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J.G. Giménez CAF and TECNUN (University of Navarra), Sebastian
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Part I
Problems in Vehicle Dynamics



Typical Non-smooth Elements
in Vehicle Systems

Hans True

Abstract The vehicle systems are modelled mathematically as parameter depen-
dent multi-body systems. The connections between the elements are formulated
either as dynamical equations or algebraic, or transcendental or tabulated constraint
relations. The connections can rarely be modelled by analytic functions, and the
missing analyticity can arise from non-uniqueness or discontinuities in the func-
tions themselves or in their derivatives of any order. In vehicle systems the contact
between the vehicle and its support (road or rail) is an important source of missing
analyticity. The suspension systems of the vehicles consist of passive and active
elements such as springs, dampers and actuators, and their characteristics are only
analytic functions within certain intervals of operation. Unilateral contacts in the
suspension systems may give rise to changes of the degrees of freedom of the system
during operation, and cause impacts or sliding contact during the operation.

1 General Vehicle Model

Figure 1 shows a typical 4-axle railway passenger car. The car body rests on two
2-axle carriages called bogies (bougies) or in USA trucks. The entire suspension
system is built into the bogies.

Fig. 1 A railway passenger car with a car body on two bogies

H. True (B)
DTU Informatics, The Technical University of Denmark, Kgs.Lyngby, Denmark
e-mail: ht@imm.dtu.dk
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4 H. True

Fig. 2 Railway bogie. 1 Wheel set, 2 Bogie frame, 3 Bolster with pivot and side supports, 4 Wheel
set guidance and primary suspension, 5 Secondary suspension in the bolster

Figure 2 shows an older bogie for a passenger car. The car body rests on the
bolster (3) side supports and partly on the pivot, which gives the bolster three angular
degrees of freedom with respect to the car body. The upper part of the bolster is
supported on its lower part by two groups of springs and dampers (5). They comprise
the secondary suspension. The lower part of the bolster is suspended in the bogie
frame (2) by pendulums, so the upper part of the bolster has six degrees of freedom
with respect to the bogie frame. The bogie frame rests on the axle boxes of the wheel
sets (1) by means of four groups of springs and possibly dampers. They comprise
the primary suspension, which gives the bogie frame six degrees of freedom with
respect to each wheel set. For safety reasons the motions of the bogie frame and
the car body must be restrained relatively to each other and to the wheel sets. These
motion limiters create “non-smoothnesses”. They are integral parts of all vehicles –
also road and off-road vehicles.

Only railway passenger vehicles have both primary and secondary suspensions.
Railway freight wagons have in general only one set of suspensions. In the next
chapters we illustrate wagons without a bolster with a suspension between the
car body and the wheel sets, which is common in Western, and Central Europe,
and 4-axle freight wagons with the American 3-piece-freight truck, which has
the suspension built into the bolster. Road and off-road vehicles generally have
only one suspension system between the car body and the wheels since the rub-
ber tires of the vehicles also act as effective springs and dampers in contrast
to the rigid rail/wheel contact on the railways. Many trucks and most off-road
vehicles have an effective suspension in the driver’s seat for comfort and health
protection.



Typical Non-smooth Elements in Vehicle Systems 5

Due to the greater complexity of the railway vehicle suspension systems we shall
describe them in this article, but many of the elements or elements with similar
functions are used in the automobile industry.

2 Rail/Wheel Contact

The rail/wheel rigid contact is a characteristic of railways. In order to provide a
certain self-steering effect the wheels are generally rigidly connected with a rigid
axle and are turned with a profile, which is tapered towards the field-side i.e., away
from the track centre line. In order to prevent derailments the wheels have a flange
on the other – the gauge-side. The rail profile is a rounded convex curve. The pro-
files of the new wheels and rails are well defined in international standards – either
algebraically or in tables – but they change shapes through wear during their use.
Figure 3 shows a typical set of new wheel and rail profiles.

The wheel/rail contact geometry is a very important parameter in railway vehicle
dynamics since it determines the ideal point of attack of the rail forces on the wheel –
the contact point – and the direction of their normal and tangent components in the
contact point(s). The directions are defined through the contact angle, which is the
common angle between the wheel set centre line and the wheel and rail profiles in
the contact point. If multiple contact points exist, we handle each of them separately.
Figure 4 shows the calculated lateral position of the contact point on the wheels and
the corresponding contact angles versus the lateral displacement of the wheel set
relative to the rail. It is interesting to see that these fundamental kinematic properties
of rail/wheel interaction are non-smooth functions. Discontinuities of the functions
or their derivatives of lower orders are seen.

The wheels and rails are, however, not ideally rigid bodies. They are flexible
and deform under the load of the vehicle. Therefore the contact between the wheel
and the rail is in reality spread out over a small contact surface and the non-
smoothnesses may thereby be smoothened to some extent. They cannot, however,

Fig. 3 S-1002 wheel profile (left) and UIC60 rail profile (right)
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Fig. 4 The contact angle (left) and the lateral position of the contact point on the wheel (right)
versus the relative lateral displacement of the wheel set for the profiles in Fig. 3

be neglected. Slivsgaard [3] found that when a certain laterally oscillating wheel set
crossed a point of discontinuity in the curvature of the rail profile a small interval of
speeds with chaotic motion developed due to the non-smoothness.

The shear force relation between the wheel and the rail has been treated in several
papers. The most acknowledged relation was formulated by Kalker [1]. Due to the
dry friction between the wheel and the rail, the two bodies stick to each other in a
part of the contact surface and slide against each other in the other part. The resulting
local deformations and the local sliding sums up to a finite sliding between the wheel
and the rail, which is denoted the creep, and the resulting shear force, which is the
sum of the shear stresses, is denoted the creep force. The creep-creep force relation
has a discontinuity in the second derivative at zero creep.

3 Non-smooth Suspension Elements

In this chapter we show examples of common suspension elements with non-
smooth characteristics. Figure 5 shows a coil spring with an additional stiff rub-
ber spring inside to prevent the coil spring from collapsing under large loads.
The characteristic of these combined springs is linear under small deformations.
When the rubber spring is activated by a sufficiently large deformation of the coil
spring, the characteristic of the assembly has a discontinuity in the first deriva-
tive, and the characteristic becomes nonlinearly concave for larger deformations.
The characteristics of the hydraulic dampers that are used in automobiles and
in almost all railway passenger vehicles have discontinuities in the second order
derivative.

Dry friction damping dominates the freight wagon designs and we now show
some examples.

Figure 6 shows an example of the most common freight wagon bogies used
in Western and Central Europe. Note, please, that the bogie has only a primary
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Fig. 5 A two-stage vertical spring consisting of a steel coil spring and a harder rubber spring

suspension system consisting of springs and so-called Lenoir dampers. The Lenoir
dampers act on one side of the axle box of each wheel, and they are situated as
shown on Fig. 7. The springs between the bogie frame and the car body shown on
Fig. 7 is a simple secondary suspension that mainly serves to reduce the rolling
motion of the car body.

The action of the Lenoir damper is illustrated on Fig. 8. When the spring is
loaded, the link directs a part of the load in a horizontal direction, thereby forcing
the “hat” above it to press against the small piston, which acts on a vertical friction
surface on the axle box. The two dimensional dry friction with stick/slip provides the
damping of the lateral and vertical motion between the axle box and the bogie frame.

The American 3-piece-freight truck and its variants are commonly used all over
the world except in Western and Central Europe, where they are very rare. Figure 9
illustrates the simple design of the American 3-piece-freight truck, which is also
called “the Barber truck”.

Fig. 6 Y25c freight wagon bogie
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Fig. 7 The position of the Lenoir damper on the left wheel shown on Fig. 6. The inclined link is
bolted to the bogie frame at its lower end

The three pieces of the bogie are the bolster and the two side frames. The car
body rests on the bolster on a centre plate. The bolster has two side supports to limit
the roll motion between the car body and the bolster, see Fig. 10.

The bolster is supported on each side frame by a group of springs, which can
deflect in the horizontal plane as well as in the vertical direction. Spring loaded
friction wedges are inserted between the bolster and the side frame to damp the

Fig. 8 The Lenoir damper. The piston touches the axle box so the dry friction force in the contact
surface creates a load dependent damping of the relative vertical and lateral motion between the
axle box and the bogie frame
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Fig. 9 An American 3-piece-freight truck (bogie)

relative lateral and vertical motion between the bolster and the side frame through
dry friction with stick/slip see Fig. 11.

The side frames are supported on the axle boxes by adapters, which can move
longitudinally on the side frame in order to provide the wheel sets with a yaw degree
of freedom, which is damped by dry friction, see Fig. 12.

Fig. 10 The connection between the car body and the bolster. The contact surfaces are dry friction
surfaces
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Fig. 11 Detail of the suspension with vertical and lateral dry friction damping between the wedges
and the bolster and the side frame

All the damping in the American 3-piece-freight truck is thus dry friction damp-
ing between plane metal surfaces with stick/slip. The maximum “stick force” varies
from a few percent of and above the sliding force between the elements, to around
50%. The percentage depends on pollution, weather and wear of the surfaces.

The last example of non-smooth suspension systems is of a UIC link suspension,
which is the standard suspension on European 2-axle railway freight wagons. See
Fig. 13.

The car body (1) is supported by the leaf spring (5) on which it is suspended by
a pendular double link suspension (2) (3). The leaf spring rests on the axle box (6),
which can move freely within narrow limits bounded by the wheel set guidance (4).

The free motion of the wheel set in the horizontal direction is shown in detail and
explained on Fig. 14. The possible impacts between the axle box and the guidance
introduce non-smoothnesses in the dynamical model.

On modern freight wagons the leaf spring is most often substituted by a parabolic
leaf spring shown on Fig. 15. Under deflection of the spring the dry friction contact
forces between the leaves provide the desired damping of the motion.

A cycle of loading and unloading therefore creates a hysteresis loop in the plot
of the restoring force versus the deflection. It means that the curve of the loading
characteristics is not uniquely determined as a function of the deflection. When the

Fig. 12 The dry friction contact between the adapters and the side frames with longitudinal end
stops
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Fig. 13 The UIC standard suspension of a two-axle freight wagon. 1 Car body, 2 Suspen-
sion Bracket, 3 UIC links, 4 Wheel set guidance, 5 Leaf spring, 6 Axle box, 7 Wheel set, 8
Connecting bar

deflection of the spring is sufficiently large, the extra leaf in the spring becomes
active and increases the stiffness of the spring. Thereby a jump of the first derivative
of the characteristics is introduced.

The double link shown on Fig. 16 is a complicated element, which is designed
to provide restoring forces through the pendular action in as well the longitudinal
as the lateral direction together with damping of these motions through dry friction
contact forces in the bearings of the pendulums.

Fig. 14 Top view of the axle guidance with the gap between the axle box and the guidance. Under
impact in the lateral direction the guidance act as a spring, in the longitudinal direction the guidance
acts as a rigid body
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Fig. 15 Two-stage parabolic leaf spring with an example of the loading characteristics with hys-
teresis and the increase in stiffness when the lower leaf becomes active

Fig. 16 UIC double link suspension. The double links move together around the upper and lower
bolts in the longitudinal direction and separately around the eight hinge joints in the lateral direc-
tion
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Under longitudinal loading the double links will move together and turn around
the upper and lower bolts. Under lateral loading the double links are supposed to
move together. If the deflection becomes sufficiently large, the lower link will hit
the suspension bracket (2) in Fig. 13, whereby the length of the pendulum is halved,
and the restoring force of the link is doubled. The actual motion of the links depends
on the friction forces in the curved contact surfaces. These friction forces depend
strongly on the mechanical properties of the contact surfaces, whether they are new
or worn or polluted by humidity (water or oil or dust). Like in the case with the
leaf spring, hysteresis effects and non-smoothnesses are introduced. The modelling
of the action of the double link is therefore very complicated. A useful mathemat-
ical model of the action of the UIC standard link suspension was formulated by
Piotrowski [2]. The parameters that are used must be measured in the laboratory.

4 Motorized Vehicles

Motorized vehicles have transmissions that connect the motor with the driven
axle(s). Transmissions with mechanical gears are very common in road vehicles
as well as in railway vehicles. Tooth backlash clearances in the gears introduce
discontinuities in the mathematical model of the transmissions. The phenomenon is
only mentioned here for the sake of completeness since it is the topic of the chapter
by Ziegler and Eberhard in this book.

5 Discussion

The non-smoothnesses in vehicle constructions must of course be taken into account
and be carefully modelled in the dynamical systems of vehicle dynamics. The non-
smoothnesses in the dynamical systems are sources of bifurcations that do not exist
in smooth systems – a grazing bifurcation is an example – or they may modify the
structure of the classical bifurcations in smooth systems, True [4]. Slivsgaard [3]
presents an example. The new bifurcations may change the dynamics of a vehicle
quite drastically in certain parameter intervals.

The numerical solver must be chosen with respect to the non-smooth character
of the dynamical problem in order to ensure reliability and robustness of the results
of the numerical calculations. Special attention must be paid to the parameters of
the solver such as time steps and error bounds, because the default values do not
guarantee reliable results. The time integration must often be split up in intervals
in which the dynamical problem is sufficiently smooth, or other measures must be
specially introduced in order to obtain accurate results.

The following chapters in this book are devoted to the particular dynamical and
numerical problems that arise in non-smooth dynamical systems and how to handle
these problems in order to achieve reliable theoretical results.
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Application of Nonlinear Stability Analysis
in Railway Vehicle Industry

Oldrich Polach

Abstract This paper deals with the use of nonlinear calculations and bifurcation
analysis when investigating running stability during vehicle design and develop-
ment in the rolling stock industry. Typical methods used for stability analysis in
industrial applications are introduced, computation of bifurcation diagram presented
and the influence of nonlinearities of the vehicle/track system on the type of Hopf
bifurcation investigated. The relationship between the bifurcation diagram and the
assessment of safety risk and the dynamic behaviour is discussed.

1 Introduction

A self-excited, sustained oscillation of wheelsets with conventional solid axles is a
classic problem of railway vehicle dynamics. It is called hunting or instability by
railway engineers. The frequency of such waving motion of wheelsets and bogies
is related to the wheel/rail contact geometry. Equivalent conicity is applied as a
simplified parameter in order to describe the wheel/rail contact geometry in railway
practice. The equivalent conicity can vary to a large degree and therefore plays a
significant role in the stability assessment of railway vehicles.

If the wheel/rail contact conditions lead to a bogie motion with a low frequency,
approaching the vehicle carbody natural frequency, the possibility of considerable
interaction may arise, leading to a limit cycle oscillation during which the amplitude
of the car body is large relative to that of the wheelsets. In this case we refer to
carbody instability (primary instability) or carbody hunting. If only the wheelsets
and bogies or running gears are involved in the limit cycle oscillation, we refer
to bogie instability (secondary instability) or bogie hunting. In modern vehicles
carbody instability leads to a deterioration of lateral running behaviour, as well as
ride comfort degradation without exceeding the safety criteria. A wheel/rail contact
geometry characterized by high conicity typically limits the maximum permissible
speed with respect to bogie hunting, i.e., running safety.

O. Polach (B)
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P.G. Thomsen, H. True (eds.), Non-smooth Problems in Vehicle Systems Dynamics,
DOI 10.1007/978-3-642-01356-0 2, C© Springer-Verlag Berlin Heidelberg 2010

15



16 O. Polach

The necessity of stability investigations was only slowly recognized during the
mid-twentieth century. A theoretical comprehension of railway vehicle stability
came into being as a result of studies on linearised models; see e.g., [1] for details.
At a later date, nonlinearities of the wheel/rail combination were also taken into
consideration, see [2, 3] for further references.

The publications dealing with nonlinear stability assessment of railway vehicles
often apply simplified models, conical or theoretical wheel profiles and theoreti-
cal rail profiles. No systematic study about the influence of nonlinearities on the
stability and bifurcation behaviour of large vehicle models has been published yet.
Considering complex systems of the vehicle/track and a large variation of wheel/rail
contact geometries and friction conditions in railway service, the question appears
how far are the conclusions from the published investigations valid for the industrial
applications?

This article deals with use of nonlinear calculations and bifurcation analysis
when investigating running stability during vehicle design and development in the
rolling stock industry. It is organised as follows. Methods typically used for stability
analysis in industrial application are introduced in Chap. 2. In Chap. 3, the bifurca-
tion analysis is presented and the impact of the nonlinearities of the vehicle/track
system on the bifurcation diagram explained. Chapter 4 discusses the relationship
between the bifurcation diagram and the assessment of safety risk and the vehicle’s
dynamic behaviour.

2 Assessment of the Running Stability in Railway Industry

Stability analysis constitutes the most diversified part of vehicle dynamics due to
the various possible methods, the wide range of input conditions and different
assessment criteria. In spite of the vehicle/track system being always nonlinear,
both nonlinear as well as linear calculations are applied for the stability assess-
ment. In the linearized stability assessment, the contact of the wheelset and track
is linearized differently to the other coupling elements. The quasi-linearization of
wheel/rail contact, in which linearized wheel/rail parameters are computed for the
specified wheelset lateral movement amplitude, is the standard method implemented
in simulation tools used in railway vehicle engineering. Comparison of linearized
and nonlinear stability assessment has been presented by the author in [4].

The nonlinear methods of stability assessment using computer simulations have
been compared and discussed by the author in [3]. These can be classified depending
on the track alignment used of:

• ideal track (no irregularity)
• real track with track irregularity (measured irregularities)
• combination of track disturbance followed by a section of ideal track, whereby

the track disturbance can be represented by

– single lateral disturbance
– track section with irregularity.
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Another classification can be introduced in relation to the assessment criteria of:

• decay of oscillations
• limit values specified for testing for the acceptance of running characteristics of

railway vehicles in EN 14363 [5].

A lateral displacement of wheelsets is usually used to prove the decay of self-
excited oscillations of a railway vehicle. Displacements of other bodies (bogie
frame, carbody) can gain additional information to distinguish between the hunting
of bogie or carbody.

The criteria used during the testing of vehicles for the acceptance of running
characteristics are:

• forces between wheelset and track (sliding rms-value of sum of guiding forces)
as specified for normal measuring method according to EN 14363 [5]

• lateral acceleration on the bogie frame (sliding rms-value) as specified for sim-
plified measuring method according to EN 14363 [5].

There are pros and cons for all methods mentioned. The three most used meth-
ods are illustrated by examples of safety assessment, considering wheel/rail friction
coefficient of 0.4 and a high equivalent conicity of 0.6 for the wheelset amplitude
of 3 mm.

Method 1: Figure 1 shows the wheelsets lateral displacement as a result of simu-
lation on ideal track, starting from a limit cycle at high speed and reducing the speed
slowly. The speed at which the oscillation disappears is then the nonlinear critical
speed [6].

Method 2: Figure 2 shows simulations of the reaction to a single lateral distur-
bance with amplitude of 8 mm and a span of 10 m, followed by an ideal track, for
the variation of vehicle speed.

Method 3: Figure 3 presents simulations of a run on track with measured irreg-
ularities and analyses of the criteria according to EN 14363 for wheel/rail contact
geometry A.

While the first method allows an unambiguous assessment of critical speed, it is
rather rarely used as it requires a long simulation time. The second method is often
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Fig. 2 Simulations of wheelset reaction on a single lateral excitation on ideal track

used because of simple handling and short simulation times. Likewise, the third
method is often applied because of the easy possibility of comparison with vehicle
test results.

The examples in Fig. 1 demonstrate different critical speeds and different
behaviour for the same vehicle with the same equivalent conicity for the wheelset
amplitude of 3 mm as specified for vehicle acceptance tests [5]. There is abrupt
wheelset stabilization in the first example, whereas in the second example the ampli-
tude of the limit cycle slowly reduces with decreasing speed.

Differing behaviour can be observed also in the examples in Fig. 2. The differ-
ences result from the nonlinearities of the investigated system. A prominent fea-
ture of nonlinear dynamical systems is the possible dependence of their long-time
behaviour on the initial conditions, leading to the existence of multiple solutions.

The methods discussed so far can however only identify one solution. Further-
more, differing procedures and criteria for the stability assessment in railway appli-
cations can lead to different conclusions, because a limit cycle oscillation with a
rather small amplitude will not necessarily lead to exceedance of the stability limit
during vehicle testing. This can be seen in Fig. 4 on the analysis of the vehicle
behaviour on an ideal smooth track behind a single disturbance. An assessment of
nonlinear dynamical systems with respect to the influence of one or more system
parameters on existence of multiple solutions can be carried out by bifurcation anal-
ysis, which will be discussed in the next chapter.

3 Bifurcation Analysis of the System Vehicle/Track

The usual way to present the bifurcation phenomenon is a bifurcation diagram [2].
When analysing the stability of railway vehicles, the bifurcation diagram displays
the amplitude of the limit cycle (typically lateral wheelset displacement) as a func-
tion of speed. For some systems, the bifurcation diagram can be very complex
including quasi-periodic or chaotic motion. Considering the main shape of the dia-
gram, we can distinguish between the subcritical and supercritical Hopf bifurcation;
see Fig. 5 [2, 3]. In case of subcritical bifurcation there is a speed range at which the
solution can “jump” between a stable damped movement and a limit cycle depend-
ing on the excitation amplitude.



Nonlinear Stability Analysis in Railway Vehicle Industry 19

W
he

el
se

t 1
W

he
el

se
t 2

0
5

10
15

20
25

v = 190 km/h –4
5

–1
51545

Sum of Y [kN]

–
45

–1
5

1545 –
45

–1
5

1545 –
45

–1
5

1545 –
45

–1
5

1545 –
45

–1
5

1545 –
45

–1
5

1545

v = 200 km/h

Sum of Y [kN]

v = 210 km/h

Sum of Y [kN]

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

v = 220 km/h

Sum of Y [kN]

v = 230 km/h

Sum of Y [kN]

v = 240 km/h

Sum of Y [kN]

B
og

ie
 1

0
35

0
70

0
10

50
14

00
0510152025 0510152025 0510152025 0510152025 0510152025 0510152025

W
he

el
se

t 1
W

he
el

se
t 2

S
um

 o
f g

ui
di

ng
 fo

rc
es

, B
og

ie
 1

 
R

M
S

-v
al

ue
 a

cc
. t

o 
E

N
 

lim
it 

va
lu

e 

D
is

ta
nc

e 
[m

]

0
35

0
70

0
10

50
14

00
D

is
ta

nc
e 

[m
]

0
35

0
70

0
10

50
14

00
D

is
ta

nc
e 

[m
]

0
35

0
70

0
10

50
14

00
D

is
ta

nc
e 

[m
]

0
35

0
70

0
10

50
14

00

D
is

ta
nc

e 
[m

]

T
im

e 
[s

]
0

5
10

15
20

25
T

im
e 

[s
]

0
5

10
15

20
25

T
im

e 
[s

]

0
5

10
15

20
25

T
im

e 
[s

]

0
5

10
15

20
25

T
im

e 
[s

]

0
5

10
15

20
25

T
im

e 
[s

]

T
im

e 
[s

]
0.

0
2.

5
5.

0
7.

5
10

.0
12

.5
15

.0
17

.5
20

.0
T

im
e 

[s
]

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

T
im

e 
[s

]

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

T
im

e 
[s

]

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

T
im

e 
[s

]

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

T
im

e 
[s

]

–4
5

–1
51545 –4
5

–1
51545 –4
5

–1
51545 –4
5

–1
51545 –4
5

–1
51545

Sum of Y [kN]Sum of Y [kN] Sum of Y [kN] Sum of Y [kN] Sum of Y [kN] Sum of Y [kN]

0
35

0
70

0
10

50
14

00

D
is

ta
nc

e 
[m

]

F
ig

.3
St

ab
ili

ty
as

se
ss

m
en

tb
as

ed
on

si
m

ul
at

io
ns

of
ve

hi
cl

e
ac

ce
pt

an
ce

te
st

s



20 O. Polach

0
25

50
75

100
125

150
175

200

140 160 180 200 220 240 260 280 300
Speed [km/h]

N
o

n
d

im
en

si
o

n
al

 m
ax

. [
%

]

0
25

50
75

100
125

150
175

200

140 160 180 200 220 240 260 280 300
Speed [km/h]

N
o

n
d

im
en

si
o

n
al

 m
ax

. [
%

]

 Sum of guiding forces
 Bogie acceleration
 Limit value

Wheel/ rail contact geometry A Wheel /rail contact geometry B

limit cycle safety limitlimit cycle ≈ safety limit

Fig. 4 Comparison of stability assessment based on the occurrence of a limit cycle and the assess-
ment according to the safety limits specified for measurements in EN 14363 [5]

Subcritical Hopf bifurcation Supercritical Hopf bifurcation

Speed

A
m

pl
itu

de

unstable
saddle-cycle

stable limit
cycle

vlinvnl Speed

stable limit
cycle

A
m

pl
itu

de

vnl = vlin
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back of the nonlinear system

The calculation of the bifurcation diagram can proceed by a path following
method (continuation) or by a set of numerical simulations. A software tool PATH
for the continuation-based bifurcation analysis has been developed at the Technical
University of Denmark [7]. It uses a mixture of integration in time and Newton
iteration to find the periodic solutions. The code starts with the trivial solution that
is known to be asymptotically stable at sufficiently low speed. The speed is then
increased in small steps and the solution is followed for each value of the speed.
When a bifurcation point is reached, the path to be followed is chosen in the phase-
parameter space.

The integration of the software tool PATH with commercial MBS-software
SIMPACK has been developed and described by Schupp [8]. However, this tool
is not commercially available as a part of SIMPACK software package yet. Further-
more, the method is not straight forward. As stated in [8], external time integration
is required to generate an initial estimation, because it is not possible to continue
the unstable periodic solutions branching off from the Hopf bifurcation of the first
branch.
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Stichel [9] uses a rather straight forward method applying numerical simulation.
A run over an initial lateral disturbance is simulated at a rather high speed. The
simulation continues on undisturbed track until the oscillation of the vehicle has
reached constant amplitude. The vehicle speed is reduced and a new simulation
started with initial values from the previous simulation. This is repeated until the
oscillating solution disappears.

A set of numerical simulations is also applied in the investigations presented in
this article. A run over a single lateral disturbance with a span of 10 m is simulated
and the amplitude of the limit cycle after a few seconds, behind the transition pro-
cess, taken in the bifurcation diagram. This is repeated for a set of speeds including
those leading to limit cycle oscillations. As first, a large disturbance with an ampli-
tude of 8 mm was used to identify nonlinear critical speed. Then, a set of simulations
with speed variation is repeated applying a small disturbance with 0.5 mm ampli-
tude. If the solution without oscillations appears for speeds higher than the nonlinear
critical speed, a set of simulations with amplitude variation is started, to identify the
amplitude for which the stable solution without oscillation changes to a limit cycle.
This value is then taken as a point of the unstable branch for the considered speed
in the bifurcation diagram.

To study the impact of the nonlinearities and non-smoothness of the system vehi-
cle/track, we will distinguish between:

• nonlinearity and non-smoothness of wheel-rail contact
• nonlinearity and non-smoothness of vehicle model itself.

The effects of these two groups of nonlinearities on the shape of bifurcation
diagram will be investigated in the following subchapters.

3.1 Wheel-Rail Contact Nonlinearity

The influence of wheel/rail contact nonlinearity on railway vehicle behaviour at
the stability limit can be seen in Fig. 6. The simulations were carried out with a
multi-body model of a four-car articulated vehicle in simulation tool SIMPACK.
The model consists of 124 bodies and possesses 201 degrees of freedom (DOF).
The diagrams display the results of the second wheelset of the leading bogie, where
the limit cycle was first observed.

From the presented example as well as from the author’s other studies, it
can be observed, that the influence of the wheel/rail contact nonlinearity can be
assessed with the help of the contact geometry functions used for the linearization
of wheel/rail contact:

• Difference of rolling radii Δr of the left and right wheel in function of the
wheelset lateral displacement

• Equivalent conicity λ in function of wheelset displacement amplitude.
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Wheel/rail contact geometry A Wheel/rail contact geometry B

–10

–5

0

5

10

–10 –5 0 5 10
y1 [mm]

y 2
 [

m
m

]

Phase diagram

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8
Amplitude [mm] 

λ 
[–

]

Equivalent conicity

–6

–4

–2

0

2

4

6

–6 –4 –2 0 2 4 6

Δr
 [

m
m

]
Difference of rolling radii

Wheelset displacement [mm]

0

2

4

6

8

10

12

Speed [km/h]

y 2
 [m

m
]

Bifurcation diagram

100 150 200 250 300 350 400 450 500

–10

–5

0

5

10

–10 –5 0 5 10
y1 [mm]

y 2
 [

m
m

]

Phase diagram

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8
Amplitude [mm] 

λ 
[–

]

Equivalent conicity

Difference of rolling radii

Wheelset displacement [mm]

–6

–4

–2

0

2

4

6

–6 –4 –2 0 2 4 6

Δr
 [

m
m

]

0

2

4

6

8

10

12

Speed [km/h]

y 2
 [m

m
]

Bifurcation diagram

100 150 200 250 300 350 400 450 500

Fig. 6 Influence of wheel/rail contact nonlinearity on the behaviour of a railway vehicle at the
stability limit on the example of two contact geometries with the same equivalent conicity for the
wheelset amplitude of 3 mm
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Both examples in Fig. 6 represent the same equivalent conicity for the amplitude
of 3 mm. For the contact geometry A, there is a progressive increase of rolling radii
difference in function of wheelset displacement and progressive equivalent conicity
in function of wheelset amplitude. Abrupt limit cycle decay can be observed on the
phase diagram of displacements of wheelset 1 and 2. There is a subcritical Hopf
bifurcation in the bifurcation diagram of the wheelset 2. In contrast, for the contact
geometry B there is strongly declining function of rolling radii difference and also
strongly declining equivalent conicity function for amplitudes up to 4 mm (i.e., in
the tread area away from flange contact) due to large movement of the contact area
for the wheelset displacement between 0 and 1 mm. A slow decrease of oscilla-
tions and a supercritical Hopf bifurcation can be observed for this wheel/rail contact
geometry.

The different behaviour of railway vehicles on the contact geometry with the
equivalent conicity function of “Type A” and “Type B” has been described for the
first time in [10] and outlined more in detail in [3]. The nonlinearity of the contact
geometry often determines the type of the Hopf bifurcation of railway vehicles.
It contradicts the repeatedly presented statement that the bifurcation analysis of a
railway vehicle always or mostly leads to the subcritical Hopf bifurcation, with the
nonlinear critical speed lower than linear critical speed. In fact, the supercritical
Hopf bifurcation can also occur with railway vehicles, and probably more frequently
than supposed until now. This is because the contact geometry of “Type A” is related
to a conical wheel profile which is the profile mostly used in theoretical studies.
The change of the contact geometry due to wheel wear often leads to more con-
formal tread contact characterized by contact geometry of “Type B”, leading to the
supercritical Hopf bifurcation with the nonlinear critical speed equal to the linear
critical speed.

The nonlinear critical speed increases with reduction of wheel/rail friction coef-
ficient, whereby the linear critical speed remains the same [3]. The subcritical Hopf
bifurcation is less pronounced and can change to supercritical Hopf bifurcation for
very low friction coefficients.

The described effects of wheel/rail contact conditions on bifurcation behaviour
can be summarized as follows. The equivalent conicity value for the 3 mm ampli-
tude characterizes the conicity level; a higher conicity leads to lower linear crit-
ical speed and vice versa. The slope of the equivalent conicity as a function of
wheelset amplitude influences the type of Hopf bifurcation; a strongly decreasing
conicity function for small amplitudes encourages supercritical Hopf bifurcation
and vice versa. Similarly, the slope of creep force function influences linear crit-
ical speed, whereas the wheel/rail friction coefficient influences the form of Hopf
bifurcation.

3.2 Nonlinearities of Vehicle Model

The nonlinearity of a vehicle model can supersede the effect of wheel/rail contact
and change the type of Hopf bifurcation. Figure 7 shows as example the influence
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Fig. 7 Bifurcation diagrams of a double-decker coach for two different wheel/rail contact geome-
tries with the same equivalent conicity for the wheelset amplitude of 3 mm

of nonlinear characteristic of yaw dampers on the bifurcation diagram of a double-
decker coach with 39 bodies and 73 DOF, build in simulation tool SIMPACK. The
nonlinearity of wheel/rail contact is still dominant, however, the implementation of
yaw dampers with nonlinear characteristics leads to a change of the Hopf bifurca-
tion for the wheel/rail contact geometry “Type A” in the left diagram. In contrast,
on the right diagram (contact geometry “Type B”) there is always a supercritical
Hopf bifurcation. Introducing the yaw dampers, oscillations with large amplitudes
are suppressed into higher speeds, whereas small amplitudes below 2 mm remain
present already for low speed.

Figure 8 shows as example the influence of nonlinear, non-smooth characteristic
of yaw dampers on the bifurcation diagram of the same vehicle and the wheel/rail
contact geometry A. The damping force of yaw dampers is nonlinear due to a strong
slope reduction at the blow-off force. The yaw damper characteristic No. 3 in Fig. 8
assumes a negligible force for a very small piston velocity, caused e.g., by a piston
leakage. The variation of the blow-off force and the non-smooth characteristic of
yaw damper, results to a change of Hopf bifurcation and to the variation of critical
speed between 200 and 280 km/h.
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4 Discussion

The presented results demonstrate that the bifurcation analysis of a railway vehicle
can lead to subcritical as well as supercritical Hopf bifurcation; the type of Hopf
bifurcation is determined by the nonlinearities in the vehicle/track system, whereby
the wheel/rail contact geometry has a significant influence on the vehicle behaviour
at the stability limit. Can the bifurcation analysis enhance the nonlinear stability
assessment in railway vehicle industry?

A detailed analysis of the bifurcation diagram for speeds far over the nonlinear
critical speed can be very interesting from the theoretical point of view, however
less important for industrial applications. Wheelset oscillation with a very small
amplitude, say less than 1 mm would probably be overlooked during the tests due
to real track irregularities, unless this oscillation is coupled with larger movements
of other bodies. A very small variation in periodicity leading to a quasi-periodic
or chaotic motion observed as a result of nonlinear investigations can often be more
related to a particular modeling of wheel/rail contact than to real behaviour observed
in service. The nonlinearity or non-smoothness is often “smoothed” in the reality
as described by Piotrowski [11] on example of friction element. Detailed studies
about very small deviations at particular conditions will therefore hardly enhance
the stability assessment in railway industry.

For the assessment of running stability in the rolling stock industry, the main
properties at various realistic conditions are of interest. From this point of view, sig-
nificant differences can be observed between a system demonstrating the subcritical
Hopf bifurcation and a system showing the supercritical one. What is the relation-
ship between the bifurcation diagram and the vehicle behaviour at the stability limit?
This relation is shown in Fig. 9. A vehicle/track systems showing a subcritical Hopf
bifurcation usually reaches the nonlinear critical speed and the safety limits at the
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Fig. 9 Bifurcation diagram and assessment of safety and oscillation behaviour
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same or similar speed. The stability assessment of such system can, however, lead
to an underestimation of both criteria if the stability has been assessed by simulation
applying too small disturbance or too small track irregularities. The system showing
a supercritical bifurcation possesses nonlinear critical speed which is lower than the
speed at which the safety limits are reached. The assessment of such system apply-
ing bifurcation analysis can deliver low critical speeds with criteria below the safety
limits specified for vehicle acceptance. For a safety assessment of such system, other
methods than bifurcation diagram of wheelset displacement are required, e.g., simu-
lation of run on measured track irregularities. An exploitation of speeds higher than
the nonlinear critical speed would however lead to sustaining oscillation. Even if
the amplitude of this oscillation would be small, it could lead to fatigue damage and
comfort deterioration.

The range of speeds between the nonlinear critical speed and the speed at which
the safety limits are achieved should therefore be assessed using other kind of anal-
ysis regarding the fatigue and passenger comfort.

The bifurcation analysis allows assessing the influence of the level of track dis-
turbance on the stability assessment and gaining a valuable output regarding the
vehicle behaviour at the stability limit. It is, however, time consuming and rarely
used in railway applications. Because of large variation of service conditions and
parameters, a large set of investigations for different conditions is required during
vehicle design in the rolling stock industry. The industry would require a robust
procedure, which could be less exact, but allow a fast computation of bifurcation
diagrams using a complex, realistic multi-body vehicle models for a set of different
conditions wheelset/track and vehicle parameters, i.e., which allows a “rough and
robust” assessment for a large set of input parameters.

5 Summary and Conclusion

The paper presents typical methods used for stability analysis in the railway vehicle
industry and shows that they can lead to differing critical speeds because of: deviat-
ing computation procedures, wide possible range of input conditions, and differing
assessment criteria.

The bifurcation diagram computation is explained and the influence of nonlin-
earities of the wheel/rail contact and of the vehicle model on the type of Hopf
bifurcation shown. The presented examples demonstrate in contradiction to several
other publications that the bifurcation analysis of a railway vehicle can lead not only
to subcritical but also to supercritical Hopf bifurcation.

The stability assessment can overestimate the critical speed of a vehicle/track
system, demonstrating subcritical Hopf bifurcation if the applied disturbance is too
low. Contrary, it can deliver critical speeds below the safety limits for a vehicle/track
system showing supercritical Hopf bifurcation.

An application of bifurcation analysis in vehicle design and development could
enhance the nonlinear stability assessment of railway vehicles. However, an efficient
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use of bifurcation analysis in industry is not possible today. Fast and robust algo-
rithms or procedures applicable with commercial simulation tools would be required
to allow an introduction of this method to rolling stock design and development.
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Closed-Form Analysis of Vehicle Suspension
Ride and Handling Performance

Mehdi Ahmadian

Abstract A closed-form, analytical study that evaluates the response characteristics
of a two-degree-of freedom quarter-car model using passive and semi-active
dampers is provided as an extension to the results published in past studies for
active suspensions. The semiactive methods that are considered include skyhook,
groundhook, and hybrid control. The relationships between vibration isolation,
suspension deflection, and road-holding are studied using the model. The per-
formance indices that are used include vertical acceleration of the sprung mass,
deflection of the suspension (rattle space), and deflection of the tire. The results
indicate that hybrid semiactive control yields better comfort than passive suspen-
sion and the other semiactive control methods that are considered, without reduc-
ing the road-holding quality or requiring larger suspension rattle space for typical
passenger cars.

1 Introduction and Background

In early 1980’s Chalasani provided a non-dimensional analysis of active suspen-
sions, employing a quarter car model and compared the results with passive suspen-
sions, using metrics that are commonly used to evaluate vehicle ride and handling
in simulation studies [1]. He extended his results to a full-vehicle model with seven
degrees of freedom, and used the same ride and handling metrics to draw a compari-
son with passive suspensions [2]. This study intends to extend the results offered by
Chalasani in [1] for semiactive suspensions that have received increased attention in
the recent years.

Among the large number of semiactive control methods that have been exten-
sively studied in the past, we select skyhook, groundhook, and hybrid control –
depicted in Fig. 1 – because of their popularity and documented effectiveness
in controlling suspension dynamics [3]. The semiactive control methods can be
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Fig. 1 Quarter-car suspension system: (a) Passive configuration; (b) Semiactive configuration

described by the following Eq. (1), where σsky and σgnd are the skyhook and
groundhook components of the damping force, and G is a constant gain. The vari-
able α is the relative ratio between the skyhook and groundhook control. When α is
1, the control policy reduces to pure skyhook, whereas when α is 0, the control is
purely groundhook.

{
v2(v2 − v1) ≥ 0 σsky = G v2

v2(v2 − v1) < 0 σsky = 0

}

{
Fsa = α σsky + (1 − α) σgnd

}
{−v1(v2 − v1) ≥ 0 σgnd = G v1

−v1(v2 − v1) < 0 σgnd = 0

}
(1)

With the skyhook configuration [4, 5], the tradeoff between resonance control
and high-frequency isolation, common in passive suspensions, is eliminated [6]. The
skyhook configuration excels at isolating the sprung mass from base excitations, at
the expense of increased unsprung mass motion [7]. The groundhook configuration
focuses on the unsprung mass. The hybrid configuration has been shown to take
advantage of the benefits of both skyhook and groundhook control [3]. The hybrid
configuration will use α = 0.5.

2 Model Formulation

The passive representation of semiactive dampers controlled by the hybrid policy
appears as shown in Fig. 1b. The off-state damping Coff is a small portion of the
on-state damping Con. For the ideal skyhook, groundhook and hybrid configura-
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tions, we would have Coff = 0. It is not, however, possible to completely eliminate
any amount of damping in the suspension, and it can even be undesirable [8]. The
model of the quarter-car suspension system used in this analysis is an extension
of the passive suspension model used in [1] to semiactive suspensions. The states
of the model are the deflection of the suspension (x1), the velocity of the sprung
mass (x2), the deflection of the tire (x3), and the velocity of the unsprung mass
(x4). Road measurements have shown that an integrated white-noise input is a good
approximation of the vertical displacement of the road surface, except at very low
frequencies [1]. In this analysis, the velocity input vin will therefore be modeled
as a white noise input. The results obtained in [1] for passive suspensions can be
re-derived by taking the results obtained for the semiactive model and replacing
Coff by CS and Con by CS (then Con − Coff is replaced by 0).

The mean square response of a motion variable y to a white noise input can be
computed using the expression

E[y2] = S0

∫ ∞

−∞

∣∣Hy(ω)
∣∣2dω (2)

where Hy(ω) is the transfer function describing the response of the motion variable
y to the white-noise input [1], and S0 is the spectral density of the white-noise
input [1].

The motion variables of interest in this analysis are the same as in [1]: the sprung
mass vertical acceleration ẋ2, the suspension deflection x1, and the tire deflection
x3. The following expressions will therefore be computed:

• E[ẋ2
2] = S0

∫∞
−∞ |Hẋ2 (ω)|2dω, used as a measure of the vibration level

• E[x1
2] = S0

∫∞
−∞ |Hx1 (ω)|2dω, used as a measure of the rattle space requirement

• E[x3
2] = S0

∫∞
−∞ |Hx3 (ω)|2dω, used as a measure of the road-holding quality

The measure of the vibration level can be used as a comfort index for the driver
and the passengers since the human body is mostly affected by the acceleration to
which it is subjected [9]. The lower the vibration level is, the more comfortable the
ride would be.

The system can be fully described with the four equations of motion shown
below:

ẋ1 = x2 − x4 (3)

ẋ2 = − KS

MS
x1 − Coff

MS
(x2 − x4) − α(Con−Coff)

MS
x2 (4)

ẋ3 = x4 − vin (5)

ẋ4 = KS

MU
x1 + Coff

MU
(x2 − x4) − KU

MU
x3 − (1 − α)(Con−Coff)

MU
x4 (6)
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Using a Matrix form, it can be rewritten as:

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ = M44

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

−1
0

⎤
⎥⎥⎦ vin (7)

where

M44 =

⎡
⎢⎢⎣

0 1 0 −1
− KS

MS
−Coff+α(Con−Coff)

MS
0 Coff

MS

0 0 0 1
KS
MU

Coff
MU

− KU
MU

− (1−α)(Con−Coff)+Coff
MU

⎤
⎥⎥⎦

In the Laplace domain, Eq. (7) becomes:

ML 4 4
[

x1 x2 x3 x4
] T = [0 0 −1 0

] T
vin (8)

where

ML 4 4 =

⎡
⎢⎢⎣

s −1 0 1
KS
MS

s + Coff+α(Con−Coff)
Ms

0 −Coff
Ms

0 0 s −1
− KS

MU
−Coff

MU

KU
MU

s + (1−α)(Con−Coff)+Coff
MU

⎤
⎥⎥⎦

The three transfer functions of interest

Hx1 (s) = x1

vin
(s), Hẋ2 (s) = ẋ2

vin
(s), and Hx3 (s) = x3

vin
(s)

can be derived from Eq. (8). The transfer function of the sprung mass vertical accel-
eration is:

Hẋ2 (s) = s KU(KS + Coff s)

DSA(s)
(9)

where

DSA(s) = dsa4 s4 + dsa3 s3 + dsa2 s2 + dsa1 s + dsa0

with

dsa4 = MS MU

dsa3 = MS(Coff + (1 − α)(Con−Coff))
+MU(Coff + α(Con−Coff))
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dsa2 = KS(MS + MU) + KU MS

+Coff(Con−Coff) + α(1 − α)(Con−Coff)2

dsa1 = KS(Con−Coff) + KU(Coff + α(Con−Coff))

dsa0 = KS KU

The transfer function of the suspension deflection is:

Hx1 (s) = −KU(MSs + α(Con−Coff))

DSA(s)
(10)

The transfer function of the tire deflection is:

Hx3 (s) = −hx3,3 s3 − hx3,2 s2 − hx3,1 s − hx3,0

DSA (s)
(11)

where

hx3,3 = MS MU

hx3,2 = MS(1 − α)(Con−Coff) + MU α(Con−Coff)
+ Coff(MS + MU)

hx3,1 = KS(MS + MU) + Coff( Con−Coff)
+α(1 − α)(Con−Coff)2

hx3,0 = (Con−Coff)KS

Replacing s by jω in Eqs. (9), (10), and (11) yields the transfer functions in the
frequency domain. Using the formula shown in (12), the three expressions for the
mean square responses of interest can be derived from the three transfer functions
shown in Eqs. (9), (10), and (11). The formula shown in (12) is obtained using the
H2 optimization procedure explained in [10], which uses the techniques explained
in [11].

