successfully terminated during the execution of S.
These constructs allow for all-or-nothing semantics. (cf. Section 3.2). A BPEL
process can be considered as a scope without compensation and termination
handler. We use � to denote successful termination of a process, ∅ to signal a
process abortion due to the occurrence of a fault during fault handling. Forced
termination of a process (using the exit activity) is denoted by �. The lan-
guage can be extended to named fault and compensation handling as it is part
of BPEL. However, the mechanisms behind BPEL-FCT handling are not influ-
enced considerably by this extensions.

3.2 Semantics

Our semantics is given in SOS-style [16] together with a set of congruence rules,
that allow for a more compact presentation of our rules. Analogous to [19], the
state space of a BPEL-process consists of a term plus additional information
about installed compensations. In contrast to [19] we use a pair (α, β) of such
contexts. This is necessary in order to allow for repeated compensations [3], called
all-or-nothing semantics in BPEL. This allows to compensate a failed compen-
sation. In principle, it is also possible to compensate a failed compensation of a
failed compensation, etc. Now, when a compensation is triggered by ↑, we have
to make sure that we execute the right compensations. If, say, a compensation
handler H of a successfully completed scope T is executed and it first performs
a sequence of transaction S and then afterwards decides to start the default
compensation ↑, then it is not supposed to compensate S, but to execute the in-
stalled compensations for T . However, if H fails while performing S, the partial
execution of H has to be compensated. In this case, the installed compensations
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for S have to be executed, whereas those for T must remain untouched. We call
the first component α of the compensation context accumulated compensation
context. It contains all compensation handlers that have been installed by the
currently executing transaction or handler (H in our example). The second com-
ponent β is called fixed compensation context. It contains those compensation
handlers that have been installed before the compensation handler (H) has been
called and which are supposed to be activated, if the compensation does not fail.
So in our example it contains the installed compensations for T .

In order to achieve all-or-nothing semantics it is necessary to enclose the
activation of the compensation by a scope, since in case a fault occurs dur-
ing the compensation, it is then intercepted by the fault handler of the scope,
which might then activate the accumulated compensations of the compensations.
Without an enclosing scope, the fault would abruptly abort the compensation
handling procedure and thus rendering all-nothing semantics impossible, since
this would require to revert the so far executed compensations. The use of only
a single compensation context seems to inherently lead to a weaker notion of
compensation semantics, where either all-or-nothing semantics are enabled at
the cost of sacrificing the ability to call the default compensations as part of a
user-specified compensation, as it is the case in [3], or the other way round, as
in [19]. Our semantics allow for all-or-nothing semantics even in the case when
the compensation is triggered directly inside a fault handler without an enclos-
ing scope (generalized all-or-nothing semantics). We will now discuss the rules
of our semantics.
Let in the following x ∈ Act ∪ {τ, exit} ∪ {τA | A ∈ Act} ∪ {!A | A ∈ Act}.

BASIC

(α, β) � x
x−−→ (α, β) � 0

CHOICE

(α, β) � S1
x−−→ (α′, β′) � S′

1

(α, β) � S1 + S2
x−−→ (α′, β′) � S′

1

SEQ

(α, β) � S1
x−−→ (α′, β′) � S′

1 S′
1 �≡ 0

(α, β) � S1 ; S2
x−−→ (α′, β′) � S′

1 ; S2

SEQT

(α, β) � S1
x−−→ (α′, β′) � 0

(α, β) � S1 ; S2
x−−→ (0 ; α′, β′) � S2

PARL

(α1, β) � S1
x−−→ (α′

1, β
′) � S′

1

((α1 ‖ α2) ; α, β) � S1 ‖ S2
x−−→ ((α′

1 ‖ α2) ; α, β′) � S′
1 ‖ S2

PARR

(α2, β) � S2
x−−→ (α′

2, β
′) � S′

2

((α1 ‖ α2) ; α, β) � S1 ‖ S2
x−−→ ((α1 ‖ α′

2) ; α, β′) � S1 ‖ S′
2

The inference rules so far are almost standard, except for SEQT, where we extend
the accumulated compensation context by a leading 0. The reason is that in order
to be applicable, rules PARL,PARR demand the structure (γ1 ‖ γ2) ; γ3 of the
accumulated compensation context. This is ensured by the following invariant:
For every transition (γ, δ) � T

x−−→ (γ′, δ′) � T ′ it holds that if the accumulated
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compensation context of the configuration on the left hand side is of the form
γ ≡ (γ1 ‖ γ2); γ3, then this will also be the case for the resulting context γ′ on the
right hand side (as long as T ′ 	≡ 0). This invariant also holds for the accumulated
compensation context α of closures (C, α, β)m. The invariant can be proven by
induction on the term structure, i.e. by case analysis on the applicable inference
rules. The execution of business processes described by BPELfct starts in a
configuration (0, 0) � p with p ∈ P 0. Using rules CB1 and CB2, it is easy to see
that the invariant holds at the beginning of an execution of a BPELfct process.
Using induction on the length of an execution, it can be shown that the invariant
also holds during the whole execution (up to the last configuration). Therefore
the rules PARR and PARL can always be applied if the term in execution is a
parallel composition.

