
Support for Analysis, Design, and Implementation
Stages with MASDK

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov, and Victor Konushy

St. Petersburg Institute for Informatics and Automation
39, 14 Liniya, St. Petersburg, 199178, Russia

{gor,ok,samovl,kvg}@mail.iias.spb.su

Abstract. In spite of much research and development on agent-oriented software
engineering methodologies and supporting software tools, the problem remains of
topmost importance. Many efforts are still needed to make such methodologies
and software tools practically applicable at an industrial scale. This paper pro-
poses extension of the Gaia methodology with a formal specification language,
making it possible to implement Gaia as a model-driven engineering process
supported by a corresponding agent-based software development environment,
MASDK 4.0. The paper outlines MASDK 4.0 through the extended Gaia, and
demonstrates the technology supported by MASDK 4.0 on the basis of a frag-
ment of a case study on autonomous air traffic control.

1 Introduction

Over the last decade, different tools, software libraries, frameworks and program lan-
guages [1] have been developed for multi-agent system (MAS) development. Among
them, the most widely used are Living SystemsRTechnology Suite [18] AgentBuilder
[17], agentTool [5], Coguaar [8], JADE [2], INGENIAS IDE [12], etc. These differ in
methodologies used (MaSE [6], Tropos [11]), Gaia [20], etc.), architecture of target
applications (BDI, reactive architecture, etc.), and in levels of maturity achieved and
classes of applications they are able to develop. However, there is no single methodol-
ogy and software tool that is the best one.

Among other agent-oriented software engineering methodologies, the main peculiar-
ity of Gaia is that it is not explicitly goal-oriented, although this feature does not mean
that goal-oriented MAS applications of BDI architectures cannot be developed on the
basis of Gaia. It focuses on organizational abstractions of applications with subsequent
explicit separation and specification of internal and external behaviour of agents com-
posing MAS, and exactly this feature determines its specificity as opposed to many
other existing methodologies. External behaviour determines agent interactions in var-
ious use cases that is specified in terms of interaction protocols and constrained by
organizational rules. Explicitly introduced protocols actually make it much simpler to
represent collective behaviour of agents, and the behaviour itself is more predictive in
comparison with the goal-oriented BDI approach. In the BDI approach, the emerging
behaviour of individual agents and collective behaviour results from rich knowledge and
reliable beliefs of the particular agents, as well as from sophisticated inference mecha-
nisms that need to use, as a formal basis, modal and temporal logic. In many cases, the
BDI approach works well, but the problem of complexity should be managed carefully.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 272–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Support for Analysis, Design, and Implementation Stages with MASDK 273

In contrast, Gaia attempts to transfer MAS development complexity into more care-
ful analysis of the system’s organizational issues, and the explicit design of the MAS
interaction model thus makes collective behaviour of agents more predictable and un-
derstandable. In general, such an approach simplifies agent-oriented software engineer-
ing and there exist many classes of applications where Gaia-based technology could
outperform purely goal-oriented ones.

The objectives of this paper are twofold. One is to extend Gaia in order to make it
more applicable by enriching it with a formal specification language that can make it
possible to practically implement Gaia as model-driven engineering. The second ob-
jective is, based on the extended Gaia and a design process and formal specification
language, to introduce the MAS development environment that implements a graphical
MAS development process, according to the extended Gaia methodology. Accordingly,
the paper is organized as follows. Section 2 presents a general view of the Multi-agent
System Development Kit (MASDK 4.0) components and their interactions in the de-
velopment procedure. Section 3 sketches Gaia as it was proposed by the authors [20]
and presents generally in what aspects it is extended in this paper. Section 4 introduces
the Agent System Modeling language, ASML, that supports model-driven engineering
technology of the Gaia implementation. Section 5 describes the stage-by-stage devel-
opment process supported by MASDK 4.0 bridging it with Gaia and describing the
particular products. This is done using a fragment of a case study for an autonomous
air traffic control system. Section 6 surveys related work on the existing extensions of
Gaia. The conclusion summarizes the main paper contributions, emphasizes the advan-
tages of the proposed Gaia extensions and the MASDK 4.0 development environment
implementing Gaia. Future work is also outlined.

2 Architecture of MASDK 4.0 Environment

MASDK 4.0 is a software tool implementing an extended version of the Gaia method-
ology. It is provided with a graphical and formal specification language that supports
thorough and consistent conceptual analysis, detailed design, code generation and de-
ployment of target multi-agent applications, including those operating in dynamic and
Peer-to-Peer (P2P) environments.

