

Lecture Notes in Computer Science 5386
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael Luck Jorge J. Gomez-Sanz (Eds.)

Agent-Oriented
Software
Engineering IX

9th International Workshop, AOSE 2008
Estoril, Portugal, May 12-13, 2008
Revised Selected Papers

13

Volume Editors

Michael Luck
King’s College London
Department of Computer Science
Strand, London WC2R 2LS, UK
E-mail: michael.luck@kcl.ac.uk

Jorge J. Gomez-Sanz
Universidad Complutense de Madrid
Facultad de Informatica
Avda. Complutense s/n, 28040 Madrid, Spain
E-mail: jjgomez@sip.ucm.es

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-01337-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01337-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12649822 06/3180 5 4 3 2 1 0

Preface

Agent technology can be the key to a brand new family of applications providing
outstanding features like autonomy and adaptation. However, the way in which
such applications should be built is not yet clear to us. Just as with other kinds
of software, we need expertise in the inherent problems, and we need to develop
a substantial body of knowledge to enable others to take our efforts further.
In the context of multi-agent systems, this knowledge is realized in the form of
agent-oriented software engineering (AOSE). Thus, AOSE brings novel tools and
methods with which developers can start to construct agent-oriented solutions
for their problems.

AOSE has brought some important advances in agent research. These ad-
vances have been brought about because we tried to solve problems with what
was available, and found that it was not sufficient. It is natural to conclude,
therefore, that the more difficult the problems we consider, the more advances
we will achieve.

Such advances necessarily mean research, and this is also consistent with the
engineering spirit. AOSE provides a context in which formal and applied re-
search meet, and it will remain so for a long time, and at the very least until
AOSE matures to match object-oriented software engineering. For this to hap-
pen, again, increasing the complexity of our problems and showing the benefits
of agent technology is required.

This complexity can come in different flavors. One such aspect is the problem
size: can agent technology, as it is now, deal with development with a team of,
say, eight people in a year? If verifiable evidence of this can be shown, it would
provide a significant and welcome impetus to the area. With respect to the
evaluation of the benefits to be gained, we have hypothesized for some time now
that agent technology ought to find a natural niche in global computing, network
enterprises, ubiquitous computing and sensor networks, to mention just a few
examples. Undoubtedly, there is already functioning software in such domains,
so the question arises as to why we should use agents instead. To address this
concern, we need to demonstrate that an agent solution is better in at least one
of the following aspects: it is more economical in cost, it is more robust and fails
less often, it can be developed in less time, or it provides better performance.

The AOSE workshops aim to address these issues, both from a research per-
spective and from a perspective that is relevant to attracting the attention of
developers. The issues all share a clear connection to the main problem: how to
effectively and efficiently develop software systems using agent technologies. The
AOSE workshops thus seek to contribute to the advance of AOSE by providing
a forum for presentation, discussion and debate of exactly these concerns.

Building on the success of the eight previous workshops, the 9th International
Workshop on Agent-Oriented Software Engineering (AOSE 2008) took place

VI Preface

in Lisbon in May 2008 as part of the 7th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2008).

The 2008 workshop received 50 submitted papers, a very strong number,
which reflects the continuing interest in the area. All papers were reviewed by at
least three reviewers from an international Program Committee of 42 members
and 17 auxiliary reviewers, and presented papers were then subject to a second
round of reviews for inclusion in this volume.

In structuring this volume, we have organized the papers into four sections.
The first deals with multi-agent organizations, which provides a valuable ab-
straction for agents and needs appropriate integration into development meth-
ods. The second section addresses method engineering and software development
processes, including papers that focus on the ways in which multi-agent systems
are developed, the activities involved, the products generated, and the assess-
ment of the suitability of methods for particular domain problems. The third
section is dedicated to testing and debugging activities. Finally, the last section
deals with tools and case studies.

1 Multi-agent Organizations
Starting with organizations, the first section begins with a paper by Coutinho
et al., in which they propose an integration process for organizational models
based on concepts from model-driven engineering (MDE). The process is applied
to five organizational meta-models (AGR, Moise+,TÆMS, ISLANDER and
OperA) to obtain an integrated meta-model, which can be used as an interlingua
for multi-agent systems built according to any of the five organizational meta-
models.

Continuing this idea, the second paper, by Argente et al., introduces a meta-
model for organizations as an evolution of the INGENIAS meta-model. This
new meta-model includes primitives to express norms, services, and a holonic
approach for the definition of organizations.

Finally, the paper by Sudeikat et al. closes the section. It is concerned with
the validation of the dynamics within an organization, and proposes a guide
to validation based on simulations of the MAS under development. The paper
illustrates the guide through validation of an intrusion-detection system.

2 Method Engineering and Software Development
Processes

The second section begins with a paper by Seidita et al., aimed at grounding sit-
uational method engineering to show how to express an agent-oriented software
engineering process using a software process engineering meta-model (SPEM).
Situational method engineering promotes the idea that no single method can
account for all methods needed by engineers, especially due to changes in the
application domain. As an example, the paper illustrates the construction proce-
dure with the formalization of the PASSI methodology, exploring which SPEM
primitives are best suited for representing each part.

Preface VII

Also in the line of method engineering, Garćıa-Magariño et al. introduce the
different issues arising during the specification of a development process for the
INGENIAS methodology. First, they identify problems with existing process
modeling tools, concretely EPF, APES, and Metameth. Then, they present a
new tool, built with the Eclipse Modeling Framework, overcoming most of the
difficulties, and providing an alternative implementation of SPEM. The vali-
dation of the tool is achieved using as a case study of some preliminary work
undertaken on the formalization of the INGENIAS methodology development
process. This leads to the identification of steps and artifacts that may benefit
the formalization of other methodologies.

The next paper, by Rougemaille et al., starts with an introduction to SPEM
and situational method engineering, before introducing the fragment concept us-
ing the domain of agent-oriented software engineering. Fragment implementation
is achieved by means of SPEM, and requires the combination of several SPEM
primitives. As a proof of concept, the paper provides some fragments identified
in the ADELFE and PASSI methodologies.

Cossentino et al. introduce a procedure to build an ad hoc agent-oriented soft-
ware engineering process using fragments from a library of methods extracted
from different agent-oriented methodologies. These libraries account for pieces of
MAS meta-models as well as the procedures used to instantiate these pieces. By
using the libraries and the knowledge of the domain problem, a developer can
then follow the procedure described in the paper to create an ad hoc method-
ology. The paper presents as proof of concept the ASPECS process, which is
constructed out of fragments from PASSI, CRIO and Janus.

Following this, Garćıa-Magariño et al. present a set of metrics that serves to
quantitatively evaluate the availability (whether a meta-model has all required
elements to deal with a problem domain), specificity (accounting for concepts
that are not used), and expressiveness (covering the number of elements that
are needed to represent a system specification). These metrics are applied to six
different meta-models from six different agent-oriented methodologies: Tropos,
PASSI, Agile PASSI, Prometheus, MaSE, and INGENIAS.

In a different vein, the work by Padgham et al. proposes a new notation
that may facilitate communication among different agent-oriented software en-
gineers. Although meta-models of different agent-oriented methodologies remain
unchanged, the use of a common representation of concepts can make these mod-
els appear to be more similar. Here, the semantics are still different so that an
agent in PASSI is still different from an agent in MaSE. The effectiveness of the
solution is still to be evaluated, but it provides an alternative to the unification
of existing meta-models.

Continuing the methodology integration topic, Gascueña et al. show that it
is not necessary to build a new methodology from fragments or to unify meta-
models to gain the benefit of the different methodologies: their paper describes
how to combine INGENIAS and Prometheus while keeping the benefits of both.
The idea is to use each methodology only at concrete points in the development
process, when a transition from Prometheus to INGENIAS is required. Since

VIII Preface

this transition suggests a manual translation of Prometheus concepts into IN-
GENIAS ones, the authors identify such a mapping, and describe how it can be
accomplished by using concrete examples.

By contrast, Hahn et al. criticize the meta-model approach, due to limitations
in expressing semantics, and instead propose specifying semantics with Object-Z,
a state-based and object-oriented specification language. Their paper introduces
the basics of Object-Z and explains how it can be used to add semantics to a
concrete meta-model called DSML4MAS, claiming that this can also be applied
to other existing meta-models. In particular, they argue that the Object-Z se-
mantics can be partially translated in terms of the Object Constraint Language
(OCL), a language traditionally used together with meta-models.

The section concludes with a paper from Dam et al., dealing with two impor-
tant problems in a software system: its maintenance and evolution. The approach
is based on a library of repair plans to fix inconsistencies in the design model, a
meta-model of the problem, and consistency constraints. When a change is re-
quested, the system analyzes the current specification and then chooses a repair
plan to modify the specification. The procedure is implemented with the Change
Propagation Assistant (CPA), a prototype system.

3 Testing and Debugging

The section on testing and debugging, an important area that brings AOSE
closer to the concerns of real-world commercial deployment, commences with
a paper by Ekinci et al. The paper suggests performing testing activities by
using goals as the driving criteria, and defines the concept of test goal. This
concept represents the group of tests needed in order to check if a goal is achieved
correctly. Here, each of the needed tests is considered to have its own goal to
check, so that a test goal has three subgoals: setup (prepare the system); goal
under test (perform actions related to the goal); and assertion goal (check goal
satisfaction). These ideas are implemented in the SEAUnit test tool.

Looking for other kinds of driving criteria in testing, Nguyen et al. propose
using the ontologies extracted from the MAS under test and a set of OCL con-
straints, which act as a test oracle. Having as input a representation of the
ontologies used, the idea is to construct an agent able to deliver messages whose
content is inspired by these ontologies. The resulting behaviors are regarded as
correct using the input set of OCL constraints: if the message content satisfies
the constraints, the message is correct. The procedure is supported by eCAT, a
software tool.

The third paper in the section, by Gomez-Sanz et al., describes progress made
in the INGENIAS methodology in these areas. With respect to testing, the IN-
GENIAS meta-model is extended with concepts for defining tests, and the code
generation facilities are augmented to produce JUnit skeletons based on these defi-
nitions. With respect to debugging, the system is integrated with ACLAnalyzer, a
data-mining facility for capturing agent communications and exploring them with
different graphical representations. The paper finishes with a survey and catego-
rization of different work on testing and debugging in the agent literature.

Preface IX

4 Tools and Case Studies

In the last section of the book, we focus on tools and case studies, seeking to
provide valuable experience reports and practical assistance. The first paper
of this section, by Cabrera-Paniagua et al., is an application paper describing
development experience with the PASSI methodology. The chosen case study
concerns a system simulating a passenger transportation enterprise within which
agents represent different transport companies trying to satisfy the needs of
simulated users.

The second paper, by Nunes et al., is also an application paper with different
versions of a conference management system. Its focus lies in the analysis and
comparison of the evolution from a non-agent-oriented system to a product-line
agent-oriented system. The paper ends with an interesting evaluation of the
different variability types identified in the agent system, as well as a discussion
of how refactoring of the system could have been done in other ways.

The paper by Yoo et al., introduces a tool that combines JADE and Repast
in order to provide the construction of simulations. This combination seems well
suited for working with value-adding networks, which are complex networks of
partners arranged by an enterprise. The use of Repast enables the problem to
be modeled quickly, while the simulation itself is achieved by using JADE.

Following on from this, van Putten et al. present another tool resulting from
the combination of OperA and Brahms, the former being a modeling language
for MAS, and the latter a development environment for MAS based on the
concept of activity. A simulation of air traffic is the chosen case study where this
combination is put to the test.

Finally, the section (and the book) ends with a paper by Gorodetsky et
al., presenting a support tool that can be used with the Gaia methodology,
although the paper also provides additional guidelines to deal with the design
and implementation stages. The tool enables the generation of executable code
and implements non-trivial parts of Gaia, such as liveness expressions, and the
paper provides examples of the tool applied to an air traffic management case
study.

November 2008 Jorge J. Gomez-Sanz
Michael Luck

Organization

Workshop Chairs

Michael Luck (Co-chair)
Department of Computer Science
King’s College London
UK
Email: michael.luck@kcl.ac.uk

Jorge J. Gomez-Sanz (Co-chair)
Facultad de Informatica
Universidad Complutense de Madrid
Spain
Email: jjgomez@sip.ucm.es

Steering Committee

Paolo Ciancarini University of Bologna, Italy
Michael Wooldridge University of Liverpool, UK
Jörg Müller Technische Universität Clausthal, Germany
Gerhard Weiss Software Competence Center Hagenberg

GmbH, Austria

Program Committee

Claudio Bartolini (USA)
Bernard Bauer (Germany)
Federico Bergenti (Italy)
Carole Bernon (France)
Olivier Boissier (France)
Paolo Cianciarini (Italy)
Massimo Cossentino (Italy)
Keith Decker (USA)
Scott DeLoach (USA)
Noura Faci (UK)
Klaus Fischer (Germany)
Rubén Fuentes (Spain)
Paolo Giorgini (Italy)
Marie-Pierre Gleizes (France)
Nathan Griffiths (UK)
Michael Huhns (USA)

Vicent Julian Inglada (Spain)
Joao Leite (Portugal)
Jürgen Lind (Germany)
Carlos Jose Pereira de Lucena (Brazil)
Viviana Mascardi (Italy)
Simon Miles (UK)
Sanjay Modgil (UK)
Haris Mouratidis (UK)
Eugenio Oliveira (Portugal)
Andrea Omicini (Italy)
Nir Oren (UK)
Juan Pavón (Spain)
Michal Pechoucek (Czech Republic)
Joaqúın Peña (Spain)
Anna Perini (Italy)
Eric Platon (Japan)

XII Organization

Alessandro Ricci (Italy)
Fariba Sadri (UK)
Brian Henderson-Sellers (Australia)
Onn Shehory (Israel)
Viviane Torres da Silva (Spain)

Arnon Sturm (Israel)
Laszlo Varga (Hungary)
Michael Winikoff (Australia)
Eric Yu (Canada)

Auxiliary Reviewers

Estefania Argente
Petr Benda
António Castro
Adriana Giret
Christian Hahn
Sachin Kamboj

Cristián Madrigal-Mora
Frederic Migeon
Ambra Molesini
Mirko Morandini
Elena Nardini
Cu Nguyen Duy

Cristina Ribeiro
Luca Sabatucci
Valeria Seidita
John Thangarajah
Jiri Vokrinek

Table of Contents

Multi-agent Organizations

Model-Driven Integration of Organizational Models 1
Luciano R. Coutinho, Anarosa A.F. Brandão,
Jaime S. Sichman, and Olivier Boissier

MAS Modeling Based on Organizations . 16
Estefańıa Argente, Vicente Julian, and Vicent Botti

A Systemic Approach to the Validation of Self–Organizing Dynamics
within MAS . 31

Jan Sudeikat and Wolfgang Renz

Method Engineering and Software Development
Processes

Using and Extending the SPEM Specifications to Represent Agent
Oriented Methodologies . 46

Valeria Seidita, Massimo Cossentino, and Salvatore Gaglio

Definition of Process Models for Agent-Based Development 60
Iván Garćıa-Magariño, Alma Gómez-Rodŕıguez, and
Juan C. González-Moreno

Methodology Fragments Definition in SPEM for Designing Adaptive
Methodology: A First Step . 74

Sylvain Rougemaille, Frederic Migeon, Thierry Millan, and
Marie-Pierre Gleizes

A MAS Metamodel-Driven Approach to Process Fragments Selection . . . 86
Massimo Cossentino, Salvatore Gaglio, Stéphane Galland,
Nicolas Gaud, Vincent Hilaire, Abderrafiaa Koukam, and
Valeria Seidita

An Evaluation Framework for MAS Modeling Languages Based on
Metamodel Metrics . 101

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and
Rubén Fuentes-Fernández

A Unified Graphical Notation for AOSE . 116
Lin Padgham, Michael Winikoff, Scott DeLoach, and
Massimo Cossentino

XIV Table of Contents

Prometheus and INGENIAS Agent Methodologies: A Complementary
Approach . 131

José M. Gascueña and Antonio Fernández-Caballero

The Formal Semantics of the Domain Specific Modeling Language for
Multiagent Systems . 145

Christian Hahn and Klaus Fischer

Evaluating an Agent-Oriented Approach for Change Propagation 159
Khanh Hoa Dam and Michael Winikoff

Testing and Debugging

Goal-Oriented Agent Testing Revisited . 173
Erdem Eser Ekinci, Ali Murat Tiryaki, Övünç Çetin, and
Oguz Dikenelli

Experimental Evaluation of Ontology-Based Test Generation for
Multi-agent Systems . 187

Cu D. Nguyen, Anna Perini, and Paolo Tonella

Testing and Debugging of MAS Interactions with INGENIAS 199
Jorge J. Gómez-Sanz, Juan Bot́ıa, Emilio Serrano, and Juan Pavón

Tools and Case Studies

PASSI Methodology in the Design of Software Framework: A Study
Case of the Passenger Transportation Enterprise . 213

Daniel Cabrera-Paniagua and Claudio Cubillos

Developing and Evolving a Multi-agent System Product Line: An
Exploratory Study . 228

Ingrid Nunes, Camila Nunes, Uirá Kulesza, and Carlos Lucena

Combining JADE and Repast for the Complex Simulation of Enterprise
Value-Adding Networks . 243

Min-Jung Yoo and Rémy Glardon

OperA and Brahms: A Symphony? Integrating Organizational and
Emergent Views on Agent-Based Modeling . 257

Bart-Jan van Putten, Virginia Dignum, Maarten Sierhuis, and
Shawn R. Wolfe

Support for Analysis, Design, and Implementation Stages with
MASDK . 272

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov, and
Victor Konushy

Author Index . 289

Model-Driven Integration of Organizational Models

Luciano R. Coutinho1,�, Anarosa A.F. Brandão1,��, Jaime S. Sichman1,���,†,
and Olivier Boissier2,†

1 LTI / EP / USP - Av. Prof. Luciano Gualberto, 158, trav. 3
05508-900 São Paulo, SP, Brazil

{luciano.coutinho,anarosa.brandao,jaime.sichman}@poli.usp.br
2 SMA / G2I / ENSM.SE - 158 Cours Fauriel

42023 Saint-Etienne Cedex, France
Olivier.Boissier@emse.fr

Abstract. Currently, the design and running of a Multi-Agent System (MAS)
mobilize several models. Besides agents’ architectures, high level agent commu-
nication languages and domain ontologies, explicit organization specifications
(written in some organizational model) are more and more used to structure and
constrain the behavior of MASs. In the case of open MASs, one important re-
quirement is interoperability w.r.t. these models. Focusing organizational model
interoperability, in this paper, we propose an integration process for organiza-
tional models based on concepts (models, mappings, transformations, etc.) and
techniques (Match, Merge, TransfGen, Compose, etc.) from Model-Driven Engi-
neering (MDE). The process is concretely used to integrate five organizational
models: AGR, MOISE+, TÆMS, ISLANDER and OperA.

1 Introduction

An organizational model is a conceptual framework together with some modeling lan-
guage used to specify the organization of Multi-Agent Systems (MASs). In general, we
can say that the organization of a MAS comprises stable patterns or structures of joint
activity that constrain and drive the actions and interactions of agents towards some de-
sired global purpose. An organizational model can be used both at design and run time
of a MAS. At design time, it is a specification technique to describe the MAS archi-
tecture [1,2,3,4,5]. At run time, there are some platforms and middlewares [6,7,8] that
interpret organizational specifications and instantiate components that explicitly em-
body and enforce the organization within a (running) MAS. In these implementations,
one interesting feature is that agents have the possibility of querying the organization
specification and to reason about it. This enables the construction of highly open and
effective MASs: systems where external agents can enter and leave at their will without
disrupting the organization imposed on the MAS.

In a previous work [9], by reviewing eleven organizational models and variations,
we have identified four main dimensions in the modeling of MAS organizations: the

� Supported by FAPEMA, Brazil, grant 127/04 and CAPES, Brazil, grant 1511/06-8.
�� Supported by CNPq, Brazil, grant 310087/2006-6.

��� Partially supported by CNPq, Brazil, grants 304605/2004-2, 482019/2004-2, 506881/2004-0.
† Partially supported by USP-COFECUB, grant 98/-4.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 L.R. Coutinho et al.

structural, functional, interactive and normative dimensions. The structural dimension
deals with the static structural aspects of any organization (e.g. roles, role relations and
groups). The functional dimension expresses the global goals of the organization and
their decomposition into sub-goals. The interactive dimension specifies dynamical in-
teractions structures connecting roles. Finally, the normative dimension provides norms
and rules that interconnect elements of the other dimensions.

Now, building upon our previous results, we propose an integration of organizational
models. The main motivation behind our research effort is to promote organization in-
teroperability in open MASs. In such systems, agents should be able of interacting
using a high level communication language; they should also “understand” the con-
cepts or ontology of a given application domain; and in the case of MASs with explicit
organizations, as we discussed above, they should abide by structures, constraints and
norms existent in the MASs. If we plan to port an existing MAS from one platform to
another or, more ambitiously, if we want to construct federations of interconnected or-
ganized heterogeneous MASs then we will need some interoperability strategy in place.
In spite of this, while interoperability w.r.t. communication languages and domain on-
tologies have been studied [10,11], the organizational interoperability problem has not
been explicitly addressed in the literature.

Thus, in this paper we propose a general process for the integration of organization
models that can be used to address problems of organizational interoperability. Con-
cretely, the process is illustrated by the integration of five organizational models from
the literature: AGR [1], TÆMS [2], MOISE+ [3], ISLANDER [4] and OperA [5]. These
models are compared using an iterative and incremental process guided by the modeling
dimensions discussed above. In this process we match and merge each organizational
model with the previous integration result. The result, the final integrated model, is a
duplicate-free union of the several models. It can be used to: automatically synthesize
transformations between organizational specifications; design agent architectures that
take into account a broader picture of organization; or as a first step towards a possible
organizational model standard.

In the above account, the terms match, merge, duplicate-free union and transforma-
tions were taken from the model management vision [12,13], which is currently treated
as part of the emergent Model-Driven Engineering (MDE) research field [14]. The use
and adaptation of principles and technology from MDE to the MAS domain is the sec-
ond contribution of this paper. The basic idea of MDE is the use of the model con-
cept as a unifying principle along all the phases of a software engineering enterprise
[15]. The model concept is thus enlarged to encompass any formal representation that
is conformant to metamodels. A metamodel is itself a model that defines a modeling
language (a set of well formed models). In this unified sense, not only analysis and
design models are deemed as models, but also artifacts like code, language definitions
(metamodels) and transformations definitions among models in different levels. In par-
ticular, the model management vision defines a set of general operators (Match, Merge,
Compose, etc.) to deal with common perceived model related activities. By using an
MDE approach, we gain both in the reuse of software modeling frameworks, specially
those that automatize operations on models, and in providing a test case for the MDE
community in the area of organization centered MAS engineering.

Model-Driven Integration of Organizational Models 3

The paper is divided into seven sections. In section 2, we present a motivating ex-
ample in the domain of health care. In section 3, we discuss the concepts and operators
comprising the model management algebra. In section 4, the main process for organiza-
tional models integration is presented. The integration of AGR, MOISE+ and TÆMS is
described in detail. The main results of integrating ISLANDER and OperA are briefly
commented. In section 5, we present the implementation and use of an integrated orga-
nizational model. In section 6, we relate our work to others in the literature. Finally, in
section 7 we present our conclusions and future work.

2 Motivation

In order to put in concrete terms the need for an integrated view of organization in the
engineering of MAS, we will briefly describe an application scenario. The scenario is
an innovative vision for health care information system [16]. The main idea is to shift
the focus from information systems based on the care provider (hospitals, clinics, etc)
to one based on the individual:

“Such a system, which we call ‘Guardian Angel’ (GA), integrates over a lifetime all
health-related information about an individual (its ‘subject’), thus providing, at mini-
mum, a comprehensive medical record that is often virtually impossible to reconstruct
in a timely manner as the subject moves through life and work assignments. But GA
is to be not merely a passive repository of information, but an active process that: (a)
engages in data collection, ... (f) contains ... subjects’ preferences, represents these in a
broad range of negotiations with other systems, including setting therapeutic guidelines
and scheduling appointments, ... (j) provides patient support functions such as contacts
with support groups and other patients, queries to pharmaceutical companies, govern-
ment agencies, etc. ” [16, p. 3]

By its characteristics, the GAs can be conceived as agents and the systems it interacts
with (systems of the care providers, support groups, etc.) as open organized MASs. In
an ideal world, the MASs are conceived using one widely acceptable and comprehen-
sive organizational model. In such world, the GA designer concern about organization
interoperation is to build agents that interpret specifications written in a given prede-
fined organizational model.

In the actual state of the art, however, the situation is different. There is not a standard
comprehensive organizational model. Facing heterogeneous models, one solution is to
require that the MAS designers provide representative agents for the GA inside the MAS
that “understand” the organization specifications and know how to act in accordance to
it. This solution turns the MAS into semi-closed societies [17] were external agents
loose their organizational autonomy. Another solution is to provider an organization
interoperability layer between the GAs and the MASs. One service provided by this
interoperability layer would be to translate among organizational models. In the case of
compatible organizational models (i.e., that address the same modeling dimensions [9]),
this is a feasible solution. A third, and more ambitious solution, is to take the several
organizational models behind the systems the GAs have to inferface with and to produce
an agent that is able to specialize its organizational reasoning to each model as needed.

4 L.R. Coutinho et al.

Both the second (interoperability layer) and third (agent that reasons globally) so-
lutions can be operationalized by means of some integration of organizational models.
Regarding the second solution, the advantage of an integrated approach is to avoid a
great number of translations between organizational models. In the case of the third so-
lution, we can avoid redundancies in the agent architecture. However, in these solutions,
one challenge - the one that is explicitly addressed in this paper - is how to meaningfully
integrate the models and maintain this integrated view as new models come into scene.

In the following we describe the model management algebra, a set of model opera-
tors that provides us with a suitable formalism for describing and solving the problem
of meaningfully doing and maintaining an integration of organizational models.

3 Model Management Algebra

In MDE, a Model Management System is a tool that helps designers to perform (ideally
in an automatic way) common operations over models and mappings between models
[12,13]. Among these are the Match, Merge, TransfGen and Compose operators.

3.1 Models and Mappings

From this point, we will use the term ‘model’ in a strict technical acception to mean a
set of objects (elements with identity), usually forming a graph structure with distinct
node and edge objects, conforming to a given metamodel and representing some entity
or process in the development of a software solution. It is out of the scope of this paper
to provide a detailed account of the conformance and representation notions (we point
the reader to [15]). By its turn, the term ‘metamodel’ will be used to mean a model that
defines a set of structurely well formed models. A set of models we will call a modeling
language.

Given the above distinction, we can say that the ‘organizational model’ of the pre-
vious sections encompasses a metamodel for an organization modeling language (an
organization metamodel). And, ‘organization specification’ is a model that conforms to
a given organization metamodel.

Let M1 and M2 be models with graph structures represented by triples (Ni, Ei, ei),
i = 1, 2, where Ni is their set of nodes, Ei is their set of edges and ei : Ei → Ni × Ni

is the ‘edge function’ that associates each edge with a pair of nodes of Mi. A mapping
model map12 between M1 and M2 is a model M , represented by a binary relation
{(o1, o2)|oi ⊆ Ni ∪ Ei, i = 1, 2}. Such mapping reifies the concept of relationships
between models.

3.2 Operators

The model management operators take models and mappings as input and produces
models and mappings as output [18]. In this paper, we are interested in the operators:

– Match(M1/μa, M2/μb) → map12/μm: this operator takes two models M1 and
M2, respectively conformant to metamodels μa and μb, and produces the mapping
map12 (between M1 and M2), which conforms to the metamodel μm. Objects in
the input models that are related by a pair in map12 are considered either equal or
similar. Match has been implemented as a semi-automatic operator [19].

Model-Driven Integration of Organizational Models 5

– Merge(M1/μa, M2/μb, map12/μm) → (M3/μc, map13/μn, map23/μn) : this
operator takes two models M1 and M2, and their associated mapping model map12,
and produces a third model M3 and two new mapping models map13 and map23.
The resulting model M3 is a duplicate-free union of M1 and M2. That is, it in-
cludes a copy of all objects of M1 and M2, except those declared equal through
map12. The equal objects are collapsed in a single object in M3 that contains their
properties and relationships. The mappings map13 and map23 relate each object of
M3 to the objects it was derived from. We refer the reader to [20,18] for a detailed
description of Merge.

– TransfGen(μa, μb, mapab/μm) → Transfab - this operator takes two meta-
models μa and μb and produces as output a transformation Transfab that trans-
lates models that are conforming to μa into correspondent models conformant to
μb. The correspondence relationships between μa e μb are defined in the input
mapping mapab. The output Transfab has the following general form:

Transfab(M1(s)/μa) → M2(s)/μb

where the argument (s) is used to indicate that both M1 and M2 are correspondent
models, written in different metamodels, of the same subject.

– Compose(map12/μa, map23/μb) → map13/μm : this operator takes two map-
ping models and produces a new mapping model that is the composition of the
previous ones (i.e., map13 ≡ map23 ◦ map12).

3.3 Scripts

A script is a sequence of consecutive applications of the model management operators.
For example, suppose that we have n organization metamodels μi and we want to build
transformations that translate specifications from one to another. A simple script that
satisfies this task is: for 1 ≤ i, j ≤ n, do T ransfGen(μi, μj , Match(μi, μj)).

Another script for the same task is: do Match and Merge μ1 with μ2 producing the
first integrated metamodel μint

1 ; then, Match and Merge μ3 with μint
1 producing the

second μint
2 ; and so on, until Match and Merge μn with μint

n−2 producing the last μint
n−1.

Finally, do TransfGen(μi, μj , Compose(Match(μi, μ
int
n−1), Match(μint

n−1, μj))) to
obtain a particular transformation.

Comparing the scripts, the first involves the operators Match and TransfGen while
the second uses four operators. However, the computational effort associated with the
second script tends to be lower due to the number of times the operator Match (which is
difficult to automate because it involves interpreting one model against the other) is ex-
ecuted. Regarding the results, if we consistently apply the same criteria to perform the
Match, both scripts are expected to produce similar transformations among the meta-
models. This is due to the fact that the Merge operator preserves all the information
producing a duplicate-free union of the source metamodels.

3.4 Correspondence Metamodel

Match, Merge and other operators depend on mapping models. Mapping models con-
form to some correspondence metamodel, a model that defines a mapping language.

6 L.R. Coutinho et al.

Several correspondence metamodels proposals are found in the literature [21,18,22].
Among these, we have adopted the Atlas Model Weaver core metamodel (AMW)[22].
This is a class-based metamodel that defines abstract classes that represent links, link
ends and element identifications. A link denotes a correspondence relation between
modeling elements. A link can have one or several link ends, each end having the iden-
tification of the element referenced by the link. A link can also have nested child links.

Three features of AMW have influenced our choice: (i) it is a simple metamodel that
presents the basic characteristics of the other candidates;(ii) it proposes an extension
mechanism that can be used to define our own concrete correspondence links; and (iii)
it is implemented and freely available for use as part of a model management system -
the AMMA1 - that runs over Eclipse platform2.

Using the extension mechanism of AMW, we have extended the core metamodel
with the automatic running of a generic Merge algorithm [20]. This extension is based
on the use of two basic concrete links: equality and similarity. Elements linked by an
equality link have to be collapsed in one during a merge. Elements linked by a similarity
link have some semantic relationship but should not be collapsed in one during a merge.
For instance, let us consider o1 model element from model M1 linked to o2 model
element from model M2 by an equality link. During a merge both have to be replaced
by ou, unique element which gathers all the properties of o1 and o2 . If o1 has an
attribute id and o2 has an attribute name that have the same meaning in M1 and M2
(e.g. unicity), they can be equated. But, if one attribute has to be unique and the other
not, it is better to link the two attributes with a similarity link instead of an equality link.

4 Integration of Organizational Models

Given the general description of the previous sections, we now present the process
we have defined to integrate organization metamodels. In our experiments, we have
worked with the metamodels of five organizational models: AGR, MOISE+, TÆMS,
ISLANDER and OperA (see [9] for a presentation and comparison of these models). In
the sequel, we will illustrate the integration process for the first three models. We will
focus mainly on the application of Match and Merge to achieve an integration.

4.1 General Process

We follow an iterative process that is similar to the second script discussed in the section
3.3. In each iteration (except the first), we deal with an organizational metamodel and
a current integrated metamodel. We Match the organizational metamodel against the
current integration; after, we perform a Merge. At the end, we have a new integrated
metamodel and a mapping from the metamodel to the new integrated metamodel.

Match. In this process the more challenging step is to perform the Match operation. As
we have commented in section 3.3, the Match operation is rather difficult to automate
because it involves interpreting one model against the other. In our specific case, we

1 http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/
2 http://www.eclipse.org

Model-Driven Integration of Organizational Models 7

deal with the challenge of finding correspondences between the metamodels primarily
in a manual basis.

Firstly, we divide the work according to the modeling dimensions we have proposed
in [9]. In this sense, we hold the premise that any system model (not only organizational
models) will provide modeling constructs in some (or all) of the following categories:

– functional dimension — modeling constructs to represent the functional aspects
(functions, function decompositions) of the system and its sub-systems;

– structural dimension — modeling constructs to lay down the time-invariant struc-
ture (basic components and their relations) of the system;

– interactive dimension — modeling constructs to represent the actions/interactions
occurring through time that respect (or produce) the time-invariant structure and
that realizes the functional aspects of the systems.

In the case of agent organizations, where the components are capable of performing
autonomous actions, we add a forth category of modeling constructs:

– normative dimension - modeling constructs to flexibly couple agents to the func-
tional, structural and interactive aspects of organizations; where flexibly means try-
ing to reach a balance between the agent autonomy and the organizational purposes.

Secondly, we compare the general structure of the metamodel (in a given modeling
dimension) against some recurring structures. In the case of functional elements, the
general notion is that of goal (function, or objective) and their structuring (decompo-
sition) in goal-trees (plans). Regarding structural elements, we search for roles, roles
structures, groups and group structures. The common interactive elements are inter-
action protocols and networks of protocols. Finally, the basic normative elements are
norms and rules.

Lastly, we take into account specific structural similarities between the metamodels.
Here, we check what modeling constructs can be equated by putting into correspon-
dence sub-sets of their attributes and associations to other constructs. To a certain de-
gree, this check can be performed in an automatic manner by using some tools reported
in the literature [19,21].

Merge. We merge organization metamodels using a detailed algorithm [20] implement-
ing the Merge semantics described in section 3.2. The algorithm tries to satisfy the fol-
lowing Generic Merge Requirements (GMRs) (in the sequel, M denotes the result of
Merge):

– element preservation - each element in the input has a corresponding element in M;
– equality preservation - input elements are mapped to the same element in M iff they

are equal in the mapping;
– relationship preservation - each input relationship is explicitly in or implied by M;
– similarity preservation - elements that are declared similar (but not equal) to one

another retain their separate identity in M and are related to each other by some
relationship;

– meta-metamodel constraint satisfaction - M satisfies all constraints of the meta-
metamodel (the language used to write the metamodels);

8 L.R. Coutinho et al.

– extraneous item prohibition - no additional elements or relationships other than the
above exist in M;

– property preservation - for each element e of M, e has property p iff p is a property
of an element o of the input models and e is merged with o by the above.

4.2 Iteration 1

In the first iteration, we do not a have a current integrated organization metamodel.
Thus, we deal with two particular metamodels and produce the first integration. We
take AGR and MOISE+. In order to match AGR and MOISE+, we first notice that
the modeling constructs found in AGR are situated in the structural dimension. On the
other hand, the modeling constructs in MOISE+ spread the structural, functional and
normative dimensions. In this way, the match will be restricted to structural elements.

Match of AGR and MOISE+. The result of matching AGR and MOISE+ is the
mapping model illustrated in Fig. 1. The mapping model conforms to the correspon-
dence metamodel from sub-section 3.4 (AMW extension). Fig. 1 shows that AGR and
MOISE+ have three main correspondence clusters.

The first cluster is among classes: AGR!OrgStructure, MOISE+!Organizati-
onalSpec and MOISE!StructuralSpec. They are the root of an organization
specification. The correspondences (rounded rectangles) say that AGR!OrgStructure
corresponds directly to MOISE+!OrganizationalSpec, and indirectly (by means of
the reference gs:AGR!GroupStructure) to MOISE+!StructuralSpec.

In the second cluster we have AGR!GroupStructure in correspondence to MOISE+
!GroupSpec. Both are used to specify groups inside organizations. Here, AGR!Group-
Structure is composed of AGR!Role and MOISE+!GroupSpec is composed of MOI-
SE+! GroupRole. This gives us a hint that AGR!Role has to be made equivalent to
MOISE+! GroupRole in a third cluster.

Besides an identification, AGR!Role has information about the minimum and max-
imum number of agents allowed to play a role. MOISE+!GroupRole has this same in-
formation but in a different structure. It has a reference to MOISE+!Cardinality that
holds the maximum and minimum information. It has a reference to MOISE+!Role that
contains a role identification.

Merge of AGR and MOISE+. Having in mind the GMRs (section 4.1) and using the
mapping of the previous section, we have produced the Merge of AGR and MOISE+
that is illustrated in Fig. 2. In the figure, we have classes for the correspondences be-
tween AGR and MOISE+ (OrgSpec, GrSSpecand GrRole); the other classes (and their
respective attributes and relationships) appear only in MOISE+ or in AGR. The classes
FunctionalSpec andDeonticSpec appears only in MOISE+ and are the root for other
modeling constructs situated in the functional and normative dimensions, respectively.

4.3 Iteration 2

From iteration 1, we have a current merged metamodel. For short, this current meta-
model will be called MOM (Merged Organization Model). In the second iteration, we
Match and Merge TÆMS with MOM. For this, we take into account that the modeling
constructs found in TÆMS are situated in the functional dimension.

Model-Driven Integration of Organizational Models 9

Fig. 1. Match of AGR and MOISE+

Fig. 2. Merge of AGR and MOISE+

10 L.R. Coutinho et al.

Match of TÆMS and previous MOM. In Fig. 3, we show the resulting mapping
model from the matching of TÆMS with the previous AGR and MOISE+ merge. Dif-
ferently from AGR, the TÆMS metamodel focuses on task structures for agent groups.
Comparing it with MOISE+, we can say that it corresponds to elements from the func-
tional dimension of MOISE+.

Since TAEMS!TaskStructure is the root of a specification, it can be put in cor-
respondence with the root element MOM!OrgSpec. Specifically, TAEMS!TaskGroup
referred by TAEMS!TaskStructure contains equivalent information that is found on
MOM!SocialScheme.

TAEMS!TaskGroup and MOM!SocialScheme are goal decomposition trees. Both
have a root element and a set of elements hierarchically structured. In TÆMS, the ba-
sic element is called AbstractTask and is specialized in concrete Task and Method.
TAEMS!Task points to sub-tasks and has an associated quality accumulation function
(qaf) that tells how to combine sub-tasks to achieve a task. In MOM, the nodes are
named Goal. MOM!Goal are combined into MOM!Plan that relates a head MOM!Goal

with sub MOM!Goal. In this way, TAEMS!AbstractTask is mapped to MOM!Goal

and TAEMS! Task to MOM!Plan. TAEMS!Method does not have a direct correspon-
dent on MOM. Indirectly, via TAEMS!AbstractGoal it corresponds to a MOM!Goal.
TAEMS!Method is similar to a MOM!Goal that is not head of any MOM!Plan.

TÆMS defines several quality accumulation functions (TAEMS!QAF). These are
likely MOM!PlanOperator : they tell how to combine sub-goals to achieve some goal.
So, TAEMS!QAF and MOM!PlanOperator can be put in correspondence. TÆMS de-
fines Q SEQ SUM whose semantics is a superset of the SEQUENCE operator of MOM
(sub-goal execution in sequence). They can be put in correspondence. And, the Q EXAC-

TLY ONE of TÆMS conveys a similar meaning of CHOICE of MOM (only one sub-goal
must be done to achieve the head goal). They also can be put in correspondence.

Merge of TÆMS and MOM. Given the previous Match and abiding by the GMRs
(section 4.1), we achieve the second version of MOM as is shown in the Fig. 4. In
the figure, beyond the common elements (OrgSpec , GoalTree , AbstractGoal ,
CompositeGoal and QAF OP), there are elements unique to TÆMS and MOM. In
MOM (from MOISE+), there is Mission, a subset of Goal that has a Cardinality
and is associated with Role (via normative relations not show in the figure). TÆMS
defines Resource, an environmental element used to perform Task; ResourceNLE
and TaskNLE are non-local effects relation between Resource and Task and between
Tasks, respectively.

4.4 Other Iterations

We have done the same process integrating ISLANDER to the second MOM and OperA
to the third MOM. Due to space limitations, we will briefly describe the result.

ISLANDER contributes to structural, interactive and normative modeling dimen-
sions. Similar to AGR and MOISE+ it has the concepts of roles and role relations. How-
ever, it does not have the concept of group specification. The focus of ISLANDER is
in the interaction specification. In this regard, it adds to Fig. 4 a collection of new classes

Model-Driven Integration of Organizational Models 11

Fig. 3. Match of TÆMS and first Merge

Fig. 4. Merge of TÆMS and first Merge

12 L.R. Coutinho et al.

represented by the class ISLANDER!PerformativeStructure, which is placed as
an immediate component of MOM!OrgSpec. Regarding norms, ISLANDER defines the
class Norm.

OperA contributes to structural, dialogical, normative and functional dimensions.
Its structural dimension is richer than ISLANDER but less developed than MOISE+.
Its interactive dimension is comparable to ISLANDER in its basic elements. The class
OPERA!InteractionStructure is put in correspondence to ISLANDER!Performa-
tiveStructure. The normative dimension is more developed than ISLANDER. Fi-
nally, it has the concept of objective, similar to goal, but nothing comparable to the
functional view of TÆMS and MOISE+.

5 Implementation and Application

The integration process described in the previous sections was implemented in a semi-
automatic fashion using the Eclipse Modeling Framework3 (EMF) and the Atlas Model
Management Architecture4 (AMMA). Not all organizational models have an explicit
metamodel. The metamodels we used were re-engineered from XML schemes and for-
mal definitions of the organizational models to be compatible with the EMF. To do the
Match and Merge operation, we have used the AMW [22] plugin of AMMA. Regard-
ing TransfGen, we have used the ATL [23] plugin of AMMA. ATL is a declarative
rule-based transformation language.

In order to illustrate the application of our MOM in the context of organizational
interoperability, we show in Fig. 5 part of the Guardian Angel scenario (section 2)
specified in AGR and its corresponding transformation to MOISE+, intermediated by
the MOM. The specification in the left panel of the Fig. 5 describes in AGR the organi-
zation structure of the Health-Care System (HCS) depicted in Fig. 6. In HCS, Guardian
Angel agents (GAs) can enter representing a patient. Once inside HCS, they can contact
other agents representing care providers. The contact is intermediated by a broker agent.
According to section 2, the GAs will interact with care-providers for several reason, one
of them being to schedule appointments in behalf of a patient.

In this scenario, if we want to enable agents that interprets organizational specifica-
tions written in organizational models other than AGR, a possible solution is to translate
from AGR to the other models. And this can be done by using the MOM as an inter-
mediate format. For instance, if GA-2 in Fig. 6 is an agent that interprets MOISE+, the
transformation of Fig. 5 can be used by GA-2 to reason about the structure of HCS.

On the other hand, if GA-2 is an agent that interprets TÆMS there will be no possible
translation from the organization structure of the HCS to a valid model in TÆMS. As
we have noticed during the construction of MOM, AGR and TÆMS address orthogonal
dimensions of agent organizations. Therefore, other mechanisms (like controllers of the
agents inside an organizations) will be needed to make the agents interoperate.

Finally, if the GAs are built taking into account a comprehensive view of organi-
zational models provided by an integration, then it can be made in a modular way to
enable its participation in different organizational contexts.

3 http://www.eclipse.org/modeling/emf/
4 http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/

Model-Driven Integration of Organizational Models 13

Fig. 5. Transformation from AGR to MOISE+

Fig. 6. Guardian Angel scenario

6 Related Work

In organization centered MASs [1], apart from communication languages [10], agent
platforms and domain ontologies [11], the organizational model is another source of in-
teroperability problems. In [24], the authors affirm: “Currently, in practice, agents are
designed so as to be able to operate exclusively with a single given institution [organiza-
tion], thus basically defying the open nature of the institution.” In spite of this, we do not
know about other work that address explicitly organizational interoperability problems.

In the area of methodologies for AOSE, the work [25] proposes an unified metamodel
for interoperability between agent-oriented methodologies. To the extent that it deals
with class-based metamodels of MASs and their integration, this work can be compared
to ours. However, it has a different nature. While it deals with the interoperability among
software engineers (and their tools) while designing MASs, we focus on interoperability
among software agents during run-time w.r.t. organizational models.

With regard to model integration and interoperability in general, there is a vast lit-
erature. Complementing the references already indicated in the text, we cite [26] that
proposes an architecture for model integration grounded on ontologies, [27] that surveys

14 L.R. Coutinho et al.

mappings in the domain of ontologies and [28] that presents the MOMENT framework
as an alternative for the AMMA framework we have used to implement the integration
of organizational models.

7 Conclusions and Future Work

In this paper we proposed an MDE approach for organizational models integration.
Therefore, its contribution is twofold: the integration process itself and the use of MDE
techniques in the open organized MAS engineering domain.

The integration process is an iterative and incremental process based on the application
of the MDE operators Match and Merge to organization metamodels. In each step, an
organization metamodel is matched and merged against a current integrated metamodel
giving rise to a new integrated organization metamodel. Using the integration process, we
have integrated the organization metamodels of AGR, MOISE+, TÆMS, ISLANDER
and OperA.

The integration result is a common metamodel that aims at providing interoperability
among open and heterogeneous MAS. This can be achieved by combining the common
metamodel with mapping models from/to each specific organization metamodel in or-
der to synthesize runnable transformations that translates organizations’ specifications
between specific organizations’ metamodels.

Considering these results, we intend to use the integrated organization metamodel as
the central component for the definition of an architecture for organizational interoper-
ability in the open organized MAS domain.

References

1. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view
of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

2. Lesser, V., et al.: Evolution of the GPGP/TAEMS domain-independent coordination frame-
work. Autonomous Agents and Multi-Agent Systems 9, 87–143 (2004)

3. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

4. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 348–366.
Springer, Heidelberg (2002)

5. Dignum, V.: A model for organizational interaction: based on agents, founded in logic. PhD
thesis, Utrecht University, SIKS Dissertation Series No. 2004-1 (2004)

6. Gutknecht, O., Ferber, J.: The MADKIT agent platform architecture. In: Wagner, T.A., Rana,
O.F. (eds.) AA-WS 2000. LNCS, vol. 1887, pp. 48–55. Springer, Heidelberg (2001)

7. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing organised
multi-agent systems. In: Boissier, O., et al. (eds.) OOOP 2005: International Workshop on
Organizations in Multi-Agent Systems, pp. 107–120 (2005)

8. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: AMELI: an agent-based mid-
dleware for electronic institutions. In: AAMAS, pp. 236–243. IEEE Press, Los Alamitos
(2004)

Model-Driven Integration of Organizational Models 15

9. Coutinho, L., Sichman, J., Boissier, O.: Modelling dimensions for multi-agent system or-
ganizations. In: Multi-Agent Systems: Semantics and Dynamics of Organizational Models,
ch. 2. IGI Global (to appear)

10. Labrou, Y., Finin, T., Peng, Y.: The interoperability problem: bringing together mobile agents
and agent communication languages. In: HICSS 1999, Proceedings of the Thirty-second
Annual Hawaii International Conference on System Sciences, vol. 8 (1999)

11. Erdur, R.C., Dikenelli, O., Seylan, I., Gürcan, Ö.: Semantically federating multi-agent or-
ganizations. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS,
vol. 3451, pp. 74–89. Springer, Heidelberg (2005)

12. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: ACM
SIGMOD International Conference on Management of Data, pp. 1–12 (2007)

13. Bernstein, P.A.: Applying model management to classical meta data problems. In: CIDR
2003, First Biennial Conference on Innovative Data Systems Research, pp. 209–220 (2003)

14. Schmidt, D.C.: Model-driven engineering. IEEE Computer, 25–31 (February 2006)
15. Bézivin, J.: On the unification power of models. Soft. and Sys. Modeling 4, 171–188 (2005)
16. Szolovits, P., Doyle, J., Long, W.J., Kohane, P.S.G.: Guardian Angel: patient-centered health

information systems. Technical Report 604, MIT, Lab. Computer Science (May 1994)
17. Davidsson, P.: Categories of artificial societies. In: Omicini, A., Petta, P., Tolksdorf, R. (eds.)

ESAW 2001. LNCS (LNAI), vol. 2203, pp. 1–9. Springer, Heidelberg (2002)
18. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting executable mappings in

model management. In: ACM SIGMOD Conf. on Management of Data, pp. 167–178 (2005)
19. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching transfor-

mations and weaving models. In: ACM Symposium on Applied Computing, pp. 963–970
(2007)

20. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences. In: VLDB
2003, Proc. of 29th Int. Conference on Very Large Data, pp. 826–873 (2003)

21. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context of model driven
engineering: From theory to practice. In: Sobh, T., Elleithy, K. (eds.) Advances in Systems,
Computing Sciences and Software Engineering, pp. 219–227. Springer, Heidelberg (2006)

22. Fabro, M.D.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic model
weaver. In: IDM 2005: 1ère Journée sur l’Ingénierie Dirigée par les Modèles (2005)

23. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

24. Dignum, F., et al.: Open agent systems??? In: Luck, M., Padgham, L. (eds.) Agent-Oriented
Software Engineering VIII. LNCS, vol. 4951, pp. 73–87. Springer, Heidelberg (2008)

25. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of some multi-
agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

26. Kappel, G., et al.: Lifting metamodels to ontologies: a step to the semantic integration of
modeling languages. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 528–542. Springer, Heidelberg (2006)

27. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge
Engineering Review 18(1), 1–31 (2003)

28. Boronat, A., et al.: Formal model merging applied to class diagram integration. Electronic
Notes in Theoretical Computer Science 166, 5–26 (2007)

MAS Modeling Based on Organizations

Estefańıa Argente, Vicente Julian, and Vicent Botti�

Departamento de Sistemas Informaticos y Computacion,
Universidad Politecnica de Valencia,

C/Camino de Vera s/n, 46022, Valencia, Spain
{eargente,vinglada,vbotti}@dsic.upv.es

Abstract. An agent organization model is proposed based on four main
concepts: organizational unit, service, environment and norm. These con-
cepts are integrated in ANEMONA meta-models, which are extended in
order to include all entities needed for describing the structure, function-
ality, dynamic, normalization and environment of an organization.

Keywords: Meta-model, Multi-agente systems, Organization.

1 Introduction

Organizational models have been recently used in agent theory to model coor-
dination in open systems and to ensure social order in MAS [1,2]. Agent Or-
ganizations rely on the notion of openness and heterogeneity and include the
integration of organizational and individual perspectives and the dynamic adap-
tation of models to organizational and environmental changes [3].

Meta-modeling is a mechanism that allows defining modeling languages in a
formal way, establishing the primitives and syntactic-semantic properties of a
model [4]. For example, INGENIAS [5] and ANEMONA[6] methods offer sev-
eral meta-models for MAS analysis and design, by means of their component
description (organizations, agents, roles), functionality (goals and tasks), envi-
ronment (resources and applications), interactions and agent internal features,
such as autonomy and mental state processing. INGENIAS follows an iterative
development process based on Rational Unified Process (RUP). It is supported
by powerful tools for modeling, design and code generation. ANEMONA, based
on INGENIAS, is a MAS methodology for developing Holonic Manufacturing
Systems. They both employ UML notation language for meta-model descrip-
tions. However, they lack of a specific normative description, a deeper analysis
of the system dynamics and an open system perspective.

Other MAS frameworks, such as MOISE[7] or E-Institutions[1], do specially
focus on the normative specification of the system, but do not take into account
the environment description or a more detailed analysis of the organization struc-
ture and functionality.
� This work has been partially funded by TIN2005-03395 and TIN2006-14630-C03-01

projects of the Spanish goverment, FEDER funds and CONSOLIDER-INGENIO
2010 under grant CSD2007-00022.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 16–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MAS Modeling Based on Organizations 17

In this work, an integration of several methods and modeling languages (such
as ANEMONA, AML[8], MOISE, E-Institutions) is proposed for describing the
main features of an organization: its structure, functionality, dynamics, envi-
ronment and norms. In this way, four main concepts are employed: organiza-
tional unit, service, norm and environment. These concepts have been extracted
from human organizational approaches [9,10,11] and also from multiagent sys-
tem works [12,8] and service oriented architectures1. They are used to represent:
(i) how entities are grouped and connected between them and their environment;
(ii) which functionality they offer, and which services are employed to manage
dynamic entry/exit of agents in the organization; and (iii) which restrictions are
needed for controlling entity behavior inside the system.