A scope S is always executed inside a closure (S, αA, βF )m, which stores infor-
mation about the current compensation context (αA, βF ). The effect of activities
inside a scope may differ depending on the circumstances under which they are
executed. The ! primitive, for instance, shows subtle differences in its effect de-
pending on whether it is used inside a compensation handler or termination han-
dler. Our semantics stores the information under which circumstances a term is
executed in what we call the mode m of a closure. We refer to m as the mode of
the scope or process that is directly enclosed by the closure. Possible modes are:

– normal mode n, i.e. the scope is executing its enclosed activity
– faulted mode f , i.e. a fault has happened while executing the enclosed

activity
– compensating mode c, i.e. the scope is a compensation handler in execution
– terminating mode t, i.e. the scope is being terminated and is executing its

termination handler

The primed variants are used when a process is in the corresponding mode
instead of a scope. Let in the following y ∈ Act ∪ {τ} ∪ {τA | A ∈ Act}.

As long as no fault occurs, a scope executes its enclosed activity (cf. [1] 12.1, p.
116). Please note the use of β in SCOPE, which enables compensation handlers
to have nested enclosed scopes that may trigger a compensation. This is needed
in order to obtain correct all-or-nothing semantics of compensation handlers.

Exactly those scopes that complete successfully will install their compensation
handler (cf. [1] 12.4.3 p. 122, 12.4.4.3 p.125, and 12.5 pp. 127). Those handlers
are placed in front of the accumulated compensation context such that if the
compensation is triggered later on, they will be executed in default compensation
order.

SCOPE

(αA, β) � S
y−−→ (α′

A, β′) � S′ S′ 	≡ 0

(α, β) � ({S : F : C : T }, αA, 0)n y−−→ (α, β′) � ({S′ : F : C : T }, α′
A, 0)n

SCOPE END

(αA, β) � S
y−−→ (α′

A, β′) � 0

(α, β) � ({S : F : C : T }, αA, 0)n y−−→ ((C, 0, αA)c ; α, β) � 0
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SCOPE FCT

(αA, βF ) � S
y−−→ (α′

A, β′
F ) � S′ S′ 	≡ 0 m ∈ {c, f, t}

(α, β) � (S, αA, βF )m y−−→ (α, β) � (S′, α′
A, β′

F )m

SCOPE END FCT

(αA, βF ) � S
y−−→ (α′

A, β′
F ) � 0 m ∈ {c, f, t}

(α, β) � (S, αA, βF )m y−−→ (α, β) � 0

If a scope throws a fault, it is intercepted by the fault handler. Before the fault
handling activities are executed, the scope’s remaining enclosed activity is forced
to terminate (cf. [1] 12.5, p. 127 and pp. 131-132, and 12.6, p. 135). We discuss
forced termination in detail later.

SCOPE FAULT

(αA, β) � S
!A−−→ (α′

A, β) � S′

(α, β) � ({S : F : C : T }, αA, 0)n τA−−→ (α, β) � ([S′] ; F, 0, α′
A)f

In case that a fault handler faults itself, its activity will be terminated and
the fault will be rethrown to the enclosing scope’s or process’ fault handler
(cf. [1] 12.4.4.3, p. 126).

SCOPE FAULT F

(αA, βF ) � S
!A−−→ (α′

A, βF ) � S′

(α, β) � (S, αA, βF )f τA−−→ (α, β) � [S′] ; !A

A faulting compensation handler will start the compensation of already executed
compensation activities (enabling generalized all-or-nothing semantics) and then
it will rethrow the fault to the initiator of the compensation (cf. [1] 12.4.4.3, p. 126).

SCOPE FAULT C

(αA, βF ) � S
!A−−→ (α′

A, βF ) � S′

(α, β) � (S, αA, βF )c τA−−→ (α, β) � (↑ ; !A, 0, α′
A)f

A fault during termination handling leads to forced termination of the termina-
tion handler (cf. [1] 12.4.4.3, p. 127, and 12.6, p. 137).

SCOPE FAULT T

(αA, βF ) � S
!A−−→ (α′

A, βF ) � S′

(α, β) � (S, αA, βF )t τA−−→ (α, β) � [S′]

Compensation is realized in BPELfct by executing the fixed compensation con-
text β of the current context, i.e. the compensation handlers of the child scopes
enclosed by the original scope (cf. [1] 12.4.3.2, pp. 123-124).

COMP

(α, β) � ↑ τ−−→ (α, 0) � β
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The behavior of processes is quite similar to that of scopes. Because processes
are top level terms, they are always executed in the empty context (0, 0).

