
RESTful Petri Net Execution

Gero Decker, Alexander Lüders, Hagen Overdick,
Kai Schlichting, and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,hagen.overdick,weske}@hpi.uni-potsdam.de,

{alexander.lueders,kai.schlichting}@student.hpi.uni-potsdam.de

Abstract. Representational State Transfer (REST) has received a lot
of attention recently as architectural style for distributed systems made
up of loosely coupled resources. While most research in process enact-
ment focuses on BPEL and SOAP, most internet applications are based
on REST. To leverage this new architectural style also for process enact-
ment, this paper introduces process enactment in REST environments.
The approach is based on Service Nets, a specific class of Petri nets
supporting value passing and link passing mobility. Implementation con-
siderations of a prototype are presented. The approach is compared with
the traditional BPEL/SOAP approach to process enactment.

1 Introduction

The service-oriented architecture (SOA) is an architectural style for building
software systems based on services. Services are loosely coupled components
that can be discovered and composed [6]. Such composition is often realized
through process execution engines, interpreting business process models and in-
voking services accordingly. Using SOAP as communication protocol is a typical
option for realizing web services [8]. Furthermore, the Business Process Execu-
tion Language (BPEL [10]) is a widely used standard for implementing business
processes that are based on SOAP services.

SOAP services are a concrete implementation of a SOA, yet there are alter-
natives readily available. In [20], we characterized Representational State Trans-
fer (REST [11]) as a restricted subset of SOA, hence RESTful usage of the Hyper
Text Transfer Protocol (HTTP [12]) qualifies as SOA just as well. The most im-
portant restrictions imposed by REST are globally unique identification of each
service instance (called resource) and identification of the interaction intention
at the protocol level. HTTP supports resource reflection (GET), at-least once
delivery (PUT/DELETE), and at-most once delivery (POST) directly, other in-
tention can be represented by combining the former. In essence, SOAP-based
services merely use HTTP as a transfer protocol, REST advocates HTTP as
application protocol, enabling increased distributability, scalability and masha-
bility of service-based systems. A resource-oriented approach as demanded by
REST has proven strengths in environments of multiple autonomous peers [27],
the World Wide Web being the most prominent example of such a system.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 73–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 G. Decker et al.

Most research in the area of process-oriented service implementations focuses
on BPEL and SOAP-based services, where machine-to-machine communication
is at the center of attention. On the other hand, most successful internet ap-
plications (e.g., flickr.com, amazon.com, XING.com) are based on the REST
architecture style. This paper introduces process enactment in REST environ-
ments, i.e., RESTful process enactment. The approach is conceptually based on
Service nets, a specific class of high level Petri nets that include value passing,
i.e. colored tokens and guard conditions. Dynamically evolving structures real-
ized through URI passing is a core aspect in the REST world. Therefore, this
notion of link passing mobility will also be captured in the formal model.

The remainder of this paper is structured as follows. The next section will
present a motivating example and explain central REST concepts. Section 3 in-
troduces the formal model specifying RESTful execution of processes specified
by Service nets, before section 4 introduces implementation concepts of a pro-
totypical engine that we have implemented. Section 5 reports on related work,
especially focusing on the relationship of the presented approach to the BPEL/-
SOAP approach to process enactment in web environments. Section 6 concludes
and points to future work.

2 Motivating Example and Approach

Figure 1 shows the example we will use for illustration throughout this paper.
The typical notation for Petri nets is used, where circles denote places, rectangles
denote transitions and arrows flow connections between places and transitions.
Read arcs as special kind of flow connection are represented by lines without
arrowheads. The dashed rectangles denote different nets. The dashed arrows
between transitions of different nets denote that the same transition appears in
different nets.

Several participants are involved in the sample scenario: While browsing an
online store, a customer creates a shopping cart where she selects items she is
interested in. Before submitting the order, she is also allowed to already define
the address where the goods should be delivered to. Once she is sure what to
buy, she submits the order, triggering subsequent payment handling and deliv-
ery, which in turn can be done concurrently. Payment is handled through an
external payment service. The customer is automatically forwarded to the re-
spective web site. There are two alternatives for delivery: standard delivery and
express delivery. For each alternative there is a respective service.