The proposed MAS modeling employs six different meta-models, which ex-
tend the ANEMONA ones: the organization meta-model, that describes system
entities (agents, organizational units, roles, norms, resources, applications) and
how they are related to each other (i.e. social relationships, functionality needed
or offered); the activity meta-model, that details the specific functionality of the
system (services, tasks and goals); the interaction meta-model, that defines sys-
tem interactions, activated by means of goals or service usage; the environment
meta-model, that describes system applications and resources, agent perceptions
and effects and also service invocation through its ports; the agent meta-model,
that describes concrete agents; and finally the normative meta-model, that de-
tails organizational norms that agents must follow.

A case-study example based on the travel domain is used to provide a
better comprehension of the meta-models. Hotel chains and flight companies
offer information about their products (hotels, flights), booking facilities and ad-
vance payment. Their functionality is defined using services and it is controlled
with norms that describe, for example, which are the minimum services that
providers must register in the system in order to participate inside; how services
are described (service profiles and processes); or in which order services must be
served.

In this paper, the main extensions to ANEMONA meta-models are related,
using UML notation language, following GOPPR [13] restrictions. All relation-
ships have a specific prefix that indicates: O for organization; GT for goals and
tasks; WF for work flow; AGO for social relations; E for environment; N for
norms and I for interactions. A Role primitive is employed to establish the di-
rection of the relationship, having as suffix an O for origin and D for destiny. All
meta-model extensions are graphically emphasized in dark color. Due to lack of
space, only those meta-models with more extensions are explained. More specif-
ically, a description of the organization meta-model is detailed in section 2; how
services are described using the activity meta-model is explained in section 3;
extensions to the environment meta-model are shown in section 4; whereas sec-
tion 5 describes how rules are modeled using the normative meta-model. Finally,
conclusions and discussion are detailed in section 6.

1 http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

18 E. Argente, V. Julian, and V. Botti

2 Modeling MAS Organizations

An agent organization is defined as a social entity composed of a specific number
of members that accomplish several distinct tasks or functions and are structured
following some specific topology and communication interrelationship in order
to achieve the main aim of the organization [14]. Agent organizations assume
the existence of global goals, outside the objectives of any individual agent, and
they exist independently of agents [3].

ANEMONA meta-models offer the Abstract Agent (A-Agent) notion [6], which
allows defining agent collections as unique entities of a high-level description,
modeled as virtual single agents. But A-Agents can be later refined and specified
internally, defining all their components (simple agents or groups of agents).
Thus, an A-Agent is defined in a recursive way, being an atomic entity or a
multi-agent system (with unique entity) composed of A-Agents not necessarily
equal.

In this paper, this A-Agent entity has been extended with the Organiza-
tional Unit (OU) concept, that describes the existing groups of members of
the organization. These units have a specific internal structure. They also define
several roles or positions that describe a set of functionalities (services offered
and required) and goals that represent the organizational expectation for each
position. OUs also include resources and applications, that can be accessed by
specific members of the organization. And finally, they include all norms that
control their members’ behavior.

The proposed organization meta-model integrates this Organizational Unit
concept and contains four views: structural, functional, social and dynamic. The
first three ones are extensions of those ones employed in ANEMONA, whereas
the new dynamic view is used to specify which are the services that an OU must
offer to control and manage entry and exit of its entities.

Fig. 1. Organization Meta-model. Structural view.

MAS Modeling Based on Organizations 19

The structural view defines which are the “static” components of the or-
ganization, i.e. all elements that are independent of the final executing entities
(figure 1). Thus, the system is composed of Organizational Units (OU), that
can also include other units in a recursive way. Internally, their members are
arranged in a hierarchy, team or plain structure. The composition of these units
facilitates designing more complex and elaborated structures, such as matrix,
federation, coalitions or congregations [14]. The OU acts as a group of agents
(OContainsA-Agent), but also as their environment. Hence, it contains both
resources (OContainsResource) and applications (OContainsApplication) that
can be used by the OUs entities. It also defines the allowed roles inside the unit
(OContainsRole) and all norms that control their behavior (OContainsNorm).

In the travel case study (figure 3.A), the TravelAgency organizational unit
represents the whole travel system. The Client role represents the final user that
asks for information on hotels or flights, orders booking rooms or flight seats
and even might pay in advance. The Provider role offers searching and booking
service functionality. Finally, the Payee role is responsible for controlling the ad-
vance payment. As descriptions and functionalities for travel search and booking
services might be rather different for hotels and flights, two organizational units
(FlightUnit and HotelUnit) have been defined, focused on their specific products.
In these units, both client and provider roles are specialized into more specific
roles (ex. FlightClient and FlightProvider).

Fig. 2. Organization Meta-model. Functional view. Mission.

The functional view describes the organizational mission and how each
organizational unit behaves, both externally and internally. It contains three
subviews: mission, external functionality and internal functionality.

The mission (figure 2) defines organizational global goals (GTPursues), who
are the stakeholders that interact with the organization (OInteracts), which are
the results of the organization (OOffers products or services), how these results
are consumed by its clients (OConsumes) and what the organization needs from

20 E. Argente, V. Julian, and V. Botti

A) B)

Fig. 3. Example of the organizational model diagram for the travel agency case-study:
A) structural view; B) functional view (mission)

its providers (OProduces services or resources, OConsumes services, OContain-
sResource). In the case-study example (figure 3.B) the system (TravelAgency
unit) offers the travel reservation product, consumed by its clients (tourists or
businessmen). It also offers several services for travel searching, booking and
payment. Moreover, this system requires that some providers (hotel chains and
airlines) supply all needed information about hotels and flights.

Fig. 4. Organization Meta-model. Functional view. External functionality.

The external functionality of an A-Agent (figure 4) represents the set of ser-
vices that this entity offers to other A-Agents (OOffers relationship), indepen-
dently of the final agent that makes use of them. Moreover, a set of services
required by OUs can also be defined. These services represent all functional-
ity that needs to be “hired” to other A-Agents. The ORequires relationship is
similar to “job offer advertising” of human organizations, in the sense that it rep-
resents a necessity of finding agents capable of providing these required services
as members of the unit. All features, abilities and permissions of providers and
clients of these services are modeled by means of roles, using WFProvides and
WFUses relationships. The OOffers relationship of this subview is the same one
of the mission subview, but offered services are more specified. The ORequires
relation is also related with the OConsumes relation of the mission subview. In

MAS Modeling Based on Organizations 21

this case, ORequires is connected to services that must be provided inside the
OU, whereas the OConsumes relationship is related to services that are needed
by the OU but it is not yet defined whether they are executed inside or outside
the organization (i.e. invoke to external entities).

Fig. 5. Example of the Organizational model diagram (external functionality) for the
travel case-study

In the travel case-study example (figure 5), the TravelAgency unit offers Trav-
elSearch, TravelBooking and TravelPayment services to agents playing the client
role. Moreover, provider agents must supply at least an information service, in-
voked in the TravelSearch. Thus, any agent willing to play a provider role has
to be capable of providing a service of this kind. However, the TravelBooking
service is not compulsory, so providers can freely decide whether to offer it or
not. The TravelPayment service is assigned to the Payee role.

Fig. 6. Organization Meta-model. Functional view. Internal functionality.

Finally, the internal functionality of an A-Agent (figure 6) is defined by its
tasks (WFResponsible), which are delimited by the roles that the entity plays
(WFPlays) and the services provided by these roles (WFProvides). For exam-
ple, the Bank agent (figure 8.A) plays the Payee role in the travel case-study,
implementing the TravelPayment service functionality.

22 E. Argente, V. Julian, and V. Botti

Fig. 7. Organization Meta-model. Social view.

The social view (figure 7) describes roles and A-Agent social relationships,
divided into three types: supervision, monitoring and information. This social
view integrates [15] and [7] works in this meta-model approach.

The AGOInformation relationship describes how information or knowledge
links are established inside the organization. If two A-Agents are connected by
this type of link, then they are entitled to know each other and communicate
relevant information. The AGOMonitoring relationship implies a monitoring
process of agent activity, so the monitor agent is responsible for controlling tasks
of its monitored agents. Finally, the AGOSupervise relationship implies that a
(supervisor) agent transfers or delegates one or more goals to its subordinate
agent, which is obliged to include these objectives as its own and pursue them.

A) B)

Fig. 8. Example of the Organizational Model diagram for the travel agency case-study:
A) internal (functional) view. A Bank agents plays the Payee role; B) social view.

In the travel case-study example (figure 8.B), the FlightUnit has been modeled
using a hierarchical structure in which there is a supervisor (manager role) that
receives all flight requests from clients and invokes FlightProvider services, also
controlling their behavior.

The dynamic view (figure 9) defines the pattern designs for organizational
unit services, that enable managing all its structural and dynamic components.
These services are divided into structural, informative and dynamic services. The
structural services are focused on adding or deleting norms, roles or organiza-
tional units. The informative services provide information about the structure
of the organization. And the dynamic services manage the inclusion and exit
of agents into the unit and the role adoption. These last services need to be
published in an open system for allowing external agents to participate inside.

MAS Modeling Based on Organizations 23

Fig. 9. Pattern Design for the dynamic view (Organization Model)

3 Modeling MAS Services

Services represent a functionality that agents offer to other entities, indepen-
dently of the concrete agent that makes use of it. Its main features are: (i) syn-
chronization, that implies interaction between entities that offer the service and
those ones that require and use it; (ii) publishing, so the service is registered in a
service directory and other entities can find it; (iii) participation, i.e. entities that
consume the service can differ through time; (iv) entity standardization, as ser-
vice consumers and providers are related to specific roles, for which restrictions
are defined through norms, resource access permissions, etc.; (v) functionality
standardization, as services are described in terms of inputs, outputs, precon-
ditions and postconditions, making easier the description its functionality; (vi)
tangibility, as services usually produce tangible products which can be employed
for evaluating both quality, service efficiency and client satisfaction; and (vii)
cost, i.e. service production and consumption imply some costs and/or benefits.

In the activity meta-model (figure 10), service system functionality is de-
scribed by means of its profile and A-Tasks in which a service is split (WFSplits
relationship). The ServiceProfile concept describes activation conditions of the
service (preconditions), its input, output parameters and its effects over the
environment (postconditions). It can be lately used in an OWL-S service de-
scription. The A-Task concept (figure 11.A) describes the service functionality.
It represents both concrete tasks, task-flows or service composition (WFInvokes
relationship). A task-flow description (figure 11.B) relates tasks with their envi-
ronment: usage of resources and mental entities (WFConsumes, WFProduces),
usage of applications (WFEmploys), task sequence order (WFConnects, WFIn-
vokes), task composition (WFSplits) and task assignment to agents (WFRespon-
sible) and its execution (WFExecutes).

The activity model diagram for TravelSearch service of the case-study example
is shown in figure 12. This service is described using the “Travel Searching” pro-
file and contains four tasks: CheckPlace, that checks inputs (country and city);
FlightSearch and HotelSearch (concurrent tasks that invoke InformScheduled-
Flights and InformAvailableHotels services, respectively); and TravelFilter, that
selects the best hotels and flights. The task flow description for the TravelSearch
service is shown in figure 12.B.

24 E. Argente, V. Julian, and V. Botti

Fig. 10. Activity Meta-model. Service description.

Fig. 11. Activity Meta-model. A) Task description; B) Task Flow Description.

4 Modeling MAS Environment

Based on human organizations [16,11], environment should be modeled with
two different perspectives: structural and functional. The structural perspective
describes which are the components of the system (agents, objects, resources),
how they are related (i.e. agent groups, behavioral norms, resource access) and
how these elements are conceptually represented, by means of an ontology. The
functional perspective determines which are the activities related with the envi-
ronment, i.e., how agent communication is produced (direct or indirect messages,
using specific environment elements, etc.), how agents can perceive and act over

MAS Modeling Based on Organizations 25

A) B)

Fig. 12. Activity model diagram for the travel case-study example: A) TravelSearch
service description; B) TravelSearch service task-flow

the environment and how agents are connected to other types of entities such as
objects, applications or resources.

The proposed environment meta-model (figure 13) focuses on the description
of its elements (resources, applications and mental entities), perceptions and
actions over the environment, and permission accesses for using these elements.

Resources represent environment objects that do not provide a specific func-
tionality, but are indispensable for task execution [5]. They can be consumable or
not, have an initial state, a lower and upper threshold and a capacity granularity.
As regards applications, they represent functional interfaces that are described
with a name, several parameters, preconditions, postconditions and results.

Agent perceptions and actions are described using the EnvironmentPort
concept, which is a specialization of the Port entity. This concept has been
extracted from AML language modeling [8], in which a port represents an inter-
action point between an entity and other model elements. Two kinds of ports
have been defined: environment and service ports. The environment port allows
lecture and/or write access to resources or applications. The Perceptor port es-
tablishes how agents can obtain information from resources and applications.
The Effector port allows agents to modify resource data. The EManagesPort
relationship indicates who manages and controls the environment port access.
The WFEmploysPort relationship represents which roles are allowed to use the
port and in which way (WFEmploysReadPort for obtaining information, WFEm-
ploysWritePort for creating or modifying environment information).

The ServicePort concept represents the publishing feature of the service, i.e.
the contact point or grounding mechanism for service access. The entity in charge
of publishing it (in a service directory, for example) is represented with the
EManagesPort relationship.

26 E. Argente, V. Julian, and V. Botti

Fig. 13. Environment meta-model. Port access.

Fig. 14. Case-study example: A) the bank agent contains the Booking Inventory and
manages its access; (B)The TravelAgency unit contains the Booking Inventory and
manages its access; (C) The TravelAgency unit publishes TravelSearch service, which
is used by agents playing the client role

For the travel case-study, an example of a resource belonging to a specific
agent is shown in figure 14.A, in which the Bank agent controls access to the
Booking Inventory by means of the Inventory Port. However, in many problems
the resource does not belong to a specific agent, but to the environment of a group
of agents. In this case, the organizational unit that represents this group con-
tains this resource and manages its access through a resource port. For example,
in figure 14.B, the TravelAgency unit contains the Booking Inventory resource,
which can be read or modified, but the client role defined in this unit is only
empowered to read access. Finally, an example of a service port access is shown
in figure 14.C, in which a PersonalAgent playing the client role is allowed to

MAS Modeling Based on Organizations 27

make use of the TravelSearch service. The TravelAgency unit is in charge of
publishing this service (represented by the EManagesPort relationship).

5 Modeling MAS Norms

Norms have been widely used as mechanisms to limit human autonomy inside
societies, in order to solve problems of coordination, specially when total and
direct social control cannot be exerted. In open multi-agent systems, norms have
been considered as a key issue for managing the heterogeneity, autonomy and
diversity of interests of agents [17].

Fig. 15. Normative meta-model

The proposed normative meta-model (figure 15) describes the Norm con-
cept, which represents a specific regulation, expressed by means of a Norma-
tive Objective (Obligation, Permission or Prohibition). This regulation affects or
concerns A-Agents or Roles (NConcerns relationship), whose actions are con-
trolled by the normative objective (WFExecutes and GTAffects relationships).
The norm also indicates who is in charge of monitoring that the norm is satisfied
(NController relationship) and who is responsible for punishments (NSanction
and NDefender relationships) and/or rewards (NReward and NRewarderer rela-
tionships). Finally, NActivation relationship specifies all facts and events of the
environment that provoke the activation of the norm. Its deactivation (NDead-
line) is produced when the normative objective or the deadline is satisfied.

In figure 16, the pattern design for an obligation norm is shown. A sanction
is created when the deadline has been reached and compulsory tasks have not
been satisfactorily executed yet.

28 E. Argente, V. Julian, and V. Botti

Fig. 16. Pattern design of an obligation

6 Discussion

An extension of ANEMONA meta-models has been proposed, in order to in-
clude concepts of organizational unit, service and norm. These concepts have
been extracted from human organizational approaches, from multiagent systems
works and from service oriented architectures, being integrated in a framework
for modeling organizations. In this way, the main features of an organization
can be described: its structure, functionality, dynamics, environment and norms.
Thus, the organization meta-model describes its components, relationships and
connections with its environment. The activity meta-model details offered and
required services, their tasks and objectives. The environment meta-model cap-
tures system resources and applications, agent perceptions and effects and port
accesses permissions. Moreover, organization rules are expressed with the norma-
tive meta-model. Finally, the agent meta-model details concrete responsibilities
of agents and their internal functions, and the interaction meta-model defines
specific interactions between agents and service invocation (using service ports).
These two last meta-models have not been included in this paper due to lack of
space, but they are mainly the same as in ANEMONA.

Regarding related work on MAS organizational modelling, there are different
interesting approaches, standing out AGR [18], MOISE [7], ODML [20], AML [8],
OMNI [21] and OMACS [23]. The AGR model [18] is based on agent, groups and
role concepts. It was lately extended in the AGRE[19] work (E for environment).

MOISEInst model [7] includes structural, functional and deontic views. Its
structural view is related with our organization meta-model, detailing roles,
groups and relationships. In our proposal, the environment is also modelled
and the internal topology of groups is considered as well. Its functional view
describes plans and missions to achieve goals, similarly to our A-Objectives. In
our approach, services required and offered are modelled too, and agent inter-
actions are deeply described in the interaction meta-model. Finally, MOISEInst

deontic view describes permissions and obligations of roles, including sanctions.
Our normative meta-model also incorporates rewards.

MAS Modeling Based on Organizations 29

ODML [20] uses a basic underlying model of organizations for performance
prediction of the multiagent organization. Their existing organizational models
[12] have served as a basis for our topological analysis [14]. AML [8] extends
UML with agent concepts, including resources, environment, organizational units
and services, but it lacks of a normative modeling. Our proposal has adopted
AML environment perspective, using ports for accessing services and resources.
Moreover, our meta-models are integrated in an iterative process, such as in
INGENIAS or ANEMONA methodologies.

OMNI [21] offers Normative, Organizational and Ontological Dimensions. It
makes use of ISLANDER [1] and AMELI [22] framework for MAS implemen-
tation. The mission of the organization, its norms and rules, roles, groups and
concrete ontological concepts are detailed. It is also based on contracts, used for
acquiring roles and controlling agent interactions. In our proposal, these contract
specifications can be employed to better define the organizational services in the
dynamic view of the organization meta-model.

Finally, OMACS [23] defines a meta-model for MAS that allows the system to
design its own organization at runtime. It is based on agent capabilities (similar
to our agent meta-model, in which tasks and services that an agent is responsible
for are defined), role assignments (described in our organization meta-model) and
policies, which include behavioral and reorganization policies (defined in our nor-
mative meta-model) and assignment policies (described in our organization and
environment meta-models using access restrictions on resources and services).

The Organizational MAS modeling approach presented in this paper has
been integrated in an iterative process of system development, in which sev-
eral methodological guidelines are employed for describing the mission of the
organization, its productive tasks and processes, its organizational dimensions
and topological structure, its decision and information processes, its dynamics
and normative behavior and its reward system. Moreover, a BNF language for
describing norms has been developed. It allows defining restrictions on service
usage, registration and provision. Furthermore, a graphical development tool is
currently being implemented, that helps designers with diagram model construc-
tion and automatic code generation.

References

1. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an Electronic Institution Editor.
In: Proc. AAMAS 2002, pp. 1045–1052 (2002)

2. Dignum, V., Meyer, J., Wiegand, H., Dignum, F.: An organization-oriented model
for agent societies. In: Proc. RASTA 2002 (2002)

3. Dignum, V., Dignum, F.: A landscape of agent systems for the real world. Tech.
Report Inst. Information and Computer Sciences, Utrecht. Univ. (2006)

4. van Gigch, J.P.: System Design Modeling and Metamodeling. Plenum Press, New
York (1991)

5. Gomez, J., Fuentes, R., Pavon, J.: The INGENIAS Methodology and Tools. In:
Agent-oriented Methodologies, pp. 236–276. Idea Publishing Group, USA (2005)

6. Botti, V., Giret, A.: ANEMONA: A multi-agent methodology for Holonic Manu-
facturing Systems. Series in Advanced Manufacturing. Springer, Heidelberg (2008)

30 E. Argente, V. Julian, and V. Botti

7. Gateau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moise-inst: An organizational
model for specifying rights and duties of autonomous agents. In: Proc. CoORG
(2005)

8. Cervenka, R., Trencansky, I.: AML. The Agent Modelling Language. Whitestein
Series in Soft. Agent Tech. and Autonomic Computing. Birkhäuser, Basel (2007)

9. Robbins, S.: Organizational Behavior. Pearson Prentice Hall (2007)
10. Moreno-Luzon, M., Peris, F., Gonzalez, T.: Gestión de la Calidad y Diseño de

Organizaciones. Prentice Hall, Pearson Education (2001)
11. Hodge, B.J., Anthony, W., Gales, L.: Organization Theory: A Strategic Approach.

Prentice Hall, Englewood Cliffs (2002)
12. Horling, B., Lesser, V.: A survey of multiagent organizational paradigms. The

Knowledge Engineering Review 19, 281–316 (2004)
13. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User

and Multi-Tool CASE Environment. In: Constantopoulos, P., Vassiliou, Y., My-
lopoulos, J. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg
(1996)

14. Argente, E., Palanca, J., Aranda, G., Julian, V., Botti, V., Garcia-Fornes, A.,
Espinosa, A.: Supporting Agent Organizations. In: Burkhard, H.-D., Lindemann,
G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS, vol. 4696, pp. 236–245.
Springer, Heidelberg (2007)

15. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Fundations of organizational
structures in multiagent systems. In: Proc. AAMAS 2005, pp. 690–697 (2005)

16. Weyns, D., Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for mul-
tiagent systems. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS
2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, Heidelberg (2005)

17. López, F., Luck, M., d’Inverno, M.: A normative framework for agent-based sys-
tems. Computational and Mathematical Organization Theory 12, 227–250 (2006)

18. Ferber, J., Gutkenecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

19. Ferber, J., Michel, F., Baez, J.: AGRE: Integrating Environments with Organiza-
tions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS,
vol. 3374, pp. 48–56. Springer, Heidelberg (2005)

20. Horling, B., Lesser, V.: Using ODML to model multi-agent organizations. In: Proc.
IEEE/WIN/ACM INt. Conf. on Intelligent Agent Technology, pp. 72–80 (2005)

21. Dignum, V., Vazquez, J., Dignum, F.: OMNI: Introd. social structure, norms and
ontologies into agent organizations. In: Bordini, R.H., Dastani, M., Dix, J., El Fal-
lah Seghrouchni, A. (eds.) PROMAS 2004. LNCS, vol. 3346, pp. 181–198. Springer,
Heidelberg (2005)

22. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.: AMELI: An Agent-based
Middleware for Electronic Institutions. In: AAMAS 2004, pp. 236–243 (2004)

23. DeLoach, S., Oyenan, W., Matson, E.: A capabilities-based model for adaptive
organizations. Auton. Agent Multi-Agent Syst. 16, 13–56 (2008)

A Systemic Approach to the Validation of
Self–Organizing Dynamics within MAS

Jan Sudeikat and Wolfgang Renz

Multimedia Systems Laboratory,
Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

Tel.: +49-40-42875-8304
{sudeikat,wr}@informatik.haw-hamburg.de

Abstract. Conceiving applications as sets of autonomous agents is a
prominent approach to the construction of complex distributed systems.
Particularly attractive are decentralized application designs that enable
adaptive, robust and scalable applications by allowing agents to self–
organize. Tools to the construction of self–organizing MAS, e.g. decen-
tralized coordination strategies, catch increasing attention in MAS
research. However, their purposeful utilization challenges current devel-
opment practices. The intended non–linear macroscopic dynamics hinder
top–down designs on the drawing board and corresponding development
procedures rely on sequences of manual system simulation. In order to
stimulate methodical development and facilitate the validation of com-
plex MAS by simulation, we present a systemic approach to the qual-
itative validation of macroscopic MAS dynamics. Describing MAS as
dynamical systems enables developers to formulate hypotheses on the in-
tended macroscopic MAS behaviors that guide system simulations. We
discuss and exemplify how to (1) derive systemic models as well as hy-
potheses from MAS designs, (2) infer appropriate simulation settings to
their validation and (3) interpret the obtained results. In addition, work
in progress on the automation of both system simulations and their in-
terpretation is outlined.

1 Introduction

Agent–Oriented Software Engineering (AOSE) is a prominent development ap-
proach to the construction of complex distributed software systems. [1]. The uti-
lization of autonomous and pro–active agents as a basic design and development
metaphor is particularly attractive for applications that operate in dynamic en-
vironments. Flexible and scalable application architectures can be conceived, by
1 Jan Sudeikat is doctoral candidate at the Distributed Systems and Information Sys-

tems (VSIS) group, Department of Informatics, Faculty of Mathematics, Informatics
and Natural Sciences, University of Hamburg, Vogt–Kölln–Str. 30, 22527 Hamburg,
Germany, jan.sudeikat@informatik.uni-hamburg.de

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 31–45, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

32 J. Sudeikat and W. Renz

designing applications as Multi–Agent Systems (MAS). The MAS functionality
results from agent interplay. Therefore, the quality of an agent–based application
depends crucially on the effective coordination of agent activities.

A topic that calls increasing attention in MAS research is the development of
self–organizing applications which exhibit system–wide adaptivity, due to the de-
centralized coordination of local, microscopic agent activities [2]. The term self–
organization refers to physical, biological and social phenomena, where global
structures arise from the local interactions of individuals (e.g. particles, cells,
agents, etc.). A number of coordination strategies provide field–tested means
to the establishment of these phenomena by embedding control loops among
agent societies [3,4] (cf. section2). However, development efforts have to solve
the dilemma how to design microscopic agent models and interactions to ensure
the rise of intended globally observable properties. This gap between micro-
scopic agent designs and the rising macroscopic structures hinders traditional,
top–down oriented development processes and demands extensive system simu-
lations in bottom–up procedures that understand development as sequences of
experiments [5]. The comparison of simulation results with the expected macro-
scopic system dynamics is the major mean to ensure that the utilization of de-
centralized coordination strategies leads to the the intended system properties.

Recently, system dynamics modeling approaches have been applied to model
and design self–organizing MAS (cf. section 3.2). These describe the structure
of dynamical systems in terms of macroscopic system state variables and their
causal relations. The transfer of these complex systems modeling techniques to
MAS development facilitates descriptions of the dynamics that are intended by
MAS designs. This approach is particularly attractive to the descriptions of self-
organizing processes, as it highlights the presence of distributed control loops
that steer self–organizing phenomena [3,4].

In order to stimulate methodical development approaches to self–organizing
MAS and facilitate the unavoidable simulation cycles [5], we discuss how to derive
description of the the expected, macroscopic MAS behavior from MAS designs
and how to validate these hypotheses via system simulations. This practical ap-
proach supplements techniques to the validation of MAS (e.g. discussed in [6])
by checking how agent activities are causally related. It particularly addresses
the validation of decentralized coordination strategies by checking that the in-
tended effects on agent societies can be observed. In addition, the automation
of simulations and their interpretation is outlined.

The remainder of this document is structured as follows. The next section
outlines development approaches to self–organizing MAS. A systemic modeling
approach to MAS is then outlined (section 3). The following section (4) discusses
how these modeling notions can be used to describe expectations on macroscopic
MAS dynamics, and how the validity of these expectations can be checked via
(possibly automated) system simulations. These activities are exemplified in a
case study (section 5). At the end, we conclude and give prospects for future
work.

A Systemic Approach to the Validation of Self–Organizing Dynamics 33

2 Building Self-Organizing MAS

A prominent approach to the utilization of self–organizing process in MAS is the
bionic recreation of well–known dynamics. Nature–inspired design metaphors
[7] as well as decentralized coordination mechanisms [8] provide field-tested co-
ordination strategies that can be used to enforce macroscopic self-organizing
phenomena. These result from control loops [3,9] that are distributed among
agents and originate from the interplay of agent / environment interactions and
collective behavior adjustments [4]. Prominent examples are MAS designs that
coordinate via stigmergy [3] or computational fields [10]. Available coordination
mechanisms have been classified and discussed according to their underlying
computational techniques [2], the properties of resulting macroscopic phenom-
ena [11] and their sources of inspiration.

The purposeful application of self-organizing process in MAS requires to [12]:

1. select an appropriate set of coordination mechanisms / metaphors,
2. refine an application design that maps the mechanism structure to the ap-

plication domain,
3. implement the design, and
4. calibrate agent as well as environment parameters to adjust the intended

behavioral regime of the software.

The first two steps are typically guided by heuristics and experience. In [11],
the mechanism selection (1) is approached by associating mechanisms instances
with macroscopic system properties. Mapping coordination mechanisms and de-
sign metaphors to application domains (2) requires their purposeful adjustment
and redesign (e.g. discussed in [12]). In [13], a catalogue of environment medi-
ated design metaphors (from [7]) has been extended with systemic models (cf.
section 3) of the control loops that these pattern establish in MAS. These mod-
els explicitly describe the MAS behaviors that are enabled by the adoption of
coordination strategies and have been applied to guide the design of metaphor
combinations [13].

Simulation-based development procedures have been proposed to guide the
remaining (3/4) development activities. Self-organizing properties elude from
formal microscopic modeling [5]. Therefore, development teams usually revise
prototype implementations to qualitatively evaluate that MAS designs lead to
the intended behavior and to quantitatively tune implementation parameters.
An experimental stance towards application development is composed of the
iterative alternation between engineering and adaptation activities of software
implementations [5]. A corresponding extension to testing activities in the Uni-
fied Process has been proposed that utilizes macroscopic system simulations
[14]. However, the derivation of simulation settings and the interpretation of
simulation results are manual activities. The testability of MAS dynamics, by
specifying macroscopic behaviors and checking these expectations, has not yet
been discussed.

34 J. Sudeikat and W. Renz

3 Modeling Macroscopic MAS Dynamics

A number of organizational modeling approaches (e.g. reviewed in [15]) are avail-
able to MAS developers. The provided concepts and notations typically focus
on static organizational settings, and the need for modeling approaches to the
dynamics of MAS organizations has been recognized (e.g. see [15]).

Particularly, the development of adaptive, self–organizing MAS benefits from
techniques to model the dynamic behavior of MAS. The transfer of concepts and
notations from system dynamics [16] research adresses this challenge.

3.1 System Dynamics

System dynamics research approaches the examination of complex system behav-
iors by macroscopic modeling the causal structure of systems [16]. This system
theoretic framework has been applied to various application domains, particu-
larly in economic settings. The state of a system is described by a set of state
variables. These variables quantify the system state. The mutual influences of
state variables are described as causal relations. These relations connect state
variables and describe how variable values are correlated, i.e. how changes in
state variables effect connected system elements. These influence can be either
positive or negative. An example for system state variables are savings accounts
and interest rates. An interest rate positively influences, i.e. continuously causes
an increase of, a savings account balance. More precisely, positive relations effect
changes in similar directions. I.e. an increase in an originating variable causes an
increase in connected system variables and an decrease in originating variables
causes the decrease of connected variable values. Negative relations respectively
invert effects, i.e. increase causes decrease and vice versa.

A prominent graph–based notation is the Causal Loop Diagram (CLD) [16]. In
CLDs, system variables are denoted by nodes that are connect by arrows which
indicate positive (+) or negative (-) causal relations. Links can form circular
structures. When these are composed of an even number of negative links their
influences add up to a so–called reinforcing (R) feedback loop that amplify
perturbations on the system. An odd number of negative links enforce a balancing
(B) behavior that impose self–correcting behavior, i.e. opposes disturbances.

Figure 1 (I) exemplifies the CLD notation by denoting the structure of the
generic Lotka-Volterra1 model that is commonly found in competitive animal
populations. A population of Prey is constantly accrete by a certain rate (Growth
Rate). The rate of growth depends on the population size, due to the possible
offspring, and these relations form a reinforcing feedback loop. The population
grow infinitely but preys are foraged by a population of Hunters. The number of
hunters is constantly limited by a specific Death Rate that enforces a balancing
feedback loop. Encounters of member of both populations (Encounter Rate) limit
the number of preys (negative link) and increase the number of hunters (positive
link) in the system. The number of encounters (positively) depends on the size

1 http://mathworld.wolfram.com/Lotka-VolterraEquations.html

A Systemic Approach to the Validation of Self–Organizing Dynamics 35

of both populations. This causal structure of four feedback loops is capable to
exhibit an oscillatory behavior. The outlined CLD formalism is attractive for the
description of complex systems, as it highlights the causal structure of systems
and allows to relate these structures to their dynamic behavior. E.g. pattern
of causal structures can be related to behavioral modes, i.e. pattern of timely
behaviors.

Fig. 1. I: An example CLD. II: MAS implementations can be projected into system
dynamics models that describe the causal relations between macroscopic system states

3.2 System Dynamics for MAS

Here, we show how systemic models can describe MAS. Systemic, e.g. CLD–
based, representations of MAS designs / implementations address the explicit
description of the organizational dynamics within MAS. Agent–oriented model-
ing approaches [15] typically refer to roles and groups as abstractions on agent
activity. Roles can be used to describe the normative agent behaviors that indi-
vidual agents can commit to. The group concept allows to describe the forma-
tion of collaborations among individuals that share characteristics (e.g. see [15]).
Both notions are typically applied within AOSE practices to describe the static
semantics of MAS organizations in terms of role/group formations. Associated
models [17] can be supplemented by describing the interactions between roles
with the tailored sequence diagrams of AUML [18,19].

In agreement with mathematical modeling approaches (e.g. [20]), systemic
models describe the macroscopic state of an MAS by the aggregate numbers of
agents that play specific roles, respectively are members of specific groups. The
transition between microscopic and macroscopic modeling levels is denoted in fig-
ure 1 (B). The microscopic agent designs comprise sets of roles / behaviors that

36 J. Sudeikat and W. Renz

agent can adopt, i.e. to execute certain tasks or to join / leave groups. Systemic
models are constructed by by categorizing these local behaviors and projecting
them to macroscopic system state variables (cf. figure 1, ii). Causal links indicate
that specific role/group activities mutually influence the role changing, respec-
tively group joining / leaving activities of other agents. These relations between
state variables can be inferred by examining the detailed designs of role behaviors
and how these interact with other agents, i.e. how agent interactions cause pop-
ulation members to change their allocations.For example, a hypothetical MAS
may comprise agents that produce elements that are consumed by consuming
agents. The detailed microscopic activities to manufacture elements can be cat-
egorized into a general system variable that describes the number of agents that
are occupied with production processes. When consumers are enabled to request
productions directly, their relation to producer agents is characterized by a pos-
itive causal relation, as increases in demand should normally lead to increases
in production and decreases in demand should result in a decrease of requests.
The derivation of systemic MAS models is exemplified in section 5.

This derivation of systemic models requires considerable manual modeling
effort. Envisioning the causal structures of MAS designs allows the identifica-
tion of feedback cycles that steer decentralized coordination of MAS as well
as emergent phenomena. These phenomena may be explicitly intended, or be
introduced unintended (e.g. discussed in [21]). Therefore, development teams
may want to ensure the presence or absence of circular causalities in compli-
cated designs with large numbers of agent types or roles. The here proposed
modeling approach allows to anticipate organizational dynamics within MAS by
identifying the behavioral modes that result from the identified causal relations
and feedback structures. The validation of these anticipations is discussed in
section 4.

Roles and groups are modeling abstractions that are independent of the agent
architecture. Therefore, deliberative, reactive and hybrid agent architectures can
be examined by this abstraction.Both AOSE design models (e.g. [18,19]) and MAS
implementations can serve as microscopic models (figure 1 - B; bottom layer).
E.g. in [22], the derivation of macroscopic system states has been approached by
traversing the goal / sub–goal hierarchies of goal–directed agent designs.

4 Validating Macroscopic MAS Dynamics

When validating the results of system simulations in the testing stages of de-
velopment procedures, e.g. as proposed in [14], one has to distinguish between
parametric, quantitative validations of intended behavioral modes (e.g. the length
of oscillation cycles) and the non–parametric, qualitative assurance that the in-
tended causal relations are indeed exhibited [23]. Quantitative validations – by
reaching agreements between dynamic models and agent–based applications –
demands considerable modeling and parameter tuning effort (e.g. discussed in
[24,25]) and is therefore of academic interest and seldom practiced in engineer-
ing projects. In order to support AOSE practices, we propose the utilization

A Systemic Approach to the Validation of Self–Organizing Dynamics 37

of qualitative validations that can be obtained routinely and allow to confirm
that MAS agree to CLD abstractions, i.e. that the intended causalities manifest
themselves in application simulations. This view–point especially supports the
development of decentral coordinated MAS where examination of the effects of
distributed control loops, that are embedded among agent societies (cf. section
2), is of vital importance.

4.1 Procedure

Systemic modeling notions provide means to anticipate application dynamics at
design time [13]. Developers can use these to express the intended behavior of ap-
plication designs. The here discussed strategy to the validation of MAS dynamics
shows the agreement between systemic descriptions and application by checking
whether the effects of individual causalities are observable in application simu-
lations. The validation strategy (cf. figure 2)2 comprises the (1) identification of
causalities that are expected to the present, due to the coordination of agents
and the selection of crucial influences (expressed as hypotheses) that are to be
checked (Conception), the (2) to preparation of appropriate simulation settings,
their execution and the measurement of system state values (System Simula-
tion) and finally the (3) examination whether causalities manifest themselves
(Analysis).

Fig. 2. Validation Procedure. Hypotheses on the macroscopic observable MAS behavior
are extracted from MAS designs. These are validated by tailoring simulation settings
and analyzing the obtained simulations results.

Conception. Initially, CLDs are derived from MAS designs to describe the
intended application behavior. Developers identify the roles / behaviors that
agents are capable to exhibit. These are classified to system state variables,
i.e. CLD nodes. The causal links between these nodes are derived from the
microscopic agent designs by tracing how external, e.g. environment–mediated
or direct, interactions as well as agent internal reasoning influence the role /
behavior changing characteristics of agents (cf. section 3.2). Then, individual
relations can be selected for empirical validation.

2 The notation follows the Software Process Engineering Meta–Model (SPEM):
http://www.omg.org/technology/documents/formal/spem.htm

38 J. Sudeikat and W. Renz

These relations are formulated as hypotheses on the expected dynamic behav-
ior. Hypotheses follow the conceptual model given in figure 3 (A) and represent
individual causal links and provide the information that are required to auto-
mate the parametrization of simulation settings and sweep parameter ranges
(cf. section 4.2). A set of hypotheses (Hypotheses) is composed of individual
expectations (Hypothesis) that are made up by Dynamic and Parameter Space
components. Parameter Space components define fixed parameters (Parameter)
and parameter ranges (Range) of variables. The Dynamic component defines
the observables (macroscopic system states) which are expected to be causally
linked.

System Simulation. In order to enable meaningful system simulations, that
allow to observe the manifestation of causal relations, the MAS / simulation
models need to be initialized appropriately. Initializations need to provoke that
the distributed, possibly decentralized, coordination strategy triggers and steer
the role / group changing behavior of agents. Two kinds of behavioral regimes
can be distinguished (see [23]) that allow the observation of decentralized coor-
dination. The impact of self–regulatory mechanisms can be observed (1) when
systems respond spontaneously to environmental changes (so–called responsive
regime) and also (2) when systems operate in working regimes, i.e. operations are
continuously steered by the continuous intervention of feedback control mecha-
nisms. Responsive regimes can be established by initializing the system in a way
that the control mechanisms trigger immediately, e.g. by initializing a specific
ratio of role assignments [23]. Then it can be observed how the MAS responds
to the given configuration i.e. reorganizes its organizational structure (cf. figure
3; B). The observation of working regimes requires that the system is subject to
a constant input that enforces continuous system adjustments, for example, by
constantly or periodically reinforcing an environment property or role occupation
(cf. figure 3; B exemplified in section 5.3).

Analysis. Simulations generate time series of state variable values, i.e. the
counts of agents that exhibited specific roles / behaviors at given time points.
The direct observation of causal influences in these measurements is complicated
as the observations are likely to be subjects to perturbations and measurement
noise. Instead, the presence of causal relations manifests itself as stochastic corre-
lations of state variable changes. The mathematical interpretation of the causal
links in the systemic MAS models indicates correlations between the time de-
pendent behavior of system states, i.e. positive links indicate that changes in
system states cause equally directed (delayed) changes in connected states. Neg-
ative causal links respectively indicate changes in opposite direction, i.e. negative
correlations. The measurement of a correlation does not necessarily show causal
influence. Correlation may also be side effects of unrelated influences. However,
when causal relations are steering the behavior adjustments of individual agents,
they are expected to manifest themselves in correlation of state variables. There-
fore, calculating the correlation of system states allows to validate individual
causal links. Equation 1 shows the correlation function, where x and y denote

A Systemic Approach to the Validation of Self–Organizing Dynamics 39

Fig. 3. A: The conceptual model of hypotheses specifications. B: Simulations require
initialization and observation of system states. While appropriate initializations can
provoke responsive regimes, a constant input is necessary to enforce working regime
behavior.

the time series of system state occupations that develop with the time t. The
terms x, y denotes the (arithmetic) average values of x, respectively y.

Cx,y(τ) =
∑

(x(t) − x)(y(t + τ) − y)√
(
∑

x(t)2/n − x2)(
∑

y(t)2/n − y2)
(1)

4.2 Automating Qualitative Validations

The initialization and execution of simulations as well as the mathematical treat-
ment of the obtained data demands considerable manual effort. A prototype
simulation execution environment has been conceived that automates simula-
tions to check the the presence of causal relations by measuring the correlations
of system state variables. An agent–based design3 supports the distribution of
simulation runs and facilitates parameter sweeps [26] by enabling concurrent sim-
ulation runs. Agents manage autonomously the user interaction, the validation
of individual hypotheses and the execution of simulations.

The conceptual architecture is given in figure 4. Users examine MAS designs
(cf. section 3.2) and provide the derived hypotheses (in XML language; according
to the meta–model denoted in figure 3, A) as well as simulation models. User
agents interact with the user, examine the provided hypotheses and delegate the
validation of individual hypotheses to so–called analysis agents. These exam-
ine the correlations of monitored system state variables (cf. equation 1). These

3 realized within the Jadex agent system (http://vsis-www.informatik.uni-
hamburg.de/projects/jadex/)

40 J. Sudeikat and W. Renz

agents use a Numerical Computing Environment4 for the sake of efficiency. The
specification of the hypotheses includes the parameter ranges that are to be
examined. Therefore, analysis agents require data from parameter sweeps. The
required simulation results are fetched from a Networked Data Storage that is
used to save measurements. Measurements can be retrieved by their simulation
parameter values. When simulation settings, i.e. specific parameter configura-
tions, have not yet been examined, analysis agents request the required simu-
lations from so–called simulator agents. These encapsulate the capabilities and
computational resources for simulation execution. Simulators provide means to
the deployment, initialization, parametrization and measurement of simulation
environments and MAS prototype implementations. Simulation agents store the
obtained results in the networked database for later use. Finally, the correlations
of the observed state variable time series are presented to the user.

Fig. 4. A conceptual testbed architecture. Description see text.

5 Case Study: Intrusion Detection Dynamics

The application of the described validation approach (cf. section 4) is exemplified
by the validation of a simplified intrusion detection system that follows the
model given in [23]. We describe the application design and the derivation of a
corresponding systemic model. A hypothesis is derived and validated by showing
that the system simulation exhibits the correlations that are indicated by the
systemic model.

5.1 A Simplified Intrusion Detection System

The conceptual design of the immune system inspired intrusion detection sys-
tem (e.g. as discussed in [27]) is given in figure 5 (i). A Proemetheus [28] Sys-
tem Overview Diagram5 denotes three agent types. A network of hosts is to be
4 e.g. using Scilab (http.://www.scilab.org) via the the so–called javasci interface.
5 created with the Prometheus Design Tool (PDT): http://www.cs.rmit.edu.au/

agents/pdt/

A Systemic Approach to the Validation of Self–Organizing Dynamics 41

protected from malicious intruder agents that manifest themselves by execut-
ing Malicious Activities. These activities are perceived (Perceive Intruder) by
so–called Searcher agents that wander the network and inspect hosts. When in-
fections are identified, these agents communicate (Notification) the presence of
Intruder agents to Remover agents that are capable of disposing Intruders (Re-
moval activity). Notifications are expected to be distributed via computational
pheromones [3], i.e. the network is resembled by a virtual, spatial environment
where patches represent hosts. Searchers release markers on patches to indicate
the presence of intruders. These markers evaporate and diffuse [3]. Due to the
diffusing markers, Removers get notified of infections. Upon removal (removed)
Intruder agents stop functioning. A detailed discussion of the simulation setting
and implementation can be found in [23].

Fig. 5. The simplified intrusion detection model, following [23]. A Prometheus System
Overview Diagram(i) and the description (CLD) of the macroscopic behavior (ii).

The here proposed validation of macroscopic MAS causalities is based on
statistics, i.e. the measurement of time series correlation (cf. section 4.1). In
order to demonstrate the practicability of the procedure and tool support, the
here presented examination addresses the validation of simulations with high
stochastic noise. Following the direction of [29] we use stochastic process algebra
(SPA) models to resemble the given MAS as a set of independently executing
processes that communicate information via synchronous channels.6 The uti-
lized SPA model (in stochastic π-calculus; see [30] for a detailed presentation
and application examples) denotes the activities of agent types as algebraic for-
mulated processes. The duration of agent activities is resembled by exponential
distributed delays, and channel–based communication are controlled by expo-
nential distributed channel interaction rates [31] that resemble environmental
influences on agent activity execution, e.g. the diffusion of pheromones. The
simulation results resemble the described MAS operation, but generate fluctu-
ating measurements of agent operations.

6 utilizing the stochastic π-calculus algebra and the freely available SPiM simulation
engine: http://research.microsoft.com/∼aphillip/spim/

42 J. Sudeikat and W. Renz

5.2 Conception

Intruder, Searcher and Remover agents are classified into two roles. They are
either active or inactive. Intruders are active by default and get deactivated by
their removal from the system. Searchers wander the environment by default and
get activated by the identification of infections. Upon activation, they start to
release digital pheromones to notify removers. Remover agents are by default in-
active and get activated by perceiving the presence of intruders, i.e. pheromones.
After successful removal, Searchers and Removers are deactivated and continue
with their default behaviors. Figure 5 (ii) shows a CLD that represents the ex-
pected causalities between agent activities. The nodes represent the numbers of
activated agent types. When the searching algorithm and detection mechanism
of searcher agent functions effectively, the presence of intruder agents will be
noticed and therefore, causes the activation of Searchers. Therefore, both agent
types are positively–liked (detected by), i.e. an increase of intruders in the system
is expected to cause an increase in the amount of activated Searchers. When the
amount of Intruders is decreasing, more Searchers should be occupied with their
(default) searching role, thus the number of activated Searchers should decrease.
The utilized mechanisms for the notification of Removers ensures the positive
link between activated Searchers and Removers (recruit). The distribution of
pheromones leads to the activation of Remover agents. Since the pheromones
evaporate, the activation of removers is decaying as soon as the reinforcement
of pheromones (by activated Searchers) stops. Removers are negatively linked
to intruders since the activation of Removers leads to the removal of Intruders,
i.e. The number of Intruders is lowered by the activation of Removers. For the
sake of brevity, only the validation of the positive causal link between intruders
and searchers (cf. figure 5, ii - bold arrow: detected by) is demonstrated. While
this influence is build–in the simulation model (detection channel), the direct
observation of this relation is in the generated time series complicated by the
stochastics of process execution. A corresponding hypotheses has been defined
to guide the automation of simulation runs (cf. section 4.2).

5.3 Simulation

In order to validate that intruders are reliably detected and are therefore marked
for removal, a working regime (cf. section 4.1) is established in the simulation
model. An external source of intruders has been added that generates a constant
reinforcement of intruders (cf. figure 5, ii). After initialization with 100 intruders,
50 searchers and 25 removers, the system reaches detection rate–dependent,
equilibrated agent densities that exhibit stationary correlations.

5.4 Analysis

Figure 6 (i–iii) show the simulation results. The numbers of activated Intruders
and Searchers have been measured and their correlations has been computed
(cf. equation 1) for successive simulation runs. The simulation environment (cf.
section 4.2) allows to automate the required simulations / computations and

A Systemic Approach to the Validation of Self–Organizing Dynamics 43

facilitates the examination of the systematic behavior, i.e. rate–dependence, of
the observed correlation. The correlation maxima indicate the expected causal
dependence. The causality is associated with a time delay that is quantified
for different detection rates. The figure (ii) shows a master plot of the cross–
correlation functions for different channel interaction rates (ranging from 0.4
to 40) that were shifted in time and amplitude. The time shift that allows to
normalize the correlation maxima to one is described by a logarithmic fit (iii),
while the corresponding shifts of the correlation amplitudes (iv) are described
by an algebraic fit.

Fig. 6. Simulation results of the simplified IDS dynamics: (i) The cross–correlation
between intruders and searchers exhibits rate dependent maxima at finite correlation
times. (ii) The time shifts are given by the rate–dependent correlation times. (iii) The
amplitude shifts are given by the rate–dependent correlation maxima.

6 Conclusions

In this paper, the utilization of system dynamics modeling notions for the val-
idation of MAS has been proposed. These models facilitate the description the
intended macroscopic MAS behaviors. We showed how to systematically validate
the agreement between MAS implementations / simulation models and systemic
MAS models. Agreements between systemic expectations and empiric system
observations indicate the proper use of MAS coordination strategies.

Future work will examine analytic and constructive usages of dynamic MAS
models to supplement MAS development practices. Work in progress also com-
prises the automation and interpretation of MAS simulations by a MAS–based
simulation execution environment. Besides, the automation of quantitative val-
idations and parameter tuning efforts is a topic of future work.

Acknowledgments

One of us (J.S.) would like to thank the Distributed Systems and Information Sys-
tems (VSIS) groupatHamburgUniversity,particularlyWinfriedLamersdorf, Lars
Braubach and Alexander Pokahr for inspiring discussion and encouragement.