PROCESS

(αA, 0) � S
y−−→ (α′

A, 0) � S′

(0, 0) � ({|S : F |}, αA, 0)n′ y−−→ (0, 0) � ({|S′ : F |}, α′
A, 0)n′

PROCESS F

(αA, βF ) � S
y−−→ (α′

A, β′
F ) � S′

(0, 0) � (S, αA, βF )f ′ y−−→ (0, 0) � (S′, α′
A, β′

F )f ′

PROCESS FAULT

(αA, 0) � S
!A−−→ (α′

A, 0) � S′

(0, 0) � ({|S : F |}, αA, 0)n′ τA−−→ (0, 0) � ([S′] ; F , 0, α′
A)f ′

Successful completion in either normal mode (no fault on process level happened
so far) or faulted mode (a fault happened on process level and was handled suc-
cessfully by the process’ fault handler) will result in successful termination (�).
If the execution of the fault handler failed the process will end up in a failed
state ∅.

PROCESS FAULT F

(αA, βF ) � S
!A−−→ (α′

A, βF ) � S′

(0, 0) � (S, αA, βF )f ′ τA−−→ (0, 0) � ∅

PROCESS END

(0, 0) � ({|0 : F |}, αA, βF )n′ τ−−→ (0, 0) � �
PROCESS END F

(0, 0) � (0, αA, βF )f ′ τ−−→ (0, 0) � �

The exit activity of BPEL forces a process to terminate immediately. The SOS
rules for exit are straightforward. The exit signal is passed through until it
reaches a process, where it leads to forced termination �. Due to space limitations
we omit the rules and only present the rule for processes:

EXIT PROCESS

(αA, 0) � S
exit−−−→ (α′

A, 0) � 0

(0, 0) � ({|S : F |}, αA, 0)n exit−−−→ (0, 0) � �

In the following we present the syntactical congruence rules. Since our represen-
tation of the compensation mechanism relies on a strong structural resemblance
of the process term and its compensation contexts in the closure, we may not
freely commute parallel terms. For the same reason associativity does not hold.
As an example consider ((α1 ‖ α2); α, β) � S1 ‖ S2 	≡ ((α1 ‖ α2); α, β) � S2 ‖ S1.
This ensures that Si stays associated with the accumulated compensation con-
text αi, where i ∈ {1, 2}. In initial BPELfct terms, however, parallel terms
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can by arbitrarily associated and commuted without changing the resulting se-
mantics. So semantically, the parallel operator in BPELfct is –as is the flow
construct in BPEL– commutative and associative.

Rule CB1 has to be used to expand the leading 0 in front of the accumulated
compensation context in case of the start of a new parallel flow inside the main
activity of a scope or process. In detail e.g. 0; α ≡ 0 ‖ 0; α. CB2 allows reduction
of sequences of 0.

CB1 0 ≡ 0 ‖ 0 CB3 S + (S′ + S′′) ≡ (S + S′) + S′′

CB2 S ; 0 ≡ S CB4 S + S′ ≡ S′ + S CB5 S + 0 ≡ S

The last set of rules we consider deals with forced termination of terms mir-
roring section 12.6 of [1]. When in a parallel branch a fault occurs, then all
other parallel branches have to be terminated. Forced termination has to hap-
pen as soon as possible, however, in order to allow for controllable terminations
of scopes, BPEL introduces the concept of termination handlers, which are acti-
vated as soon as a scope is forced to terminate. The BPEL specification allows a
fault that is about to occur either to happen or to be terminated without effect
(CT9) (cf. Section 4). Note that the handling of a fault or termination are not
affected by forced termination (CT12, CT13). This ensures that a transaction
(scope), which has faulted before the forced termination occurred, is always able
to complete its fault handler and any compensation activated there.

CT1 [0] ≡ 0
CT2 [τ ] ≡ 0
CT3 [A] ≡ 0
CT4 [↑] ≡ 0
CT5 [exit] ≡ 0
CT6 [S + S′] ≡ 0
CT7 [S ; S′] ≡ [S]

CT8 [S ‖ S′] ≡ [S] ‖ [S′]
CT9 [!A] ≡ !A + τ ; 0

CT10 [({S : F : C : T}, αA, 0)n] ≡ ([S] ; T, 0, αA)t

CT11 [(S, αA, βF )c] ≡ [S]
CT12 [(S, αA, βF )f ] ≡ (S, αA, βF )f

CT13 [(S, αA, βF )t] ≡ (S, αA, βF )t

4 BPEL Is Sagas! Almost

BPEL’s FCT-handling mechanisms are –as stated in [1]– inspired by Sagas.
However, there are several seemingly different concepts. Even if we prescind
from constructs that are not at all represented in Sagas, like links inside a flow
construct, some apparent differences remain. Before we will compare the two
languages, we will shortly summarize Sagas syntax and semantics.

Sagas. Sagas is equipped with a big-step semantics [3] that distinguishes three
different execution results for sagas (i.e. transactions): successful termination,
faulted execution with successful compensation, faulted execution with unsuc-
cessful compensation. During an execution a trace of observable basic activities
is recorded up to partial order (partial order trace). A partial order trace induces
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a set of traces. Following [3], we assume that every basic activity that occurs in
a Sagas term has a unique name. So the same action can never occur twice in a
trace.

Definition 1 ((Partial-Order) Trace). We call elements of Act
∗

traces. A
partial-order trace (pot) is a partial order (V, E) where V ⊆ Act. The set of all
pots is denoted by POT.