The basic components of MASDK 4.0 and their interaction are shown in Fig. 1.
The Agent-based System Modeling Language (ASML), based on UML, is exploited
for in-progress-design specification of MAS formal models. ASML-based specification
of MAS is supported by a Visual Design Environment (VDE) component providing for
user-friendly graphical notation of ASML. The final formal model or model-in-progress
is stored in the MAS Model Description (MMD) component. The resulting MAS formal
model serves as input for producing the agent classes’ source code. This functionality
is performed by the Source Code Builder (SCB) component. Two more components,
Generic Agent (GA) and Agent Platform (AP), are implemented as reusable solutions
(source code). The code of the GA component realizes application-independent func-
tionality of agents behaviour, implemented as a reusable library producing the agent
classes’ source code. The AP is FIPA compliant developed according to the reference
model [8], and realizes distributed “white” and “yellow” pages services and provides

274 V. Gorodetsky et al.

Fig. 1. MASDK environment components and their interaction

for communication. The AP is a self-dependent software component that can be ex-
ploited separately from MASDK 4.0. Its description and downloadable run-time code
can be found in [15].

MASDK Lite is an auxiliary component intended for agent deployment. Specification
of agent classes (source code of agent classes) is used as its input. The agent instances
deployment requires identification of their names and addresses, and, when necessary,
specification of their initial mental models and services they possess. MASDK Lite, like
AP, can be used separately from MASDK 4.0 for application maintenance.

MASDK 4.0 supports analysis, architectural and detailed design of MAS applica-
tions by Gaia, but also software implementation using the SCB component, and de-
ployment using MASDK Lite. The ASML-based formal specification of MAS models
is used by the SCB component to produce source code of agent classes. The source code
contains fully specified behaviour logic and mental models of agent classes. Therefore,
the implementation stage is limited to encoding of the agent class activities. This code
should be manually developed by programmers using the MS VC++ environment.

3 Methodological Basis: Extended Gaia

As stated above, the Gaia methodology for agent-oriented software engineering [20]
is focused on organizational abstractions of complex systems with explicit separation
and specification of internal and external behaviours of agents. External behaviour de-
termines agent interactions in various use cases, specified by interaction protocols. In-
teraction protocols are distributed algorithms performed by a subset of agents each of
which performs, within particular protocol, a specific role. The scenario of the role per-
formance and some other role activities correspond to what is above called “internal
agent behaviour”. Accordingly, Gaia explicitly determines the decomposed system or-
ganization components, the subtasks to be solved by each component in various use
cases (roles), and interaction protocols associated with the use cases. The results of the
Gaia analysis constitute the input of the subsequent architectural and detailed design.

In fact, Gaia, as described by the authors [20], specifies a general methodological
framework for analysis and architectural design, whereas methodology applicability
needs detailed development and formal support for all aforementioned stages and imple-
mentation, and deployment issues as well. In other words, applicability of Gaia requires

Support for Analysis, Design, and Implementation Stages with MASDK 275

its technology-oriented extension. Extensions of various kinds were proposed in [10],
[3], [13], [14], etc. reviewed in Section 6. This section outlines the applicability-oriented
Gaia extensions proposed in this paper that then constitute the methodological basis for
the agent-oriented software engineering technology fully supported by MASDK 4.0
components presented in Fig. 1.

3.1 Analysis

Subdivide System into Sub-organizations. The objective of this stage is description and
analysis of the organization aiming at discovery of appropriate decomposition of the
whole organization into more or less weakly-coupled sub-organizations.

Identify Environmental Entities. This activity aims at detection of environment con-
ditions, constraints and environment entity interfaces. Examples of entities include
databases, external services, user interface, sensors (e.g. controllers of an assembly
line), etc.

Discover Roles, Create their Preliminary Internal and Interaction Models. Role dis-
covery is fulfilled by an expert. Preliminary role model creation includes description
of their permissions (e.g. regarding interaction with environment, etc.), responsibilities
and activities together determining the role internal behaviour. The responsibilities are
specified by Liveness Expressions (LE) using the formal language Fusion. The discov-
ered roles are represented by the Role Schemata. Role interaction protocols are also
identified. These models are preliminary and may be refined later.

Determine Organizational Rules. Organizational rules determine global system
behaviour policy that must be satisfied by all the agents. E.g., security policy rules
regulate access to confidential information. Safety policy rules in air traffic control de-
termine admissible movements of the aircrafts in various situations when separation
distances between aircrafts may be violated. In Gaia, organizational rules are intro-
duced informally, constituting inputs for the architectural design stage.

An extension of the Gaia analysis proposed regards using a specific formal spec-
ification language, Agent-based System Modeling Language (ASML), supporting all
the analysis-related activities and specifying formally the results. It is described below.
These extensions are fully supported by MASDK 4.0.

3.2 Architectural Design

Gaia determines two kinds of activities that should be performed at this stage.
Select Organizational Structure. Decomposition is a subject of the analysis stage, while
organizational structure is developed at the architectural design stage so that various
sub-organizations can be structured differently. E.g., some components can be struc-
tured in P2P mode, whereas others can be hierarchical.
Final Role and Interaction Models. The organizational structures can require refining
of the preliminary role schemata (i.e., models of roles and interaction protocols).

