A Unified Graphical Notation for AOSE*

Lin Padgham®, Michael Winikoff', Scott DeLoach?, and Massimo Cossentino®

L RMIT University, Australia
{lin.padgham, michael .winikoff}@rmit.edu.au
2 Kansas State University, USA
sdeloach@ksu.edu
3 ICAR-CNR, Italy
cossentino@pa.icar.cnr.it

Abstract. Over the last five years several agent system development method-
ologies have been proposed and developed, with a number of them becoming
well established and used beyond the group developing them. They all deal with
similar concepts, but the notations used differ substantially. In this work we de-
velop a standardized graphical notation for four prominent agent development
methodologies, using principles of graphical notation suggested by Rumbaugh.
We briefly illustrate the graphical design views produced in the different method-
ologies, on a conference management system example, using the standardized
notation. We then discuss some of the similarities and differences on the basis
of the design artifacts produced - which are now much more readily comparable
than previously. This is a first step in being able to readily incorporate steps from
different methodologies, depending on the needs of the application. It also helps
to make the material more readily accessible to a wider audience.

1 Introduction

In recent years, it has become accepted that in order to effectively develop agent sys-
tems, it is necessary to have methodologies and notations that deal specifically with
agent concepts and agent design issues. As a result, over the last several years many
Agent Oriented Software Engineering (AOSE) methodologies have been developed or
proposed, with some of the most well known including Gaia [}, O-MaSE (based on
the earlier MaSE) [2], Tropos [3]], Prometheus [4] and PASSI [5].

Important aspects of mature methodologies include the particular tools and diagrams
that are used to develop and capture the analysis and design of the system being devel-
oped [6]]. While there are a number of similarities between different methodologies
cited above, each has its own particular strengths and nuances. It is certainly conceiv-
able that a developer would wish to incorporate aspects of different methodologies into

* We acknowledge the input of Paolo Giorgini in discussing and determining the notation pre-
sented, and AgentLink which organized the Technical Forum. Padgham and Winikoff ac-
knowledge the support of The Australian Research Council and the Australian Department of
Education, Science and Training, as well as Agent Oriented Software under grants LP0453486
and CG040014. Scott DeLoach acknowledges the support of the US National Science Foun-
dation under Grant No. 0347545 and by the US Air Force Office of Scientific Research.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 1161130,/2009.
(© Springer-Verlag Berlin Heidelberg 2009

A Unified Graphical Notation for AOSE 117

a development process. In fact, this is the vision of method engineering [7] where the
goal is to mix and match the activities, tasks and techniques of various methodologies
according to the needs of a particular project. However, it is currently difficult to com-
pare or use the diagrams and techniques from different AOSE methodologies because
each methodology uses its own concepts, notations, and techniques.

The vision of method engineering is generally achievable using mature technologies
such as object orientation where the basic concepts (objects, classes, associations, in-
heritance, etc.) and notations (UML) are well understood and generally agreed upon
[8l]. As a result of this maturity and agreement in the object oriented community, there
are several well known activities, tasks and techniques that can be applied in a number
of ways on various projects. There are also several commercially available tools that
can be used together or separately to support a variety of approaches to developing ob-
ject oriented systems [9]]. Duplicating the success of object orientation requires two key
elements: a common notation and a common metamodel.

The goal of this paper is to take a first step toward the level of maturity evidenced
in the object-oriented community. In this first step, the developers of a number of the
most detailed and prominent AOSE methodologies have worked together to produce a
common notationl] While this first step is modest, we believe that a shared graphical
notation is a first step toward making AOSE methodological work applicable to industry
consumers. This notation will be used in each of our future individual methodological
work and will be integrated into existing and new tools supporting that work.

In progress toward the second key element, there has been work done attempting
to define a common metamodel for multi-agent methods and techniques [11]. Some
efforts have also been spent in the field of standardization within the FIPA organization.
Two different technical committees (Modeling and Methodology) worked on that and
results describing their points of view can be found in [12/13]]. However, while basic
agent-oriented concepts have some commonality, we are far from having community-
wide consensus on the majority of agent and multi-agent concepts. Thus, the common
metamodels tend to be overly complex and of limited practical usefulness. Even though
our goal may be considered more limited, from a practical standpoint, it is at least
equally important and can provide a good first step in reaching such a community-wide
consensus on the most important agent concepts.