Note that every trace can be considered as a pot that is linear.
Notation: We write XA to denote the component X of the tuple A, when A =
(. . . , X, . . . ). For a partial order A we hence always assume A = (VA, EA). We
write singleton sets {x} sometimes simply as x if no ambiguities arise. We define
the following two operations on sets:
A; B = {(a, b) | a ∈ A, b ∈ B}, C|B = {(a, b) ∈ C | a, b ∈ B}
It is sometimes useful to consider terms that are built from the operators 0, A, ‖
and ; as partial orders as follows:

– 0 = (∅, ∅)
– A = ({A} , ∅)
– P ; Q = (VP ∪ VQ, EP ∪ EQ ∪ VP ; VQ)
– P ‖ Q = (VP ∪ VQ, EP ∪ EQ)

Definition 2 (Syntax of Sagas). Sagas S are defined by the following grammar:

X ::= 0 | A | A ÷ B (STEP)
P ::= X | P ; P | P ‖ P (PROCESS)
S ::= {| P |} (SAGA)

We denote the set of all sagas terms by Sagas.

An atomic activity B can be attached to another atomic activity A as its com-
pensation. Please note that different to BPELfct compensations cannot be com-
posite terms and cannot be attached to composite terms. A saga formalizes the
idea of long-running transactions and corresponds to scopes in BPELfct. In
Sagas there is no language primitive to signal a fault. The success or fault of an
atomic activity is determined at run-time by an environment Γ mapping every
activity either to success (�) or fault (�). The semantics of Sagas is given in
terms of subsets of POT. For the complete semantic rules we refer the reader
to [3]. In the original semantics faults cannot be observed and are not repre-
sented in the partial order traces. To allow for a decent comparison it is however
necessary to make faults observable. This needs only a minor change to the orig-
inal semantics where rule S-CMP is replaced by rule S-CMP’.

S-CMP

Γ � 〈β, 0〉 α−−→ 〈�, 0〉
A �→ �, Γ � 〈A ÷ B, β〉 α−−→ 〈�, 0〉

S-CMP’

Γ � 〈β, 0〉 α−−→ 〈�, 0〉
A �→ �, Γ � 〈A ÷ B, β〉 τA;α−−−→ 〈�, 0〉
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4.1 Comparison

– In Sagas the main transaction and the sub-transactions are represented by
one construct: a saga. In BPEL, the main transaction and subtransactions
are represented by two different constructs: the process and scopes. However,
for the language subsets that we compare, a process behaves identical to
scopes (except that it cannot be terminated, since it always is top-level).

– BPEL’s scope construct represents subtransactions and is at the same time
used to associate compensations to forward activities. In Sagas, subtransac-
tions are realized via nested sagas. In contrast to scopes, they do not have any
explicit handlers. Furthermore, every forward activity is associated with its
compensations immediately during its execution. In BPEL a compensation
for an activity becomes available only after the surrounding scope has suc-
cessfully finished. Despite the principles of transactions in Sagas seem rather
different from those used by BPEL, we will see that it is rather straightfor-
ward to express them in BPEL.

– BPEL’s and Sagas’s compensation policy for concurrent processes forces
all branches to compensating themselves in case of a fault in one of the
branches. In Sagas, the compensation phases of all branches run indepen-
dently of each other. This behavior is called distributed interruption in [2].
As we will see, BPEL follows the coordinated interruption policy (cf. [2]): as
soon as a fault has occurred, all parallel branches have to be compensated im-
mediately. BPEL has an additional termination phase, that is intermediary
of forward flow phase and compensation phase. Hence every faulted BPEL
(sub)transaction, can be divided into three phases that take place strictly in
sequence: forward flow phase(F ), termination phase(T ) and compensation
phase(C). Representing the fault with f , we can intuitively represent the ex-
ecution of the faulted scope/process by F ; f ; T ; C. As we will see this policy
is an inherent part of BPEL FCT-handling mechanisms.

– Furthermore, the treatment of faults during compensation in both languages
is different in principle and we cannot mimic Sagas behavior in BPEL. We
will treat this in Section 4.2 in greater detail.

In order to formally compare the two languages we map every saga to a BPEL
process and analyze their behaviors in terms of partial orders over actions. Since
we want our mapping to be recursively defined over the term structure, we cannot
map Sagas terms directly to BPELfct processes, since processes are always top-
level constructs. We therefore use a translation function that maps arbitrary
Sagas term S to a BPELfct term S′ that is no process itself and in a final
step S′ is raised to a top-level process term by enclosing it with the process as
follows: ({|S′ : ↑|}, 0, 0)n′

. Since BPEL to its full extent is very powerful, it is
likely that in principle there exists some unobvious encoding of Sagas behavior
even in BPELfct. However, by the choice of our translation mapping, we had in
mind to investigated how the predefined structures for compensation handling in
BPEL work compared to those of Sagas, so our mapping defines a translation as
straightforward as possible. Please remember that we assume that compensations
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can never fault for reasons mentioned above. Furthermore, we do not allow two
faults to occur at the same scope/process level. This restriction does not influence
the principle results, but saves us some additional case distinction.