∞∫
−∞

∣∣∣∣ a3 s3 + a2 s2 + a1 s + a0

b4 s4 + b3 s3 + b2 s2 + b1 s + b0

∣∣∣∣
2

ds =

∞∫
−∞

∣∣∣∣ −a3 jω3 − a2 ω2 + a1 jω + a0

b4 ω4 − b3 jω3 − b2 ω2 + b1 jω + b0

∣∣∣∣
2

dω =

π
a3

2 b0(−b1 b2 + b0 b3) + 2a1 a3 b0 b1 b4

b0 b4(−b1 b2 b3 + b0 b3
2 + b1

2 b4)
+

π
b4(−a2

2 b0 b1 − a1
2 b0 b3 + 2a0 a2 b0 b3−a0

2 b2 b3 + a0
2 b1 b4)

b0 b4(−b1 b2 b3 + b0 b3
2 + b1

2b4)
(12)
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The three mean square responses of interest can be expressed as:

E[ẋ2
2] = f13(MS, MU, KS, KU, Con, Coff, α) (13)

E[x1
2] = f14(MS, MU, KS, KU, Con, Coff, α) (14)

E[x3
2] = f15(MS, MU, KS, KU, Con, Coff, α) (15)

These three large expressions are shown in detail in [10]. Dimensionless param-
eters can provide better insight into how the three mean square responses are influ-
enced by the vehicle model parameters. The dimensionless parameters below will
therefore be used to illustrate the effects of the parameters on the response of the
quarter car. These parameters are:

• The Mass Ratio:

rm = MU

MS
(16)

• The Stiffness Ratio:

rk = KU

KS
(17)

• The Off-State Damping Ratio of the Sprung Mass:

ζoff = Coff

2
√

KSMS
(18)

• The On-State Damping Ratio of the Sprung Mass:

ζon = Con

2
√

KSMS
(19)

• The approximal Natural Frequency of the Unsprung Mass:

ωu =
√

KU

MU
(20)

Using the parameters shown above, the dimensionless expressions for the rms
vertical acceleration of the sprung mass, the rms deflection of the suspension, and
the rms deflection of the tire can be derived and expressed as
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(
E[ẋ2

2]

πS0 ωu
3

)1/2

= f21(rm, rk, ζoff, ζon, α) (21)

(
E[x1

2]

πS0
ωu

)1/2

= f22(rm, rk, ζoff, ζon, α) (22)

(
E[x3

2]

πS0
ωu

)1/2

= f23(rm, rk, ζoff, ζon, α) (23)

These three large expressions are also expressed in detail in [10].

3 Modeling Results

Plotting the frequency responses of the different transmissibility ratios will prove
to be useful in order to explain the relationship between the mean square responses
quantities. Figures 2, 3, and 4 show the effects of varying the damping coefficients
on the sprung mass acceleration response, the suspension deflection, and the tire
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Fig. 2 Effect of damping on the vertical acceleration response: (a) Passive; (b) Groundhook; (c)
Hybrid; (d) Skyhook
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Fig. 3 Effect of damping on suspension deflection response: (a) Passive; (b) Groundhook; (c)
Hybrid; (d) Skyhook

deflection respectively. Each figure shows the effect of the varying the damping
coefficients for four configurations: passive, groundhook, hybrid (with α = 0.5) and
skyhook. The same masses and springs will be used for every configuration. Their
numerical values are shown in Table 1.

The sprung mass natural frequency is ωS =
√

KS
MS

= 8.165 rad/s (or 1.3 Hz)

The approximal unsprung mass natural frequency is ωu =
√

KU
MU

= 66.666 rad/s

(or 10.6 Hz)
No damping values are shown in Table 1 because the passive configuration

involves a different suspension system than the groundhook, hybrid, and skyhook
configurations. Also, several damping level will be used for each configuration.

For the passive case, the three figures will each be obtained for three different
values of damping:

• CS = 196 N · s/m: the corresponding damping ratio is ζs = 0.050, which means
the suspension is lightly damped

• CS = 980 N · s/m: the corresponding damping ratio is ζs = 0.250, which is a
typical value for passenger cars

• CS = 3920 N · s/m: the corresponding ratio is ζs = 1.000, which means the
suspension is heavily damped
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Fig. 4 Effect of damping on tire deflection response: (a) Passive; (b) Groundhook; (c) Hybrid;
(d) Skyhook

Typical semiactive damping coefficients are chosen using the two relationships
Con = 2.2 CS and Coff = 0.2 CS. These relationships also yield (Con − Coff) = 2 CS.

For the groundhook, hybrid, and skyhook configurations, the pairs of damping
coefficients used for plotting the frequency responses will therefore be:

• Con = 431.2 N · s/m, Coff = 39.2 N · s/m (i.e., ζon = 0.110 and ζoff = 0.010)
• Con = 2156 N · s/m, Coff = 196 N · s/m (i.e., ζon = 0.550 and ζoff = 0.050)
• Con = 8624 N · s/m, Coff = 784 N · s/m (i.e., ζon = 2.200 and ζoff = 0.200)

Having ζS = 0.050 for the passive suspension or (ζon, ζoff) = (0.110, 0.010) for
the semiactive suspension will correspond to the curves or to the points denoted as

Table 1 Model parameters

Parameter Value

Sprung body weight (MS) 240 Kg
Unsprung body weight (Mu) 36 Kg
Suspension stiffness (KS) 16000 N/m
Tire stiffness (KU) 160000 N/m
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“A” in this chapter. Similarly, “B” will denote either ζS = 0.250 or (ζon, ζoff) =
(0.550, 0.050) and “C” will denote either ζS = 1.000 or (ζon, ζoff) = (2.200, 0.200).

Figure 2 shows that increasing damping reduces the value of the vertical accel-
eration at the sprung mass natural frequency ωS, which is the peak value for every
configuration (passive, groundhook, hybrid and skyhook) unless the damping is too
high. It also reduces the value of the vertical acceleration at the unsprung mass nat-
ural frequency ωu. However, the area under the curve does not necessarily decrease
with a reduced peak value of the acceleration. It means that the measure of the
vibration level E[ẋ2

2] cannot be deducted from the peak value of the acceleration.
It can be noted that the skyhook configuration is the one that needs to be chosen
in order to minimize the vertical acceleration at the sprung mass natural frequency.
However, the skyhook control policy may not be the best one for minimizing E[ẋ2

2].
Figure 3 shows that increasing damping reduces the value of the suspension dis-

placement at the sprung mass natural frequency ωS, which is the peak value for
every configuration (passive, groundhook, hybrid and skyhook) unless the damping
is too high. It also reduces the value of the suspension displacement at the unsprung
mass natural frequency ωu. However, the area under the curve does not necessarily
decrease with a reduced peak value of the suspension displacement for the skyhook
and the hybrid configuration. It means that the measure of the rattle space require-
ment E[x1

2] cannot be deducted from the peak value of the suspension displacement.
It can be noted that the skyhook configuration is the one that needs to be chosen in
order to minimize the suspension displacement at the sprung mass natural frequency.
However, the skyhook control policy may not be the best one for minimizing E[x1

2].

4 Concluding Remarks

Figures 2, 3, and 4 show that hybrid control yields better performance than skyhook,
groundhook, and passive configurations, as related to the vertical acceleration of the
sprung mass, tire deflection, and suspension travel. Figure 5 compares the results
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obtained for hybrid semiactive suspension with the results obtained for passive sus-
pension, for the stiffness ratio rk = 10, which is a typical value for passenger cars.
The mass ratio is still rm = 0.15.

For the configuration B, corresponding to a typical damping for passengers cars,
the hybrid configuration (α = 0.5) reduces the rms acceleration of the sprung mass
by half, and also reduces the rms suspension travel and the rms tire displacements
in smaller proportions. This is for a typical mass ratio (rm = 0.15) and a typical
stiffness ratio (rk = 10) for passenger cars. Therefore, using semiactive suspen-
sions with the hybrid configuration yields a much better comfort than a passive
suspension, without reducing the road-holding quality or increasing the suspension
displacement for most passenger cars.
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Limit Wheel Profile for Hunting Instability
of Railway Vehicles

Laura Mazzola, Stefano Alfi, F. Braghin, and S. Bruni

Abstract Given a railway vehicle and a track, is it possible to define a wheel limit
profile that allows the vehicle to run at a given speed without the occurrence of
unsafe hunting motion? Nowadays some railway operators and maintenance staff
identify the maximum admissible wear on the profiles comparing the rail equivalent
conicity with a limit curve obtained on the basis of experimental evidence. The
present paper analyses the relationship between equivalent conicity and the dynamic
behaviour of the vehicle in tangent track. This can be used to implement condition –
based rail reprofiling strategies.

1 Introduction

Wheel-rail contact geometry plays a key role in defining the dynamic behaviour
of a railway vehicle running on the track: therefore, profile changes produced by
the process of wear profoundly affect vehicle performances and ride safety, then
excessive modifications of the original profile need to be periodically corrected by
re-profiling the wheels to their original profile.

In particular, as far as high-speed rail vehicles are concerned, the main effect
produced by the wearing of wheel profiles is the increase of the self-centring effect
caused by the variation of rolling radius with lateral wheelset displacement, the
so-called “conicity” of the wheel: although this effect is responsible for the inherent
self-guidance property of railway wheelsets with solid axle, at high speed it favours
the onset of a self-sustained combined lateral and yaw vibration of the bogie known
as “hunting” which may be so large to become relevant to ride safety and passen-
gers’ comfort.

Unfortunately, the costs associated with wheel re-profiling represent a consider-
able share of the overall maintenance costs of rail vehicles: railway operators are
therefore concerned with optimising their wheel re-profiling strategy, with the aim
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of maximising the distance run by the wheels before being turned, though ensuring
appropriate levels of ride safety and performance.

Aim of this paper is to relate wheel wear with the critical speed of a high-speed
rail vehicle, investigating the possibility to define a limit profile for the worn wheel,
representing the maximum degree of wear compatible with the vehicle achieving its
maximum service speed without experiencing hunting oscillations. The relevance
of this limit profile in view of maintenance optimisation is clear, since it could be
used to take decisions concerning wheel re-profiling based on an objective approach
rather than on experience and qualitative judgement. Furthermore, the calculation
of the limit profile can be tailored on each vehicle type in a fleet, considering its
peculiar running properties, possibly also incorporating the effect of non-nominal
vehicle condition, e.g. degraded behaviour of suspension components.

On account of the non-linearities introduced by wheel-rail contact forces, the
problem addressed in this paper falls in the field of non-linear dynamics [1, 2]. Fur-
thermore, the problem is of non-smooth nature, due to the discontinuities appearing
in the relationship between the wheel/rail contact parameters and the lateral shift of
the wheelset, which are caused by jumps of the contact point on the wheel and rail
surfaces, and/or by the formation of multiple contact points. Previous investigations
[1, 3], have demonstrated that for such type of non-linear and non-smooth dynamic
problem a solution based on a linearised stability calculation is not appropriate,
since this approach may neglect the existence of self-excited stationary solutions
for the hunting oscillation of the bogie at speeds lower than the “linear” critical
speed provided by the linearised approach. For this reason, the problem is studied
here using a non-linear approach based on the simulation of vehicle dynamics under
the random excitation provided by track irregularity (see Sect. 3), as proposed in [4]
and used in [3, 5].

The method proposed in this paper, to establish a relationship between wheel
wear and the critical speed of the vehicle, is based on the use of the “equivalent
conicity” diagram: the equivalent conicity is a measure of the variation of the rolling
radius difference between the two wheels of a wheelset produced by a lateral shift of
the wheelset on the rails. The name corresponds to the fact that for a wheelset having
conical wheels resting on sharp-edged rails (bicone) the rolling radius difference
would be proportional to the lateral shift, the coefficient of proportionality being the
angle of the cone. For real wheel profiles, and especially for worn ones, the rolling
radius difference shows a strongly non-linear variation with the lateral shift of the
wheelset, so that the equivalent conicity depends on the amplitude of the lateral
oscillation of the wheelset over the track, leading to equivalent conicity, diagram as
described in detail in Sect. 2 of this paper.

2 The Equivalent Conicity Concept

As described in the introduction, the equivalent conicity diagram is a geometric
description of the wheel – rail couple in absence of any wheelset angle of attack.
Except the very special case of conical wheel profiles resting on sharp-edged rails,
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the rolling radius difference varies non-linearly with the shift of the wheelset. To
linearize this curve, the equivalent conicity concept is used:

ΔR = 2γ y + η (1)

where ΔR is the difference of the rolling radii between right and left wheels, y
is the relative lateral wheel-rail displacement, γ is the equivalent conicity and η

is a constant offset value. Note that the equivalent conicity is not the analytical
linearization of wheel and rail profiles around the centered wheelset position but an
engineering approximation that accounts for an “average slope” of the rolling radius
difference ΔR(y) diagram over a finite range lateral wheel-rail displacement. Sev-
eral different methods for the practical calculation of the equivalent conicity exist.
Among them in particular in this paper three are considered for the identification of
the equivalent conicity diagram: UIC 519 method, Trapezoidal integration method,
Harmonic quasi-linearization method.

2.1 UIC 519 Method

The UIC 519 method [6] is based on the kinematic movement (i.e. neglecting the
effect of inertial forces) of a free wheelset running along a tangent track.

To determine the equivalent conicity the equation of wheelset oscillation, depend-
ing on the non linear ΔR(y) function is integrated numerically, determining the
trajectory y = y(x) of the wheelset (where x and y are the longitudinal and lateral
positions of the wheelset on the track).

From the trajectory, the wavelength λ is extracted and the equivalent conicity
determined as the value of the bicone angle that would produce the same wavelength
of kinematic oscillation according to Klingel’s formula [7].

γU I C519 = 2π2er0

λ
(2)

2.2 Trapezoidal Integration Method

The trapezoidal integration method determines the equivalent conicity by averag-
ing over an interval −Δy + Δy of the wheelset displacement the conicity value
expressed by formula (1). Computing the integral of the ΔR (y) curve over a given
wheelset lateral displacement interval Δy and by dividing such integral by the four
times the considered interval:

γT I = 1

4Δy2

Δy∫
−Δy

ΔRdy (3)
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The interval over which the average is taken is centered on the position corre-
sponding to zero value of ΔR(y) so that the offset value η is set to zero.

2.3 Harmonic Quasi-Linearization Method

The harmonic quasi-linearization method is based on the assumption that the
wheelsets describe a sinusoidal movement in space.

The equivalent conicity is computed by averaging, the rolling radius variation
over one wavelength of wheelset motion

γH QL =
∫ 2π

0 ΔR sin τdτ

2πa
(4)

The main difference with respect to the trapezoidal integration method is that
here ΔR values are weighted by a sine wave function, so that values far from the
centred wheelset position are weighted with larger weight.

The Fig. 1 compares the equivalent conicity diagrams obtained according to the
three methods for a worn ORES1002 profile.

UIC 519 and harmonic quasi-linearization methods are in very good agreement
with each other, whereas the differences between the trapezoidal integration method
and the other two are larger, especially for small values of Δy. In the following
calculation, the harmonic quasi-linearization method is applied.
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Fig. 1 Equivalent conicity diagram: Calculation method comparison
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3 Numerical Evaluation of the Critical Speed

The reliable estimation of the critical speed for a railway vehicle requires to be
addressed by fully considering the nonlinear and non-smooth nature of the problem.
In this paper, a method for the numerical evaluation of the vehicle critical speed cal-
culation is used, based on the simulation of the vehicle non-linear running behaviour
in tangent track, subject to the random excitation produced by track irregularity.

The method is inspired by the European standard EN14363, according to this
standard, the critical speed is identified from line tests as the threshold speed above
which the rms value of either the track shift forces or the lateral acceleration of the
bogie frame exceed a given limit value. More precisely, the standard differentiates a
so-called “normal measuring method”, which should be used for the homologation
of a new vehicle, and a “simplified measuring method”, which can be used to extend
the homologation of an existing vehicle. In the normal measuring method, the track
shift forces ΣY (sum of the guiding forces on the two wheels of the same axle)
are measured applying a low-pass filter at 20 Hz and the rms value sΣY of this
measured quantity is computed. The vehicle is considered to be unstable if this
quantity exceeds the limit value (sΣY )lim defined as:

(sΣY )lim = 1
/

2

(
10 + 2Q0

3

)
(5)

where Q0 is the static vertical wheel load and both Q0 and (sΣY )lim are expressed in
kN. In the simplified measuring method, the lateral bogie acceleration over the axle
box is measured applying a band-pass filter with amplitude ±2 Hz centred on the
frequency f0 corresponding to the maximum spectrum amplitude. The rms. value
of the filtered lateral bogie acceleration s ÿ+ is computed, and vehicle instability is
associated with the overcoming of the limit value

(
s ÿ+)

lim defined as:

(
s ÿ+)

lim = 1

2

(
12 − mb

5

)
(6)

where mb is the bogie mass expressed in thousands of kg and
(
s ÿ+)

lim is expressed
in m/s2.

The approach used in this paper to derive a numerical estimate of the vehicle
critical speed is to use nonlinear numerical simulation to reproduce vehicle dynam-
ics under the excitation of random track irregularity, as may occur along a test run,
increasing vehicle speed stepwise until any of the instability thresholds prescribed
by EN14363 is exceeded. The procedure is exemplified by the results of a critical
speed calculation case reported in Fig. 2, in which for conciseness only the results
obtained for the leading bogie are displayed: simulations are performed starting
from the lowest speed value of 240 km/h, which is increased by 5 km/h from one
simulation to the next one. For each speed value, the rms. of the lateral acceleration
(pass-band filtered as explained above) and the rms. of the track shift forces (low
pass filtered at 20 Hz) are computed and the process is iterated until one of the rms.
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Fig. 2 Numerical estimation of the critical speed (a) simplified method (b) normal method

values exceeds its limit as stated by formulae (5) or (6). The critical speed value is
then obtained by linear interpolation between the two speed values falling across the
limit condition.

In the example shown in Fig. 2, the result of this procedure applied on the lateral
acceleration of the bogie frame (simplified method, left subfigure) provides a critical
speed of 315 km/h, whereas considering the track shift forces (normal method, right
subfigure) the critical speed estimate falls above the maximum considered vehicle
speed. It is observed that the critical speed defined based on the lateral bogie accel-
eration is much lower than the one defined on the basis of the track shift forces. An
explanation for this behaviour is described in [5]. In any case, the lowest of the two
values (in this case 315 km/h) is taken as the estimate of the critical speed.

3.1 Multi-Body Model of the Railway Vehicle

The numerical model of the vehicle used for the critical speed estimation was
defined using ADTreS, an in-house code for the numerical simulation in time
domain of the non-stationary dynamic behaviour of rail vehicles travelling on a
flexible track developed at the Politecnico di Milano, Department of Mechanical
Engineering [8, 9].

In this work a weak interaction is assumed among the vehicles in the train set,
and therefore the mathematical model is confined to one single vehicle, considering
a trailer car of a concentrated power high speed train. For the carbody and the bogies,
a rigid body motion with constant forward speed is assumed, and hence five degrees
of freedom per body are introduced (vertical and lateral displacement, yaw, pitch and
roll rotation). For the wheel sets, besides the rigid motion coordinates, an additional
degree of freedom is introduce to consider the torsional flexibility of the axle. The
simplifying assumption of rigid track is considered in all calculations.
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3.2 Wheel Rail Contact Model

Wheel-rail contact represents the main source of non-linearity and non-smoothness
in the problem considered here. Indeed, wheel-rail contact parameters like the
rolling radius variation, the contact angle and the curvature of wheel and rail profiles
depend nonlinearly on the position of the wheel relative to the track. Furthermore,
the type of non-linearity involved is of non-smooth nature since it is associated
with the formation of multiple contacts between the same wheel/rail couple and/or
to “jumps” of the contact point across the wheel and rail profiles. As an example,
Fig. 3 shows, for one of the worn wheel/worn rail couple considered in the stabil-
ity analyses, the variation of the rolling radius as function of the lateral wheelset
position respective to the track: the effect of contact jumps is clearly visible.

Whereas other modelling techniques introduce an artificial smoothing of wheel-
rail contact non-linearities by the use of an “elastic contact” simplifying assump-
tions [10], in the modelling approach presented here non-smooth effects are dealt
with using a multi-Hertzian contact model, which fully accounts for the non-smooth
transition of wheel-rail contact forces among multiple contacts active on the wheel
and rail surface.

−8 −6 −4 −2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

y [mm]

Δr
 [m

m
]

 

Single contact
Multiple contact

Fig. 3 Rolling radius variation diagram with non-smoothness produced by the jumps of the
contact point

4 Equivalent Conicity as a Mean to Relate Hunting Motion
and Wheel Rail Profiles

Experimental and operational evidence shows that the critical speed of a railway
vehicle is strongly affected by the geometry of wheel-rail contact, and a usual mea-
sure which is taken to quantify this effect is represented by the equivalent conicity



48 L. Mazzola et al.

diagram, see e.g. the comment by Dr. J. Evans reported in [4]. Accordingly, railway
operators and maintenance managers try to define limit values for the γ (Δy) dia-
grams to detect the maximum allowable wear-induced modification of the wheel
profile which is compatible with the vehicle running in service below the criti-
cal speed.

An example of this approach is represented in Fig. 4, where a limit curve pro-
posed by a maintenance manager is reported, together with some conicity diagrams
obtained for different wheel profiles1 measured on serviced wheel sets. The conicity
diagrams in the figure are divided in two sets: the ones plotted in solid lines corre-
spond to wheel sets for which an instability warning was recorded while running
at the maximum service speed (300 km/h), whereas the diagrams plotted in dashed
line correspond to a degree of wheel profile wear for which no instability warning
occurred. As can be seen, the proposed limit curve separates well the two sets of
data, and hence the empirically based criterion can be considered to work well in
this case.

However, a number of limitations exist on this empirical approach: besides lack-
ing a physical interpretation of the phenomenon, it does not provide any mean
to implement a “predictive” approach, in the sense that the limit curve can only
be determined based on the processing of on-board condition monitoring signals,
whereas it would be impossible to define a limit curve for a different type of rolling
stock or for a different service profile. Furthermore, when the conicity diagram falls
within the “admissible zone”, no information is provided about the further mileage
the wheelset will be able to run before requiring re-profiling. Aim of this work is
hence to understand how this type of approach can be supported and improved by
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Fig. 4 Empiric limit curve

1 The conicity diagrams reported are obtained coupling the measured wheel profiles with the the-
oretical UIC60 profile with 1435 mm gauge and 1:20 inclination.
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mathematical modelling and numerical simulation, with the two aims of understand-
ing on a wider basis the relationship between the conicity diagram and the onset of
vehicle hunting and, to provide a numerical procedure to define the limit curve for
a given vehicle and service scenario.

An analysis of all in-service worn ORES1002 wheel profiles available to the
authors showed that the conicity diagrams can be filed in two main categories: in
the first one the conicity is very high for low values of the wheelset lateral shift,
becomes lower for intermediate values of Δy and then increases again, see Fig. 5.

In the second case, the conicity is almost constant at relatively low values for
low Δy, shows a sort of step increase for intermediate Δy values and reaches high
values when the contact is displaced on the wheel flange, see Fig. 6.

It is interesting to observe that exactly the same two conicity patterns were iden-
tified by Polach in [3], where it was shown that the two patterns correspond to
different ways by which the hunting motion onsets above the critical speed. The
two patterns are labelled in that paper with “B” and “A” letters respectively, and
hence will be named hereafter as “Type B” (the one showed in Fig. 5) and “Type A”
(the one in Fig. 6).

In Figs. 5 and 6, the conicity diagrams shown are divided in two groups, those
for which the critical speed falls below 300 km/h (considering the same high-speed
vehicle as in Fig. 4) are plotted in solid line, whereas those for which the critical
speed falls above 300 km/h are plotted in dashed line. The critical speed is in this
case determined by the use of the numerical procedure described in Sect. 3, and not
from service measurements: for Type B profiles, the results compare well with those
coming from service data, since the same limit curve of Fig. 4 again separates the
profiles with critical speed above 300 km/h from the others. When Type A profiles
are considered, for which no service data is available for the type of vehicle consid-
ered here, the empirical limit curve introduced in Fig. 4, clearly can no longer be
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Fig. 5 Equivalent conicity diagram: Type B shape
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accepted: it appears that a Type A profile with critical speed above 300 km/h may
reach a higher value of conicity than a Type B profile in the 4.1–4.3 mm range of Δy.
This is due to the fact that clearly on account of the equivalent conicity of this type
of profile is much lower than for type B profiles for smaller lateral displacements of
the wheels.

Based on the results presented in Figs. 5 and 6, it can be concluded that a single
limit curve valid for any wheel wear pattern which might possibly occur in service
cannot be defined, not even when the analysis is confined to one single initial wheel
profile shape (the ORES1002 one in this case). Instead, the results suggest that limit
curves can be defined more effectively when these are applied to groups of conicity
diagrams showing homogeneous trends, like Type A and Type B in this section.

Unfortunately, this approach leaves open the question how to manage a situation
where a conicity diagram cannot be clearly recognised to belong to one or the other
“type” and, more fundamentally, still suffers from not being based on a physical
interpretation of the relationship between conicity and hunting motion.

As a first attempt to overcome these limitations, it was observed that the integral
curve obtained from the equivalent conicity diagram might be better suited than
conicity itself to allow the definition of a limit curve, valid for all types of profiles.
Indeed, the integral of the conicity is directly related with the energy introduced by
wheel-rail contact forces in the hunting vibration of the wheelset, so that a higher
integral value of the conicity shall be related to a lower critical speed of the vehicle.

Figure 7 compares the results of the calculation of the integral curve of the conic-
ity diagram according to the formula:

Γ (Δy) =
Δy∫

Δymin

γ (Δy) dΔy (7)
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Fig. 7 Comparison of the integral curves obtained from Type A and Type B conicity diagrams

The integral is computed starting from Δymin = 1 mm, to avoid the effect of abrupt
variations of the conicity value which may occur for very low values of the lat-
eral shift.

Four different cases are compared in Fig. 7:

• Type A conicity diagram corresponding to a critical speed below 300 km/h
• Type A conicity diagram corresponding to a critical speed above 300 km/h
• Type B conicity diagram corresponding to a critical speed below 300 km/h
• Type B conicity diagram corresponding to a critical speed above 300 km/h

as can be observed in Fig. 7, in the Δy range from 4 to 7 mm, the curves obtained
from profiles having critical speed below 300 km/h are well separated from the other
two. The same result was obtained using different examples of Type B profiles,
whereas no generalisation is possible for Type A profiles, on account of the very
limited number of profiles of this type available. Still the results shown in the
figure suggest that a more reliable and general way to relate wheel wear and the
onset of hunting motion could be provided based on an appropriate post-processing
of the conicity diagram, rather than on the conicity diagram itself. As to the best
post-processing option and the corresponding “universal” limit curve, the problem
remains open at this point of the research.

5 Conclusion

The present paper proposed first results of a research aiming at the definition of
quantitative relationships between wheel wear and the vehicle critical speed. Start-
ing from the common empirical approach based on defining a limit curve for the
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equivalent conicity diagram, the work investigated the relationship between equiva-
lent conicity and the critical speed.

To this end, a method to define the vehicle critical speed was applied, based
on the numerical simulation of the non-linear dynamic behaviour of the vehicle
running in tangent track under the random excitation produced by track irregularity.
The numerical simulation hence fully accounts for the non-linear and non-smooth
effects related to wheel-rail contact geometry.

The results presented show that a simple limit curve cannot be defined for
the equivalent conicity diagram, because different types of worn wheel profiles
(e.g. Type A and Type B introduced in Sect. 4) require different limit curves.

The use of the integral of conicity instead of conicity itself appears to be in a more
univocal relationship with the critical speed of the vehicle. Moreover no conclusive
statement can be formulated at this point of the research and further work is required
to fully explain the results presented here on a physical basis.
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Low-Cost Maintenance Operation for Avoiding
Hunting Instability in a Metro Vehicle

F. Braghin, Stefano Alfi, S. Bruni, and A. Collina

Abstract Due to the relevant costs of rail re-profiling in underground metro lines,
stake holders are available to consider alternative solutions. In the present research,
a low-cost maintenance operation for avoiding hunting instability occurring on a
section of a metro line has been proposed and experimentally verified.

1 Introduction

Hunting instability is a very important topic for railway vehicles since it involves
both the safety and the ride comfort. In case of occurrence, the vehicle’s operating
speed has to be reduced and countermeasures have to be undertaken.

Hunting motion is usually considered a problem typical of high speed trains.
However, hunting instability can also affect metro vehicles, whose maximum speed
is significantly lower than high speed trains, in case some very particular circum-
stances occur such as absence of yaw dampers and/or high wear of wheel and rail
profiles. Unfortunately, the introduction of yaw dampers (when absent) or their sub-
stitution (when ineffective) has a very high impact on maintenance costs and there-
fore stake holders usually judge such solution economically unfeasible. Instead, in
presence of highly worn wheel and/or rail profiles, wheel and/or rail re-profiling has
to be undertaken. While wheel re-profiling can be carried out by taking the vehicle
temporarily out-of-service, rail re-profiling requires that the line is provisionally
closed. Therefore, stake holders do prefer the first solution even though it may turn
out that wheel re-profiling has to be frequently repeated. Thus, in the last years,
stake holders are available to take into account alternative solutions that allow to
reduce maintenance costs.

In the present paper, a low-cost maintenance operation for suppressing hunting
instability occurring on some sections of Milan’s metro line is described and exper-
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imentally tested. On the considered track, metro trains were suffering from hunting
instability already at the relatively low speed of 60 km/h, thus preventing them to
reach their maximum operating speed of 85 km/h and requiring wheel re-profiling
after approximately 25000 km. The cause of such unstable motion was identified in
the absence of yaw dampers and in the worn rail profiles that determined a highly
conformal contact with wheel profiles. The level of conformity of wheel-rail profiles
led to equivalent conicity values (calculated according to [1]) in some cases higher
than 0.8. Hunting instability was solved by changing rail inclination and thus mod-
ifying contact conditions between wheels and rails. Numerical simulations showed
that a zero inclination angle would have allowed to gain the highest increase in the
vehicle’s stability. Nevertheless the stakeholder decided to reduce the original rail
inclination instead of suppressing it. Although not optimal, this maintenance oper-
ation still allowed the avoidance of hunting motion up to the vehicle’s maximum
speed. Experimental results, before and after the maintenance operation, are pre-
sented and compared to numerical simulations obtained with a nonlinear vehicle –
track interaction model ([2]).

2 Experimental Assessment of Hunting Instability

As already described in the introduction, Metro Milan Line 2 underground vehicles
(Fig. 1) were suffering from hunting instability at relatively low speed (60 km/h) on
some sections of the line.

A test campaign was carried out to precisely identify the speed at which hunting
instability occurred and at which locations along the line. To assess vehicle stability,
different methods can be used ([3, 4]). However, the one based on EN14363 standard
allows to assess the vehicle’s critical speed under realistic working conditions, i.e.
in presence of track as well as wheel irregularity. Note that, in fact, EN14363 stan-

Fig. 1 Metro Milan line 2 underground vehicle
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Fig. 2 Instrumented bogie and axlebox for instability detection

dard prescribes two different “instability indicators”, one based on the lateral bogie
acceleration measured above the leading and trailing axleboxes and one based on the
sum of the guiding forces on the leading and trailing bogie axles. It has been shown
([5]) that these two “instability indicators” lead to quite different results in terms of
critical speed and that the most conservative one is that based on bogie accelerations.
It was therefore decided to instrument the underground vehicle with accelerometers
measuring both the vertical and lateral accelerations at axlebox level and at bogie
level above the axlebox of both the first two wheelsets (Fig. 2). Also vehicle speed
and bogie – carbody relative rotation for curve detection were acquired.

Table 1 sums up the results of the tests carried out on the critical sections at
various vehicle speeds (from 55 km/h to 85 km/h with steps of 10 km/h). Axlebox
acceleration signals were post-elaborated according to EN14363 standard to assess
vehicle stability and the bandwidth of 4–8 Hz was taken into account. This fre-
quency range is of particular interest being the typical hunting instability frequency
around 5–6 Hz.

It can be seen that above 55 km/h the RMS value of the lateral axlebox accelera-
tion of the first wheelset is higher than 2 m/s2.

The cause of such high RMS values was identified in the absence of yaw dampers
and in the worn rail profiles that determined a highly conformal contact with wheel
profiles as shown by the high values of the equivalent conicity obtained from the
measured wheel and rail profiles.

Table 1 Filtered RMS values of the bogie lateral acceleration above the axlebox of the leading
wheelset on the Gorgonzola – Cascina Antonietta track

Vehicle speed (km/h) RMS value (m/s2)

55 1.52
65 2.19
75 2.78
85 3.13
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2.1 The Equivalent Conicity

As well known, the equivalent conicity diagram is a geometric description of the
wheel – rail couple in absence of any wheelset angle of attack. It is based on the
variation of the rolling radius difference as a function of the wheel-rail relative lat-
eral displacement. Except for the very special case of conical wheel profiles resting
on sharp-edged rails, the rolling radius difference varies non-linearly with the shift
of the wheelset. To linearise this curve, the equivalent conicity concept is used:

ΔR = 2γ y + η (1)

where ΔR is the difference of the rolling radii between right and left wheels, y
is the wheel-rail relative lateral displacement, γ is the equivalent conicity and η

is a constant offset value. Note that the equivalent conicity is not the analytical
linearization of wheel and rail profiles around the centered wheelset position but an
engineering approximation of real wheel and rail profiles that accounts for much
wider wheel-rail relative lateral displacements. Thus, several different methods for
the practical calculation of the equivalent conicity exist such as the UIC 519 method,
the trapezoidal integration method, the harmonic quasi-linearisation method, the
SNCF method and the BR method. In the following, the UIC 519 method will
be used.

For the wheel-rail couple under investigation, the equivalent conicity diagram is
shown in Fig. 3. It can be seen that the equivalent conicity assumes values higher
than 1 for wheel-rail relative lateral displacements smaller than 2 mm and reaches
a minimum equal to approx. 0.8 for wheel-rail relative lateral displacements equal
to 3 mm. These high values of equivalent conicity are due to the conformity of the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

[mm]

γ e
q 

[-
]

Fig. 3 Equivalent conicity determined according to UIC 519 method of the measured wheel and
rail profiles (rail inclination equal to 1/20)
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contacting profiles. Since the equivalent conicity can be considered as a reference
parameter for the definition of the vehicle stability and its maximum allowable
speed, a high value means low critical speed.

3 Numerical Investigation of a Feasible and Low-Cost Solution

Once the causes of the low speed hunting instability have been identified, feasible
and low-cost solutions were searched for. Since the introduction of yaw dampers
would have required a re-design of the bogies and thus high costs, the solution was
identified in the reduction of the equivalent conicity values.

To obtain a quantitative analysis of the running behaviour of the metro vehicles
and to have a tool to asses the effectiveness of the possible solutions to reduce the
hunting motion of the vehicles, a complete model of the metro-track interaction was
implemented in the numerical code ADTreS formerly developed by the Mechanical
Engineering Department of Politecnico di Milano ([2]). The model of train-track
interaction implemented in ADTreS is defined in the time domain and it is based
on a mixed flexible/rigid body schematisation of the vehicle and a finite element
representation of the track. The equations of motion of these two subsystems are
coupled by the wheel-rail contact forces that are a function of both the vehicle and
track coordinates. The equations are integrated using a time-step algorithm based
on Newmark’s method.

3.1 The Vehicle Model

The metro vehicle is a one coach, two bogies and four wheelsets vehicle. The multi-
body model is based on a rigid body schematisation of the carbody and bogie frames
whereas the wheelsets are introduced through a modal superposition approach tak-
ing into account both the rigid and the flexible modes. Each rigid body has five
degrees of freedom being the forward speed assigned. The equations of motion of
the bodies are written with respect to a local reference system moving along the
ideal track centreline. The vehicle’s equations of motion take the form:

Mvẍv + Rvẋv + Kvxv = Fin (V, t) + Fnl (xv, ẋv) + Fcv (xv, ẋv, xt , ẋt , t) (2)

where Mv, Rv, Kv are the mass, the damping and the stiffness matrices of the vehi-
cle respectively, xv is the vector of the vehicle’s degrees of freedom, xt is the vector
of the track’s degrees of freedom, Fin is the vector of the inertial forces associated
to the motion of the local reference, Fnl is the vector of the forces associated to
non-linear suspension elements (e.g. bumpstops) and Fcv is the vector of the contact
forces.
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3.2 The Track Model

The track is a typical ballasted track with concrete sleepers connected to the rails
through direct fastenings. The sleepers are supported by a ballast bed having width
equal to 25–30 cm. A finite element schematisation is adopted for reproducing rails,
sleepers and subgrade. In particular, rails are represented through Euler-Bernoulli
beam elements whereas sleepers are schematized as rigid bodies. The fasteners are
schematised as linear lumped parameter visco-elastic elements and the ballast is
represented through a layer of linear visco-elastic distributed elements. The equation
of motion of the track subsystem is given by:

Mt ẍt + Rt ẋt + Kt xt = Fct (xv, ẋv, xt , ẋt , t) (3)

where Mt, Rt, Kt are the mass, the damping and the stiffness matrices of the track
respectively and Fct is the vector of the contact forces.

3.3 The Contact Model

The coupling term between the two sets of Eqs. (2) and (3) is given by the contact
forces that are calculated according to the following procedure.

Preliminary to the simulation of train – track interaction, a geometric analysis of
the wheel and rail coupled profiles is carried out in order to pre-compute contact
parameters, to be stored in tabular form, as a function of wheel-rail lateral displace-
ment and angle of attack. This geometrical analysis is carried out considering the
motion of a rigid wheelset with respect to rigid rail profile. The so obtained contact
tables are interpolated at each simulation step thus allowing to determine the contact
forces on each potential contact point. This is done in two subsequent steps: at first
the normal contact problem is solved using Hertz theory; then the tangential contact
forces are determined according to the Shen, Hedrick & Elkins formulation.

3.4 Simulation of Train-Track Interaction

Once the numerical model of train-track interaction was setup, a comparison between
numerical and experimental results has been carried out. Figures 4 and 5 show the
measured and simulated bogie lateral acceleration above left axlebox of the front
wheelset with original wheel-rail profiles at a speed of 85 km/h. It can be seen that
there is a very good agreement between the measured lateral bogie acceleration and
the simulated one.

Using the vehicle numerical model, feasible and low-cost solutions to the low-
speed hunting instability were therefore searched for. As already said, since the
installation of anti-yaw dampers was considered economically unfeasible, two dif-
ferent solutions aiming at reducing the equivalent conicity values were investigated:
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Fig. 4 Measured bogie lateral acceleration above left axlebox of front wheelset due to measured
original wheel – rail couple (rail inclination equal to 1/20)

rail re-profiling and the variation of rail inclination. Even though rail re-profiling
leads to the lowest values of equivalent conicity (Fig. 6), it was considered too
expensive by the operator. Thus, numerical simulations were performed to asses
the effect of a reduction of the rail inclination on hunting instability.

Two rail inclination values were considered: a 1/40 reduction and a 1/20 reduc-
tion with respect to the nominal value (the latter corresponding to the complete
removal of the rail inclination). Figures 7 and 8 show the effects of a 1/40 reduction
of rail inclination both in terms of equivalent conicity (purely geometrical analysis)
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Fig. 5 Simulated bogie lateral acceleration above left axlebox of front wheelset due to measured
original wheel – rail couple (rail inclination equal to 1/20)
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Fig. 6 Equivalent conicity determined according to UIC 519 method of the measured wheel and
new (re-profiled) rail profiles (rail inclination equal to 1/20)

and lateral bogie frame acceleration above the axlebox of the leading wheelset (both
in terms of time history and spectrum) when the vehicle is running at 85 km/h along
a straight track. It can be seen that the acceleration peak is almost half that of the
original case and that the equivalent conicity reaches a value of 0.5 at 3 mm of
wheel-rail relative lateral displacement.

If the rail inclination is completely removed (Figs. 9 and 10), the amplitude of the
oscillations, that could be observed in the bogie lateral acceleration signal, is signif-
icantly smaller than that of the original case and the peak value in the acceleration
spectrum disappears. Also the equivalent conicity is further reduced and reaches a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

[mm]

γ e
q 

[-
]

Fig. 7 Equivalent conicity of wheel – rail couple once rail inclination is reduced to 1/40
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Fig. 8 Simulated bogie lateral acceleration above left axlebox of front wheelset due to wheel – rail
couple once rail inclination is reduced to 1/40

value of 0.3 at 3 mm of wheel-rail relative lateral displacement. This proves that
there is a good correlation between the equivalent conicity and the hunting instabil-
ity. It should however be pointed out that no limit value for the equivalent conicity
can be set out since equivalent conicity only accounts for the geometry of the con-
tacting bodies while the stability limit is also a function of the suspensions, yaw
dampers, track deformability, etc.

Table 2 shows the RMS values of the simulated bogie lateral acceleration filtered
according to EN14363 for the different rail inclinations considered at two different
vehicle speeds, i.e. at 75 km/h and at 85 km/h. It can be observed that the removal
of the rail inclination is a very effective mean to reduce (of about 70%) the bogie
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Fig. 9 Equivalent conicity of wheel – rail couple once rail inclination is reduced to 0
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Fig. 10 Simulated bogie lateral acceleration above left axlebox of front wheelset due to wheel –
rail couple once rail inclination is reduced to 0

Table 2 Filtered RMS values of the bogie lateral acceleration above the axlebox of the leading
wheelset obtained from numerical train-track simulations

Rail inclination
Vehicle speed (km/h) 1/20 (original) (m/s2) 1/40(m/s2) 0(m/s2)

75 3.25 1.54 0.97
85 3.49 2.08 1.17

lateral acceleration. An inclination of 1/40, although not optimal, allows to reduce
the RMS value of the simulated bogie lateral acceleration of about 40–50%.

4 Low-Cost Solution

Based on the conclusions drawn from the multibody simulations, the stakeholder
decided to reduce the rail inclination in one of the most critical locations along the
track to 1/40 thus allowing to experimentally verify the proposed low-cost solution.
The same measuring setup as described in paragraph 2 was adopted.

Figure 11 shows the measured bogie lateral acceleration above the left axlebox
of the front wheelset on one track section with original rail inclination and a follow-
ing track section where the rail inclination was reduced to 1/40. Figure 12 shows
the corresponding vehicle speed. Although the vehicle speed is almost equal on
the two sections, the bogie lateral acceleration becomes almost a half on the track
section with reduced rail inclination (track irregularity was not measured but can
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Fig. 11 Measured bogie lateral acceleration above left axlebox of front wheelset on original and
modified track sections

be assumed as being equal on the two sections). The effectiveness of the proposed
low-cost solution for increasing the critical vehicle speed (speed at which hunting
instability occurs) has therefore been proven.

Figures 13 and 14 show the bogie lateral acceleration spectrum obtained form
the measured signals. Again, the amplitude of the resonance peak at 5 Hz is signif-
icantly smaller in case of reduced rail inclination thus showing that the no hunting
instability occurred.
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Fig. 12 Measured test vehicle speed on original and modified track sections
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Fig. 13 Measured spectrum of bogie lateral acceleration above left axlebox of front wheelset on
original track
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Fig. 14 Measured spectrum of bogie lateral acceleration above left axlebox of front wheelset on
modified track

5 Conclusions

In the presented paper, a low-cost maintenance operation for suppressing hunting
instability occurring on a section of a metro line is described and experimentally
tested. On the considered track, metro trains were suffering from hunting instabil-
ity already at the relatively low speed of 60 km/h, thus preventing them to reach
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their maximum operating speed of 85 km/h and requiring wheel re-profiling after
approximately 25000 km. The cause of such unstable motion was identified in the
highly worn rail profiles that determined a highly conformal contact with wheel
profiles. The level of conformity of wheel-rail profiles led to equivalent conicity
values (calculated according to [1]) in some cases higher than 0.8. The main cause
was found to be the very low damping of the bogie suspensions.

