
Roberto Bruni
Karsten Wolf (Eds.)

 123

LN
CS

 5
38

7

5th International Workshop, WS-FM 2008
Milan, Italy, September 2008
Revised Selected Papers

Web Services
and Formal Methods

Lecture Notes in Computer Science 5387
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roberto Bruni Karsten Wolf (Eds.)

Web Services
and Formal Methods

5th International Workshop, WS-FM 2008
Milan, Italy, September 4-5, 2008
Revised Selected Papers

1 3

Volume Editors

Roberto Bruni
University of Pisa, Computer Science Department
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
E-mail: bruni@di.unipi.it

Karsten Wolf
Universität Rostock, Institut für Informatik
Albert-Einstein-Str. 21, 18059 Rostock, Germany
E-mail: karsten.wolf@uni-rostock.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2.4, C.2.4, C.2, F.3, C.4, K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-01363-5 Springer Berlin Heidelberg NewYork
ISBN-13 978-3-642-01363-8 Springer Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12663354 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 5th International Workshop on Web
Services and Formal Methods (WS-FM 2008) held during September 4–5, 2008
in Milan, Italy, co-located with the 6th International Conference on Business
Process Management (BPM 2008). Previous editions of the workshop were held
in Pisa, Italy (WS-FM 2004), Versailles, France (WS-FM 2005), Vienna, Austria
(WS-FM 2006) and Brisbane, Australia (WS-FM 2007).

The aim of the workshop series is to bring together researchers working on
web services and formal methods in order to catalyze fruitful collaboration. Web
service (WS) technology provides standard mechanisms and protocols for de-
scribing, locating and invoking services available all over the web. Existing infras-
tructures already enable providers to describe services in terms of their interface,
access policy and behavior, and to combine simpler services into more structured
and complex ones. However, research is still needed to move WS technology from
skilled handcrafting to well-engineered practice. Formal methods can play a fun-
damental role in the shaping of such innovations. For instance, they can help
us define unambiguous semantics for the languages and protocols that underpin
existing WS infrastructures, and provide a basis for checking the conformance
and compliance of bundled services. The WS-FM series has a strong tradition of
attracting submissions on formal approaches to enterprise systems modeling in
general, and business process modeling in particular. Potentially, this could have
a significant impact on the on-going standardization efforts for WS technology.

The main topics of the workshop include: formal approaches to service-
oriented analysis and design, to enterprise modeling and business process model-
ing; WS coordination and transactions frameworks; formal comparison of differ-
ent models proposed for WS protocols and standards; types and logics for WS;
goal-driven and semantics-based discovery and composition of WS; model-driven
development, testing, and analysis of WS; security, performance and quality of
services; innovative application scenarios for WS.

The Program Committee included experts from industry and academia, who
helped us to select 13 contributed papers out of 39 submissions. As a way to
guarantee the fairness and quality of the selection phase, each submission was
reviewed five Program Committee members, at least. The 13 presentations were
grouped into four sessions on “Analysis, Test, and Verification,” “Choreographies
and Process Calculi,” “Transactions and Interoperability” and “Workflows and
Petri Nets.” The program also included one invited talk by Mario Bravetti from
the University of Bologna, for which an invited paper also appears in this volume.

Starting from 2007, the workshop has taken over the activities of the on-
line community formerly known as the “Petri and Pi” Group, which allowed to
bring closer the community of workflow-oriented researchers with that of pro-
cess calculi-oriented researchers. Those interested in the subject can still join

VI Preface

the active mailing list on “Formal Methods for Service-Oriented Computing and
Business Process Management” (FMxSOCandBPM) available at

http://www.cs.unibo.it/cgi-bin/mailman/listinfo/fmxsocandbpm
We would like to express our gratitude to all members of the Program Com-

mittee and additional referees for the great work done in the review phase.
We want to thank Andrei Voronkov for providing the EasyChair system, which
was used to manage the submissions, to carry the review process including the
electronic Program Committee meeting, and also to assemble the proceedings.
Finally, we thank the Politecnico di Milano for hosting WS-FM 2008 and espe-
cially the local organizers of BPM 2008, Barbara Pernici and Danilo Ardagna,
who helped us greatly.

February 2009 Roberto Bruni
Karsten Wolf

Organization

Steering Committee

Wil van der Aalst Eindhoven University of Technology,
The Netherlands

Mario Bravetti University of Bologna, Italy
Marlon Dumas University of Tartu, Estonia
José-Luiz Fiadeiro University of Leicester, UK
Gianluigi Zavattaro University of Bologna, Italy

Program Chairs

Roberto Bruni University of Pisa, Italy
Karsten Wolf Universität Rostock, Germany

Program Committee

Farhad Arbab CWI, The Netherlands
Matteo Baldoni University of Turin, Italy
Alistair Barros SAP Research Brisbane, Australia
Boualem Benatallah University of New South Wales, Australia
Karthik Bhargavan Microsoft Research Cambridge, UK
Eduardo Bonelli Universidad Nacional de Quilmes, Argentina
Michael J. Butler University of Southhampton, UK
Paolo Ciancarini University of Bologna, Italy
Francisco Curbera IBM Hawthorne Heights, USA
Gero Decker HPI Potsdam, Germany
Francisco Duran University of Malaga, Spain
Schahram Dustdar University of Vienna, Austria
Andreas Friesen SAP Research Karlsruhe, Germany
Stephen Gilmore University of Edinburgh, UK
Reiko Heckel University of Leicester, UK
Dan Hirsch Intel Argentina, Argentina
Nickolas Kavantzas Oracle Inc., USA
Alexander Knapp LMU Munich, Germany
Frank Leymann University of Stuttgart, Germany
Mark Little RedHat, UK
Fabio Martinelli CNR Pisa, Italy
Hernan Melgratti University of Buenos Aires, Argentina
Shin Nakajima National Institute of Informatics, Japan
Manuel Nunez Complutense University of Madrid, Spain

VIII Organization

Julian Padget University of Bath, UK
Giuseppe Pozzi Politecnico Milano, Italy
Rosario Pugliese University of Florence, Italy
Antonio Ravara Technical University of Lisbon, Portugal
Steve Ross-Talbot pi4tech
Natalia Sidorova Eindhoven University of Technology,

The Netherlands
Christian Stahl Humboldt University Berlin, Germany
Emilio Tuosto University of Leicester, UK
Hagen Voelzer IBM Zurich, Switzerland
Daniel Yankelevich Pragma Consultores, Argentina
Prasad Yendluri Software AG, USA

External Reviewers

Cristina Baroglio
Frederic Boussinot
Carmen Bratosin
Owen Cliffe
Pedro R. D’Argenio
James Davenport
Dirk Fahland
Carla Ferreira
Andreas Friesen
David de Frutos-Escrig
Maxime Gamboni
Simon Gay
Stephen Gilmore
Katharina Goerlach
Paul Jackson
Christian Koehler
Natallia Kokash
Oliver Kopp
Ivan Lanese
Alessandro Lapadula
Tammo Lessen

Niels Lohmann
Issam Maamria
Manuel Mazzara
Mercedes G. Merayo
Leonardo Gaetano Mezzina
Ganna Monakova
Hamid Motahari
Hyder Nizamani
Olivia Oanea
Luca Padovani
Gian Luca Pozzato
Michael Reiter
Abdolbaghi Rezazadeh
Fernando Rosa-Velardo
Gustavo Rossi
Matthias Schmalz
Helen Schonenberg
Meng Sun
Francesco Tiezzi
Vasco T. Vasconcelos

Table of Contents

On the Expressive Power of Process Interruption and Compensation
(Invited Talk) . 1

Mario Bravetti and Gianluigi Zavattaro

Modelling and Analysis of Time-Constrained Flexible Workflows with
Time Recursive ECATNets . 19

Kamel Barkaoui, Hanifa Boucheneb, and Awatef Hicheur

Contract Compliance and Choreography Conformance in the Presence
of Message Queues . 37

Mario Bravetti and Gianluigi Zavattaro

Verification of Choreographies During Execution Using the Reactive
Event Calculus . 55

Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni

RESTful Petri Net Execution . 73
Gero Decker, Alexander Lüders, Hagen Overdick,
Kai Schlichting, and Mathias Weske

Validation and Discovery of Non-deterministic Semantic e-Services 88
Luigi Dragone

Fault, Compensation and Termination in WS-BPEL 2.0 —
A Comparative Analysis . 107

Christian Eisentraut and David Spieler

Refactoring Long Running Transactions . 127
Gian Luigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto

On-The-Fly Model-Based Testing of Web Services with Jambition 143
Lars Frantzen, Maria de las Nieves Huerta, Zsolt Gere Kiss, and
Thomas Wallet

Towards a Formal Framework for Workflow Interoperability 158
Sarah D. Induruwa Fernando and Andrew C. Simpson

Security Types for Sessions and Pipelines . 175
Marija Kolundžija

Why Does My Service Have No Partners? . 191
Niels Lohmann

X Table of Contents

Proof Techniques for Adapter Generation . 207
Arjan J. Mooij and Marc Voorhoeve

Efficient Controllability Analysis of Open Nets . 224
Daniela Weinberg

Author Index . 241

On the Expressive Power of
Process Interruption and Compensation�

(Extended abstract)

Mario Bravetti and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura A.Zamboni 7, I-40127 Bologna, Italy
{bravetti,zavattar}@cs.unibo.it

Abstract. The investigation of the foundational aspects of linguistic
mechanisms for programming long running transactions (such as the
scope operator of WS-BPEL) has recently renewed the interest in pro-
cess algebraic operators that interrupt the execution of one process, re-
placing it with another one called the compensation. We investigate the
expressive power of two of such operators, the interrupt operator of CSP
and the try-catch operator for exception handling. We consider two non
Turing powerful fragments of CCS (without restriction and relabeling,
but with either replication or recursion). We show that the addition of
such operators strictly increases the expressive power of the calculi. The
calculi with replication and either interrupt or try-catch turn out to be
weakly Turing powerful (Turing Machines can be encoded but only non-
deterministically). The calculus with recursion is weakly Turing powerful
when extended with interrupt, but it is Turing complete (Turing Machine
can be modeled deterministically) when extended with try-catch.

1 Introduction

The investigation of the foundational aspects of the so-called service composition
languages (see, e.g., WS-BPEL [OAS03] and WS-CDL [W3C04]) has recently at-
tracted the attention of the concurrency theory community. In particular, one of
the main novelties of such languages is concerned with primitives for program-
ming long running transactions. These primitives permit, on the one hand, to
interrupt processes when some unexpected failure occur and, on the other hand,
to activate alternative processes responsible to compensate those activities that,
even if completed, must be undone due to the failure of other related activities.

Several recent papers propose process calculi that include operators for process
interruption and compensation. Just to mention a few, we recall StAC [BF04],
cJoin [BMM04], cCSP [BHF03], πt [BLZ03], SAGAS [BMM05], web-pi [LZ05],
ORC [MC07], SCC [BB+06], COWS [LPT07], and the Conversation Calcu-
lus [VCS08]. This huge amount of calculi, including process interruption and
compensation as first-class operators, is the pragmatic proof that traditional
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M. Bravetti and G. Zavattaro

basic process calculi (that do not include neither process interruption nor com-
pensation) are not completely adequate when one wants to perform a formal
investigation of long running transactions, or of fault and compensation han-
dling in languages for service composition.

The aim of this paper is to formally investigate the expressiveness boundary
between traditional process calculi and the mechanisms for process interruption
and compensation. Instead of performing our investigation on yet another new
calculus, we consider standard CCS [Mil89] extended with process interruption
and compensation operators taken from the tradition of either process alge-
bras or programming languages. Namely, we consider the interrupt operator of
CSP [Hoa85] and the try-catch operator for exception handling from languages
such as C++ or Java. The interrupt operator P�Q executes P until Q executes
its first action; when Q starts executing, the process P is definitely interrupted.
The try-catch operator tryP catchQ executes P , but if P performs a throw
action it is definitely interrupted and Q is executed instead.

We have found these operators particularly useful because, even if very simple,
they are expressive enough to model the typical operators for programming long
running transactions. For instance, we can consider an operator scopex(P, F, C)
corresponding to a simplified version of the scope construct of WS-BPEL. The
meaning of this operator is as follows. The main activity P is executed. In case
a fault is raised by P, its execution is interrupted and the fault handler F is
activated. If the main activity P completes, but an outer scope fails and calls for
the compensation of the scope x, the compensation handler C is executed.

If we assume that the main activity P communicates internal failure with
the action throw1 and completion with end, and the request for compensation
corresponds with the action x, we can model the behaviour of scopex(P, F, C)
with both the interrupt:

P�(f.F) | throw.f | end.x.C

and the try-catch operator:

tryP catchF | end.x.C

where the vertical bar means parallel composition.
Even if the two considered operators are apparently very similar, we prove an

important expressiveness gap between them. More precisely, we consider two non
Turing complete fragments of CCS, that we call CCS! and CCSrec, correspond-
ing to CCS without restriction and relabeling, but with replication or recursion,
respectively. We have chosen these two language because, even if not Turing com-
plete, they are expressive enough to model communicating processes (performing
input and output operations as in standard service communication) with an in-
finite behaviour described by means of the two traditional operators of process

1 We use the typical notation of process calculi: an overlined action (e.g. a) is comple-
mentary with the corresponding non-overlined one (e.g. action a), and complemen-
tary actions allows parallel processes to synchronize.

On the Expressive Power of Process Interruption and Compensation 3

algebras: recursion as in CCS [Mil89] or replication as in π-calculus [MPW92].
We extend these calculi with either the interrupt operator (obtaining the cal-
culi that we call CCS�! and CCS�rec, respectively) or the try-catch operator
(obtaining CCStc

! and CCStc
rec, respectively). We prove that the four obtained

extensions are strictly more expressive than the two original basic calculi. The
two extensions CCS�! and CCStc

! of the calculus with replication, as well as
the calculus CCS�rec with recursion and interrupt, are weakly Turing powerful.
By weakly Turing powerful, we mean that Turing Machines can be modeled but
only in a nondeterministic manner, i.e., a Turing Machine terminates if and only
if the corresponding modeling in the calculus has a terminating computation.
On the other hand, the calculus CCStc

rec with recursion and try-catch is Turing
complete as it permits also the deterministic modeling of Turing Machines.

In order to prove these results we investigate the decidability of convergence
and termination in the considered calculi. By convergence we mean the existence
of at least one terminating computation, by termination we mean that all com-
putations terminate. For the weakly Turing powerful calculi, we first prove that
convergence is undecidable showing the existence of a nondeterministic modeling
of Random Access Machines (RAMs) [Min67], a well known register based Tur-
ing complete formalism. Then, we prove that termination is decidable resorting
to the theory of well structured transition systems [FS01]. The decidability of
termination proves the impossibility to model deterministically any Turing pow-
erful formalism. On the other hand, for the Turing complete calculi we present
a deterministic modeling of RAMs.

The most significant technical contribution of this paper concerns the proof
of decidability of termination in CCS�rec. This because, while proving decidabil-
ity of termination in CCStc

! is done by resorting to the approach in [BGZ03],
proving termination in CCS�rec requires introducing an order over terms with an
unbounded nesting depth of the interrupt operators. For this reason we need to
resort to a completely different technique which is based on devising a particu-
lar transformation of terms into trees (of unbounded depth) and considering an
ordering on such trees. The particular transformation devised must be “tuned”
in such a way that the ordering obtained is: from the one hand a well quasi
ordering (and to prove this we exploit the Kruskal Tree theorem [Kru60]), from
the other hand strongly compatible with the operational semantics. Obtaining
and proving the latter result is particularly intricate and it also requires us to
slightly modify the operational semantics of the interruption operator in a ter-
mination preserving way and to technically introduce different kinds of trees on
subterms and contexts in order to interpret transitions on trees.

The paper is structured as follows. In Section 2 we define the considered
calculi. In Section 3 we show the undecidability of convergence in CCS�! and
CCStc

! (hence the same trivially holds also in CCS�rec and CCStc
rec). In Section 4

we show the undecidability of termination in CCStc
rec. Section 5 is dedicated to

showing decidability of termination for CCStc
! and CCS�rec (hence the same

trivially holds also for CCS�!). In Section 6 we draw some conclusive remarks.
Due to space limitation the proofs are omitted, the details are available in [BZ08].

4 M. Bravetti and G. Zavattaro

Table 1. The transition system for finite core CCS (symmetric rules of PAR and SUM

omitted)

α.P
α−→ P

P
α−→ P ′

P |Q α−→ P ′|Q
P

α−→ P ′

P + Q
α−→ P ′

P
α−→ P ′ Q

α−→ Q′

P |Q τ−→ P ′|Q′

2 The Calculi

We start considering the fragment of CCS [Mil89] without recursion, restriction,
and relabeling (that we call finite core CCS or simply finite CCS). After we
present the two infinite extensions with either replication or recursion, the new
interrupt operator, and finally the try-catch operator.

Definition 1 (finite core CCS). Let Name, ranged over by x, y, . . ., be a
denumerable set of channel names. The class of finite core CCS processes is
described by the following grammar:

P ::= 0 | α.P | P + P | P |P α ::= τ | x | x

The term 0 denotes the empty process while the term α.P has the ability to
perform the action α (which is either the unobservable τ action or a synchro-
nization on a channel x) and then behaves like P . Two forms of synchronization
are available, the output x or the input x. The sum construct + is used to make
a choice among the summands while parallel composition | is used to run parallel
programs. We denote the process α.0 simply with α.

For input and output actions α, i.e. α �= τ , we write α for the complementary
of α; that is, if α = x then α = x, if α = x then α = x. The channel names that
occur in P are denoted with n(P). The names in a label α, written n(α) is the
set of names in α, i.e. the empty set if α = τ or the singleton {x} if α is either
x or x.

Table 1 contains the set of the transition rules for finite core CCS.

Definition 2 (CCS!). The class of CCS! processes is defined by adding the
production P ::= !α.P to the grammar of Definition 1.

The transition rule for replication is

!α.P
α−→ P |!α.P

We consider a guarded version of replication in which the replicated process is
in prefix form. We make this simplification in order to have a finitely branching

On the Expressive Power of Process Interruption and Compensation 5

transition system, that allows us to apply directly the theory of well structured
transition system in order to prove the decidability of termination. Neverthe-
less, the proof discussed in Section 5 can be extended also to general replication
exploiting an auxiliary transition system which is finitely branching and termi-
nation equivalent to the initial transition system. This transition system can be
obtained using standard techniques (see, e.g., [BGZ03, BGZ08]).

Definition 3 (CCSrec). We assume a denumerable set of process variables,
ranged over by X. The class of CCSrec processes is defined by adding the pro-
ductions P ::= X | recX.P to the grammar of Definition 1. In the process
recX.P , recX is a binder for the process variable X and P is the scope of the
binder. We consider (weakly) guarded recursion, i.e., in the process recX.P each
occurrence of X (which is free in P) occurs inside a subprocess of the form α.Q.

The transition rule for recursion is

P{recX.P/X} α−→ P ′

recX.P
α−→ P ′

where P{recX.P/X} denotes the process obtained by substituting recX.P for
each free occurrence of X in P , i.e. each occurrence of X which is not inside the
scope of a binder recX . Note that CCS! is equivalent to a fragment of CCSrec. In
fact, the replication operator !α.P of CCS! is equivalent to the recursive process
recX.

(
α.(P |X)

)
.

We now introduce the extensions with the new process interruption operator.

Definition 4 (CCS�! and CCS�rec). The class of CCS�! and CCS�rec processes
is defined by adding the production P ::= P�P to the grammars of Definition 2
and Definition 3, respectively.

The transition rules for the interrupt operator are

P
α−→ P ′

P�Q
α−→ P ′�Q

Q
α−→ Q′

P�Q
α−→ Q′

We complete the list of definitions of the considered calculi presenting the
extensions with the new try-catch operator.

Definition 5 (CCStc
! and CCStc

rec). The class of CCStc
! and CCStc

rec processes
is defined by adding the productions P ::= tryP catchP and α ::= throw
to the grammars of Definition 2 and Definition 3, respectively. The new action
throw is used to model the raising of an exception.

The transition rules for the try-catch operator are

P
α−→ P ′ α �= throw

tryP catchQ
α−→ tryP ′ catchQ

P
throw−→ P ′

tryP catchQ
τ−→ Q

6 M. Bravetti and G. Zavattaro

We use
∏
i∈I Pi to denote the parallel composition of the indexed processes

Pi, while we use
∏
n P to denote the parallel composition of n instances of the

process P (if n = 0 then
∏
n P denotes the empty process 0).

In the following we will consider only closed processes, i.e. processes without
free occurrences of process variables. Given a closed process Q, its internal runs
Q −→ Q1 −→ Q2 −→ . . . are given by its reduction steps, (denoted with −→),
i.e. by those transitions −→ that the process can perform in isolation, indepen-
dently of the context. The internal transitions −→ correspond to the transitions
labeled with τ , i.e. P −→ P ′ iff P

τ−→ P ′. We denote with −→+ the transitive
closure of −→, while −→∗ is the reflexive and transitive closure of −→.

A process Q is dead if there exists no Q′ such that Q −→ Q′. We say that
a process P converges if there exists P ′ s.t. P −→∗ P ′ and P ′ is dead. We say
that P terminates if all its internal runs terminate, i.e. the process P cannot
give rise to an infinite computation: formally, P terminates iff there exists no
family {Pi}i∈ IN, s.t. P0 = P and Pj −→ Pj+1 for any j. Observe that process
termination implies process convergence while the vice versa does not hold.

3 Undecidability of Convergence in CCS�
! and CCStc

!

We prove that CCS�! and CCStc
! are powerful enough to model, at least in a

nondeterministic way, any Random Access Machine [SS63] (RAM), a well known
register based Turing powerful formalism.

A RAM (denoted in the following with R) is a computational model composed
of a finite set of registers r1, . . . , rn, that can hold arbitrary large natural num-
bers, and by a program composed by indexed instructions (1 : I1), . . . , (m : Im),
that is a sequence of simple numbered instructions, like arithmetical operations
(on the contents of registers) or conditional jumps. An internal state of a RAM
is given by (i, c1, . . . , cn) where i is the program counter indicating the next
instruction to be executed, and c1, . . . , cn are the current contents of the regis-
ters r1, . . . , rn, respectively. Given a configuration (i, c1, . . . , cn), its computation
proceeds by executing the instructions in sequence, unless a jump instruction is
encountered. The execution stops when an instruction number higher than the
length of the program is reached. Note that the computation of the RAM pro-
ceeds deterministically (it does not exhibit non-deterministic behaviors).

Without loss of generality, we assume that the registers contain the value 0
at the beginning and at the end of the computation. In other words, the initial
configuration is (1, 0, . . . , 0) and, if the RAM terminates, the final configuration
is (i, 0, . . . , 0) with i > m (i.e. the instruction Ii is undefined). More formally,
we indicate by (i, c1, . . . , cn) →R (i′, c′1, . . . , c

′
n) the fact that the configuration

of the RAM R changes from (i, c1, . . . , cn) to (i′, c′1, . . . , c
′
n) after the execution

of the i-th instruction (→∗R is the reflexive and transitive closure of →R).
In [Min67] it is shown that the following two instructions are sufficient to

model every recursive function:

On the Expressive Power of Process Interruption and Compensation 7

– (i : Succ(rj)): adds 1 to the contents of register rj ;
– (i : DecJump(rj , s)): if the contents of register rj is not zero, then decreases

it by 1 and go to the next instruction, otherwise jumps to instruction s.

Our encoding is nondeterministic because it introduces computations which do
not follow the expected behavior of the modeled RAM. However, all these com-
putations are infinite. This ensures that, given a RAM, its modeling has a ter-
minating computation if and only if the RAM terminates. This proves that
convergence is undecidable.

In this section and in the next one devoted to the proof of the undecidability
results, we reason up to a structural congruence ≡ in order to rearrange the
order of parallel composed processes and to abstract away from the terminated
processes 0. We define ≡ as the least congruence relation satisfying the usual
axioms P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R, and P |0 ≡ P .

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m :
Im). We model separately registers and instructions.

The program counter is modeled with a message pi indicating that the i-th
instruction is the next to be executed. For each 1 ≤ i ≤ m, we model the i-th
instruction (i : Ii) of R with a process which is guarded by an input operation
pi. Once activated, the instruction performs its operation on the registers and
then updates the program counter by producing pi+1 (or ps in case of jump).

Formally, for any 1 ≤ i ≤ m, the instruction (i : Ii) is modeled by [[(i : Ii)]]
which is a shorthand notation for the following processes:

[[(i : Ii)]] : !pi.(incj .loop | pi+1) if Ii = Succ(rj)

[[(i : Ii)]] : !pi.
(

τ.(loop | decj .loop.loop.pi+1) +
τ.zeroj .ack.ps

)
if Ii = DecJump(rj , s)

It is worth noting that every time an increment operation is performed, a process
loop is spawned. This process will be removed by a corresponding decrement
operation. The modeling of the DecJump(rj, s) instruction internally decides
whether to decrement or to test for zero the register.

In case of decrement, if the register is empty the instruction deadlocks be-
cause the register cannot be actually decremented. Nevertheless, before trying
to decrement the register a process loop is generated. As we will discuss in the
following, the presence of this process prevents the encoding from converging.
If the decrement operation is actually executed, two instances of process loop
are removed, one instance corresponding to the one produced before the execu-
tion of the decrement, and one instance corresponding to a previous increment
operation.

In case of test for zero, the corresponding register will have to be modified as
we will discuss below. As this modification on the register requires the execution
of several actions, the instruction waits for an acknowledgment before producing
the new program counter ps.

We now show how to model the registers using either the interruption or
the try-catch operators. In both cases we exploit the following idea. Every time

8 M. Bravetti and G. Zavattaro

the register rj is incremented, a decj process is spawned which permits the
subsequent execution of a corresponding decrement operation. In case of test for
zero on the register rj , we will exploit either the interruption or the try-catch
operators in order to remove all the active processes decj , thus resetting the
register. If the register is not empty when it is reset, the computation of the
encoding does not reproduce the RAM computation any longer. Nevertheless,
such “wrong” computation surely does not terminate, thus we can conclude that
we faithfully model at least the terminating computations. Divergence in case
of “wrong” reset is guaranteed by the fact that if the register is not empty,
k instances of decj processes are removed with k > 0, and k instances of the
process loop (previously produced by the corresponding k increment operations)
will never be removed.

As discussed above, the presence of loop processes prevents the encoding from
converging. This is guaranteed by considering, e.g., the following divergent process

LOOP : loop.(l | !l.l)

Formally, we model each register rj , when it contains cj , with one of the
following processes denoted with [[rj = cj]]� and [[rj = cj]]tc:

[[rj = cj]]� :
(
!incj .decj |

∏
cj

decj
)
�
(
zeroj .nrj .ack

)
[[rj = cj]]tc : try

(
!incj.decj |

∏
cj

decj | zeroj .throw
)
catch

(
nrj .ack

)
It is worth observing that, when a test for zero is performed on the register rj ,
an output operation nrj is executed before sending the acknowledgment to the
corresponding instruction. This action is used to activate a new instance of the
process [[rj = 0]], as the process modeling the register rj is removed by the execu-
tion of either the interruption or the try-catch operators. The activation of new
instances of the process modeling the registers is obtained simply considering,
for each register rj , (one of) the two following processes

!nrj .[[rj = 0]]� !nrj .[[rj = 0]]tc

We are now able to define formally our encoding of RAMs as well as its
properties.

Definition 6. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)
and registers r1, . . . , rn. Let also Γ be either � or tc. Given the configuration
(i, c1, . . . , cn) of R we define

[[(i, c1, . . . , cn)]]ΓR =
pi | [[(1 : I1)]] | . . . | [[(m : Im)]] | ∏∑

n
j=1 cj

loop | LOOP |
[[r1 = c1]]Γ | . . . | [[rn = cn]]Γ | !nr1.[[r1 = 0]]Γ | . . . | !nrn.[[rn = 0]]Γ

the encoding of the RAM R in either CCS�! or CCStc
! (taking Γ = � or

Γ = tc, respectively). The processes [[(i : Ii)]], LOOP , and [[rj = cj]]Γ are as
defined above.

On the Expressive Power of Process Interruption and Compensation 9

The following proposition states that every step of computation of a RAM can
be mimicked by the corresponding encoding. On the other hand, the encoding
could introduce additional computations. The proposition also states that all
these added computations are infinite.

Proposition 1. Let R be a RAM with program instructions (1 : I1), . . . , (m :
Im) and registers r1, . . . , rn. Let also Γ be either � or tc. Given a configuration
(i, c1, . . . , cn) of R, we have that, if i > m and cj = 0 for each 1 ≤ j ≤ n, then
[[(i, c1, . . . , cn)]]ΓR is a dead process, otherwise:

1. if (i, c1, . . . , cn) →R (i′, c′1, . . . , c′n) then we have [[(i, c1, . . . , cn)]]ΓR →+ [[(i′, c′1,
. . . , c′n)]]ΓR

2. if [[(i, c1, . . . , cn)]]ΓR −→ Q1 −→ Q2 −→ · · · −→ Ql is a, possibly zero-length,
internal run of [[(i, c1, . . . , cn)]]ΓR then one of the following holds:
– there exists k, with 1 ≤ k ≤ l, such that Qk ≡ [[(i′, c′1, . . . , c

′
n)]]ΓR, with

(i, c1, . . . , cn)→R (i′, c′1, . . . , c′n);
– Ql −→+ [[(i′, c′1, . . . , c

′
n)]]ΓR, with (i, c1, . . . , cn)→R (i′, c′1, . . . , c

′
n);

– Ql does not converge.

Corollary 1. Let R be a RAM. We have that the RAM R terminates if and
only if [[(1, 0, . . . , 0)]]ΓR converges (for both Γ = � and Γ = tc).

This proves that convergence is undecidable in both CCS�! and CCStc
! . As

replication is a particular case of recursion, we have that the same undecidability
result holds also for CCS�rec and CCStc

rec.

4 Undecidability of Termination in CCStc
rec

In this section we prove that also termination is undecidable in CCStc
rec. This

result follows from the existence of a deterministic encoding of RAMs satisfying
the following stronger soundness property: a RAM terminates if and only if the
corresponding encoding terminates.

The basic idea of the new modeling is to represent the number cj , stored in
the register rj , with a process composed of cj nested try-catch operators. This
approach can be adopted in CCStc

rec because standard recursion admits recursion
in depth, while it was not applicable in CCStc

! because replication supports only
recursion in width. By recursion in width we mean that the recursively defined
term can expand only in parallel as, for instance, in recX.(P |X) (correspond-
ing to the replicated process !P) where the variable X is an operand of the
parallel composition operator. By recursion in depth, we mean that the recur-
sively defined term expands also under other operators such as, for instance, in
recX.(try (P |X) catchQ) (corresponding to an unbounded nesting of try-catch
operators).

Let R be a RAM with registers r1, . . . , rn, and instructions (1 : I1), . . . , (m :
Im). We start presenting the modeling of the instructions which is similar to the
encoding presented in the previous section. Note that here the assumption on

10 M. Bravetti and G. Zavattaro

registers to all have value 0 in a terminating configuration is not needed. We
encode each instruction (i : Ii) with the process [[(i : Ii)]], which is a shorthand
for the following process

[[(i : Ii)]] : recX.pi.incj .pi+1.X if Ii = Succ(rj)
[[(i : Ii)]] : recX.pi.(zeroj .ps.X + decj .ack.pi+1.X) if Ii = DecJump(rj , s)

As in the previous section, the program counter is modeled by the process pi
which indicates that the next instruction to execute is (i : Ii). The process
[[(i : Ii)]] simply consumes the program counter process, then updates the reg-
isters (resp. performs a test for zero), and finally produces the new program
counter process pi+1 (resp. ps). Notice that in the case of a decrement opera-
tion, the instruction process waits for an acknowledgment before producing the
new program counter process. This is necessary because the register decrement
requires the execution of several operations.

The register rj , that we assume initially empty, is modeled by the process
[[rj = 0]] which is a shorthand for the following process (to simplify the notation
we use also the shorthand Rj defined below)

[[rj = 0]] : recX.
(
zeroj .X + incj.tryRj catch (ack.X)

)
Rj : recY.

(
decj .throw + incj.tryY catch (ack.Y)

)
The process [[rj = 0]] is able to react either to test for zero requests or increment
operations. In the case of increment requests, a try-catch operator is activated.
Inside this operator a recursive process is installed which reacts to either incre-
ment or decrement requests. In the case of an increment, an additional try-catch
operator is activated (thus increasing the number of nested try-catch). In the case
of a decrement, a failure is raised which removes the active try-catch operator
(thus decreasing the number of nested try-catch) and emits the acknowledgment
required by the instruction process. When the register returns to be empty, the
outer recursion reactivates the initial behavior.

Formally, we have that the register rj with contents cj > 0 is modeled by the
following process composed of the nesting of cj try-catch operators

[[rj = cj]] : try(
try(

· · ·
tryRj catch (ack.Rj)
· · ·

)
catch (ack.Rj)

)
catch (ack.[[rj = 0]])

where Rj is as defined above. We are now able to define formally the encoding
of RAMs in CCStc

rec.

Definition 7. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)
and registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn) we define with

On the Expressive Power of Process Interruption and Compensation 11

[[(i, c1, . . . , cn)]]R = pi | [[(1 : I1)]] | . . . | [[(m : Im)]] | [[r1 = c1]] | . . . | [[rn = cn]]

the encoding of the RAM R in CCStc
rec.

The new encoding faithfully reproduces the behavior of a RAM as stated by
the following proposition. In the following Proposition we use the notion of
deterministic internal run defined as follows: an internal run P0 −→ P1 −→
. . . −→ Pl is deterministic if for every process Pi, with i < l, Pi+1 is the unique
process Q such that Pi −→ Q.

Proposition 2. Let R be a RAM with program instructions (1 : I1), . . . , (m :
Im) and registers r1, . . . , rn. Given a configuration (i, c1, . . . , cn) of R, we have
that, if i > m then [[(i, c1, . . . , cn)]]R is a dead process, otherwise:

1. if (i, c1, . . . , cn) →R (i′, c′1, . . . , c′n) then we have [[(i, c1, . . . , cn)]]R →+ [[(i′, c′1,
. . . , c′n)]]R

2. there exists a non-zero length deterministic internal run [[(i, c1, . . . , cn)]]ΓR
−→ Q1 −→ Q2 −→ · · · −→ [[(i′, c′1, . . . , c

′
n)]]ΓR such that (i, c1, . . . , cn) →R

(i′, c′1, . . . , c′n).

Corollary 2. Let R be a RAM. We have that the RAM R terminates if and
only if [[(1, 0, . . . , 0)]]R terminates.

This proves that termination is undecidable in CCStc
rec.

5 Decidability of Termination in CCStc
! and CCS�

rec

In the RAM encoding presented in the previous section natural numbers are
represented by chains of nested try-catch operators, that are constructed by
exploiting recursion. In this section we prove that both recursion and try-catch
are strictly necessary. In fact, if we consider replication instead of recursion or
the interrupt operator instead of the try-catch operator, termination turns out
to be decidable.

These results are based on the theory of well-structured transition systems
[FS01]. We start recalling some basic definitions and results concerning well-
structured transition systems, that will be used in the following.

A quasi-ordering, also known as pre-order, is a reflexive and transitive relation.

Definition 8. A well-quasi-ordering (wqo) is a quasi-ordering ≤ over a set S
such that, for any infinite sequence s0, s1, s2, . . . in S, there exist indexes i < j
such that si ≤ sj.

Transition systems can be formally defined as follows.

Definition 9. A transition system is a structure TS = (S,→), where S is a set
of states and →⊆ S × S is a set of transitions. We write Succ(s) to denote the
set {s′ ∈ S | s → s′} of immediate successors of S. TS is finitely branching if
all Succ(s) are finite.

12 M. Bravetti and G. Zavattaro

Well-structured transition system, defined as follows, provide the key tool to
decide properties of computations.

Definition 10. A well-structured transition system with strong compatibility
is a transition system TS = (S,→), equipped with a quasi-ordering ≤ on S, such
that the two following conditions hold:

1. well-quasi-ordering: ≤ is a well-quasi-ordering, and
2. strong compatibility: ≤ is (upward) compatible with →, i.e., for all s1 ≤

t1 and all transitions s1 → s2, there exists a state t2 such that t1 → t2 and
s2 ≤ t2.

In the following we use the notation (S,→,≤) for transition systems equipped
with a quasi-ordering ≤.

The following theorem (a special case of a result in [FS01]) will be used to obtain
our decidability results.

Theorem 1. Let (S,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤ and computable Succ. The exis-
tence of an infinite computation starting from a state s ∈ S is decidable.

The proof of decidability of termination in CCS�rec is not done on the origi-
nal transition system, but on a termination equivalent one. The new transition
system does not eliminate interrupt operators during the computation; in this
way, the nesting of interrupt operators can only grow and do not shrink. As we
will see, this transformation will be needed for proving that the ordering that
we consider on processes is strongly compatible with the operational seman-
tics. Formally, we define the new transition system α	−→ for CCS�rec considering
the transition rules of Definition 3 (where α	−→ is substituted for α−→) plus the
following rules

P
α	−→ P ′

P�Q
α	−→ P ′�Q

Q
α	−→ Q′

P�Q
α	−→ Q′�0

Notice that the first of the above rules is as in Definition 4, while the second one
is different because it does not remove the � operator.

As done for the standard transition system, we assume that the reductions
	−→ of the new semantics corresponds to the τ–labeled transitions τ	−→. Also
for the new semantics, we say that a process P terminates if and only if all
its computations are finite, i.e. it cannot give rise to an infinite sequence of
reductions 	−→.

Proposition 3. Let P ∈ CCS�rec. Then P terminates according to the seman-
tics −→ iff P terminates according to the new semantics 	−→.

We now separate in two subsections the proofs of decidability of termination in
CCStc

! and in CCS�rec.

On the Expressive Power of Process Interruption and Compensation 13

5.1 Termination Is Decidable in (CCStc
! ,−→)

The proof for CCStc
! is just a rephrasal of the proof of decidability of termination

in CCS without relabeling and with replication instead of recursion reported
in [BGZ08].

We define for (CCStc
! ,−→) a quasi-ordering on processes which turns out to

be a well-quasi-ordering compatible with −→. Thus, exploiting Theorem 1 we
show that termination is decidable.

Definition 11. Let P ∈ CCStc
! . With Deriv(P) we denote the set of processes

reachable from P with a sequence of reduction steps:

Deriv(P) = {Q | P −→ ∗Q}

To define the wqo on processes we need the following structural congruence.

Definition 12. We define ≡ as the least congruence relation satisfying the fol-
lowing axioms: P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R P |0 ≡ P

Now we are ready to define the quasi-ordering on processes:

Definition 13. Let P, Q ∈ CCStc
! . We write P
 Q iff there exist n, P ′, R,

P1, . . . , Pn, Q1, . . . , Qn, S1, . . . , Sn such that P ≡ P ′|
∏n
i=1 tryPi catchSi,

Q ≡ P ′|R|∏n
i=1 tryQi catchSi, and Pi
 Qi for i = 1, . . . , n.

Theorem 2. Let P ∈ CCStc
! . Then the transition system (Deriv(P),−→,
) is

a finitely branching well-structured transition system with strong compatibility,
decidable
 and computable Succ.

Corollary 3. Let P ∈ CCStc
! . The termination of process P is decidable.

5.2 Termination Is Decidable in (CCS�
rec, �−→)

According to the ordering defined in Definition 13, we have that P
 Q if Q
has the same structure of nesting of try-catch operators and it is such that in
each point of this nesting Q contains at least the same processes (plus some
other processes in parallel). This is a well-quasi-ordering in the calculus with
replication because, given P , it is possible to compute an upper bound to the
number of nesting in any process in Deriv(P). In the calculus with recursion
this upper bound does not exist as recursion permits to generate nesting of un-
bounded depth (this e.g. is used in the deterministic RAM modeling of Section 4).
For this reason, we need to move to a different ordering inspired by the ordering
on trees used by Kruskal in [Kru60]. This allows us to use the Kruskal Tree
theorem that states that the trees defined on a well quasi ordering is a well quasi
ordering.

The remainder of this section is devoted to the definition of how to associate
trees to processes of CCS�rec, and how to extract from these trees an ordering
for (CCS�rec, 	−→) which turns out to be a wqo.

14 M. Bravetti and G. Zavattaro

We take E to be the set of (open) terms of CCS�rec and P to be the set of
CCS�rec processes, i.e. closed terms. Pseq is the subset of P of terms P such that
either P = 0 or P = α.P1 or P = P1 + P2 or P = recX.P1, with P1, P2 ∈ E . Let
Pint = {P�Q | P, Q ∈ P}.

Given a set E, we denote with E∗ the set of finite sequences of elements in
E. We use “;” as a separator for elements of a set E when denoting a sequence
w ∈ E∗, ε to denote the empty sequence and len(w) to denote the length of a
sequence w. Finally, we use wi do denote the i − th element in the sequence w
(starting from 1) and e ∈ w to stand for e ∈ {wi | 1 ≤ i ≤ len(w)}.

Definition 14. Let P ∈ P. We define the flattened parallel components of P ,
FPAR(P), as the sequence over Pseq ∪ Pint given by

FPAR(P1|P2) = FPAR(P1); FPAR(P2)
FPAR(P) = P if P ∈ Pseq ∪ Pint

Given a sequence w ∈ E∗ we define the sequence w′ ∈ E′∗ obtained by filtering
w with respect to E′ ⊆ E as follows. For 1 ≤ i ≤ len(k), w′i = wki , where
k ∈ {1, . . . , len(w)}∗ is such that k is strictly increasing, i.e. j′ > j implies
kj′ > kj , and, for all h, wh ∈ E′ if and only if h ∈ k. In the following we call
FINT (P) the sequence obtained by filtering FPAR(P) with respect to Pint and
FSEQ(P) the sequence obtained by filtering FPAR(P) with respect to Pseq.

In the following we map processes into ordered trees (with both a left to right
ordering of children at every node and the usual son to father ordering).

Definition 15. A tree t over a set E is a partial function from IN∗ to E such
that dom(t) is finite, is closed with respect to sequence prefixing and is such that
�n; m ∈ dom(t) and m′ ≤ m, with m′ ∈ IN, implies �n; m′ ∈ dom(t).

Example 1. (ε, l) ∈ t denotes that the root of the tree has label l ∈ E; (1; 2, l) ∈ t
denotes that the second son of the first son of the root of the tree t has label
l ∈ E.

Let Print = {�Q | Q ∈ P} be a set representing compensations.

Definition 16. Let P ∈ P. We define the tree of P , TREE(P), as the minimal
tree TREE(P) over P∗seq∪Print (and minimal auxiliary tree TREEodd(P ′) over
P∗seq ∪ Print, with P ′ ∈ Pint) satisfying

(ε, FSEQ(P)) ∈ TREE(P)
(�n, l) ∈ TREEodd(FINT (P)i) implies (i;�n, l) ∈ TREE(P)

(ε,�Q) ∈ TREEodd(P ′�Q)
(�n, l) ∈ TREE(P ′) implies (1;�n, l) ∈ TREEodd(P ′�Q)

Example 2. The tree of the process a + b|
(
(recX.(a.X |c))�Q

)
|c|((a|c)�S) for

some processes Q and S is {(ε, a + b; c), (1,�Q), (1; 1, recX.(a.X |c)), (2,�S),
(2; 1, a; c)}.

On the Expressive Power of Process Interruption and Compensation 15

In the following, we define the ordering between processes by resorting to the
ordering on trees used in [Kru60] applied to the particular trees obtained from
processes by our transformation procedure. In particular, in order to do this
we introduce the notion of injective function that strictly preserves order inside
trees: a possible formal way to express homeomorphic embedding between trees,
used in the Kruskal’s theorem [Kru60], that we take from [Sim85].

Let t be a tree. We take ≤t to be the ancestor pre-order relation inside t,
defined by: �n ≤t �m iff �m is a prefix �n (or �m = �n). Moreover, we take ∧t to be
the minimal common ancestor of a pair of nodes, i.e. �n1 ∧t �n2 = min{�m| �n1 ≤t
�m ∧ �n2 ≤t �m}.

Definition 17. We say that an injective function ϕ from dom(t) to dom(t′)
strictly preserves order inside trees iff for every �n, �m ∈ dom(t) we have:

– �n ≤t �m implies ϕ(�n) ≤t′ ϕ(�m)
– ϕ(�n ∧t �m) = ϕ(�n) ∧t′ ϕ(�m)

Definition 18. Let P, Q ∈ P. P
 Q iff there exists an injective function ϕ
from dom(TREE(P)) to dom(TREE(Q)) such that ϕ strictly preserves order
inside trees and for every �n ∈ dom(ϕ):

– either there exists R ∈ P such that TREE(P)(�n) = TREE(Q)(ϕ(�n)) = �R
– or TREE(P)(�n), TREE(Q)(ϕ(�n)) ∈ P∗seq and, if len(TREE(P)(�n)) > 0,

there exists an injective function f from {1, . . . , len(TREE(P)(�n))} to {1,
. . . , len(TREE(Q)(ϕ(�n)))} such that for every i ∈ dom(f):
TREE(P)(�n)i = TREE(Q)(ϕ(�n))f(i).

Notice that
 is a quasi-ordering in that it is obviously reflexive and it is imme-
diate to verify, taking into account the two conditions for the injective function
in the definition above, that it is transitive.

We redefine on the transition system (CCS�rec, 	−→) the function Deriv(P)
that associates to a process the set of its derivatives.

Definition 19. Let P ∈ CCS�rec. With Deriv(P) we denote the set of processes
reachable from P with a sequence of reduction steps:

Deriv(P) = {Q | P 	−→∗ Q}

We are now ready to state our main result, that can be proved by contemporane-
ously exploiting Higman’s Theorem on sequences [Hig52] and Kruskal’s Theorem
on trees [Kru60].

Theorem 3. Let P ∈ CCS�rec. Then the transition system (Deriv(P), 	−→,
)
is a finitely branching well-structured transition system with strong compatibility,
decidable
 and computable Succ.

Corollary 4. Let P ∈ CCS�rec. The termination of process P is decidable.

As replication is a particular case of recursion, we have that the same decidability
result holds also for CCS�! .

16 M. Bravetti and G. Zavattaro

6 Conclusion and Related Work

Following a recent trend of research devoted to the investigation of the founda-
tional properties of languages for service oriented computing by means of pro-
cess calculi including mechanisms for process interruption and compensation (see,
e.g., [BF04, BMM04, BHF03, BLZ03, BMM05, LZ05, MC07, BB+06, LPT07,
VCS08]), we have investigated the expressive power of two basic operators for
process interruption and compensation taken from the tradition of either process
algebras or programming languages. Namely, we have considered the interrupt
operator of CSP [Hoa85] and the try-catch construct of languages such as C++
or Java.

We have formalized an expressiveness gap between the traditional input-
output communication primitives of process algebras and the considered
operators. Formally, we have proved that CCS [Mil89] without restriction and
relabeling, and with replication instead of recursion (which is not Turing com-
plete) turns out to be weakly Turing powerful when extended with the considered
operators. On the other hand, the same fragment of CCS with recursion instead
of replication (which is still non Turing complete) turns out to be weakly Turing
powerful when extended with the interrupt operator, while it is Turing complete
when extended with try-catch.

It is worth to compare the results proved in this paper with similar results
presented in [BGZ03]. In that paper, the interplay between replication/recursion
and restriction is studied: a fragment of CCS with restriction and replication is
proved to be weakly Turing powerful, while the corresponding fragment with
recursion is proved to be Turing complete. This result is similar to what we
have proved about the interplay between replication/recursion and the try-catch
operator. This proves a strong connection between restriction and try-catch, at
least as far as the computational power is concerned. Intuitively, this follows
from the fact that, similarly to restriction, the try-catch operator defines a new
scope for the special throw action which is bound to a specific exception handler.
On the contrary, the interrupt operator does not have the same computational
power. In fact, the calculus with recursion and interrupt is only weakly Turing
powerful. This follows from the fact that this operator does not provide a similar
binding mechanism between the interrupt signals and the interruptible processes.

It is worth to compare our criterion for the evaluation of the expressive power
with the criterion used by Palamidessi in [Pal03] to discriminate the expressive
power of the synchronous and the asynchronous π-calculus. Namely, in that pa-
per, it is proved that there exists no modular embedding of the synchronous into
the asynchronous π-calculus that preserves any reasonable semantics. When we
prove that termination (resp. convergence) is undecidable in one calculus while
it is not in another one, we also prove that there exists no encoding (thus also
no modular embedding) of the former calculus into the latter that preserves any
semantics sensible to termination (resp. convergence). By semantics sensible to
some property, we mean any semantics that distinguishes one process that satis-
fies the property from one process that does not. If we assume that the termina-
tion of one computation is observable (as done for instance in process calculi

On the Expressive Power of Process Interruption and Compensation 17

with explicit termination [BBR08]), we have that any reasonable semantics
(according to the notion of reasonable semantics presented in [Pal03]) is sen-
sible to both termination and convergence.

We conclude by mentioning the investigation of the expressive power of the
disrupt operator (similar to our interruption operator) done by Baeten and
Bergstra in a technical report [BB00]. In that paper, a different notion of ex-
pressive power is considered: a calculus is more expressive than another one if
it generates a larger set of transition systems. We consider a stronger notion of
expressive power: a calculus is more expressive than another one if it supports
a more faithful modeling of Turing complete formalisms.

References

[BBR08] Baeten, J.C.M., Basten, T., Reniers, M.A.: Process algebra (equational the-
ories of communicating processes. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge (2008)

[BB00] Baeten, J.C.M., Bergstra, J.: Mode transfer in process algebra. Report CSR
00-01, Technische Universiteit Eindhoven. This paper is an expanded and
revised version of J. Bergstra, A mode transfer operator in process algebra,
Report P8808, Programming Research Group, University of Amsterdam
(2000),
http://alexandria.tue.nl/extra1/wskrap/publichtml/200010731.pdf

[BLZ03] Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long running trans-
actions. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003.
LNCS, vol. 2884, pp. 124–138. Springer, Heidelberg (2003)

[BB+06] Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M.,
Martins, F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T.,
Zavattaro, G.: SCC: A Service Centered Calculus. In: Bravetti, M., Núñez,
M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57.
Springer, Heidelberg (2006)

[BZ08] Bravetti, M., Zavattaro, G.: On the Expressive Power of Process Interrup-
tion and Compensation. Technical report,
http://cs.unibo.it/~zavattar/papers.html

[BMM04] Bruni, R., Melgratti, H.C., Montanari, U.: Nested Commits for Mobile Cal-
culi: Extending Join. In: TCS 2004: IFIP 18th World Computer Congress,
TC1 3rd International Conference on Theoretical Computer Science,
pp. 563–576. Kluwer, Dordrecht (2004)

[BMM05] Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for
compensations in flow composition languages. In: POPL 2005: Proceed-
ings of the 32nd Symposium on Principles of Programming Languages,
pp. 209–220. ACM Press, New York (2005)

[BGZ03] Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. Recursive Defini-
tions in Channel Based Calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144.
Springer, Heidelberg (2003)

[BGZ08] Busi, N., Gabbrielli, M., Zavattaro, G.: On the Expressive Power of Re-
cursion, Replication, and Iteration in Process Calculi. Technical report,
http://cs.unibo.it/~zavattar/papers.html Extended version of BGZ03

18 M. Bravetti and G. Zavattaro

[BF04] Butler, M., Ferreira, C.: An operational semantics for StAC, a language for
modelling long-running business transactions. In: De Nicola, R., Ferrari,
G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp.
87–104. Springer, Heidelberg (2004)

[BHF03] Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running
transactions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Com-
municating Sequential Processes. LNCS, vol. 3525, pp. 133–150. Springer,
Heidelberg (2005)

[FS01] Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Every-
where! Theoretical Computer Science 256, 63–92 (2001)

[Hig52] Higman, G.: Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. 2, 236–366 (1952)

[Hoa85] Hoare, T.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

[Kru60] Kruskal, J.B.: Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi’s
Conjecture. Transactions of the American Mathematical Society 95(2),
210–225 (1960)

[LZ05] Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V.
(ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg
(2005)

[LPT07] Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web
Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47.
Springer, Heidelberg (2007)

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood
Cliffs (1989)

[MPW92] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I
+ II. Information and Computation 100(1), 1–77 (1992)

[Min67] Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall,
Englewood Cliffs (1967)

[MC07] Misra, J., Cook, W.R.: Computation Orchestration. Journal of Software
and System Modeling 6(1), 83–110 (2007)

[OAS03] OASIS. WS-BPEL: Web Services Business Process Execution Language
Version 2.0. Technical report, OASIS (2003)

[Pal03] Palamidessi, C.: Comparing the Expressive Power of the Synchronous and
the Asynchronous pi-calculus. In: Mathematical Structures in Computer
Science, vol. 13(5), pp. 685–719. Cambridge University Press, Cambridge
(2003); A short version of this paper appeared in POPL 1997 (1997)

[SS63] Shepherdson, J.C., Sturgis, J.E.: Computability of recursive functions.
Journal of the ACM 10, 217–255 (1963)

[Sim85] Simpson, S.G.: Nonprovability of certain combinatorial properties of finite
trees. In: Harvey Friedman’s Research on the Foundations of Mathematics,
pp. 87–117. North-Holland, Amsterdam (1985)

[VCS08] Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model
of Service-Oriented Computation. In: Drossopoulou, S. (ed.) ESOP 2008.
LNCS, vol. 4960, pp. 269–283. Springer, Heidelberg (2008)

[W3C04] W3C. WS-CDL: Web Services Choreography Description Language. Tech-
nical report, W3C (2004)

Modelling and Analysis of
Time-Constrained Flexible Workflows with

Time Recursive ECATNets

Kamel Barkaoui1, Hanifa Boucheneb2, and Awatef Hicheur1

1 CEDRIC-CNAM, 292 Rue Saint-Martin, Paris 75003, France
{barkaoui,hicheur}@cnam.fr

2 VeriForm-Ecole Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville,
Montral, Québec, Canada, H3C 3A7

hanifa.boucheneb@polymtl.ca

Abstract. We present, in this paper, the Time Recursive ECATNets (T-
RECATNets) formalism for the modelling and analysis of time-constrai-
ned reconfigurable workflows, which are preponderant in the field of Web
services. In a second step, we propose a method for building a specific
state class graph in terms of rewrite logic. Therefore, one can verify
some properties with respect to time constraints using model checking
techniques.

Keywords: Time Petri nets, Recursive Petri nets, Time-constrained
Flexible workflows, Rewriting logic.

1 Introduction

Workflow is the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules. Workflow management is con-
cerned with the coordination, control and communication of work for improving
the operational efficiency of business processes [2]. The current trend of business
globalisation brings new challenges regarding the flexibility of business processes
[1],[11], [14]. On the one hand, the execution of such processes is distributed over
multiple workflow engines (within the same organization or over multiple organ-
isations). On the other hand, the structures of these collaborative processes are
extremely dynamic, driven by external conditions, changing user requirements
and business partners. Indeed, a business partnership is often created dynami-
cally and maintained temporary only for the realization of the required business
goal [16]. That’s why we need a formalism permitting a faithful description
of these flexible and collaborative workflow processes. Moreover, a successful
implementation of a workflow system must handle with the temporal specifi-
cations and constraints [18]. In real world situations, where processes are both
automatic and human, the duration of some tasks can be unpredictable and non-
deterministic. This execution time can be estimated by a time interval giving the

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 19–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 K. Barkaoui, H. Boucheneb, and A. Hicheur

minimum and maximum durations or by using a stochastic method (arbitrary
time distribution). The objective of this paper is to cope with analysis of time-
constrained and flexible workflows. The proposed model, called Time Recursive
ECATNets (T-RECATNets for short), inherits all modelling abilities of the Re-
cursive ECATNets (RECATNets for short) introduced in [4]. The RECATNets
model offers practical mechanisms for a direct and intuitive support of dynamic
creation and suppression of processes. They are well-suited for handling the most
advanced workflow patterns (involving cancellation and multiple instances) and
for specifying exceptional behaviors [4]. In fact, RECATNets have the ability to
express the current state of a concurrent system as a dynamical tree of threads
where each thread has its own execution context. Threads in RECATNets are
created by a special type of transitions called abstract transitions. A thread of
such a tree terminates (a cut step is executed) when it reaches a final marking.
T-RECATNets extend the descriptive power of the RECATNets with possibili-
ties to express time constraints explicitly. Indeed, we associate to each transition
(abstract or ordinary) of a T-RECATNet a firing time interval specifying possi-
ble dates of firings. Moreover, we attach to an abstract transition a cancellation
time interval which specifies the minimum and the maximum duration tolerated
for a thread created by this abstract transition. So, a thread which takes too
much time to complete its execution can be interrupted by the abstract tran-
sition which gave birth to it. This feature is useful for modelling interruption
(cancellation of running sub-processes) due to deadline constraints. We describe
T-RECATNets semantics in terms of rewriting logic [10], which permits the use
of the Maude system [12] for purposes of verification and evaluation.

The rest of this paper is organized as follows: Section 2 reminds the con-
cepts of the RECATNets model. Section 3 introduces the time extension of
the RECATNets model, namely Time RECATNets (T-RECATNets for short).
Section 4 illustrates how the T-RECATNet model can be used in modelling time-
constrained collaborative workflows. Section 5 is devoted to the computation of
the state class graph of T-RECATNets. In section 6, we discuss some links to
related works. The section 7 concludes this paper.

2 Recursive ECATNets Review

The Recursive ECATNets (RECATNets) model [4] is defined on the basis of a
sound combination of the classical ECATNets (Extended Concurrent Algebraic
Term Nets) [6] formalism and the Recursive Petri Nets (RPNs) [13]. We remind
that ECATNets are a kind of algebraic nets combining the expressive power of
Petri nets and abstract data types. The places in an ECATNet are associated to
a sort and are marked with multisets of algebraic terms. The RECATNets inherit
all concepts of the classical ECATNets formalism except that their transitions
are partitioned into two types: elementary transitions (represented by a simple
rectangle. See Fig. 1 (a)) and abstract transitions (represented by a double border
rectangle. See Fig. 1 (b)). Each abstract transition is associated to a starting
marking represented graphically in a frame.

Modelling and Analysis of Time-Constrained Flexible Workflows 21

Fig. 1. Transition Types

In a RECATNet, an arc from an input place p to a transition t (elementary
or abstract) is labelled by two algebraic expressions: IC(p, t) and DT (p, t). The
expression IC(p, t) specifies the partial condition on the marking of the input
place p for the enabling of t. It takes one of the following forms (see Table 1).
The expression DT (p, t) specifies the multiset of tokens to be removed from the
marking of the input place p when the transition t is fired. Also, each transition
t may be labelled by a Boolean expression TC(t) which specifies an additional
enabling condition on the values taken by local variables of t (i.e. variables related
to all the input places of t). When the expression TC(t) is omitted, the default
value is the term True.

Table 1. The different forms of the expression IC(p, t) for a given transition t

IC(p, t) Enabling condition
α0 The marking of the place p must be equal to α

(e.g. IC(p, t) = ∅0 means the marking of p must be empty).
α+ The marking of the place p must include α

(e.g. IC(p, t) = ∅+ means condition is always satisfied).
α− The marking of the place p must not include α, with α �= ∅.
α1 ∧ α2 Conditions α1 and α2 are both true.
α1 ∨ α2 α1 or α2 is true.

The semantics of a RECATNet can be explained informally as follows. In a
RECATNet, there is a clear distinction between the firing condition of a given
transition t and the tokens which may be destroyed during the firing action of t
(respectively specified via the expression IC(p, t) and DT (p, t)). A transition t
(elementary or abstract) is fireable when several conditions are satisfied simul-
taneously: (1) Every IC(p, t) is satisfied for each input place p of the transition
t and (2) the additional condition TC(t) is true. Moreover, a RECATNet gener-
ates during its execution a dynamical tree of threads (denoting the fatherhood
relation and describing the inter-thread calls) where each of these threads has its
own execution context. All threads of such a tree can be executed simultaneously.
A step of a RECATNet is thus a step of one of its threads.

When a thread fires an elementary transition telt, the tokens DT (p, telt) are
removed from each input place p of telt and simultaneously the tokens CT (p′, telt)
are added to each output place p′ of telt (in the same manner as transitions of
classical ECATNets).

22 K. Barkaoui, H. Boucheneb, and A. Hicheur

When a thread fires an abstract transition tabs, it consumes the multiset of
tokens DT (p, tabs) from each input place p of the transition tabs and simultane-
ously it creates a new thread (called its child) launched with an initial state being
the starting marking associated to this abstract transition. Naturally, when an
elementary or an abstract transition is fired, appropriate instantiations of the
variables appearing in the expressions IC, DT and CT , take place.

A family Υ of Boolean terms is associated to a RECATNet in order to de-
scribe the termination states of the threads. These termination states, called
final markings, are specified by conditions on the marking of the RECATNet
places. A family of such final markings is indexed by a finite set whose items are
called termination indices. Therefore, when a thread reaches a final marking Υi
(with i ∈ I), it terminates, aborts its whole descent of threads and creates the
multiset of tokens ICT (p′, tabs, i) in the output place p′ of the abstract transi-
tion tabs which gave birth to it (in its father thread). Such an event is called a
cut step and denoted τi (with i ∈ I). An arc from an abstract transition tabs to
its output place p′, labelled by an expression 〈i〉 ICT (p′, tabs, i), means that the
tokens ICT (p′, tabs, i) are produced in the place p′ if the marking Υi is reached
in the terminating thread (where i is the index of this termination). Therefore,
the production of tokens in the output place of an abstract transition is delayed
until the child thread, generated by the firing of this transition, reaches a final
marking. Note that if a cut step occurs in the root of the tree of threads, it leads
to the empty tree, denoted by ⊥, from which neither transition nor cut step can
occur.

In what follows, we note Spec = (Σ, E) an algebraic specification of an ab-
stract data type associated to a RECATNet (with Σ its set of operations and
sorts, E its set of equations). TΣ,E(X) denotes the Σ-algebra of the equiv-
alence classes of the Σ-terms with variables in X , modulo the equations E.
CATdas(E, X) is the structure of equivalence classes formed from multisets of
the terms TΣ,E(X) modulo the associative, commutative and identity axioms
for the operator ⊕ (with the empty multiset ∅ as the identity element). The
operations ⊂, − represent, respectively, the multiset inclusion and the multiset
difference. The next definitions formalize the RECATNets model and its associ-
ated states called extended markings.

Definition 1 (Recursive ECATNets). A Recursive ECATNet is a tuple RE-
CATNet = (Spec, P , T , sort, Cap, IC, DT , CT , TC, I, Υ , ICT) where:

– Spec = (Σ, E) is a many sorted algebra where the sorts domains are finite,
– P is a finite set of places,
– T = Tabs�Telt, is a finite set of transitions (with P ∩T = ∅) partitioned into

abstract and elementary ones, respectively (� denotes the disjoint union),
– sort : P → S (with S the set of sorts of Spec),
– Cap : P → CATdas(E, ∅) ∪ {∞}, (Capacity),
– IC : P × T → CATdas(E, X)∗, (Input Condition) where

CATdas(E, X)∗ = {α+| α ∈ CATdas(E, X)} ∪ {α− | α ∈ CATdas(E, X)}
∪
{
α0 | α ∈ CATdas(E, X)

}
∪ {α1 ∧ α2 | ∀i αi ∈ CATdas(E, X)∗} ∪

{α1 ∨ α2 | ∀i αi ∈ CATdas(E, X)∗},

Modelling and Analysis of Time-Constrained Flexible Workflows 23

– DT : P × T → CATdas(E, X), (Destroyed Tokens),
– CT : P × T → CATdas(E, X), (Created Tokens),
– TC : T → CATdas(E, X)bool , (Transition Condition),
– I is a finite set of indices,
– Υ is a family, indexed by I, of Boolean terms defined in order to describe the

termination conditions (i.e. final markings) of threads,
– ICT : P × Tabs × I → CATdas(E, X), (Indexed Created Tokens).

Remark. The termination conditions of threads in a RECATNet can be specified
by a system of linear inequalities or equalities on the marking of the RECATNet
places. Since the sorts domains of Spec (i.e. the underlying algebraic specification
of a RECATNet) are assumed to be finite, determining the truth value of a
termination condition is thus decidable.

The global state of a RECATNet is described by a dynamical tree of threads
called an extended marking where each thread is associated to an ordinary mark-
ing describing its internal context. The places of a thread are marked by multisets
of algebraic terms.

Definition 2 (Extended marking). An extended marking of a RECATNet
RN = (Spec, P , T , sort, Cap, IC, DT , CT , TC, I, Υ , ICT) is a labelled
rooted tree denoted Tr = 〈V, M, E, A〉 such that:

– V is the set of nodes (i.e. threads),
– M is a Mapping V → CATdas(E, ∅) associating an ordinary marking with

each node of the tree, such that ∀v ∈ V, ∀p ∈ P, M(v)(p) ≤ Cap(p),
– E ⊆ V × V is the set of edges,
– A is a mapping E → Tabs associating an abstract transition with each edge.

M(v) denotes the marking of a thread v in an extended marking Tr and M(v)(p)
denotes the marking of a place p in a thread v. A marked RECATNet (RN, Tr0)
is a RECATNet RN associated to an initial extended marking Tr0. For each
node v ∈ V , Succ(v) denotes the set of its direct and indirect successors includ-
ing v (∀v ∈ V, Succ(v) = {v′ ∈ V | (v, v′) ∈ E∗} where E∗ is the reflexive and
transitive closure of E). Moreover, when a node v is not the root thread of an
extended marking Tr, we denote by pred(v) its unique predecessor in Tr (i.e.
its father thread).

An elementary step in a marked RECATNet can be a firing of a transition or
a cut step occurence (denoted τi with i ∈ I).

Definition 3. An elementary transition telt is enabled in a thread v of an ex-
tended marking Tr (with Tr �= ⊥) iff: (1) Every IC(p, telt) is satisfied for each
input place p of the transition telt. (2) The transition condition TC(telt) is true.
The firing of an elementary transition telt in a thread v of Tr = 〈V, M, E, A〉 leads
to an extended marking Tr′ = 〈V ′, M ′, E′, A′〉 (denoted Tr

v, telt−→ Tr′) such that:

– V ′ = V , E′ = E,
– ∀e ∈ E′, A′(e) = A(e),

24 K. Barkaoui, H. Boucheneb, and A. Hicheur

– ∀v′ ∈ V ′ \ {v}, M ′(v′) = M(v′),
– ∀p ∈ P , M ′(v)(p) = M(v)(p)−DT (p, telt)⊕ CT (p, telt).

Definition 4. An abstract transition tabs is enabled in a thread v of an extended
marking Tr (with Tr �= ⊥) iff: (1) Every IC(p, tabs) is satisfied for each input
place p of the transition tabs. (2) The transition condition TC(tabs) is true. The
firing of an abstract transition tabs in a thread v of Tr = 〈V, M, E, A〉 leads to
an extended marking Tr′ = 〈V ′, M ′, E′, A′〉 (denoted Tr

v, tabs−→ Tr′) such that:

– Let v′ be a fresh identifier in the tree Tr′,
– V ′ = V ∪ {v′}, E′ = E ∪ {(v, v′)},
– ∀e ∈ E′, A′(e) = A(e), A′((v, v′)) = tabs,
– ∀v′′ ∈ V ′ \ {v}, M ′(v′′) = M(v′′),
– ∀p ∈ P , M ′(v)(p) = M(v)(p)−DT (p, tabs),
– ∀p ∈ P , M ′(v′)(p) = CT (p, tabs).

Definition 5. A cut step τi is enabled in a thread v of an extended marking
Tr (with Tr �= ⊥) iff M(v) satisfies the condition of the final marking Υi. The
occurence of a cut step τi in a thread v of Tr = 〈V, M, E, A〉 leads to an extended
marking Tr′ = 〈V ′, M ′, E′, A′〉 (denoted Tr

v,τi−→ Tr′) such that:

– If v is the root thread of the tree Tr, then Tr′ = ⊥, otherwise:
– V ′ = V \ Succ(v′), E′ = E ∩ (V ′ × V ′),
– ∀e ∈ E′, A′(e) = A(e),
– ∀v′ ∈ V ′ \ {pred(v)}, M ′(v′) = M(v′) ,
– ∀p ∈ P , M ′(pred(v))(p) = M(pred(v))(p) ⊕ ICT (p, A(pred(v), v), i).

These features of RECATNets will be illustrated in the workflow example given
in the following section.

3 Time Recursive ECATNets

In order to describe time constraints in real workflow processes, we have to em-
ploy an explicit representation of time in RECATNets. There are several ways for
time representation in Petri nets [9]: firing duration (Ramchandani’s model), en-
abling duration (Merlin’s model) and holding durations (Van der Aalst’s model).
The challenge is to include time in an efficient manner which allows meeting time
requirements without making the verification more complex. Enabling duration
is the most used way as it offers a good compromise between the modelling
power and analysis complexity. In enabling duration models, a firing delay is
associated with each transition. This delay specifies the time that the transition
has to be enabled before it can fire. The firing of a transition takes no time (i.e.
tokens are removed and created in the same instant). The delay may be either
a random distribution function (as in the stochastic Petri nets) or deterministic
bounds (i.e. bounds of delays are fixed). We focus in this paper on deterministic

Modelling and Analysis of Time-Constrained Flexible Workflows 25

delay bounds, represented in the model by intervals attached to transitions (as
in the Merlin’s model).

In a RECATNet, we denote by firing step, the firing of an elementary or
an abstract transition or the occurence of a cut step. Consequently, to include
uniformly time in RECATNets, we associate a firing interval to each transition
(abstract and elementary) and to each cut step. The firing interval has the same
semantics as those of Merlin’s model. In a T-RECATNet, a transition t (elemen-
tary or abstract) is fireable when t is maintained continuously enabled during
some time inside the firing interval of t. The firing in both cases must be done
without any additional delay, if the enabling time reaches the upper bound of the
firing interval [9]. Unlike abstract and elementary transitions, the execution of a
cut step τi is immediately executed in a thread of a RECATNet as soon as a final
marking Υi is reached in this thread (i.e. without delay). Therefore, the firing
interval associated to a cut step is always considered as null (i.e. [0, 0]). Partic-
ularly, when an abstract transition tabs is fired, it consumes tokens DT (p, tabs)
from its input place p and simultaneously it creates a new child thread. It will
be useful to provide a mechanism for cancelling the execution of threads. In this
sense, we attach a cancellation interval to each abstract transition (in addition to
its firing interval). Such interval means that a running thread generated by this
abstract transition can be cancelled (i.e. aborted together with its all descent
of threads) as soon as the lower bound of its cancellation interval is reached.
This abortion must be immediately done at the expiration of this cancellation
interval.

Definition 6 (Time Recursive ECATNet). A Time Recursive ECATNet is
a tuple T-RECATNet = (RECATNet, Is, Δ) such that:

– Is : T ∪ {τi | i ∈ I} → Q+ × (Q+ ∪ {∞}) (where Q+ is the set of positive
rational numbers) is the static firing interval function. Is associates a firing
interval to each transition (elementary or abstract) and to each cut step of
a RECATNet,

– Δ : Tabs → Q+ × (Q+ ∪ {∞}) is the static cancellation interval function. Δ
associates a cancellation interval to each abstract transition of a RECATNet.

↓ Is(t) and ↑ Is(t) denote, respectively, the lower and the upper bounds of the
firing interval Is(t) (i.e. the earliest and the latest firing time of the transition
t). In a similar manner, ↓ Δ(t) and ↑ Δ(t) denote, respectively, the lower and
the upper bounds of the cancellation interval Δ(t). Fig.2 shows how both time
intervals attached to an abstract transition are managed. If an abstract transition
tf becomes enabled at instant θ0, it will fire at any instant θ1 in interval [θ0 +
↓ Is(tf), θ0 + ↑ Is(tf)] unless it is disabled. If tf is fired at some instant θ1, the
thread generated by its firing will be cancelled at any time θ2 in interval [θ1 +
↓ Δ(tf), θ1 + ↑ Δ(tf)] or by the execution of a cut step τi in this thread (i.e. a
final marking Υi is reached).

In the rest of the paper, we denote by TCut = Tabs∪Telt∪{τi | i ∈ I}, the set
of transitions (elementary and abstract) and cut steps of a T-RECATNet and by
v.t an element t of TCut enabled in a thread v of an extended marking Tr. Also,

26 K. Barkaoui, H. Boucheneb, and A. Hicheur

Fig. 2. Firing interval and cancellation interval of an abstract transition

we denote by En(Tr) the set of all elementary transitions, abstract transitions
and cut steps enabled in an extended marking Tr. If an extended marking Tr′

results from the firing of a transition or a cut step tf in a thread v of an extended
marking Tr, we denote by New(Tr′, v.tf) the set of all transitions and cut steps
considered to be newly enabled in Tr′. We consider in the next definitions that
a transition is newly enabled, if it remains enabled after its firing. We define the
newly enabledness notion of transitions or cut steps in the context of extended
markings as follows.