All interaction between two participants are carried out through HTTP re-
quests/response cycles, represented as communication transitions in Figure 1.
We mentioned before, that the HTTP reflects the intention of an interaction
directly at the protocol level. REST calls this feature a uniform interface and
HTTP provides the following verbs to express intentions:

GET. Messages labeled as GET have an empty service request and are guaran-
teed to have no effect within the receiver of such request, i.e. they are safe to
call. GET responses are expected to be a description of the current state of the

RESTful Petri Net Execution 75

EXP SHIPPER

SHIPPERPAYMENT SERVICE

CUSTOMER

ONLINE STORE

Select
articles

Submit
order

Create
cart

Select
articles

Submit
order

Create
cart

Issue
paym.

Issue
paym.

Enter
addr.

Enter
addr.

Enter
paym.

Ack
paym.

Ack
paym.

Init
delivery

Init exp
delivery

Init
delivery

[d=express]

[d=regular]

Init exp
delivery

Enter
paym.

GET
paym.

Fig. 1. Sample scenario

targeted resource. Also, as GET does not alter the state of the targeted resource,
the response can be cached. This has great benefits to a distributed architecture
and both aspects can be seized without prior semantic knowledge of the targeted
resources.

PUT. Messages labeled as PUT do cause an effect in the targeted resource,
but do so in an idempotent fashion. An idempotent interaction is defined as
replayable, i.e. the effect of N identical messages is the same as that of 1. In
a distributed system, where transactions may not be readily available, this is a
great help to recover from situations where messages might have got lost. Here,
it does not harm to simply resend a message. Again, this assumption can be
made without any prior semantic knowledge of the resource involved.

DELETE. Messages labeled as DELETE do cause an effect in the targeted
resource, where that effect has a negative connotation. Just as PUT, DELETE
is defined as idempotent. However, as with all messages, the interpretation is
solely the responsibility of the receiver, i.e. a DELETE has to be regarded as
“please terminate”.

POST. All other types of messages are labeled as POST, i.e. they cause an effect
in the receiver and they are not safe to replay. This is a catch-all mechanism for
all messages that can not be described by the prior verbs. Without a uniform
interface, all messages would be treated like this, loosing context-free resource
reflection, caching and replayability.

76 G. Decker et al.

CUSTOMER ONLINE STORE
PAYMENT
SERVICE

GET shop.com/sc5

200 (form /sc5)

POST shop.com/sc5 <order>

201 (refresh /o3)

GET shop.com

200 (form /createSC)

POST shop.com/createSC <order>

201 (form /sc5/art + link /sc5/addr + link /sc5)

SHIPPER

GET shop.com/o3

301 (redirect to payment.de/p7)

POST payment.de <paym>

201 (link /p7)

POST delivery.com

201 (link /del57)

GET payment.de/p7

200 (form /p7)

POST payment.de/p7 <details>

201 (link shop.com/o5)

POST shop.com/o3 <cfm>

201 ()

Fire “Create cart“

Fire “Submit order“

Fire “Issue paym.“

Fire “Init delivery“

Reflect on “GET paym.“

Reflect on “Submit order“

Reflect on “Enter

paym.“

Fire “Enter paym.“

Fire “Ack paym.“

Fig. 2. Sample interaction sequence

The state of the online store service is represented by the marking of the
Petri net. Most GET requests do not have any explicit representation in the
net. The only exception in the example is the “GET paym.” transition. As this
transition only has a read arc, firing it does not affect the marking. Therefore,
this communication is safe.

Unsafe communication corresponds to firing of the other transitions, in the
context of the paper we resort to using POST. For instance selecting articles
removes the token from the input place and produces a (possibly) different token
to the same place. The internals of the payment and delivery services are not
shown in Figure 1.

Figure 2 shows a sample sequence of message exchanges. Here, GET requests
are also included. The first interaction happens between the customer’s web
browser and the online store. A GET request is issued for http://shop.com.
As response, the HTTP code 200 (OK) is returned with an XHTML page as
representation for http://shop.com. The intention of this interaction is to re-
ceive a representation of the targeted resource. This representation contains

http://shop.com
http://shop.com

RESTful Petri Net Execution 77

the reference to the shopping cart creation resource, namely http://shop.com/
createSC. Invoking this service results in the creation of a new resource, identi-
fied by http://shop.com/sc5. Here, we already see how the topology dynami-
cally evolves and navigation from one resource to another happens through URI
passing.