The proposed Gaia extension supports formal specification of the design results using
ASML and supported by MADK 4.0 (see below).

276 V. Gorodetsky et al.

3.3 Detailed Design

The core of this stage is identification and detailed design of agent class models and ser-
vices. Each agent class is allocated one or several identified roles. The products should
correspond to a fully developed agent architecture, including its services, providing the
specifications necessary for software implementation.

Agent Model. All the agents allocated the same roles determine a particular agent class.
Detailed design of agent class software architectures is the main subject of this stage in
Gaia, but Gaia gives no concrete methodology for this activity.

This paper extends Gaia in two aspects. First, it proposes the use of ASML for speci-
fication of the in-progress and final products of the agent model detailed design and, sec-
ond, it proposes a generic agent architecture implemented as reusable software within
MASDK 4.0.

Service Model. Gaia defines agent services vaguely. In this paper, an agent service is
understood as a single activity or a sequence of activities (a scenario) that provides an
agent with functionalities that do not necessarily fall into the block of functions invoked
by an agent interaction protocol. They can be composed of LEs, proactive behaviour
invoked by internal agent state and/or by the state of the environment (e.g. when agent
requests for resources from environment).

Implementation and deployment. These very important stages are outside the scope
of Gaia. The proposed extension, and the corresponding software engineering means
implemented in MASDK 4.0 are described below.

4 Introduction to ASML Language

The ASML language is based on UML notation. It is supported by a user interface
providing, for ASML, a graphic notation that allows representing and editing of MAS
models via the VDE component (Fig. 1) by creating diagrams formally representing
in-progress and final analysis and design solutions. The set of diagram types, their in-
terrelations and use at the respective stages of MAS design correspond to Fig. 2. Below
we provide a brief outline of ASML.

MAS macro model diagram. This diagram type is specified using ASML concepts:
tasks, agent roles, protocols, active entities (components), and agent class.

The notion of task is used for assigning names to use cases. Agent role, in the macro
model, is identified by the name and template containing the list of LE names defining
the role internal behaviour and also the list of identifiers of the rules triggering proac-
tive agent behaviour1 (triggering rules, for short). Each of these rules is linked to the
LE it triggers. Active entity specifies the interface of agents to external components that
are not agents. Examples of active entities are interfaces to sensors, effectors, etc. The
macro model is constituted of instances of the above notions and the relations between
them. The following types of relations are used in ASML: task – is initiated by – trig-
gering rule / functionality of active entity; LE – is initiated by – protocol / triggering

1 Here proactive behaviour is initiated by something other than a protocol.

Support for Analysis, Design, and Implementation Stages with MASDK 277

Detailed DesignAnalysis and Architectural design

Agent class Role

MAS Macro
Model

Role
Schemata

Behavior
Scenario

Protocols

Ontology

Behavior
Scenario

Fig. 2. Development process models and their interactions

rule; protocol – is initiated by – active entity / Role / LE / functionality of active en-
tity; functionality of active entity – is initiated by – protocol; agent class – plays – role.
Corresponding diagrams are intended for specification of the organizational structures
and interactions, and a MAS application is specified by a single macro model that can
contain several diagrams.

Protocol diagram. ASML provides the following protocol specification concepts: (role)
lifeline of the protocol participant, communication act, (role) lifeline end, alternative
combined by a fragment comprising two or more operands. Use of auxiliary dialogs al-
lows specifying communication acts in terms of cardinality of the protocol respondents,
cardinality of the respondents for each operand of combined fragments as well as for
each message respondent. Communication act is specified in ACL language [9]. Spec-
ification of message content is done in terms of ontology concepts, while protocols are
specified using the diagram editor. These diagrams specify interaction protocols among
the roles and among the roles and active entities.

Role scheme. Detailed specification of each LE is performed at two abstraction levels
using Role scheme and behaviour scenario diagrams respectively. The former is used
to specify LE decomposition if necessary and scheme of inter-role behaviour coordina-
tion. Role scheme diagrams are represented in terms of such notions as scenario, event,
triggering rule and protocol.

The LE decomposition is performed using two types of the designing rules, manda-
tory and optional. The former correspond to a case when the LE is linked to protocols
or/and to triggering rules. In this case, the LE is decomposed into simpler scenarios
with one-to-one relation to protocols, and triggering rules should be linked to a sim-
ple scenario. Optional rules allow experts to elaborate more detailed decompositions
via adding new simple scenarios. The role scheme comprises scenarios reflecting LE
decomposition and relations of type scenario-uses-scenario.