Since the installation of anti yaw dampers on all vehicles was judged economi-
cally unfeasible, the problem was solved by changing rail inclination and thus mod-
ifying contact conditions between wheel and rail. Numerical simulations showed
that a zero inclination angle would have allowed to gain the highest increase in the
vehicle’s stability and that there is a clear dependence between the high equivalent
conicity and the vehicle’s critical speed. Nevertheless the stakeholder decided to
reduce the original rail inclination instead of removing it. Although not optimal,
this maintenance operation still allowed the avoidance of hunting motion up to the
vehicle’s maximum speed. Experimental results, before and after the maintenance
operation, are presented and compared to numerical simulations obtained with a
nonlinear vehicle – track interaction model ([2]).
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Acoustic Optimization of Wheel Sets

Michael Beitelschmidt, Volker Quarz, and Dieter Stüwing

1 Introduction

In recent years, railway noise has become a high profile issue and the industry has
come under pressure to reduce operating noise because legislative rules concerning
noise emission will be tightened in the near future. Especially for freight traffic there
is a need to improve, i.e. to reduce, the noise generation of rolling stock.

It is well-known that the major noise source of a rail vehicle is the wheel-rail
contact, so the research has been directed primarily at this area. On freight vehi-
cles the use of tread brakes directly influences the wheel-rail noise as this brake
type cannot only be noisy in itself, but also lead to noise producing irregularities
in the wheel surface. The replacement of conventional cast iron brake blocs with
composite blocks is one major research result to achieve smoother wheel surfaces,
thus reducing the vibrational excitation of both wheel and rail, in turn leading to
lower noise.

The part nearest to the contact zone is obviously the wheel set, hence it is directly
excited by the dynamic contact forces and structure born sound is emitted as the
wheel disc is forced to vibrate. A second way to reduce wheel rail noise therefore is
to reduce the sensitivity of bogie parts to the excitation, i.e. to improve the structural
vibration behaviour.

While research projects, such as Silent Freight or Low Noise Train, focus on
damping vibrations by applying absorbers, here the idea is to reduce the modal
density of the wheel set in the frequency band of excitations caused by the surface
irregularities of wheel and rail.
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2 The Optimization Method

The sound level of noise, emitted by the wheel disc, results from a process, which
is mainly characterized by the following three stages [cf. 1]:

1. The force excitation in the rolling contact. Its amplitude may be reduced e.g. by
rail grinding.

2. The occurrence of wheel structure-borne sound, due to the force excitation.
Applying dampers or acoustically optimizing the wheel shape allow to signif-
icantly reduce this structure-borne sound.

3. The sound radiation, which depends on the level of efficiency, describing the
transformation of structure vibrations into emitted sound. This radiation effi-
ciency may not be significantly influenced in the frequency band of interest.

The most promising way to reduce rolling noise is obviously to consider the
wheel structure-borne sound, as the other two stages are hard to be influenced by
the wheel manufacturer or the rolling stock operator.

The optimization approach is therefore based on a numerical modal analysis
of the wheel resp. wheel set, using a FEM-package. The so gained distribution of
eigenmodes in the frequency band of interest may then be compared to the frequency
band of excitations.

As the frequency dependent characteristics of the excitations are known, e.g. typ-
ical wavelengths of rail corrugation, the frequency band of excitations can be deter-
mined as a function of the vehicles’ velocity range.

The aim of acoustic optimization is to shift the acoustically relevant eigenmodes
out of this frequency band, i.e. to reduce the modal density. This is achieved by
modifying the wheel shape in an appropriate manner – which is not a trivial task
as constructive restrictions have to be considered so that the parameter space for
optimization is limited.

3 On the Modal Behaviour of the Wheel Set

The wheel set’s modal behaviour is characterized by coupled bending, torsional
and longitudinal vibrations. The axle shows all three vibration types, while the
wheels vibrate in axial and radial direction. The wheel vibrations may be divided
into umbrella oscillations with circumferential knot lines and “blower oscillations”
with radial knot lines or combinations of both.

Here, eigenmodes are distinguished by their dominant deformation and the num-
ber of radial and circumferential knot lines. So, the abbreviation “A,1,2” denotes an
axially dominated eigenmode with one circumferential knot line and two radial knot
lines, and “R,0,2” is dominated by a radial oscillation with two radial knot lines. The
latter is of interest here, because it is coupled with significant axial amplitudes.
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Eigenmodes with axial plate oscillations of the wheel discs and one radial knot
line are always coupled with bending oscillations of the axle, while umbrella oscil-
lations of wheel discs are coupled with longitudinal oscillations of the axle.

“Blower oscillations” or coupled modes with two or more radial knot lines do
not affect the axle. These are only weakly damped.

The most important eigenmodes for acoustic optimization are axially domi-
nated oscillations with circumferential knot line in the tyre as the above mentioned
“A,1,2”, because the oscillating wheel disc surface causes a significant sound radia-
tion. Also, bending oscillations of the axle coupled with axial wheel oscillations, as
“B,2 +A,0,1”, are of importance.

4 Optimization Examples

Applying the above described optimization approach, a first wheel prototype has
been developed for operating speeds up to 240 km/h [2]. The wheel was manufac-
tured by an industrial partner and tested under real conditions in comparison to
conventional wheels (Fig. 1).

The wheel showed the expected noise reduction, but this design concept is not
further developed, because it is relatively pricy to manufacture – due to its complex
shape. Furthermore it could not completely satisfy requirements for block brakes.

Instead, another wheel type – the so called BA 004 – has been chosen to develop
a second version for freight traffic. The BA 004 shows good thermal behaviour; a
promising starting point to get an optimized shape, which will not cause problems
concerning the thermal load capacity.

In this second step, not only the wheel but the whole wheel set has been opti-
mized, to take into account the acoustically relevant eigenmodes with axle bending.

To identify eigenmodes of interest for acoustic optimization, a resonance plot is
generated. Therein, eigenfrequencies over excitation frequency are plotted. Straight

Fig. 1 Prototype of the first optimized wheel
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Fig. 2 Resonance plot of reference wheel set (BA 004 – left) and optimized wheel set (right)

lines with constant gradient, starting at the origin, represent harmonic orders of exci-
tation (Fig. 2).

The resonance plot (Fig. 2, left) shows that three eigenmodes are affected in the
frequency band of excitations. These are “R,0,2”, “A,1,2” and “B,3 + A,1,1”.

To avoid resonances with these eigenmodes, the wheel set has to be optimized,
such that “R,0,2” is shifted under 880 Hz and “A,1,2” above 1200 Hz. The eigen-
mode “B,3 + A,1,1” with axle bending has to be shifted under 440 Hz.

In order to optimize the wheel shape, the wheel disc’s cross section between tyre
and hub has been parameterized. Several optimization algorithms have then been

Fig. 3 Acoustically optimized wheel set for freight traffic. Visualization of a bending mode
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applied to modify the wheel shape. One important boundary condition has been an
upper wheel mass limit of 380 kg.

The optimization result is shown in (Fig. 2) on the right: additional masses on the
axle help to shift the bending mode down to the operating ranges lower bound. The
axially dominated mode is increased at about 200 Hz, while the radially dominated
is decreased at about 330 Hz. Eigenmodes remaining in the operating frequency
range are of less influence. The FE-model of the optimized wheel set is shown in
(Fig. 3).

The new wheel set promises even better acoustic behaviour than the first version,
being at the same time less cost intensive to produce.
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Measurement, Modelling and Simulation
of Curve Squealing of Trains

Christoph Glocker, Eric Cataldi-Spinola, Rossano Stefanelli, and Jürg Dual

Abstract Curve squealing of railway wheels occurs erratically in tight curves with a
frequency of about 4 kHz. Squealing is caused by a self-excited stick-slip oscillation
in the wheel-rail contact. The mechanism which activates squeal is still unexplained
and will be analyzed in the paper at hand. By starting with a modal model of the
elastic wheel equipped with a three-dimensional hard Coulomb contact, a stability
analysis of the stationary run through a curve is performed for the four wheels of the
investigated bogie. The results show that in particular the front inner wheel tends to
squeal. A numerical simulation performed on the unstable states shows the existence
of a self-excited stick-slip oscillation with a frequency that compares well with the
ones measured at squeal.

1 Introduction

Curve squealing occasionally arises when railway vehicles run through tight curves
at low speed. It is characterized by a narrow-banded noise emission in the range of
4000 Hz, which normally occurs for some seconds. Curve squealing belongs to the
class of self-induced vibrations. In contrast to external and parametric excitation,
self-induced vibrations require the system to be nonlinear. The source of squeal
has to be attributed to the wheel-rail contact: Creep between wheel and rail, which
always occurs because of the kinematic design of the curve in combination with the
wheel sets, induces frictional vibrations in the contacts which manifest themselves
as structural oscillations in the range of micrometers of the wheels and rails.

Swiss Federal Railways (SBB) in the person of Roland Müller have been started
cooperating with the Center of Mechanics at ETH Zurich. Within this coopera-
tion, two doctoral theses [1, 2] have contemporaneously been written. Together,
they provide a rather complete analysis of curve squealing, from the mechanism
of self-excitation up to the emission of noise, and may establish a basis for sys-
tematic development of remedial actions. The work [2] has focused more on the
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experimental characterization of the squeal phenomenon, in which on-site measure-
ment of the noise and the parameters responsible for it takes the center stage. A
mechanical model of the mechanism of self-excitation has been developed in [1],
for which the data from [2] have been used as inputs. The paper at hand reports
on the results obtained for the numerical-experimental analysis of the mechanism
of self-excitation. They are mainly taken from [1] but supplemented with measure-
ments from [2].

Experience of many years in non-smooth dynamics have led to the strong belief
that analyzing mechanisms of friction-induced vibrations requires utmost careful-
ness in both, the modeling of the mechanical system and the selection of the
numerical schemes. Therefore, the following strategy has been chosen: The degrees
of freedom to be taken into account in the squeal model are extracted from a
FE-computation and succeeding modal reduction of an elastic wheel which is shown
in Sect. 3. In order to properly apply the contact forces on this model, the stationary
run of a driving trailer through a curve is studied in Sect. 4 with a commercial
multi-body code. As results, the stationary state of all wheels, and in particular
the location of the contact points, the inclination of the contact plane, the direc-
tion and magnitude of the creep and the contact forces are then known. In Sect.
5, data from Sects. 3 and 4 are combined to set up the mechanical model for
curve squealing. Special attention is paid for the model of the wheel-rail contact,
for which a hard unilateral constraint has been used in the normal direction, and
a Coulomb friction element in the two tangential directions. Based on this model,
curve squealing is numerically analyzed with the institute’s research code in Sects. 6
and 7.

2 Measurements

In this section, some results of the field measurements performed in [2] are sum-
marized. They will serve as a basis for developing the squeal model. Measurements
have been taken during regular train service in three phases in a relatively tight
curve (radius 200 m, gauge 1450 mm, cant 110 mm, rail inclination 1:40, rail type
UIC54E) on track 303 near the station Bern-Ausserholligen, in which trains are
running at low speed and squeal has frequently reported to occur. The vehicles sin-
gled out for the measurements are particular regional trains of SBB (series 560)
composed of a rail car, a driving trailer (type Bt 29-30) and some intermediate cars,
which periodically run on this track. As shown in [2], the squealing wheel has been
found in many cases to be the leading inner wheel of the leading bogie of this driving
trailer, and squealing has been around 4100 Hz. Because of this, the driving trailer
has been chosen as the vehicle subjected to closer investigation (Sect. 4), and its
utmost front inner wheel as the one of central interest.

Both sides of the track have been equipped with a free-field electret condenser
microphone to record the noise generated by the squeal. The recorded signals have
been processed by a short-time FFT and displayed as color-coded frequency-time
diagrams, in which the time instances of the wheel axles passing the microphones
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Fig. 1 Frequency spectrum of the noise recorded at one microphone. Recording is initiated when
the first wheel set passes the microphone. The squealing wheel set is marked by a dashed line

have additionally been marked (Fig. 1). In order to measure the vibrations of the
rails, triaxial acceleration sensors have been installed at the bottom of both rails.

The velocity of the axles passing by has initially been determined by axle coun-
ters, but has later been replaced by a couple of laser distance sensors on each rail.
In this way, the lateral displacements and the angles of attack of the wheels relative
to the rail could have been accessed from the distances measured to the wheel rims.

Figure 1 shows the frequency spectrum of the noise of a train passing by, which
has been recorded by one of the microphones. Squeal can be observed between 12
and 18 s. In addition to the fundamental frequency of about 4 kHz, distinct super-
harmonics at 8 and 12 kHz are clearly seen in the diagram, which points at the
strong nonlinear character of squeal. Furthermore, one observes a slight shift of
about 150 Hz in the fundamental frequency, which occurs at the very instance at
which the squealing wheel passes the microphone. This shift has also been found
in the signals of the acceleration sensors and can be ascribed to the Doppler effect
[2], indicating that the noise is mainly emitted from the wheel but not from the rail.
Because of this, only the wheel is modeled in Sect. 3 as an elastic body, whereas the
rail is considered as rigid for the entire analysis. Flange noise can also be observed
in Fig. 1. It occurs between 2 and 6 seconds and can clearly be distinguished from
curve squealing, as it is characterized by a wide-band frequency spectrum caused
by the front outer wheel of the associated bogie.

3 Elastic FE Model of the Wheel

For the FE-analysis of the elastic wheel (elasticity modulus 2.068 · 1011 N/m2,
Poisson ratio 0.29, density 7820 kg/m3) commercial software has been used. The
middle diagram in Fig. 2 shows a cross-section of the mesh which has been mod-
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Fig. 2 Left two diagrams: Cross-section of the mesh and identification of the FE-nodes on
the tread (wheel diameter 820 mm). – Right diagram: Profil pairing for wheel S1002 and rail
UIC54E

eled by 8-node linear solid elements and proven to be reliable up to frequencies
of about 6000 Hz. The mesh is designed at the wheel rim such that changes in the
wheel diameter can easily be adjusted. Such changes occur during the lifetime of a
wheel due to reprofiling of the tread as a maintenance procedure, which reduces the
wheel diameter step by step from 820 mm for a new to 760 mm for a worn wheel.
The cross-section of the mesh in Fig. 2 consists of 122 elements, which results in
a total of 12720 elements and 48960 degrees of freedom for the wheel. The left
diagram shows the position of the FE-nodes on the tread of the wheel and is later
used to determine the node on which the contact force acts. All calculations are
performed with a mesh that is fixed on the wheel. The rotation of the wheel relative
to the mesh and the wandering of the contact force along the circumference are
neglected.

The FE-model of the wheel has been validated by experimental modal analysis
with a laser scanning vibrometer for two different situations, i.e. for a free wheel
at ETH and a wheel mounted on the driving trailer at SBB works in Zurich. The
wheels are excited up to 10 kHz on their rims in axial direction by a piezo element
with a periodic chirp signal. Figure 3 shows the results of this comparison. In the
left column, computed eigenforms are displayed for the two boundary conditions
that the wheel is either freely floating or inertially fixed at its center nodes to take
into account the connection to the axle as it is for a mounted wheel. All measure-
ments and calculations for the free wheel have been conducted for diameters of 820
and 760 mm. In all cases, the computed eigenfrequencies deviate for less than 5%
over the entire frequency spectrum of up to 6 kHz from those having been mea-
sured. Interestingly, the wheel-rail contact, which has not been considered in the
FE-calculations but is present in the measurements of the mounted wheel, seems
to have only minor influence on the results: If possible, the eigenforms align them-
selves at the wheel such that one of their nodal points agrees with the wheel-rail
contact point. In other words, the dynamics of the mounted wheel under contact
with the rail seems to be adequately represented by the eigenforms for the wheel
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Fig. 3 Calculations versus measurements of selected eigenforms under different boundary condi-
tions for a wheel with a diameter of 820 mm

with only the center nodes fixed. This set of eigenforms will therefore be used for
setting up the squeal model by modal reduction in Sect. 5.

4 Multibody Simulation of the Stationary Run

For the simulation of stationary runs through curves of the driving trailer, type Bt
29–30, a commercial multibody simulation program has been used. The model of
the driving trailer is schematically depicted in Fig. 4. It consists of the car body,
the two bogie frames and the four wheel sets, which are connected to the bogies by
axle guides. All bodies are modeled as rigid. The catch, the primary and secondary
suspensions which use the Krettek-Grajnert air spring model [3], the anti-roll bar,
the vertical primary damper as well as the lateral dampers are represented as force
elements. All data are as much as possible extracted from the technical documenta-
tion of the vehicle or have been chosen in close cooperation with railway experts.
The track in Ausserholligen is modeled as three sections: A straight track of 15 m
length, followed by a 15 m long transition curve in which the cant of 110 mm and
the curvature is uniformly established, followed finally by the curve with constant
radius of 200 m. The complete track is modeled with an inclination of 1:40, a gauge
of 1450 mm and the standard rail profile UIC54E. Flexibility of the rail and sup-
porting underground as well as all sorts of irregularities are not considered. All
calculations are conducted with the standard wheel profile S1002 and the wheel-rail
contact model of Polach [4] which has been available in the multibody code.
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Fig. 4 Multibody model of the driving trailer and of its two bogies

Figure 5 depicts the coordinates which are necessary for the interpretation of the
simulation results. They are shown exemplary for the curve inner wheels of each
wheel set. For each wheel, a reference system (eR

x , eR
y , eR

z ) is defined, of which the
eR

x axis lies in the horizontal plane and is tangential to the rail in the contact point.
The eR

y axis is inclined with respect to the horizontal plane by the cant angle. Further,
a contact system (−n, t1, t2) is introduced for each wheel, of which the orientation
is determined by the simulation results. This contact system follows from the angle
of attack β around the eR

z -axis, and, subsequently, from the contact angle α around
the new eR

x -axis. Herein, the vectors t1 and t2 span the contact plane, n is the contact
normal, and t1 lies in the plane of the wheel. Except for the contact angle α, all
angles are assumed to be small. It therefore does not play a role in which order
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Table 1 Results from the multi body simulation for the front inner wheel of the leading bogie
Units: fi in kN, χT k in mm

s , α in deg, β in mrad, y in mm

μ fx fy fz χT 1 χT 2 α β y node ID

0.1 −0.04 −6.02 −50.62 0.4 −64.9 1.17 15.77 wet 11.60 wet 5019
0.2 −1.41 −11.02 −50.12 8.1 −61.3 1.38 14.92 13.49 5019
0.3 −3.61 −15.63 −49.90 13.4 −58.3 1.40 14.19 ∼ 15 13.62 ∼ 10.5 5019
0.4 −6.30 −20.01 −49.76 17.6 −57.0 1.40 13.87 13.64 5019
0.5 −9.28 −24.25 −49.74 20.4 −55.8 1.40 13.59 13.66 5019
0.6 −11.76 −28.70 −49.77 21.6 −54.9 1.41 13.38 dry 13.67 dry 5019

the various angles are applied to finally arrive at the contact angle. Furthermore,
it does not matter in which approximate radial directions the likewise small lateral
displacements y of the wheel sets are interpreted.

The aim of the simulations is to predict the stationary motion of the driving trailer
on the curved track for a chosen constant driving velocity and friction coefficients.
The nominal values of the resulting loads and contact-kinematical parameters of
each wheel have to be extracted from these simulation results. Table 1 shows the
illustrative results for the leading curve-inner wheel of the leading bogie, which
have been calculated for a driving velocity of 4.1 m/s, being typical for curve
squealing, and for various friction coefficients. The triple ( fx , fy, fz) denotes the
components of the contact force acting on the wheel displayed in the reference
system (eR

x , eR
y , eR

z ), (χT 1, χT 2) are the creep velocities of the wheel relative to the
rail in the directions (t1, t2) at the contact point, β and α are the resulting angle of
attack and the contact angle, and y is the lateral displacement of the wheel set as
defined in Fig. 5. From the latter, the position of the contact point on the tread can be
determined by the wheel-rail profile pairing diagram in Fig. 2. Subsequently, the FE
node closest to the contact point is identified from the left diagram in Fig. 2 which
approximately determines the point at which the contact force acts. In addition, the
angle of attack β and the lateral displacement y have been measured by using a pair
of laser distance sensors being attached to the rails on each side of the track, where
various friction coefficient have been realized by artificial wetting of the rail surface.

5 Design of the Squeal Model

Sections 3 and 4 provide all the data that are necessary to set up the squeal model
illustrated in Fig. 6. In the model it is assumed that the center nodes of the wheel
are fixed to the inertial frame, whereas the rail is moving relative to the center of
the wheel with the (now negative) creep velocities from Table 1. The overall creep
velocities are therefore the superposition of those for stationary motion from Table 1
and those stemming from elastic vibrations. The elastic model of the wheel uses the
mass and stiffness matrices from the finite element calculation for a wheel with fixed
center nodes. Furthermore, the node C on which the contact force acts, as well as
the orientation of the contact system (−n, t1, t2) are already determined by Sect. 4.
This allows us to incorporate into the system the contact forces (λN , λT 1, λT 2) acting
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at the contact node C in the directions (n, t1, t2). The middle diagram in Fig. 6
shows the entities necessary to describe the kinematics of the contact. These are the
contact gap gN in normal direction which can directly be calculated from the nodal
displacements of point C , and the relative velocities (γN , γT 1, γT 2) of point C with
respect to point B on the rail. The normal relative velocity γN is obtained directly
by projecting the nodal velocities on the normal n, whereas the tangential velocities
γT i consist of the differences in nodal velocities in the tangential directions and the
creep velocities χT i , which enter the model as kinematic excitation.

The contact is modeled as a hard unilateral constraint with spatial Coulomb fric-
tion and constant friction coefficient μ. The contact law in normal direction implies
for a closed contact that the contact gap vanishes (gN = 0) and the contact force
acts as a compressive force (λN > 0). In tangential directions, the Coulomb friction
law is employed which makes a clear distinction between stiction and sliding: If the
magnitude of the tangential force (λT 1, λT 2) is smaller than μλN , then the contact
is in stiction and we have γT 1 = γT 2 = 0. When the magnitude of the tangential
friction force equals μλN , then the contact is allowed to slide, accompanied by a
friction force (λT 1, λT 2) opposing the relative velocity (γT 1, γT 2). Drilling friction
(pivoting friction) is not considered, as it is not essential for the squeal mechanism.
The numerical code [5] is based on a complete mathematical description of these
contact laws [6] which also allow for detachment and impulsive forces due to colli-
sions.

The squeal model, which previously has been formulated in nodal displacements
with already the contact forces contained, is subsequently reduced to the first 61
eigenforms from Sect. 3. This sufficiently approximates the system up to 6 kHz.
In addition, the modal damping values of these 61 eigenforms have experimentally
been determined in a laboratory setup [1] and taken into account in the equations
of motion. The equations of motion expressed in the 61 modal amplitudes are
therefore composed of the constant and symmetrical mass, damping and stiffness
matrix, as well as of three constant generalized force directions for the contact forces



Simulation of Curve Squealing of Trains 81

(λN , λT 1, λT 2), and of the contact force laws in normal and tangential directions.
The gap function gN depends now in principle on all the 61 modal amplitudes which
serve as the generalized coordinates. Similarly, the relative velocities (γN , γT 1, γT 2)
are dependent on the 61 modal velocities. In a last step, the distance a (Fig. 6)
between the wheel center and the rail is adjusted such that the resulting normal
contact force λN in the reduced (temporarily frictionless) model agrees with the
associated component of the contact forces ( fx , fy, fz) obtained from the multibody
simulation.

6 Stability Analysis of the Stationary Run

In this section, the stability of the stationary run through a curve is analyzed. By
considering the equilibrium of the equations of motion for a given driving velocity,
the 61 constant modal amplitudes for stationary sliding are determined for the con-
stant creep velocities (χT 1, χT 2). The equations of motion are linearized around this
equilibrium position. The only nonlinearity in the system stems from the direction
of the friction force for sliding which is determined by the direction of the relative
velocity in the contact point. The linearization of this nonlinear term contributes to
both the stiffness and damping matrix, which destroys their symmetry and opens
the possibility for dynamic instabilities. The (linear) stability is determined by the
eigenvalues of this linearized system. For the particular case of curve squealing, this
approach follows the theory in [7], in which general theorems on the stability of
motion of systems with hard Coulomb contact are presented.

Figure 7 shows the results of this stability analysis for all four wheels of the
leading bogie, which have been computed with the eigenmodes of an 800 mm wheel
with fixed center nodes. The radial direction in the stability charts corresponds to
the chosen friction coefficient, whereas the azimut angle addresses the numerically
varied creep directions (χT 1, χT 2). Points in the stability charts, which correspond
to the states calculated from the multibody simulation, are marked by black stars.
For the leading inner wheel, these points correspond to the friction coefficient and
creep velocities in Table 1. Points for which the real part of one of the eigenvalues
is strictly positive are marked in dark grey and correspond to unstable stationary
driving states. The points in light grey indicate asymptotically stable states. We infer
from the upper left stability chart in Fig. 7 that the leading inner wheel is prone to
instability, as the actual calculated states from the multibody simulation enter the
unstable region already for small friction coefficients. Contrary, the inner second
wheel is safely within the stability region. The results for the leading outer wheel
are doubtful, because the flanging in the simulation is only modeled as a single but
not as a more realistic double contact. The results of the outer second wheel indicate
that the stationary motion is stable, at least in theory. However, uncertainties in
the model and irregularities in the real system make this result questionable as the
distance to the stability border is not big enough to ensure stability in praxis. These
theoretical results agree with the measurements of Sect. 2.
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Fig. 7 Stability charts for the four wheels of the leading bogie

7 Numerical Simulation of Self-Excitation

In the linear stability analysis of Sect. 6 it has been shown that, in particular, the
stationary run of the inner leading wheel can become unstable. However, it is still
unknown whether this instability leads to a bounded oscillatory motion and how this
oscillatory motion would look like. To this end, the nonlinear differential inclusions
of the reduced model described in Sect. 5 are numerically simulated. The simula-
tions have been conducted with a research code dedicated to mechanical systems
with impact and friction. The time integration is performed with an half-implicit
index-2-solver and the inequalities are solved with nonlinear projections [5].

The results of the simulations will exemplarily be shown for the leading inner
wheel with the initial condition corresponding to the black circle in the upper left
stability chart of Fig. 7. Hence, we consider the run of a wheel with a diameter
of 800 mm, a friction coefficient of 0.3 and the associated data which follow from
Table 1. Figure 8 shows the results of these simulations after the motion of the
wheel has reached a periodic state and the initial transients have decayed. The upper
diagram on the left-hand side of Fig. 8 shows the response of the friction force
(λ2

T 1 +λ2
T 2)1/2 (dotted line) which in stiction phases reduces to values much smaller

than the stiction threshold μλN (solid line). Both the longitudinal and lateral relative
velocities γT 1 and γT 2 vanish during these stiction phases as is shown in the lower
left diagram. The phase planes of the longitudinal and lateral contact displacements
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Fig. 8 Numerical simulation of the friction-induced self-excited oscillations at the leading inner
wheel of the leading bogie

are depicted on the right hand side of Fig. 8 and reveal a limit cycle behavior.
Note that the contact displacements are shown on the horizontal axes, whereas the
contact velocities, being their time derivatives, are shown on the vertical axes. The
latter equal the differences γT i − χT i of the relative velocities γT i and the stationary
creep velocities χT i . Stiction (γT i = 0) occurs in the phase planes when the contact
velocities reach the lines of stiction indicated in the figures. The phase plane for the
longitudinal direction clearly shows a corner in the limit cycle at the transition from
sliding to stiction, i.e. when the line of stiction is hit, which is typical for stick-slip
oscillations. This non-smooth effect is also present in lateral direction but hardly
visible. The motion in lateral direction is much larger than the one in longitudi-
nal direction as can be seen from the comparative inset in the lower diagram. We
emphasize that each calculation has been conducted with one and only one friction
coefficient, being independent of velocity and time, which serves at the same time
as static and dynamic friction coefficient. The friction-induced limit cycle shown in
Fig. 8 has a frequency of about 3.99 kHz.

A qualitative comparison of simulations and measurements is depicted in Fig. 9.
The left diagram shows the frequency content of the measured squeal noise, corre-
sponding to the dashed line in Fig. 1, and the FFT of the lateral contact velocity.
In the right diagram, the measured frequency content of an acceleration sensor,
being attached to the foot of the rail, is compared to the calculated lateral contact
acceleration. This comparison, which is of only qualitative nature, reveals that the
relative intensity of the superharmonic resonances in the measurements and simula-
tions agree quite well.
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8 Conclusion

The proposed approach enables ones to completely describe the squeal phenomenon
of railway vehicles. All phenomena related to squeal, which have occurred in the
measurements or have been discussed with railway experts, can be explained by
the results of the numerical calculations. Important parameters for the curve squeal
phenomenon are the contact kinematical entities. Of equal importance is the geom-
etry of the wheel which determines its eigenforms and frequencies, and of course
the friction coefficient. The particular form of the friction curve, which is normally
regarded to be of prime importance, plays in fact only a minor role. At present, three
modes of the free wheel with fixed center nodes can be identified to be essential for
the squeal mechanism. These three modes have to occur at similar frequencies, one
for which the wheel oscillates in lateral direction at its rim, and two radial modes
which allow for a variation of the normal force. Each calculation step presented in
the paper opens the way to test arbitrary wheel designs and railway profiles on their
vulnerability for squeal, in order to propose targeted changes in their design. From
the theoretical point of view, a detailed bifurcation analysis of the system has still
to be conducted. Furthermore, it still needs to be clarified how the choice of the
eigenmodes in the system reduction influences the results, and whether the squeal
phenomenon might finally be reduced to only two relevant modes.
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Selected Problems of Non-linear (Non-smooth)
Dynamics of Rail Vehicles in a Curved Track

Krzysztof Zboiński

Abstract The contribution presents four problems connected with the Colloquium
topics. They are of theoretical nature in the wider aspect but all refer to the results
of practical simulations of rail vehicle motion in a curved track. The first two can
be counted to typical non-smooth problems in rail vehicle dynamics. They refer to
two-point contact modelling and vehicle stability in curves, respectively. The third
problem is closely related to the second one. It refers to railway vehicle dynamics
above critical velocity in transition curves. The forth one can also be recognized as
the non-smooth problem but not so typical one. It refers to modelling the kinematics
in a curved track. All the problems reveal that one needs to be very careful when
studying rail vehicle dynamics and trying to simplify its non-linearities at the same
time. Non-smooth functions can influence results of numerical analysis strongly,
being the features of the physical and modelling nature.

1 Introduction

As stated above four different problems are discussed in this work, related to non-
smooth rail vehicle dynamics. The author faced them in numerical studies of the
dynamics in a curved track Both circular and transition curves are of interest, here.

General aim of the paper is to present: the variety of problems of non-smooth
character; the strength of influence of non-smooth functions on results of numerical
analysis; and the nature of these functions, which arises from the system’s physical
features and the modelling techniques as well. Broad subject-matter of the present
contribution causes that most space must be given to presentation of the simulation
results revealing the essence of each problem. As a consequence, explanations of
these problems represent in most the general ideas. Their details are presented in the
highest volume possible, however their serious reductions influencing profoundness
and ease of the understanding were unavoidable.

K. Zboiński (B)
Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
e-mail: kzb@it.pw.edu.pl

P.G. Thomsen, H. True (eds.), Non-smooth Problems in Vehicle Systems Dynamics,
DOI 10.1007/978-3-642-01356-0 8, C© Springer-Verlag Berlin Heidelberg 2010

87



88 K. Zboiński

Modelling method, models and the objects were subject to analysis in many
earlier works by the present author. That is why we represent them briefly, now.

2 Objects of the Analyses and Their Models

Simulation results presented concern three objects. These are hsfv1 freight car,
bogie of MKIII coach, and 25TN freight car bogie. Kinematical structure of the
first two objects is the same (Fig. 1a). The structure of the third object differs in two
constraints (ψl = ψb, ψt = ψb). They describe no yaw rotations (ψ) of wheelsets
(l, t) relative to bogie frame (b). Vehicle models are supplemented with laterally
(Fig. 1b) and vertically (Fig. 1c) flexible track models. Depending on the object,
vehicle-track system has got 18 or 16 DOF, respectively. Anyone interested in values
of the system parameters should refer to [11–13].

Geometry in wheel/rail contact, tangential contact forces, calculated with use of
the FASTSIM programme, and MBS kinematics constitute the non-linearities in the
system. Linear suspension elements are adopted at the same time.

Fig. 1 Vehicle-track model’s structure

3 Two-Point Contact Modelling, a Cause for Non-smooth Vehicle
Model Properties

The problem treated here is related to modelling of two-point contact during curv-
ing, as well as contact parameters being tabulated at the same time (Fig. 2). Both
above factors alone introduce non-smooth functions into the system. Here, their
simultaneous impact on the results of simulation is shown.

Successive table columns in Fig. 2 define: n p – number of contact points; yrel –
wheel/rail lateral relative shift; φ – wheelset’s roll angle, δrl , δrr – left and right
wheels’ rolling radii increments; γl, γr – left and right wheels’ contact angles;
Pl , Pr – left and right wheels’ contact areas; (a/b)l , (a/b)r – left and right contact
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Fig. 2 Graphical representation of 2-point contact and the corresponding contact parameter table

ellipses’ semi-axes ratios; ρl , ρr – left and right functions of curvatures in con-
tact. Each pair of neighbouring rows with n p=2 defines terminal points of 2-point
contact range.

In order to realize what may be the consequences of improper modelling these
factors let us compare two methods. In the first (original) method no change of
the parameters within 2-point contact range happened. The parameters were frozen
for both contact points and did not change as a function of yrel . Note, that no sig-
nificant displacements of the patches are observed in Fig. 2. The only parameters
being changed were contact patch areas. Their values were not directly interpolated
basing on the terminal values but calculated as an effect of change in vertical load
distribution between the terminal points of 2-point contact. That distribution was
based on the linear interpolation with the factors (Fig. 3b) dependent of yrel value.

In the second (modified) method extrapolation of the parameters as a function of
yrel within 2-point contact range was introduced. The function was used based on
the ellipse shape (Fig. 3a) that allows for limited change. Actually, limited displace-
ments of the patches can be observed from contact geometry programme (Fig. 2).
Besides, this function exploits well known fact that in instance of 1-point contact
linear interpolation works well. This explains why tangency of linear and non-
linear factors in point K (Fig. 3a) was provided. Analytical form of this function
is SF ACT = b

√
1 − (x − 1)2/a2 − yk . Its values are fixed by 0 ≤ SF ACT ≤ w.

The maximum value is limited by parameter w. In practise, the method works well
for values close to w = 0.15. Again, contact patch areas are not interpolated directly
but change as an effect of the vertical load distribution between the terminal points

Fig. 3 Graphical representation for patches in 2-point contact of change in: a) interpolation and
extrapolation factors for contact parameters, b) interpolation factors for vertical load distribution
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Fig. 4 Leading wheelset longitudinal contact force and lateral displacement before modification

of 2-point contact. This distribution is calculated using the non-linear (cosine based)
interpolation, however (Fig. 3b).

Simulation results in present section concern leading bogie of MKIII coach. It
runs (after short transition curve TC) along circular curve CC of radius R=450 m
with velocity v=20 m/s. Such values guarantied 2-point contact for outer wheel
of the leading wheelset. Longitudinal contact force Txl for this wheel, influencing
co-ordinates of vehicle lateral dynamics, is shown for both methods in Figs. 4 and 5,
respectively. Additionally, leading wheelset lateral co-ordinate yl is represented. It
can be seen that unphysical oscillations observed in the standard case of tabulated
data interpolation are entirely removed through the measures undertaken in the mod-
ified method.

The detailed analysis shown that the most important contact parameters in dis-
cussed context are rolling radii increments (this way rolling radii themselves).
Change in their method of interpolation was the absolute necessity. Smooth vertical
load distribution between the contact patches of 2-point contact is recommended
although it appeared that the distribution on the linear basis is enough in some cases.
The experience gathered while investigating the case presented is recently used by
the author [19] in modelling tram/track interactions in tight curves.

Fig. 5 Leading wheelset longitudinal contact force and lateral displacement after modification
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4 Non-smooth Properties While Studying Stability in Curves

The second treated problem is connected with rail vehicle stability in a (circularly)
curved track. Here, non-smooth properties of the system are of interest, which result
from bifurcation(s) of the solution. Leading wheelset lateral displacement yl is of
interest in this context. Vehicle velocity v is the bifurcation parameter. Exceeding
its critical value (critical velocity vn – Fig. 6a, b) causes for vehicle model jump of
the solution from stable stationary one to stable periodic one. Analogous behaviour
of the real objects is also reported. In case of simple vehicle models, e.g. with
non-linearities in wheel/rail geometry and forces as the major ones and with no
non-linearities in the suspension, just described features of the system can be easily
explained on the basis of self-exciting vibrations and bifurcation theories. So, in
principle in the same way as for a straight track. The key elements here are sub-
critical Hopf and saddle-node bifurcations that correspond to velocities vc and vn ,
respectively (Fig. 6a, b). Velocity vs refers to unbounded growth of oscillations and
the corresponding stop of calculations.

The results presented are limited direct contribution into development of gen-
eral non-linear dynamics methods and theories, as they refer to the earlier methods
known for a straight track, e.g. [4, 9]. However, the originality and importance of
these results for the railway vehicle dynamics seem to be of high value indeed. It
is author’s contribution to the question of stability in curves and breaking down

Fig. 6 View of bifurcation plots and idea of their creation in curved track stability analysis
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the traditional approach that restrains to stability in straight track and exceptionally
discusses stability in curved track. In spite of putting the problem explicitly [11] and
later explicit studies by the author [15–18] and others [1–3, 5–8, 10, 20], a group
of researchers and railway practitioners exists considering the hunting motion either
to be absent in a curved track or to be unworthy of interest (consequently the sta-
bility). They advocate traditional opinion that periodic vibrations of constant ampli-
tude (limit cycles) above critical velocity appear for straight track only, whereas in
circular curves the motion is of quasi-static nature.

The curved track analysis is based on bifurcation plots, as it is for a straight track.
The differences in bifurcation plots comparing to that case are: stable stationary
solutions are not zero ones any more (Fig. 6a, c); a pair of bifurcation plots instead
of one is necessary in order to take account of limit cycles non-symmetry in a curved
track (Fig. 6a, b); each curve radius R calls for its own pair of bifurcation plots;
combining the plots for different R into single diagram one can obtain stability map
representing the model stability in whole range of R.

Consequently, practical results are presented in form of the stability maps com-
posed of graph pairs (Figs. 7, 8, and 9). First graph in the pair represents (|yl | max),
i.e. change in maximum of the lateral displacement absolute value |yl | versus v. The
second one represents (p-t-p yl ), i.e. peak-to-peak value of yl versus v, and enables
to take account of limit cycles non-symmetry in curves. Both graphs include the
lines matching circular track sections of different R (from small ones to straight
track ST, where R = ∞). Each line is built following a series of single simulations
for different v and the same R. Note that comparing to theoretical plots (Fig. 6a, b)
the maps (Figs. 7, 8, and 9) do not represent unstable solutions (thick broken lines in
Figs. 6a, b) and vc, the critical velocity of linear system. They are of lower practical
significance and their omission speeds up the calculations vastly.

Comparison of the maps corresponding to different vehicles or to the same vehi-
cle with different values of its parameters enables to perform analysis of stabil-
ity properties of such objects. Influence of various factors on the stability can be
estimated this way, too. Some factors already studied are [1, 15, 17, 18]: way of
regard to angle of attack, suspension parameters, track superelevation, wheel and rail

Fig. 7 Stability map for unworn S1002/UIC60 wheel/rail pair and 1:40 rail inclination; see [17]
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Fig. 8 Stability map for worn s1002/uic60 wheel/rail pair and 1:40 rail inclination; based on [17]

Fig. 9 Stability map for unworn wheel/rail pair S1002/UIC60 and 1:20 rail inclination; see [18]

nominal profiles, wear of wheel and rail profiles, vehicle type, inclination of rails,
and way of mean rolling radius rt determination. Critical velocity vn , maximum
displacements |yl | max, peak-to-peak values p-t-p yl , and values of velocity vs , are
those the analysis is interested in.

Example for such analysis are Figs. 7, 8, and 9 that concern hsfv1 freight car
model. The main feature of the map in Fig. 7 is uniform results for all radii R
and straight track as well. Velocity vn is the same for them (vn=43.5 m/s) and
separates areas of stable stationary and stable periodic solutions in the same way.
Important differences in Fig. 8, comparing to Fig. 7, are: limit cycles below vn for
large radii (R=3000, 4000, 6000, 10000 m and ∞); quasi-statics above vn for small
radii (R=300 and 450 m); jump from limit cycle to quasi-statics for R=600 m; sig-
nificant drop in vn to 30.5 m/s; drop in vs ; and observable increase of |yl | max and
p-t-p yl . Comparing to Fig. 7, important differences in Fig. 9 are: quasi-statics above
vn for small radii (R=600, 900, 1200 m); jump from limit cycle to quasi-statics
for R=2000, 3000, 4000 m; different values of vn for R=2000, 3000, 4000, 6000,
10000 m and ST; and dramatic increase in vs .

It is seen that both the wear of wheel and rail profiles (Fig. 8) and the change
in rail inclination (Fig. 9) ruins very well-ordered picture of the model stability
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properties for nominal profiles and inclination (Fig 7). It can be expected that severe
non-linearities in vehicle suspension would ruin that picture as well.

5 Non-linear Features of the System in Transition Curves

The third problem represented in this contribution refers to the previous one. Dis-
cussing that, the author is going to share his experience about the railway vehicle
dynamics above critical velocity vn in transition curves. The limit cycles shall not
be expected, as here curve radius R and superelevation H change continuously.

Example simulations (Figs. 10, 11, 12, and 13) are considered for compound
routes consisted of straight ST, transition TC, and circular CC track sections. Lateral
y, vertical z, roll φ, and yaw ψ co-ordinates are shown. Indices b, l and t denote
body (or bogie frame), leading-, and trailing wheelsets, respectively. Despite for
small R some of the v values can be questionable in terms of real objects’ possi-
ble derailment, the selected examples are still interesting from the research point
of view.

Three general behaviour groups can be recognised in TC. First, often logical
behaviour in TC takes place as direct outcome of features for ST and CC. Then
fluent passage from behaviour in ST to that in CC exists (Figs. 10 and 11). Despite
this, both the increase (Fig. 10) and decrease (Fig. 11) of the oscillation amplitudes
in TC can take place. Second, many times in TC behaviour happens unpredictable
from features for ST and CC (Fig. 12). In this group one can observe: drop and
tendency of oscillations to disappear in TC with their vast rise in CC; drop and
almost disappearance of oscillations at the and of TC and then almost no oscillations
in CC; sudden and complete disappearance of oscillations in TC with their moderate
renewal in CC (Fig. 12); and rise of oscillations in TC above levels for ST and
CC. Third, sometimes unexpected behaviour appears in TC resulting in change of

Fig. 10 Limit cycles of 2-axle freight car model on compound route ST, TC and CC;
v = 45.3 m/s, R = 600 m, H = 0.16 m
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Fig. 11 Limit cycles of 2-axle freight car model on compound route ST, TC and CC;
v = 45.3 m/s, R = 6000 m, H = 0.077 m

Fig. 12 Limit cycles of 2-axle 25TN bogie’s model of freight car on compound route ST, TC and
CC; v = 29.5 m/s, R = 300 m, H = 0.15 m

Fig. 13 Limit cycles of 2-axle bogie model of MKIII coach on compound route ST, TC and CC
with increased values of track stiffness and damping; v = 54 m/s, R = 600 m, H = 0.16 m
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solution for CC (Fig. 13). The switch to oscillations of different character happens
in TC (bifurcation probable of the limit cycle to another one in CC).

Variety of the behaviours in TC manifests the rail vehicle-track system’s non-
linear nature with the particularly good result. Studies by present author reveal that
even in case of well recognized stability properties in ST and CC (even for whole
range of R represented on stability maps), correct prediction of behaviour of rail
vehicle on TC for velocities above vn is impossible (at least difficult). One could
state that a lot of factors influence this behaviour. Some still seem to be not recog-
nized. The studies done so far indicate superelevation H and vehicle model (e.g.
constraints and parameters’ values) as the factors influencing that behaviour.