44 J. Sudeikat and W. Renz

References

1. Jennings, N.R.: Building complex, distributed systems: the case for an agent-based
approach. Comms. of the ACM 44(4), 35–41 (2001)

2. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self–organisation and emer-
gence in mas: An overview. Informatica 30, 45–54 (2006)

3. Parunak, H.V.D., Brueckner, S.: Engineering swarming systems. In: Methodolo-
gies and Software Engineering for Agent Systems, pp. 341–376. Kluwer, Dordrecht
(2004)

4. Sudeikat, J., Renz, W.: Building Complex Adaptive Systems: On Engineering Self–
Organizing Multi–Agent Systems. In: Applications of Complex Adaptive Systems,
pp. 229–256. IGI Global (2008)

5. Edmonds, B.: Using the experimental method to produce reliable self-organised
systems. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal,
R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 84–99. Springer, Heidelberg
(2005)

6. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of
bdi agents. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
PROMAS 2006. LNCS (LNAI), vol. 4411, pp. 185–200. Springer, Heidelberg (2007)

7. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. J. Syst. Archit. 52(8), 443–460 (2006)

8. DeWolf, T., Holvoet, T.: Decentralised coordination mechanisms as design patterns
for self-organising emergent applications. In: Proceedings of the Fourth Interna-
tional Workshop on Engineering Self-Organising Applications, pp. 40–61 (2006)

9. DeWolf, T., Holvoet, T.: Using uml 2 activity diagrams to design information
flows and feedback-loops in self-organising emergent systems. In: Proceedings of
the Second International Workshop on Engineering Emergence in Decentralised
Autonomic Systems, EEDAS 2007 (2007)

10. Mamei, M., Zambonelli, F., Leonardi, L.: Co–fields: A physically inspired approach
to motion coordination. IEEE Pervasive Computing 03(2), 52–61 (2004)

11. DeWolf, T., Holvoet, T.: A taxonomy for self-* properties in decentralised auto-
nomic computing. In: Autonomic Computing: Concepts, Infrastructure, and Ap-
plications (2006)

12. Sudeikat, J., Renz, W.: On the redesign of self–organizing multi–agent systems.
International Transactions on Systems Science and Applications 2(1), 81–89 (2006)

13. Sudeikat, J., Renz, W.: Toward systemic mas development: Enforcing decentralized
self–organization by composition and refinement of archetype dynamics. In: Weyns,
D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS, vol. 5049, pp.
39–57. Springer, Heidelberg (2008)

14. DeWolf, T., Holvoet, T.: Towards a methodolgy for engineering self-organising
emergent systems. In: Proceedings of the International Conference on Self-
Organization and Adaptation of Multi-agent and Grid Systems (2005)

15. Mao, X., Yu, E.: Organizational and social concepts in agent oriented software
engineering. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 1–15. Springer, Heidelberg (2005)

16. Sterman, J.D.: Business Dynamics - Systems Thinking an Modeling for a Complex
World. McGraw-Hill, New York (2000)

17. Odell, J.J., Parunak, H.V.D., Brueckner, S., Sauter, J.: Temporal aspects of dy-
namic role assignment. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003.
LNCS, vol. 2935, pp. 201–213. Springer, Heidelberg (2004)

A Systemic Approach to the Validation of Self–Organizing Dynamics 45

18. Odell, J., Parunak, H.V.D., Bauer, B.: Extending uml for agents. In: Proceedings of
the Agent-Oriented Information Systems Workshop at the 17th National conference
on Artificial Intelligence (2000)

19. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

20. Lerman, K., Galstyan, A.: Automatically modeling group behavior of simple agents.
In: Agent Modeling Workshop, AAMAS 2004 (2004)

21. Mogul, J.C.: Emergent (mis)behavior vs. complex software systems. Technical Re-
port HPL-2006-2, HP Laboratories Palo Alto (2005)

22. Sudeikat, J., Renz, W.: Monitoring group behavior in goal–directed agents using
co–efficient plan observation. In: Padgham, L., Zambonelli, F. (eds.) AOSE VII /
AOSE 2006. LNCS, vol. 4405, pp. 174–189. Springer, Heidelberg (2007)

23. Sudeikat, J., Renz, W.: On expressing and validating requirements for the adap-
tivity of self–organizing multi–agent systems. System and Information Sciences
Notes 2(1), 14–19 (2007)

24. Axtell, R., Axelrod, R., Epstein, J.M., Cohen, M.D.: Aligning simulation models: A
case study and results. Computational & Mathematical Organization Theory 1(2),
123–141 (1996)

25. Wilson, W.: Resolving discrepancies between deterministic population models and
individual–based simulations. The American Naturalist 151, 116–134 (1998)

26. Brueckner, S.A., Parunak, H.V.D.: Resource-aware exploration of the emergent
dynamics of simulated systems. In: AAMAS 2003: Proceedings of the second in-
ternational joint conference on Autonomous agents and multiagent systems, pp.
781–788. ACM Press, New York (2003)

27. Liu, J., Tsui, K.: Toward nature-inspired computing. Commun. ACM 49(10), 59–64
(2006)

28. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley and Sons, Chichester (2004)

29. Gardelli, L., Viroli, M., Omicini, A.: On the role of simulations in engineering self-
organising mas: The case of an intrusion detection system in tucson. In: Brueckner,
S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS
(LNAI), vol. 3910, pp. 153–166. Springer, Heidelberg (2006)

30. Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic
dynamics of gene networks. In: Priami, C., Cardelli, L., Emmott, S. (eds.) Transac-
tions on Computational Systems Biology IV. LNCS (LNBI), vol. 3939, pp. 99–122.
Springer, Heidelberg (2006)

31. Priami, C.: Stochastic π–calculus. Computer Journal 6, 578–589 (1995)

Using and Extending the SPEM Specifications
to Represent Agent Oriented Methodologies

Valeria Seidita1, Massimo Cossentino2, and Salvatore Gaglio1,2

1 Dipartimento di Ingegneria Informatica, University of Palermo,
Palermo, Italy

{seidita,gaglio}@dinfo.unipa.it
2 Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche

Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. Situational Method Engineering used for constructing ad-
hoc agent oriented design processes is grounded on a well defined set of
phases that are principally based on reuse of components coming from
existing agent design processes; these components have to be stored in a
repository. The identification and extraction of these components could
take large advantages from the existence of a standardized representation
of the design processes they come from. In this paper we illustrate our
solution based on SPEM 2.0 specifications for modelling agent design
processes and extending them when necessary to meet the specific needs
we faced in our experiments.

1 Introduction

Our research is focussed on the field of Situational Method Engineering (SME)
[2][8][9][10] for the construction of ad-hoc multi agent systems design processes.
Applying Situational Method Engineering requires executing a well defined set
of phases [6][7][17]: Process Requirements Specification, Process Fragments Se-
lection and Process Fragments Assembly.

SME is based on the reuse of components coming from existing design pro-
cesses, the so called method fragments or simply fragments; the request for
reusable fragments leads to the need for a repository containing standardized
fragments that could be easily selected and assembled in new design processes
(i.e. methodology; this term is commonly used in the agent community and in
the SME one, for avoiding confusion in this work we consider it as a synonymous
of design process or process).

Since the repository is composed of fragments coming from existing design
processes, its construction cannot be done without considering: the knowledge
of a set of existing processes, their standard description through a standard
notation and a precise definition of the fragment notion and of the process itself.

We decided to use SPEM (Software Process Engineering Metamodel) 2.0 [11],
both for design process and fragments representation; it is an OMG standard
and it is based on a metamodel containing three main elements: activity, work

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 46–59, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using and Extending the SPEM Specifications 47

product and process role. We found the use of SPEM very promising and suitable
for our purposes; in our previous works [5][16] we identified and defined the main
elements a design process and a fragment are composed of, these elements can
be easily represented using the SPEM metamodel main elements.

Besides, in the agent oriented context, according to our view, a process is de-
voted to design a MAS model whose elements are represented in the work prod-
ucts resulting from the enactment of a specific activity. A MAS model element is
an instance of a MAS metamodel element; the MAS metamodel represents the
structure of the system that is being built with the specific design process.

The key point of our approach consists in using an ontological metamodel
providing the right semantics to the element of the domain we are dealing with
[3][15] (this metamodel will for instance make use of relationships that are typical
of the ones used in ontologies). The MAS metamodel is one of the most important
factors of our approach, as it is not present in the SPEM specifications we decided
to extend these specification.

In this paper we present how we use SPEM, its elements and diagrams, for
representing a design process and how we extended it by adding elements and
diagrams to SPEM specification, in order to meet our needs.

The paper is structured as follows: in section 2 an overview on the Situational
Method Engineering approach for creating new agent oriented design processes
is given; in section 3 the main SPEM elements we use are illustrated, the needed
extensions are justified and motivated and an example on applying SPEM is
provided; finally in section 6 some conclusions are drawn.

2 The Formal Description of a Design Process

The construction of a new design process following Situational Method Engi-
neering principles is based on three main phases [6][13]: Method Requirements
Engineering, Method Design and Method Construction.

Our approach for applying SME in the agent oriented context is based on
these three phases too but it is specialized for the agent context, as shown in
Figure 1; here we sketch the whole process a method designer has to carry out
in order to construct a new agent oriented design process.

The first step a method designer must undertake is to create a repository of
fragments starting from those extracted from a set of existing design processes
and/or constructing new ones from scratch. For this aim he needs the set of
existing design processed to be well defined, in a standardized fashion, in order to
easily and quickly identify the portions of process devoted to become fragments.

During the Process Requirements Analysis activity, the method designer con-
siders inputs coming from the development context (tools, languages, available
skills, etc.) and the type of problem he has to solve. These inputs are used to
define the process life cycle (that establishes the structure the designer has to
follow during process fragments assembly activity), the MAS metamodel con-
cepts and the other process elements (available stakeholders, required activities
or work products) that are used for selecting fragments from the repository.

48 V. Seidita, M. Cossentino, and S. Gaglio

Fig. 1. Our Approach for Creating an Agent Design Process

It is worth noting the fundamental difference between the MAS metamodel
that will be instantiated in the actual agent system during design and the process
(or method fragment) metamodel that will be used to define the design process.

The output of the process requirements analysis contributes to the selection of
process fragments and to their assembly; once the process is created, it can be en-
acted and then evaluated for eventually iterating the whole construction process.

In this work we want to point out our attention to the fragments repository
construction, for which we need two elements: a set of existing design processes
used for extracting fragments to be stored and a specific definition of design
process. A specific definition of fragment is also needed for enabling the method
engineer to correctly describe the existing design processes.

As regards the definition of design process and fragment we consider a design
process as the set of activities to be performed in order to produce an output, the
way of performing some activities (guidelines or techniques), and the resources
and constraints this requires. In [5] we gave a definition of multi-agent system
design process and of fragment (we call it process fragment). In Figure 2 we
show the main elements we use for describing the agent design processes; these
elements are the base for the design process fragmentation.

A design process is composed of activities, each activity is performed by a
process role that is responsible for one or more work products that are struc-
tured by a work product kind representing a specific category, for instance, text
document, code and so on.

A design process is devoted to design a MAS Model that is composed of MAS
model elements each of which can be represented in one or more work products; a
MAS model element is an instance of a MAS metamodel element so in each work
product there is a correspondence with one or more MAS metamodel elements.

A process can be decomposed into (process) fragments that are self-contained
pieces of the whole process, with all the elements characterizing the process

Using and Extending the SPEM Specifications 49

Fig. 2. The Agent Oriented Design Process Definition

itself (activity, process role, work product and MAS metamodel element) and
that instantiate one or more MAS metamodel elements described in the work
product(s) resulting for the fragment itself.

In our approach we assume that each fragment has to deliver at least one work
product, thus, basing on this hypothesis and on the proposed fragment defini-
tion, we can say that our fragment extraction activity is work product driven.

Starting from the aforementioned definition of design process we decided to
follow a top-down approach for a clear description and an easy retrieval of the
main elements of a process: starting from highest level activities, we decom-
posed them (and the corresponding fragment) down to the atomic steps that
compose the work to be done; at each level of detail, we report the produced
work products (with their work product kind) and the specific process role that
perform/assist the work and above all the description of the MMM element that
is defined/refined/quoted in each work product.

Because of our formalization needs we decided to adopt SPEM 2.0 (Software
Process Engineering Metamodel) Specification; it is based on the idea that ”a
software development process is a collaboration between abstract entity called pro-
cess role that performs operations called activities on tangible entities called work
products” [11]. This well defined conceptual model allows to represent every kind
of process lifecycle (iterative, incremental, waterfall and so on), SPEM in fact is
composed of a breakdown structure allowing to represent all design processes.

In the next section we will describe which elements and diagrams we use of
this specification and for each of them we will illustrate the related definition
(from [11]).

3 Using SPEM for Representing Agent Oriented Design
Process

Software Process Engineering Metamodel (SPEM) [11] is a meta-modelling lan-
guage used for the description of development design processes and their
components.

50 V. Seidita, M. Cossentino, and S. Gaglio

The SPEM 2.0 presents a metamodel structured in seven main packages; only
three of them will be illustrated in this paper in order to justify their specific
use for our purposes, they are Process Structure, Method Content and Process
With Method Packages:

– The Method Content package contains all the elements for creating a set of
reusable methods, its aim is to illustrate which are the goals that a method
has to reach, which resources are used and which roles are involved.

– The Process Package is composed of the main elements formodelling a process:
Activities, nested in a breakdown structure where the performing Role classes
and the input and output Work Product classes for each activity are listed.

These elements are used to represent a high-level process that when instanti-
ated on a specific project takes the method content elements and relates them
into partially-ordered sequences that are customized to specific types of projects.

For our purposes and at a first level of abstraction, a process, through the
Process Package elements, can be represented in its general structure without any
reference to a specific project and without detailing the inner content description
of each activity.

It is worth to note that in SPEM 2.0 the concepts of ”Method” and ”Process”
have a specific meaning that allows their use respectively for representing and
modelling the fragment and the design process.

SPEM 2.0 presents two levels for process representation: Method is considered
at an higher abstraction level, where there is no reference to a specific project
(and above all it is considered as an auto consistent portion of process) whereas
a Process is the concrete representation of a specific development situation.

For all these reasons we found SPEM 2.0 suitable both for our top-down
decomposition/representation of a design process and for the representation of
each fragment. We can use the Method Content Package elements to represent a
(process) fragment and the Process With Method Package elements to represent
an existing design process; note that a development process, in our approach, is
composed of process fragments (see section 2).

Finally in the Process with Method Package the central element is the Break-
downElement; in SPEM 2.0 processes are represented with a breakdown struc-
ture of Activities that nest BreakDown Elements; they are generalization of any
type of Process Element such as other Activity instances, Task Uses and Role
Uses. Therefore Activity represents a basic unit of work within a Process as well
as a Process itself.

Role Uses represent the performer of a Task Uses and defines a set of related
skills, competencies and responsibilities of a set of individuals and Task Uses
define the unit of work that is performed by Roles; a Task Use has a clear
purpose in which the performing roles achieve a well defined goal. Work Product
Uses are the artifacts, produced, consumed or modified by Task Uses1; Roles
use Work Products to perform Tasks and produce Work Products in the course
of performing Tasks.
1 From now on, for the sake of brevity, Task and Task Use, Role and Role Use, Work

Product and Work Product Use will be indifferently used, with the same meaning.

Using and Extending the SPEM Specifications 51

Fig. 3. The Proposed Extension to Process With Method Package Metamodel

The Process With Method Package contains the same elements of the process
metamodel we presented in section 2, the Activity can be related/mapped to
Task Use, The Process Role to Role Use and obviously the Work Product to Work
Product Use. These elements together with the rationale of the work breakdown
structure are sufficient enough for describing a complete design process for our
purposes following a top-down approach, from the higher level definition of the
work to be done until the details of each task with the roles performing it and
the artifacts produced.

SPEM provides other two useful elements for grouping a set of activities un-
der a common application theme, they are the Process Componentcontaining
one Process represented by an Activity and a set of Work Product Ports that
define the inputs and outputs for the Process Component, and the Phase that
represents a significant period in a project, with milestone or set of Deliverables.

With all the discussed elements a whole process can be divided into process
components that groups the activities under a common theme, set of activities
are also grouped into phases that impose specific milestones to the work to be
done. Techniques, methods and guidelines for each activity are given for tasks
that are performed by roles and consumes/produces (has input/output) work
products.

4 Extending SPEM Specifications

In the previous section we saw which elements of SPEM metamodel packages we
use for our purposes of providing a standard representation for agent oriented
design processes. In this section we illustrate the motivation that led us to extend
SPEM.

52 V. Seidita, M. Cossentino, and S. Gaglio

We had to deal with three specific factors that had a direct consequence in
the extension of SPEM specifications: the MAS Metamodel element and the
Work Product Kind that are elements of our process metamodel not provided
by SPEM Packages and the existing dependencies among work products.

Regarding the MAS metamodel element, its definition is the core of the work
done in each portion of process resulting in the delivery of a work product;
as section 2 illustrates, using a specific design process for developing an agent
system means to instantiate its metamodel, this instantiation results in a precise
set of actions that we identified to be done on each MMM element; a designer
can in fact

– define an element (i.e. instantiate it) thus establishing its properties and/or
attributes; the resulting instantiated element is, of course, reported in the
work product produced by the fragment the designer is executing

– similarly, the designer can relate a MMM element to other elements or
– simply quote it for introducing relationships among work products.

SPEM 2.0 does not provide means for representing actions to be made, in
each activity, on the MMM elements.

Fig. 4. The Proposed Icons

An important factor in the process representation is also modelling work prod-
ucts dependencies; SPEM specifications provide a way for modelling dependen-
cies through the so called Work Product Dependency Diagram.

The Work Product Dependency diagram supplies way for representing three
kinds of dependency relationships among work products: Composition, Aggrega-
tion and Dependency. The first expresses that a work product is a part of another
one, the second indicates that a work product uses another work product and
finally the third indicates that a work product depends on another one.

Using and Extending the SPEM Specifications 53

In our case a well specific dependency among a work product and another
exists, it is due to the relationships among elements in the MAS metamodel;
for instance let us consider an hypothetical requirement elicitation phase of a
given process, we could think that this portion of process is represented by a
metamodel where the concept of actor is related to that of scenario. Now, let
us further suppose that the designer performing this phase begins his work by
defining the concept of actor and produces a document listing all the actors he
has identified. When the designer has to define the concept of scenario, because
it is related to the concept of actor, he has to look at the last document he
created, he cannot proceed without knowing all the defined actors; in so doing
all the relationships among metamodel elements are reflected upon a precise
dependency among the work products that act upon them.

In order to represent such situations, we need a diagram reporting both the
dependencies among work products (and this is provided by SPEM) and the
correspondence between each work product and the MMM elements, this second
point led us to the creation of a specific diagram.

The SPEM Work Product Kind allows to represent a work product when it:
i) is an intangible one or it is not formally defined (in this case it is of the kind:
Outcome), ii) it aggregates other work products (the kind is Deliverable) and
iii) it defines a tangible work product consumed, produced or modified by a task
(the kind is Artifact).

In our work we defined five kind of work products [16] as a result of our need
for adequately storing process fragments in our repository; the defined kinds on
work products are:

1. Behavioural, it is a graphical kind of work product and is used to represent
the dynamic aspect of the system (for instance a sequence diagram repre-
senting the flow of messages among agents along time);

2. Structural, it is also a graphical kind of work product and is used for repre-
senting the static aspect of the system, for instance a UML class diagram;

3. Structured, it is a text document ruled by a particular template or grammar,
for instance a table or a code document;

4. Free, it a document freely written in natural language.
5. Composite, this work product can be made by composing the previous work

product kinds, for instance a diagram with a portion of text used for its
description.

These definitions together with that proposed by SPEM allow us to consider
the work product kind we use as a specialization of the SPEM Artifact Work
Product Kind (Figure 3).

Therefore for applying our design process definition we made some specific
extensions to the Process With Method Package by adding some elements; in
Figure 3 we show the portion of Process With Method metamodel that we ex-
tended; the white elements are all the pre-existing SPEM ones whereas the gray
elements are newly introduced one.

To sum up, we added five elements and for each of them the related icon
was created (see Figure 4); the relationship between Work Product Use and

54 V. Seidita, M. Cossentino, and S. Gaglio

Fig. 5. The Correspondence among Work Product and MMM elements

MMMElement found its realization in a new diagram that represents the cor-
respondence between each work product and the MMM elements it defines/
relates/quotes.

Figure 5 shows the kind of diagram we created in order to represent depen-
dencies amog Work Product through MMM elements and shows the artefact
produced during the PASSI Agent Society phase; it is composed of work prod-
ucts of three kinds (structural, behavioural, structured) and for each of them
all the MMM elements they work on are shown, the letter indicates the specific
action that is made on the MMM element: D stands for Define, R for Relate
and Q for Quote.

Referring to the Agent Society phase that one of the Process Component
elements of the PASSI process, as it will be seen in the next section, using
the presented kind pf diagram we can see that it results in the Agent Society
model, modelled through a Work Product Use composed by two structural work
products, two behavioral ones and one structured.

One of the greatest advantages of using the diagram shown in Figure 5 is to
have a complete vision on all the metamodel elements that are defined/related/

Using and Extending the SPEM Specifications 55

Fig. 6. The PASSI Process Component Diagram

q-uoted in each work product delivered from each process activity. Mind that
the proposed SPEM representation aims at identifying reusable fragments from
existing design processes and that in our approach each process fragment is
devoted to instantiate (hence define) at least one MMM element. Such a view
on the existing dependencies among MMM elements and work products allows
us to quickly identify the possible fragments (how the fragments extraction is
carried out is not the focus and is not detailed in this paper).

5 Representing PASSI with SPEM 2.0

Our representation of a design process follows a well specific method, it is carried
out in a top-down fashion in order to reach the right level of granularity allowing
the extraction of process fragments.

Therefore a process is represented, in a first time, as a package of components
through the Process Component Diagram that allows to represent all the portions
of a design process with the needed input and output, this diagram models the
design process at a high level of detail.

In Figure 6 it can be seen, for instance, the Process Component Diagram
related to PASSI [4], it is composed of five components, each of them representing
a phase, a portion of work for which a specific outcome and milestones can be
identified and represented in this diagram.

The second step is to detail the work done in each component through a
SPEM Activity Diagram, Figure 7 shows all the activities nested in the Agent
Society component, the activities sequence is indicated through the «predeces-
sor»stereotype (the pointed activity is the predecessor of the other one). Each
activity is composed of tasks, roles performing the task and input/output work
products, no tasks sequencing is necessary at this step, it is only useful to give
the idea of the set of elements an activity is composed of (in the figure only the
Role Description activity is shown for space reasons).

56 V. Seidita, M. Cossentino, and S. Gaglio

Fig. 7. The PASSI Process Activity Diagram

When complete, this diagram is full of information that could be accompanied
by definition, explanation and so on, but it can result too huge, in alternative
another diagram can be produced where only activity and input/output work
products are shown.

This level of detail is sufficient in order to identify all the process fragments
that can be extracted from a design process.

For a detailed documentation of the whole design process other diagrams have
to be produced; these diagrams allow to model and document all the techniques,
the methods and the guidelines involved in each task, i.e. the dynamic part of each
portion of process, for space reasons we do not specify this part in this paper.

As already said, our process fragment extraction is work product-oriented [5],
in the sense that we look at a work product and extract from the whole process
only the portion of work delivering the selected work product.

For instance looking at the Role Description we can see that there are two
outputs, Services and Role Descritpion diagram; then from Figure 5 (this is
the final digram we draw when we model a design process) we can identify the
MMM elements these work products act on and so we could decide to extract
a fragment dealing with the concept of role and delivering the Role Description
diagram and/or one dealing with the concept of service; of course it is also
possible to identify a fragment delivering both the work products.

The novelty of the presented work is principally the possibility of easily re-
trieving a set of reusable fragments starting from the representation in a standard
way of available design processes and then, once the fragments are identified and
extracted, they can be documented in a similar standard way.

In our approach, in order to represent fragments, we also need elements such
as activities, roles, work product and MMM elements and the way we indicate
to use SPEM 2.0 specification and our extension will serve this scope.

Using and Extending the SPEM Specifications 57

Fig. 8. The ”Roles Description” Fragment Description

Besides it is important to note that the standard representation of the frag-
ments allows, during the application of the whole SME process for creating agent
design processes, an easy and quick selection from the repository for the assembly
phase [16].

In [5] we illustrated how to document a fragment, here we give a brief hint
on it, let us suppose to start from the representation of PASSI (see the previous
subsection) and suppose that from the diagrams reported in Figures 5 and 7
we had identified the MMM element we want to be designed in the fragment,
the related work product and then the portion of work to be done to have this
result. What we have to do now is to model/represent this portion of work with
its resulting product; in Figure 8 a SPEM workflow diagram is shown, here we
can see the flow of work the specific role has to perform in order to produce
the ”Role Description” diagram and all the inputs (obviously coming form other
fragments) needed.

This latter diagram introduces a deeper level of detail with respect to the
diagram shown in Figure 7, in fact it details the sequence of activity; it is helpful
for the fragment documentation.

6 Discussions and Conclusions

The approach we use for adapting Situational Method Engineering to agent
oriented design processes construction is composed of three phases, as it is in
other approaches in literature [6][12]; in this paper we mainly consider the part
regarding the (process) fragments documentation in a form that encourages the
fragment extraction from an existing process and the repository construction.

We started this work from a set of existing design processes that we repre-
sented and fragmented in a standard fashion in order to extract a set of fragments
coherent with the definition we gave.

The first problem we faced was to find a way for representing a design process
coherently with the process metamodel we consider in our approach (activity,
process role, work product and MAS metamodel element); we decided to follow

58 V. Seidita, M. Cossentino, and S. Gaglio

a top-down approach for the design process representation using and extending,
when necessary, the SPEM 2.0 specifications.

We decided on SPEM .0 and we think it is well suited to our purposes because
it is an OMG standard, in our work we always had great attention for the
standards, and above all because of the conceptual metamodel it is based on.
The main elements we find in SPEM metamodel are: activity, process role and
work product; due to their definition these elements well fit our definition of
agent design process elements we gave in [5].

The breakdown structure, SPEM is composed of, let us to represent PASSI
only using three kinds of diagrams; one of them is the extension we made on the
work product dependency diagram provided by SPEM. This extension together
with the other two ones we made was due to our concerns about MAS metamodel,
whose elements cannot be represented used SPEM packages elements, and for
representing the kind of work product we use in our work for categorize the
fragments in the repository [16].

All the approaches present in literature draw on a more or less huge or for-
malized and structured repository of fragments and each researcher in the field
of SME takes care of populating it by extracting fragments from existing design
processes [1][7][13][14].

However guidelines on how to do that are still lacking; only in [12] a complete
work on that can be found. There Ralyté proposes an approach based on the
decomposition of existing processes into smaller components aiming at satisfying
specific goals, but it seems that this approach is to bound to the rigidity of
existing design processes (not originally created to be modular, as the same
author says) and to the quality of the model provided for the process and the
product parts of the design process.

Our approach is also based on the concept of decomposition but it tries to
overcome these problems by firstly adopting a way for representing in the proper
fashion a design process and then extracting from them fragments.

In the past we used SPEM 1.1 in our work and we modelled several agent
design processes, we found several difficulties that are now over with SPEM
2.0; one of the greatest advantages we found in using SPEM with the proposed
extension is that it is possible to represent a whole design process only through
three diagrams from which all the essential information for fragmentation can
be easily and quickly gathered.

Our research is principally focussed, and this was the starting point, on the
application of Situational Method Engineering for the construction of ad-hoc
agent oriented design processes but while working we realized that, due to the
use of metamodel, to the elements we identified for a design process definition
and to the use of SPEM for representing them, our approach results general
enough to be applied to every kind of design process construction.

In the future we are going to experiment and to test SPEM 2.0 for other
processes and to formalize a set of guidelines for correctly model an agent de-
sign process for the scopes of Situational Method Engineering applied to every
application contexts and research fields.

Using and Extending the SPEM Specifications 59

References

1. Henderson-Sellers, B., Serour, M., McBride, T., Gonzalez-Perez, C., Dagher, L.:
Process construction and customization. j-jucs 10(4), 326–358 (2004)

2. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37(11) (1996)

3. Atkinson, C., Kuhne, T.: Model-driven development: A metamodeling foundation.
IEEE Software 20(5), 36–41 (2003)

4. Cossentino, M.: From requirements to code with the PASSI methodology. In: Agent
Oriented Methodologies, ch. IV, pp. 79–106. Idea Group Publishing, USA (2005)

5. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE) 1(1), 91–121 (2007)

6. Gupta, D., Prakash, N.: Engineering Methods from Method Requirements Specifi-
cations. Requirements Engineering 6(3), 135–160 (2001)

7. Harmsen, A.F., Ernst, M., Twente, U.: Situational Method Engineering. Moret
Ernst & Young Management Consultants (1997)

8. Henderson-Sellers, B.: Method engineering: Theory and practice. In: ISTA, pp.
13–23 (2006)

9. Kumar, K., Welke, R.J.: Methodology engineering: a proposal for situation-specific
methodology construction. In: Challenges and Strategies for Research in Systems
Development, pp. 257–269 (1992)

10. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

11. Software process engineering metamodel. Version 2.0. Final Adopted Specifica-
tion ptc/07 03-03. Object management group (omg) (March 2007)

12. Ralyté, J.: Towards situational methods for information systems development: engi-
neering reusable method chunks. In: Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education, pp. 271–282 (2004)

13. Ralytè, J., Rolland, C.: An approach for method reengineering. LNCS, pp. 27–30
(2001)

14. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engi-
neering. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, p. 381.
Springer, Heidelberg (1998)

15. Shavrin, S.: Ontological multilevel modeling language. International Journal Infor-
mation Theories & Applications 14 (2007)

16. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proc. Of the Workshop on Objects and Agents, WOA 2006 (2006)

17. Seidita, V., Ralyté, J., Henderson-Sellers, B., Cossentino, M., Arni-Bloch, N.: A
comparison of deontic matrices, maps and activity diagrams for the construction
of situational methods. In: CAiSE 2007 Forum, Proceedings of the CAiSE 2007
Forum at the 19th International Conference on Advanced Information Systems
Engineering, Trondheim, Norway, June 11-15, pp. 85–88 (2007)

Definition of Process Models for Agent-Based
Development

Iván Garćıa-Magariño1, Alma Gómez-Rodŕıguez2,
and Juan C. González-Moreno2

1 D. Software Engineering and Artificial Intelligence
Facultad de Informática

Universidad Complutense de Madrid, Spain
ivan gmg@fdi.ucm.es

http://grasia.fdi.ucm.es/
2 D. de Informática (University of Vigo)

Ed. Politécnico, Campus As Lagoas,
Ourense E-32004 (SPAIN)
{alma,jcmoreno}@uvigo.es
http://gwai.ei.uvigo.es/

Abstract. As in other kinds of software development, the definition of
process models in Multi-agent System (MAS) domain has many advan-
tages. Some of these advantages are the better understanding which fa-
cilitates process measurement and improvement, and that the definition
constitutes the basis for automating the process itself. The main goal
of this paper is to provide a proper mechanism for defining agent-based
development process models. For achieving this goal, an open-source ed-
itor tool and a technique for defining process models with the mentioned
tool are presented. Both the editor tool and the technique provide MAS
designers with a suitable mechanism for defining process models and
are based on the Software Process Engineering Metamodel (SPEM). Al-
though the main goal is to define process models for agent-based develop-
ment, the proposed tool and technique can define any software process
model, because they are based on a general-purpose software process
metamodel. The utility of the tool and the technique is also justified,
finally, by qualitative comparison with others.

Keywords: Multi-agent Systems, Development, Process, SPEM, Tool,
Metamodel.

1 Introduction

Some authors [6,8], indicate that the modeling of processes for agent-based de-
velopment is an increasing demand due to many reasons. Some of the Agent-
oriented Software Engineering (AOSE) methodologies [4,7,9,19,20,23,24] may
follow different process models depending on the system to be constructed. In
these cases, the anticipated definition of the process, by means of its modelling,
is useful for the right agent-based development. Besides, the process models can

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 60–73, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Definition of Process Models for Agent-Based Development 61

be shared among Multi-agent System (MAS) designers; in this way, the process
models defined by experienced designers will be provided for helping inexperi-
enced developers.

Moreover, defining the process models provides the basis for automating the
process itself, in the same way as it is done in other engineering fields. This def-
inition opens the possibility of customizing CASE tools for a particular process
within a methodology.

This paper focuses on the definition of process models for agent-based develop-
ment. This definition would be easier to do using an editor which allows designers
to create the suitable diagrams and definitions in an automated manner. Several
tools, such as [2,8,11], have been proposed, but they fail in satisfying all the
necessities of the agent-based development or when describing the technique for
defining the process using the editor. For this reason, this paper presents both
an open-source editor tool and a technique for defining process models.

Although the main goal of the editor tool and mechanism is to define agent-
based development processes, since they based on a general-purpose standard
(SPEM [22]), they can be used in the definition of process models for any software
development.

The structure of the remaining of the paper follows. Section 2 justifies the
definition of a new tool, introducing the main drawbacks of some process model
editor tools and making a qualitative comparison of the tools. Next section
introduces the editor tool for modelling. Section 4 provides the technique for
defining process models for agent-based development with the proposed tool.
Finally, Section 5 introduces the conclusions and future work.

2 Comparison of Editor Tool with Others

The proposal of a new tool has to be justified, in order to indicate what are the
advantages over others tools with the same or similar purpose. Although there
is an increasing interest in process modelling and standardisation, encouraged
by FIPA committee [10], there are still few tools which allow the definition of
development processes. Among these tools, in this section we refer to APES [2],
EPF [11] and Metameth [8] as the most relevant ones in the context previously
exposed.

The approach for the comparison of the proposed editor with others can only
be qualitative, because the work is in a stage where a deeper study will be needed
for quantitative comparison. Nevertheless, it is authors’ intention to address this
objective comparison latter on.

APES, which current version is APES2, is software for process modelling.
APES2 is, according to its authors, a process modelling software which follows
the SPEM specification wrote by the OMG. The tool has several advantages:
it is in conformity with a standard, enables the user to validate a process com-
ponent, enables the user to easily modify a model and it is free (expensive and
proprietary solutions can be avoided). In fact, APES has been split in four tools:
a modelling tool (APES2), a presentation tool (POG), a publication tool (IEPP)

62 I. Garćıa-Magariño, A. Gómez-Rodŕıguez, and J.C. González-Moreno

Fig. 1. Screenshot of APES tool when defining INGENIAS process

and an execution tool (PEACH). So, the comparison will focus on APES2 which
addresses the same goal of the editor tool presented.

The authors tried initially to model INGENIAS process using existent tools,
in particular APES2. In Figure 1, an attempt to model several activities of the
INGENIAS process is shown. Initially, the guideline for the definition of process
based on the use of the stable standard SPEM 1.1 was described with APES,
trying to follow an approach which allows its adaptation to some of the proposals
for SPEM 2.0. APES tool becomes not valid for this definition because it does
not implement the full specification of SPEM. Moreover, it is not possible, for
instance, to distinguish between packages and disciplines which is a fundamental
point for the adopted guideline. In Figure 2, the definition of packages in APES
can be seen, there is no disciplines option.

APES software provides support for some entities: Activity, Work, Work Prod-
uct, Work Product State and Process Role. In what respect to diagrams it in-
cludes: Activity diagrams, Context diagrams, Work definition diagrams, Flow
diagrams and Responsibility diagrams. As it can be easily seen, the tool does
not cover completely SPEM standard. It lacks coverage for important features
and entities, like discipline or guidance (these entities are covered by the tool
presented in the paper). In addition, it has some limitations in what respects to
verification or consistency checking.

On the other hand, the work done by the Process Framework Project (EPF)
has two main goals: to provide an extensible framework for software process
engineering and to provide exemplary and extensible process content for a range
of software development. The first goal has been achieved by the creation of
Eclipse Process Framework, which is a tool for defining a customizable software
process engineering framework. A screenshot of the tool can be seen in Figure 3.

Definition of Process Models for Agent-Based Development 63

Fig. 2. APES tool has no option for Discipline

EPF is a tool with coverage of the fundamental entities and diagrams for
process definition. The definition of this tool is based on XML schemas, in this
sense is similar to the tool proposed in this paper but it differs in the structure of
files generated. The editor tool proposed in this paper produces a XML document
based in XMI standard for SPEM, while EPF does not follow XMI. Besides EPF
generate several XML documents organized in a directory tree, so the inherent
structure is reflected in the tree of documents. However the editor tool proposed
in this paper provides just one structured standard XMI file (this means that
the structure is enclosed in the hierarchical XML file).

The EPF tool follows SPEM in its (recently adopted) version 2.0. The tool
proposed in this paper has been originally conceived following the version 1.1
of SPEM, but taking into consideration most of the novelties introduced in
SPEM latest version. The tool extension for SPEM 2.0 has been done ad-hoc
and provides more flexibility than EPF when modeling some concepts (such as
optional relationships); because EPF is restricted by the rigid UML profile used
in SPEM definition. This fact makes the proposed tool a real alternative to EPF
when a more flexible definition of a concept is required.

An important characteristic of EPF is that it provides some integration with
other software, for instance, it creates project schedules for Microsoft Project
from project definition. However, the authors think that a more powerful inte-
gration is needed. For this reason, the final goal of the tool proposed is to use the
XMI document generated as the basis for feeding a CASE tool which will pro-
vide validation and guide for software development. In this way the CASE tool
will be adapted to the process of development defined for each particular system
and will provide guides to user of what thing to do next, what the proposed
scheduling for development will be, etc.

Recently a new tool for defining processes has been proposed. It is called
Metameth [8] and has been constructed with a similar philosophy than the tool
proposed in this paper; that is, following SPEM and using other tools for defining

64 I. Garćıa-Magariño, A. Gómez-Rodŕıguez, and J.C. González-Moreno

Fig. 3. Screenshot of EPF

the process metamodel. The results are very interesting and the tool provides
important functionalities for process definition. In this case, the tool seems to be
useful and powerful, but there are few indications of how to use it for defining a
new process. So the results of definition will relay on engineers experience.

3 The Process Model Editor Tool

From the MAS based process modelling point of view, the FIPA Methodology
Technical Committee [10] has suggested the use of Software Process Engineering
Metamodel (SPEM), due to Object Management Group (OMG) and introduced
as a UML profile for software development process modelling. As it has been said
before, there are other tools based on SPEM (i. e. APES [2] or EPF [11]) but
they have some drawbacks. The tool presented in this paper tries to overcome
some of those problems providing coverage to the whole SPEM specification.
In this manner, the process model editor supports almost any process model,
including the process models for agent-based developments.

The creation of a tool editor supporting the whole SPEM specification has
extraordinary costs with the classical techniques; but using the Model-driven
Development (MDD) [3], the costs can be affordable. In fact, the process model
editor tool presented in this paper is built with MDD. In particular, the tool
creation uses techniques from the Domain-specific Model Languages (DSML) [1]

Definition of Process Models for Agent-Based Development 65

field. In first place, a language model (metamodel) is defined and, next, a frame-
work generates the editor from the metamodel. In this way, the process of ob-
taining the editor is reduced to define properly the metamodel. This technique
provides an efficient way of developing the editor and maintaining it.

At this moment, there are several metamodel languages available. Some of
them are the MOF language [21], GOPRR [18,26] and Ecore, which is used by the
Eclipse Modelling Framework (EMF) [5,12]. In order to decide among so many
languages, two facts are important to be aware of. First, the SPEM specification
[22] uses MOF language. Second, the Ecore language is used by the most reliable
tools and frameworks. In particular, Ecore is used by EMF and EMF can gen-
erate an editor automatically from an Ecore metamodel. Therefore, we defined
the SPEM metamodel with Ecore, from its definition in MOF, so that we got the
SPEM editor generated automatically by EMF. In addition, this editor serialises
their SPEM models using XMI documents, which are widely supported.

The models generated using the proposed editor represent software processes.
The editor lets the user define these models with a graphical user interface. A
more detailed view of the editor is available in [14]

4 Technique for Defining Process Models

This section presents a technique for defining process models. The editor previ-
ously introduced has been used as tool during specification. The framework is
based on the development of three orthogonal views of the systems: the view of
lifecycle process, the disciplines used in the process view and the guidance and
suggestions view. The first view proposed describes the path which must be fol-
lowed for obtaining as final product a MAS jointly with the activities that must
be accomplished along the path. The second view establishes the disciplines of the
process, the roles and participants and the tasks to perform, which will consume
and produce a set of products. Finally, the guidance and suggestions view details
products, works and roles which constitute model elements of the other views.

The case study selected for introducing this model guide is the Unified De-
velopment Process of INGENIAS [15,16]. The process is defined as the integra-
tion of INGENIAS metamodels and the Unified Development Process (UDP)
[17] in what refers to analysis and design disciplines. UDP distributes the tasks
of analysis and design in three consecutive phases: Inception, Elaboration and
Construction, with several iterations (where iteration means a complete cycle of
development, which includes the performance of some analysis, design, imple-
mentation and proof tasks). The sequence of iterations leads to the procurement
of the final system.

Several steps must be followed in the definition of a process model for agent-
based development. These steps are the following ones.

1. Identify the process model with an existent process model, if possible. Before
defining a new process model, it is useful to have in mind the existent process
models. In [6] some of the most known process models are matched with

66 I. Garćıa-Magariño, A. Gómez-Rodŕıguez, and J.C. González-Moreno

Fig. 4. A possible INGENIAS Lifecycle defined with the Editor

some AOSE methodologies. The matching between methodology and process
must be a good point of departure for starting the definition. Nevertheless,
it is worth mentioning that a methodology may use several process models
depending on the MAS.

2. Define the lifecycle view.
3. Define the disciplines view.
4. Define the guidance and suggestion view.

All the aforementioned technique steps are further explained in the following
subsections.

4.1 Lifecycle View

The specification starts by modeling the particular lifecycle wanted for the devel-
opment. This specification is done defining the phases, activities and iterations
required to complete the development, and delaying the modeling of participants
and products-to-obtain to a latter step. The development path is divided in con-
secutive phases and each of them in a different number of iterations. The number
of iterations is defined adding on the iteration’s name the maximum and min-
imum number of allowed repetitions (for instance [1..3]). That will work if the

Definition of Process Models for Agent-Based Development 67

Fig. 5. Definition of phases precedence relationship using the editor

number is always the same, in other case, it is mandatory to itemize each of the
iterations. This definition constitutes one of the examples of the flexible ad-hoc
definition introduced when comparing the tool with EPF in section 2. Figure 4
shows iterations definition for all the phases of INGENIAS process. Each phase
has an Iteration element which includes the minimum and maximum number
of suitable iterations. In other case, if the number of iterations is optional, for
instance if there can be none or five iterations, then the name of the iteration
would end in (5).

Using the editor described in previous section, the representation of the itera-
tive and incremental lifecycle is made in several steps. In first place, the elements
(phase, iteration and activities) which constitute the lifecycle are defined. Ini-
tially, a child of Specification of kind PLCProcess Lifecyclemust be created.
After, the analyst must define an entity of Lifecycle type, four more entities,
corresponding to each phase, of Phase type and one entity of Iteration type,
which will include in its name, as it was said before, the minimum and maximum
number of allowed iterations for each phase. The following step is the definition
of the existing temporal and membership relationships among these elements.
Figure 4 presents a snapshot of the editor when doing the iteration definition
for a phase of lifecycle for a possible INGENIAS process model. Figure 5, on the
other hand, shows how the precedence relationships among lifecycle, phases and
iterations are defined creating the children entities Dep Rel of type Precedes.

68 I. Garćıa-Magariño, A. Gómez-Rodŕıguez, and J.C. González-Moreno

Fig. 6. Definition of phases precedence relationship using the editor

Once the previous activities are done, it is necessary to define for each iteration
the phase it belongs to, and what are the activities that must be performed. For
instance, Inception phase in the described process implies the accomplishment
of several activities shown in Figure 6 (diagram obtained using EPF).

Next step, after having specified the development process along with the ac-
tivities to perform in each iteration, is defining the disciplines implied in this
activities formalisation.

4.2 Disciplines View

Disciplines in SPEM determine process packages which take part in the process
activities, related with a common subject. That is, disciplines represent a special-
isation of selected subactivities, where these new subactivities can not appear in
other packages or disciplines. In the case study, the disciplines which are included
in the Development Process are RequirementsSpecification, Analysis, Design and
Implementation. The definition of these disciplines is made by creating inside of
Specification a child of type PC Ent (Process Component entities). Next, the
four disciplines are included inside by selecting new entities of Discipline type.

In the next step, the methodology suggests that, before detailing the
subactivities (tasks) which constitute each discipline, the analyst indicates the
participants. This definition is made using as basis the different roles that each
participant will play along the project and the products used. In the selected
case study the roles implied are: Analyst, Architect, Developer, Tester, Project

Definition of Process Models for Agent-Based Development 69

Fig. 7. Guidances External Descriptions. The attributes (content, language, medium
and name) of the selected External Description are shown in the Properties tab. In this
case, the reader can see the beginning of the external description of the Model-Driven
technique.

Manager and FreeMan and the products used are the following ones: Use Case
Diagram, Environment Model, Organisation Model, Interaction Model, Agent
Model, Object and Task Model, Glossary, NonFunctional Requirement and Stake-
holder Vision.

In the editor, the mechanism for including roles and products is to create, in
PS Ent, entities with types Proc Rol and Work Prod respectively.

Once the participants, products, disciplines and process are defined, each ac-
tivity must be divided for each iteration depending on the task pertaining to
each discipline. The activities must be performed by any of the specified partic-
ipants consuming and/or producing any of the existent products. The process
for making up this step is similar to the previous ones, but modelling tasks like
Step inside PS Ent and relations between activities and task like a PS Rel of
type RAc Step. The relationships of making an activity by a participant will
be defined using relations PS Rel of type RAss. In version 1.1, activities and
consumed and/or produced products have the limitation that they can not be
related directly; so this relationship is established using as intermediates the
discipline where it is used and the role which manages it.

4.3 Guidances View

The Guidances provide information about certain model elements. Each Guid-
ance is associated to a Guidance Kind. SPEM provides a basic repertoire of
Guidance Kinds, but it is flexible about Guidance Kinds.

In the editor (Figure 8), the Guidance and GuidanceKind elements can be
added to the BE Ent element (entities of the Basic Elements SPEM package).
Each Guidance must be associated with the RGuidK relationship in the BE Rel

70 I. Garćıa-Magariño, A. Gómez-Rodŕıguez, and J.C. González-Moreno

Fig. 8. Entities and Relationships related to the Guidances. Entities are Guidances,
Guidance Kinds, External Descriptions and Work Products. Relationships link these
entities.

element. Each Guidance must be, also, associated with a Model Element, using
the relationship RAnnot in the BE Rel element. In this example (Figure 8), all
the guidances are linked with work products which are model elements. Each
guidance (guideline or technique) is linked to an External Description(element
Ext Descrip), which contains a complete explanation of the guidance. The guid-
ance external description has an attribute named content with the guidance
content (see Figure 7). It also contains an attribute indicating the language; in
the example, English is selected. The Ext Descrip element can be added to
the BE Ent element to define an external description. The guidance can connect
with its external description using the RPresentation element in the Core Rel
element (relationships of the Core SPEM package).

In multi-agent systems, we recommend specially to use two kinds of guidance:
Technique and Guideline. The technique provides an algorithm to create a work
product. The guideline is a set of rules and recommendations about a work
product organisation.

As examples, the most relevant INGENIAS Guidances are described below,
and the reader can see them on Figure 8.

– General Technique. It indicates how to develop a complete INGENIAS spec-
ification, so that the multi-agent system, generated from the specification,
runs itself. This technique gives the algorithm for developing a General work
product. The general product is supposed to be any kind of product.

– Model-Driven Technique. This guideline recommends the user to follow the
Model-Driven Development [3] principles. Pavon [25] explains explicitly how

Definition of Process Models for Agent-Based Development 71

to develop an INGENIAS MAS driven by the model. Basically, the user
edits the specification using the IDK editor. This specification is the model
on which the development is based. The code generator obtains the Java
code for JADE platform from the specification. In the specification, the
user can add some pieces of code. This concrete piece of code remains on
the specification so that, the next time the system is generated, the code
is not overwritten. In addition, working only on the specification (model)
fastens the software process. This technique is recommended for all the work
products, represented by the General work product.

– Remote Communication Guideline. It provides rules and recommendations
to organise a work product focused on remote communication. The INGE-
NIAS 2.6 distribution provides an example, named IAF-cinema, that follows
this guideline. This guideline is applied only to the work product named Re-
moteCommunication.

– Referee Pattern Guideline. It provides a referee-pattern INGENIAS MAS
organisation. An agent plays the role of a referee. This agent is in charge
of controlling the communication among the other agents and stopping the
multi-agent system when necessary. The delphi multi-agent system [13] fol-
lows this guideline.

5 Conclusions and Future Work

The definition of the software process engineering model of a MAS methodol-
ogy makes it easier to learn and use a MAS methodology, in several manners.
This paper presents a technique and an editor tool (based on SPEM and DSML
techniques) which allow the definition of process models for agent-based devel-
opment. In particular, the technique and the proposed editor are used for the
definition of the Unified Development Process for INGENIAS methodology. The
application of the tool to a particular process definition proves its utility for the
objective it was created for.

Furthermore, this work can guide a MAS developer through the steps of def-
inition of a development process for MAS construction. The description of the
steps to follow provided in the paper, can simplify the definition of processes for
non expert engineers.

In addition, the paper addresses a comparison between the editor proposed
by authors and similar available tools. As conclusion of this comparison, it is
thought that the proposed tool has all the functionality needed for defining
process models for agent-based development.

Next step in tool evolution will be to integrate the process editor with a tool
for methodology support, so each software process engineering model will be
available in the methodology support tool. In this way, the tool for development
will be able to guide the user through the development steps, using the infor-
mation provided by the XMI documents generated by the tool proposed in this
paper. For instance, the defined INGENIAS software process described in the
paper can be integrated with the INGENIAS Development Kit (IDK) tool.

72 I. Garćıa-Magariño, A. Gómez-Rodŕıguez, and J.C. González-Moreno

In the future, several software process engineering models of several MAS
methodologies can be defined with the presented editor. These process mod-
els can assist the MAS designer in selecting the appropriate methodology and
process model for a specific MAS.

Acknowledgements. This work has been supported by the following projects:
Methods and tools for agent-based modelling supported by Spanish Council for
Science and Technology with grant TIN2005-08501-C03-01; Methods and tools
for agent-based modelling supported by Spanish Council for Science and Technol-
ogy with grant TIN2005-08501-C03-03 and Grant for Research Group 910494 by
the Region of Madrid (Comunidad de Madrid) and the Universidad Complutense
Madrid.

References

1. Amyot, D., Farah, H., Roy, J.: Evaluation of Development Tools for Domain-
Specific Modeling Languages. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS,
vol. 4320, pp. 183–197. Springer, Heidelberg (2006)

2. APES2: A Process Engineering Software,
http://apes2.berlios.de/en/links.html

3. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
Software, IEEE 20(5), 36–41 (2003)

4. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl.
Eng. Rev. 20(2), 99–116 (2005)

5. Budinsky, F.: Eclipse Modelling Framework: Developer’s Guide. Addison Wesley,
Reading (2003)

6. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based devel-
opment. Engineering Applications of Artificial Intelligence 18(2), 205–222 (2005)

7. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile PASSI: An Agile Pro-
cess for Designing Agents. International Journal of Computer Systems Science &
Engineering. Special issue on Software Engineering for Multi-Agent Systems (May
2006)

8. Cossentino, M., Sabatucci, L., Seidita, V., Gaglio, S.: An Agent Oriented Tool
for New Design Processes. In: Proceedings of the Fourth European Workshop on
Multi-Agent Systems (2006)

9. Cuesta, P., Gómez, A., González, J., Rodŕıguez, F.J.: The MESMA methodol-
ogy for agent-oriented software engineering. In: Proceedings of First International
Workshop on Practical Applications of Agents and Multiagent Systems (IW-
PAAMS 2002), pp. 87–98 (2002)

10. Consiglio Nazionale delle Ricerche (CNR): Activity of the FIPA Methodology Tech-
nical Committee

11. Eclipse: Eclipse Process Framework (EPF), http://www.eclipse.org/epf/
12. Moore, B., et al.: Eclipse Development using Graphical Editing Framework and

the Eclipse Modelling Framework. IBM Redbooks (2004)
13. Garćıa-Magariño, I., Agera, J.R.P., Gómez-Sanz, J.J.: Reaching consensus in a

multi-agent system. In: International workshop on practical applications on agents
and multi-agent systems, Salamanca, Spain (2007)

http://apes2.berlios.de/en/links.html
http://www.eclipse.org/epf/

Definition of Process Models for Agent-Based Development 73

14. Garćıa-Magariño, I., Gómez-Rodŕıguez, A., González, J.C.: Modelando el Proceso
de Desarrollo de INGENIAS con EMF. In: 6th International Workshop on Practical
Applications on Agents and Multi-agent Systems, IWPAAMS 2007, Salamanca,
Spain, November 12-13, pp. 369–378 (2007)

15. Gómez-Sanz, J.J.: Modelado de Sistemas Multi-Agente. Ph.D thesis, Departamento
de Sistemas Informáticos y Programación, Universidad Complutense Madrid (2002)

16. Gómez-Sanz, J.J., Fuentes, R.: Agent oriented software engineering with ingenias.
In: Fourth Iberoamerican Workshop on Multi-Agent Systems (Iberagents 2002),
a workshop of IBERAMIA 2002, the VIII Iberoamerican Conference on Artificial
Intelligence (2002)

17. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

18. Kelly, S.: GOPRR Description. Ph.D dissertation, Appendix 1 (1997)
19. Mas, A.: Agentes Software y Sistemas Multi-Agentes. Pearson Prentice Hall (2004)
20. O’Malley, S.A., DeLoach, S.A.: Determining when to use an agent-oriented software

engineering pradigm. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE
2001. LNCS, vol. 2222, pp. 188–205. Springer, Heidelberg (2002)

21. OMG. Meta Object Facility (MOF) Specification
22. OMG. Software Process Engineering Metamodel Specification (2005)
23. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent

Agents. In: Proceedings of the Third International Workshop on Agent Oriented
Software Engineering, at AAMAS (2002)

24. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691,
pp. 394–403. Springer, Heidelberg (2003)

25. Pavón, J., Gómez-Sanz, J., Fuentes, R.: Model Driven Development of Multi-Agent
Systems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 284–298. Springer, Heidelberg (2006)

26. Tolvanen, J.-P.: GOPRR metamodeling language (2000)

Methodology Fragments Definition in SPEM
for Designing Adaptive Methodology:

A First Step

Sylvain Rougemaille1, Frederic Migeon1, Thierry Millan2,
and Marie-Pierre Gleizes1

1 SMAC team,
2 MACAO team,

IRIT Computer Science Research Institut of Toulouse,
Université Paul Sabatier,
118 Route de Narbonne,

F-31062 TOULOUSE CEDEX 9, France
{rougemai,migeon,Thierry.Milan,Marie-Pierre.Gleizes}@irit.fr

http://www.irit.fr

Abstract. The aim of this paper is to highlight how SPEM (Software
and System Process Engineering Meta-model) 2.0 OMG (Object Man-
agement Group) can participate to design adaptive methodology process.
The idea follows the FIPA Methodology Technical Committee (TC) one
which consists in expressing a methodology in several fragments. Then,
designer has to combine the relevant fragments to compose his own
methodology. In this paper, we have chosen SPEM 2.0 OMG to express
the fragments. The latest SPEM version improves methodology content
and process re-usability, by introducing new capabilities as a clear sep-
aration between structural and dynamic methodology concerns. Those
improvements in the field of methodology specification, are studied to
determine their interests in the scope of Agent-Oriented Software En-
gineering (AOSE) and particularly, their impact on “methodology frag-
ments” definition. ADELFE and PASSI methodologies have been taken
as example to illustrate the use of SPEM 2.0 in the scope of “fragment”
definition. In this paper, only the first step of the general objective con-
sisting in expressing the fragments, is done and presented.