Definition 7. Consider a firing Tr = 〈V, M, E, A〉 v,tf−→ Tr′ = 〈V ′, M ′, E′, A′〉.
The elements of TCut which are newly enabled in Tr′ after the firing of tf in a
thread v of Tr are obtained as follows:

– If tf ∈ Telt, only the corresponding thread v may have newly enabled tran-
sitions or cut steps. An element t of TCut is newly enabled in v after the
firing of tf , iff t is enabled in the marking M ′(v) and either t = tf or t is
not enabled in the marking M(v)−DT (p, tf).

– If tf ∈ Tabs, only the created thread v′ obtained in V ′ and the corresponding
thread v are concerned: an element t of TCut is newly enabled in v after the
firing of tf , iff t is enabled in the marking M ′(v) and either t = tf or t is
not enabled in M(v).

– If tf ∈ {τi | i ∈ I}, a cut step occurring in a thread v different from the
root, only the thread pred(v) is concerned: an element t of TCut is newly
enabled in pred(v) iff t is enabled in M ′(pred(v)) and t is not enabled in
M(pred(v)).

From a semantic point of view, if a transition t becomes enabled in a thread v,
the bounds of its firing interval Is(t) decrease synchronously with time until v.t
(i.e. the transition t enabled in v) is fired or disabled. Note that v.t cannot be
fired before ↓ Is(t) reaches 0 and must be fired as soon as ↑ Is(t) reaches 0,
unless it is disabled by the firing of another element of TCut. When an abstract
transition tabs is fired, the cancellation interval of tabs (i.e. Δ(tabs)) is associated
to the created thread v. The bounds of this interval decrease synchronously with
time until a cut step is executed in the created thread v. The execution of a cut
step τi in v (denoted v.τi) is done as soon as a final marking Υi (with i ∈ I) is

Modelling and Analysis of Time-Constrained Flexible Workflows 27

reached. Also, a running thread v may be cancelled as soon as the lower bound
of its cancellation interval reaches 0. Such cancellation must be done as soon as
↑ Δ(tabs) reaches 0. This cancellation is specified as a special type of cut step
denoted τ∗ (i.e. the index of this cut step is 〈∗〉).

Each reachable state s of a T-RECATNet is defined as a triplet s = (Tr,
In, Id) where: Tr is an extended marking (defined in a similar manner as for
untimed RECATNets) and In is the set of cut steps τ∗ due to expiration of
cancellation delays. Note that the elements of In are of the form v.τ∗ with v
a thread of Tr generated by an abstract transition. Also, Id is a firing interval
function (Id : En(Tr) ∪ In → Q+ × (Q+ ∪ {∞})). The function Id associates
thus to each element v.t enabled in Tr, and each cut step v.τ∗ of In the time
interval in which it can be fired. ↓ Id(v.t) and ↑ Id(v.t) denote, respectively, the
lower and the upper bounds of the interval Id(v.t).

The state of a T-RECATNet evolves either by time progression or by firing
steps (firing of transitions or cut steps execution). Let s = (Tr, In, Id) and
s′ = (Tr′, In′, Id′) be two states of the model.

Given θ in IR+, a nonnegative reel number, we write s
θ→ s′, iff state s′ is

reachable from state s after a time progression of θ time units (s′ is also denoted
s + θ), i.e.:

– ∃ θ ∈ IR+, ∀ v.t ∈ En(Tr) ∪ In, θ ≤↑ Id(v.t),
– Tr′ = Tr,
– In′ = In,
– ∀ v′.t′ ∈ En(Tr′) ∪ In′, Id′(v′.t′) = [↓Max(Id(v′.t′)− θ, 0), ↑ Id(v′.t′)− θ]

We write s
v.t−→ s′ iff state s′ is immediately reachable from state s by firing

of a transition or a cut step t in a thread v of the extended marking Tr, i.e.:

– v.t ∈ En(Tr) ∪ In,
– ↓ Id(v.t) = 0,
– Tr′ is the successor of Tr by v.t in the untimed underlying model (i.e. Tr

v.t−→
Tr′),

– In′ is computed from In, such that:
1. In the case v.t is the firing of an elementary transition t: In′ = In,
2. In the case v.t is the firing of an abstract transition t in a thread v: add

v′.τ* to In where v′ is the identifier of the thread generated by the firing
of t in v (i.e. In′ = In ∪ {v′.τ∗}).

3. In the case v.t is a cut step t occurring in v: eliminate from In cut
steps v′′.τ∗ related to threads removed from Tr by the firing of v.t (i.e.
In′ = In \ {v′′.τ ∗ | v′′ ∈ Succ(v)}),

– ∀v′.t′ ∈ En(Tr′) ∪ In′,

Id′(v′.t′) =

⎧⎨⎩
Is(t′) if v′.t′ ∈ New(Tr′, v.t)
Δ(t) if t ∈ Tabs and v′.t′ ∈ In′ and v′.t′ /∈ In
Id(v′.t′) otherwise

The semantic of a T-RECATNet model is defined by the timed transitions
system (state space) (S, s0,→), where: s0 = (Tr0, ∅, Id0) is the initial state of

28 K. Barkaoui, H. Boucheneb, and A. Hicheur

the model (Id0(v.t) = Is(t), for all v.t ∈ En(Tr0)), S =
{
s | s0

∗→ s
}

is the set

of reachable states of the model (∗→ is the reflexive and transitive closure of the
relation →).

4 Workflow Modelling Using Time Recursive ECATNets

We propose in our T-RECATNets based approach for modelling flexible and col-
laborative workflows to introduce two types of tasks in these processes: Elemen-
tary tasks (represented by elementary transitions) and abstract tasks (represented
by abstract transitions). The execution of an abstract task dynamically generates
a new (lower-level) plan of actions in a workflow process. When a plan reaches
a final marking, it terminates and the whole descent of action plans generated
by it are aborted (i.e. a cut step is executed). This ability offers a natural way
to introduce flexibility in workflow planning and execution. In fact, a dynamical
tree of action plans describes the structure of a workflow process where all plans
can be executed simultaneously. The root plan of such a tree represents the prin-
cipal process by which the whole specified workflow starts and terminates. The
exceptions that may occur during the execution of a workflow can be reflected by
the execution of cut steps or by the firings of abstract transitions. So, a workflow
process may handle exceptions, respectively, by terminating the current process
or generating a new action plan. Note that with the introduced time concept, it
is possible to model both the starting time and ending time of such action plans
(i.e. threads) and so to specify exception handling related to time-constraint
violations. The descriptive power of T-RECATNets appears, also, adequate in
describing both the distributed execution of collaborative processes over mul-
tiple process engines and their inter-process interaction. The event flows which
coordinate and link up together these distributed sub-processes are reflected by
the firing of abstract transitions (i.e. call for a sub-process) or the execution
of cut steps (i.e. termination of a sub-process and result return to the caller).
Moreover, the T-RECATNets model allows us to describe advanced data struc-
tures and to integrate the data flow related to workflows through their algebraic
specification, in a natural way. We illustrate the suitability of T-RECATNets in
modelling time-constrained and reconfigurable workflow processes in the partic-
ular field of Web services composition and orchestration through the example
of Fig. 3. This net depicts a simplified online computer shopping workflow. In
the graphical representation of the T-RECATNet, the name of a transition is
followed by its firing interval. In addition, a cancellation interval associated to an
abstract transition tabs is noted (τ∗ : Δ(tabs)). For more clarity, both intervals
are only represented if they are different from [0,∞[. Also, IC(p, t) (or DT (p, t))
is omitted, when IC(p, t) = DT (p, t).

In this workflow example the main company which offers the online shopping
service coordinates the execution of the different web services supported by its
collaborating partners. Let us note that the initial state of this net is a tree
containing only the root process with a token (code, listCmd) in the place Cus-
tomerOrder. This token represents the waiting order which contains, respectively,

Modelling and Analysis of Time-Constrained Flexible Workflows 29

Fig. 3. Time-Constrained Online computer shopping workflow

the order ID number and the list of requested computer components. The work-
flow process starts by the firing of the transition ”Order”. Then, the abstract
transition ”VerifProd” invokes the service Check products to check the availabil-
ity of the requested computer components. When the service Check products is
initialized, the task ”ReceiveListRequest” looks for the name of the providers
offering each requested component (i.e. for each element of the list L). This
transition produces, at each firing, a couple (Pr, Rq) which corresponds, respec-
tively, to the name of the provider and the associated requested component. Note
that Pr = FindIn(Rq, ListProvider) where the function FindIn returns the
first provider from the constant list ListProvider associated to the product Rq.
Next, the abstract task ”SendRequest” initialises (at each firing) a new instance
of the service Research in stock providers. The number of running instances of
this invoked service depends on the number of requested products. Each instance
(i.e. thread of the tree) represents the local execution of the invoked service in the
environment of the associated provider Pr. The termination of one instance is
indicated by a token in EndRequest (see Υ0 and Υ1). Also, each instance launched
by the abstract transition ”SendRequest” is aborted (there is execution of a cut
step τ*), if its completion takes too much time and exceeds the cancellation in-
terval associated to ”SendRequest”. Depending on the index of this termination
(〈0〉, 〈1〉, or 〈∗〉), the place RqProvOk or RqStopped, respectively, is marked in
the previous recursion level (after execution of the appropriate cut step). In the
case a current request is not satisfied (represented by a token in RqStopped), it

30 K. Barkaoui, H. Boucheneb, and A. Hicheur

can be resubmitted near another provider (by execution of the elementary task
”‘RedoRequest”’) or terminated (by execution of the elementary task ”Request-
NotOk”). Note that NewRq = FindNextIn(Rq, Pr, ListProvider) where the
function FindNextIn returns the next provider from ListProvider not already
checked (i.e. different from Pr) and associated to the product Rq. The whole
product verification sub-process launched by the transition ”verifProd” termi-
nates, reducing the tree of threads to its root process, (1) if one of the requested
computer components is not available i.e. failure of the commit (Υ3 reached), (2)
if all the requested computer components are available i.e. success of the commit
(Υ2 reached) or (3) if there is expiration of the cancellation delay associated to
this process i.e. enforced termination. Then, depending on the index of this ter-
mination (〈2〉, 〈3〉 or 〈∗〉) the outputs of the abstract transition ”VerifProd” are
created in the root process. We can see that such a construction describes, ade-
quately, the flexible structure of the workflow example where multiple instances
of some part of the process can be created dynamically and cancelled e.g. if a
deadline violation is detected. Moreover, the modularity is a natural feature of
T-RECATNets. For instance, in the depicted workflow we can add a sub-process
for checking the credit card of the customer, created with the initialization of
the product verification sub-process. It is sufficient to add such a sub-net and
modify the starting marking of the abstract transition ”VerifProd”.

In Fig. 4, we present a particular timed trace of our workflow example. The
black node in the depicted tree of threads denotes the thread in which the fol-
lowing step is fired. (θ; t) denotes a firing step where t (a transition or a cut
step) is fired after θ units of time from the current state. Suppose that the
place ReceiveOrder contains one token (c01, (L1; L2)) and the current state is
s0 = (Tr0, ∅, Id(v0.V erifProd) = [0, 1]). At this state, the transition ”Verif-
Prod” can fire immediately but no later than 1 time units. After 1 time units,
we reach the state s0 + 1 = (Tr0, ∅, Id(v0.V erifProd)=[0, 0]).

At this state, ”VerifProd” must be fired immediately (the upper bound of its
firing interval reaches 0). The firing of ”VerifProd” leads to the state s1=(Tr1,
{v1.τ∗}, Id(v1.τ∗)=[6, 8], Id(v1.ReceiveListRequest)=[0, 0]). Note that the in-
terval of the cut step v1.τ∗ is set to the cancellation interval of the transition
”VerifProd” which generates the thread v1. At this state, the transition ”Re-
ceiveListRequest” is fired two times in a sequential manner leading to the state
s2 = (Tr2, {v1.τ∗}, Id(v1.τ∗)=[6, 8], Id(v1.SendRequest) = [0, 1]). After 1 time
unit, we reach the state s2 + 1 =(Tr2, {v1.τ∗}, Id(v1.SendRequest) = [0, 0],
Id(v1.τ∗) = [5, 7]). At this state, ”SendRequest” must be fired leading to the
state s3 = (Tr3, {v1.τ∗, v2.τ∗}, Id(v1.τ∗)=[5, 7], Id(v1.SendRequest) = [0, 1],
Id(v2.ReceiveRq) = [1, 3], Id(v2.τ∗) = [2, 4]). The transition ”SendRequest” is
again newly enabled in s3. After a similar firing (i.e. 1; SendRequest) we reach
a state s4 = (Tr4, {v1.τ∗, v2.τ∗, v3.τ∗}, Id(v1.τ∗) = [4, 6], Id(v2.τ∗) = [1, 2],
Id(v2.receiveRq)=[0, 2], Id(v3.τ∗) = [2, 4], Id(v3.receiveRq) = [1, 3]). After 1
time unit, the process launched by ”SendRequest” may be cancelled or the
transition ”receiveRq” may be fired in v2 (the lower bounds of both v2.τ∗ and
v2.receiveRq is equal to 0). In case the process is cancelled (i.e. a cut step τ∗ is

Modelling and Analysis of Time-Constrained Flexible Workflows 31

Fig. 4. Some Timed Traces of the workflow example

executed in v2), we reach the state s5 = (Tr5, {v1.τ∗, v3.τ∗}, Id(v1.τ∗) = [3, 5],
Id(v3.τ∗) = [1, 3], Id(v3.receiveRq) = [0, 2]).

5 State Class Graph of T-RECATNets

The integration of time in RECATNet increases their modelling power. However
due to time density, state spaces are in general infinite. Therefore, the analysis
power of techniques based on reachability graphs is greatly reduced. To cope
with this, methods based on the state space abstractions have been developed for
timed automata and some time extensions of Petri nets as well. Resulting graphs
are mainly characterized by their sizes, the condition of their finiteness and the
kind of properties they preserve (linear properties (firing sequences), branching
properties (execution trees)). The preserved properties are verified by exploring
these graphs. Among state space abstractions proposed in the literature, we
consider here the state class graph (SGC) method [5] for constructing a state
space abstraction for T-RECATNets which preserves linear properties. In the
state class method, states reachable by the same firing sequence, independently
of their firing times, are agglomerated in the same node called state class. In the
context of T-RECATNets, a state class is defined as a triplet c = (Tr, In, F)
where: Tr is the common extended marking of the states agglomerated in the
class, In is the set of cut steps v.τ∗ associated to running threads in Tr and F is
a formula which characterizes the union of all firing and cancellation domains of

32 K. Barkaoui, H. Boucheneb, and A. Hicheur

these states. Each element v.t enabled in Tr and each element of In is a variable
with the same name in F representing its firing delay or cancellation delay.

The initial state class is c0 = (Tr0, ∅, F0) where Tr0 is the initial extended
marking and F0 = ∧v.t∈En(Tr0) ↓ Is(t) ≤ v.t ≤↑ Is(t). Let c = (Tr, In, F) be a
state class and v.t a transition or a cut step t enabled in a thread v of Tr. Such
a step v.t can fire from c (i.e. Next(c, v.t) �= ∅) iff v.t ∈ En(Tr) ∪ In and can
fire before any other enabled transition and cut step, i.e. the following formula
is consistent1: F ∧ (∧v′.t′∈En(Tr)∪In v.t ≤ v′.t′).

The firing condition means that there is, at least, a state within the state
class in which v.t may fire. In this case, the firing of v.t leads to the state class
c′ = (Tr′, In′, F ′) = Next(c, v.t) computed in 6 steps:

1. Tr′ is computed as in untimed RECATNets (i.e. Tr
v.t−→ Tr′).

2. F ′ = F ∧ (∧v′.t′∈En(Tr)∪In v.t ≤ v′.t′)
3. Replace in F ′ each variable v′.t′ �= v.t, by (v′.t′ + v.t). This substitution

actualises delays of transitions (i.e. old v′.t′ = new v′.t′ + v.t).
4. Eliminate by substitution v.t and each v′.t′ disabled by this firing.
5. In′ is computed from In, such that:

(a) In′ = In if t ∈ Telt,
(b) In′ = In∪{v′.τ∗} if t ∈ Tabs (v′ is the identifier of the thread generated

by the firing of t in v),
(c) In′ = In \ {v′′.τ ∗ | v′′ ∈ Succ(v)} if t ∈ {τi | i ∈ I ∨ i = ∗},

6. Add constraint ↓ Is(v′.t′) ≤ v′.t′ ≤ ↑ Is(v′.t′), for each transition v′.t′ ∈
New(Tr′, v.t) and the constraint ↓ Δ(t) ≤ v′.τ∗ ≤ ↑ Δ(t), if t ∈ Tabs and
v′.τ∗ ∈ In′ and v′.τ∗ /∈ In.

State classes are computed using the implementation of the above firing rule
given in [7] and its optimization established in [8]. Formally, the SCG of the
model is the structure (C, c0, →), where:

1. c0 = (Tr0, ∅, F0) is the initial state class of the model,
2. → is the transition relation defined by:

(a) ∃ v.t, c, c′, c
v.t−→ c′ iff Next(c, v.t) �= ∅ ∧ c′ = Next(c, v.t),

(b) C =
{
c | c0

∗→ c
}
, where ∗→ is the reflexive and transitive closure of →,

is the set of reachable state classes of the model.

The finiteness property of the SCG of time Petri nets (Merlin’s model) is
known to be undecidable [5]. However, the finiteness of the SCG of time Petri nets
is ensured if the underlying Petri net is finite. This property is also undecidable
for T-RECATNets since this class of Petri nets includes time Petri nets. We can
show in the same manner as for time Petri nets that the number of state classes
sharing the same marking is finite [5]. Therefore, the SCG of T-RECATNet
is finite if the underlying RECATNet is finite. We are currently working on
1 A formula F is consistent iff there is, at least, one tuple of values that satisfies, at

once, all constraints of F .

Modelling and Analysis of Time-Constrained Flexible Workflows 33

sufficient conditions for the underlying RECATNet to be finite. The finiteness
problem of RECATNets can be reduced to the finiteness problem of recursive
Petri Nets that is known to be decidable [13].

In a previous work [4], we have expressed the semantics of the untimed RE-
CATNets in terms of rewriting logic [10], where each RECATNet is defined as a
rewrite theory. We extend this rewriting semantics to the SCG of T-RECATNets.
Each T-RECATNet is defined as a conditinal rewrite theory where transitions fir-
ing and cut steps execution are expressed by conditional rewrite rules as follows.
The distributed structure of a SCG is specified by an equational specification.
Each class is described by a term [Tr | In| Mat] where Tr is a term expressing
the tree of threads, In is the list of cut steps v.τ∗ related to launched threads
in Tr and Mat is a multiset of elements describing the time constraints on each
enabled transition and cut step in Tr. A thread (node) Th of the tree Tr is
described by a term [S, MTh, tabs, ChildThreads], where: S is the thread identi-
fier, MTh represents the internal marking of the thread Th, tabs is the name of
the abstract whose firing gave birth to the thread Th and ChildThreads is the
multiset of threads generated by this thread Th in the current tree Tr. More-
over, we add two rewrite rules included in each T-RECATNet’s rewrite theory
for determining the earliest transition or cut step v.t to fire (temporal firing
condition) and to complete the computation (i.e. the elements of Mat) of the
next state class generated by the firing v.t as in [7].

Since we give a rewriting semantics to T-RECATNets, we can benefit from
the use of the LTL (Linear Time Logic) model-checker of the Maude system
[12] for verification purpose. For instance, one can check liveness properties and
safety properties on the finite generated state class graph related to (finite)
workflow schemas. We have generated the SCG of our workflow example, using
the version 2.3 of the Maude system under Linux with, as an initial marking,
a token (c01, L1) in the source place of the root process. We obtain 35 state
classes. In the following, we show the use of the Maude system in checking
proper termination of our workflow example. By using the command ”search”
of Maude, one can explore the reachable state space in different ways. In our
example, we can check if starting from the workflow initial marking, it is always
possible to reach the workflow final marking (one token in the place OrderResult
of the root process which has no child threads). From the obtained result of Fig.
5, we can see that the expected final states (three configurations are possible)
can be reached and all correspond to proper termination.

We apply the Maude model-checker to prove the following property (prop1)
related to our (finite) workflow example (see Fig. 6).

Prop 1 : A verification process (launched by the firing of the abstract tran-
sition ”VerifProd”) terminates only if a requested product is not available or
if all the requested products are available. This property formulated in LTL
terms, [] (VerifProcess-Initialised --> <> (product-not-available)
or (order-accepted)), is proved to be not valid. Indeed, the model-checker
returns the expected counterexample, which corresponds to the termination of

34 K. Barkaoui, H. Boucheneb, and A. Hicheur

Fig. 5. Proper termination checking of the workflow example under Maude environ-
ment

Fig. 6. Verification of workflow properties using Maude LTL Model-Checker

the verification sub-process due to the expiration of the cancellation interval
associated to ”VerifProd”.

6 Related Works

Compared to other classes of high level Petri nets having the ability to model the
dynamic creation or suppression of processes like Nested nets [17] and Object
Petri nets [19] used for modelling flexible and collaborative workflow systems
[15], the T-RECATNets permit advanced descriptions of complex data structures
and context conditions checking (i.e. read and inhibitor arcs). Moreover, the
hierarchy of created processes in T-RECATNets is unbounded as in Nested nets
and RPNs. This is not the case for Object Petri nets objects where the depth
of the hierarchy is limited to two levels. Regarding the time extension of T-
RECATNets, we choose to associate time intervals to elementary and abstract
transitions to describe tasks duration or the availability duration of resources

Modelling and Analysis of Time-Constrained Flexible Workflows 35

in workflow processes. Indeed the duration of tasks in a workflow cannot be
determined before its implementation. The process designers can only estimate
the minimum and the maximum duration of each activity at built time.

7 Conclusion

In the present paper, we proposed a time extension to the RECATNets model for
the modelling of timed-constrained reconfigurable workflow processes operating
on distributed execution environments. This extension is guided by the growing
interest in temporal specifications in the workflow management domain. We
define their semantics in rewriting logic and show how we can use the Maude
Tools in the computation of the state class graph (SCG) for the analysis of the
T-RECATNets specifications. Future work will include:

1. Design and verification of inter-organizational workflows exploiting the de-
scriptive power of the T-RECATNets.

2. Evaluation of QoS of workflow tasks using a real time extension of LTL on
T-RECATNets [3].

References

1. Van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonen-
berg, H.: Flexibility as a Service. BPM Center Report BPM-08-09. BPMcenter.org.
(2008)

2. Van der Aalst, W.M.P., Van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge (2002)

3. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. Inf.
Comput. 104, 35–77 (1993)

4. Barkaoui, K., Hicheur, A.: Towards Analysis of Flexible and Collaborative Work-
flow Using Recursive ECATNets. In: Benatallah, B., ter Hofstede, A., Paik, H.
(eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 206–217. Springer, Heidelberg
(2008)

5. Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
using Time Petri Nets. IEEE Transactions on Software Engineering 17(3), 259–273
(1991)

6. Bettaz, M., Maouche, M.: How to Specify Non Determinism and True Concurrency
with Algebraic Terms Nets. In: Bidoit, M., Choppy, C. (eds.) Abstract Data Types
1991 and COMPASS 1991. LNCS, vol. 655, pp. 164–180. Springer, Heidelberg
(1993)

7. Boucheneb, H., Rakkay, H.: A More Efficient Time Petri net State Space Abstrac-
tion Preserving Linear Properties. In: Proc. of the seventh International Conference
on Application of Concurrency to System Design, pp. 61–70. IEEE Computer So-
ciety, Los Alamitos (2007)

8. Boucheneb, H., Barkaoui, K.: Relevant Timed Schedules / Clock Valuation for
Constructing Time Petri Net Reachability Graphs. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 265–279. Springer, Heidelberg (2008)

9. Bowden, F.D.J.: A Brief Survey and Synthesis of the Roles of Time in Petri Nets.
In: Mathematical and Computer Modelling, pp. 55–68 (2000)

36 K. Barkaoui, H. Boucheneb, and A. Hicheur

10. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. J.
Theor. Comput. Sci. 360(1-3), 386–414 (2006)

11. Casati, F.: A discussion on approaches to handling exceptions in workflows. In:
1998 Conference on Computer-Supported Cooperative Work, Seattle (1998)

12. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
J.: Maude Manual (Version 2.3). SRI International and University of Illinois at
Urbana-Champaign (2007), http://maude.cs.uiuc.edu

13. Haddad, S., Poitrenaud, D.: Recursive Petri nets: Theory and Application to Dis-
crete Event Systems. Acta Informatica 40(7-8), 463–508 (2007)

14. Halliday, J.J., Shrivastava, S.K., Wheater, S.M.: Flexible Workflow Management
in the OPENflow System. In: 4th IEEE Int. Enterprise Distributed Object Comp.
Conf., pp. 82–92. IEEE Computer Society, Los Alamitos (2001)

15. van Hee, K., Lomazova, I.A., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Nested Nets for Adaptive Systems. In: Donatelli, S., Thiagarajan, P.S. (eds.)
ICATPN 2006. LNCS, vol. 4024, pp. 241–260. Springer, Heidelberg (2006)

16. Sadiq, W., Sadiq, S., Schulz, K.: Model Driven Distribution of Collaborative Busi-
ness Processes. In: IEEE International Conference on Services Computing, pp.
281–284. IEEE Computer Society, Los Alamitos (2006)

17. Lomazova, I.A.: Modeling Dynamic Objects in Distributed Systems with Nested
Petri Nets. J. Fundam. Inform. 51(1-2), 121–133 (2002)

18. Tiplea, F.L., Macovei, G.I.: Timed workflow nets. In: Proc. of IEEE International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp.
361–366 (2005)

19. Valk, R.: Object Petri Nets-Using the Nets-within-Nets Paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 819–848. Springer, Heidelberg (2004)

Contract Compliance and Choreography
Conformance in the Presence of Message

Queues�

Mario Bravetti and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy

Abstract. Choreography conformance and contract compliance have
been widely studied in the context of synchronous communication. In
this paper we approach a more realistic scenario in which the messages
containing the invocations are queued in the called service. More pre-
cisely, we study the foundational aspects of contract compliance in a
language independent way by just taking contracts to be finite labeled
transition systems. Then, we relate the proposed theory of contract com-
pliance with choreography specifications à la WS-CDL where activities
are interpreted as pairs of send and receive events. An interesting conse-
quence of adopting a language independent representation of contracts
is that choreography projection can be defined in structured operational
semantics.

1 Introduction

In the context of Service Oriented Computing (SOC) the problem of the spec-
ification of service composition is addressed using two main approaches: ser-
vice orchestration and service choreography. According to the first approach,
the activities of the composed services are coordinated by a specific component,
called the orchestrator, that is responsible for invoking the composed services
and collect their responses. Several languages have been already proposed for
programming orchestrators such as WS-BPEL [OAS]. As far as choreography
languages are concerned, the two main representatives are WS-CDL [W3C] and
BPEL4Chor [DKL+07]. Differently from orchestration languages, choreography
languages admit the direct interaction among the combined services without the
mediation of the orchestrator. In WS-CDL, the basic activity is the interaction
between a sender and a receiver, while according to the BPEL4Chor approach a
choreography is obtained as the parallel composition of processes that indepen-
dently execute send and receive activities.

Given an orchestrator (resp. a choreography), one of the main challenges
for the SOC community is the definition of appropriate mechanisms for the
(semi)automatic retrieval of services that, once combined with the orchestra-
tor (resp. once reciprocally combined), are guaranteed to implement a cor-
rect service composition. The currently investigated approach for solving this
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 37–54, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 M. Bravetti and G. Zavattaro

problem is to associate to each available service a behavioral description that
describes the externally observable message-passing behavior of the service it-
self. In the literature, this description is known with the name of behavioral
signature [RR02], contract [FHR+04], or (in the specific SOC area) service con-
tract [CCL+06, BZ07a, LP07, CGP08]. Assuming that services expose their con-
tract, the above problem can be rephrased as follows: given an orchestrator (resp.
a choreography) and a set of service contracts, check whether the services ex-
posing the given contracts can be safely combined with the orchestrator (resp.
safely reciprocally combined). The proposed theories of contracts solve this prob-
lem formalizing the following notions: contract compliance (if a set of contracts
is compliant then the corresponding services can be safely combined), contract
refinement (if a service exposes a refinement of the contract of another service
then the former is a safe substitute for the latter), and choreography conformance
(if the contract of a service is conformant with a given role of a choreography
then the service can be used to implement that role in any implementation of
the choreography).

In [BZ07b] we have investigated the interplay between the above notions of
contract compliance, contract refinement and choreography conformance con-
sidering synchronous communication. In this paper we consider a more realistic
scenario in which services are endowed with queues used to store the received
messages.

More precisely, we revisit our previous theory for contract compliance and
choreography conformance [BZ07b] as follows. Contracts are specified in a lan-
guage independent way by means of finite labeled transition systems. In this way,
our new contract theory is more general and foundational as we abstract away
from the syntax of contracts and we simply assume that a contract language
has an operational semantics defined in terms of a labeled transition system.
The presence of queues strongly influences the notion of contract compliance,
for instance, the following client and service are now compliant (while this was
not the case in [CCL+06, BZ07a, LP07, CGP08]):

Client = invoke(a); invoke(b) Server = receive(b); receive(a)

In fact, the presence of queues allows the client to perform the invoke operation
in a different order w.r.t. the receive order of the server.

As far as the notion of contract refinement is concerned, the main result is that
in the presence of queues refinement can be done independently. That is, given a
set of compliant contracts C1, · · · , Cn, each contract Ci can be replaced by any
refinement C′i, and the overall system obtained by composition of C′1, · · · , C′n
is still compliant. In general, in a synchronous setting, independent refinement
is not possible [CCL+06]. As an example, consider the two following service
behaviors:

Printer = receive(docToPrint)
PrinterFax = receive(docToPrint)+

receive(docToFax); invoke(faxReceipt)

Contract Compliance and Choreography Conformance 39

where + denotes a choice among alternative operations, and the two following
client behaviors:
PrintClient = invoke(docToPrint)
PrintFaxClient = invoke(docToPrint)+

invoke(docToFax); invoke(faxNum); receive(faxReceipt)

Printer and PrintClient can be safely combined. The composition is still cor-
rect even if we replace either Printer with PrinterFax or PrintClient with
PrintFaxClient, but it turns out to be incorrect if we apply both replacements.
For this reason we have that in a synchronous context PrintClient is not a
valid refinement of Printer. On the contrary, we will prove that in the presence
of message queues the PrinterFax service is always a valid refinement of the
Printer service.

The presence of message queues decouples the send event (corresponding to
the introduction of one message in a queue) from the receive event (corresponding
to its consumption from the queue). Due to this decoupling, we propose a new
interpretation of the semantics of a WS-CDL choreography language in which
the two events are modeled by two distinct transitions labeled with a send and
a receive label, respectively. Another novelty with respect to previous work is
that the choice of representing contracts by means of labeled transition systems
allows us to define choreography projections in structured operational semantics.
As described below, the use of choreography projection is an important step
toward the definition of an appropriate notion of conformance.

Conformance is an important notion to be used to retrieve services that, once
combined, correctly implement a given choreography. Formally, (as already done
for synchronous communication [BZ07b]) we propose to define conformance as
the maximal relation among contracts (ranged over by C), roles (ranged over
by r), and choreographies (ranged over by H) written C r H such that, given
a choreography H with roles r1, · · · , rn and a set of contracts C1, · · · , Cn for
which C1 r1 H, · · · , Cn rn H , we have that the composition of C1, · · · , Cn is a
correct implementation of H . As in our previous work [BZ07b] we show that,
unfortunately, there exists no such maximal relation. The proof of this negative
result is more complex than in [BZ07b] because, due to the presence of message
queues, we had to find out a more subtle counterexample. We partially alleviate
this negative result showing that we can define a conformance notion with the
above properties as follows: C is conformant to the role r of the choreography
H if C is a refinement of the contract obtained by projecting the choreography
H to the role r.

Due to space limitations, the proofs of our results are not included in this
paper but they can be found in [BZ08].

2 The Theory of Contracts

2.1 Contracts

Contracts are defined as labeled transition systems over located action names,
representing operations at a certain location over the network.

40 M. Bravetti and G. Zavattaro

Definition 1. A finite connected labeled transition system (LTS) with termi-
nation states is a tuple T = (S, T, L,−→, s0) where S is a finite set of states,
T ⊆ S is a set of states representing successful termination, L is a set of labels,
the transition relation −→ is a finite subset of S × L × S, s0 ∈ S and it holds
that every state in S is reachable (according to −→ from s0).

Note that non-termination states may have no outgoing transitions: in this case
they represent internal failures or deadlocks.

We assume a denumerable set of action names N , ranged over by a, b, c, . . .
and a denumerable set Loc of location names, ranged over by l, l′, l1, · · ·. The set
Nloc = {al | a ∈ N , l ∈ Loc} is the set of located action names. We use τ /∈ N
to denote an internal (unsynchronizable) computation.

Definition 2. A contract is a finite connected LTS with termination states
(S, T, L,−→, S0), where L = {a, al, τ | a ∈ N , l ∈ Loc}, i.e. labels are either
a receive (input) on some operation a ∈ N or an invoke (output) directed to
some operation a ∈ N at some location l.

In the following we introduce a process algebraic representation for contracts by
using a basic process algebra with prefixes over {a, al, τ | a ∈ N , l ∈ Loc} and we
show that from the LTS denoting a contract we can derive a process algebraic
term whose behavior is the same as that of the LTS. The process algebra is a
simple extension of basic CCS [Mil89] with successful termination denoted by
“1”: this new term is necessary in order to have two kinds of states without
outgoing transitions, those that are successfully terminating (that we denote
with the process “1”) and those that are not (denoted with the traditional null
process “0”).

Definition 3 (Contracts). We consider a denumerable set of contract vari-
ables V ar ranged over by X, Y , · · ·. The syntax of contracts is defined by the
following grammar

C ::= 0 | 1 | α.C | C+C | X | recX.C
α ::= τ | a | al

where recX. is a binder for the process variable X denoting recursive definition
of processes. The set of the contracts C in which all process variables are bound,
i.e. C is a closed term, is denoted by Pcon.

Besides the already commented recursion operator, we consider the standard
prefix α. (with possible prefixes τ , a, and al denoting internal, input, and output
action, respectively) and choice + operators. In the following we will omit
trailing “1” when writing contracts.

The structured operational semantics of contracts is defined in terms of a
transition system labeled over L = {a, al, τ, | a ∈ N , l ∈ Loc} and a termination
predicate

√
over states obtained by the rules in Table 1 (plus symmetric rule

for choice).

Contract Compliance and Choreography Conformance 41

Table 1. Semantic rules for contracts (symmetric rules omitted)

1
√

α.C
α−→ C

C
α−→ C′

C+D
α−→ C′

C
√

C+D
√

C{recX.C/X} α−→ C′

recX.C
α−→ C′

C{recX.C/X}√

recX.C
√

Note that we use the notation C{recX.C/X} to denote syntactic replacement
of free occurrences of variable X in C with the same contract C (where, as usual,
α-conversion is applied to avoid the possible captures of variable names). The
rules for the operational semantics are standard; we simply comment the actual
meaning of the termination predicate

√
. Informally, a contract C satisfies the

predicate if it is the successfully terminating terms 1 or it is a more complex
term in which there is at least one 1 that does not occur inside a prefixed
term α.C.

We have that the semantics of a contract C ∈ Pcon gives rise to a finite
connected LTS with termination states (S, T, L,−→, C) where L = {a, al, τ, | a ∈
N , l ∈ Loc} and: S is the set of states reachable from C, T is the subset of S
of the states for which the predicate

√
is true and −→ includes only transitions

between states of S. Note that the fact that such a LTS is finite (i.e. finite-state
and finitely branching) is a well-known fact for basic CCS [Mil89] (and obviously
the additional presence of successful termination does not change this fact).

Definition 4. A set of process algebraic equations is denoted by θ = {Xi = Ci |
0 ≤ i ≤ n − 1}, where n is the number of equation in the set, Xi are process
variables, and Ci are contract terms (possibly including free process variables).
The process algebraic equations θ is closed if only process variables Xi, with
0 ≤ i ≤ n− 1, occur free in the bodies Cj, with 0 ≤ j ≤ n− 1, of the equations
in the set.

Definition 5. Let T = (S, T, L,−→, S0) be a contract. A contract term C ∈
Pcon is obtained from T as follows.

– Supposed S = {s0, . . . , sn−1} (i.e. any given numbering on the states S), we
first obtain from T a finite closed set of equations θ = {Xi = Ci | 0 ≤ i ≤
n − 1} as follows. Denoted by mi the number of transitions outgoing from
si, by αij the label of the j − th transition outgoing from si (for any given
numbering on the transitions outgoing from si), with j ≤ mi, and by ssucci

j

its target state, we take Ci =
∑

j≤mi
αij .Xsucci

j
+ {1}, where 1 is present

only if si ∈ T and an empty sum is assumed to yield 0.
– We then obtain, from the closed set of equations θ = {Xi = Ci | 0 ≤ i ≤

n−1}, a closed contract term C by induction on the number of equations. The
base case is n = 1: in this case we have that C is recX0.C0. In the inductive

42 M. Bravetti and G. Zavattaro

case we have that C is inductively defined as the term obtained from the equa-
tion set {Xi = C′i | 0 ≤ i ≤ n− 2}, where C′i = Ci{recXn−1.Cn−1/Xn−1}.

Definition 6. A homomorphism from a finite connected LTS with termination
states T = (S, T, L,−→, s0) to a finite connected LTS with termination states
T ′ = (S′, T ′, L,−→′, s′0) is a function f from S to S′ such that: f(s0) = s′0 and

for all s ∈ S we have {(l, s′) | f(s)
l

−→′ s′} = {(l, f(s′)) | s l−→ s′}, i.e. the set of
transitions performable by f(s) is the same as the set of transitions performable
by s when f -images of the target states are considered, and s ∈ T if and only if
f(s) ∈ T ′.

Note that, if f is a homomorphism between finite connected LTSes with finite
states then f is surjective: this because all states reachable by f(s0) must be
f -images of states reachable from s0.

Proposition 1. Let T = (S, T, L,−→, s0) be a contract and C ∈ Pcon be a
contract term obtained from T . There exists a (surjective) homomorphism from
the semantics of C to T itself.

2.2 Composing Contracts

Definition 7 (Systems). The syntax of systems (compositions of contracts) is
defined by the following grammar

P ::= [C,Q]l | P ||P | P\L
Q ::= ε | al :: Q

where L ⊆ Nloc.

The restriction operator \L is a binder for the names in located actions. For-
mally, if al is in L, then L binds a in any action a occurring in the contract
located at l and in any action al. The terms in the syntactic category Q denote
message queues. They are lists of messages, each one denoted with al where a
is the action name and l is the location of the sender. We use ε to denote the
empty message queue. Trailing ε are usually left implicit, and we use :: also as
an operator over the syntax: if Q and Q′ are ε-terminated queues, according to
the syntax above, then Q :: Q′ means appending the two queues into a single
ε-terminated list. Therefore, if Q is a queue, then ε :: Q, Q :: ε, and Q are
syntactically equal.

A system P is well-formed if: (i) every contract subterm [C,Q]l occurs in P at
a different location l and (ii) no output action with destination l is syntactically
included inside a contract subterm occurring in P at the same location l, i.e.
actions al cannot occur inside a subterm [C,Q]l of P . The set of all well-formed
systems P is denoted by P . In the following we will just consider well-formed
systems and, for simplicity, we will call them just systems. Moreover, we will use
the shorthand [C]l to stand for [C, ε]l.

Given a system P , we use loc(P) to denote the subset of Loc of the locations
of contracts syntactically occurring inside P : e.g. loc([C]l1 ||[C′]l2) = {l1, l2}.

Contract Compliance and Choreography Conformance 43

Also the operational semantics of systems is defined in terms of a labeled
transition system. The labels, denoted with λ, λ′, · · ·, are taken from the set
{ars, ars, a+

r→s, a
−
r→s, τ | a ∈ N ; r, s ∈ Loc}, where: ars denotes a potential input

by a queue where the sender is at location r and the receiver queue is at location
s, ars denotes a potential output where the sender is at location r and the receiver
queue is at location s, a+

r→s denotes an insertion in the queue (that actually took
place) where the sender is at location r and the receiver queue is at location s,
a−r→s denotes an extraction from the queue (that actually took place) where the
sender (that originally sent the message) is at location r and the receiver queue
is at location s, and τ denotes a move performed internally by one contract in
the system. We use α−renaming of names bound by the restriction operator \L;
namely, we write P ≡a Q if P is α-convertible into Q (or vice-versa), i.e. if Q
can be obtained from P by turning subterms P ′\L of P into subterms Q′\L′ by
renaming of located names al of L into located names ren(a)l (yielding L′ with
the same cardinality) and by correspondingly replacing: (i) each input-related
syntactical occurrence of a with ren(a) inside the unique subterm [C,Q]l of P ′,
if it exists (more precisely occurrences of al

′
inside Q are renamed into ren(a)l

′
,

independently of the location l′, and a input prefixes inside C are renamed into
ren(a) input prefixes), and (ii) each syntactical occurrence of al inside P ′ with
ren(a)l (obviously a renaming is only allowed if it does not generate a name that
is already present as a free name in association with the same location).

The rules in the Table 2 (plus symmetric rules) define the transition system
and the termination predicate (

√
) for systems. In Table 2 we assume that al ∈ Q

holds true if and only if al syntactically occurs inside Q.

Table 2. Semantic rules for contract compositions (symmetric rules omitted)

[C,Q]s
ars−→ [C,Q :: ar]s

C
as−→ C′

[C,Q]r
ars−→ [C′,Q]r

P
ars−→ P ′ Q

ars−→ Q′

P ||Q a+
r→s−→ P ′||Q′

C
τ−→ C′

[C,Q]l
τ−→ [C′,Q]l

C
√

[C, ε]l
√ P

λ−→ P ′

P ||Q λ−→ P ′||Q
P
√

Q
√

P ||Q√

P
λ−→ P ′ if λ = ars, ars then as �∈ L

P\L λ−→ P ′\L
P
√

P\L√

P ≡α P ′ P ′ λ−→ Q

P
λ−→ Q

C
a−→ C′ if bl ∈ Q then b �= a

[C,Q :: ar :: Q′]s
a−

r→s−→ [C′,Q :: Q′]s

We will also use the following notations: P
λ−→ to mean that there exists P ′

such that P
λ−→ P ′ and, given a sequence of labels w = λ1λ2 · · ·λn−1λn (possibly

empty, i.e., w = ε), we use P
w−→ P ′ to denote the sequence of transitions

44 M. Bravetti and G. Zavattaro

P
λ1−→ P1

λ2−→ · · · λn−1−→ Pn−1
λn−→ P ′ (in case of w = ε we have P ′ = P ,

i.e., P
ε−→ P). In the following we will adopt the usual notation A∗ to denote

(possibly empty) sequences over labels in A.
We now define the notion of correct composition of contracts. This notion is

the same as in [BZ07a]. Intuitively, a system composed of contracts is correct if
all possible computations may guarantee completion; this means that the system
is both deadlock and livelock free (there could be an infinite computation, but
given any possible prefix of this infinite computation, it can be extended to reach
a successfully completed computation).

Definition 8 (Correct contract composition). A system P is a correct con-
tract composition, denoted P ↓, if for every P ′ such that P

w−→ P ′, with

w ∈ {a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗, there exists P ′′ such that P ′

w′
−→ P ′′,

with w′ ∈ {a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗, and P ′′

√
.

It is interesting to observe that in a correct contract composition, when all con-
tracts successfully terminate, it is ensured that all the sent messages have been
actually received. In fact, by definition of the termination predicate

√
for con-

tract compositions, a system is terminated only if all message queues are empty.
Note also that, obviously, contracts that form correct contract compositions still
form correct contract compositions if they are replaced by homomorphic ones.

We complete this subsection presenting a simple example of correct contract
composition

[al3]l1 || [bl3]l2 || [a.b]l3

composed by three contracts, the first one and the second one that send respec-
tively the message a and b to the third one, and this last contract that consumes
the two messages.

2.3 Independent Subcontracts

We are now ready to define the notion of subcontract pre-order. Given a contract
C ∈ Pcon, we use oloc(C) to denote the subset of Loc of the locations of the
destinations of all the output actions occurring inside C.

With P
τ∗
−→ P ′ we denote the existence of a (possibly empty) sequence of

τ -labeled transitions starting from the system P and leading to P ′. Given the
sequence of labels w = λ1 · · ·λn, we write P

w=⇒ P ′ if there exist P1, · · · , Pm
such that P

τ∗
−→ P1

λ1−→ P2
τ∗
−→ · · · τ∗

−→ Pm−1
λn−→ Pm

τ∗
−→ P ′.

Definition 9 (Independent subcontract pre-order). A pre-order ≤ over
Pcon is an independent subcontract pre-order if, for any n ≥ 1, contracts C1, . . . ,
Cn ∈ Pcon and C′1, . . . , C

′
n ∈ Pcon such that ∀i. C′i ≤ Ci, and distinguished

location names l1, . . . , ln ∈ Loc such that ∀i. oloc(Ci) ∪ oloc(C′i) ⊆ {lj | 1 ≤ j ≤
n ∧ j �= i}, we have ([C1]l1 || . . . || [Cn]ln)↓ implies

Contract Compliance and Choreography Conformance 45

– ([C′1]l1 || . . . || [C′n]ln)↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C′1]l1 || . . . || [C′n]ln) w=⇒ P ′ ∧ P ′
√ ⇒

∃P ′′ : ([C1]l1 || . . . || [Cn]ln) w=⇒ P ′′ ∧ P ′′
√

.

We will prove that there exists a maximal independent subcontract pre-order;
this is a direct consequence of the queue based communication. In fact, if we
simply consider synchronous communication it is easy to prove that there exists
no maximal independent subcontract pre-order (see [BZ07a]).

We will show that the maximal independent subcontract pre-order can be
achieved defining a more coarse form of refinement in which, given any system
composed of a set of contracts, refinement is applied to one contract only (thus
leaving the other unchanged). We call this form of refinement singular subcon-
tract pre-order. Intuitively a pre-order ≤ over Pcon is a singular subcontract
pre-order whenever the correctness of systems is preserved by refining just one
of the contracts. More precisely, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon,
1 ≤ i ≤ n,C′i ∈ Pcon such that C′i ≤ Ci, and distinguished location names
l1, . . . , ln ∈ Loc such that ∀k �= i. lk /∈ oloc(Ck) and li /∈ oloc(Ci) ∪ oloc(C′i),
we require that ([C1]l1 || . . . || [Ci]li || . . . || [Cn]ln) ↓ implies that the statement
in Def. 9 holds for ([C1]l1 || . . . || [C′i]li || . . . || [Cn]ln). By exploiting commutativ-
ity and associativity of parallel composition we can group the contracts which
are not being refined and get the following cleaner definition. We let Pconpar
denote the set of systems of the form [C1]l1 || . . . ||[Cn]ln , with Ci ∈ Pcon, for all
i ∈ {1, . . . , n}.

Definition 10 (Singular subcontract pre-order). A pre-order ≤ over Pcon
is a singular subcontract pre-order if, for any C, C′ ∈ Pcon such that C′ ≤ C,
l ∈ Loc and P ∈ Pconpar such that l /∈ loc(P) and oloc(C) ∪ oloc(C′) ⊆ loc(P),
we have ([C]l||P)↓ implies

– ([C′]l||P)↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C′]l||P) w=⇒ P ′ ∧ P ′
√ ⇒ ∃P ′′ : ([C]l||P) w=⇒ P ′′ ∧ P ′′

√
.

The following proposition, which shows that extending possible contexts with
an external restriction does not change the notion of singular subcontract pre-
order, will be used in the following Sect. 2.4. It plays a fundamental role in
eliminating the source of infinite branching in the interaction behavior of the
contract composition originated by α-renaming of restriction. We let Pconpres
denote the set of systems of the form ([C1]l1 || . . . ||[Cn]ln)\L, with Ci ∈ Pcon for
all i ∈ {1, . . . , n} and L ⊆ Nloc.

Proposition 2. Let ≤ be a singular subcontract pre-order. For any C, C′ ∈
Pcon such that C′ ≤ C, l ∈ Loc and P ∈ Pconpres such that l /∈ loc(P) and
oloc(C) ∪ oloc(C′) ⊆ loc(P), we have ([C]l||P)↓ implies

46 M. Bravetti and G. Zavattaro

– ([C′]l||P)↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C′]l||P) w=⇒ P ′ ∧ P ′
√ ⇒ ∃P ′′ : ([C]l||P) w=⇒ P ′′ ∧ P ′′

√
.

From the simple structure of their definition we can easily deduce that singular
subcontract pre-orders have maximum, i.e. there exists a singular subcontract
pre-order includes all the other singular subcontract pre-orders.

Definition 11 (Subcontract relation). A contract C′ is a subcontract of a
contract C denoted C′
 C, if and only if for all l ∈ Loc and P ∈ Pconpar such
that l /∈ loc(P) and oloc(C)∪ oloc(C′) ⊆ loc(P), we have that ([C]l||P)↓ implies

– ([C′]l||P)↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C′]l||P) w=⇒ P ′ ∧ P ′
√ ⇒ ∃P ′′ : ([C]l||P) w=⇒ P ′′ ∧ P ′′

√
.

It is trivial to verify that the pre-order
 is a singular subcontract pre-order and
is the maximum of all the singular subcontract pre-orders.

In order to prove the existence of the maximal independent subcontract pre-
order, we will prove that every pre-order that is an independent subcontract is
also a singular subcontract (Theorem 1), and vice-versa (Theorem 2).

Theorem 1. If a pre-order ≤ is an independent subcontract pre-order then it
is also a singular subcontract pre-order.

Theorem 2. If a pre-order ≤ is a singular subcontract pre-order then it is also
an independent subcontract pre-order.

We can, therefore, conclude that there exists a maximal independent subcontract
pre-order and it corresponds to the subcontract relation “
”.

2.4 Input-Output Knowledge Independence

In the following we will show that allowing the subcontract relation to depend
on the knowledge about input and output actions of other initial contracts does
not change the relation. As a consequence of this fact we will show that input
on new types (operations) can be freely added in refined contracts.

Given a set of located action names I ⊆ Nloc, we denote: with I = {al | al ∈ I}
the set of output actions performable on those names and with Il = {a | al ∈ I}
the set of action names with associated location l.

Definition 12 (Input and Output sets). Given a contract C ∈ Pcon, we
define I(C) (resp. O(C)) as the subset of N (resp. Nloc) of the potential input
(resp. output) actions of C. Formally, we define I(C) as follows (O(C) is defined
similarly):

I(0)= I(1)= I(X)= ∅ I(a.C) = {a} ∪ I(C)
I(C+C ′) = I(C)∪I(C′) I(al.C) = I(τ.C) = (recX.C) = I(C)

Contract Compliance and Choreography Conformance 47

Given a system P ∈ Pconpres, we define I(P) (resp. O(P)) as the subset of Nloc

of the potential input (resp. output) actions of P . Formally, we define I(P) as
follows (O(P) is defined similarly):

I([C]l) = {al | a ∈ I(C)} I(P ||P ′) = I(P) ∪ I(P ′) I(P\L) = I(P)− L

In the following we let Pconpres,I,O, with I, O ⊆ Nloc, denote the subset of
systems of Pconpres such that I(P) ⊆ I and O(P) ⊆ O.

Definition 13 (Input-Output subcontract relation). A contract C′ is a
subcontract of a contract C with respect to a set of input located names I ⊆ Nloc

and output located names O ⊆ Nloc, denoted C′
I,O C, if and only if for all l ∈
Loc and P ∈ Pconpres,I,O such that l /∈ loc(P) and oloc(C) ∪ oloc(C′) ⊆ loc(P),
we have ([C]l||P)↓ implies

– ([C′]l||P)↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C′]l||P) w=⇒ P ′ ∧ P ′
√ ⇒ ∃P ′′ : ([C]l||P) w=⇒ P ′′ ∧ P ′′

√
.

Due to Proposition 2, we have
=
Nloc,Nloc
. The following proposition states

an intuitive contravariant property: given
I′,O′ , and the greater sets I and O
(i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a smaller pre-order
I,O (i.e.
I,O⊆
I′,O′).
This follows from the fact that extending the sets of input and output actions
means considering a greater set of discriminating contexts.

Proposition 3. Let C, C′ ∈ Pcon be two contracts, I, I ′ ⊆ Nloc be two sets of
input located names such that I ′ ⊆ I and O, O′ ⊆ Nloc be two sets of output
located names such that O′ ⊆ O. We have:

C′
I,O C ⇒ C′
I′,O′ C

The following lemma, that will be used to characterize the subcontract relation,
states that a subcontract is still a subcontract even if we modify it so to consider
only the inputs and outputs already available in the supercontract.

In the following lemma, and in the remainder of the paper, we use the abuse of
notation “C\M”, with M ⊆ N , to stand for “C{0/α.C′|α ∈ M}”, that denotes
the effect of restricting C with respect to inputs in M .

Lemma 1. Let C, C′ ∈ Pcon be contracts and I, O ⊆ Nloc be sets of located
names. We have that both the following hold

C′
I,O C ⇒ C′\(I(C′)− I(C))
I,O C

C′
I,O C ⇒ C′{τ.0/α.C′′ | α ∈ O(C′)−O(C)}
I,O C

A fundamental result depending on the queue based communication is reported
in the following proposition. It states that if we substitute a contract with one of
its subcontract, the latter cannot activate outputs that were not included in the
potential outputs of the supercontract (and similarly for the system considered
as context).

48 M. Bravetti and G. Zavattaro

Proposition 4. Let C, C′ ∈ Pcon be contracts and I, O ⊆ Nloc be sets of located
names. Let l ∈ Loc and P ∈ Pconpres,I,O, l /∈ loc(P) and oloc(C) ∪ oloc(C′) ⊆
loc(P) be such that ([C]l||P)↓. We have that both the following hold:

If ([C′{τ.0/α.C′′ | α ∈ O(C′)−O(C)}]l||P)↓ then

([C′]l||P) w−→ ([C′der ,Q]l||Pder) ∧w∈{a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗ ⇒

∀ al′ ∈ O(C′)− O(C). C′der
al′−→/

If ([C′\(I(C′)− I(C))]l||P)↓ then

([C′]l||P) w−→ ([C′der ,Q]l||Pder) ∧w∈{a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗ ⇒

∀ a ∈ I(C′)− I(C). ∀ r ∈ loc(P). Pder
arl−→/

The following propositions permit to conclude that the set of potential inputs
and outputs of the other contracts in the system is an information that does not
influence the subcontract relation.

Proposition 5. Let C ∈ Pcon be contracts, O ⊆ Nloc be a set of located output
names and I, I ′ ⊆ Nloc be two sets of located input names such that O(C) ⊆ I, I ′.
We have that for every contract C′ ∈ Pcon,

C′
I,O C ⇐⇒ C′
I′,O C

Proposition 6. Let C ∈ Pcon be contracts, O, O′ ⊆ Nloc be two sets of located
output names such that for every l ∈ Loc we have I(C) ⊆ Ol, O

′
l, and I ⊆ Nloc

be a set of located input names. We have that for every contract C′ ∈ Pcon,

C′
I,O C ⇐⇒ C′
I,O′ C

We finally show that the subcontract relation
 allows input on new types (and
unreachable outputs on new types) to be added in refined contracts. The result,
that uses Lemma 1, is a direct consequence (in the case of inputs) of the fact that
C′
Nloc,

⋃
l∈Loc I([C]l) C if and only if C′
 C, i.e. it exploits the results above

about independence from knowledge of types used by other initial contracts.

Theorem 3. Let C, C′ ∈ Pcon be contracts. Both the following hold

C′\(I(C′)− I(C))
 C ⇐⇒ C′
 C

C′{τ.0/α.C′′ | α ∈ O(C′)−O(C)}
 C ⇐⇒ C′
 C

3 Contract-Based Choreography Conformance

We first introduce a choreography language similar to those already presented
in [BGG+05, CHY07, BZ07b]. The main novelty is that, as we are considering
communication mediated by a message queue, in the operational semantics we
distinguish between the send and the receive events.

Contract Compliance and Choreography Conformance 49

Definition 14 (Choreographies). Let Operations, ranged over by a, b, c, · · ·
and Roles, ranged over by r, s, t, · · ·, be two countable sets of operation and role
names, respectively. The set of Choreographies, ranged over by H, L, · · · is de-
fined by the following grammar:

H ::= ar→s | H + H | H ; H | H |H | H∗

The invocations ar→s (where we assume r �= s) means that role r invokes the
operation a provided by the role s. The other operators are choice + , sequential
; , parallel | , and repetition ∗.

The operational semantics of choreographies considers three auxiliary terms
a−r→s, 1, and 0. The first one is used to model the fact that an asynchronous
interaction has been activated but not yet completed. The other two terms are
used to model the completion of a choreography, which is relevant in the op-
erational modeling of sequential composition. The formal definition is given in
Table 3 where we take η to range over the set of labels {a+

r→s, a
−
r→s | a ∈

Operations, r, s ∈ Roles} and the termination predicate
√

. The rules in Table 3
are rather standard for process calculi with sequential composition and without
synchronization; in fact, parallel composition simply allows for the interleaving
of the actions executed by the operands.

Table 3. Semantic rules for choreographies (symmetric rules omitted)

ar→s
a+

r→s−→ a−
r→s a−

r→s

a−
r→s−→ 1 1

√
H∗√

H
η−→ H ′

H+L
η−→ H ′

H
√

H+L
√ H

η−→ H ′

H ;L
η−→ H ′;L

H
√

L
η−→ L′

H ;L
η−→ L′

H
√

L
√

H |L√
H
√

L
√

H ; L
√ H

η−→ H ′

H |L η−→ H ′|L
H

η−→ H ′

H∗ η−→ H ′; H∗

Choreographies are especially useful to describe the protocols of interactions
within a group of collaborating services, nevertheless, even if choreography lan-
guages represent a simple and intuitive approach for the description of the mes-
sage exchange among services, they are not yet very popular in the context of
service oriented computing. The main problem to their diffusion is that it is
not trivial to relate the high level choreography description with the actual im-
plementation of the specified system realised as composition of services that are
usually loosely coupled, independently developed by different companies, and au-
tonomous. More precisely, the difficult task is, given a choreography, to lookup
available services that, once combined, are ensured to behave according to the
given choreography.

In order to formally investigate this problem, we define a mechanism to extract
from a choreography the description of the behavior of a given role. Formally, for
each role i, we define a labeled transition system with transitions

η−→i (see the

50 M. Bravetti and G. Zavattaro

rules in Table 4) and termination predicate
√
i representing the behavior of the

role i. In the following, given a choreography H and one of its role i, with semHi

we denote the contract term obtained from the labeled transition system transηi
according to the technique defined in Section 2.

Table 4. Projection on the role i of a choreography (symmetric rules omitted)

ar→s
as−→r 1 ar→s

a−→s 1 ar→s
√

i if i �= r, s

1
√

i H∗√
i

H
η−→i H ′

H+L
η−→i H ′

H
√

i

H+L
√

i

H
η−→i H ′

H ;L η−→i H ′;L

H
√

i L
η−→i L′

H ;L η−→i L′

H
√

i L
√

i

H |L√i

H
√

i L
√

i

H ; L
√

i

H
η−→i H ′

H |L η−→i H ′|L
H

η−→i H ′

H∗ η−→i H ′; H∗

In this section we discuss how to exploit the choreography and the contract
calculus in order to define a procedure that checks whether a service exposing a
specific contract C can play the role r within a given choreography.

First of all we need to uniform the choreography and the contract calculus.
From a syntactical viewpoint, we have to map the operation names used for
choreographies with the names used for contracts assuming Operations = N .
We do the same also for the role names that are mapped into the location
names, i.e., Roles = Loc. Taken these assumptions, we have that the labels of
the operational semantics of the choreography calculus are a subset of the labels
of the operational semantics of contract systems, i.e. a+

r→s and a−r→s.
We are now ready to formalize the notion of correct implementation of a

choreography. Intuitively, a system implements a choreography if it is a correct
composition of contracts and all of its conversations (i.e. the possible sequences
of message exchanges), are admitted by the choreography.

Definition 15 (Choreography implementation). Given the choreography
H and the system P , we say that P implements H (written P ∝ H) if

– P is a correct contract composition and
– given a sequence w of labels of the kind a+

r→s and a−r→s, if P
w=⇒ P ′ and

P ′
√

then there exists H ′ such that H
w−→ H ′ and H ′

√
.

Note that it is not necessary for an implementation to include all possible conver-
sations admitted by a choreography. As an example, consider the choreography
reserveclient→server ; (acceptserver→client + rejectserver→client). We can think of
implementing it with the following system

[reserveserver .(accept + reject)]client || [reserve.acceptclient]server
where the server is always ready to accept the client’s request.

It is interesting to observe that given a choreography H , the system obtained
composing its projections is not ensured to be an implementation of H . For

Contract Compliance and Choreography Conformance 51

instance, consider the choreography ar→s ; bt→u. The system obtained by pro-
jection is [as]r || [a]s || [bu]t || [b]u. Even if this is a correct composition of con-
tracts, it is not an implementation of H because it comprises the conversation
b+
t→ub

−
t→ua

+
r→sa

−
r→s which is not admitted by H .

The problem is not in the definition of the projection, but in the fact that the
above choreography cannot be implemented preserving the message exchanges
specified by the choreography. In fact, in order to guarantee that the communi-
cation between t and u is executed after the communication between r and s, it
is necessary to add a further message exchange (for instance between s and r)
which is not considered in the choreography. We restrict our interest to well
formed choreographies.

Definition 16 (Well formed choreography). A choreography H, defined on
the roles r1, · · · , rn, is well formed if [[[H]]r1]r1 || · · · || [[[H]]rn]rn ∝ H

As another example of non well formed choreography we consider al1→l3 ; bl2→l3

which have the following projection [al3]l1 || [bl3]l2 || [a.b]l3 corresponding to the
system described at the end of the subsection 2.2. Among the possible traces
of this system we have a+

l3
b+
l3

a−l3b
−
l3

which is not a correct trace for the above
choreography. This example is of interest because it shows that some interesting
contract systems are not specifiable as choreographies. This follows from the fact
that we have adopted the same approach of WS-CDL that exploits synchroniza-
tions as its basic activity. In order to model at a choreographic level the above
contract system, we should separate also in the syntax (and not only in the se-
mantics) the send from the receive actions. For instance, we could consider two
distinct basic terms a+

r→s and a−r→s for send and receive actions, respectively, and
describe the above system with the choreography a+

l1→l3
| b+

l2→l3
| a−l1→l3

; b−l2→l3
.

We are now in place for the definition of the relation CrH indicating whether
the contract C can play the role r in the choreography H .

Definition 17 (Conformance family). A relation among contracts, roles,
and choreographies denoted with C r H is a conformance relation if, given a
well formed choreography H with roles r1, · · · , rn, we have that [[H]]ri ri H for
1 ≤ i ≤ n and if C1 r1 H, · · · , Cn rn H then [C1]r1 || · · · ||[Cn]rn ∝ H

In the case of synchronous communication we proved in [BZ07a] a negative result
about conformance: differently from the subcontract pre-orders defined on con-
tracts in the previous Section, there exists no maximal conformance relation. The
counter-example used in that paper to prove this negative results does not work in
the presence of message queues, but we have found out the following more subtle
counter-example. Consider the choreography H = ar→s|bs→r. We could have two
different conformance relations, the first one 1 including (besides the projections)
also a.br

1
sH and the second one 2 including also b.as

2
rH . It is easy to see that it

is not possible to have a conformance relation that comprises the union of the two
relations 1 and 2. In fact, the system [b.as]r || [a.br]s is not a correct composition
because the two contracts are both blocked for a never incoming message.

The remainder of the paper is dedicated to the definition of a mechanism that,
exploiting the choreography projection and the notion of contract refinement

52 M. Bravetti and G. Zavattaro

defined in the previous Section, permits to characterize an interesting confor-
mance relation. This relation is called consonance.

Definition 18 (Consonance). We say that the contract C is consonant with
the role r of the well formed choreography H (written C �r H) if C
 [[H]]r
where
 is the subcontract relation defined in Section 2.

Theorem 4. Given a well formed choreography H, we have that the consonance
relation C �r H is a conformance relation.

4 Related Work and Conclusion

We have addressed the problem of the definition of suitable notions of con-
tract refinement and choreography conformance for services that communicate
through message queues. We have attacked this problem exploiting the approach
that we have already successfully adopted for synchronously communicating ser-
vices [BZ07b]. However, the new theory of contracts is more general than the
theory in our previous paper because we represent contracts in a language inde-
pendent way. On the one hand, this required to significantly revisit our technical
contribution, but on the other hand, our results are now more general as they
apply to any contract language (for which an operational semantics is defined
in terms of a labeled transition system). This choice also influenced the theory
for choreography conformance. Now a choreography projection must produce a
labeled transition system instead of a contract specified in a given language. We
solve this problem defining the projection in structured operational semantics.

It is worth noting that, differently from our previous work, in this paper we do
not present an actual way for deciding compliance, refinement, and conformance.
This follows from the fact that the presence of message queues make a contract
system possibly infinite. In fact, even if contracts are finite state, a contract could
repeatedly emit the same message thus introducing an unbounded amount of
messages in a queue. Contract systems can be limited to be finite in (at least) two
possible ways, either considering bounded buffers or avoiding cycles in contracts.

In the Introduction we have already commented similar contract theories avail-
able in the literature [CCL+06, LP07, CGP08] developed for synchronous com-
munication. Similar ideas were already considered also in [FHR+04] where the
notion of stuck-free conformance is introduced. The unique contract theories
for asynchronous communication that we are aware of are by Rajamani and
Rehof [RR02] and by van der Aalst and others [ALM+07]. In [RR02] a con-
formance relation is defined in a bisimulation-like style introducing an ad-hoc
treatment of internal and external choices that are included in the calculus as
two distinct operators. We try somehow to be more general, avoiding the intro-
duction of two distinct choice operators and by defining our refinement notion
indirectly as the maximal contract substitution relation that preserves system
correctness. In [ALM+07] the same approach for formalizing compliance and re-
finement that we have presented in [BZ07b] has been applied to service systems

Contract Compliance and Choreography Conformance 53

specified using open Workflow Nets (a special class of Petri nets) that commu-
nicate asynchronously. As in our works, they prove that contract refinement can
be done independently. Moreover, they present an actual way for checking refine-
ment that work assuming that contracts do not contain cycles. As a future work,
we plan to investigate whether their decidability technique can be applied also
in our different context in which message queues preserve the order of messages.

We now comment on the testing theories developed for process calculi starting
from the seminal work by De Nicola and Hennessy [DH84]. A careful comparison
between the testing approach and our contract theory for synchronous communi-
cation can be found in [BZ07a] (where we resort to fair testing [RV07], a variant of
De Nicola-Hennessy must testing for fair systems, to define an actual procedure
to check contract refinement). The same comments apply also to the CSP failure
refinement [Hoa85] as it is well known that the must testing pre-order and the
CSP failure refinement coincide (at least for finitely branching processes without
divergences) [DeN87]. As far as must testing for asynchronous communication
is concerned, it has been investigated for asynchronous CCS in [CH98, BDP02].
An interesting law holding in that papers is that an input, immediately followed
by the output of the same message, is equivalent to do nothing. This does not
hold in our context. In fact, a receiver of a message cannot re-emit the read
message because it is not possible for a service to introduce a message in its own
message queue.

Finally, we would to report about related work on the study of services com-
municating via asynchronous mechanisms and their conversations. In particular,
in [FuBS05] the authors present a technique to establish satisfaction of a given
property on service conversations from the specifications of the involved services
and in [FuBS04] the authors study, given a specification of possible conversations,
whether there exists or not a set of services realizing them.

Acknowledgements. We thank the anonymous referees for their comments.

References

[ALM+07] van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.:
From Public Views to Private Views - Correctness-by-Design for Services.
In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 139–
153. Springer, Heidelberg (2008)

[BDP02] Boreale, M., De Nicola, R., Pugliese, R.: Trace and Testing Equivalence
on Asynchronous Processes. Information and Computation 172(2), 139–
164 (2002)

[BZ07a] Bravetti, M., Zavattaro, G.: Contract based Multi-party Service Compo-
sition. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp.
207–222. Springer, Heidelberg (2007)

[BZ07b] Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography
Conformance and Contract Compliance. In: Lumpe,M., Vanderperren,W.
(eds.) SC 2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

[BZ07c] Bravetti, M., Zavattaro, G.: A Theory for Strong Service Compliance. In:
Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467,
pp. 96–112. Springer, Heidelberg (2007)

54 M. Bravetti and G. Zavattaro

[BZ08] Bravetti, M., Zavattaro, G.: Contract Compliance and Choreography
Conformance in the Presence of Message Queues. Technical report,
http://www.cs.unibo.it/~bravetti/html/techreports.html

[BGG+05] Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography
and orchestration: A synergic approach for system design. In: Benatal-
lah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 228–240. Springer, Heidelberg (2005)

[CHY07] Carbone, M., Honda, K., Yoshida, N.: Structured Communication-
Centred Programming for Web Services. In: De Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421, pp. 2–17. Springer, Heidelberg (2007)

[CH98] Castellani, I., Hennessy, M.: Testing Theories for Asynchronous Lan-
guages. In: Arvind, V., Ramanujam, R. (eds.) FSTTCS 1998. LNCS,
vol. 1530, pp. 90–101. Springer, Heidelberg (1998)

[CCL+06] Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of
Contracts forWebServices. In:Bravetti,M.,Núñez,M.,Zavattaro,G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

[CGP08] Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web
Services. In: POPL 2008, pp. 261–272. ACM Press, New York (2008)

[DKL+07] Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extend-
ing BPEL for Modeling Choreographies. In: IEEE 2007 International
Conference on Web Services (ICWS), Salt Lake City, Utah, USA. IEEE
Copmuter Society, Los Alamitos (2007)

[DeN87] De Nicola, R.: Extensional equivalences for transition systems. Acta In-
formatica 24(2), 211–237 (1887)

[DH84] De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theo-
retical Computer Science 34, 83–133 (1984)

[FHR+04] Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Con-
formance. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 242–254. Springer, Heidelberg (2004)

[FuBS05] Fu, X., Bultan, T., Su, J.: Synchronizability of Conversations among Web
Services. IEEE Trans. Software Eng. 31(12), 1042–1055 (2005)

[FuBS04] Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for spec-
ification and verification of reactive electronic services. Theor. Comput.
Sci. 328(1-2), 19–37 (2004)

[Hoa85] Hoare, T.: Communicating Sequential Processes. Prentice-Hall, Engle-
wood Cliffs (1985)

[LP07] Laneve,C., Padovani, L.: The must preorder revisited -An algebraic theory
for web services contracts. In: Caires, L., Vasconcelos, V.T. (eds.) CON-
CUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood
Cliffs (1989)

[RV07] Rensink, A., Vogler, W.: Fair testing. Information and Computa-
tion 205(2), 125–198 (2007)

[OAS] OASIS. Web Services Business Process Execution Language Version 2.0
[RR02] Rajamani, S.K., Rehof, J.: Conformance Checking for Models of Asyn-

chronous Message Passing Software. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 166–179. Springer, Heidelberg (2002)

[W3C] W3C. Web Services Choreography Description Language,
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217

Verification of Choreographies During Execution
Using the Reactive Event Calculus

Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni

DEIS - University of Bologna, V.le Risorgimento 2, 40136 Bologna - Italy
{federico.chesani,paola.mello,marco.montali,paolo.torroni}@unibo.it

Abstract. This article presents a run-time verification method of web
service behaviour with respect to choreographies. We start from Dec-
SerFlow as a graphical choreography description language. We select a
core set of DecSerFlow elements and formalize them using a reactive
version of the Event Calculus, based on the computational logic SCIFF
framework. Our choice enables us to enrich DecSerFlow and the Event
Calculus with quantitative time constraints and to model compensation
actions.

1 Introduction

Recent years have seen a wide adoption of the Service-Oriented Architecture
(SOA) paradigm, both in the research field as well as in industrial settings, to
enable distributed applications within intra- and inter-organizational scenarios.
Such applications typically consist of a composition of heterogenous interacting
services, each one providing a specific functionality. Complex business processes
are realized by properly guiding and constraining service interactions. When
collaboration is performed across different organizations, service choreographies
come into play. A choreography models the interaction from a global viewpoint.
As stated by the authors of WS-CDL [1], “[a choreography] offers a means by
which the rules of participation within a collaboration can be clearly defined and
agreed to, jointly.”