6 Description of Kinematics, a Cause of Non-smooth Functions
Within the System

The forth problem may surprise some readers. This problem reveals that even kine-
matics can introduce non-smooth functions into the system in certain conditions.
It arises from the description of rail vehicle dynamics in track based moving co-
ordinate systems (in type of A’ in Fig. 14). Such description makes inertia terms
dependent on the transportation (the motion of A’ system) appear in the equations
of motion. These terms are called imaginary forces and torques (e.g. centrifugal
forces and gyroscopic torques) [11–14]. They are actually a cause for non-smooth
functions being of interest, here.

In order to understand this fact better two types of measures were undertaken.
Firstly, basing on results of [12], the most important imaginary forces and torques
were selected. Next they were numerically generated for the routes composed in
succession of ST, TC and CC (e.g. Figs. 15a and 16a). Simulation programme for
vehicle dynamics was used. This way courses of the non-smooth functions caused
by the equations of motion terms were obtained. Secondly, basing on analytical
form of imaginary forces and torques [12–14], and in particular on the form of

Fig. 14 The reference systems adopted
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Fig. 15 a) Roll (longitudinal) imaginary torque of vehicle body; b) Influence of the body roll
imaginary torque’s omission on the body roll angle φb. Both figures for several accelerations

Fig. 16 a) Yaw (vertical) imaginary torque of vehicle body; b) Influence of the body yaw
imaginary torque’s omission on the body yaw angle ψb. Both figures for several accelerations

components of linear and angular velocities and accelerations of the transportation
[13, 14], as well as on the courses of the obtained functions the physical quantity
responsible for non-smoothness was identified. Here, owing to limited volume of
this contribution, just discussion of the first type of measures is possible.

Often some or all terms of the imaginary forces and torques are neglected in the
equations as common conviction spread of their negligible importance. To evaluate
the real importance, in view of the terms omission, simulation tests were done on
the same routes as above. Results from complete and incomplete (with selected
imaginary terms omitted) models were compared (e.g. Figs. 15b and 16b).

Example Figs. 15 and 16 included here refer to motion of 2-axle hsfv1 car model.
Lengths of track sections equal 10, 7 and 30 m for ST, TC and CC, respectively.
Unnaturally short TC was selected for the research purposes. The real lengths
were also studied. The curve radius R = 300 m. Simulations concern motion
with constant and variable velocity v (v = 15 m/s at the beginning of TC). Vari-
ation of v is defined by different values of the acceleration a (specified in the
figures in m/s2 within the brackets). In Figs. 15b and 16b, solid line represents
co-ordinates for the complete model, while dashed line represents those for the
incomplete one.

The general conclusions coming out from the figures as well as the entire study
are as follows. The terms of imaginary torques dependent on ε, the angular acceler-
ation of the transportation, are responsible for the non-smooth effects. These appear
exactly when passing between different track sections (ST–TC, TC–CC, and vice
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versa) and lead sometimes to unexpected problems with the equations integration.
The last happens despite the integration method is used intended for stiff differen-
tial equations (Gear method). The same terms result in the differences in solutions
for complete and incomplete models. Summing these terms up, the body roll Pφb

and yaw Pψb imaginary torques appear most important. Their importance rise with
rise of acceleration (speeding up) and deceleration (braking). The roll torque is the
leader in terms of influence on co-ordinates absolute values. Even so, it disappears
entirely for constant velocity (a = 0; Fig. 15), what is not the case for the yaw
torque (Fig. 16). General omission of imaginary torques is not justified.

7 Conclusion

The problems discussed confirm that one needs to be very careful while studying rail
vehicle dynamics and simplifying the non-linearities at the same time. It is demon-
strated that non-smooth functions can influence results of numerical analysis radi-
cally. Such functions are the result of system’s physical features but of the modelling
techniques as well. Except non-smooth functions present within vehicle model that
can be improved by the better modelling, the entirely physical non-smooth nature
of rail vehicle stability exists that cannot be improved in this way.
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On Tangential Friction Induced Vibrations
in Brake Systems

Georg Peter Ostermeyer

Abstract The basis for the analysis of friction in brake systems is the brake pad’s
tribological interface. An investigation of this interface reveals friction intensive
surface structures. These so-called “patches” are extremely hard and carry the main
part of the friction power. By complex interaction processes of wear and heat these
patches are generated permanently but leave the system after a certain period of
time. So there is an equilibrium of flow of contact patches in the brake pad interface,
with the outcome being a dynamic macroscopic friction coefficient, whose “inertia”
can be well described by differential equations in the form of special balance equa-
tions. Systematic expansions of these balance equations even allow, for the first time,
a simulation of different test cycles of the AK-Master test for friction materials with
high accuracy. These friction force variations are generated by the dynamics of the
local surface geometry and can explain physically effects of measurements, which
were up to now described by control theoretic approximations [7, 8].

Beside these effects the dynamics of friction is influenced by lateral vibrational
dynamics of these patches on a very fast timescale. This timescale is so fast that
processes of patch growth and destruction are negligible. Beyond that, the vibration
frequencies of the patches, as well as the actual local friction power on each of
these surface structures, vary over a wide range of values, which is the result of a
great variety of patch sizes and heights in the interface. Generally, one would expect
a smoothing of these local and stochastically distributed vibration effects. It can
however be shown, that the oscillations of the patches are subject to synchronization
processes, with the result being in-phase patch vibrations on macroscopic areas of
the brake pad of significant size. Thereby, self-excited vibrations of the patches can
lead to lateral oscillations of the pad’s friction force on a macroscopic scale. These
are able to excite the whole system of brake pad and disk.
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1 Introduction

Nearly everybody has used once sandpaper to modify wooden surfaces by hand.
And surely everybody has observed agglutinations on the sandpaper at the grinding
process. At least this is to be observed when you are grinding the finish (Fig. 1).

During grinding the swarf is moving between wood and sandpaper. At some parts
of the sandpaper thin and hard patches are growing up, formed by heat and wood
powder. With your fingers you feel hot spots through the sandpaper at exactly these
patches. At these patches the friction power produces heat but nearly no wear any
more. When there are to many patches the sandpaper gets unusable.

In technical applications for high wear rates the production of such patches has to
be avoided. This can be done by the modification of the form of abrasive grain -this
controls the density and the form of wear particles- and by introducing elastic belts,
which controls the stability of the patch growing process. This will be described
elsewhere.

In technical applications for high friction forces but low wear rates these surface
patch structures are essential. A typical technical system with these properties are
brake systems [1, 2]. Here one can observe these hard surface structures, the so
called patches [3, 4]. These patches carry the main part of friction power of the
system and their dynamics influences the dynamics of global friction [5, 6].

These patches control and determine in a fundamental way the friction and wear
properties of the brake system. The basic structure of a brake pad consists of a
comparative supple matrix, with embedded small and hard structures or particles.
An example for an ancient brake material with such properties is wood (e.g. used to
slow down windmills at forthcoming storms). Modern brake materials in automotive
engineering consist of a soft polymeric matrix with embedded SiO2-particles, iron
swarfs or similar materials.

By pressing the brake pad material onto the brake disk, wear debris is produced.
At the starting point the main part of the debris is generated from the polymeric

Fig. 1 Confocal microscope picture of grinding paper
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Fig. 2 Patch structures on a brake pad (REM – picture)

matrix. This debris is similar to the wear of friction produced by using a rubber on
a sheet of paper (Fig. 2).

The wear particles move through the contact zone. When reaching the rim of
the contact zone, a fraction of the wear particles sticks at the brake disk and moves
again into the contact zone after one rotation of the disk. Another part is emitted to
the environment.

Two important things will happen when, caused by the wear of the polymeric
matrix, a SiO2-particle or an iron swarf reaches the surface of the brake pad, see
Fig. 3. First, due to the higher wear rate of the polymeric matrix compared with
the hard particle, the particle is getting pressed into the polymeric matrix. Secondly

brake disk brake pad

brake pad surface
time t0

brake pad surface
time t1

brake pad surface
time t2

wear debris

Fig. 3 Section of the brake system at different moments t0<t1<t2, growth of a patch. On the left a
side view, on the right a top view on the pad surface section
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the wear particle flow in the boundary layer is disturbed. As a result of the increas-
ing local normal and tangential stress in the surrounding area of the particle, the
local temperature will also increase. For technical brake systems the stress and the
temperature may increase until alloying processes between the hard particle and the
wear particle flow will occur (some analysis indicates even the possibility of creating
ceramic structures). This leads to an accretion of hard and thin contact patches on
the braking material contrary to the wear particle flow.

Hereby the hardness of the patches is in the range of those for the inhomo-
geneities.

With this generation of contact patches, the brake material surface can be divided
into two different contact zones, see Fig. 4. The contact zone of type I is defined by
the contact of the polymeric matrix and the contact zone of type II is defined by
the hard patches. The main energetic conversion is produced at the contact zones of
type II. So the major part of the breaking power is dissipated in this contact zone
of type II. That leads to very high temperatures of the contact patches that even the
integral temperature of the brake pad surface will reach about 300◦C.

The wear around the contact patches, the heat generation and mechanical stress
are leading to crack growth in the hard contact patches. Furthermore the asper-
ity structure of the break disk enforces local movements/vibrations of the contact
patches on the soft polymeric structure and leads also to a crack propagation. These
effects results in a destruction of contact patches after a certain time (see Figs. 5
and 2)

The boundary layer on the brake material is characterized by the growth and the
destruction of contact zones of type II on the surface of the soft polymeric matrix.
The main part of the incoming energy is dissipated by these contact patches [5, 6].
Therefore the friction is defined by a dynamic equilibrium of processes that generate
and destruct these patches. The current friction is not a stationary function of e.g.
normal force or velocity but is determined by the history of the load and the wear.
Whether it is well known, that friction, heat and wear are intimately connected,
usually friction laws are formulated without heat and wear. An argument for this is

contact area
type I 

contact area 
type II 

brake pad surface
time t3

σn

Fig. 4 Section of the brake system, different contact zones (type I and type II) and in principle the
normal load distribution along the dashed line. On the left a side view, on the right a top view on
the pad surface section
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brake pad surface
time t4

brake pad surface
time t5

Fig. 5 Section of the brake system at different moments t3<t4<t5, destruction of a patch. On the
left a side view, on the right a top view on the pad surface section

the assumption of different timescales, the phenomena are living on. Heat is often
taken into account only via the temperature dependent material datas only.

2 Dynamics of Friction Caused by Heat and Wear

The frictional resistance is significantly determined by the contact areas of type II.
These contact patches are depending from wear and heat generation, which depend
from frictional resistance by themselves. Figure 6 illustrates the interconnectedness
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Fig. 6 Friction in technical brake systems



106 G.P. Ostermeyer

of the above described effects. The illustration therefore shows a closed loop depen-
dency of friction, heat and wear [6]. This shows that friction depends on the wear
history. Wear has to be taken into account in a friction law, too, when friction has to
be described for shot time intervals.

The dependence on temperature here is given by the growth of patches. The
process generates heat, which has to be described by a friction law. This temperature
has to be taken into account, when temperature dependent elastic moduli or other
temperature dependencies of material data are essential. This last effect has to be
included when concrete material behaviour is taken into account, for instance the
dynamic behaviour of the patches on the elastic pad. This will be done in the next
chapter.

The dynamic equilibrium of accretion and destruction of contact patches is a
substantial property of contact area AII and a fundamental consequence of wear.

With respect to Coulomb’s ideas the friction coefficient μ is described by the
magnitude of the friction force R divided by the magnitude of the normal force N:

μ = R

N

Expanding this fraction by the norm v of the tangential velocity vector between
the two contacting bodies, one receives

μ = Rv

Nv
, Nv =

∥∥∥−→N ∥∥∥ ‖−→v ‖

This formulation gives another interpretation of the friction coefficient μ. It is
now a dimensionless measure of the total friction power Rv in units of a character-
istic system power, given by the product of the magnitudes of the vectors of normal
force and tangential velocity. This characteristic system power is actually an idle
power (because the vectors of normal force and tangential velocity are perpendicular
to each other) but very handy for the following description of the dynamic friction
law. It is a fundamental input parameter for the tribological processes in the brake.

For simplicity it is assumed that the friction power is proportional to the total area
AP of contact patches. In this simple analysis the energy flowing in all other contact
regions will be neglected. The total patch area AP on the pad is determined by an
equilibrium of flow caused by the growth and destruction of single contact patches.
This equilibrium of flow is a fundamental consequence of the closed loop interaction
of friction and wear schemed in Fig. 6. Since the friction power is described by μ,
the total patch area AP itself and especially the dynamics of AP are correlated with
μ and its temporal change. So the equilibrium of flow of friction power must be
given by a balance equation of μ [6].

This means that the above delineated processes do not affect μ itself but only
its derivation with respect to time. So the friction in general becomes a dynamic
process. The approach of the equilibrium of flow for μ leads to general balance
equations.

Models of the coefficient of kinetic friction usually use the sum of all asperity
interactions in the contact area and assume a negligible wear for short time intervals.
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The model presented above shows, that because of the dependency of the current
size and quantity of contact patches from the history of wear, the wear has to be
taken into account even for short time intervals. Therefore the defining equation for
μ has to be an balance equation instead of an algebraic equation:

μ̇ = f1(μ, a1, a2, . . .) − f2(μ, a1, a2, . . .)

ȧ1 = g1(μ, a1, a2, . . .)

ȧ2 = g2(μ, a1, a2, . . .)

· · · · (1)

The accretion of the contact patches is described by the function f1 and the func-
tion f2 covers the effects that lead to the destruction of the patches. The ai are further
state variables as heat, wear and so on, each of this variables is result of a balance
equation too. To fill this law, in a first attempt the variables temperature and wear
are taken into account in a rather simple manner: the wear is usually in literature
approximately given by the friction power, so wear is given by the product μNv.
The heat can be treated in the usual way, where the source is given again by the
friction power. These functions can be build up in detail, see [6, 12]. A fourth order
equation for μ is given in [9], where even parts of the well known AK-Master test
are predictable described by this friction law.

Using a cellular automaton, we reproduced this interaction [10–12] and as a result
we obtained precisely the well known surface structures of a break pad, see Fig. 7
showing a section of size 1.5 mm × 1.5 mm. In addition the Automaton computes
the topography of the brake pad and the wear particle density.

For very slow variations of the normal force and the velocity and short applica-
tion times one can use approximately the stationary solution μstat of the dynamic
friction laws. This stationary solution has the well known shape of a Stribeck curve.

The stationary solution μstat can be written in the following form,

μstat (N, v) = ε

ε + x
Δμ + μ∞ (2a)

Classical measurements of friction acquire always such a stationary solution of
the friction coefficient. With these measurement data, one can determine the con-
stants ε,Δμ and μ∞. The load parameter x is given by

x = Nv (2b)

When normal load and velocity are changing faster, they affect the topography
dynamics described above resulting in non steady state behavior of the friction coef-
ficient itself. The characteristic time scales of these surface dynamics varies from
about 0.01 s up to the application time of the brake (Fig. 8).

On very fast timescales, where the effect of geometry changes in the friction
surface by the grow and destruction of the patches are negligible the dynamics of
friction is influenced by lateral vibrational dynamics of these patches on a very fast
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Fig. 7 The friction surface of the pad during braking with patches (black) and wear debris
(concentration correlated with gray scale) computed with a Cellular Automaton

μstat

x = ε load parameter x →∞0 

Δμ 
μ∞

Fig. 8 The stationary behaviour of the friction coefficient depending on the parameters Δμ, μ∞, ε

timescale. The lateral vibration frequency of a single patch can be estimated to cover
a range of about 0.5–20 kHz. This timescale is so fast that processes of patch growth
and destruction are negligible. On each patch the stationary solution (2) describes
the friction force evolution again.

3 On Tangential Vibrations in the Brake System

Due to the fact that the main part of the friction power is carried by the contacts
between patch and disk, only these contacts will be considered in the following. The
permanent changes in size and number of the contact patches shall be neglected for
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Ni
Ni

(a) (b)

Fig. 9 Lateral patch vibrations (a) described by a 1 dof friction oscillator (b)

the following examinations, since these changes live on a rather slow time scale with
respect to the patch vibrations. Beyond that, only the lateral dynamics are of interest
in this chapter. Therefore, the patches appear as classical stick-slip oscillators on
a permanently moving surface, which is the brake disk. They are coupled among
one another via the polymeric matrix. Each of these stick-slip oscillators is subject
to an individual normal force Ni, since patch size and normal force are correlated.
Moreover, the patch size controls its elastic connection to the under layer and the
vicinity of neighbored patches determines the visco-elastic coupling (Fig. 9).

For the dependency of friction versus sliding velocity, the function (2) is utilized.
The equation of motion for this individual patch, decoupled from all other patches,
has the simple form:

m ẍ + cx = μ(vrel) · N − b ẋ, vrel = v − ẋ (3)

Therein, v is the brake disk’s tangential sliding velocity. As is known, such a
system is subject to self-induced vibrations. For the case of a sufficiently high fric-
tion force, compared to the damping force, a stationary vibration along a given limit
cycle is the consequence,

Usually one would expect that due to the wide range of the oscillating masses
and the respective stiffnesses (and thereby the frequencies), the oscillation of the
patches is not synchronizised and stochastic or chaotic. This type of phasing, which
is schemed by the different colours in Fig. 10a, leads to a rather temporally homo-
geneous load transmission into the disk overloaded by a wideband noise. In case of
constant velocity and normal load this mechanism would transport the local friction
behavior on each patch to the macroscopic pad.

(a) (b)

Fig. 10 The phase of the patch oscillators, (a) unsynchronized state, (b) synchronized state
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(a)

(b) 

Fig. 11 (a) 10 decoupled stick-slip-oscillators (b) 10 coupled stick-slip-oscillators

By the vicinity of the patches the oscillators are weakly coupled. The question is
whether there can occur a synchronization (see Fig. 10b) of these patch oscillations
under special circumstances, so that macroscopically the load transmission has a
periodic character. In this case that phenomenon leads to a lateral excitation of the
disk-pad-system and can cause noise problems. This fundamental mechanism will
be illustrated by the systems in Fig. 11.

As a major consequence of the coupling, all patches run through the friction curve
in-phase. The friction curve has in general a falling characteristic in brake systems.
On the macroscopic scale, this results in significant oscillations of the global friction
force along the whole pad surface rather than in only small stochastic variations of
the friction force versus time, as would be the case in an unsynchronized system,
Fig. 12 (a). Simple estimations indicate that the vibration frequencies of the patches
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Fig. 12 Resulting friction force of ten stick-slip oscillators in the (a) unsynchronized state, (b)
synchronized state
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can be expected in a range between 1 and 10 kHz. The high-frequency stick-slip
oscillations can excite vibrations of the whole system of brake pad and disk.

4 Conclusions

The investigations on lateral dynamics in brake systems, discussed in this paper,
revealed the existence of macroscopic stick-slip oscillations in the high-frequency
range. These can be fundamental for the explanation of generally known phenom-
ena, such as the squealing. The effect of excitation caused by the synchronization
can be even more significant using the real number of oscillating patches, which is
magnitudes of order larger than in the system with ten patches shown in this paper.
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Dry Friction Element with Logical Switch
for Numerical Simulation of Vehicle Dynamics
and Its Application

Anna Orlova

Abstract When modeling dry friction in mechanical elements various models are
used to deal with the switch between stick and slip condition. When the standard
numerical integration methods come to abrupt change in the system’s state, they
start cutting down the integration step to locate the event that increases the required
processor time. The paper proposes to deal with that by developing the dry friction
element model in parallel with modification of numerical integration method.

1 Mechanical Model of the Friction Element

Mechanical model of the friction element (one dimensional) is presented in Fig. 1.
The element consists of Coulomb friction part with coefficient ν f in series with a
spring c f . Compression force to the friction element is applied through the spring

Fig. 1 Mechanical model of the friction element
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c1n and damper bn in parallel. When the force in the compression element is zero,
then the friction element does not work, turning of the compression force into zero is
represented by unnoted gap element. The stroke of the elastic compression element
is limited to Δq .

The spring in series with dry friction in many problems has physical meaning and
is used not only to overcome the singularity in Coulomb friction element. Examples
are presented in Fig. 2. Constant contact side bearings, [3], are often installed on
three-piece bogies to provide elastic resistance to car body roll and friction torque
when the bogie rotates under the car body in curves. The bearing consists of a cage
that houses elastic supports (may be springs or rubber elements) and a cap that is
in contact with the flat surfaces on the car body. The cap is pressed down by part
of the weight of the car body and the elastic supports experience corresponding
nominal compression. As the railcar moves, its oscillations lead to certain dynamic
variation of the compression force. When the vehicle negotiates the curves, first the
elastic support works in lateral direction and then, when the elastic force becomes
bigger than the friction force, the plates on the car body start to slide over the side

Fig. 2 Examples of modeled structures: (a) constant contact side bearing, (b) force-displacement
history of elastic-plastic deformation of car body
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bearing cap. The vertical compression of the elastic support is limited by the clear-
ance between the cap and the cage.

The same model can as well be applied to constructions that experience first
elastic and then plastic deformation. In this case the stiffness c f that is in series with
dry friction describes the construction elastic properties, whereas the former friction
force ν f (F0n + Fn) can be interpreted as the force that causes plastic deformation,
the pressure (F0n + Fn) being constant.

In mathematical description the dry friction force Ff included the logical switch
that considered the stick and slip conditions with non zero compression force and
absence of the force in other case:

Ff =
⎧⎨
⎩

ν f (F0n + Fn), F0n + Fn < 0, sli p
c f q f , F0n + Fn < 0, stick

0, F0n + Fn ≥ 0, of f
(1)

where f is the subscript for the friction force, n is the subscript for the compression
force, F0n is the nominal value of the compression force, Fn is the dynamic com-
ponent of the compression force, q f is the dynamic deformation in direction of the
friction force, c f is the stiffness of the element in direction of the friction force, ν f

is the friction coefficient.
The compression force acting on the friction element was calculated in two

stages. In the first stage initial elastic deformation under nominal force F0n was
determined

q0n =

⎧⎪⎨
⎪⎩

0, F0n = 0

F0n/c1n, c1nΔq ≤ F0n < 0

Δq + (F0n − c1nΔq
)
/c2n, F0n < c1nΔq

(2)

where c1n is the stiffness of the elastic element producing pressure on the friction
element before it reaches the bump stop, c2n is the stiffness of the elastic element
producing pressure on the friction element after it reaches the bump stop, Δq is the
displacement that corresponds to the bump stop.

Knowing the initial elastic deformation and dynamic deformation (that results
from the generalized coordinates of the dynamic system) the total compression force
was calculated as follows

F0n + Fn =

⎧⎪⎨
⎪⎩

0, qn + q0n ≥ 0

c1n(qn + q0n) + bnq̇n, Δq ≤ qn + q0n < 0

c1nΔq + c2n
(
qn + q0n − Δq

)+ bnq̇n, qn + q0n < Δq

(3)

where bn is the equivalent viscous damping coefficient in the element producing
pressure on the friction element, q̇n is the displacement rate in direction of compres-
sion force.
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Formulation of switch conditions between stick and slip conditions in Eq. (1)
was oriented towards application of numerical integration methods. Before taking
the integration step it was assumed that the state of the system will not change at the
end of it, the generalized coordinates were calculated using the state of the friction
elements from the previous integration step. Conditions whether the system state
changed within the integration step were checked at the end of it.

The condition for the friction element to change from stick (in step i) to slip (in
step i + 1) was formulated in terms of forces

∣∣∣F (i+1)
f

∣∣∣ > ∣∣ν f
(
F0n + F (i+1)

n

)∣∣ (4)

i.e., the force Ff calculated assuming that the element is sticking is greater than the
compression force multiplied by the friction coefficient.

The condition to change from slip (in step i) to stick (in step i+1) was formulated
as velocity sign change:

q̇ (i)
f · q̇ (i+1)

f < 0, (5)

besides the condition
∣∣∣F (i+1)

f

∣∣∣ < ∣∣ν f
(
F0n + F (i+1)

n

)∣∣ should hold.

2 Modification of the Integration Method

The system of the equations of motion was assumed in normal form:

Ẋ = F{t, X} (6)

where X is the column of system’s generalized coordinates, F{t, X} is the functional
of generalized forces (including the state of friction elements and switch conditions
between them), t is time.

In numerical integration of Eq. (6) it was assumed that in each step the functional
F{t, X} does not change, that allows writing down, for example, the Runge-Kutta
algorithm with constant step size, [2], in form:

X (i+1) = X (i) + h

6
(k1 + 2k2 + 2k3 + k4)

k1 = F (i)
{
t (i), X (i)

}

k2 = F (i)

{
t (i) + h

2
, X (i) + k1

h

2

}

k3 = F (i)

{
t (i) + h

2
, X (i) + k2

h

2

}

k4 = F (i) {t (i) + h, X (i) + k3h
}

(7)
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where h is the integration time step, i is the number of the integration step, t (i) –
time at the beginning of the integration step.

The switch in the elements was estimated in the end of the integration step. To
determine the time instant within the integration step when stick-slip conditions
changed, linear interpolation of generalized coordinates was assumed:

X = t (i+1) − t

h
X (i) + t − t (i)

h
X (i+1), t (i) ≤ t ≤ t (i+1), (8)

that allowed locating the switch instant of the friction element from stick to slip
condition by formula:

t∗
toSlip = t (i) + h

∣∣∣v f
(
F0n + F (i+1)

n

) ∣∣∣− ∣∣∣F (i)
f

∣∣∣
F (i+1)

f − F (i)
f

, (9)

or the switch instant from slip to stick condition by analogues formula:

t∗
toStick = t (i) + h

−q (i)
f

q (i+1)
f − q (i)

f

. (10)

The following algorithm of switching the state variables of friction elements and
choosing the time step length was applied.

In condition that at the end of the integration step there was no switches found,
the integration step and the functional did not change, the initial conditions for the
next step were calculated according to standard integration method (7), the func-
tional in the right part of (6) did not change.

If at the end of the integration step there were obtained switches in several ele-
ments, then the element that switched first was found (switching time determined
by (9) or (10)) and the integration step was cut down to that instant, h∗ = t∗ − t (i).
The initial conditions for the next step were calculated using linear interpolation
of generalized coordinates (8), the functional for the element that experienced the
switch changed.

The drawback of the proposed method was found to be the case when there are
multiple friction elements in the system and situation occurs when two of them have
switch instants that are close to each other. Figure 3 demonstrates the situation when
in the integration step between i and i + 1 there was obtained the switch instant S1
for one of the dry friction elements (procedure makes a return step 1 to S1) and in
the next integration step (step forward denoted 2) the switch instant S2 was obtained
(step back denoted 3) where S2 < S1. In the next step forward (denoted 4) the time
instant S1 is obtained again and the procedure steps back 5. This leads to infinite
loop of the integration method in vicinity of S1 and S2 that needs to be terminated
by the procedure by determining multiple switch points in vicinity of the minimum
time and switching several elements simultaneously.
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Fig. 3 Infinite loop situation in the proposed modification of integration method

3 Application of the Proposed Method to the Problem of a Train
Bumping into an Obstacle

The application of proposed method is demonstrated on the problem of a train bump-
ing into the obstacle, [1]. The coupler devices of the train (Fig. 4) are equipped
with the draft gears that are operating in normal conditions and with crash ele-
ments that experience plastic deformation after the critical force, acting on the cou-
pler, is exceeded. Rake mechanism does not allow the coupler crash elements to
extend and switches the coupler out of force transition chain after its total stroke is
realized.

After the coupler crash elements have exhausted their plastic deformation stroke,
the nose part of the first car comes in contact with the obstacle, and tambour parts

Fig. 4 Coupler device with crash elements
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Fig. 5 Testing the car tambour parts to determine the longitudinal force that causes their plastic
deformation

between the cars come into contact with each other. The tambour parts (Fig. 5)
are designed to withstand much smaller longitudinal force than the rigid passenger
compartment, and thus play the part of the plastic damper.

In the mathematical model the train was represented by a set of masses moving
along the straight line and connected with each other by elements shown in Fig. 6.
The model considered the coupler with crash elements and the possibility of tam-
bours to undergo plastic deformation. At the initial condition the train moved with
constant velocity and then bumped into the still obstacle.

Simulation results for one car crashing into the obstacle are presented in Fig. 7.
Initial speed of 80 t vehicle was 50 km/h. Integration was done with 0.1 s integration

Fig. 6 Mechanical model of connection elements between the cars



120 A. Orlova

a)

b)

Fig. 7 Histories of forces in (a) the coupler with crash elements and (b) in the tambour (nose part
of first car)

step. Bumping into the obstacle caused full plastic deformation of crash elements in
the first coupler: three switch points obtained refer to transitions between elastic and
plastic, plastic and elastic, elastic and off states. The nose part of the train also expe-
rienced full plastic deformation and 4 switch points were obtained: switching the
element on, when the distance to the obstacle became zero, transition from elastic
to plastic state, transition from plastic state to elastic deformation of the passenger
compartment, zero force when the elasticity of the car body pushed the vehicle away
from the obstacle.

Simulation results for 6 car train crashing into the obstacle are presented in
Figs. 8 and 9. Initial speed of the train consisting of 48 t cars was 20 km/h. Integration
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a)

b)

Fig. 8 Histories of forces in the coupler (a) and tambour (b) between the first car and the obstacle

was done with 0.1 s integration step. The algorithm efficiently obtained all the switch
points between various states of the coupler crash elements and tambours.

4 Conclusions

Integration method was modified to deal with dry friction or plastic deformation
by stick-slip (elastic-plastic) switch location using linear interpolation of general-
ized coordinates. Application to accidental collision of the train into the obstacle
is shown.
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a)

b)

Fig. 9 Histories of forces in the couplers (a) and tambours (b) between the first and the second cars
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Damper Modelling and Its Implementation
in Railway Simulation Program

Asier Alonso and J.G. Giménez

Abstract This chapter presents a mathematical model of a railway hydraulic
damper. The objective is to develop a model suitable to be implemented in a railway
simulation program. Computational cost should, therefore, be maintained low not
to decrease the simulation speed (rate) to unacceptable values.

A model based mainly in physical characteristics (piston section, volume of the
chambers, characteristics of the valves, etc.) is developed. In a first part of the chap-
ter, the modelling of each part of the damper is discussed. Afterwards, the model of
the complete damper is constructed and finally, model results are compared satis-
factorily with experimental tests.

The chapter also includes a discussion on the numerical problems associated
with the developed model and a new simplified version is proposed to overcome the
majority of the difficulties presented in the original model.

1 Introduction

In order to obtain precise results when simulating the dynamic behaviour of a rail-
way vehicle it is necessary to develop accurate models of all the elements that play
an important part in the dynamics of the vehicle (wheel to rail contact, air springs,
rubber elements, dampers, etc.). However, besides the accuracy requirements it
is necessary that the developed models are simple enough to be implemented in
dynamic simulation programs, as a too complex model of any component could
increase the computational cost up to unacceptable levels.

The objective of this work is to obtain a mathematical model of railway hydraulic
dampers that fulfil the above mentioned requirements. The idea is to develop a
model based mainly in physical characteristics (piston section, volume of the cham-
bers, characteristics of the valves, etc.). In this way, the model could be applied to
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different dampers just modifying the “geometrical” parameters and so the number
of tests to adjust the model parameters can be reduced to the minimum. To achieve
the objective, in a first step the operation of a typical railway damper is studied.
Secondly, a complete model of the damper is developed. The results obtained with
the model are compared with experimental results in order to determine its accuracy.
Finally, a reduced model simple enough to be implemented in a dynamic simulation
program will be developed.

2 General Description of a Railway Damper

Railway dampers are hydraulic devices generating damping forces mainly due to
the resistance of a fluid when passing through valves and orifices.

Analysing the structure of a railway damper it can be seen that it is composed by
three chambers: the compression chamber, the rebound chamber and an auxiliary
one. The auxiliary chamber is not completely full of oil, having both oil and air
inside it.

Analysing the design of the dampers it is clear that the volumes of both the
rebound and the compression chambers change with the movement of the piston
rod. It can also be seen that the section areas of both chambers are different due to
the piston rod. These elements are usually designed in such a way that the section
of the rebound chamber is half of the section of the compression chamber. This is
done in order to obtain similar forces in the compression and the rebound stroke.

All the chambers are connected through three valves:

• The auxiliary chamber is connected to the compression chamber by a check
valve that allows the oil flow only from the auxiliary chamber to the compression
chamber.

• In a similar way, there is another check valve between the compression and the
rebound chamber that allows the oil flow from the first to the second one.

• The last one is a damping valve and connects the rebound and the auxiliary
chambers.

During the operation of the damper two different situation can be distinguished:
the compression stroke and the rebound stroke (Fig. 1).

During the compression stroke the volume of the compression chamber is reduced
(therefore, there is an increase of the pressure in this chamber). In the same way, the
volume of the rebound chamber is increased producing a reduction of the pressure.
Due to the difference of the pressures in both chambers the check valve situated
in the piston rod opens, allowing the oil flow from the compression to the rebound
chamber.

It can be clearly seen that if the piston goes in, the reduction of the volume of
the compression chamber is larger than the increase of the volume of the rebound
chamber. This produces an increment of the pressure at both chambers generating
a flow through the damping valve from the rebound chamber to the auxiliary one.
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Fig. 1 Damper operation
(a-compression stroke,
b- rebound stroke)

COMPRESSION

REBOUND 

AUXILIARY 

(a) (b)

Finally as the pressure of the compression chamber is larger than the pressure in the
auxiliary one the check valve situated in the bottom remains closed.

During the rebound stroke the piston goes out. This movement produces an
increase of the pressure in the rebound chamber and a flow through the damping
valve. In the compression chamber there is an increase of the volume and a reduction
of the pressure. This causes that the check valve situated in the piston rod remains
closed and that the other check valve opens, obtaining a flow from the auxiliary
chamber to the compression one.

As a conclusion of this analysis it can be seen that the oil always flow in the same
direction in this type of dampers (see Fig. 1).

Also it can be conclude that, in order to develop an accurate model of the damper
special attention must be put to the valves modelling and the relationship between
flows, piston rod movement and the compressibility of the oil.

3 Modelling of the Main Components

3.1 Damping Valve

Figure 2 shows a schematic representation of a typical damping valve (in this
scheme, point A belong to the rebound chamber and point B belongs to the auxiliary
chamber). Operation of this element is as follows:

• If the force caused by the pressure difference between the rebound and the aux-
iliary chamber is lower than the preload of the coil spring, then the oil can only
flow through the orifice (Q1).

• However if the pressure in the rebound chamber is high enough, then the force
caused by the pressure can move the valve and the oil flows through the orifice
and trough this gap (Q1 and Q2).
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Fig. 2 Damping valve
scheme

A

B
Q1

Q2

It is worth pointing out that in certain dampers there are many valves in parallel.
The design variables of this valve are the following ones: the diameter of the

orifice (in certain valves the orifice does not exist), the spring constant, the preload
of the coil spring and the number of valves.

In order to model this element the relationship between pressures and oil flow
must be obtained. For that, the Bernoulli equation can be used:

Q = CD Aout (Paux , Prebound , Kspring, Fspring, geom. characteristics)

×
√

2(Prebound − Paux )

ρ
(1)

Where: Q is the oil flow, CD is an nondimensional parameter (usually between
0.5 and 0.8), Aout is the passing area, Prebound is the pressure in the rebound cham-
ber, Paux is the pressure in the auxiliary chamber, Kspring is the stiffness of the coil
spring, Fspring is the preload of the spring and ρ is the oil density.

As it can be seen, the passing area depends on the rebound chamber pressure.
As this pressure increases the coil spring is compressed and the value of the passing
area increases (see Fig. 3).

3.2 Check Valves

Figure 4 shows a schematic representation of a check valve. The main component
is a thin disc that can be deformed under the action of a differential pressure. The
opening of the valve is bounded by two stops.

• If the pressure at B is higher than the pressure at A then the disc remains unde-
formed and the oil flow is zero.
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Fig. 3 Passing area as a function of the coil spring compression

Fig. 4 Check valve scheme

yB

A

• However, if the pressure at A is higher than pressure at B there is a deformation
in the disc and a passing area is generated, therefore generating an oil flow from
A to B.

In order to model this element the opening of the valve as a function of the
differential pressure must be obtained. For that, a finite element code has been used
(Fig. 5). Figure 6 shows the obtained results.

Fig. 5 FE model of the check
valve



128 A. Alonso and J.G. Giménez

Fig. 6 Valve opening versus
pressure difference
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As it can be seen, the stiffness of the disc is very low: the opening of the valve is
maximum (it reach the stop) at very small pressures. Therefore it can be concluded
that the check valve can be modelled as an orifice that only allows the oil flow in
one direction.

3.3 Chamber Equations

3.3.1 Rebound and Compression Chamber

In order to model the rebound and compression chamber the following phenomena
must be taken into account:

• Piston rod displacement
• Oil flows through valves, orifices, etc.
• Oil compressibility

The equation that relates the above mentioned phenomena is the following one:

∑
Qi + Apistion · V = β · V ol · d P

dt
(2)

Where β is the bulk modulus of the oil, V is the velocity of the piston rod, Apiston

is the piston section and Vol is the volume of the chamber (see Fig. 7).

Fig. 7 Compression and
rebound chamber scheme

Qi

V
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3.3.2 Auxiliary Chamber

As it has previously been pointed out, the auxiliary chamber is partially filled with
air. Obviously, the oil of this chamber can be considered as uncompressible com-
pared with the air. If the air mass inside the auxiliary chamber is considered constant,
then the following equation can be used to determine the pressure:

d(Paux V olaux )γ

dt
= 0 (3)

Where: Paux auxiliary chamber pressure, γ polytrophic constant and V olaux volume
of the air.

The volume of the air can be calculated with the following formula:

V = V0 −
∫

Q dt (4)

Where V0 initial volume of the oil and Q oil flow that enters to the chamber.

4 Model Results

Once the main elements of the railway damper have been studied, the mathematical
model of the complete system can be constructed. It can be seen that the system have
three non linear differential equations (one for each chamber) and that the equations
are related by means of the oil flows between the chambers. In order to solve these
equations MATLAB-SIMULINK R© has been used.

In order to determine the accuracy of the model, a damper H04 1222 of KONI
has been modelled and tested. The experimental results were obtained at the test
bench shown in Fig. 8. It is worth pointing out that in order to measure the displace-
ment of the damper an additional LVDT sensor has been installed in the cylinder
on the damper. This has been done in order to eliminate the influence of the rubber
elements that every damper has in their ends.

Figure 9 shows the results obtained for different test conditions. Figure 9a shows
the force as a function of the piston rod position (frequency 3 Hz, amplitude 5 mm).
Figure 9b shows the same information but the velocity has been used instead of the
position. As it can be seen the experimental results are quite close to the theoreti-
cal ones.
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Fig. 8 Test bench

Figure 9c–e show the behaviour of the damper in other cases (frequency 2 Hz,
amplitude 2 mm), (frequency 2 Hz, amplitude 8 mm) and (frequency 1 Hz, ampli-
tude 10 mm) respectively

Finally, Fig. 9f shows a case in which the preload of the damping valve has been
modified. In the figure, the points in which the pressure in the rebound chamber is
high enough to exceed the preload of the damping valve can be clearly seen. This
produces a variation of the force velocity curve.

5 Simplified Model Suitable to Be Implemented in a Railway
Simulation Program

The complete model of the damper is too complex to be implemented in a railway
simulation program (since it includes several equations to model the pressures at
the chambers, oil flows, etc.). Also it has been checked that due to the opening and
closing of the check valves the behaviour is very non linear (as an example Fig. 10
represent the pressure evolution at the compression and rebound chambers during
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Fig. 9 (a) force vs. displacement (3 Hz, 5 mm), (b) force vs. speed (3 Hz, 5 mm), (c) force vs speed
(2 Hz, 2 mm), (d) force vs speed (2 Hz, 8 mm), (e) force vs speed (1 Hz, 10 mm), (f) force vs speed
(2 Hz, 8 mm spring preload modified)

the rebound stroke, it can be observed that in the opening (t = 0.26 s) and closing
(t = 0.42 s) of the check valves situated in the bottom of the damper the behaviour
is very non linear.

Due to that, it has been considered necessary to develop a simplified model suit-
able to simulation programs. To achieve this objective, a detailed analysis of the
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Fig. 10 Pressure evolution
during the opening and
closing of the check valves
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Fig. 11 Compression (P2)
and rebound (P1) chamber
pressures with respect to time

damper operation has been done. Figure 11 shows the evolution of the pressures at
the rebound and compression chambers with respect to time:

5.1 Auxiliary Chamber

Figure 12 shows the pressure at the auxiliary chamber with respect to time in a
certain case. It can be clearly seen that the pressure variation in this chamber is very
small. Therefore to develop the simplified model, it is considered that the pressure
at the auxiliary chamber is constant and equal to the atmospheric pressure.
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Fig. 12 Pressure at the
auxiliary chamber with
respect to time
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5.2 Compression Stroke

During the compression stroke the following considerations can be done

• The check valve situated in the piston is open. Also the pressure difference
between the compression chamber and the rebound chambers is very small (see
Fig. 11). Therefore, in order to obtain a simplified model, it can be considered
that the pressures at both chambers are the same.

QCompression→Rebound �= 0

Prebound = Pcompression

• The check valve situated in the bottom of the damper remains closed.

Q Auxiliary→Compression = 0

• There is an oil flow through the damping valve.

Qcompression→Auxiliary �= 0

Introducing these simplifications, the complete model can be reduced to a single
differential equation during the rebound stroke:

Qcompression→Auxiliary + (Arebound − Acompression) · V = β · (V olrebound (x)

+ V olcompression(x))
d Prebound

dt
(5)
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5.3 Rebound Stroke

In this case, the following considerations can be done:

• The check valve situated in the piston is open:

QCompression→Rebound = 0

• The pressure in the compression chamber is very small (see Fig. 11):

Pcompression = 0

Introducing these simplification, the following equation can be obtained for the
rebound stroke.

Q31(P1, geom characteristics) − Arebound · V = β · V olrebound (x)
d P1

dt
(6)

Summarizing, it can be concluded that the whole model can be simplified into
two differential equations: the first one for compression and the second one for
extension. These equations have been programmed in order to compare the results
provided by the simplified equations and the complete model. Figure 13 shows
the results of such comparison. As it can be seen the results are very similar.
Also it can be said that the computational cost of the method has been largely
reduced.

Fig. 13 Comparison of the
results provided by the
complete model and the
simplified one
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6 Conclusions

In order to finish the following asseverations can be done:

• A physical model of a railway damper has been developed.
• The results obtained with the model have been compared with experimental

results. It has been checked that the correlation between them is good. However,
it has also been checked that the computational cost of the full model is too high
to be implemented in a railway simulation program.

• A simplified model fast enough to be implemented in a dynamic simulation pro-
gram has been developed. It is worth pointing out that the results obtained with
the simplified model are very similar to those provided by the complete model.



Suppression of Bumpstop Instabilities
in a Quarter-Car Model

Fredrik Svahn, Jenny Jerrelind, and Harry Dankowicz

Abstract Vehicle manufacturers are constantly pushed to reduce the aerodynamic
drag of vehicles, for example by constructing lower vehicles with less road clear-
ance. This, however, reduces the available margin for oscillations within the sus-
pension. If the oscillation amplitude exceeds a critical value, the suspension will
impact a bumpstop. Under periodic excitation, the onset of low-velocity impacts is
associated with a strong instability in favor of high-velocity impacts. Such impacts
reduce comfort and could be damaging to the vehicle. Efforts should therefore be
made to limit impact velocities with the bumpstop, for example by suppressing the
instability associated with low-velocity impacts. This paper proposes a low-cost
feedback-control strategy, based on making small adjustments to the position of
the bumpstop, that serve to suppress the transition to high-velocity impacts with
the bumpstop in the case of periodic excitation. The control law is derived from
the theory of discontinuity maps. The results demonstrate that the feedback strategy
works even when wheel-hop is present.

