
Evaluating an Agent-Oriented Approach for
Change Propagation�

Khanh Hoa Dam and Michael Winikoff

RMIT University, Australia
kdam@cs.rmit.edu.au, michael.winikoff@rmit.edu.au

Abstract. A central problem in software maintenance is change propagation:
given a set of primary changes that have been made to software, what additional
secondary changes are needed? Although many approaches have been proposed,
automated change propagation is still a significant technical challenge in software
engineering. In this paper we report on an evaluation of an agent-based approach
for change propagation that works by repairing violations of well-formedness
consistency rules in a design model. The results have shown that given a rea-
sonable amount of primary changes, the approach is able to assist the designer
by recommending feasible secondary change options that match the designer’s
intentions.

1 Introduction

A large percentage of the cost of software can be attributed to its maintenance and evo-
lution [1]. The essence of software maintenance is change: in order to adapt a system to
desired requirements (be they new, modified, or an environmental change), the designer
makes changes to the system. In practice, those changes form a sequence of actions
(addition, removal and modification) that contains some primary changes followed by
additional, secondary, changes. Primary changes are usually identified based on the
characteristics of the change requests and the designer’s knowledge and expertise. Af-
ter that, the designer ensures that other entities in the software system are updated to
be consistent with these primary changes. As a result, secondary changes are then de-
termined and performed, mostly by identifying and fixing inconsistencies in the design
previously modified by primary changes. This process is known as change propagation
[2] and is complicated, labour-intensive and expensive, especially in complex software
systems that consist of many artefacts and dependencies [3].

Therefore, it would be desirable to have a tool that automates change propagation.
However, we do not believe that a tool can fully automate change propagation because
a tool cannot make decisions involving trade-offs and design styles where human in-
tervention is required. However, a tool can be an assistant that helps the designer by
providing feasible change propagation options.

� This work has been funded by the Australian Research Council under grant LP0453486, in
collaboration with Agent Oriented Software. We would also like to thank Lin Padgham, Se-
bastian Sardina and other members of the RMIT Agent Group for discussion relating to this
work.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 159–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

160 K.H. Dam and M. Winikoff

Although a substantial amount of work has looked at the issue of change propagation,
most of it has focused on source code (e.g. [3,2]). Recently, as the importance of models
in the software development process has been better recognised, more work has aimed
at dealing with changes at the model level (e.g. [4,5,6]) However, most existing work
either fails to advocate effective automation or fails to explicitly reflect the cascading
nature of change propagation, where each change (primary or secondary) can require
further changes to be made.

We have developed an agent-based framework to deal with change propagation by
fixing inconsistencies in a design. In other words, we identify change propagation op-
tions by finding places in the design where desired consistency constraints are violated
by primary changes, and we then fix them. This approach represents options for repair-
ing inconsistencies (“repair plans”) using event-triggered plans, as is done in Belief-
Desire-Intention (BDI) architectures.

The main focus of this paper is on an evaluation of the effectiveness of this approach
in assisting with change propagation.

In the sections ahead, we first review this approach to change propagation including
repair plan generation and execution (section 2). We then describe the Change Propaga-
tion Assistant (CPA) tool, which we have implemented and integrated with an existing
modeling tool (section 3). Section 4 is the main focus of this paper in which an evalua-
tion of the framework and our prototype tool is reported. We then discuss some related
work in section 5 before concluding and outlining some future work (section 6).

2 An Overview of the Approach

Our approach to change propagation is to define consistency conditions using a (UML)
meta-model and (OCL [7]) consistency constraints, and then use a library of repair
plans to fix inconsistencies in the design model. Consistency constraints define condi-
tions that all models must satisfy for them to be considered valid. These conditions
may include syntactic well-formedness, coherence between different diagrams, and
even best practices. Figure 1 depicts a very small excerpt of a UML metamodel [8]
and below is an example consistency condition (in both OCL and logic) between class
diagrams and sequence diagrams.