Recent research has demonstrated a possible use of choreographies before ser-
vice execution, either to establish an agreement among services [2,3], or to derive
skeletons of local models [4,5] to be used for implementing the services. A differ-
ent issue is to verify that a running service follows a given choreography. This is
a task that has to be carried out during execution, when potential mismatches
between a service’s behavioural interface and its real implementation may lead
to unexpected/undesired interactions. Therefore, monitoring and verifying the
behaviour of services at execution time is a fundamental requirement.

Choreographies often involve the specification of complex constraints, such
as conditions on the reached state or the possibility of violating certain pre-
scriptions, at the expense of some compensating activity. Suitable, expressive
formalisms are needed to model such constraints in an accurate way. Candidates
could be temporal logic languages, such as linear temporal logic (LTL), branch-
ing time temporal logic (CTL) or CTL∗ [6], which can encode formulae such

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 55–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

56 F. Chesani et al.

as that a condition will eventually be true, or a condition must be true until
another one becomes true, etc. However, these logics do not accommodate quan-
titative time, i.e, they enable reasoning about what happens “next” or “at some
point in the future,” but not “before 60 time ticks.” Extensions to temporal logic
languages, such as metric temporal logic [7], have been proposed to accommo-
date explicit time, but they can be hardly used for runtime verification because
of their high computational complexity [8]. The well known “state-explosion”
problem for temporal logics is even more critical when considering declarative
specification languages such as DecSerFlow [9], where the system itself is speci-
fied as a conjunction of LTL formulae.

An alternative to temporal logics is the Event Calculus [10] (EC for short).
Many authors believe the EC to be well suited for expressing the complex con-
straints of choreographies, especially because it enables the modeler to specify
temporal requirements, in a declarative and easily understandable way. In fact,
the EC has been (and is being) extensively applied in the SOA setting. How-
ever, little emphasis has been given so far to the possible adoption of the EC for
performing compliance verification of service interaction during execution. We
believe that this is mainly due to the lack of suitable underlying reasoning tools.

In this paper, we propose to adopt a reactive version of Event Calculus
(REC[11]) to perform run-time verification of the observed behaviour. REC is
formalized as an axiom theory on top of the SCIFF framework [12], a logic based
formalism with a sound and complete proof procedure and an efficient imple-
mentation [13]. The literature is rich in languages proposed to specify service
choreographies. WS-CDL [1] is one of the most prominent procedural ones. We
have chosen to represent choreographies in DecSerFlow [9], a graphical represen-
tation language introduced by van der Aalst and Pesic to specify and constrain
service flows in a declarative manner. This choice is motivated by the capability
of DecSerFlow to capture in a flexible and concise way the “contractual nature”
of choreographies. However, our approach based on REC is general and does not
depend on a specific choreography specification language.

Besides providing a mapping from DecSerFlow to REC, in this article we show
how the approach can be easily extended (by adding new axioms) to support
deadlines modeling and verification, and to reify the violations generated by the
proof procedure during verification. This latter feature gives us two main advan-
tages: (i) when a violation is detected, the proof does not terminate reporting
the error, but continues the verification task; (ii) violations can be notied to the
user, and even considered as rst-class objects during the modeling phase: hence
compensation mechanisms related to the violation can be easily specified.

We show the benefits of our approach by way of a motivating example.

2 Background

In this section we briefly introduce the two components of our run-time verifi-
cation framework, namely DecSerFlow as a specification language, and REC as
its underlying reasoning mechanism.

Verification of Choreographies During Execution 57

2.1 DecSerFlow

DecSerFlow is a graphical language which specifies service flows by adopting
a declarative style of modeling. Instead of defining rigid service flows, which
may lead–especially with procedural languages like WS-CDL and BPEL–to over-
specified and over-constrained models, DecSerFlow focuses on the minimal set
of constraints which must be satisfied in order to correctly carry out the interac-
tion. This makes DecSerFlow especially suited for representing the “contractual
nature” of service choreographies. A DecSerFlow model is composed by a set of
activities, which represent atomic units of work (such as message exchanges),
and relations among activities, used to specify constraints on their execution.
DecSerFlow provides constructs to define positive and negative constraints, that
specify the desired and undesired courses of interaction while leaving undefined
other possibilities of interaction that are neither desired nor undesired. Posi-
tive and negative constraints make the DecSerFlow approach open: services can
interact freely unless when in the presence of constraints.

DecSerFlow constraints are grouped into three families (see Table 1, 2 and 3
for a complete description of all the basic constraints):

– existence constraints : unary cardinality constraints expressing how many
times an activity can/should be executed;

– relation constraints: binary constraints which impose the presence of a cer-
tain activity when some other activity is performed;

– negation constraints : the negative version of relation constraints, used to
explicitly forbid the execution of a certain activity when some other activity
is performed.

Intuititely, a service composition is compliant with a DecSerFlow choreography
if all positive constraints are eventually satisfied, and no activity forbidden by
any negation constraint is performed. The DecSerFlow semantics is defined for
finite execution traces.

Table 1. DecSerFlow existence constraints. In [9], choice used to be called mutual

substitution and had a slightly different notation.

graphical description equivalent to

a

N..* existence(N,a). a must be executed at least
N times basic

a

0..N+1 absence(N+1,a). a cannot be executed more
than N times basic

a

N exactly(N,a). a must be executed exactly N
times

existence(N,a)∧
absence(N+1,a)

a b
choice(a,b). At least one activity among a

and b must be executed existence(1,a∨b)

58 F. Chesani et al.

Table 2. An overview of DecSerFlow relation constraints

graphical description equivalent to

a b
responded existence(a,b). If a is executed,
then b must be executed (before or after a)

basic

a b
coexistence(a,b). Either both a and b are
executed, or none of them is executed

resp. existence(a,b)∧
resp. existence(b,a)

a b
response(a,b). If a is executed, then b must
be executed afterwards basic

a b
precedence(a,b). b can be executed only after
a is executed basic

a b succession(a,b).
response(a,b)∧
precedence(a,b)

a b
alternate response(a,b). b is response of a

and there has to be a b between two a

response(a,b)∧
interposition(a,b,a)

ba
alternate precedence(a,b). b is preceded by
a and there has to be an a between two b

precedence(a,b)∧
interposition(b,a,b)

a b alternate succession(a,b).
alt. response(a,b)∧
alt. precedence(a,b)

a b
chain response(a,b). If a is executed then b

is executed next (immediately after a)

response(a,b)∧
interposition(a,b,X)

∧X �= b

ba
chain precedence(a,b). b can be executed
only if a was the last executed activity

precedence(a,b)∧
interposition(X,a,b)

∧X �= a

a b
chain succession(a,b). a and b are always
executed next to each other

chain response(a,b)∧
chain precedence(a,b)

2.2 REC: A Reactive Event Calculus in SCIFF

The Event Calculus (EC) is a framework, based on first-order logic, which enables
reasoning about the effects of events [10,14]. The basic elements of the calculus
are events which happen during the execution1, and properties (called fluents)
which describe a partial state of the world. To model a given event-based system,
the user must simply provide a declarative description of how possible occurring
events affect the corresponding fluents.

In the classical EC setting, given a description of the system and a set of desired
temporal requirements, two main reasoning tasks can be carried out: narrative
verification, exploiting EC in a deductive manner, to check whether a given
execution trace of the system satisfies the requirements, and planning, using
abduction to simulate narratives of the systems, trying to produce a possible
execution which satisfies the requirements.

Such verifications are respectively carried out a posteriori (after execution),
and a priori (before execution). The use of EC to monitor an ongoing execu-
tion, and to check if it complies with the requirements (run-time monitoring and
verification), has been little exploited so far, mainly due to a lack of suitable
1 We will consider only atomic events, i.e., events occur at a certain point in time.

Verification of Choreographies During Execution 59

Table 3. An overview of DecSerFlow negation constraints

graphical description equivalent to

a b
responded absence(a,b). If a is executed,
then b cannot be ever executed

not coexistence(a,b)

a b
not coexistence(a,b). a and b cannot be
both executed

neg. response(a,b)∧
neg. response(b,a)

a b
negation response(a,b). If a is executed,
then b cannot be executed afterwards

basic

a b
negation precedence(a,b). b cannot be exe-
cuted if a was executed before

neg. response(a,b)

a b negation succession(a,b). neg. response(a,b)

a b
negation alternate response(a,b). b can-
not be executed between two a

neg. interpos.(a,b,a)

ba
negation alternate precedence(a,b).a
cannot be executed between two b

neg. interpos.(b,a,b)

a b negation alternate succession(a,b).
neg. alt. resp.(a,b)∧
neg. alt. prec.(a,b)

a b
negation chain response(a,b). b cannot be
executed next to (i.e., immediately after) a

interposition(a,X,b)

∧X �= b

ba
negation chain precedence(a,b). a cannot
be last executed activity before b

n. chain response(a,b)

a b
negation chain succession(a,b). a and b

cannot be executed next to each other n. chain response(a,b)

underlying reasoning tools. In a companion paper [11], we show how the compu-
tational logic-based SCIFF framework [12] can be adopted to provide a reactive
axiomatization of EC (called REC), enabling reasoning about events and flu-
ents at run-time. SCIFF is a framework originally designed for the specification
and run-time verification of global interaction protocols in open Multi-Agent
Systems. Its usage for run-time verification of service choreographies has been
presented at previous editions of this workshop series [15]. SCIFF consists of
a rule-based language with a declarative semantics for specifying what are the
(un)desired courses of interaction as events occur. A corresponding execution
model (the SCIFF proof-procedure [12], implemented in the SOCS-SI tool [13])
enables run-time monitoring and compliance checking of the interacting entities’
behavior. The SCIFF proof-procedure is sound and complete w.r.t. its declar-
ative semantics, and it natively provides the capability of reasoning upon dy-
namically occurring events, using constraint propagation to update the status of
fluents. To represent time, SCIFF uses variables that can range over finite do-
mains or over real numbers, and that are associated to events. Therefore, while
the procedure does not model itself the flow of time, the current time can be
inferred, with some approximation, from the time of occurring events. For exam-
ple, the expiration of a deadline can be made known to the reasoning engine by
way of “tick” event, real or fictitious such as a “tick”, which occurs at or after
that time.

60 F. Chesani et al.

Table 4. The REC ontology

happens(Ev,T) Event Ev happens at time T

holds(F, Ti, Tf) Fluent F begins to hold from time Ti and persists to hold until
time Tf

holdsat(F,T) Fluent F holds at time T

not holdsat(F,T) Fluent F does not hold at time T

initially(F) Fluent F holds from the initial time
initiates(Ev,F, T) Event Ev initiates fluent F at time T ; this means that if F

does not hold at time T , it is declipped by the happening of
Ev at that time

terminates(Ev,F, T) Event Ev terminates fluent F at time T ; if F holds at time T ,
it is clipped by the happening of Ev at that time

The REC ontology is shown in Table 4; the main difference w.r.t. the classical
EC ontology is that while EC focuses on time intervals inside which a fluent has
been terminated or initiated, REC focuses on the maximum time intervals inside
which the fluent uninterruptedly holds (represented by the holds/3 predicate).
REC integrates the advantages of SCIFF and EC, by embedding the latter

inside a framework that supports run-time reasoning, while extending SCIFF
with fluents-based reasoning.

3 Mapping DecSerFlow to Event Calculus

We now present the mapping of DecSerFlow onto EC. To this end, we follow a
two-fold approach. We first show that all DecSerFlow constraints can be repre-
sented in terms of a small core set2. Then, we provide a fluent-based formaliza-
tions of such a set3.

3.1 Expressing DecSerFlow with a Core Set of Constraints

Table 1, 2 and 3 respectively recall the basic existence, relation and negation Dec-
SerFlow constraints, by also showing how constraints can be expressed by using
a small set of core constraints. To this purpose, two further ternary constraints
are used; they represent the concept of positive and negative interposition. In
particular, interposition(a,b,c) states that between any execution of activ-
ity a and a future execution of activity c, b must be performed at least once.
negation interposition(a,b,c) expresses the opposite constraint, specifying
that the execution of a and a following c cannot be interleaved by b. X is some-
times used to represent an arbitrary activity (i.e., it is a variable matching with
any activity).
2 Some equivalences are already stated in [9].
3 We will use the Prolog notation: variables starting by upper case, constants by lower

case. To differentiate between formalisms, we use teletype for DecSerFlow formula
names, and italics for Prolog terms and rules in the knowledge base.

Verification of Choreographies During Execution 61

All the 26 basic DecSerFlow constraints can be expressed in terms of eight
core constraints:

– the two basic cardinality constraints (existence and absence);
– the three fundamental positive temporal orderings (responded existence

for any ordering, response for the after ordering, precedence for the before
ordering);

– the negation response constraint;
– the positive/negative interposition patterns.

For example, the chain response between a and b (see Table 2) can be
expressed using a response formula and by stating that between each occurrence
of activity a and another arbitrary activity different than b, there must exist at
least an intermediate execution of b (hence b is necessarily next to a). The
not coexistence constraint (Table 3) can instead be reduced to two opposite
negation responses. In fact, expressing that two activities cannot coexist in a
single execution is the same as stating that the first happening activity forbids
future executions of the other one.

3.2 A Fluent-Based Formalization of DecSerFlow

The formalization of DecSerFlow in REC is composed by two parts (see Figure 1
for an overview):

– a general part, which describes how the different DecSerFlow constraints can
be formalized as fluents in the EC setting;

– a specific part, whose purpose is to describe a specific DecSerFlow diagram.

SCIFF

Reactive Event Calculus

Fluent-based formalization of DecSerFlow
DecSerFlow constraints

equivalence
Formalization of core

constrains

Specific DecSerFlow model

Generic Calculus

DecSerFlow

Fig. 1. Building parts of the DecSerFlow formalization in REC

The specific part is a set of constraint/2 facts. Each one of them corre-
sponds to a DecSerFlow constraint in the diagram. For example, constraint(c1,
response(order item, ack)) states that the DecSerFlow choreography contains a
constraint named c1 which models a response between the order item and ack
activities.

The generic DecSerFlow formalization in EC splits itself in two sub-parts.

62 F. Chesani et al.

Formalization of constraints equivalence. The first part is a set of predi-
cate definitions for core constraint/2. They implement the reduction of
the 26 basic DecSerFlow constraints to the set of eight core constraints listed
above. In this way, we provide a full implementation of DecSerFlow (not only
the core constraints). Examples of such definitions are those below, relating
alternate response with response and interposition4:

core constraint(C, response(A,B))← constraint(C, alt response(A,B)).

core constraint(C, interposition(A,B, A))← constraint(C, alt response(A,B)).

Fluent-based formalization of the core constraints. The second part is a
set of predicate definitions for initially/1,initiates/3andterminates/3.
In other words, it is a knowledge base which formalizes constraints in terms
of fluents, linking their initiation and termination to activities.

The fluents chosen to model DecSerFlow reflect the double nature of its
constraints: some relations explicitly forbid the execution of a certain activity,
whereas other ones express the necessity of performing some activity, becoming
temporarly unsatisfied until such an activity indeed happens. More specifically,
we exploit a forbidden(C, A) fluent to model that an activity A is forbidden
by a constraint C, and a satisfied(C) fluent to model that a constraint C is
satisfied.

Table 5 briefly indicates our usage of fluents in the formalization of the Dec-
SerFlow core constraints. Some parts of the formalization are left implicit for
ease of presentation. In particular, Table 5 omits the binding between each for-
malization and its corresponding core constraint. For example, the complete
formalization of response would be:

initially(satisfied(C))← core constraint(C, response(A,B)).

terminates(A,satisfied(C),)← core constraint(C, response(A,B)).

initiates(B, satisfied(C),)← core constraint(C, response(A,B)).

The formalization of existence (Tab. 5(1)) and absence (Tab. 5(2)) con-
straints is straightforward: the first constraint is satisfied when the n-th occur-
rence of a is executed, whereas the second one forbids further executions of a
when its n-th occurrence happens. To obtain the time at which the n-th occur-
rence of activity a happens, we use a conjunction of n happened events involving
a; then, we order such happened events by means of temporal constraints. The
last happened event provides the desired time.

responded existence (Tab. 5(3)) is more complex to deal with, mainly due
to the fact that it does not impose any ordering, whereas EC, which considers the
effects of events, reasons “forwards.” To capture its semantics, we differentiate
between two cases: the one in which b happens before any occurrence of a, and

4 Note that the parameters of core constraint/2 have the same meaning of the
parameters of constraint/2.

Verification of Choreographies During Execution 63

Table 5. A fluent-based formalization of DecSerFlow core constraints (f is used as
constraint identifier); the last two constraints express the concepts of positive and
negative interposition

constraint intuition formalization

a

N..* satis�ed

a (n-th)aa ...

(1) initiates(a, satisfied(f), Tn)←
n∧

i=1,
T0=0

(happens(a, Ti) ∧ Ti > Ti−1).

a

0..N+1 forb.(a)

a (n-th)aa ...

(2) initiates(a, forbidden(a, f), Tn)←
n∧

i=1,
T0=0

(happens(a, Ti) ∧ Ti > Ti−1).

a b

satis�edno target

satis�ed

a b

no target

a b

satis�ed

(3) initially(no target(f)).

terminates(b,no target(f),).

initially(satisfied(f)).

terminates(a, satisfied(f), T)←
holdsat(no target(f), T).

initiates(b, satisfied(f),).

a b
satis�ed

a b

satis�ed
(4) initially(satisfied(f)).

terminates(a, satisfied(f),).

initiates(b, satisfied(f),).

a b

a

forb.(b) (5) initially(forbidden(b, f)).

terminates(a, forbidden(b, f),).

a b
forbidden(b)

a

(6) initiates(a, forbidden(b, f),).

a cb

a b

forb.(c) (7) initiates(a, forbidden(c, f),).

terminates(b, forbidden(c, f),).

a cb
forb.(c)

a b

(8) initiates(b, forbidden(c, f), T)←
happens(a,Ta) ∧ Ta < T.

the reverse. In the first case, the constraint is always satisfied: when a happens,
b is already present in the execution trace, thus no further expectation is trig-
gered. In the second case, instead, the occurrence of a switches the constraint
to an unsatisfied state, waiting for activity b to be executed (as in the case of
response, Tab. 5(4)). Since the happening of a concretely affects the status of
the satisfied fluent only if no b was previously performed, we have to explicitly
track the happening of b with another fluent (called no target in Table 5).

precedence (Tab. 5(5)) is captured by observing that the backward constraint
“b must be preceded by a” can be rephrased in a forward manner as “a enables

64 F. Chesani et al.

the possibility of executing b”. We formalize this by imposing that the constraint
causes b to be initially forbidden, until the first execution of activity a happens.

The formalization of negation response (Tab. 5(6)) is straightforward: the
happening of the source activity a causes b to be forbidden.

The interposition constraint (Tab. 5(7)) is captured by rephrasing “if c is
performed after a, then at least one instance of activity b must be executed in
between” as “when a is executed, c is forbidden until b is executed”. Similarly,
negative interposition (Tab. 5(8)) can be formalized by stating that when
activity b is performed after a, then c becomes forbidden: its execution would
lead to violate the constraint.

The proposed formalization can be easily adapted to deal also with branching
constraints, which are interpreted in DecSerFlow in a disjunctive manner. For
example, let us consider a response constraint, having both branching sources
a and b and branching targets c and d. It is interpreted as follows: “when either
a or b are executed, then c or d must be executed afterwards”. To model such a
behavior, we extend the way constraints are represented by considering lists
of activities instead of individual activities (e.g., the above described branching
response can be modeled as formula(c1, response([a, b], [c, d]))). We then adapt
the formalization shown in Table 5, using the built-in Prolog predicate member/25

to specify that each source (target resp.) activity is able to terminate (initiate
resp.) the corresponding satisfied fluent:

initially(satisfied(C))← core constraint(C, response(As,Bs)).

terminates(A,satisfied(C),)← core constraint(C, response(As,Bs))

∧member(A,As).

initiates(B, satisfied(C),)← core constraint(C, response(As,Bs))

∧member(B,Bs).

3.3 Characterizing Compliant Executions

To effectively perform compliance verification of a service composition w.r.t. a
DecSerFlow model, we finally have to define a suitable semantics for the satis-
fied and forbidden fluents, reflecting their intuitive meaning. More specifically,
a correct execution must fulfill the following requirements:

– all constraints which involve a “positive” relation must eventually converge
to a fulfilled state. This means that the satisfied fluent corresponding to the
positive relation holds from a given point on and it is never declipped there-
after. We denote the set of “positive” constraints by CSAT . Since the “pos-
itive” behavior is formalized by means of a satisfied fluent, such a require-
ment can be expressed as a goal imposing that, for all contraints in CSAT , the
corresponding satisfied fluent must hold when the interaction is completed.
We model the completion of interaction as a special, last complete event,

5 member(El, L) is true if El belongs to the list L.

Verification of Choreographies During Execution 65

happening at a time T∞ (s.t. no further event will happen after T∞). Thus,
we have a goal:

∧
{c|c∈CSAT}

holdsat(satisfied(c), T∞). (1)

– the semantics of forbidden fluents is given as a denial, stating that if a certain
activity A happens when it is forbidden by some negative constraint, then
the execution is unsuccessful:

happens(A,T) ∧ holdsat(forbidden(, A), T)→ ⊥.dov (2)

In order to be compliant, services must eventually satisfy all the positive relations
without undermining the negative ones.

4 Verification of Quantitative Time Constraints

We now discuss how it can be extended to model and verify quantitative temporal
constraints, which are an important aspect when monitoring service interaction.
In the context of DecSerFlow, temporal constraints can be used to extend posi-
tive relations with the concepts of delays and deadlines, i.e. minimum/maximum
time intervals that should be respected between the execution of two activities6.

To specify that “when an order is paid, a receipt must be delivered within
24 time units” the modeler may use a response constraint c1, adding the
information that c1 cannot persist in a non-satisfied state for more than 24
time units. We suppose that, to describe this condition, the user simply uses
a deadline(satisfied(c1), 24) declaration. In general, deadline(F, D) states that
fluent F can persist in a “not-holding” state at most D time units.

To capture and verify deadlines, we then add four new axioms. Let us suppose
that fluent F is associated to a deadline(F, D) condition. When F is terminated,
a new fluent d check(F, Te) is initiated. This fluent represents that F is currently
monitored, to check if the associated deadline will be met by the execution; Te
denotes the time at which the deadline will expire. Such a situation can be
formalized by means of the following axiom:

initiates(A,d check(F, Te), T)← deadline(F,D), terminates(A,F, T),

Te == T + D.
(3)

The fluent d check(F, Te) can be terminated in two cases. In the first case, an
event capable to terminate F happens within the deadline (i.e., within Te):

terminates(A,d check(F, Te), T)← deadline(F,), initiates(A,F, T), T < Te. (4)

6 In the following, we will focus only on deadlines; delays can be handled in a similar
way.

66 F. Chesani et al.

The second case deals with the expiration of the deadline. SCIFF has no notion
of the flow of time: it becomes aware of the current time only when a new event
occurs. Therefore, we can keep SCIFF up-to-date by generating special tick
events. The deadline expiration is then detected and handled as soon as the first
tick event after the deadline occurs:

terminates(tick, deadline check(F, Te), T)← deadline(F,), T ≥ Te. (5)

A further axiom recognizes this abnormal situation, by evaluating whether the
deadline check has been terminated after the expiration time (and generating a
violation if it is the case):

happens(tick, T) ∧ holdsat(deadline check(F, Te), T) ∧ T ≥ Te → ⊥. (6)

5 Extending the Calculus

In this section we show how violations can be captured and reified within the
calculus itself. On the one hand, capturing violations prevents the termination
of the proof procedure when an error is detected. On the other hand, reifying
violations enable the possibility to consider them as first-class object during the
modeling phase, supporting the possibility of specifying and verifying complex
requirements such as compensating activities.

5.1 Reification of Violations

As described in Sections 3.3 and 4, two different kinds of non-compliance can be
identified at run-time: violation of a negative constraint, by executing a forbidden
activity, or violation of a positive constraint, if it is not satisfied when the execu-
tion terminates or, if a deadline is present, within the required expiration time.

In its basic form, SCIFF reacts to violations by terminating with answer “no”:
the observed happened events are evaluated as non compliant with the choreog-
raphy. This is undesirable in a monitoring setting: we would like to continue the
verification task even if some constraint has been violated.

To prevent termination of the proof, the underlying idea is to reify violations
as occurrences of special events. In other words, we explicitly capture the possible
run-time violations of a fluent F by generating a corresponding violation(F)
event upon violation of F . If we want to capture and handle violations, then we
must remove axioms (1), (2) and (4), and substitute them with a corresponding
“soft” version. In particular, a soft version of axiom (1) states that, for each
constraint C ∈ CSAT , if the corresponding satisfied fluent does not hold at T∞,
then a corresponding violation(satisfied(C)) event must be generated:

happens(complete,T∞)∧
not holdsat(satisfied(C), T∞) → happens(violation(satisfied(C)), T∞).

(7)

Verification of Choreographies During Execution 67

The same applies for axiom (4) (dealing with the deadline expiration), which
becomes

happens(tick, T)∧
holdsat(deadline check(F, Te), T) ∧ T ≥ Te → happens(violation(F), T).

(8)

A soft version of axiom (2) is the following axiom:

happens(A,T)∧
holdsat(forbidden(C,A), T)→ happens(violation(forbidden(C)), T).

(9)

Reifying violations opens many possibilities. For example, we could associate
an “importance degree” to each constraints, identifying and handling different
levels of violation. In the next section we will briefly focus on another possibility,
namely the specification of how to compensate for a violation.

5.2 Dealing with Compensations

Among the many possibilities offered by the reification of violations, an interest-
ing option is to attach DecSerFlow constraints to such a generated event. This
could be a way to specify how the interacting services must compensate for a
violation, or to define a context for violations, i.e. to model constraints which
become soft only in certain situations in the choreography.

Compensation can be modeled by e.g. inserting a response constraint having
a violation event as source, and the compensation activity as target; chain
response could be then used to handle critical violations: it states that when
the violation is detected, the next immediate activity to be executed is the
compensating one.

Contextualization of violations can be modeled using backward DecSerFlow
constraints (e.g., precedence). For example, modeling a precedence constraint
involving an activity A and the event violation(C) states that as soon as the
event violation(C) is raised, the REC verify if previously an execution of the
activity A has been performed (the activity A representing some how the idea
of context). In such a case, the violation can be managed, otherwise a definitive,
non compliant response is provided as a result.

6 Monitoring Example

We now briefly discuss a simple yet significative example of a choreography
fragment, showing how the proposed approach can be fruitfully applied for run-
time monitoring. Figure 2 shows the graphical DecSerFlow representation of the
example, while Table 6 sketches its corresponding formalization.

The choreography involves a customer, who creates an order by choosing one
or more items, and a seller, who collects the ordered items and finally gives a

68 F. Chesani et al.

(0..10)

refuse
item

choose
item

accept
item

close
order

send
receipt

send
discounted

receipt

cu
st
o
m
er

se
lle
r c1

c2 c4

c3

c6

c5

accept
possible
delays

Fig. 2. A DecSerFlow choreography fragment, extended with a deadline and a com-
pensation

Table 6. Formalization of the choreography fragment shown in Figure 2

ID REC Specification

c1 formula(c1, alternate succession([choose item], [refuse item, accept item])).
c2 formula(c2, precedence([accept item], [close order])).
c3 formula(c3, negation response([close order], [choose item])).
c4 formula(c4, response([close order], [send receipt])).

deadline(satisfied(c4), 10).
c5 formula(c5, response([violation(c4)], [send discounted receipt])).
c6 formula(c6, precedence([accept possible delays], [send discounted receipt])).

receipt. The seller is committed to issue the final receipt within a pre-established
deadline. Moreover, the seller offers the customer a fixed discount if he/she
accepts some delays; in case of a delay, the seller also promises a further discount
directly on the receipt.

In particular, the following rules of engagement must be fulfilled by the inter-
acting services. It is worth noting that each constraint can be easily mapped by
means of an (extended) DecSerFlow relation.

– Every choose item activity must be followed by an answer from the seller,
either positive or negative; no further upload can be executed until the re-
sponse is sent. Conversely, each positive/negative response must be preceded
by a choose item activity, and no further response can be sent until a new
item is chosen (constraint c1).

– If at least one uploaded item has been accepted by the seller, then it is
possible for the customer to close the order (constraint c2).

– When an order has been closed, no further item can be choosen (constraint
c3); moreover, the seller is committed to send a corresponding receipt by at
most 10 time units (constraint c4).

– If the seller does not meet the deadline, it must deliver a discounted receipt
(constraint c5, modeled as a response constraint triggered by the violation
of constraint c4; the graphical representation of the violation is inspired by
the BPMN intermediate error event).

Verification of Choreographies During Execution 69

Fig. 3. Fluents trend generated by REC when monitoring a specific interaction, and
using the diagram of Figure 2 as model. The verification time spent for reacting to
each happened event is also reported.

– The possibility of sending a discounted receipt is enabled only if the customer
has previously accepted the possibility of experiencing delays (constraint c6).

Note that the obtained DecSerFlow diagram contains two constraints (c4 and
c5) which are not envisaged by standard DecSerFlow, but are seamlessly sup-
ported by REC thanks to the extensions presented above.

Figure 3 illustrates how REC is able to reason upon a specific course of in-
teraction w.r.t. the above described DecSerFlow model. Clipping and declipping
of fluents are handled at run-time, thus giving a constantly updated snapshot
of the reached interaction status. In the bottom part of the figure, verification
performance is reported, showing the amount of time spent by REC in order to
dynamically react to and reason upon occurring events.

70 F. Chesani et al.

The central part of the execution shows how REC deals with a deadline ex-
piration. Indeed, as soon as the activity close order is executed (at time 50),
constraint c4 becomes unsatisfied, and a corresponding deadline check is initi-
ated, having 60 as expiration time. At time 62, a tick event makes the proof
aware that the deadline related to the satisfaction of constraint c4 is expired.
As a consequence, SCIFF reacts by terminating the deadline check fluent and
by installing the corresponding compensation; this is attested by the fact that
constraint c5 becomes unsatisfied.

7 Related Work

Event Calculus has been extensively applied to specify and verify event-based
systems in many different settings. We will restrict our attention to the applica-
tions related to the SOA research field.

Rouached et al. propose a framework for engineering and verifying WS-BPEL
processes is [16]. EC is used to provide an underlying semantics to WS-BPEL,
enabling verification before and after execution. In particular, EC is exploited
to verify consistency and safety of a service composition (i.e. to statically check
if the specification always guarantees the desired requirements), and to check
whether an already completed execution has deviated from the prescribed re-
quirements. The authors rely on an inductive theorem prover for the verification
task. Although our work adopts DecSerFlow as specification language, the map-
ping of WS-BPEL presented in [16] can be directly implemented on top of REC.
In [17], Aydın and colleagues use the Abductive Event Calculus to synthesize
a web service composition starting from a goal. The composition process is a
planning problem, where the functionality provided by individual services are
(atomic) actions, requiring some inputs and producing certain outputs. Being
REC based on an abductive proof-procedure, we will investigate the possibility
of adopting REC to deal also with this issue.

Few authors have considered adopting the EC to perform run-time reasoning.
Among those who have, Mahbub and Spanoudakis present a framework [18] for
monitoring the compliance of a WS-BPEL service composition w.r.t. behavioral
properties automatically extracted from the composition process, or assump-
tions/requirements expressed by the user. EC is exploited to monitor the actual
behavior of interacting services and report different kinds of violation. The ap-
proach is extended in [19], where an extension of WS-Agreement is used to
specify requirements. The monitoring framework relies on an ad hoc event pro-
cessing algorithm, which fetches occurred events updating the status of involved
fluents.

8 Conclusion

In this article we have presented a method for run-time verification of chore-
ographies specified in DecSerFlow that makes use of a SCIFF implementation
of the Event Calculus. The main features of our method are the presence of an

Verification of Choreographies During Execution 71

execution model, which enables an efficient monitoring of the evolution of flu-
ents and their verification; the coherence of an overall declarative framework, in
which no information is lost when passing from DecSerFlow to SCIFF; and the
flexibility of the language, which makes it possible to capture aspects of complex
requirements, such as qualitative temporal conditions and violation handling by
compensation, in a simple and intuitive way. We have chosen to start from Dec-
SerFlow partly because it is well suited for representing the contractual nature of
service choreographies, and to specify the desired and undesired courses of inter-
action while leaving undefined other possibilities of interaction that are neither
desired nor undesired. We believe that this is a promising approach and in the
future we plan to focus on other declarative and contractual aspects of chore-
ographies. In particular, we intend to study the role of social commitments [20]
in the choreographies and to investigate possible integrations of commitments
into our framework.

Acknowledgments. This work has been partially supported by the FIRB
project TOCAI.IT. The authors would like to thank the anonymous reviewers
for their helpful comments.

References

1. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web services
choreography description language. W3C Working Draft 17-12-04 (2004),
http://www.w3.org/TR/ws-cdl-10/

2. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 339–351. Springer, Heidelberg (2006)

3. Li, J., Zhu, H., Pu, G.: Conformance validation between choreography and orches-
tration. In: First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering, TASE 2007, Shanghai, China, pp. 473–482. IEEE Computer Society
Press, Los Alamitos (2007)

4. Zaha, J., Dumas, M., Hofstede, A., Barros, A., Dekker, G.: Service Interaction
Modeling: Bridging Global and Local Views. QUT ePrints 4032, Faculty of Infor-
mation Technology, Queensland University of Technology (2006)

5. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

6. Allen Emerson, E., Halpern, J.: “Sometimes” and “Not Never” revisited: On
branching times versus linear time. Journal of the ACM 33, 151–178 (1986)

7. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Infor-
mation and Computation 104, 35–77 (1993)

8. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92(8), 1283–1305 (2004)

9. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

10. Kowalski, R.A., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–95 (1986)

72 F. Chesani et al.

11. Chesani, F., Montali, M., Mello, P., Torroni, P.: An efficient SCIFF implementation
of Reactive Event Calculus. Technical Report LIA-08-003, University of Bologna,
Italy. LIA Series No. 89 (May 2008)

12. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logic 9(4) (to appear, 2008)

13. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compli-
ance verification of agent interaction: a logic-based software tool. Applied Artificial
Intelligence 20(2-4), 133–157 (2006)

14. Shanahan, M.: The event calculus explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS, vol. 1600, pp. 409–430. Springer, Hei-
delberg (1999)

15. Alberti,M.,Chesani, F.,Gavanelli,M., Lamma,E.,Mello, P.,Montali,M., Storari, S.,
Torroni, P.: Computational logic for run-time verification of web services choreogra-
phies: Exploiting the socs-si tool. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 58–72. Springer, Heidelberg (2006)

16. Rouached, M., Fdhila, W., Godart, C.: A semantic framework to engineering ws-
bpel processes. International Journal on Information Systems and e-business Man-
agement (2008)

17. Aydin, O., Cicekli, N.K., Cicekli, I.: Automated web services composition with
event calculus. In: Proceedings of the 8th International Workshop in Engineering
Societies in the Agents World (ESAW 2007) (2007)

18. Mahbub, K., Spanoudakis, G.: Run-time monitoring of requirements for systems
composed of web-services: Initial implementation and evaluation experience. In:
2005 IEEE International Conference on Web Services (ICWS 2005), Orlando, FL,
USA, pp. 257–265. IEEE Computer Society Press, Los Alamitos (2005)

19. Mahbub, K., Spanoudakis, G.: Monitoring ws-agreements: An event calculus-based
approach. In: Baresi, L., Nitto, E.D. (eds.) Test and Analysis of Web Services,
pp. 265–306. Springer, Heidelberg (2007)

20. Yolum, P., Singh, M.: Flexible protocol specification and execution: applying event
calculus planning using commitments. In: The First International Joint Confer-
ence on Autonomous Agents & Multiagent Systems, AAMAS 2002, Bologna, Italy,
Proceedings, pp. 527–534 (2002)

RESTful Petri Net Execution

Gero Decker, Alexander Lüders, Hagen Overdick,
Kai Schlichting, and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,hagen.overdick,weske}@hpi.uni-potsdam.de,

{alexander.lueders,kai.schlichting}@student.hpi.uni-potsdam.de

Abstract. Representational State Transfer (REST) has received a lot
of attention recently as architectural style for distributed systems made
up of loosely coupled resources. While most research in process enact-
ment focuses on BPEL and SOAP, most internet applications are based
on REST. To leverage this new architectural style also for process enact-
ment, this paper introduces process enactment in REST environments.
The approach is based on Service Nets, a specific class of Petri nets
supporting value passing and link passing mobility. Implementation con-
siderations of a prototype are presented. The approach is compared with
the traditional BPEL/SOAP approach to process enactment.

1 Introduction

The service-oriented architecture (SOA) is an architectural style for building
software systems based on services. Services are loosely coupled components
that can be discovered and composed [6]. Such composition is often realized
through process execution engines, interpreting business process models and in-
voking services accordingly. Using SOAP as communication protocol is a typical
option for realizing web services [8]. Furthermore, the Business Process Execu-
tion Language (BPEL [10]) is a widely used standard for implementing business
processes that are based on SOAP services.

SOAP services are a concrete implementation of a SOA, yet there are alter-
natives readily available. In [20], we characterized Representational State Trans-
fer (REST [11]) as a restricted subset of SOA, hence RESTful usage of the Hyper
Text Transfer Protocol (HTTP [12]) qualifies as SOA just as well. The most im-
portant restrictions imposed by REST are globally unique identification of each
service instance (called resource) and identification of the interaction intention
at the protocol level. HTTP supports resource reflection (GET), at-least once
delivery (PUT/DELETE), and at-most once delivery (POST) directly, other in-
tention can be represented by combining the former. In essence, SOAP-based
services merely use HTTP as a transfer protocol, REST advocates HTTP as
application protocol, enabling increased distributability, scalability and masha-
bility of service-based systems. A resource-oriented approach as demanded by
REST has proven strengths in environments of multiple autonomous peers [27],
the World Wide Web being the most prominent example of such a system.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 73–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

74 G. Decker et al.

Most research in the area of process-oriented service implementations focuses
on BPEL and SOAP-based services, where machine-to-machine communication
is at the center of attention. On the other hand, most successful internet ap-
plications (e.g., flickr.com, amazon.com, XING.com) are based on the REST
architecture style. This paper introduces process enactment in REST environ-
ments, i.e., RESTful process enactment. The approach is conceptually based on
Service nets, a specific class of high level Petri nets that include value passing,
i.e. colored tokens and guard conditions. Dynamically evolving structures real-
ized through URI passing is a core aspect in the REST world. Therefore, this
notion of link passing mobility will also be captured in the formal model.

The remainder of this paper is structured as follows. The next section will
present a motivating example and explain central REST concepts. Section 3 in-
troduces the formal model specifying RESTful execution of processes specified
by Service nets, before section 4 introduces implementation concepts of a pro-
totypical engine that we have implemented. Section 5 reports on related work,
especially focusing on the relationship of the presented approach to the BPEL/-
SOAP approach to process enactment in web environments. Section 6 concludes
and points to future work.

2 Motivating Example and Approach

Figure 1 shows the example we will use for illustration throughout this paper.
The typical notation for Petri nets is used, where circles denote places, rectangles
denote transitions and arrows flow connections between places and transitions.
Read arcs as special kind of flow connection are represented by lines without
arrowheads. The dashed rectangles denote different nets. The dashed arrows
between transitions of different nets denote that the same transition appears in
different nets.

Several participants are involved in the sample scenario: While browsing an
online store, a customer creates a shopping cart where she selects items she is
interested in. Before submitting the order, she is also allowed to already define
the address where the goods should be delivered to. Once she is sure what to
buy, she submits the order, triggering subsequent payment handling and deliv-
ery, which in turn can be done concurrently. Payment is handled through an
external payment service. The customer is automatically forwarded to the re-
spective web site. There are two alternatives for delivery: standard delivery and
express delivery. For each alternative there is a respective service.

All interaction between two participants are carried out through HTTP re-
quests/response cycles, represented as communication transitions in Figure 1.
We mentioned before, that the HTTP reflects the intention of an interaction
directly at the protocol level. REST calls this feature a uniform interface and
HTTP provides the following verbs to express intentions:

GET. Messages labeled as GET have an empty service request and are guaran-
teed to have no effect within the receiver of such request, i.e. they are safe to
call. GET responses are expected to be a description of the current state of the

RESTful Petri Net Execution 75

EXP SHIPPER

SHIPPERPAYMENT SERVICE

CUSTOMER

ONLINE STORE

Select
articles

Submit
order

Create
cart

Select
articles

Submit
order

Create
cart

Issue
paym.

Issue
paym.

Enter
addr.

Enter
addr.

Enter
paym.

Ack
paym.

Ack
paym.

Init
delivery

Init exp
delivery

Init
delivery

[d=express]

[d=regular]

Init exp
delivery

Enter
paym.

GET
paym.

Fig. 1. Sample scenario

targeted resource. Also, as GET does not alter the state of the targeted resource,
the response can be cached. This has great benefits to a distributed architecture
and both aspects can be seized without prior semantic knowledge of the targeted
resources.

PUT. Messages labeled as PUT do cause an effect in the targeted resource,
but do so in an idempotent fashion. An idempotent interaction is defined as
replayable, i.e. the effect of N identical messages is the same as that of 1. In
a distributed system, where transactions may not be readily available, this is a
great help to recover from situations where messages might have got lost. Here,
it does not harm to simply resend a message. Again, this assumption can be
made without any prior semantic knowledge of the resource involved.

DELETE. Messages labeled as DELETE do cause an effect in the targeted
resource, where that effect has a negative connotation. Just as PUT, DELETE
is defined as idempotent. However, as with all messages, the interpretation is
solely the responsibility of the receiver, i.e. a DELETE has to be regarded as
“please terminate”.

POST. All other types of messages are labeled as POST, i.e. they cause an effect
in the receiver and they are not safe to replay. This is a catch-all mechanism for
all messages that can not be described by the prior verbs. Without a uniform
interface, all messages would be treated like this, loosing context-free resource
reflection, caching and replayability.

76 G. Decker et al.

CUSTOMER ONLINE STORE
PAYMENT
SERVICE

GET shop.com/sc5
200 (form /sc5)

POST shop.com/sc5 <order>
201 (refresh /o3)

GET shop.com
200 (form /createSC)

POST shop.com/createSC <order>
201 (form /sc5/art + link /sc5/addr + link /sc5)

SHIPPER

GET shop.com/o3
301 (redirect to payment.de/p7)

POST payment.de <paym>
201 (link /p7)

POST delivery.com
201 (link /del57)

GET payment.de/p7
200 (form /p7)

POST payment.de/p7 <details>
201 (link shop.com/o5)

POST shop.com/o3 <cfm>
201 ()

Fire “Create cart“

Fire “Submit order“

Fire “Issue paym.“

Fire “Init delivery“

Reflect on “GET paym.“

Reflect on “Submit order“

Reflect on “Enter
paym.“

Fire “Enter paym.“

Fire “Ack paym.“

Fig. 2. Sample interaction sequence

The state of the online store service is represented by the marking of the
Petri net. Most GET requests do not have any explicit representation in the
net. The only exception in the example is the “GET paym.” transition. As this
transition only has a read arc, firing it does not affect the marking. Therefore,
this communication is safe.

Unsafe communication corresponds to firing of the other transitions, in the
context of the paper we resort to using POST. For instance selecting articles
removes the token from the input place and produces a (possibly) different token
to the same place. The internals of the payment and delivery services are not
shown in Figure 1.

Figure 2 shows a sample sequence of message exchanges. Here, GET requests
are also included. The first interaction happens between the customer’s web
browser and the online store. A GET request is issued for http://shop.com.
As response, the HTTP code 200 (OK) is returned with an XHTML page as
representation for http://shop.com. The intention of this interaction is to re-
ceive a representation of the targeted resource. This representation contains

RESTful Petri Net Execution 77

the reference to the shopping cart creation resource, namely http://shop.com/
createSC. Invoking this service results in the creation of a new resource, identi-
fied by http://shop.com/sc5. Here, we already see how the topology dynami-
cally evolves and navigation from one resource to another happens through URI
passing.

Here comes in another vital feature of REST: hypermedia as the engine of
application state. In a Petri net, application state is the position of all tokens in
a net, the marking, at a given time. Calling a service is mapped to a transition
with a certain set of input tokens in the underlying net. As we just learned,
a new URI representing a transition (with input tokens), we can fire tokens in
an at-most once fashion, therefore mapped to POST ing to the order service.
The contained XML document is used as input to the service, the result is the
creation of a new resource and returning a 201 created response including the link
to the newly created resource, here http://shop.com/sc5 and a representation
of the resource including references to the services http://shop.com/sc5/art
and http://shop.com/sc5/addr. These services in turn return XHTML pages
providing forms for selecting items and a delivery address respectively.

The remaining interactions correspond to submitting the order, triggering the
payment service and triggering the delivery service. Upon GET request by the
customer, the online store redirects her to the payment service.

GET requests are a resource reflection mechanism in the REST world. In our
scenario, the returned representation of the identified resource describes how to
interact with the resource and what data is being expected. In our scenario,
all representations are optimized for rendering a human-readable web page in a
browser. However, this information can also be used by a machine. An alternative
representation could be a WSDL file also defining the data structure expected
in a request for SOAP-legacy integration or more advanced techniques such as
microformats [15] and RDFa [1]. If different representations are available, content
negotiation realizes the selection of a desired representation.

Figure 1 contains several sample Universal Resource Identificators (URI [3]).
The concept of web-wide unique identification of resources is at the center of
REST. We can distinguish between at least two interesting types of resources to
be identified:

– Static ports are entry points into process instances. POST ing data to such re-
sources leads to the creation of activity instances or the data sent is routed to
existing process instances. Static means that the URI is independent of any
particular process instance. In our example, http://shop.com/createSC or
http://payment.de identify static ports.

– Dynamic ports are also entry points into process instances, but here a dy-
namic port corresponds to exactly one activity instance. In our example,
http://shop.com/o3 or http://payment.de/p7 identify dynamic ports.

The notion of dynamic ports or activity instances is not present in SOAP-
based systems, where only static ports are available. Here, application-specific
parameters are used for relating requests to process instances. This hampers the

78 G. Decker et al.

possibility of “bookmarking” activity instances, one of the driving features of
the World Wide Web.

In the REST context it is crucial to avoid “URI guessing”, i.e. all URIs that
are actually addressed in a request must have been obtained somehow before.
This implies that it should never be demanded that requesters know how to
construct particular URIs, e.g. constructing the URI http://shop.com/o3 from
the store’s URI and the store’s internal Id of the shopping cart. This URI must
have been passed to the customer previously. Again, the concept of link passing
mobility [19] is of central importance for RESTful systems and taken even beyond
by treating link passing mobility as the driver of the application flow, where the
application is completely located within the client, the server side is simply
providing services.

As all interactions with such services have explicit intention, exploiting edge
conditions such as caching GET interaction possible without application knowl-
edge on either side of the communication. The message itself is enough for any
intermediary to optimize its own behavior and in turn optimize the operating
cloud in total.

3 Formal Model

All message exchanges between the online store and its environment happen
via HTTP request/response interactions. As already illustrated in Figure 1 such
synchronous communication is modeled in the Petri net using communication
transitions. This section will introduce service nets specifying the behavior of
systems that implement processes in a RESTful manner.

The online store receives XML documents from the customer’s browser and
the payment service and sends XML documents to the payment and the deliv-
ery services. The tokens flowing within the online store also carry XML data.
Branching decisions are based on such XML-tokens.

3.1 Basic Definitions

In the following definitions we will denote the (infinite) set of all XML documents
as XML and the (infinite) set of all URIs as URI .

Definition 1 (Service Net). A service net is a tuple S = (P , T , F , Fread,
TS, TR, init, g, uri) where

– P and T are disjoint sets of places and transitions,
– F ⊆ (P × T) ∪ (T × P) is the flow relation,
– Fread ⊆ F ∩ (P × T) is a set of read arcs,
– TS , TR ⊆ T are disjoint sets of send and receive transitions, collectively called

communication transitions,
– init : P →MS(XML) is the initial marking, a function assigning multi-sets

of tokens to places,

RESTful Petri Net Execution 79

– g is a function assigning guard conditions to transitions, where a condition
g(t) ⊆ (•t→ XML) specifies combinations of input documents and

– uri is a function assigning URIs to tuples of communication transitions and
combinations of input documents, i.e. uri(t) : (•t→ XML)→ URI .

The auxiliary function •t denotes all input places for a transition t, i.e. •t =
{p ∈ P | (p, t) ∈ F}, in analogy to this t• denotes all output places for a
transition.

The definition of service nets shows how the distinction between static ports
and dynamic ports is formally reflected: any receive transition t without input
places is a static port. Here exists a URI id, such that uri(t, ∅) = id. Dynamic
ports are characterized by a tuple (t, fin) where fin : •t→ XML, i.e. by a receive
transition with a set of input documents. Such a dynamic port’s URI is given
by uri(t, fin).

The definition of function g allows for the same expressiveness as using boolean
expressions that evaluate to true or false for given input documents. Imagine a
transition t with one input place p. A sample guard condition could be g(t) =
{{(p, xmlp)} | <shippingType>express</shippingType> is part of xmlp}.

As seen in the motivating example, firing receive transitions might or might
not result in state changes. In this context read arcs are a central feature. Firing
transitions without outgoing arcs and only with read arcs as incoming arcs will
not change the system’s state and therefore is safe. Such transitions are solely
used for resource reflection. However, this reflection is restricted to certain states
of the system – defined by the read arcs.

Definition 2 (Transition Modes, Enablement and Firing). Let (P , T ,
F , Fread, TS, TR, init, g, uri) be a service net. A transition mode is a tuple
(σin, t, σout) where σin : •t → XML assigns documents to the input places of
t ∈ T and σout : t• → XML documents to output places.

A transition mode tm = (σin, t, σout) is enabled in marking m iff σin ∈ g(t)
and ∀p ∈ •t [σin(p) ∈ m(p)]. The reached marking after firing of tm is m′, where
m′(p) := m(p)− {σin|q∈P |(q,t)/∈Fread

(p)} + {σout(p)}.
The firing semantics of service nets is similar to that of classical place /

transition nets in the sense that a transition is enabled only if there is at least
one token on each input place. Firing of a transition will lead to consuming one
token from each input place (except in the case of read arcs) and producing one
token onto each output place. Guard conditions further restrict the enablement
of transitions. As tokens carry values, we speak of transition modes, i.e. bindings
of values to input and output places of a transition.

We see that TS, TR and uri have no influence on the firing semantics of an
individual service net. They are essential for the communication behavior, which
is manifested in the composition of service nets.

3.2 Composition of Service Nets

The interaction behavior between multiple service nets is specified by the follow-
ing definition of service net composition. We distinguish between closed world

80 G. Decker et al.

PAYMENT SERVICE (refined)

ONLINE STORE (excerpt)
Submit
order

Issue
paym.

Issue
paym.

Enter
paym.

Ack
paym.

Process
paym.

Init
delivery

Init exp
delivery

[d=regular]

[d=express]

Ack
paym.

Fig. 3. Excerpt from the example

STORE+PAYMENT (closed)
Submit
order

Issue
paym.

Enter
paym.

Ack
paym.

Process
paym.

Init
delivery

Init exp
delivery

[d=regular]

[d=express][uris=urir]

[uris=urir]

Fig. 4. Closed world composition

composition and open world composition. In a closed world, a communication
transition is not available for communication any longer, once it is used in the
composition. The definition of the open world is the more realistic one, where
the same port can be used by different other services.

Definition 3 (Closed World Composition). Let S1 and S2 be two service
nets, where P1 ∩ P2 = ∅ and T1 ∩ T2 ⊆ ((TS1 ∩ TR2) ∪ (TS2 ∩ TR1)). The closed
world composition S1 ⊕c S2 is the service net (P ′, T ′, F ′, F ′read, T ′S, T ′R, init′,
g′, uri′) where

– P ′ = P1 ∪ P2, T ′ = T1 ∪ T2, F ′ = F1 ∪ F2, F ′read = Fread1 ∪ Fread2,
– T ′S = (TS1 ∪ TS2) \ (T1 ∩ T2),
– T ′R = (TR1 ∪ TR2) \ (T1 ∩ T2),
– init′ = init1 ∪ init2,
– g′(t) = (g1∪g2)(t) for all t ∈ (T1∪T2)\(T1∩T2) and else g′(t) = {f1∪f2 | f1 ∈

g1(t) ∧ f2 ∈ g2(t) ∧ uri1(t, f1) = uri2(t, f2)} and
– uri′ = (uri1 ∪ uri2)|T ′

S∪T ′
R
.

The basic idea is to merge corresponding send and receive transitions when
composing two service nets. As a transition might correspond to a number of
ports, it is crucial to ensure that the URI addressed by the sender matches the
URI offered by the receiver. This is manifested in the definition of g′(t), where
this matching of URIs is added as additional guard condition to the merged
transitions. This URI matching realizes link passing mobility in service nets.

Figure 4 shows an example where parts of the online store’s service net is
composed with a service net describing the payment service. Here, the transitions
“issue payment” and “ack. paym.” are not communication transitions any longer.

Definition 4 (Open World Composition). Let S1 and S2 be two service
nets and S1 ⊕c S2 = (P, T, F, Fread, TS , TR, init, g, uri). Then the open world
composition S1 ⊕o S2 is the service net (P, T ′, F ′, F ′read, T

′
S, T ′R, init, g′, uri′),

where

RESTful Petri Net Execution 81

STORE+PAYMENT (open)
Submit
order

Issue
paym.

Enter
paym.

Ack
paym.

Process
paym.

Init
delivery

Init exp
delivery

[d=regular]

[d=express]

Issue
paym.

Issue
paym.

[uris=urir]

Ack
paym.

Ack
paym.

[uris=urir]

Fig. 5. Open world composition

– T ′ = T ∪ Tnew1 ∪ Tnew2, where Tnew1 and Tnew2 are sets of new transitions
where for each x ∈ (T1∩T2) there is a transition tx1 in Tnew1 and a transition
tx2 in Tnew2,

– F ′ = F ∪ {(p, tx1) | ∃p, x ((p, x) ∈ F1)} ∪ {(tx1, p) | ∃p, x ((x, p) ∈ F1)} ∪
{(p, tx2) | ∃p, x ((p, x) ∈ F2)} ∪ {(tx2, p) | ∃p, x ((x, p) ∈ F2)},

– F ′read = Fread ∪ {(p, tx1) | ∃p, x ((p, x) ∈ Fread1)} ∪ {(p, tx2) | ∃p, x ((p, x) ∈
Fread2)},

– T ′S = (TS ∪ Tnew1 ∪ Tnew2) ∩ (TS1 ∪ TS2),
– T ′R = (TR ∪ Tnew1 ∪ Tnew2) ∩ (TR1 ∪ TR2),
– g′(t) = g(t) for all t ∈ T and else g′(t) = g1(t) if t ∈ Tnew1 and g′(t) = g2(t)

if t ∈ Tnew2 and
– uri′(t) = uri(t) for all t ∈ (TS ∪ TR), uri′(t) = uri1(t) for all t ∈ Tnew1 and

uri′(t) = uri2(t) for all t ∈ Tnew2.

Figure 5 illustrates the outcome of an open world composition for the same
example. Here, payment might be issued to another service and other services
might still issue payment. The same applies to the payment acknowledgment.

Regarding enablement and firing of service nets we assume that exactly one
token is removed from every input place and exactly one token is placed onto
every output place. That way, service nets can be simulated by corresponding
place/transition nets. The only exception are read arcs, where corresponding
tokens must be present on the place for a transition to be enabled. However,
the token will not be consumed upon firing. For simulating this behavior in
place/transition nets, read arcs could be seen as bi-flows. This works as long as
the respective places that are read from are not output places at the same time.

We assume that there is no functional dependency between input token values
and output token values, i.e. firing the same transition with the same input token
values twice might yield different output token values.

4 Implementation Considerations

This section presents the service net execution engine we implemented. It be-
haves as specified in the previous section. Figure 6 provides an overview of the

82 G. Decker et al.

Places &
transitions

Model manager

Enablement agent

Firing agent

B
ro

w
se

r

cust.

T
ok

en
s XML content

Attribute cache

Enablem.
cacheP

ay
m

en
t

se
rv

ic
e

HTTP+XHTML

HTTP+XML

C
om

m
un

ic
at

io
n

ag
en

t

D
el

iv
er

y
S

er
vi

ce HTTP+XML

O
nl

in
e

sh
op

HTTP+XML

Fig. 6. Architecture of the service net execution engine

engine’s overall architecture using the FMC block diagram notation [16]. Four
main components can be distinguished within the engine:

– The communication agent handles incoming HTTP requests from the cus-
tomer’s web browser and the payment service and forwards them to the other
agents. Furthermore, it issues HTTP requests to the payment service and
the delivery services.

– The model manager deploys new Petri nets within the engine. The Petri
Net Markup Language (PNML [4]) is used with engine-specific extensions.
Internal representations of places and transitions are created.

– The enablement agent computes which transitions are currently enabled for
what combinations of input tokens. This agent also evaluates guard con-
ditions. If transitions are enabled and do not rely on an incoming HTTP
request to be fired, the enablement agent triggers the firing agent.

– The firing agent is responsible for the firing of transitions. Firing leads to
the deletion of tokens and the creation of new ones.

4.1 Concurrency

The engine runs within a web container and takes advantage of the multi-
threading capabilities offered by the container. Parallel incoming HTTP requests
are handled by different threads. The conflict between firing two transitions with
the same input token is resolved on the database transaction level.

In the case of receive transitions, first the input tokens are consumed, then a
response is returned to the requester, before output tokens are produced. This
in turn immediately triggers the evaluation for enablement of subsequent transi-
tions, which happens within the same thread. If such a subsequent transition is
actually enabled, firing will occur immediately. Therefore, a certain sequential-
ization regarding internal transitions and send transitions applies. In case a send

RESTful Petri Net Execution 83

Fig. 7. Screenshot for “Select articles”, realized using XForms

transition is enabled and the server handling requests for the corresponding URI
does not respond or returns an error message, another outgoing HTTP request
will be issued again later. A particular worker thread is assigned to realize such
requests.

4.2 XForms Representations

In our case the web resources addressed are static and dynamic ports. Forms are
the classical way for describing the data expected by a web resource. XForms
[5] are a way for not only defining the syntax of expected XML documents but
also prescribe how to render this XML information in an interactive web form.
XForms is suited not only for interpretation by humans through web browser
but also by machines, as the specification of the expected XML document can
be given e.g. using an XML schema.

Figure 7 shows a screenshot of the form for the “select articles” transition
from section 2. Upon submission of the form, the browser assembles an XML
document as specified in the XForms model and sends it to the given URI as
POST message.

4.3 Interchange Format

The Petri Net Markup Language (PNML [4]) is used as input format for the
engine. While the concepts of places, transitions and arcs are already present
in PNML, we added engine-specific extensions. Listing 1 shows a PNML code
snippet for the example from section 2.

The listing shows two transitions and one place definition. The engine distin-
guishes four types of transitions: firing receive transitions is triggered through

84 G. Decker et al.

Listing 1. PNML code snippet for the example
<transition type="receive" id="select_articles">...

<toolspecific tool="Petri Net Engine" version="1.0">

<output>

<bindings href="http://wwwserver/select_articles/bindings.xml"/>

<form href="http://wwwserver/select_articles/form.xml"/>

</output>

</toolspecific>

</transition>...

<transition type="automatic" id="forward_express_delivery">...

<toolspecific tool="Petri Net Engine" version="1.0">

<guard><expr>deliveries.shippingType==’express’</expr></guard>

</toolspecific>

</transition>...

<place id="deliveries">...

<toolspecific tool="Petri Net Engine" version="1.0">

<locator>

<name>shippingType</name><type>xsd:string</type>

<expr>//shippingType/text()</expr>

</locator>

</toolspecific>

</place>...

incoming HTTP requests, firing send transitions results in outgoing HTTP re-
quests, automatic transitions are internal transitions and referer transitions are
used for GET messages only, referring the requester to another URI.

The definition of select_articles includes a reference to a XForms docu-
ment. The bindings define how input token values are used as in the form.
Transition forward_express_delivery includes the definition of a guard condi-
tion. shippingType is a so called locator for place deliveries. What part of the
XML document is actually referenced by this locator is defined in the definition
of place deliveries. This indirection mechanism allows caching of individual
attributes that are relevant for guard conditions.

5 Related Work

This paper has used Petri nets as formal foundation for describing RESTful
process execution. Petri nets are described in detail in [24] and colored Petri
nets in [14]. The introduction of XML technology into Petri nets has already
been done in [17] in the form of XML nets. Here, tokens carry XML documents
that are consumed in and produced by transitions.

Petri nets have extensively been used for representing systems with interfaces
to an outside world. In the case of open workflow nets, places serve as message
channels that connect different systems. These nets can be used for deciding
whether there are partners with which the system could interact successfully [25]

RESTful Petri Net Execution 85

and how such partners need to look like [18]. Using communication transitions
for representing synchronous communication was already introduced in [28].

π-calculus is a process algebra that could be used as alternative to the ser-
vice nets presented in this paper [19]. π-calculus directly supports link passing
mobility. The distinction between static and dynamic ports made in this paper
corresponds to free and bound names in π-calculus. The motivation for choosing
Petri nets instead was driven by the need for using the Business Process Modeling
Notation (BPMN) as high-level modeling language, and generating executable
definitions out of it. Here, we could resort to existing implementations1 doing
BPMN to Petri net transformations, which are based on [9].

A first comparison between SOAP and REST as alternative technical ground-
ing for service choreographies can be found in [29]. Although REST raises major
interest among practitioners, it remains rather undiscussed in academia. Among
the few academic papers concerning REST are [22,27].

RESTful process execution can be seen as alternative to service composi-
tion as proposed in Business Process Execution Language (BPEL [10]). A main
difference is that BPEL only offers static ports. Relating messages to process
instances is done by application-specific attributes, grouped into so called cor-
relation sets. This hampers caching on the protocol level and does not allow for
bookmarking of activity instances or process instances. Reflection is realized by
event handlers in BPEL that do not alter the values of variables, resulting again
in POST messages. Therefore, the communication intentions inherent in HTTP
are largely ignored in BPEL. We have proposed an extension called RBPEL
in [21], introducing dynamic ports through URI templates.

Bite [7] is a language for orchestrating REST services, using some of the
constructs known from BPEL. With its scripting approach it does not require
typing of variables nor the explicit definition of variables. However, the concept
of dynamic ports as proposed in this paper is not present in this language. It
still relies on correlation mechanisms similar to BPEL’s.

Several process engines directly executing Petri nets have already been pro-
posed [23,26]. Further engines use (colored) Petri nets as process definition lan-
guage but translate the definition into an internal representation [2,13]. Our
approach is different as it concentrates on RESTful communication with the
environment, therefore allowing seamless integration into the World Wide Web.

6 Conclusion

This paper has discussed RESTful process execution on the basis of a special
class of Petri nets. The main concepts of REST were introduced and related
to the formal model. These include considering intentions on the protocol level
and unique identification of resources. RESTful process execution as presented
in this paper can be integrated with SOAP-based services. Before invoking such
a service XML tokens would be wrapped into SOAP envelopes. In order to allow

1 See http://oryx-editor.org for a running installation.

86 G. Decker et al.

SOAP-based invocations by service requesters, a static port would be offered
and the XML payload extracted from the SOAP message.

We have implemented a process engine that executes service nets. The engine
is available under MIT license and a running installation including the exam-
ple from section 2 can be accessed from the engine’s homepage http://code.
google.com/p/pnengine/.

Future work includes the introduction of further process execution aspects
into service nets. As a major point, authorization needs to be considered, where
static and dynamic ports are only accessible for certain users, e.g. only for those
that where involved in the previous process steps. This requires extending guard
conditions by the capability to refer to the requesting user. Other work centers
around efficient execution of Petri nets. As BPMN serves as primary modeling
language, the introduction of certain high-level Petri net constructs such as reset
arcs and inhibitor arcs promises simplification of the nets and increased execution
performance.

References

1. Adida, B., Birbeck, M.: RDFa Primer 1.0. Technical report, W3C (2006),
http://www.w3.org/TR/xhtml-rdfa-primer/

2. Aversano, L., Cimitile, A., Gallucci, P., Villani, M.L.: FlowManager: A Workflow
Management System Based on Petri Nets. In: COMPSAC 2002: Proceedings of
the 26th International Computer Software and Applications Conference on Pro-
longing Software Life: Development and Redevelopment, Washington, DC, USA,
pp. 1054–1059. IEEE Computer Society Press, Los Alamitos (2002)

3. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI):
Generic Syntax. Technical report, The Internet Engineering Task Force (1998),
http://www.ietf.org/rfc/rfc2396.txt

4. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

5. Boyer, J.M.: XForms 1.1. Technical report, W3C (November 2007),
http://www.w3.org/TR/xforms11/

6. Burbeck, S.: The tao of e-business services: The evolution of web applications into
service-oriented components with web services (October 2000),
www.ibm.com/developerworks/library/ws-tao/

7. Curbera, F., Duftler, M.J., Khalaf, R., Lovell, D.: Bite: Workflow composition for
the web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 94–106. Springer, Heidelberg (2007)

8. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Englewood Cliffs (2005)

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Pro-
cess Models in BPMN. In: Information and Software Technology (IST) (2008)

10. Fallside, D.C., Walmsley, P.: Web Services Business Process Execution Language
Version 2.0. Technical report (October 2005),
http://www.oasis-open.org/apps/org/workgroup/wsbpel/

RESTful Petri Net Execution 87

11. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine (2000)

12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. Technical report, The Internet
Engineering Task Force (1999), http://www.ietf.org/rfc/rfc2616

13. Guan, Z., Hernandez, F., Bangalore, P., Gray, J., Skjellum, A., Velusamy, V., Liu,
Y.: Grid-Flow: a Grid-enabled scientific workflow system with a Petri-net-based
interface. Concurr. Comput.: Pract. Exper. 18(10), 1115–1140 (2006)

14. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (1996)

15. Khare, R., Çelik, T.: Microformats: a Pragmatic Path to the Semantic Web. In:
Proceedings of the 15th International World Wide Web Conference (2006)

16. Knopfel, A., Grone, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, Chichester (2006)

17. Lenz, K., Oberweis, A.: Interorganizational Business Process Management with
XML Nets. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net
Technology for Communication-Based Systems. LNCS, vol. 2472, pp. 243–263.
Springer, Heidelberg (2003)

18. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

19. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Information
and Computation 100, 1–40 (1992)

20. Overdick, H.: The resource-oriented architecture. In: 2007 IEEE Congress on Ser-
vices (Services 2007), pp. 340–347 (2007)

21. Overdick, H.: Towards Resource-Oriented BPEL. In: Proceedings of 2nd Workshop
on Emerging Web Services Technology in Halle (Saale), German (2007)

22. Prescod, P.: Roots of the REST/SOAP Debate. In: Proceedings of the Extreme
Markup Languages 2002 Conference, Montréal, Quebec, Canada (August 2002)

23. Purvis, M., Lemalu, S.: An adaptive distributed workflow system framework. In:
APSEC 2000: Proceedings of the Seventh Asia-Pacific Software Engineering Con-
ference, Washington, DC, USA, p. 311. IEEE Computer Society, Los Alamitos
(2000)

24. Reisig, W.: Petri nets. Springer, Heidelberg (1985)
25. Schmidt, K.: Controllability of Open Workflow Nets. In: Enterprise Modelling and

Information Systems Architectures, Bonn. Lecture Notes in Informatics (LNI),
vol. P-75, pp. 236–249 (2005)

26. Verbeek, H.M.W.E., Hirnschall, A., van der Aalst, W.M.P.: XRL/Flower: Support-
ing Inter-organizational Workflows Using XML/Petri-Net Technology. In: Bussler,
C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and
WES 2002. LNCS, vol. 2512, pp. 93–108. Springer, Heidelberg (2002)

27. Wilde, E.: What are you talking about? In: 2007 IEEE International Conference
on Services Computing (SCC 2007), Salt Lake City, Utah, USA (July 2007)

28. Wolf, M.: Synchrone und asynchrone Kommunikation in offenen Workflownetzen.
Studienarbeit, Humboldt-Universität zu Berlin (May 2007)

29. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services chore-
ography standards: the case of REST vs. SOAP. Decis. Support Syst. 40(1), 9–29
(2005)

Validation and Discovery of Non-deterministic Semantic
e-Services

Luigi Dragone

CM Sistemi S.p.A. – via Simone Martini, 126 – Roma
luigi.dragone@gruppocm.it

Abstract. We present a logic-based framework that is able to model semantic
e-services and to verify some of properties supporting the design and mainte-
nance of cooperative information systems. This framework is based upon a formal
foundation of the Semantic Web, as the Description Logic family, that provides
an expressive specification language, allowing for complex application domains.
We adopt the well-known IOPE (Input, Output, Preconditions, and Effects) par-
adigm for the description of e-service contracts, providing a suitable operational
semantics and we are able to reason about update effects also in case of under-
specified e-services, using a repair-based approach. On this base, we firstly define
some basic consistency and correctness properties, and then we characterize the
adequacy of an e-service to achieve a user goal as foundational task in service
discovery. We present decidable checking procedures for the devised properties
using a reduction technique to First-Order Logic reasoning tasks, including an
analysis in terms of computational complexity.

1 Introduction

The adoption of the service-oriented computing paradigm in the construction of Enter-
prise and Cooperative Information Systems, given several issues concerning the level
of autonomy and heterogeneity, has made manifest the requirement for a clear, flexi-
ble and feasible way to denote the semantics of a generic e-service and to analyze its
properties.

Indeed, given the emphasis on the strong encapsulation on the actual implementation
of such cooperation units, the e-service interface specification is often the only avail-
able way to formalize the contract between the provider and the requestor. So, several
approaches integrating techniques stemming from different fields of Computer Science
have been devised to address many foundational aspects in the design and maintenance
of these complex systems as such: the specification of e-service contract semantics, the
verification of consistency of such specifications w.r.t. a set of constraints regarding
the surrounding environment, the specification of user requirements and the discovery
of services that are able to achieve them. Roughly speaking, a semantically annotated
e-service (or semantic e-service) adopts the formal base of the Semantic Web, enriched
with the ability to deal with its intrinsic dynamic nature. Among different proposals,
many of them rely on a family of knowledge representation languages, the Description
Logics (DL), since they provide both a clear semantics and effective reasoning tools
([2]). While these languages are often very suitable to express the domain knowledge

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 88–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Validation and Discovery of Non-deterministic Semantic e-Services 89

and constraints about system states, given the fact that they are essentially devoted to
the definition of static properties, they need an adequate enrichment in order to deal
with dynamic features.

In our framework, we show how to address the mentioned topics using a logic-based
approach that essentially relies on performing some computable reasoning tasks in
First-Order Logic (FOL), even in case of incomplete specifications. In particular, in this
paper we present the following main contributions: (1) an enriched knowledge-based
system specification language allowing for non-deterministic and conditional behav-
iors; (2) the characterization of e-service consistency and correctness properties; (3) the
characterization of semantic properties related to the e-service discovery problem; and
(4) the corresponding verification algorithms including an analysis of the computational
complexity.

The rest of the paper is organized as follows: we start presenting the service specifi-
cation model, then we analyze correctness-related semantic properties and we introduce
a model for the specification of user goals. On this foundation, we analyze the match-
making problem between the service capabilities and user requirements, sketching the
logic encoding approach, providing also a complexity analysis of devised problems. For
the sake of brevity, we have omitted proofs of formal claims reported in this paper, the
interested readers can refer to [5].

2 The Specification Model

In this section we introduce the syntax and the semantics of the specification model used
in our framework. A first version of this model has been presented in [6]: we now extend
it adopting a more expressive DL language. We also include in the model the ability to
deal with complex service specifications, allowing conditional and non-deterministic
behaviors.

2.1 Description Logics

The family of DLs ([2]) has been initially devised as a formal tool to support the spec-
ification of knowledge representation systems, providing a decidable, and preferably
tractable, semantics.