Here comes in another vital feature of REST: hypermedia as the engine of
application state. In a Petri net, application state is the position of all tokens in
a net, the marking, at a given time. Calling a service is mapped to a transition
with a certain set of input tokens in the underlying net. As we just learned,
a new URI representing a transition (with input tokens), we can fire tokens in
an at-most once fashion, therefore mapped to POST ing to the order service.
The contained XML document is used as input to the service, the result is the
creation of a new resource and returning a 201 created response including the link
to the newly created resource, here http://shop.com/sc5 and a representation
of the resource including references to the services http://shop.com/sc5/art
and http://shop.com/sc5/addr. These services in turn return XHTML pages
providing forms for selecting items and a delivery address respectively.

The remaining interactions correspond to submitting the order, triggering the
payment service and triggering the delivery service. Upon GET request by the
customer, the online store redirects her to the payment service.

GET requests are a resource reflection mechanism in the REST world. In our
scenario, the returned representation of the identified resource describes how to
interact with the resource and what data is being expected. In our scenario,
all representations are optimized for rendering a human-readable web page in a
browser. However, this information can also be used by a machine. An alternative
representation could be a WSDL file also defining the data structure expected
in a request for SOAP-legacy integration or more advanced techniques such as
microformats [15] and RDFa [1]. If different representations are available, content
negotiation realizes the selection of a desired representation.

Figure 1 contains several sample Universal Resource Identificators (URI [3]).
The concept of web-wide unique identification of resources is at the center of
REST. We can distinguish between at least two interesting types of resources to
be identified:

– Static ports are entry points into process instances. POST ing data to such re-
sources leads to the creation of activity instances or the data sent is routed to
existing process instances. Static means that the URI is independent of any
particular process instance. In our example, http://shop.com/createSC or
http://payment.de identify static ports.

– Dynamic ports are also entry points into process instances, but here a dy-
namic port corresponds to exactly one activity instance. In our example,
http://shop.com/o3 or http://payment.de/p7 identify dynamic ports.

The notion of dynamic ports or activity instances is not present in SOAP-
based systems, where only static ports are available. Here, application-specific
parameters are used for relating requests to process instances. This hampers the

http://shop.com/createSC
http://shop.com/createSC
http://shop.com/sc5
http://shop.com/sc5
http://shop.com/sc5/art
http://shop.com/sc5/addr
http://shop.com/createSC
http://payment.de
http://shop.com/o3
http://payment.de/p7

78 G. Decker et al.

possibility of “bookmarking” activity instances, one of the driving features of
the World Wide Web.

In the REST context it is crucial to avoid “URI guessing”, i.e. all URIs that
are actually addressed in a request must have been obtained somehow before.
This implies that it should never be demanded that requesters know how to
construct particular URIs, e.g. constructing the URI http://shop.com/o3 from
the store’s URI and the store’s internal Id of the shopping cart. This URI must
have been passed to the customer previously. Again, the concept of link passing
mobility [19] is of central importance for RESTful systems and taken even beyond
by treating link passing mobility as the driver of the application flow, where the
application is completely located within the client, the server side is simply
providing services.

As all interactions with such services have explicit intention, exploiting edge
conditions such as caching GET interaction possible without application knowl-
edge on either side of the communication. The message itself is enough for any
intermediary to optimize its own behavior and in turn optimize the operating
cloud in total.

3 Formal Model

All message exchanges between the online store and its environment happen
via HTTP request/response interactions. As already illustrated in Figure 1 such
synchronous communication is modeled in the Petri net using communication
transitions. This section will introduce service nets specifying the behavior of
systems that implement processes in a RESTful manner.

The online store receives XML documents from the customer’s browser and
the payment service and sends XML documents to the payment and the deliv-
ery services. The tokens flowing within the online store also carry XML data.
Branching decisions are based on such XML-tokens.

3.1 Basic Definitions

In the following definitions we will denote the (infinite) set of all XML documents
as XML and the (infinite) set of all URIs as URI .

Definition 1 (Service Net). A service net is a tuple S = (P , T , F , Fread,
TS, TR, init, g, uri) where

– P and T are disjoint sets of places and transitions,
– F ⊆ (P × T) ∪ (T × P) is the flow relation,
– Fread ⊆ F ∩ (P × T) is a set of read arcs,
– TS , TR ⊆ T are disjoint sets of send and receive transitions, collectively called

communication transitions,
– init : P → MS(XML) is the initial marking, a function assigning multi-sets

of tokens to places,

http://shop.com/o3

RESTful Petri Net Execution 79

– g is a function assigning guard conditions to transitions, where a condition
g(t) ⊆ (•t → XML) specifies combinations of input documents and

– uri is a function assigning URIs to tuples of communication transitions and
combinations of input documents, i.e. uri(t) : (•t → XML) → URI .