1 Introduction

The current climate debate is pushing vehicle manufacturers to develop more envi-
ronmentally friendly solutions, the primary goal being to reduce fuel consumption.
One way of achieving this is to make vehicles with less road clearance to reduce the
aerodynamic drag. A lower road clearance, however, reduces the available margin
for oscillations of the suspension (known as the rattle space). If the amplitude of
the oscillation exceeds a critical value the suspension will impact a large rubber
bushing, a bumpstop. High-velocity impacts with the bumpstop reduce passenger
comfort and could be damaging to the vehicle, so the impact velocity needs to be
kept at a minimum.
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It is known from studies of mechanical vibro-impact oscillators that the onset of
low-velocity impacting motion along a periodic steady-state motion may result in a
dramatic and unanticipated transition to a motion involving high-velocity impacts.
The objective of this paper is to consider this phenomenon in the context of vehicle
suspensions.

One solution to avoid high-velocity impacts with the bumpstop is to fit the vehicle
with an active suspension that would modify the relative motion between the sprung
and unsprung mass through the addition of continuous actuation (cf. [5, 8, 13, 14]).
The inclusion of an active suspension, however, leads to substantial increases in
energy consumption. An alternative is to allow low-velocity impacts of the bump-
stop [12] but employ a low-cost control strategy that would prevent transitions to
high-velocity impacting motions.

This work considers a two-degree-of-freedom quarter-car model with bumpstops,
with parameter values representative of a typical passenger car. Here, the method of
discontinuity maps (originally developed by Nordmark in [10] and since then used
and analyzed extensively; see e.g. [1, 4, 6, 11]) is used to investigate the correction
to the non-impacting dynamics introduced subsequent to the onset of low-velocity
impacts. Specifically, the discontinuity-map approach is used to distinguish between
sub- and super-critical bifurcation scenarios associated with the existence of a peri-
odic steady-state trajectory with zero impact velocity. Of the two scenarios the sub-
critical corresponds to the case where the steady-state behavior of the quarter-car
model exhibits a discrete jump from the non-impacting motion to an impacting
motion with high-velocity impacts. In contrast, in the super-critical case, impact
velocities along the steady-state response vanish in the limit as the bifurcation point
is approached.

In [2] Dankowicz and Jerrelind introduced a feedback-control strategy which,
with suitably chosen control gains, guarantees a super-critical bifurcation scenario
even when such would not occur in the absence of control. This is achieved by
making small adjustments to the position of the bumpstop at opportune moments
during the system oscillation. In [3] Dankowicz and Svahn presented a constructive
proof of the method and applied it to one- and two-degree-of-freedom spring-mass-
systems. In this paper, the control strategy is shown to be applicable to systems with
additional discontinuities in the dynamics, including a bilinear suspension damping
and wheel-hop.

Some notes on notation: Normal-faced letters, such as q and z, denote scalar-
valued quantities. Bold-faced letters, such as x and P, denote vector-valued
quantities. Calligraphic letters, such as P and C, denote surfaces in state space.
Sub- and superscripts in conjunction with scalar or vector-valued quantities, such
as x∗ or P0, are used to distinguish different scalars or vectors. Matrix products
are denoted with a centered dot as in c · (x − x∗). Composition of maps is denoted
by the ◦ symbol representing application from right to left. Finally, the symbols
↑ and ↓ followed by numerical values are used to denote changes in the quan-
tity preceding the symbols that reach the numerical value from above or below,
respectively.
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2 The Quarter-Car Model

The simplest mechanical model of a vehicle used in studying vertical motion is the
quarter-car model [7] (cf. Fig. 1 which also includes a bumpstop). This is widely
employed for evaluating comfort criteria and for developing control methods for
vehicle suspensions. As the model reduces the vehicle dynamics to the two vertical
translational degrees of freedom of the chassis and the wheel set, it is unable to
account for roll and pitch motions of the vehicle.

Three distinctly different conditions of motion are considered in this paper.
Specifically, a condition of contact applies to the mechanism when the lower mass,
representing the tyre and wheel set, is displaced relative to the ground by a distance
smaller than the relaxed radial dimension of the tyre and there is a resultant positive
normal reaction force on the tyre. In contrast, a condition of free flight applies to the
mechanism when the lower mass is displaced from the ground by a distance greater
than the relaxed radial dimensions of the tyre.

With the inclusion of damping in the tyre-ground interactions, it becomes neces-
sary to consider a condition of quasi-contact. This corresponds to the case when the
lower mass is displaced relative to the ground by a distance smaller than the relaxed
radial dimension of the tyre, but the nominal reaction force is negative. In this case,
the actual reaction force is assumed to equal zero until a subsequent event-triggered
transition.

Fig. 1 A
two-degree-of-freedom
mechanical model of the
vertical motion of a vehicle
suspension in contact (left
panel) and in free flight (right
panel)
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2.1 Vector Fields

With reference to Fig. 1, let z1 and z2 denote the deflections away from the loaded
equilibrium position of the sprung (m1) and unsprung (m2) masses, respectively, in
the absence of ground excitation. Assuming a periodically varying ground displace-
ment with period 2π/ω, the system dynamics can be described in state-space form
through the introduction of a state vector x= (q1 u1 q2 u2 ϕ

)T
, where q1=z1 − z2,

u1=ż1 − ż2, q2=z2, u2=ż2, and ϕ=ωt mod 2π and an associated vector field

f (x) =

⎛
⎜⎜⎜⎜⎜⎝

u1

−
(

1
m1

+ 1
m2

)
(k1q1 + d1u1) + 1

m2
(k2 (q2 − w) + d2 (u2 − ẇ))

u2
1

m2 (k1q1 + d1u1 − d2 (u2 − ẇ) − k2 (q2 − w))
ω

⎞
⎟⎟⎟⎟⎟⎠

(1)

in the case of contact, and

f (x) =

⎛
⎜⎜⎜⎜⎜⎝

u1

−
(

1
m1

+ 1
m2

)
(k1q1 + d1u1) + m1+m2

m2
g

u2
1

m2 (k1q1 + d1u1) − m1+m2
m2

g
ω

⎞
⎟⎟⎟⎟⎟⎠

(2)

in the case of free flight and quasi-contact. Here, k1 is the suspension stiffness, k2

is the tyre stiffness, w is the ground displacement, d1 is the suspension damping
(of bilinear nature: one value in compression and one in expansion, d2 is the tyre
damping, and g is the acceleration of gravity).

2.2 Transitions

Transitions between the three distinct conditions of motion are triggered by discrete
events including the onset and loss of contact as well as rigid impacts with the
bumpstop.

Excluding, for a moment, impacts with the bumpstop, the motion of the mecha-
nism may transition from a condition of free flight only through the onset of contact
with the ground triggered by the event q2 − (m1 + m2)g/k2 − w ↓ 0. Similarly, the
opposite event q2 − (m1 + m2)g/k2 − w ↑ 0 triggers the loss of contact associated
with a transition from a condition of quasi-contact to one of free flight.

Continuing to ignore impacts with the bumpstop, the motion of the mechanism
may transition from a condition of contact only through the vanishing of the tyre-
ground interaction force associated with a transition to quasi-contact and triggered
by the event k2 (w − q2) + d2 (ẇ − u2) + (m1 + m2)g ↓ 0. Similarly, the opposite
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event k2 (w − q2) + d2 (ẇ − u2) + (m1 + m2)g ↑ 0 triggers the onset of contact
associated with a transition from a condition of quasi-contact.

In addition to the transitions enumerated above, discrete events triggered by
impacts with the bumpstop impose discrete changes both in the system state as well
as, possibly, in the condition of motion. Specifically, impacts are here triggered by
the event q1 + δ ↓ 0 and result in discrete changes in state given by

x �→

⎛
⎜⎜⎜⎜⎝

q1

−eu1

q2
m1

m1+m2
(1 + e)u1 + u2

ϕ

⎞
⎟⎟⎟⎟⎠ , (3)

where e is a Newtonian coefficient of restitution.
In the discussion below, events are said to be transversal provided that they are

associated with a non-vanishing first derivative of the corresponding trigger func-
tion, and grazing otherwise.

3 Dynamical Instabilities

For sufficiently small amplitude of oscillation of the ground displacement, the
response of the quarter-car model remains in a condition of sustained contact with-
out collisions with the bumpstop. Increased values of the ground-displacement
oscillation amplitude may be associated either with the onset of transitions to dis-
tinct modes of motion or the onset of discrete jumps in system state associated
with impacts. Such changes in the qualitative nature of the short-term time history
are known to be associated with potentially dramatic changes in the steady-state
response of the system. Examples include sudden changes in the number of coexist-
ing steady-state responses, their stability properties, or their regularity.

As a special case, this paper focuses on the onset of impacts with the bumpstop
associated with a periodic oscillation of period 2π/ω of the mechanism that includes
a zero-velocity contact with the bumpstop, i.e., a point x∗ of grazing contact along
the state-space trajectory where q1+δ=u1=0 and u̇1>0. In this case, subsequent
changes in ground-displacement oscillation amplitude are typically associated with
a sudden transition to a distinct steady-state oscillation with high-velocity impacts
with the bumpstop (a sub-critical bifurcation) or to a, possibly chaotic, steady-state
oscillation with sustained low-velocity impacts (a super-critical bifurcation). The
discussion below highlights the tools available to predict the nature of the transition
and practical means for guaranteeing the super-critical case.

3.1 Discontinuity Maps

The effects on the system response of the onset of low-velocity impacts with the
bumpstop can be reduced down to the correction to the state-space flow in the
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vicinity of the grazing point in the absence of impacts. Known in the literature as the
discontinuity map, this correction can generally not be found explicitly but can be
expressed to arbitrary order of approximation as a series expansion in the deviation
from the grazing point.

To this end, denote by P the set of points in state space for which u1=0 and u̇1>0.
In particular, x∗ ∈ P is a point of transversal intersection of the grazing state-space
trajectory with P . Provided that all other events along the grazing trajectory are
transversal, it follows that there exists a smooth Poincaré map P0 that maps points
near x∗ on P to the subsequent point of intersection with P after a time ≈ 2π/ω

when impacts are disregarded.
As described in [2, 3], the inclusion of impacts is captured by the composite

Poincaré map

P=P0 ◦ D (4)

that again maps points x∗ on P to the subsequent point of intersection with P after
a time ≈ 2π/ω. Here, D is the sought-after discontinuity map. Specifically,

D (x) =
{

x if q1 + δ ≥ 0
x∗ + β
√

q∗
1 − q1 + O (x − x∗) if q1 + δ < 0

(5)

where O (x − x∗) denotes terms of order linear or higher in x − x∗ and

β= − (1 + e)

⎛
⎜⎜⎜⎜⎝

0
0
u∗

2
m1

m1+m2
u̇∗

1 + u̇∗
2

ω

⎞
⎟⎟⎟⎟⎠ . (6)

Thus, for an initial point x ≈ x∗ on P with q∗
1 − q1>0, to lowest order the subse-

quent point of intersection with P deviates from x∗ along the direction ∂xP0 (x∗) · β
by an amount proportional to

√
q∗

1 − q1. For sufficiently large values of q1 − q∗
1 ,

the growth in the deviation associated with this square root is potentially balanced
by the contracting nature of the smooth Poincaré map P0. In contrast, while the
rate of contraction of P0 is finite for all small values of x − x∗, the growth rate
associated with the square root grows beyond all bounds as x → x∗. Its destabilizing
influence must therefore be properly accounted for in order to establish the nature
of the transition triggered by the onset of grazing contact with the bumpstop.

As argued in [6] a necessary condition for the super-critical bifurcation scenario
is the positivity of the sequence

ξn=
(

1 0 0 0 0
) · (∂xP0

(
x∗))n · β, n=1, . . . ,∞. (7)

In this case, for an infinitesimal small perturbation away from x∗ in a direction such
that an impact occurs, the number of cycles until the next impact goes to infinity as
the parameter value corresponding to grazing is approached.
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3.2 Compositions

As suggested in the previous section, the only condition for the existence of the
smooth Poincaré map P0 is the transversal nature of all events other than the grazing
impact event. In practice, P0 may be obtained by the composition of distinct maps
corresponding to transitions between successive events.

In the case of the quarter-car model, events include the transitions between dis-
tinct conditions of motion, discrete jumps in state space due to impacts as well as
changes in the relative direction of motion of the upper and lower masses corre-
sponding to a discrete change in the damping constant d1. Since the vector field
is smooth in between each such event and assuming transversality, Poincaré maps
could then be derived between each such successive event by solving the suitable
variational equations and applying the appropriate surface projection (cf [2]).

4 Feedback Stabilization

To suppress a sub-critical transition to steady-state oscillations of the vehicle model
that exhibit high-velocity impacts with the bumpstop, a low-cost control method
is proposed here, based on the ideas presented in [2, 3]. Specifically, a feedback
strategy is formulated that makes small adjustments to the position of the bumpstop
that control the destabilizing influence of the square-root terms in the discontinuity
map.

4.1 Control Algorithm

The control strategy proposed here relies on a discrete adjustment to the value of
δ at an opportune moment during the oscillatory motion of the quarter-car model
at which no interference would result from such an adjustment. Specifically, denote
by x∗∗ a suitably chosen point along the grazing trajectory and let C be some state-
space surface that is transversal to the grazing trajectory at x∗∗. Feedback-induced
changes in δ are then imposed at moments of intersection with C and expressed in
terms of the deviation from x∗∗. As an example, let x∗∗ be a point with u1=0 and
u̇1 < 0 and define C as the collection of all such points. In this case, adjustments
to the bumpstop position are imposed at moments of local maxima in the relative
separation q1 between the upper and lower masses.

Although a nonlinear feedback strategy could be formulated, the sub- or super-
criticality of the bifurcation associated with the onset of grazing contact depends
entirely on the linearization about the point x∗∗. Specifically, consider the feedback
strategy

δ �→ δ∗ + c · (x − x∗∗)+ c0
(
δ − δ∗) , (8)

where c and c0 is a collection of control parameters and δ∗ is the nominal value of
δ. The objective of control design is therefore the selection of numerical values for
the control parameters that achieve the desired outcome.
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As shown in [2, 3], the success of the proposed control strategy can again be
evaluated in terms of a suitably defined ξ sequence. In particular, the theoretical
analysis relies on the inclusion of δ as a state variable and the augmentation of
the vector fields, impact map, Poincaré maps, and β vector. Selection of numerical
values for the control parameters can then either be achieved by a rigorous method-
ology (cf. [3], albeit a very selective and, for other reasons, not practical choice)
or by trial-and-error-based evaluation of some large finite set of entries of the ξ

sequence (as in [2]).

5 Simulation Results

Restrict attention to the case when w(t)=a cos ωt , where a is the ground-displace-
ment oscillation amplitude. In the numerical results quoted below, m1=423 kg,
m2=13 kg, k1=20000 N/m, k2=200000 N/m, d1=1200 Ns/m in compression and
4000 Ns/m in expansion, d2=50 Ns/m, and e=0.9 corresponding to a medium-sized
passenger car. Moreover, with the inclusion of feedback-based adjustments to δ, the
actual implemented value of δ is the value in the interval [δ∗ − 0.04 m, δ∗ + 0.04 m]
closest to that computed using Eq. (8).

Figure 2 (for which a∗=0.041 m, δ∗=0.086 m, ω∗=8π rad/s, c0=0.8, and
c= (0.35 0 0.1 0 0

)
) shows the transitions in the steady-state system response fol-

lowing the grazing contact with the bumpstop of a periodic steady-state oscillation
of the quarter-car model that remains in a condition of sustained contact. Here, the
numerical values of the control parameters were chosen by trial-and-error, ensuring
that a large, but finite number of entries in the corresponding ξ sequence are positive.

As clearly can be seen in Fig. 2, the steady-state response in the absence of con-
trol exhibits a finite jump in the impact velocity from zero at grazing to near 5 cm/s
as a is increased beyond a∗. In contrast, the proposed control strategy guarantees
a robust, super-critical bifurcation to what appears to be an irregular response with
bumpstop impact velocities that approach zero as a ↓ a∗.

Fig. 2 Impact velocity as a
function of increasing values
of ground-displacement
oscillation amplitude with
(dark gray) and without (light
gray) control

0 1 2 3 4 5

×10–5a – a∗ (m)

0

–2

–4

–6

–8

–10

u 1
 (c

m
/s

)



Suppression of Bumpstop Instabilities 145

Fig. 3 Impact velocity as a
function of increasing values
of ground-displacement
oscillation amplitude with
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Similar results are shown in Fig. 3 (for which a∗=0.04 m, δ∗=0.118 m, ω∗=16π

rad/s, c0=0.9, and c= (0.4 0 −0.4 0 0
)
) corresponding to the bifurcation scenario

following grazing contact of a periodic steady-state oscillation that includes wheel-
hop, i.e., a combination of conditions of contact, quasi-contact, and free flight.

Although the control strategy is derived solely with the intention of ensuring a
super-critical bifurcation behavior, it is interesting to investigate its effectiveness in
reducing impact velocities for larger, more realistic changes in ground-displacement
oscillation amplitude. Figure 4, obtained using the same numerical values as Fig. 2,
shows that some reduction in impact velocities remains even for values of a −a∗ on
the order of centimeters.

Finally, we observe that the steady-state behavior to which the system response
transitions in the case of a sub-critical bifurcation persists even as the ground-
displacement oscillation amplitude is reduced below a∗. Figure 5 combines the data
from Fig. 2 in which a is increased beyond a∗ with that from a subsequent run in
which a is decreased below a∗. As seen in the figure, no such parameter hysteresis
is observed in the presence of control.

Fig. 4 Impact velocity as a
function of increasing values
of ground-displacement
oscillation amplitude with
(dark gray) and without (light
gray) control
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Fig. 5 Impact velocity as a
function of increasing and
decreasing values of
ground-displacement
oscillation amplitude with
(dark gray) and without (light
gray) control
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6 Discussion

In this work a low-cost control strategy has been proposed in order to suppress
instabilities associated with the onset of bumpstop impacts in a quarter-car model of
a vehicle. The analysis has demonstrated that this can be achieved at least locally,
for small increments of the excitation amplitude away from the grazing amplitude. It
was also shown that the control law removes undesirable hysteresis effects present
in the uncontrolled system. Additionally, a contribution of this work compared to
the earlier publications on the control algorithm [2, 3], is that the proposed control
strategy was shown to handle discontinuities in the system dynamics other than
impacts, such as wheel-hop.

As the control method is based on linearizations, such that only local results are
guaranteed, it would be desirable to extend it to a global control law. One alternative
is a gain scheduling strategy [9] implying that different reference points are used
and control parameters are varied based upon the present excitation of the system.
Alternatively, the control map, Eq. (8), could be extended with nonlinear terms to
achieve a global reduction of impact velocities.
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Experimental Modal Analysis of Towed Elastic
Tyres During Rolling

Dénes Takács and Gábor Stépán

Abstract The lateral vibration of towed wheels, the so-called shimmy, is one of
the most intricate phenomena of vehicle system dynamics. In this paper, a simple
mechanical model of shimmy is constructed from a towed elastic wheel with a per-
fectly rigid suspension system. The brief presentation of the mathematical model of
the system is followed by the detailed experimental analysis. The physical param-
eters of a carefully designed experimental rig are determined in different experi-
mental setups. The most relevant stability boundary of the straight-line stationary
rolling is calculated theoretically and then validated by experiments. The vibration
frequencies of the system in different parameter domains, with special attention to
the stable regions, are investigated by the modal analysis of the towed tyre during
rolling.

1 Introduction

The lateral vibration of towed wheels (so-called shimmy) is one of the most inter-
esting phenomena in vehicle dynamics. In spite of the fact that shimmy has been
studied for almost a century [2], the prediction and the elimination of shimmy are
critical parts of landing gear and motorcycle design [1, 4, 8, 3].

This paper investigates a simple elastic tyre model with one rigid-body degree-
of-freedom. The theoretical analysis of the so-called delayed tyre model in question
was accomplished in previous studies [7], where the linear stability chart and the
vibration frequencies at the stability boundaries were calculated.

To validate the theoretical results, an experimental rig was built corresponding
to the simple mechanical model in question. The most relevant stability boundary
of the theoretical stability chart was also checked experimentally. Quasi-periodic
vibrations were also observed close to the theoretically predicted double Hopf point
in [6].
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In this study, we briefly present a mechanical model extended by torsional spring
and damper at the king pin. The stability chart is plotted for different system param-
eters. The identification methods of the physical parameters in different experimen-
tal setups are presented numerically. One of the stability boundaries is validated
by experimental analysis in an appropriate band of the system parameters. The
variations of vibration frequencies with respect to the towing speed are calculated
by a convenient numerical method from the analytically determined characteristic
equation of the system. These results are also confirmed by the experimental modal
analysis of the towed wheel during rolling.

2 Mechanical Model

The model in question is investigated in [7] in details without torsional spring and
damper at the king pin. The central element of the mechanical model in Fig. 1 is
an elastic tyre that is in contact with the ground along a contact line of length 2a.
The wheel of elastic tyre is towed by a rigid caster of length l with constant velocity
v. The system is described by the general coordinates, which are the caster angle
ψ(t) and the lateral deformation q(x, t) of the tyre relative to the centre plane of
the wheel. The deformation of the tyre outside the contact patch is defined by the
exponentially decaying functions originated in the stretched string-like tyre model,
see [5]:

q(x, t) =
⎧⎨
⎩

q(−a, t)e(x+a)/σ , if x ∈ (−∞,−a],
q(x, t), if x ∈ (−a, a),

q(a, t)e−(x−a)/σ , if x ∈ [a,∞).
(1)

Fig. 1 The mechanical model of the towed tyre
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Because the tyre contact points translate backwards relative to the caster, the element
of the tyre located at a longitudinal position x will change in time. Consequently,
q(x, t) describes the lateral displacement of the tyre particle located at x instanta-
neously. The total derivative of q(x, t) with respect to the time is

d

dt
q(x, t) = q̇(x, t) + q ′(x, t)ẋ, (2)

where dots and prime refer to partial differentiations with respect to time t and space
variable x , respectively.

The equation of motion is given by the integro-differential equation (IDE):

JAψ̈(t) = − k

∞∫
−∞

(l − x)q(x, t)dx − b

∞∫
−∞

(l − x)
d

dt
q(x, t)dx

− ktψ(t) − btψ̇(t), (3)

where JA is the mass moment of inertia of the overall system with respect to the z
axis at the king pin, k and b are the specific stiffness and damping factor of the tyre,
respectively, while the parameters kt and bt are the stiffness and the damping factor
of the torsional spring and the torsional damper at the king pin.

In case of rolling, the tyre contact points do not move, thus, the kinematical
constraint is given by the partial differential equation (PDE):

q̇(x, t) = v sin ψ(t) + (l − x)ψ̇(t) − q ′(x, t)ẋ, (4)

where x ∈ [−a, a] and t ∈ [t0,∞). The boundary condition q ′(a, t) = −q(a, t)
/
σ

characterizes the lateral deformation at the leading edge L with the so-called relax-
ation length σ . The longitudinal translational rates of the tyre elements in the contact
patch is

ẋ = −v cos ψ(t) + q(x, t)ψ̇(t). (5)

3 Travelling Wave-Like Solution

In this study, we consider rolling, which means that the position of a tyre element is
constant while the element is in contact with the ground. Thus, a time delay can be
introduced to describe the time needed for a tyre element to travel backward from
the leading point L to the actual position P characterized by x . This time delay can
be obtained from

[
X (x, t)
Y (x, t)

]
=
[

X (a, t − τ (x))
Y (a, t − τ (x))

]
. (6)
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If the system is linearized, this leads to

τ (x) = (a − x)/v. (7)

With the help of this time delay, the travelling wave-like solution of the linearized
form of the kinematical constraint (4) is given by

q(x, t) = (l − x)ψ(t) − (l − a)ψ(t − τ (x)) + q(a, t − τ (x)). (8)

4 Stability Analysis

Since the travelling wave-like solution of the linearized system is known, the cou-
pled IDE-PDE system can be transformed into a delay differential equation (DDE).
This long calculation can be found in [7]. In this paper, the characteristic equation
of the linearized system is presented only:

D(λ) = V 2Σλ3 + (2V 2 + 2ζ V Σ)λ2 + (Σ + 4ζ V )λ − L − 1 − Σ

L2 + 1/3 + Σ(L2 + 1 + Σ) + K
×

×
{
Σ(e−λ − 1 + L(e−λ + 1) + Σ(e−λ − 1)) + 2

λ

((
L − 1 + 2

λ

)
−
(

L + 1 + 2

λ

)
e−λ

)}

+2 − 4ζ V L(Σ + 1)(Σλ + 2)

L2 + 1/3 + Σ(L2 + 1 + Σ) + B
− 2ζ V (L − 1 − Σ)

L2 + 1/3 + Σ(L2 + 1 + Σ) + B
×

× {Σλ(e−λ − 1 + L(e−λ + 1) + Σ(e−λ − 1)) − 2(e−λ + 1 + L(e−λ − 1) + Σ(e−λ + 1))
}
,

(9)

where the dimensionless parameters are the dimensionless towing length, the dimen-
sionless towing speed, the dimensionless tyre relaxation, the dimensionless torsional
stiffness and torsional damping, defined as

L := l

a
, V := v

2aωn
, Σ := σ

a
, K := kt

2a3k
, B :

bt

2a3b
, (10)

respectively. The natural angular frequency and the damping ratio of the steady
system are

ωn =
√

2k

JA

(
a

(
l2 + a2

3

)
+ σ (l2 + a2 + aσ )

)
+ kt

JA
(11)

and

ζ = 1

2ωn

(
2b

JA

(
a

(
l2 + a2

3

)
+ σ (l2 + a2 + aσ )

)
+ bt

JA

)
, (12)

respectively.
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Fig. 2 Linear stability chart of the towed wheel for different values of the damping ratio

The stability boundaries of the system can be calculated with the help of the
D-subdivision method. This means that after the substitution of the pure imaginary
λ = iω into the characteristic equation, D(iω) is separated to real and imaginary
parts. On the stability boundary, both the real and the imaginary parts of the char-
acteristic equation have to be zero. With the help of these criteria and using an
appropriate numerical method, the typical stability boundaries can be determined
for a specific range of the self-excited vibration frequency ω. A stability chart of the
system is shown in Fig. 2 demonstrated in the (V,L) plane for different values of the
damping ratio ζ . The dimensionless tyre relaxation, torsional stiffness and torsional
damping are chosen according to the presented measurement results in Sect. 5.1.

5 Experiments

To validate the theoretical results, an experimental rig was designed and built (see
Fig. 3). Despite the simple mechanical model that consists of a tyre and a caster, the
system has large number of parameters, namely, the caster length l, the towing speed
v, the specific stiffness k and damping b of the tyre, the tyre relaxation length σ , the
torsional spring stiffness kt and damping factor bt, the half of the contact length a
and the mass moment of inertia of the system JA. First, the identification of these
parameters was carried out.
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Fig. 3 The experimental rig with the vibration measuring system PULSE

5.1 Parameter Identification

The mass moments of inertia of the caster and the wheel were measured with the
help of a simple pendulum experiment. The caster with the wheel was hanged in
the vertical plane with different caster lengths, and the period of the swinging was
measured. From the period, the mass moments of inertia were calculated. In the
equations, the mass moment of inertia JA of the overall system with respect to the
z axis at the king pin depends also on the caster length – this gives a limitation for
the use of the dimensionless form of the stability chart. The results of the measuring
process give the formula:

JA = 0.1561 + 2.539 × (0.036 + l)2[kgm2] (13)

In former studies, some parameters were measured in different experimental setups.
For example, the specific stiffness k [N/m2] and damping b [Ns/m2] of the tyre were
identified in a rigid frame [7]. The tyre was placed between two planes, and it was
pulled in lateral direction with constant forces. From the lateral displacements of the
tyre, the stiffness was calculated. Then the tyre was hit in lateral direction, and the
lateral acceleration was measured. With the help of the logarithmic decrement, the
damping was obtained. In [7], where the mechanical model was extended with the
tyre relaxation, the relaxation parameter was also measured in the same rigid frame.
The tyre was fixed between the two transparent plastic plates, and it was pulled
in lateral direction again. Since the deformation of the tyre was visible outside the
contact patch through the transparent plate, the relaxation length σ of the tyre was
determined.

The stiffness, damping and tyre relaxation parameters were measured by the
above methods, and these values were used in (11) and (12) with neglected torsional



Experimental Modal Analysis of Towed Elastic Tyres 155

0 50 100

Fitted curve

Fitted curve

l [m]

ω n
 /(

2π
) 

[H
z]

ζ  
[-

]

l [m]

150 200
0

2

4

6

8

10

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 4 The measured natural frequencies and damping ratios with the fitted curves

stiffness and damping to estimate the natural angular frequency and the damping
ratio of the experimental rig. However, this gave large differences between the the-
oretically calculated and the measured data. On one hand, we recognized that the
mechanical model has to be extended with torsional damping, since the torsional
damping of the bearing at the king pin seemed to be not negligible.

On the other hand, to get more correct system parameters, the tyre with the whole
suspension system were fitted on the conveyor belt. The length of the contact patch
was tuned to a constant value 2a = 0.079 [m], and the natural angular frequency
and the damping ratio of the system was measured at different caster lengths. To do
this, a piezo-electric accelerometer was put on the end of the caster and its signal
was connected to the measuring system PULSE. Since the mass moments of inertia,
the contact length and the caster length were known, the parameters σ, k, b and
bt could be determined by fitting the theoretical curves to the measured data (see
Fig. 4). In these experiments there was no torsional spring added at the king pin,
that is, kt = 0 [Nm/rad]. The identified values of parameters are σ = 0.142 [m] ,

k = 57.7
[
kN/m2

]
, b = 6

[
Ns/m2
]

and bt = 0.63 [Nms/rad].

5.2 Validation of the Linear Stability Boundary

To simplify the validation of the theoretically calculated stability boundary, the
dimensionless stability chart was transformed into dimensional form. Namely, all
of the relationships of the system parameters are taken into account to realize the
stability chart in the (v, l) plane. Therewith, the comparison and representation of
the theoretical and experimental results are simple.

The linear stability of the towed wheel was investigated at different caster
lengths. During rolling with different constant speeds, the caster was slightly per-
turbed, and the response of the system was observed. The dimensional form of
the stability chart is shown in Fig. 5. The experimental and theoretical stability
boundaries are qualitatively similar. The quantitative difference can be noticed in
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the stability behaviour. In practice, the towed wheel become unstable at lower tow-
ing speed than it is predicted by the theory. The behaviour of the system indicates
subcritical Hopf bifurcation at the stability boundary, which can be suspected as the
reason of the identified differences.

5.3 Modal Analysis

One of the most important properties of the phenomenon shimmy is the quasi-
periodic vibration. The stability analysis of the investigated single rigid-body degree-
of-freedom mechanical model predicts two different frequencies at the intersection
of two stability boundaries. In a former study [6], the vibration frequencies are
investigated numerically and experimentally, but in the unstable domain only, where
the vibration amplitudes are large, and the nonlinearity of the system can not be
neglected.

To prove the theoretically calculated linear vibration frequencies experimentally,
modal analysis of the towed wheel was carried out. The caster was hit during rolling
with different constant speeds, and the response of the system was recorded. The
vibration frequencies of the measured signals have to correlate to the imaginary
parts of the numerically determined eigenvalues. The real parts of the eigenval-
ues show which frequencies are relevant at the actual towing speed. In Figs. 6,
7, and 8, the real and the imaginary parts of the theoretical eigenvalues and the
measured vibration frequencies are shown versus the towing speed at the different
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Fig. 8 Measured vibration frequencies and the numerically determined eigenvalues versus towing
speed at l = 0.060 [m]

caster lengths. It can be observed, that the measured vibration frequencies have good
agreement with the theoretically predicted frequencies.

If the real parts of two eigenvalues are close together, both vibration frequencies
are relevant and both of them should appear in the oscillation signal. This can be
shown in Fig. 6 at the towing speed 0.4 [m/s], and in Fig. 7 at 0.5 [m/s].

6 Conclusions

In this paper, a simple one rigid-body degree-of-freedom mechanical model is used
for investigating shimmy. The mathematical model and its stability analysis are con-
firmed by detailed experiments.

The theoretical vibration frequencies of the linear model are also confirmed by
the experimental modal analysis of the towed wheel. All the theoretically predicted
frequencies can be found in the vibration signal in the stable domain of the stabil-
ity chart.

The results confirm the relevance of the memory effect in tyre models during the
investigation of rolling instabilities. Also, this approach offers new sets of parame-
ters for tyre modelling.
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Modelling and Simulation of Longitudinal
Tyre Behaviour

Jaap P. Meijaard

Abstract A mechanical model of moderate complexity is presented for evaluating
the normal and longitudinal contact force between a tyre of a vehicle and the
road. The model consists of a stretched beam on an elastic foundation with elastic
tread elements that can touch the road, through which the forces are transmitted.
Three friction models are considered, with increasing complexity: the Coulomb
model with different static and kinetic friction coefficient, a speed-dependent fric-
tion model, and a dynamic model with an internal state. Realistic steady-state tyre
characteristics are found. For the more complex friction models, an alternation of
regions with low sliding velocity and transition regions with high sliding velocity
may be present.

1 Introduction

Accurate modelling of the forces generated between a pneumatic tyre and the road
surface is important for predicting handling behaviour of road vehicles. For the
design of control systems for the prevention of wheel lock during braking, spin
during acceleration and excessive yaw rates, even more accurate models are needed,
which have to be valid near the limits of the capabilities of the tyres and at higher
frequencies.

Current tyre force models can be classified in three main groups. A first group
consists of analytic models based on simplifying physical assumptions. Examples
are brush models and string models. A second group consists of empirical models,
which fit empirical data with tabular values and parameterized interpolation for-
mulas. The choice of the form of these formulas is usually guided by results from
models from the first group. The main examples are the magic formulas proposed
by Pacejka and others [6]. A third group consists of detailed physical models. An
example is the FTyre model [3]. A review of earlier physical tyre force models is
given by Smiley [9]. More recent models can be found in [2] and the proceedings
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of the three tyre colloquia [5, 1, 4]. Pacejka [6] gives an overview of analytical
physical and phenomenological models. Here, a physical model based on simplify-
ing assumptions is proposed. It will appear that the force cannot be calculated in a
closed form, but the numerical calculations remain limited. To limit the complexity
of the model, only longitudinal behaviour is considered in this paper. Extensions to
include lateral behaviour are feasible, however.

Several factors may influence the force generation of pneumatic tyres on a road
surface. The natural interpretation is that these factors, such as the temperature, wet-
ness, speed, tyre load and pressure, influence the coefficient of friction. Some other
possible explanations for the influence of these factors on the force characteristics
are considered here. Firstly, some fundamentals of rubber friction are discussed,
with emphasis on the unimodal dependence of friction on the sliding velocity and
the time–temperature equivalence. Secondly, a one-dimensional tyre model for lon-
gitudinal forces is proposed, in which the tyre belt is modelled as an elastic beam
that is supported by an elastic foundation and is in contact with the road through
elastic tread elements. This model is able to predict the normal force distribution for
given tyre parameters. For an assumed friction characteristic, forward velocity and
slip, the stationary longitudinal force can be calculated. This makes it possible to
assess the influence of varying the tyre parameters on the longitudinal tyre force.

2 Tyre Force Model

2.1 Mechanical Model

The tyre model is schematically shown in Fig. 1. The belt is modelled as a pre-
stressed beam on an elastic foundation. The centre line of the beam is inextensible,
but the flexural rigidity is finite, but quite small. The foundation is a combination
of a Winkler foundation with a force proportional to the lateral displacement and a
Pasternak foundation with a force proportional to the second derivative of the lateral
displacement, which is caused by a shearing of the tyre flanks. The pre-stress of the
beam gives a contribution to the equations with the same form as the Pasternak
foundation, so these two contributions can be taken together. Elastic tread elements
are attached to the belt that can make contact with the road. The tread elements have

Fig. 1 Mechanical tyre
model: beam on an elastic
foundation with tread
elements
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bristle
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decoupled normal and shear rigidities. Friction between the tread elements and the
road is present. It is assumed that there is a continuous distribution of infinitesimal
tread elements. The model is one-dimensional, as all properties over a transversal
section are taken together in variables at the central, equatorial, plane of the wheel.

A position along the belt is indicated by a material coordinate x with a moving
origin straight below the centre of the wheel. The length of the contact patch is
2a, so contact occurs for −a ≤ x ≤ a. The belt has a nominal radius Rb and
the tread elements have length lt. The belt has no longitudinal displacement with
respect to the wheel hub and a normal displacement w; the longitudinal and normal
displacements for the tips of the tread elements are ut and wt. The masses of the belt
and the tread elements are neglected. The flexural rigidity of the belt is EI and the
stiffness parameters of the foundation are kW and kP for the Winkler and Pasternak
parts, respectively. The tread elements have a normal stiffness ktz and shear stiffness
ktx per unit of length. No damping besides the friction between tread elements and
the road is included in the model. To keep the model manageable, the equations are
linearized and the curvature of the belt is neglected, except in the contact patch for
determining the contact forces.

2.2 Friction Models

The friction force for sliding between elastomers and a hard surface depends on the
speed of sliding. This dependence can be approximated by a friction coefficient that
is a Gaussian function of the logarithm of the sliding velocity [7],

μ(v) = μk + (μm − μk) exp

[
−h2

2
ln2 v

vm

]
. (1)

Here, v is the sliding speed, μm is the maximal coefficient of friction at v = vm

and μk is the kinetic coefficient of friction at very low as well as very high sliding
speeds. The dimensionless parameter h typically has a value of 0.35, whereas usual
values for the friction coefficients are μk = 0.6–0.8, μm = 2–3. Figure 2 shows an
example with μk = 0.8, μm = 2. Changes in temperature mainly result in a shift of
vm, leaving the other parameters invariant. Therefore, increasing the sliding velocity

Fig. 2 Typical friction
characteristic for elastomers
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and decreasing the temperature have a similar effect. In particular, for low temper-
atures or high sliding speeds, the friction law approaches the classical Coulomb
friction model with a static friction coefficient and a kinetic friction coefficient.
The relation (1) represents the friction curve for stationary sliding. For cases in
which the sliding speeds change rapidly, the model can be extended to a rate- and
state-dependent model [8], in which the state variable is the friction coefficient that
evolves according to the rate equation

μ̇ =
[

1

τs
+ |ν|

dk

]
[μss(|ν|) − μ], (2)

where τs is a characteristic time for sticking and dk a relaxation length for sliding.

2.3 Normal Force Distribution

The normal force model has the radial deflection, εn, as an input and the contact
length a, the effective rolling radius, Reff, and the normal pressure distribution as
outputs. From Fig. 1 it is seen that the prescribed normal displacement of the tread
elements in the contact patch is approximately

wt = εn − x2

2Rb
. (−a ≤ x ≤ a) (3)

The differential equations for the belt deflection are

E Iw′′′′ − kPw
′′ + kWw = 0 (x > a or x < −a)

E Iw′′′′ − kPw
′′ + (kW + ktz)w = ktzwt (−a ≤ x ≤ a) (4)

The solution is symmetric in x , so only x ≥ 0 need be considered. If the belt radius
is much larger than any characteristic length scale associated with the solution, the
boundary conditions at x = πRb can be replaced by the condition that the solutions
at infinity should be bounded. This leads to the solution outside the contact patch

w = C1 exp[−λ1(x − a)] + C2 exp[−λ2(x − a)], (x ≥ a), (5)

where C1, C2, are constants and

λ1,2 =

√√√√kP ±
√

k2
P − 4E I kW

2E I
. (6)

The exponents are real for realistic values of the parameters, so these solutions
steadily decay for increasing values of x . The condition of bounded solutions for
increasing values of x can be transformed to boundary conditions at x = a as
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w′′ + (λ1 + λ2)w′ + λ1λ2w = 0, w′′′ + (λ1 + λ2)w′′ + λ1λ2w
′ = 0. (7)

These conditions can be found from the general solutions outside the contact region
and the continuity conditions for the displacement and its first three derivatives by
equating the coefficients of the exponentially increasing terms to zero. The symmet-
ric solution within the contact region is

w = Cz1 cosh(σ x) cos(ωx) + Cz2 sinh(σ x) sin(ωx)

+(1 − qz)

[
εn − x2

2Rb
− kP

(kW + ktz)Rb

]
, (8)

where Cz1,2 are constants, qz = kW/(kW + ktz), and σ and ω are the positive real
numbers defined by

σ + iω =

√√√√kP + i
√

4E I (kW + ktz) − k2
P

2E I
. (9)

The constants can be determined as a function of a with the two boundary conditions
(7). The condition that the contact force vanishes at the edges of the contact patch
gives a non-linear equation for a, which can be solved by some numerical scheme.
Once w has been determined, the normal force distribution in the contact patch is
given by pz = ktz(wt − w) and the normal force follows from integrating this force
distribution over the contact length. For an example tyre with the parameters as
given in Table 1, the normal force distribution is shown in Fig. 3 for several values
of the normal deflection. It is seen that the distribution is almost parabolic for small
deflections, whereas it flattens near the centre for larger deflections.

Table 1 Parameter values for an example tyre

Symbol Value Unit Description

EI 2 Nm2 Beam flexural rigidity
h 0.35 – Friction curve parameter
kP 8 · 103 N Pre-stress and foundation shear rigidity
ktx 10 · 106 Nm−2 Longitudinal tread element stiffness
ktz 40 · 106 Nm−2 Normal tread element stiffness
kW 200 · 103 Nm−2 Normal foundation stiffness
Rb 0.28 m Belt radius
μk 0.8 – Kinetic friction coefficient
μm 2.0 – Maximal friction coefficient
qz 4.975 · 10−3 – Stiffness ratio
λ1 63.0 m−1

λ2 5.02 m−1

σ 56.9 m−1

ω 35.2 m−1
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Fig. 3 Normal force distribution for a tyre with deflections of 1, 2, 3, 4, 5 and 6 cm

3 Longitudinal Force Distribution

The effective rolling radius can be obtained from the normal force distribution as

Reff = Rb + lt + Rbltw
′(a)/a. (10)

Accordingly, the longitudinal slip is defined as

sx = Vx − ΩReff

ΩRb
, (11)

where Vx is the forward velocity of the wheel centre and Ω its spin rate. So the
longitudinal slip, and also the longitudinal force, are zero if the forward velocity
satisfies Vx = ΩReff. For a non-zero slip, it is generally assumed that the contact
region is divided into an adhesion region near the leading edge and a sliding region
near the trailing edge. The stationary longitudinal force distribution in the adhesion
region is

px = ktx sx (a − x) + ktx lt[w
′(x) − xw′(a)/a]. (12)

For the Coulomb friction model with a static friction coefficient larger than the
kinetic friction coefficient, px = μk pz holds in the sliding region, with the tran-
sition at the point where px = μm pz. Figure 4 shows the longitudinal force–slip
characteristics for several values of the normal deflection. The longitudinal force
distribution, together with the normal force distribution, for a deflection of 4 cm and
several values of the longitudinal slip is shown in Fig. 5. For the highest value of
the slip, the adhesion region has just vanished. The characteristics show a realistic
behaviour with a maximum in the longitudinal force.
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Fig. 4 Longitudinal force–slip characteristics for normal deflections of 1, 2, 3, 4, 5 and 6 cm. The
corresponding normal forces are 819, 1699, 2623, 3593, 4608 and 5666 N
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Fig. 5 Longitudinal force distribution for a normal deflection of 4 cm and longitudinal slips of 0,
0.0378, 0.0632, 0.0830, 0.1031, 0.1283, 0.1641, 0.2165, 0.2931, 0.4014 and 0.5444

For more general friction laws and non-stationary behaviour, one obtains the par-
tial differential equation, written as ordinary differential equations on characteristics
with the time as a parameter,

ṗx = ktx [ΩRb(sx + ltw
′(a)/a − ltw

′′(x)) − vs], ẋ = −ΩRb, (13)

where vs is the sliding speed, which is zero in the adhesion region and follows from
the friction law in the sliding region. If the friction only depends on the sliding
speed, we have the relation px = μ(vs)pz , which has to be solved for vs, whereas
for a dynamic friction law, the equation
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Fig. 6 Longitudinal force–slip characteristics for a normal deflection of 4 cm and several veloci-
ties: vm/(ΩRb) = 1, 0.1, 0.01, 0.001, 0.0001 and 0.00001

ṗx = μ̇pz + μpz
′ ẋ (14)

has to be solved for vs. Figure 6 shows the stationary friction characteristics for the
friction model (1) for a deflection of 4 cm and various values of the dimensionless
parameter vm/(ΩRb). It can be observed that the maximal longitudinal force is larger
than that for the Coulomb friction model. For the lower values of this parameter, the
sliding speed is discontinuous. From the leading edge, the longitudinal force per unit
of length increases until the ratio to the normal force reaches a value μk, after which
a sliding region with small sliding speed sets in. The longitudinal force per unit of
length increases further, until its ratio to the normal force becomes the maximum
μm, after which a rapid transition with a high sliding speed sets in, until the sliding
speeds return to zero. The longitudinal force per unit of length after this rapid transi-
tion does not follow directly from the model, and an additional assumption needs to
be made; here it is assumed that px = μk pz . After this transition, sliding with low
velocity starts anew and the force increases until the next transition occurs. Figure 7
shows the longitudinal force distribution for a typical case.