Constraint 1 The name of a message (in sequence diagrams) must match an operation
in a receiver’s class (in class diagrams).
Context Message inv c(self):
self.receiver.base.operation→exists(op : Operation | op.name = self.name)
∃ op ∈ self.receiver.base.operation : op.name = self.name

There are two important properties of change propagation: (a) it is cascading, i.e.
performing an action to fix an inconsistency can cause further inconsistencies which
require further actions and (b) multiple choices, i.e. there are usually many ways of
making the design consistent again. Those two properties are interestingly similar to the
characteristics of the well-known and studied Belief-Desire-Intention architecture [9],
where software agents have a library of plans (“recipes”) which are triggered by events.
Each plan specifies which event it is triggered by, under what conditions it should be

Evaluating an Agent-Oriented Approach for Change Propagation 161

-name : String

Class

-name : String

ClassifierRole

-name : String

Operation

-name : String

Message

*

+base 1..*

+owner

0..1

+operation

*

+receiver

1

+receivedMsg

*

+sender1 +sentMsg
*

+successor

*

+predecessor*

Fig. 1. A small excerpt of the UML metamodel

considered to be applicable (the “context condition”), and a plan “body”: a sequence of
steps that are what the plan does when it is executed. Steps in the plan body can create
events, which result in further plans being triggered. A given event can have multiple
plans that are triggered by it, and the plans’ context conditions are used to select a plan
to execute.

Based on that observation, repairing a violated constraint (an inconsistency) is repre-
sented as an event and the way to fix the violated constraint as (repair) plans. In previous
work [10], the syntax for repair plans is defined based on AgentSpeak(L) [11]. Each re-
pair plan, P , is of the form E : C ← B where E is the triggering event; C is an
optional “context condition” (Boolean formula) that specifies when the plan should be
applicable1; and B is the plan body, which can contain sequences (B1; B2) and events
which will trigger further plans (written as !E). We extend AgentSpeak(L) by allow-
ing the plan body to contain primitive actions such as adding and deleting entities and
relationships, and changing properties; and also to contain conditionals and loops. Our
extensions are conservative, and the formal semantics for our repair plan language can
be easily obtained by extending AgentSpeak’s semantics [12], or by using the semantics
of other related notations (such as CAN [13]).

Below is an example of repair plans for fixing constraint 1, i.e. c(self) defined
above. We use ct (self) to denote the event of making c(self) true (similarly for c1).

We also define the following abbreviations: SE def= self .receiver .base.operation and

c1(self , op) def= op.name = self .name.

P1 ct (self) : op ∈ SE ←!c1t(self , op)
P2 ct (self) : op ∈ Set(Operation) ∧ op �∈ SE ← add op to SE ; !c1t(self , op)
P3 ct (self)← create op : Operation ; add op to SE ; !c1t(self , op)
P4 c1t (self , op)← change op.name to self .name
P5 c1t (self , op)← change self .name to op.name

1 In fact when there are multiple solutions to the context condition, each solution generates a
new plan instance. For example, if the context condition is x ∈ {1, 2} then there will be two
plan instances.

162 K.H. Dam and M. Winikoff

In the above example, there are three plans that make c(self) true (P1, P2, and P3).
Plan P1, for instance, posts an event c1t(self , op) which in turn can trigger either plan
P4 and P5. The context condition of plan P1, op ∈ SE , indicates that at run time it
can generate several plan instances, each for an operation belonging to the message’s
receiver’s class. Informally, plan P1 fixes c(self) by either changing the name of an ex-
isting operation contained in the message’s receiver’s class to the name of the message
(plan P4) or vice versa (plan P5).

In this change propagation framework, the repair plans are generated automatically
(at design time) from the constraints and metamodel [10], and form a plan library
which is used at run time. One key consequence of generating plans from constraints,
rather than writing them manually, is that, by careful definition of the plan generation
scheme, it is possible to guarantee that the plans generated are correct, complete, and
minimal [10].

At run time, after primary changes are made to the design model, all of the constraints
are evaluated, and violated constraints are repaired. Each violated constraint will usually
have several repair plan instances for fixing it. While one repair plan may also fix other
violated constraints, another may break constraints. As a result, selecting a repair plan
needs to take into account its effect on other constraints. We have therefore defined an
algorithm [14] which calculates a cost for each repair plan instance, taking into account
its consequences, i.e. which constraints it may break or fix. The designer is presented
with a set of the cheapest repair options, and they select one to apply to the design.