While this paper does identify common concepts that we all use or wish to include
in our notational set, the precise definitions and ways they are used do differ somewhat
from methodology to methodology. Until there is a community wide agreement on these
concepts, we believe these differences should be allowed to exist.

In the rest of this paper we present the new notation, motivating the choices we have
made, followed by an example of a conference management system where we illustrate
the design diagrams that can be produced by the various methodologies using the new
notation. We finish with a brief discussion of the importance of working together across
research groups to provide an engineering methodology that is accessible to practition-
ers wishing to build complex agent systems.

! We also worked with Paolo Giorgini, considering the Tropos methodology in the development
of the common notation. We did not use Gaia because it does not make use of graphical models.
We also did not include less prominent AOSE methodologies such as [[10] for the time being.

118 L. Padgham et al.

2 The Unified Graphical Notation

We begin this section by describing general criteria for developing (graphical) notations
suitable for the analysis and design of complex software systems. The article by Rum-
baugh [[14]], one of the developers of the widely-used UML notation, gives the following
list of desiderata for developing notations. This list illustrates the trade-offs that must
be made when different desired properties conflict.

Clear mapping of concepts to symbols
No overloading of symbols

Uniform mapping of concepts to symbols
Easy to draw by hand

Looks good when printed

Must fax and copy well using monochrome images
Consistent with past practice

Self consistent

Distinctions not too subtle

10. Users can remember it

11. Common cases appear simple

12. Suppressible details.

Sl

e

In the remainder of this section, we present the notation that we have developed and
explain the rationale for our decisions. As is often the case, there are sometimes trade-
offs, but we believe we have now developed a notation that satisfies desirable properties
for usability, clarity, etc.

Our notation uses a common type of diagram where the entities of interest are de-
picted as nodes and distinctive shapes are used to differentiate different types of nodes.
Figure [1] presents an overview of our proposed notation. Relationships between enti-
ties are depicted by links, which can be decorated with a label giving the link type

. agent
Activity /9(«info»

actor
ilole ! soft goal ﬁ role
«info» ;
_ / «info»

/ data] -
[message (in) ‘ [percept / «info»
\

| «info» «info»

«infoy ‘ «info» «info»

Fig. 1. Proposed Notation. The shaded symbols (use case and activity) as well as the actor symbol
are existing UML symbols.

capability }message (ouh\ ‘ \ action %% organization]

A Unified Graphical Notation for AOSE 119

(e.g. “<precedes>>", “<Kinitiates>>"). The decorations are optional and in many cases
can be derived from the types of the entities. For example, in Prometheus an arrow from
a percept to an agent is always a <receives>> relationship.

This “graph-based” notation is standard in all types of engineering and is especially
well suited to capturing system structure. However, capturing system behavior may be
best done with non-graph-based models such as AUML sequence diagrams [[15]. In
this paper we do not tackle this type of diagram: since the AUML sequence diagram
is well-defined and widely used, it makes little sense to propose a replacement for it.
Other diagrams capturing system behavior, such as the Prometheus process diagrams,
can be drawn with the proposed new notation.

Below we explain each type of node in our proposed notation. For each node we
explain our reason for choosing the depiction given in Figure [l and relate it to the
concepts it can be used to represent. However, before describing the graphical notation,
we briefly motivate our choice of concepts.

In selecting the concepts to be represented in our notation, we chose concepts that
were required to model agent-based systems as indicated by their use in the four method-
ologies participating in the discussion, as well as other agent based methodologies of
which we were aware. In identifying “required” concepts, we related the concepts used
to design and build agent systems to the defining properties of agents [16ﬂ:

— Agents are autonomous — the key concept here is the notion of an agent itself, as
an autonomous entity (distinct from objects).

— Agents are situated — the minimal key design concepts are the interface to the agent
system’s environment, in terms of actions performed by agents that affect the envi-
ronment, and perceptsﬁ, that get information from the environment. Clearly, more
sophisticated concepts can be used to characterize the environment.

— Agents are proactive — the corresponding concept is goals.

— Agents are reactive — the corresponding concept is the notion of an event, a “sig-
nificant occurrence”.

— Agents are social — here a wide range of concepts could be used, ranging from the
minimal one of messages, through to a range of organizational models. We choose
to use the concepts of messages, conversationﬂ roles, positions and organizations,
where positions are placeholders for one or more roles within an organization, and
an organization can include particular forms of organization, such as a team, or an
e-institution.