Definition 3 (Translation Function)

��Γ : Sagas → BPEL0
fct

�A�Γ = A if ΓA = �, �A�Γ = ! if ΓA = �,

�0� = 0, �P ‖ Q� = �P � ‖ �Q� , �P ; Q� = �P � ; �Q� ,

�A ÷ B�Γ = ({�A�Γ : !A : B : 0}, 0, 0)n, �{| P |}�Γ = ({�P �Γ : ↑ : ↑ : ↑}, 0, 0)n

We will sometimes write �.� instead of �.�Γ if Γ is clear from the context.

The operators for sequential and parallel execution behave identical in BPELfct

and Sagas. Remember that parallel execution is a special case of the BPEL flow
construct, which is however more powerful than the parallel operator and cannot
be modelled in Sagas. If an action A fails in the environment Γ , we replace it by
a nameless fault in BPELfct. An action/compensation pair A÷ B corresponds
to a scope that executes A and has B as it compensation handler. When A fails,
then the fault is simply rethrown by the fault handler !A, which triggers already
installed compensations at the level of the enclosing scope/process. The fact that
faulting activities are themselves translated to a nameless fault !, while they are
rethrown as a named fault in the respective fault handlers may be counterintu-
itive at first sight. Indeed, this is only done to allow for a nice comparison of the
observable behavior and has no fundamental consequences or reasons. Nested
sagas are translated into scope in a straightforward manner, where the default
handlers are used where possible.

In order to compare the two calculi it is very helpful to note that the com-
pensation handlers of both calculi can be translated bijectively into each other.
Since ��cl is bijective on the contexts of Sagas and the restricted variation of
BPELfct, we will use α and �α�cl interchangeably when the meaning is clear
from the context.

Definition 4 (Context Translation Function). We translate Sagas contexts
to BPELfct contexts by the following function:

�0�cl = 0, �P ; Q�cl = �P �cl ; �Q�cl , �P ‖ Q�cl = �P �cl ‖ �Q�cl ,

�B�cl = (B, 0, 0)c

In Sagas, the basic building blocks of a context are primitive compensation activ-
ities. In BPELfct, however, the basic building blocks are closures (A, αC , βF )c

signalling that the enclosed compensation activity is indeed a compensation (c).
In Sagas and therefore in restricted BPEL the default compensation (↑) cannot
be triggered explicitly, but only implicitly when a fault occurs. Since we assume
no faults to occur during compensation, it is safe to arbitrarily let both contexts
of the closure be 0.
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Fig. 1. Corresponding partial orders in Sagas and BPEL

BPELfct Big-Step Semantics Let us in the following fix Γ and then let
BPEL′

fct = {�S�Γ | S ∈ Sagas}. We present a big-step semantics for the subset
BPEL′

fct of our calculus that corresponds to Sagas following the translation
function ��Γ . Our semantics will be for each term a set of structured partial-
order traces as described below.

Definition 5 (Structured POT). A structured pot (spot) is a tuple
(V, E, P, D, t) where (V, E) is a pot and P = (F, I, T, C, f) ∈ T and D ⊆ T ,
where T = (2Act)4 × {τA | A ∈ Act} and t ∈ {�, �, �}. We call the set of all
spots sPOT.

To obtain a nifty comparison of the two languages, the semantics of each term will
be represented by a of spots, which can be translated into partial-order traces.
We can then compare the two languages by comparing partial-orders traces with
identical underlying sets of activities. The partial order relation consists of two
parts: One that exactly corresponds to the partial order for the corresponding
term in Sagas (E) and one that represents the additional edges of the partial
orders, that are induced by the more restricted termination/compensation policy
of the top-level process (P ) and of each (sub)scope (D). Furthermore V contains
all observable activities of the represented execution, success or failure or forced
termination of the execution of the (sub)transaction is expressed by t (where �

= successful termination, � = execution with compensation due to an internal
fault, � = execution with compensation due to external termination). Please
remember that we will not consider faulted compensations. In case a fault oc-
curred, the fault name is represented by f . P with its parts F, T and C represent
the partition of the activities of the top-level transaction in forward, termina-
tion and compensation flow. The set I represents activities that can either occur
before or after the fault f , i.e. during the termination phase, but before the com-
pensation phase. Such activities arise when a subscope compensates itself due to
a internal fault. Then this scope is not responsive to termination. D represents
the activity partitions for non-successfully terminated subscopes. In Figure 1 the
po traces of the same term are presented schematically in both calculi.

How the single parts of a spot exactly contribute to the pot that it represents
is represented formally by the following transformation.
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Definition 6. δ((V, E, (F, I, T, C, f), D, t)) = (V, E′) where

E′ = E ∪ H ∪
⋃

(F,I,T,C,f)∈D

F ; f ; T ; C ∪ I; C

with H =

{
∅ if t = �

F ; f ; T ; C ∪ I; C otherwise

The spots for every term in BPEL′
fct are constructed relative to an initial

context compensation context β = (Vβ , Eβ), which is itself a partial order trace.
This intentionally strongly resembles the way the Sagas semantics is defined. We
will now see how the big-steps semantics S(S, β) of a term S ∈ BPEL′

fct and a
context β is constructed recursively. Please note that for every S ∈ BPELfct′,
the set S(S, β) contains the spot where C = Vβ , E = Eβ and all other sets are
empty and t = � and f = 0. We will not repeat this spot later. Intuitively, this
spot describes the termination of S before starting its execution. It is the only
element of S(0, β).