The auxiliary function •t denotes all input places for a transition t, i.e. •t =
{p ∈ P | (p, t) ∈ F}, in analogy to this t• denotes all output places for a
transition.

The definition of service nets shows how the distinction between static ports
and dynamic ports is formally reflected: any receive transition t without input
places is a static port. Here exists a URI id, such that uri(t, ∅) = id. Dynamic
ports are characterized by a tuple (t, fin) where fin : •t → XML, i.e. by a receive
transition with a set of input documents. Such a dynamic port’s URI is given
by uri(t, fin).

The definition of function g allows for the same expressiveness as using boolean
expressions that evaluate to true or false for given input documents. Imagine a
transition t with one input place p. A sample guard condition could be g(t) =
{{(p, xmlp)} | <shippingType>express</shippingType> is part of xmlp}.

As seen in the motivating example, firing receive transitions might or might
not result in state changes. In this context read arcs are a central feature. Firing
transitions without outgoing arcs and only with read arcs as incoming arcs will
not change the system’s state and therefore is safe. Such transitions are solely
used for resource reflection. However, this reflection is restricted to certain states
of the system – defined by the read arcs.

Definition 2 (Transition Modes, Enablement and Firing). Let (P , T ,
F , Fread, TS, TR, init, g, uri) be a service net. A transition mode is a tuple
(σin, t, σout) where σin : •t → XML assigns documents to the input places of
t ∈ T and σout : t• → XML documents to output places.

A transition mode tm = (σin, t, σout) is enabled in marking m iff σin ∈ g(t)
and ∀p ∈ •t [σin(p) ∈ m(p)]. The reached marking after firing of tm is m′, where
m′(p) := m(p) − {σin|q∈P |(q,t)/∈Fread

(p)} + {σout(p)}.
The firing semantics of service nets is similar to that of classical place /

transition nets in the sense that a transition is enabled only if there is at least
one token on each input place. Firing of a transition will lead to consuming one
token from each input place (except in the case of read arcs) and producing one
token onto each output place. Guard conditions further restrict the enablement
of transitions. As tokens carry values, we speak of transition modes, i.e. bindings
of values to input and output places of a transition.

We see that TS, TR and uri have no influence on the firing semantics of an
individual service net. They are essential for the communication behavior, which
is manifested in the composition of service nets.

3.2 Composition of Service Nets

The interaction behavior between multiple service nets is specified by the follow-
ing definition of service net composition. We distinguish between closed world

80 G. Decker et al.

PAYMENT SERVICE (refined)

ONLINE STORE (excerpt)
Submit
order

Issue
paym.

Issue
paym.

Enter
paym.

Ack
paym.

Process
paym.

Init
delivery

Init exp
delivery

[d=regular]

[d=express]

Ack
paym.

Fig. 3. Excerpt from the example

STORE+PAYMENT (closed)
Submit
order

Issue
paym.

Enter
paym.

Ack
paym.

Process
paym.

Init
delivery

Init exp
delivery

[d=regular]

[d=express]
[uris=urir]

[uris=urir]

Fig. 4. Closed world composition

composition and open world composition. In a closed world, a communication
transition is not available for communication any longer, once it is used in the
composition. The definition of the open world is the more realistic one, where
the same port can be used by different other services.

Definition 3 (Closed World Composition). Let S1 and S2 be two service
nets, where P1 ∩ P2 = ∅ and T1 ∩ T2 ⊆ ((TS1 ∩ TR2) ∪ (TS2 ∩ TR1)). The closed
world composition S1 ⊕c S2 is the service net (P ′, T ′, F ′, F ′

read, T ′
S, T ′

R, init′,
g′, uri′) where

– P ′ = P1 ∪ P2, T ′ = T1 ∪ T2, F ′ = F1 ∪ F2, F ′
read = Fread1 ∪ Fread2,

– T ′
S = (TS1 ∪ TS2) \ (T1 ∩ T2),

– T ′
R = (TR1 ∪ TR2) \ (T1 ∩ T2),

– init′ = init1 ∪ init2,
– g′(t) = (g1∪g2)(t) for all t ∈ (T1∪T2)\(T1∩T2) and else g′(t) = {f1∪f2 | f1 ∈

g1(t) ∧ f2 ∈ g2(t) ∧ uri1(t, f1) = uri2(t, f2)} and
– uri′ = (uri1 ∪ uri2)|T ′

S∪T ′
R
.