In addition to these clearly required concepts, we added the following commonly used
concepts:

— Soft-goals: goals that do not have a clear satisfiability definition, used in a number
of methodologies, both agent-oriented and non-agent-oriented, for modelling non-
functional requirements such as security, usability, flexibility. We include soft-goals
since they are clearly useful, and since they fit in very well with agent-based design,
where agents have goals.

2 Sturm e al. [10] proposed a similar set of concepts, based on our earlier work [[16].
3 From the Latin perceptum, same root as the word “perceive”.
* Also known as “protocols” or as “interaction protocols”.

120 L. Padgham et al.

— Actor: an external entity, which can be human or software. This concept is useful
in early analysis, and is well established in existing practice.

— Capability: a concept often used in discussing agents and implemented first by the
JACK agent-oriented programming language [[17] and subsequently adopted and
extended by Jadex. Capabilities are a modularization construct for agents which
can contain things such as plans, events, data, and sub-capabilities.

— Plan: sometimes termed tasks, plans are a key concept in BDI agent platforms, and
in other plan-based implementation platforms. Hence, it is clearly important for
(detailed) design to support plans.

— Resource/data: like any other software, agents normally need to store data in some
form and/or use existing resources. For notation purposes we a use a single sym-
bol to depict data or resources, without distinguishing between resources (e.g. a
printer) and data, or between different data formats (objects, belief sets, relational
databases).

— Service: the use of services are becoming very popular in information systems de-
sign using what are called service-based multi-agent systems. Although services
are currently only well-defined in PASSI, we believe that this is a growing area and
thus it is important to be able to depict existing services that will be used.

Having identified the concepts used to define agent systems, we now turn to consid-
ering how to graphically depict these concepts (see Figure [I)) in order to more easily
model agent system designs. According to the desiderata identified by Rumbaugh [[14],
each of the key concepts should be mapped to a distinct symbol satisfying the first
two criteria (“Clear mapping of concepts to symbols” and “No overloading of sym-
bols”). In addition, we strived to select symbols that emphasize similarities between
related concepts (e.g. between outgoing messages and actions) whilst using clearly dis-
tinct symbols for concepts that are clearly dissimilar (“Uniform mapping of concepts to
symbols”). For example, the symbols for a plan and for an agent are completely differ-
ent. The symbols selected are also easily drawn by hand; our notation does not rely on
shading, line thickness, or any other distinctions that are subtle, confusing, or that do
not copy/fax well. The only distinction between symbol shapes that is somewhat subtle,
the use of rounded corners in roles and positions, is reinforced by the use of a modifica-
tion to the stick figure within the symbol. Further, as is discussed below, we have strived
for consistency with past practice, where appropriate. In particular, we have used the
UML notation where it made sense to do so. However, as will be seen in the following
sections, many of the concepts used to engineer agent systems do not exist in UML, and
in this case we believe that it is important to have new and clearly distinct symbols for
concepts that are new and clearly distinct. Finally we describe a notational mechanism
for achieving scalability by suppressing details.

Goal and Softgoal: Perhaps because goals are a new concept in agents, and one of
the differences that clearly distinguish agents from objects, there is no consensus on
how to depict them graphically. For instance, O-MaSE depicts goals as a rectangle
with a number and a name, Tropos uses a fully rounded box (a “pill” or “lozenge”
shape), and Prometheus uses an oval. Since one of our aims is to be compatible with

A Unified Graphical Notation for AOSE 121

existing standards, and since GRLH appears to be in the process of being standardizedd
we choose to use a pill/lozenge shape for goalsﬂ For softgoals the standard is to use
a cloud shape. Although this is not always easy to draw using tools, we cannot justify
inventing a new symbol when a widely used symbol already exists for the concept.

Scenario: Scenarios are closely related to use cases, and hence we want a symbol that
is close to the existing UML symbol for a use case (an oval). However, we also want to
avoid overloading symbols, thus we have elected to use a double-lined oval.