For a friction model with an internal state variable, the alternation of regions
with low and high sliding speeds disappears if the evolution is sufficiently slow. For
example, for the model in (2) with τs = 1 s, dk = 0.01 m, there is no alternation,
but if the relaxation length is reduced to dk = 0.001 m, an alternation similar to that
for the model without internal state is found, where a single return to small sliding
speed is present. In relation to Fig. 6, the stationary longitudinal force is generally
lower, and the dependence on the slip can be discontinuous if the number of sliding
speed alternations changes.
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Fig. 7 Longitudinal force distribution for a normal deflection of 4 cm, dimensionless velocity
parameter vm/(ΩRb) = 0.1 and longitudinal slip sx = 0.1

4 Conclusions

It has been shown that the brush model with Coulomb friction with different kinetic
and static friction can explain the shape of the longitudinal force–slip character-
istic of a tyre for stationary sliding. For higher temperatures or low speeds, more
advanced friction models are needed. Especially the unimodal friction characteristic
yields realistic results. Alternating regions of low and high sliding speed can occur.
For friction models with a state variable, this phenomenon may be suppressed or the
number of alternations is reduced.
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Part II
Dynamics of Non-smooth Problems



Bifurcations in Non-smooth Models
of Mechanical Systems

Piotr Kowalczyk and Arne Nordmark

Abstract Non-smooth models are often used for mechanical systems, for example
to model contact or friction. When system parameters are varied, changes in dynam-
ical behaviour may occur that are different from the standard bifurcations found
in smooth systems. Obtaining a unified picture of such non-smooth bifurcations is
difficult, because of the wide range of different types of discontinuities commonly
encountered. Here we will present theorems concerning boundary induced bifurca-
tions of equilibria and limit cycles in generic Filippov systems, and apply the theory
to a model of a friction oscillator.

1 Introduction

When modeling mechanical systems, it is natural to use non-smooth models, since
the character of the forces acting on the system often changes rapidly over small
changes in position and/or velocity. Well-known examples are the use of simple
models like Coulomb friction to model frictional contact forces, or impact laws
where velocities change instantaneously to model collisions. Another example is
when there are preloaded springs or dampers, which may be modeled as having
zero force outside a certain region of positions.

While the resulting non-smooth models may be easy to derive, the study of such
models have its own set of challenges compared to the study of smooth models. The
usual results on existence and uniqueness of solutions in time does not necessary
apply to non-smooth models. Even if we can define what we mean by a solution,
and show that these do exist, we find that the theory of bifurcations, that is: quali-
tative changes in system behaviour under parameter changes, has similar problems.
Which phenomena should the term bifurcation be used for? How do these phenom-
ena unfold under parameter variations? (see [2] for a recent overview of bifurcations
in non-smooth systems)
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One major problem is that “non-smooth” can encompass such a variety of phe-
nomena, and it seems very hard to come up with a framework that can include
all or even a major subset. Thus we may try to analyse one or more “classes” of
non-smooth systems, but the results obtained for one class may not carry over to
another. However, we can develop techniques and tools that are applicable to several
important classes of non-smooth models frequently used for mechanical systems.

We illustrate some of these techniques using a simple model of a single degree-
of-freedom mechanical system, having a smooth boundary in the position/velocity
space where the system changes. Our example contains a modified Coulomb friction
law, and thus the system equations change at the surface of zero velocity.

The model is studied either with static loading, where the state space is two-
dimensional, or using periodic loading, where the phase of the loading provides
another state variable. In the case of static loading, equilibrium points are possible,
and in particular we can explore the bifurcations (boundary equilibrium bifurca-
tions) that occur as system parameters are changed from values where a boundary
equilibrium exists.

In the case of periodic loading, where equilibrium points typically do not exist,
the simplest bifurcations instead involves periodic orbits. In particular, we find graz-
ing bifurcations, where parameters are changed from a situation where a periodic
orbit has a quadratic tangency (grazing) to the surface where the non-smoothness
occur.

2 Filippov Systems

We start by introducing simple class of non-smooth system. In a Filippov system [3],
state space is divided into a finite number of non-overlapping regions Si , each with
an associated vector field Fi . On parts of the region boundaries, it may be possible
to define a sliding vector field as a convex combination (a linear combinations with
non-negative weights summing to 1) of the vector fields in the adjacent regions. In
the simplest possible case, there are only 2 regions separated by a smooth boundary
Σ , which may be given by the zero level set of a smooth function H .

Our system in the following is thus defined by

ẋ =
{

F1(x) x ∈ S1

F2(x) x ∈ S2
(1)

where S1 = {x : H (x) > 0}, S2 = {x : H (x) < 0}, with the boundary Σ = {x :
H (x) = 0}. Although both the vector fields F1 and F2 have an equivalent role in our
system, we will in the following regard the first vector field as being primary, and
describe the second through the difference Fd (x) = F2(x) − F1(x). We will assume
that both F1 and Fd are well defined and smooth in all of state space, and that the
difference Fd is non-zero at the boundary Σ .

Let the sliding set Σ̂ be the part of Σ where it is possible to define a sliding
vector field Fs . Thus on Σ̂ we have
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Fig. 1 Vector fields and
trajectories for a Filippov
system S1

S2

Σ
Σ̂

ẋ = Fs(x) = F1(x) + λFd (x), 0 < λ < 1. (2)

where λ is chosen such that Fs is tangent to Σ .
Figure 1 shows an example of a Filippov system with a trajectory starting in S1,

becoming sliding for while, and returning to S1 after that.

3 Boundary Equilibrium Bifurcations in Filippov Systems

Let us start by examining bifurcations of equlibrium points in Filippov systems.
Apart from the birfurcations that have direct counterparts in smooth systems, we
also find one that is directly related to the interaction of equilibrium points with the
boundary.

3.1 Equilibria in the Filippov System

In our system we can distinguish between three different kinds of equilibrium points.
A standard equilibrium (SE) is an equilibrium of the first1 vector field that is

located away from the boundary. Thus a standard equilibrium point x∗ must satisfy

F1(x∗) = 0, H (x∗) > 0. (3)

A pseudo-equilibrium is an equilibrium of the sliding vector field that is located
away from the boundary of the sliding set. A pseudo-equilibrium point x∗, and its
corresponding value of the convex combination parameter λ∗, must satisfy

F1(x∗) + λ∗Fd (x∗) = 0, H (x∗) = 0, 0 < λ∗ < 1. (4)

1 Although both the vector fields F1 and F2 have an equivalent role in our system, we will in the
following only consider equilibria of the first vector field.
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A boundary equilibrium can be viewed both as a limit of a standard equilibrium,
as H (x∗) → 0, and of a pseudo-equilibrium, as λ∗ → 0. It satisfies

F1(x∗) = 0, H (x∗) = 0. (5)

3.2 Boundary Equilibrium Bifurcations

Now assume that the system depends on a single real parameter μ, so that all of F1,
F2, and H depends both on x and μ. Assume (x∗, μ∗) is a boundary equilibrium
point, that is

F1(x∗, μ∗) = 0, H (x∗, μ∗) = 0. (6)

We can now investigate whether there are branches of either standard equilibria or
pseudo-equilibria connecting to the boundary equilibrium when the parameter μ is
varied. In the following we will use subscripts to denote partial derivatives evaluated
at the boundary equilibrium point, thus F1x denotes ∂ F1

∂x (x∗, μ∗) and Hμ denotes
∂ H
∂μ

(x∗, μ∗), etc. Also Fd will denote Fd (x∗, μ∗).
A branch x(μ) of standard equilibria connecting to the boundary equilibrium

must satisfy

F1(x(μ), μ) = 0, H (x(μ), μ) > 0, x(μ∗) = x∗. (7)

Let us disregard the inequality for the moment. Then the implicit function theorem
tells us that if F1x is invertible, a branch x(μ) exists uniquely for small μ − μ∗.
Further, we can evaluate the value of H on this branch:

H (x(μ), μ) = b(μ − μ∗) + O(μ − μ∗)2, (8)

where the coefficient b is

b = Hμ − Hx F−1
1x Fμ. (9)

Returning to the inequality condition that the value of H on the branch must be
positive, we find that if b �= 0, then the branch exists only on the side where b(μ −
μ∗) is positive.

For a branch x(μ), λ(μ) of pseudo-equilibria, we find

F1(x(μ), μ) + λ(μ)∗Fd (x(μ), μ) = 0, H (x(μ), μ) = 0,

0 < λ(μ) < 1, x(μ∗) = x∗, λ(μ∗) = 0. (10)

Again disregarding the inequality for a moment, the implicit function theorem states
that if both F1x is invertible and the quantity a = Hx F−1

1x Fd is non-zero, then x(μ),
λ(μ) exists uniquely for small μ − μ∗, and
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λ(μ) = b

a
(μ − μ∗) + O(μ − μ∗)2, (11)

where b is the same coefficient as above. Taking the inequality (only 0 < λ is
important, since we know λ is small) back, we again find that if b is non-zero, then
the branch exists only on the side where b

a (μ − μ∗) is positive.
In summary, we have shown [1]

Theorem 1. If (x∗, μ∗) is a boundary equilibrium point, and if

det(F1x ) �= 0 (12)

a = Hx F−1
1x Fd �= 0 (13)

b = Hμ − Hx F−1
1x Fμ �= 0, (14)

then there is one unique branch of standard equilibria and one unique branch of
pseudo-equilibria connecting to the boundary equilibrium. The standard equilibria
branch exists when b(μ−μ∗) is small and positive, and the pseudo-equilibria branch
exists when b

a (μ − μ∗) is small and positive.

Depending on the sign of a, we can make the following distinctions

Non-smooth fold If a > 0, then both branches exists for one sign of
μ − μ∗, and no branch for the other sign. The two
branches come together at the boundary equilibrium
point and annihilate. This is somewhat similar to what
happens in a fold bifurcation for smooth systems.

Persistence If a < 0, then one branch exists for one sign of
μ − μ∗, and the other branch for the other sign. One
branch is transformed into the other at the boundary
equilibrium point.

3.3 Boundary Equilibrium Bifurcations in a Friction Oscillator

Consider the single degree-of-freedom friction oscillator model [6]

ÿ + y = α1sgn(v − ẏ) − α2(v − ẏ) + α3(v − ẏ)3 + α4 (15)

where α1−3 are positive friction law parameters, and α4 is a constant forcing param-
eter, and v is a constant driving belt velocity (Fig. 2).

This can be written as a Filippov system (using the notation vr = v − x2)
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Fig. 2 The friction oscillator.
The friction force is
discontinuous at 0 relative
velocity

α4

v

y

k = 1 m = 1

F1(x) =
(

x2

α1 − α2vr + α3v
3
r − x1 + α4

)
, Fd (x) =

(
0

−2α1

)
(16)

H (x) = v − x2, (17)

S1 = {x2 < v}, S2 = {x2 > v} (18)

Σ = {x2 = v}, Σ̂ = {x2 = v, |α4 − x1| < α1} (19)

Note that “sliding” in the Filippov sense for this system actually means sticking,
that is the mass follows the belt. The set S1 contains state points slipping left, and
S2 means slipping right.

3.3.1 Boundary Equilibrium

When the driving velocity v = 0, there is a boundary equilibrium at

x2 = 0, v = 0, x1 = α1 + α4 (20)

We can now try to apply Theorem 1, using v as the system parameter, but when we
check the conditions of the theorem we find

det(F1x ) = 1 (OK) (21)

a = Hx F−1
1x Fd = 0 (bad) (22)

b = Hv − Hx F−1
1x Fμ = 1 (OK). (23)

Since a = 0 we can not guarantee the existence of a unique branch of pseudo-
equilibrium points. Indeed, when v = 0, all points in the sliding set Σ̂ are pseudo-
equilibrium points, and when v �= 0 there are no pseudo-equilibrium points.

3.3.2 Breaking the Degeneracy

For a single degree-of-freedom mechanical system with a forcing discontinuity, the
second component of F−1

1x Fd will always be 0, and since a = Hx F−1
1x Fd we find that

a is always 0 unless we introduce some position dependency into the function H ,
which determines whether we are slipping right or left. We can do this, for example,
by letting the belt velocity v be controlled by the position. Thus we take v = κx1

for some constant κ , and use the constant force α4 as our system parameter instead
of v. Then we find boundary equilibria when x2 = 0, x1 = 0, α4 = −α1, and the
conditions of the theorem become
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det(F1x ) = 1 + α2κ (24)

a = Hx F−1
1x Fd = 2α1κ

1 + α2κ
(25)

b = Hα4 − Hx F−1
1x F1α4 = κ

1 + α2κ
(26)

which are all OK if 0 < |κ| < 1/α2.

3.3.3 Numerical Results

We use the friction law parameter values α1 = 1, α2 = 0.5, α3 = 1. If κ = 0.1
we should have a non-smooth fold, with the two equilibrium points existing for
α4 > −α1. If κ = −0.1 we should have a persistence, with the standard equilibrium
points existing for α4 < −α1, and the pseudo-equlibrium for α4 > −α1. Figures 3
and 4 shows the phase portrait on both sides of the bifurcations. The phase portraits
agree with the results for generic planar Filippov systems presented in [4].
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Fig. 3 Non-smooth fold for the friction oscillator, κ = 0.1: α4 + α1 = 0.1 (left) with a standard
equilibrium, a pseudo-equilibrium, and a stable periodic orbit; α4 + α1 = −0.1 (right) with no
local limit sets
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Fig. 4 Persistence for the friction oscillator, κ = −0.1: α4 + α1 = −0.1 (left) with a stable
pseudo-equilibrium; α4 + α1 = −0.1 (right) with a standard equilibrium and a stable periodic
orbit
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4 Discontinuity Induced Bifurcations of Limit
Cycles – Grazing-Sliding Bifurcations

We will now move to bifurcations that involve periodic oscillations. In particular
we will focus on so-called grazing-sliding bifurcations of limit cycles. Grazing-
sliding bifurcations are defined as tangential interactions between a limit cycle and
the boundary of the sliding region. The grazing-sliding bifurcation, that under-
lies our current investigations, is schematically presented in Fig. 5. Note that, for
clarity only the parts of a cycle which interact with the boundary of the sliding
region are depicted. In Fig. 5, labelled by “b”, we depict a segment of a cycle
lying in region G1 that grazes the boundary of the sliding region from above.
Under parameter variation, we have the possibility of creating periodic orbits that
either have no interaction with the sliding region (trajectory labelled “a”), have
a short sliding segment (trajectory labelled “c”) or combinations of “a” and “c”
behaviour in an orbit of higher period. Typically only a subset of these possibilities
is realised for a given parameter value. The existence of an orbit with a sliding seg-
ment born in the bifurcation under certain genericity conditions can be rigorously
proven [5].

We can associate a set of analytical conditions with a grazing-sliding bifurcation.
These conditions capture characteristic features of the phase space locally around
the grazing point. At the grazing-sliding point (x∗, μ∗) we have

Hx �= 0, H = 0, (27)

Hx F1 = 0, (28)

(Hx F1)x F1 > 0. (29)

We assumed, without loss of generality F1(x∗, μ∗) = Fs(x∗, μ∗) (that is λ∗ =
0). In the case when it is vector field F2 that grazes at (x∗, μ∗) we then would
expect conditions (27), (28), and (29) to hold for F2 (with the inequality sign of (29)
interchanged).

a

b
c

Fig. 5 Schematic illustration of one-parameter grazing-sliding bifurcation scenario
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4.1 Grazing-Sliding Bifurcation in the Friction Oscillator

Let us now get back to system (15) replacing the constant force α4 by α4 cos(ωt).
The friction model is now characterized by a periodic loading and it becomes non-
autonomous. Define the variables x1 and x2 as in Sect. 2, and x3 = ωt. Thus, we
obtain a three dimensional representation of the system. Vector fields F1, Fd are
defined as previously (16) with the third component of F1 = ω and the third com-
ponent of Fd = 0, and similarly H (x) remains unchanged, with x being a three
dimensional state vector.

Consider now a parameter region for which α1 = α2 = 1.5, α3 = 0.45 and
α4 = 0.7. A stable orbit of period 2π/ω exits in the system for ω < ω∗ = 1.2376.

This orbit undergoes a grazing-sliding bifurcations and we observe the onset of
chaotic dynamics for ω > ω∗. To be able to show that it is indeed the grazing sliding
bifurcation that leads to the onset of chaos we first check if the set of analytical
conditions that must be satisfied at the grazing point hold. We indeed find that at
(x∗

1 , x∗
2 , x∗

3 ) = (1.291727, 1, 1.872904) conditions (27), (28), and (29) hold. In
particular ((Hx F1)x F1)(x∗) = α4 sin(x∗

3 )ω∗ = 0.827 > 0 (Fig. 6).
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Fig. 6 Stable periodic orbit (top left-hand corner), grazing-sliding orbit (top right-hand corner),
unstable non-sliding orbit (bottom left-hand corner) and the bifurcation diagram (bottom right-
hand corner) of the friction system (15) with periodic loading α4 = α4 cos(ωt)
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4.2 Analysis

To be able to explain the dynamics around the grazing-sliding observed in the dry-
friction oscillator model we will use a stroboscopic map (a T -time map) built about
a periodic point, say x p, corresponding to periodic oscillations of the grazing orbit.
Let us consider the points in some sufficiently small neighborhood of x p on a stro-
boscopic section. There is a set of points that do not interact with the switching
surface Σ , and a set of points that hit Σ then follow the sliding flow and leave off
the switching surface Σ, and arrive to the next stroboscopic section. Let us suppose
that we fix a phase at some point x3 = φ0 ∈ [0, 2π ]. Then let us define a two-
dimensional stroboscopic section as a zero level set of PI (x) = t(mod2π/ω) − φ0

with t ∈ [0, 2π/ω], and another stroboscopic section PF (x) = t(mod2π/ω) − φ0

with t ∈ [2π/ω, 4π/ω]. Assume x p ∈ PI and hence x p ∈ PF . We wish to find the
functional expression for the map, say Π, such that Π : PI �→ PF . Note that the
time which elapses for a trajectory to map points on PI to points on PF is T = 2π/ω

and hence the components x3 of the state vectors x are the same on PI and PF .

Denote by φ1 a flow generated by the vector field F1. We can then obtain a return
map from PI to PF about x p as

P(x) = φ1(Z DM(φ1(x, t1), y), t2)

where t1 + t2 = T and t1 is the time of evolution from x p ∈ PI to x∗, where x∗ is
a point on the limit cycle at which grazing with the boundary of the sliding region
occurs, and t2 is the time of evolution from x∗ to x p ∈ PF . Finally, the function
Z DM(. , .) is the mapping that captures the effect of the grazing contact. This map
is piecewise affine to leading order in x , and y = y(x) being some scalar variable
that measures the “amount” of sliding. The key point now is to derive the expression
for Z DM(. , .). Let us first define Hmin(x)+ y2 = 0; Hmin(x) captures the minimum
value of a trajectory with respect to Σ, through some point x and generated by F1.

We now proceed as follows. Consider some point x0 ∈ PI sufficiently close to x p

and such that the trajectory rooted at x0 after time t < t1 crosses Σ . The evolving
trajectory then switches to the sliding flow, and then again it switches to flow φ1

and reaches PF after time T, at some point, say x ′
0. However, ignore the switching

to the sliding flow. Hence, after time t1 we reach some point, say xs and such that
Hmin(xs) < 0. Similarly consider backwards evolution from x ′

0 for the time t2 using
φ1. In this way, another point, say x f , and such that Hmin(x f ) = 0 is reached. The
map that maps xs on x f is Z DM(xs, y). To derive the functional expression for
Z DM(xs, y) we can express Z DM(xs, y) as a composition of flows i.e.

Z DM(xs, y) = φ1(φs(φ1(xs, tx ), ts),−(tx + ts))

where tx is the time (small) required to reach Σ from xs, and ts is the sliding time
(also small). The times tx and ts are functions of xs and y variables. We should note
here that Z DM(xs, y) maps xs on x f in zero time. Then the map from xs to x f to
leading order is given by
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Z DM(xs) = xs +
{

0, Hmin(xs) ≥ 0
F∗

d
H∗

x F∗
d

y2 Hmin(xs) < 0, y2 = −Hmin(xs)
. (30)

The “*” refers to quantities evaluated at x∗. We can now use the expression given
by (30) and combine it with the solution of the variational equation corresponding
to the evolution generated by vector field F1 to obtain the leading order strobo-
scopic T −time map about the grazing point x∗. For the purpose of the analysis it
is convenient to place a stroboscopic section PI through the grazing point x∗. In
that case for x on PI , Hmin(x) ≈ H (x) and P(x) = Z DM(φ1(x, T )). We can
now linearize P(x) about x∗ and cast this linearization in an appropriate co-ordinate
set. Thus, we can obtain a piecewise affine approximation for P(x). In the case
of 3-dimensional vector fields the piecewise affine normal form approximation of
P(x), using an appropriate co-ordinate set is given by

P̂(x̃1, x̃2, μ) =

⎧⎪⎪⎨
⎪⎪⎩

(
τR 1
δR 0

)(
x̃1

x̃2

)
+ μ

(
1
0

)
x̃1 ≥ 0(

τL 1
0 0

)(
x̃1

x̃2

)
+ μ

(
1
0

)
x̃1 < 0

. (31)

Border-collision bifurcations of fixed points of (31) under the variations of μ

through 0 correspond to grazing-sliding bifurcations of the associated 3-dimensional
flow. To determine the parameters τR, τL , and δR we use the values of the nontrivial
Floquet multipliers of the grazing cycle viewed as not interacting with the switch-
ing surface (allows to determine δR and τR), and as interacting with the switching
surface (allows to determine τL ). The multipliers of the grazing cycle viewed as not
interacting with the switching surface are the eigenvalues of the matrix J ∗ = ∂φ1

∂x |T ,

where J is the jacobian matrix of the solution of the variation equation corre-
sponding to the flow φ1. To obtain the multipliers of the grazing cycle viewed as
interacting with the switching surface we compose the jacobian matrix J ∗ with the
jacobian matrix of the linearization of the Z DM about x∗ on the sliding side. We
use the fact that on the chosen stroboscopic section Hmin(x) ≈ H (x). Expanding
H (x) about x∗ to leading order gives H (x) ≈ H (x∗) + H∗

x (x − x∗). Therefore, the

linearization of the ZDM about x∗ on the sliding side is x − F∗
d H∗

x
H∗

x F∗
d

(x − x∗) and

the corresponding jacobian matrix is I − F∗
d H∗

x
H∗

x F∗
d

. We can now consider the Floquet

multipliers of the matrix composition Ls = (I − F∗
d H∗

x
H∗

x F∗
d

)J ∗. One of the nontriv-

ial Floquet multipliers is 0. Therefore, τL is simply equal to the second nontrivial
Floquet multiplier of Ls (the third multiplier is 1). On the other hand to find τR

and δR we note that τR is the sum and δR is the product of the nontrivial Floquet
multipliers of J ∗.

Therefore, let us use above description and determine the numerical values and
hence the dynamics of the map (31) around the grazing-sliding bifurcation observed
in the friction oscillator. we found that the nontrivial Floquet multipliers of J ∗ are
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λ1N S = −5.732288 and λ2N S = −0.016799. The nontrivial Floquet multipliers of
Ls are λ1S = 0 and λ2S = 0.619648. Therefore, the map P̂ has got the form

P̂(x̃1, x̃2, μ) =

⎧⎪⎪⎨
⎪⎪⎩

(−5.7490869 1
0.0965801 0

)(
x̃1

x̃2

)
+ μ

(
1
0

)
x̃1 ≥ 0(

0.619648 1
0 0

)(
x̃1

x̃2

)
+ μ

(
1
0

)
x̃1 < 0

. (32)

It can be shown that the above map exhibits a border-collision bifurcation under the
variations of μ through 0 that leads to the onset of chaos (Fig. 7). This scenario
corresponds to the dynamics around the grazing sliding bifurcations from a stable
sliding cycle to chaotic dynamics observed in our friction oscillator model.
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Fig. 7 Bifurcation diagram of (32) under the variation of μ through 0

5 Conclusions

Using a one degree of freedom friction oscillator model (15) under static and peri-
odic loading we have shown the existence of bifurcations that occur due to the
existence of discontinuous nonlinearities, which are termed in the literature [2] as
discontinuity induced bifurcations (DIBs for short). In particular, we have shown the
occurrence of DIBs that involve equilibria in the case of the friction model under
static loading and periodic orbits in the case of periodic loading. In the first case the
occurrence of an equivalent to a standard fold and trans-critical bifurcations have
been shown. In the second case an onset of chaotic stick-slip oscillations have been
explained using the theory of grazing-sliding bifurcations.

Acknowledgments Piotr Kowalczyk would like to acknowledge EPSRC grant EP/E050441/1.
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Vibrational Displacement Determined
by Constructive and Force Asymmetry
of System

Iliya I. Blekhman

Abstract The phenomenon of vibrational displacement means an occurrence of
directed on average “slow” changing (particularly motion) due to undirected on
average “fast” (vibration) effects.

The following phenomena are based on this effect: vibrational transportation of
single bodies and granular materials in the vibrating trays and vessels; the work
of the devices called vibrational transformers of motion and vibro-engines; vibra-
tional sinking of piles, sheet piles and shells; vibrational separation of particles of
the granular material according to their density, size and some other parameters;
the motion of vibratiing coaches; the flight and swimming of living organisms. A
harmful effect of vibration displacement can be exemplified by the occurrence of the
mobility of the nominally immobile parts of machines under the action of vibration
(particularly – the self-unscrewing of nuts) [1,2].

The majority of vibration displacement theory problems reduces to essentially
nonlinear differential equations with time periodical and discontinuous right parts.
The last one is caused by the occurrence of dry friction forces and unilateral con-
strains in the concerned mechanical system. Moreover, in the separate areas of phase
space the motion can be described by various differential equations, particularly, by
the equitation of different order. At that the main interest is motions in which the
change rates of generalized coordinates have the form

ẋ = Ẋ (t) + ψ̇(t, ωt)

where Ẋ (t) is a slowly changing component, ψ̇ is a fast changing component, ω

is frequency of vibration. Component Ẋ is called vibration displacement speed;
its determination is of the greatest applied interest. Such form of solutions prede-
termines the practicability of using vibrational mechanics approach and method of
direct separation of motions for their determination. It’s important that the equations

I.I. Blekhman (B)
Institute of Problems of Mechanical Engineering, Academy of Sciences of Russia and Mekhanobr,
Tekhnika Corporation, St. Petersburg, Russia
e-mail: blekhman@vibro.ipme.ru
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DOI 10.1007/978-3-642-01356-0 16, C© Springer-Verlag Berlin Heidelberg 2010
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of slow component Ẋ turn to be smooth in spite of unsmooth character of initial sys-
tem. From the physical point of view vibrational displacement is caused by system
asymmetry; six types of such asymmetry can be defined [2].

The systems with vibrational displacement caused by the so-called constructive
asymmetry that is asymmetry inside the system have been considered in the report;
at that vibrational excitation can be symmetrical. The results belonging to the author,
Jakimova K.S., Molasyan S.A., Thomsen J., Fidlin A.Ya., Zimmerman K. and his
colleagues, Ghernousko F.L. and his colleagues have been briefly considered. Then
the peculiarities of granular medium behaviour in vibrating communicating vessels
have been considered in detail. It has been noted that in such vessels the medium
behaviour in some cases is similar to the behaviour of heavy viscous fluid and in
other cases it differs markedly from it. Two cases of similar paradoxical behaviour
have been considered. Their physical explanation and theoretical description have
been given.
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Smoothing Dry Friction by Medium Frequency
Dither and Its Influence on Ride Dynamics
of Freight Wagons

Jerzy Piotrowski

Abstract According to results of carried-out experiments and simulations, dry
friction exposed to dither results in viscous-like, frequently linear damping. This
means that dither smoothes dry friction as far as damping is concerned. One dithered
system of technical importance is a railway freight wagon with friction dampers in
the primary suspension developing two-dimensional dry friction. The dither excit-
ing dampers are generated in rolling contact of wheel and rail. Employing pro-
posed rheological model of 2D friction in simulations it has been shown that dither
significantly influences ride dynamics of freight wagons.

1 Smoothing Effect of Dither

In many instances friction dampers of mechanical systems are exposed to medium
frequency (M-F) dither.1 The dither is called the medium frequency one if its dom-
inating frequency is several times higher than the highest eigenfrequency of the
system.

One dithered system of technical importance is a railway freight wagon with
friction dampers developing two-dimensional friction in the primary suspension. It
is mainly this technical object that motivated the present investigation. The M-F
dither that excites dampers of the wagon originates from rolling contact of wheel
and rail.

In this chapter some results of investigation of the influence of M-F dither on
one- and two-dimensional friction are presented.

J. Piotrowski (B)
Institute of Vehicles, Warsaw University of Technology, Narbutta 84, PL-02-524, Warsaw, Poland
e-mail: jpt@simr.pw.edu.pl

1 “Airplane bombers used mechanical computers to perform navigation and bomb trajectory calcu-
lations. Curiously, these computers (boxes filled with hundreds of gears and cogs) performed more
accurately when flying on board the aircraft, and less well on ground. Engineers realized that the
vibration from the aircraft reduced the error from sticky moving parts. Instead of moving in short
jerks, they moved more continuously. Small vibrating motors were built into the computers, and
their vibration was called ‘dither’ from the Middle English verb ‘didderen’ meaning ‘to tremble’.”
-Ken Pohlmann: Principles of Digital Audio, 4th edition, page 46.
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The objective of the investigation was to explore the influence of dither quali-
tatively, evaluate it quantitatively and to identify properties or parameters of dither
influencing dry friction damping. To this end an experimental set-up has been built
that allows investigating friction damping in the presence of M-F dither.

The carried-out experiments have shown that dry friction damping in the pres-
ence of M-F dither behaves like a viscous, frequently linear damping in cases of
one- and two-dimensional friction. This means that dither smoothes dry friction.
Figures 1 and 2 show plots of recorded displacements of the body of the experimen-
tal set-up with and without dither in case of one-dimensional friction.

It is evident that friction has the Coulomb characteristic. This is indicated by
straight-line envelopes of displacements during runs without dither. With dither on,
fitted exponential envelopes show that damping behaves like the viscous linear one.

To investigate the phenomenon theoretically a rheological model of dry friction
has been proposed in the form of the element of the Prandtl body composed of the
friction slider with the Coulomb characteristic (the de Saint Venant element) and
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the spring. The model is a non-smooth elastic element. The friction force has been
described by the differential equation.

The model is applicable to one- and two-dimensional friction. In case of the two-
dimensional friction the model takes into account friction anisotropy. The descrip-
tion involves the determination of the friction force direction angle for both the
isotropic and anisotropic friction.

The model has been successfully verified experimentally in cases of one- and
two-dimensional friction.

Figures 3 and 4 present measured and modeled trajectories of the body of the
experimental set-up in a case of two-dimensional friction. They are similar.

Fig. 3 Measured trajectory of the body with dither on

Fig. 4 Trajectory of the body with dither on obtained from modelling
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Numerical simulations using the model have helped to explain the phenomenon
of smoothing dry friction by dither. There are basically two mechanisms
involved.

Numerical simulations have also indicated that in case of the sinusoidal dither
the most important parameter influencing dry friction smoothing is the ampli-
tude of dither velocity. With the higher amplitude the effect of smoothing is
stronger in the sense that damping becomes lighter and of strictly linear
characteristic.

2 Influence of M-F Dither on Dynamics of Freight Wagon

Smoothing dry friction by M-F dither influences lateral and vertical ride dynamics
of freight wagons with friction dampers developing two-dimensional friction in the
primary suspension.

A simulation model of a two-axle wagon with two-dimensional friction dampers
in the primary suspension has been written. The model employs contemporary
wheel-rail contact mechanics [1]. The description of friction damper employs the
proposed model of friction mentioned in Sect. 1. The vehicle model is composed
of rigid bodies and elastic elements but it takes into account M-F vertical dither
generated by rolling contact. The excitation by M-F dither supplied to the model
comes from measured vertical accelerations of axleboxes. The accelerations were
recorded with the sampling frequency 1 kHz.

According to the results of numerical simulations of the wagon motion there may
be significantly different behavior of the vehicle on theoretical, ideally smooth track
(without dither) and on track with excitation by M-F dither. For example, on smooth
track, speed 36 m/s and chosen parameters of the suspension the basic (rectilinear)
motion is unstable and the vehicle soon reaches the limit cycle of self-excited lateral
vibrations with contact angles of wheels and rails reaching 15◦ at extreme lateral
displacements of wheelsets. Once the vehicle enters the section of track with irreg-
ularities resulting in M-F vertical dither the lateral vibrations die out, motion of the
vehicle stabilizes and finally the vehicle runs with the rectilinear motion without any
residual misalignments of wheelsets because sticking in dampers has been removed
by dither. This is illustrated by plots in Figs. 5 and 6. The smooth section of track
has the length of 140 m.

3 Conclusions

According to carried-out experiments, dry friction damping in the presence of M-F
dither behaves like viscous, frequently linear damping in cases of one- and two-
dimensional friction. This property has been also confirmed by numerical simula-
tions employing proposed model of dry friction. This means that dither smoothes
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Fig. 5 Lateral displacement of leading wheelset

Fig. 6 Yaw angle of the leading wheelset

dry friction. In case of the sinusoidal dither the main parameter of dither that
influences dry friction smoothing is the amplitude of dither velocity.

In case of rail freight wagon the dither generated by rolling contact of wheels and
rails excites vertical sliding in friction dampers of the primary suspension. Smooth-
ing dry friction by dither strongly influences ride dynamics of the wagon.

The overall conclusion referring to rail vehicles is that the influence of M-F
dither should be accounted for in numerical simulations of motion of vehicles with
friction dampers in the primary suspension by employing the proper model of the
two-dimensional friction and application of realistic M-F dither generated by rolling
contact. Otherwise some strange dynamic phenomena could occur in simulation of
motion that may have little to do with reality.

As the M-F dither is available for free and has smoothing influence on friction
the future work should concentrate on efficient exploitation of dither generated
by rolling contact to improve ride quality and safety of rail vehicles with friction
damping.
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Simulation of Gear Hammering With a Fully
Elastic Model

Pascal Ziegler and Peter Eberhard

Abstract In large Diesel engines often geartrains are used to drive the camshafts.
As the average transmitted load is small, dynamic loads, e.g. gas forces, are typ-
ically dominant. This can result in a rattling motion of teeth within the backlash,
called gear hammering. We will show that for these impact-like contacts rigid body
models are not sufficient, instead, elastic models are necessary to precisely simulate
contact forces. The model proposed here is a modally reduced elastic multibody
model including a contact algorithm. Due to the size of the modal transformation
matrices, additional ways to reduce the computational effort are necessary, e.g. a
dynamic reloading scheme. The model is robust and fast enough to allow simula-
tions of many revolutions and many contacts. Furthermore, basic experiments have
been carried out to validate the model. Experimental results are presented and agree
very well with the simulations.

1 Introduction

The dynamic behaviour of geartrains in Diesel engines is very often accompanied by
a rattling motion of teeth within the backlash, called gear hammering. It originates
in a transmitted mean torque that is small compared to dynamic loads, for instance
introduced by gas forces. Therefore, the flanks are likely to lift off and reestablish
impact-like contacts on both sides of the flanks causing a hammering noise. As
the main purpose of geartrains is to transmit motion rather than torque, the gears
are often thin to reduce inertia and consequently the compliance of the gear bodies
influences the contact behaviour significantly. In fact, detailed contact investigations
of gears using transient finite element models reveal that the gear body compliance
strongly influences the contact behaviour. Consequently, dynamic gear body effects
may not be neglected for precise simulations of contact forces. However, it is indus-
trial practise to use rigid body models to simulate these contacts, even though they
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have been developed for sliding contacts instead of impacts and for very rigid gear
wheels. This is mainly due to the tremendous numerical effort needed for elastic
models like finite element models.

Obviously, as rigid body models can not account for complex elastic effects on
the one hand and finite element models can only be used for some few impacts on
the other hand, there is a demand for a physically motivated fully elastic model
with simulation times that allow simulations of many revolutions. The gear wheels
are modelled as elastic bodies using a floating frame of reference. The elasticity
is described using a modally reduced formulation. In combination with collision
detection, this approach allows very precise investigations of contact problems.
Moreover, since all necessary data are determined in preliminary analyses, the inte-
gration is numerically very efficient.

To validate this approach, basic experiments have been carried out. Test bodies
of simple geometrical shape are used to impact teeth of real gears. Comparisons
between experiments and simulation results uniformly show very good agreement.
Therefore, this approach offers a validated and precise contact model that is numer-
ically efficient enough to be incorporated into large overall engine models and has
no need for any heuristic parameters.

2 Numerical Impact Investigations

For the numerical impact investigations, a gear pairing from a real geartrain is
used to investigate several consecutive impacts. This is done using a classical rigid
body model and a very detailed finite element model. The gear pair consists of a
crankshaft gear and an idler gear and is mainly chosen here, because of the very
compliable idler gear that has a very thin gear body with several axial holes, see
Fig. 1 (left). Therefore, considerable dynamical effects can be expected. Both gears

Fig. 1 Finite element mesh of the idler gear (left) and finer mesh in contact region with mesh
transition (right)
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have zc = zi = 97 teeth of modulus m = 6 mm and no profile shift. The face
widths are hc = 57 mm and hi = 50 mm, respectively. The gear wheels are made
of steel, so a material with Young’s modulus of E = 210000 MPa, a density of
ρ = 7850 kg/m3 and Poisson ration of ν = 0.3 is used.

For the impact investigations, the gears are setup with a centre distance of a =
582 mm and supported by rotational joints with one rotational degree of freedom.
The crank shaft gear is initially at rest, the idler gear is given an initial rotational
velocity of ωi = 100◦/s. The gears are orientated in such a way that the first contact
will occur in the pitch point.

Impact problems often show wave propagation phenomena with frequencies up
to over 80 kHz. Therefore, the finite element model is meshed with hexahedral
elements with a characteristic element length smaller than 8 mm. That allows to
evaluate waves with frequencies up to about 80 kHz in the used material, see [10].
However, in the contact area, the elements are chosen much smaller. In the contact
patch, which has an approximate size of 1 mm, an element size of 0.1 mm is used,
see Fig. 1 (right). This results in a finite element model of about 80000 nodes and
65000 elements for each gear. For the contact formulation, the kinematic contact
provided by ABAQUS is used, see [1]. The rotational joints are implemented by
kinematically constraining all fit bore nodes to a reference point in the gear centre
having one rotational degree of freedom. For the integration of the system an explicit
integration scheme based on central differences is used, see [9].

Classical rigid body models of a gear pair typically consist of two rigid bodies
with a rotational degree of freedom for each body. Both bodies are coupled by a
linear spring damper combination acting on the base radii, see [3, 4]. The spring
combines all elasticities in the gear pairing, the damper accounts for a possible oil
film and material damping. Backlash can be accounted for by an additional backlash
element. In this work the so called single stiffness c′, see [8], is used for the coupling
stiffness, as it is common in industrial practice. According to the German industry
norm [6], method C, the single stiffness can be obtained using finite element models.
For the investigated gear pair the static finite element analysis is carried out using
the model described above. The single stiffness follows as c′ = 5.68 N/μm/mm,
see [7]. Damping is neglected. The system is set up with the commercial multibody
package SIMPACK, see [5]. For the integration a RADAU 5 scheme is used.

2.1 Simulation Results

The finite element model has been setup very carefully and the applied numerical
methods have been verified to be appropriate. Therefore, the results from the finite
element model can be regarded as being very precise. Consequently, they are used
as a reference in the following. Figure 2 shows the contact forces, as well as the
rotational velocity of the idler gear.

Obviously, the results for the contact forces differ significantly. The forces cal-
culated with the rigid body model are generally too high which is mainly due to the
elasticity of the idler gear. This can very well be seen for the first contact, where
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Fig. 2 Comparison of contact forces and rotational velocities of the idler gear for the finite element
model and the rigid body model

the finite element solution shows three simultaneous contact forces. This means that
three pairs of teeth are in contact at the same time, which cannot happen when
rigid bodies are considered, hence, the rigid body model only gives one contact
force. Another effect directly related to the elasticity of the gear can be observed
for the third contact. Here, after an initial increase, the contact force temporarily
decreases and eventually increases to its maximum. As shown in [11], this is due
to a deformation of the gear body during contact. This deformation is partly radial
and, therefore, the contact force decreases while energy is stored in the deformed
body. When this energy is restored, an increase of the contact force is observed. The
remaining deformation excites a torsional vibration of the tooth rim against the fit
bore rim and can be observed from the rotational velocities, particularly in the free
flight phases, where no contact occurs.

The elasticity of the gear wheel considerably influences the contact forces, but
also the global motion. Apparently, the rigid body model gives bad results, even
though the stiffness has been precalculated by a static finite element analysis. The
simulation results show that this is primarily due to elastic effects. Therefore, in
order to obtain precise results, an elastic approach is imperative. However, the sim-
ulation time for the finite element analysis presented in Fig. 2 is already about 8 days



Simulation of Gear Hammering 199

on a Pentium 4 computer with 2Gbyte RAM. Obviously, finite element analyses are
not appropriate to simulate many contacts or even several revolutions.

3 Elastic Multibody Model

One way to reduce the large system dimension of a finite element system and still
use a fully elastic description is to use a modally reduced elastic multibody model.
Here, a floating frame of reference formulation is used, see [12, 13], where the
deformation is described with respect to a reference frame, which is allowed to
undergo large rotations. Therefore, the large rotation for an appropriate operation of
gear wheels can easily be described. The deformation can be considered to be small,
and, therefore, allows a modal description. External driving torques can easily be
applied via the reference frame. The equation of motion follows as

M( y) · ÿ − hω( y, ẏ) − he( y, ẏ) − hc( y, ẏ) =⎡
⎣M t t sym

Mr t Mrr

Met Mer Mee

⎤
⎦ ·
⎡
⎣ ÿt

ÿr
ÿe

⎤
⎦−
⎡
⎣ hωt

hωr

hωe

⎤
⎦−
⎡
⎣ 0

0
he

⎤
⎦−
⎡
⎣ hct

hcr

hce

⎤
⎦ = 0, (1)

where M is the mass matrix, hω are the generalised inertia forces, he are the gen-
eralised internal forces, yt and yr are the generalised coordinates of the reference
motion and ye are the elastic coordinates. External forces and torques, including
contact forces, are given by hc. For a modal model ye are modal coordinates and
Mee is a diagonal matrix.

3.1 Calculation of Standard Data

To evaluate Eq. (1), several intermediate matrices, called standard data, are needed,
see [13]. The standard data have to be precomputed before the simulation from the
finite element system matrices and the modal matrix. For many calculations, the
standard data evaluations are of type

A = ΦT · B · Φ, (2)

where Φ is the modal matrix and B is the finite element mass or stiffness matrix. A
reasonable finite element model, capable to describe all relevant mentioned effects,
easily exceeds 80000 nodes per gear. Since a Guyan reduction in not appropriate,
the matrices are of full size, though sparse. Moreover, as shown in [7], sufficiently
precise contact forces able to represent impacts require modes with frequencies up
to 80kHz. Consequently, the modal matrix is often of tremendous size and the cal-
culation of standard data requires a huge amount of memory which makes most
commercial converters fail. However, the memory request can be reduced, by an
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out-of-core approach, which uses the linearity of Eq. (2) by solving it with partial
modal matrices in consecutive steps and temporarily stores intermediate results on
the harddisk.

3.2 Contact Algorithm

The maximum number of possible contacts for two gears with z1 and z2 number of
teeth is nc,max = 2z1z2. Since for geometrical reasons, typically only two or three
pairs of teeth can come into contact at a given time, a contact algorithm that checks
for all possible contacts is extremely inefficient. Therefore, the collision detection
is divided in a coarse and a fine collision detection phase.