The following spots are in S(S, β):

Case S = �A ÷ B� = ({�A�Γ : !A : B : 0}, 0, 0)n:
– If ΓA = �: ({A} , (Eβ ∪ A; B; Vβ), ({A} , ∅, ∅, ∅, {B} ∪ Vβ , 0), ∅, �)

– If ΓA = �: ({τA} ∪ Vβ , (Eβ ∪ τA; Vβ), (∅, ∅, ∅, Vβ, τA), ∅, �)

– If ΓA = �: ({A, B} ∪ Vβ , Eβ ∪ A; B; Vβ , ({A} , ∅, ∅, {B} ∪ Vβ , 0), ∅, �)

Case S = �P ; Q�Γ = �P �Γ ; �Q�Γ :
For all p ∈ S(�P �Γ , β), q ∈ S(�Q�Γ , (Cp, EP |CP )):
– If tP = � ∨ tP = �: p

– If tP = �: (Vp ∪Vq, Ep ∪Eq ∪Vp; Vq, (Fp ∪Fq, Iq , Tq, Cq, fq), Dp ∪Dq, tq)

Case S = �P ‖ Q�Γ = �P �Γ ‖ �Q�Γ : For all p ∈ S(�P �Γ , 0), q ∈ S(�Q�Γ , 0):
– If tP = tq = �: (Vp ∪ Vq, Ep ∪ Eq ∪ Eβ ∪ Vp; Vβ ∪ Vq; Vβ , (Fp ∪ Fq, Ip ∪

Iq, Tp ∪ Tq, Cp ∪ Cq ∪ Vβ , fp 	′ fq), Dp ∪ Dq, tp 	 tq)

– Otherwise: (Vp ∪ Vq ∪ Vβ , Ep ∪ Eq ∪ Eβ ∪ Vp; Vβ ∪ Vq; Vβ , (Fp ∪ Fq, Ip ∪
Iq, Tp ∪ Tq, Cp ∪ Cq ∪ Vβ , fp 	′ fq), Dp ∪ Dq, tp 	 tq)

Case S = �{| P |}�Γ = ({�P �Γ : ↑ : ↑ : ↑}, 0, 0)n: For all p ∈ S(�P �Γ , 0):
– If tp = �: (Vp, Ep ∪ Eβ ∪ Vp; Vβ , (Fp, Ip, Tp, Cp ∪ Vβ , fp), Dp, �)

and (Vp ∪ Cp ∪ Eβ , Ep ∪ Eβ ∪ Vp; Vβ , (Fp, Ip, Tp, Cp ∪ Vβ , fp), Dp, �)

– If tp = �: (Vp, Ep, (Fp∪fp, Ip∪Tp∪Cp, ∅, ∅, 0), Dp∪{Fp, Ip, Tp, Cp, fp} , �)
and (Vp ∪ Vβ , Ep ∪ Eβ ∪ Vp; Vβ , (Fp ∪ fp, Ip ∪ Tp ∪ Cp, ∅, Vβ , 0), Dp ∪
{Fp, Ip, Tp, Cp, fp} , �)

– If tp = �: (Vp ∪ Eβ , Ep ∪ Eβ ∪ Vp; Vβ , (Fp, Ip, Tp, Cp ∪ Vβ , fp), Dp, �)
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The operations 	 and 	′ are defined as follows:

	 � � �
� � – –� – – �� – � �

	′ τA 0
τB – τB

0 τA 0

The following theorem relates the big-step semantics to the originally defined
small-step semantics. Before, we need some additional definitions.

Definition 7 (Execution of a Trace). When a0a1 . . . an−1 = α ∈ Act
∗

is a
trace, we let (α, β) � P

α−−→ (α′, β′) � P ′ mean that there are sequences of Pi,
αi and βi with 0 ≤ i ≤ n, such that (αi, βi) � Pi

ai−−→ (αi+1, βi+1) � Pi+1 for
0 ≤ i < n and P0 = P , α0 = α, β0 = β and Pn = P ′, αn = α′, βn = β′.

Definition 8 (Induced Traces). If (VA, EA) ∈ POT then Ind(α) ⊆ Act
∗

denotes the set of induced traces, i.e. the set of linear orders (VA, E) with
(a, b) ∈ E =⇒ (b, a) /∈ EA.

In the following we write α to mean the result of removing all occurrences of
(unnamed) τ in the trace α ∈ Act

∗
.