Keywords: SPEM 2.0, ADELFE, Methodology Fragments, Agent Ori-
ented Software Engineering, Process Engineering.

1 Introduction

Many agent-oriented methodologies have been developed last decade (e.g. [1,12]:
ASPECS [7], ADELFE [2], Gaia [22], INGENIAS [9], PASSI [6], Prometheus [18],
SODA [17], Tropos [4]). Each has its own specificities: ADELFE is dedicated to
adaptive system and cooperative agents design, ASPECS is dedicated to holonic
multi-agent systems, Gaia focuses on static organization and roles, whereas

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 74–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.irit.fr

Methodology Fragments Definition in SPEM 75

PASSI focuses on agent social aspects thanks to ontology, SODA highlights
the notion of environment, etc. However, Agent-Oriented Software Engineer-
ing (AOSE) research community agrees the necessity of several methodologies
and advocates the impossibility to build one general and universal one as it
was pointed out in works like [10]. Thus, we cannot assume these methodolo-
gies can be applied to build every multi-agent applications. It seems that some
methodologies or some parts of methodologies are more relevant than other to
achieve some kinds of task. For example Tropos treats very well the prelimi-
nary requirements and provides models to realize it. That is the reason why
the FIPA Methodology TC has proposed to define fragments. A fragment repre-
sents a portion of a methodology. Then, as it is also explained in [11], designers
can choose methodological components from different methodologies in order to
build their own relevant one. Software and System Process Engineering Meta-
model (SPEM) is a standard specified by the Object Management Group (OMG)
which latest revision 2.0 has just been adopted [16]. Its scope is the definition of a
minimal set of concepts to design and manage software and system development
process. In this paper, our aim is to highlight the relevance of this meta-model
to express FIPA fragments.

Section 2 briefly describes the ADELFE methodology process which is used
to illustrate the concepts developed in the paper. Section 3 presents the SPEM
2.0 OMG freshly adopted standard and studies more specifically new concepts
such as Method Plugin, that are promising in the scope of AOSE. We also argue
that this latest OMG vision of software process modeling is compliant to the
FIPA Methodology TC concepts of “Methodology fragment” [8] (see section 5).
Section 4 focuses on the aspects of SPEM 2.0 which are interesting for AOSE.
Section 5 defines the fragment notion and the translation between the fragment
and SPEM 2.0; this is illustrated on ADELFE and PASSI in section 6. The
papers ends with the analysis and some perspectives of this work.

2 Introducing ADELFE Methodology

In order to illustrate the use of SPEM 2.0 [16] in AOSE, the ADELFE method-
ology [2] which was described with the previous SPEM version, has been taken
as an example throughout the paper. ADELFE is devoted to the development of
softwares with emergent functionalities and conforming to the Adaptive Multi-
Agent System (AMAS) theory [3]. It is based on the Rational Unified Process
(RUP) which was modified to fit specific AMAS needs. We recently have mi-
grated this definition in SPEM 2.0 thanks to the Eclipse Process Framework
(EPF)1. The following sections are illustrated with this definition conforming to
the SPEM 2.0 recommended notations (SPEM 2.0 profile). ADELFE consists of
five phases:

– Preliminary and Final requirements : they represent typical phases in object-
oriented software development and are based on the RUP. However,

1 http://www.eclipse.org/epf

http://www.eclipse.org/epf

76 S. Rougemaille et al.

in addition to the classical approach, they define AMAS specific tasks such
as precise study of the system environment.

– Analysis : this is a specific phase that allows analysts to determine whether
an AMAS is needed or not.

– Design: this phase is devoted to the determination of software architecture.
It strongly depends on the previous ones (object or AMAS specific design).

– Development : this is a model-driven phase which allows automatic code gen-
eration of the previously designed agents. This phase is still under develop-
ment and was presented in [19].

This paper focuses on the analysis phase. It is composed of four tasks devoted
to the definition of a primary software architecture from the requirements that
have been previously established (see figure 1). It determines the adequacy be-
tween the problem domain and an AMAS solution. This is done thanks to the
“Verify AMAS Adequacy” task that allows the “Agent Analyst” to elect an
AMAS approach, if needed, by answering questions about the systems function-
alities.

To ease the analyst task, a visual tool which provides the adequacy degree at
local and global level, has been developed. This verification task is specific to
the ADELFE methodology, thus it has been defined as a fragment, and is a part
of section 6 examples.

3 SPEM 2.0 Overview

SPEM 2.0 is a MOF 2.0 [13] based meta-model that defines extension to the UML
2.0 infrastructure [14] meta-model. A notation has also been defined, which is
based on a UML 2.0 superstructure [15] profile. The following use this notation
to illustrate the underlying meta-model. Roughly, the SPEM 2.0 meta-model
consists of seven packages:

– The Core package defines SPEM 2.0 foundations: its main concepts and the
way they can be extended (based on UML 2.0 infrastructure)

– The Process Structure package contains the basics elements to describe a
development process as a breakdown structure.

– The Process Behavior package contains concepts enabling the description of
process execution (State,Transition, ControlFlow, etc.). It does not define a
specific formalism but links process structure and external behavioral con-
cepts letting implementers feel free to select the appropriate language (UML
activity or state machine diagrams, BPMN2, etc.)

– The Managed Content package defines concepts for textual descriptions of
processes and methodology contents.

– The Method Content package defines the core concepts of every methodology
such as Tasks, Roles and Work products.

– The Process With Method package binds method contents (i.e. what have to
be done) to process structure elements (i.e. the scheduling of these tasks).

2 Business Process Modeling Notation http://www.bpmn.org/

http://www.bpmn.org/

Methodology Fragments Definition in SPEM 77

Fig. 1. ADELFE analysis phase workflow

– The Method Plugin package defines large scale plugin mechanisms to ease
the definition of separate extensible methodology. It provides the concept of
Method Library which is the container for Method Plugin and Configuration
(those two concepts and their interests are discussed in further sections).

As a process engineering meta-model, SPEM 2.0 allows to model, document,
present, manage, interchange development processes and methods. Phases can
be described from a static or structural point of view, in terms of Method Con-
tent concepts, or from a more dynamic point of view, using Process with Methods
concepts. Figure 1 is an example of a workflow (UML activity diagram) describ-
ing the tasks sequence and the products involved in the ADELFE analysis phase.

4 SPEM 2.0 Capabilities

SPEM 2.0 structure has been improved and some of its concepts have been clar-
ified, for instance, a clear separation have been defined between Method Content
Element and process Element. Those improvements bring capabilities that we
found interesting in the scope of agent oriented methodology fragments definition
and use.

4.1 Concerns Separation

SPEM 2.0 provides clear separation between the definition of methodology con-
tents Tasks, Work Products and Roles and their application in a specific delivery
process (Activities, Role Use, Work Product use). In fact, those two concerns

78 S. Rougemaille et al.

are respectively managed by the Method Content and Process Structure SPEM
packages. Thus, process description is separated from the structure, it could be
defined on its own (Process Behavior package) as, for example, an extension of
UML Superstructure behavioral concepts (Activity and State Chart diagrams
specialization). This separation is enforced by the definition of different Pack-
ageableElements : on one hand MethodContentPackage and on the other Pro-
cessPackage which represents two distinct “containers”. The first one contains
the building bricks of methodologies (Task, WorkProduct, Guidelines,...), the
second defines their use through BreakdownElements such as Activity, TaskUse,
RoleUse, WorkProductUse and so on.

4.2 Modularity and Re-usability

At the Method level. The Method Plugin package authorizes modularization,
eases extensibility and thus ensures that every methodology could be tailored
in the more suitable way. SPEM 2.0 allows the description of Method Plugin
which can be considered as a kind of extensible method packages container; it
defines a whole method (content and use). The idea can be summarize as follow,
a Method Library defines both Method Plugins and Method Configurations that
represent respectively the content of the library and visibility “rules” over this
content; in other words, building bricks that method engineers can select (the
set of methods contained by the library), and what is effectively presented to the
end-user (parts of those methods covering specific needs of the process). Method
Plugin defines a first level of modularity. In addition, Method Library concept
represents the topmost container for plugins and configurations, this last notion
constitutes a kind of repository.

At the Process Level. ProcessPattern is a special kind of activity defined in the
SPEM 2.0 base plugin, such as Iteration, Phase, etc. It refers to an un-applied gen-
eral process, i.e. a breakdown of elements unbound to Method Content elements.
It could be used as a building brick for development life cycle, the rationale for
this concept is to describe reusable cluster of activities known to achieve the pro-
duction of some deliverables (sets of Work products) in an efficient way.

Within a Process. Considering a fine-grain level of modularity and encapsu-
lation, SPEM 2.0 offers the concept of Process Component, which conforms to
the notion of software component [21] (provided and required interfaces, white
or black box vision, ports, assembly, etc.). Taking a closer look to the adopted
specification[16], it is a specialization of ProcessPackage, which is the primary
process element container (Activities, Task Use, Work Product Use, etc.). It
defines a process within an activity as a “black box” simply qualified by Work
Product Ports that could gather its inputs and outputs (as could be software com-
ponents interfaces). The main goal of process component is to keep some part of a
process unresolved, i.e. the development phase, in order to choose the better im-
plementation, using a code-centric approach or a model-driven one for example.

Methodology Fragments Definition in SPEM 79

5 AOSE Methodology Fragments

This section presents the notion of Methodology Fragment in the scope of AOSE.
It is promoted by the FIPA Methodology TC [8] and shares principles with Sit-
uational Method Engineering as it was quoted in [20]. FIPA method fragments
are tightly connected to the SPEM 1.0 OMG standard as they use the same main
concepts: Activities, Artifacts, Role and so on.

5.1 Definition

This section presents the method fragment as it has been defined by the FIPA
methodology TC, an much more extensive definition of this proposition can be
found in [5]. According to the FIPA, a fragment is composed of the following parts:

1. A portion of process.
2. The result of the work. It represents some kind of product/artifact like

(A)UML/UML diagrams, text documents, etc.
3. Some preconditions, kind of constraints specifying when it is possible to start

the process specified in the fragment because of missing required inputs or
because of guard condition violation.

4. A list of concepts (related to the MAS meta-model) to be defined (designed)
or refined during the specified process fragment.

5. Guideline(s) that illustrates how to apply the fragment and best practices
related to that.

6. A glossary of terms used in the fragment (to avoid misunderstandings and to
ease re-usability).

7. Composition guidelines - A description of the context/problem that is behind
the methodology from which the specific fragment is extracted.

8. Aspects of fragment. Textual description of specific issues like for example:
platform to be used, application area, etc.

9. Dependency relationships useful to define fragments assembly.

It should be noticed that not all of these parts are always mandatory. However,
from this definition, it is already possible to note some interesting points. First
of all, fragments use concepts that are still defined in the SPEM 2.0 specifica-
tion (Activities, Work Products, Roles) but it needs clarification, because con-
cepts have been moved into separate packages and are associated thanks to new
elements such as WorkProductUse and RoleUse.

5.2 Fragment Compliance with SPEM 2.0

Rationale. SPEM possesses a wide audience and its use is enabled by many
implementations. We advocate that being compliant with this “de facto” stan-
dard is important to broaden the use of agent-oriented methodologies and princi-
ples. Furthermore, as fragments aim to provide a common framework (language,
repository) for agent-oriented methodologies and that the latest SPEM version
partially meets these requirements we propose a translation, mapping between
FIPA fragments and SPEM.

80 S. Rougemaille et al.

Mapping Fragments to SPEM 2.0. A method fragment is a portion of a
development process defining deliverables (work products), guidelines, precondi-
tions, and sets of concepts and key-words characterizing it in the scope of the
method in which it was defined. Considering fragments through this rough defi-
nition, eases the determination of the more suitable SPEM 2.0 concepts, if any.
However, one of the proposals of [5], which presents an enhanced version of the
fragment meta-model from the FIPA methodology TC, is that fragments should
be considered from different points of view whether you are interested in their
reuse, storing, implementation or in the definition of the process they represent.
So it seems obvious that the election of a method fragment depend on the point
of view and the requirements defined by the method engineer. By taking a closer
look to the SPEM 2.0 specification, Method plugin package provides concepts that
fulfill most of FIPA requirements:

– Method Plugin defines by the means of Method content packages and Process
packages sets of reusable process portions (see section 5.1). It goes further
than this by splitting those reusable parts into methodology contents and pro-
cess.

– FIPA vision of fragment corresponds to a process portion. Of course, this por-
tion must embody some composition rules or constraints. FIPA elected Pro-
cess Component as the SPEM 1.0 closer concept for fragment [5]. This notion
has been improved and clarify in the latest specification so that it seems it
better fits fragment needs. In fact, it defines precise input and output con-
straints in terms of Work Product Ports. A process component encapsulates
a single Activity which can be broken down into sub-activities representing
the process leading to be delivered of output work product using the declared
inputs.

– Referring to the above description, fragment is equipped with glossary, guide-
lines and other textual descriptions or concepts intended to ease method en-
gineer to achieve its composition. All those elements can be seen as Guidance
special kinds. In the Core Package Guidance is an Extensible Element spe-
cialization, therefore it can be extended and defines its own Kinds. Glossary,
Aspect, Guideline and Composition Guideline can be derived from Guidance
and applied to any elements defined in the Process Component.

– In [20] authors promote the idea of a common repository for method frag-
ments indexed thanks to concepts defined by MAS meta-models, they also
have implemented it. SPEM integrates the concept of repository: Method Li-
brary which is the container for Method Plugins. A library contains several
plugins, both Method Content and Process Package elements of these plug-
ins can be referred by Method Configuration to tailor and to present a new
Software Engineering Process (SEP).

– Dependency relationship are defined at different levels: between plugins, be-
tween process component as well as mapping from process pattern and the
methodology contents they use. In fact, it only depends on fragment
granularity.

Methodology Fragments Definition in SPEM 81

Granularity. Fragment does not match a single SPEM 2.0 concept but should be
considered as different ones depending, for instance, on its granularity. As SPEM
offers different re-usable concepts with different granularity, from task to Method
Plugin.

Concerns. Fragment is a portion of process. However, process element in SPEM
2.0 has been divided into definition and use. Thus, this separation needs to be
considered while mapping fragment to SPEM concepts. Fragments that define
elementary work part, related products and roles should be mapped to Method
Content concepts. Whereas fragments defining some “good practice” or a com-
mon way to deliver a kind of products (i.e. an Model Driven approach to produce
code), should be mapped to Process Content concepts.

Custom Categories. Method plugin allows the re-usability of its whole
contents definitions and process uses. In order to ease the reuse of fragments,
we propose to integrate their definition into two Method Plugin customs cate-
gories, Fragments and Fragments Guidelines. Those two categories are intended
to group, on one hand, the work to do and the way it can be done (Tasks and Pro-
cess Patterns) and, on the other hand, guidances (concepts and all useful docu-
ments for the use of fragments). Those categories could be themselves categorized
thanks to inner custom categories (see 6.2).

Going Further. Method Library can be used as general purpose SEP container.
It could even contain sets of reusable elements (content and process) that do not
belong to a specific SEP, but could be used as building bricks. More than an
agent-oriented methodologies repository, SPEM 2.0 Method plugin and Library
allow to reuse any other method plugin elements since they have been imported
in the same library. The EPF eclipse plugin is a SPEM 2.0 implementation which
provides all those capabilities, thus it can be used to define method plugins into
library as well as tailor new SEP from those plugins (Method Configuration).
Projects such as OpenUP3 meet the requirements of the FIPA methodology TC
by using the modularity and re-usability skills of SPEM through the EPF plu-
gin. In fact, OpenUP provides an open-source, common and extensible base for
iterative incremental SEP. It seems obvious that AOSE will make profit of such
projects by defining specific AO method plugins and reusing predefined ones.

6 SPEM 2.0 Fragments Definition

This section presents a kind of fragment definition “process”, that is illustrated
with ADELFE, and PASSI fragment. First of all, method plugins have to be de-
fined. This allows us to describe re-usable method and process contents (Tasks,
Work Products, Roles and Guidance, etc.). Then, some customization is needed.
New plugins are equipped with two Custom Categories : Fragments and Frag-
ments Guidelines which will gather all elements that are needed for the

3 http://epf.eclipse.org/wikis/openup

http://epf.eclipse.org/wikis/openup

82 S. Rougemaille et al.

Fig. 2. DOD PASSI fragment definition in SPEM 2.0 using EPF

description of re-usable method fragments. At this stage, the definition of frag-
ments only depends on their characteristics (see section 5.1). The following
presents SPEM 2.0 fragment definitions. ADELFE characteristic parts (previ-
ously identified as fragments) as first instance, as well as a PASSI fragment. We
use the EPF eclipse plugin to realize these definitions.

6.1 ADELFE Fragments

ADELFE has been defined as a sequence of Work Definitions containing Activi-
ties, Work Products and Role. As this description could not be straight forward
translated to SPEM 2.0, due to concern separation mainly, we have to gather ba-
sic work definitions (Tasks in SPEM 2.0) into some kinds of categories. This is
the purpose of Discipline: the Tasks intended to be executed during a particu-
lar Phase or Iteration are grouped in the same Discipline. In this example, we
focus on the fragment called: “Verify AMAS adequacy” Task. As a SPEM 2.0
Task, it can be re-used and even extended in other method plugin. It consists of
two Steps : “Verify adequacy at the global” and “local level”. This Task/fragment
is related to specific Guidances, which ease its use and integration within an
other method: the “AMAS Adequacy” Concept and the “Adequacy tool” Tool
Mentor4. We have added this task at the Fragments category, as well as its re-
lated guidances to the Fragments Guidelines category (as shown in the right panel
of the screen shot in figure 2).

4 Concept and Tool Mentor are both Kind of Guidance, they are defined in the SPEM
2.0 base plugin.

Methodology Fragments Definition in SPEM 83

6.2 PASSI DOD Fragment

We choose the “Domain Ontology Description Fragment” as an other instance
of SPEM 2.0 fragment description. According to its definition [5], it is a “coarse
grain” fragment. It involves several tasks, work products in a specific workflow.
We have made the choice of mapping it to a Process With Method element: a De-
livery Process5 which contains an Activity named “DOD delivery”. This activity
is broken down into tasks leading to the delivery of the DOD. We also have de-
fined some inner categories to distinguish tasks from process, roles and products
(see figure 2). Moreover, the DOD PASSI fragment defines “fragment aspects”
that haven’t been defined in ADELFE fragment. We have determined that this
concepts should mapped to a “generic kind of guidance”: Supporting material as
it is used to contain “information not specifically covered by the other guidance
types”.

7 Discussion and Prospects

According to the previous examples, it seems that SPEM 2.0, thanks to its ca-
pabilities (as shown in section 4.2), goes one step further toward the provision of
an agent-oriented Method library where all the identified methodology fragment
should be defined and stored as reusable and extensible Method Content and Pro-
cesses within Method plugins. Moreover, the SPEM standard provides a common
frame or language to define methods, good practices and gained expertise in the
field of AOSE, as well as a widespread use and tool support for the description,
management or even enactment of processes.

Situational Method Engineering has promoted for years, the idea that not a
single method could fit all method engineers needs, it strongly depends on the
studied domain. From this idea, FIPA has proposed the concept of fragments
which is intended to cope with this problem. We assume that the SPEM 2.0 ver-
sion has reached a stage where modularity and re-usability area is sufficient to
allow fragments definition. However, even if a descriptive specification is already
possible using SPEM, some important issues still have to be faced. For instance,
we have presented the description of fragments with EPF, this is not straight-
forward. In fact, Process Component is not implemented in EPF, methodological
units can’t be expressed so easily with encapsulation and interfaces (provided or
requested). Although a task can be defined with input and output work products
(as we discussed it in section 5.2) the SPEM 2.0 base plug-in provided by EPF
does not allow to define coarse-grained encapsulated units.

Therefore, what about the assembly of such fragment? How can we fix problems
such as input/output type verifications, name conflicts, etc.? How can we assist
method engineer during the election of the more suitable fragment while they are
devoted to different agent paradigms? One of the ideas proposed in [20] for the
browsing and search into fragment repository, is the use of an ontology, or at least

5 SPEM 2.0 base plugin special kind of Process Package.

84 S. Rougemaille et al.

a taxonomy, containing the concepts linked to each fragment and which can be
use as a guide for the tailoring of a new fragment-based methodology.

Fragments interest is precisely that they focus on specific agent paradigms
(ADELFE for emergent system and cooperative agent, ASPECS for holonic MAS,
etc.). Thus, they depend on the underpinning method meta-model from which
they are derived. This implies that, to perform fragment connection to another,
a kind of mapping or “glue” have to be created because related concepts may be-
long to different paradigm or domain. Thus, building ontology over those concepts
may ease this “glue” generation, maybe using model transformation. However, if
we reconsider the ADELFE fragment of adequacy verification, is it really specific
to AMAS or could it be generalized to any type of agent? Therefore, could it be
used to verify adequacy of a system with holonic paradigm, provided that it has
been extended or adapted. This implies that fragments should be parameterized
with concepts like the type of agent or system (cooperative, BDI, holonic, etc.).
For instance, the adequacy verification will become: “verification of the adequacy
between solution and the problem domain”.

However, assembly is a well-known problem in the scope of programming lan-
guage, composing software component or aspects is not trivial. Therefore, com-
posing methodology fragments appears to be a complicated task, thus automate
the design of a new methodology will result in a much more complicated work.

This paper has presented some preliminary steps towards this further goal. The
main work will be to propose tools to combine these fragments. Because it is a
complex problem requiring adaptation, we can propose an adaptive multi-agent
system to solve it where the fragments will be agentified.

References

1. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Sytems. Kluwer Academic Publishers, Dordrecht (2004)

2. Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering Adaptive Multi-
Agent Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P.
(eds.) Agent-Oriented Methodologies, pp. 172–202. Idea Group Pub., USA (2005)

3. Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents. In: TAPOCS 2003
at WETICE 2003, Linz, Austria. IEEE CS, Los Alamitos (2003)

4. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information sys-
tems engineering: the Tropos project. Information Systems 27(6) (2002)

5. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. Int. J. of Agent-Oriented
Software Engineering 1, 91–121 (2007)

6. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and agile PASSI
MAS meta-models compared with a unifying proposal. In: Pěchouček, M., Petta,
P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS, vol. 3690, pp. 183–192. Springer, Hei-
delberg (2005)

7. Cossentino, M., Gaud, N., Galland, S., Hilaire, V., Koukam, A.: A holonic meta-
model for agent-oriented analysis and design. In: Mař́ık, V., Vyatkin, V., Colombo,
A.W. (eds.) HoloMAS 2007. LNCS, vol. 4659, pp. 237–246. Springer, Heidelberg
(2007)

Methodology Fragments Definition in SPEM 85

8. FIPA. Method fragment definition, fipa document edition (November 2003)
9. Gomez-Sanz, J., Pavon, J.: Agent Oriented Software Engineering with INGENIAS.

In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691,
p. 394. Springer, Heidelberg (2003)

10. Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the cre-
ation of agent-oriented methodologies. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS, vol. 3690, pp. 142–152. Springer, Heidelberg (2005)

11. Juan, T., Sterling, L., Martelli, M., Mascardi, V.: Customizing AOSE methodolo-
gies by reusing AOSE features. In: Rosenschein, J.S., Sandholm, T., Wooldridge,
M., Yokoo, M. (eds.) International Conference on Autonomas Agents and Multi-
Agent Systems (AAMAS 2003), Melbourne, Australia, pp. 1024–1025 (2003)

12. Luck, M., Ashri, R., d’Inverno, M.: Agent-Based Software Development. Artech
House, Inc., Norwood (2004)

13. Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core Specifica-
tion (October 2003)

14. Object Management Group, Inc. Unified Modeling Language (UML) 2.0 Infrastruc-
ture Specification. Final Adopted Specification (August 2003)

15. Object Management Group, Inc. Unified Modeling Language (UML) 2.0 Super-
structure Specification. Final Adopted Specification (August 2003)

16. Object Management Group, Inc. Software & Systems Process Engineering Meta-
model Specification v2.0, omg edition (October 2007)

17. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

18. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Proceedings of the Third International Workshop on Agent Oriented
Software Engineering at AAMAS (July 2002)

19. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.-P.: Model Driven Engineer-
ing for Designing Adaptive Multi-Agent Systems. In: Artikis, A., O’Hare, G.M.P.,
Stathis, K., Vouros, G. (eds.) ESAW 2007. LNCS, vol. 4995, Springer, Heidelberg
(2008)

20. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent system
design. In: Paoli, F.D., Stefano, A.D., Omicini, A., Santoro, C. (eds.) Proceedings
of the 7th WOA 2006 Workshop From Objects to Agents, September 2006. CEUR
Workshop Proceedings, vol. 204, CEUR-WS.org (2006)

21. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. ACM Press/Addison-Wesley (2002)

22. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000); Times Cited: 3 Article English Cited References Count: 34 412fd

A MAS Metamodel-Driven Approach to Process
Fragments Selection

M. Cossentino1,2, S. Gaglio1,3, S. Galland2, N. Gaud2, V. Hilaire2,
A. Koukam2 and V. Seidita3

1 Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche,
Palermo, Italy

cossentino@pa.icar.cnr.it
2 Systems and Transport Laboratory (SeT) - Belfort, France

{stephane.galland,nicolas.gaud,vincent.hilaire,abder.koukam}@utbm.fr
3 DINFO - Università degli studi di Palermo, Palermo, Italy

{gaglio,seidita}@dinfo.unipa.it

Abstract. The construction of ad-hoc design processes is more and
more required today. In this paper we present our approach for the
construction of a new design process following the Situational Method
Engineering paradigm. We mainly focus on the selection and assembly
activities on the base of what we consider a key element in agent de-
sign processes: the MAS metamodel. The paper presents an algorithm
establishing a priority order in the realization (instantiation) of MAS
metamodel elements by the fragments that will compose the new pro-
cess.

1 Introduction

Multi-Agent systems metamodels (MMMs henceafter) and the composition of
new design process achieved, in the last years, a greater attention in the agent
community. As regards MMMs, the growing importance of Model Driven Engi-
neering approaches required a great effort in the study and modelling of systems
on the basis of their metamodels. Besides the effort spent on studying tech-
niques, methods and tools for the production of the right design process meeting
specific process requirements (ad-hoc design process for specific situation and
development context for solving a specific class of problems), is today more and
more increasing. In this field, Situational Method Engineering (SME) [1], pro-
vides means for constructing ad-hoc Software Engineering Processes (SEP) by
following an approach based on the reuse of portions of existing design processes
(often called method fragments1). Our work is mainly focused on the use of SME
[2–4] for the construction of customized agent-oriented design processes.

In this paper, we show the importance of the MMM in the selection of frag-
ments that will constitute the new SEP, and we explore how MMM could guide
in the selection and assembly phases when a new design process is under con-
struction. Selection of fragments is tightly related to the identification of the
1 From now on in this paper we will use the term Process Fragment or simply Fragment

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 86–100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A MAS Metamodel-Driven Approach to Process Fragments Selection 87

new process requirements; fragments included in this process should, in fact,
concur to the satisfaction of such requirements. Our thesis is that (some of the)
new process requirements are linked to the MAS metamodel elements (MMME)
instantiated by the fragments. More details on the structure of a fragment in
our approach can be found in [5].

In order to exemplify the fact that many requirements have a natural relation-
ship with some MMMEs, it is sufficient to think about the desired adoption of
a goal-oriented analysis rather than an interaction-based one (using use cases).
Such different desires will directly bring to the presence of different elements in
the MMM (goals rather than use cases). Several other examples can be reported
to support this point but we agree that not all requirements can be related to
one or more MMME, for instance requirements related to the adoption of a
specific practice in performing early requirements analysis will always produce
the same output (and therefore will be related to the same MMMEs) but in a
different way. In this paper we will only briefly discuss the identification of the
MMME starting from the list of the new process requirements. This argument is
out of the scope of this paper that it rather focussed on the fragments selection
phase and the role of the defined MMM in it. Besides, fragments assembly (that
follows fragments selection) is naturally related to the structure of the MMM
too, since according to the relationships defined in the MMM, fragments instan-
tiating some elements will naturally need as an input some elements and will
produce, as an output, some others that are required elsewhere.

Our proposal consists in the definition of a prioritization algorithm that is used
to create an ordered list of MMMEs. This list will be used to select the fragments:
the first element of this list will lead to the selection of the first fragment to be
imported in the new process and so on for the others (this does not necessarily
mean that the fragment related to the first MMME will be positioned at the
beginning of the new process life-cycle).

This algorithm establishes an important guideline for method engineers; in
other approaches, the selection of fragments is strongly related to method engi-
neer experience [6] or the adoption of complex deontic matrices [7]. The selection
of each fragment automatically generates constraints on the following ones, thus
giving a great importance to the order used to select them. We are convinced
this caused the diffused feeling that method engineering is such a complex disci-
pline that its usefulness is quite limited. With our approach, method engineers
do not need a great experience or the capacity to use complex matrices, they
only need a well structured repository where MMME can be used for fragments
retrieval (we presented such a structure in [8]) and the guidelines we propose
in this paper (as already said some activities, namely MMM definition starting
from requirements and fragments assembly, are only briefly discussed here, the
focus will be on fragments selection).

This article also reports an experiment of creation of a new process (called
ASPECS2); this is not a classical toy problem but rather we are dealing with
the construction of a large process for the design of large multi-agent systems.

2 ASPECS: Agent-oriented Software Process for Engineering Complex Systems.

88 M. Cossentino et al.

Fig. 1. The PRODE approach for design process composition

The MAS metamodel of this new process [9] is mainly composed by elements
coming from the PASSI [10] and CRIO [11] existing design processes and sup-
ports Janus as an implementation platforms for holonic agents.

The paper is organized as follows: the next section gives a brief description of
the proposed approach. Section 3 lists the requirements from which we started
for developing the new process, the experiment done and quickly overview the
resulting ASPECS design process. Section 4 discusses similar approaches in the
field and, finally, some conclusion statements are provided in section 5.

2 The Proposed Approach

The contribution we propose in this paper is a portion of a complete approach
to agent-oriented design process composition. In order to better position this
contribution we now describe the overall approach named PRODE (PROcess
DEsign for design processes).The PRODE approach is organized in three main
phases (see Figure 1): process analysis, process design and process deployment.

Process Analysis deals with requirements elicitation and analysis of the pro-
cess to be developed. It produces a set of elements, mainly a portion of the
MMM, affecting the Process Fragments Selection and Assembly activities. Fi-
nally in the Process Deployment phase the new SEP is instantiated, used to
solve a problem and then evaluated. Evaluation results are useful for defining
new requirements for the next SEP (if any) or improving the designed one. It is
worth to note that we consider the process of defining a new design process as
an iterative and incremental one.

Process Requirements Analysis is the first activity a method designer under-
takes in his work. It has inputs coming from the type of problem to solve. The
new process has in fact to be tuned for: (i) a specific solution strategy to a class

A MAS Metamodel-Driven Approach to Process Fragments Selection 89

of problem, (ii) the development context (composed by the available resources
such as people, tools, coding/modelling languages and platforms), and (iii) com-
petencies that are available in the SEP enactment group. This activity generates
the system metamodel and the other process elements (available stakeholders,
required activities/work products) used for the new process creation.

The metamodel contains all the concepts and their relationships. It can be
used to design and describe the system under study. It is organized in three
different domains, each one being associated to a phase of the development
process. The first domain is dedicated to the analysis and provides concepts to
describe the problem independently of a given solution. The second provides
concepts for the design of a solution independently of a given implementation.
And the last one provides platform-specific concepts.

We assume that each concept of the metamodel will be defined (instantiated)
in at least one fragment of the process whereas it can be related to other MMME
or cited in several fragments. The list of MMMEs is used for the process fragments
selection from the repository [8][5] as it will be discussed in the next sections. In
the Process Life Cycle Definition activity, these inputs are also used to define
the process life cycle that establishes the structure the designer has to follow
during process fragments assembly.

In the Process Design phase, process fragments are extracted from existing
design processes (or created from scratch) and stored in the Fragment Repository.

In the Fragments Selection activity the method engineer adopts the algorithm
described in the next subsection for selecting fragments in the prescribed order.
The process fragments assembly activity results in the new SEP. This activ-
ity consists in putting together the selected process fragments according to the
structure of the previously identified process life cycle.

This activity is still one of the most important unsolved points in the SME field
and some proposal have been done in [12][13]. It is a very complex work where
the method designer has to collate all the elements gathered in the previous
activities and to merge them by using his experience and skills.

During the Process Deployment phase, the system designer adopts the new
design process with the help of a CASE tool for solving a specific problem (we
developed the Metameth application for such a task). After that the designed
system is used and experimented, an evaluation activity occurs in order to eval-
uate the new design process; gathered information can be used to identify new
process requirements for a next iteration.

In section 3 an example on how we apply this process is provided by referring
to the construction of the ASPECS process.

In this paper the main focus is on the use of a core part of the MAS metamodel
as a guide towards the selection of fragments. The procedure we defined (Figure 2)
starts from the identification of the core part of the MAS metamodel that is done
by evaluating the contributions that could come from existing design processes or
development platforms (in our case they were PASSI, CRIO, JANUS because of
our past experiences with them). In fact it is logical to expect that people already
skilled with the concepts related to some existing processes or platforms prefers

90 M. Cossentino et al.

Fig. 2. Details of theprocess requirements analysis and process design phases presented
in Figure 1

to reuse them rather than to build everything from scratch. Parts of those meta-
models have been reused in order to satisfy the new process requirements that will
be described in the experimental part of the paper (section 3).

In the following subsections we discuss the most important steps of this pro-
cess: the new MAS metamodel construction and the new process design phase
where fragments are retrieved from repository and assembled.

2.1 MAS Metamodel Elements Prioritization

As already said, in this work we composed the new metamodel on the basis
of portions of metamodels coming from PASSI, CRIO and Janus. In so doing
we are aware that defining the core MAS metamodel means defining a relevant
part of the ‘philosophy’ that will be behind the new design process. For this
reason we performed this activity during meetings involving stakeholders. We
tried to deduct the list of elements by the portions of the cited processes that
could satisfy the new process requirements. Of course this was not sufficient
and it was therefore necessary to add new concepts for dealing with the specific
case. For instance a lot of work has been done in the organizational definition
of the agent society holonic structure as well as on the specification of possible
roles that could be played by agents inside an holon (Head, Representative,
Part/Multipart and StandAlone). These are crucial choices that conditioned the
entire process and they have been largely debated before adoption. Some details
about the definition of the core metamodel will be provided in the experimental
part of the paper in section 3.

The work for designing the new process based on the defined core metamodel
can be represented as a cycle composed of three sub-phases as illustrated in
Figure 2: (i) prioritization of MAS Metamodel Elements (MMMEs); (ii) identi-
fication and assembly of process fragments defining the MMMEs; (iii) extension
of the metamodel until the complete process is defined.

A MAS Metamodel-Driven Approach to Process Fragments Selection 91

The process is detailed in the following algorithm:

�

//Sub-phase 1: MAS metamodel elements prioritization
1. Select a metamodel domain and consider the resulting portion of metamodel as a graph

with nodes (MMMEs) and links (relationships);
2. Define List_elements as a list whose elements are lists of MMMEs and associated

priority p: List_elements (p);
a. p<-1;
b. List_elements <- null;

3. Produce a linearization of the MMMEs nodes according to a topological sort (elements
with fewer relationships first) in List_elements, p is the priority index of each
node in the list

// Sub-phase 2: Selection/Assembly of fragments related to the core MAS metamodel
4. Select/Build fragments for defining (i.e. instantiating) the selected MMMEs by doing:

a. p<-1;
b. Selected_el<-List_elements.select(p);
c. While Selected_el.count>0 do{

c1. identify a reusable fragment for the instantiating the first element of
Selected_el or create a new one.

c2. Selected_el.RemoveFirst}
d. Increment p.

e. Repeat from b.
5. Assembly the fragment in the new process (eventually modify it if required)
6. Select the next metamodel domain (if any) and repeat from 2
//Subphase 3: MAS Metamodel Extension
7. If the process is not completed (i.e. not all design activities from requirements

elicitation to coding, testing and deployment have been defined)
a. Introduce new MMMEs
b. Repeat from 1.

� �

The algorithm prescribes (point 3) a linearization of the list of elements of
the MMM according to a topological sort criterion. The guideline we propose
for accomplishing this task consists in a few steps: consider the elements of the
graph, initialize priority p=1, select the element(s) that has fewer relationships
with the others, remove it/them (and insert it/them in the List elements list
with priority p), remove the element(s) and all the related relationships from
the metamodel, increment p, iterate.

Figure 3 reports an example of application of the proposed algorithm; here
a portion of the ASPECS core metamodel is reported, the agency domain. Ap-
plying the proposed algorithm we can see that, at the first step, the elements
with less relationships are: Capacity and Message; both these are assigned a
level of priority p equal to 1. The next step is to remove these elements from
the metamodel (see the right part of Figure 3) and iterate the procedure. The
next elements to be considered (p=2) are Communication and Service, they both
have one relationship with AgentRole; we can insert them in the List elements
list and remove from the metamodel. Further steps are omitted because of space
concerns.

The extension of the core MAS metamodel towards the completion of the
process obtained by composing fragments and it should be strongly affected by
the awareness of the new process requirements and the relationships among re-
quirements and MMMEs. In extending the initial core metamodel some other
criteria should be considered as well. First, the opportunity of reusing existing
fragments could lead to the introduction of specific MMMEs related to them.

92 M. Cossentino et al.

Fig. 3. The first two steps in the prioritization of the Agency Domain elements

This is a kind of bottom-up criterion that privileges the reuse of well-known and
tested fragments. Second, as a consequence of adopting a Model Driven Engi-
neering (MDE) approach in the development of ASPECS, we think that: (i) the
three identified MAS metamodel domains may be regarded as the three different
MDE models; (ii) elements belonging to a domain should have a correspondent
element in the following one (correspondence is realized by the transformation
from one model to the other). The second rule can have some exceptions related
to specific cases when an element is regarded as a design abstraction useful at
one specific level but it is not forwarded to the next one. A detailed discussion
of criteria and guidelines for MAS metamodel extension is out of the scope of
the paper and will be omitted.

3 Building ASPECS

In this section we describe the process we adopted for building ASPECS. We
report the process requirements, the initially created core metamodel, the defini-
tion of the precedence order of the metamodel elements, the selection/assembly
of process fragments and the extension of the metamodel with the consequent
selection of new fragments in an iterative process. Finally a short description of
the resulting process is provided.

3.1 Requirements for the Construction of ASPECS

The design of the ASPECS methodology has been constrained by a set of re-
quirements that according to the inputs of the process requirements analysis
phase presented in Figure 1, can be classified as follows:

(i) Problem Type: the scope of the new design process was to develop very large
MASs for the solution of complex problems suitable for an hierarchical decom-
position.
(ii) Development context : the development of the ASPECS methodology can be
seen as a joint work of people coming from two different experiences: people
working at the SET laboratory who had a strong background in the design and
implementation of holonic systems with a strong accent on organizational aspects
of MASs (CRIO process) and one new lab member who was the main author of

A MAS Metamodel-Driven Approach to Process Fragments Selection 93

Fig. 4. A part of the ASPECS Problem and Agency domains core metamodel

a process (PASSI, [10]) for the design of MASs where agents were mostly peers
and whose important features were: the use of ontologies, a requirements-driven
agent identification, the adoption of patterns and tools for supporting design/-
coding activities. Participants to this project soon agreed to preserve some key
elements of their backgrounds and skills in order to enable an easier transition to
the new design process. As regards agents implementation, in the SET lab, the
development of a new coding platform Janus was undergoing and its adoption
in the new design process was, of course, highly desirable.

These requirements concurred to the definition of the process we describe in
the next subsection.

3.2 The Core Metamodel

A part of the initial core metamodel defined for the ASPECS process can be
seen in Figures 4(a) and 4(b). This metamodel is a consequence of the process
requirements and design choices done during several meetings. Just in order to
exemplify how the metamodel was defined we can consider two of the process
requirements:

1. An organizational approach was desired were a direct link could be estab-
lished between the problem and the organization that solves it. This was
expected to generate solutions where the (hierarchical) organization struc-
ture was an evident decomposition of the problem.

2. A FIPA-compliant communications structure was required.

The first requirement, in the design team opinion, finds a solution in the
adoption of a direct link between the Organization and Requirement MMMEs
(see Figure 4(a)). This link would represent the direct correspondence between
the requirements and the organization that would fulfil them.

94 M. Cossentino et al.

The remaining part of the reported Problem Domain core metamodel descends
from the definition of organization we decided to adopt: An organization is de-
fined by a collection of roles that take part in systematic institutionalised patterns
of interactions with other roles in a common context. This context consists in
shared knowledge and social rules/norms, social feelings, etc and is defined ac-
cording to an ontology. The aim of an organisation is to fulfil some requirements.

This definition largely comes from the CRIO approach but it has also been
enriched with concepts coming from PASSI (for instance we decided to describe
the organizations context by using an ontology). This is coherent with the general
requisite of reusing teams members experience as much as possible. The last
sentence of the definition is the consequence of the above reported new process
requisites.

The second requisite naturally brings to the portion of metamodel reported in
Figure 4(b). This was largely inspired by a corresponding portion of the PASSI
metamodel where roles, communications, messages are connected in order to
satisfy FIPA specifications.

From these and other similar considerations we built the core metamodel for
the ASPECS process.

Summarizing, the core metamodel definition process is mainly composed by
the following steps: analysis of the process requirements, identification of
MMMEs and/or their relationships that could concur to these requirements
satisfaction, modification of the core metamodel according to strategic design
choice (for instance the adopted definition of Organization reported above).

In the next subsection we discuss the prioritization of the MMMEs represent-
ing the order we expect to instantiate these elements in the fragments that will
compose the new design process.

3.3 Prioritization of MAS Metamodel Elements

The priority order of the MMMEs was defined by applying the already discussed
heuristics to the Problem domain metamodel reported in Figure 4(a). The result-
ing list is: Requirement, AbstractCapacity, Scenario, AbstractRole, Interaction,
Organization, Action, Predicate, Concept, Ontology.

Similarly we obtained a priority order list for the MMMEs elements of the
following domains (Agency and Solution). The MAS metamodel of the Agency
domain is reported in 4(b).

After this step it is possible to select of fragments from the repository or
the construction of new ones in order to define the elements according to the
prescribed order. This process will be discussed in the next subsection.

3.4 Selection of Fragments

In performing the fragments selection activity, we refer to our repository of frag-
ments [8]; it includes fragments extracted from PASSI, Agile PASSI, TROPOS,
and Adelfe. For the presented experiment we used only fragments coming form
PASSI and we purposefully prepared the documentation of fragments coming

A MAS Metamodel-Driven Approach to Process Fragments Selection 95

from CRIO that were not in the repository. Since several MMMEs required
by this novel approach (for instance Holon) are not defined by fragments in
the repository, we expect to produce several new process fragments, hoping of
reusing and modifying some existing ones when possible.

According to the previous discussed list of MMMEs, the first retrieved pro-
cess fragment is supposed to instantiate the Requirement MMME, a model of
system requirements by starting from text usage scenarios. This is exactly what
the Domain Requirements Description fragment of PASSI does and it was thus
reused. The second MMME (AbstractCapacity) is instantiated by the Capacity
Identification fragment reused from CRIO. It is interesting to note that there is
no real difference in the precedence order of these two first elements (they share
the same value of priority). It is therefore not important to start from one or
the other. As already discussed, the two fragments we identified are not neces-
sarily the first two of the process life-cycle. This order in facts arises from the
mutual dependencies in terms of input/output among all fragments and could
be determined, for instance, by drawing a dependency diagram.

The realization of the third MMME (Scenario) presents an interesting issue:
this element is defined in the PASSI Role Identification fragment (where some
sequence diagrams are used to describe agent interactions within scenarios). This
fragment operates on several different MMMEs: Agent, Role, Actor, Message and
its output is the required Scenario. As it can be seen, some of these elements are
not part of the core metamodel. This situation (that is quite common) can be
solved in two ways: (i) the fragment is modified, (ii) the elements are added to the
metamodel thus enlarging the structure defined in the initial core. Further details
on the extension of the core metamodels will be presented in the next subsection.

In a similar way we defined the remaining part of the process. In this discussion
we omitted the details of each fragment and the difficulties found in defining the
new ones as well as in modifying the reused ones while adapting them to cope
with the new specific issues.

In the next subsection we discuss some examples of extension of the initial
core MAS meta-model done in order to refine the initial sketch of the process.

3.5 Completion of the Process and Extension of the Core
Metamodel

We view the construction of a new design process as an iterative-incremental
activity that can be decomposed in the following steps: (i) Construction of
a process stub including several fragments. (ii) Test of the process portion.
(iii) Evaluation of results. (iv) Next iteration planning in terms of new pro-
cess requirements to be addressed, changes to be done in the existing process
stub, and new parts of the metamodel to be included in the process.

In the ASPECS design process, we performed the first significant test after
completing a draft of the System Requirements phase. This test consisted in
using the new design process stub for designing a couple of simple applications.
As a result of this evaluation, we proposed one change: the explicit introduction

96 M. Cossentino et al.

of non-functional requirements in the early stages of the process (this implied
an extension of the metamodel). After that, according to the 4-steps process
discussed at the beginning of this subsection, we designed a new portion of the
metamodel, more specifically, the core part of the Agency domain metamodel
(see Figure 4(b)). We are not going to detail the work done on this part of the
process, we will only discuss one interesting point: the extension of the initially
defined core metamodel represented in Figure 4(b) to cope with some new process
requirements identified during the iteration. After some evaluations, we realized
that in the new process it was not possible to represent not FIPA-compliant agent
interactions (for instance environment mediated). They had not been initially
listed among the new process requirements but they were already supported by
the Janus platform and sometimes used in previous projects developed in the
lab. Another issue arose from the consideration that it was not possible to design
simple (non holonic) agents like the conventional PASSI ones. This limited the
possibility of integrating in the same design, complex holonic hierarchies with
simple agents (devoted to deal with minor parts of the problem). In order to
solve these issues we changed and extended the core metamodel by including a
Conversation and an AtomicAgent MMMEs.

The extended metamodel has been fully realized by a set of fragments and then
the process stub tested and evaluated as already described. The work continued
in an iterative way until the complete process was defined and thoroughly tested.

Next subsection provides a short description of the resulting ASPECS process3.

3.6 The Resulting Design Process

ASPECS combines an organizational approach with an holonic perspective. Its
target scope can be found in complex systems and especially hierarchical complex
systems. The principle of ASPECS consists in analyzing and decomposing the
structure of complex systems by means of an hierarchical decomposition. The
ASPECS process consists in four phases that are briefly described below.

The Analysis phase is based on the identification of a hierarchy of organiza-
tions whose global behaviour may represent the system under the chosen perspec-
tive. This phase starts with a requirements analysis activity where requirements
are identified by using classical techniques such as use cases. Domain knowledge
and vocabulary associated to the target application are then collected and ex-
plicitly described in the problem ontology. Each requirement is then associated
to an organization that represents a global behaviour able to fulfil the associated
requirements. The context of each organization is defined by a set of concepts
of the problem ontology. The organization identification defines a first hierarchy
of organizations that will then be extended and updated during the iterative
process. The identified organizations are decomposed into a set of interacting
sub-behaviours modelled by roles. The goal of a role is to contribute to the
fulfilment of (a part of) the requirements of the organization within which it

3 A complete description of the ASPECS process can be found at: http://set.utbm.
fr/index.php?pge=352&lang=fr

A MAS Metamodel-Driven Approach to Process Fragments Selection 97

is defined. In order to design modular and reusable organization models, roles
should be specified without making any assumptions on the architecture of the
agent that may play them. To meet this objective, the concept of capacity was
introduced. A capacity is an abstract description of a know-how, a competence
of an agent or a group of agents. The role requires certain skills to define its
behaviour, which are modelled by capacity. The capacity can then be invoked in
one of the tasks that comprise the behaviour of the role. In return, an entity that
wants to access a role, should provide a concrete realization for each capacity
the role requires.

The analysis phase ends with the capacity identification activity that aims at
determining if a role requires a capacity. At this step a new iteration may possibly
start. If all capacities required by roles at the lowest level of the hierarchy are
considered to be manageable by atomic easy-to-implement entities, the process
may stop.

The Agent Society Design phase aims at designing a society of agents whose
global behaviour is able to provide an effective solution to the problem described
in the previous phase and to satisfy associated requirements. The objective is,
now, to provide a model of the agent society involved in the solution in terms of
social interactions and dependencies among entities (holons and/or agents). Pre-
viously identified elements such as ontology, roles and interactions, are refined.
At the end of the design phase, the hierarchical organization structure is mapped
to a holarchy (hierarchy of holons) in charge of its execution. Each of the previ-
ously identified organizations is instantiated in terms of groups. Corresponding
roles are then associated to holons or agents.

This last activity also aims at describing the various rules that govern the
decision-making process enacted inside composed holons as well as the holons’
dynamics in the system. All of these elements are finally merged to obtain the
complete set of holons (composed or not) involved in the solution. In this way,
the complete holarchy of the solution is described.

The Implementation phase aims at implementing the agent-oriented solution
designed in the previous phase by adapting it to the chosen implementation
platform, in our case, Janus. Based on Janus, the implementation phase details
activities that allow the description of the solution architecture and the produc-
tion of associated source code and tests. It also deals with the reuse of previously
developed solutions.

The Deployment phase is the final one and it aims at detailing how to deploy
an application over various Janus kernels. This phase starts with the descrip-
tion of the deployment configuration and details how the previously developed
application will be concretely deployed; this includes studying distribution as-
pects, holons physical location(s) and their relationships with external devices
and resources; organization and agent test activities complete the process.

4 Related Works

The work presented in this paper extended the Situational Method Engineering
(SME) paradigm until now applied only to the Information System research

98 M. Cossentino et al.

field. In this section some conventional approaches will be discussed in order to
provide an overview of related works.

There are different SME approaches in literature, all of them start by facing
the three main phases for the construction of a new design process (process
requirement analysis, fragments selection, fragments assembly) and all of them
consider the fragment and the repository as fundamental elements. Despite of
these works, the problem of how to select and to assemble a set of fragments is
still an open issue.

An interesting approach is reported in [14]. Here the method designer firstly
identifies the need for the new design process by carrying out a set of analysis
activities on the application context. Basing on this analysis the method designer
can identify and select a set of fragments that best fit the elicited needs and then
he assemblies them. In this process the method designer uses a meta-modelling
technique in order to model the design process by using class and data kinds of
diagram.

The use of the meta-modelling technique is very similar to what we proposed
in this paper, in fact it allows to model all the stages, activities and tasks that
have to be performed in the new process thus creating a starting point for the
method designer to identify the proper fragments. The main difference with the
PRODE approach is that we use the metamodel in order to represent and define
a complete knowledge for the new design process, and that its elements are the
starting point for the selection from a repository and the assembly of fragments.
This technique can be automated and, anyway, it reduces the relevance of de-
signer skills in the process; this kind of dependence is one of the most important
problems affecting every approach found in literature.

Another well known approach is proposed by Ralyté et al. [15][3]; the result
of the previously said phases is a set of maps. These maps can be considered as a
guideline during the development of the new design process; they are composed of
three elements: source, intention and strategy. The method designer starts from
the process requirements specification, through the maps he models the new
process at different levels of abstraction and represents the method chunk, in so
doing he is able to identify a set of method chunks that satisfy each requirement.
Each chunk is equipped with a descriptor, done by a set of attributes (ID, name,
type, application, etc.); this element lets the designer understand which method
chunk can be used in each specific situation.

This kind of approach is quite different from the one we propose because it
is more dependent on the method designer skills and knowledge but also it does
not provide a knowledge description on the new design process and finally it is
necessary to build and use a well defined chunk repository, as descends from the
chunk definition and its specific form (the triplet and the descriptor).