Among a wide range of expressive languages, we adopt an extension of the well-
known language ALCQI with enhanced role constructs. This language, denoted as
ALCQI(!,", �, �,�), is defined in terms of concept and role expressions according
to the following syntax:

C, C′ −→ A | ¬C | C "C′ | (� n R C)
R, R′ −→ P | R− | R !R′ |R "R′ |R � C | R � C | �

where A and P denote, respectively, atomic concept and atomic role names, C and R
denote, respectively, arbitrary concepts and roles, n ∈ N and �∈ {=, <, >,≤,≥} is
a generic relational operator on natural numbers. The languageALBO ([11]) enriches

90 L. Dragone

Table 1. Semantic of the ALBO description logic

AI ⊆ ΔI

(¬C)I = ΔI \ CI

(C � C′)I = CI ∩ C′I

{o}I =
{

oI
}

P I ⊆ ΔI ×ΔI

(¬R)I = ΔI ×ΔI \ RI

(R �R′)I = RI ∩R′I

(R−)I =
{
〈o, o′〉 ∈ ΔI ×ΔI |〈o′, o〉 ∈ RI

}
(�� n R C)I =

{
o ∈ ΔI |

∥∥∥{o′ ∈ ΔI |〈o, o′〉 ∈ RI ∧ o′ ∈ CI
}∥∥∥ �� n

}
(R � C)I =

{
〈o, o′〉 ∈ ΔI ×ΔI |〈o, o′〉 ∈ RI ∧ o ∈ CI

}

the ALCQI(!,", �, �,�) expression language with nominals and arbitrary boolean
role expressions:

C, C′ −→ A | ¬C | C " C′ | (� n R C) | {o}
R, R′ −→ P |R− | ¬R |R "R′ | R � C

Other operators (e.g., !, ∀, ∃, #, �, �, �) can be defined in terms of primitive ones.
The concepts# and ⊥ denote resp. the interpretation universe and the empty set, while
roles $ and � resp. the total symmetric and empty relations. The semantics of such a
language is defined w.r.t. an interpretation structure I s.t. concept names are interpreted
as subsets of the domain ΔI and roles and object names, respectively, as binary relations
and elements over ΔI , as reported in Tab. 1.

A knowledge base (KB) is a pair 〈T ,A〉 formed of a terminological box or TBox
T and an assertional box or ABox A. The former is a set containing concept inclu-
sion axioms in the form C % D (let C and D be arbitrary concept expressions) and
role inclusion axioms R ⊆ S (let R and S be arbitrary role expressions). The latter
is a set of object membership axioms or assertional sentences in the forms o : C and
(o, o′) : R. An interpretation I satisfies, or is a model of, the knowledge base iff, for
each C % D ∈ T , CI ⊆ DI , for each R % S ∈ T , RI ⊆ SI , for each o : C ∈ A,
oI ∈ CI and for each (o, o′) : R ∈ A, 〈oI , o′I〉 ∈ RI . Generally, the TBox is con-
sidered as the intensional specification of the knowledge base, while the ABox is the
extensional one. TheALBO language allows also for another kind of axioms, i.e., car-
dinality restrictions that have the form �(C) � n: an interpretation I is a model for the
above axiom iff ‖C‖I � n. Such a kind of DLs also have a standard semantics in terms
of FOL fragment function-free with counting quantifiers C2 ([7]), that will be useful in
the following. We point out that these languages are decidable in NEXP (both ALBO
and C2 are NEXP-complete). It is worth noting that such languages are able to capture
a large part of the underlaying formalization of concrete Semantic Web standards as
DAML and OWL.

2.2 Syntax and Semantics

We now, briefly, introduce the specification language and its most relevant semantic def-
initions. In the following, we assume that an infinite countable universe U is given and

Validation and Discovery of Non-deterministic Semantic e-Services 91

that the system is described using a domain specification 〈A, P, O〉 composed of three
finite mutually disjoint sets: resp. the concept, the role and the object alphabets. The
object names are constantly interpreted according to the standard-names assumption
on a finite subset O ⊂ U of the given universe, i.e., by a bijective function ·I : O 	→ O.
A system state (or world state) is defined using an interpretation of these alphabets on
a subset Δω ⊆ U of the whole interpretation domain (active domain), that includes all
objects that are active at a given point.

Moreover, according to most applications of KR techniques, generally, not every
interpretation can be considered to be a legal system state representation, so we intro-
duce the ability to restrict the state space to the valid ones by means of a constraint set,
expressed using a suitable language.

Definition 1 (World specification). A world specification W = 〈T ,A〉 is a knowl-
edge base expressed on the domain 〈A, P, O〉 using the DL ALCQI(!,", �, �,�).

A world state ω is legal w.r.t. a specificationW if it is a model of such a theory, while a
specification is consistent if it admits at least a model. Considering the system axioma-
tized using such a KB, we can now introduce the language to specify the semantics of
update operators that are able to realize system state transitions (i.e., e-services).

In the following, we basically distinguish between two kinds of such entities that are
able to model resp. glass-box and black-box behaviors:

conditional e-services, which explicitly state how they select, among a set of declared
behaviors, the enactment results;

non-deterministic e-services, which declare multiple possible alternative behaviors,
keeping the decision protocol hidden.

While the first kind of e-service is more suitable to describe interfaces encapsulating
components of conventional information management systems, which are implement-
ing some kind of automated task (e.g., a database procedure), the latter is applicable to
model (as an e-service) a complex business process that can possibly involve multiple
autonomous actors (not necessarily a software component or application), interacting
in order to select the enactment outcome. The following specification is able to catch
both considered types, as well as any intermediate situations.

Definition 2 (e-service specification). An e-service specification S, given a domain
specification, is a quadruple formed by: (1) a (possibly empty) finite set of input variable
names X; (2) a (possibly empty) finite set of output or instantiation variable names Y;
(3) a (possibly empty) finite set of invocation precondition constraints P; (4) a non-
empty finite set E of conditional effect specifications.

Informally, according to the IOPE (Input, Output, Preconditions, and Effects) para-
digm, a service is defined specifying the values required for its execution, the values
resulting from the execution itself, the conditions under which it can be requested
by a client, and the updates performed. We point out that IOPE is a well-known ap-
proach widely adopted in many field of Software Engineering, not last to mention in
reference standard languages for Semantic Web Services as OWL-S. The definition of
the non-deterministic behavior can be obtained considering that the executing agent

92 L. Dragone

(the service provider) simply non-deterministically chooses a (conditional) effect and
then realizes it. Generally speaking, a precondition constraint is a conjunction of posi-
tive (resp. negative) atomic conditions. An atomic condition is a pair 〈s, Q(X′)〉 where:
(1) s ∈ {+,−} is the sign of the precondition (positive or negative); (2) Q(X′) is a
parametric query over the domain specification in the variables X′ ⊆ X. As query lan-
guage we adopt both the concept and role expression languages of ALBO, employed
using an extended alphabet including also variable symbols as singleton concept names
in the domain specification. A positive (resp. negative) condition is satisfied if the result
of the query is not empty (resp. empty) given an input variable assignment and a world
state1.

A conditional effect specification is defined as a finite rooted labeled binary tree s.t.
for each node n: (1) if n is a non-leaf node, then it is annotated with a set of branching
conditions; (2) otherwise, it is annotated with a pair composed by an instantiation set
and a simple effect. Intuitively, the labels corresponding to branching conditions are
evaluated starting from the root node of the tree and using a pre-order visit strategy. If
the current node n is a leaf one, the associated effect specification is kept as the ex-
ecution outcome. For a non-leaf node, if the condition specified by the node label is
satisfied, then the right child node is visited, otherwise the left one is visited, until a
leaf node is reached. A branching condition is expressed, as precondition constraints,
as a conjunction of signed atomic conditions. Given the tree-based structure of the con-
dition specification model, we have that, given a world state ω and an input variable
assignment σX, exactly one effect is selected or, in other words, conditional e-services
are always unambiguous and completely defined.

Let Y be the output variable set of a service S, an instantiation set Y′ is any arbitrary
(possibly empty) subset of Y, denoting objects actually instantiated by the leaf effect, if
selected. Finally, a simple effect E is an arbitrary set of atomic concept and role effects
built according to its variable names and domain specification. An atomic concept (resp.
role) effect is a triple 〈s, A, a〉 (resp., a quadruple 〈s, P, l, r〉 or a triple 〈s, P, p〉) s.t.:
(1) s ∈ {+,−} is the sign of the effect (insert or delete); (2) A ∈ A (resp. P ∈ P) is the
target concept (resp. role) name; (3) a (resp. l and r or p) is the argument of the update
(positive or negative) according to the sign of the effect. A positive effect argument is
any element Y ∈ Y′ of the associated instantiation set or any parametric query Q(X′)
over the domain specification in the variables X′ ⊆ X. A negative effect argument
is defined as a parametric query Q(X′). While a, l and r are concept expressions, p
denotes a role expression. Roughly speaking, a simple effect specifies which elements
(or pair of elements) are inserted or removed from a set (or a binary relation). Generally,
each atomic effect can affect more elements since its application range is denoted using
queries2.

In order to introduce the semantics of dynamic features, we have to denote sets of
elements (or element pairs) affected by an update. For example, a concept insert set

1 Since we adopt a conjunctive normal form to express conditions, arbitrary boolean expres-
sions whose atoms are parametric queries can be used (F, F ′ −→ Q(X) | not F | F and

F ′ | F or F ′).
2 Moreover, an atomic effect can be more concisely written also using the notation
+A(a),−A(a),+P (l, r),−P (l, r),+P (p),−P (p).

Validation and Discovery of Non-deterministic Semantic e-Services 93

A+ of concept A ∈ A denotes the extension of the model that is affected by the up-
date as element that will be added to the interpretation of the name A. Analogously, we
can define the set of removed elements and affected pairs of binary relations P ∈ P
(denoted as A−, P+ and P−). So, given the previous definitions, we can finally intro-
duce dynamic aspects, defining the transition relation between system states resulting
from the enactment of a service.

Definition 3 (Successor relation). Given a pair of world states ω and ω′, an input
and output variable assignments σX and σ′Y consistently defined w.r.t. ω, we say that
ω′ is a (potential) successor state of ω, resulting from the execution of an e-service S
according to provided inputs, realizing the simple effect E∗ and instantiating the set
Y∗, iff: (1) there exists a conditional effect E of S s.t. the pair 〈E∗, Y∗〉 is associated to
a leaf-node of E and it is selected according to ω and σX; (2) the output assignment is
defined over Y∗ or, in other words, that dom(σ′Y) = Y∗; (3) the interpretation domain
Δω′

of the successor state is the smallest subset of U s.t. Δω ∪ cod(σ′Y) ⊆ Δω′
; (4) the

interpretation of object names is preserved, i.e. oω = oω
′
; (5) for each concept or role

name N ∈ A ∪ P, the insert set is included in the successor state interpretation, i.e.
Nω′ ⊇ N+(ω, σX, σ′Y), and the delete set is excluded, i.e. Nω′ ∩N−(ω, σX) ⊆ ∅.

The set of possible successor states attainable from a state ω, applying the effect E of a
service using the assignment σX and σ′Y is denoted as ΩE(ω, σX, σ′Y), where Y is the set
of newly instantiated object names. Among the potential successor states resulting from
the execution of a service that realizes its effects, we are interested in the states that min-
imally differ from the initial one according to a notion of minimal-change semantics. In
particular, we adopt a structure-distance metric based on the number of elements whose
interpretation (e.g., concept membership) changes from a structure to another based on
the set symmetric difference ([10]), applied to concept and role alphabets A and P and
denoted as d(·, ·).

Definition 4 (Transition relation). Let ω and ω′ be a pair of world states, s.t. the
latter is resulting from the enactment of an e-service S in the state defined from the
former, given an input and an output variable assignments σX and σ′Y consistently de-
fined, we say that there is a system state transition from ω to ω′ using the specified
e-service iff there exists an effect E ∈ E s.t.: (1) ω′ is a (potential) successor state of
ω w.r.t. the given assignments according to E; (2) and there does not exist any other
potential successor state ω′′ of ω, w.r.t. the same assignments and service effect, s.t. it
is closer to ω than ω′ according to the symmetric difference distance, that means that
d(ω, ω′) ≤ d(ω, ω′′) for any ω′′ ∈ ΩE(ω, σX, σ′Y).

The service enactment S(ω, σX) for a state ω and a consistent input variable assignment
σX is a set containing all the pairs 〈ω′, σ′Y〉 s.t. there is a service effect E ∈ E , σ′Y is
a consistent instantiation assignment of the selected effect in E w.r.t. ω and σX, and ω
and ω′ are in transition relation w.r.t. the assignment and the service effect. We notice
that the number of possible enactments is infinite, due to the non-deterministic choice
on the instantiation assignment, even in presence of a single conditional effect (‖E‖ =
1): however, it turns out that they are actually indistinguishable under as constraint
language as ALCQI(!,", �, �,�), extending the conclusions of [9].

94 L. Dragone

Table 2. An example world specificationW

∃resIn−.� � Town

∃resIn.� � Citizen

∃authFor.� � Citizen

Citizen � (= 1 resIn �)

∃regIn−.� � Town

Vehicle � (= 1 regIn�)

Citizen � Town � ⊥
Citizen � Good � ⊥
Good � Town � ⊥
Shop � Town � ⊥
Shop � Good � ⊥

Shop � Citizen � ⊥

∃own−.� � Citizen

Shop � (≤ 1 own �)

Good � (≤ 1 own �)

Vehicle � Good

t1 : Town

t2 : Town

Lemma 1. Let ω be a world state, σX a consistent input variable assignment, and S
an e-service. If 〈ω1, σ

′
1〉 and 〈ω2, σ

′
2〉 are two enactments in S(ω, σX) obtained by the

same effect E ∈ E , then they are isomorphic.

Proof (sketch). In order to prove the claim we need to provide a bijective function, map-
ping the structures resulting from the enactment, h : Δω1 	→ Δω2 s.t. the interpretation
of concept, role and object names is preserved according to the morphism.

For instance, let p be a concept name, for any element x ∈ Δω1 we have that x ∈
pω1 ↔ h(x) ∈ pω2 . Similar conditions can be stated for role and object names. Such a
function can be defined as:

h(x) =

{
x x ∈ Δω

σ′2(Y) σ′1(Y) = x

This function is well-defined since it is total (dom(h) = Δω1 = Δω ∪ cod(σ′1)) and
it maps each element of its domain to exactly one element of its codomain (cod(h) =
Δω2 = Δω ∪ cod(σ′2)). Showing that h is bijective and it also satisfies conditions on
the morphism w.r.t. the specification domain completes the proof.

Moreover, according to this claim, we need, at most, to keep into account, for a given
starting condition, a successor state for each non-deterministic effect specification. This
is a key property in order to ensure the decidability of the approach. As we show in fol-
lowing sections, we admit that service specifications can be only partial or, in other
words, that they define only a subset of their effects (the most relevant to the designer),
leaving the system to compute other side-effects required to preserve the global consis-
tency. Moreover, the adopted repair-based strategy can deal with the minimal-change
semantics also in case of side-effects, since we are able to select the smallest suitable
repair among generated ones, in terms of number of affected elements or pairs.

Example 1. LetW be an axiomatization of a simple domain, where people interact with
e-services provided by public administrations. W contains the assertions reported in
Tab. 2, where concept and role names have the intuitive meaning. According to the given
axiomatization, each good has an own, while vehicles must be registered in the local ad-
ministrative department. Suppose, for example, that there exists a service S that allows
a citizen to change its own residence and to specify the new one. It can be modeled con-
sidering the input parameters x1 and x2 denoting, resp., the citizen who is asking for the

Validation and Discovery of Non-deterministic Semantic e-Services 95

change and the new residence town, while output signature is void. The service precon-
ditions can be expressed as x1"Citizen and x2"Town and not x2"∃resIn−.x1, while
the only effect is defined by the update

{
−resIn(x1, ∃resIn−.x1), +resIn(x1, x2)

}
. This

service is accessible by every citizen, and allows selecting any town as the new resi-
dence location. The town t1 provides also an enhanced version to its inhabitants that
ask for a residence change. Such enriched e-service S1 is restricted only to citizens
of t1, but it is capable also to accordingly change the registration of vehicles belong-
ing to the requestor, in the sense that the vehicles belonging to the requestor will
be registered to the authority of the target town. The service preconditions are now
x1 " ∃resIn. {t1} and x2 " Town and not x2 " {t1}, while the only effect included in
E is specified as:

E =
{
−resIn(x1, ∃resIn−.x1), +resIn(x1, x2),−regIn(Vehicle " ∃own.x1, {t1})

}
∪ {+regIn(Vehicle " ∃own.x1, x2)}

3 Basic Semantic Properties

In the following we discuss about some basic properties of semantic e-services specified
using the present framework. These properties are mainly related to the formal correct-
ness of the system and are a typical application object of computer-aided validation
techniques.

We have analyzed these properties in [6] considering the well-foundedness of simple
e-services (essentially e-services allowing only for a single non-conditional effect). In
this paper we extend the discussion even to non-deterministic conditional e-services,
essentially showing that the same approach with some adequate technical adjustments
is able to cope also with these new modeling primitives.

One of the first questions that we need to address during the analysis of the system is
whether the service access preconditions are actually realizable in the world described
by the constraint set. In other words, we are asking if a service is accessible from at least
a system state that is compatible withW . Since the set of precondition constraints P , is
interpreted as a disjunction of such constraints, a service is accessible if there exists a
legal world state and an assignment s.t. it can be activated consistently with an element
of such a set. Moreover, we can also require that an effect conditional branch is non-
redundant or, in other words, that there exists some legal world state and admissible
input assignment s.t. the leaf effect is selected (i.e., the formula obtained combining
branching conditions from the root node is satisfied). A service is well-founded if there
is no redundant effect.

In order to provide a consistent definition of service effects, we need also to verify
that, for every concept or role, the insert and delete sets are always distinct. An effect
is consistent if for each legal world state and for each consistent assignment, there is
no element or element pair that belongs both to the insert set and the delete set of some
concept or role.

This definition of consistency for service effects is a necessary but not sufficient con-
dition in order to ensure the correctness of an e-service acting in a world subject to a
constraint set represented by the specificationW . In fact, this is a kind of internal effect

96 L. Dragone

consistency, since it simply assures that the enactment effects are per se not contradic-
tory. On the other hand, we are also interested in the property of a service that always
acts consistently with the specification of the system, and at the same time is able to ful-
fill its contract every time it is activated consistently. In other terms, given a legal state
where the service preconditions hold, the service invocation must result into a legal state
where the declared effects are realized. The service contract is defined presuming that
the invocation preconditions are sufficient in order to obtain the declared service effects
by an enactment. More specifically, we are interested in the analysis of consistency of
state transitions resulting from the enactment of a generic service: only transitions that
results into structures that are model of the world specification theoryW are allowed.

Definition 5 (Valid e-service). Let S be a consistent e-service, it is valid w.r.t. a world
specification W , iff for each legal world state ω, for each consistent input assignment
σX, s.t. the service is accessible in ω using it, there exists at least a legal state ω′ in the
enactment (i.e., ω |= W).

The analysis of service validity is a useful tool, but in order to fully exploit the capabil-
ities of a knowledge-based verification framework we need to address also the case of a
service incomplete specifications, where only primary effects are intentionally stated. In
other words, we remove the assumption that only declared effects are actually enforced,
allowing for some side-effects eventually realized in order to ensure a consistent behav-
ior as an update repair. However, the problem of repairing even a simple update in
presence of a complex intensional knowledge base (or a complex constraint set) turns
out to be very hard, since, given the complexity of the axiom language, non-local repair
side-effects may arise. This means that, in order to enforce consistently an update, we
could have to retract a relevant part of the previous knowledge base. Some authors have
addressed the problem limiting the constraint language to a simpler form (e.g., acyclic
or definitorial TBox), but in the general case the problem is undecidable both in DL
([3]) and in relational database schemas ([1]). Indeed, according to [3], the problem is
undecidable in the general case allowing for unrestricted constraint set in expressive
DLs, but, we are interested to assess whether, if we renounce to the completeness of the
repair search, limiting to a restricted, and finite, set of possible repairs, we can regain
the decidability.

In particular, the devised approach relies on the syntactical generation of repairing
additional effects starting from singleton values (like variables and constants) men-
tioned in the problem setting, performing a kind of search in the space of candidate
interpretation structures locally w.r.t. the set symmetric distance. A simple repair R for
an e-service S is an arbitrary set of atomic concept and role repairs, possibly empty, s.t.
it does not contain any pair of conflicting atomic repairs (i.e., atomic repair differing
only by the sign). An atomic repair is a special kind of atomic effect, which arguments
range over any nominal introduced in the specification (i.e., object and input variable
names). Restricting our attention to simple repairs, we can assume, as repair search
space for a given e-service S, a setR s.t.: (1) it includes the null repair ∅; (2) given any
non-empty repair R ∈ R, each subset R′ ⊂ R s.t. ‖R‖ = ‖R′‖+ 1 is also included in
R. Such a set is also called normal repair family.

As discussed in [6], we can observe that the number of different repairs, or, in other
words, the size of the search space, is finite and exponentially bounded by the number

Validation and Discovery of Non-deterministic Semantic e-Services 97

of alphabet elements (in terms of names). At the same time, the number of possible re-
pairs is substantially independent of the number and size of world specification axioms
and service effect statements. Given an e-service with such an update repair capabil-
ity, we have to refine the definitions related to system dynamics, in order to keep into
account also the repairing step that, intuitively, follows the instantiation and updating
ones. Moreover, among multiple repaired successor states, the repairing strategy selects
the one closest to the base successor state ω′, in terms of symmetric difference between
interpretation structures, in order to enforce a kind of minimal-change repair.

Definition 6 (Repairable e-service). Let S be a consistent e-service, and R a set of
repairs, S is repairable w.r.t. a world specification W iff for each legal world state ω,
for each consistent input assignment σX, s.t. the service is accessible in ω using it, there
exists a state ω′ in the enactment and a repair R ∈ R s.t. the repaired state ω′R is legal
(i.e., ω′R |= W).

Example 2. The ability to deal with non-deterministic behaviors turns extremely useful
to model a large class of e-government services: authoritative services. In fact, several
services provided by public administration are concerning with allowing or disallowing
a citizen to perform an action. Given the world specification introduced in the previous,
the following e-service T allows owners of commercial activity (i.e., a shop) to ask
for the authorization to start the business (i.e., such an activity it is regulated by some
restrictive laws). Let x be the only input variable denoting the commercial activity, the
service definition includes the preconditions x"Shop"∃own.# andnot (∃own−.x)"
(∃authFor.x) and two possible effects: the empty update if the authorization is denied
(nothing changes) and the update {+authFor(∃own−.x, x)} otherwise.

4 Semantic Service Discovery

Once introduced the foundational semantic properties, we now present the application
of the proposed framework to the analysis of other semantic properties. In particular,
a typical task in the construction of a service-oriented application is the lookup of a
suitable, or preferably the most suitable, available service to achieve a user’s goal. Gen-
erally speaking, a goal is specified as a condition over the domain specification language
stating the world desired properties as resulting from the execution of a service, from
the user perspective (e.g., which conditions should be satisfied after a successful service
enactment?) . Possibly, a goal can be enriched with a condition describing the properties
that hold in the world before the enactment, as a sort of client commitment.

Definition 7 (Execution goal). An execution goal G is defined as a triple formed
by: (1) a (possibly empty) finite set UG of goal instantiation parameter names; (2) a
(possibly empty) finite set of simple conditions, expressed using the parameter names
as variables, stating parameter properties and client commitmentHG; (3) a non-empty
finite set of simple conditions, expressed using the parameter names as variables, stat-
ing the properties, in terms of the state of the world, that the client wants to achieve, as
requirement conditionsRG.

98 L. Dragone

The language adopted in the specification of goal constraints is the same employed
in the specification of service conditions (e.g., preconditions or branching conditions).
Generally speaking, in order to call a service, we need to accordingly assign its input pa-
rameters, so given a user goal (ground or not) we need to express a suitable way to bind
service inputs. W.l.o.g. we can assume that a binding function is provided, which means
that the adequacy of the service to the goal is analyzed w.r.t. such a kind of functions.
In our framework, we restrict our attention to binding functions that are expressed by
means of access function queries or, in other words, queries s.t., considering the world
specificationW , given a suitable parameter assignment, are evaluated to singleton sets
(i.e., they return at most a result element). So a binding schema B between two variable
sets VG and VS is a function that assigns to each V ∈ VS an access function, w.r.t.
W , parameterized over VG. We can, of course, impose some additional restrictions on
allowable goals and binding schemas in order to ensure a more consistent behavior, we
omit them here for the sake of brevity. Let G be an admissible execution goal, given
a valid/repairable service S and a consistent binding schema B, we are interested in
assessing the adequacy degree of the service to achieve a world state compatible with
the goal requirement starting from a world state s.t. client commitments hold using the
binding schema. According to the quantification on initial and resulting states from the
service execution, we can distinguish different kinds of adequacy notions. For instance,
if a service can always surely achieve a given goal, it can be declared as:

Definition 8 (Strong uniform adequacy). A service S is strongly and uniformly ad-
equate to a goal G iff, for each legal world state in which the service preconditions
hold, and for each goal instantiation that is compliant to user commitments, every ser-
vice enactment obtained applying the binding schema results in a state where the user
requirements hold.

Roughly speaking, the strong adequacy degree implies that the service can surely
achieve the execution goal, provided that service and goal preconditions are satisfied. On
the other hand, the uniform adequacy degree implies that, every time service and goal
preconditions are satisfied, there exists a suitable service computation path that achieves
the goal. In other words, the uniform adequacy is related to the quantification over ini-
tial states/input assignments, while the strong adequacy with the quantification over
possible computation paths. We can combine strong/weak and uniform/non-uniform
adequacy properties obtaining the other 3 following levels. They are summarized in
Tab. 3.

Definition 9 (Weak uniform adequacy). A service S is weakly and uniformly ade-
quate to a goal G iff, for each legal world state in which preconditions hold and for
each goal instantiation that is compliant to user commitments, there exists at least a
service enactment obtained applying the binding schema resulting in a state where user
requirements hold.

Definition 10 (Strong non-uniform adequacy). A service S is strongly and non-
uniformly adequate to a goal G iff there exist a legal world state in which precondi-
tions hold and a goal instantiation that is compliant to user commitments, s.t. every
service enactment obtained applying the binding schema results in a state where user
requirements hold.

Validation and Discovery of Non-deterministic Semantic e-Services 99

Table 3. Service/goal adequacy levels

Level Description
Strong Uniform (SU) The service always surely achieves the goal
Weak Uniform (WU) The service can always possibly achieve the goal
Strong Non-Uniform (SNU) The service sometime surely achieves the goal
Weak Non-Uniform (WNU) The service can sometime possibly achieve the goal

Definition 11 (Weak non-uniform adequacy). A service S is weakly and non-
uniformly adequate to a goal G iff there exists a legal world state in which precon-
ditions hold and a goal instantiation that is compliant to user commitments, s.t. there
exists at least a service enactment obtained applying the binding schema resulting in a
state where user requirements hold.

Given the definitions of uniform/non-uniform adequacy properties, we can also con-
clude that is possible to induce on the adequacy level spaceL= {WNU, WU, SNU, SU}
a partial order relation ≺ defined as depicted in Fig. 1. We have, indeed, that:

Proposition 1. Let G be a goal and S be a service s.t. the adequacy level of the service
w.r.t. G is l ∈ L, then S is l′-adequate for each l′ ∈ L s.t. l′ ≺ l.

SU

SNU WU

WNU

����
��

��
�

���
��

��
��

���
��

��
��

����
��

��
�

Fig. 1. The service/goal adequacy level order relation≺

Example 3. Given the services defined in the previous, we consider the following sim-
ple parametric goal G, denoting a citizen that is attempting to change its own residence
to town t2, let U = {u}, H = u " Citizen and not (∃resIn−.u) " {t2}, and R ={
−resIn(u, ∃resIn−.u), +resIn(u, {t2})

}
. The binding schema of input variable of the

services is the same in both cases and it is defined as B = {x1(u) = u, x2(u) = t2}. It
is worth noting that, while the service S is strongly and uniformly adequate to accom-
plish the user goal, since its preconditions are always satisfied by user’s commitment
and its effects implies the user’s requirements, the service S1 is adequate but in a non-
uniform way, since, if the requestor does not live in t1, (s)he cannot access the service,
even-through, once enacted, the service always accomplished the required effects.

5 The Encoding Strategy

In this section we briefly sketch the encoding strategy employed, summarizing some of
more relevant computation complexity results obtained so far.

100 L. Dragone

Table 4. The DL-expression translation function τ∗

τ∗(A) � A

τ∗(C � C′) � τ∗(C) � τ∗(C′)

τ∗((�� n R C)) � (�� n τ∗(R) τ∗(C))

τ∗({o}) � {o}
τ∗(¬C) � Top � ¬τ∗(C)

τ∗(P) � P

τ∗(R−) � τ∗(R)−

τ∗(R �R′) � τ∗(R) � τ∗(R′)

τ∗(¬R) � (Top× Top) � ¬τ∗(R)

τ∗(R � C) � τ∗(R) � τ∗(C)

In particular, we employ an encoding technique that, starting from a specification of
a dynamic reasoning task about an evolving class-based system (or, in other words, a
community of deployed semantic e-services), reduces it to a traditional inference task
into a “slightly” more expressive logic. The adopted working logic is a function-free
decidable fragment of FOL, denoted as C2: it restricts the first-order language allowing
at most two variables, but it includes the support for counting-quantifiers and arbitrary
boolean expressions, enabling us to effectively catch the semantics of the system.

The basic idea is to embed a system state transition, described in terms of initial and
final states, parameter assignments, etc., into a single interpretation structure on which
we solve some reasoning tasks (satisfiability or entailment) obtained by accordingly
encoding the e-service checking problem into a suitable set of axioms. The link between
original and “working” interpretation structures is caught by the following definition:
it has to be extended in the following as we go along, in order to cope with various
modeling refinements.

Definition 12 (Embedding relation). Let ω = 〈Δω , ·ω〉 be an arbitrary world state
defined on an interpretation domain Δω ⊆ U, and let ω̂ = 〈U, ·ω̂〉 any interpretation
over the alphabet 〈A∪{Top} , P, O〉. The world state is embedded into the interpretation
(ω � ω̂) iff the following conditions hold: Δω = Topω̂ , Nω = N ω̂ and oω = oω̂, for
any N ∈ A ∪ P and for any o ∈ O.

We can easily generalize the provided definition introducing a name mapping func-
tion that embeds the structure using different concept or role names. We notice that
using different mapping functions, which means having mutually disjoint co-domains
(and possibly different embedded top names, which denotes corresponding active do-
mains), distinct arbitrary world states can be embedded into an interpretation built
over the union of mapped alphabets. Now, we inductively define a translation func-
tion τ∗ over the concept/role expressions of the language ALBO, from the alphabet
〈A, P, O〉 to the alphabet 〈A ∪ {Top} , P, O〉, as reported in Tab. 4. Let KB = 〈T ,A〉
be an arbitrary knowledge base (i.e., a world specification), we define a new knowl-
edge base τ∗(KB) over the extended alphabet s.t., for each general concept or role
inclusion assertion C % D in the TBox T , τ∗(KB) includes a new axiom of the form
τ∗(C) % τ∗(D); and for each membership assertion o : C or (o, o′) : R in the ABox
A, τ∗(KB) includes, resp., a new axiom o : τ∗(C) or (o, o′) : τ∗(R). Given a domain
specification, assuming, w.l.o.g., that Top and New are new concept names, we define

Validation and Discovery of Non-deterministic Semantic e-Services 101

Table 5. Basic axiom schema K̃B

� � Top � New

Top � New � ⊥
� � ∀P.Top

� � ∀P−.Top

A � Top

o : Top

a knowledge base K̃B composed by the instantiation of the axiom schema3 reported in
Tab. 5 for any concept name A ∈ A, role name P ∈ P and object name o ∈ O. Using
the axiom schema K̃B and the translation function τ∗ we can show the following main
properties of the embedding relation that enable us to rely on it in the rest of the paper.

Lemma 2. Let be ω and ω̂ be respectively a world state and an arbitrary interpretation
s.t. the world state is embedded into the interpretation (ω � ω̂), then Eω = [τ∗(E)]ω̂

for any concept/role expression E of ALBO over the domain specification 〈A, P, O〉.

Theorem 1. A ALCQI(!,", �, �,�) knowledge base KB is satisfiable on an arbi-
trary interpretation domain Δ ⊆ U iff the knowledge base K̃B∧ τ∗(KB) is satisfiable
on U.

Such an approach can be extended to implement reasoning-based procedures that are
able to check formal properties introduced in Sec. 3. Essentially we refine the definition
of the embedding relation in order to cope with multiple world states at a time, leverag-
ing on different name mapping functions and on the isomorphism property that finitely
bounds the number of states to check for an enactment. In fact, the first property that we
are interested to check is whether the world specification is itself consistently defined,
or, if it admits at least a legal state. Given the complexity of reasoning in C2 we can
easily show that the validation of anALCQI(!,", �, �,�) world specificationW is in
NEXP.

In [6] we have addressed the analysis of these basic semantic properties in the case
of simple e-services: in presence of non-deterministic/conditional behaviors most of the
results can be extended, accordingly adjusting the formalization, in order to keep into
account effect selection expressions and the multiple effect specifications. The analysis
of accessibility is mainly unaffected and hence it is possible to encode the preconditions
in a linearly bounded C2 sentence denoted as KBP . The checking of effect consistency
requires an adequate modification for branching conditions. In particular, given an effect
E ∈ E , for each leaf node n, we combine the label expressions on the path from the
root to n in a conjunctive logical expression φn including label expressions with the
corresponding logical sign. The resulting expression is satisfied only on interpretation
structures corresponding to world state/assignment s.t. the leaf effect is selected.

Also the analysis of validity/repairability properties need some adjustments, since
we are requiring that in each consistent service activation there exists at least a valid or
repairable outcome. The most relevant enhancement to the encoding is the introduction
of multiple renaming functions, since we need to keep into account multiple enactments
at once.

3 We use axiom schemas as an useful notation shorthands: given an alphabet, the instantiated
theory is obtained by replacing name place-holders (e.g., A, P , o) with any compatible name.

102 L. Dragone

Theorem 2. A consistent and accessible non-deterministic e-service S is valid w.r.t. a
world specificationW , iff the following implication holds:

KBP ∧ τ∗(W) ∧
∧
E∈E

ΔKBU
E,mE

|=
∨
E∈E

τ∗mE
(W)

where, for each effect E ∈ E , we introduce: (1) a fresh name mapping function mE

for the domain and the instantiation variable names; (2) a C2 sentence ΔKBU
E,mE

,
encoding instantiations and updates, whose length is polynomially bounded in the input
size.

Theorem 3. A consistent and accessible non-deterministic e-service S is repairable
w.r.t. a world specification W using a normal family of repair R, iff the following im-
plication holds:

KBP ∧ τ∗(W) ∧
∧
E∈E

(
ΔKBU

E,mE
∧

∧
R∈R

ΔKBR
R,mE ,nE,R

)
|=

∨
E∈E

∨
R∈R

(
τ∗nE,R

(W) ∧ΔKBC
R,mE ,nE,R

)
where, for each effect E and for each repair R: (1) mE and nE,R are the domain
name mapping functions; (2) ΔKBU

E,mE
, ΔKBR

R,mE ,nE,R
and ΔKBC

R,mE,nE,R
are

C2 sentences, having length polynomially bounded in the problem size;

Informally, while ΔKBU
E,mE

encodes the update resulting from effect E, the other
two sentences are required in order to ensure that the repair R ∈ R does not interfere
with the update effects. Considering the complexity of the entailment in C2 and the
size of resulting encoded instance, we can conclude that checking the validity of a
non-deterministic e-service is a problem in coNEXP, while, given a normal family of
atomic repairs, the repairability checking problem is in coNEEXP. Considering results
presented in [3], while we have approximated the repair search problem obtaining a
decidable algorithm for arbitrary KB specifications, we have to pay a drawback in terms
of complexity, since we are relying on a kind of extra-logic search.

Corollary 1. Given a world specification W and a non-deterministic e-service S, the
problem of checking if it is valid is in coNEXP. Given also a normal family of atomic
repair, the problem of checking if it is repairable is in coNEEXP

Now, we address the adequacy problem considering a non-deterministic e-service, but
we initially ignore the effect repair, for the sake of simplicity. The case of partially
specified services will be addressed in the rest.

Theorem 4. An accessible, consistent, and valid non-deterministic e-service S is
strongly and uniformly adequate to an admissible goal G given a (weakly) consistent
binding schema B w.r.t. a world specificationW , iff the following implication holds:

KBP ∧τ∗(W)∧KBH ∧ΔKBB ∧
∧
E∈E

ΔKBU
E,mE

|=
∧
E∈E

τ∗mE
(W) → KBT

mE
(1)

Validation and Discovery of Non-deterministic Semantic e-Services 103

where, for each effect E ∈ E: (1) mE is the name mapping function; (2) KBT
mE

is sen-
tence expressing the user goal requirements; while KBH are ΔKBB two C2 sentences
encoding resp. the user goal commitment and the binding schema application.

Intuitively, we can observe that the implication in Eq. 1 finitely encodes the definition
of strong uniform service adequacy. As for previous cases, the decidability of this prob-
lem essentially relies on the isomorphism property of successor states, which allow us
to check the condition taking into account only a finite number of possible elements.
We also point out that all newly introduced sentences have a length linearly bounded in
the problem input size, so the reduction does not effect the overall computational com-
plexity. Other adequacy levels can be checked in a similar way, adjusting: (1) the kind
of reasoning task: entailment for the uniform adequacy, satisfiability otherwise; (2) the
finite quantifications over successor states: universal for strong adequacy, existential
otherwise (

∨
E∈E τ∗mE

(W) ∧KBT
mE

).
The problem becomes a bit trickier if also the repair strategy must be considered. In

particular, in this scenario we do not only need to show that the service can accomplish
the required task, but also that the repair does not interfere with its own side-effects. In
order to show that such a property hold, we need to simulate the repair selection proce-
dure that means that generally a goal is achieved iff its requirement constraints hold in
the world state obtained by the minimal-change effective repair. Given a repair search
space R, we now introduce the expression θE,R,W to denote the following material
implication finitely quantified over service effects and repairs grouped by their size:

θE,R,W �
∧
E∈E

s∧
k=0

∧
R∈Rk

τ∗nE,R
(W) ∧ΔKBC

R,mE,nE,R

∧
∧

R′∈R̂
k

¬
(
τnE,R′ (W) ∧ΔKBC

R′,mE ,nE,R′

)
→ KBT

nE,R

where Rk � {R ∈ R| ‖R‖ = k} and R̂
k �

⋃j<k
j=0 Rj denote resp. the set of repairs

having size equal or less than k. We point out that the repair strategy, introduced in
previous section, is completely unaware of user’s goal since it keeps into account only
service and domain specifications.

Theorem 5. An accessible, consistent, and repairable non-deterministic e-service S
is strongly and uniformly adequate to an admissible goal G given a consistent binding
schema B w.r.t. a world specificationW and a normal repair familyR, iff the following
implication holds:

KBP ∧ τ∗(W)∧KBH ∧ΔKBB ∧
∧

E∈E

(
ΔKBU

E,mE
∧

∧
R∈R

ΔKBR
R,mE ,nE,R

)
|= θE,R,W

Finally, we introduce a similar expression ηE,R,W , which can be used instead of θE,R,W
in the encoding of weak adequacy verification problems, it finitely quantifies over ser-
vice effects and repairs grouped by their size:

104 L. Dragone

ηE,R,W �
∨
E∈E

s∨
k=0

∨
R∈Rk

τ∗nE,R
(W) ∧ΔKBC

R,mE ,nE,R

∧
∧

R′∈R̂k

¬
(
τnE,R′ (W) ∧ΔKBC

R′,mE ,nE,R′

)
∧KBT

nE,R

The results about complexity of service/goal adequacy problems are summarized in
Tab. 6, as for the correctness analysis, the introduction of a repair strategy, required to
deal with partially-specified services, induces at most an exponential blow-up. More-
over, while uniform adequacy has to be checked solving an entailment inference prob-
lem instance, non-uniform adequacy can be assessed as a satisfiability task.

Table 6. Upper-bounds of service/goal adequacy property verification problems

Non-Uniform (SNU/WNU) Uniform (SU/WU)

Without repair NEXP coNEXP

With repair NEEXP coNEEXP

6 Related Works and Conclusions

In this paper, we have extended the specification model introduced in [6], allowing for:
(1) the use of a more expressive DL (ALBO instead ofALCQIO); (2) the ability to ex-
press also role-related constraints (GRI); and (3) the specification of non-deterministic
conditional e-services. So we have applied such a model to the analysis of the adequacy
level of a service to a user’s goal. This is the formal foundation for providing the service
community with a service discovery meta-service that is able to locate a suitable service
provider given a goal. The ability of repairing service effects or, in other words, to com-
pute some service side-effects, enable us also to deal with incomplete specifications. As
consistency and correctness properties, also the analysis of goal/service adequacy can
be considered as a foundational tool that can be employed in the study of other relevant
semantic service properties on which our ongoing research is focused, as well as on the
practicability issues involved with the computational complexity of devised problems.

Only from the theoretical perspective, the topics addressed in this paper have been
extensively studied in the literature devoted to semantic aspects of service-oriented
computing, in general, and applying knowledge representation tools as DLs, in par-
ticular. Among several approaches, we consider some proposals that are closer to the
present one in the spirit and regarding the formal foundation, in order to emphasize
the specificity of our one. For example, in [3] (and in its extensions as [12]) a gen-
eral approach to the update of DL extensional knowledge bases is presented. Despite
it is a general purpose action formalism, it has been applied to the analysis of proper-
ties of semantics e-services, in particular considering the role of the domain knowledge
and incomplete specification. This approach, in fact, introduces an update repair mech-
anism that is able to complete the service effects with additional updates in order to

Validation and Discovery of Non-deterministic Semantic e-Services 105

obtain a resulting world state that is consistent with a set of constraints (i.e., a TBox).
In presence of an expressive description logic language, the problem is decidable only
restricting the specification to some special classes of TBoxes (i.e., acyclic or defin-
itorial), while in our proposal we are able to deal with arbitrary specifications using
a sound but incomplete approximation. In such a framework, the matchmaking prob-
lem can be formalized in terms of projection of action consequences. Moreover, given
the limitation on the TBox language, such an approach lacks the ability to deal with
unrestricted domain specifications, but it also shows some more tractable complexity
bounds.

Another class of service analysis techniques based upon DLs is essentially oriented
to address matchmaking problems (e.g., [4]): they are essentially static approaches
since they are focused on the description of service entailments not on the world states
(i.e., the interpretation structure is mapped upon possible actual instantiation of service
activations), but they allow for a domain specific knowledge in the sense of the Seman-
tic Web. In this respect, our proposal is, indeed, a truly dynamic approach that relies
on reasoning on service update effects instead that on the declaration of the action. Re-
garding static DL-approaches, in [8] is introduced an interesting distinction between
the service variety (i.e., the extension of service instance set) due to incomplete knowl-
edge (i.e., multiple models of a given theory) and the variety due to intended diversity
(i.e., multiple instances in a given model). While the latter is a goal of a service pub-
lisher (i.e, describing a service that is able to accept heterogeneous client requests), the
former is generally a consequence of poorly defined domain specification. Stemming
from these definitions, also service availability and coverage concept has been intro-
duced to denote the applicability of a service to deal with a given class of requests.
Matchmaking problems are reduced to various forms of reasoning tasks, but some kind
of constraints/features are not addressable in a feasible and decidable way, since using
only a DL or a two-variable fragment of FOL seems to be too restrictive. It is worth not-
ing that static approaches, despite they are often adopted also in some standard service
directory and lookup solutions, they generally ignore consistency-related issues.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, Cambridge (2003)

3. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description logics and
action formalisms: First results. In: Proc. of the 2005 National Conference on Artificial In-
tellingence (AAAI 2005) (2005)

4. Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M.: A system for principled match-
making in an electronic marketplace. In: Proc. of the WWW 2003 Conference, Budapest,
Hungary (2003)

5. Dragone, L.: Modeling and Resoning about e-services in Cooperative Information Systems.
Ph.D thesis, Sapienza Università di Roma (2008)

6. Dragone, L., Rosati, R.: Checking e-service consistency using description logics. In: Proc.
of the 2007 IEEE Service Computing Conference (SCC 2007) (2007)

106 L. Dragone

7. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In: Proc. of
12th IEEE Symposium on Logic in Computer Science, LICS 1997 (1997)

8. Grimm, S., Motik, B., Preist, C.: Variance in e-Business Service Discovery. In: Martin, D.,
Lara, R., Yamaguchi, T. (eds.) Proc. of the ISWC 2004 Workshop on Semantic Web Services
(2004)

9. Immerman, N., Lander, E.: Describing graphs: A first-order approach to graph canonization.
In: Complexity Theory Retrospective (1990)

10. Lin, J., Mendelzon, A.O.: Merging databases under constraints. International Journal of Co-
operative Information Systems 7(1), 55–76 (1996)

11. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description logics with
role negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 438–451. Springer, Heidelberg (2007)

12. Wang, H., Li, Z.: A semantic matchmaking method of web services based on
SHOIN+(D)∗. In: Proc. of the Asia-Pacific Services Computing Conference, APSCC
2006 (2006)

Fault, Compensation and Termination in
WS-BPEL 2.0 — A Comparative Analysis

Christian Eisentraut and David Spieler

Department of Computer Science, Saarland University,
Campus Saarbrücken, 66123 Saarbrücken, Germany

{eisentraut,spieler}@cs.uni-sb.de

Abstract. One of the most challenging aspects in Web Service compo-
sition is guaranteeing transactional integrity. This is usually achieved by
providing mechanisms for fault, compensation and termination (FCT)
handling. WS-BPEL 2.0, the de-facto standard language for Busi-
ness Process Orchestration provides powerful scope-based FCT-handling
mechanisms. However, the lack of a formal semantics makes it difficult
to understand and implement these constructs, and renders rigid analy-
sis impossible. The general concept of compensating long-running busi-
ness transactions has been studied in different formal theories, such as
cCSP and Sagas, but none of them is specific to WS-BPEL 2.0. Other
approaches aim at providing formal semantics for FCT-handling in WS-
BPEL 2.0, but only concentrate on specific aspects. Therefore, they can-
not be used for a comparative analysis of FCT-handling in WS-BPEL 2.0.
In this paper we discuss the BPEL approach to FCT-handling in the light
of recent research. We provide formal semantics for the WS-BPEL 2.0
FCT-handling mechanisms which aims at capturing the FCT-part of the
WS-BPEL 2.0 specification in full detail. We then compare the WS-
BPEL 2.0 approach to FCT-handling to existing formal theories.

1 Introduction

As a standard for Web Service Orchestration, the language WS-BPEL 2.0 [1]
(in the following BPEL) has gained wide acceptance over the past years. BPEL
provides primitives to specify the flow of execution and communication between
a process and its communication partners. Similar to the notion of transaction in
database systems, the successful completion of certain communication sequences
between processes must be ensured in order not to bring the course of busi-
ness between the partners into an inconsistent state. Different to transactions
of database systems, transactions of orchestrations are inherently long running
(Long-Running-Transactions, LRT) with typical durations from hours to days,
for example because of sub-transactions that require human interaction or batch
processing, and may be subject to faults of various kinds. Therefore, the use
of the transaction paradigms as used in database systems, where resources are
locked for exclusive access, becomes infeasible in this context. Therefore BPEL
uses a concept called compensation in order to obtain a more relaxed notion

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 107–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 C. Eisentraut and D. Spieler

of undoing partial executions. Every activity within a transaction possesses an
associated compensation that is (ideally) able to revert its effects. When a trans-
action fails, the effects of all activities executed within that transaction so far
are undone by executing their respective compensations. This makes transac-
tions behave atomically for an external observer: they always either complete
successfully or they appear to have never been started at all. It seems appropri-
ate to execute compensations in the reverse order relative to the execution of
their respective activities. In BPEL this is the default order.

The compensation approach to LRTs is based on the seminal idea of Sagas [7].
[3] provides a formalization of Sagas together with several extensions to the
basic calculus, such as nested transactions, programmable compensations and
exception handling, which are vital ideas of modern Web Service composition
languages like BPEL. A similar approach is pursued in cCSP [5] based on CSP [8].
Different approaches to and other aspects of LRTs, which we will not consider
in our paper, have been studied in [4, 11, 12].

While the theory is thus reasonably well developed, the effective and reliable
use of LRT concepts is of crucial importance for Web Services. Therefore LRT
and compensation are an integral part of BPEL. However, it is difficult to an-
alyze how LRTs are realized in BPEL, since the language does not come with
formal semantics. While desirable formal properties of LRTs are known, they
are uncheckable with the current BPEL specification.

Nested Sagas and cCSP are two recent formal approaches to the foundations of
FCT-handling. However, due to the very different styles of giving semantics that
are used for BPEL and Sagas and cCSP respectively, it seems almost impossible
to faithfully validate to which extent the formal semantics of the calculi and the
BPEL specification coincide without formal proofs.

In this paper, we provide an formalization of fault, compensation and ter-
mination handling in BPEL, following the BPEL documents as faithful as at
all possible. The resulting operational small-step semantics describes BPEL in
a step-wise fashion, which is small-grained enough to be validated as a formal
translation of the specification. Since both our calculus and Sagas or cCSP are
formulated in a process algebraic way, our calculus furthermore seems a natural
choice for a formal comparison.

It turns out that an interesting fragment of BPEL corresponds to Sagas, as
far as basic transaction handling without nesting is considered. This result is
especially interesting since Sagas is designed in a syntactically and semantically
slim and clean way, which makes it an appropriate choice for formal analysis.
As shown in [2], the same subset also coincides with a subset of cCSP. We can
therefore restrict our formal comparison to Sagas.

However, more advanced features of the languages like generalized exception
handling, programmable compensations etc. seem incomparable.

To keep the calculus as simple as possible, we do not consider aspects of
BPEL that are orthogonal to FCT-handling like correlation sets or the binding
of partner links. Furthermore, we only consider control flow primitives that are
also found in Sagas. Section 3 provides a more detailed discussion of our choice.

Fault, Compensation and Termination in WS-BPEL 2.0 109

We furthermore abstract from time and data. For a formal treatment of these
aspects we refer the reader for example to [13, 10, 18, 17, 14].

In summary, this paper makes the following contributions. It (i) provides a
detailed, low-level semantics for BPEL’s FCT-handling behavior and (ii) uses
this semantics to place BPEL in the context of more abstract foundational work.

In Section 2 we give an overview of existing approaches to the formalization of
BPEL. Syntax and semantics of our calculus BPELfct are presented in Section 3.
We also give a short introduction to the principle of all-or-nothing semantics
in BPEL and how it is realized in our calculus. Section 4 formally compares
BPELfct to nested Sagas and discusses possible extensions and limitations of
our comparative approach. Section 5 concludes our work.

2 Related Work

Several formalizations of BPEL and its FCT-handling mechanisms exist. For an
overview see [6]. Most algebraic approaches either consider BPEL4WS, the pre-
decessor of BPEL, or do not give full account to all features of FCT-handling in
BPEL. [13] and [9] provide feature-complete semantics for BPEL. However, their
graph-based semantics seem a less natural choice for the intended comparison
with the algebraic calculus Sagas.

[15, 11, 12] show how compensation handling can be reduced to event han-
dling in the webπ-calculus. However, their approach relies on statically specified
compensation handlers. Thus BPELs default compensation and all-on-nothing
semantics (cf. Section 3.2) are not represented in their model. In [14] a nearly
complete encoding of the BPEL scope construct into the webπ∞-calculus is given,
although without termination handler. That calculus is derived from the webπ-
calculus and consequently suffers from the problems mentioned above.

In [19], Qiu et al. introduce the calculus BPEL formalizing a subset of
BPEL4WS. Our calculus was inspired by BPEL. However, as we will show
in Section 3.2, their calculus cannot deal with all-or-nothing semantics to its
full extent.

3 The BPELfct Calculus

Being a real-word language, BPEL comes with a huge number of primitives
needed to design business processes, for example partner links and correlation
sets for communication purposes, many different control flow primitives and
FCT-handling mechanisms, to only mention a few. It is in general not easy to
decouple these mechanism and analyze them in isolation. For example, the FCT-
handling mechanism we want to consider cannot be separated completely from
the control flow primitives. When a faulted transaction needs to be compen-
sated, this may be done in default compensation order, which means executing
the compensations in reverse order relative to the execution order of their respec-
tive activities. This order is of course dependent of the control flow primitives

110 C. Eisentraut and D. Spieler

provided. For example consider the flow construct with condition links. This con-
struct can be easily encoded in a graph-based language such as Petri-nets, but is
difficult to encode in algebraic languages like the one we use. Sagas, the calculus
we will compare BPEL to in this paper only offers control flow primitives for
sequential and parallel execution. Note that parallel execution as understood in
Sagas, corresponds to the flow construct without using condition links. There-
fore, we also restrict the set of control flow primitives to those supported in
Sagas. However, if a control flow primitive as well as the resulting default com-
pensations can be encoded with process algebraic operators, we are confident
that our calculus can be extended to comprise this control flow primitive.

3.1 Syntax

BPELfct is a formalization of BPEL focused only on fault, compensation and
termination (FCT) handling. We assume an infinite set of basic activities Act.
The language of BPELfct is defined as follows

Syntax of BPELfct

S ::= 0 | A | τA | τ | exit | S ; S | S + S | S ‖ S | !A | ! | ↑ | {S : S : S : S}
P ::= {|S : S|} PT ::= � | ∅ | �
C ::= S | P α, β ::= (C, α, β)m | α ; β | α ‖ β

where A ∈ Act, m ∈ {n, f, n′, f ′, c, t}

Initial Terms (BPEL0
fct):

S0 ::= 0 | A | exit |S0 ; S0 |S0 +S0 |S0 ‖S0 | !A | ! | ↑| ({S0 : S0 : S0 : S0}, 0, 0)n

P 0 ::= ({|S0 : S0|}, 0, 0)n
′

S denotes a BPEL activity and P a process. PT , α and β are not part of
BPEL and only needed for the semantics. The language BPEL0

fct is the sub-
set of BPELfct that can be directly translated to BPEL expressions and vice
versa. It does not include the semantically necessary intermediate representa-
tions. All basic BPEL activities are abstracted to atomic activities A which
are assumed to be taken from an arbitrary set of names Act. τ denotes an in-
ternal action, that is not part of BPEL, but is used in BPELfct to denote
the occurrence of some event that is not visible to an observer. In case this
unobservable event originates from a named fault !A, we write τA. Observable
(named) faults are signalled by the action ! (!A). For a external observer faults
are never observable and always appear as τ or τA. We only need them for the
inference rules. Unnamed faults ! (which appear simply as τ from an external
observers perspective) and named silent actions τA are only introduced in the
language to allow for a nice comparison of BPELfct with Sagas. In order to
model BPEL itself they are not needed. The set of all actions is denoted by

Fault, Compensation and Termination in WS-BPEL 2.0 111

Act = Act∪{!, τ, exit}∪{!A | A ∈ Act}∪{τA | A ∈ Act}. 0 can be considered the
completed activity. Please note that completion/termination at process level is
indicated by an element from PT . Activities can be executed in sequence (;) or
in parallel (‖). The parallel construct corresponds to the flow activity of BPEL.
Nondeterministic choice (+) allows us to abstract from orthogonal aspects such
as data. All primitives so far are standard in process algebra. The other activ-
ities are introduced to model the FCT part of BPEL. We again abstract from
details and use !A (!) in combination with nondeterministic choice to model faults
communicated by partner Web Services as well as run-time errors. ↑ triggers the
default compensation mechanisms. {S : SF : SC : ST } denotes a scope, consisting
of four components: the main activity S, the fault handler SF , the compensation
handler SC and the termination handler ST , which are again arbitrary activities.
When no compensation handler is specified, the default compensation handler ↑
is assumed. If no fault handler is specified, the default handler ↑; ! is assumed,
which first compensates all already executed activities enclosed by the scope and
then rethrows the fault to the directly enclosing scope or process.

Compensation contexts are sequences and parallel constructs of compensation
closures (S, α, β)m. They denote installed compensations of successfully com-
pleted scopes, where S is the compensation handler itself and β is the set of
compensations that can be activated by ↑ inside of S. α is used to collect com-
pensations of scopes that successfully terminated during the execution of S.
These constructs allow for all-or-nothing semantics. (cf. Section 3.2). A BPEL
process can be considered as a scope without compensation and termination
handler. We use � to denote successful termination of a process, ∅ to signal a
process abortion due to the occurrence of a fault during fault handling. Forced
termination of a process (using the exit activity) is denoted by �. The lan-
guage can be extended to named fault and compensation handling as it is part
of BPEL. However, the mechanisms behind BPEL-FCT handling are not influ-
enced considerably by this extensions.

3.2 Semantics

Our semantics is given in SOS-style [16] together with a set of congruence rules,
that allow for a more compact presentation of our rules. Analogous to [19], the
state space of a BPEL-process consists of a term plus additional information
about installed compensations. In contrast to [19] we use a pair (α, β) of such
contexts. This is necessary in order to allow for repeated compensations [3], called
all-or-nothing semantics in BPEL. This allows to compensate a failed compen-
sation. In principle, it is also possible to compensate a failed compensation of a
failed compensation, etc. Now, when a compensation is triggered by ↑, we have
to make sure that we execute the right compensations. If, say, a compensation
handler H of a successfully completed scope T is executed and it first performs
a sequence of transaction S and then afterwards decides to start the default
compensation ↑, then it is not supposed to compensate S, but to execute the in-
stalled compensations for T . However, if H fails while performing S, the partial
execution of H has to be compensated. In this case, the installed compensations

112 C. Eisentraut and D. Spieler

for S have to be executed, whereas those for T must remain untouched. We call
the first component α of the compensation context accumulated compensation
context. It contains all compensation handlers that have been installed by the
currently executing transaction or handler (H in our example). The second com-
ponent β is called fixed compensation context. It contains those compensation
handlers that have been installed before the compensation handler (H) has been
called and which are supposed to be activated, if the compensation does not fail.
So in our example it contains the installed compensations for T .

In order to achieve all-or-nothing semantics it is necessary to enclose the
activation of the compensation by a scope, since in case a fault occurs dur-
ing the compensation, it is then intercepted by the fault handler of the scope,
which might then activate the accumulated compensations of the compensations.
Without an enclosing scope, the fault would abruptly abort the compensation
handling procedure and thus rendering all-nothing semantics impossible, since
this would require to revert the so far executed compensations. The use of only
a single compensation context seems to inherently lead to a weaker notion of
compensation semantics, where either all-or-nothing semantics are enabled at
the cost of sacrificing the ability to call the default compensations as part of a
user-specified compensation, as it is the case in [3], or the other way round, as
in [19]. Our semantics allow for all-or-nothing semantics even in the case when
the compensation is triggered directly inside a fault handler without an enclos-
ing scope (generalized all-or-nothing semantics). We will now discuss the rules
of our semantics.
Let in the following x ∈ Act ∪ {τ, exit} ∪ {τA | A ∈ Act} ∪ {!A | A ∈ Act}.

BASIC

(α, β) * x
x−−→ (α, β) * 0

CHOICE

(α, β) * S1
x−−→ (α′, β′) * S′1

(α, β) * S1 + S2
x−−→ (α′, β′) * S′1

SEQ

(α, β) � S1
x−−→ (α′, β′) � S′

1 S′
1 �≡ 0

(α, β) � S1 ; S2
x−−→ (α′, β′) � S′

1 ; S2

SEQT

(α, β) � S1
x−−→ (α′, β′) � 0

(α, β) � S1 ; S2
x−−→ (0 ; α′, β′) � S2

PARL

(α1, β) � S1
x−−→ (α′

1, β
′) � S′

1

((α1 ‖ α2) ; α, β) � S1 ‖ S2
x−−→ ((α′

1 ‖ α2) ; α, β′) � S′
1 ‖ S2

PARR

(α2, β) � S2
x−−→ (α′

2, β
′) � S′

2

((α1 ‖ α2) ; α, β) � S1 ‖ S2
x−−→ ((α1 ‖ α′

2) ; α, β′) � S1 ‖ S′
2

The inference rules so far are almost standard, except for SEQT, where we extend
the accumulated compensation context by a leading 0. The reason is that in order
to be applicable, rules PARL,PARR demand the structure (γ1 ‖ γ2) ; γ3 of the
accumulated compensation context. This is ensured by the following invariant:
For every transition (γ, δ) * T

x−−→ (γ′, δ′) * T ′ it holds that if the accumulated

Fault, Compensation and Termination in WS-BPEL 2.0 113

compensation context of the configuration on the left hand side is of the form
γ ≡ (γ1 ‖ γ2); γ3, then this will also be the case for the resulting context γ′ on the
right hand side (as long as T ′ �≡ 0). This invariant also holds for the accumulated
compensation context α of closures (C, α, β)m. The invariant can be proven by
induction on the term structure, i.e. by case analysis on the applicable inference
rules. The execution of business processes described by BPELfct starts in a
configuration (0, 0) * p with p ∈ P 0. Using rules CB1 and CB2, it is easy to see
that the invariant holds at the beginning of an execution of a BPELfct process.
Using induction on the length of an execution, it can be shown that the invariant
also holds during the whole execution (up to the last configuration). Therefore
the rules PARR and PARL can always be applied if the term in execution is a
parallel composition.

A scope S is always executed inside a closure (S, αA, βF)m, which stores infor-
mation about the current compensation context (αA, βF). The effect of activities
inside a scope may differ depending on the circumstances under which they are
executed. The ! primitive, for instance, shows subtle differences in its effect de-
pending on whether it is used inside a compensation handler or termination han-
dler. Our semantics stores the information under which circumstances a term is
executed in what we call the mode m of a closure. We refer to m as the mode of
the scope or process that is directly enclosed by the closure. Possible modes are:

– normal mode n, i.e. the scope is executing its enclosed activity
– faulted mode f , i.e. a fault has happened while executing the enclosed

activity
– compensating mode c, i.e. the scope is a compensation handler in execution
– terminating mode t, i.e. the scope is being terminated and is executing its

termination handler

The primed variants are used when a process is in the corresponding mode
instead of a scope. Let in the following y ∈ Act ∪ {τ} ∪ {τA | A ∈ Act}.

As long as no fault occurs, a scope executes its enclosed activity (cf. [1] 12.1, p.
116). Please note the use of β in SCOPE, which enables compensation handlers
to have nested enclosed scopes that may trigger a compensation. This is needed
in order to obtain correct all-or-nothing semantics of compensation handlers.

Exactly those scopes that complete successfully will install their compensation
handler (cf. [1] 12.4.3 p. 122, 12.4.4.3 p.125, and 12.5 pp. 127). Those handlers
are placed in front of the accumulated compensation context such that if the
compensation is triggered later on, they will be executed in default compensation
order.

SCOPE

(αA, β) * S
y−−→ (α′A, β′) * S′ S′ �≡ 0

(α, β) * ({S : F : C : T }, αA, 0)n
y−−→ (α, β′) * ({S′ : F : C : T }, α′A, 0)n

SCOPE END

(αA, β) * S
y−−→ (α′A, β′) * 0

(α, β) * ({S : F : C : T }, αA, 0)n
y−−→ ((C, 0, αA)c ; α, β) * 0

114 C. Eisentraut and D. Spieler

SCOPE FCT

(αA, βF) * S
y−−→ (α′A, β′F) * S′ S′ �≡ 0 m ∈ {c, f, t}

(α, β) * (S, αA, βF)m
y−−→ (α, β) * (S′, α′A, β′F)m

SCOPE END FCT

(αA, βF) * S
y−−→ (α′A, β′F) * 0 m ∈ {c, f, t}

(α, β) * (S, αA, βF)m
y−−→ (α, β) * 0

If a scope throws a fault, it is intercepted by the fault handler. Before the fault
handling activities are executed, the scope’s remaining enclosed activity is forced
to terminate (cf. [1] 12.5, p. 127 and pp. 131-132, and 12.6, p. 135). We discuss
forced termination in detail later.

SCOPE FAULT

(αA, β) * S
!A−−→ (α′A, β) * S′

(α, β) * ({S : F : C : T }, αA, 0)n τA−−→ (α, β) * ([S′] ; F, 0, α′A)f

In case that a fault handler faults itself, its activity will be terminated and
the fault will be rethrown to the enclosing scope’s or process’ fault handler
(cf. [1] 12.4.4.3, p. 126).

SCOPE FAULT F

(αA, βF) * S
!A−−→ (α′A, βF) * S′

(α, β) * (S, αA, βF)f τA−−→ (α, β) * [S′] ; !A

A faulting compensation handler will start the compensation of already executed
compensation activities (enabling generalized all-or-nothing semantics) and then
it will rethrow the fault to the initiator of the compensation (cf. [1] 12.4.4.3,p. 126).

SCOPE FAULT C

(αA, βF) * S
!A−−→ (α′A, βF) * S′

(α, β) * (S, αA, βF)c τA−−→ (α, β) * (↑ ; !A, 0, α′A)f

A fault during termination handling leads to forced termination of the termina-
tion handler (cf. [1] 12.4.4.3, p. 127, and 12.6, p. 137).

SCOPE FAULT T

(αA, βF) * S
!A−−→ (α′A, βF) * S′

(α, β) * (S, αA, βF)t τA−−→ (α, β) * [S′]

Compensation is realized in BPELfct by executing the fixed compensation con-
text β of the current context, i.e. the compensation handlers of the child scopes
enclosed by the original scope (cf. [1] 12.4.3.2, pp. 123-124).

COMP

(α, β) * ↑ τ−−→ (α, 0) * β

Fault, Compensation and Termination in WS-BPEL 2.0 115

The behavior of processes is quite similar to that of scopes. Because processes
are top level terms, they are always executed in the empty context (0, 0).

PROCESS

(αA, 0) * S
y−−→ (α′A, 0) * S′

(0, 0) * ({|S : F |}, αA, 0)n
′ y−−→ (0, 0) * ({|S′ : F |}, α′A, 0)n

′

PROCESS F

(αA, βF) * S
y−−→ (α′A, β′F) * S′

(0, 0) * (S, αA, βF)f
′ y−−→ (0, 0) * (S′, α′A, β′F)f

′

PROCESS FAULT

(αA, 0) * S
!A−−→ (α′A, 0) * S′

(0, 0) * ({|S : F |}, αA, 0)n
′ τA−−→ (0, 0) * ([S′] ; F , 0, α′A)f

′

Successful completion in either normal mode (no fault on process level happened
so far) or faulted mode (a fault happened on process level and was handled suc-
cessfully by the process’ fault handler) will result in successful termination (�).
If the execution of the fault handler failed the process will end up in a failed
state ∅.

PROCESS FAULT F

(αA, βF) * S
!A−−→ (α′A, βF) * S′

(0, 0) * (S, αA, βF)f
′ τA−−→ (0, 0) * ∅

PROCESS END

(0, 0) * ({|0 : F |}, αA, βF)n
′ τ−−→ (0, 0) * �

PROCESS END F

(0, 0) * (0, αA, βF)f
′ τ−−→ (0, 0) * �

The exit activity of BPEL forces a process to terminate immediately. The SOS
rules for exit are straightforward. The exit signal is passed through until it
reaches a process, where it leads to forced termination �. Due to space limitations
we omit the rules and only present the rule for processes:

EXIT PROCESS

(αA, 0) * S
exit−−−→ (α′A, 0) * 0

(0, 0) * ({|S : F |}, αA, 0)n exit−−−→ (0, 0) * �

In the following we present the syntactical congruence rules. Since our represen-
tation of the compensation mechanism relies on a strong structural resemblance
of the process term and its compensation contexts in the closure, we may not
freely commute parallel terms. For the same reason associativity does not hold.
As an example consider ((α1 ‖ α2); α, β) * S1 ‖ S2 �≡ ((α1 ‖ α2); α, β) * S2 ‖ S1.
This ensures that Si stays associated with the accumulated compensation con-
text αi, where i ∈ {1, 2}. In initial BPELfct terms, however, parallel terms

116 C. Eisentraut and D. Spieler

can by arbitrarily associated and commuted without changing the resulting se-
mantics. So semantically, the parallel operator in BPELfct is –as is the flow
construct in BPEL– commutative and associative.

Rule CB1 has to be used to expand the leading 0 in front of the accumulated
compensation context in case of the start of a new parallel flow inside the main
activity of a scope or process. In detail e.g. 0; α ≡ 0 ‖ 0; α. CB2 allows reduction
of sequences of 0.

CB1 0 ≡ 0 ‖ 0 CB3 S + (S′ + S′′) ≡ (S + S′) + S′′

CB2 S ; 0 ≡ S CB4 S + S′ ≡ S′ + S CB5 S + 0 ≡ S

The last set of rules we consider deals with forced termination of terms mir-
roring section 12.6 of [1]. When in a parallel branch a fault occurs, then all
other parallel branches have to be terminated. Forced termination has to hap-
pen as soon as possible, however, in order to allow for controllable terminations
of scopes, BPEL introduces the concept of termination handlers, which are acti-
vated as soon as a scope is forced to terminate. The BPEL specification allows a
fault that is about to occur either to happen or to be terminated without effect
(CT9) (cf. Section 4). Note that the handling of a fault or termination are not
affected by forced termination (CT12, CT13). This ensures that a transaction
(scope), which has faulted before the forced termination occurred, is always able
to complete its fault handler and any compensation activated there.

CT1 [0] ≡ 0
CT2 [τ] ≡ 0
CT3 [A] ≡ 0
CT4 [↑] ≡ 0
CT5 [exit] ≡ 0
CT6 [S + S′] ≡ 0
CT7 [S ; S′] ≡ [S]

CT8 [S ‖ S′] ≡ [S] ‖ [S′]
CT9 [!A] ≡ !A + τ ; 0

CT10 [({S : F : C : T}, αA, 0)n] ≡ ([S] ; T, 0, αA)t

CT11 [(S, αA, βF)c] ≡ [S]
CT12 [(S, αA, βF)f] ≡ (S, αA, βF)f

CT13 [(S, αA, βF)t] ≡ (S, αA, βF)t

4 BPEL Is Sagas! Almost

BPEL’s FCT-handling mechanisms are –as stated in [1]– inspired by Sagas.
However, there are several seemingly different concepts. Even if we prescind
from constructs that are not at all represented in Sagas, like links inside a flow
construct, some apparent differences remain. Before we will compare the two
languages, we will shortly summarize Sagas syntax and semantics.

Sagas. Sagas is equipped with a big-step semantics [3] that distinguishes three
different execution results for sagas (i.e. transactions): successful termination,
faulted execution with successful compensation, faulted execution with unsuc-
cessful compensation. During an execution a trace of observable basic activities
is recorded up to partial order (partial order trace). A partial order trace induces

Fault, Compensation and Termination in WS-BPEL 2.0 117

a set of traces. Following [3], we assume that every basic activity that occurs in
a Sagas term has a unique name. So the same action can never occur twice in a
trace.

Definition 1 ((Partial-Order) Trace). We call elements of Act
∗

traces. A
partial-order trace (pot) is a partial order (V, E) where V ⊆ Act. The set of all
pots is denoted by POT.

Note that every trace can be considered as a pot that is linear.
Notation: We write XA to denote the component X of the tuple A, when A =
(. . . , X, . . .). For a partial order A we hence always assume A = (VA, EA). We
write singleton sets {x} sometimes simply as x if no ambiguities arise. We define
the following two operations on sets:
A; B = {(a, b) | a ∈ A, b ∈ B}, C|B = {(a, b) ∈ C | a, b ∈ B}
It is sometimes useful to consider terms that are built from the operators 0, A, ‖
and ; as partial orders as follows:

– 0 = (∅, ∅)
– A = ({A} , ∅)
– P ; Q = (VP ∪ VQ, EP ∪ EQ ∪ VP ; VQ)
– P ‖ Q = (VP ∪ VQ, EP ∪ EQ)

Definition 2 (Syntax of Sagas). Sagas S are defined by the following grammar:

X ::= 0 | A | A÷B (STEP)
P ::= X | P ; P | P ‖ P (PROCESS)
S ::= {| P |} (SAGA)

We denote the set of all sagas terms by Sagas.

An atomic activity B can be attached to another atomic activity A as its com-
pensation. Please note that different to BPELfct compensations cannot be com-
posite terms and cannot be attached to composite terms. A saga formalizes the
idea of long-running transactions and corresponds to scopes in BPELfct. In
Sagas there is no language primitive to signal a fault. The success or fault of an
atomic activity is determined at run-time by an environment Γ mapping every
activity either to success (�) or fault (�). The semantics of Sagas is given in
terms of subsets of POT. For the complete semantic rules we refer the reader
to [3]. In the original semantics faults cannot be observed and are not repre-
sented in the partial order traces. To allow for a decent comparison it is however
necessary to make faults observable. This needs only a minor change to the orig-
inal semantics where rule S-CMP is replaced by rule S-CMP’.