Theorem 1 (Semantic Equivalence). Let S ∈ BPEL′
fct, then

1. for every maximal execution trace α of a process with
(0, 0) � ({|S : ↑|}, 0, 0)n′ α−−→ (0, 0) � � there is a spot p ∈ S(S, 0) such
that α ∈ Ind(δ(p)) and

2. for every p ∈ S(S, 0) and every trace α′ ∈ Ind(δ(p)) there is a trace α such
that α = α′ and (0, 0) � ({|S : ↑|}, 0, 0)n′ α−−→ (0, 0) � �

The proof of this theorem is considerably large. In the following we only sketch
some crucial observations for the proof. In the following, all terms are from
BPEL′

fct if not stated differently. We will now explain how all possible behaviors
of a process (or a scope) are completely determined by the possible behaviors
of its inner activity. The following statements apply to processes, but can be
analogously transfered to scopes.

– By rule PROCESS we see that as long as α does not contain !A for
some A and (β, 0) � S

α−−→ (β′, 0) � S′ then also (0, 0) � ({|S :
↑|}, β, 0)n′ α−−→ (0, 0) � ({|S′ : ↑|}, β′, 0)n′

. Furthermore PROCESS and
PROCESS END are the only applicable rules. Exactly when S′ ≡ 0 then
together with PROCESS END as final step we can derive only the execution
(0, 0) � ({|S : ↑|}, β, 0)n′ α−−→ (0, 0) � �.

– As soon as S throws a fault !A, i.e. (β′, 0) � S′ !A−−→ (β′, 0) � S′
1 after

a faultless trace α, the process is bound to behave in the following way:

(0, 0) � ({| �S� : ↑|}, 0, 0)n α;!A;α′;τ ;τ ;α′′
−−−−−−−−−→ (0, 0) � � , where α′ is an execution

of [S′
1] and α′′ is an execution of the compensation β′.
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One can see this as follows: As above we infer that (0, 0) � ({| �S� :
↑|}, β, 0)n α−−→ (0, 0) � ({|S′ : ↑|}, β′, 0)n. By assumption furthermore
(β′, 0) � S′ !A−−→ (β′, 0) � S′

1. But then by rule PROCESS FAULT we
get that (0, 0) � ({|S′ : ↑|}, β′, 0)n τA−−→ (0, 0) � ([S′

1]; ↑, 0, β′)f . By our
assumption about α′ and repeated application of PROCESS F we get

(0, 0) � ([P ′
1]; ↑, 0, β′)f α′

−−→ (0, 0) � (0; ↑, γ, β′)f for some γ. By application
of rule PROCESS F and rule SEQT and then by application of PROCESS F
and rule COMP we obtain that (0, 0) � (0; ↑, 0, β′)f ττ−−→ (0, 0) � (β′, γ, 0)f .
By assumption and repeated use of PROCESS F we can infer that (0, 0) �
(β′, γ, 0)f α′′

−−→ (0, 0) � (0, γ, 0)f . Finally using PROCESS END we obtain
the desired result. In order to establish this we need additional lemmas stat-
ing that accumulated compensations are never changed during termination
and compensation phases.

With this in mind we can represent processes/scope behavior by only looking at
the forward activities of its inner activity and the behavior of the inner activity
in case of termination at arbitrary intermediate states plus the behavior of its so
far accumulated compensations. The following lemma is hence the missing link
between the two semantics. The lemma uses this definition:

Definition 9 (Cut Set of a Partial Order). A cut set X of a partial order
(V, E) is a subset of V such that whenever a ∈ X and (b, a) ∈ E then also b ∈ X.

Lemma 1. Let (β, 0) � S
α−−→ (β′, 0) � S′. Let α contain no !A. We now find

exactly one p ∈ S(S, β) for each of the following cases

1. if S′ ≡ 0 then fp = 0 and tp = �

2. if (β, 0) � S′ τA−−→ (β, 0) � S′′ then fp = τA and tp = � and for ρ′ such that

(β′, 0) � [S′′]
ρ′
−−→ (β′, 0) � 0 we have ρ′ ∈ Ind(δ(p)|(Ip−I′

p)∪Tp
) where I ′p is a

cut set of (Ip, Ep|Ip)

3. fp = 0, tp = � and for ρ′ such that (β′, 0) � [S′]
ρ′
−−→ (β′, 0) � 0 we have

ρ′ ∈ Ind(δ(p)|(Ip−I′
p)∪Tp

) where I ′p is a cut set of (Ip, Ep|Ip).

and in addition in each case α ∈ Ind(δ(p)|Fp∪I′
p
) and for ρ such that

(0, 0) � β′ ρ−−→ (0, 0) � 0 we have ρ ∈ Ind(δ(p)|Cp)

Proof (Sketch). This lemma can be proven by induction over the term structure
of the inner activity S of the process. The proof idea is to consider all states S′

reachable from S by a faultless trace toghether with the compensation context
accumulated so far and a distinction whether S′ can fault in the next step. All
statements about reachable states, traces, contexts and possible faults can always
be determined recursively by corresponding statements for the direct subterms
of S. Taking parallel composition as an example, i.e. S = P ‖ Q for some P
and Q, by induction we can find for each subterm P and Q, exactly one spot in
S(P, 0) and S(Q, 0) that fits according to the lemma to all statements made. By
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the way S(P, β) is constructed out of the elements of S(P, 0) and S(Q, 0) we can
conclude that there is again exactly one spot in S(P, 0) that satisfies the lemma.
Note that in the case of parallel composition we need to use the assumption that
at most one fault can occur at the same level.