Entities: Actors, Agents, Roles: Actors are a well-established concept with a well-
established notation (the stick figure) which we adopt. For agents it is important to have
a symbol that is distinct from the UML class symbol. However, despite the importance
of the agent concept to AOSE, there is no consensus on its depiction: Prometheus uses
a rectangle containing a stick figure, whereas Tropos uses a circle. For our notation,
we propose that the Prometheus notation of the stick figure in a rectangle be adopted.
Including the stick figure suggests a relationship with actors, and reinforces that, like
humans, agents are active autonomous entities. Roles are an abstraction of agents and,
in fact, are used in two ways within the AOSE community: as a social notion and as
a component. In the social approach, agents are assigned to play roles within some
organization. In the component approach, which has been used in both O-MaSE and
Prometheus, agents are designed by grouping roles. To help define the role symbol, we
adopted a general notational principle that states that when there are two concepts and
one is an abstraction of the other, we use the same symbol for the abstracted concept, but
with rounded corners. Thus, our proposed symbol for a role is the same as an agent but
with rounded corners. To further emphasize that roles are abstract and are not complete
agents, we embed a “half stick figure” instead of the full stick figure used in the agent
symbol.

Intra-Agent: Plan/Task, Capability/Module: Plans (sometimes called tasks, e.g. in
MESSAGE and Tropos) are depicted by a range of symbols. Using a similar reasoning
to goals, we adopt the GRL/Tropos/i* symbol: a hexagon. For capabilities we adopt
UML’s package symbol, since capabilities are conceptually package-like: they contain
other entities.

Events and Messages: In Prometheus events and messages are both depicted as en-
velopes, which are memorable, easy to recognize, and easy to draw by hand. However
this notation has three problems: firstly it is confusing to draw intra-agent events as
messages, secondly it is not clear from the symbol whether the message is incoming or
outgoing, and thirdly, the envelope symbol is not consistent with related UML notation.
Thus, we propose to adopt the UML notation for send signal actions and accept event
actions to depict sending and receiving messages respectively. This notation allows us
to distinguish incoming and outgoing messages and provides consistency with standard

3 http://www.cs.toronto.edu/km/GRL/

® By the international telecommunications union (ITU). The proposed standardization brings
together Use Case Maps (UCMs) and the Goal-Oriented Requirement Language (GRL) under
the name User Requirements Notation (URN).

7 GRL and Tropos use the same notation, due to their common ancestry, i*.

http://www.cs.toronto.edu/km/GRL/

122 L. Padgham et al.

practice. For events, we use a new symbol (a diamond). Events can be used to represent
either inter- or intra-agent events.

Environment: Percepts, Actions, Resource: Because we assume agents are situated
in their environment, it can be argued that sending and receiving messages are actu-
ally special instances of the general notions of performing actions on the environment
and receiving percepts from the environment. Therefore, we choose to use symbols for
actions and percepts that are variants of the message symbols described above. The
addition of a vertical bar as the distinguishing characteristic is somewhat arbitrary, but
was chosen to be an obvious difference that is easy to draw. Resources are represented
as simple rectangles in Tropos. Due to its simplicity and clarity, it makes sense to use
this notation in the general sense as well. In addition, the rectangle symbol is similar to
UML classes, which are also rectangular in shape. Therefore, the resource symbol can
be seen as a generalization of the UML class.

Social concepts: Conversation, Organization, Position: Due to its mnemonic value,
the Prometheus symbol for a protocol (a large double headed arrow, denoting bi-direc-
tional communication), is proposed for our notation. However, to clarify the concept it
represents, we term the concept a “conversation” rather than a “protocol”. Because an
organization is generally associated with a group of agents, it seemed natural to modify
the agent symbol to represent this grouping. Thus, the agent symbol (a box with a single
stick figure) is modified by replacing the single stick figure with multiple stick figures
to represent an organization. When we decided on the symbol for a position, which is an
organization’s place holder for a role (one or more), we used the organisation symbol,
modified in the same way as the role symbol was modified from the agent symbol: a
round-cornered rectangle with half stick figures.

Service: Since there is no accepted symbol for a service we propose a new symbol. In
addition, since the concept of a service is not closely related to any of the other agent
concepts discussed so far, we wanted a distinct symbol that is simple to draw. Thus,
we propose using a simple circle to represent services. While the choice is somewhat
arbitrary, it can be argued that a service is similar to a UML interface as it describes
how to interact with the agent providing the service.