Another approach, OPF (OPEN Process Framework) is based on the use of
the so called Deontic Matrices [4][16]; after having identified the number and the
type of activities to be performed, the workflow among them, the pre- and post-
conditions and a first draft of lifecycle, the method designer uses a set of deontic
matrices in order to find the relationships among fragments in pair and to be

A MAS Metamodel-Driven Approach to Process Fragments Selection 99

able to select a useful set of fragments. The most important difference and the
most important value of this approach is that a very huge repository exists for
that and this fact together with the use of deontic matrices allows the designer
to cover a well defined path from the first selected fragment to the latest one
through the established lifecycle giving, in this way, a real aid to the designer’s
work. The major problem is the deep knowledge required about the repository
that, containing a large amount of fragments, surely cannot be easily acquired
nor shared.

The approach presented in this paper has this kind of problem too, but the
repository it is related to contains a reduced number of fragments, at an higher
level of granularity and with the aid of the illustrated algorithm we claim that
it is easier to select the right fragments for assembly.

Finally all the approaches, until now presented, greatly depend on the used
definition of fragment our work, instead, aims at providing general methods and
techniques that are customizable for every kind of application.

5 Conclusion

Based on the Situational Method Engineering, this paper reports an experiment
of creation of a new process called ASPECS. The proposed approach starts from
the identification of the new process requirements in terms of development con-
text and problem type. The requirements are used for defining an initial core
version of the MAS metamodel. The elements of this metamodel are then or-
dered in a precedence list, and in this order the fragments are retrieved from the
repository and assembled in the new process. The resulting MAS metamodel of
ASPECS [9] is mainly composed by elements coming from the PASSI [10] and
CRIO [11] existing design processes and supports Janus as an implementation
platforms of holonic agents. In previous works applying SME, the method engi-
neer usually selects a set of process fragments that he considers as the best for
fitting a particular situation and then modifies or adapts them. The approach
described in this paper is different and it aims at being as much free as possible
from the designer skills by providing a set of reusable guidelines for fragments
selection and assembly.

References

1. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young Manage-
ment Consultants (1997)

2. Brinkkemper, S., Welke, R., Lyytinen, K.: Method Engineering: Principles of
Method Construction and Tool Support. Springer, Heidelberg (1996)

3. Ralyté, J.: Towards situational methods for information systems development: engi-
neering reusable method chunks. In: Procs.13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education, pp. 271–282 (2004)

4. Henderson-Sellers, B.: Method engineering: Theory and practice. In: ISTA, pp.
13–23 (2006)

100 M. Cossentino et al.

5. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE) 1(1), 91–121 (2007)

6. Brinkkemper, S., Lyytinen, K., Welke, R.: Method engineering: Principles of
method construction and tool support. International Federational for Information
Processing 65, 336 (1996)

7. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley, Reading (2002)

8. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. In: Proc. Of the Workshop on Objects and Agents, WOA 2006 (2006)

9. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: A holonic meta-
model for agent-oriented analysis and design. In: Mař́ık, V., Vyatkin, V., Colombo,
A.W. (eds.) HoloMAS 2007. LNCS (LNAI), vol. 4659, pp. 237–246. Springer, Hei-
delberg (2007)

10. Cossentino, M.: From requirements to code with the PASSI methodology. In: Agent
Oriented Methodologies, pp. 79–106. Idea Group Publishing, USA (2005)

11. Hilaire, V., Koukam, A., Gruer, P., Müller, J.: Formal specification and prototyping
of multi-agent systems. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW
2000. LNCS (LNAI), vol. 1972, p. 114. Springer, Heidelberg (2000)

12. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

13. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems 24 (1999)

14. van de Weerd, I., Brinkkemper, S., Souer, J., Versendaal, J.: A situational im-
plementation method for web-based content management system-applications:
Method engineering and validation in practice. In: Software Process: Improvement
and Practice. John Wiley & Sons, Ltd., Chichester (2006)

15. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. In: Kunii, H.S.,
Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, p. 471. Springer, Hei-
delberg (2001)

16. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering 14(1),
341–362 (2002)

An Evaluation Framework for MAS Modeling
Languages Based on Metamodel Metrics

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and Rubén Fuentes-Fernández

Dept. Software Engineering and Artificial Intelligence
Facultad de Informática

Universidad Complutense de Madrid, Spain
ivan gmg@fdi.ucm.es, jjgomez@sip.ucm.es, ruben@fdi.ucm.es

Abstract. The fast pace of evolution in Agent-oriented Software En-
gineering leads to a great variety of continuously changing Multi-Agent
System (MAS) Modeling Languages (MLs). In this situation, there is a
rising need of evaluation for MAS MLs, as the plenty of works on this
subject reflects. This paper follows this line of research presenting an
evaluation framework to measure quantitatively MAS MLs. The frame-
work includes metrics about availability, specificity, and expressiveness
of the MLs. Otherwise than existing frameworks, this work considers
metamodels to define its measures and focuses on the quantitative mea-
surement instead of qualitative evaluations. With these metrics and the
data gathered from existing MLs, the goal is to quantify the appropriate-
ness of a given MAS ML for a particular problem domain. In addition,
these metrics can quantitatively track the improvements of MAS MLs
on these features. The paper also presents the results of the current ex-
periments with the framework that have taken measures in nine problem
domains with six MAS MLs.

Keywords: Metric, metamodel, modeling language, multi-agent system,
evaluation.

1 Introduction

The agent field shares common conceptual foundations and principles but there
is still a lot of discussion about how to crystallize them in concrete and agreed
methodologies and modeling languages (MLs). For this reason, there is currently
a large number of Multi-Agent System (MAS) methodologies, each one with its
own modeling ML, like Tropos [3], INGENIAS [21], MaSE [7], Prometheus [20],
PASSI [4], and Agile PASSI. There are also agent-oriented MLs which are not
associated with any particular agent-oriented methodology, like AUML [2] or
UML-AT [9]. Moreover, the aforementioned MLs are not frozen, but on the con-
trary, many of them keep evolving through the introduction of new concepts and
improving their definitions. As a result of this situation, there is an increasing de-
mand for the evaluation of MAS methodologies and MLs. This need crystallizes
in the appearance of comparison and evaluation frameworks for agent-oriented
MLs.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 101–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

102 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

The existing evaluation frameworks for MAS MLs (see for instance [5, 23,
25, 26, 28]) have in common certain features. They focus in some aspects of
the definition of the MLs. A ML is characterized by three components: the
abstract syntax which is defined with a metamodel; the semantics ; and the con-
crete syntax or notation. Not all the MLs define all these components, since
its quite common not to provide the notation or even the semantics. This fact
explains that existing frameworks focus mainly on the abstract syntax, less in
semantics, and barely in the concrete syntax. Another common feature is that
these frameworks usually adopt a qualitative approach to evaluation. Those with
quantitative measures use discrete scales of few values (usually less than ten).
Although these metrics are useful in their settings, they are not well-suited for
some problems. For instance, when tracking improvements in the evolution of
a ML as a consequence of the addition of new concepts, fine-grained metrics
are necessary to quantify the effect of these additions on the overall language.
The issue of how to compare the suitability for a problem domain of different
MLs must also be considered. Most of frameworks rely on the subjective qual-
itative evaluation of experts for this problem. When looking for more precise
measures, works in the metamodeling area provide clues on potentially relevant
metrics. For instance, Kargl [13] defines a metric for the explicitness of modeling
concepts in metamodels; Vépa [29] presents several metrics on KM3 metamod-
els about size, packaging, or inheritance reusability. Nevertheless, these metrics
allow comparison between MLs but it is not clear how to use them to assess
domain suitability.

The framework for the evaluation of MAS MLs in this paper addresses the
previous issues with a set of quantitative metrics that consider the abstract
syntax and the semantics of these MLs. These metrics are defined in terms
of objective measures over the metamodels and ratings of experts about their
associated semantics, specifically about whether an element is necessary or not.
Given the metamodel of a ML and a domain problem, an element from the
metamodel is said to be necessary in the domain if it is required for modeling in
that domain and cannot be substituted with other elements of the metamodel.

The concept of necessary element is key in the framework, as it is the foun-
dation of its tree metrics. The availability metric measures if the ML has all the
elements necessary to model in a domain. The specificity considers if there are
non-necessary elements in the ML. Finally, the expressiveness metric measures
how many necessary elements are required to model a given problem. These
metrics can assist the MAS designer in different evaluations. The availability
and specificity metrics, which focus on the comparison between MLs, guide the
choice of the appropriate MAS ML for a domain. The expressiveness metric
allows tracking the progress in the expressive power of a ML along its evolution.

The structure of the remainder of this paper is as follows. Section 2 de-
scribes the evaluation framework with its three metamodel metrics. Section 3
and Section 4 report the measures gotten from several MAS MLs with the
framework: Section 3 considers the availability and specificity metrics to com-
pare MLs; Section 4 analyzes the improvements between versions of a MAS ML

An Evaluation Framework for MAS Modeling Languages 103

(the INGENIAS ML [21]) with the expressiveness metric. Section 5 reviews the
related work. Finally, Section 6 discusses some conclusions and the future work.

2 Evaluation Framework

As stated in the introduction, this evaluation framework uses measurements on
metamodels about the abstract syntax of the MLs and a limited evaluation of
experts on certain semantic issues. This mixed approach tries to decrease the
dependence of metrics on the experts’ subjective evaluation. At the same time,
the use of metamodels brings the advantages of an extensive software support, so
it is possible to develop programs for measuring instead of manually inspecting
the metamodels.

The framework currently includes three metrics, which are availability, speci-
ficity, and expressiveness. All of them are based on the semantic notion of the
necessary concepts for a given problem domain, that is, those elements of the
metamodel (i.e. entities, relationships, or others) required to express the concepts
that appear in the domain. The availability and specificity metrics measure the
suitability of the concepts of a ML for a particular problem domain. In contrast,
the expressiveness metric measures the amount of instantiated elements required
to represent the models of the problem domain. The following sub-sections de-
scribe these metrics.

2.1 Availability Metric

The goal of the availability metric is to measure the suitability of a ML for a
particular problem domain. Given a particular domain, there are some concepts
necessary to model its problems. The availability metric measures the percentage
of these necessary concepts that are contained in the ML. The higher is the value
obtained in the availability metric, the better is the conceptual framework of the
ML for the domain. On the contrary, a low value indicates that the agent ML
does not have concepts that developers considers necessary.

According to this introduction, the availability metric is defined as the ratio
appearing in Equation 1. In this equation, nc indicates the number of necessary
concepts for the modeling in a particular problem domain, and ncmm the number
of these necessary concepts that are actually contained in the metamodel.

availability =
ncmm

nc
(1)

The set of necessary concepts for a particular problem domain must be calculated
according to the ML. The user must restrict to what the metamodel contains and
decide which of the metamodel elements are necessary for solving the particular
problem. Once this set is selected, the user must detect if there are concepts
required to solve the problem that do not appear in the metamodel. These
are the missing concepts. Thus, the set of necessary components is the union
of the necessary components present in the metamodel and those missed. This

104 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

observation allows an alternative formulation of Equation 1 as Equation 2, where
(mc) is the number of missing elements and and (ncmm) the number of necessary
metamodel elements as before.

availability =
ncmm

ncmm + mc
(2)

Given these equations, the best result for the availability metric is the unity (i.e.
100%). This result is obtained when there are no missing concepts (mc = 0) in
the ML.

2.2 Specificity Metric

The specificity metric measures the percentage of the modeling concepts in a ML
that are actually used for a particular problem domain. If the value of this metric
is low, it means that there are many non-necessary metamodel elements. Hence,
the scope of the ML is probably more general than required for the domain. On
the contrary, if the value of the specificity metric is high, the scope of the ML is
targeted to that specific problem domain.

The specificity metric is defined with the Equation 3. This equation introduces
a new term cmm that represents the number of concepts in the metamodel, both
necessary and not. The specificity metric is the ratio of the metamodel concepts
necessary for a problem domain and the whole number of metamodel elements.

specificity =
ncmm

cmm
(3)

In the specificity metric, the best result is obtained when all the concepts of
the metamodel are necessary (ncmm = cmm) for the corresponding problem
domain. In this case, the specificity value is the unity (i.e. 100%).

2.3 Maximizing the Availability and Specificity

A model designer should try to get high values in both availability and speci-
ficity metrics. Nevertheless, a high availability is commonly preferable to a high
specificity. A high specificity implies that the language is very domain specific
and the designer uses all its concepts, although this does not preclude that some
required concepts may be missed. On the contrary, a high availability implies
that the designer has all elements needed to model the problem, although there
are also some not necessary. Theoretically, availability and specificity would get
the highest scores when ncmm = nc and mc = 0. Thus, a designer trying to op-
timize a ML with the maximum availability and specificity must select a subset
of the ML with only those elements needed in the concrete problem.

The optimization of specificity and availability metrics has a relevant impact
in the manipulation of the MLs. Consider the setting in which a company wants
to develop a code generation engine that transforms the models expressed with

An Evaluation Framework for MAS Modeling Languages 105

a given ML into code suited for a specific platform. In order to guarantee the
satisfaction of the requirements and minimize the cost of this project, the de-
velopment team should select a subset of the metamodel of the mentioned ML
with a high availability and specificity values. The high availability guarantees
the effectiveness on tracking the modeling coverage of the new interpreter. The
high specificity implies that the new code generator is implemented for as few
elements as possible, that is, only for the smallest necessary subset of the ML.

A remark must be made here concerning so called multi-perspective modeling.
A multi-perspective ML has several perspectives that represent pre-configured
aspects of a system with a different focus and conceptualization. These per-
spectives usually overlap and the same features of a modeled system appear in
different perspectives. This overlapping ease understanding of models but it also
makes that these MLs [14] use more concepts than other MLs. For this reason,
the multi-perspective MLs commonly get low results on specificity. However, this
is not inherent to multi-perspective MLs as they can get high scores as long as
all the perspectives are necessary. This is the case, for instance, of PASSI, which
is a multi-perspective MAS ML [4] with high results for the specificity metric
(see Section 3 for a comparison of MAS MLs in a group of problem domains).

2.4 Expressiveness Metric

The expressiveness metric measures the amount of model elements necessary to
model a system in a problem domain. The less model elements that are necessary
to specify the model, the more expressive is the ML. The term system denotes
in this context any MAS that satisfy some specific requirements.

It is important to notice that the expressiveness metric is related to the meta-
model instantiation process. The metric considers model elements instead of
metamodel elements as the previous metrics. The model elements are those used
in the specification of the model of a system. On the contrary, the metamodel
elements represent concepts of the ML. Thus, the model elements are instances
of the metamodel elements.

The expressiveness of a ML ml for a system system is defined with the Equa-
tion 4. The nme term denotes the number of model elements necessary for mod-
eling the system of the problem domain. There are different metrics that can be
considered for the size of the system, such as lines of code and function points.

expressiveness(ml, system) =
size(system)

nme
(4)

The value of the expressiveness for a ML changes with the chosen metric
for the system, what limits the value of this metric as an individual measure.
However, this metric is relevant for the comparisons between MLs, since these
relative values do not regard on the system size. Equation 5 shows the compar-
ison of two MLs, denoted as ml1 and ml2, with these metrics. In this equation,
the nme1 and nme2 terms respectively denote the number of model elements for

106 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

modeling the system with ml1 and ml2. The most expressive ML is the one
which needs fewer elements to represent the model of the system that solves the
problem.

expressiveness(ml1, system)
expressiveness(ml2, system)

=
nme2
nme1

(5)

Besides comparing different MLs, the expressiveness metric is also useful to
evaluate the improvements in the expressiveness of a given ML. If a ML un-
dertakes some changes in its metamodel, its new expressiveness value can be
compared with the old one. If the ratio is greater than one, the expressiveness
of the ML has improved. For instance, a ML that incorporates the one-to-many
interaction between agents has a greater expressiveness than its previous version
that just contains one-to-one interactions. The quotient between expressiveness
measures shows this improvement: the new version of the ML just needs one
interaction for this many-to-many interaction where the old one needs several
one-to-many interactions and, therefore, the new one needs less elements for
representing the same models.

Even in the case of MLs (or versions of the same ML) comparison, the qual-
ity of the modeling (i.e. of the model for the solution system) can influence the
number of modeling elements. For this reason, the presented framework strongly
recommends that the same designers model the system in both MLs. In this
manner, the quality of modeling is assumed to be similar in the two compared
MLs. In the same line, it is also advised to use an heterogeneous group of sev-
eral MAS designers, including experts of both MLs, to get an average modeling
behavior. Another issue is that the proposed system to solve can introduce some
bias in the measure, because the problem is best suited for one of the MLs. To
avoid this, a battery of MAS for several problem domains can be established for
the comparison of MAS MLs. This battery would constitute a benchmark. With
this benchmark, a ML can be selected as the one with the expressiveness unit.
Then, the expressiveness of any ML can be measured by comparison with the
mentioned unit ML.

3 Measuring MAS MLs with the Availability and
Specificity Metrics

This section introduces an account on the application of the availability and
specificity metrics to compare results across different MLs. The comparison uses
case studies from diverse MAS MLs. In order to gather data about availability
and specificity from designers worldwide, our research group provides a spread-
sheet (see Figure 1) that can be downloaded at http://grasia.fdi.ucm.es/
gschool. In this spreadsheet, the designer ticks the necessary and missing con-
cepts of a given ML (e.g. Tropos [3] in the figure) for a particular MAS example
(e.g. Cinema in the figure). A value of “1” indicates that the corresponding
modeling-concept of the ML is necessary for the considered problem domain,

http://grasia.fdi.ucm.es/gschool
http://grasia.fdi.ucm.es/gschool

An Evaluation Framework for MAS Modeling Languages 107

Fig. 1. Spreadsheet for assisting in measuring Availability and Specificity metrics

while the blank space indicates the opposite. The most common missing con-
cepts in each MAS ML are provided, but the user can add more if necessary.
With this information, the spreadsheet automatically calculates the ratios to
obtain the measurement of the metrics.

The MLs considered for this study are: Tropos [27]; PASSI and Agile PASSI
[4]; Prometheus [20]; MASE [7, 8]; and INGENIAS [1]. The cited references
describe the metamodels of these MLs and have been used for the computation
of the metrics. These MAS MLs offer a wide perspective of the current state-of-
the-art in Agent-Oriented Software Engineering.

The battery of examples used as problem domains for these measures includes
the following case studies. The Cinema and Request examples are distributed
with the IDK 2.7 [1], which is the support tool of the INGENIAS methodol-
ogy. The first one provides support for users that want to get a ticket to see a
movie. The second case study is a proof on how to construct a GUI connected
to an agent. The Delphi example [10] illustrates how to reach consensus among
experts evaluating the relevance of a document and it is already modeled and
implemented with INGENIAS (demo at the conference AAMAS-2008). The Cri-
sis management example uses a MAS to coordinate the mutual help of citizens
facing a medical emergency in their city [17, 22]. A solution for this problem is
distributed with the IDK 2.8 [1]. The remaining cases of the study have not been
originally modeled with any of the MLs considered here. The Deicing [15] exam-
ple considers the planning of the deicing and anti-icing processes for aircrafts in
an airport. [15] formally models and solves this problem using constraints. The
Combat [30] case study simulates combat systems with MAS. This example is
taken from the simulation field. The goal of the Steel [12] case is the planning
and observation of steel production, which comprehends several time-critical
and highly interference susceptible processes. The Box [6] case study simulates
a box manufacturer, which pursues the just-in-time-delivery of its products with
high standards of quality. Finally, the Scheduler [24] example schedules large
transportation networks as wholes, with a MAS to distribute the scheduling.

108 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

Table 1. Measuring Availability and Specificity of several MAS MLs

Tropos PASSI Agile-PASSI
availability specificity availability specificity availability specificity

Cinema 75.0% 75.0% 88.2% 75.0% 68.7% 73.3%
Request 91.7% 45.8% 90.1% 50.0% 80.0% 53.3%
Delphi 72.7% 66.7% 88.9% 80.0% 70.6% 80.0%
Crisis 63.6% 58.3% 85.7% 90.0% 75.0% 100.0%

Deicing 73.7% 58.3% 80.0% 80.0% 75.0 % 100.0%
Combat 53.8% 29.3% 64.3% 45.0% 53.8% 46.7%

Steel 70.0% 58.3% 72.2 % 65.0% 55.6% 66.7%
Box 53.3% 33.3% 68.8% 68.8% 57.1% 53.3%

Scheduler 60.0% 50.0% 78.3% 90.0% 56.5% 86.7%
Average 68.2% 52.8% 79.7% 70.0% 65.8% 73.3%

Prometheus MaSE INGENIAS
availability specificity availability specificity availability specificity

Cinema 85.7% 94.7% 77.7% 60.9% 100.0% 25.7%
Request 90.0% 47.4% 100.0% 52.2% 100.0% 14.9%
Delphi 84.2% 84.2% 82.4% 60.9% 97.3% 24.3%
Crisis 72.7% 84.2% 77.7% 60.9% 97.3% 25.0%

Deicing 86.7% 68.4% 76.5% 56.5% 97.4% 25.7%
Combat 85.7% 63.2% 68.8% 47.8% 92.1% 23.6%

Steel 76.5% 68.4% 75.0 % 65.2% 92.7% 25.7%
Box 84.6% 57.9% 68.8% 47.8% 94.9% 25.0%

Scheduler 73.9% 89.5% 73.9% 73.9% 90.2% 25.0%
Average 82.2% 73.1% 77.9% 58.5% 95.8% 23.9%

Table 1 presents the results for the availability and specificity metrics obtained
with the previous MAS MLs (i.e. columns in the table) and case studies (i.e. rows
in the table). Readers should remember that these metrics are based exclusively
on the meta-model elements. So, they do not require a complete modeling but
just the assessment of the usefulness of a certain concept in a given problem
domain, which is characterized in this report by a case study.

Inspecting Table 1, one can observe that the specificity measurements regards
on the complexity and the required level of detail in modeling for the problem
domains. For instance, the Request and Box cases are simple and their related
specificity measurements are low. By the same token, the Crisis-management
and Deicing problem domains need a more complex modeling design and they
get higher specificity-measurement values. In general, the higher level of detail
a problem domain needs, the higher value it obtains in the specificity measure-
ments. The reason is that this level of modeling detail directly influences the
number of necessary modeling concepts of a metamodel (ncmm term) used in
the definition of the specificity metric (see equation 3).

Regarding the availability measures, Table 1 shows that they depend on the
features of MASs required to model each problem domain and which of them
the ML provide. For instance, the Box and Scheduler problem domains primarily

An Evaluation Framework for MAS Modeling Languages 109

needs concepts for the individual features of agents, such as mental states and
outputs of the agents; whereas the Request and Cinema problem domains needs
more modeling concepts for interaction features. Since Tropos and Agile-PASSI
focus more on interaction-agents features than on individual-agent features, they
get low results in the Box and Scheduler problem domains (Tropos gets 53,3%
for the Box and 60% for the Scheduler, and Agile-PASSI 57,1% for the Box
and 56,5% for the Scheduler), while a high availability in the Request and Cin-
ema cases (Tropos gets 91,7% for the Request and 75% for the Cinema, and
Agile-PASSI 80% for the Request and 68,7%). According to the same reasoning,
Prometheus gets better results in the availability metric for the Box and the
Scheduler problem domains (84,6% and 73,9% respectively), because it includes
a large group of modeling concepts for individual-agent issues. The reason for
this dependence between availability-measures and the features of the problem
domains can be concluded from the definition of the availability metric (see
Equation 2). The availability measurements inversely depend on the number
of missing concepts (mc term), and the mc term quantifies the absence of the
modeling concepts for expressing the necessary features of MASs in a particular
problem domain.

Furthermore, both for the availability and the specificity metrics, it can be
regarded that high scores of the metrics correspond to a good adjustment of the
ML to the scope of the domain problem. For instance, Prometheus is especially
useful for BDI-like agents. Thus, its scores depend on whether the examples are
BDI-like or not. This explains the lower scores (76,5% availability and 68,4%
specificity) obtained in the Steel example, which is not BDI-like, and the higher
scores in BDI-like developments like the Delphi (84,2% availability and 84,2%
specificity) or the Cinema (85,7% availability and 94,7% specificity) examples.

Finally, some global observations can be done aggregating the results for the
specificity (see Figure 2)) and availability (see Figure 3) metrics by methodolo-
gies Agile-PASSI is a subset of PASSI that only includes the most necessary
concepts of PASSI, according to their authors. This explains the greater speci-
ficity of Agile-PASSI (see Figure 2), as the number of Agile-PASSI concepts is

Fig. 2. Average specificity for each MAS Modeling Language

110 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

Fig. 3. Average availability for each MAS Modeling Language

smaller. However, this reduction also implies that the availability of Agile-PASSI
decreases when compared with that of PASSI (see Figure 3), since some domain
problems need concepts that appear at PASSI but not at Agile-PASSI. Another
relevant case is INGENIAS. It is the methodology in the report with the highest
score in availability (over 95%) due to its rich set of concepts. Nevertheless, this
also makes many of its concepts not necessary for a given domain problem, what
implies the lowest score in specificity (near 25%).

4 Analyzing the Improvements in a ML with the
Expressiveness Metric

Section 2.4 discusses the use of the expressiveness metric for the comparison
of the expressive power of versions of the same ML. This comparison relies
on the count of model elements needed to solve a given problem. This section
measures the improvements of the INGENIAS ML [1] between the versions 2.6
and 2.7. These versions are supported by the versions 2.6 and 2.7 of the IDK
tool respectively.

The 2.7 version introduce support for one-to-many and many-to-many inter-
actions. These interactions were not supported in the old version (i.e. 2.6). Thus,
a MAS with one-to-many or many-to-many interactions can be represented di-
rectly with the new version, while in the old version these kind of interactions
were represented with several one-to-one interactions. Thus, the new ML ver-
sion is expected to have a grater expressiveness than the old one, as it needs less
elements to represent the same MAS model.

The formal comparison between these two versions of the ML uses the Request
MAS example already cited in the Section 3. In this MAS, an agent called Per-
sonalAssistant performs a request for proposals to other agents, which are called
providers. There is an one-to-many interaction from the PersonalAssistant agent
to the provider agents. This study considers several numbers of providers, be-
cause the expressiveness ratio between both versions increases when considering
a high number of providers.

An Evaluation Framework for MAS Modeling Languages 111

Table 2. Comparison of Expressiveness between 2.7 and 2.6 versions, with the Request
MAS example. The ratio of expressiveness is calculated with the ratio of numbers of
elements (see Equation 5). The number of elements is the addition of entities and
relationships.

Providers ML Version # Entities # Relations # Elements Ratio Expressiv.

3
2.7 52 45 97

1, 19(+19%)
2.6 58 57 115

10
2.7 101 94 195

1, 41(+41%)
2.6 128 148 276

100
2.7 731 724 1455

1, 61(+61%)
2.6 1028 1318 2346

∞ 2.7 52 + 7 ∗ n 45 + 7 ∗ n 97 + 14 ∗ n
1, 64(+64%)

2.6 58 + 10 ∗ n 57 + 13 ∗ n 115 + 23 ∗ n

Table 2 gathers the data of the evaluation in this case. It shows that the 2.7
version of the INGENIAS ML is 19% more expressive than the 2.6 version. This
increment considers the MAS with three providers. However this increment is
greater when considering higher numbers of providers. The increments are 41%,
61% and 64% for ten, one hundred and infinity providers respectively. For the
measurement with an infinity number of providers, n represents the number of
additional providers apart from the three initial ones. Thus, the expressiveness
metric confirms a relevant improvement in the new version of the ML.

5 Related Work

The evaluation of ML for MAS has drawn a lot of attention in recent works.
These researches share some common features. They usually focus on qualita-
tive measures with Yes/No [28] or Bad/Fair/Good [5, 23, 26] scales, and even
structured text [25]. Besides, the evaluated issues in many of them [25, 26, 28]
are biased in their formulation to MASs like autonomy, interactions, or organi-
zations. On the contrary, the evaluation framework proposed in this paper uses
quantitative measurement of the MLs and although the reported examples are
intended for MAS, the approach is applicable to other kinds of MLs. As a draw-
back, the presented framework only measures the abstract syntax and partly the
semantics, but not the notation or ontology as other approaches do [5, 25, 28].

There are also some works concerned with the definition of metrics to evaluate
MLs with some common features with ours. Mulyar et al. [16] measure clinical
computer interpretable MLs. Their metric consider the degree of support of 43
control-flow patterns. That is, they take into account the availability of several
concepts (i.e. the control-flow patterns). Thus, the availability metric of the
presented framework is similar to this approach. However Mulyar’s evaluation
is completely manual and targeted to the specific domain of clinical assistance,
while our work defines the metric on the metamodel (therefore suitable for a
partially automated processing) and is applicable to general MLs.

112 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

The expressiveness of MLs has also been considered in some previous works
[23, 25] as a feature to consider in the evaluation of MAS MLs. The works of Kargl
[13] (with the explicitness metric) and Vépa [29] (with metrics on metamodels
about size or inheritance reusability) can be considered in this line. Nevertheless,
these works do not provide any metric for expressiveness [25] or it is not clear how
to use them in comparison [13, 29], whereas our evaluation framework includes
a metric for measuring and quantitatively comparing the expressiveness.

The semantic evaluation of the MLs for a problem domain is another aspect
to consider here. There are several works related to the evaluation of MLs. One
of the best known is the one Opdahl and Henderson-Sellers [19] using the Bunge-
Wand-Weber (BWW) ontological approach. Opdahl and Henderson-Sellers ap-
ply BWW to analyze and evaluate the Unified Modeling Language (UML) [11]
for representing concrete problem domains. That work considers the Wand and
Weber ontological discrepancies, such as the Construct overload, redundancy,
excess or deficit. The OPEN Modeling Language (OML) [18] has also been eval-
uated in terms of the BWW model.

The presented evaluation framework relies on the judgment of experts about
concepts clearly stated in the MAS literature in order to evaluate the appropri-
ateness of the ML for a problem domain. However, the approach of Opdahl and
Henderson-Sellers could complement our framework in some cases.

6 Conclusions and Future Work

This paper presents an evaluation framework for MAS MLs focused on their
abstract syntax and their semantics. Over these information, the framework
defines three quantitative metrics, i.e. availability, specificity, and expressiveness.
These metrics makes the framework a suitable analysis tool for several processes
related with MLs. Firstly, the framework offers a mechanism for the selection of
the appropriate ML for a particular problem domain using the availability and
specificity metrics. Secondly, the framework assists the designer in selecting a
suitable subset of a ML for a specific kind of problem domain again with the
availability and specificity, but also with the expressiveness metric to compare
the expressive power of the MLs. Finally, the framework aids to measure the
improvements between version of MLs with the expressiveness metric.

The framework is built upon two types of measures about the MLs. The first
type relies on the abstract syntax of the models. In this case, they are objec-
tive, quantitative, and automated measures. The second one is semantic mea-
sures about the necessary elements in the metamodel to solve a given problem
domain or modeling elements to represent a system. These measures are also
quantitative but they depend on the assessment of experts, so they introduce
a subjective component in the evaluation. In order to reduce this subjectivity,
the presented framework strongly recommends using a large number of experts
in the evaluation of the MLs and making that the same experts evaluate all the
different MLs. In this way, the evaluation gets an average measure and it is not
biased to certain MLs.

An Evaluation Framework for MAS Modeling Languages 113

The future work considers several open issues for the framework. On one side,
a complete benchmark will be defined for the availability and specificity metrics.
This benchmark is a battery of MASs classified into several problem domains.
Another useful benchmark could be defined for the expressiveness metric for
MAS. In this case, a ML is considered as the unit ML. Then, the expressiveness
of a MAS ML can be measured by comparison with the unit ML.

Finally, a more challenging issue is the evaluation of the presented framework
against human judgments to provide an assessment of the level in which our
metrics meet the human expectations.

Acknowledgements

This work has been supported by the project “Methods and tools for agent-based
modelling” supported by Spanish Council for Science and Technology with grant
TIN2005-08501-C03-03, and by the grant for Research Group 910494 by the
Region of Madrid (Comunidad de Madrid) and the Universidad Complutense
Madrid.

References

1. INGENIAS Development Kit. (March 6, 2008),
http://ingenias.sourceforge.net/

2. Bauer, B., Müller, J.P., Odell, J.J.: Agent UML: A Formalism for Specifying Mul-
tiagent Software Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (2004)

4. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile PASSI: An Agile Pro-
cess for Designing Agents. International Journal of Computer Systems Science &
Engineering. Special issue on Software Engineering for Multi-Agent Systems (May
2006)

5. Dam, K.H., Winikoff, M.: Comparing Agent-Oriented Methodologies. In: Giorgini,
P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS, vol. 3030, pp.
78–93. Springer, Heidelberg (2004)

6. Darley, V., Sanders, D.: An agent-based model of a corrugated-box factory: the
trade-off between finished goods stock and on-time-in-full delivery. In: Proceedings
of the Fifth Workshop on Agent-Based Simulation (2004)

7. DeLoach, S., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering 11(3),
231–258 (2001)

8. DeLoach, S.A.: Multiagent systems engineering of organization-based multiagent
systems. ACM SIGSOFT Software Engineering Notes 30(4), 1–7 (2005)

9. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Model integration in agent-
oriented development. International Journal of Agent-Oriented Software Engineer-
ing 1(1), 2–27 (2007)

http://ingenias.sourceforge.net/

114 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

10. Garćıa-Magariño, I., Pérez Agüera, J.R., Gómez-Sanz, J.J.: Reaching Consensus in
a Multi-agent System. In: 6th International Workshop on Practical Applications on
Agents and Multi-agent Systems, IWPAAMS 2007, Salamanca, Spain, November
12-13, pp. 349–358 (2007)

11. OMG (Object Management Group). UML, Unified Modeling Language Infrastruc-
ture, Version 2.0 (2005) (Retrieved July 30, 2008),
http://www.omg.org/spec/UML

12. Jacobi, S., Madrigal-Mora, C., León-Soto, E., Fischer, K.: AgentSteel: an agent-
based online system for the planning and observation of steel production. In: Pro-
ceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pp. 114–119 (2005)

13. Kargl, H., Strommer, M., Wimmer, M.: Measuring the Explicitness of Modeling
Concepts in Metamodels. In: ACM/IEEE 9th International Conference on Model
Driven Engineering Languages and Systems (MoDELS/UML 2006), Workshop on
Model Size Metrics, Genova, Italy (October 2006)

14. Kingston, J., Macintosh, A.: Knowledge management through multi-perspective
modelling: representing and distributing organizational memory. Knowledge-Based
Systems 13(2-3), 121–131 (2000)

15. Mao, X., ter Mors, A., Roos, N., Witteveen, C.: Agent-based scheduling for air-
craft deicing. In: Proceedings of 18th Belgium-Netherlands Conference on Artificial
Intelligence, BNAIC 2006, Namur, Belgium (2006)

16. Mulyar, N., van der Aalst, W.M.P., Peleg, M.: A Pattern-based Analysis of Clinical
Computer-interpretable Guideline Modeling Languages. Journal of the American
Medical Informatics Association 14(6), 781 (2007)

17. Oomes, A.: Organization awareness in crisis management. In: Proc. ISCRAM 2004,
pp. 63–68 (2004)

18. Opdahl, A.L., Henderson-Sellers, B.: Grounding the OML metamodel in ontology.
The Journal of Systems & Software 57(2), 119–143 (2001)

19. Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the
Bunge–Wand–Weber Model. Software and Systems Modeling 1(1), 43–67 (2002)

20. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents. In: Proceedings of the Third International Workshop on Agent Oriented
Software Engineering, at AAMAS (2002)

21. Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS.
In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691,
pp. 394–403. Springer, Heidelberg (2003)

22. Schraagen, J., Eikelboom, A., te Brake, G.: Experimental evaluation of a critical
thinking tool to support decision making in crisis situations. In: Proceedings of
the 2nd International Conference on Information Systems for Crisis Response and
Management, Brussels, Belgium, April 18-20 (2005)

23. Shehory, O., Sturm, A.: Evaluation of modeling techniques for agent-based systems.
In: Proceedings of the fifth international conference on Autonomous agents, pp.
624–631 (2001)

24. Skobelev, P., Glaschenko, A., Grachev, I., Inozemtsev, S.: MAGENTA technology
case studies of magenta i-scheduler for road transportation. In: Proceedings of the
6th international joint conference on Autonomous agents and multiagent systems
(2007)

25. Sturm, A., Shehory, O.: A Framework for Evaluating Agent-Oriented Methodolo-
gies. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS,
vol. 3030, pp. 94–109. Springer, Heidelberg (2004)

http://www.omg.org/spec/UML

An Evaluation Framework for MAS Modeling Languages 115

26. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of Agent-
Oriented Software Methodologies-Examination of the Gap Between Modeling and
Platform. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 126–141. Springer, Heidelberg (2005)

27. Susi, A., Perini, A., Mylopoulos, J.: The Tropos Metamodel and its Use. Informat-
ica 29(4), 401–408 (2005)

28. Tran, Q.N.N., Low, G., Williams, M.A., Wales, N.S., Mary, A.: A Preliminary
Comparative Feature Analysis of Multi-agent Systems Development Methodolo-
gies. In: Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low, G., Winikoff, M.
(eds.) AOIS 2004. LNCS, vol. 3508, pp. 157–168. Springer, Heidelberg (2005)

29. Vépa, É., Bézivin, J., Brunelière, H., Jouault, F.: Measuring Model Repositories.
In: Proceedings of the Model Size Metrics Workshop at the MoDELS/UML 2006
conference, Genova, Italy (2006)

30. Yang, A., Abbass, H.A., Sarker, R.: Landscape dynamics in multi-agent simulation
combat systems. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS, vol. 3339, pp. 39–50.
Springer, Heidelberg (2004)

A Unified Graphical Notation for AOSE�

Lin Padgham1, Michael Winikoff1, Scott DeLoach2, and Massimo Cossentino3

1 RMIT University, Australia
{lin.padgham,michael.winikoff}@rmit.edu.au

2 Kansas State University, USA
sdeloach@ksu.edu

3 ICAR-CNR, Italy
cossentino@pa.icar.cnr.it

Abstract. Over the last five years several agent system development method-
ologies have been proposed and developed, with a number of them becoming
well established and used beyond the group developing them. They all deal with
similar concepts, but the notations used differ substantially. In this work we de-
velop a standardized graphical notation for four prominent agent development
methodologies, using principles of graphical notation suggested by Rumbaugh.
We briefly illustrate the graphical design views produced in the different method-
ologies, on a conference management system example, using the standardized
notation. We then discuss some of the similarities and differences on the basis
of the design artifacts produced - which are now much more readily comparable
than previously. This is a first step in being able to readily incorporate steps from
different methodologies, depending on the needs of the application. It also helps
to make the material more readily accessible to a wider audience.

1 Introduction

In recent years, it has become accepted that in order to effectively develop agent sys-
tems, it is necessary to have methodologies and notations that deal specifically with
agent concepts and agent design issues. As a result, over the last several years many
Agent Oriented Software Engineering (AOSE) methodologies have been developed or
proposed, with some of the most well known including Gaia [1], O-MaSE (based on
the earlier MaSE) [2], Tropos [3], Prometheus [4] and PASSI [5].

Important aspects of mature methodologies include the particular tools and diagrams
that are used to develop and capture the analysis and design of the system being devel-
oped [6]. While there are a number of similarities between different methodologies
cited above, each has its own particular strengths and nuances. It is certainly conceiv-
able that a developer would wish to incorporate aspects of different methodologies into

� We acknowledge the input of Paolo Giorgini in discussing and determining the notation pre-
sented, and AgentLink which organized the Technical Forum. Padgham and Winikoff ac-
knowledge the support of The Australian Research Council and the Australian Department of
Education, Science and Training, as well as Agent Oriented Software under grants LP0453486
and CG040014. Scott DeLoach acknowledges the support of the US National Science Foun-
dation under Grant No. 0347545 and by the US Air Force Office of Scientific Research.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 116–130, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Unified Graphical Notation for AOSE 117

a development process. In fact, this is the vision of method engineering [7] where the
goal is to mix and match the activities, tasks and techniques of various methodologies
according to the needs of a particular project. However, it is currently difficult to com-
pare or use the diagrams and techniques from different AOSE methodologies because
each methodology uses its own concepts, notations, and techniques.

The vision of method engineering is generally achievable using mature technologies
such as object orientation where the basic concepts (objects, classes, associations, in-
heritance, etc.) and notations (UML) are well understood and generally agreed upon
[8]. As a result of this maturity and agreement in the object oriented community, there
are several well known activities, tasks and techniques that can be applied in a number
of ways on various projects. There are also several commercially available tools that
can be used together or separately to support a variety of approaches to developing ob-
ject oriented systems [9]. Duplicating the success of object orientation requires two key
elements: a common notation and a common metamodel.

The goal of this paper is to take a first step toward the level of maturity evidenced
in the object-oriented community. In this first step, the developers of a number of the
most detailed and prominent AOSE methodologies have worked together to produce a
common notation.1 While this first step is modest, we believe that a shared graphical
notation is a first step toward making AOSE methodological work applicable to industry
consumers. This notation will be used in each of our future individual methodological
work and will be integrated into existing and new tools supporting that work.

In progress toward the second key element, there has been work done attempting
to define a common metamodel for multi-agent methods and techniques [11]. Some
efforts have also been spent in the field of standardization within the FIPA organization.
Two different technical committees (Modeling and Methodology) worked on that and
results describing their points of view can be found in [12,13]. However, while basic
agent-oriented concepts have some commonality, we are far from having community-
wide consensus on the majority of agent and multi-agent concepts. Thus, the common
metamodels tend to be overly complex and of limited practical usefulness. Even though
our goal may be considered more limited, from a practical standpoint, it is at least
equally important and can provide a good first step in reaching such a community-wide
consensus on the most important agent concepts.

While this paper does identify common concepts that we all use or wish to include
in our notational set, the precise definitions and ways they are used do differ somewhat
from methodology to methodology. Until there is a community wide agreement on these
concepts, we believe these differences should be allowed to exist.

In the rest of this paper we present the new notation, motivating the choices we have
made, followed by an example of a conference management system where we illustrate
the design diagrams that can be produced by the various methodologies using the new
notation. We finish with a brief discussion of the importance of working together across
research groups to provide an engineering methodology that is accessible to practition-
ers wishing to build complex agent systems.

1 We also worked with Paolo Giorgini, considering the Tropos methodology in the development
of the common notation. We did not use Gaia because it does not make use of graphical models.
We also did not include less prominent AOSE methodologies such as [10] for the time being.

118 L. Padgham et al.

2 The Unified Graphical Notation

We begin this section by describing general criteria for developing (graphical) notations
suitable for the analysis and design of complex software systems. The article by Rum-
baugh [14], one of the developers of the widely-used UML notation, gives the following
list of desiderata for developing notations. This list illustrates the trade-offs that must
be made when different desired properties conflict.

1. Clear mapping of concepts to symbols
2. No overloading of symbols
3. Uniform mapping of concepts to symbols
4. Easy to draw by hand
5. Looks good when printed
6. Must fax and copy well using monochrome images
7. Consistent with past practice
8. Self consistent
9. Distinctions not too subtle

10. Users can remember it
11. Common cases appear simple
12. Suppressible details.

In the remainder of this section, we present the notation that we have developed and
explain the rationale for our decisions. As is often the case, there are sometimes trade-
offs, but we believe we have now developed a notation that satisfies desirable properties
for usability, clarity, etc.

Our notation uses a common type of diagram where the entities of interest are de-
picted as nodes and distinctive shapes are used to differentiate different types of nodes.
Figure 1 presents an overview of our proposed notation. Relationships between enti-
ties are depicted by links, which can be decorated with a label giving the link type

scenario

resource

/ data

Activity

capability

event

action

«info»

Service

organization

«info»

actor

agent

«info»

conversation

«info»

message (out)

«info»

Plan

Goal

«info»

percept

«info»

message (in)

«info»

soft goal role

«info»

position

«info»

Fig. 1. Proposed Notation. The shaded symbols (use case and activity) as well as the actor symbol
are existing UML symbols.

A Unified Graphical Notation for AOSE 119

(e.g. “�precedes�”, “�initiates�”). The decorations are optional and in many cases
can be derived from the types of the entities. For example, in Prometheus an arrow from
a percept to an agent is always a �receives� relationship.

This “graph-based” notation is standard in all types of engineering and is especially
well suited to capturing system structure. However, capturing system behavior may be
best done with non-graph-based models such as AUML sequence diagrams [15]. In
this paper we do not tackle this type of diagram: since the AUML sequence diagram
is well-defined and widely used, it makes little sense to propose a replacement for it.
Other diagrams capturing system behavior, such as the Prometheus process diagrams,
can be drawn with the proposed new notation.

Below we explain each type of node in our proposed notation. For each node we
explain our reason for choosing the depiction given in Figure 1, and relate it to the
concepts it can be used to represent. However, before describing the graphical notation,
we briefly motivate our choice of concepts.

In selecting the concepts to be represented in our notation, we chose concepts that
were required to model agent-based systems as indicated by their use in the four method-
ologies participating in the discussion, as well as other agent based methodologies of
which we were aware. In identifying “required” concepts, we related the concepts used
to design and build agent systems to the defining properties of agents [16]2:

– Agents are autonomous – the key concept here is the notion of an agent itself, as
an autonomous entity (distinct from objects).

– Agents are situated – the minimal key design concepts are the interface to the agent
system’s environment, in terms of actions performed by agents that affect the envi-
ronment, and percepts3, that get information from the environment. Clearly, more
sophisticated concepts can be used to characterize the environment.

– Agents are proactive – the corresponding concept is goals.
– Agents are reactive – the corresponding concept is the notion of an event, a “sig-

nificant occurrence”.
– Agents are social – here a wide range of concepts could be used, ranging from the

minimal one of messages, through to a range of organizational models. We choose
to use the concepts of messages, conversations4, roles, positions and organizations,
where positions are placeholders for one or more roles within an organization, and
an organization can include particular forms of organization, such as a team, or an
e-institution.

In addition to these clearly required concepts, we added the following commonly used
concepts:

– Soft-goals: goals that do not have a clear satisfiability definition, used in a number
of methodologies, both agent-oriented and non-agent-oriented, for modelling non-
functional requirements such as security, usability, flexibility. We include soft-goals
since they are clearly useful, and since they fit in very well with agent-based design,
where agents have goals.

2 Sturm et al. [10] proposed a similar set of concepts, based on our earlier work [16].
3 From the Latin perceptum, same root as the word “perceive”.
4 Also known as “protocols” or as “interaction protocols”.

120 L. Padgham et al.

– Actor: an external entity, which can be human or software. This concept is useful
in early analysis, and is well established in existing practice.

– Capability: a concept often used in discussing agents and implemented first by the
JACK agent-oriented programming language [17] and subsequently adopted and
extended by Jadex. Capabilities are a modularization construct for agents which
can contain things such as plans, events, data, and sub-capabilities.

– Plan: sometimes termed tasks, plans are a key concept in BDI agent platforms, and
in other plan-based implementation platforms. Hence, it is clearly important for
(detailed) design to support plans.

– Resource/data: like any other software, agents normally need to store data in some
form and/or use existing resources. For notation purposes we a use a single sym-
bol to depict data or resources, without distinguishing between resources (e.g. a
printer) and data, or between different data formats (objects, belief sets, relational
databases).

– Service: the use of services are becoming very popular in information systems de-
sign using what are called service-based multi-agent systems. Although services
are currently only well-defined in PASSI, we believe that this is a growing area and
thus it is important to be able to depict existing services that will be used.

Having identified the concepts used to define agent systems, we now turn to consid-
ering how to graphically depict these concepts (see Figure 1) in order to more easily
model agent system designs. According to the desiderata identified by Rumbaugh [14],
each of the key concepts should be mapped to a distinct symbol satisfying the first
two criteria (“Clear mapping of concepts to symbols” and “No overloading of sym-
bols”). In addition, we strived to select symbols that emphasize similarities between
related concepts (e.g. between outgoing messages and actions) whilst using clearly dis-
tinct symbols for concepts that are clearly dissimilar (“Uniform mapping of concepts to
symbols”). For example, the symbols for a plan and for an agent are completely differ-
ent. The symbols selected are also easily drawn by hand; our notation does not rely on
shading, line thickness, or any other distinctions that are subtle, confusing, or that do
not copy/fax well. The only distinction between symbol shapes that is somewhat subtle,
the use of rounded corners in roles and positions, is reinforced by the use of a modifica-
tion to the stick figure within the symbol. Further, as is discussed below, we have strived
for consistency with past practice, where appropriate. In particular, we have used the
UML notation where it made sense to do so. However, as will be seen in the following
sections, many of the concepts used to engineer agent systems do not exist in UML, and
in this case we believe that it is important to have new and clearly distinct symbols for
concepts that are new and clearly distinct. Finally we describe a notational mechanism
for achieving scalability by suppressing details.

Goal and Softgoal: Perhaps because goals are a new concept in agents, and one of
the differences that clearly distinguish agents from objects, there is no consensus on
how to depict them graphically. For instance, O-MaSE depicts goals as a rectangle
with a number and a name, Tropos uses a fully rounded box (a “pill” or “lozenge”
shape), and Prometheus uses an oval. Since one of our aims is to be compatible with

A Unified Graphical Notation for AOSE 121

existing standards, and since GRL5 appears to be in the process of being standardized6

we choose to use a pill/lozenge shape for goals.7 For softgoals the standard is to use
a cloud shape. Although this is not always easy to draw using tools, we cannot justify
inventing a new symbol when a widely used symbol already exists for the concept.

Scenario: Scenarios are closely related to use cases, and hence we want a symbol that
is close to the existing UML symbol for a use case (an oval). However, we also want to
avoid overloading symbols, thus we have elected to use a double-lined oval.

Entities: Actors, Agents, Roles: Actors are a well-established concept with a well-
established notation (the stick figure) which we adopt. For agents it is important to have
a symbol that is distinct from the UML class symbol. However, despite the importance
of the agent concept to AOSE, there is no consensus on its depiction: Prometheus uses
a rectangle containing a stick figure, whereas Tropos uses a circle. For our notation,
we propose that the Prometheus notation of the stick figure in a rectangle be adopted.
Including the stick figure suggests a relationship with actors, and reinforces that, like
humans, agents are active autonomous entities. Roles are an abstraction of agents and,
in fact, are used in two ways within the AOSE community: as a social notion and as
a component. In the social approach, agents are assigned to play roles within some
organization. In the component approach, which has been used in both O-MaSE and
Prometheus, agents are designed by grouping roles. To help define the role symbol, we
adopted a general notational principle that states that when there are two concepts and
one is an abstraction of the other, we use the same symbol for the abstracted concept, but
with rounded corners. Thus, our proposed symbol for a role is the same as an agent but
with rounded corners. To further emphasize that roles are abstract and are not complete
agents, we embed a “half stick figure” instead of the full stick figure used in the agent
symbol.

Intra-Agent: Plan/Task, Capability/Module: Plans (sometimes called tasks, e.g. in
MESSAGE and Tropos) are depicted by a range of symbols. Using a similar reasoning
to goals, we adopt the GRL/Tropos/i* symbol: a hexagon. For capabilities we adopt
UML’s package symbol, since capabilities are conceptually package-like: they contain
other entities.

Events and Messages: In Prometheus events and messages are both depicted as en-
velopes, which are memorable, easy to recognize, and easy to draw by hand. However
this notation has three problems: firstly it is confusing to draw intra-agent events as
messages, secondly it is not clear from the symbol whether the message is incoming or
outgoing, and thirdly, the envelope symbol is not consistent with related UML notation.
Thus, we propose to adopt the UML notation for send signal actions and accept event
actions to depict sending and receiving messages respectively. This notation allows us
to distinguish incoming and outgoing messages and provides consistency with standard

5 http://www.cs.toronto.edu/km/GRL/
6 By the international telecommunications union (ITU). The proposed standardization brings

together Use Case Maps (UCMs) and the Goal-Oriented Requirement Language (GRL) under
the name User Requirements Notation (URN).

7 GRL and Tropos use the same notation, due to their common ancestry, i*.

http://www.cs.toronto.edu/km/GRL/

122 L. Padgham et al.

practice. For events, we use a new symbol (a diamond). Events can be used to represent
either inter- or intra-agent events.

Environment: Percepts, Actions, Resource: Because we assume agents are situated
in their environment, it can be argued that sending and receiving messages are actu-
ally special instances of the general notions of performing actions on the environment
and receiving percepts from the environment. Therefore, we choose to use symbols for
actions and percepts that are variants of the message symbols described above. The
addition of a vertical bar as the distinguishing characteristic is somewhat arbitrary, but
was chosen to be an obvious difference that is easy to draw. Resources are represented
as simple rectangles in Tropos. Due to its simplicity and clarity, it makes sense to use
this notation in the general sense as well. In addition, the rectangle symbol is similar to
UML classes, which are also rectangular in shape. Therefore, the resource symbol can
be seen as a generalization of the UML class.