The basic idea is to merge corresponding send and receive transitions when
composing two service nets. As a transition might correspond to a number of
ports, it is crucial to ensure that the URI addressed by the sender matches the
URI offered by the receiver. This is manifested in the definition of g′(t), where
this matching of URIs is added as additional guard condition to the merged
transitions. This URI matching realizes link passing mobility in service nets.

Figure 4 shows an example where parts of the online store’s service net is
composed with a service net describing the payment service. Here, the transitions
“issue payment” and “ack. paym.” are not communication transitions any longer.

Definition 4 (Open World Composition). Let S1 and S2 be two service
nets and S1 ⊕c S2 = (P, T, F, Fread, TS , TR, init, g, uri). Then the open world
composition S1 ⊕o S2 is the service net (P, T ′, F ′, F ′

read, T
′
S, T ′

R, init, g′, uri′),
where

RESTful Petri Net Execution 81

STORE+PAYMENT (open)
Submit
order

Issue
paym.

Enter
paym.

Ack
paym.

Process
paym.

Init
delivery

Init exp
delivery

[d=regular]

[d=express]

Issue
paym.

Issue
paym.

[uris=urir]

Ack
paym.

Ack
paym.

[uris=urir]

Fig. 5. Open world composition

– T ′ = T ∪ Tnew1 ∪ Tnew2, where Tnew1 and Tnew2 are sets of new transitions
where for each x ∈ (T1∩T2) there is a transition tx1 in Tnew1 and a transition
tx2 in Tnew2,

– F ′ = F ∪ {(p, tx1) | ∃p, x ((p, x) ∈ F1)} ∪ {(tx1, p) | ∃p, x ((x, p) ∈ F1)} ∪
{(p, tx2) | ∃p, x ((p, x) ∈ F2)} ∪ {(tx2, p) | ∃p, x ((x, p) ∈ F2)},

– F ′
read = Fread ∪ {(p, tx1) | ∃p, x ((p, x) ∈ Fread1)} ∪ {(p, tx2) | ∃p, x ((p, x) ∈

Fread2)},
– T ′

S = (TS ∪ Tnew1 ∪ Tnew2) ∩ (TS1 ∪ TS2),
– T ′

R = (TR ∪ Tnew1 ∪ Tnew2) ∩ (TR1 ∪ TR2),
– g′(t) = g(t) for all t ∈ T and else g′(t) = g1(t) if t ∈ Tnew1 and g′(t) = g2(t)

if t ∈ Tnew2 and
– uri′(t) = uri(t) for all t ∈ (TS ∪ TR), uri′(t) = uri1(t) for all t ∈ Tnew1 and

uri′(t) = uri2(t) for all t ∈ Tnew2.

Figure 5 illustrates the outcome of an open world composition for the same
example. Here, payment might be issued to another service and other services
might still issue payment. The same applies to the payment acknowledgment.

Regarding enablement and firing of service nets we assume that exactly one
token is removed from every input place and exactly one token is placed onto
every output place. That way, service nets can be simulated by corresponding
place/transition nets. The only exception are read arcs, where corresponding
tokens must be present on the place for a transition to be enabled. However,
the token will not be consumed upon firing. For simulating this behavior in
place/transition nets, read arcs could be seen as bi-flows. This works as long as
the respective places that are read from are not output places at the same time.

We assume that there is no functional dependency between input token values
and output token values, i.e. firing the same transition with the same input token
values twice might yield different output token values.

4 Implementation Considerations

This section presents the service net execution engine we implemented. It be-
haves as specified in the previous section. Figure 6 provides an overview of the

82 G. Decker et al.

Places &
transitions

Model manager

Enablement agent

Firing agent

B
ro

w
s
e

r

cust.