Each role’s LE is run within a separate control thread that admits concurrency of
role performance but this may require coordination. It is done using the notion of event
and additional relations, i.e. event – is generated by – scenario, event – is used by –
scenario and event – is used by – triggering rule. The relation of the first type identifies
the behaviour scenario generating the corresponding event. The next type is intended

278 V. Gorodetsky et al.

for specification of the scenario interrupt processing. The same relation determines the
events initiating continuation of the interrupt processing. The last type of the relation
determines the conditions initiating triggering rules.

Role behaviour scenario. Diagrams of this type are used for specification of simple sce-
narios as a set of nodes and transitions between them, while representing behaviour log-
ics of each scenario. ASML introduces the following self-explanatory types of notions
defining classes of scenario nodes: activity, complex activity, generating / waiting event,
event handling, sending / waiting message, message handling, interface with agent plat-
form, control node, etc. E.g., in the nodes of type control node, different variants of the
behaviour scenario performance continuations are specified. In the nodes representing
a complex activity, the conditions invoking the behaviour embedded scenarios are de-
termined, etc.

Ontology. Ontology diagrams are used for description of domain notions and relation-
ships between them. Ontologies are used as the language for message content specifi-
cation and, in the detailed design of agent classes, it is used to specify their behaviour
scenarios in terms of model variables and attributes. Ontology relations are specified
using three standard relations types: generalization (inheritance), association and com-
position.

Agent class behaviour scenario. When an agent class is allocated roles (at architectural
design) the former inherits the roles’ behaviour scenario list of these roles. Detailed de-
sign assumes formal specification of agent variables, scenario interface, scenario vari-
ables and scenario node calls represented using scenario and agent variables.

5 Support of Gaia in MASDK 4.0

5.1 Case Study: Autonomous Air Traffic Control

Due to the ever increasing intensity of air traffic and stiffening safety requirements,
air traffic control relying on purely human-based control needs to reconsider its basic
organizational principles. According to current opinion, some complex real time control
responsibilities of air traffic control operators should be assigned to aircraft software
to make control more autonomous. The case study of an agent-based autonomous air
traffic control system, used for explanation of the developed software tool, MASDK
4.0, is outlined below.

The air traffic safety is provided by two measures. The first is structuring the air-
port airspace according to a topology that determines all the admissible trajectories of
aircraft arrivals, landing and departure. It encompasses two zones (Fig. 3): (1) arrival
zone and (2) approach one. The arrival zone comprises arrival schemes, which begin
with entry points and are specified as sequences of legs ending with a holding areas.
The airport airspace (AA) topology also determines admissible echelons, i.e. admissi-
ble altitude ranges for passing through leg exit points. The AA topology also contains
departure schemes but departure control is omitted in the case study. An example of an
AA topology for JFK airport of New York City (NYC) is depicted in Fig. 3.

The second measure of the air traffic safety provision assumes the separation stan-
dards that determine the minimal admissible distances between aircrafts along each of

Support for Analysis, Design, and Implementation Stages with MASDK 279

LG

JFK

R

R –Airport name –Approach zone

–Holding area –Leg –Arrival zone

SHARK

FRILL

TRAIT
PARCH

CCC

ROBER

Identifiers of the points
of the arrival zone

Fig. 3. Airspace topology within NYC area (horizontal projection), and arrival / approach zones

three spatial dimensions. These standards may be different for various air traffic-related
situations. In the case study, meeting the separation standards is achieved by using a
rule-based distributed safety policy that has to be followed by every aircrafts operating
within airport airspace.

The idea of the autonomous air traffic control in the arrival zone is to delegate, to the
aircraft’s pilot-assisting software, the right to autonomously compute the safe landing
trajectory, predict potential conflicts (violation of the separation standards) with other
aircraft and to autonomously resolve these conflicts using a distributed safety policy
and peer-to-peer negotiations with the potentially conflicting aircraft.

5.2 MASDK 4.0 Products Supporting Gaia

The whole air traffic control system (ATC) organization contains two sub-organizations:
ATC in arrival zone and ATC in approach zone. Below, the latter sub-organization is not
considered. The environmental model includes the model of the AA topology, the real
time model, and visualization model of the whole situation in the AA. These models
are composed in the component called Simulation server that, in terms of ASML, is an
active entity.

In the considered fragment of the ATC system, the set of use cases is developed for
individual aircraft, since all operate equally. The following use cases are considered
below: ATC in arrival zone, corresponding to elaboration (computation) of the landing
plan by an aircraft; Aircraft grouping, intended for rough evaluation, by an individual
aircraft, of a subset of other aircraft that potentially can be the sources of conflicts.
The use cases involving the Simulation server include Airliner initialization when an
aircraft enters the arrival zone, instead of Simulation when the current time variable is
increased for one simulation duration. Each of the above use cases assumes interactions
according to the corresponding protocols.