After we have related the two different semantics for BPEL′
fct, we are now ready

to compare Sagas and BPELfct in a formal way:

Theorem 2 (Correspondence Theorem)
For all sagas S and environments Γ : Whenever Γ � 〈{| S |}, β〉 α−−→ 〈t′, β′〉
there is (V, E, P, D, t, f) ∈ S(�S�Γ , �β�cl) (and vice versa) with t = t′ and α =
(V, E|V ).

Intuitively, this means that the two languages behave identical (on the subsets
considered) up to the more constrained behavior inside faulted and aborted
transactions (scopes and the process itself) in BPEL that are imposed due
to the more restrictive compensation policy. It is worth noting that if no
(sub)transaction faults, the behaviors are completely identical.

Proof The proof is by structural induction over S along the recursive definition
of S(., .).

4.2 Relating Other Features to BPEL

Other more advanced features conceptually exist in different form in both lan-
guages. However, we found them hardly comparable in a reasonable manner. The
most important difference is the way faults during compensation are handled.
Consider the example of a transaction in BPEL where the inner activity is a paral-
lel construct P ‖ Q. Assume that P faults. Then the transaction –which is either
a scope or a process– will execute the fault handler and hence switch to faulted
mode (f). The default fault handler will then trigger the compensation of P and
Q. If now again a fault is caused by the compensation of, say, P , this will imme-
diately cancel the whole compensation by rule SCOPE FAULT F, including the
compensations for Q! In Sagas the same situation would be handled differently.
By rule F-PAR we see that even if the compensation of P fails, Q’s compensations
will be completely executed and not aborted prematurely as in BPEL.

Another interesting aspect is that the principles of all-or-nothing semantics
and programmable compensations are supported within Sagas via a generaliza-
tion of the syntax which enables composite compensations and by adding the
inference rule REPEATED-COMP. In BPEL the occurrence of a successful com-
pensation of a failed compensation is communicated to a possible enclosing scope
or to the process (cf. SCOPE FAULT C), whereas in Sagas such an occurrence
remains hidden to an enclosing saga. Although the two languages do not differ
fundamentally in this point, both realize different perceptions of all-or-nothing
semantics.

In our comparison we used the fault handling mechanism of BPEL only to
trigger compensations. Since fault handlers are fully-programmable, this mech-
anism can be used like the standard exception handling mechanism found in
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most modern programming languages. BPEL does not come with an explicit
exception handling construct aside of scopes. Exception handling can be added
to Sagas in form of a sagas/exception-handler pair try S with P [3], such that
when an exception occurs in S, the execution continues with P . The compen-
sations that are accumulated during the execution of both S and P are stored.
In BPEL however, a fault handler is not allowed to install compensations at the
same level as the activity it has been activated by, hence the two approaches to
general exception handling are incompatible.

Other interesting differences and similarities may be found by a comparison
to other important formal approaches to model FCT-handling like StAC [4] and
cCSP [5]. StAC provides powerful compensation mechanisms similar to those of
Sagas, so we also expect BPELfct and StAC to share a non-trivial semantically
equivalent subsets. However, we did not undertake formal investigations in this
question and leave it to further research. In [2] it is shown that sequential Sagas
without nesting and parallelism and cCSP coincide. The authors also show that
cCSP can be changed such that both calculi behave equivalent in the presence
of a parallel construct. Different to Sagas and BPELfct, the collected compen-
sations of a successfully terminated subtransaction are dismissed and not stored
for a possible later compensation of an enclosing transaction. This aspect and the
result from [2] led us to only consider Sagas for a thorough formal comparison.

5 Conclusion

We have provided a fine-grained small-step semantics for BPEL. To the best
of our knowledge this is the first process algebraic BPEL semantics that covers
automated compensation handling including all-or-nothing semantics and com-
pensation execution in default compensation order in its entirety. This makes it
a natural choice for a comparison with recent process algebraic approaches to
FCT-handling like Sagas. In this paper, we showed that Sagas coincides with a
useful subset of BPEL apart from different compensation policies in the presence
of parallelism. Sagas uses the concept of distributed interruption, which allows
parallel branches to compensate their respective activities independently of each
other when a fault has occurred in one branch. BPEL uses the coordinated in-
terruption policy, where a fault forces all branches to start their compensations
as soon as possible and at the same time. In BPEL an additional termination
phase precedes the compensation phase where subtransactions are terminated in
a safe manner. This phase is not distinguished as such in Sagas. Most notably,
faulted compensations lead to evidently different behavior in the two compared
calculi.

Our paper shows that FCT-handling in BPEL is rooted in firm formal
grounds, and can be used in safe ways. However, the comparable common sub-
sets of BPEL and Sagas seems to be rather small, although similar constructs
are provided in both worlds. So in order to make FCT-handling still safer to use,
more foundational analysis and comparative work has to be carried out.
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