3 Implementation

We have recently implemented the Change Propagation Assistant (CPA), a prototype
tool that demonstrates how the above approach works in practice. We have devel-
oped a PDT Interface Communicator component which provides an API that is used
to integrate the change propagation tool with the Prometheus Design Tool (PDT2), a
freely-available tool supporting designers using the Prometheus methodology [15] for
building agent-based systems. The CPA uses the Dresden OCL Toolkit3 to parse OCL
constraints.

Our tool includes a Plan Creator component which generates (at design time) a repair
plan library from the constraints and metamodel.

When the designer requests the CPA for help the PDT design model is converted
by a model transformer component to a MOF4-compliant model which is stored in a
NetBean MDR5 repository. The Constraint Checker component identifies which con-
straints are violated and then instructs the Constraint Repairer component to find plans
for fixing them, using the repair plans library. The Constraint Repairer performs the

2 http://www.cs.rmit.edu.au/agents/pdt
3 An open source project providing various tools for OCL http://dresden-ocl.
sourceforge.net

4 Meta Object Facility(MOF) is an OMG standard [16] for defining metamodels and metadata
repositories.

5 http://mdr.netbeans.org/

http://www.cs.rmit.edu.au/agents/pdt
http://dresden-ocl.sourceforge.net
http://dresden-ocl.sourceforge.net
http://mdr.netbeans.org/

Evaluating an Agent-Oriented Approach for Change Propagation 163

Fig. 2. Change Propagation Assistant Integrated with PDT

164 K.H. Dam and M. Winikoff

cost calculation and returns to the designer a set of cheapest repair options. If the de-
signer accepts one of the options proposed then the Constraint Repairer instructs the
PDT Interface Communicator to apply those changes to the current PDT design model.

Figure 2 shows our change propagation assistant tool integrated with the Prometheus
Design Tool (PDT). When the CPA is invoked, it shows a list of violated constraints.
The designer decides to repair these constraints and the tool comes back with a list
of change options. The designer is able to view a sequence of change actions in each
option and decides which option (if any) to use.

4 Evaluation

Having implemented the above approach for a change propagation assistant we would
now like to perform an empirical evaluation of the effectiveness of the approach and
tool. The key question is how well this approach works in practice and, specifically,
how useful is it likely to be to a practising software designer who is maintaining and
evolving a system?

Unfortunately, an evaluation to answer this question raises a number of challenges
and questions such as: which methodology should be used? which application(s) should
be used? what changes to the system should be done? and, how do we select primary
changes to perform?

Our original plan was to use the UML design models, but the effort involved in im-
plementing all of the constraints in the UML standard was beyond our resources, and
so instead we have chosen to use the Prometheus [15] methodology for the design of
agent systems. The Prometheus notation is simpler than UML, and in addition to lo-
cal expertise, we had easy access to the source code of the Prometheus Design Tool
(PDT), allowing the Change Propagation Assistant to be integrated with PDT. We used
the Prometheus metamodel described by [17], and defined consistency constraints by
examining the well-formedness conditions of Prometheus models, the coherence re-
quirements between Prometheus diagrams, and best practices proposed by [15].

Our choice of application was the Bureau of Meteorology’s multi-agent system for
weather alerting (MAS-WA) [18]. This application was chosen because the prototype
system developed by the Australian Bureau of Meteorology had been extended in a
number of ways, and these extensions gave us well-motivated and realistic change sce-
narios to evaluate.

The purpose of the MAS-WA application is to monitor a range of meteorological
data, and alert forecasters to situations such as extreme weather, inconsistencies be-
tween data sources, or changes to observed weather that contradict previously issued
forecasts. We used a version of the system that simplified the application while retain-
ing its key characteristics [19]. The simplified system monitored data from forecasts
for airport areas (TAF) and from automated weather stations (AWS). TAF and AWS
readings contain information about temperature, wind speed and pressure. The system
issues alerts if there are significant differences between a prediction (TAF) and the ac-
tual weather (AWS). Figure 3 shows the system overview diagram for the application,
as well as agent overview diagrams for the Discrepancy and GUI agent types.