Role discovery results in one role, Pilot (aircraft) assistant (PA). It should partic-
ipate in these use cases to be responsible for autonomous planning and scheduling
of landing trajectory, prediction of potential conflicts with other aircrafts and conflict

280 V. Gorodetsky et al.

–Task – Role & its LEs – Active entity
 and its functions

– Protocol –Triggering rule

Fig. 4. Example of MAS macro model diagram

resolution through negotiation and reaching agreement. Accordingly, the listed use
cases determine the list of LEs of the PA role while determining its interaction model
and list of protocols. The single agent class, PA-agent class assigned the PA role is
introduced.

An important component of the macro model is a set of organizational rules. In this
case study, organizational rules represent the distributed safety policy, but since analysis
of this is not the focus of this paper, its description is omitted.

MASDK 4.0, implementing ASML, supports all aforementioned analysis-related ac-
tivities with graphical means. Fig. 4 shows the MADK 4.0 product, i.e. graphical nota-
tion of the macro model of agent-based autonomous ATC system and its components,
representing PA role scheme and environment model, Simulation server. It is worth not-
ing that this macro model is not only “a picture”, but is also the formal model specified
in ASML, and used as input for the next development stages. In general, architectural
design should result in selection of the organizational structure, and refinement of the
roles and interaction models. Below, these Gaia activities and their support in MASDK
4.0, as well as the products, are considered by example.

Organizational structure. The autonomous ATC assumes negotiations of PA roles in
several use cases with no mediation by a centralized server, i.e. with no hierarchy. This
requires use of P2P negotiations of the PA roles, so that agents have to negotiate using
the distributed P2P platform that is a component of MASDK 4.0 environment [15].

Interaction model architectural design. Fig. 5 depicts an example of the protocol spec-
ification. It represents the protocol P4 identified in the macro model (Fig. 4). According
to the latter, this protocol is used by a PA role when it agrees with maneuvers proposed
by the same role of other PA agent class instances. In the diagram, these roles are de-
noted as I-Airliner (the protocol initiator) and P-Airliner (participant, or respondent of
the P4 protocol) respectively. In the example, only one respondent of the P4 protocol

Support for Analysis, Design, and Implementation Stages with MASDK 281

Fig. 5. Example of a protocol diagram Fig. 6. Example of a scenario diagram

exists. It receives a request from I-Airliner to perform some maneuver, either accept-
ing the request or rejecting it, while sending a corresponding message, either Accept
or Reject respectively (Fig. 5). In Fig. 5 the protocol description consists of two par-
ticipants and includes one combined fragment. In general, the protocol can consist of
several participants and can include several nested combined fragments. It is worth not-
ing that UML Sequence diagrams are used as prototypes of the protocol diagram used
in MASDK 4.0. The limitation of such diagrams is that they do not allow for speci-
fying nested protocols so far. This limitation is actually made up for by other types of
diagrams aimed at specification of the role scheme.

Thus, the second important product of MASDK 4.0 in architectural design is the set
of formal protocol models composing the MAS interaction model that is specified in
terms of UML-like Sequence diagrams. Let us note that this specification is later used
in automatic generation of the corresponding LE scenario scheme represented via the
set of its nodes and transitions between them.

Role model: Liveness expression specification. Role scheme diagram. Architectural
design of an agent role consists in specification of its LEs. It is done using two types
of diagrams, Role scheme and Behaviour scenario. The former diagrams are used for
decomposition of the LE into several simpler behaviour sub-scenarios, as well as for
specification of the inter-roles behaviour coordination scheme.

Fig. 6 explains by example the decomposition rules described above. It represents
the PA Role scheme diagram for the LE Arrival planning (Fig. 4). According to the
macro model, this LE is capable of proactive behaviour, and participates in three inter-
action protocols, P4, P5 and P6. Accordingly, this LE scheme is decomposed to four
simple behaviour scenarios denoted as Safety assurance, P4 Maneuver, P5 Decision
and P6 Coordination. The fifth simple scenario, Arrival planning, is added to provide
a specification of the logically complete sub-scenario that is the computation of the ad-
missible set of landing plans. The arrows connecting the scenarios are interpreted as
“scenario – invokes – scenario” imposing order on performance of simple scenarios.

E.g., according to the diagram given in Fig. 6, the simple scenario Safety assurance is
initiated by a proactive behaviour rule. This rule is triggered when event 1 has happened,
for instance. The latter is generated as an output of another LE, Simulation (Fig. 4),
when an airliner is approaching the airport airspace point connected to holding area. In

282 V. Gorodetsky et al.

Fig. 7. Example of scenario diagram

that point, the PA role has to compute a flight plan for moving within the next sector
of the arrival scheme. If, at the same time, other PA-agent instances begin computing
their flight plans within the same sector then, according to the distributed safety policy,
these PA-agent instances have to compute their priorities using the Safety assurance
scenario. These priorities determine the order of their entry in the same sector, while
granting entry permission to the highest priority aircraft. If an aircraft is not granted
this permission, it interrupts execution of the Safety assurance scenario and waits for
event 2, which arrives when the situation is changed in a way leading to a change of the
aircraft priorities. In this case, the PA-agent instance repeats computation according to
the above described scenario and, in case it has highest priority, continues performance
of the LE and invokes the Arrival planning scenario, determining its behaviour within
the next sector.