S-CMP

Γ * 〈β, 0〉 α−−→ 〈�, 0〉
A 	→ �, Γ * 〈A÷B, β〉 α−−→ 〈�, 0〉

S-CMP’

Γ * 〈β, 0〉 α−−→ 〈�, 0〉
A 	→ �, Γ * 〈A÷B, β〉 τA;α−−−→ 〈�, 0〉

118 C. Eisentraut and D. Spieler

4.1 Comparison

– In Sagas the main transaction and the sub-transactions are represented by
one construct: a saga. In BPEL, the main transaction and subtransactions
are represented by two different constructs: the process and scopes. However,
for the language subsets that we compare, a process behaves identical to
scopes (except that it cannot be terminated, since it always is top-level).

– BPEL’s scope construct represents subtransactions and is at the same time
used to associate compensations to forward activities. In Sagas, subtransac-
tions are realized via nested sagas. In contrast to scopes, they do not have any
explicit handlers. Furthermore, every forward activity is associated with its
compensations immediately during its execution. In BPEL a compensation
for an activity becomes available only after the surrounding scope has suc-
cessfully finished. Despite the principles of transactions in Sagas seem rather
different from those used by BPEL, we will see that it is rather straightfor-
ward to express them in BPEL.

– BPEL’s and Sagas’s compensation policy for concurrent processes forces
all branches to compensating themselves in case of a fault in one of the
branches. In Sagas, the compensation phases of all branches run indepen-
dently of each other. This behavior is called distributed interruption in [2].
As we will see, BPEL follows the coordinated interruption policy (cf. [2]): as
soon as a fault has occurred, all parallel branches have to be compensated im-
mediately. BPEL has an additional termination phase, that is intermediary
of forward flow phase and compensation phase. Hence every faulted BPEL
(sub)transaction, can be divided into three phases that take place strictly in
sequence: forward flow phase(F), termination phase(T) and compensation
phase(C). Representing the fault with f , we can intuitively represent the ex-
ecution of the faulted scope/process by F ; f ; T ; C. As we will see this policy
is an inherent part of BPEL FCT-handling mechanisms.

– Furthermore, the treatment of faults during compensation in both languages
is different in principle and we cannot mimic Sagas behavior in BPEL. We
will treat this in Section 4.2 in greater detail.

In order to formally compare the two languages we map every saga to a BPEL
process and analyze their behaviors in terms of partial orders over actions. Since
we want our mapping to be recursively defined over the term structure, we cannot
map Sagas terms directly to BPELfct processes, since processes are always top-
level constructs. We therefore use a translation function that maps arbitrary
Sagas term S to a BPELfct term S′ that is no process itself and in a final
step S′ is raised to a top-level process term by enclosing it with the process as
follows: ({|S′ : ↑|}, 0, 0)n

′
. Since BPEL to its full extent is very powerful, it is

likely that in principle there exists some unobvious encoding of Sagas behavior
even in BPELfct. However, by the choice of our translation mapping, we had in
mind to investigated how the predefined structures for compensation handling in
BPEL work compared to those of Sagas, so our mapping defines a translation as
straightforward as possible. Please remember that we assume that compensations

Fault, Compensation and Termination in WS-BPEL 2.0 119

can never fault for reasons mentioned above. Furthermore, we do not allow two
faults to occur at the same scope/process level. This restriction does not influence
the principle results, but saves us some additional case distinction.

Definition 3 (Translation Function)

��Γ : Sagas→ BPEL0
fct

�A�Γ = A if ΓA = �, �A�Γ = ! if ΓA = �,

�0� = 0, �P ‖ Q� = �P � ‖ �Q� , �P ; Q� = �P � ; �Q� ,

�A÷B�Γ = ({�A�Γ : !A : B : 0}, 0, 0)n, �{| P |}�Γ = ({�P �Γ : ↑ : ↑ : ↑}, 0, 0)n

We will sometimes write �.� instead of �.�Γ if Γ is clear from the context.

The operators for sequential and parallel execution behave identical in BPELfct
and Sagas. Remember that parallel execution is a special case of the BPEL flow
construct, which is however more powerful than the parallel operator and cannot
be modelled in Sagas. If an action A fails in the environment Γ , we replace it by
a nameless fault in BPELfct. An action/compensation pair A÷B corresponds
to a scope that executes A and has B as it compensation handler. When A fails,
then the fault is simply rethrown by the fault handler !A, which triggers already
installed compensations at the level of the enclosing scope/process. The fact that
faulting activities are themselves translated to a nameless fault !, while they are
rethrown as a named fault in the respective fault handlers may be counterintu-
itive at first sight. Indeed, this is only done to allow for a nice comparison of the
observable behavior and has no fundamental consequences or reasons. Nested
sagas are translated into scope in a straightforward manner, where the default
handlers are used where possible.

In order to compare the two calculi it is very helpful to note that the com-
pensation handlers of both calculi can be translated bijectively into each other.
Since ��cl is bijective on the contexts of Sagas and the restricted variation of
BPELfct, we will use α and �α�cl interchangeably when the meaning is clear
from the context.

Definition 4 (Context Translation Function). We translate Sagas contexts
to BPELfct contexts by the following function:

�0�cl = 0, �P ; Q�cl = �P �cl ; �Q�cl , �P ‖ Q�cl = �P �cl ‖ �Q�cl ,

�B�cl = (B, 0, 0)c

In Sagas, the basic building blocks of a context are primitive compensation activ-
ities. In BPELfct, however, the basic building blocks are closures (A, αC , βF)c

signalling that the enclosed compensation activity is indeed a compensation (c).
In Sagas and therefore in restricted BPEL the default compensation (↑) cannot
be triggered explicitly, but only implicitly when a fault occurs. Since we assume
no faults to occur during compensation, it is safe to arbitrarily let both contexts
of the closure be 0.

120 C. Eisentraut and D. Spieler

F

I

T

C

! ;

;

Sagas BPEL

Fig. 1. Corresponding partial orders in Sagas and BPEL

BPELfct Big-Step Semantics Let us in the following fix Γ and then let
BPEL′fct = {�S�Γ | S ∈ Sagas}. We present a big-step semantics for the subset
BPEL′fct of our calculus that corresponds to Sagas following the translation
function ��Γ . Our semantics will be for each term a set of structured partial-
order traces as described below.

Definition 5 (Structured POT). A structured pot (spot) is a tuple
(V, E, P, D, t) where (V, E) is a pot and P = (F, I, T, C, f) ∈ T and D ⊆ T ,
where T = (2Act)4 × {τA | A ∈ Act} and t ∈ {�, �, �}. We call the set of all
spots sPOT.

To obtain a nifty comparison of the two languages, the semantics of each term will
be represented by a of spots, which can be translated into partial-order traces.
We can then compare the two languages by comparing partial-orders traces with
identical underlying sets of activities. The partial order relation consists of two
parts: One that exactly corresponds to the partial order for the corresponding
term in Sagas (E) and one that represents the additional edges of the partial
orders, that are induced by the more restricted termination/compensation policy
of the top-level process (P) and of each (sub)scope (D). Furthermore V contains
all observable activities of the represented execution, success or failure or forced
termination of the execution of the (sub)transaction is expressed by t (where �
= successful termination, � = execution with compensation due to an internal
fault, � = execution with compensation due to external termination). Please
remember that we will not consider faulted compensations. In case a fault oc-
curred, the fault name is represented by f . P with its parts F, T and C represent
the partition of the activities of the top-level transaction in forward, termina-
tion and compensation flow. The set I represents activities that can either occur
before or after the fault f , i.e. during the termination phase, but before the com-
pensation phase. Such activities arise when a subscope compensates itself due to
a internal fault. Then this scope is not responsive to termination. D represents
the activity partitions for non-successfully terminated subscopes. In Figure 1 the
po traces of the same term are presented schematically in both calculi.

How the single parts of a spot exactly contribute to the pot that it represents
is represented formally by the following transformation.

Fault, Compensation and Termination in WS-BPEL 2.0 121

Definition 6. δ((V, E, (F, I, T, C, f), D, t)) = (V, E′) where

E′ = E ∪H ∪
⋃

(F,I,T,C,f)∈D
F ; f ; T ; C ∪ I; C

with H =

{
∅ if t = �

F ; f ; T ; C ∪ I; C otherwise

The spots for every term in BPEL′fct are constructed relative to an initial
context compensation context β = (Vβ , Eβ), which is itself a partial order trace.
This intentionally strongly resembles the way the Sagas semantics is defined. We
will now see how the big-steps semantics S(S, β) of a term S ∈ BPEL′fct and a
context β is constructed recursively. Please note that for every S ∈ BPELfct′,
the set S(S, β) contains the spot where C = Vβ , E = Eβ and all other sets are
empty and t = � and f = 0. We will not repeat this spot later. Intuitively, this
spot describes the termination of S before starting its execution. It is the only
element of S(0, β).

The following spots are in S(S, β):

Case S = �A÷B� = ({�A�Γ : !A : B : 0}, 0, 0)n:
– If ΓA = �: ({A} , (Eβ ∪A; B; Vβ), ({A} , ∅, ∅, ∅, {B} ∪ Vβ , 0), ∅, �)

– If ΓA = �: ({τA} ∪ Vβ , (Eβ ∪ τA; Vβ), (∅, ∅, ∅, Vβ, τA), ∅, �)

– If ΓA = �: ({A, B} ∪ Vβ , Eβ ∪A; B; Vβ , ({A} , ∅, ∅, {B} ∪ Vβ , 0), ∅, �)

Case S = �P ; Q�Γ = �P �Γ ; �Q�Γ :
For all p ∈ S(�P �Γ , β), q ∈ S(�Q�Γ , (Cp, EP |CP)):
– If tP = � ∨ tP = �: p

– If tP = �: (Vp ∪Vq, Ep ∪Eq ∪Vp; Vq, (Fp ∪Fq, Iq , Tq, Cq, fq), Dp ∪Dq, tq)

Case S = �P ‖ Q�Γ = �P �Γ ‖ �Q�Γ : For all p ∈ S(�P �Γ , 0), q ∈ S(�Q�Γ , 0):
– If tP = tq = �: (Vp ∪ Vq, Ep ∪ Eq ∪ Eβ ∪ Vp; Vβ ∪ Vq; Vβ , (Fp ∪ Fq, Ip ∪

Iq, Tp ∪ Tq, Cp ∪Cq ∪ Vβ , fp �′ fq), Dp ∪Dq, tp � tq)

– Otherwise: (Vp ∪ Vq ∪ Vβ , Ep ∪ Eq ∪ Eβ ∪ Vp; Vβ ∪ Vq; Vβ , (Fp ∪ Fq, Ip ∪
Iq, Tp ∪ Tq, Cp ∪Cq ∪ Vβ , fp �′ fq), Dp ∪Dq, tp � tq)

Case S = �{| P |}�Γ = ({�P �Γ : ↑ : ↑ : ↑}, 0, 0)n: For all p ∈ S(�P �Γ , 0):
– If tp = �: (Vp, Ep ∪Eβ ∪ Vp; Vβ , (Fp, Ip, Tp, Cp ∪ Vβ , fp), Dp, �)

and (Vp ∪ Cp ∪ Eβ , Ep ∪ Eβ ∪ Vp; Vβ , (Fp, Ip, Tp, Cp ∪ Vβ , fp), Dp, �)

– If tp = �: (Vp, Ep, (Fp∪fp, Ip∪Tp∪Cp, ∅, ∅, 0), Dp∪{Fp, Ip, Tp, Cp, fp} , �)
and (Vp ∪ Vβ , Ep ∪ Eβ ∪ Vp; Vβ , (Fp ∪ fp, Ip ∪ Tp ∪ Cp, ∅, Vβ , 0), Dp ∪
{Fp, Ip, Tp, Cp, fp} , �)

– If tp = �: (Vp ∪Eβ , Ep ∪ Eβ ∪ Vp; Vβ , (Fp, Ip, Tp, Cp ∪ Vβ , fp), Dp, �)

122 C. Eisentraut and D. Spieler

The operations � and �′ are defined as follows:

� � � �
� � – –� – – �� – � �

�′ τA 0
τB – τB
0 τA 0

The following theorem relates the big-step semantics to the originally defined
small-step semantics. Before, we need some additional definitions.

Definition 7 (Execution of a Trace). When a0a1 . . . an−1 = α ∈ Act
∗

is a
trace, we let (α, β) * P

α−−→ (α′, β′) * P ′ mean that there are sequences of Pi,
αi and βi with 0 ≤ i ≤ n, such that (αi, βi) * Pi

ai−−→ (αi+1, βi+1) * Pi+1 for
0 ≤ i < n and P0 = P , α0 = α, β0 = β and Pn = P ′, αn = α′, βn = β′.

Definition 8 (Induced Traces). If (VA, EA) ∈ POT then Ind(α) ⊆ Act
∗

denotes the set of induced traces, i.e. the set of linear orders (VA, E) with
(a, b) ∈ E =⇒ (b, a) /∈ EA.

In the following we write α to mean the result of removing all occurrences of
(unnamed) τ in the trace α ∈ Act

∗
.

Theorem 1 (Semantic Equivalence). Let S ∈ BPEL′fct, then

1. for every maximal execution trace α of a process with
(0, 0) * ({|S : ↑|}, 0, 0)n

′ α−−→ (0, 0) * � there is a spot p ∈ S(S, 0) such
that α ∈ Ind(δ(p)) and

2. for every p ∈ S(S, 0) and every trace α′ ∈ Ind(δ(p)) there is a trace α such
that α = α′ and (0, 0) * ({|S : ↑|}, 0, 0)n

′ α−−→ (0, 0) * �

The proof of this theorem is considerably large. In the following we only sketch
some crucial observations for the proof. In the following, all terms are from
BPEL′fct if not stated differently. We will now explain how all possible behaviors
of a process (or a scope) are completely determined by the possible behaviors
of its inner activity. The following statements apply to processes, but can be
analogously transfered to scopes.

– By rule PROCESS we see that as long as α does not contain !A for
some A and (β, 0) * S

α−−→ (β′, 0) * S′ then also (0, 0) * ({|S :
↑|}, β, 0)n

′ α−−→ (0, 0) * ({|S′ : ↑|}, β′, 0)n
′
. Furthermore PROCESS and

PROCESS END are the only applicable rules. Exactly when S′ ≡ 0 then
together with PROCESS END as final step we can derive only the execution
(0, 0) * ({|S : ↑|}, β, 0)n

′ α−−→ (0, 0) * �.
– As soon as S throws a fault !A, i.e. (β′, 0) * S′

!A−−→ (β′, 0) * S′1 after
a faultless trace α, the process is bound to behave in the following way:

(0, 0) * ({| �S� : ↑|}, 0, 0)n
α;!A;α′;τ ;τ ;α′′
−−−−−−−−−→ (0, 0) * � , where α′ is an execution

of [S′1] and α′′ is an execution of the compensation β′.

Fault, Compensation and Termination in WS-BPEL 2.0 123

One can see this as follows: As above we infer that (0, 0) * ({| �S� :
↑|}, β, 0)n α−−→ (0, 0) * ({|S′ : ↑|}, β′, 0)n. By assumption furthermore
(β′, 0) * S′

!A−−→ (β′, 0) * S′1. But then by rule PROCESS FAULT we
get that (0, 0) * ({|S′ : ↑|}, β′, 0)n τA−−→ (0, 0) * ([S′1]; ↑, 0, β′)f . By our
assumption about α′ and repeated application of PROCESS F we get

(0, 0) * ([P ′1]; ↑, 0, β′)f α′
−−→ (0, 0) * (0; ↑, γ, β′)f for some γ. By application

of rule PROCESS F and rule SEQT and then by application of PROCESS F
and rule COMP we obtain that (0, 0) * (0; ↑, 0, β′)f ττ−−→ (0, 0) * (β′, γ, 0)f .
By assumption and repeated use of PROCESS F we can infer that (0, 0) *
(β′, γ, 0)f α′′

−−→ (0, 0) * (0, γ, 0)f . Finally using PROCESS END we obtain
the desired result. In order to establish this we need additional lemmas stat-
ing that accumulated compensations are never changed during termination
and compensation phases.

With this in mind we can represent processes/scope behavior by only looking at
the forward activities of its inner activity and the behavior of the inner activity
in case of termination at arbitrary intermediate states plus the behavior of its so
far accumulated compensations. The following lemma is hence the missing link
between the two semantics. The lemma uses this definition:

Definition 9 (Cut Set of a Partial Order). A cut set X of a partial order
(V, E) is a subset of V such that whenever a ∈ X and (b, a) ∈ E then also b ∈ X.

Lemma 1. Let (β, 0) * S
α−−→ (β′, 0) * S′. Let α contain no !A. We now find

exactly one p ∈ S(S, β) for each of the following cases

1. if S′ ≡ 0 then fp = 0 and tp = �

2. if (β, 0) * S′
τA−−→ (β, 0) * S′′ then fp = τA and tp = � and for ρ′ such that

(β′, 0) * [S′′]
ρ′−−→ (β′, 0) * 0 we have ρ′ ∈ Ind(δ(p)|(Ip−I′p)∪Tp

) where I ′p is a
cut set of (Ip, Ep|Ip)

3. fp = 0, tp = � and for ρ′ such that (β′, 0) * [S′]
ρ′−−→ (β′, 0) * 0 we have

ρ′ ∈ Ind(δ(p)|(Ip−I′p)∪Tp
) where I ′p is a cut set of (Ip, Ep|Ip).

and in addition in each case α ∈ Ind(δ(p)|Fp∪I′p) and for ρ such that

(0, 0) * β′
ρ−−→ (0, 0) * 0 we have ρ ∈ Ind(δ(p)|Cp)

Proof (Sketch). This lemma can be proven by induction over the term structure
of the inner activity S of the process. The proof idea is to consider all states S′

reachable from S by a faultless trace toghether with the compensation context
accumulated so far and a distinction whether S′ can fault in the next step. All
statements about reachable states, traces, contexts and possible faults can always
be determined recursively by corresponding statements for the direct subterms
of S. Taking parallel composition as an example, i.e. S = P ‖ Q for some P
and Q, by induction we can find for each subterm P and Q, exactly one spot in
S(P, 0) and S(Q, 0) that fits according to the lemma to all statements made. By

124 C. Eisentraut and D. Spieler

the way S(P, β) is constructed out of the elements of S(P, 0) and S(Q, 0) we can
conclude that there is again exactly one spot in S(P, 0) that satisfies the lemma.
Note that in the case of parallel composition we need to use the assumption that
at most one fault can occur at the same level.

After we have related the two different semantics for BPEL′fct, we are now ready
to compare Sagas and BPELfct in a formal way:

Theorem 2 (Correspondence Theorem)
For all sagas S and environments Γ : Whenever Γ * 〈{| S |}, β〉 α−−→ 〈t′, β′〉
there is (V, E, P, D, t, f) ∈ S(�S�Γ , �β�cl) (and vice versa) with t = t′ and α =
(V, E|V).

Intuitively, this means that the two languages behave identical (on the subsets
considered) up to the more constrained behavior inside faulted and aborted
transactions (scopes and the process itself) in BPEL that are imposed due
to the more restrictive compensation policy. It is worth noting that if no
(sub)transaction faults, the behaviors are completely identical.

Proof The proof is by structural induction over S along the recursive definition
of S(., .).

4.2 Relating Other Features to BPEL

Other more advanced features conceptually exist in different form in both lan-
guages. However, we found them hardly comparable in a reasonable manner. The
most important difference is the way faults during compensation are handled.
Consider the example of a transaction in BPEL where the inner activity is a paral-
lel construct P ‖ Q. Assume that P faults. Then the transaction –which is either
a scope or a process– will execute the fault handler and hence switch to faulted
mode (f). The default fault handler will then trigger the compensation of P and
Q. If now again a fault is caused by the compensation of, say, P , this will imme-
diately cancel the whole compensation by rule SCOPE FAULT F, including the
compensations for Q! In Sagas the same situation would be handled differently.
By rule F-PAR we see that even if the compensation of P fails, Q’s compensations
will be completely executed and not aborted prematurely as in BPEL.

Another interesting aspect is that the principles of all-or-nothing semantics
and programmable compensations are supported within Sagas via a generaliza-
tion of the syntax which enables composite compensations and by adding the
inference rule REPEATED-COMP. In BPEL the occurrence of a successful com-
pensation of a failed compensation is communicated to a possible enclosing scope
or to the process (cf. SCOPE FAULT C), whereas in Sagas such an occurrence
remains hidden to an enclosing saga. Although the two languages do not differ
fundamentally in this point, both realize different perceptions of all-or-nothing
semantics.

In our comparison we used the fault handling mechanism of BPEL only to
trigger compensations. Since fault handlers are fully-programmable, this mech-
anism can be used like the standard exception handling mechanism found in

Fault, Compensation and Termination in WS-BPEL 2.0 125

most modern programming languages. BPEL does not come with an explicit
exception handling construct aside of scopes. Exception handling can be added
to Sagas in form of a sagas/exception-handler pair try S with P [3], such that
when an exception occurs in S, the execution continues with P . The compen-
sations that are accumulated during the execution of both S and P are stored.
In BPEL however, a fault handler is not allowed to install compensations at the
same level as the activity it has been activated by, hence the two approaches to
general exception handling are incompatible.

Other interesting differences and similarities may be found by a comparison
to other important formal approaches to model FCT-handling like StAC [4] and
cCSP [5]. StAC provides powerful compensation mechanisms similar to those of
Sagas, so we also expect BPELfct and StAC to share a non-trivial semantically
equivalent subsets. However, we did not undertake formal investigations in this
question and leave it to further research. In [2] it is shown that sequential Sagas
without nesting and parallelism and cCSP coincide. The authors also show that
cCSP can be changed such that both calculi behave equivalent in the presence
of a parallel construct. Different to Sagas and BPELfct, the collected compen-
sations of a successfully terminated subtransaction are dismissed and not stored
for a possible later compensation of an enclosing transaction. This aspect and the
result from [2] led us to only consider Sagas for a thorough formal comparison.

5 Conclusion

We have provided a fine-grained small-step semantics for BPEL. To the best
of our knowledge this is the first process algebraic BPEL semantics that covers
automated compensation handling including all-or-nothing semantics and com-
pensation execution in default compensation order in its entirety. This makes it
a natural choice for a comparison with recent process algebraic approaches to
FCT-handling like Sagas. In this paper, we showed that Sagas coincides with a
useful subset of BPEL apart from different compensation policies in the presence
of parallelism. Sagas uses the concept of distributed interruption, which allows
parallel branches to compensate their respective activities independently of each
other when a fault has occurred in one branch. BPEL uses the coordinated in-
terruption policy, where a fault forces all branches to start their compensations
as soon as possible and at the same time. In BPEL an additional termination
phase precedes the compensation phase where subtransactions are terminated in
a safe manner. This phase is not distinguished as such in Sagas. Most notably,
faulted compensations lead to evidently different behavior in the two compared
calculi.

Our paper shows that FCT-handling in BPEL is rooted in firm formal
grounds, and can be used in safe ways. However, the comparable common sub-
sets of BPEL and Sagas seems to be rather small, although similar constructs
are provided in both worlds. So in order to make FCT-handling still safer to use,
more foundational analysis and comparative work has to be carried out.

126 C. Eisentraut and D. Spieler

References

1. Web services business process execution language version 2.0 - OASIS standard
(April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

2. Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H., Montanari, U.: Com-
paring two approaches to compensable flow composition. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer, Heidelberg
(2005)

3. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. SIGPLAN Not. 40(1), 209–220 (2005)

4. Butler, M., Ferreira, C.: An operational semantics for StAC, a language for mod-
elling long-running business transactions. In: De Nicola, R., Ferrari, G.-L., Mered-
ith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949. Springer, Heidelberg
(2004)

5. Butler, M., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Se-
quential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

6. Koshkina, M., van Breugel, F.: Models and verification of BPEL. Technical Report
M3J 1P3, York University, Toronto, Canada (2006)

7. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16(3), 249–259 (1987)
8. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc., Upper

Saddle River (1985)
9. Khalaf, R.: Supporting Business Process Fragmentation While Maintaining Opera-

tional Semantics - A BPEL Perspective. Ph.D thesis, Universität Stuttgart (2008)
10. Koshkina, M.: Verification of business processes for web services. Master’s thesis,

York University, Toronto (2003)
11. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)

FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)
12. Laneve, C., Zavattaro, G.: Web-Pi at work. In: De Nicola, R., Sangiorgi, D. (eds.)

TGC 2005. LNCS, vol. 3705, pp. 182–194. Springer, Heidelberg (2005)
13. Lohmann, N.: A feature-complete petri net semantics for WS-BPEL 2.0. In: Du-

mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

14. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of
Logic and Algebraic Programming 70(1), 96–118 (2007)

15. Mazzara, M., Lucchi, R.: A framework for generic error handling in business pro-
cesses. Electr. Notes Theor. Comput. Sci. 105, 133–145 (2004)

16. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

17. Pu, G., Zhao, X., Wang, S., Qiu, Z.: Towards the semantics and verification of
BPEL4WS. Electr. Notes Theor. Comput. Sci. 151(2), 33–52 (2006)

18. Pu, G., Zhu, H., Qiu, Z., Wang, S., Zhao, X., He, J.: Theoretical Foundations of
Scope-Based Compensable Flow Language for Web Service. Springer, Heidelberg
(2006)

19. Qiu, Z., Wang, S., Pu, G., Zhao, X.: Semantics of BPEL4WS-Like Fault and Com-
pensation Handling. Springer, Heidelberg (2005)

Refactoring Long Running Transactions�

Gian Luigi Ferrari1, Roberto Guanciale2, Daniele Strollo1,2, and Emilio Tuosto3

1 Università degli Studi di Pisa, Dipartimento di Informatica, Italy
{giangi,strollo}@di.unipi.it

2 Institute for Advanced Studies IMT Lucca, Italy
{roberto.guanciale,daniele.strollo}@imtlucca.it

3 University of Leicester, Computer Science Department, UK
et52@mcs.le.ac.uk

Abstract. Sagas calculi have been proposed to specify distributed Long Running
Transactions (LRT) and, in previous work, a subset of naive sagas has been en-
coded in the Signal Calculus (SC) to enable their use in service-oriented systems.
Here, we promote a formal approach to the refactoring of LRT represented in
SC so that distributed LRT designed in the Business Process Modelling Notation
(BPMN) can be faithfully represented. Firstly, we complete the initial encoding
of naive sagas into SC. Secondly, on top of SC, we define a few refactoring trans-
formations for distributed LRT. Finally, we prove that the given refactoring rules
are sound by showing that they preserve (weak) bisimilarity.

1 Introduction

Service Oriented Computing (SOC) envisages systems as combination of basic compu-
tational activities, called services, whose interfaces can be dynamically published and
bound. Typically, SOC systems are executed on overlay networks consisting of differ-
ent inter-networked communication infrastructures (e.g., wired and wireless networks,
telecommunication networks or their combination). Hence, high level mechanisms for
composing and coordinating distributed activities of services are worthwhile.

The main methodologies for composing services are orchestration and choreogra-
phy. Services are orchestrated when their execution workflow is described through an
“external” process, called orchestrator. A choreography instead is a design that speci-
fies how services should be connected and interact so that each service accomplishes its
task within the given choreography. Roughly, choreographies yield an abstract global
view of SOC systems that must eventually be “projected” on the distributed compo-
nents.

Both orchestration and choreography can benefit from model driven development
(MDD, for short) and refactoring [2] whereby (models of) systems are repeatedly trans-
formed so that specific concerns are confined at different stages. In fact, MDD typically
starts from a (semi)formal system specification that focuses on the core business process
and neglects other aspects (e.g., communication mechanisms or distribution) tackled by
subsequent transformations.

� Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA and
by the Italian FIRB Project TOCAI.IT.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 127–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 G.L. Ferrari et al.

An important concern of SOC is to enforce transactional behaviors. Classically trans-
actions are thought of as a sequence of actions to be executed atomically. Namely, if
some failure happens at any stage of the sequence, the computation must be reverted the
previus stable state. Such kind of transactions are referred to as ACID (after atomicity,
consistency, isolation and durability) [10] and are not suitable for SOC (see e.g. [14]).
For instance, fully restoring the state in SOC is practically unfeasible (no atomicity).
Being inherently loosely coupled, SOC systems require transactional behaviours pos-
sibly spanning over long temporal intervals. Therefore, ACID properties of classical
transactions cannot be enforced.

The aim of this paper is to study the formal properties of some refactoring rules
applied to long running transactions (LRTs). We adopt sagas calculi [9,3] as a formal
framework into which semi-formal Business Process Modelling Notation (BPMN) [11]
specifications can be precisely modelled. Sagas calculi feature compensations to deal
with anomalous computations of LRT. Indeed, sagas specify transactional behaviours
where the execution proceeds normally until one of its activities fails. Specifically, upon
successful execution, an activity installs a compensation and invokes the next activities
of the workflow. The compensation is executed on failure of subsequent activities: a
failing activity signals to its invoker the anomalous execution triggering the invoker’s
compensation.

We use the signal calculus (SC) [6,7] to formally model LRT designed in BPMN. To
this purpose, we exploit the encoding given in [4] that enables designers to specify LRTs
in the familiar and semi-formal BPMN while leaving their precise specification to the
mapping in SC. Moreover, SC processes can be automatically compiled into executable
Java programs that can be distributively executed thanks to its implementation [6,1].

The refactoring rules presented here address some crucial issues of the deployment
phase, that is the possible alterations that one would like (or has) to apply at the SC level
where they can be more suitably tackled. Indeed, as a matter of fact, BPMN designs
(i) neglect distribution aspects of the transactional activities, (ii) does not specify if
activities are atomic or consisting of hidden sub-activities, (iii) delegate activities or
compensations (e.g., according to patterns like farm).

Arguably, refactoring does not have to alter the intention of the designer, namely,
refactoring rules must preserve the intended semantics. Our refactoring rules are proved
sound by showing that they preserve (weak) bisimulation. The proofs are only sketched
(the detailed proofs are in [5]) and rely on a bisimulation preserving mapping from SC
to its choreographic view expressed in the NCP calculus, after Network Coordination
Policy [4]. More precisely, we show that the NCP image N̂ of an SC system N is weak
bisimilar to a refactoring of N̂ obtained by applying any of our rules. Albeit the proof
could have been given directly at the SC level, we prefer to deviate through NCP for
simplicity and, more importantly, because NCP provides a choreographic view of the
SC system that is closer to the original BPMN design. Hence, NCP images of SC pro-
cesses can help to change the BPMN design if problems spotted at the SC level require
to modify the original BPMN design.

Structure of the paper. § 2 summarises background material. § 3 introduces our refac-
toring rules. § 4 drafts some final considerations.

Refactoring Long Running Transactions 129

2 Background

This section borrows a few concepts from previous work and aims to summarise the
main ingredients of our framework by briefly recalling SC [7], the mapping from BPMN
designs to SC [8], and NCP [4] (the similarities between NCP and the asynchronous π-
calculus are omitted for space constraints and can be found in [4]).

Let T and C be two countable disjoint sets of topic and component names respec-
tively. Topics (ranged over by τ,τ′,r,s, . . .) represent event types and session identifiers.
Component names (ranged over by a,b,c, . . .) identify services; we let a,b, . . . range
over finite subsets of C .

2.1 A Walk through SC

In SC, systems are modelled as components reacting to events. A component a [B]RF rep-
resents a service uniquely identified by a ∈ C , with internal behavior B, and whose in-
terfaces are the reactions R and the flows F (both explained below). Event notifications
(or signals) abstract messages typed by topics and issued in sessions. For simplicity,
data carried by messages are neglected and messages are envisaged as pairs τ c©s, where
τ ∈ T is the message topic and s ∈ T is the session identifier. Subscribers are notified
and receive notifications for events raised by publishers.

A component subscribed to events of topic τ ∈ T installs either lambda or check
reactions for τ; lambda reactions, written τ λ (s)B (with s bound in B), react to signals
independently from their session while check reactions, written τ c©s � B, respond to
signals of specific sessions. Once a reaction is triggered, its behavior B is executed in
parallel with the component’s behavior. Reactions can be composed in parallel (written
R1| . . . |Rh) or be the empty reaction 0, which does not respond to any signal.

The flow F ⊆ T ×C of a component a [B]RF yields the set of components subscribed
to topics from a; intuitively, (τ,b) ∈ F states that component b is subscribed for signals
of topic τ emitted by a. The flows of all components determine the network topology.

The behavior of a [B]RF is a process B derived by the following grammar:

B ::= out〈τ c©s〉.B | rupd(R) .B | fupd(F) .B | (ντ)B | B |B′ | X 〈τ1, . . . ,τn〉 | 0

Prefix out〈τ c©s〉.B emits a signal and then continues as B while interfaces can be updated
by adding new reactions or elements in the set of flows by respectively using rupd(R)
and fupd(F). As usual, behaviours can declare local topics (τ is bound in (ντ)B), be
composed in parallel, the recursive invocation1, or be the empty process.

Example 1. The execution of a behaviour B after the collection of n signals τ c©s can be
defined as

SyncB
0(τ,s) def= B, SyncB

i+1(τ,s)
def= rupd

(
τ c©s � SyncB

i (τ c©s)(B)
)

where i is a natural number. ♦
1 We assume given a set of identifiers for behaviours ranged over by X each with a unique

definition X(τ1, . . . ,τn)
def= B where the free topics in B are all in {τ1, . . . ,τn}.

130 G.L. Ferrari et al.

Networks describe the component distribution and carry signals exchanged among
components. Their syntax is defined as follows:

N ::= /0 | a [B]RF | N ‖ N′ | 〈τ c©s〉@a | (νn)N, n ranges over T ∪C

where /0 is the empty network, a [B]RF is a component, N ‖ N′ is the parallel composition
of networks, 〈τ c©s〉@a is called envelope and is a signal spawned for a, and (νn)N is
a network with a restricted name n. Networks can restrict both component and topic
names, thus allowing to hide behavior of part of a network. Also, the usual structural
congruence ≡ relation is assumed on networks, behaviours and reactions and we say
that N is well-formed if, for any N1 ‖ N2 ≡ N, fn(N1)∩bn(N2) = /0.

Example 2. As an example, we define an SC component that will be used in § 2.3 and
§ 3.2 and uses two distinguished topic names f and r; the component is defined as

Disp f ,r
i,a,b(d) def= d [0] f λ (s)(Sync

out〈r c©s〉
i (r,s) | out〈 f c©s〉)

{ f�a,r�b}

representing a service d, a lambda reaction and, among others, flows for topic f towards

a set of components a⊆C (the behaviour Syncout〈r
c©s〉

i (r,s) is defined in the Example 1).

The component Disp f ,r
i,a,b(d) responds to signals for topic f and, once triggered, s

will be bound to session of the received message and the body will be executed so that
i signals r c©s are collected before sending back a signa r c©s. In parallel, the forward flow
for sessioin s (f c©s) is spawned to components in a. Notice that the check reaction will
collect exactly i messages of r c©s before propagating the r signal. ♦

The reduction semantics of SC is given in [7] as transitive closure of ≡→≡, where
→ is the smallest relation closed under the following rules:

a [out〈τ c©s〉.B |B′]RF → a [B | B′]RF ‖ ∏
b∈F(τ)

〈τ c©s〉@b (emit)

〈τ c©s〉@a ‖ a [B]τ c©s�B′|R
F → a [B|B′]RF (check)

〈τ c©s〉@a ‖ a [B]τ λ (s′)B′|R
F → a [B|{s/s′}B′]RF (lam)

a [rupd (R′) .B]RF → a [B]R|R
′

F (rupd) a [fupd (F ′) .B]RF → a [B]RF,F ′ (fupd)

N → N′
(npar)

N ‖M → N′ ‖M

N → N1
(new)

(νn)N → (νn)N1

Rule emit produces a new envelope for each component subscribed for the topic τ
(∏ stands for n-ary parallel composition and, for a flow F , F(τ) = {b ∈ C : (τ,b) ∈
F}). Rule check (resp. lam) models the activation of check (resp. lambda) reactions,
matching the session identifier (resp. receiving a session identifier as argument). Rules
rupd and fupd update reactions and flows, respectively. Rules npar and new are the
usual rules of process calculi.

Refactoring Long Running Transactions 131

2.2 From BPMN to SC (Informally)

This section shows how to encode in SC the subset of transactional primitives of BPMN
[11], a graphical notation for modeling service coordination policies. BPMN permits
to describe the workflow of a distributed system and its transactional properties by a
global point of view. The software architect can abstract from the distribution of the
processes, the communication mechanisms and the technologies that will implement
each processes. We rely on the formal semantics of sagas [3] but only informally discuss
the mapping from BPMN to SC (see [8] for details).

The basic units of BPMN are transactional components, namely pairs of main activ-
ities and compensations that can be composed sequentially or in parallel. Fig. 1 depicts
the standard BPMN designs for sequential and parallel composition of transactional
components.

(a) Sequence (b) Parallel

Fig. 1. Composition of BPMN transactional components

In BPMN main activities and compensations are represented as boxes linked by
dashed arrows through a “compensation point”, like Task1 and Comp1 in Fig. 1. The
sequential composition of Task1 and Task2 is obtained by linking them together (cf.
Fig. 1(a)), while their parallel composition requires to specify “fork” and “join” of the
workflow. Fig.1(b) depicts the parallel composition of Task1 and Task2; the circles
represent the entry and exit points2 of the whole process while the rhombus represents
the joining of the two activities.

Transactional components of BPMN are mapped into SC components where fork
and join entry points are respectively encoded as reactions and flows. For instance, the
SC counterpart of the BPMN designs of Fig. 1 is graphically represented in Fig. 2 where
TC1 (resp. TC2) embeds Task1 and Comp1 (resp. Task2 and Comp2). Two distinguished
event topics f and r are used (after sagas’ terminology for forward and rollback flow,
respectively) to signal successful termination of main activities (f topic) or their failure
(r topic). In Fig. 2 the forward flows are represented by solid arrows while backward
flows by dashed arrows.

Fig. 3 draws how transactional components are mapped into SC components. Ini-
tially, signals of type f trigger the execution of the main activity (hereafter referred as
Task) and install the reactions to manage its continuation. The main activity Task even-
tually emits either an ok or an ex signal which are two distinguished topic used only
by transactional components. An ok signal is emitted when Task terminate successfully,
otherwise and ex signal is emitted. In the former case, the compensation is installed and
the f signal is propagated outside the component, otherwise a r signal is emitted to the

2 The BPMN terminology is start and end events.

132 G.L. Ferrari et al.

(a) Sequence
(b) Parallel

Fig. 2. Composition of SC transactional components

previous stages of the transaction. Notice that, as required by sagas, rollback signals
can be consumed only by components that successfully executed their main activity
(and therefore installed their compensation).

Main
Activity

emit r
install

compensation &
emit f

ex

ok

f f

rr

Fig. 3. SC Transactional Component

A transactional TC component is rendered as SC component as follows:

TC = (ν ok,ex)a [0]
f λ (s)

(
Task | rupd

(
ok c©s �rupd(r c©s � Comp) | out〈 f c©s〉
|ex c©s �out〈r c©s〉

))
{ok�a,ex�a, f�c1,r�c2} (1)

where

– Task = ι.out〈ok c©s〉+ ι.out〈ex c©s〉 represents the main activity3;
– Comp = ι.out〈r c©s〉 represents the compensation of the transactional component;
– c1 and c2 represent the forward and the backward flows, respectively.

Parallel composition of components requires auxiliary components called dispatcher
and collector to model the fork and join entry points. Dispatchers are responsible to col-
lect notifications of the forward flow (signals of topic f) and redirect them to the paral-
lel components. Symmetrically, dispatchers bounce rollback signals of topic r when the
backward flow is executed. Analogously, collectors propagates forward and backward
flows by sending the signals of topic f or r as appropriate. Fig. 2(b) yields a pictorial
representation of how the forward and backward flows of the dispatcher d and collector
c of parallel components a and b are coordinated using the f and r signals. Notice that

3 Notice that SC is not directly equipped with non-deterministic choice. However non-
determinism can be easily encoded exploiting the non-deterministic activation of reactions
having the same signature.

Refactoring Long Running Transactions 133

a and b have rollback flows connecting each other; in fact, the semantics of saga pre-
scribes that, when the main activity of a parallel component fails, the other components
must be notified and start their compensations.

2.3 A Walk through the NCP Calculus

The NCP calculus takes inspiration by the asynchronous π-calculus for specifying coor-
dination patterns that depend on a network topology, that is a structure G = (V,E) where
V ⊆ C consists of the restricted component names of the network and E ⊆ C ×T ×C
are the flow connections among components; (a,τ,b) ∈ E , meaning that component a
has a flow towards b for signals of topic τ. Notice that, G induces a directed labelled
graph whose vertexes are the names of the network components (the restricted ones of
which are highlighted in V) and whose edges are the elements in E . Abusing notation,
we will confuse G with its associated graph and a set of edges E sometimes will denote
the network topology (/0,E).

Auxiliary notation will be useful. Let |G | denote the set of vertexes of a graph G ,
G = (V,E) be a network topology, and a ∈ C and τ ∈ T :

– bn(G) = V and fn(G) = |G| \bn(G);
– G(a) are the flows emanating from a in G, namely G(a) = {(τ,b) | (a,τ,b) ∈ E};
– G(τ) is the topic graph of τ in G, namely the unlabelled directed graph such that
|G(τ)| = |G| and the edges are {(a,b) ∈ C ×C | (a,τ,b) ∈ E} (hereafter, we let T
range on such graphs for which τ� T = {(a,τ,b) | (a,b) ∈ T});

– G(a,τ) = {b | (τ,b) ∈ G(a)} is the flow projection of τ for a in G;
– a 	 F = {(a,τ,b) | (τ,b) ∈ F}), for F ⊆ T ×C ;
– if G′ =(V ′,E ′) is a network topology, G
G′= (V ∪V ′,E∪E ′) and, if |G|∩|G′|= /0

then G\G′ = (V,E \E ′).

The NCP calculus supports multi-cast communication and multi-layered topologies
with hidden layers that can be dynamically created and communicated among pro-
cesses. A key feature of NCP is the interplay between restriction of topics and multi-cast
communications. In fact, in NCP the extrusion of a topic τ transparently enriches the
receiver, say a, with flows absent beforehand; hence, further emissions of signals on τ
from a will generate envelopes on the inherited flows.

The syntax of NCP processes, called coordination policies is as follows:

P ::= ∑
i∈I

pi@ai.Pi | τ s@a.P | 〈τ c©s〉@a

| fupd (F)@a.P | ι.P | P ‖ P

| (ν τ : T)P | (ν a : G)P | Id 〈a〉
where p ::= τ(s) | τ s

where τ,s ∈ T , a ∈ C , T is a topic graphs and I is a finite set. Non-deterministic
(guarded) choice is denoted as ∑ (we let ∑i∈I pi@ai.Pi = 0 when I = /0). A policy
p@a.P represents an action p executed by the component a with continuation P; the
prefix τ(s) corresponds to lambda reactions in SC (and therefore called lambda input)
and it allows messages of topic τ to be received; τ s allows to receive signals having
topic τ and session s and is therefore called check input. The policy τ s emits an enve-
lope on session s for those services that are listening on topic τ. The envelope 〈τ c©s〉@a

134 G.L. Ferrari et al.

represents a pending message on the network and targeted to a. Notice that only the
target of a signal is declared. The policy fupd(F) adds F to the flows departing from
a. Prefix ι.P represents the execution of an internal activity before the execution of P.
Coordination policies can be composed in parallel and have restricted names, namely
(ν τ : T)P and (ν a : G)P restrict τ and a in P. Finally, Id 〈〈a〉〉 is the recursive
invocation4. Noteworthy, graph T permits to extend the topology with the connections
among components for the fresh topic τ, while the network topology G yields the flows
from/to a. (Free names fn(P) and bound names bn(P) are defined as expected.)

The semantics5 of NCP [4] is specified by a labelled transition system (LTS) whose
states 〈G ; P〉 are pairs of network topologies and coordination policies; 〈G ; P〉 α−→
〈G′ ; P′〉 states that the coordination policy P, plugged in the topology G, can perform
the action α, evolving 〈G′ ; P′〉. Labels α are defined by the following grammar:

α ::= ε | τ s@a | (τ s@a) | 〈τ c©s〉@a | 〈τ c©(s : T)〉@a

where ε is the silent action; τ s@a is a free reaction activation; (τ s@a) represents
the reception of a message that is put in parallel with the current process (this action
is observable in any system, including the empty policy); 〈τ c©s〉@a is the free event
notification to a for τ in session s while 〈τ c©(s : T)〉@a is a bound event notification on
τ of a topic with network graph T . Hereafter, n(α) will denote the names of α.

The semantics of NCP is given by the transitive closure of ≡ α−→≡ where
α−→ is the

smallest relation closed under the rules in Fig. 4. which use a dynamic network topology
(namely the evaluation of a coordination policy depends from the dynamic network
topology) and rely on the congruence rule

〈(a,E) ; (ν a : G)P ‖ Q〉 ≡ 〈(a∪{a},E)
G ; P ‖ Q〉 , if a �∈ |(a,E)| ∪ fn(Q)

that casts in NCP the scope rule of π-calculus.
We now comment on the rules of Fig. 4. Rule skip trivially fires the silent action.

Rule fupd appends the sub network a 	 F to the environment G (newly added flows
departs from a). Rule emit spawns an envelope for each subscriber in G(τ)(a); the
continuation policy P is executed regardless the reception of envelopes as typical in
asynchronous communications. Notification of envelopes is ruled by notify as much
like as the output in the asynchronous π-calculus. Rule async permits any system to
perform an input as the rule in0 in [12]. Rules lambda and check model input actions:
in the former, the selected input p j reads any signal with topic τ and binds s′ to s
in an early-style semantics; when a check input is selected, only envelopes of topic
τ in session s can be consumed. Rules open and close govern scope extrusion of
topics. Rule new permits to extend the topology with a freshly generated topic provided
that it is not communicated outside the scope (τ /∈ n(α)) and hides the changes to the

4 We assume given a set of identifiers for networks ranged over by Id each with a unique defini-

tion Id(a) def= P where fn(P)⊆ a.
5 Though NCP is reminiscent of the asynchronous π-calculus, its semantics is centred on net-

work topologies, that is on the environment of the computation. This enables the modelling in
a natural way multi-cast communication: for example, in order to receive τ s, it is necessary
“to listen on τ” and have “τ-connection” between listener and emitter.

Refactoring Long Running Transactions 135

skip 〈G ; ι.P〉 ε−→ 〈G ; P〉 fupd 〈G ; fupd (F)@a.P〉 ε−→ 〈G
 (a	 F) ; P〉

emit 〈G ; τ s@a.P〉 ε−→
〈

G ; P ‖∏b∈G(τ,a) 〈τ c©s〉@b
〉

notify 〈G ; 〈τ c©s〉@a〉 〈τ c©s〉@a−−−−−→ 〈G ; 0〉 async 〈G ; P〉 (τ s@a)−−−−→ 〈G ; P ‖ 〈τ c©s〉@a〉

j ∈ I p j = τ
(
s′
)

lambda〈
G ; ∑

i∈I
pi@ai.Pi

〉
τ s@aj−−−−→

〈
G ; {s/s′ }Pj

〉

j ∈ I p j = τ s
check〈

G ; ∑
i∈I

pi@ai.Pi

〉
pj @aj−−−−→

〈
G ; Pj

〉

〈G
 (s�T) ; P〉 〈τ c©s〉@a−−−−−→ 〈G′ ; P′〉 T ′ = G′(s)
open

〈G ; (ν s : T)P〉 〈τ c©(s:T ′)〉@a−−−−−−−−→
〈
G′ \ (s	 T ′) ; P′

〉

〈G ; P1〉 τ s@a−−−→
〈
G ; P′1

〉
〈G ; P2〉

〈τ c©(s:T)〉@a−−−−−−−−→
〈
G ; P′2

〉
close

〈G ; P1 ‖ P2〉 ε−→
〈
G ; (ν s : T)(P′1 ‖ P′2)

〉
〈G
 (τ	 T) ; P〉 α−→

〈
G′ ; P′

〉
τ �∈ n(α) T ′ = G′(τ)

new
〈G ; (ν τ : T)P〉 α−→

〈
G′ \ (τ�T ′) ;

(
ν τ : T ′

)
P′
〉

〈G ; P1〉 τ s@a−−−→
〈
G ; P′1

〉
〈G ; P2〉

〈τ c©s〉@a−−−−−→
〈
G ; P′2

〉
com

〈G ; P1 ‖ P2〉 ε−→
〈
G ; P′1 ‖ P′2

〉
〈G ; P〉 α−→

〈
G′ ; P′

〉
par

〈G ; P ‖ P1〉 α−→
〈
G′ ; P′ ‖ P1

〉 〈G ; P〉 α−→
〈
G′ ; P′

〉
Id(b) def= {a/b}P rec

〈G ; Id 〈a〉〉 α−→
〈
G′ ; P′

〉
Fig. 4. Rules for the semantics of NCP

136 G.L. Ferrari et al.

environment that involve the name outside the scope G′ \ (τ� T ′). Rule com allows the
communication of a free session name s. Rule par and rec have are standard.

The LTS semantics yields the following definition of bisimulation which is obtained
by confining the NCP bisimulation in [4] to public names of components.

Definition 1. A symmetric binary relation B over NCP states is a bisimulation if when-
ever 〈G1 ; P1〉 B 〈G2 ; P2〉 and 〈G1 ; P1〉 α−→ 〈G′1 ; P′1〉

– if α ∈ {ε,〈τ c©τ′〉@a,(τ τ′@a)} and a /∈ bn(G1), there is 〈G2 ; P2〉 α−→ 〈G′2 ; P′2〉 and
〈G′1 ; P′1〉 B 〈G′2 ; P′2〉

– if α = 〈τ c©(τ′ : T)〉@a with τ′ /∈ fn(G2,P2) and a /∈ bnG1, there is

〈G2 ; P2〉
〈τ c©(τ′:T ′)〉@a−−−−−−−−→ 〈G′2 ; P′2〉 and 〈G′1 ; P′1〉 B 〈G′2 ; P′2〉.

The bisimilarity relation is defined as usual and denoted by ∼. The definition of weak
bisimulation is defined in the standard way by considering the weak transition rela-
tion defined as the union of =⇒ and

⋃
α �=ε =⇒ α=⇒=⇒, where =⇒ is the reflexive and

transitive closure of ε. We define≈ as the largest weak bisimulation.

In [4] it is given a mapping taking an SC network N to the NCP state �N� so that
the topology of �N� is determined by the flows of all components of N and its policy
is obtained by the reactions and behaviors of components of N. The correctness of the
mapping is proved in [4].

Example 3. The translation of the SC dispatcher in Example 2 with 2 rollback messages
to synchronise is the NCP state

�Disp f ,r
2,a,b(d)� =

〈
(/0,

⋃
a∈a,b∈b

{(d, f ,a), (d,r,b)}) ; P

〉
where P is the policy f (s)@d.(ι.r s@d.ι.r s@d.r s@d ‖ f s@d) and initially there are
no restricted vertexes. ♦

3 Refactoring LRT

The need for refactoring rules emerges because some crucial aspects of SOC systems
are neglected during the design phase but concern other specification or implementation
levels. In fact, either such aspects do not pertain to designs or, more pragmatically,
they can more suitably considered at later stages of the development. For example,
BPMN designs sketches how the overall transaction among transactional components
should proceed regardless how services implement such components (or where they are
located); these concerns can be considered in SC.

We argue that the translation of BPMN transactions into SC networks provides a
suitable level of abstraction to which refactoring steps can be applied. For example,
deployment of distributed components or rearrangement of points of control can be
automatically transformed at the SC level preserving the original semantics of automat-
ically translated designs.

In the following, we presents useful refactoring rules that transform SC networks
without altering their semantics. In fact, our refactoring rules preserve bisimulation for
SC networks that are images of BPMN designs.

Refactoring Long Running Transactions 137

3.1 Refactoring Transactional Components

Our first refactoring rule can be applied to any SC component obtained by translating a
transactional component as shown in the equation (1), § 2.2.

As said, both the main activity and the compensation of a transactional component
are embedded into a single SC component that manages ok and ex signals so to propa-
gate forward/backward flows. However, it might be useful to assign the compensation
task to a different component. For example, the compensation Comp1 in Figure 1(a)
should run on a different host than Task1, because it involve a remote service. Instead,
when the business process is mapped in an SC network, it is possible to allocate Comp1
on a different host by taking advantage of the implementation of JSCL [6] that permits
to distributed deployment orthogonally to how the network is generated. This cannot be
specified in BPMN.

The delegation of the compensation of a transactional component a to a component
b produces the following SC network:

TCDelegated = (νb,ok,ex)

(
a [0]

f λ (s)
(
rupd(ok c©s � Oka | out〈 f c©s〉)
| Task

)
{ok�a,ex�b, f�c1,r�b} ‖ b [0]Rb

{r�c2}

)
(2)

where Oka = rupd(r c©s �out〈r c©s〉) and Rb = ex λ (s)out〈r c©s〉 | r λ (s)Comp. The
refactoring rule uses a restricted component b (where b ∈ C is fresh) that handles the
compensation and the backward flow. For this reason, the compensation of a is moved
to b towards which a directs r and ex signals as specified in the flows of the refactored
a in (2) which only checks for the successful termination of Task. In fact, the check
reaction of a in (2) propagates the forward flow and activates Oka, a listener for the
rollback of signals possibly raised by subsequent transactional components. Notice that
Oka delegates the execution of the compensation Comp to b which captures ex signals
emitted from Task or r signals from subsequent components.

The initial reactions of b are given by Rb. Intuitively, b waits the notification of an
exception from Task or a rollback signal from subsequent components. In the former
case, b simply activates the backward flow (e.g. the reaction migrated from a) while, in
the latter case, b executes Comp that, upon termination, starts the backward flow.

This refactoring rule is safe as it preserves weak bisimulation.

Theorem 1. �TC�≈ �TCDelegated�

Proof outline. The theorem can be proved verifing that each transition of TC is (weakly)
matched by a transition of TCDelegated , and viceversa. Notice that each step of the first
process is mimicked by the corresponding step on the second one with the exception of
the action r (s)@b that is unobservable because b is restricted. "!

3.2 Refactoring Parallel Composition

Let N1 and N2 be two SC networks images of two BPMN designs. The parallel com-
position of N1 and N2 uses two components, Disp f ,r

i,a,b(d) and Coll f ,r,s(c), act that as the
entry and exit point of the whole composition.

138 G.L. Ferrari et al.

N = (ν d,c)
(

N1
c
�
d

N2 ‖ Disp f ,r
i,a,b(d) ‖ Coll f ,r,s(c)

)
(3)

where the operator
c
�
d

is described later and

– Disp f ,r
i,a,b(d) (cf. Example 2) activates the forward flow of subsequent components

(c), and synchronizes their backward flows

– Coll f ,r,s(c)
def= c [0] f c©s�rupd(f c©s�out〈 f c©s〉.rupd(r c©s�out〈r c©s〉))

{r�b} propagates the for-
ward flow when all components of N1 and N2 terminate correctly and notifies roll-
back signals when subsequent components fail.

Fig. 5(a) illustrates the mapping when N1 is the parallel composition of the transac-
tional components TC1 and TC2, and N2 is just the components TC3 (d and c being the
dispatcher and collector, respectively).

(a) Un-refactored parallel composition (b) Refactored parallel composition

Fig. 5. Parallel composition and its refactoring

Upon reaction to a forward signal say f c©s, d propagates the event out〈 f c©s〉 to TC3

and (through d’) to TC1 and TC2. Concurrently, the dispatcher activates installs two
nested reactions for the topic r and the workflow session s (rupd(�r c©srupd(r c©s � ...)))
in order to send back possible rollback signals out〈r c©s〉. The operator

c
�
d

configures the

flows of parallel transactional components, e.g., those in N1 and N2 in (3). For the for-
ward flow f , d is connected to all entry points while each exit point is attached to c. For
the backward flow r, viceversa, c is connected to all exit points, and all entry points are
connected to d, to propagate the backward flow. Finally, the parallel branches are inter-
connected for the rollback flow. These connections permit to start the compensations of
the concurrent activities whenever one of the branches fails.

The mapping in (3) introduces two distinct dispatchers/collectors for the transac-
tional compensations in N1 and N2. Though necessary when mapping BPMN designs
in SC, dispatchers and collectors do not exhibit an observable behaviour; in fact, they
silently route forward and backward signals. Notice that in some cases it is desirable to
have different dispatchers (or collectors). For instance, if the components in N2 (e.g.,
TC1 and TC2 in Fig. 5) reside on the same host, the generated dispatcher (e.g., d’) re-
duces the communications across sites for the forward and backward flow; indeed, it

Refactoring Long Running Transactions 139

receives only one remote envelope and then generates two intra-site envelopes to the
components TC1 and TC2.

In other cases on the contrary, it would be desirable to have a single dispatcher and/or
collector in order to simplify the system. For instance, if the transactional components
of N1 and N2 are all distributed on different sites, merging dispatchers/collectors would
simplify the system so to improve its maintainability, for instance.

We propose a “two-way” transformation that can (i) merge dispatchers/collectors
(simplifying the SC design) or (ii) split them (refining communications as needed). For
lack of space, we consider only dispatchers, the case of collectors being dual.

Consider the SC network Nd,d′ = (ν d,d′)(N ‖ Disp f ,r
i,a∪{d′},b(d)) ‖ Disp f ,r

i′,a′,{d}(d
′)).

We can merge the two parallel dispatcher, moving the flows of d′ to d and adding to d
the reactions of d′:

N′d,d′ = (ν d)
(
{d/d′}N ‖ Disp f ,r

i+i′−1,a∪a′,b(d)
)

(4)

We start by characterizing the behavior of the two systems Nd,d′ and N′d,d′ . Our refactor-
ing changes only the flows of N by migrating all flows towards d onto d′. The resulting
network {d/d′ }N performs the same actions as the original one, but for the notifications
to d′, that are delivered to d. In this case, we say that for the policy corresponding to N
the name d′ can be fused with d.

Definition 2. Given a,b∈ C and an NCP state 〈G ; P〉, we say that b can be fused with
a in 〈G ; P〉, in symbols δa,b(〈G ; P〉), if for any transition 〈G ; P〉 α−→ 〈G′ ; P′〉:

1. if a,b ∈ n(α) then α is an output action

2. {a/b}〈G ; P〉 {
a/b}α−−−−→ {a/b}〈G′ ; P′〉 and δa,b(〈G′ ; P′〉)

In Definition 2, (1) simply avoids inputs for a and b, but leaves their behavior uncon-
strained otherwise.

The network D should be refactored according to the changes applied to the network
N. Since the N refactoring will notify the same events respect to the starting network, the
D refactoring should be able to consume the same events of the starting dispatcher net-
work. However, all events that in Disp f ,r

i,a∪{d′},b(d)) ‖Disp f ,r
i′,a′,{d′}(d

′)) where consumed

by the component d or d′ will be consumed in the refactoring only by the component a.
Moreover, the refactored network must deliver the same envelopes to the network N. If
the refactoring is correct, we say that it merges of the behavior of the two dispatcher.

Definition 3. Given an NCP state 〈G ; P〉 containing (among others) two components,
say a,b ∈ C , a state 〈G′ ; P′〉 merges a and b, written ρa,b(〈G ; P〉 ,〈G′ ; P′〉), if the
following conditions hold:

– 〈G ; P〉 α=⇒
〈
Ĝ ; P̂

〉
and a,b �∈ n(α) implies 〈G′ ; P′〉 α=⇒

〈
Ĝ′ ; P̂′

〉
and

ρa,b(
〈
Ĝ ; P̂

〉
,
〈
Ĝ′ ; P̂′

〉
)

– 〈G ; P〉 τ s@c=⇒
〈
Ĝ ; P̂

〉
and c ∈ {a,b} implies

140 G.L. Ferrari et al.

• 〈G′ ; P′〉 τ s@a=⇒
〈
Ĝ′ ; P̂′

〉
and ρa,b(

〈
Ĝ ; P̂

〉
,
〈
Ĝ′ ; P̂′

〉
)

• otherwise 〈G′ ; P′〉 ε=⇒
〈
Ĝ′ ; P̂′

〉
and

〈
Ĝ ; P̂

〉 〈τ c©s〉@c
=⇒

〈
ˆ̂G ; ˆ̂P

〉
and

ρa,b(
〈

ˆ̂G ; ˆ̂N
〉

,
〈
Ĝ′ ; P̂′

〉
)

Informally, this relation characterize two policies, the second policy is obtained by the
first by merging two components (b with a). The first constraint requires that the two
networks must perform the same actions for all components that are not merged. The
second constraint requires that all input actions of a and b are performed by the new
network, with the exception of the input actions that where consumed by internal com-
munications (i.e. event notification from the component b to the component a).

An NCP state that involves two internal components (in the following a and b) can
be decomposed into two sub-policies; one describing the usage of the two component
(〈G′ ; P′〉) and the other one describing their behavior (〈G ; P〉). If the component b
can be fused with a in the first policy (δa,b(〈G′ ; P′〉)) then we can substitute the second
policy with any other that merges the behavior of the two components. This substitution
does not change the external behavior of the whole NCP state.

Theorem 2. Given a,b ∈ C and three SC networks N, N′ and N1, if δa,b(�N1�) and
ρa,b(�N�,�N′�) then �(νa,b)(N1 ‖ N)�≈ �(νa)({a/b}N1 ‖ N′)�.

Proof outline. By double induction over transition rules and over the syntactic structure
of SC terms that implement the transactional behaviors. "!

Lemma 1. Let D
def= Disp f ,r

i,a∪{d′},b(d) ‖ Disp f ,r
i′,a′,{d}(d

′). If Nd,d′ = (ν d,d′)(N ‖ D) is

an SC network with dispatcher d triggering the dispatcher d′, then

– δd,d′(�N�) holds

– if D̂
def= Disp f ,r

i+i′−1,a∪a′,b(d) (cf. (4)) then ρd,d′(�D�,�D̂�) holds.

Theorem 3. Let Nd,d′ be as in Lemma 1 and N′d,d′ as in (4) then �Nd,d′�≈ �N′d,d′�

Proof outline.
If Nd,d′ the network is as in Lemma 1, it can be decomposed as Nd,d′ = (ν d,d′)(N ‖D),

where D
def= Disp f ,r

i,a∪{d′},b(d) ‖ Disp f ,r
i′,a′,{d}(d

′) , while the network in (4) is N′d,d′ =
(ν d)

(
{d/d′}N ‖ D̂

)
.

The Lemma 1 ensures that δd,d′(�N�) and ρd,d′(�D�,�D̂�) hold. Then the hypothesis of
the Theorem 2 are guaranteed and the weak bisimulation verified. "!

4 Concluding Remarks

We have presented a framework for refactoring long running transactions that relies
on the (formal semantics of) BPMN [11] designs emerging from their mapping on SC
calculus [8], amenable to model and implement sagas calculi [3].

Refactoring Long Running Transactions 141

The paper contains two main contributions. Firstly, we define several refactoring
rules of the SC realisation of long running transactions designed in BPMN. Secondly,
the proof that the proposed rules are sound as they preserve weak bisimilarity.

Also, the refactoring framework presented here, far from being complete, shows how
long running transaction can be implemented in a model-driven approach highlighting
the level of abstractions at which some transformations can be suitably applied. Re-
markably, the proposed rules may be applied either for efficiency or architectural rea-
sons so that BPMN designs of LRT can actually be refined and deployed automatically.

An interesting line of research is to extend our framework with other bisimulation-
preserving refactoring rules and consider a larger part of BPMN. Very likely, many of
our rules can scale to more general designs than LRT.

We also plan to extend the current JSCL implementation with the refactoring rules
introduced here so that LRTs can be designed in BPMN and then automatically refac-
tored transparently to the designer.

Other specification languages have been proposed for LRT [15,13]. Albeit, based
on BPMN, we conjecture that our proposal can be easily applied to other specification
languages for LRTs.

Acknowledgements. We thank the reviewers for the useful comments and suggestions.

References

1. Tao4WS website, http://www.tao4ws.net
2. Batory, D.: Program refactoring, program synthesis, and model-driven development. In:

Goos, G., Harmanis, J., Leeuwen, J. (eds.) CC 2007. LNCS, vol. 4420, pp. 156–171.
Springer, Heidelberg (2007)

3. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations in flow
composition languages. In: POPL 2005 ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 209–220. ACM Press, New York (2005)

4. Ciancia, V., Ferrari, G., Strollo, D., Guanciale, R.: Global coordination policies for services.
In: FACS 2008 International Workshop on Formal Aspects of Component Software. ENTCS.
Elsevier, Amsterdam (2008) (in print)

5. Ferrari, G., Guanciale, R., Strollo, D., Tuosto, E.: Refactoring Long Running Transactions –
Full Version,
http://wsfm08full.tao4ws.net

6. Ferrari, G., Strollo, D., Guanciale, R.: JSCL: A middleware for service coordination. In:
Bochmann, G.V., Bolognesi, T., Derrick, J., Turner, K. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 46–60. Springer, Heidelberg (2006)

7. Ferrari, G., Strollo, D., Guanciale, R., Tuosto, E.: Coordination Via Types in an Event-
Based Framework. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 66–80.
Springer, Heidelberg (2007)

8. Ferrari, G., Strollo, D., Guanciale, R., Tuosto, E.: Event-based Service Coordination. In:
Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 312–329. Springer, Heidelberg (2008)

9. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD Conference, pp. 249–259 (1987)
10. Gray, J.: The transaction concept: virtues and limitations (invited paper). In: VLDB 1981:

Proceedings of the seventh international conference on Very Large Data Bases, pp. 144–154.
VLDB Endowment (1981)

142 G.L. Ferrari et al.

11. Group, O.: Business Process Modeling Notation (2002), http://www.bpmn.org
12. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America,

P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)
13. IBM. Business Process Execution Language (BPEL). Technical report (2005)
14. Little, M.: Transactions and web services. Commun. ACM 46(10), 49–54 (2003)
15. W3C. Web Services Choreography Description Language (v.1.0). Technical report

On-The-Fly Model-Based Testing of
Web Services with Jambition

Lars Frantzen1,2, Maria de las Nieves Huerta3, Zsolt Gere Kiss4,
and Thomas Wallet3

1 Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche, Pisa – Italy

2 Institute for Computing and Information Sciences
Radboud University Nijmegen – The Netherlands

lf@cs.ru.nl
3 Pragma Consultores – Argentina

{mhuerta,twallet}@pragmaconsultores.com
4 4D Soft – Hungary
zsolt.kiss@4dsoft.hu

Abstract. Increasing complexity and massive use of current web ser-
vices raise multiple issues for achieving adequate service validation while
sticking to time-to-market imperatives. For instance: How to automate
test case generation and execution for stateful web services? How to
realistically simulate web service related operation calls? How to en-
sure conformance to specifications? The Plastic validation framework
tackles some of these issues by providing specific tools for automated
model-based functional testing. Based on the Symbolic Transition Sys-
tem model, test cases can be generated and executed on-the-fly. This test-
ing approach was applied for validating the Alarm Dispatcher eHealth
service, aimed at providing health attention through mobile devices in
B3G networks. In this paper we report how this modeling and testing ap-
proach helped to detect failures, support conformance, and reduce dras-
tically the testing effort spent usually in designing test cases, validating
test coverage, and executing test cases in traditional testing approaches.

1 Motivation

The usage of Web Services has been strongly growing during the last decade
[3,26], uncovering new business possibilities and reaching a very broad public.
Moreover Third Generation (3G) and Beyond Third Generation (B3G) mobile
devices proliferation [1] reinforces such growth and leads to new massive business
taking into account user mobility and connectivity [23]. As a consequence, the
Web Service paradigm had to evolve to cope with emerging issues such as:

– More users directly connected and directly interacting with Web Services
– Users potentially connected from any place at any moment
– More complexity required to support new business possibilities

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 143–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 L. Frantzen et al.

Fig. 1. Plastic eHealth Alarm Dispatcher Service

Such issues require complex Web Services, which may for instance be stateful
and carry on related operations according to a complex logic, or interact directly
with users through mobile devices.

The eHealth Alarm Dispatcher Web Service Example
We will now introduce the eHealth Alarm Dispatcher Web Service, which il-
lustrates some of the issues mentioned above and will serve as a running example
for the remainder of the paper. The Alarm Dispatcher Web Service is part
of the Plastic eHealth services, aimed at providing medical attention through
mobile devices over B3G networks. Plastic [25] is a European research project
aimed at providing a service-oriented platform for adaptable and lightweight ser-
vices in B3G networks. The Alarm Dispatcher is a passive robot which re-
ceives medical alarms triggered by patients from their mobile device (see Fig. 1).
Its main goal is to interact with each patient in order to characterize and refine
the alarm kind, so as to be able to forward it to suited health professionals accord-
ing to the situation. For instance, the Alarm Dispatcher will ask to the patient
the emergency type; get some patient information, etc. The Alarm Dispatcher

finally broadcasts the refined alarm to the best suited health professionals. Based
on this broadcast, some other Plastic eHealth Web Services enable the patient
to select an available health professional who will start a remote diagnosis. The
medical attention finishes with the professional sending his diagnosis or forward-
ing the alarm to other specific medical services (see [25] and [27] for technical
details on Plastic eHealth Services Development).

Emerging Web Services Validation Issues
The validation of Web Services of the kind of the Alarm Dispatcher reveals
some specific issues where new testing solutions must be provided in order to deal
with the emerging complexity. For instance, the Alarm Dispatcher Web Ser-
vice involves logical dependencies between its different operations, which cannot
be invoked independently or in any order. Another aspect that increases vali-
dation complexity is that the Alarm Dispatcher is a stateful service, which
means that some operation results depend on data from previously executed op-
erations of the service. Moreover, most of the Alarm Dispatcher operations
receive some inputs from the patient and an important part of the service logic
is based on those inputs.

On-The-Fly Model-Based Testing of Web Services with Jambition 145

Validating Web Services like the Alarm Dispatcher requires dealing with
these issues and should lead to the design and execution of numerous and com-
plex test cases. Moreover, these test cases should take into account the opera-
tion dependencies, the service states, and the data to simulate user inputs. Test
automation can drastically limit the testing effort due to such complexity, but
should rely on detailed behavior specification models in order to ensure adequate
validation coverage.

Overview In this paper we will present how a model-based testing approach
with the Jambition and Minerva tools of the Plastic validation framework
was applied for testing the Alarm Dispatcher Web Service. We will enumer-
ate the benefits found in the light of the experiment. Section 2 briefly intro-
duces the Plastic validation framework which provides the model-based testing
tools Jambition and Minerva, which are explained in more detail in Section 3.
Section 4 presents the results and benefits of applying this approach for the val-
idation of the Alarm Dispatcher Web Service, while presenting conclusions,
related- and future work in Section 5.

2 Plastic and Its Validation Framework

The Plastic project [25] adopts and revisits service-oriented computing for B3G
networks, in particular assisting the development of services targeted at mobile
devices. The resulting Plastic platform enables robust distributed lightweight
services in the B3G networking environment through:

– A development environment leveraging model-driven engineering for the
thorough development of Service Level Agreement and resource-aware ser-
vices, which may be deployed on various networked nodes, including hand-
held devices

– A service-oriented middleware leveraging multi-radio devices and multi-
network environments for applications and services run on mobile devices,
further enabling context-aware and secure discovery and access to such ser-
vices

– A validation framework enabling off-line and on-line validation of networked
services regarding functional and extra-functional properties

The Plastic development process is evolutionary and comprehensive, i.e., it en-
compasses the full service lifecycle, from development to validation, and exploits
as much as possible model-to-model and model-to-code transformations, as well
as model-based testing. To support such a comprehensive design approach we
have defined the Plastic UML2 profile, which allows designers to create service
models conforming to the Plastic domain. This Plastic UML2 profile includes
Symbolic Transition System (STS) diagrams (explained in Section 3.1), which
are used for specifying the functional behavior and for model-based testing of
Web Services. The Plastic UML2 profile additionally provides five views of
service models and their corresponding diagrams for other purposes outside the
scope of this paper.

146 L. Frantzen et al.

The Plastic validation framework provides different tools for off-line and
on-line validation of Web Services. Off-line validation activities are performed
while no user (“paying customer”) is using the service. Hence, off-line validation
of a system implies that it will be tested in one or more artificially evolving envi-
ronments that simulate possible real interacting situations. On-line approaches
concern a set of techniques, methodologies and tools to monitor the system after
its deployment in one of its real working contexts.

This paper deals with the Jambition [31] and Minerva [31] tools, which
enable functional off-line validation of Web Services, based on a model-based
testing approach. In this approach, the STS model is used for the automatic
generation and execution of black-box test cases for a given Web Service, as
explained in the next Section.