Links: Although some notations, such as Tropos and i *, use a wide range of different
link/arrow types, we do not believe this to be a good idea because they can be hard
to draw by hand, are quite subtly different, and can be difficult for users to remember.
Instead, we propose a single arrow type which is (optionally) enriched with textual an-
notations where desired to indicate different link types. We have identified a variety
of useful links; however, this (partial) list can be easily extended as long as the mean-
ing of the link is defined. Annotations include: a role <achieves>> a goal, an event
<occurs>> during the pursuit of a goal, an event <triggers>> the creation of a new
goal, and a goal < precedes>> another goal.

Scalability: Collapsing Links: For a design notation to be practical and usable for the
design of large systems it must scale to large designs. There are a number of abstraction
and packaging concepts in the notation that support this (such as organisation, protocol

A Unified Graphical Notation for AOSE 123

and capability). In addition we propose the use of “collapsible” links. As is shown
below, many of the symbols have an information section, which can be used to indicate
links with other entities such as an agent that <plays>> a role. These collapsable links
can be used to replace links to symbols. For example, below the left part of the figure,
showing an agent with a link to a role symbol, is equivalent to the right side of the figure
where the role symbol has been removed and the relationship indicated in the agent’s

information section.
agent role agen
jq\ 3 } — % «plays»
role

The design notation can also be used to develop models which capture different aspects
of the system, partitioning or abstracting to obtain scalability. For example a system
overview diagram shows no agent internals, whereas agent overview diagrams can par-
tition the system into a set of separate diagrams, one for each agent type.

3 Using the Notation

To illustrate the use of the unified notation across the different methodologies, we
present examples of various diagrams taken from our methodologies based on a com-
mon exemplar system. Space limitations preclude us from presenting a wide range of
diagrams from each methodology and we hope that the diagrams included are sufficient
to give some of the flavour of how the proposed notation would be used.

The example we use in this paper is the popular multiagent conference management
system, which was first proposed by [[18] in 1998. It has since been widely used as it
is suitable for illustrating a wide variety of aspects of multi-agent system analysis and
design. The version of the system we are following is based on the version used in [19].

The conference management system is a multiagent system that supports the man-
agement of conferences that require the coordination of several individuals and groups
to handle the paper selection process. This process includes paper submission, paper re-
views, paper selection, author notification, final paper collection, and the printing of the
proceedings. Authors may submit papers to the system up until the submission deadline.
Once the submission deadline has passed, members of the program committee (PC) re-
view the papers by either contacting referees and asking them to review a number of
the papers, or by reviewing them themselves. Once all the reviews are complete, a final
decision is made on whether to accept or reject each paper. Each author is notified of
this decision and authors with accepted papers are asked to produce a final version that
must be submitted to the system. All final copies are collected and sent to the printer
for publication in the conference proceedings.

In the remainder of this section, we present several of the models used in our method-
ologies to capture various aspects of the conference management system analysis and
design. However, each of the models uses the unified notation to illustrate how the
different models might possibly be used together even though they are from different
methodologies.

The Prometheus Goal Overview Diagram, as shown in Figure 2, shows how the
overall goal of the system is refined into a hierarchical goal tree where subgoals define

124 L. Padgham et al.

manage_conference

register_paper

print_proceedings

collect_finals
send_reminders
select_papers

get PC_opinions

Fig. 2. Prometheus Goal Overview Diagram

0. Manage
'submissions
«andy
5. Print
1. Get papers proceedings
and> «and»
4. Select papers.

send_to_printer

make_index

invite_reviewers

collect_prefs _

\

inform_authors

final_decisions

collect_reviews

b - Paper «precedes»

2. Assign papers

«triggers»

r: Reviewer
«occurs»
2.1 Partition

4.1 Collect
4.2 Select papers

set: PaperSet «ocoursy «triggers»
triggers»
Geclined|
Created(set)

5.1 Collect finals 5.2Send to

«precedesy

1.2 Distribute

«precedesy

«precedes»

Fig. 3. O-MaSE Goal Model

how their parent goal may be achieved. In this case, the overall goal manage conference
is refined into four subgoals: get papers, review, select papers, and print proceedings.
Each of these goals is further refined into subgoals providing more insight into how the
goals will be achieved.