T
o

k
e
n
s XML content

Attribute cache

Enablem.
cacheP

a
y
m

e
n
t

s
e
rv

ic
e

HTTP+XHTML

HTTP+XML

C
o
m

m
u

n
ic

a
ti
o

n
 a

g
e

n
t

D
e
liv

e
ry

S
e
rv

ic
e HTTP+XML

O
n
lin

e
 s

h
o
p

HTTP+XML

Fig. 6. Architecture of the service net execution engine

engine’s overall architecture using the FMC block diagram notation [16]. Four
main components can be distinguished within the engine:

– The communication agent handles incoming HTTP requests from the cus-
tomer’s web browser and the payment service and forwards them to the other
agents. Furthermore, it issues HTTP requests to the payment service and
the delivery services.

– The model manager deploys new Petri nets within the engine. The Petri
Net Markup Language (PNML [4]) is used with engine-specific extensions.
Internal representations of places and transitions are created.

– The enablement agent computes which transitions are currently enabled for
what combinations of input tokens. This agent also evaluates guard con-
ditions. If transitions are enabled and do not rely on an incoming HTTP
request to be fired, the enablement agent triggers the firing agent.

– The firing agent is responsible for the firing of transitions. Firing leads to
the deletion of tokens and the creation of new ones.

4.1 Concurrency

The engine runs within a web container and takes advantage of the multi-
threading capabilities offered by the container. Parallel incoming HTTP requests
are handled by different threads. The conflict between firing two transitions with
the same input token is resolved on the database transaction level.

In the case of receive transitions, first the input tokens are consumed, then a
response is returned to the requester, before output tokens are produced. This
in turn immediately triggers the evaluation for enablement of subsequent transi-
tions, which happens within the same thread. If such a subsequent transition is
actually enabled, firing will occur immediately. Therefore, a certain sequential-
ization regarding internal transitions and send transitions applies. In case a send

RESTful Petri Net Execution 83

Fig. 7. Screenshot for “Select articles”, realized using XForms

transition is enabled and the server handling requests for the corresponding URI
does not respond or returns an error message, another outgoing HTTP request
will be issued again later. A particular worker thread is assigned to realize such
requests.

4.2 XForms Representations

In our case the web resources addressed are static and dynamic ports. Forms are
the classical way for describing the data expected by a web resource. XForms
[5] are a way for not only defining the syntax of expected XML documents but
also prescribe how to render this XML information in an interactive web form.
XForms is suited not only for interpretation by humans through web browser
but also by machines, as the specification of the expected XML document can
be given e.g. using an XML schema.

Figure 7 shows a screenshot of the form for the “select articles” transition
from section 2. Upon submission of the form, the browser assembles an XML
document as specified in the XForms model and sends it to the given URI as
POST message.

4.3 Interchange Format

The Petri Net Markup Language (PNML [4]) is used as input format for the
engine. While the concepts of places, transitions and arcs are already present
in PNML, we added engine-specific extensions. Listing 1 shows a PNML code
snippet for the example from section 2.

The listing shows two transitions and one place definition. The engine distin-
guishes four types of transitions: firing receive transitions is triggered through

84 G. Decker et al.

Listing 1. PNML code snippet for the example
<transition type="receive" id="select_articles">...

<toolspecific tool="Petri Net Engine" version="1.0">

<output>

<bindings href="http://wwwserver/select_articles/bindings.xml"/>

<form href="http://wwwserver/select_articles/form.xml"/>

</output>

</toolspecific>

</transition>...

<transition type="automatic" id="forward_express_delivery">...

<toolspecific tool="Petri Net Engine" version="1.0">

<guard><expr>deliveries.shippingType==’express’</expr></guard>

</toolspecific>

</transition>...

<place id="deliveries">...

<toolspecific tool="Petri Net Engine" version="1.0">

<locator>

<name>shippingType</name><type>xsd:string</type>

<expr>//shippingType/text()</expr>

</locator>

</toolspecific>

</place>...

incoming HTTP requests, firing send transitions results in outgoing HTTP re-
quests, automatic transitions are internal transitions and referer transitions are
used for GET messages only, referring the requester to another URI.

The definition of select_articles includes a reference to a XForms docu-
ment. The bindings define how input token values are used as in the form.
Transition forward_express_delivery includes the definition of a guard condi-
tion. shippingType is a so called locator for place deliveries. What part of the
XML document is actually referenced by this locator is defined in the definition
of place deliveries. This indirection mechanism allows caching of individual
attributes that are relevant for guard conditions.