Evaluating an Agent-Oriented Approach for Change Propagation 165

Ideally, the evaluation would be done by giving the CPA to a group of selected users,
who would be asked to work with the tool to implement requirement changes. However,
due to time and resource limits, we were not able to conduct such a user study evalu-
ation. In order to overcome this obstacle, we approached the evaluation by defining an
abstract user behaviour in maintaining/evolving an existing design. We then simulated
a real user by following this behaviour: repeatedly making changes to the design, and
invoking and assessing the responses from the CPA tool.

Our model of abstract user behaviour below is based on the model of change prop-
agation process of Hassan and Holt [20]. In this model, the developer is guided by
a change request to perform primary changes (i.e. determine initial entity to change
and change entity) and some partial secondary changes (i.e. determine other entities to
change). When the developer cannot locate other entities to change, she/he consults a
Guru (which could be a person, a tool or a suite of test; in our case, it is the CPA tool6),
and if the Guru indicates that an entity was missed, then it is changed and the change
propagation process is repeated for that entity. This continues until all appropriate enti-
ties have been changed.

In order to evaluate how useful the CPA is, we consider a given change to the sys-
tem’s design that was done in order to meet a new requirement. We view such a change
(denoted by D , and not to be confused with the repair plans) as being a sequence of
actions, with each action being a primitive change to the model such as adding or re-
moving a link between entities. We then ask what proportion of the actions in the change
was done by the user, and what proportion was done by the CPA.

However, this metric is not that simple to use, because it depends on the choice of
change for a given requirement, and on the choice of primary change, i.e. how much
of the change is done before invoking the tool. For each given change, D , we need to
consider a range of possible primary changes P (with the actions in P being a subset of
those in D). Now in fact, D is a sequence, and the abstract user behaviour below uses
D sequentially, thus the possible primary changes are the initial segments of D .

We now define a process, based on the change propagation process of Hassan and
Holt [20], that captures (abstractly) the designer’s behaviour. In the following process
D denotes the designer’s planned change: a sequence of actions that transforms the
existing design model so that it meets the new requirement. The designer performs an
initial segment P of D (step 2), updates D by removing the performed actions (step 3)
and then invokes the tool, which returns a set O of repair options (step 4). Each repair
option Ci is a sequence of actions. At this point (step 5) the user may select one of
the Ci (step 6) and apply it to the model (step 7), or he/she may decide that none of
the Ci is suitable. Deciding whether a Ci is suitable is done by comparing it with the
designer’s plan: Ci is compatible with D if all actions in Ci are in D (formally7 ∀ a ∈
Ci : a ∈ D). If all the changes in D have been performed the process ends, otherwise
the user continues to perform more primary changes (step 9). We use D := D − P to
denote removing the actions in P from the sequence D , and we use P 	 D to denote

6 Unlike the Guru in their model, the CPA suggests not only entities to be changed, but also the
specific changes to be made to them.

7 Alternatively, if viewed as sets, Ci ⊆ D .

166 K.H. Dam and M. Winikoff

Fig. 3. MAS-WA Design

Evaluating an Agent-Oriented Approach for Change Propagation 167

that P is an initial segment of D (formally ∃X : P + X = D , where + is sequence
concatenation).

1. given a planned change D (sequence of actions)
2. select P 	 D
3. do the actions in P and update D (D := D − P)
4. invoke the tool yieldingO = {C1, . . . ,Cn}
5. if ∃Ci ∈ O where Ci is compatible with D then
6. select a compatible Ci ∈ O (if more than one)
7. do actions in Ci and update D (D := D − Ci)
8. end if
9. goto step 2 if D is not empty.

We thus have the following evaluation process: for each new requirement we develop
(and justify!) a change plan D , and then apply the process above, considering a partial
change P that expands by one step at a time. When the process terminates we count how
many actions ended up being in Cis along the way, compared with the total number of
actions in D so we calculate the metric M =| C | / | D | (where C is the union of the
Cis).

Note that the value of M depends on our choices for P . Clearly, if P is the whole
of D then there is nothing left for the tool to do, and M will be 0. In some of the
cases below we will see that there is a “tipping point”: until enough of D is done
the tool cannot help, but once enough is done, the tool performs the remaining steps
in D .

In addition to measuring M , an important factor in the usefulness of the tool con-
cerns the repair options, O. Specifically, we are interested in how many of the Ci in
O are compatible with D , and in the size of O (since it is clearly better if the designer
is not being asked to select an option from a very large list). We thus, in addition to
M , also measure the number of options and how many of the options are compatible
with D .