The O-MaSE Goal Model shown in Figure [3] is similar to the Prometheus Goal
Overview Diagram in function; however, it provides a richer set of constructs with
which to model the goal structure. As in the Prometheus model, the O-MaSE Goal
Model has a top level goal of Manage Conference Submissions, which is broken down
into five conjunctive sub-goals: Get Papers, Assign Papers, Review Paper, Select Pa-
pers, and Print Proceedings. The “precedes” relation between the Collect Papers and
Distribute Papers goals indicates that the Collect Papers goal must be achieved be-
fore work may begin towards the achievement of Distribute Papers. The “occurs” and

A Unified Graphical Notation for AOSE

Reviewer

Assigner 1
i assigns Toviow panors > review
roviowers J bap 'Lpaper
'Y

make assignments

<<achieves>> distribute papers
<<achieves>> collect finals

Partitioner PaperDB
<<achievess> partion | —retrieve abstract <<achieves>> collect papers
papers

retrieve finals

Review Collector

<<achieves>> collect
reviews

retrieve paper <<achieves>> select papers
<<achieves>> inform authors

get reviews

Decision Maker

inform authors

Author

Finals Collector
i send to pril
printer

Fig. 4. O-MaSE Role Model

©
A

J
A

Printer

dnitiates» Printer m
PC Ch?lr «initiates»
[c<plays>> partitioner . 5
k<plays>> review collector [~ ¢nitiates» «participates» g
[<<plays>> decision maker «initiates»
[c<plays>> finals collector «participates»
submit paper
Author <
«participates» «participates»
AN
N [<<plays>> paperDB
«initiates»
«initiates» «participates»
Referee
" refrieve
. [cinitiates»
[<<plays>> reviewer papers
«participates»
initiates» «participates»
initiates» Sinitiates» «participates»
PC Member
make :
! «participates-
assignments [<<plays>> assigner

_
_

N/ retrieve \,
\ _abstracts /™

X retrieve finals X

%

%

Fig. 5. O-MaSE Agent Model

“triggers” relation between the Partition Papers and Assign Reviewers goals and the
created(set) event indicates that the created(set) event may occur during achievement
of the Partition Papers goal and when it does, it triggers the creation of a new Assign

125

126 L. Padgham et al.

print proceedings

Printer

submit final
submit paper
Database
i <plays>> paperDB
i Referee }

X retrieve papers
<plays>> reviewer

inform authors

PC Chair Author
<plays>> partitioner
<plays>> review collector etrieve final.

<plays>> decision maker
<plays>> finals collector

A\ A 4 ¢

etrieve abstrac

submit review————

+

review
papers

<plays>> assigner

PC Member
make assignments——— P i

Fig. 6. O-MaSE Agent Model with Implicit Conversations

Reviewers goal that is parameterized based on some set of papers to be assigned to re-
viewers. As can be seen from Figures[2]and[3] the Prometheus Goal Overview Diagram
provides a simpler and clearer model of system goals while the O-MaSE model pro-
vides additional constructs that provide a more detailed definition of system operation.
Clearly, each model has situations where its use is warranted and the ability to choose
between these models could be of great benefit to system designers.

The O-MaSE role model is derived from the goal model and depicts the relationships
between the roles in the conference management system, as shown in Figure[d In Figure
[l the goal(s) that each role may achieve are annotated via an embedded < achieves>>
relation in the body of each role symbol. Thus, the Assigner role is used to achieve the
Assigns Reviewers goal. We also use a directed arrow to represent a conversation be-
tween roles with the arrows pointing from the initiator to the responder. The details of
these conversations are defined using the commonly accepted AUML interaction dia-
grams [[15]. Interactions with the external environment are represented as conversations
with external actors.

The O-MaSE Agent Model (Figure[3)) also shows assignment of roles to agents (via
the < plays> embedded relation) but also shows the initiation and participation in spe-
cific conversations. (An alternate implicit conversation notation is shown in Figure [6)).
In both cases, the conversations between the agent types provide an overview of the
entire system architecture.

The Prometheus System Overview Diagram (Figure [7) captures the architecture of
the system, showing agent types, the conversations between them, and the interface
to the environment in the form of percepts and actions. The System Overview diagram

A Unified Graphical Notation for AOSE 127

I notification

I acknowledgement

I review_repor:

i Papers_manager

[emeri o>
[rssin pers™>

I reject-ass-pape:

I reviewer_inf

i Review_manager

< selection_decision

proceedings_finalisation

selection_decision

% Publishing_manager
/% Selections_manager

I select_decisiol
selection_opini

I opinions_in

I provide_proceedings

Fig. 7. Prometheus System Overview Diagram

Submission Papers_archive
& «knowledge» Submitted_paper: paper «knowledge» Submitted_papers: paper(]
== «knowledge» Author_data: Author «task» Store_paper
— «task» Registration_GUI «task» Provide_paper_list
«task» Submission_GUI «task» Provide_review_list
/ \ «task» Submit_paper «task» Paper_access
Author «task» Notification_sender «task» Get_review

r

Chair
. Reviewer «knowledge» Submitted_papers: paper[] -
O knowledge» Paper_to_Review: Paper “r"iW‘i‘lgf»nze‘:levgg- Reviewer(] /
- «knowledge» Review_result: Review «task» Assignment_
«task» Review_GUI «task» Get_Papers —
«tasks Paper download — «task» Assign_Papers A
/\ «task» Review_submit «task» Notify_Reviewers / N\
e «task» Accept_GUI «:ast» ge;:\slionTGU\ cnair
«task» Notify_acceptance «task» Get_Reviews
& «task» Decide_acceptance
«task» Notify_authors

Fig. 8. PASSI Agent Structure Diagram

is generated automatically by the design tool (though layout must be done manually),
based on the protocol specifications, and on the role specifications which form the agent.

The PASSI Multi-Agent Structure diagram (Figure [8) captures similar concepts as
the O-MaSE Agent Model and the Prometheus System Overview. When following
PASSI, the diagram contains no new information and is usually generated automati-
cally by the PASSI ToolKit. Unique to the PASSI diagram is the use of <task>> and
<knowledge>> keywords in the agent notation, which clearly highlights the exten-
sibility of our current notation. While the O-MaSE Agent Model uses the <plays>>
keyword to denote the roles an agent may play, the PASSI approach is focused more
on capturing the knowledge required by the agent (<knowledge>>) and the tasks per-
formed by the agents (<task>>). Again, the commonality of the notation would allow
the designer to use the most useful aspects of the various methods and diagram types to
express the system design.

128 L. Padgham et al.

<<particpates>>
vvvvv ,_manager o

7 / QL[\
/ Paper_submission "\ O Papers_archive //Revlew7 lon\ Download_paper \

{ Ontology=Paper N - (o 4 Ontology=Paper
< Submitted < ¥ /
_ Protocoi=infom Pager_recover Nt x| Ree— _ Protocol=Request N\ Protocol=Request /
\ Language=RDF / Language=RDF \LanguagezRDF
N Papers_manager N —/ [
< i
<ciipes>> <ainifies>>
R nitter

P

ir— \
P4 / Get t_Papers_List \\ Get_Reviews N

0O . Submission Ontology=Paper > ¢ Ontology=Paper) Reviewer
\/ [<<knowledge>> \ Protocol-Query _ Protocol=Query % Y <<knowledge>>
Submitted_paper: paper \Language RDF _ Language=RDF 4 T Paper to_Review: Paper
<<knowledge>> J L \| \/ <<knowledge>>
ta: Author !

7\ |Review_result: Review

Author_d:

pppppppppppp

/ N
/" Paper_acceptance ol
/ On(ology:Paper_resul(\>$ Chalr 1‘ 2 N
PoocolRequest /T ot <knowledge: /" Noification_of_ \
Language=RDF p T |submitted. _papevs paper(] “ / Paper_assignment "\
4 A Ontology=Pap
|7\ |Reviewers: Reviewerl] | Protocol=Request

Language=RDF
\

Fig. 9. PASSI Communication Ontology Description Diagram

The PASSI Communication Ontology Description diagram (Figure) is essentially
composed of communications and agents. For each communication, the designer can
introduce three parameters: the ontological elements exchanged in message contents
(represented by the Ontology parameter), the agent interaction protocol (represented
by the Protocol parameter), and the content language (represented by the Language
parameter).

The Prometheus System Overview, the O-MaSE Agent Model and the PASSI Agent
Structure and Communication Ontology Description diagrams all show conversations
between agent types. The difference lies in how they represent interaction with the
environment. The Prometheus models show an explicit representation of individual ac-
tions/percepts while the O-MaSE and PASSI models represent interactions via conver-
sations with external actors.

4 Discussion and Future Work

We can see that once the gratuitous incompatibility of notation is removed, it becomes
much easier to see both the similarities and the differences, and to consider extending
one methodology with aspects of another. It is clear from the example and associated
diagrams that O-MaSE and Prometheus are quite close, at least at the level of system
specification and architectural design, whereas PASSI is more dissimilar:

— Both O-MaSE and Prometheus capture goals in a goal overview diagram. The
Prometheus notation is simpler whereas the O-MaSE notation captures additional
relationships, such as one goal triggering another.