5 Related Work

This paper has used Petri nets as formal foundation for describing RESTful
process execution. Petri nets are described in detail in [24] and colored Petri
nets in [14]. The introduction of XML technology into Petri nets has already
been done in [17] in the form of XML nets. Here, tokens carry XML documents
that are consumed in and produced by transitions.

Petri nets have extensively been used for representing systems with interfaces
to an outside world. In the case of open workflow nets, places serve as message
channels that connect different systems. These nets can be used for deciding
whether there are partners with which the system could interact successfully [25]

RESTful Petri Net Execution 85

and how such partners need to look like [18]. Using communication transitions
for representing synchronous communication was already introduced in [28].

π-calculus is a process algebra that could be used as alternative to the ser-
vice nets presented in this paper [19]. π-calculus directly supports link passing
mobility. The distinction between static and dynamic ports made in this paper
corresponds to free and bound names in π-calculus. The motivation for choosing
Petri nets instead was driven by the need for using the Business Process Modeling
Notation (BPMN) as high-level modeling language, and generating executable
definitions out of it. Here, we could resort to existing implementations1 doing
BPMN to Petri net transformations, which are based on [9].

A first comparison between SOAP and REST as alternative technical ground-
ing for service choreographies can be found in [29]. Although REST raises major
interest among practitioners, it remains rather undiscussed in academia. Among
the few academic papers concerning REST are [22,27].

RESTful process execution can be seen as alternative to service composi-
tion as proposed in Business Process Execution Language (BPEL [10]). A main
difference is that BPEL only offers static ports. Relating messages to process
instances is done by application-specific attributes, grouped into so called cor-
relation sets. This hampers caching on the protocol level and does not allow for
bookmarking of activity instances or process instances. Reflection is realized by
event handlers in BPEL that do not alter the values of variables, resulting again
in POST messages. Therefore, the communication intentions inherent in HTTP
are largely ignored in BPEL. We have proposed an extension called RBPEL
in [21], introducing dynamic ports through URI templates.

Bite [7] is a language for orchestrating REST services, using some of the
constructs known from BPEL. With its scripting approach it does not require
typing of variables nor the explicit definition of variables. However, the concept
of dynamic ports as proposed in this paper is not present in this language. It
still relies on correlation mechanisms similar to BPEL’s.

Several process engines directly executing Petri nets have already been pro-
posed [23,26]. Further engines use (colored) Petri nets as process definition lan-
guage but translate the definition into an internal representation [2,13]. Our
approach is different as it concentrates on RESTful communication with the
environment, therefore allowing seamless integration into the World Wide Web.

6 Conclusion

This paper has discussed RESTful process execution on the basis of a special
class of Petri nets. The main concepts of REST were introduced and related
to the formal model. These include considering intentions on the protocol level
and unique identification of resources. RESTful process execution as presented
in this paper can be integrated with SOAP-based services. Before invoking such
a service XML tokens would be wrapped into SOAP envelopes. In order to allow

1 See http://oryx-editor.org for a running installation.

http://oryx-editor.org

86 G. Decker et al.

SOAP-based invocations by service requesters, a static port would be offered
and the XML payload extracted from the SOAP message.

We have implemented a process engine that executes service nets. The engine
is available under MIT license and a running installation including the exam-
ple from section 2 can be accessed from the engine’s homepage http://code.
google.com/p/pnengine/.

Future work includes the introduction of further process execution aspects
into service nets. As a major point, authorization needs to be considered, where
static and dynamic ports are only accessible for certain users, e.g. only for those
that where involved in the previous process steps. This requires extending guard
conditions by the capability to refer to the requesting user. Other work centers
around efficient execution of Petri nets. As BPMN serves as primary modeling
language, the introduction of certain high-level Petri net constructs such as reset
arcs and inhibitor arcs promises simplification of the nets and increased execution
performance.