Role model: Liveness expression specification. Behaviour scenario diagram. Behaviour
scenario diagrams are used for specification of simple scenarios. This type of diagram is
an extension of UML activity charts [19]. Two types of simple scenarios are discerned,
associated and not associated with the interaction protocols, and specified differently.
Fig. 7 presents a self-explanatory example of a scenario that is not associated with any
interaction protocol.

Behaviour scenarios of the second type, i.e. associated with participation of the role
in an interaction protocol, must be consistent with the protocol specification, (protocol
specification determines scenario behaviour logic). In the MASDK 4.0 environment,
this dependency is automatically supported by two mechanisms. The first provides for
automatic generation of scenario behaviour logic, and the second allows for preservation
of this logic during further development (refinement) of the scenario by the designer.
Both these mechanisms are explained in Fig. 8 where description of the P4 Maneuver
scenario is shown. This scenario specifies the performance of the PA role (as initiator)
in interaction protocol P4 (Fig. 4) represented by the diagram in Fig. 5.

Fig. 8. Diagram example of scenario related to protocol

Support for Analysis, Design, and Implementation Stages with MASDK 283

Ready code Produced code Partially
produced

code

External libraries

Agent class'
library

Ontologies'
library

Scenario
nodes
library

Generic
Agent

Generic
Ontology

External
library_1

External
library_N

Fig. 9. Class libraries’ scheme

The core of the detailed design is in depth development of the agent classes and ser-
vice models. Let us outline how these activities are supported by MASDK. Agent classes
inherit behaviours of the roles assigned. In particular, they inherit the roles’ schemes and
behaviour scenarios that require detailed specification of the agent class model (scenario
nodes and transitions between them) in terms of variables and attributes.

This task of detailed design is aimed at more precise specification of agent class
behaviour in terms of the agent class model variables, attributes, behaviour scenarios
and functionalities of the scenario nodes. Variable and attribute types are defined either
according to the ontology concepts used, or by standard data types usually supported
by programming languages.

The resulting specification is used as an input to the SCB (Fig. 1), which checks
MAS model specification correctness and either reports (through messaging) on the de-
veloped model incompleteness or inconsistency, or automatically builds source code of
agent classes. In the former case, the messages inform the designer about what has to be
redesigned in the model specification, e.g. the messages can be as follows: “Description
of behaviour scenario 〈name〉 is not completed”, or “Proactive behaviour of liveness
expression 〈name〉 is not described”. Model completeness and consistency can also be
checked during the design process, i.e. independently of generation of the source code.
This helps the designer to earlier fix the current state of MAS model development.

The architecture of the agent class software produced by SCB is depicted in Fig. 9.
Generic agent and Generic ontology are provided by MASDK 4.0 environment as ready
(reusable) components in terms of source code from the very beginning. They represent
invariant behaviour of agent classes and abstract ontology. Generic agent, in particu-
lar, includes classes representing the abstract behaviour scheme of agent classes, the
abstract proactive behaviour model of agent classes, abstract simple scenarios, etc.

The source code of Agent class and Ontology components is generated by the SCB
component. For this purpose, the SCB translates elements of the model specification
of each agent class to the corresponding class libraries. In particular, simple behaviour
scenarios of an agent class and scenario performance order are represented by the Agent
class library. The Ontology library provides for access to data and knowledge storage
of Agent class. The source code of these two libraries is automatically generated in full
without any additional programmer efforts.

The Scenario nodes library specifies scenario node functionalities, whose classes
and methods correspond to simple scenarios of agent class and their nodes, respectively.
Specification of scenario nodes includes identification of their names, and informal de-
scription (comment) and strict specification of their input/output attributes. Therefore,

284 V. Gorodetsky et al.

source code generated by SCB component is composed of the headers, the variables
and the attributes of the classes and their methods, but the “bodies” of methods must be
encoded by programmers manually. The agent class can use some external entities (e.g.,
applications, resources, etc). If they are not agent-based software, these components are
developed externally, outside the MASDK 4.0 environment.

Development of MAS can be of iterative nature. In this case, the main problem is the
maintenance of the source code developed earlier. This problem is solved by the SCB,
which reports which classes and methods 1) are new, 2) which of them can be reused
since they were developed earlier and do not require any modification, 3) which of
them have to be rewritten according to MAS model modification, and 4) which of them
should be deleted. It is worth noting that the source code maintenance problem concerns
only the Scenario nodes component. The components Agent class and Ontology are
generated by the SCB anew using the new MAS model specification.