For the coarse collision detection, index points are defined on every tooth, see
Fig. 3 (left). Only for those index points, a transformation from modal coordinates
to nodal positions is carried out. Then, the index point nearest to the centre of the
associated gear is determined. When these centre teeth are determined, zs teeth to
left and right of the centre tooth are considered as contact candidates, see Fig. 3
(right). Dependent on the geometry, typically zs = 1 or zs = 2 is sufficient.

For the fine collision detection and the calculation of the contact forces, a master-
slave node-to-segment penalty approach is used. Therefore, the nodal coordinates
of all flank nodes of the previously determined contact candidates are required. The
necessary modal transformation matrices for each flank node on the contact candi-
dates are combined in one transformation matrix. This comparably small transfor-
mation matrix can easily be kept in the computers main memory and only has to be
updated when the contact situation changes. Therefore, when a change of the centre
index teeth is determined, the new corresponding transformation data is dynamically
updated. Keeping only this minimal transformation data in the computer’s memory
decreases both memory request and integration time.

Since only contacts between perfectly aligned spur gears are investigated here,
the three dimensional contact situation is mapped to a two dimensional contact
problem for the contact calculation. This is done by only considering the flank
nodes in the mid-plane. This reduces the contact problem to a polygonal contact,

index nodes

index nodes

potential contact pairs

center teeth

Fig. 3 Preselection of contact candidates using index nodes (left) on every tooth to determine
potential contact pairs (right)
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Fig. 4 Mapping the three dimensional contact problem to a two dimensional polygonal contact
problem for perfectly aligned spur gears

see Fig. 4. The fine collision detection is done using the ray-crossing method, see
[14]. In the case that a slave node has penetrated the master polygon, the node is
projected onto the corresponding segment and the penetration depth δ is calculated.
The nodal contact force immediately follows by multiplying the penetration with
the penalty factor. This contact force is distributed equally to all nodes lying on the
contact line intersecting this contact node.

3.3 Time Integration

For the integration of the elastic multibody system, a central differences method is
used. Since the evaluation of the equation of motion (1) requires velocities in each
time step, a discretization with a velocity lagging half a step is used as proposed
in [15]

ẏn−1/2 = 1

Δt

(
yn − yn−1

)
, (3)

ÿn = 1

Δt2

(
yn+1 − 2 yn + yn−1

)
. (4)

The new displacement yn+1 can eventually be obtained by

yn+1 = Δt2 M−1 · (hω + he + hc) + 2 yn − yn−1. (5)

The central difference method is a conditionally stable integration scheme and the
integration step size has to be smaller than a critical time step which can be cal-
culated from the highest eigenfrequency of the system as Δtcri t = 2/ωmax . The
scheme in Eqs. (3) and (4) has linear convergence due to the discretization of the
velocity lagging half a step.

In Eq. (5) the inverse of the mass matrix is needed. Since the mass matrix is
state dependent, the inverse has to be calculated in every integration step. For a
modal model with properly scaled eigenmodes, the sub-matrix Mee in Eq. (1) is an
identity matrix. This allows to use the structure of the mass matrix for an efficient
calculation of the inverse, see [16],
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M−1 =
[

M̃ sym
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]
, (6)

with
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r t

Mr t Mrr

]
− [Met Mer

]T · [Met Mer
])−1

. (7)

The inverse of the mass matrix can now be calculated by only inverting the 6 × 6
matrix yielding M̃ and several matrix multiplications. This is not only much faster,
but also much more precise than an iterative inversion of the full mass matrix.

3.4 Simulation Results

Figure 5 shows simulation results for the impact investigation presented in the begin-
ning, using the finite element model and the elastic multibody model. The elastic
multibody model is fully implemented in MATLAB, see [2], solely the fine collision

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Time in ms

C
on

ta
ct

 f
or

ce
 in

 k
N

FEM
EMBS

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

Time in ms

R
ot

. v
el

oc
ity

 in
 r

ad
/s

FEM
EMBS

Fig. 5 Comparison of contact forces and rotational velocities of the idler gear for the finite element
model, the rigid body model and the elastic multibody model
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Table 1 Integration time and memory requirement for two gears and 13 impacts

Int. time Disk Memory
Model Pre-processing (h) 13 impacts (s) requirement requirement

FEM 0 698400 ≈ 1 GB ≈ 1 GB
MBS 0 5 � 100 MB � 100 MB
EMBS 28 550 ≈ 8 GB ≈ 500 MB

detection is implemented in C to increase performance. Apparently, the results from
the elastic multibody model are very close to the finite element analysis. Unlike the
rigid body model, the elastic multibody model shows very precise contact forces,
both in time response and contact time. The three simultaneous contacts for the first
contact agree exactly, as well as the vibration of the contact force due to the radial
deformation. The results for the rotational velocity also show the torsional vibration.
Clearly, the elastic model tremendously improves the accuracy of the simulation
results.

To compare the numerical effort, the integration time and the memory request for
the three presented models are summarised in Table 1. The rigid body model shows
by far the smallest simulation times, but the simulation results differ significantly
from the finite element results. The elastic multibody model is slower than the rigid
model, but still about a factor of 1000 faster than the finite element model and gives
very precise results, as shown above. The speed-up can mainly be explained by the
pre-computed modal data. The calculation of the modal data is numerically expen-
sive, however, it only has to be carried out once and, therefore, the elastic multibody
model particularly pays off when investigating many contacts.

4 Experimental Impact Investigations

To validate the proposed elastic multibody model, basic experimental impact inves-
tigations have been carried out. For these investigations, a simple impact body with
cuboid shape has been impacted on a gear. The gear used for the experimental inves-
tigations has z = 18 teeth of modulus m = 4.9 mm and a cylindrical gear body. To
reduce the experimental complexity, we limited ourself to stationary gear wheels,
which tremendously reduces the measurement setup, particularly the alignment of
impact body and gear wheel.

To guarantee a very precise guidance of the impact cuboid, a guiding slide rail
is used. To allow reproducible experimental conditions and negligible friction, the
slide rail is supplied by pressured air that generates an air cushion upon which the
cuboid hovers almost frictionless, see Fig. 6.

Furthermore, some air exhausts from the gap between cuboid and slide rail, pro-
ducing a self-aligning effect. The slide rail is mounted on a precision rotary stage
that allows to adjust the alignment angle β with a precision of less than 1/1000◦.
The rotary stage itself is mounted on a frame that allows to adjust the alignment
angles α and γ , see Fig. 7 (left). The entire experimental setup is shown in Fig. 7
(right).
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pam

p

V̇

Fig. 6 Schematic drawing of the air supplied slide rail

Fig. 7 Rotary stage and supporting frame for cuboid impact body (left) and overall experimental
setup (right)

Generally, the direct measurement of contact forces is difficult. Therefore, flank
velocities, as well as strains are measured in close vicinity to the contact area and
compared to corresponding simulation results. To do so, Laser-Doppler vibrometers
are used to measure the flank velocity on the back side of the impacted tooth and
strain gauges are applied in the dedendum. Since the interesting frequency range is
80 kHz, DC amplifiers instead of carrier frequency amplifiers are used, to directly
measure the mistune of the bridge.

Figure 8 shows the flank velocity measured in the middle of the rear flank and
the cuboid velocity for one experiment together with the simulation results from
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ment, finite element model and elastic multibody model
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Fig. 9 Position of the strain gauges in the dedendum and strain signals for one impact for experi-
ment and finite element model

the finite element model and the elastic multibody model. Apparently, the results
agree very well.

The measured and simulated strains in the dedendum are shown in Fig. 9. The
signal of the strain gauges turns out to be very noisy which is mainly due to the use
of DC amplifiers. To reduce the noise ten measurements have been averaged. Here
too, a good agreement between simulation and experiment can be observed.

Comparing the experimental results with simulations, apparently, the finite ele-
ment model and the elastic multibody model give very good results. Both the surface
velocities on different teeth, as well as strains in the dedendum can be calculated
precisely and the good agreement between simulation and experiments even holds
for a long time after the contact. For the basic impact conditions described above,
the elastic multibody model can be regarded as validated.

5 Conclusions

Impacts between two gears of a real geartrain have been investigated using a clas-
sical rigid body model, a finite element model and an elastic multibody model.
The results clearly show that for impacts on compliable bodies the elasticity has
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to be considered using a fully elastic model. A rigid body model is not applica-
ble when precise results, particularly precise contact forces, are required. To avoid
the tremendous numerical effort needed to solve the full finite element model, a
modally reduced elastic multibody model with contact was introduced. To reduce
the memory request for storing the transformation data necessary for the contact
calculation, a coarse collision detection including a dynamic reloading scheme was
presented. In combination with an explicit integration scheme which exploits the
structure of the mass matrix for its inversion, this elastic multibody model allows
very precise simulations in very short time compared to the finite element solution.
This approach can therefore be used to simulate many contacts and many rotations
and is suitable for being incorporated into overall engine models. To validate the
numerical models, basic experimental impact investigations have been carried out.
In order to simplify the experimental setup, a stationary gear wheel was impacted
with a cuboid impact body and flank velocities, and also strains in the dedendum
have been measured. Comparing simulation and experiment, a very good agreement
can be found.
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Numerical Analysis of Non-smooth

Problems



Discontinuities in ODEs: Systems with Change
of State

Per Grove Thomsen

Abstract The occurrence of discontinuous right hand sides in ODE-systems often
appears in technical applications. Such applications may be characterised by the
cases where the system changes between several states. Each state is defined by a
system of ODEs and the transition between states is defined by an algebraic con-
dition. The numerical solution that is done in order to simulate the behaviour of
the system will be possible by using standard numerical software but this approach
is very ineffecient. We present an alternative approach based upon the tracking of
state-changes and accurate numerical determination of transition points. Real appli-
cations from railway dynamics are used to illustrate the approach.

1 Systems with Changes of State

In many applications of numerical simulation the systems may change state. Such
cases are found in the simulation of multibody dynamics and control systems, for
example when a thermostat makes some part of the system cut in and off. This means
in the mathematical model that the equations for the dynamic system are changing
in a discontinuous way across a solution point [2].

The direct application of a numerical method for the solution of such a system
will lead to unwanted growth of errors as well as a wasted extra computational
effort. All in all this is an unwanted situation.

By applying modern continuous extensions in combination with the solution
method we may derive a strategy for passing the discontinuity points without loss
of accuracy and at a very minimal extra cost in computational effort.
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1.1 ODE’s with Discontinuous Right Hand Sides

The dynamic system we will consider for illustration can be defined the following
way

y′ = f (t, y) , t ∈ [a, b] , y(a) = η (1)

where the function f (t, y) is given by

f (t, y) =
{

f1(t, y) for φ(t, y) < 0
f2(t, y) for φ(t, y) ≥ 0

(2)

The functions f1(t, y) and f2(t, y) need not have the same value at the point where
the solution crosses the curve φ(t, y) = 0. This means that the solution will have a
discontinuous derivative across this curve (see [6]). We illustrate the situation in the
Fig. 1 below.

The existence and continuity of the solution is guaranteed under very modest
assumptions for the differential system, we refer to [6] for the details. If we assume
that φ(t, y) is analytic in t and y we will obtain that the curve φ(t, y) is differentiable
with respect to both t and y and the solution to

y′
1(t) = f1(t, y1(t)) , y1(a) = η (3)
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Fig. 1 Discontinuity across curve of state change
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will cross the curve φ(t, y) at some point P defined by the condition

φ(t1, y1(t1)) = 0 (4)

The differential equation (1) defines a new initial value problem that may be rewrit-
ten as

y′
2(t) = f2(t, y2(t)) , y2(t1) = y1(t1). (5)

The solution to (1) can now be found as the solution to (3) in combination with the
solution to (5) where the initial condition is determined by (4). The simple form of a
discontinuous problem is found when we have a jump-discontinuity that satisfy the
condition

| f1(t, y) − f2(t, y) |< C (6)

We will consider in this report problems where this condition is assumed to be
satisfied everywhere.

1.2 The Numerical Solution Across a Jump-Discontinuity

Following the idea from [3] we consider the problem specified in the previous
section using either a one-step method like a Runge Kutta method or a multistep
method. In the two domains specified by the regions where the function φ is either
positive or negative the methods are solving IVP’s in the usual manner and all we
need to consider is the region close to the point where the solution crosses from one
region to the other. The point P is called the transition point.

The case where multiple zeroes of the transition function inside the step may
occur in practical situations but this is a special situation that must be dealt with by
the actual implementation and will not be covered in this aper.

1.2.1 Multistep Methods

When solving the system (1) using a multistep method we consider for simplicity a
constant stepsize defined by

yn ≈ y(tn) , tn = a + nh , h = tn+1 − tn , n = 1, 2, . . . , N . (7)

We follow the treatise of multistep methods in [5] where the multistep method is
defined as

k∑
j=0

α j yn+ j =
k∑

j=0

β j y′
n+ j (8)
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The accuracy of the formula is found by looking at the local truncation error given
by the linear difference operator

L[y(tn); h] =
k∑

j=0

(α j y(tn + jh) − hβ j y′(tn + jh)) (9)

The assumption that y(t) has continuous derivatives of sufficiently high order leads
to the result that for a method of order p we find that

L[y(tn); h] = C ph p+1 y(p+1) + O(h p+2) (10)

This is the traditional result that leads to convergence when p ≥ 1. Now consider
the situation shown in the figure below where the step is across a transition point as
illustrated in Fig. 2.

In this case we can derive the result for the truncation error by using Taylor
expansions of the sum from (10) and we arrive to the result (after some derivation)
using the conditions for order p that

L[y(tn); h] = h(1 − δ − βk)(y′(ξ+) − y′(ξ−)) + O(h2) (11)

According to the normal definition of order we conclude that in this case the order
is p = 0 and the method is no longer convergent. We may simplify the expression
for the local truncation error by using the bound from the jump-condition (6) and
we obtain
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Fig. 2 Integrating across a point of state change
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| L[y(tn); h] |≤ h | (1 − δ − βk) | C (12)

Basically we obtain that the local truncation error is proportional to h and to the size
of the jump in first derivative across the discontinuity.

For discontinuities in higher order derivatives we may use the same type of
derivation to obtain the result that if the jump is in the q’th derivative and bounded
like (6) we find

L[y(tn); h] ≈ hqĈ (13)

We see that in cases where q < p + 1 we may expect a decrease in the order
observed. This result means that we will be able to predict the local behaviour
of a given method across boundaries with discontinuities in derivatives of variable
orders.

1.2.2 One-step Methods

The general form of a onestep method is the following

yn+1 = yn + hΦ(tn, yn; h) (14)

Again assuming smoothness of all derivatives up to the order p + 1 will lead to a
local truncation error of the form

Tn+1 = ψ(tn, y(tn))h p+1 (15)

The result of the analysis in the case with a discontinuity in the derivative will in
this case lead to a similar result to the case with multistep methods and we find

Tn+1 ≈ ψ̃(tn, ξ
+ − ξ−)h (16)

In the onestep case we find that the discontinuity may be in any of the mixed deriva-
tives of the function f (t, y) of orders lower than the order of the method. In principle
though the two types of methods behave in a similar way. To get more details we
refer to the reference [3].

Example 1. In order to give an example of how the behaviour of a standard solver is
reflecting the results we have looked at the problem

y′ =
{

y f or 0 ≤ t ≤ 1
−y f or 1 < t ≤ 2

y(0) = 1 , t ∈ [0, 1] (17)

The Fig. 3 shows that the automatic stepsize control will cut down the stepsize to the
smallest allowable value because the error estimator becomes unreliable due to the
fact that the error behaves like order zero instead of order p. If we assume the correct
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Fig. 3 Solution and stepsize history with a discontinuity

order of the method the error will be estimated to the actual stepsize times the size
of the jump. For the example this would mean that the step should be of the order
of 10−4 compared to the value 10−6 observed from the result. The driver wastes
many unaccepted steps cutting down the stepsize before passing the transition
point.

1.3 Continuous Extension

A traditional method for the solution of ODE’s is basically finding the approximate
solution on a discrete set of points, the discretization is defined by the stepsize con-
trol. The transition points wil however not in general be at one of these points. In
order to develop a method for passing the transition point we need to be able to
find an approximate solution in a continuous way. The tool for doing that is the
continuous extension, developed for Runge Kutta methods ([7, 10]) and the general
interpolant for multistep methods ([8]).

Example 2. The Trapezoidal method with continuous extension. As a simple
example of an implicit method we illustrate the ideas by using the Trapezoidal
method, in this case we use the GERK-formulation by giving the Butcher tableau of
the method.
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It is customary to use θ as the parameter for defining the interpolation point.
This point will in connection with the discontinuity be defined by the position of
the transition point. We wish to determine this point and the condition for this is the
function φ(t, y) being zero.

φ(t, y(θ )) = 0 , 0 ≤ θ ≤ 1. (18)

This equation is a normal condition for a zero of the function with θ as the vari-
able. Any convenient zero-finding method may be used for determining the solution,
if φ(t, y) is a smooth function the most efficient method will be based on a Newton-
Raphson method. This assumes that derivatives of the functions are available. In the
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following example we treat a system which passes a level, like in an application
where a thermostat reaches a set-point. The system is the following.

y′ = 1 − y, y(0) = 2, y(t) = 1 + exp(−t) (19)

The set-point is defined by the condition,

φ(t, y) = y − 1.5 = 0. (20)

The solution is shown in the Fig. 5 and the transition point is marked. We have
applied a constant stepsize to get to the setpoint and then the value θ is found from
the equation that is derived from (4) leading to the equation.

yn − 1.5 − h

(
θ2

2
( fn+1 − fn) + θ fn

)
= 0

θ = 0.084 t = 0.6931 .

The stepsize strategy here is very different from the one leading to the results in
Fig. (5) and no steps are wasted for the approach to the transition point. The solution
may be restarted using the transition point as the initial value for a solution in the
new state.

Estimated transition point for y – 1.5 = 0
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Fig. 5 Solution and determination of a transition point
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1.4 Implementations

The example in the previous section has shown that a quite general strategy may be
applied to change from state to state if we apply the conditions (18) in connection
with the continuous extension a discussion is found in [9]. This is straightforward
in the scalar case with only one active condition as in the example. In the general
case where we may have a system of ODE’s and where change of state may happen
between several states and guided by a number of conditions, the implementation
must be done very carefully to give satisfactory performance.

In the DALI [1] a matrix of conditions are kept, rows representing the active
states and columns containing the conditions for passing to another state. Thus
φi, j (t, y) changing sign will mean that the system in state i will change to state
j. Not all states are reachable from all other states and we define a state-transition
matrix containing “ones” where a change is possible and “zeros” where there is
no possible state transition. The Fig. 6 shows the situation for a system illustrated
by a state diagram and the corresponding state transition matrix. The example is
from a simulation of a glider in the starting process over a free flight to landing,
the transition is one-way following the numbering of the states assuming that the
landing leads back to the original state of start.

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (21)

1
START

2
PULL

3
KITE

4
FREE

5
LANDING

Fig. 6 State transition diagram and matrix



220 P.G. Thomsen
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Fig. 7 The tank with heater and thermostat

Example 3. Tank-heater example. We consider the simulation of a tank heated to
a given temperature and controlled by thermostats to keep its temperature between
given bounds. The system is shown in the Fig. 7 below. The states of the system can
be identified quite easily and the state diagram is shown in Fig. (8). When carrying
out the simulation the model will change state using the continuous extension for
determining the transitions between states and the solution will look like shown here
(Fig. 9).

Example 4. Dynamics of a wheelset. We illustrate the dynamics of a wheel-axle
system used on a train wagon. The system is shown in the Fig. 10 below where the
wheel axle set is travelling along a set of tracks.

The nonlinear equations of motion for the lateral displacement and the yaw angle
are as follows

1 2

3

COOLING

HEATINGSTART

T > T_M

T < T_m

T < T_M

T > T_M

Fig. 8 State diagram for the tank-heater
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(ẏ − V ψ)

−2 f22

ro
Δ1(y) − aψWAδo + kψψ + cψψ̇ = Fψ (t)

wheel ψ wheel

axle

track

a

x

y

z

track

Fig. 10 The wheel axle arrangement



222 P.G. Thomsen

Table 1 Physical parameter values

Name Value Physical meaning Unit

m 30 Mass of wheel-axle set lbsec2/ in
Iω 16500 Yaw moment of inertia lbinsec2

a 30 Half distance between contact points on two rails in
ro 20 Wheel radius in
f11 3.6e6 Longitudinal creep coefficient lb
f12 0.46e6 Lateral/spin creep coefficient inlb
f22 66000 Spin creep coefficient lb
f33 3.9e6 Lateral creep coefficient lb
WA 66000 Axle load lb
ky 5000 Lateral stiffness lb/ in
cy 100 Lateral damping lbsec/ in
kψ 187200000 Yaw stiffness lbinsec/rad
cψ 31200 Yaw damping lbinsec/rad
V 15056 Axle speed in/sec
δo 0.05 Initial taper angle ◦
Fy(t) see fig Lateral input force lb
Fψ (t) 0 Yaw input moment

The values of the different physical parameters are as shown in the Table 1 above.
The variation with lateral displacement of the difference in the rolling radii of the
wheel-axle set is shown below (Fig. 11 and Table 2).

For different entries we have the following values of the constants c1 and c2.

y

Δ(y)

δ
–δ

1

1

C2

C1

Fig. 11 The variation of different variables with lateral displacements



Discontinuities in ODEs 223

wheel–axle lateral displacement

La
te

ra
l d

is
pl

ac
em

en
t

solved by GERK 17.5.2005

solved by ONERK4 17.5.2005

0.4

0.2

0

–0.2

–0.4
0 0.2 0.4 0.6 0.8

Time
1 1.2 1.4

wheel–axle yaw angle

axle Velocity V = 17600 in./secya
w

 a
ng

le

0.4
× 10–3

0.2

0

–0.2

–0.4
0 0.2 0.4 0.6 0.8

time
1 1.2 1.4

Fig. 12 Wheel-axle dynamics solution for V = 100 mph

In order to illustrate the importance of the determination of the discontinuities
accurately we carry out the solution first by a constant but relatively small step-
size and then by a variable stepsize implementation where the discontinuities are
determined. The two solutions are then compared (Fig. 12).

Solving the problem for an initial lateral displacement y = 0.36 with a velocity
of 100 miles/h leads to the solution above where the damping is strong and only
one passage of the discontinuity occurs. Here the solution with constant stepsize is
called ONERK4 and the solution that tracks down the discontinuity called GERK
are very close. Increasing the velocity to near instability where more passages of
discontinuities occur show very different solutions and the constant stepsize solution
is much less accurate than the one where the discontinuities are tracked as seen from
Fig. 13. This leads to very different interpretations of the dynamic properties. Of
cause this is critical since this case is near the point where instability is occurring.
From the example with the wheel-axle system we see, that in regions where the
damping is small the determination of transition points is very important in order

Table 2 Lateral discontinuities

var c1 c2

Δ1 0 18
Δ2 0 18
ΔL 0.15 22
rL −rR

2 0.005 10



224 P.G. Thomsen

wheel–axle lateral displacement

La
te

ra
l d

is
pl

ac
em

en
t

solved by GERK 17.5.2005

solved by ONERK4 17.5.2005

0.4

0.2

0

–0.2

–0.4
0 0.2 0.4 0.6 0.8

time
1 1.2 1.4

wheel–axle yaw angle

axle Velocity V = 27150 in./sec

ya
w

 a
ng

le

6
× 10–3

4

2

0

–0.2

–0.4
0 0.2 0.4 0.6 0.8

time
1 1.2 1.4

Fig. 13 Wheel-axle solution for V = 154 mph

for the solution to reflect the true dynamic properties of the system. If not treated
properly the interpretation of the dynamic properties from the numerical results may
be very different from the true system properties. Applying the continuous extension
is an efficient way of determining the transition points and the technique may be
implemented at almost no extra computational cost.

For further examples of applying the strategies is found in [4] where a full inves-
tigation of the dynamic properties of a two-axle freight wagon has been carried out.

2 Conclusion

In the application of numerical methods for the integration of dynamic systems
from practical applications the presence of discontinuities are shown to give rise
to large local errors across discontinuity points. This may lead to inefficient solu-
tion processes when stepsize control is based upon estimation of the local error.
Implementing a state – space model will be a good tool to make sure the accuracy
of the solution is sufficient and at the same time improving the efficiency of the
computational process.

The examples used for illustration have verified that in critical areas of the
solution the use of a continuous extension to the numerical integration method
will be robust and give reliable solutions. Careful analysis of dynamic systems are
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dependent on accurate numerical results to be reliable and great care should be given
to the choice of method and implementation when carrying out this kind of work.
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Towards Improved Error Estimates for Higher
Order Time Integration of ODEs
with Non-Smooth Right Hand Side

Martin Arnold

Abstract The classical convergence analysis of higher order ODE time integration
methods is based on rather strong smoothness assumptions on the right hand side
that are typically not satisfied in technical applications since spline approximations
of input functions and look-up tables result in frequent discontinuities in derivatives
of the right hand side. Practical experience shows, however, that nevertheless the
resulting non-smooth model equations may often be solved efficiently by higher
order ODE time integration methods. For one typical problem class, the present
paper gives a theoretical explanation of this behaviour. The results of the theoretical
analysis are illustrated by a series of numerical tests for the simplified model of an
agricultural device that moves along a track being defined by the spline approxima-
tion of a periodic smooth input function.

1 Introduction

In nonlinear system dynamics, the mathematical-physical modelling results typi-
cally in a nonlinear ordinary differential equation (ODE)

ẋ(t) = f (x(t), u(t)) , ( t ∈ [t0, te] ) , x(t0) = x0 (1)

with a right hand side f that may be strongly influenced by system inputs u(t).
The efficient and numerically stable time integration of initial value problems (1)

is a classical topic of numerical mathematics. Several well developed classes of
time integration methods for ODEs (1) are available [1–3]. They typically proceed
in time steps tn → tn+1 = tn + hn of stepsize hn from the initial state x0 at t = t0 to
the end time te.
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For ODEs (1) with smooth right hand side f , higher order time integration
methods like explicit Runge-Kutta methods or BDF offer an optimal compromise
between numerical effort per time step and accuracy of simulation results [1, 3].
They compute a numerical solution (xn)N

n=1 with xn ≈ x(tn), ( n = 1, . . . , N ) and
tN = te that has a global error

ε := max
1≤n≤N

‖xn − x(tn)‖ = O(h p) with h := max
1≤n≤N

hn (2)

and p ≥ 1 denoting the order of the method. The classical convergence analysis of
p-th order ODE time integration methods supposes that the right hand side f and the
input functions u in (1) are (at least) p times continuously differentiable on [t0, te],
see [1, 2]. If this strong smoothness assumption is violated and f and u are only
r < p times continuously differentiable, the standard error estimates give only a
bound

ε := max
1≤n≤N

‖xn − x(tn)‖ = O(hr ) (3)

for the global error ε that is substantially larger than (2) if linear (r = 0) or cubic
(r = 2) spline interpolation of input functions u is used in (1) and the (classical)
order of the method is p > 2.

Practical experience suggests that error bound (3) is too pessimistic if the dis-
continuities in derivatives of the right hand side result from linear or cubic spline
interpolation of smooth input data u(t). In the present paper, this practical observa-
tion is examined in detail combining an improved theoretical convergence analysis
(Sect. 2) and numerical tests for a benchmark problem from vehicle system dynam-
ics (Sect. 3).

2 Improved Error Estimates

Spline approximation of smooth system inputs. Throughout the present paper we
consider the approximation of a scalar smooth system input u(t) ∈ C∞[t0, te] in (1)
by spline functions sΔ(t) that interpolate u(t) at the spline grid

{ τi : τi = t0 + iΔ, ( i = 0, 1, . . . , NΔ ) }

of mesh width Δ := (te − t0)/NΔ :

sΔ(τi ) = u(τi ) , ( i = 0, 1, . . . , NΔ ) .

To simplify notation, we restrict ourselves to equidistant spline grids but the analysis
may be carried over straightforwardly to the non-equidistant case.

From the practical viewpoint, linear and cubic splines sΔ(t) are the most impor-
tant ones resulting in sΔ ∈ Cr [t0, te] with r = 0 in the linear case and r = 2 for cubic
splines and
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sΔ

∣∣
[τi ,τi+1] ∈ C∞[τi , τi+1] , ( i = 0, 1, . . . , NΔ − 1 ) .

Substituting the scalar system input u(t) in (1) by the interpolating spline sΔ(t), we
end up with an ODE initial value problem

ẋ(t) = f (x(t), sΔ(t)) , ( t ∈ [t0, te] ) , x(t0) = x0 (4)

that has a right hand side that is (at most) r times continuously differentiable w.r.t.
x and t .

Restricted number of time steps that are affected by the discontinuities. The first
important observation is that the number of discontinuities in (t0, te) is bounded
by the number NΔ − 1 of internal grid points in the spline grid. Since NΔ is inde-
pendent of the stepsizes hn in time integration, the asymptotic error analysis for
h = maxn hn → 0 may be splitted into NΔ − 1 time steps that may contain a dis-
continuity and the remaining N − (NΔ − 1) time steps that are not affected by the
discontinuities of sΔ at { τi : i = 0, 1, . . . , NΔ }. A similar observation is known
from the convergence analysis of time integration methods for delay differential
equations [4].

Extending the classical analysis of error propagation in ODE time integration
[1, 2], the improved global error bound

ε := max
1≤n≤N

‖xn − x(tn)‖ ≤ C(h p + NΔhr+1) , ( h → 0 )

with a constant C > 0 being independent of h is proved straightforwardly, see also
(2) and (3).

Piecewise linear interpolating splines. To keep notation compact, we restrict our-
selves in the following to fixed stepsize one-step methods

xn+1 = xn + hΦ(tn, xn; h, f , sΔ) , ( n = 0, 1, . . . , . . . , N − 1 ) (5)

and suppose furthermore h < Δ. The increment function Φ in (5) may represent
(explicit or implicit) Runge-Kutta methods as well as linearly implicit and other
methods [2]. The most simple example of (5) is the explicit Euler method

xn+1 = xn + hf (xn, sΔ(tn))

with Φ(tn, xn; h, f , sΔ) := f (xn, sΔ(tn)).
In a critical time step tn → tn+1 = tn + h with tn < τi < tn+1 for some τi with

i ∈ { 1, . . . , NΔ − 1 }, the right hand side of (4) is only r times continuously differ-
entiable w.r.t. t and the local error of a p-th order method is not bounded by O(h p+1)
like in the classical theory [1, 2] but only by O(h p̃+1) with p̃ := min{p, r}.
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Let us study the local error in more detail for a piecewise linear interpola-
tion sΔ ∈ C[t0, te] of a smooth scalar system input u(t). Because of h < Δ and
τi ∈ (tn, tn+1), we have for t ∈ [tn, tn+1]

sΔ(t) :=
{

s (−)
Δ

(t) if t ≤ τi ,

s (+)
Δ

(t) if t ≥ τi

with smooth functions

s (−)
Δ

(t) := u(τi ) + t − τi

Δ
(u(τi ) − u(τi−1)) , (6a)

s (+)
Δ

(t) := u(τi ) + t − τi

Δ
(u(τi+1) − u(τi )) (6b)

interpolating u(t) at t = τi−1, t = τi and at t = τi , t = τi+1, respectively. With Tay-
lor expansion of u(τi−1) and u(τi+1) at t = τi , we get from (6)

s (−)
Δ

(t) = u(τi ) + u̇(τi )(t − τi ) − Δ

2
ü(τi − ϑ (−)Δ)(t − τi ) , (7a)

s (+)
Δ

(t) = u(τi ) + u̇(τi )(t − τi ) + Δ

2
ü(τi + ϑ (+)Δ)(t − τi ) (7b)

with some ϑ (−), ϑ (+) ∈ (0, 1). Therefore, both s (−)
Δ

and s (+)
Δ

are in a tube of radius
O(Δh) around sΔ for all t ∈ [tn, tn+1]. Because of this property, we consider in
[tn, tn+1] the formal substitution of the piecewise linear function sΔ ∈ C0[t0, te] by a
smooth transition from s (−)

Δ
to s (+)

Δ
:

s̃(n)
Δ

(t) := t − tn
h

s (+)
Δ

(t) + tn+1 − t

h
s (−)

Δ
(t) ∈ C∞[tn, tn+1] .

From

s̃(n)
Δ

(t) − sΔ(t) = t − tn
h

(s (+)
Δ

(t) − sΔ(t)) + tn+1 − t

h
(s (−)

Δ
(t) − sΔ(t))

and (7) we get

max
t∈[tn ,tn+1]

|s̃(n)
Δ

(t) − sΔ(t)| ≤

≤ max
t∈[tn ,tn+1]

|s (+)
Δ

(t) − sΔ(t)| + max
t∈[tn ,tn+1]

|s (−)
Δ

(t) − sΔ(t)| ≤ C (n)Δh
(8)

with some constant C (n) ≥ 0 being independent of Δ and h.

Local error analysis based on a locally defined smoothed problem. For the analysis
of the local error in time step tn → tn+1 = tn + h we introduce a locally defined
smoothed initial value problem
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˙̃x(n)(t) = f (x̃(n)(t), s̃(n)
Δ

(t)) , ( t ∈ [tn, tn+1] ) , x̃(n)(tn) = x(tn) , (9)

that has a solution x̃(n)(t) close to x(t) provided that Δ � 1 and f is Lipschitz con-
tinuous w.r.t. x and sΔ, see, e.g., [5]:

x̃(n)(t) − x(t) ≤ C̃1eL̃(t−tn ) max
t∈[tn ,tn+1]

|s̃(n)
Δ

(t) − sΔ(t)|

≤ C̃2(t − tn) · C (n)Δh ≤ C̃ (n)Δh2 , ( t ∈ [tn, tn+1] ) (10)

with constants C̃ (n), C̃1, C̃2, L̃ being independent of Δ and h.
In contrast to the original ODE (4), the locally defined smoothed ODE (9) is not

affected by any discontinuities in [tn, tn+1] and the formal application of one step
method (5) with stepsize h to (9) is not affected by any order reduction. With

x̃n+1 = xn + hΦ(tn, xn; h, f , s̃(n)
Δ

) , (11)

the local error of time step tn → tn+1 satisfies the classical error estimate

x̃(n)(tn) + hΦ(tn, x̃(n)(tn); h, f , s̃(n)
Δ

) − x̃(n)(tn+1) = O(h p+1) , (12)

see [1, 2]. With (10), (12), x̃(n)(tn) = x(tn) and a Lipschitz condition for the incre-
ment function Φ:

‖Φ(tn, x(tn); h, f , s̃(n)
Δ

) − Φ(tn, x(tn); h, f , sΔ)‖ ≤ LΦ max
t∈[tn ,tn+1]

|s̃(n)
Δ

(t) − sΔ(t)|

≤ LΦC (n)Δh ,

the local error

x(tn) + hΦ(tn, x(tn); h, f , sΔ) − x(tn+1)

of one step method (5) applied to the original problem (4) is bounded by

‖x(tn) + hΦ(tn, x(tn); h, f , sΔ) − x(tn+1)‖ ≤
≤ ‖x̃(n)(tn) + hΦ(tn, x̃(n)(tn); h, f , s̃(n)

Δ
) − x̃(n)(tn+1)‖ +

+ h‖Φ(tn, x(tn); h, f , sΔ) − Φ(tn, x(tn); h, f , s̃(n)
Δ

)‖ +
+ ‖x̃(n)(tn+1) − x(tn+1)‖
≤ O(h p+1) + LΦC (n)Δh2 + C̃ (n)Δh2 = O(h p+1) + O(Δh2) . (13)

Note, that the additional error term O(Δh2) results from the missing differentiability
of sΔ at τi ∈ (tn, tn+1). In all time steps tn → tn+1 = tn + h with [tn, tn+1] ⊆ [τi , τi+1]
for some i ∈ { 0, 1, . . . , NΔ − 1 } the spline input function sΔ is smooth and the clas-
sical bound for the local error is obtained instead of (13):

‖x(tn) + hΦ(tn, x(tn); h, f , sΔ) − x(tn+1)‖ = O(h p+1) . (14)
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Error propagation and bounds for the global error. Summarizing the error bound
(13) for at most NΔ − 1 time steps tn → tn+1 and the error bound (14) for the
remaining ≤ N time steps tn → tn+1, the bound

ε = max
1≤n≤N

‖xn − x(tn)‖ ≤ C(h p + NΔ · Δh2) (15)

with some constant C ≥ 0 being independent of Δ and h is proved following line by
line the classical error propagation analysis for one step methods, see, e.g., Sect. II.3
of [2].

Since Δ = (te − t0)/NΔ, error bound (15) may be simplified to

ε = max
1≤n≤N

‖xn − x(tn)‖ ≤ O(h p) + O(h2) = O(h p̃) (16)

with p̃ := min{p, 2} = min{p, r + 2}.
By the refined error analysis, the bound for the global error ε was improved by a

factor of h2, see (3). The same improvement is possible in the case of cubic splines
sΔ since sΔ and its derivatives converge for Δ → 0 uniformly to u and its derivatives
if u ∈ C4[t0, te], see, e.g., [6]. In the case of interpolating cubic splines sΔ, the global
error is bounded by ε = O(h p̃) with p̃ := min{p, r + 2} = min{p, 4} instead of the
classical result p̃ := min{p, r} = min{p, 2} from (3).

3 Numerical tests

In the present section, the results of the theoretical analysis of Sect. 2 are verified
by numerical tests for the equations of motion of a two mass system that models
essential dynamic effects of an agricultural device [7]. A similar model was used in
a recent applied project to test control strategies and to calibrate controller param-
eters for a device that moves along a rough track and should keep at the same time
a long horizontal bar as close as possible to its optimal horizontal position, see
Fig. 1.

The device is excited by two tyre forces acting at the lower left corner ( fT,l )
and at the lower right corner ( fT,r ) of the central body in Fig. 1. The tyres are
modelled by linear spring-damper elements connecting central body and track.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

2

3

Fig. 1 Two mass model of an agricultural device [7]
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In the applied project, they follow a track that is defined pointwise by measured
data [8].

For the numerical tests, a smooth track without irregularities is used resulting in
an ODE model (1) with smooth inputs u(t) = ( ul (t), ur (t) )� ∈ R

2 for undamped
tyre forces and u(t) = ( ul(t), u̇l (t), ur (t), u̇r (t) )� ∈ R

4 in the damped case. Figure 2
shows a typical solution of (1) for harmonic inputs
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Fig. 2 Two mass model: Solution for a harmonic excitation with ω = 2π f and f = 1.0 Hz

ul,r (t) = umax sin(ωt + ϕl,r )
with

umax = 0.1 m, ω = 2π f, f = 1.0 Hz, ϕl = 0.4, ϕr = 0.1.

With this fairly simple test problem, the influence of spline approximations and
look-up tables on the convergence behaviour of higher order time integration meth-
ods may nicely be illustrated. Substituting ul(t), ur (t) by splines sΔ,l (t), sΔ,r (t),
four test scenarios may be studied combining undamped tyre forces (sΔ,l , sΔ,r ) and
damped tyre forces (sΔ,l , ṡΔ,l , sΔ,r , ṡΔ,r ) for cubic and for linear interpolating splines
sΔ,l (t), sΔ,r (t), respectively. Classical and improved error estimates are summarized
in Table 1.

In the first four numerical tests, the 5th order explicit Runge-Kutta method of
Dormand and Prince [9] is applied with fixed time stepsize h to ODEs (4). If the
tyre force model includes damping, the right hand side of (4) does not only depend
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Table 1 Simulation scenarios in the numerical tests of Figs. 3 – 6.

Scenario Spline sΔ Damping Smoothness Error bound (3) Error bound (16)

1 cubic no r = 2 O(h2) O(h p) + O(h4)

2 cubic yes r = 1 O(h) O(h p) + O(h3)

3 linear no r = 0 ? O(h p) + O(h2)

4 linear yes r = −1 ? O(h p) + O(h)

on the interpolating spline sΔ itself but also on its derivative ṡΔ with ṡΔ ∈ C[t0, te]
for cubic splines sΔ and piecewise constant ṡΔ in the case of linear splines.

The diagrams of Figs. 3 – 6 show in double logarithmic scale global error ε

vs. time stepsize h for a spline grid of mesh width Δ = 0.01 (dashed line) and
Δ = 0.005 (dotted line). In all four figures, the global error ε of the explicit Runge–
Kutta method applied to (4) does not increase for decreasing Δ. This observation is
in perfect agreement with the improved error bound (16) that is independent of the
number NΔ of grid points τi .

For small time stepsizes h, the additional error term O(hr+2) that results from
the discontinuities in derivatives of the spline functions sΔ dominates the global
error ε. In Figs. 3 – 6, this error term is indicated by straight lines of slope r + 2.
For linear splines sΔ, this error term dominates over the whole stepsize range of
interest. For cubic splines sΔ, the classical global error term O(h5) of the 5th
order method is dominant for stepsizes h ≥ 1.0 ms. In the undamped case, the
additional lower order error term O(hr+2) = O(h4) is even completely negligible,
see Fig. 3.
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u(t) : Cubic interpolation (undamped tyre force)
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~ h5

Δ = 0.01
Δ = 0.005

Fig. 3 Global error of 5th order method of Dormand and Prince applied to (4), cubic splines sΔ, no
damping, r = 2. Improved error bound (16): ε = O(h5) + O(h4)
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Fig. 4 Global error of 5th order method of Dormand and Prince applied to (4), cubic splines sΔ,
with damping, r = 1. Improved error bound (16): ε = O(h5) + O(h3)

The numerical tests illustrate the well known practical observation that higher
order ODE time integration methods may also be successfully applied if the right
hand side of ODE (4) does not satisfy the strong smoothness assumptions of the
classical convergence analysis. For Scenario 3 with linear splines sΔ ∈ C0[t0, te] that
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u(t) : Linear interpolation (undamped tyre force)
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Δ = 0.01
Δ = 0.005

Fig. 5 Global error of 5th order method of Dormand and Prince applied to (4), linear splines sΔ,
no damping, r = 0. Improved error bound (16): ε = O(h5) + O(h2)
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Fig. 6 Global error of 5th order method of Dormand and Prince applied to (4), linear splines sΔ,
with damping, r = −1. Improved error bound (16): ε = O(h5) + O(h)
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u(t) : Linear interpolation (undamped tyre force)
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 p = 2  (Euler−Heun)

 p = 4  (Runge−Kutta)

 p = 5  (Dormand−Prince)

Fig. 7 Global error of explicit Runge-Kutta methods applied to (4) with linear splines sΔ, no damp-
ing, r = 0. Improved bound (16) for global error: ε = O(h p) + O(h2)

result in an error bound ε = O(h p) + O(h2), Fig. 7 compares explicit Runge-Kutta
methods of different (classical) order p. In the whole stepsize range of interest,
higher order methods like the classical 4th order method of Runge and Kutta or the
5th order method of Dormand and Prince have a substantially smaller global error ε

than lower order methods like the second order Euler-Heun method.
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4 Summary and Outlook

For a special problem class, improved error bounds for higher order time integration
methods applied to ODEs with non-smooth right hand side are derived. The conver-
gence analysis gives some additional theoretical justification for the application of
higher order methods to systems with discontinuities in derivatives of the right hand
side. The results are verified by numerical tests for a two mass system with harmonic
excitations that are approximated by linear or cubic splines.

It should be stated explicitly that the convergence analysis of Sect. 2 does not
consider practical aspects like stepsize control for systems with non-smooth right
hand side.

The extension of the convergence analysis for systems with non-smooth right
hand side to ODEs and to DAEs with state dependent spline functions sΔ = sΔ(t, x)
will be the logical next step to a better understanding of higher order time integration
methods applied to non-smooth systems.
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Sensitivity Analysis of Discontinuous
Multidisciplinary Models: Two Examples

Andreas Pfeiffer and Martin Arnold

Abstract Discontinuous system modeling is a present topic when working with
practical models of technical systems. Numerical algorithms can only handle mod-
els with a given structure of the discontinuity effects. In the paper we show some
examples that motivate the investigation of extended problem classes. The sensitiv-
ity analysis of all the systems gives important information about the dependency
of the model solution on model parameters like controller parameters. We discuss
models with nonsmooth switching functions and models with several switching
functions influencing the model dynamics at the same time.

1 Introduction

The complexity of system models in engineering processes is growing more and
more. Beyond the increasing complexity the models also have to assemble differ-
ent physical disciplines, e.g., mechanics, electrics, hydraulics or thermodynamics
into multidisciplinary models. Several software systems support the modeling and
simulation of such applied problems. One of the standard tools is Modelica [1] that
is especially tailored to discontinuous and hybrid discrete/continuous systems. Dis-
continuities often arise when simplifying physical laws or effects with the goal to
harmonize the internal levels of detail for multidisciplinary models. One challenge
for a robust and efficient numerical integration of automatically generated model
code is the correct detection and handling of different classes of discontinuous
phenomena.