— O-MaSE, Prometheus and PASSI all have a diagram that captures the roles in the
system and in the case of Prometheus and O-MaSE these both indicate the assign-
ment of goals to roles.

A Unified Graphical Notation for AOSE 129

— The System Overview Diagram of Prometheus and the Agent Model of O-MaSE
are virtually identical apart from O-MaSE showing actors, whereas Prometheus
shows actions and percepts. PASSI on the other hand has a simpler Agent Structure
diagram with a separate diagram for the communication ontology.

Although there is still some way to go before portions of the methodologies would be
fully interchangeable, the unified notation does allow us to more readily see possibilities
for borrowing from each other. Most importantly, the unified notation has the potential
to allow users and developers to more readily understand the various methodologies and
associated diagrams, as they do not need to learn a new ‘language’ for each approach.

In order to move towards this new unified notation, the authors are committed to
using this notation, and to moving our respective CASE tools towards using this nota-
tion. Indeed, there already is a version of the Prometheus Design Tool that uses the new
notation, and this was used to generate Figure

In future work we hope to specify XML representations for certain diagrams, that
will facilitate sufficient mapping between underlying models to allow some sharing
of tools. We also hope that further collaboration and exploration can lead to further
integration of our approaches to the benefit of industry developers wishing to use these
technologies.

References

1. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317-
370 (2003)

2. DeLoach, S.A.: Engineering organization-based multiagent systems. In: Garcia, A., Choren,
R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS,
vol. 3914, pp. 109-125. Springer, Heidelberg (2006)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8, 203-236 (2004)

4. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons, Chichester (2004)

5. Cossentino, M.: From requirements to code with the PASSI methodology. In: Henderson-
Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 79-106. Idea Group Inc.,
USA (2005)

6. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodologies. In:
Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS, vol. 3030, pp.
94-109. Springer, Heidelberg (2004)

7. Henderson-Sellers, B.: Method engineering for OO systems development. Commun.
ACM 46(10), 73-78 (2003)

8. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some multi-
agent metamodels. In: Odell, J.J., Giorgini, P., Miiller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 62-77. Springer, Heidelberg (2005)

9. Object Management Group: UML Resource Page (2006), http: //www.uml.org/

10. Sturm, A., Dori, D., Shehory, O.: Single-model method for specifying multi-agent systems.
In: The Second International Joint Conference on Autonomous Agents & Multiagent Sys-
tems (AAMAS), pp. 121-128 (2003)

http://www.uml.org/

130

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Padgham et al.

Bernon, C., Cossentino, M., Pavén, J.: Agent-oriented software engineering. Knowl. Eng.
Rev. 20(2), 99-116 (2005)

Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Odell, J.J.,
Giorgini, P., Miiller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 78-92. Springer, Heidel-
berg (2005)

Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardization to research. International Journal on Agent Oriented
Software Engineering 1(1) (2007)

Rumbaugh, J.: Notation notes: Principles for choosing notation. Journal of Object Oriented
Programming 9(2), 11-14 (1996)

Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In: Odell,
J.J., Giorgini, P., Miiller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 16-30. Springer,
Heidelberg (2005)

Winikoff, M., Padgham, L., Harland, J.: Simplifying the development of intelligent agents.
In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI),
vol. 2256, pp. 555-568. Springer, Heidelberg (2001)

Busetta, P., Howden, N., Ronnquist, R., Hodgson, A.: Structuring BDI agents in functional
clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 277-289. Springer, Hei-
delberg (2000)

Ciancarini, P., Niestrasz, O., Tolksdorf, R.: A case study in coordination: Conference Man-
agement on the Internet (1998),
ftp://cs.unibo.it/pub/cianca/coordina.ps.gz

DeLoach, S.: Modeling organizational rules in the multi-agent systems engineering method-
ology. In: Cohen, R., Spencer, B. (eds.) Canadian Al 2002. LNCS, vol. 2338, pp. 1-15.
Springer, Heidelberg (2002)

ftp://cs.unibo.it/pub/cianca/coordina.ps.gz

	A Unified Graphical Notation for AOSE
	Introduction
	The Unified Graphical Notation
	Using the Notation
	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