6 Related Work

Since the first publication [20], Gaia was accepted as a valuable abstract methodology
focusing on organizational issues. Many publications were devoted to its extensions and
in-depth development to make it practically applicable.

Cernuzzi et al [3] proposed enriching Gaia with AUML for protocol specification.
Indeed, the interaction model is a key issue of the organizational model, and adding
the formal notation of AUML to Gaia can significantly enrich the methodology. The
Agent Interaction Protocol (AIP) of AUML regards the protocol as an integrated en-
tity combining roles, constraints, and communication acts, while clearly expressing, in
UML-like notation, the formal protocol semantics. The paper pays specific attention
to the problem of modeling the complexity of open MAS and emergent behaviours. It
introduces a distinguished set of agent class instances allocated the same roles while
Gaia just specifies the role. An additional argument for AUML is that it is capable of
specifying timely message ordering that is important to implement concurrency.

Garcia-Ojeda, et al [10] propose a similar extension of Gaia, using benefits provided
by AIP of AUML. In fact, UML is well developed and widely used as a de-facto soft-
ware design standard and, therefore, would be accepted by practitioners. The authors
proposed to refine the architectural design interaction model based on the two first lay-
ers of AIP in terms of AUML for more detailed interaction model representation. Role
and service models (at architectural and detailed design) are refined via integration of
the AIP third layer and extended UML Class Diagrams. Finally, they refine the orga-
nizational model by integrating all the Gaia models developed at previous stages using
the Alaadin model proposed by Ferber et al [7], that naturally provides a basis for de-
veloping representational mechanisms for organizational concepts.

In order to make Gaia more practically applicable, Gonzalez-Palacios, et al [13] pro-
posed an extension of Gaia in two aspects. First, they consider the design of the internal
composition of agents that is omitted in Gaia. This activity uses, as the input, the or-
ganizational design results. The proposed agent model is composed of two parts, the
structure model and the functionality model. The first model decomposes roles into
classes, while the functionality model is intended to specify collaboration of the above

Support for Analysis, Design, and Implementation Stages with MASDK 285

classes determining the expected role classes behaviour. An advantage of this approach
is that such design activity is independent of the specific agent architecture (reactive,
BDI, etc.). The second extension regards an iterative approach to large scale applica-
tion development. The whole development process is divided into simply manageable
units that are analyzed, designed and implemented one after another, thus extending
previously produced executable deliverables. The final deliverables must contain all the
functionality expected from the system.

The Roadmap methodology described in [14] is motivated by the desire to extend
Gaia to engineering of large scale open systems, viewing the latter as computational
organizations. Roadmap introduces use cases in order to discover requirements (like
MASE [6]), make explicit agent environment and knowledge models, and also to enrich
Gaia by interaction AUML-based models. However, the authors do not regard these
refinements in the needed detail, while other issues remain unclear.

The main drawback of the reviewed and other existing works is that all of them
deal mostly with particular stages or aspects of Gaia, extending its particular modeling
issues. In contrast, in this paper we treat the whole lifecycle of Gaia, while proposing
a formal specification language supported by a powerful software tool, MASDK 4.0,
implementing a model- driven agent-based software engineering approach.

7 Conclusion

The MAS development environment, MASDK 4.0, thoroughly implements the pro-
posed extension of the Gaia methodology. It supports user-friendly technology for MAS
application development. Its advantages and novelties are as follows:

1. It is based on an extended version of the well founded Gaia methodology. The
proposed extensions are intended for making Gaia applicable to practical use.

2. It realizes a model-driven engineering approach, providing automatic support for
consistency and integrity of all the intermediate and final solutions produced by
developers at all Gaia development stages. The use of model-driven engineering al-
lows for substantial speeding up of the development process. This approach is sup-
ported by the formal specification language, ASML, that is provided with graphical
notation, thus supporting the user-friendly graphical design style.

3. MASDK 4.0 supports the development activity at all development stages: at the
analysis stage when organizational issues of the MAS macro-model are decided;
at the architectural and detailed design stages where the development process is
represented in graphical notation of the formal specification language; and at semi-
automatic code generation and deployment stages.

4. MASDK 4.0 provides automatic generation of agent behaviour scenarios schemes
using formal protocol specifications as input. This is one of the most important
advantages of MASDK4.0, distinguishing it from other existing MAS development
environments and tools.

5. MASDK 4.0 is integrated with a FIPA-compatible distributed P2P agent platform,
supporting a service-oriented approach. It can provide a distributed P2P infrastruc-
ture for interaction of heterogeneous software agents running over various operat-
ing systems and using heterogeneous communication protocols.