3 Modeling and Testing Services

As mentioned above, the functional behavior of a service is modeled using an
automata model called Symbolic Transition System. STSs are a well studied for-
malism in modeling and testing of reactive systems [11]. STSs can be seen as
a formal semantics for a variant of UML 2.0 state machines [24]. We have de-
veloped the Minerva library, which transforms state machines modeled with
MagicDraw [19] – a commercial UML modeling tool – into an STS representa-
tion understood by the STS-based testing tool Jambition. Firstly, we introduce
the STS model in Section 3.1. Next, we summarize Minerva in Section 3.2.
Finally, we present Jambition in Section 3.3.

3.1 Symbolic Transition Systems

In our setting, STSs specify the functional aspects of a service interface. The
Alarm Dispatcher service from Fig. 1 has two interfaces - one to the patient
and one to the health professionals. We focus here on specifying the interface to
the patient.

Firstly, there are the static STS-constituents like types, messages, parame-
ters, and operations. This information is commonly denoted in the Web Services
Description Language (WSDL) [8]. Secondly, there are the dynamic constituents
like states, and transitions between the states. STSs can be seen as a dynamic
extension of a WSDL. They specify the legal ordering of the message flow at a
service interface, together with constraints on the data exchanged via message
parameters (called parts in the WSDL).

An STS can store information in STS-specific variables. Every STS transition
corresponds to either a message sent to the service (input), or a message sent
from the service (output). Furthermore, a transition can be guarded by a log-
ical expression. After a transition has fired, the values of the variables can be
updated. A special kind of transition is an unobservable transition, which does
not specify a message, but represents an internal step the STS performs. Such
a transition fires without any external trigger, and may update the variables. In
the underlying theories such a transition is also referred to as a τ -transition.

On-The-Fly Model-Based Testing of Web Services with Jambition 147

Due to its extent and generality we do not give here the formal definition of
STSs, which can be found in [11]. Instead, we exemplify the concepts in a setting
relevant for this paper.

Let us consider a WSDL operation receiveAlarm. The input message has a
part patient of type Patient; the output message has a part return of type
String. The Patient type is a complex type sequence with the element age of
type Integer. This operation could for instance correspond to a Java method
String receiveAlarm(Patient patient), together with the Patient class. A
message in an STS corresponds to a message in the WSDL. Hence, we model the
call of the receiveAlarm operation in the STS by two consecutive transitions.
The first one with input message receiveAlarm(patient:Patient) represents
the operation invocation, the second one represents the returned value via the
receiveAlarm(return:String) output message.

Regarding the Alarm Dispatcher service, the receiveAlarm operation is
one of the five operations offered in the interface specification. They are sum-
marized in the following table:

Operation Input Parameters Output Parameters

receiveAlarm patient : Patient return : String
cancelAlarm — —
confirmAlarm lifeRisk : Boolean return : String
emergencyType type : TypeOfEmergency return : String
consciousness con : Boolean return : String

The TypeOfEmergency is an enumeration having the values fatal, heart, car,
pregnancy, fire, home, pediatric, digestion, and other. Figure 2 shows an
STS specifying the Alarm Dispatcher

1. Initially, the STS is in state 1. Now
a user of the service (in our case study the patient’s service) can invoke the
receiveAlarm operation by sending a Patient object identifying the sender.
This corresponds to the transition from state 1 to state 2. The guard of the
transition restricts the attribute age of parameter patient to be greater than 0,
and less than 120. Next, the Alarm Dispatcher has to return a String via
the return parameter return. The string is interpreted as being displayed on the
patient’s mobile device. This string is determined by the guard to be "Confirm
Alarm!" (transition from state 2 to state 3). Next, two things can happen.
Either, the patient cancels the alarm by sending the cancelAlarm message.
This returns the STS to the initial state. Or the patient confirms the alarm via
the confirmAlarm message, which additionally indicates if the life of the patient
is at risk via the lifeRisk parameter, which is stored in the variable risk via
the update statement update = "risk = lifeRisk;" (transition from state 3
to state 4). If the life is at risk, the alarm is immediately forwarded to the
emergency service (state 4 to state 9), and the STS returns to its initial state
via an unobservable transition. Otherwise the patient is queried for the type of

1 In the picture you find the acronym SSM, which stands for Service State Machine,
which is just another term for STS.

148 L. Frantzen et al.

Fig. 2. An STS-Specification of the Alarm Dispatcher

On-The-Fly Model-Based Testing of Web Services with Jambition 149

emergency (state 4 to state 5), which must be subsequently transmitted by the
patient via the emergencyType operation (state 5 to state 6). The type is saved
in the emergency variable by the update statement. If the emergency type is
fatal, the alarm is forwarded to the emergency service (state 6 to state 9). For
other types of emergencies, the state of consciousness is determined before either
the emergency service or a specialist is contacted (state 6 to state 9 via states
7 and 8).

Formal Testing
Semantically, STSs map to Labeled Transition Systems (LTSs). A rich set of
formal testing theories has been defined on LTSs, see for instance [6]. A testing
relation precisely defines when a System Under Test (SUT) conforms to its spec-
ification by relating the formal models representing SUTs with formal models
representing the specifications. The gain of this effort is that one can unambigu-
ously express what a testing algorithm is testing for, since the notions of passing
or failing a test case are formally defined. Furthermore, the testing algorithm
itself can be proven to be sound and complete for a given testing relation.

A well-accepted testing relation for LTSs is ioco [32]. The testing relation
implemented in the Jambition tool is called sioco [11], a sound and complete
adaption of ioco for STSs. These relations originate from the domain of reactive
systems, which are inherently more complex than services. The main difference is,
that a reactive system can actively send a message whenever it likes to, whereas
a service sends a message only as a response to a previous request. Even though
the WSDL allows in principle to specify active services via solicit-response and
notification operations, such services are not in common use since they do not
easily map to current programming paradigms and service deployment infras-
tructures. Due to the restriction to passive services the testing relations simplify,
concepts like quiescence [32] are not relevant here. sioco simplifies to the require-
ment: If the service produces a response message x after some specified trace σ,
then the STS specification can also produce response message x after σ. In other
words, each observed response message must be allowed by the STS specification.

3.2 Minerva - Service Modeling

The MagicDraw modeling tool and the Minerva Plastic tool facilitate the
graphical development of services by designing and drawing the corresponding
artifacts in UML diagrams, conforming to the Plastic UML2 Profile. By us-
ing this profile for all objects (classes, diagrams, etc.) one can ensure that the
resulting product will comply with the Plastic conceptual model. A service
in the Plastic concept is specified by two subviews: a Structural View and a
Behavioral View. A Structural View is given by means of Service Description
diagrams that describe the services which will constitute the final application.
They provide the service interfaces and data structures. The Behavioral View
specifies the dynamic service capabilities, modeled with STS diagrams.

Structural View: Defining the Data Types and Service Descriptions
The data structures supported are a commonly used subset of the XML Schema

150 L. Frantzen et al.

types. There are the simple types Integer, Boolean, and String, and the so
called complex types: literal enumerations and classes. Class types represent a
sequence of types, either simple or complex. But defining recursive types like
lists in this manner is not supported by the current framework.

Having the data types specified, the service interface can be modeled via a
Service Description Diagram. Once the service description is ready, WSDL files,
and the corresponding service stubs, can be generated by further tools from the
Plastic toolchain.

Behavioral View: Creating the Symbolic Transition System
To define the dynamic behavior of a service, an STS Diagram is modeled, which
specifies a conversation between a service interface and another actor. Figure 2
already showed an STS Diagram as it appears in MagicDraw. An STS transi-
tion has the following properties:

– Operation – This is the operation which triggered the transition
– TransitionKind – It can be:

• INPUT, corresponding to an input transition (request)
• OUTPUT, denoting an output transition (response)
• UNOBSERVABLE, denoting an unobservable transition

– Guard – The guard is a boolean expression which has to hold for the
transition to fire (like patient.age>0 && patient.age<120). To express a
guard a simple language is used which offers most common operators known
from programming languages. For details please refer to the Jambition [31]
manual.

– Update – Variables of the STS are updated here, after the transition has
fired. Such variables usually serve for recording state information, global to
the conversation session.

After having created the model, the next step is creating the service implemen-
tation. Empty service stubs can be created automatically, as mentioned above.
Next they have to be implemented, keeping in mind the conditions defined in the
STS transition guards. Having the services in place, the STS model can be used
by Jambition to automatically test the service. For this, it has to be exported,
using the Export to XMI feature.

3.3 Jambition

Jambition is a Java tool we have developed to automatically test Web Services
based on STS specifications. As said above, the underlying testing relation is
sioco. Furthermore the testing approach of Jambition is random and on-the-
fly. This basically means that out of the set of specified input actions one input
is chosen randomly, and then given to the service (i.e., an operation is invoked).
Next, the returned message (if any) is received from the service. If that output
message is not allowed by the STS, a failure is reported. Otherwise the next
input is chosen – and so on.

On-The-Fly Model-Based Testing of Web Services with Jambition 151

For the Alarm Dispatcher service, as being specified by the STS from
Fig. 2, this means that Jambition plays the role of a patient’s service. Ini-
tially, being in state 1, the only specified input message is the receiveAlarm
invocation. Jambition has to construct here a Patient object, with the guard-
requirement that the age attribute must be greater 0 and less than 120. To
respect such requirements, the constraint solver of GNU Prolog [18] is queried
via a Socket connection. Four heuristics can be applied:

– min: choose the smallest solution
– max: choose the greatest solution
– middle: choose the solution in the middle
– random: choose a random solution

If we decide to choose the smallest solution, we get age = 1. Since always choos-
ing 1 might not be sufficient for achieving a desired coverage, a random solu-
tion is commonly good practice. Having the parameter object constructed, the
receiveAlarm operation in invoked. Jambition moves the STS into state 2
and receives next the string the receiveAlarm operation returns. If this string
does not equal "Confirm Alarm!", a failure is reported. Otherwise state 3 is
reached. Here, again randomly, Jambition chooses either to cancel the alarm
(back to state 1), or to invoke the confirmAlarm operation. In the latter case
the lifeRisk parameter is not constrained, a random value (true or false) is
chosen. Being in state 4 the returned string is received. Assuming a lifeRisk
of value true had been generated, that string must equal "Alarm forwarded
to the emergency service". If the chosen risk was false, the string must in-
stead be "Type of Emergency?", and Jambition moves to state 5, where an
emergency type must be constructed to invoke the emergencyType operation.
This process continues in this manner until either a failure is spotted, or the
user halts the testing.

The on-the-fly approach differs from more classical testing techniques by not
firstly generating a set of test cases, which are subsequently executed on the
system. Instead, the test case generation, -execution, and -assessment happen
in lockstep. So doing has, inter alia, the advantage of allaying the state space
explosion problem faced by several conventional model-based testing techniques.
The rationale here is that a test case developed beforehand has to consider all
possible outputs the system might return, whereas the on-the-fly tester directly
observes the specific output, and can guide the testing accordingly. Another cause
of state space explosion is the transformation of symbolic models like STSs into
semantical models like LTSs. Several tools do this step to apply test algorithms
which are defined on the semantical model. Jambition also solves this issue by
skipping this transformation step. Instead, its test algorithm directly deals with
the STS, see [10] for details.

To visualize the ongoing testing process, and to understand a reported fail-
ure, Jambition can display the messages exchanged with the service while being
tested in real-time via the Quick Sequence Diagram Editor [21], an exter-
nal open-source visualizer for UML sequence diagrams. Furthermore, Jambition

152 L. Frantzen et al.

displays the achieved state- and transition coverage of the STS. We will show
these features of Jambition in more detail in the next section.

4 Results

The STS-based modeling and testing approach presented in the preceding chap-
ter was used to specify, develop, and validate the functional behavior of the
Alarm Dispatcher service. In this section we present the experiences and
benefits that the approach brought to the project.

eHealth Alarm Dispatcher Experiment Setup
Starting from the requirements addressed by the Alarm Dispatcher service,
the experiment began with the modeling of the corresponding STS with the
Plastic UML2 Profile in the MagicDraw tool. The resulting diagrams of this
activity were a diagram of the Alarm Dispatcher Web Service and operations,
a diagram of the involved data types and a diagram of the STS. As depicted
in Fig. 2 the Alarm Dispatcher STS consists of 9 states and 13 transitions,
specifying how the dispatcher must deal with different kinds of emergencies and
other emergency attributes like life risk and consciousness. Based on these speci-
fications, the Alarm Dispatcher Web Service was implemented via the Netbeans
IDE [20] and deployed on the GlassFish Application Server [17]. At this point we
finished the setup of the experiment. The experiment steps were the following:

1. STS model exportation: from MagicDraw we exported automatically the
Alarm Dispatcher STS.

2. Jambition STS importation: we loaded the STS file into Jambition. The
importation includes checking the deployment of the corresponding service.
During this step, the following types of errors where detected:
(a) Consistency errors in the models (for instance, a data type was wrongly

referenced in the STS).
(b) Consistency errors between the models and the deployed service (for

instance, a parameter of a service operation was declared with different
types in the deployed service and in the model).

(c) Service uncompleted deployment problems (for instance, the service de-
ployment process could not be completed).

3. Alarm Dispatcher Validation: we started the Jambition validation pro-
cess that cycles continuously the STS till errors are found. During this step,
the following types of errors where detected:
(a) Transition guards violated (for instance, the emergency was not consid-

ered fatal in a case where the STS specified that it should be treated as
fatal).

(b) Never ending operations (for instance, an operation was not returning a
result or had some bugs that stopped the operation).

(c) States or transitions never reached (for instance, the validation coverage
was never completed since some states or transitions were never reached
due to missing features, or faults in the model itself, like non-reachable
states).

On-The-Fly Model-Based Testing of Web Services with Jambition 153

Table 1. Alarm Dispatcher Experiment Steps

Step Duration Details

STS model exportation 25 sec This is a MagicDraw feature
Jambition STS importation 3 sec For successful importations
Alarm Dispatcher Validation 8 sec Reaching full STS coverage without errors

Errors found in steps two and three were corrected, and the experiment was
repeated until all the failures disappeared, and a full coverage of states and
transitions was reached. To achieve this, an average of 191 input and output
messages were automatically processed by the random exploration of the STS.
Table 1 presents average durations of the experiment steps2.

Jambition Added Value
Benefits of well applied testing automation and model-based testing approaches
such as testing effort saving, coverage assurance, test reuse, regression reliability
and testing duration compression have been extensively discussed in literature
(for instance, see [16],[2],[7]). In addition to these generic benefits of test au-
tomation, Jambition brought some specific added value when validating Web
Services as in the Alarm Dispatcher experiment. Next we give a list of the
Jambition benefits that were of particular interest for our Alarm Dispatcher

experiment:

– Automatic and on-the-fly generation, execution and assessment of numerous
test cases

– Real-time visualization of test cases execution coverage (percentage of STS
states and transitions visited, as shown in Fig. 3)

– Test cases generation and execution time is very quick
– Debugging visualization facilities for tracking operations and data (with the

Quick Sequence Diagram Editor, as shown in Fig. 4)
– Jambition and Minerva are released under the open source GPLv3 license

Testing Effort Reduction
A specific benefit of Jambition comes from the testing effort reduction provided
by the tool automation. We will now give some considerations indicating the or-
der of magnitude of this reduction by referring again to the Alarm Dispatcher

example. For this purpose we are comparing only the test activities automated
by Jambition, i.e., test case generation, -execution, and -assessment. We are
not taking into account other activities usually involved in testing such as test
planning, defect reporting, code debugging and correction, testing environment
preparation, etc. Indeed we do consider that such activities, as well as the STS
modeling, remain unchanged when testing with or without Jambition.

Comparing with traditional, manual testing techniques is not straightforward,
since Jambition does not generate a set of test cases. To still have a metric at
2 Experiment conduced on a standard Intel Core Duo CPU T2350 1,86GHz, 1GB

RAM.

154 L. Frantzen et al.

Fig. 3. Jambition Test Coverage Indicators

Fig. 4. Quick Sequence Diagram Editor

hand we first define what we mean by a test case, namely a path in the STS
which starts and ends at the initial state 1. Such a path basically corresponds
to a scenario, or transaction, like receiving an alarm having fatal emergency. To
achieve full transition coverage, 5 such test cases are needed, see table 2.

In a traditional testing approach, these test cases must be designed and exe-
cuted manually. We have said before that on average Jambition processed 191
messages to achieve the same coverage, which corresponds to ca. 37 test cases.
Table 1 has shown that less than 8sec are needed to generate and execute these
test cases. No matter how precisely you measure, this small example already
shows how Jambition is an order of magnitude faster than the manual way.
And, that Jambition executes more test cases to achieve the same coverage is
another advantage, since more test cases simply can find more failures. For in-
stance, to achieve full transition coverage, it is sufficient to make a test case with
a fatal emergency type, and one with a non-fatal type. Since Jambitionexecutes
on average 37 test cases, it is very likely, that it tests for more than just these
two emergency types.

On-The-Fly Model-Based Testing of Web Services with Jambition 155

Table 2. Full Transition Coverage with Five Scenarios

Scenario State Sequence

Cancelled Alarm 1 → 2 → 3 → 1

Risk of Life 1 → 2 → 3 → 4 → 9 → 1

Fatal Emergency 1 → 2 → 3 → 4 → 5 → 6 → 9 → 1

Consciousness 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 1

No Consciousness 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 1

But there is also a drawback if coverage depends on mere random decisions,
since they may simply not be sufficient to reach each state and transition. We
will point to that in the next and concluding Section.

5 Conclusions, Related- and Future Work

To the best of our knowledge, Jambition is the only current testing tool which
allows for automatic and on-the-fly model-based testing based on symbolic mod-
els. Other testing approaches which are also based on (variants of) the STS model
are [9,14]. Instead of on-the-fly testing, they use test purposes to deal with the
state-space explosion problem. The specific value of random and on-the-fly test-
ing has been demonstrated for instance in [4].

Several approaches exist to test Web Services based on other models than
state machines. To name just a few, in [15] the authors propose to include graph
transformation rules that enable the automatic derivation of meaningful test
cases. To apply the approach they require that a service implements interfaces
that increase its testability. A somewhat similar model than STSs is the Business
Process Execution Language (BPEL) [29]. Since BPEL is an implementation lan-
guage for service orchestration, its focus is different than ours. Several interesting
testing and verification issues can be formulated on BPEL specifications, see for
instance [5,12,13].

Despite its smallness the Alarm Dispatcher validation experiment gave
very promising results, satisfying the expectations raised by using test automa-
tion tools in a real development project. Plastic tools adoption for service
modeling and testing was straightforward and resulted in an important reduc-
tion of the testing effort, which can scale up to very important savings for more
complex services, representing an important productivity gain over conventional
manual testing approaches. These conclusions settled the foundation for further
experiments with Jambition in more complex Web Services development case
studies.

The Jambition tool is based on a Java library which allows to model and
simulate STSs, called STSimulator [22]. One current limitation of the library
is the lack of recursive data types like lists. Several web services use lists (via
XML Schema unbounded sequences) to transmit data objects of variable length.
We are currently investigating how to deal best with such recursive types.

156 L. Frantzen et al.

We have already indicated that a mere random approach for test data selection
is not necessarily sufficient to reach a full state- and transition coverage. It is even
less appropriate for more sophisticated coverage criteria like condition coverage
of the guards. Several approaches based on symbolic execution exist to guide the
test case generation in a way that coverage becomes a search problem, see for
instance [28,30]. Combining Jambition with such approaches is a major future
goal. Also, techniques like equivalence partitioning and boundary value analysis
can be a very fruitful combination with the random approach. For example, in its
current version Jambition does not test for invalid equivalence class boundaries
(like a patient at the age of 120). Also the combination of measuring model-
coverage and code coverage can give further insight in the test efficiency.

STSs can in principle also be used to model the communication between
several Web Services. To do so they have to embrace the message flow at several
interfaces, like BPEL does. For instance, an STS could be modeled which also
deals with the Alarm Dispatcher interface to the health professionals. Testing
based on such multi-interface STSs would allow to test more complex scenarios
like coordinated and composed Web Services.

Acknowledgments. The Plastic Project is funded under FP6 STREP con-
tract number 26955 by the Information Society Technologies (IST). Special
thanks to Lorenzo Jorquera and Daniel Yankelevich for their detailed review
of early versions of this paper. Lars Frantzen is further supported by the Marie
Curie Network Tarot (MRTN-CT-2004-505121) and by the Netherlands Orga-
nization for Scientific Research (NWO) under project Stress.

References

1. 3G Americas. 2.5 Billion GSM Subscribers Worldwide - More than a Million New
Users Daily (press release), http://www.3gamericas.org/English/News Room/

DisplayPressRelease.cfm?id=2982&s=ENG, June 5 (2007)
2. Apfelbaum, L.: Automated Functional Test Generation. In: Proceedings of the

Autotestcon 1995 Conference. IEEE, Los Alamitos (1995)
3. Business Wire Article. SOA Software Products Drive More Than 10 Billion Web

Service Transactions,
http://findarticles.com/p/articles/mi m0EIN/is 2006 Sept 18/

ai n16728778, September 18 (2006)
4. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw,

S., Heerink, L.: Formal test automation: A simple experiment. In: Csopaki, G.,
Dibuz, S., Tarnay, K. (eds.) TestCom 1999, pp. 179–196. Kluwer Academic Pub-
lishers, Dordrecht (1999)

5. Bianculli, D., Ghezzi, C., Spoletini, P.: A model checking approach to verify
BPEL4WS workflows. In: IEEE SOCA 2007, pp. 13–20. IEEE Computer Society
Press, Los Alamitos (2007)

6. Brinksma, E., Tretmans, J.: Testing transition systems: an annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

7. Bruno, G., Varani, M., Vico, V., Offerman, C.: Benefits of using model-based test-
ing tools. In: Nesi, P. (ed.) Objective Quality 1995. LNCS, vol. 926, pp. 224–235.
Springer, Heidelberg (1995)

On-The-Fly Model-Based Testing of Web Services with Jambition 157

8. Christensen, E., et al.: Web Service Definition Language (WSDL) ver. 1.1 (2001),
http://www.w3.org/TR/wsdl

9. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: a Symbolic Test Generation
tool. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 470.
Springer, Heidelberg (2002)

10. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005)

11. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Rosu, G., Wolff, B. (eds.) FATES 2006
and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

12. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc. of
WWW 2004, New York, USA, May 17-22, pp. 17–22 (2004)

13. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
compositions of web services. In: Bertolino, A., Polini, A. (eds.) WS-MaTe2006,
pp. 83–94 (2006)

14. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

15. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005)

16. Hoffman, D.: Cost Benefits for Test Automation. In: STAR West 1999 (1999)
17. GlassFish Application Server homepage, https://glassfish.dev.java.net
18. GNU Prolog homepage, http://www.gprolog.org/
19. MagicDraw homepage, http://www.magicdraw.com
20. Netbeans IDE homepage, www.netbeans.org
21. Quick Sequence Diagram Editor homepage, http://sdedit.sourceforge.net/
22. STSimulator homepage, http://www.cs.ru.nl/~lf/tools/stsimulator/
23. Lau, J.: The State of European Enterprise Mobility in 2006, October 13, 2006.

Forrester Research (2006)
24. Object Management Group. UML 2.0 Superstructure Specification, ptc/03-08-02

edition. Adopted Specification
25. PLASTIC project homepage, http://www-c.inria.fr/plastic
26. Web Host Industry Review. Web Services to Reach $21 Billion by 2007: IDC,

http://www.thewhir.com/marketwatch/idc020503.cfm

27. Rong, L., Wallet, T., Fredj, M., Georgantas, N.: Mobile Medical Diagnosis: An m-
Health Initiative through Service Continuity in B3G. In: Middleware 2007 Demos
- ACM/IFIP/USENIX Middleware Conference (November 2007)

28. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

29. Business Process Execution Language for Web Services version 1.1 specification,
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

30. Tillmann, N., de Halleux, J.: Pex - White Box Test Generation for.NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

31. PLASTIC tools homepage, http://plastic.isti.cnr.it/wiki/tools
32. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.

Software—Concepts and Tools 17(3), 103–120 (1996)

Towards a Formal Framework for
Workflow Interoperability

Sarah D. Induruwa Fernando and Andrew C. Simpson

Oxford University Computing Laboratory
Parks Road, Oxford OX1 3QD, UK

{Sarah.Fernando,Andrew.Simpson}@comlab.ox.ac.uk

Abstract. As the importance of workflow languages increases in both
commercial and scientific application domains, requirements to verify
properties of workflows, and compositions thereof, will start to emerge. A
lack of formal foundations for workflow languages means that construct-
ing and reasoning about such compositions is currently an impossible
task, thereby limiting the potential for their assured execution within
service-oriented contexts. To this end, we present a language with formal
foundations to act as an intermediary in facilitating build-time interop-
erability by the transformation of legacy workflows.

1 Introduction

The lack of a standard process interchange format between workflow defini-
tion languages (WDLs) makes the provision of interoperability between these
languages difficult. In [1] we highlighted the importance of enabling workflow
interoperability during the build-time of a workflow to promote re-use and col-
laboration between end-users; we distinguished between interoperability when
the workflow is built and when it is run. The advantage of build-time interop-
erability is that users can also modify workflows according to their needs before
submitting them for execution. Furthermore, they do not need to reproduce (or
have access to) the other WDL’s infrastructure to be able to reuse workflows.
In this paper we take initial steps towards the provision of such interoperability
by introducing an Intermediate Workflow Representation Language (IWRL).

Workflow design involves defining the structure of a workflow by connecting
different activities to produce a workflow definition. Using basic constructs, such
as sequence, parallelism, choice, and, in some cases, iteration, it is possible to
capture complex patterns. While business-oriented WDLs typically support a
rich set of control flow constructs with control flow defined implicitly within
a model, scientific workflows tend to be data-driven with the need to handle
complex data structures, which may need manipulation during design stage.

We define an IWRL workflow to include a collection of coordinated activities,
consisting of ‘atomic activities’, which represent a single step within a workflow,
and ‘control activities’, which form the workflow execution model. One of the
key features of the execution model is that control activities can be combined
and nested within each other to make complex arbitrary flow patterns.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 158–174, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards a Formal Framework for Workflow Interoperability 159

Input data Output data

MoML:
DICOM to
ANALYZE
conversion

SCUFL:
Produce

raw images

SCUFL:
Anonymise

data

SCUFL:
Brain

extraction,
image

 normalisation,
segmentation

Fig. 1. A composite workflow

In Section 2 we discuss the motivation for our work. In Section 3 we introduce
the syntax and the semantics of the IWRL. In Section 4 we illustrate how the
IWRL can facilitate interoperability. Finally, in Section 5 we summarise our
contribution and outline potential areas of future work.

2 Motivation

The primary motivation for our work is enabling the reuse and composition of
pre-existing workflows. Consider, for example, Figure 2, which illustrates a com-
posite workflow. Here, a user wishes to analyse a set of MRI images, consisting
of a combination of DICOM1 and ANALYZE2 file formats. The workflow sys-
tems interoperating in this scenario are Taverna [2] and Kepler [3], which are
the engines for the SCUFL3 and MoML [4] WDLs respectively. The user aims to
segment the brain and calculate the volumes of the white, grey and cerebrospinal
fluid (CSF) matter. Each step is achieved using the service implementations of
image processing algorithms, either used directly or as activities of partial work-
flows that make up the overall workflow, with each component being defined in
one of MoML or SCUFL. Assuming that the user is on the Kepler system with
a library of existing workflows, the workflow consists of the following steps:

1. Ensure that all images are in ANALYZE format (MoML workflow fragment).
2. Produce raw images by checking for correct orientation settings and image

attributes, and applying inhomogeneity corrections on images to correct site-
specific image distortions (SCUFL workflow fragment).

3. Anonymise data by header stripping, face and ear stripping and removing
unwanted attributes from data sets (SCUFL workflow fragment).

4. Separate out the brain and skull tissue from images, using the Brain Ex-
traction Tool (BET) [5] (SCUFL workflow fragment). In parallel to brain
extraction, brain normalisation is done.

5. Segment the brain and calculate each segment’s volume (SCUFL workflow
fragment).

While SCUFL and MoML are both data-driven WDLs, they vary consider-
ably in terms of expressive power. In MoML, the semantics of the interactions

1 See http://medical.nema.org/
2 See http://www.mayo.edu/bir/PDF/ANALYZE75.pdf
3 See http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html

160 S.D. Induruwa Fernando and A.C. Simpson

between services can be specified using a ‘director’ component: different types
of directors exist which can be attached to a MoML workflow to produce the
required behaviour of the model. In SCUFL, there is only one semantic model for
the behaviour of activities, which is built into the programming model of SCUFL
processors. Moreover, MoML allows the user to specify workflows with a finer
granularity than SCUFL does (such as expressive conditional statements) where
the user has more control over specifying complex data flow and control flow
constraints between workflow components. In general, SCUFL and MoML work-
flows follow a similar structural pattern, and include: environmental information
(e.g. URIs pointing to external services and applications required); task-based in-
formation that make up activities in a workflow; and link definitions forming a
high level view of the topology of a workflow. Unlike in scientific workflows, there
is limited desire for re-using business workflows due to privacy issues. Neverthe-
less, there is an increasing need for integrated approaches for modelling business
processes, as businesses take part in virtual enterprises collaborating with one
another by sharing data and exchanging process models. As such, although our
work is being driven by examples from the scientific community, we would argue
that it has applicability in other contexts.

During the composition of workflow fragments that have been transformed to
the target WDL, we need to ensure that no redundancies and other unwanted
anomalies have been introduced to the resulting model. For example, mismatched
datatypes of the workflow fragments that are being composed will cause problems
in the overall composition and it has to be ensured that inputs and outputs of the
activities being plugged are directly compatible. Using formal constraints, there
is the potential for possible discrepancies to be detected in advance. Furthermore,
we need to check for equivalence once a workflow has been translated to the
target WDL, which may be achieved by checking for equivalent post-conditions.
While consideration of issues such as these is a key concern of our work, our
focus in this paper is exclusively on the design of the intermediate WDL.

3 The IWRL

The basic structure of the IWRL is divided such that there is a separation be-
tween computation and coordination, with the following elements being included
in a workflow definition: a set of atomic activities that perform computations
and are to be coordinated, e.g. external software components such as web ser-
vices or local applications such as Java programs; a set of control activities that
define the coordination and interdependencies between activities, specifying the
overall execution model of the workflow; and a data layer that captures the flow
of data between workflow activities and workflow inputs and outputs.

Capturing this information, an IWRL workflow is a combination of: imported
elements that may include external activity definitions and existing workflow
definitions, inputs and outputs comprising its interface definition, an execution
model, and an optional set of properties.

Towards a Formal Framework for Workflow Interoperability 161

〈workflow〉 ::= “workflow” 〈id〉 “{” 〈imports-list〉?
〈interface-definition〉
〈execution-model〉
〈properties-list〉? “}”

3.1 The Computational Model

The computation component of an IWRL workflow consists of a set of specifi-
cations of atomic activities and an optional set of sub-workflows. A number of
basic elements assist in defining the main workflow components, including: iden-
tifiers, which are used to uniquely identify each component (within the context
of a single namespace); datatypes, which may be primitive (integers, etc.) or
structured (lists, etc.); and properties, which describe attributes of components.
Furthermore we provide a datatype-name description to name primitive datatypes
literally, to define the binding datatype of inputs/outputs and ports.

〈datatype-name〉 ::= “integer” | “real” | “boolean” | “string”

A workflow and an activity interact with external entities via interface defini-

tions, which consist of ports and parameters. Ports act as data containers and
only bind to data values during run-time, whereas parameters give an activ-
ity context-specific information and are used to configure the operation of an
activity. Their values are fixed at build-time.

〈interface-definition〉 ::= “interface” “{” 〈ports-list〉+ 〈parameters-list〉∗ “}”

The need to operate on large sets of data in scientific workflows is addressed
in the IWRL by allowing the passing of data by reference using file identifiers,
where the file type is given by its extension. Small data sets are passed by value,
which can be in one of the supported datatypes.

〈transfer-strategy〉 ::= “transfer” 〈by-value〉 | 〈file-path〉
〈by-value〉 ::= “type” “=” “byvalue” “(” 〈datatype-name〉“)”;
〈file-path〉 ::= “type” “=” “file” “(” 〈extension〉“)”;

Ports act as the external interface of workflows and activities. The two vari-
eties of port—input and output— both have associated globally unique identi-
fiers. Input port values can be specified by the data-source attribute which refers
to either an output port of an activity, a data set, or a reference to a data
file; output ports of control activities and workflows have a data-source attribute,
while those of atomic activities do not. As such, we include the port-type element
to determine which type of entity a port belongs to. In addition, a port may
contain an optional set of properties.

We model a data source as an expression, as, for certain control activities (such
as if-conditions with a conditional set of activities), it cannot be determined at
build-time which port of which activity will be the actual data source.

162 S.D. Induruwa Fernando and A.C. Simpson

〈data-source〉 ::= 〈expr〉
〈port-type〉 ::= “activity-port” | “workflow-port” | “control-activity-port”

A data source, called the iterating-value, is defined for iterating values; this
represents the data made available during an iteration, and is transferred to the
input port of the iterative activity. The iterating value is given by an identifier
that refers to an activity port; this is an optional element of an input port.

〈iterating-value〉 ::= “iterating-value” “{” 〈id〉?“;” “}”

The complete port description takes the following form:

〈input-port〉 ::= “input” 〈id〉 “{” 〈port-type〉 “;”

〈transfer-strategy〉 “;”

〈data-source〉 “;”

〈iterating-value〉 ? “;”

〈properties-list〉 ? “;”“}”
〈output-port〉 ::= “output” 〈id〉 “{”〈port-type〉 “;”

〈transfer-strategy〉 “;”

〈data-source〉 ? “;”

〈properties-list〉 ? “;”“}”
〈ports-list〉 ::= “ports” “{” 〈input-port〉+ 〈output-port〉+ “}”

Parameters give a workflow or an activity context-specific information, and
are used to configure their operation. Their values are configured at workflow
build-time, and do not change during the workflow’s execution.

〈parameter〉 ::= 〈id〉 “{” “type” “=” 〈datatype-name〉 “;”

“value” “=” 〈value〉 “;”

〈properties-list〉“;” “}”
〈parameters-list〉 ::= “parameters” “{” 〈parameter〉+ “}”

We define two types of activities: ‘atomic activities’, which represent a single
step of execution within a workflow, and ‘control activities’, which are constructs
used to create the control flow model of a workflow.

〈activity〉 ::= 〈atomic-activity〉 | 〈control-activity〉

There are different types of atomic activities, depending on the functionality
they model. An activity has a globally unique identifier, an activity type, a set
of input and output ports, and optional sets of parameters and properties.

〈activity-type〉 ::= “data-transformation” | “web-service” | “local-app” | “user-action”

〈atomic-activity〉 ::= “activity” 〈id〉 “{” “type” “=” 〈activity-type〉 “;”

〈interface-definition〉
〈properties-list〉? “}”

Towards a Formal Framework for Workflow Interoperability 163

3.2 The Execution Model

The execution model consists of a set of control activities:

〈execution-model〉 ::= “{” 〈control-activity〉+“}”
When defining control flows, control activities make use of expressions in order

to specify conditional statements, make comparisons, etc. (We omit the definition
of expressions for reasons of brevity.)

Control activities are used to coordinate the execution of activities. Each
defines a unique control construct as shown below.

〈command-name〉 ::= “seq” | “par” | “if” | “while”

The interface definition and the optional set of properties follow the same
pattern as those of atomic activities and workflows. In addition, a control activity
contains a body which describes its behaviour and coordination capabilities.
One of the key features of the execution model is that control activities can be
combined and nested within each other to make complex arbitrary flow patterns.

The sequence activity indicates the sequential execution of a set of atomic
or control activities. While the linked data input/output ports of the different
activities define the data flows, the list of activities within the sequence activity
specifies their sequential execution.

〈activity-list〉 ::= “activities” “{” 〈activity〉+“}”
〈sequence〉 ::= “seq” 〈id〉 “{” 〈interface-definition〉 〈activity-list〉 “}”

The parallel activity indicates the parallel execution of two or more work-
flow paths, where a path consists of a list of activities ordered by the execution
sequence.

〈path〉 ::= “path” “{” 〈activity-list〉“}”
〈parallel-paths〉 ::= 〈path〉 〈path〉 〈path〉∗
〈parallel〉 ::= “par” 〈id〉 “{” 〈interface-definition〉 〈parallel-paths〉“}”

Conditional workflow paths can be defined using the if-condition activity. The
conditions are represented as expressions and the possible execution paths are
given similarly to those of a parallel activity, with the difference being that only
paths that satisfy the condition will be executed.

〈if-condition〉 ::= “if” 〈id〉 “{” 〈interface-definition〉
“condition” “{” 〈expr〉 “}” “{” 〈path〉 “;” “}”

(“else-if” “{” “condition” “{” 〈expr〉 “}” “{” 〈path〉 “;” “}” “}”) ∗

“else” “condition” “{” 〈expr〉 “}” “{” 〈path〉 “;” “}”
The while–do activity enables the repeated execution of a specified activity or

a sub-workflow zero or more times.

〈while-do〉 ::= “while” 〈id〉 “{”
〈interface-definition〉
“condition” “{” 〈expr〉 “}” “{” 〈path〉 “;” “}”

164 S.D. Induruwa Fernando and A.C. Simpson

3.3 Formalisation

We now give formal definitions of the language components, to ensure that work-
flows are well-formed and consistent, using the Z formal description language
(see, for example, [6] and [7]). In the short term, the intention is that our for-
mal semantics will give confidence in transformations; in the longer term, the
intention is that our formal semantics will allow us to reason about properties
of workflow compositions. Throughout the paper, we present schema definitions
in the following format:

Name =̂ [declaration | predicate]

We treat identifiers and datatypes as opaque objects via the use of basic
types.

[Identifier , Char , String , Integer , Real]
String == seqChar
DataType ::= IntegerType | StringType | BooleanType | RealType
Boolean ::= true | false

Properties map identifiers to values:

Value ::= IntegerValue | StringValue | BooleanValue | RealValue | IdentifierValue
Properties == Identifier �→ Value

Ports and parameters are modelled as follows:

Port =̂ [name : Identifier ; dataSource : Identifier ;
dataType : DataType; properties : Properties]

Parameter =̂ [name : Identifier ; dataType : DataType;
value : Value; properties : Properties]

With these definitions in place, we can now define a schema to represent an
interface definition of a component, with constraints to ensure that inputs and
outputs of a component are mutually exclusive, and that the name of each input,
output and parameter matches its key.

InterfaceDef =̂
[inputs, outputs : Identifier �→ Port ; parameters : Identifier �→ Parameter |

dom inputs ∩ dom outputs = ∅ ∧
∀ id : dom parameters • (parameters id).name = id ∧
∀ id : dom inputs • (inputs id).name = id ∧
∀ id : dom outputs • (outputs id).name = id]

A data link denotes the connection between a workflow input/activity output
port and a workflow output/activity input port, resembling the flow of data
through the workflow. It has a name, a source and a target. Since the IWRL
allows iteration of activities we do not impose the restriction of a link connecting
an activity to itself.

DataLink =̂ [name, source, target : Identifier | name �= source ∧ name �= target]

Towards a Formal Framework for Workflow Interoperability 165

An atomic activity is modelled as follows.

AtomicActivity =̂ [name : Identifier ; type : ActivityType; InterfaceDef]

Here the type of an activity can be a web service, a local application or another
type of supported type.

ActivityType ::= webservice | localapp | . . .

The body of a workflow consists of the coordination of activities, defined
using combinations of the four basic control activity types. First, a definition for
an execution path is given as a sequence of identifiers; as a path cannot contain
multiple instances of a the same activity, the sequences are injective.

Path == iseq Identifier

Sequential execution of activities ensures that the source activity of a data
flow link completes execution prior to the start of the target activity; paral-
lel execution of activities with synchronisation includes a set of activities that
represent the parallel paths of execution.

Sequence =̂
[InterfaceDef ; name : Identifier ; executions : Path; dlinks : PDataLink |

∀ dl : dlinks • executions∼(dl .target) = executions∼(dl .source) + 1]
ParallelWithSync =̂ [InterfaceDef ; name : Identifier ; activities : P Identifier]

In a conditional execution, the trueActivity executes if the conditional ex-
pression evaluates to true, the falseActivity otherwise. These identifiers may
represent atomic or control activities. Nested if-statements can be supported by
referring to further if-condition structures from the conditional paths.

IfCondition =̂ [InterfaceDef ; condition : Expression;
name, trueActivity , falseActivity : Identifier]

The while–do loop takes the form of a structured iteration, where if the
loopCondition holds, the loopBody is executed iteratively until the condition
fails to hold.

Loop =̂ [InterfaceDef ; name, loopBody : Identifier ; loopCondition : Expression]

Using the above definitions, an activity can be defined as a free type:

Activity ::= atomic〈〈AtomicActivity〉〉 | seq〈〈Sequence〉〉
| par〈〈ParallelWithSync〉〉 | if-condition〈〈IfCondition〉〉 | while〈〈Loop〉〉

Taken together, the structure of an IWRL workflow contains the following:

1. A set of inputs and outputs, defined within the InterfaceDef schema.
2. A sequence of identifiers that represent the executions of the workflow (these

are the top level control activities). This order of execution is sequential,
with control activities hiding the complex control flows. An execution is an
instance of one of the workflow’s activities which is executed atmost once.

166 S.D. Induruwa Fernando and A.C. Simpson

3. A set of dataflow links that form connections between activity elements.
4. The entire set of activities that the workflow graph is made up of (this

includes the activities inside top level control activities).

To ensure that a workflow is valid, we impose several structural constraints
upon it. In ValidLinkSources , we specify that if a dataflow link starts at a work-
flow input, and ends at a top level workflow activity, then the connecting ports’
datatypes should match (for reasons of space, we omit the constraint part of the
schema). A ValidLinkTargets schema is defined similarly.

ValidLinkSources =̂
[InterfaceDef ; executions : seq Identifier ; dataLinks : PDataLink | . . .]

Finally, an IWRL workflow can be defined as follows.

IWRLWflow =̂
[InterfaceDef ; executions : seq Identifier ; dataLinks : PDataLink ;

activities : Identifier �→ Activity ; properties : Properties |
ran executions ⊂ dom activities ∧

ValidLinkSources ∧ ValidLinkTargets]

3.4 Dynamic Semantics

We model the execution semantics of the IWRL as a chain of states that a
workflow goes through. At each transition, the overall state of the workflow
consists of sets of activities that are in different states. The next state is decided
from the possible state changes that are offered to the system. The state of a
workflow at a particular point in time can be expressed as a combination of a
set of activities that are ready to execute, a set of activities that are already
executing, and a set of activities that have completed execution.

WflowState =̂
[ready , running , completed : P Identifier |

∀ x , y : {ready , running , completed} | x �= y ∧ x ∩ y = ∅]

We regard atomic activities as black boxes whose internal structures are
not visible. Therefore we consider only the conditions that govern the start of
activities, and do not model their intermediate execution states.4

ActivityState ::= ready | running | completed

Both atomic and control activities go through state changes during the work-
flow life cycle, and each time such a change in state occurs, the overall workflow
state is updated accordingly. The StateChange function captures this behaviour,
by updating the relevant sets in the new workflow state. For instance, the change
of state from running to complete is achieved by removing the activity from the
4 It is also possible, although we do not do so in this presentation, to consider failed

and cancelled activity states.

Towards a Formal Framework for Workflow Interoperability 167

running set and adding it to the complete set of the new workflow state. An ac-
tivity is initially in the ready state, and changes to the running state only when
data becomes available. Due to space limitations, we present only the signature
of this function.

StateChange : (Identifier × ActivityState ×WflowState) →WflowState

As an example, a workflow with a current state ws0, with activity A running
will give state ws1 at the completion of activity A, as a result of applying the
StateChange function.

ws0 = 〈|ready{B , C}, running � {A}, complete � ∅|〉

StateChange(A, running,ws0))

ws1 = 〈|ready{B , C}, running � ∅, complete � {A}|〉

Given a workflow definition in the IWRL and the initial state of a workflow,
the IWRLSem function describes how the workflow proceeds to execute when
presented with a sequence of control activities. Initially, all activities within
the workflow are in the ready state. The workflow execution model consists of a
sequence of control activity identifiers, and the execution would start at the head
of the sequence. This function calls ExecSem (defined below), which recursively
calls itself when activities change state.

IWRLSem : (IWRLWflow ×WflowState) →WflowState

∀w : IWRLWflow ; s : WflowState •
IWRLSem(w , s) =

ExecSem(w .executions, w ,StateChange(head w .executions, ready, s))

As a simple example, consider a sequential workflow consisting of two atomic
activities, A and B , which are in the ready state at the beginning of the workflow
execution. The executions attribute of the workflow contains a single element,
sq01, which is in the ready state initially. The initial workflow state that is fed
into the IWRLSem function is ws0, shown below:

ws0 = 〈|ready{sq01, A,B}, running � ∅, complete � ∅|〉
IWRLSem(iw ,ws0) = ExecSem(〈sq01〉, iw ,StateChange(sq01, ready,ws0))

As a result of the StateChange function being applied to the sq01 activity,
it is changed to the running state. ExecSem operates on this new workflow
state. ExecSem is recursively called when traversing the executions sequence,
and each subsequent state of the workflow is calculated upon the current state
of the workflow. The function ActivitySem performs the changes in state for each
activity by calling the StateChange function, in such a way that resembles the
execution of a workflow in terms of state transitions.

168 S.D. Induruwa Fernando and A.C. Simpson

ExecSem : (seq Identifier × IWRLWflow ×WflowState) → WflowState

∀ exec : seq Identifier ; iw : IWRLWflow ; ws,ws ′ : WflowState •
ExecSem(exec, iw ,ws) = if exec = 〈〉 then ws

else (if head exec ∈ ws.completed then ExecSem(tail exec, iw ,ws)
else (if head exec ∈ ws.running then

ExecSem(tail exec, iw ,
ActivitySem(iw .activities (head exec), running, iw ,ws))
else (if head exec ∈ ws.ready then

ExecSem(exec, iw ,
ActivitySem(iw .activities (head exec), ready, iw ,ws))

else ws)))

ActivitySem : (Activity × ActivityState × IWRLWflow ×WflowState) →
WflowState

∀ a : AtomicActivity ; s : ActivityState; iw : IWRLWflow ; ws : WflowState •
ActivitySem(atomic(a), s, iw ,ws) = StateChange(a.name, s, ws)

∀ sq : Sequence; s : ActivityState; iw : IWRLWflow ; ws : WflowState •
ActivitySem(seq(sq), s, iw ,ws) =

if s = ready then StateChange(sq .name, s,ws)
else (if s = running then StateChange(sq .name, s,

ExecSem(sq .activities, iw ,ws)) else ws)
∀ p : ParallelWithSync; s : ActivityState; iw : IWRLWflow ;

ws, ws ′ : WflowState • ActivitySem(par(p), s, iw ,ws) =
if s = ready then StateChange(p.name, s, ws)
else (if s = running then StateChange(p.name, s,

ParSync(p, iw ,ParStart(p.activities, iw ,ws))) else ws)
∀ if : IfCondition; s : ActivityState; iw : IWRLWflow ; ws : WflowState •

ActivitySem(if-condition(if), s, iw ,ws) =
if s = ready then StateChange(if .name, s, ws)
else (if s = running then StateChange(if .name, s,

IfEval(if , iw ,ws)) else ws)
∀ lp : Loop; s : ActivityState; iw : IWRLWflow ; ws : WflowState •

ActivitySem(while(lp), s, iw ,ws) =
if s = ready then StateChange(lp.name, s,ws)
else (if s = running then StateChange(lp.name, s,

LoopEval(lp, iw ,ws)) else ws)

ActivitySem is the core function that defines the semantics of different types
of activities, and is called recursively from within control activities. For an
atomic activity, given its current state, the subsequent state is derived using
the StateChange function. All control activities are in the ready state when they
receive execution control; they then change to the running state.

A sequence activity starts simulating the execution of the sequence of ac-
tivities it contains, one after the other. Once the last activity in the sequence
has completed, the control activity changes state from running to complete, and

Towards a Formal Framework for Workflow Interoperability 169

returns the workflow state on completion. Once a parallel activity starts exe-
cution, the set of activities that are to be executed in parallel are input to the
ParStart function, which ensures that all activities in the ready state are now
being executed simultaneously. As the parallel construct requires synchronisa-
tion of activities, the ParSync function is called, which operates on the resulting
state of the workflow that is returned by the ParStart function. Once all of the
activities have completed, the control activity changes state from running to
complete, and returns the workflow state on completion. We give the signatures
of ParStart and ParSync below.

ParStart : (P Identifier × IWRLWflow ×WflowState) →WflowState
ParSync : (ParallelWithSync × IWRLWflow ×WflowState) →WflowState

A conditional expression is evaluated using the IfEval function, where the corre-
sponding activities are executed depending of the result; the ActivitySem func-
tion is called to process the conditional activities.

IfEval : (IfCondition × IWRLWflow ×WflowState) →WflowState

The LoopEval function is called (recursively) from a Loop activity that is in
the running state until the loopCondition evaluates to false. Again, we present
only the signature of this function.

LoopEval : (Loop × IWRLWflow ×WflowState) →WflowState

4 Achieving Interoperability via the IWRL

Achieving interoperability via the IWRL consists of two parts, the first being the
transformation of the computational model of a workflow by mapping activity
descriptions. While direct mappings may not exist at all times, we show how
the IWRL can be utilised to help identify and match semantic correspondences
between workflow concepts. The second part of the transformation process in-
volves mapping the workflow topology from the source to the target model.
Unless the transformations are between two control-driven WDLs, perfoming a
direct transformation becomes more complex when dealing with a dataflow-based
language and a control-flow based language. SCUFL and MoML are examples
of predominantly dataflow-oriented WDLs, where the order of execution of ac-
tivities depends on the availability of data. For such WDLs to be interoperable
with control-flow based WDLs such as WS-BPEL, their workflows need to be
adapted such that they include explicit control-flow structure embedded into
their definitions.

4.1 Transformation of the Computational Model

Figure 2 illustrates the transformation of a web service activity definition in
SCUFL to the corresponding actor in MoML via the IWRL. The direct transla-
tions are mostly syntactic, and it shows how the WSDL URL of the web service
and the operation name are transported across to the target language.

170 S.D. Induruwa Fernando and A.C. Simpson

Fig. 2. Translation from a SCUFL processor to a MoML actor

 <wsdl>
 "http://../service.wsdl";
 </wsdl>

 type=string;

parameter{
 wsdlURL{

 value="http://../service.wsdl";
 }
 }

<property name="wsdlUrl"

</property>
 class="ptolemy.data.expr.StringParameter"

SCUFL

MoML

name: Identifier
dataType: DataType
value: Value
properties: Properties

Parameter

IWRL

IWRL - Z model

Fig. 3. IWRL allows to capture implicit information within candidate WDLs

In general, not every concept pertaining to a workflow is explicitly modelled
as a first-class citizen by every workflow language. Certain concepts may be
hidden or merged to be used in combination with other elements. Therefore, it
is necessary to capture such implicit information from the candidate WDLs to
ensure the completness and correctness of transformations between two WDLs.
The example in Figure 3 shows how the formal specifiation of the IWRL in Z
can be utilised to capture information that is hidden within the source work-
flow elements, to be transported across to the target workflow. The goal in this
example is to map the WSDL location of a web service activity in SCUFL to
the corresponding element in MoML. The transformation via the IWRL cap-
tures the WSDL location as a parameter of the web service activity, with its

Towards a Formal Framework for Workflow Interoperability 171

Fig. 4. Translation of sequential execution from MoML to SCUFL

datatype being assigned to ‘string’. While this piece of information is not explic-
itly given in the SCUFL definition, it is required by MoML. The transformation
from SCUFL to MoML via the IWRL will introduce this piece of data, enabling
a simple transformation from the type attribute in the IWRL parameter and
class attribute in a MoML <property> element.

In order to carry out transformations between languages, we need to identify
and match semantic correspondences. Using Z, it is possible to formally define
the elements of the IWRL such that when performing transformations, it allows
one to clearly distinguish and reason about corresponding features between a
candidate WDL and the IWRL. In the example given in Figure 3, it is shown how
the WSDL location in SCUFL is categorised as a parameter by the IWRL during
the transformation. This makes it possible to apply a direct transformation from
the IWRL to MoML by mapping the parameter element in the IWRL to a
<property> element in MoML, as they represent the same concept.

4.2 Transformation of the Workflow Topology

While there have been a number of developments in achieving interoperability
between control flow oriented WDLs, no focus has been given to the transforma-
tion between dataflow-based WDLs and control flow based WDLs. We intend to
fill this gap by utilising the IWRL.

Step 3 of our scenario was concerned with anonymising the data, and consisted
of a sequential execution of two activities that perform the stripping of image
headers, followed by the stripping of face and ear parts of an image. Figure 4
presents the corresponding Sequence activity in the IWRL, which is created after
having identified this sequential connection using the data links in the MoML
script, and the result of converting the IWRL script to its SCUFL version to
produce the two sequentially connected processors. A conditional execution can
be mapped to the ‘if-condition’ control activity of the IWRL; there is no direct

172 S.D. Induruwa Fernando and A.C. Simpson

construct for the conditional execution of activities in SCUFL. The combination
of two processors, Fail if true and Fail if false, can be used to implement con-
ditional branching in a workflow. Depending on their Boolean input value, these
processes fail or succeed, whereby the relevant branch is enabled for execution.

Currently, we are developing an algorithm to create the specific IWRL con-
structs while traversing the source workflow graph. For each activity in the
workflow we compute the set of predecessors that each activity is connected to
by either data links or control links. Then, we now look at how, by detecting
such dependencies, we can produce control flow structures within a workflow.
For example, the top-level activities of a workflow which return empty prede-
cessor sets denote start activities. The existence of more than one start activity
represents concurrency, where each starts an independent thread of execution.
In the IWRL, this is captured using parallel paths in a parallal activity.

5 Discussion

Various efforts have been made to model workflows and workflow languages for-
mally, with [8], [9], [10] and [11] being prime examples; our focus here, though,
is interoperability. The Wf-XML specification5 recommends the establishment
of an ‘interoperability contract’ between participating workflow systems, which
states the communication protocol and details of the interoperating scenario.
Here, interoperability is achieved at run-time using a set of API calls to invoke ex-
ternal tasks on the remote workflow system, such as creating, modifying or query-
ing a workflow instance; our focus, though, is on build-time interoperability—with
a view to providing assurances to users and designers prior to execution. Other
efforts at achieving build-time interoperability include that of [12], which at-
tempts to derive a consolidated schema that encompasses a superset of concepts
present in existing WDLs, and [13], which translates workflows with aribitrary
topologies written into WS-BPEL.6

Our approach for facilitating build-time interoperability involves the devel-
opment of an intermediate language—the IWRL—to allow for translation and
(in the longer term) analysis of compositions. The main benefit of our approach
is that it enables users to compose a variety of existing workflows, regardless of
their underlying WDL, without a need to learn a new WDL or use a new tool.
This paper implements a majority of the functional requirements listed in our
previous work [1], including control flow, data flow and support for web services.
The level of expressibility of the IWRL will be determined later, by analysing
its control flow support based on the 20 workflow patterns.

Despite various attempts to standardise WDLs, achieving interoperability
among existing ones has proven to be a significant research challenge. The 20
workflow patterns described in [14] are widely accepted as the benchmark for
comparing different workflow languages’ control flow aspects. In our approach,
a set of primitive control flow constructs with a mechanism to define new, more
5 See www.wfmc.org/standards/docs/WfXML20-200410c.pdf
6 See http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

Towards a Formal Framework for Workflow Interoperability 173

complex constructs for user-defined compositions is provided, rather than build-
ing these patterns into the IWRL itself. This is in contrast to the YAWL lan-
guage [15], which has been created to specifically support the workflow patterns.
Using Z, we have given formal definitions of language components to ensure that
workflows are well-formed and consistent. While process algebraic notations have
the potential to provide the ability to model the actual behaviour of a workflow
and allow the formal verification of the behavioural aspects of a workflow, it is
the consideration of the complex structural aspects that underpin WDLs that
is our concern here: hence the utilisation of Z. The dynamic semantics of the
IWRL are modelled as a chain of state transitions that a workflow goes through.
Functions define the outcome of a given control flow construct within a workflow
as a chain of possible state changes in the activities contained within it.

Having defined an intermediate format, we have given brief examples of trans-
formations between certain constructs of two WDLs. This has been undertaken
a proof of concept to validate the initial version of the IWRL. Immediate future
work will focus on the creation of algorithms to translate the workflow topology
in an automated manner.

Acknowledgments. The work described in this paper is being funded by the
NeuroGrid project. We thank Dominic Job for his suggestion of the example in
Section 2.

References

1. Induruwa-Fernando, S.D., Creager, D.A., Simpson, A.C.: Towards build-time inter-
operability of workflow definition languages. In: Proc. of the 9th Int’l Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (2007)

2. Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Greenwood, R.M., Carver, T.,
Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

3. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M.,
Lee, E., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system:
Research articles. Conc. & Comp’n: Practice & Experience 18, 1039–1065 (2006)

4. Lee, E.A., Neuendorffer, S.: MoML: A Modeling Markup Language in XML, Ver-
sion 0.4. Technical report, University of California at Berkeley (March 2000)

5. Smith, S.M.: Fast robust automated brain extraction. Human Brain Mapping 17(3),
143–155 (2002)

6. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall Int’l, Englewood
Cliffs (1992)

7. Woodcock, J.C.P., Davies, J.W.M.: Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Englewood Cliffs (1996)

8. Eshuis, R., Wieringa, R.: A formal semantics for UML activity diagrams - formal-
ising workflow models. Technical report, University of Twente (2001)

9. Stefansen, C.: SMAWL: A Small Workflow Language based on CCS. In: CAiSE
Short Paper Proc. (2005)

10. Wong, P.Y.H., Gibbons, J.: A Process-Algebraic Approach to W’flow Specification
& Refinement. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829,
pp. 51–65. Springer, Heidelberg (2007)

174 S.D. Induruwa Fernando and A.C. Simpson

11. Farrell, A., Sergot, M., Bartolini, C.: Formalising workflow: A CCS-inspired char-
acterisation of the yawl workflow patterns. Group Decision and Negotiation 16(3),
213–254 (2007)

12. Mendling, J.: Towards an integrated BPM schema. In: Proceedings of the 12th
CAiSE Doctoral Consortium (CAiSE DC), pp. 126–133 (2005)

13. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.: Translating Standard Process
Models to BPEL. In: CAiSE, pp. 417–432 (2006)

14. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

15. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language. Inf.
Systems 30(4), 245–275 (2005)

Security Types for Sessions and Pipelines

Marija Kolundžija

Dipartimento di Informatica, Università di Torino, Italy

Abstract. The growing importance of service-oriented computing has
triggered development of formal computational models for service de-
scription and orchestration. Several versions of the Service Centered Cal-
culus (SCC) and its successor, the Calculus of Services with Pipelines
and Sessions (CaSPiS) have emerged as outcome of those studies, and
are based on the notion of interaction patterns called sessions between
the service and the client who invokes it. We propose a security oriented
extension of Bruni and Mezzina’s typed variant of CaSPiS, where secu-
rity levels have been assigned to service definitions, clients and data. In
order to invoke a service, a client must be endowed with an appropriate
clearance, and once the service and client agree on the security level,
the data exchanged in the initiated session will not exceed this level. We
study a type system that statically ensures these security properties.

1 Introduction

Popularity of communication centered applications distributed over the web (web
services) has provoked urgent interest in the development of automatic tools to
assure safe uses of these applications. Service Oriented Computing (SOC) has
emerged as a new computational paradigm and various process calculi have been
designed to model service behaviour (see for example the references in [6]).

An interesting proposal is the Calculus of Services with Pipelines and Sessions
(CaSPiS) [6], which is a dataflow–oriented successor of the Service Centered
Calculus (SCC) [5]. In both these calculi communications can either follow fixed
protocols (session) or be disciplined data flows (pipelines).

The pipeline constructor of CaSPiS was first introduced in [15]. In [14], the
authors have proposed the session as a language construct for communication
based programming.

There are also various type disciplines for calculi originated from SCC [16,17]
and in particular for minor modifications of CaSPiS [1,8]. In both typed versions
of CaSPiS the communications between parallel processes are controlled by ses-
sion types, which are lightweight descriptions of protocols first used in [14]. The
typed versions of CaSPiS have safe communications, since they enjoy the subject
reduction and the progress property (formalized in [11,10]). Surprisingly, little
work has been done to address security issues in the session–type setting. The
authors of [4] have proposed correspondence assertions as means of control of
data propagation over multiple parties. However, to the best of our knowledge,
no notion of secrecy has been considered so far, and therefore no assurance that
private data will never become visible to unauthorized bodies can be given.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 175–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

176 M. Kolundžija

The present paper tries to fill this gap by building on well-known typing
techniques for controlling access rights [2,7,12,18,19,20]. To this aim we have
considered session types decorated by security levels and designed a type system
that guarantees both safe communications and data security.

Consider, for example, a service which keeps track of grades of a University
course. The name of the service is UnivRec, and it offers two possibilities of record
manipulation. A student (code guarded with level student) is allowed to access his
grade for a given course by sending the service his file–number (the StudentId)
and the number of the course (the CourseId), to which the service responds by
outputting his grade as a result of a function grade. Only a teacher (code guarded
with level teacher) can be allowed to update the grades by calling a service update,
which changes the grade records for the given student and course ID.

UnivRec. (student� ((check).(StudentId).(CourseId).〈grade(CourseId)〉
+(update).(StudentId).(CourseId).(grade).〈fail〉)�

teacher� ((check).(StudentId).(CourseId).〈grade(CourseId)〉
+(update).(StudentId).(CourseId).(grade).〈success〉.

update.〈CourseId〉.〈grade〉)
)

Assuming that the privileges of a student are less than those of a teacher, this
service should provide both the interface for a student and a teacher, rejecting
student’s attempt to update the grades (and in this example, informing him
of the failure), while when activated by the teacher, the update operation is
allowed, and the update service is activated on teacher’s behalf.

This paper is organized as follows: Sections 2 and 3 present the syntax, opera-
tional semantics and the type system of the language, illustrated by the example
given in Section 4. The properties of the language are stated with proof sketch
in Section 5. Then we briefly conclude.

2 Syntax and Operational Semantics

The present calculus is essentially the calculus of [8] enriched with security levels.
As usual [3,9] we assume a lattice of security levels: we use �, ı, κ to range over
security levels and %,!," to denote partial order, join and meet, respectively.

The syntactical constructs are listed in order of non-increasing precedence 1

in Figure 1. The nil process and the process constructors input, output, paral-
lel composition and matching have the standard meanings. Values (ranged over
by u, v, w) can be either basic values, variables, function calls, services or ses-
sion names. In well-typed processes only the first two kinds of values can be

1
More precisely the prefixes in lines 2-7 have the precedence over the constructors on
lines 8-11 and the remaining constructors have decreasing precedence, but for the
restrictions which have the same precedence.

Security Types for Sessions and Pipelines 177

Processes P,Q, R ::= 0 nil
| (x).P input
| 〈v〉.P output
| return v.P value return
| 〈l〉.P label choice
| s.P service definition
| v.P service invocation
|

∑n
i=1(li).Pi label–guarded sum

| ⊎n
i=1 i � Pi level–guarded sum

| � P framed process
| rp � P session
| P > x > Q pipe
| P | Q parallel composition
| if u = v then P else Q matching
| (ν s)P service restriction
| (ν r)P session restriction

Values u, v, w ::= b base value
| x variable
| f(v) function call
| s service
| r session

Polarities p ::= +,−

Fig. 1. Syntax, where syntax occurring only at runtime appears shaded

exchanged, while all kinds of values can appear in the conditions of pattern
matching.

A label choice selects one of the labels offered by a label-guarded sum. The
pipe constructor P > x > Q is inspired by [15]: a value from P replaces the
variable x in a freshly spawned copy of Q.

Service definitions are permanent: a new occurrence of the session body is
created when the service is called.

Characteristic of our approach to security are framed processes [7,12,18]: in
� � P the process P can exercise rights of security level not exceeding �. So a
service invocation � � s.P is well typed only if the security level � is not lower
than the security level of s. Framed processes are also necessary in order to
reduce level-guarded sums: an arbitrary branch whose level is less than or equal
to that of the current frame can be arbitrary chosen.

Service calls can be nested and the value return prefix allows to send a value
to the upper nesting level.

A session name has two polarized session ends, the client side − and the
service side +, one being dual to the other. At runtime fresh session names with
opposite polarities are generated and restricted. All communications of values
and labels are executed inside the scopes of the same session names with opposite
polarities.

We give the operational semantics by means of reduction rules (listed in
Figure 2), as proposed in the appendix of the technical report of the original
paper [8], instead of a labelled transition system as in the final version of [8]. In
this way we get less rules. We let m range over service and session names.

We use evaluation contexts with either one or two holes. The evaluation con-
texts with two holes are necessary in order to model the interaction between two

178 M. Kolundžija

(Inv) D[[� s.P , s.Q]]→ (ν r) D[[r− � � P, r+ � � Q | s.Q]]
r ∈ fn(D[[s.P , s.Q]])

(Com) Dr[[(x).P , 〈v〉.Q]]→ Dr [[P [v/x], Q]]
(Lcom) Dr[[

∑n
i=1(li).Pi, 〈lk〉.Q]]→ Dr [[Pk, Q]]

(Ret) Dr1 [[(x).P ,Crp [[return v.Q]]]]→ Dr1 [[P [v/x],Crp [[Q]]]]
(Pipe) C[[〈v〉.P > x > Q]]→ C[[P > x > Q | Q[v/x]]]
(PipeRet) C[[Crp [[return v.P]] > x > Q]]→ C[[Crp [[P]] > x > Q | Q[v/x]]]
(IfT) C[[if u = v then P else Q]]→ C[[P]] (u = v) ↓ true
(IfF) C[[if u = v then P else Q]]→ C[[Q]] (u = v) ↓ false
(LevSel) C[[� ⊎n

i=1 i � Pi]]→ C[[� Pi]] if i �
(Scop) P → P ′ ⇒ (ν m)P → (ν m)P ′

(Str) P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q ⇒ P → Q

Fig. 2. Reduction Rules

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) � 0 ≡ 0
(ν m) (ν m′)P ≡ (ν m′) (ν m)P ((ν m)P) | Q ≡ (ν m) (P | Q) if m ∈ fn(Q)

((ν m)P) > x > Q ≡ (ν m) (P > x > Q) if m ∈ fn(Q) 0 > x > Q ≡ 0
(P | R) > x > Q ≡ (P > x > Q) | (R > x > Q)
 � (P > x > Q) ≡ (� P) > x > (� Q)

rp � � 0 > x > Q ≡ rp � � 0 (ν r) (r+ � � 0 | r− � � 0) ≡ 0
rp � � (P | rq

1 � ′ � 0) ≡ rp � � P | rq
1 � ′ � 0

Fig. 3. Structural Equivalence

processes. Moreover we express through contexts the condition that a process
is in the scope of some session name with a given polarity. More precisely we
define the following four kinds of evaluation contexts:

C ::= [[·]] | C | P | rp � C | C > x > P | � � [[·]]
Crp ::= rp � � � [[·]] | P
D ::= C[[C′ | C′′]]
Dr ::= D[[C′rp , C′′rp]] r �∈ fn(D)

In rule (Inv) a client of level � calls a service: the body of the client and a copy
of the body of the service are framed by the client level � and prefixed by two
occurrences of the freshly generated and private session name r with opposite
polarities.

In rules (Com) and (Lcom) two processes in the scopes of the same session
name with opposite polarities exchange values and labels, respectively. When
a label is received, the execution of the label-guarded sum continues with the
corresponding process.

Rule (Ret) allows the inner session (named r) to communicate the value v
to the outer session (named r1).

In rules (Pipe) and (PipeRet) a new parallel copy of Q is created: in this
copy the value v replaces the variable x. The difference between these rules is that
in the first one the value v is sent by an output prefix, while in the second one
the value v is sent by a return prefix that occurs in an inner session (named r).

Finally rule (LevSel) non deterministically chooses a process whose security
level is less than or equal to the level of the current frame.

Security Types for Sessions and Pipelines 179

T, U ::= end (no action)
| ?(S�).T (input of a value)
| !(S�).T (output of a value)
| &{l1 : T1, . . . , ln : Tn} (external choice)
| ⊕{l1 : T1, . . . , ln : Tn} (internal choice)
| �{�1 ∝ T, . . . , �n ∝ T} (level choice)

S� ::= [T]� (session type)
| B� (basic type)

Fig. 4. Syntax of Types

end ¨ end

?(S�).T ¨ !(S�).T
!(S�).T ′ ¨ ?(S�).T ′

⊕{l1 : T1, . . . , ln : Tn} ¨ &{l1 : T 1, . . . , ln : Tn}
&{l1 : T1, . . . , ln : Tn} ¨ ⊕{l1 : T 1, . . . , ln : Tn}
�{1 ∝ T, . . . , n ∝ T} ¨ T

Fig. 5. Duality Relation

I ⊆ {1, . . . , n}
&{l1 : T1, . . . , ln : Tn} ≤ &{li : Ti}i∈I

⊕{li : Ti}i∈I ≤ ⊕{l1 : T1, . . . , ln : Tn}
�{1 ∝ T, . . . , n ∝ T} ≤ �{i ∝ T}i∈I if ∃j ∈ I.j =

�
i∈I i

(1 ≤ i ≤ n) Ti ≤ T ′
i ⇒

{
&{l1 : T1, . . . , ln : Tn} ≤ &{l1 : T ′

1, . . . , ln : T ′
n}

⊕{l1 : T1, . . . , ln : Tn} ≤ ⊕{l1 : T ′
1, . . . , ln : T ′

n}

T ≤ T ′ ⇒

⎧⎨⎩ !(S�).T ≤!(S�).T ′

?(S�).T ≤?(S�).T ′

�{1 ∝ T, . . . , n ∝ T} ≤ �{1 ∝ T ′, . . . , n ∝ T ′}

Fig. 6. Subtyping Relation ≤

The remaining rules are standard. The structural equivalence is as usual, but
for the rules dealing with security levels and sessions. The last three rules are,
respectively, garbage collection of pipes of exhausted code, garbage collection
of exhausted sessions and pushing the exhausted nested session outside of the
scope of the parent session.

It is interesting to notice that CaSPiS mixes linear communication inside and
between sessions with non–linear communication due to the pipe construct.

3 Type System

The type system is a security annotated variant of the type system in [8], con-
sisting of sorts and session types.