Social concepts: Conversation, Organization, Position: Due to its mnemonic value,
the Prometheus symbol for a protocol (a large double headed arrow, denoting bi-direc-
tional communication), is proposed for our notation. However, to clarify the concept it
represents, we term the concept a “conversation” rather than a “protocol”. Because an
organization is generally associated with a group of agents, it seemed natural to modify
the agent symbol to represent this grouping. Thus, the agent symbol (a box with a single
stick figure) is modified by replacing the single stick figure with multiple stick figures
to represent an organization. When we decided on the symbol for a position, which is an
organization’s place holder for a role (one or more), we used the organisation symbol,
modified in the same way as the role symbol was modified from the agent symbol: a
round-cornered rectangle with half stick figures.

Service: Since there is no accepted symbol for a service we propose a new symbol. In
addition, since the concept of a service is not closely related to any of the other agent
concepts discussed so far, we wanted a distinct symbol that is simple to draw. Thus,
we propose using a simple circle to represent services. While the choice is somewhat
arbitrary, it can be argued that a service is similar to a UML interface as it describes
how to interact with the agent providing the service.

Links: Although some notations, such as Tropos and i*, use a wide range of different
link/arrow types, we do not believe this to be a good idea because they can be hard
to draw by hand, are quite subtly different, and can be difficult for users to remember.
Instead, we propose a single arrow type which is (optionally) enriched with textual an-
notations where desired to indicate different link types. We have identified a variety
of useful links; however, this (partial) list can be easily extended as long as the mean-
ing of the link is defined. Annotations include: a role �achieves� a goal, an event
�occurs� during the pursuit of a goal, an event �triggers� the creation of a new
goal, and a goal �precedes� another goal.

Scalability: Collapsing Links: For a design notation to be practical and usable for the
design of large systems it must scale to large designs. There are a number of abstraction
and packaging concepts in the notation that support this (such as organisation, protocol

A Unified Graphical Notation for AOSE 123

and capability). In addition we propose the use of “collapsible” links. As is shown
below, many of the symbols have an information section, which can be used to indicate
links with other entities such as an agent that �plays� a role. These collapsable links
can be used to replace links to symbols. For example, below the left part of the figure,
showing an agent with a link to a role symbol, is equivalent to the right side of the figure
where the role symbol has been removed and the relationship indicated in the agent’s
information section.

agent role agent
«plays»

role=

The design notation can also be used to develop models which capture different aspects
of the system, partitioning or abstracting to obtain scalability. For example a system
overview diagram shows no agent internals, whereas agent overview diagrams can par-
tition the system into a set of separate diagrams, one for each agent type.

3 Using the Notation

To illustrate the use of the unified notation across the different methodologies, we
present examples of various diagrams taken from our methodologies based on a com-
mon exemplar system. Space limitations preclude us from presenting a wide range of
diagrams from each methodology and we hope that the diagrams included are sufficient
to give some of the flavour of how the proposed notation would be used.

The example we use in this paper is the popular multiagent conference management
system, which was first proposed by [18] in 1998. It has since been widely used as it
is suitable for illustrating a wide variety of aspects of multi-agent system analysis and
design. The version of the system we are following is based on the version used in [19].

The conference management system is a multiagent system that supports the man-
agement of conferences that require the coordination of several individuals and groups
to handle the paper selection process. This process includes paper submission, paper re-
views, paper selection, author notification, final paper collection, and the printing of the
proceedings. Authors may submit papers to the system up until the submission deadline.
Once the submission deadline has passed, members of the program committee (PC) re-
view the papers by either contacting referees and asking them to review a number of
the papers, or by reviewing them themselves. Once all the reviews are complete, a final
decision is made on whether to accept or reject each paper. Each author is notified of
this decision and authors with accepted papers are asked to produce a final version that
must be submitted to the system. All final copies are collected and sent to the printer
for publication in the conference proceedings.

In the remainder of this section, we present several of the models used in our method-
ologies to capture various aspects of the conference management system analysis and
design. However, each of the models uses the unified notation to illustrate how the
different models might possibly be used together even though they are from different
methodologies.

The Prometheus Goal Overview Diagram, as shown in Figure 2, shows how the
overall goal of the system is refined into a hierarchical goal tree where subgoals define

124 L. Padgham et al.

Fig. 2. Prometheus Goal Overview Diagram

1.1 Collect papers
1.2 Distribute

papers

2.1 Partition

papers

2.2 Assign reviewers

set : PaperSet

4.1 Collect

reviews

4.2 Select papers

4.3 Inform author

p : Paper

«triggers» «triggers»

«triggers»

created(set)

«occurs»

assign(p,r)

«occurs»

«triggers»

accepted(p)

declined(p)

«occurs»

«occurs»

«precedes»

«precedes»

«precedes»

5.1 Collect finals

p : Paper

5.2 Send to
printer

«triggers»

«and»

0. Manage

submissions

«and»

5. Print
proceedings

«and»

1. Get papers

«and»

2. Assign papers

«and»

4. Select papers

3. Review paper

p : Paper
r : Reviewer

«precedes»

«precedes»

Fig. 3. O-MaSE Goal Model

how their parent goal may be achieved. In this case, the overall goal manage conference
is refined into four subgoals: get papers, review, select papers, and print proceedings.
Each of these goals is further refined into subgoals providing more insight into how the
goals will be achieved.

The O-MaSE Goal Model shown in Figure 3 is similar to the Prometheus Goal
Overview Diagram in function; however, it provides a richer set of constructs with
which to model the goal structure. As in the Prometheus model, the O-MaSE Goal
Model has a top level goal of Manage Conference Submissions, which is broken down
into five conjunctive sub-goals: Get Papers, Assign Papers, Review Paper, Select Pa-
pers, and Print Proceedings. The “precedes” relation between the Collect Papers and
Distribute Papers goals indicates that the Collect Papers goal must be achieved be-
fore work may begin towards the achievement of Distribute Papers. The “occurs” and

A Unified Graphical Notation for AOSE 125

Fig. 4. O-MaSE Role Model

Fig. 5. O-MaSE Agent Model

“triggers” relation between the Partition Papers and Assign Reviewers goals and the
created(set) event indicates that the created(set) event may occur during achievement
of the Partition Papers goal and when it does, it triggers the creation of a new Assign

126 L. Padgham et al.

Fig. 6. O-MaSE Agent Model with Implicit Conversations

Reviewers goal that is parameterized based on some set of papers to be assigned to re-
viewers. As can be seen from Figures 2 and 3, the Prometheus Goal Overview Diagram
provides a simpler and clearer model of system goals while the O-MaSE model pro-
vides additional constructs that provide a more detailed definition of system operation.
Clearly, each model has situations where its use is warranted and the ability to choose
between these models could be of great benefit to system designers.

The O-MaSE role model is derived from the goal model and depicts the relationships
between the roles in the conference management system, as shown in Figure 4. In Figure
4, the goal(s) that each role may achieve are annotated via an embedded �achieves�
relation in the body of each role symbol. Thus, the Assigner role is used to achieve the
Assigns Reviewers goal. We also use a directed arrow to represent a conversation be-
tween roles with the arrows pointing from the initiator to the responder. The details of
these conversations are defined using the commonly accepted AUML interaction dia-
grams [15]. Interactions with the external environment are represented as conversations
with external actors.

The O-MaSE Agent Model (Figure 5) also shows assignment of roles to agents (via
the �plays� embedded relation) but also shows the initiation and participation in spe-
cific conversations. (An alternate implicit conversation notation is shown in Figure 6).
In both cases, the conversations between the agent types provide an overview of the
entire system architecture.

The Prometheus System Overview Diagram (Figure 7) captures the architecture of
the system, showing agent types, the conversations between them, and the interface
to the environment in the form of percepts and actions. The System Overview diagram

A Unified Graphical Notation for AOSE 127

Fig. 7. Prometheus System Overview Diagram

Fig. 8. PASSI Agent Structure Diagram

is generated automatically by the design tool (though layout must be done manually),
based on the protocol specifications, and on the role specifications which form the agent.

The PASSI Multi-Agent Structure diagram (Figure 8) captures similar concepts as
the O-MaSE Agent Model and the Prometheus System Overview. When following
PASSI, the diagram contains no new information and is usually generated automati-
cally by the PASSI ToolKit. Unique to the PASSI diagram is the use of �task� and
�knowledge� keywords in the agent notation, which clearly highlights the exten-
sibility of our current notation. While the O-MaSE Agent Model uses the �plays�
keyword to denote the roles an agent may play, the PASSI approach is focused more
on capturing the knowledge required by the agent (�knowledge�) and the tasks per-
formed by the agents (�task�). Again, the commonality of the notation would allow
the designer to use the most useful aspects of the various methods and diagram types to
express the system design.

128 L. Padgham et al.

Fig. 9. PASSI Communication Ontology Description Diagram

The PASSI Communication Ontology Description diagram (Figure 9) is essentially
composed of communications and agents. For each communication, the designer can
introduce three parameters: the ontological elements exchanged in message contents
(represented by the Ontology parameter), the agent interaction protocol (represented
by the Protocol parameter), and the content language (represented by the Language
parameter).

The Prometheus System Overview, the O-MaSE Agent Model and the PASSI Agent
Structure and Communication Ontology Description diagrams all show conversations
between agent types. The difference lies in how they represent interaction with the
environment. The Prometheus models show an explicit representation of individual ac-
tions/percepts while the O-MaSE and PASSI models represent interactions via conver-
sations with external actors.

4 Discussion and Future Work

We can see that once the gratuitous incompatibility of notation is removed, it becomes
much easier to see both the similarities and the differences, and to consider extending
one methodology with aspects of another. It is clear from the example and associated
diagrams that O-MaSE and Prometheus are quite close, at least at the level of system
specification and architectural design, whereas PASSI is more dissimilar:

– Both O-MaSE and Prometheus capture goals in a goal overview diagram. The
Prometheus notation is simpler whereas the O-MaSE notation captures additional
relationships, such as one goal triggering another.

– O-MaSE, Prometheus and PASSI all have a diagram that captures the roles in the
system and in the case of Prometheus and O-MaSE these both indicate the assign-
ment of goals to roles.

A Unified Graphical Notation for AOSE 129

– The System Overview Diagram of Prometheus and the Agent Model of O-MaSE
are virtually identical apart from O-MaSE showing actors, whereas Prometheus
shows actions and percepts. PASSI on the other hand has a simpler Agent Structure
diagram with a separate diagram for the communication ontology.

Although there is still some way to go before portions of the methodologies would be
fully interchangeable, the unified notation does allow us to more readily see possibilities
for borrowing from each other. Most importantly, the unified notation has the potential
to allow users and developers to more readily understand the various methodologies and
associated diagrams, as they do not need to learn a new ‘language’ for each approach.

In order to move towards this new unified notation, the authors are committed to
using this notation, and to moving our respective CASE tools towards using this nota-
tion. Indeed, there already is a version of the Prometheus Design Tool that uses the new
notation, and this was used to generate Figure 7.

In future work we hope to specify XML representations for certain diagrams, that
will facilitate sufficient mapping between underlying models to allow some sharing
of tools. We also hope that further collaboration and exploration can lead to further
integration of our approaches to the benefit of industry developers wishing to use these
technologies.

References

1. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–
370 (2003)

2. DeLoach, S.A.: Engineering organization-based multiagent systems. In: Garcia, A., Choren,
R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS,
vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

4. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons, Chichester (2004)

5. Cossentino, M.: From requirements to code with the PASSI methodology. In: Henderson-
Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 79–106. Idea Group Inc.,
USA (2005)

6. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodologies. In:
Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS, vol. 3030, pp.
94–109. Springer, Heidelberg (2004)

7. Henderson-Sellers, B.: Method engineering for OO systems development. Commun.
ACM 46(10), 73–78 (2003)

8. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., Zambonelli, F.: A study of some multi-
agent metamodels. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS,
vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

9. Object Management Group: UML Resource Page (2006), http://www.uml.org/
10. Sturm, A., Dori, D., Shehory, O.: Single-model method for specifying multi-agent systems.

In: The Second International Joint Conference on Autonomous Agents & Multiagent Sys-
tems (AAMAS), pp. 121–128 (2003)

http://www.uml.org/

130 L. Padgham et al.

11. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl. Eng.
Rev. 20(2), 99–116 (2005)

12. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Odell, J.J.,
Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 78–92. Springer, Heidel-
berg (2005)

13. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardization to research. International Journal on Agent Oriented
Software Engineering 1(1) (2007)

14. Rumbaugh, J.: Notation notes: Principles for choosing notation. Journal of Object Oriented
Programming 9(2), 11–14 (1996)

15. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In: Odell,
J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 16–30. Springer,
Heidelberg (2005)

16. Winikoff, M., Padgham, L., Harland, J.: Simplifying the development of intelligent agents.
In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI),
vol. 2256, pp. 555–568. Springer, Heidelberg (2001)

17. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents in functional
clusters. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 277–289. Springer, Hei-
delberg (2000)

18. Ciancarini, P., Niestrasz, O., Tolksdorf, R.: A case study in coordination: Conference Man-
agement on the Internet (1998),
ftp://cs.unibo.it/pub/cianca/coordina.ps.gz

19. DeLoach, S.: Modeling organizational rules in the multi-agent systems engineering method-
ology. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS, vol. 2338, pp. 1–15.
Springer, Heidelberg (2002)

ftp://cs.unibo.it/pub/cianca/coordina.ps.gz

Prometheus and INGENIAS Agent
Methodologies: A Complementary Approach

José M. Gascueña and Antonio Fernández-Caballero

Departamento de Sistemas Informáticos
Instituto de Investigación en Informática de Albacete (I3A)
Universidad de Castilla-La Mancha, 02071-Albacete, Spain

{jmanuel,caballer}@dsi.uclm.es

Abstract. A great number of methodologies to develop multi-agent sys-
tems (MAS) have been proposed in the last few years. But a unique
methodology cannot be general enough to be useful for everyone with-
out some level of customization. According to our knowledge, existent
agent-based surveillance systems have been developed ad-hoc and no
methodology has been followed. We are interested in creating tools that
allow to model and to generate monitoring environments. This has mo-
tivated the selection of Prometheus and INGENIAS methodologies, to
take advantage of both approaches in developing agent-based applica-
tions. In this paper a collection of equivalences between the concepts
used in both methodologies is described extensively.

1 Introduction

The use of surveillance systems has grown exponentially during the last decade,
and has been applied in many different environments [29]. A distributed config-
uration is mandatory to get scalable and robust surveillance applications ([28],
[27], [18], [22]). These systems are complex and work in highly dynamic environ-
ments, where scattered sensors (e.g., camera, temperature, presence detection,
and microphone) can decide and act with some degree of autonomy, and cooper-
ate and coordinate for complete tracking of special situations. These characteris-
tics are often cited as a rationale for adopting agent technology [31]. In fact, this
technology has already been used in several surveillance systems (e.g. [26], [16],
or [1]). According to our knowledge, existent agent-based surveillance systems
have been developed ad-hoc and no methodology has been followed. Neverthe-
less, using a methodology allows to share the same terminology, annotation,
models, and development process [2].

A great number of methodologies to develop multi-agent systems (MAS) have
been proposed in the last few years (e.g. Gaia, Tropos, Message, MaSE). But a
unique methodology cannot be general enough to be useful for everyone without
some level of customization [4]. Habitually, techniques and tools proposed in
different methodologies are combined.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 131–144, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

132 J.M. Gascueña and A. Fernández-Caballero

2 Combining Prometheus and INGENIAS

In [10] several agent-oriented software development methodologies are presented,
an evaluation and comparison of this methodologies is carried out by Tran
and Low (chapter 12), and Henderson-Sellers introduce in chapter 13 a con-
ceptual framework that enables reusing methodology fragments to create a spe-
cific methodology for each project faced. Some works on agent methodology
integration are related to Tropos to INGENIAS mapping [7], or FIPA proto-
cols specified in AUML transformed in equivalent INGENIAS models [8]. Also,
the CAFnE toolkit [3] provides a framework that facilitates domain experts in
making modifications to a deployed agent-based system without the assistance
of agent programmers. Recently, a proposal for facilitating MAS complete life
cycle through the Protégé-Prometheus approach has been presented [24].

In our case, we shall reuse parts of Prometheus and INGENIAS methodologies
due to the following reasons. Once both methodologies have been studied, we
have observed that the process followed in INGENIAS [17] during the analysis
and design phases of MAS is very complex and difficult to follow, because is it
not clear how the different models are being constructed along the phases, de-
spite the documented general guidelines. In addition, it does not offer guidelines
helping to determine which the elements that form the MAS are. It is solely the
experience of the developer that determines its identification. On the contrary,
Prometheus does offer these guidelines. These guidelines are also able to serve as
a help to the experts in MAS development. They will be able to transmit their
experience to other users explaining why and how they have obtained the dif-
ferent elements of the agent-based application. In addition, Prometheus is also
useful because it explicitly considers agent perceptions and actions as model-
ing elements. INGENIAS (1) is currently focused to model-driven development
(MDD) [18], (2) offers a process to generate code for any agent platform [8], and,
(3) is supported by INGENIAS Development Kit (IDK) [17] that can be person-
alized for any application domain. These three characteristics are not offered by
Prometheus. Nowadays the use of model-driven engineering (MDE) techniques
along the software development life cycle is gaining more and more interest [23].
An MDD has important benefits in fundamental aspects such as productivity,
portability, interoperability and maintenance. Therefore, in the MAS field, it
seems quite useful to use a methodology such as INGENIAS, which supports
this approach.

3 In-depth Comparison of Prometheus and INGENIAS

Prometheus [13] defines a proper detailed process to specify, implement and
test/debug agent-oriented software systems. It offers a set of detailed guidelines
that includes examples and heuristics, which help better understanding what is
required in each step of the development. This process incorporates three phases.
The system specification phase identifies the basic goals and functionalities of
the system, develops the use case scenarios that illustrate the functioning of the

Prometheus and INGENIAS Agent Methodologies 133

system, and specifies which are the inputs (percepts) and outputs (actions). It
obtains the scenarios diagram, goal overview diagram, and system roles diagram.
The architectural design phase uses the outputs produced in the previous phase
to determine the agent types that exist in the system and how they interact.
It obtains the data coupling diagram, agent-role diagram, agent acquaintance
diagram, and system overview diagram. The detailed design phase centers on
developing the internal structure of each agent and how each agent will perform
his tasks within the global system. It obtains agent overview and capability
overview diagrams. Finally, Prometheus details how the entities obtained during
the design are transformed into the concepts used in a specific agent-oriented
programming language (JACK); this supposes, in principle, a loss of generality.
The debugging mechanisms used in Prometheus are described extensively in
[15]. The Prometheus methodology is supported by Prometheus Design Tool
(PDT) [25].

On the other hand, the foundation of INGENIAS is the definition of MAS
meta-model and a set of MDD tools oriented towards agents (model edition, ver-
ification, validation and transformation) integrated in INGENIAS Development
Kit (IDK). The meta-model and IDK can be customized for a specific appli-
cation domains. The meta-model describes the elements that enable modeling
MAS from different points of view - agent, organization, environment, goals and
tasks, and interaction [17]. The agent perspective considers the elements to spec-
ify the behavior of each agent. The organization perspective shows the system
architecture. From a structural point of view, the organization is a set of enti-
ties with relationship of aggregation and inheritance. It defines a schema where
agents, resources, tasks and goals may exist. Under this perspective, groups may
be used to decompose the organization, plans, and workflows to establish the way
the resources are assigned, which tasks are necessary to achieve a goal, and who
has the responsibility of carrying them out. The environment perspective de-
fines the agents’ sensors and actuators, and identifies the system resources and

Table 1. Comparing Prometheus and INGENIAS

Prometheus INGENIAS
Proper development pro-
cess

YES NO: Based in the USDP (analysis
and design phases). An agile pro-
cess is suggested in [19]

General process to
generate code from the
models

NO: Only obtains code for JACK lan-
guage

YES: Based in template definitions

Iterative development
process

YES YES

Model-driven develop-
ment (MDD)

NO: Only proposes a correspondence
between design models and JACK
code

YES

Requirements capture YES YES
Meta-model YES [6] YES
Mechanisms to discover
agents and interactions
among agents

YES: Groups functionalities through
cohesion and coupling criteria

NO

Agent model BDI-like agents Agents with mental states

134 J.M. Gascueña and A. Fernández-Caballero

Table 2. Comparing PDT and IDK

PDT IDK
Supported methodology Prometheus INGENIAS
Interface references the
development process

YES: Diagrams are grouped in
three levels according to the three
Prometheus phases

NO: Possibility to create pack-
ets that correspond to the diverse
phases of the process. Models of
each phase are added to the corre-
sponding packet

Mechanisms to prioritize
parts of the project

YES: Three scope levels (essential,
conditional and optional) [21]

NO

Code generation YES: JACK http : //www.agent −
software.com/

YES: JADE http : //jade.tilab.com/

Report generation of
the MAS specification
in HTML

YES YES

Model fragmenting in
various pieces

NO: For instance, only one diagram
may be created to in order to gather
all the objectives of the system

YES

Save a diagram as an im-
age

YES: Format .png. The image reso-
lution can be configured

YES: Formats .jpg, .svg, .png,
wbmp, .bmp and .jpeg

Deployment diagrams NO YES
Agent communication Defined in basis of messages and

interaction protocols. Does not use
a specific communication language.
For JACK, there is a module com-
pliant with FIPA [32]

Defined in accordance with
communication acts of the
agent communication language
(ACL) proposed by FIPA http :

//www.fipa.org/specs/fipa00061/

Utility to simulate MAS
specifications before
generating the final code

NO YES: Realized on the JADE plat-
form. It is possible to manage in-
teraction and tasks, and to in-
spect and modify the agents’ men-
tal states

Plans Executable as
stand-alone

Textual description YES Graphical description YES

Integration in Eclipse YES: See [14] YES: in IDK version 2.7

applications. The goals and tasks perspective describes the relations between
tasks and goals. The interaction perspective describes how the coordination
among the agents is produced. INGENIAS, at difference with Prometheus, does
not define its own development process; rather it adopts the unified software
development process (USDP) [11] as a guideline to define the steps necessary to
develop the elements and diagrams of MAS during the analysis and design phases
of the USDP. Moreover, INGENIAS facilitates a general process to transform
the models generated during the design phase into executable code for all desti-
nation platforms. This general process is based in the definition of templates for
each destination platform and procedures for extraction of information present
in the models.

Both Prometheus and INGENIAS methodologies support the facility to cap-
ture requirements. In the Prometheus system specification phase, a version of
KAOS is used to describe the system’s goals [30] complemented with the de-
scription of scenarios that illustrate the operation of the system. In addition, in
[5] guidelines appear to generate the artifacts of the Prometheus system spec-
ification from organizational models expressed in i*. In INGENIAS, require-
ments capture is performed by means of use case diagrams. Then, use cases are

Prometheus and INGENIAS Agent Methodologies 135

associated to system goals, and a goals analysis is performed to decompose them
into easier ones, and finally tasks are associated to get the easiest goals.

In summary, INGENIAS has several advantages as opposed to Prometheus
(see Table 1): (a) it follows an MDD approach, (b) it facilitates a general process
to transform the models generated during the design phase into executable code.
The advantages of Prometheus can be used (following the process to discover
which be the agents of the system and its interactions) to enhance INGENIAS.

In Table 2 the Prometheus Design Tool (PDT) and INGENIAS Development
Kit (IDK) tools are compared. It may be observed that PDT only has one ad-
vantage with respect to IDK: it has a mechanism to prioritize parts of a project.
In the rest of considered characteristics, IDK equals or surpasses PDT. The tool
that it will use to support the new methodology is IDK as it is independent from
the development process and it may be personalized for the application under
development.

4 Mapping Prometheus into INGENIAS

In the new methodology, we propose that the MAS developer firstly follows the
system specification and architectural design phases proposed in Prometheus.
Thus, an initial model in accordance with Prometheus is obtained using the
guidelines that enable to identify the agents and their interactions. Afterwards,
an equivalent model in INGENIAS is obtained using the collection of equiv-
alences (mappings) between the concepts used in both methodologies. Next,
modeling goes on with INGENIAS; thus, benefiting from the advantages of
model-driven software development.

The detailed design phase of Prometheus is not followed because it mentions
a specific agent-based model, namely the BDI model, which is different from
the mental state agents used in INGENIAS. In this section, the collection of
equivalences is described. We would like to point out that we are only describing
the mapping from Prometheus into INGENIAS of the concepts used during the
system specification and architectural design phases defined in Prometheus.

The proposed mappings have mainly been deduced on the basis of the organi-
zations and relations between organizations that are possible to create with the
supported tools PDT and IDK, respectively. In our next exposition, we use the
Entity 1 - RelationX → Entity 2 notation to express that Entity 1 and Entity 2
are related through relation RelationX. The direction in which the arrow is point-
ing accurately reflects what the graphic representation of the relation is like. In the
figures, dotted arrows are used to stand out how the organizations of Prometheus
are transformed into the equivalent organizations of INGENIAS. In the tables in-
formation is offered on the models in which the structures represented graphically
appear; and, textually, the transformations carried out are described.

4.1 Mapping Prometheus Goals

There are different approaches for the use of the term ”goal” [9]: (1) in
classical planning, it is seen as a description of the state of the world to be

136 J.M. Gascueña and A. Fernández-Caballero

Fig. 1. Mapping information related with Prometheus goals into INGENIAS

reached - goals as aggregation; (2) in the BDI model, it is a wish to be satisfied -
goals as entities; and, (3) to reflect the requirements that the system must fulfill
in the design - goals as requirements. In INGENIAS, the goals are initially taken
as self-representing entities (goals-as-entities approach) which guide the behavior
of the agent. To take into account the planning approach (goals-as-aggregation
approach), the goals must be allowed to connect with the set of elements (e.g.
predicates) that they represent. As for the last approach (goals-as-requirements
approach), the assimilation of goals with requirements is purely interpretative.
It is up to the engineer to consider a goal as a requirement or not.

A goal that appears in the goal overview diagram used in Prometheus will
correspond to a goal in the goals and tasks model in INGENIAS. AND and OR
dependencies between goals can be established in both models; therefore, it is
possible to directly transfer these relations from one model to another. In the
goals and tasks model, a GTDecomposeAND relation and a GTDecomposeOR
relation will be established to reflect an AND and OR relation between goals,
respectively. The arrows m1 and m2 of Fig. 1 highlight the transformation of
the structures between goals in Prometheus into the equivalent structures in
INGENIAS - m1 and m2 show the transformation of AND and OR structures,
respectively. When a goal has only one sub-goal, GTDecomposes is used.

Prometheus and INGENIAS Agent Methodologies 137

In the system roles1 diagram of Prometheus methodology, relations between
goals and functionalities are established. The latter will be grouped to determine
the types of agents in the system - the relation among agents and roles, Agent
→ Role, appear in the agent-role grouping diagram, whilst the relation among
roles and goals, Role → Goal, appear in the system roles diagram. Therefore,
implicitly, there is a relation between goals and agents. In INGENIAS, one of
the consistency criteria of the goals and tasks meta-model expresses that “the
goal that appears in a goals and tasks model must appear in an agent model or in
an organization model” (criterion 2). Basing ourselves on the information from
the system roles diagram and taking into account the previous comments, for
each goal, the following relations2 will be established in INGENIAS: (a) Agent
- GTPursues → Goal in the organization model, (b) Agent - GTPursues →
Goal in the agent model and (c) Agent - GTPursues → Goal in the tasks and
goals model. All these equivalencies are summarized graphically and textually
in Fig. 1.

4.2 Mapping Prometheus Agents

Every agent identified in the Prometheus methodology is reflected in INGENIAS
in the agent model and in the organization model, based on the agent model con-
sistency criterion “for every agent in the organization model, there must be an
instance for the agent model and vice-versa” (criterion 4). If the agent must
perceive changes in the environment, it will be also shown in the environment
model. The agents that interact with other agents should also be represented
in the interaction model. However, IDK only supports roles to generate the
code that corresponds to an interaction. Therefore, for every agent identified in
Prometheus, an associated role in the corresponding interaction model in INGE-
NIAS to state its participation in the interaction has to be created. Likewise, we
will establish an Agent - WFPlays → Role relation in the organization or agent
model. Finally, we should remember that in the goals and tasks model, agents
will be also obtained, according to what was specified in section 4.1.

4.3 Mapping Prometheus Percepts and Actions

A percept is a piece of information from the environment received by means of a
sensor. In Prometheus, percepts must at least belong to one functionality, and,
thus, to the agent associated to that functionality, too. The relations among per-
cepts and roles (Percept → Role) and the relations among percepts and agents
(Percept → Agent) appear in the system roles diagram and the system overview
diagram, respectively. The percepts of a Prometheus agent can be modeled in

1 Sometimes, in the description of the mappings, the term role is used instead of the
term functionality. Role is the term used in PDT, whereas functionality is the term
used in Prometheus.

2 What we really mean is that instances of the corresponding entities will be created
and will be related through the pertinent relation.

138 J.M. Gascueña and A. Fernández-Caballero

Fig. 2. Mapping information related with Prometheus percepts into INGENIAS

INGENIAS by specifying a collection of operations in an application. Depending
on whether the application existed prior to the MAS development or was devel-
oped ad-hoc, for this purpose, we can specify the application in an environment
application or an internal application, represented by EnvironmentApplication
and InternalApplication, respectively.

The consistency criterion 2 of the environment model states that “every agent
that perceives changes in the environment must appear in the environment model
associated to an application”. Therefore, in the environment model, an EPer-
ceivesNotification relation between the agent and the corresponding application
will be established. In a Prometheus percept descriptor, there is a field, Informa-
tion carried, where it is specified the information transported as part of the per-
cept. In INGENIAS, this information is included with an ApplicationEventSlots
type of event associated to EPerceivesNotification relation. The basic ingredients
of these equivalencies are graphically and textually summarized in Fig. 2.

In Prometheus, also every action must at least belong to one functionality and
the agent associated to the functionality must execute it. The relations among
actions and roles (Role → Action) and the relations among actions and agents
(Agent → Action) appear in the system roles diagram and the system overview
diagram, respectively. An action represents something that the agent does to
interact with the environment. In INGENIAS, actions on the environment are
assumed to be calls to operations defined in the applications. Therefore, an action

Prometheus and INGENIAS Agent Methodologies 139

Fig. 3. Mapping information related with Prometheus actions into INGENIAS

present in Prometheus will be transformed into an application operation present
in the environment model in INGENIAS. EPerceives will be used to establish the
relation between the agent and the application. In the environment model, an
Agent - ApplicationBelongs To → Application relation will be also established
to express that an agent uses an application. In addition, the operations in
INGENIAS will be executed by the corresponding agent, by means of the relevant
task. Thus, in the INGENIAS agent model, it will be created (1) an Agent -
WFResponsible → Task relation to specify the agent responsible for carrying out
the task, which triggers the execution of an action on the environment; and (2) a
Task - WFUses → Application relation to express that an application is used in
the task. If it is decided to specify the application in an environment or internal
application, Task - WFUses → Environment Application and Task - WFUses
→ Internal Application is choosed, respectively. On the other hand, according
to the INGENIAS agent model consistency criterion 1, “every task associated to
an agent must appear in the organization model, indicating its role within the
task global structure”, in the organization model, Agent - WFResponsible Task
will appear. This information is summarized in Fig. 3.

140 J.M. Gascueña and A. Fernández-Caballero

4.4 Mapping Prometheus Data

In INGENIAS, facts reflect information that is inherently true; for example,
“water evaporates by applying heat”, or any other information resulting from
the execution of tasks. The data written and read by Prometheus agents will
be made to correspond with facts or framefacts in INGENIAS. A framefact is a
fact whose information is within its slots.

In the Prometheus system overview diagram, there are Agent → Data (ex-
presses that the data is written by the agent) and Data → Agent (expresses that
the data is read by the agent) relations. These structures would be translated to
the INGENIAS agent model through the following procedure: a MentalState -
AContainsME → Fact relation is created to specify a fact associated to a mental
state, and an Agent - AHasMS → MentalState relation to specify that the men-
tal state corresponds to the agent equivalent to the one we had in Prometheus.
That is to say, an Agent - AHasMS → Mental State - AContainsMS → Fact
structure will be get. The fact would become a Framefact instead of a Fact,
if it includes more than one field of information. In INGENIAS, mental states
are represented in terms of goals, tasks, facts, or any other entity that helps in
state description. In INGENIAS goal and task model, Task - WFConsumes →
Fact, Task - WFProduces → Fact, and Task - GTModifies → Fact relations are
created to indicate that a fact is read, written and modified when executing a
task, respectively. An agent will be responsible for executing that task - it is rep-
resented by an Agent - WFResponsible → Task relation. All these equivalencies
are summarized graphically and textually in Fig. 4.

4.5 Mapping Prometheus Interaction Protocols

Prometheus offers a mechanism to derive interaction diagrams, and, as a result,
interaction protocols from the scenarios developed. In one interaction protocol,
there are agents that participate in the interaction and the messages that the
agents send to one another.

In INGENIAS, the interaction model is used for describing how coordination
between agents comes about. For each interaction protocol in Prometheus, we
will develop an interaction model which will include: (1) an Interaction entity
having the same name as the interaction protocol in Prometheus, (2) roles (from
INGENIAS) associated to the agents that intervene in the interaction protocol,
(3) an Interaction - IInitiates → Role relation, for the role associated to the
agent that initiates the interaction protocol, (4) Interaction - ICollaborates →
Role relations, for the roles associated to the agents (different to the initiating
agent) that participate in the interaction protocol, and, (5) an Interaction -
IHasSpec → GRASIASpecification relation. The GRASIASpecification entity
will be associated to an interaction model where the messages sequence that
intervenes in the interaction protocol, the agents that send them and their tasks
involved will be described. In INGENIAS, the term Interaction Units, instead
of messages, is used. In Prometheus, a protocol descriptor makes reference to
the scenarios which include the protocol. When a scenario is created with PDT,

Prometheus and INGENIAS Agent Methodologies 141

Fig. 4. Mapping information related with Prometheus data into INGENIAS

a goal associated to the scenario is automatically generated. This is due to the
contributions by Perepletchikov [21]. Therefore, the mentioned goal would be
related to the interaction created in the INGENIAS interaction model.

5 Conclusions

After carrying out a comparative analysis of the Prometheus and INGENIAS
methodologies, we realized that we can benefit from the simple guidelines offered
by Prometheus in its development process to obtain an initial model of the MAS
that we will be dealing with. Subsequently, we can move it into INGENIAS to
proceed with the modeling, in order to benefit from the model-driven develop-
ment. In order to make the transformations of concepts used in Prometheus into
concepts used in INGENIAS the described mappings are applied.

142 J.M. Gascueña and A. Fernández-Caballero

At the moment these transformations are made manually. In order to imple-
ment our mapping proposal we plan to use some model transformation language.
UML-AT [8] enables integrating N methodologies; but, as we are integrating
only two, it is sufficient to use ATL (Atlas Transformation Language) [12]. In
the foreseen implementation the INGENIAS Ecore meta-model will be used and
the Prometheus Ecore meta-model will be created. Moreover, we are interested
in going on adapting the IDK editor to model surveillance systems because it is
independent from the development process and it may be personalized for the
application under development.

Acknowledgements

This work is supported in part by the Junta de Comunidades de Castilla-La
Mancha PBI06-0099 grant and the Spanish Ministerio de Educación y Ciencia
TIN2007-67586-C02-02 grant.

References

1. Aguilar-Ponce, R., Kumar, A., Tecpanecatl-Xihuitl, J.L., Bayoumi, M.: A network
of sensor-based framework for automated visual surveillance. Journal of Network
and Computer Applications 30, 1244–1271 (2007)

2. Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems
development. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS (LNAI), vol. 4457, pp. 38–61. Springer, Heidelberg (2007)

3. Buddhinath Jayatilleke, G., Padgham, L., Winikoff, M.: A model driven devel-
opment toolkit for domain experts to modify agent based systems. In: Padgham,
L., Zambonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 190–207.
Springer, Heidelberg (2007)

4. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: From standardisation to research. International Journal of
Agent-Oriented Software Engineering 1(1), 91–121 (2007)

5. Cysneiros, G., Zisman, A.: Refining Prometheus methodology with i*. In: 3rd In-
ternational Workshop on Agent-Oriented Methodologies (2004)

6. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change
propagation in software evolution. In: Proceedings of the Australian Software En-
gineering Conference, pp. 309–318 (2006)

7. Fuentes, R., Gomez-Sanz, J.J., Pavón, J.: Integrating agent-oriented methodolo-
gies with UML-AT. In: Proceedings of the Fifth international Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1303–1310 (2006)

8. Fuentes, R., Gomez-Sanz, J.J., Pavón, J.: Model integration in agent-oriented de-
velopment. International Journal of Agent-Oriented Software Engineering 1(1),
2–27 (2007)

9. Gómez Sanz, J.J.: Modelado de sistemas multiagente. Ph.D thesis, Departamento
de Sistemas Informáticos y Programación. Universidad Complutense de Madrid
(2002)

10. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group
Publishing, USA (2005)

Prometheus and INGENIAS Agent Methodologies 143

11. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

12. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

13. Padgham, L., Winikoff, M.: Developing intelligent agents systems: A practical
guide. John Wiley and Sons, Chichester (2004)

14. Padgham, L., Thangarajah, J., Winikoff, M.: Tool support for agent development
using the Prometheus methodology. In: First International Workshop on Integra-
tion of Software Engineering and Agent Technology, pp. 383–388 (2005)

15. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the
Prometheus methodology. Engineering Applications of Artificial Intelligence 18(2),
173–190 (2005)

16. Patricio, M.A., Carbó, J., Pérez, O., Garćıa, J., Molina, J.M.: Multi-agent frame-
work in visual sensor networks. EURASIP Journal on Advances in Signal Process-
ing, Article ID 98639 (2007)

17. Pavón, J., Gomez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent-Oriented Methodologies. Idea Group Publishing, USA (2005)

18. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: Model driven development of multi-agent
systems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 284–298. Springer, Heidelberg (2006)

19. Pavón, J.: INGENIAS: Développement Dirigé par Modèles des Systémes Multi-
Agents. Habilitation à diriger des recherches de l’Université Pierre et Marie Curie
(2006)

20. Pavón, J., Gomez-Sanz, J.J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: De-
velopment of intelligent multi-sensor surveillance systems with agents. Robotics
and Autonomous Systems 55(12), 892–903 (2007)

21. Perepletchikov, M., Padgham, L.: Systematic incremental development of agent
systems, using Prometheus. In: Fifth International Conference on Quality Software,
pp. 413–418 (2005)

22. Remagnino, P., Shihab, A.I., Jones, G.A.: Distributed intelligence for multi-camera
visual surveillance. Pattern Recognition 37(4), 675–689 (2004)

23. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter 39(2), 25–31 (2006)

24. Sokolova, M.V., Fernández-Caballero, A.: Facilitating MAS complete life cycle
through the Protégé-Prometheus approach. In: Nguyen, N.T., Jo, G.S., Howlett,
R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS, vol. 4953, pp. 63–72. Springer,
Heidelberg (2008)

25. Thangarajah, J., Padgham, L., Winikoff, M.: Prometheus Design Tool. In: Proceed-
ings of the 4th International Conference on Autonomous Agents and Multi-Agent
Systems, pp. 127–128 (2005)

26. Ukita, N., Matsuyama, T.: Real-time cooperative multi-target tracking by commu-
nicating active vision agents. Computer Vision and Image Understanding 97(2),
137–179 (2005)

27. Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent systems to
integrate independent multi-sensor platforms in complex surveillance. In: IEEE
International Conference on Advanced Video and Signal based Surveillance, vol. 49
(2006)

28. Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent system model
for fuzzy automatic speech / speaker recognition. In: Nguyen, N.T., Jo, G.S.,
Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS, vol. 4953, pp. 73–82.
Springer, Heidelberg (2008)

144 J.M. Gascueña and A. Fernández-Caballero

29. Valera, M., Velastin, S.A.: A review of the state-of-the-art in distributed surveil-
lance systems. In: Intelligent Distributed Video Surveillance Systems. IEE Profes-
sional Applications of Computing Series, vol. 5, pp. 1–30 (2006)

30. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Proceedings of the 5th IEEE International Symposium on Requirements Engineer-
ing, pp. 249–263 (2001)

31. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(2), 115–152 (1995)

32. Yoshimura, K.: FIPA JACK: A plugin for JACK Intelligent AgentsTM. Technical
Report, RMIT University (2003)

The Formal Semantics of the Domain Specific
Modeling Language for Multiagent Systems

Christian Hahn and Klaus Fischer

German Research Institute for Artificial Intelligence (DFKI)
Stuhlsatzenhasuweg 3
66123 Saarbrücken

{Christian.Hahn, Klaus.Fischer}@dfki.de

Abstract. Recently, associated with the increasing acceptance of agent-
based computing as a novel computing paradigm a lot of research has
been addressed to develop mechanisms and methods to support the
agent-based development of complex software systems. Especially the
idea to define agent-oriented languages on a more abstract level through
metamodels is recently often applied. However, the metamodel’s oppor-
tunity to express the language’s semantics are restricted as only concepts
and their relationships to each other can be defined within the meta-
model. This paper discusses an approach to formalize the semantics of
Dsml4mas—a modeling language for multiagent systems—to support
the system designer in validating and verifying the generated design.

1 Introduction

Agent-oriented software engineering (AOSE) is a relative young field with its
first workshop held in 2000. However, several methods and methodologies have
been developed to facilitate the design of agent and multiagent systems like for
instance modeling languages like Agent UML [1], methodologies like Tropos [2],
or programming languages like JACK [3]. However as stated in [4], the field of
verification and validation of multiagent systems (MASs) is comparatively less
well-developed.

The development of agent-based software systems—similar to any other kind
of software system—is mainly done in three phases: In a first step, the MAS is
designed possibly adopting an existing AOSE methodology. In a second step, the
resulting artifacts are taken as a base for manually programming the agent-based
system and in a last step, the resulting system is debugged.

To close the gap between design and implementation, we developed a modeling
language in the domain of multiagent systems (Dsml4mas) that provides key
features like a concrete syntax, abstract syntax, and semantics as well as code
generators that support the user in the three development steps.

For defining the abstract syntax, we defined a platform independent meta-
model for MAS called PIM4Agents (see [5] for a detailed description) that is
defined using UML1 that provides a graphical notation to design object-oriented
1 Unified Modeling Language: http://www.uml.org/

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 145–158, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

146 C. Hahn and K. Fischer

software systems. However, UML class diagrams are not sufficiently precise to
set out all relevant aspects of a specification. Beyond straightforward constraints
(e.g. association multiplicities) there exist a range of complex and sometimes sub-
tle restrictions that are not easily conveyed in diagrammatical form. Additional
information is needed in order to capture the semantics of a language which
is important in order to give the language a clear representation and meaning.
Otherwise, assumptions may be made about the language that lead to its in-
correct use. Even if the developers may have an understanding of the syntax
of a language, the semantics are the key to clarify the languages and concepts
meanings. In terms of MDD, semantics are often introduced when transform-
ing a platform independent model (PIM) to a specific platform that offers some
kind of execution semantics. However, our aim is to introduce a clear semantics
already at the PIM level to ensure that the generated models can already be
validated on a more abstract level.

For specifying the semantics of Dsml4mas, we use the formal specification
language Object-Z [6], which is a stated-based and object-oriented specification
language. Object-Z is an extension of Z specification language [7,8] specialized on
formalizing object-oriented specifications and bases on mathematical concepts
(like sets, functions, and first-order predicate logic) that permits rigorous analysis
and reasoning about the specifications.

The remainder of this paper is structured as follows: Section 2 briefly describes
Object-Z and its foundations. Section 3 discusses parts of the abstract syntax of
Dsml4mas and its corresponding semantics using Object-Z. Section 4 illustrates
how the semantics are integrated in the provided modeling framework. Followed
by Section 5 that states related work. Finally, Section 6 concludes this paper.

2 Object-Z Language

As aforementioned, Object-Z is an object-oriented specification language that
supports features like classes, instance, inheritance, and polymorphisms.

The most important features of an Object-Z specification are class schemas
(see Fig. 1) that take the form of a named box with optionally a list of generic
parameters. Furthermore, a class schema includes (i) a list of visibility that
restricts the access to variables and operations, (ii) a list of inherited classes, (iii)
a list of variable definitions and invariants, as well as (iv) a list of operations.

The state schema in Object-Z consists of the set of declared variables and
the corresponding class invariants. The operation schemas specify operations
relating pre and post conditions of the object. Input variables are annotated by
a question mark (?), output variables by an exclamation mark (!). A list marked
with δ declares the set of variables that are changed by the operation.

Furthermore, Object-Z provides a set of operators that allow the combination
of operations. This list of operators include the sequence operator (op1o

9op2), the
conjunction operator (op1 ∧ op2), the choice operator (op1 [] op2), the parallel
operator (op1 ‖ op2), as well as the operation enrichment (schema • op).

The Formal Semantics of the Domain Specific Modeling Language 147

ClassName[generic parameters]
�visbility list

inherited classes

variable definitions

invariants

operations

history invariants

Fig. 1. A partial Object-Z class schema representation

Our approach for defining the semantics of Dsml4mas is to use the abstract
syntax defined by the PIM4Agents metamodel as a base and transfer the related
information to an Object-Z specification. Thus, the static semantics are defined
by formalizing the concepts and relationships between the concept in the meta-
model as attributes and invariants of the corresponding Object-Z class. There-
fore, the UML’s aggregation is mapped to the object aggregation of Object-Z
expressed by �, whereas the UML’s composition is mapped to the object com-
position of Object-Z expressed by c©. How to use this notation is illustrated in
more detail in Section 3.

The denotational semantics are defined by introducing additional variables
(we call these semantic variables to distinguish them from the variables that
formalize the abstract syntax), which are used to define the semantics and in-
variants in Object-Z classes. Operational semantics are specified in terms of
class operations and invariants restricting the operation sequences. We use the
timed trace notation of the timed refinement calculus [9] to define these invari-
ants with Object-Z. With this approach, we give a mutually consistent (formal)
denotational and operational semantics.

The class invariants define the static semantics of Dsml4mas and thus de-
fine whether a model is meaningful. The class operations define the dynamic
semantics and thus declare whether a model can be interpreted and executed.

3 Semantics of Dsml4mas

The PIM4Agents metamodel is divided into eight views (i.e. multiagent system,
agent, organization, role, interaction, behavior, and environment) each emphasiz-
ing on a specific aspect of a MAS. In the following, we discuss selected aspects in
more detail by specifying (i) the corresponding metamodel and (ii) the semantics
of selected concepts using Object-Z. A more complete overview of PIM4Agents
and its aspects can be found in [5] and [10].

148 C. Hahn and K. Fischer

Fig. 2. The partial metamodel reflecting the multiagent system view of Dsml4mas

3.1 Multiagent System View

The partial metamodel of the multiagent system view is depicted in Fig. 2. The
multiagent system aspect contains the main building blocks of a MAS and thus
includes the concepts MultiagentSystem, Agent, Instance, Cooperation, Capabil-
ity, Interaction, DomainRole, Behavior, and Environment.

The class schema below formalizes the definition of a MultiagentSystem. It
inherits from the class schema of NamedElement. Its declarative part contains the
variables agent, instance, cooperation, capability, interaction, role, and behavior
that can be empty powersets (i.e. expressed by the symbol P). Furthermore,
each MultiagentSystem contains exactly one environment. The types of these
variables correspond to the types defined in the multiagent system metamodel,
i.e. the variable agent refers to the type Agent.

Critically, the set of Agents within the MultiagentSystem, i.e. agents, should
be greater or equal to two (see [I 1]).

MultiagentSystem
NamedElement

agent : P Agent c©, instance : P Instance c©, cooperation : PCooperation c©
capability : PCapability c©, interaction : P Interaction c©
role : DomainRole c©, behavior : P ↓ Behavior c©
environment : Environment c©

#agent ≥ 2 [I 1]

The Formal Semantics of the Domain Specific Modeling Language 149

3.2 Agent View

The agent view defines how to model single autonomous entities, the capabilities
they have to solve tasks and the roles they play within the MAS. The metamodel
of the agent view is depicted in Fig. 3. It includes the concepts Agent, Instance,
and Capability as well as Resource (from the environment view), and Behavior
(from the behavior view).

Fig. 3. The metamodel of the agent view

The semantics of the concept Agent is given in the class schema below. The
class schema inherits from the NamedElement. Its declarative part consists of
four variables, i.e. performedRole, capability, behavior, and resource. Further-
more, we introduce a semantic variable called behaviorUsed that unions all Be-
haviors an Agent is equipped with. This is done in [I 1] by defining the union of
all Behaviors either directly used by the Agent or through the concepts Capabil-
ity and DomainRole. To guarantee proactive and/or reactive behavior, invariant
[I 2] ensures that an Agent needs to be equipped with at least one Behavior
through testing if the variable behaviorUsed contains at least one element.

Fig. 4. The metamodel of the organization view

150 C. Hahn and K. Fischer

3.3 Organization View

The organization view (depicted in Fig. 4) defines how single autonomous agents
are arranged to more complex social structures like for instance cooperations or
organizations. The organization view includes the concepts Cooperation, Orga-
nization, Binding, InteractionUse, and ActorBinging as well as Interaction (from
the interaction aspect), Actor and DomainRole (both from the role aspect), as
well as Agent, and Instance (from the agent aspect).

Cooperation. The class schema of a Cooperation is defined below. It includes
four variables (i.e. members, interactioninstance, binding, and requiredRole) and
inherits from the class schema of NamedElement (see Fig. 2).

Cooperation
NamedElement

interactioninstance : P InteractionUse,members : P Instance
requiredRole : PDomainRole�, binding : PBinding c©
Δ [Semantic Variables]
instancesBoundToActor : P Instance

#members ≥ 2 [I 1]
instancesBoundToActor = ∪{ab : ∪{ac : {i : ∪{iu : interactionuse
• iu.interaction} • i .actor} • ac.actorBinding} • ab.instanceBinding}
∪∪{i : ∪{ab : ∪{ac : {i : ∪{iu : interactionuse • iu.interaction}
• i .actor} • ac.actorBinding} • ab.binding} • i .instance} [I 2]
interactioninstance �= ∅ ⇒ instancesBoundToActor ⊆ members [I 3]

Critically, a Cooperation requires at least two Instances as members (see [I
1]). If a Cooperation applies Interactions through the concept of an Interac-
tionUse then the Actors within these Protocols should only refer to members
(i.e. Instances) of this Cooperation. For the formal specification of this invariant,
we introduced a semantic variable called instancesBoundToActor that comprises
all Instances that are bound to Actors of the corresponding Protocols that are
used by the Cooperation (i.e. referred by InteractionUse). Thus, the variable in-
stancesBoundToActor (see [I 2]) unions the set of Instances bound either directly
through the concept of Instance or through the concept of Binding that binds
Instances to DomainRoles. Furthermore, if the Cooperation uses Interactions for
the purpose of communication, the set of instancesBoundToActor is a subset of
the set of members specified at design time ([I 3]). Thus, a Cooperation provides
only between associated members means for interaction.

Binding. A Binding defines which Instances are bound to which kind of Do-
mainRole. The corresponding class schema is given below. Like a Cooperation, it
inherits from the NamedElement. It includes the variables instance (which must

The Formal Semantics of the Domain Specific Modeling Language 151

not be empty, expressed by P1), roleBinding as well as min and max both of
the type Integer. Critically, for all instances that are bound to a particular
DomainRole (i.e. roleBinding) it is necessary that the Agent referred by the
instance (i.e. agentType) performs this particular DomainRole the instances are
now bound to (see [I 1]). Furthermore, we restrict the number of Instances that
are bound to a DomainRole through the min and max variables. For instance,
if max is greater than 0, invariant [I 3] states that the number of Instances
is smaller or equal to max and greater or equal to min. However, if max is
equal to 0, the number of Instances is an arbitrary number that is not fixed at
design time.

Binding
NamedElement

instance : P1 Instance, roleBinding : DomainRole�,min,max : N

∀ i : instance • roleBinding ∈ i .agentType.performedRole [I 1]
max ≥ min [I 2]
max > 0 ⇒ max ≥ #instance ≥ min [I 3]

InteractionUse. The class schema of InteractionUse is given below. It inherits
from the class schema of NamedElement and includes two variables (i.e. inter-
action and actorBinding). Furthermore, we ensure with invariant [I 1] that all
ActorBindings the InteractionUse refers to are unique, meaning that any two
instances of them must be different with respect to their names, otherwise they
are considered as being equal.