Finally, we need to select values for the basic costs of action. In this evaluation
we do not explore a range of costs, but instead select what we believe are reasonable
values: addition, creation and modification are assigned the same cost (e.g. 1) and we
consider that deletion is not normally a desirable action, and so give it a higher cost
(e.g. 5).

4.1 Results and Analysis

Change requests can be classified into several categories, depending on the dimensions
we are looking at. Swanson initially identified three categories of maintenance: cor-
rective, adaptive, and perfective [21]. These have since been extended with perfective
maintenance8 and has become an ISO/IEC standard [22].

We also view maintenance in terms of the type of modifications made to the soft-
ware system. More specifically, they can be: (a) adding a new functionality/feature; (b)

8 modification of a software product after delivery to detect and correct latent faults in the soft-
ware product before they become effective faults.

168 K.H. Dam and M. Winikoff

removing an existing functionality/feature; and (c) modifying an existing functional-
ity/feature.

We introduce four requirement changes to the MAS-WA application that cover most
of the change types, according to the above classification of changes. They include:
logging all alerts sent to the forecast personnel (preventative and functionality modifi-
cation); adding wind speed alerting (adaptive and functionality addition); implement-
ing a variable threshold alerting (perfective and functionality addition); and adding
volcanic ash alert (perfective and functionality addition). Due to space limitations,
we describe only one change in detail, although we do present results for all of the
changes.

Change: Implementing a Variable Threshold Alerting. Currently, the alerting levels
are fixed and hard-coded. However, the forecast personnel wants to be able to adjust the
alerting levels, e.g. different regions will show alerts based on different discrepancies.
Hence, a new requirement that the forecast personnel should be able to set a threshold
for alerting is requested.

To meet this change request, the “GUI” and “Discrepancy” agents must be changed.
More specifically, the user’s request for changing the thresholds will be represented by
two percepts, each for temperature and pressure. A new plan is likely required to han-
dle those percepts. A new data store that keeps the threshold information is introduced.
Finally, the “Discrepancy” agent’s plans for detecting discrepancies, i.e. “CheckTem-
pDiscrepancy” and “CheckPressDiscrepancy”, will need to use the new threshold data
store. The designer’s planned change D thus consists of the sequence9:

1. Create “SetNewTempThreshold” percept
2. Create “SetNewPressThreshold” percept
3. Create “ChangeThreshold” plan in “GUI” agent
4. Make “SetNewTempThreshold” percept to be a trigger of “ChangeThreshold”.
5. Make “SetNewPressThreshold” percept to be a trigger of “ChangeThreshold”.
6. Create a new “AlertingLevels” data
7. Link “GUI” agent to “AlertingLevels” data
8. Link “ChangeThreshold” plan to “AlertingLevels” data
9. Link “AlertingLevels” data to “Discrepancy” agent

10. Link “AlertingLevels” data to “CheckTempDiscrepancy” plan
11. Link “AlertingLevels” data to “CheckPressDiscrepancy” plan

Since the first three steps involves the creation of new entities and the later steps
include actions related to those new entities, the tool does not return any compatible
options until step 3 is performed (and the designer may well defer invoking the tool
until s/he has created all three entities). One of the options proposed by the tool is
making the two new percepts to be a trigger of the new “ChangeThreshold” plan. The
tool does not suggest any further actions because the design is then consistent. The user
then performs step 6 and the tool then recommends either steps 7 and 8 or steps 9 and 10
or steps 9 and 11. Assume10 that the user chooses the option containing steps 7 and 8,

9 Some variations in order are possible, but they do not affect the evaluation outcome
10 If the user makes a different choice the overall M is still the same, just different actions are

done by the tool.

Evaluating an Agent-Oriented Approach for Change Propagation 169

Change 1 2 3 4 5 6 7 8 9 10 11 12 13 M

Logging 241 T T 67%

Wind Speed Alert 500 61 T T U 40%

Variable Threshold 40 160 121 T T 263 T T 112 T U 45%

Volcanic Ash 240 240 11 521 T T T T 780 281 T T T 54%

Fig. 4. Evaluation Results

and then performs step 9. The CPA recommends either step 10 or 11. The user chooses
one of these and has to manually perform the other.