180 M. Kolundžija

Γ, s : S� � s : S� (Service) Γ, x : S� � x : S� (Var)
τb ∈ B�

Γ � b : τb
�

(BasVal)

Γ � v(1) : S(1)
�1

. . . , Γ � v(n) : S(n)
�n

τb
ı ∈ B 1 � . . . � n � ı

Γ, f : S(1)
�1
× · · · × S

(n)
�n
→ τb

ı � f(v(1), . . . , v(n)) : τb
ı

(Fun)

Γ � 0 : end ∴⊥[end]⊥ (Nil)
Γ � P : U ∴ ı[T]κ Γ � v : [T ′]� T ′ ≤ T

Γ � v.P : end ∴⊥[U]κ���ı

(Inv)

Γ, x : S� � P : U ∴ ı[T]κ

Γ � (x).P : U ∴ ı[?(S�).T]κ��

(Inp)
Γ � P : U ∴ ı[T]κ Γ � v : S�

Γ � 〈v〉.P : U ∴ ı[!(S�).T]κ��

(Out)

Γ � P : U ∴ ı[T]κ Γ � v : S�

Γ � return v.P :!(S�).U ∴ ı��[T]κ
(Ret)

Γ � Pi : U ∴ ı[Ti]κi
(1 ≤ i ≤ n)

Γ �
∑n

i=1(li).Pi : U ∴ ı[&{l1 : T1, . . . , ln : Tn}]κ1�...�κn

(Branch)

l = li i ∈ {1, . . . , n} Γ � Pi : U ∴ ı[Ti]κi

Γ � 〈l〉.P : U ∴ ı[⊕{l1 : T1, . . . , ln : Tn}]κ1�...�κn

(Choice)

Γ � P : U ∴ ı[T]κ Γ, x : S� � Q : U ′ ∴ ı′ [T ′]κ′

pipe(U ∴ ı[T]κ, U ′ ∴ ı′ [T ′]κ′ , S�) = U ′′ ∴ ı′′ [T ′′]κ′′

Γ � P > x > Q : U ′′ ∴ ı′′ [T ′′]κ′′

(Pipe)

Γ � vi : S�i Γ � P : U ∴ ı[T]j Γ � Q : U ∴ ı[T]κ i � j � κ i = 1, 2

Γ � if v1 = v2 then P else Q : U ∴ ı[T]j�κ

(If)

Γ � Pi : U ∴ ı[T]κi
κi � i (1 ≤ i ≤ n) ∃j(1 ≤ j ≤ n).1 � . . . � n = j

Γ � ⊎n
i=1 i � Pi : U ∴ ı[�{1 ∝ T, . . . , n ∝ T}]�j

(LevSel)

Γ � P : U ∴ ı1 [T1]κ1 Γ � Q : U ′ ∴ ı2 [T2]κ2

Γ � P | Q : U ◦ U ′ ∴ ı1�ı2 [T1 �� T2]κ1�κ2

(Par)

Fig. 7. Typing Rules for Inner Processes

Security Types for Sessions and Pipelines 181

pipe(U ∴ ı[end]κ, U ′ ∴ ı′ [T ′]κ′ , S�) = U ∴ ı[end]κ
pipe(U ∴ ı[!(S�).end]κ, U ′ ∴ ı′ [T]κ′ , S�) = U ◦ U ′ ∴ ı�ı′ [T]κ�κ′

pipe(U ∴ ı[!(S�)h.end]κ, U ′ ∴ ı′ [end]κ′ , S�) = U ◦ U ′h ∴ ı�ı′ [end]κ�κ′ h > 1

Fig. 8. Function pipe

Γ � P : end ∴⊥[T]κ Γ � s : [T]� κ �

Γ �{s} s.P : end ∴⊥[end]κ
(ServDef)

Γ �S1 P : end ∴⊥[end]κ1 Γ �S2 Q : end ∴⊥[end]κ2

Γ �S1∪S2 P | Q : end ∴⊥[end]κ1�κ2

(TopPar)

Γ � P : end ∴⊥[end]κ κ �

Γ �∅ � P : end ∴⊥[end]�
(LevSign)

Γ, s : S �S,s P : end ∴⊥[end]κ

Γ �S (ν s)P : end ∴⊥[end]κ
(ServRestr)

Fig. 9. Typing Rules for Top Level Processes

Γ � P : U ∴ ı[T]κ κ � ı �

Γ, r : [T]� � r+ � � P : end ∴⊥[U]�
(Sess)

Γ � P : U ∴ ı[T]κ κ � ı � T ′ ≤ T

Γ, r : [T ′]� � r− � � P : end ∴⊥[U]�
(SessI)

Γ, r : S� � P : U ∴ ı[T]κ

Γ � (ν r)P : U ∴ ı[T]κ
(SessRestr)

Fig. 10. Typing Rules for Runtime Processes

Basic data types are decorated with their security levels (cf. [21]), and the
security levels appearing in annotation of sessions represent the join of the levels
of data manipulated inside the session by communication and activation.

A typing environment Γ is a finite partial mapping from variables, services
and sessions to sorts (i.e. session types and basic types) and function types. The
empty environment is denoted by ∅, and if u is a variable, a service or a session
name, then Γ, u : S is the extension with the binding of u to S, if u �∈ dom(Γ).
The extension for a function name with a function type is defined similarly.

The typing judgments have the form Γ * v : S for the values, and Γ *
P : U ∴ ı[T]κ for processes, where U is the output (sequence of outputs) of the

182 M. Kolundžija

process P to the parent session with the level ı, and T is the type of P ’s activities
in the current session, and κ is the level of values communicated in the current
session and in all of the nested sessions.

The rules (Service), (Var), (BasVal) and (Fun) are standard typing rules for
values. The rule (Fun) inserts an external function in the typing environment
while ensuring that the level of the function output is not less than the level of
its arguments.

The type end ∴ ⊥[end]⊥ of 0 (rule (Nil)) means that no action is performed
neither in the current nor in the parent session.

Rules for input and output of a value ((Inp), (Out)) add the performed action
to the current session type, and increase the level assigned to the current session
by the level of the communicated value. Rule (Ret) adds the output of a value
to the return sequence U , updating its level in a similar way.

Rules (Branch) and (Choice) for internal and external choice take the join of
levels of all the branches as the current session level. Rule (If) is the standard
conditional branching on the result of the comparison of two values, which does
not allow low–level branches to depend on high–level values in the choice.

Two parallel processes can both offer outputs to the parent session when
there is no way of distinguishing the outputs at the type system level. The
composition of outputs used in rule rule (Par) is defined as U ◦U ′ =!(S)h+k.end
if U =!(S)h.end and U ′ =!(S)k.end, i.e. U and U ′ are sequences of the same
output, and undefined otherwise. Rule (Par) parallelly composes two processes
if at least one of them does not have any action in the current session, i.e. the
operator � is defined only when one of the types is end:

T � T ′ =

⎧⎨⎩
T ′, if T = end
T, if T ′ = end
undefined otherwise

Rule (Pipe) derives the type of pipe using the function pipe, given in Figure 8.
If P outputs a single value (and has no other action in the current session), the
pipe Q consumes the value, and may have other actions in the current session.
If the current session activity of P consists of a sequence of h outputs where
h > 1, h instances of Q will be activated to consume the outputs and put in
parallel with P , but Q will only be allowed to produce values upwards to the
parent session. If Q will be activated, the outputs of P and Q will be composed
as in parallel composition.

The innovation with respect to the type system in [8] is rule (LevSel). It is
similar to the test–rule in access control typing systems [18,12,7]. Each branch
of the choice is guarded with a security level greater than or equal to the one
necessary for its activation. The level of the session type is increased to take into
account only the least of the branch–levels. Since all the branches have the same
type, differing only in the security annotation, the process is required to have
at least the privilege to activate the lowest one, but depending on the process
privileges, one of the higher branches may be selected. This rule permits a better

Security Types for Sessions and Pipelines 183

modularity of service definitions, allowing the same service to offer both high and
low–level response, depending on the clearance of the client who activated it.

Rule (Inv) for session invocation allows a process to invoke a session if its
body matches the defined session w.r.t the duality relation, defined in Figure 5.
The type of the defined session is required to be a subtype of the client’s dual (in
the sense of the relation inspired by [13], defined in Figure 6). This is justified
by reasoning that the service can offer more choices than required by the client
(with label and level branching), and that different clients may make different
choices. After the process has been prefixed with service invocation, the return
sequence U becomes the current session usage, and its level, together with the
level of the invoked session is added to the level of the current session.

A top level process is a process of type end ∴⊥[end]κ, which means that it has
no activity in the current session, and produces no value upwards. The typing
of the top level processes is given in Figure 9. The typing judgments of the top
level processes have the form Γ *S P : end ∴ ⊥[end]κ, where S is the set of
defined services.

An initial configuration consists of parallel compositions of service definitions
and framed top level client processes.

Rule (ServDef) defines a service with as body the process P . Each time a
service is defined, the turnstile is decorated with its name, and when processes
are parallelly composed (rule (TopPar)), the sets of defined services are joined.
When we want to restrict a service name (rule (ServRestr)), it is required that
this name is already defined (i.e. present in S), and after restricting it, we remove
it from the set S. In this way we prevent calls of nonexistent services.

Rule (LevSign) promotes an inner process P to the top level process � � P by
assignment of a security clearance � only if the intended activity of P (reflected
in the level κ) agrees with �.

By requiring that the initial configuration consists only of top level processes,
we avoid stuck configurations of dangling communications outside of sessions
waiting for synchronization.

The typing of the processes that appear only at runtime is given in Figure 10.
Rules (Sess) and (SessI), similarly to the rules for service invocation and defini-
tion, require a session matching the type of the session body process P in the
typing environment, signed with the level � with which the session was invoked.
The difference between these pairs of rules is that the assumptions for sessions
are added in the conclusions of the typing rules, while the assumptions for the
services must be always present in the premises of the typing rules. The reason
is that we want to allow nested calls of the same service name, but not nested
usages of the same session name.

Rule (SessRestr) restricts the session name and removes it from the
environment.

4 Example

We give an example of an e–commerce service, such as e–bay. Three levels of
users are assumed – guests, with level 1, which do not have an account with the

184 M. Kolundžija

service, and who are allowed only to browse through the items in the catalogue.
The registered users have a level 2, and they are additionally allowed to bid
for an item, or buy an item that is for direct sale, but are allowed to pay for
it only by sending a personal cheque. The VIP–users with the level 3 can also
pay with credit card or PayPal account. We assume that 1 % 2 % 3. By letting
P = 〈catalogue1〉(itemNo1)〈price1(itemNo1)〉,
Q = pay.〈bid1〉.〈cheque〉.〈personalId2〉,
R = pay.〈bid1〉.if (payMeth3(personalId2) = 1) then 〈cheque〉.〈personalId2〉
else if (payMeth3(personalId2) = 2) then 〈card〉.〈cardNb3(PersonalId2)〉 else
〈paypal〉.〈accPars3(PersonalId2)〉
we can define the services ebay, pay, card and paypal as follows:
ebay1. (1 � ((browse).P + (bid).(itemNo1).(bid1).(pId1)

+(buy).(itemNo1).(pId1))
� 2 � ((browse).P + (bid).(itemNo1).(bid1).(personalId2).

if highestBid1(itemNo1) = bid1 then Q else 0
+(buy).(itemNo1).Q)

� 3 � ((browse).P + (bid).(itemNo1).(bid1).(personalId2).
if highestBid1(itemNo1) = bid1 then R else 0

+(buy).(itemNo1).(personalId2).R))

pay2.(amount1). (2 � ((cheque).(personalId2)
+(card)(cardPar2) + (paypal)(accountPar2))

� 3 � ((cheque).(personalId2)
+(card).(cardNo3).card.〈amount1〉.〈cardNo3〉
+(paypal).(accountPars3).

paypal.〈amount1〉.〈accountPars3〉))
card3.(amount1).(cardNo3)

paypal3.(amount1).(accountPars3)

The service ebay offers essentially three kinds of services: browsing through
the item catalogue, biding for an item (with obligatory purchase of the customer
who won the bid) and buying an item that is put for direct sale. Options for
bidding and buying are different for users and VIP–users, since the VIP–users
are allowed different payment methods based on their preference (retrieved by
the function payMeth), while the ordinary users automatically have to pay by
sending a personal cheque.

The payment is done by activating a service pay, which for a received amount
triggers a payment method branch, which, in turn, might activate services that
handle card and PayPal payments (services card and paypal, respectively).

The more interesting assumptions in the environment for typing ebay are (we
omit the end terminators):
paypal : [?(int1).?(string3)]3, card : [?(int1).?(int3)]3,
pay : [?(int1).�{2 ∝ &{(cheque):?(string2), (card) :?(int2), (paypal) :?(string2)},
3 ∝ &{(cheque) :?(string2), (card) :?(int3), (paypal) :?(string3)}}]2,

Security Types for Sessions and Pipelines 185

end <: T T <: T
T <: ?(S�).T T <: !(S�).T
Ti <: &{l1 : T1, . . . , ln : Tn} Ti <: ⊕{l1 : T1, . . . , ln : Tn}
T <: �{�1 ∝ T, . . . , �n ∝ T}

Fig. 11. Subtyping Relation <:

ebay : [�{1 ∝ T (1), 2 ∝ T (2), 3 ∝ T (3)}]1,
where T (�) = &{(browse) :?(string1).!(int1).?(int1), (bid) :
?(int1).?(int1).?(string),
(buy) :?(int1).?(string)}.

Notice that although some options reserved for high users are formally (in
name) present among the lower level choices, the actual activation of high–level
services and communication of high–level data is reserved for high users.

5 Properties

Firstly, we will discuss the Subject Reduction property, namely that typability
of expressions is preserved by the reduction relation. Due to space limitations,
the auxiliary properties, such as strengthening, weakening and substitution will
be omitted, as they are quite standard. In Figure 11 we introduce the relation
<: in order to express the consumption of the session types by reduction.

Lemma (Replacement C) 4.1. If Γ * C[[P]] : U ∴ ı1 [T]κ1, then there exist
some U ′, ı′, T ′, κ′ such that Γ * P : U ′ ∴ ı′ [T ′]κ′ , and if there exists Q such that
Γ * Q : U ′ ∴ ı′′ [T ′]κ′′ , ı′′ % ı′, κ′′ % κ′ then Γ * C[[Q]] : U ∴ ı2 [T]κ2 for some
ı2, κ2 such that ı2 % ı1, κ2 % κ1.

Proof. by induction on the structure of C and by compositionality of the type
system. "!

Lemma (Replacement D) 4.2. If Γ * D[[P, Q]] : U ∴ ı[T]κ, then there exist
some U1, ı1, T1, κ1 and U2, ı2, T2, κ2 such that Γ * P : U1 ∴ ı1 [T1]κ1 and Γ *
Q : U2 ∴ ı2 [T2]κ2 and if there exist P ′, Q′ such that Γ * P ′ : U1 ∴ ı3 [T1]κ3 ,
and Γ * Q′ : U2 ∴ ı4 [T2]κ4 and ı3 % ı1, κ3 % κ1, ı4 % ı2, κ4 % κ2, then
Γ * D[[P ′, Q′]] : U ∴ ı′ [T]κ′ for some ı′, κ′ such that ı′ % ı, κ′ % κ.

Proof. by induction on the structure of D and by compositionality of the type
system. "!

Lemma (Replacement Dr) 4.3. If Γ * Dr[[P, Q]] : U ∴ ı[T]κ, then there
exist some U1, ı1, T1, κ1 and U2, ı2, T2, κ2 such that Γ * P : U1 ∴ ı1 [T1]κ1 and
Γ * Q : U2 ∴ ı2 [T2]κ2 and, depending on the polarity, either T1 ≤ T2 or T2 ≤ T1
and if there exist P ′, Q′ such that Γ * P ′ : U3 ∴ ı3 [T3]κ3 , and Γ * Q′ : U4 ∴
ı4 [T4]κ4 and U3 <: U1, T3 <: T1, ı3 % ı1, κ3 % κ1, U4 <: U2, T4 <: T2,
ı4 % ı2, κ4 % κ2 and T3 ≤ T4 (if T1 ≤ T2) or T4 ≤ T3 (if T2 ≤ T1), then

186 M. Kolundžija

(Inv) D[[� s�′ .P , s�′ .Q]]→ (ν r�) D[[r−� � � P, r+� � � Q | s�′ .Q]] ′ �
r� ∈ fn(D[[s�′ .P , s�′ .Q]])

(Com) Dr�
[[� (xı).P , � 〈vı〉.Q]]→ Dr�

[[� P [vı/xı], � Q]] ı �
(Lcom) Dr�

[[� ∑n
i=1(li).Pi, � 〈lk〉.Q]]→ Dr�

[[� Pk, � Q]]
(Ret) Dr1�

[[� (xı).P ,Cr
p
�
[[� return vı.Q]]]]→ Dr1�

[[� P [vı/xı],Cr
p
�
[[� Q]]]] ı � � ′

(Pipe) C[[� 〈vı〉.P > xı > Q]]→ C[[� P > xı > Q | � Q[vı/xı]]] ı �
(PipeRet) C[[� Cr

p
�
[[� return vı.P]] > xı > Q]]

→ C[[� Cr
p
�
[[� P]] > xı > Q | � Q[vı/xı]]] ı � � ′

(IfT) C[[� if uı = vj then P else Q]]→ C[[� P]] (uı = vj) ↓ true
(IfF) C[[� if uı = vj then P else Q]]→ C[[� Q]] (uı = vj) ↓ false
(LevSel) C[[� ⊎n

i=1 i � Pi]]→ C[[� Pi]] if i �
(Scop) P → P ′ ⇒ (ν m)P → (ν m)P ′

(Str) P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q ⇒ P → Q

Fig. 12. Labeled Operational Semantic Rules

(InvErr) D[[� � s�′ .P , s�′ .Q]] error−−−→ �′ �� �

(ComErr) Dr� [[� � (xı).P , � � 〈vı〉.Q]] error−−−→ ı �� �

(RetErr) Dr̃�′ [[�
′ � (xı).P , Cr

p
�
[[� � return vı.Q]]]] error−−−→ ı �� � � �′

(PipeErr) C[[� � 〈vı〉.P > xı > Q]] error−−−→ ı �� �

(PipeRetErr) C[[�′ � Cr
p
�
[[� � return vı.P]] > xı > Q]] error−−−→ ı �� � � �′

(IfErr) C[[� � if uı = vj then P else Q]] error−−−→ ı � j �� �

(LevSelErr) C[[� �
⊎n

i=1 �i � Pi]]
error−−−→ ∀i(1 ≤ i ≤ n).�i �� �

Fig. 13. Security Errors

Γ * Dr[[P ′, Q′]] : U ′ ∴ ı′ [T ′]κ′ for some U ′ ∴ ı′ [T ′]κ′ such that U ′ <: U , T ′ <: T ,
ı′ % ı, κ′ % κ.

Proof. by induction on the structure of Dr and by compositionality of the type
system. "!

Proposition (Subject Reduction) 4.4. If Γ *S P : U ∴ ı[T]κ, and P → P ′

then there exist U ′, ı′, T ′, κ′ such that U ′ <: U , T ′ <: T , ı′ % ı, κ′ % κ and
Γ *S P ′ : U ′ ∴ ı′ [T ′]κ′ .

Proof. by case analysis of the reduction rules given in Figure 2, using Lemmas
4.1, 4.2 and 4.3. For illustration purpose, we give the proof for the case (LevSel).

Case (LevSel): From the typing of the l.h.s.:
Γ � Pi : end ∴⊥[T]κi

κi � i (1 ≤ i ≤ n) ∃j(1 ≤ j ≤ n).1 � . . . � n = j

Γ � ⊎n
i=1 i � Pi : end ∴⊥[�{1 ∝ T, . . . , n ∝ T}]�1
...
�n

(LevSel) j �

Γ �∅ �
⊎n

i=1 i � Pi : end ∴⊥[end]�
(LevSign)

and the condition �i % � we get κi % � and then we can type the r.h.s. as follows:

Γ * Pi : end ∴⊥[T]κi κi % �

Γ *∅ � � Pi : end ∴⊥[end]
(LevSign)

"!

Security Types for Sessions and Pipelines 187

From an access control point of view, clients are regarded as “subjects”, and
services and basic values as “objects”. Therefore, a client is required to possess
an appropriate clearance to activate a service or to communicate a value. On
the other hand, services are regarded as trusted entities, and they are allowed
to act on behalf of the client who invoked them (this is reflected in the opera-
tional semantics, where the body process of the service definition “inherits” the
clearance from the client after the activation).

A process can be active (or running) only in the scope of a security framing.
In fact, the reduction rules from Figure 2 can be redefined with explicit notion of
reduction under the security frame, and decorating the values with their security
levels. This reduction relation is given in Figure 12.

This allows a straightforward definition of security error, given in Figure 13.
A process runs in a security error in the following cases:

1. when it tries to activate a service with a level not below its clearance;
2. when it tries to communicate a value with a level not below its clearance in

the current session;
3. when it tries to return a value with a level not below its clearance toward

the parent session;
4. when it tries to communicate a value with a level not below its clearance to

a pipe;
5. when it uses values with a level not below its clearance in the control ex-

pression of conditional branching;
6. when it enters into the level branching where all the levels are not below its

clearance.

This allows us to express the main result of this paper as a type safety property
in the following theorem.

Theorem 4.5. Typable processes do not run into security errors.

Proof. by contradiction and case analysis of the reduction rules given in Fig-
ure 13. In each case we show the subdeductions which assure the required order
between security levels.

Case (InvErr)
Γ � P : end ∴⊥[T]κ Γ � v�′ : [T ′]�′ T ′ ≤ T

Γ � v.P : end ∴⊥[end]κ	�′	ı

(Inv) κ � �′ � ı � �

Γ �∅ � � v�′ .P : end ∴⊥[end]�
(LevSign)

As it can be seen, the typing rule ensures that �′ % κ ! �′ ! ı % �.

Case (ComErr)

Γ, xı : Sı � P : U ∴ j[T]κ

Γ � (xı).P : U ∴ j[?(Sı).T]κ	ı

(Inp) κ � j � ı � �

Γ, r : [T ′]� � rp � � � (xı).P : end ∴⊥[U]�
(Sess)

188 M. Kolundžija

where T ′ =
{

T, if p = +
T ′, T ′ ≤ T, if p = − . We get ı % κ ! j ! ı % �.

Case (RetErr): As in previous case the typing of r̃p1′ � �′ � (xı).P assures
ı % �′. Moreover we have:

Γ � Q : U ∴ j[T]κ Γ � vı : Sı

Γ � return vi.Q :!(Sı).U ∴ ı�j[T]κ
(Ret) ı � j � κ �

Γ, r : [T ′]� � rp � � return vi.Q : end ∴⊥[!(Sı).U]�
(Sess)

where T ′ =
{

T, if p = +
T ′, T ′ ≤ T, if p = − , which implies ı % ı ! j ! κ % �.

Case (PipeErr)

Γ � P : end ∴⊥[!(Sı)n−1.end]κ Γ � v : Sı

Γ � 〈vı〉.P : end ∴⊥[!(Sı)n.end]κ�ı

(Out) Γ, vı : Sı � Q : end ∴⊥[T ′]κ′

Γ � 〈vı〉.P > x > Q : end ∴⊥ [T ′]
κ�ı�κ′

(Pipe) κ � ı � κ′ � �

Γ �∅ � � 〈vı〉.P > xı > Q : end ∴⊥[U]�

(LevSign)

which implies ı % κ ! ı ! κ′ % �.

Case (PipeRetErr): The reasoning is similar to that of cases (RetErr) and
(PipeErr).

Case (IfErr)

Γ � vi : S�i Γ � P : end ∴⊥[end]j Γ � Q : end ∴⊥[end]κ �i � j
 κ i = 1, 2

Γ � if v1 = v2 then P else Q : end ∴⊥[end]j�κ

(If) j � κ � �

Γ �∅ � � if v1 = v2 then P else Q : end ∴⊥[end]�

(LevSign)

Note that �i % j " κ % j ! κ % �.

Case (LevSelErr)
Γ � Pi : end ∴⊥[T]κi

κi � �i (1 ≤ i ≤ n) ∃j(1 ≤ j ≤ n).�1
 . . .
 �n = �j

Γ � ⊎n
i=1 �i � Pi : end ∴⊥[�{�1 ∝ T, . . . , �n ∝ T}]�j

(LevSel) �j � �

Γ �∅ � � ⊎n
i=1 �i � Pi : end ∴⊥[end]�

(LevSign)

"!
We conclude by stating the progress property. The proof of this property is
similar to the one given in [8], taking into account that the security constructs
and annotations do not lead to stuck states by Theorem 4.5.

Definition (Normal Form) 4.6. A process P is in normal form if P ≡
(ν s1) . . . (ν sn)

∏n
i=1(si.Qi).

Theorem (Progress) 4.7. If P is a top level process s.t. ∅ *∅ P : end ∴⊥[end]κ,
then for each Q s.t. P →∗ Q, either Q is reducible or Q is in normal form.

Security Types for Sessions and Pipelines 189

6 Conclusion

This paper addresses security issues in a calculus for services and pipelines
(CaSPiS) by employing static analysis access control methodology, and by of-
fering increased modularity of the services with options of different behaviours
of a service depending on the privileges of the client who activated it. The type
system ensures at compile time that a service can be activated only by clients
with appropriate clearance, while preserving the safety and progress properties
of previous versions of CaSPiS.

The approach in this paper was to consider mandatory access control, with
no mechanisms of access right elevation or demotion. A next step might be to
consider discretionary access control with a possibility of permission passing
among subjects.

Acknowledgments. I would like to thank Mariangiola Dezani for her invaluable
advice, directions and assistance throughout the genesis of this work. The present
version of this paper strongly improved with respect to the submitted one thanks
to referee suggestions.

References

1. Acciai, L., Boreale, M.: A Type System for Client Progress in a Service-Oriented
Calculus. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 642–658. Springer, Heidelberg (2008)

2. Banerjee, A., Naumann, D.A.: A Simple Semantics and Static Analysis for Java
Security. Technical Report 2001-1, Stevens Institute of Technology (2001)

3. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations.
Technical Report MTR-2547, Vol. 1, MITRE Corp., Bedford, MA (1973)

4. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence assertions for process
synchronization in concurrent communications. J. Funct. Program. 15(2), 219–247
(2005)

5. Boreale, M., Bruni, R., Nicola, R.D., Lanese, I., Loreti, M., Montanari, U., San-
giorgi, D., Zavattaro, G.: SCC: a Service Centered Calculus. In: ACSAC 2006.
LNCS, vol. 4186, pp. 38–57. Springer, Heidelberg (2006)

6. Boreale, M., Bruni, R., Nicola, R.D., Loreti, M.: Sessions and Pipelines for Struc-
tured Service Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

7. Boudol, G., Kolundzija, M.: Access Control and Declassification. In: Computer
Network Security. CCIS, vol. 1, pp. 85–98. Springer, Heidelberg (2007)

8. Bruni, R., Mezzina, L.G.: Types and Deadlock Freedom in a Calculus of Services,
Sessions and Pipelines. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS,
vol. 5140, pp. 100–115. Springer, Heidelberg (2008)

9. Denning, D.E.: A lattice model of secure information flow. Comm. of the
ACM 19(5), 236–243 (1976)

10. Dezani-Ciancaglini, M., de’ Liguoro, U., Yoshida, N.: On Progress for Structured
Communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008.
LNCS, vol. 4912, pp. 257–275. Springer, Heidelberg (2008)

190 M. Kolundžija

11. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session
Types for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 328–352. Springer, Heidelberg (2006)

12. Fournet, C., Gordon, A.D.: Stack Inspection: Theory and Variants. In: POPL 2002,
pp. 307–318 (2002)

13. Gay, S., Hole, M.: Subtyping for Session Types in the pi Calculus. Acta Inf. 42(2),
191–225 (2005)

14. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

15. Kitchin, D., Cook, W.R., Misra, J.: A Language for Task Orchestration and Its
Semantic Properties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137, pp. 477–491. Springer, Heidelberg (2006)

16. Lanese, I., Vasconcelos, V.T., Martins, F., Ravara, A.: Disciplining Orchestration
and Conversation in Service-Oriented Computing. In: SEFM 2007, pp. 305–314.
IEEE Computer Society Press, Los Alamitos (2007)

17. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

18. Pottier, F., Skalka, C., Smith, S.: A Systematic Approach to Static Access Control.
ACM TOPLAS 27(2) (2005)

19. Skalka, C., Smith, S.: Static Enforcement of Security with Types. ACM SIGPLAN
Notices 35(9), 34–45 (2000)

20. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis.
J. Computer Security 4(3), 167–187 (1996)

21. Zdancewic, S.: Programming Languages for Information Security. PhD thesis, Cor-
nell University (2002)

Why Does My Service Have No Partners?

Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Controllability is a fundamental correctness criterion for in-
teracting service models. A service model is controllable if there exists a
partner service such that their composition is free of deadlocks and live-
locks. Whereas controllability can be automatically decided, the existing
decision algorithm gives no information about the reasons of why a service
model is uncontrollable. This paper introduces a diagnosis framework to
find these reasons which can help to fix uncontrollable service models.

Keywords: Controllability, diagnosis, partner synthesis, verification.

1 Introduction

In the paradigm of service-oriented computing [1,2], a service is an component
that offers a functionality over a well-defined interface and is discoverable and
accessible via a unique identifier. By composing several services, complex tasks
(e. g., inter-organizational business processes) can be realized. Thereby, the cor-
rect interplay of distributed services is crucial to achieve a common goal.

A fundamental correctness criterion for a service model is controllability [3]:
A service S is controllable if there exists a partner service S′ such that their com-
position is free of deadlocks and livelocks; that is, a desired final state is always
reachable. The algorithm proposed to decide controllability [3] is constructive:
If a partner service for S exists, it can be synthesized and serves as a witness for
the controllability of S. If, however, S is uncontrollable, such a partner service
does not exist and the decision algorithm returns no service. Obviously, this does
not give any information about the reasons of why S is uncontrollable. Never-
theless, diagnosis information are important to support the modeller to correct
the ill-designed service (see [4] for first results on service correction).

Controllability of a service model has a close relationship to soundness in the
area of workflow models [5]. Intuitively, for a controllable service exists another
service that their composition is a sound workflow. However, existing diagno-
sis techniques for unsound workflow models [6] are not applicable to diagnose
uncontrollability, because the service’s environment has to be taken into account.

In this paper, we study the reasons of uncontrollability and define a diagnosis
algorithm that calculates a counterexample why a service model is uncontrollable.
This counterexample can be used to repair the service model towards controlla-
bility. The paper employs open nets [7], a class of Petri nets [8], as formal model.
With translations [9,10] from and to WS-BPEL [11], the results can be directly
applied to industrial service specification languages.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 191–206, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

192 N. Lohmann

The rest of this paper is organized as follows. The next section recalls the re-
quired definitions on open nets, controllability and its decision algorithm. These
definitions are crucial to understand the diagnosis framework and therefore are
quite detailed. Reasons that can make a net uncontrollable are described in
Section 3. The main contribution of this paper is a diagnosis algorithm for un-
controllable nets which is described in Section 4. Section 5 concludes the paper
and gives directions for future research.

2 Formal Models for Services

2.1 Open Nets

Open nets [7] extend classical Petri nets [8] with an interface for asynchronous
message exchange. We assume the standard firing rule and denote the set of all
markings of a net N that are reachable from m with RN (m) = {m′ | m ∗−→N m′}.
m

t−→N denotes that in N , the marking m enables the transition t, and m �→N

denotes that m does not activate any transition (i. e., m is a deadlock).

Definition 1 (Open Net, inner structure). An open net is a Petri net N =
[P, T, F, m0], together with an interface I = Pin ∪ Pout such that Pin , Pout ⊆ P ,
Pin ∩ Pout = ∅, and p ∈ Pin (resp. p ∈ Pout) implies •p = ∅ (resp. p• =
∅); and a set Ω of final markings. Pin (resp. Pout) is called the set of input
(resp. output) places. We further require that m(p) = 0 for all p ∈ I and m ∈
Ω ∪ {m0}, and that no marking mf ∈ Ω enables a transition. N is called closed
iff |I| = ∅. N is called normal iff every transition of N is connected to at most
one interface place. For a normal net N , define the mapping � : T → I ∪ {τ}
such that �(t) is the interface place connected to t if one exists, and �(t) = τ
otherwise. The inner structure of N is the closed net Inner(N) = [P \ I, T, F \
((I × T) ∪ (T × I)), m0|P\I , ∅, ∅, Ω|P\I].

The interface places are unidirectional: messages sent to N or received from N
cannot be “unsent” or “unreceived”, respectively. The inner structure of N mod-
els the control flow of N and can be compared to a classical workflow net [5].1

In the rest of this paper, we only consider normal open nets. This restriction
is rather technical, because every open net can be transformed [12] into a nor-
mal open net, and nets translated [9] from WS-BPEL processes are normal by
construction.

Figure 1(a) depicts an open net N1. We follow the standard graphical notation
for Petri nets. The initial marking m0 = [α] is depicted by a token on place α.
We further assume Ω = {[ω]} to be the set of final markings. Interface places
(I = {a, b, c, d}) are located on the dashed frame, and the transition label �(t) is
written inside the respective transition t.

An open net N is bounded iff RInner(N)(m0|Inner (N)) is finite. Throughout
this paper, we only consider bounded open nets, because for unbounded nets,
1 Open nets do not share the structural constraints of workflow nets and allow arbi-

trary initial and final markings.

Why Does My Service Have No Partners? 193

�

� a

c b

ba

�

�

�

d

b

c

d

(a) open net N1

a

c

d

b

a

b

c

d

�2

(b) open net N2

[�] [�a] [�]
a

[�b] [�]

b

[�ac] [�c]
[�] [�d]

c
[�]

d

[�ab] [�b]
[] [�a]

b

[�c] [�]
[�d]

[�b] [�]
b

c

[�b] [�] #

�d

(c) overapproximated partner for N1

Fig. 1. Two open nets and an overapproximated partner

controllability is undecidable [13]. Boundedness can be verified using standard
state space verification techniques [14]. Again, open nets translated from WS-
BPEL processes are bounded by construction. See [9] for details.

Open nets can be composed by connecting the interfaces appropriately:

Definition 2 (Composition). Two open nets N1 and N2 are composable iff
Pin1 = Pout2, Pout1 = Pin 2, P1 ∩ P2 = I1 ∪ I2 �= ∅, and T1 ∩ T2 = ∅. The
composition of two composable open nets N1 and N2, denoted N1 ⊕ N2, is the
closed net with the following constituents: P = P1∪P2, T = T1∪T2, F = F1∪F2,
m0 = m01⊕m02, Pin = Pout = ∅, and Ω = {mf1⊕mf2 | mf1 ∈ Ω1, mf2 ∈ Ω2}.
The composition of markings is defined as m1 ⊕m2(p) = m1(p) if p ∈ P1, and
m1 ⊕m2(p) = m2(p), otherwise.

Definition 3 (Trapped marking). Let N be a normal open net. A strongly
connected component (SCC) is a maximal set of markings M of N such that
m, m′ ∈ M implies m

∗−→N m′. A terminal SCC (TSCC) is a SCC from which
no other SCC is reachable. A marking m of N is a trapped marking if m ∈M
for a TSCC M and M∩ΩN = ∅. If additionally m|Inner(N)

t−→Inner (N), m � t−→N ,
and �(t)∩Pin �= ∅ then m is a resolvable trapped marking and �(t) resolves m. If
no such t exists and m|Inner(N) ∈ ΩInner (N), m is a covered final marking. If no
such t exists and m|Inner(N) /∈ ΩInner (N), m is an unresolvable trapped marking.

Resolvable trapped markings model situations the net can only leave with com-
munication (i. e., message receipt). In contrast, unresolvable trapped markings
can never be left. Covered final markings model situations in which the inner
of an open net reached a final marking, but messages are still pending on some
input places. Note that by definition of Ω, the TSCC of a covered final marking
is a singleton; that is, a covered final marking is a deadlock.

Definition 4 (Weak termination, k-controllability, message bound). A
closed net N weakly terminates iff, for every marking m ∈ RN (m0), a final
marking mf ∈ Ω is reachable. A normal, bounded open net N is k-controllable
for k ∈ IN+ (called message bound) iff there exists a normal, bounded open net
M such that N and M are composable, N ⊕M weakly terminates, and for all
m ∈ RN⊕M (m0N ⊕m0M) holds that m(p) ≤ k for all p ∈ I.

194 N. Lohmann

It is easy to check that the open nets N1 and N2 (see Fig. 1(a) and Fig. 1(b))
are bounded and composable. With ΩN2 = {[ω2]}, we have ΩN1⊕N2 = {[ω, ω2]}.
The composition weakly terminates, and for all reachable markings m, it holds
m(p) ≤ 1 for all p ∈ IN1 . Thus, the open net N1 is 1-controllable.

2.2 Deciding Controllability

For the rest of this section, let N be a normal, bounded open net, and let k ∈ IN+.
In the following, we sketch the decision algorithm for controllability presented
in [15] which extends the one of [3]. The next definition synthesizes a transition
system as first overapproximation of a partner of N . Thereby, each state consists
of a set of markings N can reach after each communication step. The element
“#” is a special symbol to denote final states.

Definition 5 (Partner overapproximation TS0). For a set of markings M
of N , define closure(M) =

⋃
m∈MRN (m). Let TS0 = [Q, E, q0, QF] be a tran-

sition system (consisting of a set Q of states, a set E ⊆ Q × (I ∪ {τ}) × Q
of labeled edges, an initial state q0 ∈ Q, and a set QF ⊆ Q of final states)
inductively defined as follows:

1. q0 = closure({m0}); q0 ∈ Q;
2. If q ∈ Q, then

(a) if # /∈ q and q∩Ω �= ∅, then q′ = q∪{#} ∈ Q, q′ ∈ QF , and [q, τ, q′] ∈ E;
(b) if m∗ ∈ q is a resolvable trapped marking that can be resolved by x, # /∈ q,

then q′ = closure({m + [x] | m ∈ q}) ∈ Q and [q, x, q′] ∈ E;
(c) if m∗ ∈ q with m∗(x) > 0 for an x ∈ Pout , then q′ = {m − [x] | m ∈

q, m(x) > 0} \ {#} ∈ Q and [q, x, q′] ∈ E.

Thereby, [x] denotes the marking with x = 1 and [x](y) = 0 for y �= x. The
operations + and − on markings are defined pointwise.

A transition system TS can be composed with an open net N in a canonic way
(see [12] for details). In particular, we identify states of N ⊕TS with [m, q] where
m is a marking of N and q ∈ Q is a state of TS. Thereby, a path σ in the
transition system TS can be extended to the composition N ⊕TS. As each state
of TS can contain multiple markings, this resulting path may not be unique.

The following definition removes all states from the overapproximation TS0
that jeopardize weak termination of the composition N ⊕ TS0.

Definition 6 (Interaction graph TS∗). Let TS1 be the graph that is obtained
from TS0 by removing all states q that contain a marking m with m(p) > k for
a p ∈ IN . Given TSi (i > 0), the graph TSi+1 is obtained by removing each state
q from TSi that contains a marking m where no state [mf , qf] is reachable in
N ⊕ TSi from [m, q] where qf ∈ QFTSi

and mf ∈ Ω.
Thereby, removal of a state includes removal of its adjacent arcs and all states

that become unreachable from q0. Let TS∗ be TSj for the smallest j with TSj =
TSj+1. TS∗ is the interaction graph of N .

Why Does My Service Have No Partners? 195

Theorem 1. N is k-controllable iff QTS∗ �= ∅.

A proof to a similar theorem can be found in [15]. Intuitively, each state that
is removed in Def. 6 cannot be part of a controlling partner. Thereby, the step
from TS0 to TS1 assert that the message bound is respected and all future state
removals assert weak termination. Note that τ -edges are a necessary technicality
to assure livelock freedom. The interested reader is referred to [15].

Figure 1(c) depicts TS0 for the open net N1. This graph coincides with TS1,
because no marking exceeds the message bound of k = 1. From TS1, the dashed
states are removed, because they contain the unresolvable trapped markings [δ]
and [δa], respectively, from which the final marking is unreachable. The resulting
graph without dashed states is the interaction graph TS∗ of N1. From this graph,
we can conclude that a partner may only send a b-message after having received
a d-message, because only then the partner can be sure that N1 has left its initial
marking. The open net N2 (cf. Fig. 1(b)) models one possible partner of N1.

3 Reasons for Uncontrollability

Obviously, the empty interaction graph (i. e., a graph with an empty set of
states) calculated in case of uncontrollability gives no information why N has
no partners and how N can be fixed. Before we examine uncontrollable nets, we
study a related diagnosis approach.

3.1 Relationship to Soundness

For a controllable open net N exists an open net M such that N ⊕M weakly
terminates. Weak termination is closely related to soundness [5]. For soundness,
an elaborate diagnosis algorithm exists [6] which exploits several properties of the
soundness criterion to avoid a complex state space exploration where possible.
For example, soundness can be expressed in terms of two simpler properties,
namely liveness and boundedness. An unsound workflow net fails one of these
tests. This result can be used to give detailed diagnosis information. In addition,
several simple necessary or sufficient criteria for soundness can be checked prior
to liveness and boundedness checks. For example, certain net classes such as free
choice Petri nets [16] allow for efficient analysis algorithms.

However, this diagnosis approach cannot be adapted to diagnose the reasons
of why an open net is uncontrollable. Firstly, a sound control flow is not re-
lated to controllability: the inner structure of the controllable net in Fig. 1(a) is
not sound, and the uncontrollable net in Fig. 4(a) has a sound inner structure.
Similarly, weaker criteria such as relaxed soundness or non-controllable choice
robustness [17] are not applicable. The latter, for example, assumes that the
environment (i. e., a partner) can completely observe the net’s state, whereas
the internal state of an open net can only be guessed from observations on the
interface (a state of the interaction graph is a set of markings of the open net).
Secondly, controllability is not a local, but a global criterion: controllability is
now known to be decomposable. Therefore, only trivial necessary or sufficient

196 N. Lohmann

e

f

e f

�

(a)

g

g

g

�

(b)

i

h i

jj

h

�

�

�

(c)

k

� �

l kl

�

(d)

n

m m

o no

m

�

(e)

q

p q

s rs

p

�

q p

r

(f)

�

� �

�

�

u t v

t

u

v

t1 t2

�

(g)

Fig. 2. Uncontrollable open nets (k = 1)

criteria for (un)controllability exists. Thirdly, structural results like the invari-
ant calculus [18] are not applicable, because an open net usually deadlocks when
considered in isolation.

3.2 Classifying Harmful Markings

During the construction of the interaction graph of N , states that contain a
marking m∗ that is considered harmful are iteratively removed. The nature of
m∗ can be mapped back to the open net under consideration to understand the
reasons that led to uncontrollability:

Inappropriate Message Bound. The message bound k influences the removal
of states of TS0 when constructing TS1. This removal can make states containing
a final marking unreachable. There are two situations to consider:

Unbounded communication. If a message channel is unbounded (e. g., due to a
loop of the open net in which it sends messages without waiting for acknowl-
edgements), then obviously no partner can exist such that the composition is k-
bounded. Figure 2(a) shows an example where the output place f is unbounded.

Exceeded message bound. If a net is k-controllable for some bound k ∈ IN+, it is
also l-controllable for any l > k. However, the converse does not hold: Figure 2(b)
shows a net that is 2-controllable, but not 1-controllable, because the receipt of
the first g-message cannot be enforced before sending a second g-message. Thus,
even if a message bound exists for a net, it might be considered k-uncontrollable
if the message bound k chosen for analysis is too small.

Unreachable Final Marking. Definition 6 removes all states of the composi-
tion from which a final marking is unreachable. This can be due to a deadlock or a
livelock in the composition. From the nature of a trapped marking, we can derive
different diagnosis information. Hence, we classify different kinds of trapped mark-
ings of N that can be reached while communicating with a partner (cf. Def. 3).

Why Does My Service Have No Partners? 197

Unresolvable trapped markings. If the inner of the net reaches a deadlock (called
an internal deadlock), it cannot be left by communication with a partner. There
are different reasons the control flow can contain deadlocks:

– Design flaws. The reason of an internal deadlock can be a classical design
flaw as known from unsound workflow nets. For example, the deadlock [δ]
of the open net in Fig. 2(c) is caused by mismatching splits and joins and
cannot be avoided by communication, because the net internally decides
whether to send an h-message or an i-message.

– Service choreographies. Internal deadlocks need not stem from modeling er-
rors. One source of internal deadlocks can also be the composition of several
services2 in a service choreography. There, it is possible that the behavior of
two participants A and B is mutually exclusive which leads to an internal
deadlock. This deadlock, however, might be avoided by the message exchange
with another participant C. Then C is a controlling partner for A⊕B.

– Behavioral constraints. Another reason for internal deadlocks that are no de-
sign flaws can be behavioral constraints [19]. Such a constraint C influences
the control flow and the final markings of an open net N such that some final
markings of N are considered as internal deadlocks in the constrained net NC .

Covered final markings. A covered final marking models a situation in which the
control flow of N reached a final marking, but a message sent to N is still pend-
ing on a channel and will never be received. This might be negligible for generic
acknowledgement messages, but in general, an unreceived message models an un-
desired situation (e. g., if the message contains private or payment information).
Again, there are numerous reasons for this problem:

– Hidden choices.The net can make an internal decision (e. g., with WS-BPEL’s
<if> activity) that is not communicated to the partner (thus hidden), but
requires different reactions of the partner depending on the outcome of the
decision. Consider for example the net in Fig. 2(d) which either chooses the
left or the right branch. Depending on this choice, a partner has to send a
k-message or an l-message. The final marking is only reached, if the partner’s
“guess” was right. Otherwise, the “wrong” message keeps pending.

– Conflicting receives. If the net can reach a marking in which more than one
transition is activated that can receive the same message (e. g., the initial
marking of the net in Fig. 2(e)), these transitions are “conflicting receives”.
The decision which of these transitions fires can neither be influenced nor
observed by a partner yielding a “hidden choice” situation. Note that con-
flicting receives are treated as runtime faults in execution languages like
WS-BPEL. Like internal deadlocks, we do not want to forbid such situations
in the first place, but check whether these problems are actually the reason
why a service is uncontrollable.

– Pending messages. Open nets model asynchronous message exchange: mes-
sages can keep pending on a channel, and overtake each other. Therefore, a

2 Composition as defined in Def. 2 is restricted to exactly two services, but can be
canonically extended to allow for composition of an arbitrary number of open nets.

198 N. Lohmann

partner has only limited control over the net, because after sending a mes-
sage to N , a partner cannot be sure that N actually received that message.
Again, this can result in a “hidden choice” situation, see the net in Fig. 2(f)
for an example. For either branch, a p-message and a q-message message has
to be sent eventually. After sending these messages, the environment has to
guess whether to continue with sending an r-message or an s-message.

– Confusion. In a Petri net model, confusion [8] is a situation in which concur-
rency and conflicts coexist. Two concurrent transitions can influence each
other without being in conflict; that is, whichever transition fires first can
constrain the markings reachable by firing the other transition. Consider the
net in Fig. 2(g) for an example: The transitions t1 and t2 are not in conflict,
but whichever transition fires first, confines the choices reachable by firing
the other transition. For example, firing first t1 makes the firing of the transi-
tion receiving the v-message impossible. Now a partner has to guess whether
to send a t-message or a u-message.

Livelocks. A livelock in the communication between N and a partner M is a
situation in which in N ⊕M transitions are fired continuously, but a final mark-
ing can never be reached. While this might be acceptable for technical systems
where the concept of a “final state” is not applicable or irrelevant, services that
implement business processes are usually required to reach a state in which a
business instance is properly finished.

Note that the characterization of harmful markings as well as the definition
of soundness is a behavioral and not a structural criterion. The nets depicted in
Fig. 2 cannot be used as “anti-patters”. If an open net contains one of these nets
as a subnet, it might still be controllable. For example, prior communication
might exclude the harmful subnet (e. g., using a deferred choice) or a concurrent
or subsequent subnet “fixes” the communication of the net (e. g., by receiving
pending message).

In the following section, we will present an algorithm to diagnose the problems
described above except the problem of “unbounded communication”. In the rest
of this paper, we do not consider open nets without a fixed message bound. We
assume that the message bound k is known prior to the controllability analysis.
The value of k may be chosen by considerations on the physical message channels,
by a static analysis that delivers a “sufficiently high” value, etc.

4 Diagnosing Reasons for Uncontrollability

4.1 Counterexamples for Controllability

In the area of computer-aided verification, model checking techniques [14] usu-
ally provide a counterexample if a model does not meet a specification. This
counterexample is a useful artifact (e. g., a deadlock trace) to understand the
reasons why the model contains an error. To find a counterexample for con-
trollability is hard due to the criterion’s nature. Controllability is “proven” by
constructing a witness: N is k-controllable iff there exists some open net M such

Why Does My Service Have No Partners? 199

that the composition N ⊕M is k-message bounded and weakly terminates. In
other words, M can be seen as a counterexample for N ’s uncontrollability. If N
is not controllable, we can only conclude that no such open net exists, and hence
cannot provide a counterexample which can be used to find out which of the var-
ious problems we described in the last section rendered the net uncontrollable.

The algorithm to decide controllability (see Def. 5–6) overapproximates a part-
ner for N and then iteratively removes states of this overapproximation that will
not be part of any partner of N . If N is uncontrollable, all states will be eventu-
ally deleted. In this section, we define an algorithm to use information why states
are deleted from TS0 to give diagnosis information for an uncontrollable net N .

As a motivation for the desired style of diagnosis information, consider again
the open net in Fig. 2(e). We already described the reason why this net is uncon-
trollable: after sending an m-message, a partner has to either send an n-message
or an o-message to the net. Depending on the net’s choice, a sent message might
keep pending on its channel. This eventually yields a covered final marking. Let’s
analyze this informal description of why the net is uncontrollable: it contains of:

(I) an indisputable initial part (“after sending an m-message”),
(C) a description of continuations (“a partner has to either send an n-message

or an o-message”), and
(P) the problem that hinders a partner to control the net to a final marking

(“Depending on the net’s choice, a sent message might keep pending on its
channel. This eventually yields a covered final marking.”).

The initial part (I) consists of communication steps that are necessary to resolve
a resolvable trapped marking and that would also be taken by partner who knows
the outcome of the net’s decision in advance. Sending m is not source of the
problem, because m will be received by the net. In contrast, after sending m,
any continuation (C) can lead to a situation where reaching a final marking is
not any more guaranteed. Finally, the possible problem that can occur if after
sending either message is described (P).

In the following, we generalize this approach and define an algorithm that au-
tomatically derives such diagnosis results for an uncontrollable net N consisting
of these three parts:

(I) From TS0, we find a maximal subgraph TS∗0 such that the composition N ⊕
TS∗0 is free of markings from which markings with exceeded message bound
(EMB), deadlocks/livelocks (DLL), or covered final markings (CFM) cannot
be avoided any more. We use TS0 as a starting point in order to consider all
possible markings of N that can be reached with communication.

(C) The subgraph TS∗0 is not a partner of N , because its nodes contain resolvable
trapped marking that are not resolved in TS∗0 (because the respective edge to
a successor is missing). When these resolvable trapped markings are resolved
by sending messages to N , the composition might reach a state from which
EMB, DLL, or CFM cannot be avoided any more. Therefore, in the second
part of the diagnosis result, each unresolved resolvable trapped marking is
described including a communication trace from q0 to the state containing
this resolvable trapped marking.

200 N. Lohmann

(P) Finally, we give detailed information how the resolution of the resolvable
trapped marking can reach EMB, DLL, or CFM in the composition. For
each problem, witness paths to the problematic situation and/or pointers to
the structure of N are given to locate the problem.

To derive these diagnosis information —our counterexample for controllabi-
lity —, we first need a criterion to decide for each state of TS0 whether it is
a state of the subgraph TS∗0, too. We already motivated that TS∗0 should only
contain those states which only contain markings from which it is still possible
to avoid EMB, DLL, and CFM problems. For each problem, it is possible to
characterize situations in which the problem either already occurred (e. g., an
unresolvable trapped marking is reached) or cannot be avoided any more (e. g.,
only one transition is activated whose firing results in an an unresolvable trapped
marking). If such a situation is found in a state of TS0, this state is obviously
problematic. Thus, we define a blacklist for each problem that contains such
problematic states. With these blacklists, we then can define the subgraph TS∗0.

In addition, for each problem, we define a witness. A witness is an artifact
that can help to visualize the problem (e. g., a trace to an internal deadlock that
can be simulated) or to locate the parts of the uncontrollable net that cause
the problem (e. g., the transitions modeling a hidden choice). In the next three
subsections, we define a blacklist and a witness for each problem (EMB, DLL,
or CFM). Finally, we sketch an algorithm that applies the blacklists to TS0,
analyzes the resulting subgraph TS∗0, and provides diagnosis information.

4.2 Blacklist for Deadlocking and Livelocking Control Flow

Unresolvable trapped markings and covered final markings have the same prop-
erty: once the composition N ⊕ TS0 reaches such a situation, a final marking
becomes unreachable. Therefore, Def. 6 removes such states, because they jeop-
ardize weak termination. However, the nature of these problems differ.

Unresolvable trapped markings model problems related to the control flow of
N (modeled by Inner(N)). Therefore, detection and diagnosis of such control
flow-related problems should differ from problems where the control flow of N
already reached a final state, but an unreceived message is still pending on a
channel. Hence, we differentiate unresolvable trapped markings from covered
final markings.

We use the inner structure of N to detect markings from which a final marking
is already unreachable. Any state of TS0 is blacklisted if it contains a marking
from which, when restricted to the inner of N , a final marking is unreachable:

Definition 7 (DLL-blacklist, DLL-witness). Define the blacklist for a con-
trol flow deadlocks and livelocks as blacklistDLL = {q ∈ Q0 | ∃m ∈ q :
m is an unresolvable trapped marking}.

For each state q∗ ∈ blacklistDLL, define σDLL(q∗) to be a witness path N⊕TS0
with [m0, q0]

σDLL(q∗)−−−−−→ [m∗, q∗] where m∗ ∈ q∗ is an unresolvable trapped marking.

In case m∗ is a deadlock, the path σDLL(q∗) is a witness path from the initial
state of the composition to this deadlock. In case m∗ is part of a livelock, any

Why Does My Service Have No Partners? 201

m
me

m + [x]
me + [x]

m1 = mf + mi + [x]

m2 = mf + mi

x

�

�

q1

qe q2

qx

m2

m1m�

m� mf + mi

mf + mi + [x]

t
q1

q2qxq

�1

�2�

Fig. 3. Illustration of Lemma 1 (left) and a hidden choice transition of Def. 9 (right)

marking reachable from m∗ is part of the same TSCC on which a final marking
is unreachable and σDLL(q∗) is a witness path for this TSCC.

4.3 Blacklist for Exceeded Message Bound

Markings that exceed the message bound k can be easily detected by analyzing
the markings occurring in states of TS0. The blacklist as well as the witness can
be defined straightforwardly:

Definition 8 (EMB-blacklist, EMB-witness). Define the blacklist for ex-
ceeded message bound as blacklistEMB = {q ∈ Q0 | ∃m ∈ q : ∃p ∈ I : m(p) > k}.
For each state q∗ ∈ blacklistEMB , define σEMB (q∗) to be a witness path in

N ⊕ TS0 such that [m0, q0]
σEMB (q∗)−−−−−−→ [m∗, q∗] with m∗ ∈ q∗ with m∗(p) > k.

The witness consists of a path in the composition that shows how the message
bound of a place can be exceeded.

4.4 Blacklist for Covered Final Markings

In a covered final marking mc reachable in N ⊕ TS0, the control flow (the inner
structure of N) has reached a final marking, but a message is pending on an
input channel. Due to the construction of TS0 (cf. Def. 5(b)), this message was
originally sent to N in order to resolve an resolvable trapped marking.

The following observation is needed to justify the later definition of a blacklist
for covered final markings.

Lemma 1 (For each covered final marking there exists a final marking).
Let N be an open net and TS0 as defined in Def. 5. Let q1 be a state of TS0 with
a covered final marking m1 ∈ q1 with m1 = mf + mi + [x] such that mf ∈ Ω is
a final marking, mi is a marking such that mi(p) > 0 implies p ∈ Pin , and [x]
is a marking that marks an input place x ∈ Pin . Then exists a state q2 of TS0
containing a marking m2 ∈ q2 with m2 = mf + mi.

Proof. Let qe and qx be states of TS0, let [qe, x, qx] be an edge of TS0, and
let σ be a path from qx to q1 that does not contain an x-labeled edge. Let
m1 = mf + mi + [x] be as above. The x-message is only sent to N in order
to resolve an resolvable trapped marking (cf. Def. 5). Let me ∈ qe be such a
resolvable trapped marking.

202 N. Lohmann

Let m ∈ qe. Then (m + [x]) ∈ qx. Let σ∗ be an extension of σ to the
composition N ⊕ TS0 such that [(m + [x]), qx]

σ∗
→ [(mf + mi + [x]), q1]. This

transition sequence σ∗ does not contain a transition producing a token on x,
because σ∗|TS0 = σ does not contain an x-labeled edge. Therefore, σ∗ is real-
izable independently from the submarking [x] of N ; that is, σ∗ is realizable
without the submarking [x]. In particular, there exists a state q2 of TS0 such
that [m, qe]

σ∗
→ [(mf + mi), q2]. "!

Lemma 1 states that, for each covered final marking with a pending x-message
occurring in a state of TS0, there exists a state that contains a covered final
marking (or a final marking if mi = []) without that pending message. After
iteratively applying Lemma 1, we can conclude that with each covered final
marking occurring in TS0, also a respective “uncovered” final marking is present
in a state of TS0.

Each application of Lemma 1 identifies an x-labeled edge from qe to state qx
from which a state q1 is reached that contains a covered final marking with a
pending x-message. For state qe, an alternative continuation to q2 without an
x-edge is possible. Figure 3(a) illustrates this.

Hence, such a state qx should be considered critical which yields the following
definition of a blacklist for covered final markings:

Definition 9 (CFM-blacklist, CFM-witness). Define the blacklist for cov-
ered final markings, blacklistCFM , to contain all states qx ∈ Q0 such that:

– there exists a state q1 and a path σ in TS0 with qx
σ−→ q1,

– mc ∈ q1 is a covered final marking with mc(x) > 0 for an input place x ∈ Pin

– σ does not contain an x-labeled edge
– qe is a predecessor of qx with an edge [qe, x, qx]

For each state qx ∈ blacklistCFM , define σCFM(qx) = [σ1, σ2, T
∗] to be a witness

where:

– σ1 is a path in N ⊕TS0 with [m1, qx]
σ1−→ [(mf +mi+[x]), q1] where m1 ∈ qx,

– σ2 is a path in N ⊕TS0 with [m2, qx]
σ2−→ [(mf +mi), q2] where m2 ∈ qx such

that σ1|N = σ2|N , and
– the set T ∗ containing all transitions t ∈ T of N such that:

• there exists a state q in TS0 with m′, m′′ ∈ q,
• [m′, q] ∗−→ [m1, qx], [m′, q] ∗−→ [m2, qx], [m′, q] t−→ [m′′, q],
• [m′′, q] ∗−→ [m1, qx], and [m′′, q] � ∗−→ [m2, qx].

A covered final marking is a situation that occurs when N is composed to a
partner. With the help of Lemma 1, the blacklist for covered final markings can
be defined only by checking markings of nodes of TS0 and paths in TS0. This can
be easily done while building TS0 instead of analyzing paths in N⊕TS0. Lemma 1
also allows for finding a set T ∗ of hidden choice transitions (see Fig. 3(b)) which
model a hidden decision as described in Section 3.2. These transitions can be
the starting point to repair the net to avoid the covered final marking.

Why Does My Service Have No Partners? 203

Algorithm 1. Blacklist-based diagnosis for uncontrollable open nets
Input: uncontrollable, normal, and bounded open net N ; message bound k ∈ IN+

Output: diagnosis information why N is uncontrollable; subgraph TS∗0 of TS0
1: calculate TS0 from N
2: calculate blacklistDLL from Inner (N)
3: calculate blacklistEMB from TS0
4: calculate blacklistCFM from TS0
5: if q0 is blacklisted then

6: if q0 ∈ blacklistDL then
7: print “control flow deadlock or livelock reachable without interaction”
8: print DL-witness σDL(q0)

9: if q0 ∈ blacklistEMB then
10: print “message bound of communication place p exceeded without interaction”
11: print EMB-witness σEMB (q0)

12: else

13: for all states q reachable from q0 by a sequence σ without visiting blacklisted states do
14: if (state q is not blacklisted and no resolvable trapped marking in q is resolved) then
15: for all resolvable trapped markings me ∈ q where

(me|Inner(N) activates a transition t with (t) = x and
state qx reachable by edge [q, x, qx] is blacklisted) do

16: print path σ from q0 to q

17: if qx ∈ blacklistDLL then
18: print “sending message x to N to resolve an resolvable trapped marking in qe

reachable by σ from q0 can reach a control flow deadlock or livelock”
19: print DLL-witness σDLL(qx)

20: if qx ∈ blacklistEMB then
21: print “sending message x to N to resolve an resolvable trapped marking in qe

reachable by σ from q0 can exceed the message bound”
22: print EMB-witness σEMB (qx)

23: if qx ∈ blacklistCFM then
24: print “message x necessary to resolve an resolvable trapped marking in qe

reachable by σ from q0 might be left unreceived due to a hidden choice”
25: print CFM-witness σEMB (qx)

26: print subgraph TS∗0 of TS0 where all blacklisted states are removed

4.5 Blacklist-Based Diagnosis

With the definitions of the blacklists for deadlocks/livelocks, exceeded message
bound, and covered final markings, we are able to define the subgraph (i. e., the
counterexample for controllability of N) TS∗0 of TS0 which only contains states
that are not contained in any of the three blacklists.

Algorithm 1 combines the defined blacklists together with their witnesses, and
gives information for each detected problem. After a preprocessing phase (line
1–4) in which TS0 as well as the blacklists are calculated, the states of TS0 are
analyzed. Thereby, two cases are differentiated: if already the initial state of q0
is blacklisted, then the open net reaches a problem independently of a partner.
Covered final markings cannot occur in this setting. As a diagnosis information,
the initial state q0 and the respective problem(s) are printed (line 5–11). The
rest of the algorithm (line 12–26) treats situations in which TS∗0 is nonempty.

204 N. Lohmann

order

tchoice

�

og o

c ii c

terms ofinvoice

con�rmation

�

� � � �

�

t1 t2

� �

� � � �

gift

payment

(a) online shop model (b) counterexample for controllability

Fig. 4. Example for the application of Algorithm 1

The diagnosis messages can be classified into the three categories (initial
part I, possible continuation C, and occurring problem P) as follows:

(I) line 26 prints the non-blacklisted subgraph TS∗0,
(C) line 16 prints, for each resolvable trapped marking that is not resolved in

TS∗0, a communication trace from q0 to the state containing the resolvable
trapped marking,

(P) line 7–8, 10–11, 18–19, 21–22, and 24–25 print information about the problem
that might be unavoidable after resolving the respective deadlock, including
witnesses.

It is worth mentioning that the algorithm lists all problems that can occur
if TS∗0 is “left” by resolving a deadlock. If, for example, sending an x-message
in some state can result in a message bound violation and yield an internal
deadlock, then both problems are reported.

4.6 Diagnosis Example

To demonstrate the proposed diagnosis framework, we applied Algorithm 1 to
an uncontrollable net we presented and discussed in [20]. This net which is
depicted in Fig. 4(a) is a model of a WS-BPEL online shop which after receiving
a login message from a customer (not depicted in Fig. 4), internally decides
whether to treat the customer as premium customer (t1) or standard customer
(t2). As the customer is not informed about the outcome of the decision, the
shop is uncontrollable, because either a message gift choice or terms of payment
might be left unreceived. Experiments showed that even experienced Web service
designers would consider the online shop as correct even when it is presented in
other formalisms such as WS-BPEL or BPMN. This underlines the need for a
diagnosis framework for such incorrect models, because concurrent control flow
combined with asynchronous message flow is hard to oversee.

Why Does My Service Have No Partners? 205

Figure 4(b) shows the result of Algorithm 1 when applied to the online shop
model. It discovers the hidden choice modeled by transitions t1 and t2. These
transitions can be used as a starting point to fix the online shop. If, for example,
the outcome of the internal decision would be communicated to the customer
(e. g., by adding two output places premium and standard which are connected to
t1 and t2, resp.), the shop would be controllable.

4.7 Implementation of the Diagnosis Algorithm

The diagnosis algorithm is based on the partner overapproximation TS0 which
can be infinite if the net under consideration has no message bound (e. g.,
Fig. 2(a)). We already required that a message bound k is given for the analysis,
so instead of first calculating TS0 and then removing states with exceeded mes-
sage bound, TS1 can be calculated in the first place. In fact, this is exactly the
way the controllability decision algorithm is implemented in the tool Fiona [20].

The diagnosis algorithm can be implemented straightforwardly. The set
blacklistDLL can be calculated in a preprocessing stage. During the calculation of
TS1, blacklistEMB can be built whenever the currently calculated state contains
a marking with exceeded message bound. Whenever a state with a covered final
marking is detected, blacklistCFM can be filled according to the criteria ofLemma 1.

5 Conclusion

The concept of counterexamples greatly boosted the acceptance of model check-
ing [14] in the field of computer-aided verification. However, the decision algo-
rithm for controllability [3,15] does not give such counterexamples in case of
uncontrollability. In this paper, we investigated uncontrollable service models
and presented a variety of reasons why a service does not have any partners that
interact deadlock and livelock freely. We presented an algorithm to analyze an
uncontrollable service model to give diagnosis information why the model is un-
controllable. This diagnosis information can be a starting point for corrections [4]
of the model towards controllability to meet this fundamental correctness crite-
rion for service-oriented computing.

In future work, we plan to implement the diagnosis algorithm in the tool
Fiona [20]. Fiona already implements some reduction techniques [21] to effi-
ciently decide controllability. We will investigate whether these techniques can
be combined with the diagnosis algorithm. As service models usually stem from
industrial specification languages such as WS-BPEL, the retranslation of (Petri
net-related) diagnosis information back into WS-BPEL is subject of future work.
Together with the translations [9,10] from and to WS-BPEL, the diagnosis algo-
rithm can be directly applied to industrial service specification languages.

Acknowledgements. The author wishes to thank Karsten Wolf for advice on
the relationship to classical model checking and the anonymous referees for their
valuable comments. Niels Lohmann is funded by the DFG project “Operating
Guidelines for Services” (WO 1466/8-1).

206 N. Lohmann

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Commun.
ACM 44, 71–77 (2001)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2003)

3. Schmidt, K.: Controllability of open workflow nets. In: EMISA 2005, GI. LNI,
vol. P-75, pp. 236–249 (2005)

4. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

5. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers 8, 21–66 (1998)

6. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow pro-
cesses using Woflan. Comput. J. 44, 246–279 (2001)

7. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1, 35–43 (2005)

8. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer, Heidelberg (1985)

9. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

10. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Modellierung 2008, GI. LNI, vol. 127,
pp. 57–72 (2008)

11. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
OASIS Standard, April 11. OASIS (2007)

12. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

13. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Unde-
cidablity of partner existence for open nets. Inf. Process. Lett. (2008) (accepted)

14. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

15. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) ToPNoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

16. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cam-
bridge (1995)

17. Dehnert, J., van der Aalst, W.M.P.: Bridging the gap between business models and
workflow specifications. Int. J. Cooperative Inf. Syst. 13, 289–332 (2004)

18. Lautenbach, K., Ridder, H.: Liveness in bounded Petri nets which are covered by
T-invariants. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 358–375.
Springer, Heidelberg (1994)

19. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 271–287. Springer, Heidelberg (2007)

20. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data Knowl. Eng. 64, 38–54
(2008)

21. Weinberg, D.: Efficient controllability analysis of open nets. In: Bruni, R., Wolf, K.
(eds.) WS-FM 2008. LNCS, vol. 5387, pp. 224–239. Springer, Heidelberg (2008)

Proof Techniques for Adapter Generation

Arjan J. Mooij and Marc Voorhoeve

Department of Mathematics and Computer Science�

Technische Universiteit Eindhoven, The Netherlands
{A.J.Mooij,M.Voorhoeve}@tue.nl

Abstract. We study the composition and substitution of services from
a theoretical perspective. An important notion is the operating guideline
of a service y, which is defined as the set of services x such that the
result of connecting x and y has a certain desired property. We define
several related notions and derive results for them in a general context,
thus abstracting from the underlying formalism, be it process algebra,
Petri nets or something else. We then focus on the open Petri-net (and
oWFN) formalism, and address the automated generation of adapters.

1 Introduction

Service-oriented computing is a paradigm of computing that emphasizes compo-
sition and interaction. Prominent applications include web services, supported
by industrial languages such as WS-BPEL. Complex services can be composed
from simpler services. As, in turn, the simpler services may have been developed
independently, upon composition a certain gap may need to be bridged. Bridging
this gap is the functionality of an adapter (or mediator) service.

Adapters are closely related to controllers. A controller of a service y is a
service x such that the composition of x and y has a certain desired property,
e.g., deadlock freedom or weak termination. An adapter between two services
x and y is a controller for the disjoint composition of the services x and y. In
[MS05], a representation of all controllers is called an operating guideline, and
it induces a pre-order on the services, which is called accordance [vdALM+08]
(similarly, inheritance [CPT01], conformance [FHRR04], compliance [CCLP06],
or sub-contract [BZ07, CGP08]). Operating guidelines and accordance are key
concepts for reasoning about adapters.

Many different yet related formalisms, including Petri nets and process al-
gebras, have been proposed for describing services and their composition. The
just mentioned concepts are typically studied for a specific formalism, and hence
very similar results are obtained. Although others, e.g., [ML06], aim to unify
the languages for web services, we propose a general framework that unifies

� This work has been carried out as a part of the Poseidon project at Thales under the
responsibilities of the Embedded Systems Institute (ESI). This project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 207–223, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

208 A.J. Mooij and M. Voorhoeve

results that can be obtained independently of a specific formalism. The alge-
braic view from [RBF+07] has a similar style as ours, and compared to, e.g.,
[CPT01, BZ07, CGP08], we discuss more than just accordance.

Using just a few assumptions on composition, we prove many general the-
oretical results, and in particular we discuss dual approaches to automated
adapter generation. Regarding the open Petri-net [Kin97] and open WorkFlow
Net (oWFN) formalisms, we discuss the associativity of the composition oper-
ator, and we develop a proof technique for partial adapters. Finally, we apply
these techniques to the adapter generation approach from [GMW08].

Overview In Section 2 we introduce basic concepts like operating guidelines.
In Sections 3 and 4 we define two additional concepts. In Section 5 we treat
associativity of the composition operator, and in Section 6 we discuss some
applications to adapter generation. In Section 7 we focus on the open Petri-
net formalism, and in Section 8 we discuss a certain approach towards adapter
generation. Finally, in Section 9 we draw some conclusions.

2 Basic Concepts

We consider a universe of services with interfaces, although, in contrast to [LP07],
we leave the interfaces implicit. The main operation on services is composition,
for which we introduce a binary operator ⊕. Service composition is similar to
parallel composition with communication. Our composition operator⊕ is defined
as a partial operator, so that we can model certain technical restrictions on the
composability of services (see for example Section 7).

2.1 Operating Guideline

Let B denote a correctness property on any (composed) service, e.g., closed
interface, deadlock freedom or weak termination. Like the notion of strategies in
[RBF+07], we define the operating guideline of any service y, denoted by OG.y,
as the (possibly empty, and possibly infinite) set of services x such that x ⊕ y
(is defined and) has property B:

(∀x, y :: x ∈ OG.y ≡ B.(x⊕ y))

Such a service x is typically called a controller (or a partner) of the service y.
Notice that we use ‘.’ to denote function application, and that we often omit

the domains of variables that are bound by quantifiers. We do use the standard
set operations: element ∈, subset ⊆, intersection ∩, and union ∪.

The function OG is in fact an asymmetric representation of a relation on
services, though this relation is more explicit in the notation for compatibility
from [CPT01]. A related notion is controllability of a service y, which denotes
the existence of a service x such that B.(x⊕ y) holds, i.e., whether OG.y �= ∅.

Like most related work on service composition, except [LP07], we assume
service composition ⊕ to be commutative, and hence we have:

(∀x, y :: x ∈ OG.y ≡ y ∈ OG.x)

Proof Techniques for Adapter Generation 209

2.2 Sets of Services

To obtain nicer equations, we also study the operating guideline of a set of
services Y . We define this as the set of services X such that property B holds
for the composition of each service x : x ∈ X with each service y : y ∈ Y :

(∀Y :: OG.Y = (
⋂

y : y ∈ Y : OG.y))

Sets of services are also useful for various applications. In a multi-processor
environment, the incoming requests might be distributed over several, slightly
different, (versions of) services. Also, if there is some unclarity about the details
of a service, we might be able to model the various possibilities. In any case, a
controller of the set of services should be a controller of each service in the set.

As a convention we will use lower-case variables for single services, and upper-
case variables for sets of services. Notice that lifting the operating guideline is a
generalization, as OG.y = OG.{y}. For sets of services, we lift the composition
operator ⊕ as follows: (∀X, Y :: X ⊕ Y = {x⊕ y | x, y : x ∈ X ∧ y ∈ Y }).

2.3 Galois Connection

The lifted operating guideline is a Galois connection (see, e.g., [Bac02]) on sets
of services in the following way:

(∀X, Y :: X ⊆ OG.Y ≡ Y ⊆ OG.X)

This can be proved as follows, for every X and Y :
X ⊆ OG.Y

≡ { definition of OG.Y ; set theory }
(∀x, y : x ∈ X ∧ y ∈ Y : x ∈ OG.y)

≡ { commutativity of ⊕ }
(∀x, y : x ∈ X ∧ y ∈ Y : y ∈ OG.x)

≡ { definition of OG.X ; set theory }
Y ⊆ OG.X

Given this Galois connection and the pre-order (i.e., binary relation that is
reflexive and transitive) ⊆, we obtain all kinds of standard properties. Function
OG is anti-monotonic in the following way:

(∀X, Y :: X ⊆ Y ⇒ OG.Y ⊆ OG.X)

Moreover, the function (OG ◦ OG), where ◦ denotes function composition, is a
closure operator on sets of services, as it is:

extensive: (∀X :: X ⊆ (OG ◦OG).X)
monotonic: (∀X, Y :: X ⊆ Y ⇒ (OG ◦OG).X ⊆ (OG ◦OG).Y)
idempotent: (∀X :: ((OG ◦OG) ◦ (OG ◦OG)).X ⊆ (OG ◦OG).X)

210 A.J. Mooij and M. Voorhoeve

The property that (OG ◦OG) is idempotent also follows from OG being a semi-
inverse of OG:

(∀X :: (OG ◦OG ◦OG).X ⊆ OG.X)

In the last two properties, we can use extensiveness to strengthen the set
inclusion ⊆ into set equality, which is the equivalence relation induced by the
pre-order ⊆. Nevertheless, these formulae just contain the pre-order ⊆, because
in Sections 3 and 4 we will study Galois connections for which similar properties
hold, but where different equivalence relations are induced.