InteractionUse
NamedElement

interaction :↓ Interaction, actorBinding : P1 ActorBinding c©

∀ ab1, ab2 : actorBinding • ab1.name = ab2.name ⇒ ab1 = ab2 [I 1]

ActorBinding. The concept ActorBinding binds Instances to Actor either di-
rectly or through a Binding. The class schema of ActorBinding is given below.
It inherits from the class schema of NamedElement and its declarative part in-
cludes five variables (i.e. instanceBinding, binding, actor, min, and max). The
variables min, and max again allow to restrict the number of Instances that are
bound. Furthermore, we introduce a semantic variable called instancesBound
that unions all Instances that are bound to the particular Actor (see [I 1]).
Additionally, if max is greater than 0 invariant [I 3] states that the number of
instancesBound is smaller or equal to max and greater or equal to min. However,
if max is equal to 0 the number of instancesBound is an arbitrary number that
is not fixed at design time.

152 C. Hahn and K. Fischer

ActorBinding
NamedElement

instanceBinding : P Instance�, binding : P Binding�, actor : Actor
min,max : N

Δ [Semantic Variables]
instancesBound : P Instance

instancesBound = instanceBinding ∪ ∪{b : binding • b.instance} [I 1]
max ≥ min [I 2]
max > 0 ⇒ max ≥ #instancesBound ≥ min [I 3]

Organization. An Organization is a special kind of Cooperation that also has
the same characteristics as an Agent. Therefore, the Organization can perform
DomainRoles and have Capabilities. As an Organization additionally inherits
from Cooperation, it also has its own internal Protocol.

The class schema of an Organization is depicted below. It inherits from Agent
and Cooperation. The declarative part does not consist of any variable.

However, the following invariants are specified: Firstly, the set of requiredRoles,
and bindings ([I 1]) should be equal and greater or equal to two. Additionally,
all Instances that are member of an Organization should perform a DomainRole
that is required by the Organization.

Organization
Agent ,Cooperation

#requiredRole = #binding ≥ 2 [I 1]
∀m : members • m.agentType.performedRole ∩ requiredRole �= ∅ [I 2]

3.4 Role View

The role view (depicted in Fig. 5) covers the abstract representations of func-
tional positions of autonomous entities within social relationships like for in-
stance Organizations or Cooperations. The metamodel of the role view includes
the concepts Role, DomainRole, and Actor, where DomainRole and Actor both
inherit from Role. Furthermore, the role metamodel includes the concepts Re-
source (from the environment view) as well as Capability (from the agent view).

The class schema of Actor is depicted below. It inherits from the class schema
of Role and includes three variables, i.e. subactor, superactor, and actorBinding,
where subactors presents the different subsets of Actors, and superactor denotes
for each subactor its corresponding parent actor. Furthermore, the variable ac-
torBinding defines which kind of DomainRoles and Instances are bound to an
Actor (see Fig. 4).

The Formal Semantics of the Domain Specific Modeling Language 153

Fig. 5. The metamodel of the role view

Critically, each Actor should refer to one super actor at maximum (see [I 1]).
As the subactor reference should be considered as a kind of specialization—
meaning that the instances bound to a subactor are also part of the super actor—
each Actor should have either no subactor or more than one subactors (see [I 2]).
Furthermore, if an Actor has subactors, these subactors refer again to Actor as
superactor (see [I 3]).

Actor
Role

subactor : P Actor c©, superactor : P1 Actor , actorBinding : PActorBinding

#superactor ≤ 1 [I 1]
#subactor = 0 ∨ #subactor ≥ 2 [I 2]
subactor �= ∅ ⇒ ∀ a : subactor • a.superactor = self [I 3]

3.5 Behavior View

The behavior view (depicted in Fig. 6) describes how simple actions are com-
bined to more complex control structures or plans to achieve goals. The partial
behavioral metamodel (see Fig. 6) includes the concepts Behavior, Plan, Activity,
Flow, InformationFlow, ControlFlow, StructuredActivity, Task, Sequence, Split,
Loop, Parallel, Decision, ParallelLoop, as well as Send, Receive, Begin, End, and
InternalTask. Furthermore, the Send and Receive refer to a Message (from the
interaction aspect).

A Plan specifies the Agents’ internal processes. In general, Plans are executed
by Agents in order to achieve their goals. However, the concept of a goal is not
explicitly represented in the core of Dsml4mas. However, we intend to extend
this core by further aspects also including an aspect for goal modeling. A Plan
refers to a set of Flows that are contained in the process description and contains
a set of Activities that are linked to each other via a Flow. Each Flow refers to a
source Activity (which defines the start of the Flow) and a sink Activity (which
defines the end of this Flow).

The class schema of a Plan is given below. It inherits from the class schemas
of Behavior and Activity. The declarative part of the class schema consists of

154 C. Hahn and K. Fischer

Fig. 6. The partial metamodel of the behavioral view

the variables flows and steps, where flows represents the set of Flows that are
connecting Activities, and steps defines all associated basic or more complex
Activities.

Furthermore, the declarative part presented in this schema consists of six
invariants: Firstly, a Plan has exactly one starting Activity and several end Ac-
tivities meaning that the set of Activities has exactly one Activity that has no
inFlow ([I 1]) and several Activities that have no outFlow ([I 2]). However, the
set of end Activities is not empty.

The operational semantics of a Plan are: When a Plan is entered, it becomes
active meaning that the operation enter changes the variable active from false to
true. When a Plan is exited, it becomes inactive meaning that the operation exit
changes the variable active from true to false. Initially, the variable active is set
to false (see operation INIT). Furthermore, a Plan is entry if it is active as well
as the preCondition evaluates to true ([I 3]) and a Plan is completed if it is ac-
tive, the ending Activities (i.e. lastActivity) of the contained Activities (i.e. steps)
are completed, and the postCondition evaluates to true. Finally, we define three
operations ExecuteEntry, InnerExit, and Exit which are used by the ControlFlow
transitions when they enter or exit an Activity. Since executing a Plan should start
with executing the start Activity, the operation ExecuteEntry invokes the opera-
tion enter of the first activity within the Plan. This guarantees that the containing
Activities of a Plan are always active when the Plan is active. The Exit operation
simply exits the Plan by invoking the operations InnerExit and exit.

Finally, we define the operational sequence in terms of invariants using the
timed trace notation (see [9]). The invariants are described in the following nota-
tion: 〈¬ var〉; 〈var〉 ⊆ 〈¬ op〉; (〈op〉 ∪ 〈op〉; 〈true〉) meaning that the operation
op occurs immediately when the variable var evaluates to true. In the context
of a Plan, the invariant defined in [I 5] states the operation sequence when a
Plan is entered. The invariant ensures that the operation ExecuteEntry occurs

The Formal Semantics of the Domain Specific Modeling Language 155

immediately when the Plan is active and has been entered (i.e. entry evaluates to
true). In this case the first activity of steps is executed. The invariant defined in
[I 6] states the operation sequence when a Plan is exited. The invariant ensures
that a Plan is only exited if the work on it has been completed. If this is the
case, the operation Exit is immediately invoked.

Plan
Behavior ,Activity

flows : P ↓ Flow c©, steps : P ↓ Activities c©
Δ [Semantic variables]
firstActivity :↓ Activity, lastActivity : P1 ↓ Activity, active : B

entry : B, completed : B

firstActivity = head{a : Activity | a.inFlow = ∅} [I 1]
lastActivity = {a : Activity | a.outFlow = ∅} [I 2]
entry ⇔ active ∧ preCondition [I 3]
completed ⇔ active ∧ postCondition ∧ ∧

s : lastActivity • s .completed
[I 4]

INIT
¬ active

enter
Δ(active)

¬ active ∧ active ′

exit
Δ(active)

active ∧ ¬ active ′

ExecuteEntry =̂ firstActivity.enter
InnerExit =̂

∧
s : lastActivity • s .completed • s .exit

Exit =̂ InnerExit o
9 exit

〈active ∧ ¬ entry〉; 〈active ∧ entry〉 ⊆
〈¬ExecuteEntry〉; (〈ExecuteEntry〉 ∪ 〈ExecuteEntry〉; 〈true〉) [I 5]

〈entry ∧ ¬ completed〉; 〈entry ∧ completed〉 ⊆
〈¬Exit〉; (〈Exit〉 ∪ 〈Exit〉; 〈true〉) [I 6]

4 Transferring Object-Z to OCL

In the last section, we presented a formal semantics specification of Dsml4mas.
Existing Object-Z and Z tools can be used for checking, validating, and verifying
the generated designs. However, this formal specification is also intended to

156 C. Hahn and K. Fischer

support the system designer already during the design phase. Therefore, the
formal specification should be closely linked to the tools used for designing MASs
in accordance to Dsml4mas. To design in a graphical manner, we developed a
graphical editor for Dsml4mas that bases on the abstract syntax defined by
the PIM4Agents metamodel. For detailed information on the graphical editor,
we refer to [11]. For the purpose of validating the design specified with the
graphical editor, we integrated a checker that evaluates the models with respect
to the semantics specification made with Object-Z. Using Dsml4mas correctly
is important to ensure that the design can be automatically transformed to
the underlying agent platforms on the PSM level. This checker is developed
by manually transforming the Object-Z specification into a corresponding OCL
(Object Constraint Language2) specification. This transformation is mainly done
in an one-to-one manner and bases on [12] which presents a mapping from OCL
to Object-Z. By performing the required reasoning with OCL inside the graphical
editor, the system designer can easily model in accordance to the abstract syntax
and semantics of Dsml4mas.

5 Related Work

There is huge literature on how to overcome the lack of semantics in modeling
languages like UML, however, it is still a matter of ongoing research. For instance,
the authors of [13] give a recent overview of existing approaches and evaluate
them using previously developed criteria. One of the most prominent approaches
is the UML 2 Semantics Project [14] that develops mathematically formalized
semantics for UML. However, the lack of tool support for verifying and validating
UML models has not been solved yet.

The most prominent approach for defining a formal semantics of an agent-
based systems was proposed in [15]. The authors base their formal framework
on Z (see [16] for an introduction to Z). The formal framework is composed of
concepts and their schemas. However, state spaces and operations of agents are
separated. In our approach, properties and operations of an entity are specified
in the same Object-Z class. Object-Z as an object-oriented extensions for Z fits
well in the context of model-driven development, which was in our case the main
criterion for adoption.

The authors of [17] proposed an approach in which Object-Z is extended
for specifying MASs. In accordance to them, AgentZ extends Object-Z with
new constructs to enhance structuring and to accommodate new agent-oriented
entities such as agents, organizations, roles and environments. This approach
goes in the same direction as our approach, however, only the static semantics
have been covered, whereas our approach also includes the dynamic semantics
of Dsml4mas. Furthermore, we demonstrated that it is not necessary to extend
Object-Z for specifying MASs in a formal manner.

An other approach is specified in [18] combining Object-Z and statecharts
to define MASs as the authors consider Object-Z too weak for specifying the
2 www.omg.org/docs/ptc/03-10-14.pdf

The Formal Semantics of the Domain Specific Modeling Language 157

complex features associated with MASs. However, it is unclear whether the ex-
isting Object-Z tools can be used for checking, validating, and verifying the
generated models.

Other formal or at least semi-formal approaches exist, like for instance the i∗
framework proposed in [19]. A mapping between i∗ and Z is discussed in [20].

6 Conclusion

This paper discusses parts of the formal semantics of Dsml4mas using Object-
Z. For this purpose, for each concept in the PIM4Agents metamodel—which is
the base for our domain specific modeling language—we introduced an Object-
Z class that includes the abstract syntax as well as the denotational (static)
semantics. In particular, the denotational semantics are defined by introducing
additional semantic variables and invariants.

The dynamic semantics is specified in a similar way. It is first defined in a de-
notational manner, meaning that semantic variables and invariants were defined.
Basing on these additional variables, the operational semantics is defined by in-
troducing operations and invariants that restrict the order in which operations
are executed using the time refinement calculus.

The following two core advantages of our approach can be identified: The
formal specification provides a rigorous foundation of Dsml4mas. Therefore,
by using existing formal verification tools, it may be possible to find errors,
prove particular properties, and improve the quality of the language. That is
an important language feature to minimize or even exclude errors. Furthermore,
the graphical editor allows to integrate the abstract syntax as well as the formal
semantics. Thus, the generated design can be validated at design time to exclude
errors. Therefore, the formal semantics help to ensure that the users understand
and use Dsml4mas correctly in order to apply code generators to close the gap
between design and implementation.

References

1. Bauer, B., Müller, J., Odell, J.: Agent UML: A formalism for specifying multia-
gent interaction. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 91–103. Springer, Heidelberg (2001)

2. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder intentions to
software agent implementations. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 465–479. Springer, Heidelberg (2006)

3. Papasimeon, M., Heinze, C.: Extending the UML for designing JACK agents. In:
Proceedings of the Australian Software Engineering Conference, ASWEC 2001
(2001)

4. Bordini, R.H., Dastani, M., Winikoff, M.: Current issues in multi-agent systems
development. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS, vol. 4457, pp. 38–61. Springer, Heidelberg (2007)

5. Hahn, C.: A platform independent agent-based modeling language. In: Proceedings
of the Seventh International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 233–240 (2008)

158 C. Hahn and K. Fischer

6. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods,
vol. 1. Kluwer Academic Publishers, Dordrecht (2000)

7. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall International, Englewood Cliffs (1996)

8. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science, Englewood Cliffs (1992)

9. Smith, G., Hayes, I.J.: Structuring real-time Object-Z specifications. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945,
pp. 97–115. Springer, Heidelberg (2000)

10. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. International Journal of Autonomous Agents and Multi-Agent
Systems (2008)

11. Warwas, S., Hahn, C.: The contrete syntax of the platform independent modeling
language for multiagent systems. In: Proceedings of the Agent-based Technologies
and applications for enterprise interOPerability (ATOP 2008). Workshop hold at
the Seventh International Joint Conference on Autonomous Agents & Multiagent
Systems, AAMAS 2008 (2008)

12. Roe, D., Broda, K., Russo, A.: Mapping UML models incorporating OCL con-
straints into Object-Z. Technical Report 2003/9, Imperial College, 180 Queen’s
Gate, London (2002)

13. O’Keefe, G.: Improving the definition of UML. In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 42–56. Springer,
Heidelberg (2006)

14. Broy, M., Crane, M.L., Dingel, J., Hartman, A., Rumpe, B., Selic, B.: 2nd UML
2 semantics symposium: Formal semantics for UML. In: Kühne, T. (ed.) MoDELS
2006. LNCS, vol. 4364, pp. 318–323. Springer, Heidelberg (2007)

15. d’Inverno, M., Luck, M.: Understanding agent systems. Springer, New York (2001)
16. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle

River (1989)
17. Brandão, A., Alencar, P.S.C., de Lucena, C.J.P.: AgentZ: Extending Object-Z

for multi-agent systems specification. In: Bresciani, P., Giorgini, P., Henderson-
Sellers, B., Low, G., Winikoff, M. (eds.) AOIS 2004. LNCS, vol. 3508, pp. 125–139.
Springer, Heidelberg (2005)

18. Hilaire, V., Koukam, A., Gruer, P., Müller, J.P.: Formal specification and proto-
typing of MAS. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000.
LNCS (LNAI), vol. 1972, pp. 114–127. Springer, Heidelberg (2000)

19. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE Int. Symp. on Requirements Engineering, pp. 226–235
(1997)

20. Vilkomir, S., Ghose, A., Krishna, A.: Combining agent-oriented conceptual mod-
elling with formal methods. In: Proceedings of the Australian Software Engineering
Conference, pp. 147–155 (2004)

Evaluating an Agent-Oriented Approach for
Change Propagation�

Khanh Hoa Dam and Michael Winikoff

RMIT University, Australia
kdam@cs.rmit.edu.au, michael.winikoff@rmit.edu.au

Abstract. A central problem in software maintenance is change propagation:
given a set of primary changes that have been made to software, what additional
secondary changes are needed? Although many approaches have been proposed,
automated change propagation is still a significant technical challenge in software
engineering. In this paper we report on an evaluation of an agent-based approach
for change propagation that works by repairing violations of well-formedness
consistency rules in a design model. The results have shown that given a rea-
sonable amount of primary changes, the approach is able to assist the designer
by recommending feasible secondary change options that match the designer’s
intentions.

1 Introduction

A large percentage of the cost of software can be attributed to its maintenance and evo-
lution [1]. The essence of software maintenance is change: in order to adapt a system to
desired requirements (be they new, modified, or an environmental change), the designer
makes changes to the system. In practice, those changes form a sequence of actions
(addition, removal and modification) that contains some primary changes followed by
additional, secondary, changes. Primary changes are usually identified based on the
characteristics of the change requests and the designer’s knowledge and expertise. Af-
ter that, the designer ensures that other entities in the software system are updated to
be consistent with these primary changes. As a result, secondary changes are then de-
termined and performed, mostly by identifying and fixing inconsistencies in the design
previously modified by primary changes. This process is known as change propagation
[2] and is complicated, labour-intensive and expensive, especially in complex software
systems that consist of many artefacts and dependencies [3].

Therefore, it would be desirable to have a tool that automates change propagation.
However, we do not believe that a tool can fully automate change propagation because
a tool cannot make decisions involving trade-offs and design styles where human in-
tervention is required. However, a tool can be an assistant that helps the designer by
providing feasible change propagation options.

� This work has been funded by the Australian Research Council under grant LP0453486, in
collaboration with Agent Oriented Software. We would also like to thank Lin Padgham, Se-
bastian Sardina and other members of the RMIT Agent Group for discussion relating to this
work.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 159–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

160 K.H. Dam and M. Winikoff

Although a substantial amount of work has looked at the issue of change propagation,
most of it has focused on source code (e.g. [3,2]). Recently, as the importance of models
in the software development process has been better recognised, more work has aimed
at dealing with changes at the model level (e.g. [4,5,6]) However, most existing work
either fails to advocate effective automation or fails to explicitly reflect the cascading
nature of change propagation, where each change (primary or secondary) can require
further changes to be made.

We have developed an agent-based framework to deal with change propagation by
fixing inconsistencies in a design. In other words, we identify change propagation op-
tions by finding places in the design where desired consistency constraints are violated
by primary changes, and we then fix them. This approach represents options for repair-
ing inconsistencies (“repair plans”) using event-triggered plans, as is done in Belief-
Desire-Intention (BDI) architectures.

The main focus of this paper is on an evaluation of the effectiveness of this approach
in assisting with change propagation.

In the sections ahead, we first review this approach to change propagation including
repair plan generation and execution (section 2). We then describe the Change Propaga-
tion Assistant (CPA) tool, which we have implemented and integrated with an existing
modeling tool (section 3). Section 4 is the main focus of this paper in which an evalua-
tion of the framework and our prototype tool is reported. We then discuss some related
work in section 5 before concluding and outlining some future work (section 6).

2 An Overview of the Approach

Our approach to change propagation is to define consistency conditions using a (UML)
meta-model and (OCL [7]) consistency constraints, and then use a library of repair
plans to fix inconsistencies in the design model. Consistency constraints define condi-
tions that all models must satisfy for them to be considered valid. These conditions
may include syntactic well-formedness, coherence between different diagrams, and
even best practices. Figure 1 depicts a very small excerpt of a UML metamodel [8]
and below is an example consistency condition (in both OCL and logic) between class
diagrams and sequence diagrams.

Constraint 1 The name of a message (in sequence diagrams) must match an operation
in a receiver’s class (in class diagrams).
Context Message inv c(self):
self.receiver.base.operation→exists(op : Operation | op.name = self.name)
∃ op ∈ self.receiver.base.operation : op.name = self.name

There are two important properties of change propagation: (a) it is cascading, i.e.
performing an action to fix an inconsistency can cause further inconsistencies which
require further actions and (b) multiple choices, i.e. there are usually many ways of
making the design consistent again. Those two properties are interestingly similar to the
characteristics of the well-known and studied Belief-Desire-Intention architecture [9],
where software agents have a library of plans (“recipes”) which are triggered by events.
Each plan specifies which event it is triggered by, under what conditions it should be

Evaluating an Agent-Oriented Approach for Change Propagation 161

-name : String

Class

-name : String

ClassifierRole

-name : String

Operation

-name : String

Message

*

+base 1..*

+owner

0..1

+operation

*

+receiver

1

+receivedMsg

*

+sender1 +sentMsg
*

+successor

*

+predecessor*

Fig. 1. A small excerpt of the UML metamodel

considered to be applicable (the “context condition”), and a plan “body”: a sequence of
steps that are what the plan does when it is executed. Steps in the plan body can create
events, which result in further plans being triggered. A given event can have multiple
plans that are triggered by it, and the plans’ context conditions are used to select a plan
to execute.

Based on that observation, repairing a violated constraint (an inconsistency) is repre-
sented as an event and the way to fix the violated constraint as (repair) plans. In previous
work [10], the syntax for repair plans is defined based on AgentSpeak(L) [11]. Each re-
pair plan, P , is of the form E : C ← B where E is the triggering event; C is an
optional “context condition” (Boolean formula) that specifies when the plan should be
applicable1; and B is the plan body, which can contain sequences (B1; B2) and events
which will trigger further plans (written as !E). We extend AgentSpeak(L) by allow-
ing the plan body to contain primitive actions such as adding and deleting entities and
relationships, and changing properties; and also to contain conditionals and loops. Our
extensions are conservative, and the formal semantics for our repair plan language can
be easily obtained by extending AgentSpeak’s semantics [12], or by using the semantics
of other related notations (such as CAN [13]).

Below is an example of repair plans for fixing constraint 1, i.e. c(self) defined
above. We use ct (self) to denote the event of making c(self) true (similarly for c1).

We also define the following abbreviations: SE def= self .receiver .base.operation and

c1(self , op) def= op.name = self .name.

P1 ct (self) : op ∈ SE ←!c1t(self , op)
P2 ct (self) : op ∈ Set(Operation) ∧ op �∈ SE ← add op to SE ; !c1t(self , op)
P3 ct (self) ← create op : Operation ; add op to SE ; !c1t(self , op)
P4 c1t (self , op) ← change op.name to self .name
P5 c1t (self , op) ← change self .name to op.name

1 In fact when there are multiple solutions to the context condition, each solution generates a
new plan instance. For example, if the context condition is x ∈ {1, 2} then there will be two
plan instances.

162 K.H. Dam and M. Winikoff

In the above example, there are three plans that make c(self) true (P1, P2, and P3).
Plan P1, for instance, posts an event c1t(self , op) which in turn can trigger either plan
P4 and P5. The context condition of plan P1, op ∈ SE , indicates that at run time it
can generate several plan instances, each for an operation belonging to the message’s
receiver’s class. Informally, plan P1 fixes c(self) by either changing the name of an ex-
isting operation contained in the message’s receiver’s class to the name of the message
(plan P4) or vice versa (plan P5).

In this change propagation framework, the repair plans are generated automatically
(at design time) from the constraints and metamodel [10], and form a plan library
which is used at run time. One key consequence of generating plans from constraints,
rather than writing them manually, is that, by careful definition of the plan generation
scheme, it is possible to guarantee that the plans generated are correct, complete, and
minimal [10].

At run time, after primary changes are made to the design model, all of the constraints
are evaluated, and violated constraints are repaired. Each violated constraint will usually
have several repair plan instances for fixing it. While one repair plan may also fix other
violated constraints, another may break constraints. As a result, selecting a repair plan
needs to take into account its effect on other constraints. We have therefore defined an
algorithm [14] which calculates a cost for each repair plan instance, taking into account
its consequences, i.e. which constraints it may break or fix. The designer is presented
with a set of the cheapest repair options, and they select one to apply to the design.

3 Implementation

We have recently implemented the Change Propagation Assistant (CPA), a prototype
tool that demonstrates how the above approach works in practice. We have devel-
oped a PDT Interface Communicator component which provides an API that is used
to integrate the change propagation tool with the Prometheus Design Tool (PDT2), a
freely-available tool supporting designers using the Prometheus methodology [15] for
building agent-based systems. The CPA uses the Dresden OCL Toolkit3 to parse OCL
constraints.

Our tool includes a Plan Creator component which generates (at design time) a repair
plan library from the constraints and metamodel.

When the designer requests the CPA for help the PDT design model is converted
by a model transformer component to a MOF4-compliant model which is stored in a
NetBean MDR5 repository. The Constraint Checker component identifies which con-
straints are violated and then instructs the Constraint Repairer component to find plans
for fixing them, using the repair plans library. The Constraint Repairer performs the

2 http://www.cs.rmit.edu.au/agents/pdt
3 An open source project providing various tools for OCL http://dresden-ocl.
sourceforge.net

4 Meta Object Facility(MOF) is an OMG standard [16] for defining metamodels and metadata
repositories.

5 http://mdr.netbeans.org/

http://www.cs.rmit.edu.au/agents/pdt
http://dresden-ocl.sourceforge.net
http://dresden-ocl.sourceforge.net
http://mdr.netbeans.org/

Evaluating an Agent-Oriented Approach for Change Propagation 163

Fig. 2. Change Propagation Assistant Integrated with PDT

164 K.H. Dam and M. Winikoff

cost calculation and returns to the designer a set of cheapest repair options. If the de-
signer accepts one of the options proposed then the Constraint Repairer instructs the
PDT Interface Communicator to apply those changes to the current PDT design model.

Figure 2 shows our change propagation assistant tool integrated with the Prometheus
Design Tool (PDT). When the CPA is invoked, it shows a list of violated constraints.
The designer decides to repair these constraints and the tool comes back with a list
of change options. The designer is able to view a sequence of change actions in each
option and decides which option (if any) to use.

4 Evaluation

Having implemented the above approach for a change propagation assistant we would
now like to perform an empirical evaluation of the effectiveness of the approach and
tool. The key question is how well this approach works in practice and, specifically,
how useful is it likely to be to a practising software designer who is maintaining and
evolving a system?

Unfortunately, an evaluation to answer this question raises a number of challenges
and questions such as: which methodology should be used? which application(s) should
be used? what changes to the system should be done? and, how do we select primary
changes to perform?

Our original plan was to use the UML design models, but the effort involved in im-
plementing all of the constraints in the UML standard was beyond our resources, and
so instead we have chosen to use the Prometheus [15] methodology for the design of
agent systems. The Prometheus notation is simpler than UML, and in addition to lo-
cal expertise, we had easy access to the source code of the Prometheus Design Tool
(PDT), allowing the Change Propagation Assistant to be integrated with PDT. We used
the Prometheus metamodel described by [17], and defined consistency constraints by
examining the well-formedness conditions of Prometheus models, the coherence re-
quirements between Prometheus diagrams, and best practices proposed by [15].

Our choice of application was the Bureau of Meteorology’s multi-agent system for
weather alerting (MAS-WA) [18]. This application was chosen because the prototype
system developed by the Australian Bureau of Meteorology had been extended in a
number of ways, and these extensions gave us well-motivated and realistic change sce-
narios to evaluate.

The purpose of the MAS-WA application is to monitor a range of meteorological
data, and alert forecasters to situations such as extreme weather, inconsistencies be-
tween data sources, or changes to observed weather that contradict previously issued
forecasts. We used a version of the system that simplified the application while retain-
ing its key characteristics [19]. The simplified system monitored data from forecasts
for airport areas (TAF) and from automated weather stations (AWS). TAF and AWS
readings contain information about temperature, wind speed and pressure. The system
issues alerts if there are significant differences between a prediction (TAF) and the ac-
tual weather (AWS). Figure 3 shows the system overview diagram for the application,
as well as agent overview diagrams for the Discrepancy and GUI agent types.

Evaluating an Agent-Oriented Approach for Change Propagation 165

Ideally, the evaluation would be done by giving the CPA to a group of selected users,
who would be asked to work with the tool to implement requirement changes. However,
due to time and resource limits, we were not able to conduct such a user study evalu-
ation. In order to overcome this obstacle, we approached the evaluation by defining an
abstract user behaviour in maintaining/evolving an existing design. We then simulated
a real user by following this behaviour: repeatedly making changes to the design, and
invoking and assessing the responses from the CPA tool.

Our model of abstract user behaviour below is based on the model of change prop-
agation process of Hassan and Holt [20]. In this model, the developer is guided by
a change request to perform primary changes (i.e. determine initial entity to change
and change entity) and some partial secondary changes (i.e. determine other entities to
change). When the developer cannot locate other entities to change, she/he consults a
Guru (which could be a person, a tool or a suite of test; in our case, it is the CPA tool6),
and if the Guru indicates that an entity was missed, then it is changed and the change
propagation process is repeated for that entity. This continues until all appropriate enti-
ties have been changed.

In order to evaluate how useful the CPA is, we consider a given change to the sys-
tem’s design that was done in order to meet a new requirement. We view such a change
(denoted by D , and not to be confused with the repair plans) as being a sequence of
actions, with each action being a primitive change to the model such as adding or re-
moving a link between entities. We then ask what proportion of the actions in the change
was done by the user, and what proportion was done by the CPA.

However, this metric is not that simple to use, because it depends on the choice of
change for a given requirement, and on the choice of primary change, i.e. how much
of the change is done before invoking the tool. For each given change, D , we need to
consider a range of possible primary changes P (with the actions in P being a subset of
those in D). Now in fact, D is a sequence, and the abstract user behaviour below uses
D sequentially, thus the possible primary changes are the initial segments of D .

We now define a process, based on the change propagation process of Hassan and
Holt [20], that captures (abstractly) the designer’s behaviour. In the following process
D denotes the designer’s planned change: a sequence of actions that transforms the
existing design model so that it meets the new requirement. The designer performs an
initial segment P of D (step 2), updates D by removing the performed actions (step 3)
and then invokes the tool, which returns a set O of repair options (step 4). Each repair
option Ci is a sequence of actions. At this point (step 5) the user may select one of
the Ci (step 6) and apply it to the model (step 7), or he/she may decide that none of
the Ci is suitable. Deciding whether a Ci is suitable is done by comparing it with the
designer’s plan: Ci is compatible with D if all actions in Ci are in D (formally7 ∀ a ∈
Ci : a ∈ D). If all the changes in D have been performed the process ends, otherwise
the user continues to perform more primary changes (step 9). We use D := D − P to
denote removing the actions in P from the sequence D , and we use P � D to denote

6 Unlike the Guru in their model, the CPA suggests not only entities to be changed, but also the
specific changes to be made to them.

7 Alternatively, if viewed as sets, Ci ⊆ D .

166 K.H. Dam and M. Winikoff

Fig. 3. MAS-WA Design

Evaluating an Agent-Oriented Approach for Change Propagation 167

that P is an initial segment of D (formally ∃X : P + X = D , where + is sequence
concatenation).

1. given a planned change D (sequence of actions)
2. select P � D
3. do the actions in P and update D (D := D − P)
4. invoke the tool yielding O = {C1, . . . ,Cn}
5. if ∃Ci ∈ O where Ci is compatible with D then
6. select a compatible Ci ∈ O (if more than one)
7. do actions in Ci and update D (D := D − Ci)
8. end if
9. goto step 2 if D is not empty.

We thus have the following evaluation process: for each new requirement we develop
(and justify!) a change plan D , and then apply the process above, considering a partial
change P that expands by one step at a time. When the process terminates we count how
many actions ended up being in Cis along the way, compared with the total number of
actions in D so we calculate the metric M =| C | / | D | (where C is the union of the
Cis).

Note that the value of M depends on our choices for P . Clearly, if P is the whole
of D then there is nothing left for the tool to do, and M will be 0. In some of the
cases below we will see that there is a “tipping point”: until enough of D is done
the tool cannot help, but once enough is done, the tool performs the remaining steps
in D .

In addition to measuring M , an important factor in the usefulness of the tool con-
cerns the repair options, O. Specifically, we are interested in how many of the Ci in
O are compatible with D , and in the size of O (since it is clearly better if the designer
is not being asked to select an option from a very large list). We thus, in addition to
M , also measure the number of options and how many of the options are compatible
with D .

Finally, we need to select values for the basic costs of action. In this evaluation
we do not explore a range of costs, but instead select what we believe are reasonable
values: addition, creation and modification are assigned the same cost (e.g. 1) and we
consider that deletion is not normally a desirable action, and so give it a higher cost
(e.g. 5).

4.1 Results and Analysis

Change requests can be classified into several categories, depending on the dimensions
we are looking at. Swanson initially identified three categories of maintenance: cor-
rective, adaptive, and perfective [21]. These have since been extended with perfective
maintenance8 and has become an ISO/IEC standard [22].

We also view maintenance in terms of the type of modifications made to the soft-
ware system. More specifically, they can be: (a) adding a new functionality/feature; (b)

8 modification of a software product after delivery to detect and correct latent faults in the soft-
ware product before they become effective faults.

168 K.H. Dam and M. Winikoff

removing an existing functionality/feature; and (c) modifying an existing functional-
ity/feature.

We introduce four requirement changes to the MAS-WA application that cover most
of the change types, according to the above classification of changes. They include:
logging all alerts sent to the forecast personnel (preventative and functionality modifi-
cation); adding wind speed alerting (adaptive and functionality addition); implement-
ing a variable threshold alerting (perfective and functionality addition); and adding
volcanic ash alert (perfective and functionality addition). Due to space limitations,
we describe only one change in detail, although we do present results for all of the
changes.

Change: Implementing a Variable Threshold Alerting. Currently, the alerting levels
are fixed and hard-coded. However, the forecast personnel wants to be able to adjust the
alerting levels, e.g. different regions will show alerts based on different discrepancies.
Hence, a new requirement that the forecast personnel should be able to set a threshold
for alerting is requested.

To meet this change request, the “GUI” and “Discrepancy” agents must be changed.
More specifically, the user’s request for changing the thresholds will be represented by
two percepts, each for temperature and pressure. A new plan is likely required to han-
dle those percepts. A new data store that keeps the threshold information is introduced.
Finally, the “Discrepancy” agent’s plans for detecting discrepancies, i.e. “CheckTem-
pDiscrepancy” and “CheckPressDiscrepancy”, will need to use the new threshold data
store. The designer’s planned change D thus consists of the sequence9:

1. Create “SetNewTempThreshold” percept
2. Create “SetNewPressThreshold” percept
3. Create “ChangeThreshold” plan in “GUI” agent
4. Make “SetNewTempThreshold” percept to be a trigger of “ChangeThreshold”.
5. Make “SetNewPressThreshold” percept to be a trigger of “ChangeThreshold”.
6. Create a new “AlertingLevels” data
7. Link “GUI” agent to “AlertingLevels” data
8. Link “ChangeThreshold” plan to “AlertingLevels” data
9. Link “AlertingLevels” data to “Discrepancy” agent

10. Link “AlertingLevels” data to “CheckTempDiscrepancy” plan
11. Link “AlertingLevels” data to “CheckPressDiscrepancy” plan

Since the first three steps involves the creation of new entities and the later steps
include actions related to those new entities, the tool does not return any compatible
options until step 3 is performed (and the designer may well defer invoking the tool
until s/he has created all three entities). One of the options proposed by the tool is
making the two new percepts to be a trigger of the new “ChangeThreshold” plan. The
tool does not suggest any further actions because the design is then consistent. The user
then performs step 6 and the tool then recommends either steps 7 and 8 or steps 9 and 10
or steps 9 and 11. Assume10 that the user chooses the option containing steps 7 and 8,

9 Some variations in order are possible, but they do not affect the evaluation outcome
10 If the user makes a different choice the overall M is still the same, just different actions are

done by the tool.

Evaluating an Agent-Oriented Approach for Change Propagation 169

Change 1 2 3 4 5 6 7 8 9 10 11 12 13 M

Logging 241 T T 67%
Wind Speed Alert 500 61 T T U 40%
Variable Threshold 40 160 121 T T 263 T T 112 T U 45%
Volcanic Ash 240 240 11 521 T T T T 780 281 T T T 54%

Fig. 4. Evaluation Results

and then performs step 9. The CPA recommends either step 10 or 11. The user chooses
one of these and has to manually perform the other.

Figure 4 shows the results of evaluation for the four changes. Each change has a
row, where the entries marked with numbers show the situation for the nth step of the
user’s plan (D). An entry of the form nm indicates that the tool returned n options (i.e.
O = {C1 . . .Cn}), where m of the Ci were compatible with D . An entry “T” indicates
that this step is done by the tool, that is, it is part of a selected repair plan from an earlier
step. An entry “U” indicates that the user performs this change; this occurs in two places
where D is non-empty, but the design is consistent, and in this situation the tool cannot
assist the user. The final column gives the value of the metric M =| C | / | D |.
Overall, for the four changes the average value of M is approximately 50%, that is,
compared with maintenance without our tool, the user would have to perform roughly
twice as many change actions.

5 Related Work

There has been a lot of interest in addressing the issue of assisting software engineers to
deal with software changes. In particular, change impact analysis has been extensively
investigated but most of the work has focused on source code. Many of the impact
analysis approaches are discussed in [3] and are typically used to assess the extent of the
change, i.e. the artefacts, components, or modules that will be impacted by the change,
and consequently how costly the change will be. Although these approaches are very
powerful, they do not readily apply to design models [5]. In addition, our work focuses
more on implementing changes, i.e. propagating changes between design artefacts in
order to maintain consistency as the software evolves.

There have been several works that specifically target fixing inconsistencies in design
models. The work by [6] provides a framework which automatically derives a set of
repair actions from the constraint by analyzing consistency rules expressed in first-
order logic and models expressed in xlinkit [23]. However, their work considers only a
single inconsistency and consequently does not explicitly address dependencies among
inconsistencies and potential consequences of repairing them, e.g. fixing one constraint
can repair or violate others.

Recently, Egyed proposed an approach based on fixing inconsistencies in UML mod-
els [5]. The approach uses model profiling to locate possible starting points for fixing

170 K.H. Dam and M. Winikoff

an inconsistency in a UML model. He also tried to use model profiling to predict
the side-effects of fixing an inconsistency. His work, however, treats a constraint as
a black box whilst we analyse the constraints to generate repair plans. Similarly the
work of Briand et al. also looks at how to identify impacted entities during change
propagation using UML models [4]. It defines specific change propagation rules (also
expressed in OCL) for a taxonomy of changes. However, the major difference between
both of these works and ours is that their approaches do not provide options to repair
inconsistencies, but only suggest starting points (entities in the model) for fixing the
inconsistency.

6 Conclusions and Future Work

We have presented a novel agent-oriented approach to deal with change propagation
by fixing inconsistencies in the design models. The approach has been implemented in
a form of a prototype tool (i.e. the CPA tool) that assists the designer in propagating
changes. We have also evaluated the effectiveness of the approach by applying it to
Prometheus using the design of a real application, MAS-WA.

The evaluation demonstrated that the approach is effective given that a reasonable
amount of primary changes are provided. However, there are several threats to the valid-
ity of our study. For instance, although the set of changes are motivated by real change
requests, and cover most of the change types, they may not be representative of all
changes. We also need to test the approach with different application types. Addition-
ally, there is scope for evaluation with other methodologies and notations (e.g. UML),
with a range of basic costs, and, of course, with human subjects.

One issue that arises in the proposed approach relates to the use of inconsistency as a
driver for change. As seen in the evaluation, not all changes result in inconsistency, and
in these cases the approach will not be able to completely identify the desired secondary
changes. An opposite issue is that, as argued by [24], not all inconsistency should be
fixed; this is easy to deal with by simply allowing certain constraint types or instances
to be marked as “to be ignored”.

In some cases there may be a large number of repair options returned by the tool,
which makes it hard for the user to select which one to use. In practice this can be
dealt with by ignoring the tool’s list of options and performing further changes (which
often provides the tool with information that enables it to return fewer options). A better
approach which needs to be investigated is reducing the number of options by “staging”
questions. Suppose we need to link a percept with a plan and with an agent, then instead
of presenting a set of options, where each option specifies both a plan and an agent
(which gives a cross product), specify first the choice of agent, and then based on that
choice ask for a choice of (relevant) plan.

Overall, our conclusion is positive since the evaluation shows that the approach is
able to (on average) perform approximately half of the actions in maintenance
plans, across a number of changes motivated by experience with a real
application.

Evaluating an Agent-Oriented Approach for Change Propagation 171

References

1. Vliet, H.V.: Software engineering: principles and practice, 2nd edn. John Wiley & Sons, Inc.,
Chichester (2001)

2. Rajlich, V.: A model for change propagation based on graph rewriting. In: Proceedings of
the International Conference on Software Maintenance (ICSM), pp. 84–91. IEEE Computer
Society, Los Alamitos (1997)

3. Arnold, R., Bohner, S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

4. Briand, L.C., Labiche, Y., O’Sullivan, L., Sowka, M.M.: Automated impact analysis of UML
models. Journal of Systems and Software 79(3), 339–352 (2006)

5. Egyed, A.: Fixing inconsistencies in UML models. In: Proceedings of the 29th International
Conference on Software Engineering (ICSE) (May 2007)

6. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair actions.
In: ICSE 2003: Proceedings of the 25th International Conference on Software Engineering,
pp. 455–464. IEEE Computer Society, Los Alamitos (2003)

7. Object Management Group: Object Constraint Language (OCL) 2.0 Specification (2006)
8. Object Management Group: Unified Modeling Langague Specification (UML 1.4.2, ISO/IEC

19501) (2005)
9. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Rich, C., Swartout,

W., Nebel, B. (eds.) Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, San Mateo, CA, pp. 439–449. Morgan Kaufmann
Publishers, San Francisco (1992)

10. Dam, K.H., Winikoff, M.: Generation of repair plans for change propagation. In: Luck, M.,
Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS, vol. 4951, pp. 132–
146. Springer, Heidelberg (2008)

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996)

12. Moreira, A., Bordini, R.: An operational semantics for a BDI agent-oriented programming
language. In: Meyer, J.J.C., Wooldridge, M.J. (eds.) Proceedings of the Workshop on Logics
for Agent-Based Systems (LABS 2002), April 2002, pp. 45–59 (2002)

13. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2002), Toulouse, France, pp. 470–481
(2002)

14. Dam, K.H., Winikoff, M.: Cost-based BDI plan selection for change propagation. In: Au-
tonomous Agents and Multi-Agent Systems (AAMAS) (2008) (to appear)

15. Padgham, L., Winikoff, M.: Developing intelligent agent systems: A practical guide. John
Wiley & Sons, Chichester (2004)

16. Object Management Group: Meta Object Facility Specification, MOF 1.4 (2002)
17. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change propagation

in software evolution. In: Proceedings of the Australian Software Engineering Conference
(ASWEC), pp. 309–318. IEEE Computer Society, Los Alamitos (2006)

18. Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open meteorological
alerting system: Issues and solutions. In: Estivill-Castro, V. (ed.) Proceedings of the 27th
Australasian Computer Science Conference, Dunedin, New Zealand, pp. 351–358 (2004)

19. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven development toolkit for do-
main experts to modify agent based systems. In: Padgham, L., Zambonelli, F. (eds.) AOSE
VII / AOSE 2006. LNCS, vol. 4405, pp. 190–207. Springer, Heidelberg (2007)

172 K.H. Dam and M. Winikoff

20. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In: ICSM 2004:
Proceedings of the 20th IEEE International Conference on Software Maintenance, Washing-
ton, DC, USA, pp. 284–293. IEEE Computer Society, Los Alamitos (2004)

21. Swanson, E.B.: The dimensions of maintenance. In: ICSE 1976: Proceedings of the 2nd in-
ternational conference on Software engineering, pp. 492–497. IEEE Computer Society Press,
Los Alamitos (1976)

22. ISO/IEC 14764: Information technology - software maintenance. ISO: Geneva, Switzerland
(1999)

23. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking
and smart link generation service. ACM Transactions on Internet Technology 2(2), 151–185
(2002)

24. Fickas, S., Feather, M., Kramer, J. (eds.): Proceedings of the Workshop on Living with In-
consistency, Boston, USA (1997)

Goal-Oriented Agent Testing Revisited

Erdem Eser Ekinci, Ali Murat Tiryaki, Övünç Çetin, and Oguz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{erdemeserekinci,ovunc.cetin}@gmail.com
{ali.tiryaki,oguz.dikenelli}@ege.edu.tr

Abstract. Today multi-agent systems research is ready to be trans-
ferred to the industrial applications. But, testing is one of the most crit-
ical processes to increase the acceptability of such systems in industrial
settings. In this paper, we introduce a goal-oriented testing approach
based on test goal concept. This approach alleges that agent goals are
smallest testable units in MAS’s instead of agents unlike other agent test-
ing approaches and tools proposed previously. Moreover, we introduce a
testing tool, called as SEAUnit, that provides necessary infrastructure
to support proposed approach.

1 Introduction

Multi-agent systems (MAS) are complex applications, which operate on open and
distributed environments. So, developers need well established software processes
for engineering industrial strenght MAS applications. As realized in traditional
software development, testing is one of the most important processes in MAS
development to produce industrial MAS applications. This fact has also been
realized in MAS community and some testing processes [11,2] and supporting
test tools [2,3] have been proposed in the literature.

To define a MAS testing process, one has to map the classical testing types
(unit, integration, system and acceptance testing) to MAS development activ-
ities. Such a mapping forces us, first of all, to answer the most basic question;
What is the unit on MAS development?

All of the previously proposed MAS testing processes and the tools describe
agent as the smallest unit in MAS development and use event driven tool infras-
tructure(s) to verify the functional correctness of an agent. But an agent itself
is a complex system which is too large to be considered as a unit. It may play
many roles within the system including many goals and these goals are achieved
through the complex infrastructure of agent that includes communication infras-
tructure, knowledge handling, planning etc. Hence, it is very difficult to localize
errors and failures within such a large scale system by just observing the system
events[8]. We need a smaller unit that simplifies the testing and error localization
processes.

In this paper, we propose a new testing process, which takes the agent goal as
the smallest unit to be tested. In general, AOSE methodologies identify system

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 173–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

174 E.E. Ekinci et al.

level goals in analysis phase, then those goals are partitioned and assigned to
MAS architecture in the design phase. Agent executes these goals depending on
their internal architecture (such as BDI) and collaboratively achieve the system
level goals. So, agent level goal descriptions are the smallest methodological
artifacts of any AOSE methodology.

After we identify agent goals as the smallest unit, we have to define how de-
velopers test these goals. we propose a new concept called as “test goal” for
implementing unit tests. The test goals are explicit descriptions, which are writ-
ten to ensure agent goals. This idea is inspired in the TDD practice of Extreme
Programming (XP) [1] paradigm. Like in the XP, test goals are implemented with
the supported agent programming language of the agent framework and stored
as agent goals. Accordingly, coding tests as goals provide easily refactoring test
code to source code and vice verse [15].

Test goals provide much more deeper testing opportunities than the event-
based testing, since they use agent programming language to verify any agent’s
internal behavior. Moreover, requirements of agent collaboration can be verified
within the test goal which makes the mock agent concept unnecessary. After the
real agent is implemented, test goal is refactored to represent the new situation.

Based on the “test goal” concept and proposed process, a testing infrastruc-
ture has been implemented within the SEAGENT Multi-agent Development
Framework[4]. This infrastructure lets developers to define test goals during goal
implementation. So, it supports unit and integration testing during implemen-
tation cycle.

2 Background on Goal-Oriented Agent Testing

Automatic testing of agent systems depends on artifacts of the development
methodology and used agent technology. So, to define a testing process one
has to identify testable artifacts, that must be tested automatically, of agent
development.

Nguyen and et al.[11] propose such a testing process by identifying differ-
ent testing levels and activities involved within these levels based on TROPOS
methodology [6]. There are three levels within the methodology, which are Unit
Testing, Integration Testing and System Testing. In the unit testing level, they
aim to test agents. Since the TROPOS methodology defines the agents own
goals during development, they use the requirements of these goals for testing
the agents. Goal dependencies of TROPOS goal model is used for the integration
testing in a way that depended goals are allocated to different agents and collab-
oration of the agents are triggered in the scope of goals to test the integration.

Although Nguyen’s approach is based on the goal concept, they aim to test the
whole agent as the smallest testable unit. To test an agent, they send required
test messages through a testing agent. But an agent has complex infrastructure.
So it is not always possible to test the autonomy of agents and also internal
behaviors of each individual goal from outside of the agent. The solution is to
test the goals of agents internally.

Goal-Oriented Agent Testing Revisited 175

In our testing process, the main artifacts that should be tested are system
goals and agent goals. Agents play specified roles through executing their re-
lated goals. Moreover, agents collaborate through their roles (executing their
goal in other words) to satisfy system level goals. One has to verify implementa-
tion of each agent goal firstly and then verify the system level goals by testing
collaboration of the agents. As a conclusion, we take the agent goal as the small-
est unit for goal-oriented agent testing process and define the test types within
the process as follows:

– Agent Goal (Unit) Testing: Agent goal is the smallest testing unit and testing
the agent goal verifies the valid execution of a goal in the single agent context.
Agent context may include agent knowledge base, external environment that
agent directly interacts. Agent’s goal(s) should be tested by shielding the
collaboration of other agent’s goal(s) through support of testing environment
which is discussed in Section 4.

– Integration Testing: Integration testing verifies functional acceptability of a
system goal by focusing agent’s goals collaboration. We have to test that
system level goal requirements are satisfied by agent through their goal ex-
ecution and collaboration.

– System Testing: System testing aims to validate of system execution on
the real operational setting including the non-functional requirements such
as performance, reliability, security etc. To perform system testing, one
has to select a set of system goals that performs critical non-functional
requirements.

– Acceptance Testing: Acceptance tests verify system functionality that is crit-
ical for the system users. So, the acceptance tests are applied to a set of
system level goals that are selected by the system users.

After we setup the testing artifacts and type of the testing levels based on these
artifacts, it is time to define when and how do we test these artifacts. The
V-Model1 is a well known model to map testing activities with development
activities. According to the V-Model, artifacts of each development phase are
tested by the related test types. A general goal-oriented testing process naturally
executes acceptance test activities after the analysis phase of the development
when system goals are identified. At this phase, test cases for selected system
goals are defined and documented. System test cases requires a defined agent
architecture. Hence, system test activities are performed after the design phase
when agent architecture that satisfies the system goals are defined.

The main difference of our approach is to collaborate unit testing and integra-
tion testing activities with the implementation phase in a way that agent goals
and system goals are implemented using the test goal concept. The details of
how the test goals are defined and implemented is discussed in following sections.

1 The Development Standards for IT Systems of the Federal Republic of Germany,
www.v-modell-xt.de

176 E.E. Ekinci et al.

3 Goal-Oriented Testing Approach

Goal-Oriented multi-agent system development methodologies and goal-based
agent architectures aim to develop multi-agent system applications based on the
goal concept. General view of such methodologies can be summarized like that
requirements of an application are first transferred to system level goals, then
system level goals are decomposed to agent level goals, which satisfy system level
goal cooperatively. So, to ensure acceptability and validity of these goals, testing
process of a MAS application should verify system and agent level goals.

In this paper we proposed a new approach for testing system and agent level
goals. In this approach, our claim is that tests of such goals should be imple-
mented as goals also. The goal that is used for testing is called as “Test Goal” for
emphasizing difference between test and source goals. A test goal is separated
conceptually to three main sub-goals, which are named as setup, goal under test
(GUT) and assertion goals, as shown in Figure 1. The setup goal prepares pre-
conditions and provisions, which make the execution of GUT possible. When
the setup goal is satisfied than the GUT is executed. After the GUT execution,
assertion goal is started and it checks expected post-conditions and outcomes of
the GUT execution. Since assertion and setup goals are implemented as separate
goals, they may have complex implementation, which may gather information
from different sources (other agents, environment) and may assert other agents
internal knowledge and states. According to complexity of the tests, these goals
may be also decomposed to sub-goals and some source goals or other test goals
can be re-used for the assertion implementation.

Fig. 1. Unit Test of a Goal

A test goal’s level depends on the covered GUT. If the GUT is a type of an
agent goal than it is verified in unit testing level. On the other hand, if GUT is a
system goal, which is composed of agent goals, than it is tested in the integration
testing level. Our test goal concept makes it possible to verify both unit and
integration level testing using the same approach, which is implementing a test
goal to satisfy a goal (either agent or system level goal).

On the other hand the system level testing is a more comprehensive testing
phase and it has many types of testing such as validity, stress, security, regression
vs. It is not possible to achieve all these types of tests by the test goal concept
except validity testing. Which types of system testing techniques and acceptance
testing can be covered by the test goal approach is not in the scope of this paper.

Goal-Oriented Agent Testing Revisited 177

Following section defines how test goals can be implemented for unit and
integration testing levels in an agent architecture, which uses HTN planning
paradigm to implement agent goals. Although the test goal approach is exam-
pled on HTN paradigm, this idea can be applied to any goal-oriented agent
architecture.