Figure 4 shows the results of evaluation for the four changes. Each change has a
row, where the entries marked with numbers show the situation for the nth step of the
user’s plan (D). An entry of the form nm indicates that the tool returned n options (i.e.
O = {C1 . . .Cn}), where m of the Ci were compatible with D . An entry “T” indicates
that this step is done by the tool, that is, it is part of a selected repair plan from an earlier
step. An entry “U” indicates that the user performs this change; this occurs in two places
where D is non-empty, but the design is consistent, and in this situation the tool cannot
assist the user. The final column gives the value of the metric M =| C | / | D |.
Overall, for the four changes the average value of M is approximately 50%, that is,
compared with maintenance without our tool, the user would have to perform roughly
twice as many change actions.

5 Related Work

There has been a lot of interest in addressing the issue of assisting software engineers to
deal with software changes. In particular, change impact analysis has been extensively
investigated but most of the work has focused on source code. Many of the impact
analysis approaches are discussed in [3] and are typically used to assess the extent of the
change, i.e. the artefacts, components, or modules that will be impacted by the change,
and consequently how costly the change will be. Although these approaches are very
powerful, they do not readily apply to design models [5]. In addition, our work focuses
more on implementing changes, i.e. propagating changes between design artefacts in
order to maintain consistency as the software evolves.

There have been several works that specifically target fixing inconsistencies in design
models. The work by [6] provides a framework which automatically derives a set of
repair actions from the constraint by analyzing consistency rules expressed in first-
order logic and models expressed in xlinkit [23]. However, their work considers only a
single inconsistency and consequently does not explicitly address dependencies among
inconsistencies and potential consequences of repairing them, e.g. fixing one constraint
can repair or violate others.

Recently, Egyed proposed an approach based on fixing inconsistencies in UML mod-
els [5]. The approach uses model profiling to locate possible starting points for fixing

170 K.H. Dam and M. Winikoff

an inconsistency in a UML model. He also tried to use model profiling to predict
the side-effects of fixing an inconsistency. His work, however, treats a constraint as
a black box whilst we analyse the constraints to generate repair plans. Similarly the
work of Briand et al. also looks at how to identify impacted entities during change
propagation using UML models [4]. It defines specific change propagation rules (also
expressed in OCL) for a taxonomy of changes. However, the major difference between
both of these works and ours is that their approaches do not provide options to repair
inconsistencies, but only suggest starting points (entities in the model) for fixing the
inconsistency.

6 Conclusions and Future Work

We have presented a novel agent-oriented approach to deal with change propagation
by fixing inconsistencies in the design models. The approach has been implemented in
a form of a prototype tool (i.e. the CPA tool) that assists the designer in propagating
changes. We have also evaluated the effectiveness of the approach by applying it to
Prometheus using the design of a real application, MAS-WA.

The evaluation demonstrated that the approach is effective given that a reasonable
amount of primary changes are provided. However, there are several threats to the valid-
ity of our study. For instance, although the set of changes are motivated by real change
requests, and cover most of the change types, they may not be representative of all
changes. We also need to test the approach with different application types. Addition-
ally, there is scope for evaluation with other methodologies and notations (e.g. UML),
with a range of basic costs, and, of course, with human subjects.

One issue that arises in the proposed approach relates to the use of inconsistency as a
driver for change. As seen in the evaluation, not all changes result in inconsistency, and
in these cases the approach will not be able to completely identify the desired secondary
changes. An opposite issue is that, as argued by [24], not all inconsistency should be
fixed; this is easy to deal with by simply allowing certain constraint types or instances
to be marked as “to be ignored”.

In some cases there may be a large number of repair options returned by the tool,
which makes it hard for the user to select which one to use. In practice this can be
dealt with by ignoring the tool’s list of options and performing further changes (which
often provides the tool with information that enables it to return fewer options). A better
approach which needs to be investigated is reducing the number of options by “staging”
questions. Suppose we need to link a percept with a plan and with an agent, then instead
of presenting a set of options, where each option specifies both a plan and an agent
(which gives a cross product), specify first the choice of agent, and then based on that
choice ask for a choice of (relevant) plan.