References

1. Adida, B., Birbeck, M.: RDFa Primer 1.0. Technical report, W3C (2006),
http://www.w3.org/TR/xhtml-rdfa-primer/

2. Aversano, L., Cimitile, A., Gallucci, P., Villani, M.L.: FlowManager: A Workflow
Management System Based on Petri Nets. In: COMPSAC 2002: Proceedings of
the 26th International Computer Software and Applications Conference on Pro-
longing Software Life: Development and Redevelopment, Washington, DC, USA,
pp. 1054–1059. IEEE Computer Society Press, Los Alamitos (2002)

3. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI):
Generic Syntax. Technical report, The Internet Engineering Task Force (1998),
http://www.ietf.org/rfc/rfc2396.txt

4. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

5. Boyer, J.M.: XForms 1.1. Technical report, W3C (November 2007),
http://www.w3.org/TR/xforms11/

6. Burbeck, S.: The tao of e-business services: The evolution of web applications into
service-oriented components with web services (October 2000),
www.ibm.com/developerworks/library/ws-tao/

7. Curbera, F., Duftler, M.J., Khalaf, R., Lovell, D.: Bite: Workflow composition for
the web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 94–106. Springer, Heidelberg (2007)

8. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Englewood Cliffs (2005)

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Pro-
cess Models in BPMN. In: Information and Software Technology (IST) (2008)

10. Fallside, D.C., Walmsley, P.: Web Services Business Process Execution Language
Version 2.0. Technical report (October 2005),
http://www.oasis-open.org/apps/org/workgroup/wsbpel/

http://code.google.com/p/pnengine/
http://code.google.com/p/pnengine/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xforms11/
www.ibm.com/developerworks/library/ws-tao/
http://www.oasis-open.org/apps/org/workgroup/wsbpel/

RESTful Petri Net Execution 87

11. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine (2000)

12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. Technical report, The Internet
Engineering Task Force (1999), http://www.ietf.org/rfc/rfc2616

13. Guan, Z., Hernandez, F., Bangalore, P., Gray, J., Skjellum, A., Velusamy, V., Liu,
Y.: Grid-Flow: a Grid-enabled scientific workflow system with a Petri-net-based
interface. Concurr. Comput.: Pract. Exper. 18(10), 1115–1140 (2006)

14. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (1996)

15. Khare, R., Çelik, T.: Microformats: a Pragmatic Path to the Semantic Web. In:
Proceedings of the 15th International World Wide Web Conference (2006)

16. Knopfel, A., Grone, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, Chichester (2006)

17. Lenz, K., Oberweis, A.: Interorganizational Business Process Management with
XML Nets. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net
Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 243–263.
Springer, Heidelberg (2003)

18. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

19. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Information
and Computation 100, 1–40 (1992)

20. Overdick, H.: The resource-oriented architecture. In: 2007 IEEE Congress on Ser-
vices (Services 2007), pp. 340–347 (2007)

21. Overdick, H.: Towards Resource-Oriented BPEL. In: Proceedings of 2nd Workshop
on Emerging Web Services Technology in Halle (Saale), German (2007)

22. Prescod, P.: Roots of the REST/SOAP Debate. In: Proceedings of the Extreme
Markup Languages 2002 Conference, Montréal, Quebec, Canada (August 2002)

23. Purvis, M., Lemalu, S.: An adaptive distributed workflow system framework. In:
APSEC 2000: Proceedings of the Seventh Asia-Pacific Software Engineering Con-
ference, Washington, DC, USA, p. 311. IEEE Computer Society, Los Alamitos
(2000)

24. Reisig, W.: Petri nets. Springer, Heidelberg (1985)
25. Schmidt, K.: Controllability of Open Workflow Nets. In: Enterprise Modelling and

Information Systems Architectures, Bonn. Lecture Notes in Informatics (LNI),
vol. P-75, pp. 236–249 (2005)

26. Verbeek, H.M.W.E., Hirnschall, A., van der Aalst, W.M.P.: XRL/Flower: Support-
ing Inter-organizational Workflows Using XML/Petri-Net Technology. In: Bussler,
C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and
WES 2002. LNCS, vol. 2512, pp. 93–108. Springer, Heidelberg (2002)

27. Wilde, E.: What are you talking about? In: 2007 IEEE International Conference
on Services Computing (SCC 2007), Salt Lake City, Utah, USA (July 2007)

28. Wolf, M.: Synchrone und asynchrone Kommunikation in offenen Workflownetzen.
Studienarbeit, Humboldt-Universität zu Berlin (May 2007)

29. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services chore-
ography standards: the case of REST vs. SOAP. Decis. Support Syst. 40(1), 9–29
(2005)

http://www.ietf.org/rfc/rfc2616

	RESTful Petri Net Execution
	Introduction
	Motivating Example and Approach
	Formal Model
	Basic Definitions
	Composition of Service Nets

	Implementation Considerations
	Concurrency
	XForms Representations
	Interchange Format

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