The paper contributes to the theoretical analysis for extended problem classes of
discontinuous models by detailed investigations of practical examples. This analysis
includes the sensitivity analysis with respect to model parameters. Gradient based
optimization algorithms need the sensitivity information for a reliable convergence
to optimal parameter values. The algorithmic optimization of dynamical models is
a widely used technique to improve the model quality in technical applications.
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After this introduction the paper has two main sections. In Sect. 2 we formulate
the standard structure and a solution procedure of dynamical systems with discon-
tinuous right hand sides before we introduce the generalized solution according to
Filippov [2]. A mechanical example shows a simple system that does not fulfill the
standard assumption used so far. We construct the solution of this example in detail.

Section 3 recalls the sensitivity analysis for smooth systems and discontinuous
systems with traditional requirements. We analyze the type of systems from Sect. 2
and prove for an example from electrical circuit analysis, that several active switch-
ing functions can lead to problems since the existence of sensitivities is not longer
guaranteed. The paper closes with a short summary.

2 Discontinuous Models

We consider initial value problems

ẋ = f (x, t), x(t0) = A (1)

with a state vector x ∈ R
nx , a right hand side f : R

nx +1 → R
nx and initial val-

ues A ∈ R
nx at the time t0 ∈ R. It is a classical result in analysis [3] that for a suf-

ficiently smooth function f a unique local solution x(t), t ∈ [t0, t∞] with t∞ > t0

exists. If we enlarge the problem class by accepting discontinuous functions f for
the right hand side of the dynamical system (1), then the classical solution theory
for ordinary differential equations is not applicable. The consideration of differ-
ential inclusions ẋ ∈ F(x, t) and set valued right hand sides F may solve this
problem [4, 2]. Based on this very general theory, we concentrate on problems that
are relevant for a large class of technical systems and for which algorithms exist to
compute numerical solutions.

The standard approach [5] in numerical analysis relies on switching functions q :
R

nx +1 → R. Their signs define the right hand side:

ẋ = f (x, t) :=
{

f +(x, t), if q(x, t) > 0,

f −(x, t), if q(x, t) < 0.
(2)

The two vectors f +, f − denote smooth functions that are active on disjunct sets in
the phase space R

nx +1. Modeling environments like Modelica automatically gener-
ate this kind of equations for the numerical integration algorithms.

In the following we will explicitly describe the solution theory for problem (2).
For a time t∗ and the value x∗ := x(t∗) we assume q(x∗, t∗) = 0. The configura-
tion (x∗, t∗) is called an event. In the case q(x∗, t∗) �= 0 a unique right hand side f +

or f − is defined in (2) and the classical theory holds as long in time as q(x(t), t)
does not change its sign. To decide how the solution can be extended after an event
for t > t∗, it is advantageous [6, 7] to consider for a smooth switching function q
the directional derivatives
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D+q := qx f + + qt , D−q := qx f − + qt .

We use the notation qx := ∂q/∂x . The signs of D+q, D−q show the qualitative
behavior of the switching function q in the direction of possible velocities ẋ .

In the case of equal signs of D+q(x∗, t∗) and D−q(x∗, t∗), it is obvious how to
define f locally for t ≥ t∗:

f (x, t) =
{

f +(x, t), if D+q(x∗, t∗), D−q(x∗, t∗) > 0,

f −(x, t), if D+q(x∗, t∗), D−q(x∗, t∗) < 0.

In the case D+q(x∗, t∗) > 0, D−q(x∗, t∗) < 0 no unique solution exist. Because
the possible solutions are unstable with respect to the initial values [2], we do not
consider them in the following. We also do not consider cases with D+q(x∗, t∗) = 0
or D−q(x∗, t∗) = 0. For more information about these cases we refer to [8].

The last case D+q(x∗, t∗) < 0, D−q(x∗, t∗) > 0 describes a situation where
no classical solution can be defined, because both velocity vectors ( f +, 1), ( f −, 1)
are directed into the switching surface Σ := {(x, t) : q(x, t) = 0}. Therefore,
Filippov [2] supposes q(x(t), t) = 0 locally for t ≥ t∗ and suggests to generalize the
solution concept, where the right hand side is selected from the convex hull F :=
conv { f +, f −}. This definition is in line with physical observations on important
phenomena like dry friction in one dimension [2].

By the use of λ ∈ [0, 1] we obtain

ẋ = λ f +(x, t) + (1 − λ) f −(x, t), x(t∗) = x∗, q(x(t), t) = 0.

Differentiation of q(x(t), t) = 0 and elimination of λ results in

ẋ = f ∗(x, t) := D+q f − − D−q f +

D+q − D−q
(x, t), x(t∗) = x∗. (3)

The system (3) of differential equations is valid until one of the directional deriva-
tives D+q(x(t), t) or D−q(x(t), t) changes its sign. Then the solution can leave the
switching surface Σ and one of the vectors f + or f − may serve as right hand side
again.

Example 1 (Lossy gear model)

We investigate a Modelica model [9] which describes a mechanical transmission
gear in a simple manner. The rotating gear wheels are modeled by mechanical iner-
tias which are coupled by an efficiency torque load and an ideal gear without losses,
see Fig. 1. Depending on the direction of the power flow, the efficiency eta is a fac-
tor in the left or right hand side of the torque equation of the model Efficiency.
It has the following Modelica-Code:
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Fig. 1 Modelica model for a mechanical gear inside a test environment with torque inputs

model Efficiency
extends TwoFlanges; . . .

parameter Real eta = 0.5; power_a = flange_a.tau*der(phi);
SIunits.Angle phi; if power_a >= 0 then
SIunits.Power power_a; flange_b.tau = -eta*flange_a.tau;

equation else
phi = flange_a.phi; eta*flange_b.tau = -flange_a.tau;
phi = flange_b.phi; end if;

. . . end Efficiency;

Some more detailed gear models can be found in [9]. Fig. 1 shows a model that
can be simulated to test the gear model’s properties. Both mechanical flanges of the
gear are fed by time dependent torques to analyze the behavior for different load
and drive torques. All the significant parameters and variables are listed in Table 1.
The total model can be formulated as follows:

ẋ =
{

f +(t), if q(x, t) > 0,

f −(t), if q(x, t) < 0,
x(0) = 0

Table 1 Parameters und variables for the lossy gear model

Name Modelica variable Description Value Unit

J1 Gear.J1 Inertia, left gear wheel 1 kg m2

J2 Gear.J2 Inertia, right gear wheel 1.5 kg m2

r Gear.r Transmission ratio 2 1
η Gear.eta Efficiency 0.5 1
τD TorqueD.tau Torque at left flange 10 sin(2π t) Nm
τL TorqueL.tau Torque at right flange −10 + 2.5t Nm
ω1 Gear.w1 Rotation speed, left wheel x(t) rad/s
ω2 Gear.w2 Rotation speed, right wheel ω2(t) rad/s
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with

f +(t) := ηr2τD(t) + rτL (t)

ηr2 J1 + J2
, f −(t) :=

1
η
r2τD(t) + rτL (t)

1
η
r2 J1 + J2

,

q(x, t) = x
(
τD(t) − J1 ẋ

) =
{

x
(
τD(t) − J1 f +(t)

) =: q+(x, t), if q > 0,

x
(
τD(t) − J1 f −(t)

) =: q−(x, t), if q < 0.

Here, we find a switching function q that depends on ẋ and results in two cases
for the switching function:

q+(x, t) = x
J2τD(t) − r J1τL (t)

ηr2 J1 + J2
, q−(x, t) = x

J2τD(t) − r J1τL (t)
1
η
r2 J1 + J2

.

It follows sgn q+ = sgn q−, because the conditions ηr2 J1 + J2, r2/ηJ1 + J2 > 0
are satisfied. As a consequence the equations q+ = 0 and q− = 0 hold on the same
set and so Σ is well defined. In Fig. 2 the function q(x, t) is displayed in different
grayscales for the areas q > 0, q < 0 and q = 0. Because of sgn q+ = sgn q−

the function q is continuous but not necessarily differentiable. If we consider the
derivatives

q+
x (x, t) = J2τD(t) − r J1τL (t)

ηr2 J1 + J2
, q−

x (x, t) = J2τD(t) − r J1τL (t)
1
η
r2 J1 + J2

,

q+
t (x, t) = x

J2τ̇D(t) − r J1τ̇L (t)

ηr2 J1 + J2
, q−

t (x, t) = x
J2τ̇D(t) − r J1τ̇L (t)

1
η
r2 J1 + J2

,

then it becomes clear, that for η �= 1 we have in general q+
x �= q−

x and q+
t �= q−

t .
In [8] a solution theory, which is based on the theory above, is developed for sys-

tems with discontinuous right hand sides and nonsmooth switching functions. We
apply this theory to the current example. We get the identities q+(0, 0) = q−(0, 0) =
0 and

Fig. 2 Nonsmooth switching function q(x, t) for Example 1
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q+
x (0, 0) = 40

7
, q+

t (0, 0) = 0, f +(0) = −40

7
, f −(0) = −40

19
.

It follows: D+q+(0, 0) = −1600/49 < 0 and D−q+(0, 0) = −1600/133 < 0.
Hence, the solution is locally for t > 0 generated by

f −(t) = 160 sin 2π t − 40 + 10t

19
.

The corresponding switching function

q−(x, t) = x
30 sin 2π t + 40 − 10t

19

has a zero crossing for t ∈ (0, 1.5) if and only if x vanishes. The solution

x(t) = − 80
π

(cos 2π t − 1) − 40t + 5t2

19

becomes equal to zero the first time for t∗ = 0.080477. This yields q−(0, t∗) = 0,
q−

x (0, t∗) = 2.8277 and q−
t (0, t∗) = 0. We can follow [8] from the directional

derivatives D+q−(0, t∗) = −8.0065 < 0 and D−q−(0, t∗) = 5.70087 > 0 that there
exists a Filippov solution with f ∗ = 0 and x(t) = 0 locally for t > t∗. To detect
when the solution leaves the switching surface the directional derivatives D+q−

and D−q− are analyzed: The first zero crossing for D+q− or D−q− is at t∗∗ = 0.1995
for D+q−. The solution can then be continued by f = f + locally for t > t∗∗:

x(t) =
−20
π

(cos 2π t − cos 2π t∗∗) − 40(t − t∗∗) + 5(t2 − t∗∗2)

7
.

The next zero crossing of q+ is at t∗∗∗ = 0.3713. The solution stays again a
period of time in the switching surface before it leaves this region. Figure 3 shows
the constructed solution x(t). Solution details are illustrated by numerical simula-
tions of the gear model in [8].

0 t* 0.1 t** 0.3 t***

−0.04

−0.02

0

0.02

x
(t

)

Time t

Fig. 3 Constructed solution x(t) for the lossy gear model. The constant phases result from
generalized solutions of Filippov.

.
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The physical interpretation of these simulation results is as follows: The connec-
tion flanges of the gear do not rotate at the time t ∈ [t∗, t∗∗], although the fed torques
are changed. Mechanical losses in the gear prevent a motion in both directions as
long as the torque at one of the flanges is not sufficiently large to drive the other
flange including the internal losses.

3 Sensitivity Analysis

Practical models mostly contain a lot of parameters to calibrate the model behavior
in comparison to measurements on a test bench. In addition to the solution of the
corresponding dynamical system also the sensitivity of the solution with respect
to small variations of model parameters is of interest. From an analytical point of
view the sensitivities are derivatives of a parameter depending solution x = x(p, t)
with respect to the model parameters p ∈ R

n p . Based on the sensitivity analysis for
systems with smooth right hand sides we investigate the existence of sensitivities
for discontinuous systems with structures that are typical of models in practical
applications.

For a parameter dependent initial value problem

ẋ = f (x, p, t), x(p, t0) = A(p) (4)

with smooth functions f : R
nx +n p+1 → R

nx and A : R
n p → R

nx there exists
a neighborhood of p = p∗ and an interval around t0, such that the solution x =
x(p, t) is defined on the product of the sets [3]. We assume, that the interval contains
a given interval [t0, t∞]. The sensitivities x p locally exist, if f and A are sufficiently
smooth functions. Then the sensitivity equations are fulfilled:

ẋ p = fx x p + f p, x p(p, t0) = Ap(p). (5)

This system of linear ordinary differential equations is the basis of numerical meth-
ods to compute the sensitivities. For example, the system (5) is numerically inte-
grated together with the original system (4) by the BDF-Code DASPK3.1, see [10].

An important application of the sensitivity analysis is the gradient based opti-
mization of technical models. Unknown model parameters can often only be iden-
tified by efficient optimization algorithms that need the sensitivities of the model
response w.r.t. the model parameters. In all these applications we have to assume,
that sufficiently smooth model functions are available. Otherwise, serious numerical
problems can occur and the algorithms may fail.

Many practical models consist of submodels that introduce discontinuous or non-
smooth behavior. Modelica explicitly supports discontinuous and discrete model
elements [11]. It is desirable to apply a sensitivity analysis to these models. There-
fore, we investigate different classes of discontinuous models in this direction:

In a first step, we consider a classical solution of a parameter dependent discon-
tinuous system
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ẋ =
{

f +(x, p, t), if q(x, p, t) > 0,

f −(x, p, t), if q(x, p, t) < 0,
x(p, t0) = A(p). (6)

We assume q(A(p∗), p∗, t0) > 0 and q(x∗, p∗, t∗) = 0 for a fixed parameter p∗ and
a time t∗ > t0. We also use the abbreviation x∗ := x(p∗, t∗). If D±q(x∗, p∗, t∗) < 0
holds, then we get the solution x(p∗, t) with

ẋ = f (x, p∗, t) =
{

f +(x, p∗, t), if t ∈ [t0, t∗),

f −(x, p∗, t), if t ∈ (t∗, t∞].

We want to study how the solution depends on the parameter p. The time t∗ for the
event is in general not constant but depends on p. We denote this time by t1(p)
which is implicitly defined by q(x(p, t1), p, t1) = 0. In consequence we have
t1(p∗) = t∗. To distinguish the solutions at the switching surface Σ , we introduce
the following notation:

ẋ0 = f 0(x0, p, t) := f +(x0, p, t) for t ∈ [t0, t1(p)],

ẋ1 = f 1(x1, p, t) := f −(x1, p, t) for t ∈ [t1(p), t∞].

Hence, we get

x(p, t) =
{

x0(p, t) if t ∈ [t0, t1(p)),

x1(p, t), if t ∈ (t1(p), t∞].

Outside the switching surface it is obvious, that the following sensitivity equations
hold:

ẋ0
p = f 0

x x0
p + f 0

p , if t ∈ [t0, t1(p)],

ẋ1
p = f 1

x x1
p + f 1

p , if t ∈ [t1(p), t∞].

Rozenvasser [12] found the following jump conditions for the sensitivities at the
event t∗:

x1
p(p∗, t∗) = x0

p(p∗, t∗) + ( f 0(x∗, p∗, t∗) − f 1(x∗, p∗, t∗)
) · t∗

p (7)

with

t∗
p := t1

p(p∗) = − qx (x∗, p∗, t∗)x0
p(p∗, t∗) + qp(x∗, p∗, t∗)

qx (x∗, p∗, t∗) f 0(x∗, p∗, t∗) + qt (x∗, p∗, t∗)
.

The formulas result from the implicit function theorem. Equation (7) shows, that
the sensitivities are in general not continuous at an event point. Therefore, numerical
methods have to compute the jump condition at t = t∗ in order to get the correct
initial values x1(p∗, t∗) for the further integration (t > t∗).
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In a second step we show, that the theory can also be applied to the generalized
solution according to Filippov including nonsmooth switching functions like the
ones in Example 1. The analysis is based on the following system with two smooth
switching functions q+, q− that define a unique switching surface Σ :

ẋ =
{

f +(x, p, t), if q+(x, p, t) > 0,

f −(x, p, t), if q−(x, p, t) < 0,
x(p, t0) = A(p).

We assume the relation q+(A(p∗), p∗, t0
)

> 0. Then the first part of the solution
can be formulated as

ẋ0 = f +(x0, p∗, t) for t ∈ [t0, t1]

with q+(x0(p∗, t1), p∗, t1
) = 0. Under the assumptions

D+q+(x0(p∗, t1), p∗, t1
)

< 0 and D−q+(x0(p∗, t1), p∗, t1
)

> 0

there is a phase of the generalized solution after t = t1 = t1(p∗):

ẋ1 = f ∗(x1, p∗, t) =
[

D+q+ f − − D−q+ f +

D+q+ − D−q+

]
(x1, p∗, t) for t ∈ [t1, t2]. (8)

The event at t = t2 shall be defined by the equation D−q+(x1(p∗, t2), p∗, t2
) = 0,

that implies:

ẋ2 = f −(x2, p∗, t) for t ∈ [t2, t∞].

The sensitivities fulfill the following sensitivity equations:

ẋ0
p = f +

x (x0, p∗, t)x0
p + f +

p (x0, p∗, t), t ∈ [t0, t1],

ẋ1
p = f ∗

x (x1, p∗, t)x1
p + f ∗

p (x1, p∗, t), t ∈ [t1, t2],

ẋ2
p = f −

x (x2, p∗, t)x2
p + f −

p (x2, p∗, t), t ∈ [t2, t∞]

with the initial values

x0
p(p∗, t0) = Ap(p∗),

x1
p(p∗, t1) = x0

p(p∗, t1) +
[

( f + − f −)
(
q+

x x0
p(p∗, t1) + q+

p

)
q+

x ( f − − f +)

] (
x0(p∗, t1), p∗, t1

)
,

x2
p(p∗, t2) = x1

p(p∗, t2).

For transitions from a generalized solution to a classical one the identity f ∗ = f −

is satisfied at the event point. This fact can easily be verified by inserting D−q+ = 0
into (8). This is also the reason for the smooth transition from the sensitivities x1

p
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Name Description Value Unit

G Conductance, basic load 1 · 10−2 S
G1 Conductance, first load 2 · 10−2 S
G2 Conductance, second load 5 · 10−2 S
V Supply voltage 12 V
L Inductance 1 H
p Switching time for S2 p s
i Current through inductor i(t) A

G

L

G1

S1 S2

G2

V

Fig. 4 Electrical circuit for parallel switching of loads. Table with variables and parameters

to x2
p at t = t2. For these classes of discontinuous models it was possible to prove

the existence of the sensitivities and extend the sensitivity analysis from smoother
problems. In the following we introduce a new problem class by an example. It turns
out, that the sensitivity analysis fails for this practical example. The new structural
property of the system is the existence of two switching functions being active at
the same time. The consideration can be extended to several active switching func-
tions [8]. Previous work [6, 13, 14] assumes exactly one active switching function
per event.

Example 2 (Simultaneous switching of electrical loads)

The electrical circuit in Fig. 4 describes switchable loads G1 and G2 that are con-
nected by switches S1, S2 in parallel to a basic load G. The loads are supplied by
a voltage source V with a linear inductor L . All the loads are given by their linear
conductances. Initially, both switches are open. The switch S1 closes after 1

2 second
and increases the total load. The moment when switch S2 closes shall be variable
and is defined by a parameter p. The dynamics of the current i through the inductor
is modeled by the linear ordinary differential equation

di

dt
= 1

L

(
V − 1

G + G∗
1 + G∗

2

i

)
(9)

with

G∗
1 :=
{

0, if t − 1
2 < 0,

G1, if t − 1
2 > 0,

G∗
2 :=
{

0, if t − p < 0,

G2, if t − p > 0

and the initial value i(0) = 0.
The system (9) has a discontinuous right hand side with several switches. For the

parameter value p∗ = 1
2 both switching functions t − 1

2 and t − p have their zero
crossing at t∗ = 1

2 . Therefore, the problem is not of the form (6) which we know
how to handle. The solution of system (9) can be calculated by hand and splits up
in the following solution parts:
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0 < p ≤ 1
2 : 1

2 < p :

i(p, t) =

⎧⎪⎨
⎪⎩

i0(p, t), if 0 ≤ t < p,

i1−(p, t), if p ≤ t < 1
2 ,

i2−(p, t), if 1
2 ≤ t,

i(p, t) =

⎧⎪⎨
⎪⎩

i0(p, t), if 0 ≤ t < 1
2 ,

i1+(p, t), if 1
2 ≤ t < p,

i2+(p, t), if p ≤ t

with GS := G + G1 + G2,

i0(p, t) = V G
(

1 − e− t
LG

)
,

i1−(p, t) = V
(

G + G2 −
(

G2 + Ge− p
LG

)
e− t−p

L(G+G2)

)
,

i2−(p, t) = V

(
G + G1 + G2 −

(
G1 +
(

G2 + Ge− p
LG

)
e−

1
2 −p

L(G+G2)

)
e− t− 1

2
LGS

)
,

i1+(p, t) = V

(
G + G1 −

(
G1 + Ge− 1

2LG

)
e− t− 1

2
L(G+G1)

)
,

i2+(p, t) = V

(
G + G1 + G2 −

(
G2 +
(

G1 + Ge− 1
2LG

)
e− p− 1

2
L(G+G1)

)
e− t−p

LGS

)
.

From this solution we can also calculate the sensitivities by differentiation w.r.t. the
parameter p:

i0
p(p, t) = 0,

i1−
p (p, t) = V G2

L(G + G2)

(
e− p

LG − 1
)

e− t−p
L(G+G2) ,

i2−
p (p, t) = V G2

L(G + G2)

(
e− p

LG − 1
)

e−
1
2 −p

L(G+G2) −
t− 1

2
LGS ,

i1+
p (p, t) = 0,

i2+
p (p, t) = V G2

LGS

(
1

G + G1

(
G1 + Ge− 1

2LG

)
e− p− 1

2
L(G+G1) − 1

)
e− t−p

LGS .

Especially, the following equations hold:

i2−
p (p∗, t∗) = V G2

L(G + G2)

(
e− 1

2LG − 1
)

≈ −10.0,

i2+
p (p∗, t∗) = V GG2

L(G + G1 + G2)(G + G1)

(
e− 1

2LG − 1
)

≈ −2.5.

In Fig. 5, the time and parameter dependent solution and the sensitivity are
illustrated in the neigborhood of (p∗, t∗). The grayscale figure for the sensitivities
shows that the solution i(p, t) is not differentiable w.r.t. the parameter p on the
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Fig. 5 Solution i(p, t) (left) and sensitivity i p(p, t) (right) for Example 2. The switching
times t1(p) = 1

2 and t2(p) = p are plotted in the solution surface

set {(p∗, t) : t > t∗}. For the differential quotients, the limits from the right and
from the left do not coincide.

4 Summary

It is well known that the numerical simulation of nonsmooth models demands spe-
cial care. We show on the basis of a lossy gear model that practical models may
have nonsmooth switching functions not being considered in the literature so far.
The construction of both a unique solution and parameter sensitivities is anyway
possible. The second example of switched electrical consumers illustrates the limits
of the sensitivity analysis. Two switching functions that are getting zero at the same
time prevent the existence of the sensitivities after the switching time. In summary,
we demonstrated additional theoretical problems and solution approaches for mod-
els with discontinuities that do not fit into the the common problem classes, but arise
in practical applications.
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Anwendungen in der gradientenbasierten Optimierung. Fortschrittberichte VDI, Reihe 20,
Nr. 417, VDI Verlag (2008)

9. Pelchen, C., Schweiger, C., Otter, M.: Modeling and simulating the efficiency of gearboxes
and of planetary gearboxes. In: Proceedings of 2nd International Modelica Conference,
Oberpfaffenhofen (March 2002) 257–266

10. Li, S., Petzold, L.R.: Design of New DASPK for Sensitivity Analysis. Technical report,
Department of Computer Science, University of California Santa Barbara, USA (May 1999)

11. Fritzson, P.: Principles of object-oriented modeling and simulation with Modelica 2.1. IEEE
Press, Wiley-Interscience (2004)

12. Rozenvasser, E.N.: General sensitivity equations of discontinuous systems. Automat. Remote
Control (1967) 400–404

13. Callies, R.: Entwurfsoptimierung und optimale Steuerung. Differential-algebraische Systeme,
Mehrgitter-Mehrzielansätze und numerische Realisierung. Habilitationsschrift, Centre for
Mathematics, Technical University Munich (July 2000)

14. Galán, S., Feehery, W.F., Barton, P.I.: Parametric sensitivity functions for hybrid dis-
crete/continuous systems. Applied Numerical Mathematics 31(1) (1999) 17–47



Smoothing Discontinuities in the Jacobian
Matrix by Global Derivatives

Georg Rill

Abstract Hardware-In-the-Loop (HIL) test rigs are more and more used to develop
and/or improve modern control units. Due to the increasing complexity of these
systems detailed vehicle models running in real-time are required. The main task in
real time applications is to achieve a stable but still sufficiently accurate numerical
solution under all operating conditions. Complex vehicles modeled by multi body
systems result in stiff differential equations. In particular, taking into account the
effects of dry friction requires sophisticated modeling techniques and simple but
robust numerical solvers.

1 Introduction

Vehicle modeling is usually done by multi body systems, [4]. As real vehicles incor-
porate many complex dynamic systems, such as the drive train, the steering system
and the wheel/axle suspension, modern vehicle models will consist of different sub-
systems, [7]. However, real time performance for complex vehicle systems can only
be achieved by a sophisticated modeling technique and a tailored integration algo-
rithm, [10]. Besides the steering system [9] and complex axle suspension systems
including compliances [6] tires and wheels are critical model parts too [8]. This
paper will focus on dry friction which is present in many parts of a vehicle and
influences the dynamics of steering and suspension systems.

2 Vehicle Modeling

Different vehicles like agricultural tractors, passenger cars, buses and trucks can
be handled by one generic vehicle model, Fig . 1. Depending on the complexity of
the vehicle the overall number of ordinary differential equations (ODEs) describ-
ing a vehicle depends on the model complexity and is usually in the range from
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Chassis

Axle 1 Axle 2 Axle n–1 Axle n

Engine

Driver's
Cab

Steering
system Drive

train

Driver

Wheel
Tire

Wheel
Tire

Wheel
Tire

Wheel
Tire

Road

Load
Passenger

Seat

Fig. 1 Different types of vehicles and generic model structure

neq = 20 to neq = 100. The generic model structure covers nearly all different
types of single vehicles including semitrailers and trailers. By interpreting tractor
and trailer as single vehicle 1 and single vehicle 2 the generic model approach can
still be used, Fig. 2. Coupling both vehicles via constraint equations however results
in differential algebraic equations (DAEs) but will still make possible the real time
simulation of large vehicle combinations, [3].

Vehicle 2

Coupling

Vehicle 1

Fig. 2 Model approach to a tractor trailer combination

3 Dry Friction Modeling

Dry friction forces may be approximated by a quite simple Coloumb model

FF = F M
F sign(v) (1)

where v denotes the sliding velocity and F M
F represents the maximum friction force,

Fig. 3. Due to the discontinuity at vanishing sliding velocities this approach will
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v

FF

v

FF dFb)a)

−FF
M

+FF
M

−FF
M

+FF
M

+v*

−v*

Fig. 3 Dry friction: (a) simple Coloumb model, (b) continuous approximation

cause severe problems in the numerical solution. Applying a simple regularization
results in

FF =
⎧⎨
⎩

−F M
F v < −v∗

dF v −v∗ ≤ v ≤ +v∗

+F M
F v > +v∗

where v∗ = F M
F

dF
(2)

where the fictitious damping coefficient dF have to be chosen properly. On one hand
as large as possible to come close to the sign-function in (1) on the other hand to be
small enough to make a numerical integration possible in real time. However, large
values for dF result in a stiff system performance and will therefore require implicit
integration algorithms.

4 Equations of Motion

By applying the principle of virtual power (Jordain’s principle) the dynamics of the
vehicle framework including at least the chassis and the axles can be described by a
set of two first order differential equations

KV (yV ) ẏV = zV ,

MV (yV ) żV = qV (yV , zV , yS, zS, sF )
(3)

where the vector yV contains the generalized coordinates of the vehicle framework,
the kinematic matrix KV defines the generalized velocities which are arranged in the
vector zV , MV names the mass matrix and qV is the vector of generalized forces and
torques applied to the vehicle framework. This vector depends also on the states of
the subsystems yS , zS and the internal states sF of dynamic force elements. Similar
to the vehicle framework, mechanical subsystems like the steering systems and the
drive train are described by further sets of first order differential equations

KS(yS) ẏS = zS , and MS(yS) żS = qS(yS, zS, yV , zV , sF ) (4)

where KS and MS are the kinematic and the mass matrix of a subsystem. The
dynamics of dynamic force elements like tires, dampers, hydro or rubber mounts
can be described by an additional set of first order differential equations
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ṡF = fF (sF , yV , zV , yS, zS) (5)

The basic ideas of a modeling technique tailored to the simulation of vehicles in real
time can be found in [5], detailed information on vehicle modeling by subsystems
are presented in [7]. Combining generic vehicle models to tractor semi-trailer or
tractor trailer combinations finally will result in differential algebraic equations, [3].

5 Numerical Solution

For real time simulations of complex multibody system models including strong
nonlinearities low order fixed step size methods are used in practice. According to
[2] these methods produce surprisingly good results compared to sophisticated step
size controlled high order methods. As shown in [10] the implicit Euler formal-
ism can be adapted to the specific structure of the equations of motion describing
complex vehicle models. Applying the implicit Euler formalism to the equations of
motion for the vehicle framework (3) at first results in

yk+1
V = yk

V + h KV
(
yk+1

V

)−1
zk+1

V (6)

zk+1
V = zk

V + h MV
(
yk+1

V

)−1
qV
(
yk+1

V , zk+1
V , yk+1

S , zk+1
S , sk+1

F

)
(7)

where h denotes the integration step size and the superscripts k and k+1 indicate
the known states at time t and the unknown ones at t + h. In order to minimize the
computation effort the following assumptions which will hold very well for vehicles
are made now

1. all subsystem and dynamic forces will have a faster dynamics then the vehicle
framework

2. the dependency of the kinematic matrix KV and the mass matrix MV on the
generalized coordinates is weekly nonlinear

In consequence

1. the new states of the subsystems and the force elements yk+1
S , zk+1

S and sk+1
F

can be calculated with a semi-implicit Euler step using the known states of the
framework yk

V and zk
V instead of the implicit and unknown ones.

2. the implicit states of the kinematic and the mass matrix can be approximated by
their explicit ones KV

(
yk+1

V

) ≈ KV
(
yk

V

)
and MV

(
yk+1

V

) ≈ MV
(
yk

V

)

Then, the vector of generalized forces is expanded into a Taylor series
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qV
(
yk+1

V , zk+1
V , yk+1

S , zk+1
S , sk+1

F

) ≈ q
(
yk

V +h zk
V , zk

V , yk+1
S , zk+1

S , sk+1
F

)

+ ∂qV

∂zV

(
zk+1

V − zk
V

)

+ ∂qV

∂yV

(
yk+1

V − yk
V︸ ︷︷ ︸

h KV(K k
V )−1

zk+1
V

−h zk
V

)
+ h.o.t.

(8)

where higher order terms (h.o.t.) are neglected and the difference in the position
vectors yk+1

V −yk
V is related via (7) to the new state of the corresponding generalized

velocity zk+1
V . Equation (7) can be transformed to the linearly implicit step now

zk+1
V = zk

V + h

(
MV (yV )−h

∂qV

∂zV
−h2 ∂qV

∂yV

)−1

q
(
yk

V +h zk
V , zk

V , yk+1
S , zk+1

S , sk+1
F

)
(9)

which as shown in [1] is still sufficiently stable and will only require the solution
of a system of linear equations at each step. The integration step for the vehicle
framework is completed by (7) which is a full implicit step now because the vector
of the implicit generalized velocities zk+1

V is given by (9). As (9) is the result of a
first order approach the calculation of the Jacobians ∂qV /∂yV and ∂qV ∂zV may be
performed at the same approximation level. At first the vector of generalized forces
is separated into two parts

qV = qi
V + qa

V (10)

where qi
V collects the inertia forces and moments and qa

V contains the contribution
of all applied forces and moments. Similar to the kinematic and the mass matrix
the vector of the generalized inertia forces for the vehicle framework is weekly
nonlinear. Hence, the partial derivatives ∂qi

V /∂yV and ∂qi
V ∂zV can be neglected.

Within the principle of virtual power the vector of the generalized applied forces is
generated by

qa
V =

nF∑
i=1

(
∂vi

∂zV

)T

Fi +
nM∑
j=1

(
∂ω j

∂zV

)T

M j (11)

where it was assumed that nF forces Fi , i = 1(1)nF and nM moments Mi , i =
1(1)nM are applied to the vehicle framework. The partial velocities ∂vi∂zV , ∂ω j∂zV

are part of the principle of the virtual power algorithm and need not to be calculated
additionally. The applied forces and moments are described by potentially nonlinear
characteristics

Fi = Fi (ui , u̇i ) and M j = M j (u j , u̇ j ) (12)
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where the element displacements ui , u j and their time derivatives can be expressed
by the generalized coordinates yV and the generalized velocities zV

ui = ui (yV ), u j = u j (yV ) and u̇i = u̇i (yV , zV ), u̇ j = u̇ j (yV , zV ) (13)

Hence, the partial derivatives of the vector of the generalized forces with respect to
the generalized coordinates yV and the generalized velocities zV may be approxi-
mated by

∂qV

∂yV
≈ ∂qa

V

∂yV
≈

nF∑
i=1

(
∂vi

∂zV

)T
∂ Fi

∂ui

∂ui

∂yV
+

nT∑
j=1

(
∂ω j

∂zV

)T
∂ M j

∂u j

∂u j

∂yV
(14)

and

∂qV

∂zV
≈ ∂qa

V

∂zV
≈

nF∑
i=1

(
∂vi

∂zV

)T
∂ Fi

∂ u̇i

∂ u̇i

∂zV
+

nT∑
j=1

(
∂ω j

∂zV

)T
∂ M j

∂ u̇ j

∂ u̇ j

∂yV
(15)

where dominating terms were taken into account only. The calculation of the partial
derivatives ∂ Fi/∂ui , ∂ Fi/∂ u̇i , ∂ M j/∂u j , ∂ M j/∂ u̇ j and ∂ui/∂yV , ∂ u̇i∂zV ∂u j/∂yV ,
∂ u̇ j∂yV can be done with a small additional calculation effort. Hence, the modified
implicit Euler formalism consisting of a series of a linearly implicit step (9) followed
by a full implicit one (7) requires not much more computation effort than an explicit
Euler step but usually increases the range of stability significantly.

6 Local and Global Derivatives

In vehicle dynamics the derivatives of most spring and damper characteristics are
rather smooth. In contrast the derivative d FF/dv of the friction force FF = FF (v)
given by (2) results in a jump from zero to the fictitious damping coefficient dF at
small velocities, Fig. 4. This discontinuity in the derivative and hence in the Jacobian
∂qV /∂zV can be avoided by replacing the discontinuous local by a continuous global
derivative

d FF

d v
=
{

dF −v∗ ≤ v ≤ +v∗

F/v else
where v∗ = F M

F

dF
(16)

Using this global derivative means that the Newton step performed in (9) to approx-
imate the implicit solution will be substituted by a secant step.
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v

FF dF

(a) friction force

−FF
M

+FF
M

v*

−v*

dF

(b) local derivative

v

dFF/dv

dF

(c) global derivative

v

dFF/dv

v*−v* v*−v*

Fig. 4 Friction forces with local and global derivative

7 Example

A simple quarter car model representing a heavy truck suspension is used to show
the advantages of the presented method. The maximum friction force F M

F in the leaf
spring amounts to 10% of the spring force magnitude |FS|. The fictitious damping
coefficient dF is adjusted to the suspension damping dS . The vehicle runs with a
constant travel velocity of vT = 60 km/h across a cosine-shaped bump of the height
H = 0.1 m and a length of L = 5.0 m. Figure 5 shows all relevant vehicle data and
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mod. impl. Euler global deriv.

mod. impl. Euler local deriv.

Fig. 5 Friction forces with different Euler algorithms with a step size of h = 2 ms
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the time history of the friction force. The explicit Euler solution becomes unstable
when the suspension travel velocity v = żC − żW approaches zero. Here, the friction
force changes from the constant sliding value FF = ±F M

F to the continuous approx-
imation for adhesion FF = dF v. In order to come very close to the Coloumb model
shown in Fig. 3 the fictitious damping was chosen quite large. At any time, when
the branch FF = dF v of the friction law (2) is active the equations of motion for the
quarter car model become stiff. Here, the explicit Euler solution with a integration
step size of h = 2 ms becomes unstable because the friction force will jump from
+F M

F to −F M
F at each integration step. Using the modified implicit Euler integration

as defined in Sect. 5 in a straight forward manner causes stability problems too. The
reason is quite obvious. As long as the friction law (2) is in sliding regions the local
derivative of the friction force is zero. Then, the corresponding Jacobian ∂qV /∂zV

will vanish too and the first linearly implicit step (9) degenerates to a simple explicit
one. The stabilizing effect of the second fully implicit step (7) is too weak to achieve
an overall stable solution with an integration step size of h = 2 ms but results at
least in a stable transition to the steady state position at the end of the simulation
(t > 1.2 s). The modified implicit Euler integration given in Sect. 5 together with
the global derivative of the friction force defined by (16) does a perfect job. The
numerical solution with an integration step size of h = 2 ms is now perfectly stable
and still sufficiently accurate, Fig. 6. Besides in deviations in the peak values of
the chassis acceleration and the wheel load the numerical damping of the modified
implicit Euler solution is very well noticeable in the time history of the friction force
while approaching steady state.

2
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Fig. 6 Modified implicit Euler solution with global derivatives compared to Matlab-solver ode23

8 Conclusion

The modified implicit Euler solution combined with global derivatives to avoid
discontinuities in the Jacobians is very well suited for real time simulations in
the field of vehicle dynamics. This solver is simple, fast, stable and sufficiently
accurate.
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damping valve, 125–126
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P
Passive methods, in closed-form analysis,

29–39
Patches in brake systems, 102–104

contact patches, 104
contact zone of type I, 104
contact zone of type II, 104

See also Tangential friction induced
vibrations in brake systems

PATH software tool, 20
Piecewise linear interpolating splines, 229
Pseudo-equilibrium bifurcations in Filippov

systems, 175

Q
Quarter-car model, 139–141

condition of contact, 139
condition of free flight, 139
condition of quasi-contact, 139
transitions, 140–141
two-degree-of-freedom mechanical

model, 139
vector fields, 140
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Quarter-car model, closed-form analysis,
29–30

damping effect on suspension deflection
response, 36

groundhook, 36
hybrid, 36
passive, 36
skyhook, 36

damping effect on tire deflection
response, 37

groundhook, 37
hybrid, 37
passive, 37
skyhook, 37

damping effect on vertical acceleration
response, 35

groundhook, 35
hybrid, 35
passive, 35
skyhook, 35

dimensionless parameters, 34
mass ratio, 34
natural frequency of unsprung mass, 34
off-state damping ratio of sprung

mass, 34
on-state damping ratio of sprung

mass, 34
stiffness ratio, 34

model formulation, 30–35
suspension system, 30

passive configuration, 30
semiactive configuration, 30

transfer functions, 31–32
of sprung mass vertical acceleration, 32
of suspension deflection, 33
of tire deflection, 33

vibration level measurement, 31

R
Railway passenger car

4-axle, 3–4
bogies, 3–4
bolster, 4

dampers, 4
lower part, 4
springs, 4
upper part, 4

secondary suspension, 4
primary suspension, 4

Runge-Kutta methods, 229, 236
Running stability assessment in railway

industry, 16–18
based on simulations of vehicle acceptance

tests, 19

criteria used, 17
forces between wheelset and track, 17
lateral acceleration on bogie frame, 17

linearized, 16
methods used, 17–18
nonlinear, using computer simulations, 16

classification based on assessment
criteria, 16

classification based on track
alignment, 16

in rolling stock industry, 25

S
Self-excitation, numerical simulation, 82–84
Semiactive methods, in closed-form analysis,

29–39
groundhook, 29–30
hybrid control, 29–30
skyhook, 29–30

Sensitivity analysis of discontinuous
multidisciplinary models, 239–250

classical solution of a parameter dependent
discontinuous system, 245

switching functions, solutions, 247
simultaneous switching of electrical

loads, 248
See also Discontinuous models

Shimmy phenomenon, see Towed elastic tyres
during rolling, experimental modal
analysis

SIMPACK software package, 20–21
Simplified measuring method, in critical speed

evaluation, 45–46
Smoothing discontinuities in Jacobian matrix,

253–260
See also Jacobian matrix, smoothing

discontinuities in
Smoothing effect of dither, 189–192
Sound level of wheel sets, see Acoustic

optimization of wheel sets
Speed-dependent friction model, for

longitudinal tyre behaviour, 161
Spline approximation of smooth system inputs,

228–229
Squealing, 73–84

See also Curve squealing of trains
Stability analysis in railway vehicle industry,

15–27
based on limit cycle occurrence and safety

limits assessment, comparison, 20
based on simulations of vehicle acceptance

tests, 19
necessity of, 16



Index 269

See also Bifurcation analysis of system
vehicle/track; Running stability
assessment in railway industry

Standard equilibrium (SE) bifurcations in
Filippov systems, 175

State change, systems with, 211–224
discontinuity across curve of, 212
numerical solution

integrating across, 214
See also under Discontinuities in ODEs

Stationary run, stability analysis, 81–82
Suspension elements, non-smooth

adapters and side frames, dry friction
contact between, 10

American 3-piece-freight truck, 7, 9, 10
car body and bolster, connection between, 9
coil springs, 6–7
freight wagon bogies, 6
hydraulic dampers, 6
Lenoir dampers, 7–8
in railway passenger vehicles, 4
two-axle freight wagon, 11

UIC standard suspension of, 11
UIC double link suspension, 11–12
wedges and bolster and side frame

vertical and lateral dry friction damping
between, 10

Switching algorithm, in dry friction elements
modelling, 117–118

Switching functions, sensitivity analysis,
245–250

simultaneous switching of electrical
loads, 248

T
Tangential friction induced vibrations in brake

systems, 108–111
contact patches, 102–104

as stick-slip oscillators, 109–110
contact zone of type I, 104
contact zone of type II, 104
lateral patch vibrations, 109
phasing of, 109

as dynamic equilibrium of processes, 104
heat and wear causing, 105–108

AK-Master test, 107
friction coefficient μ, 106
measurement, 106–107

polymeric matrix causing, 102–103
Timescale, 101
Towed elastic tyres during rolling, experimental

modal analysis, 149–158
linear stability chart of, 153

mechanical model, 150–151
modal analysis, 156–158
parameter identification, 154–155

damping, 154–155
linear stability boundary, validation,

155–156
stiffness, 154–155
tyre relaxation parameters, 154

stability analysis, 152–153
travelling wave-like solution, 151–152

Track model, in hunting instability
investigation, 58

Train-track interaction, simulation, in hunting
instability investigation, 58–62

Transition curves, non-linear features in, 94–96
CC, 94
ST, 94
See also under Curved track, rail

vehicles in
Transitions, quarter-car model, 140–141
Trapezoidal integration method, 43–44
Two-point contact modelling, of rail vehicles

in curved track, 88–90
methods in, 89

first (original) method, 89
second (modified) method, 89

Tyre force model, 162–166
friction models, 163–164
mechanical model, 162–163
normal force distribution, 164–166

U
UIC 519 method, 43

V
Vector fields, quarter-car model, 140
Vehicle modelling, 253–254

in hunting instability investigation, 57–62
contact model, 58
equivalent conicity, 60–61
measured bogie lateral acceleration, 59,

63–64
simulated bogie lateral acceleration, 59,

61–62
track model, 58
train-track interaction, simulation,

58–62
vehicle model, 57

Vehicle numerical model, 58–59
Vibrational displacement determination

by constructive and force asymmetry of
system, 187–188
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Vibrations in brake systems, 101–111
See also Tangential friction induced

vibrations in brake systems

W
Wear in brake system, 102–103

polymeric matrix causing, 102–103
See also Tangential friction induced

vibrations in brake systems
Wheel limit profile for hunting instability,

41–52

critical speed, numerical evaluation, 45–47
wheel rail contact model, 47
See also Equivalent conicity

Wheel-rail contact nonlinearity, 21–23
influence of, 21–22

contact geometry functions used in
assessing, 21, 23

on railway vehicle behaviour, 22

Y
Yaw dampers, 24
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