These results indicate that applying (OG ◦ OG) extends the set of services,
but after applying OG at least once, applying (OG ◦ OG) has no more effect.
Moreover, the ordering ⊆ is inverted by every application of OG.

3 Accordance

In [vdALM+08] the notion of accordance is introduced to reason about the public
and private view of a service. Like the inverse of relation “generalizes” from
[RBF+07], we define the accordance relation ≤ on sets of services as follows:

(∀X, Y :: X ≤ Y ≡ OG.Y ⊆ OG.X)

That is, X ≤ Y denotes that each controller of Y is a controller of X , and hence
the set X has more controllers than the set Y .

Since the relation ⊆ on sets is a pre-order, the relation ≤ on sets of services is
also a pre-order. The empty set is a bottom element of this pre-order, and any
set of services with an empty operating guideline is a top element. These two
extremes correspond to the sets of services for which respectively each service is
a controller, and no service is a controller.

In turn, the pre-order ≤ induces an equivalence relation [RBF+07] .= that
relates the services with an identical operating guideline:

(∀X, Y :: X
.= Y ≡ X ≤ Y ∧ Y ≤ X)

We will abbreviate {x} ≤ {y} into x ≤ y, and {x} .= {y} into x
.= y.

Using anti-monotonicity of OG, the pre-order ≤ contains the pre-order ⊆:

(∀X, Y :: X ⊆ Y ⇒ X ≤ Y)

Moreover, some occurrences of ≤ and ⊆ are related by an equivalence:

(∀X, Y :: X ⊆ OG.Y ≡ X ≤ OG.Y)

This can be proved as follows, for every X and Y :
X ≤ OG.Y

≡ { definition of ≤ }
OG.(OG.Y) ⊆ OG.X

≡ { OG is anti-monotonic }
X ⊆ OG.Y

Proof Techniques for Adapter Generation 211

3.1 Galois Connection

The lifted operating guideline is a Galois connection on sets of services with the
accordance pre-order in the following way:

(∀X, Y :: X ≤ OG.Y ≡ Y ≤ OG.X)

This can be proved as follows, for every X and Y :
X ≤ OG.Y

≡ { relation between ≤ and ⊆ }
X ⊆ OG.Y

≡ { Galois connection }
Y ⊆ OG.X

≡ { relation between ≤ and ⊆ }
Y ≤ OG.X

Hence, we can replace ≤ by ⊆ in the standard properties from Section 2.3. In
addition, using the previous semi-inverse property, we obtain that (OG ◦OG) is
an identity function with respect to accordance equivalence:

(∀X :: (OG ◦OG).X .= X)

We also obtain the following stronger anti-monotonicity property:

(∀X, Y :: X ≤ Y ≡ OG.Y ≤ OG.X)

This can be proved as follows, for every X and Y :
OG.Y ≤ OG.X

≡ { Galois connection }
X ≤ (OG ◦OG).Y

≡ { (OG ◦OG) is an identity with respect to accordance }
X ≤ Y

Using these two properties we obtain:

(∀X, Y :: X
.= OG.Y ≡ OG.X

.= Y)

From this we can conclude that the domain and range of function OG are equal
up to accordance, i.e., (∀X :: (∃Y :: X

.= OG.Y)). All together, we can conclude
that function OG inverts the entire accordance pre-order ≤ on sets of services.

3.2 Relating Sets of Services to Single Services

In this section we explore some rules for proving X ≤ Y in terms of the elements
of the sets X and Y . Using the definition of OG on sets of services, we obtain
the following rule:

(∀X, Y :: X ≤ Y ≡ (∀x : x ∈ X : {x} ≤ Y))

212 A.J. Mooij and M. Voorhoeve

As (∀y : y ∈ Y : {y} ≤ Y), we also obtain the following rule:

(∀X, Y :: (∀x : x ∈ X : (∃y : y ∈ Y : {x} ≤ {y})) ⇒ X ≤ Y)

Notice that this rule is not an equivalence; a counter example consists of sets X
and Y that are both uncontrollable, and although X contains an uncontrollable
service, all services in Y are controllable (but somehow conflicting).

4 Maximal Controllers

Computing the operating guideline is not very practical, as it can be an infinite
set. In some settings [LMSW08], a single service z can be computed that encodes
the operating guideline of any controllable set of services Y using accordance:

(∀Y : OG.Y �= ∅ : (∃z :: (∀x :: x ∈ OG.Y ≡ x ≤ z)))

Notice that such a service z is an element of OG.Y , as ≤ is reflexive.
The existence of such a service z cannot be concluded from the algebraic

properties we have seen so far, as we will demonstrate using a valid model in
which it does not hold. Suppose we model a (deterministic) service by a bag of
actions from a set A (of size at least three), and use bag union as the composition
operator (which is commutative and associative). Let B.y denote that the bag
y consists of exactly two actions, and that these actions are different. Now we
have OG.{a} = {{b} | b : b ∈ A ∧ b �= a}, for every action a : a ∈ A. Given
that the size of A is at least 2, the singleton bags from A are not related by ≤.
As the size of A is at least 3, the size of the operating guideline of a singleton
bag is at least two, and hence there exists no such z for Y = {a} where a ∈ A.

In what follows we just assume that for each controllable set Y such a maximal
controller z exists, and we use mc.Y to denote some maximal controller:

(∀Y : OG.Y �= ∅ : (∀x :: x ∈ OG.Y ≡ x ≤ mc.Y))

As ≤ is reflexive, we have that (∀Y : OG.Y �= ∅ : mc.Y ∈ OG.Y); so, if mc.Y
is defined, i.e., Y is controllable, then {mc.Y } is a subset of OG.Y . Nevertheless,
given any set Y of services, we have that if mc.Y is defined, then the sets OG.Y
and {mc.Y } are equivalent up to accordance:

(∀Y : OG.Y �= ∅ : OG.Y
.= {mc.Y })

We prove this result using indirect equality. That is, we prove the equivalent
condition (∀Y : OG.Y �= ∅ : (∀X :: X ≤ OG.Y ≡ X ≤ {mc.Y })) as follows
for every X and Y such that OG.Y �= ∅:

X ≤ {mc.Y }
≡ { focus on elements of X ; shorthand of ≤ for singletons }

(∀x : x ∈ X : x ≤ mc.Y)
≡ { definition of mc, use OG.Y �= ∅ }

(∀x : x ∈ X : x ∈ OG.Y)
≡ { set theory; relation between ≤ and ⊆ }

X ≤ OG.Y

Proof Techniques for Adapter Generation 213

4.1 Galois Connection

Since the result of the function mc is a single service, we obtain a nicer theory
for mc by focussing on single services instead of sets of services. So, let us define
mc.y = mc.{y}. Notice that mc is an endo-function on controllable services, i.e.,
every maximal controller of a controllable service is also a controllable service:

(∀y : OG.y �= ∅ : OG.(mc.y) �= ∅)

Moreover, we have (∀x, y : OG.y �= ∅ : x ≤ mc.y ⇒ OG.x �= ∅), i.e., every
service x : x ≤ mc.y is controllable if y is controllable (i.e., mc.y is defined).

Using the equivalence between OG and mc, we can transform the Galois
connection of OG into a Galois connection of mc on controllable services:

(∀x, y : OG.x �= ∅ ∧ OG.y �= ∅ : x ≤ mc.y ≡ y ≤ mc.x)

Thus we obtain similar properties as in Section 3.1, but in terms of single control-
lable services. Hence we can conclude that the function mc inverts the accordance
pre-order ≤ on controllable services.

5 Associative Composition

In this section we study an additional assumption on the composition operator,
viz., associativity.

5.1 Trading Rules

By assuming ⊕ to be associative, we obtain trading rules like the following (see
also an instance in [RBF+07]):

(∀X, Y, Z :: X ⊆ OG.(Y ⊕ Z) ≡ (X ⊕ Y) ⊆ OG.Z)

This can be proved as follows, for every X , Y and Z:
X ⊆ OG.(Y ⊕ Z)

≡ { definition of ⊕; set theory }
(∀x, y, z : x ∈ X ∧ y ∈ Y ∧ z ∈ Z : x ∈ OG.(y ⊕ z))

≡ { definition of OG; associativity of ⊕ }
(∀x, y, z : x ∈ X ∧ y ∈ Y ∧ z ∈ Z : (x ⊕ y) ∈ OG.z)

≡ { definition of ⊕; set theory }
(X ⊕ Y) ⊆ OG.Z

As a consequence, the controllability of Y ⊕Z implies the controllability of Z,
i.e., (∀Y, Z :: OG.(Y ⊕ Z) �= ∅ ⇒ OG.Z �= ∅), but not the other way around.

Using our earlier results, we obtain similar rules for OG and ≤ in terms of sets
of services, and for mc and ≤ in terms of controllable services. The controllability
assumptions of the latter could be simplified as follows:

(∀x, y, z : OG.(y ⊕ z) �= ∅ : x ≤ mc.(y ⊕ z) ≡ (x⊕ y) ≤ mc.z)

214 A.J. Mooij and M. Voorhoeve

5.2 Accordance Pre-congruence

Using the associativity of ⊕, the accordance pre-order ≤ is a pre-congruence
with respect to the operator ⊕:

(∀X, Y, Z :: Y ≤ Z ⇒ X ⊕ Y ≤ X ⊕ Z)

This can be proved as follows, for every X , Y and Z:
X ⊕ Y ≤ X ⊕ Z

≡ { definition of ≤; indirect inequality }
(∀W :: W ⊆ OG.(X ⊕ Z) ⇒ W ⊆ OG.(X ⊕ Y))

≡ { trading }
(∀W :: (W ⊕X) ⊆ OG.Z ⇒ (W ⊕X) ⊆ OG.Y)

⇐ { set theory; definition of ≤ }
Y ≤ Z

Pre-congruence properties are important when composing services from some
smaller services, which is at the core of service-oriented computing. As ⊕ is
commutative, we also obtain that ⊕ is monotonic in both arguments:

(∀V, W, X, Y :: V ≤W ∧ X ≤ Y ⇒ V ⊕X ≤ W ⊕ Y)

Similarly, for isolating a term Y from terms like X ≤ Y ⊕Z and X⊕Y ≤ Z,
we obtain four rules:

(∀X, Y, Z :: X ≤ Y ⊕ Z ≡ (∃W :: W ≤ Y ∧ X ≤ W ⊕ Z))

(∀X, Y, Z :: X ≤ Y ⊕ Z ≡ (∀W :: Y ≤W ⇒ X ≤ W ⊕ Z))

(∀X, Y, Z :: X ⊕ Y ≤ Z ≡ (∃W :: Y ≤ W ∧ X ⊕W ≤ Z))

(∀X, Y, Z :: X ⊕ Y ≤ Z ≡ (∀W :: W ≤ Y ⇒ X ⊕W ≤ Z))

6 Application to Adapter Generation

In this section we apply our theory to some topics related to adapter generation.
To discuss adapter generation, we assume that some (incompatible) services are
given that need to be integrated. It is usually assumed that their interfaces
are disjoint, and we use x to denote their (disjoint) composition. Basically, an
adapter [RBF+07] for these services is a controller for the service x. So, assuming
that the service x is controllable, an adapter is a service y such that y ≤ mc.x,
or equivalently, y ∈ OG.x.

This construction of an adapter establishes that property B (e.g., deadlock-
freedom or weak termination) holds for the composition of the given service x
with the adapter y. However, usually there are more requirements, e.g., what
the given service x aims to achieve, or what operations the adapter y is allowed
(or able) to perform. Various specification languages have been proposed for this.

Proof Techniques for Adapter Generation 215

6.1 Dual Approaches to Generating Adapters

Most of the approaches to adapter generation first construct a huge controller,
possibly mc.x. For the typically-used properties B, such a controller contains (is
larger in the accordance pre-order than) the adapter that conceptually consists
of two independent parts, each one establishing property B with one given ser-
vice. Afterwards (possibly on-the-fly), the additional requirements are imposed
by restricting the behavior of the generated controller; moreover, part of the
controller generation algorithm is repeated in order to eliminate branches that
cannot establish property B anymore. This last step guarantees that the result-
ing service y is indeed smaller than mc.x with respect to accordance, and hence
it is a proper adapter. Unfortunately, this approach usually leads to complex
algorithms [BBC05, BP06], with a bad separation of concerns.

As we have seen that the function mc inverts the accordance pre-order on
controllable services, there also exists a second approach; however, it has not yet
received much attention. In this case, the additional requirements are imposed by
first creating a service z that is greater than x with respect to accordance. That
is, the requirements are integrated with the given services, and afterwards an
adapter is obtained by generating the controller mc.z. Thus, existing controller
generation algorithms can immediately be reused.

For a given controllable service x, these two approaches yield the sets of
adapters {y | y : y ≤ mc.x} and {mc.z | z : OG.z �= ∅ ∧ x ≤ z} respectively.
To show the duality between these approaches, we will prove that the elements
in this set are equal up to accordance equivalence, i.e., for every service w, an
accordance-equivalent service is in one set if-and-only-if an accordance-equivalent
service is in the other set:

(∀w :: (∃y :: y ≤ mc.x ∧ y
.= w) ≡ (∃z : OG.z �= ∅ : x ≤ z ∧ w

.= mc.z))

As services x and z are controllable, services y and mc.z are also controllable.
Thus, the case that w is uncontrollable holds trivially, and in the remainder of
this proof we assume that w is controllable:

(∃z :: x ≤ z ∧ w
.= mc.z)

≡ { property of mc }
(∃z :: x ≤ z ∧ mc.w .= z)

≡ { ≤ is a pre-order }
x ≤ mc.w

≡ { Galois connection }
w ≤ mc.x

≡ { ≤ is a pre-order }
(∃y :: y ≤ mc.x ∧ y

.= w)

This result also gives a formal foundation for the oWFN-based techniques
from [LMW07]. It is even a completeness proof under the assumption that all
controllable services z : x ≤ z can be obtained using their constraint automata.
We have not studied the validity of the latter assumption, as it is likely to be
formalism dependent.

216 A.J. Mooij and M. Voorhoeve

6.2 Partial Adapters

Some kinds of additional requirements, e.g., limitations on the operations that
an adapter can perform, can nicely be modeled as a partial adapter (see, e.g.,
[GMW08]). A partial adapter for a (composed) service x is a service y with
two interfaces. The first interface is the one with service x, which enables it to
enforce the additional requirements. The second interface is a fresh one, which
allows another service to control parts of the behavior of the partial adapter.
Some examples of partial adapters are discussed in Section 8.

To construct an adapter, the services x and y are composed, and a controller
from the set OG.(x ⊕ y) is computed. Afterwards, this controller is composed
with the partial adapter y, yielding an adapter from the set {y} ⊕OG.(x⊕ y).

Although interfaces are hardly discussed in our framework, our introduction
to partial adapters seems to focus on interfaces. This mainly turns out to be an
example of its usage, as we can use the trading rules to show that the resulting
adapters are indeed adapters for x:

{y} ⊕OG.(x⊕ y) ⊆ OG.x

6.3 Service Approximation

When building adapters in practice, not always a complete or accurate model
of the given (composed) service x is available. Instead, suppose that property B
holds for x⊕z, i.e., x ≤ mc.z. If only the model of z is given, we like to use mc.z
as an approximation of x.

To show the validity of this approach, we show that by making a service
larger with respect to the accordance, the set of adapters becomes a subset.
Hence, larger approximations are no problem for adapter generation. From the
definition of ≤, we obtain for adapter generation without additional restrictions:

(∀x, y :: x ≤ y ⇒ OG.y ⊆ OG.x)

Using that ≤ is a pre-congruence with respect to ⊕, we obtain a similar result
for adapter generation using a partial adapter z:

(∀x, y, z :: x ≤ y ⇒ {z} ⊕OG.(y ⊕ z) ⊆ {z} ⊕OG.(x⊕ z))

6.4 Proof Technique for Partial Adapters

Suppose a service x is given together with two partial adapters y and z. It is a
natural question to determine whether partial adapter y leads to an adapter for
x that is smaller with respect to accordance than the one that would be obtained
using partial adapter z, i.e., whether {y} ⊕OG.(x⊕ y) ≤ {z} ⊕OG.(x⊕ z).

Although ≤ is a pre-congruence with respect to ⊕, conditions like y ≤ z or
z ≤ y do not suffice, as OG is anti-monotonic. We will show that it is sufficient
to prove that service z can be used to mimic service y, i.e., there exists a service
a such that z ⊕ a is accordance equivalent to y.

Proof Techniques for Adapter Generation 217

To increase the generality of this approach in case x ⊕ y and x ⊕ z share
interface names, we want to be able to introduce fresh names for the interface
of x ⊕ y. To this end we introduce a service i that can perform a one-to-one
transformation between the complement of the interface of x ⊕ y and a fresh
interface.

Combining these ingredients, we consider the lemma:

(∀x, y, z, i :: (∀Q : Q ≤ OG.(x⊕ y) : (∃P :: Q
.= {i} ⊕ P)) ⇒

((∃a :: y ⊕ i
.= z ⊕ a) ⇒ {y} ⊕OG.(x⊕ y) ≤ {z} ⊕OG.(x⊕ z)))

which can be proved for every x, y, z and i as follows:

{y} ⊕OG.(x⊕ y) ≤ {z} ⊕OG.(x⊕ z)
≡ { pre-congruence (twice) }

(∀Q : Q ≤ OG.(x⊕ y) : (∃R : R ≤ OG.(x⊕ z) : {y} ⊕Q ≤ {z} ⊕R))
≡ { dummy transformation using (∃P :: Q

.= {i} ⊕ P) }
(∀P : {i} ⊕ P ≤ OG.(x⊕ y) :

(∃R : R ≤ OG.(x ⊕ z) : {y ⊕ i} ⊕ P ≤ {z} ⊕R))
⇐ { choose R := {a} ⊕ P ; trading }

(∀P : {x} ⊕ P ≤ OG.(y ⊕ i) :
(∃a : {x} ⊕ P ≤ OG.(z ⊕ a) : {y ⊕ i} ⊕ P ≤ {z ⊕ a} ⊕ P))

⇐ { pre-congruence }
(∃a :: y ⊕ i

.= z ⊕ a)

The term (∀Q : Q ≤ OG.(x⊕y) : (∃P :: Q
.= {i}⊕P)) causes this lemma

to look complicated. In typical applications, given services x and y, a service
i satisfying this condition can easily be chosen based on only the interface of
x ⊕ y, as we will also see in Section 7.2. Afterwards, a service a is chosen such
that (∃a :: y ⊕ i

.= z ⊕ a) holds.

7 Open Petri-net / oWFN

In this section we relate open Petri-nets [Kin97] (similar to open WorkFlow
Nets, oWFN) to our framework, and discuss some issues. To this end we need
to introduce some details about the syntax and operational semantics of this
formalism.

A Petri net consists of a set of places P , a set of transitions T and a set of arcs
F : F ⊆ (P × T) ∪ (T × P). A marking is a mapping from P to the naturals;
for any marking m and place p, it is said that there are m.p tokens in the place
p. A transition t is enabled in marking m iff m.p > 0 for all places p : [p, t] ∈ F .
A marking m′ is reachable from marking m iff there exists a sequence of firings
from m to m′. Firing an enabled transition t in marking m leads to a marking
m′ such that m′.p = m.p−W.[p, t] + W.[t, p] for all places p, where W.[x, y] = 1
if [x, y] ∈ F and W.[x, y] = 0 otherwise.

An open Petri-net is a Petri net with two disjoint subsets of places that
denote the input and output interfaces; if these two subsets are empty then the

218 A.J. Mooij and M. Voorhoeve

net is called closed. Input places only have outgoing arcs, and output places only
have incoming arcs. Furthermore, there is an initial marking (which is 0 for the
interface places) and a set of final markings (each of which is 0 for the interface
places). The inner of an open net is the subnet that consists of the transitions
and the places that are not on the interface, and the arcs between them. The
inner of an open net is abstract in the sense that it can be consistently renamed;
in this way an open net represents an equivalence class of isomorphic nets. Thus,
only the interface places have static names, which are used for composition.

Basically, two open nets are composable if their input places are disjoint and
also their output places are disjoint; otherwise composition is not defined. The
binary commutative operator ⊕ composes two open nets that are composable,
by taking the union of the two nets; to ensure that only the interface places can
be fused, their inners are first made disjoint. Each place that is an input place
of one net and an output place of the other net ceases to be an interface place
and becomes an internal place.

In, e.g., [vdALM+08], the correctness property B is defined as

(∀x :: B.x ≡ “x is closed and weakly terminating”)

Weak termination of a closed net denotes that a final marking is reachable from
every marking that is reachable from the initial marking. A consequence of
closedness is that all services in OG.y have an identical interface. To illustrate
the accordance pre-order for such a property B, a service that can start with
a skip transition and a number of alternative branches becomes smaller with
respect to accordance by removing some of these alternative branches.

If instead of weak termination we consider the weaker notion of deadlock
freedom, then tools like Fiona [LMSW08] can be used to compute a compact
representation of the OG and the mc (if it exists) in terms of a labeled service
automaton. Basically, this is an automaton (consisting of nodes and edges) in
which each edge is labeled with an action (send or receive one token) on an
interface place. Furthermore, the nodes are labeled with predicates that indicate
which combinations of outgoing edges may be omitted. Basically, this means
that every time a node is reached, an internal step can first decide which out-
going edges will actually be available. Thus the mc is obtained by replacing
every labeled node by a non-deterministic internal choice between all the valid
combinations of outgoing edges from this node.

7.1 Associativity of the Composition Operator

In case the inner of a net is not considered to be abstract, [vdALM+08] mentions
that the operator ⊕ is associative. If the inner is considered to be abstract, as
we do, [RBF+07] mentions that the operator ⊕ is associative for open nets that
do not share any interface place. Indeed, associativity is not guaranteed if the
inner is abstract and some interface places are shared. For example, consider the
following four open nets:

Proof Techniques for Adapter Generation 219

– X1: output interface a, behavior: send one token to a, and terminate;
– X2: input interface a, behavior: receive one token from a, and terminate;
– X3: output interface a, behavior: terminate immediately;
– X4: input interface a, behavior: terminate immediately.

If the inner is abstract, then (X1⊕X2)⊕(X3⊕X4) is well-defined. If associativity
holds, then this expression should be equal to X1 ⊕ ((X2 ⊕ X3) ⊕X4). As the
second one contains deadlocks and the first one does not, associativity does not
hold in this setting. So, although both an abstract inner and associativity of ⊕
are convenient properties to have, the existing definitions only give one of them.

The problem seems to be that the composition operator ⊕ is doing two things
at the same time, viz., taking the union of the open nets, and hiding some of
the interface places. Similar to CSP-style process algebra [Hoa85], we propose
to separate them in a new composition operator ⊕ and a new hiding operator
τ . Like before, two open nets are composable if they do not share input places,
and they do not share output places. The new binary composition operator ⊕
composes two composable open nets, by just taking the union of the two nets,
after making their inners disjoint. The new hiding operator τ makes from each
place that is both an input and an output interface an internal place (i.e., no
interface anymore).

As the new composition operator ⊕ is just computing the union of two nets, it
is both commutative and associative. As ∩ distributes over ∪, associativity does
not affect the composability. Our previous example should then be rephrased as
τ.(X1 ⊕X2) ⊕ τ.(X3 ⊕X4), and hence we would not even expect any form of
associativity. The the correctness property B should be rephrased as:

(∀x :: B.x ≡ “τ.x is closed and weakly terminating”)

Phrased in this way, it is natural to generalize the composition operator ⊕
such that the interfaces become single-reader multi-writer (compare the Mu-
rata rules [Mur89]). As this could change the accordance pre-order ≤, we leave
this as further work. Similarly, the hiding operator could be generalized with a
parameter that indicates a part of the interface.

7.2 Proof Technique for Partial Adapters

In Section 6.4 we have introduced a proof technique for partial adapters, which
for generality purposes depends on a special service i such that

(∀Q : Q ≤ OG.(x⊕ y) : (∃P :: Q
.= {i} ⊕ P))

Although this requirement looks complicated, for the open Petri-net formalism
it can easily be simplified. (Similar results may hold for other formalisms.)

Given the rules for composition of open nets, and given that property B
guarantees a closed interface, all services from the sets Q : Q ≤ OG.(x ⊕ y)
have an identical interface. We propose for i a service that just performs a one-
to-one transformation between the complement of the interface of x ⊕ y and a

220 A.J. Mooij and M. Voorhoeve

iQrRoP

nQeRnReP

cQcP

qp

(1) Partial adapter b

cQcP

iQrRoP

nQeRnReP

p q

(2) Partial adapter c

Fig. 1. Two partial adapters

fresh interface. Using the Murata rules (fusion of series places), for every set Q
a proper set P can be constructed by renaming the interface of the services in
Q (which is the complement of the interface of x⊕ y) to the complement of this
fresh interface.

So, for any service x, any partial adapters y and z, and the service i just
described, we obtain the simpler proof technique:

(∃a :: y ⊕ i
.= z ⊕ a) ⇒ {y} ⊕OG.(x⊕ y) ≤ {z} ⊕OG.(x⊕ z)

We will apply this proof technique to an example in Section 8.

8 Application to Some Specific Partial Adapters

In this section, we apply our techniques to the way of specifying and generating
adapters from [GMW08]. The property B that we require is being closed and
deadlock free. The additional requirements on the adapter are specified using
transformation rules that describe the capabilities of the adapter. Each rule
describes that a certain bag of messages can be transformed into a certain other
bag of messages. The transformation rules are translated into a partial adapter,
such that an adapter can be generated as described in Section 6.2.

In this section, we study two kinds of partial adapters that obey to these
transformation rules, but with different properties. To this end we use the fol-
lowing example in terms of open nets. Let service x be any given service (or
the composition of some given services) with an input interface p and an output
interface q. Furthermore suppose the only transformation rule is q 	→ p, which
denotes that any token in q (sent by the service x) can be transformed into a
token in p (sent to the service x). This is a representative example, as it turns
out that our results can easily be copied to the general case.

Figure 1 contains two partial adapters. The places on the dashed border are
the interface places. Each partial adapter has two series of interface places: the
lower interface is used by the given service x, and the upper interface is used
by the remaining generated controller. Interface nQ notifies incoming messages
q, interface eR enables a transformation rule, interface nR notifies executions of

Proof Techniques for Adapter Generation 221

cQcP

p q

um

e f g h

l t vn

(1) b⊕ a

hgfe

qp

(2) c⊕ i

Fig. 2. Proof outline of (∃a :: c⊕ i
.= b⊕ a)

a transformation rule, and interface eP enables outgoing messages p; the only
final marking is the initial marking, which is depicted.

Partial adapter b from Figure 1.1 corresponds to the conceptual partial adapter
from [GMW08]. Partial adapter c is depicted in Figure 1.2, but in this case the
internal places have been made bounded by adding complementary places with
a token in the initial marking. These bounds are necessary for the tools that
are used in [GMW08]. The resulting sets of adapters are {b} ⊕ OG.(x ⊕ b) and
{c} ⊕OG.(x⊕ c) respectively.

8.1 Conceptual Versus Bounded

Given the partial adapters b and c from Figure 1, we want to conclude that
the adapters {b} ⊕ OG.(x ⊕ b) can behave like the adapters {c} ⊕ OG.(x ⊕ c),
i.e., replacing partial adapter b by c makes the adapters smaller with respect to
accordance:

{c} ⊕OG.(x ⊕ c) ≤ {b} ⊕OG.(x ⊕ b)

Using our proof technique from Section 7.2, this follows from (∃a :: c⊕i
.= b⊕a),

where i transforms the complement of the upper interface of c to a fresh interface.
As b and c have equal interfaces, a will have the same interface as i.

Service c ⊕ i is depicted in Figure 2.2, but for service b ⊕ a we first need
to choose an appropriate service a. As the difference between b and c is that c
postpones the firing of certain transitions, we propose a service a that introduces
these delays to b; see Figure 2.1.

To prove the accordance equivalence of services c ⊕ i and b ⊕ a, we need
to show that OG.(c ⊕ i) = OG.(b ⊕ a), or equivalently, that for every service
z we have B.(c ⊕ i ⊕ z) ≡ B.(b ⊕ a ⊕ z). Therefore it is sufficient to show
the equivalence of services c ⊕ i and b ⊕ a using common Petri-net techniques
that maintain deadlock freedom, by considering the input interfaces as places

222 A.J. Mooij and M. Voorhoeve

with some invisible incoming arcs, and the output interfaces as places with some
invisible outgoing arcs.

Thus we first observe the two place invariants cP = l + m + n and cQ =
t + u + v. This means that the places cP and cQ are redundant, and hence they
can be removed. Afterwards, the equivalence follows by fusing some places and
transitions using the Murata rules.

9 Conclusions and Further Work

In this paper we have introduced an abstract framework for reasoning about
adapter generation. In particular we addressed concepts like operating guide-
lines, controllability, accordance, adapters and partial adapters. The underlying
structures include several pre-orders, pre-congruences and Galois connections.
In comparison to the usual operational characterizations of such concepts, our
approach highlights the relations between these concepts, is independent of a
specific formalism or language, and supports algebraic proofs. It is further work
to include pre-orders like “can be made compatible” [CGP08].

We make just a small number of assumptions on the exact formalism and lan-
guages that are used to describe services and their interaction. Nevertheless, our
results turn out to be strong enough for discussing real applications. For example,
we have shown that two approaches to adapter generation have equal expres-
sivity. While efficient implementations of the usual approach require modified
controller generators, the dual approach can use existing controller generators.
It is further work to expand this comparison with partial adapters.

Regarding the important property of associativity, we have proposed a variant
of the composition operator for open Petri-nets, using ideas from process algebra.
It is further work to explore the consequences of allowing interface places that
are single-reader multi-writer interface places.

Finally we have contributed to adapter generation in the style of [GMW08].
To this end we developed a proof technique that allows us to show the formal
relation between different partial adapters.

References

[Bac02] Backhouse, R.: Galois connections and fixed point calculus. In: Black-
house, R., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalge-
braic Methods in the Mathematics of Program Construction. LNCS,
vol. 2297, pp. 89–148. Springer, Heidelberg (2002)

[BBC05] Bracciali, A., Brogi, A., Canal, C.: A formal approach to component
adaptation. The Journal of Systems and Software 74(1), 45–54 (2005)

[BP06] Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
27–39. Springer, Heidelberg (2006)

[BZ07] Bravetti, M., Zavattaro, G.: A theory for strong service compliance.
In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 96–112. Springer, Heidelberg (2007)

Proof Techniques for Adapter Generation 223

[CCLP06] Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal ac-
count of contracts for web services. In: Bravetti, M., Núñez, M., Zavat-
taro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 148–162. Springer,
Heidelberg (2006)

[CGP08] Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web
services. In: Proceedings of Principles of Programming Languages, pp.
261–272 (2008)

[CPT01] Canal, C., Pimentel, E., Troya, J.: Compatibility and inheritance in
software architectures. Science of Computer Programming 41, 105–
138 (2001)

[FHRR04] Fournet, C., Hoare, T., Rajamani, S., Rehof, J.: Stuck-free confor-
mance. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 242–254. Springer, Heidelberg (2004)

[GMW08] Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behav-
ioral service adaptors based on transformation rules. Preprints CS-
02-08, Institut fur Informatik, Universitat Rostock (2008)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall,
Englewood Cliffs (1985)

[Kin97] Kindler, E.: A compositional partial order semantics for Petri net
components. In: Proceedings of Application and Theory of Petri Nets.
LNCS, vol. 1248, pp. 235–252. Springer, Heidelberg (1997)

[LMSW08] Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing in-
teracting WS-BPEL processes using flexible model generation. Data
& Knowledge Engineering 64(1), 36–54 (2008)

[LMW07] Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for ser-
vices. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 271–287. Springer, Heidelberg (2007)

[LP07] Laneve, C., Padovani, L.: The must preorder revisited — an alge-
braic theory for web services contracts. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer,
Heidelberg (2007)

[ML06] Mazzara, M., Lanese, I.: Towards a unifying theory for web services
composition. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-
FM 2006. LNCS, vol. 4184, pp. 257–272. Springer, Heidelberg (2006)

[MS05] Massuthe, P., Schmidt, K.: Operating guidelines — an automata-
theoretic foundation for the service-oriented architecture. In: Pro-
ceedings of Quality Software. IEEE, Los Alamitos (2005)

[Mur89] Murata, T.: Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE 77(4), 541–580 (1989)

[RBF+07] Reisig, W., Bretschneider, J., Fahland, D., Lohmann, N., Massuthe,
P., Stahl, C.: Services as a paradigm of computation. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time
Systems. LNCS, vol. 4700, pp. 521–538. Springer, Heidelberg (2007)

[vdALM+08] van der Aalst, W., Lohmannn, N., Massuthe, P., Stahl, C., Wolf, K.:
From public views to private views – correctness-by-design for ser-
vices. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937,
pp. 139–153. Springer, Heidelberg (2008)

Efficient Controllability Analysis of Open Nets

Daniela Weinberg

Humboldt–Universität zu Berlin
Institut für Informatik
Unter den Linden 6

10099 Berlin, Germany
weinberg@informatik.hu-berlin.de

Abstract. A service is designed to interact with other services. If the
service interaction is stateful and asynchronous, the interaction proto-
col can become quite complex. A service may be able to interact with
a lot of possible partner services, one partner or no partner at all. Hav-
ing no partner surely is not intended by the designer. But the stateful
interaction between services can be formalized and thus analyzed at
design time.

We present a formalization which is centered around a graph data
structure that we call interaction graph, which represents feasible runs
of a partner service according to the interaction protocol. As interac-
tion graphs suffer from state explosion, we introduce a set of suitable
reduction rules to alleviate the complexity of our approach. As our case
studies show we are able to analyze the interaction behavior of a service
efficiently.

Keywords: Business process analysis, Formal models in business process
management, Process verification and validation, Petri nets.

1 Introduction

Complex inter-organizational business processes are more and more structured
as a set of communicating elementary processes (services), which is one of the
objectives of service-oriented computing (SOC) [1]. A service represents a self-
contained software unit that offers an encapsulated functionality over a well-
defined interface.

In practice, the language WS-BPEL [2] has become common for modeling
services. WS-BPEL aims at describing the behavior of services by enhancing the
service’s underlying workflow by an interface description specifying the interac-
tional behavior of this service with other services, its partners. The behavior of a
service can become very complex due to the nature of the (asynchronous) inter-
action with its partners. The actions that are performed within a service usually
depend strongly on the interaction that has taken place. Thus, analyzing the
behavior of a service on the one hand and analyzing its interaction with other
services on the other hand is by far not trivial.

R. Bruni and K. Wolf (Eds.): WS-FM 2008, LNCS 5387, pp. 224–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficient Controllability Analysis of Open Nets 225

With respect to SOC we are interested in whether every service instance will
eventually terminate in a well-defined final state with no useless (dead) activities
being pending. This idea has already been formalized as usability in [3]. We use
the term controllability instead of usability to avoid misunderstandings w.r.t.
other well established meanings of “usability”. We analyze whether two services
S and S′ can interact properly, meaning that their composition S⊕S′ is deadlock-
free. Then S′ is a partner that triggers S in a way that the composition S ⊕ S′

is deadlock-free. In our approach, we model a service as an open net [4], which
is a special class of Petri nets. In [5] we show that any WS-BPEL process can
be translated into an open net.

In this paper, we introduce a technique for examining controllability of an
acyclic open net. It is based on the interaction graph. The complete interaction
graph exhibits all the communication that is possible between the net and its
partner. The interaction graph contains, for open nets that indeed can interact
with some partner, a subgraph that can be seen as the state space of a partner
S′. This state space can subsequently be transformed into an open net by using
the theory of regions [6], for instance. One such subgraph can be found by a
repeated removal of those nodes of the original graph that are inconsistent with
the goal that the composition of S and S′ is deadlock-free.

The complete interaction graph is huge in size (comparable to the reachability
graph of Petri nets). However, it is possible to apply specific reduction rules on-
the-fly while building up the interaction graph. Thus, we compute a reduced
graph, which is significantly smaller then the complete graph as our case studies
show. Nevertheless, the reduction rules preserve the property that the resulting
graph contains, for open nets that have partners, a subgraph that forms the
state space of a partner S′. In [7] we already presented the interaction graph
and showed that it is suitable for the analysis of controllability with the help
of a case study. This paper focuses on technical details of the interaction graph
and introduces reduction rules that we have developed in order to alleviate the
complexity of the graphs.

The interaction graph along with the reduction rules we present in this paper
has been fully integrated (by the author) into the tool Fiona

1. In [7] we have
shown a toolchain containing Fiona that starts out with a WS-BPEL process
and transforms it into an open net. Then the computed net serves as an input
of Fiona. That way any WS-BPEL process can be analyzed with respect to
controllability.

This paper is structured as follows. We will first give a brief introduction of
open nets. Then, in Sect. 2.2, we will present the interaction graph as a means
of analyzing controllability of an open net in more detail. The second part of
the paper, starting at Sect. 3, introduces techniques that reduce the interaction
graph on-the-fly as it is calculated. We will further show case studies (Sect. 4)
and conclude the paper with comparing our approach to related work (Sect. 5)
and by presenting further work (Sect. 6).

1 Available at http://www.service-technology.org/fiona

226 D. Weinberg

2 Background

2.1 Open Nets

As we aim at analyzing the controllability of services we need a formal model to
represent those services. We use a special class of Petri nets – open nets [4].

We assume the usual representation of a (place/transition) Petri net N =
(P, T, F) (see [8], for instance). A marking is a multiset m : P → � (graphically,
m[p] black tokens on place p). A transition t is enabled at a marking m if for each
place p with (p, t) ∈ F, m[p] ≥ 1. If enabled at m, the firing of t then yields the
marking m′ with m′[p] = m[p]− 1 if (p, t) ∈ F and (t, p) �∈ F , m′[p] = m[p] + 1
if (t, p) ∈ F and (p, t) �∈ F , and m′[p] = m[p] otherwise. We denote the firing of
t by m

t−→ m′. The successive firing of a sequence of transitions is denoted by
m
∗−→ m′′. Note, ∗ indicates that no transition may fire at all, yielding m = m′′.

Throughout this paper we use the notation m′ = m − p (m′ = m + p) if in
marking m one token is removed from (put on) place p yielding marking m′.

Definition 1 (Open Net). An open net N = (P, T, F, Pin, Pout, m0, Ω) con-
sists of a Petri net (P, T, F) together with (1) two sets Pin, Pout ⊆ P , such that
for all transitions t ∈ T holds: if p ∈ Pin (p ∈ Pout) then (t, p) �∈ F ((p, t) �∈ F),
(2) a distinguished initial marking m0 and (3) a set Ω of distinguished final
markings of N , such that no transition of N is enabled at any m ∈ Ω.

The places in Pin (Pout) are called input (output) places and model channels to
receive (send) messages from (to) another open net. This way we abstract from
data and model the occurrence of messages just as undistinguishable tokens. We
label a transition t connected to an input (output) place p with ?p and name it
receiving transition (!p, sending transition). A place that is neither an input nor
an output place is called internal. Figure 1(a) shows an example open net N1.
It has two input places, order and review, and one output place stats. Places p1,
p2 and p3 are internal. The initial marking m0 is [p1] denoted by one token on
place p1 and all other places empty. The set of final markings of N1 is defined by

p1

!stats?order

p3

order stats

?review review

p2

(a) Open net N1

p4

?stats

?stats

p5 p6

stats !review

!reviewreview

p7

(b) Open net C1

Fig. 1. Example open net N1 (a) and a possible controller C1 of N1 (b)

Efficient Controllability Analysis of Open Nets 227

Ω = {[p3]}. In m0 the net either waits for the order message (receiving transition
?order) from a partner or it sends out a stats message (sending transition !stats).
If the order message arrives, modeled as a token on input place order, transition
?order can fire and produces a token on place p3. If, however, the net sends out
the stats message, transition !stats fires, yielding the marking [p2, stats]. If the
partner consumes the message stats, the net reaches the marking [p2]. If the
partner then sends the review message, the transition ?review of N1 is enabled
and fires, resulting in the marking [p3], which is the final marking of the net.

Since we aim at analyzing the controllability of an open net, we need a notion
for the interaction of two open nets – the composition of open nets. Given two
open nets N and C, their composition N ⊕ C is obtained by merging every
input place of one open net with the equally labeled output place of the other
net (if that one is present). Thereby, we demand that the nets only share input
and output places such that an input place of N is an output place of C and
vice versa. Merged places become internal to N ⊕ C. For markings mN of N
and mC of C let mN ⊕mC be a marking of N ⊕ C, defined for p ∈ PN⊕C by
(mN ⊕mC)[p] =def mN [p] + mC [p], where mN [p] = 0 if p �∈ PN and mC [p] = 0
if p �∈ PC . Then, let m(N⊕C)0 =def mN0 ⊕mC0 and mN⊕C ∈ ΩN⊕C iff mN⊕C =
mN ⊕mC for some mN ∈ ΩN and some mC ∈ ΩC .

As an example, Fig. 1 shows the open nets N1 and C1. We will now take a
look at the composition N1 ⊕ C1. Here we merge the output place stats of N1
with the input place stats of C1. Further the input place review of N1 and the
output place review of C1 are merged. Both places become internal to N1 ⊕ C1.
That way the composition has just one input place order. The initial state m0
of N1 ⊕ C1 is [p1, p4] and the set of final states is ΩN1⊕C1 = {[p3, p7]}.

A marking m of an open net is a deadlock if m enables no transition at all.
An open net in which all deadlocks are final markings is called deadlock-free. So,
for every reachable marking of a net, a final marking is reachable.

Throughout this paper we call a marking of a net a state. Further we only
consider acyclic open nets, i.e. nets where the transitive closure of F contains no
cycles, and we just permit those final markings that have empty input/output
places. We currently adapt our approach to nets having final states that do not
necessarily have empty input/output places.

Deciding controllability for a restricted class of cyclic open nets is shown in [9]
by constructing a most permissive partner. Our reduction rules, however, have
not yet been adapted to that class of open nets.

2.2 Controllability of Open Nets

Intuitively, controllability of an open net N means that N can properly interact
with some other net. Like the soundness property for workflow nets (cf. [10]),
controllability is a minimal requirement for the correctness of an open net. So,
N is controllable, if there exists an open net C, such that the composed open
net N ⊕ C is deadlock-free. Throughout this paper we will call C a controller
of N .

228 D. Weinberg

We will take a look at the composition N1 ⊕ C1 again. Here, C1 (Fig. 1(b))
can be seen as a controller of N1 (Fig. 1(a)). C1 either waits for N1 to send the
stats message or it sends out the review message itself. No matter which path
C1 chooses, N1 will eventually send the stats message. If C1 has sent out the
review message already the composition will reach its final state with a message
pending on place stats. That message will be received by C1 which leads the
composition of both nets to its final state [p3, p7]. If, however, C1 has received
the stats message first, it will then send the review message to N1. That message
can be consumed by N1 leading to the final state. Thus, we can conclude that
N1 ⊕ C1 is deadlock-free and therefore we know that C1 is a controller of N1.

We have developed the interaction graph (IG) in order to analyze the con-
trollability property of an open net. The IG represents the controller’s point of
view. The edges of the IG represent the actions of the controller – sending and
receiving messages. Each node v of the graph is the set of states of N , which
can be reached by consuming and producing the messages along any path from
the initial node of the IG to v. Basically, a node of the graph forms a hypothesis
of the controller with respect to the state the net might be in. The controller
only knows the set of states in which the net could be in after a certain sequence
of communication steps. It does, however, not know the exact state of the net.
Inside the set of states represented by a node of the interaction graph, we distin-
guish transient and maximal (deadlock) states. A state is transient if it enables
a transition of N . Otherwise, it is called maximal. A node v contains, with a
transient state m, its successor states in N as well. So we consider a node to be
a set of states and write s ∈ v with s being a state in node v.

The IG of the net N1 of Fig. 1(a) is depicted in Fig. 2(a). The root node
v0 of the graph contains all states that N1 might be in if no communication
between N1 and its controller has taken place. State [p1] is transient, so the net
can leave this state on its own by firing transition !stats yielding the maximal
state [p2, stats]. Being in this state, N1 needs the controller to either receive the
stats message or to send the review message in order to reach another state.

The controller can actually control the net in a limited way by sending mes-
sages. Whereas by receiving messages from the net, the controller gets some
knowledge about the state the net might be in. The actions of the controller
(represented by the edges of the IG) are called events. We distinguish two kinds
of events: (1) sending event means that the controller sends a message to the
net (labeled by !) and (2) receiving event represents the receiving of a message
(labeled by ?) by the controller. Each state of a node of the IG (and thus each
node itself) can activate sending as well as receiving events.

Definition 2 (Activated Sending- and Receiving Events). Let N be an
open net. Let v = {s1, . . . , sn} be a set of states reachable in N and let i ∈
{1, . . . , n}. The following sets are defined for v.

– Activated sending events: S(si) = {X | ∃s′i : si + X
?X−−→ s′i ∧ si[X] =

0 ∧ s′i[X] = 0 ∧X ⊆ Pin(N)} and S(v) =
⋃
i S(si). !X is a sending event.

– Activated receiving events: R(si) = {y | si[y] ≥ 1 ∧ y ∈ Pout(N)} and
R(v) =

⋃
iR(si). ?y is a receiving event.

Efficient Controllability Analysis of Open Nets 229

In Def. 2 we use the notation si + X
?X−−→ s′i. It says that state si + X leads to

state s′i by firing transition ?X . In this case X may be a set of input places.
A receiving transition connected to multiple input places X = {x1, . . . , xn}
is labeled with ?x1, . . . , ?xn or simply ?X . si[X] = 0 is defined element-wise:
si[x1] = · · · = si[xn] = 0.

Node v0 of the IG of Fig. 2(a) contains the set of states {[p1], [p2, stats]}. So,
the sets of activated events areR([p1])=∅, S([p1])={order} andR([p2, stats]) =
{stats}, S([p2, stats]) = {review}. Therefore v0 activates the events: R(v0) =
{stats} and S(v0) = {review, order}.

At any given node v in the interaction graph we calculate the successor node
v′ with respect to the activated sending or receiving events of v. Since each node
is a set of states, we define the successor state set of one particular set of states.

Definition 3 (Calculation of Successor State Set). Let N be an open net
and let v be a set of states reachable in N . The set of states v′ is a successor
state set of v and is calculated as follows.

– Sending event: v′ = {s′ | s + x1 + · · ·+ xn
∗−→ s′, s ∈ v, {x1, . . . , xn} ∈ S(v)}

denoted by v
!x1,...,!xn−−−−−−→ v′.

– Receiving event: v′ = {s−y1−· · ·−ym | s ∈ v, {y1, . . . , ym} ⊆ R(v)} denoted

by v
?y1,...,?ym−−−−−−−→ v′.

#v0

[p1]
[p2, stats]

#v1

[order, p1]
[order, p2, stats]

[p3]

#v2

[order, p1, review]
[order, p2, review, stats]

[order, p3, stats]
[p3, review]

#v3

[order, p2, review]
[order, p3]

#v4

[order, p2]

#v5

[p1, review]
[p2, review, stats]

[p3, stats]

#v6

[p2, review]
[p3]

#v7

[p2]

!order
!review

?stats

!review?stats

?stats

!review

!order ?stats
!review

(a) IG(N1)

#v0

[p1]
[p2, stats]

#v1

[p2]

#v2

[p2, review]
[p3]

#v3

[p1, review]
[p2, review, stats]

[p3, stats]

?stats !review

!review

?stats

(b) IGmax(N1)

#v0

[p1]
[p2, stats]

#v1

[p2]

#v2

[p2, review]
[p3]

?stats

!review

(c)
IGrbs(N1)

Fig. 2. Interaction graphs of net N1 of Fig. 1(a): (a) The complete IG(N1), (b) the re-
duced IGmax(N1) according to the Maximal States rule and (c) the reduced IGrbs(N1)
according to the Receiving Before Sending rule.

230 D. Weinberg

The notation v
!x1,...,!xn−−−−−−→ v′ states that there is an edge labeled with !x1, . . . , !xn

that leads from state set v to state set v′. In the following we will call v and v′

nodes of an IG. As the communication between open nets is done asynchronously,
a message being sent to a net may remain in the message channel, which is
reflected by ∗−→ in Def. 3.

We have already seen that the root node v0 of the IG of Fig. 2(a) activates
three events, namely !order, !review and ?stats. We calculate the successor nodes
of v0. We will start with the receiving event ?stats that is represented by the edge
labeled with ?stats. There is only one state of v0 that activates the event ?stats,
the state [p2, stats]. Receiving a message means we delete that message from the
message channel. Formally, we subtract stats from state [p2, stats] yielding the
state [p2], which is maximal. We add [p2] to the new successor node v7 of v0 (see
Fig. 2(a)). Since there is no other state in v0 that activates the receiving event
?stats, state [p2] is the only state of node v7. Now we calculate the successor node
of v0 that can be reached by the edge !order, in Fig. 2(a) this is v1. The controller
sends a message order to the service. The message order might remain in the
message channel. Thus, we first add the states [order, p1] and [order, p2, stats] to
v1. Secondly we add those states to v1 that can be reached by firing transitions.
Thus, we calculate the successor states of the transient state [order, p1]. Here,
the transition ?order that activated the sending event !order fires, yielding the
maximal state [p3], which is added to v1. Since state [order, p2, stats] is maximal
we do not add any other state to node v1.

We will now define the complete interaction graph of an open net.

Definition 4 (Interaction Graph of an Open Net). Let N = (P, T, F,

Pin, Pout, m0, Ω) be an open net and let RN (v) = {v′ | v ∗−→ v′}. The interaction
graph of N is the directed graph IG(N) = [RN (v0), E], with the root node
v0 = {m′ | m0

∗−→ m′} and the set of edges E = {[v, e, v′] | v, v′ ∈ RN (v0) ∧ v
e−→

v′ with e ∈ (R(v)∪S(v))}. v ∈ RN (v0) is a terminal node, iff R(v) = S(v) = ∅.
For simplicity we will write v ∈ IG(N) instead of v ∈ RN (v0), meaning v is a
node in IG(N).

The interaction graph of an open net depicts all possible states the net can
reach due to sending and receiving events. For analyzing controllability, we search
for a subgraph of the IG that can serve as the state space of a controller. To this
end, we label the nodes of the IG as good or bad. The desired subgraph is the
one that consists of the good nodes only.

Definition 5 (Good/Bad Terminal Node, Good/Bad Node). Let N be
an open net and let v ∈ IG(N). (1) If v is a terminal node, we classify v as
a (i) good terminal node, iff ∀s ∈ v : s

∗−→ ω ∈ Ω holds and (ii) bad terminal
node otherwise. (2) If v is not a terminal node, we call v (i) a good node, iff
for every maximal state s ∈ v holds ∃v′ : v

e−→ v′ with e ∈ S(s) ∪ R(s) and v′ is
either a good node or a good terminal node and (ii) a bad node otherwise.

Consider the IG of Fig. 2(a), which has two terminal nodes, v3 and v6. Node v3
is classified as a bad terminal node. It contains two states. Neither of them is

Efficient Controllability Analysis of Open Nets 231

a final state of the net N1. Node v6, however, contains the final state [p3]. The
state [p2, review], which is also contained in v6, is transient. That state enables
transition ?review. By firing ?review the net reaches the final state [p3], which is
part of the node. So we can conclude that v6 actually is a good terminal node.

Definition 6 (Control Strategy in the Interaction Graph). Let N be an
open net. Let IGc(N) % IG(N) be a subgraph of IG(N) with the set of nodes
Vc ⊆ V . The graph IGc(N) is called control strategy of N , if it holds:

1. The root node v0 of IG(N) is the root node v0 of IGc(N).
2. The terminal nodes of IGc(N) are good terminal nodes in IG(N).
3. For every node v ∈ Vc that is not a terminal node and every maximal state

s ∈ v there exists an event, which is activated in s and leads to a good
successor node of v in IGc(N).

The control strategy2 is a subgraph of the IG. The root node is just the root
node of the IG. The terminal nodes of the control strategy are good terminal
nodes in the IG by Def. 6. For every maximal state of each node, which is not a
terminal node, within the control strategy, we can find an event which leads to
another node of the control strategy.

As an example, we consider Fig. 2(a) again. We know that v6 is a good termi-
nal node and that node v3 has been classified as being bad. We now propagate
these properties to the remaining nodes of the IG. We start with node v3 and
classify its two predecessor nodes v4 and v2. Node v4 has one maximal state,
[order, p2], that activates an event which does not lead to a good terminal node.
So v4 is classified bad. Node v2 has a maximal state, [order, p3, stats], that ac-
tivates the event ?stats which leads to v3 only. So v2 is also classified as bad.
The predecessor nodes of v2 are v1 and v5. The two events that are activated
by the maximal state [order, p2, stats] of v1 lead to a bad node, so v1 is bad as
well. The maximal states [p3] ∈ v1 and [p3, review] ∈ v2 activate no event and
therefore violate property 3 of Def. 6 as well. Node v5 contains the maximal state
[p3, stats], which activates the event ?stats, that leads to the good terminal node
v6. That is why, we classify v5 as good. We apply the same procedure to every
other node of the IG. After we have reached the root node, we can conclude
whether the net N1 is controllable or not – if the root node is classified good we
have found a control strategy. So the net N1 is controllable. The control strategy
IGc(N1) is depicted by solid lines in Fig. 2(a).

We will now compare the controller C1 of Fig. 1(b) and the control strategy
IGc(N1). The control strategy demands that a controller of N1 being in its
initial state has to be able to either receive the stats message or to send a review
message. After having received the stats message it has to be able to send the
review message. Or in the other case, if it has sent out the review message it
then has to be able to receive the stats message. With this in mind we can easily
see that C1 models exactly the described behavior.
2 In this paper the control strategy of an interaction graph is depicted by a solid line.

Those nodes and edges that do not belong to the control strategy of the graph are
drawn with dashed lines.

232 D. Weinberg

3 Efficient Calculation of Interaction Graphs

In this section, we will introduce reduction rules that reduce the number of
events being considered for building up the IG, which leads to a reduction of the
number of nodes (and edges) of the graph. The root node of each reduced graph,
however, is the same as the root node of the complete IG. The rules preserve
containment of at least one (not necessarily every) controller. We refer to [11]
for the complete and formal description of the reduction rules as well as the
complete correctness proofs.

The set of all maximal states of a node v ∈ IG(N) will be called Zmax(v)
with Zmax(v) = {s | s ∈ v ∧ s is maximal}.

3.1 Reduction by Maximal States

The nodes of an IG may contain transient states. Being in a transient state, the
net can change to another state without letting its controller know. Consider
node v0 of the reduced IG of Fig. 2(b). The transient state [p1] activates the
sending event !order. Since the transition !stats is enabled in this state, N1 may
leave [p1] on its own. If the controller now sends the message order, there is no
way of knowing that the net will ever consume this message. The net might just
have switched to state [p2, stats] by firing transition !stats. State [p2, stats] does
not activate the sending event !order anymore. Thus, in node v0 the reduction
by Maximal States takes only those events into account that are activated by
the maximal state [p2, stats], namely !review and ?stats. In node v3 the maximal
state [p3, stats] activates the receiving event ?stats. So we add the edge ?stats
to the reduced graph. Compared to the IG of Fig. 2(a) we do not add the edge
!order to nodes v0 and v3 (which is node v5 in Fig. 2(a)) because this event is
activated by a transient state only.

Definition 7 (Reduction by Maximal States). Let N be an open net.
IGmax(N)3 is a directed graph [V, E] with nodes V and edges E such that (1)
v0 ∈ V . (2) If v ∈ V , and there is an e ∈ (R(Zmax(v)) ∪ S(Zmax(v))), then
v′ ∈ V with v

e−→ v′ and [v, e, v′] ∈ E.

Fig. 2(b) depicts the reduced interaction graph IGmax(N1) of net N1.
We prove in [11] that if the IG(N) (for a given open net N) contains a control

strategy, then we can find a control strategy in IGmax(N) as well. So the reduced
interaction graph IGmax(N) (Def. 7) can be used for the controllability analysis.
Therefore we will integrate this rule into every other reduction rule. Thus, we
will only consider the maximal states of a node to compute the activated events.

3.2 Reduction by Receiving Before Sending

We turn our attention to those maximal states of the nodes of the IG that
activate receiving events. Node v0 of the reduced IG of Fig. 2(c) contains one

3 max stands for “Maximal States”.

Efficient Controllability Analysis of Open Nets 233

maximal state, [p2, stats], which activates the receiving event ?stats and the
sending event !review. According to the Receiving Before Sending rule, we only
consider the receiving event ?stats of that state to be activated. Therefore we
only add one edge, ?stats, to node v0 and calculate the successor node. The
successor node v1 still activates the sending event !review. It is the only event
that is activated in v1. So we add an edge labeled with !review to the graph and
calculate the next node v2, which is the good terminal node of the graph.

We will now define the reduced set of activated sending events of a node of
the interaction graph.

Definition 8 (Receiving before Sending). Let N be an open net and let
v ∈ IG(N). The set Srbs(v)4 = {x | s ∈ Zmax(v) ∧ x ∈ S(s) ∧ R(s) = ∅}
contains the activated sending events.

For every maximal state of node v ∈ IG(N) we check if it activates a sending
event and no receiving event. If this is the case, we will add that sending event
to the set Srbs(v). Consequently, just those sending events are considered to be
active that are activated by states that do not activate any receiving events.

Now we can define the reduced interaction graph based on this rule.

Definition 9 (Reduction by Receiving before Sending). Let N be an open
net. Let Srbs(v) of node v be computed by Def. 8. IGrbs(N) of N is a directed
graph [V, E] with nodes V and edges E such that (1) v0 ∈ V . (2) If v ∈ V ,
and there is an e ∈ (R(Zmax(v)) ∪ Srbs(v)), then v′ ∈ V with v

e−→ v′ and
[v, e, v′] ∈ E.

By letting the controller receive the message first, we make sure that the suc-
cessor node will not increase in size (see [11]) and we only calculate one succes-
sor node even though both events are activated. The reduced interaction graph
IGrbs(N1) of net N1 is shown in Fig. 2(c). It reflects the behavior of a valid
controller of N1 because IGrbsc

(N1) % IGrbs(N1).
In [11] we prove that the reduced IGrbs(N) can be used for analyzing con-

trollability. In order to prove this property we need quite a few corollaries and
lemmas. Since one of the lemmas plays a central role in the proof we want to
at least mention it here. It states a fundamental property of a control strategy:
every receiving event being activated in a (good) node v of the control strategy
leads from v to a (good) successor node of v of the control strategy. In other
words, it is always a good idea for the controller to receive as many messages
possible, before sending messages out to the net.

3.3 Reduction by Combining Receiving Events

In order to show the effect of this reduction rule we extend the net N1 of Fig. 1(a)
by adding transition !note and place p4 resulting in the net N2 of Fig. 3(a). The
initial state m0 is [p1] and the set of final states of N2 is Ω = {[p4]}. The control
strategy of N2 is depicted in Fig. 3(b). The root node v0 of the reduced IG in

4 rbs stands for “Receiving Before Sending”.

234 D. Weinberg

Fig. 4(a) is again the same node as the root node of the IG of Fig. 3(b). v0 has one
maximal state, [note, p3, stats], which activates the receiving events ?note and
?stats. To calculate the successor nodes of v0 we will now combine both receiving
events to one single receiving event. That way node v0 has an outgoing edge
labeled with ?note, ?stats. Since the same maximal state activates the sending
event !review we will also add an edge labeled with !review to node v0. The
same procedure is applied as we calculate the events of node v1 (see Fig. 4(a)).

p1

!stats?order

p4

p2

order stats

note!note

p3

?review review

(a) Open net N2

#v0

[p1]
[p2, stats]

[note, p3, stats]

#v1

[p2]
[note, p3]

#v2

[p2, review]
[note, p3, review]

[note, p4]

#v3

[p3, review]
[p4]

#v4

[p3]

#v5

[note, p3, review, stats]
[p2, review, stats]
[note, p4, stats]

[p1, review]

#v6

[p3, review, stats]
[p4, stats]

#v7

[p3, stats]

?stats !review

?note

!review?note

?note
!review

?stats ?note

?stats

?stats !review

(b) IGc(N2)

Fig. 3. (a) Open net N2 and (b) its control strategy IGc(N2)

#v0

[p1]
[p2, stats]

[note, p3, stats]

#v1

[p1, review]
[p2, review, stats]

[note, p3, review, stats]
[note, p4, stats]

#v2

[p3, review]
[p4]

#v3

[p3]

!review ?note, ?stats

?note, ?stats

!review

(a) IGcre(N2)

#v0

[p1]
[p2, stats]

[note, p3, stats]

#v1

[p3]

#v2

[p3, review]
[p4]

?note, ?stats

!review

(b) IGred(N2)

Fig. 4. Two reduced interaction graphs of net N2 of Fig. 3(a): (a) reduced IGcre(N2)
according to the Combining Receiving Events rule and (b) reduced IGred(N2) combin-
ing all reduction rules.

Efficient Controllability Analysis of Open Nets 235

The maximal state [note, p4, stats] activates the receiving events ?note and ?stats
as well. Therefore we again add an outgoing edge labeled with ?note, ?stats to
node v1.

We now define the reduced set of activated receiving events of a node in the
interaction graph.

Definition 10 (Combine Receiving Events). Let N be an open net and let
v ∈ IG(N). The set Rcre(v)5 = {R(s) | s ∈ Zmax(v) ∧ ¬∃s′ ∈ (Zmax(v) \ {s}) :
R(s) ⊃ R(s′)} contains the activated receiving events.

The set Rcre(v) contains all receiving events activated in v. Hereby, all receiving
events of one maximal state in v are combined to one single receiving event. If
there are two states si and sj in v, such that the set of receiving events of si
(R(si)) is a real subset of R(sj), we just add R(si) to the set Rcre(v). Consider,
for instance, two states si = [y1, p0] and sj = [y1, y2, p1] with R(si) = {y1}
and R(sj) = {y1, y2}. Adding both sets to Rcre(v) of node v ⊇ {si, sj} would
result in two outgoing edges. The successor node v′ of edge ?y1 would activate
the event ?y2 which would then lead to the same node as the edge ?y1, ?y2 of
node v. By Def. 10 we just add R(si) to Rcre(v).

Now we will define the reduced interaction graph.

Definition 11 (Reduction by Combining Receiving Events). Let N be
an open net. The set Rcre(v) is calculated according to Def. 10. IGcre(N) of N
is the directed graph [V, E] with nodes V and edges E such that (1) v0 ∈ V . (2)
If v ∈ V , and there is an e ∈ (Rcre(v) ∪ S(Zmax(v))), then v′ ∈ V with v

e−→ v′

and [v, e, v′] ∈ E.

The reduced IGcre(N2) of net N2 is depicted in Fig. 4(a) and represents a valid
controller of N2 because IGcrec

(N2) % IGcre(N2). In [11] we prove that the
reduced IGcre(N) can be used for the controllability analysis of an open net N .

3.4 Combination of Reduction Rules

The reduction rules shown in this paper can be combined. The rule of Sect. 3.1
has already been integrated into the rules of Sect. 3.2 and Sect. 3.3. Those rules
define either a reduced set of activated sending events or a reduced set of acti-
vated receiving events. Thus, in order to calculate an IG that uses all reduction
rules (IGred(N)), we use exactly those reduced sets of activated events. The
reduced IGrbs(N1) (Fig. 2(c)) is actually identical to IGred(N1) that combines
all reduction rules. Fig. 4(b) shows the reduced IGred(N2) of net N2 (Fig. 3(a)).

4 Case Studies

The interaction graph as a means of analyzing controllability together with the
reduction rules we have developed and presented in this paper has been fully
5 cre stands for “Combining Receiving Events”

236 D. Weinberg

Table 1. Experimental results running Fiona on a Linux machine with 2GB RAM and
an Intel Pentium M 1.73GHz processor. The number of places (#P) and transitions
(#T) of the respective open net are depicted. Further, the number of all nodes (#N)
and all edges (#E) of the complete IG, of the reduced IG, and of the operating guideline
(OG) for each service are shown. Column “T [s]” represents the time in seconds it took
to calculate each graph. The reduced IG has been calculated by applying all reduction
rules we have presented in this paper. The “red. [%]” column shows the percentage of
reduction w.r.t. the number of nodes and edges.

open net complete IG reduced IG red. [%] OG
Service Name #P #T #N #E T [s] #N #E T [s] #N #E #N #E T [s]
online shop 108 128 946 2111 11 56 60 1 94 97 7713 35010 242
order processing 789 1069 49 129 130 5 4 5 90 97 161 517 345
car breakdown 143 216 2728 10468 202 121 200 10 99 99 49313 295923 2776
deliver goods 116 156 1584 7473 302 31 41 1 98 99 12289 81054 1496

implemented and integrated into the tool Fiona [7]. At our group we maintain
a quite complex repository of services. Most of them are modeled in WS-BPEL.
The services were taken from the WS-BPEL specification, have been modeled at
our group or were given to us from industrial partners. In order to analyze the
services we use the tool BPEL2oWFN

6 to translate the WS-BPEL processes
into open nets [5]. In Table 1 we summarize the results of our experiments on
some case studies. Here, we also compare our approach to the operating guideline
(OG) [9]. The OG represents every possible controller of a service and could
therefore be used for the controllability analysis as well.

The “online shop” is the running example of [5] (Sect. 6). The “order pro-
cessing” service is an industrial service that was given to us in WS-BPEL. The
service has a quite complex net structure with 3 input places and 38 output
places. The “car breakdown” service is also an industrial service modeling a
part of a car rental service in case a rental car broke down. Even though the
net structure (6 input places, 9 output places) is not as complex as the “order
processing” service, it possesses a highly complex interaction behavior, which
is reflected by its OG. Finally, the “deliver goods” service models the activities
that are done after a customer has ordered products. It is also a service that was
given to us from an industrial partner.

Comparing the complete IG and the reduced IG of every service we can easily
see that the reduction rules we have developed indeed work very well for real
life services. The percentage of reduction (of the number of nodes and edges) is
more than 90% for each net. So, the number of nodes and edges that need to be
calculated for the controllability analysis has decreased significantly resulting in
a faster analysis result (see column “T [s]” of the reduced IG).

Due to the nature of the OG it is always significantly bigger than both the
complete and the reduced IG. It even takes much more time to calculate the
OG. Especially at design time, it is of great importance that the analysis is fast.

6 Available at http://www.service-technology.org/bpel2owfn

Efficient Controllability Analysis of Open Nets 237

There may be some constellations in which the reduction is not as significant.
The reduction rules do not yet deal with sequences of sending events. Further,
we do not examine conflicting sending events. Therefore, as we calculate the
reduced set of activated sending events, we are not able to summarize sending
events or set priorities regarding which event to consider first. Our reduction,
however, works best in settings that contain sequences of receiving events and/or
sending and receiving events that are in conflict to one another.

5 Related Work

For analyzing controllability of an open net, communication graphs have been
introduced in [3]. The edges of those graphs represent communication steps of
the controller. These steps are divided into an input phase and an output phase.
In each phase, a number of messages is received (input phase) or sent (output
phase). The approach is similar to the IG. However, if no receiving event can
take place, for instance, the output phase will still be modeled in the graph.
Therefore the communication graph tends to be more complex than our IG
(cf. [11]).

In [12] different types of controllability notions are introduced – centralized,
distributed, and local controllability. Further, the author shows algorithms to
construct (whenever possible) the most permissive controller with respect to the
notion of controllability. The construction of the IG is similar to those algorithms.
One major difference is, that at any node of the most permissive controller all
possible (not necessarily activated) sending events are considered. Our contribu-
tion is to apply reduction techniques to decide controllability more efficiently.
We do not aim at computing the most permissive controller. So, even the com-
plete IG does not necessarily represent the most permissive controller. As the
IG is built up, just the activated sending and receiving events of each node are
taken into consideration in order to calculate the successor nodes.

The notion of the most permissive controller has been formalized by the oper-
ating guideline [9]. Since the OG represents all controllers of a service, the graph
tends to be too complex to be used for checking controllability (see Sect. 4).

In [13] the authors show that controllability is undecidable for general open
nets. If the class of (cyclic) open nets is restricted, controllability can indeed be
decided [9,13]. The restricted class of open nets consists of those nets, where the
reachability graph of the inner net (that results from removing the input/output
places and adjacent edges from the net) is finite. Further, they demand that the
communication between two open nets is limited. So the controller never sends
more then k messages to the net (for some k ∈ �).

Our approach of deciding controllability with the help of the IG has already
been introduced in [7]. The focus of that paper was to present a technology chain,
to analyze WS-BPEL processes w.r.t. controllability and to calculate the oper-
ating guideline. The formal model of the IG and the reduction rules presented
in this paper have only been mentioned rather briefly in [7].

238 D. Weinberg

6 Conclusion and Further Work

In this paper we introduced interaction graphs to analyze the controllability of
an acyclic open net. By analyzing the graph, we have focused on one property of
open nets – controllability. We have described how this property can be verified
using interaction graphs. In order to make the analysis more efficient, we have
defined reduction rules for the interaction graph. The IG and the reduction
techniques have all been integrated into the tool Fiona. Our case studies show
that the theoretical assumptions we have made while developing the reduction
rules indeed work very well in practice. We currently adapt our results to a
more liberal version of open nets. That is, we want to permit final states that
do not necessarily leave the input and output places empty. We also adapt our
techniques in order to be able to analyze cyclic nets as well.

Furthermore, we work on finding more reduction rules. We have ideas on how
to reduce the number of states stored in each node. Here we aim at defining
a certain set of generator states to represent each node. We also intend to use
stubborn sets [14] to calculate the states of the net. Another major goal is to
adapt the partial order reduction [15] to fit our needs in choosing the set of
activated events. We intend to use this technique to decide which sending event
to consider in case of conflicting sending events (see Sect. 4). Further, we study
sequences of sending events in order to combine them in a way similar to our
“Combining Receiving Events” rule (see Sect. 3.3).

References

1. Papazoglou, M.: Web Services: Principles and Technology. Pearson - Prentice Hall,
Essex (2007)

2. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2007)

3. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

4. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. AMCT 1(3), 35–43 (2005)

5. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. DKE 64(1), 38–54 (2008)

6. Badouel, E., Darondeau, P.: Theory of Regions. In: Lectures on Petri Nets I: Basic
Models. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

7. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting BPEL
Processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

8. Reisig, W.: Petri Nets. EATCS monographs on theoretical computer science edn.
Springer, Heidelberg (1985)

9. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Ser-
vices. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–
341. Springer, Heidelberg (2007)

10. Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems and Computers 8(1), 21–66 (1998)

Efficient Controllability Analysis of Open Nets 239

11. Weinberg, D.: Reduction Rules for Interaction Graphs. Technical Report 198,
Humboldt-Universität zu Berlin (2006)

12. Schmidt, K.: Controllability of Open Workflow Nets. In: EMISA. LNI, pp. 236–249.
Bonner Köllen Verlag (2005)

13. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Inf.
Process. Lett. (2008) (accepted)

14. Schmidt, K.: Stubborn sets for standard properties. In: ICATPN 1999. LNCS,
vol. 1639, pp. 46–65. Springer, Heidelberg (1999)

15. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1(4), 297–322 (1992)

Author Index

Barkaoui, Kamel 19
Boucheneb, Hanifa 19
Bravetti, Mario 1, 37

Chesani, Federico 55

Decker, Gero 73
Dragone, Luigi 88

Eisentraut, Christian 107

Ferrari, Gian Luigi 127
Frantzen, Lars 143

Guanciale, Roberto 127

Hicheur, Awatef 19
Huerta, Maria de las Nieves 143

Induruwa Fernando, Sarah D. 158

Kiss, Zsolt Gere 143
Kolundžija, Marija 175

Lohmann, Niels 191
Lüders, Alexander 73

Mello, Paola 55
Montali, Marco 55
Mooij, Arjan J. 207

Overdick, Hagen 73

Schlichting, Kai 73
Simpson, Andrew C. 158
Spieler, David 107
Strollo, Daniele 127

Torroni, Paolo 55
Tuosto, Emilio 127

Voorhoeve, Marc 207

Wallet, Thomas 143
Weinberg, Daniela 224
Weske, Mathias 73

Zavattaro, Gianluigi 1, 37