286 V. Gorodetsky et al.

The MASDK environment was tested on various applications during recent years. Its
current runtime version and documentation are available on the web [16]. In addition,
the FIPA compliant agent platform (runtime version) is freely available. This version,
together with the documentation, can be found at [15].

Future work is aimed at: thorough testing of the current version on various appli-
cations, including embedded and mobile ones in order to determine the directions of
Gaia and MASDK’s further enrichment to make it of industrial level. The intended en-
richment of the FIPA compliant P2P agent platform should also be done in order to
provide it with more system services and capabilities supporting operation of heteroge-
neous nomadic agents. Development of the light versions of the MASDK environment
specifically intended for mobile applications is also planned.

References

1. AgentLink. Agent Software,
http://eprints.agentlink.org/view/type/software.html

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE — A FIPA-compliant agent framework,
http://sharon.cselt.it/projects/jade/papers/PAAM.pdf

3. Cernuzzi, L., Zambonelli, F.: Experiencing AUML in the Gaia Methodology. In: 6th Interna-
tional Conference on Enterprise Information Systems — ICEIS 2004, Porto, Portugal (2004)

4. Coguaar web site, http://www.cougaar.org
5. DeLoach, S., Wood, M.: Developing Multiagent Systems with agentTool. In: Castelfranchi,

C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986, p. 46. Springer, Heidelberg (2001)
6. DeLoach, S., Wood, M., Sparkman, C.H.: Multiagent systems engineering. International

Journal of Software Engineering and Knowledge Engineering 11(3), 231–258 (2001)
7. Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in

Multiagent Systems. In: Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS 1998), pp. 128–135. IEEE Computer Society, Los Alamitos (1998)

8. FIPA P2P NA WG6, Functional Architecture Specification Draft 0.12,
http://www.fipa.org/subgroups/P2PNA-WG-docs/
P2PNA-Spec-Draft0.12.doc

9. FIPA ACL Message Structure Specification,
http://www.fipa.org/specs/fipa00061/SC00061G.htm

10. Garcia-Ojeda, J., Arenas, A., Perez-Alcazar, J.: Paving the way for implementing multiagent
systems. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 179–189.
Springer, Heidelberg (2006)

11. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos software development methodology:
Processes, Models and Diagrams. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE
2002. LNCS, vol. 2585, pp. 162–173. Springer, Heidelberg (2003)

12. Gomez, J., Fuentes, R., Pavon, J.: The INGENIAS Methodology and Tools. In: Agent-
oriented Methodologies, pp. 236–275. Idea Publishing Group, USA (2005)

13. Gonzalez-Palacios, J., Luck, M.: Extending Gaia with Agent Design and Iterative Develop-
ment. In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS,
vol. 4951, pp. 16–30. Springer, Heidelberg (2008)

14. Juan, T., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology for Complex
Open Systems. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002), pp. 3–10. ACM, New York (2002)

15. LIS Agent Platform, http://space.iias.spb.su/ap/

http://eprints.agentlink.org/view/type/software.html
http://sharon.cselt.it/projects/jade/papers/PAAM.pdf
http://www.cougaar.org
http://www.fipa.org/subgroups/P2PNA-WG-docs/P2PNA-Spec-Draft0.12.doc
http://www.fipa.org/subgroups/P2PNA-WG-docs/P2PNA-Spec-Draft0.12.doc
http://www.fipa.org/specs/fipa00061/SC00061G.htm
http://space.iias.spb.su/ap/

Support for Analysis, Design, and Implementation Stages with MASDK 287

16. MASDK 4.0, http://space.iias.spb.su/masdk
17. Reticular Systems Inc.: AgentBuilder An Integrated Toolkit for Constructing Intelligent Soft-

ware Agents. Revision 1.3 (1999), http://www.agentbuilder.com/
18. Rimassa, G., Kernland, M., Ghizzioli, R.: LS/ABPM — An Agent-powered Suite for Goal-

oriented Autonomic BPM. In: Proceediongs of AAMAS 2008, Portugal (2008)
19. Unified Modeling Language: Superstructure,

http://www.omg.org/docs/formal/07-02-05.pdf
20. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: The Gaia

Methodology. Transactions on Software Engineering and Methodology 2(3), 317–370 (2003)

http://space.iias.spb.su/masdk
http://www.agentbuilder.com/
http://www.omg.org/docs/formal/07-02-05.pdf

	Support for Analysis, Design, and Implementation Stages with MASDK
	Introduction
	Architecture of MASDK 4.0 Environment
	Methodological Basis: Extended Gaia
	Analysis
	Architectural Design
	Detailed Design

	Introduction to ASML Language
	Support of Gaia in MASDK 4.0
	Case Study: Autonomous Air Traffic Control
	MASDK 4.0 Products Supporting Gaia

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