Overall, our conclusion is positive since the evaluation shows that the approach is
able to (on average) perform approximately half of the actions in maintenance
plans, across a number of changes motivated by experience with a real
application.

Evaluating an Agent-Oriented Approach for Change Propagation 171

References

1. Vliet, H.V.: Software engineering: principles and practice, 2nd edn. John Wiley & Sons, Inc.,
Chichester (2001)

2. Rajlich, V.: A model for change propagation based on graph rewriting. In: Proceedings of
the International Conference on Software Maintenance (ICSM), pp. 84–91. IEEE Computer
Society, Los Alamitos (1997)

3. Arnold, R., Bohner, S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

4. Briand, L.C., Labiche, Y., O’Sullivan, L., Sowka, M.M.: Automated impact analysis of UML
models. Journal of Systems and Software 79(3), 339–352 (2006)

5. Egyed, A.: Fixing inconsistencies in UML models. In: Proceedings of the 29th International
Conference on Software Engineering (ICSE) (May 2007)

6. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair actions.
In: ICSE 2003: Proceedings of the 25th International Conference on Software Engineering,
pp. 455–464. IEEE Computer Society, Los Alamitos (2003)

7. Object Management Group: Object Constraint Language (OCL) 2.0 Specification (2006)
8. Object Management Group: Unified Modeling Langague Specification (UML 1.4.2, ISO/IEC

19501) (2005)
9. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Rich, C., Swartout,

W., Nebel, B. (eds.) Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, San Mateo, CA, pp. 439–449. Morgan Kaufmann
Publishers, San Francisco (1992)

10. Dam, K.H., Winikoff, M.: Generation of repair plans for change propagation. In: Luck, M.,
Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS, vol. 4951, pp. 132–
146. Springer, Heidelberg (2008)

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

12. Moreira, A., Bordini, R.: An operational semantics for a BDI agent-oriented programming
language. In: Meyer, J.J.C., Wooldridge, M.J. (eds.) Proceedings of the Workshop on Logics
for Agent-Based Systems (LABS 2002), April 2002, pp. 45–59 (2002)

13. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2002), Toulouse, France, pp. 470–481
(2002)

14. Dam, K.H., Winikoff, M.: Cost-based BDI plan selection for change propagation. In: Au-
tonomous Agents and Multi-Agent Systems (AAMAS) (2008) (to appear)

15. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide. John
Wiley & Sons, Chichester (2004)

16. Object Management Group: Meta Object Facility Specification, MOF 1.4 (2002)
17. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change propagation

in software evolution. In: Proceedings of the Australian Software Engineering Conference
(ASWEC), pp. 309–318. IEEE Computer Society, Los Alamitos (2006)

18. Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open meteorological
alerting system: Issues and solutions. In: Estivill-Castro, V. (ed.) Proceedings of the 27th
Australasian Computer Science Conference, Dunedin, New Zealand, pp. 351–358 (2004)

19. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven development toolkit for do-
main experts to modify agent based systems. In: Padgham, L., Zambonelli, F. (eds.) AOSE
VII / AOSE 2006. LNCS, vol. 4405, pp. 190–207. Springer, Heidelberg (2007)

172 K.H. Dam and M. Winikoff

20. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In: ICSM 2004:
Proceedings of the 20th IEEE International Conference on Software Maintenance, Washing-
ton, DC, USA, pp. 284–293. IEEE Computer Society, Los Alamitos (2004)

21. Swanson, E.B.: The dimensions of maintenance. In: ICSE 1976: Proceedings of the 2nd in-
ternational conference on Software engineering, pp. 492–497. IEEE Computer Society Press,
Los Alamitos (1976)

22. ISO/IEC 14764: Information technology - software maintenance. ISO: Geneva, Switzerland
(1999)

23. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking
and smart link generation service. ACM Transactions on Internet Technology 2(2), 151–185
(2002)

24. Fickas, S., Feather, M., Kramer, J. (eds.): Proceedings of the Workshop on Living with In-
consistency, Boston, USA (1997)

	Evaluating an Agent-Oriented Approach for Change Propagation
	Introduction
	An Overview of the Approach
	Implementation
	Evaluation
	Results and Analysis

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