4 Applying Goal-Oriented Testing on HTN-Based Agent
Architecture

HTN(Hierarchical Task Network)[13] planning paradigm has been extensively
used in well known agent frameworks such as RETSINA [12], DECAF [7] and
SEAGENT[4]. The HTN has pre-defined plan structure that is modeled in the
design time, and then these structures are executed by HTN planner[5] at run-
time. The HTN’s pre-defined structure includes Behaviors, Actions and their
data and flow dependencies. Behaviors are complex HTN tasks, which define
the composition of other behaviors and actions are executable and primitive
tasks. At run-time the planner reducts behaviors to sub-tasks iteratively and
executes the actions.

In agents that use the HTN paradigm, HTN plans satisfy agent goals. To test
an HTN plan in our testing approach, we implement separate HTN plans for
setup and assertion goals and these plans are linked dynamically at run-time for
achieving test goal.

To explain details of our testing process, we use a simple example, which is
shown in Figure 2. In this example a system goal is achieved by the collaboration
of two agent goals. Each agent goal, which is implemented with an HTN plan, is
executed in an agent in scopes of different roles. In the HTN structures shown in
the figure, letter B indicates behavior and letter A indicates actions. As shown
in the figure, the Consumer Goal is implemented by B1 behavior in the scope of
R1 role. When the B1 is started, initial action A1 of the B1 triggers the Provider
Goal by sending a message that contains a provision of A3. The B2 finishes its
job with executing A4 action and the A4 sends the result message to the A2.
When the A2 receives the message, it executes and finishes the Consumer Goal.
This example is used to define how our goal-oriented testing approach is applied
on the HTN implementation in the following sub-sections.

4.1 Unit Test Detail

As mentioned in previous section, in the goal-oriented testing approach we claim
that agent goals should be considered as primitive modules of a MAS application
and should be verified by unit tests. Based on the HTN structure, highest level
behaviors fulfill the agents’ goals. So, the highest level behaviors identify require-
ments of the test goal in a way that setup goal has to prepare pre-conditions of
the GUT, similarly assert goal verifies post-conditions of the GUT based on the
requirements of highest level behavior.

178 E.E. Ekinci et al.

Fig. 2. HTN Sample Plan

Figure 3 illustrates that how the Consumer Goal of the R1 role (comes from
our original example shown in the Figure 2) is tested using our approach. As
shown the figure, each sub-goal of the test goal (setup,GUT,assert goals) has
separate HTN plans and these sub-goals have dependency links between each
other. So, at run-time these goals are executed according to the dependencies in a
way that each depended goals are linked dynamically during goal test execution.

Fig. 3. Unit Test

Goal dependencies between Setup, GUT and Assert goals also require depen-
dencies between their HTN plans. For example, setup plan S prepares provision
of the B1 behavior of GUT. After the Setup goal execution, goal matching en-
gine identifies the dependencies between Setup and Consumer Goal (GUT) and
initiate the plan of Consumer Goal by providing the B1’s provision with out-
come of S. So, such a mechanism requires a goal matching engine, which executes
sub-goals by following dependencies of a goal and separate planning engine that
executes plans of related goals.

Similarly, the Consumer Goal and Assert Goal has a different kind of depen-
dency (dotted link represents message dependency) and this dependency indicates
that message of Consumer Goal (A1’s message) must be link to the Assert Goal
(a1 action of A behavior). When the A1 task sends a message, the message is re-
ceived by the same agent and then the goal matching engine of the agent identifies

Goal-Oriented Agent Testing Revisited 179

the Assert Goal that is capable of handling this message and initiate the plan of
that goal. Then the a1 task of Assert Goal verifies the functionality of A1 task.

On the other hand, the GUT may require external provisions from cooperated
goals (these goals may locate in the same agent or different agents). To verify the
GUT, such provisions must be provided at run-time and in our example this case
is shown as message dependency between a2 and A2 actions. It is important
to note that this mechanism make the mock agent concept (this is the core
concept of other automatic testing tools) unnecessary since required information
about a GUT can be gathered by task(s) of an assert goal. Additionally mock
agents requires message dependency between agents. If an agent goal does not
send and receive external messages, it is not possible to verify such a goal with
mock agents.

4.2 Integration Test Detail

We already define aim of integration testing level as verifying system goals.
Since system goals include cooperation of agent goals of separate roles, we have
to verify results of this cooperation. An integration test goal contains setup,
system goal (as GUT) and assertion goals similar with unit testing. Although
sub-goals of GUT (it is a system goal in this case) can be located in different
agents, we don’t aim to test messaging infrastructure of the agent platform.
So, we execute the integration test goal within an agent to ensure functional
correctness of the cooperation.

The main difference of an integration test goal from a unit test goal is that
setup and assertion goals of integration test goal contains sub-goals. Naturally,
setup goal of an integration test goal prepares pre-conditions of each sub-goal of
the GUT. Similarly, sub-goals of the assert goal check the correctness of func-
tionality and cooperation of GUT’s sub-goals.

Figure 4 indicates an integration test goal structure, which verifies our base
example shown in Figure 2. Since system goal (GUT) contains two sub-goals
(Consumer and Provider Goals), the Setup goal requires two related sub-goals
(Consumer and Provider Setup Goals) for preparing pre-conditions of each sepa-
rate sub-goals of the GUT. The execution of an integration test goal is managed
by goal matching engine as in the unit testing case. During the execution of
the integration test goal, the matching engine resolves that Setup goal has two

Fig. 4. Integration Tests

180 E.E. Ekinci et al.

independent sub-goals and initiates their plans. After the plans of sub-goals
are completed, the matching engine follows dependencies between Setup and
GUT goals and then launches the Consumer Goal and its all provisions are pro-
vided. Dependencies between sub-goals of GUT and sub-goals of Assert are man-
aged by the matching engine and their related plans are executed in a required
order.

5 The Architecture of SEAUnit

The SEAUnit test tool helps to developers to run test goals of our proposed
goal-oriented testing approach. The SEAUnit architecture has been engineered
on the top of SEAGENT Multi-Agent Framework [4]. The test tool’s execution
mechanism is simple since it directly executes the test goals using SEAGENT’s
infrastructure. The SEAGENT has two critical model for implementing SEAUnit
architecture, which are planning engine and goal matching engine. The planning
engine is based on HTN paradigm [13] and execute HTN plans to satisfy agent
goals. The details of the planning engine architecture can be found in [5]. The
matching engine’s main responsibility is to select and launch goals for plan-
ning to satisfy incoming requests. The SEAGENT matching engine can manage
dependencies of sub-goals of an agent goal by cooperating with the planning
engine.

The SEAUnit is implemented as Eclipse plug-in and incorporated in the
SEAGENT development environment, which is also an Eclipse plug-in. The ar-
chitecture of the tool and related modules of the SEAGENT framework are
illustrated in Figure 5.

As seen in the figure, all responsibilities for testing are taken by two sub-
packages; Test Runner and GUI. To run a test goal, the Test Runner initializes
an instance of agent within the SEAGENT platform. This agent becomes re-
sponsible to execute test goals. Then the Test Runner triggers the agent by
sending an objective for satisfaction of the test goal.

During execution process of the test goal, the GUI listens events of the agent.
These events are created by the Event Manager module of the SEAGENT Agent
and are collected by the GUI. Two types of events of Event Manager have
been used to monitor test goal execution; finished goal, and erroneous goal.
Finished goal and erroneous goal events indicate that the goals under execution
are satisfied or not. The GUI holds the knowledge of the test goal that are in-
progress. According to the collected events about the test goal, such as finished,
exceptions (about communication, knowledge base or other runtime exceptions)
and removed from task queue, the GUI reports the results of the assert goals to
the developer.

At first glance, this event listening mechanism may mislead the reader that
the test tool uses events like other agent testing researches. But the important
point that should be paid attention is that GUI listens events only about the
test goals/tasks for reporting purposes.

Goal-Oriented Agent Testing Revisited 181

Fig. 5. Test Tool Infrastructure

6 Case Study

We have developed a case study to show how the proposed testing approach and
the SEAUnit testing tool work on a real example. The case study is focused on a
single system goal of a tourism information system called as RoomReserve. The
model of ReserveRoom system goal, its sub-goals and corresponding HTN plans
are represented in Figure 6.

During the design phase, it is decided that the ReserveRoom system goal
includes agent goals; RequestRoomReservation of a Customer role and Register-
RoomReservation of a Hotel role. When agent of the Customer role decides to
reserve a room according to the agent user’s preferences, it takes RequestRoom-
Reservation goal and its corresponding plan BHReservationRequest into the ex-
ecution. The execution of the BHReservationRequest plan starts the cooperation
with player agent of the Hotel role by sending request messages. To participate
in the cooperation, the Hotel role takes RegisterRoomReservation goal and goal’s
corresponding plan BHRegisterReservation plan into execution.

To define execution of agent goals, details of the HTN plans, shortly men-
tioned above and represented in the Figure 6, must be explained. These HTN
plans, BHRegisterReservation and BHRegisterReservation, are developed by the
SEAGENT development environment’s HTN Editor. These plans cooperate in
the boundary of a simple request protocol. At run-time, the BHReservation-
Request behavior takes room description as a provision and this provision is
carried to the ACRequestRegistration action with an inheritance link. After, the
ACRequestRegistration action has the responsibility of enveloping this room de-
scription to a FIPA message and sending it to the to the Hotel role. Next action

182 E.E. Ekinci et al.

Fig. 6. Tourism Information System Goal Model

is called as ACHandleReservationRequest, which takes a response message from
the Hotel role and displays to the user. When the request message, which con-
tains the room definition, is arrived to the agent of Hotel role, the agent planner
executes the BHRegisterReservation behaviour. This behaviour handles the re-
quest message with its ACCheckReservation action. This action picks out the
room definition from the message and outcomes it to the ACRegisterReservation
action. This action checks the availability of the room and books or rejects the
request according to the availability of the room.

In the scope of the case study, unit testing process forthe RegisterRoomReser-
vation agent goal is explained. We implement TestRoomReservation test goal
to ensure validity of the RequestRoomReservation goal. Figure 7 illustrates goal
model of the TestRoomReservation goal. As seen in the figure, there are two par-
ticipant role; Test and Hotel roles. The TestRoomReservation goal comprised
of three sub-goal Setup, RegisterRoomReservation and CheckRoom goals. The
CheckRoom goal is also composed of sub-goals of CheckRoomAvailability and
Assert. When the TestRoomReservation goal is triggered, firstly the Setup goal
is executed and the Setup goal starts to cooperate with the RegisterRoomReser-
vation goal of Hotel role. In the cooperation, the Setup goal of Test role requests
to book a room and sends this request message to the RegisterRoomReservation
of Hotel role. After the Setup and RegisterRoomReservation goals’ cooperation
finished, the CheckRoom goal is took into progress. In the scope of the Check-
Room goal, the Assert goal starts and cooperates to CheckRoomAvailability goal
of the Hotel role to ensure the reservation result.

Goal-Oriented Agent Testing Revisited 183

Fig. 7. Goal Model of Test Role

Fig. 8. CheckRoom Goal and Corresponding Plans

To implement the test goal of TestRoomReservation goal, one has to be de-
fine setup and assertion goals. In Figure 8, the assert goal of the test goal is
shown but the Setup goal is skipped, since its plan is very simple that just pre-
pares a room description as an input. The plan of the Assert goal is named
as BHAssertReservation, which is composed of two sub-tasks, ACPrepareQuery
and ACAssertResponse. The ACPrepareQuery action prepares query message to
ask room availability to the agent that plays Hotel role. The ACHandleQuery
action receives the query message, sent from the ACPrepareQuery action, and

184 E.E. Ekinci et al.

Fig. 9. Assert action code

Fig. 10. SEAUnit Tool View

picks out the room description from the message and passes it to the ACCheck-
Room action. The ACCheckRoom queries its local knowledge according to the
room definition and sends back the availability result to the ACAssertResponse

Goal-Oriented Agent Testing Revisited 185

action. Lastly, the ACAssertResponse verifies whole reservation operation is suc-
cessful or not.

The ACAssertResponse action, represented in Figure 9, is the action that
contains only assertion code. The figured action is implemented conveniently to
the SEAGENT framework’s action template without any extension about testing
framework. After the provision of the action is supplied, its execute method is
called by the planner. Similarly to the body of the execute method, the room
object is picked out from the message, that is sent from the Hotel role, and
asserted to verify room is not available. At run-time, if the assertion fails, an
assertion exception is thrown and events about these type of exceptions are
collected by the test tool GUI. This GUI is shown in Figure 10. As seen in the
figure, the GUI shows the result of the assert goal in the right side of the view.
As as last sentence of the case study, it can be said that this integrated testing
environment makes test goal development very easy.

7 Evaluation and Conclusion

The desire of implementing an agent test tool raised while our group was devel-
oping MAS applications. During development efforts, verification of implemented
goals became a problem within the group. This requirement forced us to develop
a testing framework for agent-oriented development, since each developer tends
to observe the correctness of his/her implemented goal.

Initially we implemented a testing framework [14] that was based on the
event-based architecture similar with the other testing tools in literature. But
a lot of difficulties were run across and some of them were really strict. First
difficulty was defining new types of events when the SEAGENT infrastructure
was modified. This problem is also observed in the literature [9]. This made
testing test tool and agent infrastructure highly coupled. In the new testing
architecture, the testing tool does not cope with the events of planning engine.
Test goals are executed as ordinary plans by the planning engine. The Event
Manager handles the all events of infrastructure and test tool just listens the
Event Manager to report to test goals’ status. This design decouples the test
tool from planer’s internal execution.

Another observed problem of the event-based testing architecture is inability
of reusing previously implemented goals. In the new architecture, since test goals
are implemented as an HTN plans, any source goals or test goals can be reused
easily by linking during goal development.

As a conclusion, we change the architecture of our test tool to overcome men-
tioned problems of event-based architecture. The new architecture and testing
approach makes the testing process easily applicable for any goal-oriented agent
development methodologies. Since explicit test goals are implemented using same
programming paradigm (HTN planning in our case), developers can easily adopt
themselves to unit and integration test coding.

We also observed that our integrated testing environment(SEAUnit) facili-
tates test goal development and makes it possible to get rapid feed-backs about

186 E.E. Ekinci et al.

goal functionality. So, the integrated test tools supports the test-driven goal de-
velopment style for developers. Also test goals can be used for documentation
purposes which simplifies understanding and maintenance of agent goals [10].

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (2004)

2. Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multi-agent systems im-
plementation and testing. In: Fourth International Symposium: From Agent Theory
to Agent Implementation, Vienna, Austria (EU), April 14-16 (2004)

3. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: SELMAS 2006: Proceedings of the
2006 international workshop on Software engineering for large-scale multi-agent
systems, pp. 83–90. ACM Press, New York (2006)

4. Dikenelli, O., Erdur, R.C., Gumus, O., Ekinci, E.E., Gurcan, O., Kardas, G., Sey-
lan, I., Tiryaki, A.M.: Seagent: A platform for developing semantic web based multi
agent systems. In: AAMAS, pp. 1271–1272. ACM, New York (2005)

5. Ekinci, E.E., Tiryaki, A.M., Gurcan, O., Dikenelli, O.: A planner infrastructure
for semantic web enabled agents. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 95–104. Springer, Heidelberg (2007)

6. Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development
methodology: processes, models and diagrams. In: AAMAS 2002: Proceedings of
the first international joint conference on Autonomous agents and multiagent sys-
tems, pp. 35–36. ACM, New York (2002)

7. Graham, J.R., Decker, K., Mersic, M.: Decaf - a flexible multi agent system archi-
tecture. Autonomous Agents and Multi-Agent Systems 7(1-2), 7–27 (2003)

8. Hanks, S., Pollack, M., Cohen, P.: Benchmarks, testbeds, controlled experimenta-
tion, and the design of agent architectures. AI Magazine 14(4), 17–42 (1993); Also
published as TR 93-06-05, University of Washington

9. Hanks, S., Pollack, M.E., Cohen, P.R.: Benchmarks, testbeds, controlled experi-
mentation, and the design of agent architectures. Technical Report TR-93-06-05
(1993)

10. Meszaros, G.: XUnit Test Patterns: Refactoring Test Code. Addison-Wesley, Read-
ing (2007)

11. Nguyen, C.D., Perini, A., Tonella, P.: A goal-oriented software testing methodol-
ogy. In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII.
LNCS, vol. 4951, pp. 58–72. Springer, Heidelberg (2008)

12. Sycara, K., Paolucci, M., Velsen, M.V., Giampapa, J.: The retsina mas infrastruc-
ture. Autonomous Agents and Multi-Agent Systems 7(1-2), 29–48 (2003)

13. Sycara, K., Williamson, M., Decker, K.: Unified information and control flow in
hierarchical task networks. In: Working Notes of the AAAI 1996 workshop Theories
of Action, Planning, and Control (August 1996)

14. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: Sunit: A unit testing frame-
work for test driven development of multi-agent systems. In: Padgham, L., Zam-
bonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer,
Heidelberg (2007)

15. van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Refactoring test code. In:
Marchesi, M., Succi, G. (eds.) International Conference on Extreme Programming
and Flexible Processes (2001)

Experimental Evaluation of Ontology-Based Test
Generation for Multi-agent Systems

Cu D. Nguyen, Anna Perini, and Paolo Tonella

Fondazione Bruno Kessler
Via Sommarive, 18
38050 Trento, Italy

{cunduy,perini,tonella}@fbk.eu

Abstract. Software agents are a promising technology for today’s com-
plex, distributed systems. Methodologies and techniques that address
testing and reliability of multi agent systems are increasingly demanded,
in particular to support automated test case generation and execution.

A novel approach, based on agent interaction ontology, has been re-
cently proposed and integrated into a testing framework, called eCAT ,
which can generate and evolve test cases automatically, and run them
continuously.

In this paper, we focus on the experimental evaluation of an ontology-
based test generation approach. We use two BDI agent applications as
case studies to investigate the performance of the framework as well as
its capability to reveal faults.

1 Introduction

Testing of Multi-Agent Systems (MAS) faces challenging issues due to basic
features of these systems. MAS are distributed systems, they are autonomous and
deliberative, they operate in an open world, which requires context awareness,
and they can communicate using high level interaction protocols which may
require facing semantic interoperability problems. All these features are known
to be hard not only to design and to program [1], but also to test.

Recent studies on MAS testing [18,6] have proposed two testing frameworks,
working on different agent platforms, both based on JUnit and sharing the idea of
using mock agents that interact with the agents under test by sending messages
to them, according to a given interaction protocol. The replies of the agents under
test are then evaluated against expected behaviors. Although these approaches
represent an important step toward the automation of MAS testing, they mainly
address test case execution. Issues related to test cases generation, which concern
how to effectively generate valid and invalid input data to thoroughly exercise
the agents’ behavior, are still largely unexplored in MAS testing.

Agent behaviors are often influenced by messages received. Hence, at the core
of test case generation is the ability to build sequences of messages that exercise

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 187–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

188 C.D. Nguyen, A. Perini, and P. Tonella

the agent under test so as to cover most of the possible running conditions. Often,
failures appear only after long execution periods and under specific conditions
and environmental contexts. A key feature of agent testing is the possibility to
carry on long interactions with the agents under test. This demands for auto-
mated approaches to test case production, so as to overcome the necessarily
limited number of cases considered in a manually defined test suite.

Automated test case generation requires the ability to fill-in message tem-
plates with input data that are both meaningful and diverse enough to stimu-
late the alternative reactions of the agent under test. Manual and purely random
input generation are deemed to cover a limited portion of the input space for dif-
ferent reasons: manual input data are necessarily a small set; random input data
are generated without taking the semantics of the messages into account. For
example, a string can be easily generated randomly, by picking up a random se-
quence of characters, but such an automatically generated input is very unlikely
to match, e.g., a valid airline name or destination, which might be necessary to
construct a valid message processed by the agent under test.

We have recently addressed the problem of meaningful input value generation,
taking advantage of agent interaction ontologies, which define the semantics of
agent interactions [13]. The resulting ontology-based approach allows to auto-
matically generate both valid and invalid test inputs, to provide guidance in
the exploration of the input space, and to obtain a test oracle against which to
validate the test outputs. We have integrated this techniques in our MAS test-
ing framework, called eCAT , which supports continuous testing and automated
test case generation [12], so that test cases are generated and executed continu-
ously, resulting in a fully automated testing process, which can run unattended
for long periods of time. On the one hand, continuous testing enables extensive
exploration of the space of MAS behaviors, on the other hand, ontology-based
test generation guides this exploration toward the most interesting regions of
the space of input data that appear in meaningful messages.

In this paper, we focus on the experimental evaluation of the ontology-based
test generation technique. Two different-size MAS applications have been chosen
as case studies: a book-trading system and a system that supports bibliography
research. We evaluate the performance of the framework as well as its capability
to reveal faults.

The paper is structured as follows. Section 2 briefly discusses state-of the art
research on MAS testing and contrast our approach with it. Section 3 recalls some
background notions on our continuous testing framework and on agent interaction
ontologies. Section 4 recalls the ontology-based test generation approach, which
have been previously proposed in [13], and its implementation in the eCAT frame-
work. Results from the experimentation on the two case studies are discussed in
Section 5, with the aim of evaluating the effectiveness of the proposed approach.
Finally, Section 6 summarizes the main outcomes of this work.

Experimental Evaluation of Ontology-Based Test Generation 189

2 Related Work

MAS verification, debugging and testing have been addressed in a few stud-
ies [2,18,6]. Focusing on MAS testing, Rouff [16] proposes a special tester agent
for testing other agents individually or within the community they belong to. We
share with Rouff [16] the choice of testing a MAS using an agent, and we go even
further by separating the testing responsibility from the monitoring responsibil-
ity, the latter being assigned to monitoring agents. This makes our framework
easily applicable to distributed MAS. In addition to that, in our framework the
tester agent executes continuously, thanks to the possibility of running new test
cases that are generated automatically.

Tiryaki et al. [18] propose a test-driven MAS development process that sup-
ports iterative and incremental MAS construction. A testing framework, built
on top of JUnit and Seagent [7], is used to support the approach. The framework
allows writing automatically executed test cases that exercise single agent behav-
iors as well as interactions among agents. Similarly, Coelho et al. [6] introduce
an approach for MAS unit testing built on top of JUnit and JADE [17]. Both
approaches involve mock agents, which simulate real agents, to interact with the
agents under test. However, a number of mock agents needs to be implemented
in order to test every role of agents under test, this makes these approaches
expensive and scalability becomes a problem.

Zhang et al. [19] discuss unit testing for agent systems. Different from tradi-
tional software systems, units in agent systems are more complex in the way that
they are triggered and executed, such as plans are triggered by events. A model-
based testing approach has been introduced that use Prometheus [14] models to
obtain information about faults. A testing framework that supports unit testing
is also introduced.

A common approach in MAS debugging tools, consists of collecting informa-
tion during the execution of MAS and visualizing them to support the iden-
tification of the errors and of their causes. The following approaches focus on
debugging agent interactions. The ACLAnalyser [4] tool analyzes runs on the
JADE [17] platform. It intercepts all messages exchanged among agents and
stores them in a relational database. It exploits clustering techniques to build
agent interaction graphs that support the detection of missed communication be-
tween agents that are expected to interact, unbalanced execution configurations,
overhead data exchanged between agents. This tool has been enhanced with data
mining techniques to process results of the execution of large scale MAS [3]. Lam
and Barber [11] presents the Tracing Method and accompanying tool to help de-
bug agents by explaining actual agent behavior. The Tracing Method captures
dynamic run-time data, creates modeled interpretations in terms of agent con-
cepts (e.g. beliefs, goals, and intentions), and analyzes those models to gain
insight into both the design and the implemented agent behavior.

The main difference of our approach from existing works is that we aim at
automating test case generation, also exploiting agent interaction ontologies for
managing valid and invalid inputs and guiding exploration of the input space.

190 C.D. Nguyen, A. Perini, and P. Tonella

Moreover, test cases are executed continuously and in an unattended way, so
that testing can last for a long time in the background.

3 Background

3.1 The eCAT Testing Framework

The eCAT testing framework for MAS, generates test cases and executes them
continuously [12]. The architecture of the tool is depicted in Figure 1, with
its two main components: the Tester Agent and the Monitoring Agents . Since
agents communicate primarily through message passing, the Tester Agent can
send messages to other agents to stimulate a behavior that can potentially lead
to fault discovery. In turn, the Monitoring Agents observes the reactions to the
messages sent by the Tester Agent and, in case these are not compliant with
the expected behavior, e.g. conditions violated or crashes happen, it notifies the
developer team of the revealed fault. Usage of an autonomous tester agent allows
for an arbitrary extension of the testing time, that can proceed unattended and
independently of any other human-intensive activity. This is a relevant function,
since the behavior of a MAS can change over time, due to the mutual depen-
dencies among agents and to their learning capabilities, and a single execution
of a test case might be inadequate to reveal faults. Continuous testing of a MAS
requires that the Tester Agent has the capability to evolve existing test cases and
to generate new ones, with the aim of exercising and stressing the application
as much as possible, the final goal being the possibility to reveal yet unknown
faults.

Two automated test case generation techniques were initially provided with
the Tester Agent , namely random generation and evolutionary mutation genera-
tion [12]. They have been recently enhanced with the ontology-based generation

Envi ronment 1

Envi ronment N

Agent
A

Agent
 B

Agent Z

Host N

Host 1

O-based Generator

Tester agent

Central monitor ing
 agent

Remote moni tor ing agent

Interact ion ontology

Fig. 1. eCAT architecture, including ontology-based input generator

Experimental Evaluation of Ontology-Based Test Generation 191

technique recalled in Section 4 [13]. The Tester Agent invokes the generator (O-
based Generator, see Figure 1) to continuously generate test cases and run them
while the Monitoring Agents observe their behaviors and informs the Tester
Agent of faults, if any occur. Moreover, the Tester Agent verifies whether the
messages received from the agents under test conform to the ontology or not.
In the latter case, the Tester Agent notifies the developer team of the revealed
fault.

eCAT has been implemented as an Eclipse1 plug-in. It supports testing agents
implemented in JADE [17] and JADEX [15], and the input ontology formats are
those supported by Protégé2 like OWL.

3.2 Agent Interaction Ontology

In order for a pair of agents to understand each other, a basic requirement is
that they speak the same language and talk about the same things. This is usu-
ally achieved by means of an ontology, namely an interaction ontology. Popular
multi-agent platforms like JADE [17], JADEX [15], widely support the use of
ontologies. They provide tools for generating code from ontology documents,
thus, reducing the development effort, and for runtime binding of the message
contents with concepts defined in an ontology.

A common structure of an interaction ontology involves two main concepts
(also known as Classes): Concept and AgentAction. Sub-classes of AgentAction
define actions that can be performed by some agents (e.g., Propose), while sub-
classes of Concept define common concepts understandable by agents that in-
teract (e.g., Book). These sub-classes can have multiple properties of different
type. For each class, the user can define a number of individuals (or instances)
of the class. For example, Book can have title as a property, and a particular
book having the title “Testing Agents” may be an instance of Book.

A specific agent action can now be built, based on the shared understanding
of the concept Book. For example, an agent Buyer could send an ACL message
of type REQUEST to agent Seller, with the following content:

(Propose (Book :title “Testing Agents”) :price 135.7)

The message is understood by both agents thanks to the shared interaction
ontology.

4 Ontology-Based Test Generation

Let us consider a book-trading multi-agent system in which Seller and Buyer
agents negotiate in order to sell and buy books. There could be multiple sellers
and buyers that want to sell or buy the same book at the same time, so the goal
of the sellers is to choose a buyer that proposes the highest price whereas the

1 http://www.eclipse.org
2 Available at http://protege.stanford.edu

http://www.eclipse.org
http://protege.stanford.edu

192 C.D. Nguyen, A. Perini, and P. Tonella

Thing Concept

AgentAct ion Propose

+book: Book

+price: float

Book

+title: String

+author: String

Fig. 2. The book-trading interaction ontology, specified as UML class diagram

goal of the buyers is to choose the seller with the cheapest price. Let us assume
that these agents use the FIPA Contract Net protocol [9] and the interaction
ontology presented in Figure 2. The ontology consists of a concept Book having
two properties title and author and an agent action Propose, to proposes a price
for a book.

Rules can be added to the ontology properties in order to restrict admitted
values. For example, the price property in Figure 2 may be constrained to be
within 0 and 2000. The related OWL rule is the following:

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

<owl:hasValue ...>min 0 and max 2000</owl:hasValue>

</owl:Restriction>

In the course of negotiation, a buyer initiates the interaction by sending a
call for proposals for a given book (an instance of Book) to all the sellers that
it knows of. Upon reception of a call, sellers check whether the book is available
and make price proposals (instances of Propose). The initiating buyer, then,
selects the seller with the minimum price and sends an accept for the proposal
to the selected seller, or it changes the proposal and re-sends it to the seller,
according to the FIPA Contract Net protocol.

Testing the Buyer and Seller agents accounts for generating instances of the
messages that each agent is supposed to be able to process and let the Tester
Agent send them to the proper agents. The Tester Agent continues the interac-
tion in accordance with the selected protocol and generates new messages when-
ever needed. The Monitoring Agents observe and record any deviation from the
expected behavior of the agents under test. Hence, the problem for the Tester
Agent is how to generate meaningful messages in the course of the interaction.
We take advantage of the interaction ontology for this purpose.

4.1 Domain Ontology and Ontology Alignment

By domain ontology we mean ontologies that exist in a specific domain of inter-
est, not necessarily being interaction ontologies. For instance, there are ontologies
that describe books and all related information such as title, author, category,
year of publication and the like. A number of domain ontologies are available on
the Internet (a useful ontology search service is available at: http://swoogle.
umbc.edu).

http://swoogle.umbc.edu
http://swoogle.umbc.edu

Experimental Evaluation of Ontology-Based Test Generation 193

Ontology alignment [8,10] refers to techniques aimed at finding relationships
between elements of two ontologies. It can be used to map classes, properties,
rules etc. of one ontology onto another one, and eventually to compare or transfer
data from one to the other. Several tools are available that support ontology
mapping (e.g., Prompt, available at http://protege.stanford.edu/plugins/
prompt/prompt.html).

In order to generate meaningful testing data, i.e., data that represent real
instances of ontology classes in the domain of interest, we use ontology alignment,
so as to augment the agent interaction ontology with instances. This is achieved
by mapping an existing domain ontology onto the MAS interaction ontology.
Since domain ontology may come with a large amount of associated data, by
ontology alignment we can augment the interaction ontology with a rich set of
diverse data, that can be used for test case generation.

In the book domain, it is easy to find hundreds of instances of the class Book
on the Internet that can be aligned with the interaction ontology thanks to tools
such as Prompt. For more details on ontology mapping, the interested reader
can refer to the paper by Euzenat et al. [8].

4.2 Ontology-Based Test Generator

The basic features of the ontology-based test cases generation technique, previ-
ously presented in [13] are described in the rest of this section.

Valid and invalid inputs. The task of the ontology-based test generator consists
of completing the content part of the message the Tester Agent is going to send
to the agent under test. For each concept to be instantiated in the message, the
generator either picks up an existing or creates a new instance of the required
concept. The test generator generates no input value if the interaction protocol
prescribes that a value from a previously exchanged message must remain the
same.

Then, the selected instance is encoded according to the proper content codec
(for the message content) and is made available to the Tester Agent . As an
example, the following excerpt shows an XML-encoded content of a message
that contains information about a proposal for a book, including the Propose
action:

<root ... xmlns="jadex.examples.booktrading.ontology"/>

<Book n:id="2" title="Introduction to MultiAgent Systems"

author="Michael Wooldridge"/>

<Propose n:id="1" price="47.50" r:book="2"/>

</root>

When new instances are generated, the test generator selects one from those
available in the ontology based on the number of usages of each instance, so as
to increase diversity and explore the input space more extensively.

In the case when no ontology instances are available, valid test inputs can
be still generated taking into account information, such as rules and property

http://protege.stanford.edu/plugins/prompt/prompt.html
http://protege.stanford.edu/plugins/prompt/prompt.html

194 C.D. Nguyen, A. Perini, and P. Tonella

datatypes, specified in the interaction ontology. For example, based on the rule
about the price, the generator can generate any value in the range from 0 to
2000 as a valid input value to be processed by the Seller or Buyer agents.

More generally, for the properties of Numeric datatype, we can exploit the
boundaries of the datatype, as well as the rules that limit the values of the
specific property, to generate valid input values. For the properties of string
datatype, we can only exploit the list of allowed values, if available. Most of the
times, meaningful values for properties of string datatype are hardly generated
without the help of an ontology.

Invalid input generation is based on a specific set of rules and datatypes that
appear in the interaction ontology and complement those for the valid inputs.
For instance, when boundaries are specified for numeric properties, the generator
goes beyond them deliberately. According to the book-trading ontology described
above, the test generator knows that the property price is of datatype float and
that there is a rule stating that price must be between 0 and 2000. The generator
may produce the invalid values -1, 2001 to test both sides of the boundaries. For
string properties, the generator produces null (or empty) strings as potentially
invalid values. Other options available to the generator are to randomly modify a
valid input (taken from the available ontology instances) or to randomly generate
a new one in order to try to produce an invalid value. The full list of valid input
generation rules is provided in [13].

Message generation. When generating the full message, the test generator ap-
plies a set of input combination rules, such that, for valid messages, the only
possibility is to use only valid input values, while for invalid messages, the gen-
erator can choose either to have only invalid values, or to have interleaved valid
and invalid values, or to have just one invalid value. Rule selection follows the
general criteria of maximizing diversity.

Input space exploration. The generator uses coverage information to decide how
to explore the input space. The test generator gives priority to concepts and
instances never selected before. When instances are reused, if possible the gen-
erator selects instances with low reuse frequency. When invalid inputs are pro-
duced, the generator chooses the so-far least-used invalid input generation rules.
From the coverage perspective, the input space corresponding to each ontology
concept is divided into valid and invalid regions. The generator gives priority to
uncovered or least-used regions, thus avoiding test cases belonging to the same
category and increasing the coverage rate.

Ontology as test oracle. The expected behavior of the agents under test is
checked, not only, by a set of OCL constraints, but we can also enrich such
constraints with a set of constraints automatically derived from the interaction
ontology. In fact, the message content sent by the agents under test is expected
to respect the rules and datatypes specified in the ontology for each concept
instantiated in the message. Whenever the Tester Agent receives a message con-
tent that is invalid according to the interaction ontology, a fault is notified to the
developer team. For example, when the Tester Agent sends a call for proposal

Experimental Evaluation of Ontology-Based Test Generation 195

for a book, the Seller agent must reply with a message whose content belongs to
Propose and complies to its rules and datatypes. Otherwise, an error is detected.

5 Case Study

We have evaluated the performance of the ontology-based test generator as well as
its capability of revealing faults on two case studies. The first case study (Book-
Trader) is a book-trading MAS, similar to that summarized in Section 4. This
system was implemented as a set of BDI agents [5] in JADEX [15]. We extended
it to support ontology-based interaction. After modeling the interaction ontology
(see Figure 2) using Protégé, we generated ontology-supporting code, and mod-
ified the implementation of Seller and Buyer agents accordingly. Moreover, we
added OCL constraints (e.g., the price must be between 0 and 2000). The size of
this MAS is 1312 Lines Of Code (LOC), 2 types of agent: buyer and seller.

For BookTrader we were able to obtain three ontologies with instances of
books, comprising respectively 10, 20 and 100 instances. We applied diverse rules
for valid and invalid input generation [13]. For instance, for the Book properties
author and title we used the following three different rules for valid input: (1)
New value that has not been used before from ontology instances ; (2) Reused value
from ontology instances ; and (3) Randomly generated value respecting rules in
ontology. Invalid inputs have been generated applying the two rules: (1) Empty
string; and (2) Randomly generated string. Analogous rules (but for numeric
datatypes), were used for generating valid and invalid inputs for the Proposal ’s
price.

Table 1 (a) shows the total number of test cases (divided into valid and in-
valid test cases) that were generated by executing continuous testing.Test case
generation for the Seller required the creation of 3 test case templates, while
only one template was needed for the Buyer. The small number of templates
indicates that little manual effort is required by our approach. In fact, template
definition is the only step requiring human involvement.

The two classes in the BookTrader ontology were fully covered by the au-
tomatically generated test cases. Moreover, two deviations from the expected
behavior (faults) were observed. Manual testing of the same application was
conducted by applying the goal-oriented test case derivation methodology de-
scribed in our previous work [12]. Results are provided in Table 1 (b) and show
that 6 test cases were manually defined for each agent under test. They cover
the same number of classes in the ontology and reveal the same faults as the au-
tomatically generated test cases. Although in this example ontology-based test
case generation exhibits no superior performance in terms of ontology coverage
or fault detection, it increases the confidence in the correctness of the applica-
tion, in that it allows exploring a much larger portion of the input space at no
additional cost.

The second case study (BibFinder) is a MAS that aims at facilitating bibli-
ographic search. A special assistant agent called BibFinder helps searching and
building references for a specific topic, sharing bibliographic data with other
BibFinders . In particular, BibFinder has the capability to:

196 C.D. Nguyen, A. Perini, and P. Tonella

1. Consolidate bibliographic data automatically, even when they are scattered geo-
graphically;

2. Perform searches on and extract bibliographic data from the Scientific Literature
Digital Library3, exploiting the Google search service4;

3. Rank publications automatically based on usage history;
4. Form communities of BibFinders automatically in order to share bibliographic and

ranking data of similar topics of interest;
5. Join an existing community or create a new community based on the interests of

the BibFinder ’s owner;
6. Recommend a list of “must-read” papers to the owner.

Similar to BookTrader, BibFinder is implemented as a BDI agent [5] in
JADEX [15]. The size of this MAS is 8484 Lines Of Code (LOC), 3 agents.
The main differences between BookTrader and BibFinder are that the former
has been evolved together with the several versions of JADEX, hence it is likely
to contain less faults than the latter, which was implemented recently from
scratch. Moreover, the interaction ontology of BibFinder is much larger than
BookTrader ’s one.

Fig. 3. Interaction ontology of BibFinder

A portion of the interaction ontology of BibFinder is presented in Figure 3.
The complete ontology is quite big, because of the number of properties (e.g.,
Entry has 42 properties) and classes not shown in Figure 3 for space reasons (14
sub-classes of Entry and AgentAction are not shown in the figure).
3 http://citeseer.ist.psu.edu
4 http://code.google.com/apis/soapsearch

http://citeseer.ist.psu.edu
http://code.google.com/apis/soapsearch

Experimental Evaluation of Ontology-Based Test Generation 197

Table 1. Faults and coverage evaluation (N/A means Not Applicable)

MAS Agent
under test

Numb of
templates

Time
limit

Number of test cases Ontology
coverage

Revealed
faultsValid Invalid Total

BookTrader
Seller 3 30’ 209 131 340 2/2 2
Buyer 1 10’ 56 38 94 2/2 2

BibFinder BibFinder 5 1h 853 423 1267 27/27 6
(a) Automatically generated test cases

BookTrader
Seller N/A N/A 3 3 6 2/2 2
Buyer N/A N/A 3 3 6 2/2 2

BibFinder BibFinder N/A N/A 7 7 14 13/27 4
(b) Manually derived test cases

We used a set of BibTeX files, comprising a large number of BibTeX entries,
to create a domain-specific ontology that specifies and contains BibTeX data. It
was then aligned with the BibFinder ontology (shown in Figure 3). In total, we
obtained 983 ontology instances.

Table 1 (a) shows the total number of test cases generated for BibFinder ,
ontology coverage and revealed faults. Compared to the manually derived test
cases (Table 1, (b)), continuous, ontology-based testing allowed a much wider
exploration of the input space, with a correspondingly higher ontology coverage
and fault revealing capability. Reliability of BibFinder is substantially improved
after the execution of continuous, ontology-based testing.

6 Conclusions

In this paper, we presented an experimental evaluation of a novel approach for
automated test case generation using ontologies, which has been introduced in a
companion paper [13]. The agent interaction ontology is combined with domain
ontologies by means of ontology alignment techniques, so that domain ontology
instances can be used to populate the agent interaction ontology with instances.
Our test generator takes advantage of such instances to produce valid and invalid
input messages that can be used to exercise the agents under test continuously.

Experimental results show that whenever the interaction ontology has non
trivial size, the proposed method achieves a higher coverage of the ontology
classes than manual test case derivation. It also overcomes manual derivation
in terms of revealed faults, as well as portion of input space explored during
testing. The level of automation achieved by our tool eCAT allows for test case
generation at negligible extra costs.

The proposed approach focuses mainly on exploiting the ontology to test
single agents, and it is limited in revealing faults resulting from single agent
interactions. As a future work, we will extend the approach to test a team of
agents, sharing a common ontology to reach team goals.

References

1. Bergenti, F., Gleizes, M.-P., Zambonelli, F.: Methodologies and Software Engi-
neering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Springer, Heidelberg (2004)

198 C.D. Nguyen, A. Perini, and P. Tonella

2. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Autonomous Agents and Multi-Agent Systems 12(2),
239–256 (2006)

3. Bot́ıa, J.A., Gómez-Sanz, J.J., Pavón, J.: Intelligent data analysis for the verifi-
cation of multi-agent systems interactions. In: Corchado, E., Yin, H., Botti, V.,
Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1207–1214. Springer, Heidelberg
(2006)

4. Bot́ıa, J.A., López-Acosta, A., Gómez-Skarmeta, A.F.: ACLAnalyser: A tool for
debugging multi-agent systems. In: ECAI, pp. 967–968 (2004)

5. Bratman, M.E.: Intentions, Plans and Practical Reason. Harvard University Press,
Cambridge (1987)

6. Coelho, R., Cirilo, E., Kulesza, U., von Staa, A., Rashid, A., Lucena, C.: Jat: A
test automation framework for multi-agent systems. In: 23rd IEEE International
Conference on Software Maintenance (2007)

7. Dikenelli, O., Erdur, R.C., Gumus, O.: Seagent: a platform for developing seman-
tic web based multi agent systems. In: AAMAS 2005: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, pp.
1271–1272. ACM Press, New York (2005)

8. Euzenat, J., Bach, T.L., Barrasa, J., Bouquet, P., Bo, J.D., Dieng, R., Ehrig,
M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou, G.,
Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Acker, S.V., Zaihrayeu, I.: State of
the art on ontology alignment. Knowledge Web Deliverable 2.2.3 (August 2004)

9. FIPA. Interaction protocols specifications (2000-2002),
http://www.fipa.org/repository/ips.php3

10. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18(1), 1–31 (2003)

11. Lam, D.N., Barber, K.S.: Debugging Agent Behavior in an Implemented Agent
System. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
PROMAS 2004. LNCS, vol. 3346, pp. 104–125. Springer, Heidelberg (2005)

12. Nguyen, C.D., Perini, A., Tonella, P.: Automated continuous testing of multi-agent
systems. In: The fifth European Workshop on Multi-Agent Systems (December
2007)

13. Nguyen, C.D., Perini, A., Tonella, P.: Ontology-based Test Generation for Multi
Agent Systems. In: Proc. of the International Conference on Autonomous Agents
and Multiagent Systems (2008)

14. Padgham, L., Winikoff, M.: Prometheus: A pragmatic methodology for engineering
intelligent agents. In: Proc. Workshop on Agent Oriented Methodologies, OOPSLA
2002 (2002)

15. Pokahr, A., Braubach, L., Lamersdorf, W.: Multi-Agent Programming. In: Jadex:
A BDI Reasoning Engine. Kluwer Book, Dordrecht (2005)

16. Rouff, C.: A test agent for testing agents and their communities. In: Aerospace
Conference Proceedings, vol. 5 (2002)

17. TILAB. Java agent development framework, http://jade.tilab.com/
18. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: Sunit: A unit testing frame-

work for test driven development of multi-agent systems. In: Padgham, L., Zam-
bonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer,
Heidelberg (2007)

19. Zhang, Z., Thangarajah, J., Padgham, L.: Automated unit testing for agent sys-
tems. In: 2nd International Working Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE 2007), Barcelona, Spain (2007)

http://www.fipa.org/repository/ips.php3
http://jade.tilab.com/

Testing and Debugging of MAS Interactions
with INGENIAS

Jorge J. Gómez-Sanz1, Juan Bot́ıa2, Emilio Serrano2, and Juan Pavón1

1 Facultad de Informática, Universidad Complutense Madrid,
jjgomez,jpavon@sip.ucm.es

2 Facultad de Informática, Universidad de Murcia,
juanbot,emilioserra@um.es

Abstract. Testing and debugging activities are getting more relevance
in multi-agent systems (MAS) as agents become part of real applications.
Both activities are related, since failures to be debugged are frequently
detected during the execution of tests. The support for these activities
is not yet as complete as other activities of MAS development. However,
agent oriented software engineering methodologies are incorporating new
testing and debugging features. In this direction, the paper introduces
advances made in the INGENIAS agent development framework towards
a complete coverage of testing and debugging activities. The advances
are compared with respect to a categorisation of related works in the
agent literature. This categorisation will be useful for evaluating and
planning issues for improvement in the context of INGENIAS.

1 Introduction

Though development environments from MAS research improve year after year,
testing and debugging aspects have not received the same attention [3]. Testing
refers to the software development activities dealing with the detection of failures
[17], while debugging refers to the detection and repair of the lines of code
responsible of those failures. So far, there is an important amount of knowledge
in conventional software engineering about testing and debugging, techniques
which are being gradually applied to MAS [3]. Agent Oriented Methodologies are
incorporating testing and debugging into their development process, like Passi
[5] or Tropos [18]. To contribute to this effort, this paper introduces advances
made in INGENIAS in the direction of testing and debugging.

INGENIAS has a distinguishing feature compared to most agent-oriented
methodologies: its a model driven development approach [14]. It is not only using
models, it is providing automatic code generation facilities, and mechanisms for
synchronising changes in the code and the specification.

In INGENIAS, the implementation on a concrete target platform can be de-
rived through a set of transformations from MAS design specifications. In order
to cope with the complexity of MAS specification, each MAS is considered from
five complementary viewpoints [15]: environment, agent, tasks and goals, organ-
isation, and interaction.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 199–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

200 J.J. Gomez-Sanz et al.

Debugging in INGENIAS has been greatly improved with the incorporation
of ACLAnalyser [4], a debugging tool for large scale MAS. Besides, the new fa-
cilities for debugging of the code generation framework, the INGENIAS Agent
Framework, introduce new concepts for tracking the behaviour of the MAS visu-
ally and programatically. On the side of testing, the greatest advance has been
the incorporation of test declarations at the specification level. The test coding
is aided with tools for agent mental state inspection and the integration with
the JUnit testing framework.

The inclusion of testing facilities has been addressed already in [5] or [18].
Nevertheless, testing proposed here differs in the primitives used to construct
them. When writing a test, a developer refers to the existence or absence of
entities appearing in the specification. To do so, the developer reuses entities
generated automatically whose names match with those of the specification.
Therefore, there is a clear mapping between the tests and what the specification.
Also, there is not an urgent need to check that the code sticks to the specification,
as in the previous mentioned approaches. After all, the code was automatically
generated.

The paper introduces debugging facilities in INGENIAS in section 2. Then,
section 3 describes testing facilities. These facilities are illustrated with an exam-
ple in section 4. The related work can be reviewed in section 5. This is followed
by the conclusions in the last section.

2 Debugging MAS in INGENIAS

INGENIAS provides basic debugging support through the INGENIAS Agent
Framework, which facilitates the step by step execution of a MAS specifica-
tion. This support has been recently complemented with the incorporation of
ACLAnalyser [4] to deal with large scale MAS. ACLAnalyser is a software tool
for debugging MAS that communicate using FIPA protocols. ACLAnalyser per-
forms debugging by using data extracted from a real run of the MAS under
development, and applying data mining techniques to the execution logs.

The integration consists in modifying the deployment of MAS and providing
alternative protocol descriptions compatible with ACLAnalyser, by using INGE-
NIAS code generation support. The deployment has been modified to include new
launch scripts. These scripts replace references from JADE libraries to modified
ones connecting with the ACLAnalyser. They also define specific ACLAnalyser
execution parameters, like filtering the messages from the domain facilitator. With
respect to the alternative protocol descriptions, they permit to evaluate if agents,
during the execution, satisfy protocol specifications. These protocol specifications
were integrated as new templates included in the code generation process. As a
result, together with new launch scripts, the system produced specific protocol
description files in XML format for the ACLAnalyser.

These features have been integrated in the INGENIAS Analyser Module, IAM
from now on, a new module already incorporated to the main trunk of devel-
opment of the INGENIAS Development Kit, IDK from now on. With the IAM

Testing and Debugging of MAS Interactions with INGENIAS 201

and the incorporation of ACLAnalyser, a developer can do three different tasks.
Firstly, visualising the communication links among agents. This representation
shows a graph where the different agents being executed are nodes and the edges
represent the existence of communicative acts among them. These edges are la-
belled with the total amount of bytes interchanged. Secondly, tracking individual
conversations of defined protocols. Protocols different from the standard FIPA
ones can be tracked so that a developer can tell if the conversations are pro-
gressing as expected. Finally, using causality graphs, a developer can trace back
individual agent actions to determine what triggered a concrete behaviour in
an agent.

Apart from the IAM, there is also some basic debugging infrastructure incor-
porated in the main code generation and execution framework included in the
IDK, the INGENIAS Agent Framework, IAF from now on. As well as providing
code generation facilities, the IAF performs static analysis of the specification,
looking for missing specification elements and some semantic errors. Generated
systems can be run with or without debugging facilities. Debugging facilities
include the following services:

– Manual or automatic execution modes. This mode controls how agent tasks
are executed. In manual mode, the user is shown all tasks scheduled for exe-
cution by all agents within the same Java Virtual Machine. When selecting
a particular task, it is executed. In automatic mode, all scheduled tasks are
executed automatically in the same order they were queued. Therefore, the
user can decide whether to let the agent execute each scheduled task au-
tomatically or select manually which task to execute next. This permits to
modify the execution order of tasks and to observe changes resulting from a
single task execution.

– Representation of the current mental state. The IAF represents the infor-
mation contained within the mental state of any agent of the current Java
Virtual Machine. This information is presented following the same notation
used to specify the system. As tasks are executed, the user can watch the
changes. Usually, these changes happen too fast. However, in manual execu-
tion mode, all changes occur step by step, and always under the request of
the user.

– Breakpoints at the task level. The user can select in the GUI the different
task types an agent knows. After selecting, if the enable breakpoints option
is activated, the system will switch to manual mode whenever a task of the
selected type is going to be executed. This serves to let the system progress
until the problematic task is going to be executed.

– Browsing current logs. This can be done during runtime or after the execu-
tion. In runtime, the IAF presents the different events organised according
to their origin. Also, it can filter events and show those containing the string
typed by the user. All logs are stored into files that can be inspected later on.

– Interaction protocol execution. The state of the execution of the protocol is
represented using a state machine notation with labeled states. The devel-
oper can check at what point of the interaction protocol the failure happend

202 J.J. Gomez-Sanz et al.

or even if the interaction protocol has finished or not. Logs for individual
protocols (messages interchanged) are available as well.

– Dummy event generation. The events to be produced by the system, which
feed the perception of each agent, can be triggered manually. This way, a
developer can debug the MAS, generating those events that lead the system
to failures or undesired behaviours.

– Mental entities traces. Each mental entity - like facts, goals, or events - stores
information about who created it, who modified it, and who transmitted it.
This way, it is possible to guess, whenever a failure is made, who provided
the piece of information that led to the failure.

3 Testing MAS in INGENIAS

The INGENIAS methodology declares the existence of tests within the specifi-
cation. This declaration is made by a developer and it is not produced automat-
ically. In the current version, there are no means of defining the content of the
test itself at the design level, either.

Though there are research lines in agents that study the automatic test genera-
tion, like [19], at this moment, INGENIAS follows a more conventional approach.
Like in conventional software engineering [17], the tests are as good in detect-
ing failures as the developer is. Hence, INGENIAS assumes there are qualified
professionals who take the responsability of detecting critical situations in the
system to be and design proper tests to meet these conditions.

In order to facilitate the specification of tests, the INGENIAS meta-model
has been modified as shown in figure 1. A test definition has two parts: the
declaration of the test and the declaration of the deployment. For the first,
creating a test entity is enough. This entity has an identifier and a descriptor. For
the second, it is necessary to define a TestingPackage. A TestingPackage defines
the number and type of agents to be created, prior to the test. This information
is captured by a DeploymentPackage. The definition of the number of instances
is made within a DeploymentUnitByType entity. Specialisations of this entity
permit an individual setup of each agent mental state so that the same type
of agent can be run with different initial conditions, thought these extensions
are not presented here. The DeploymentPackage and the TestingPackage can
include special parameters to be used during the code generation stage (e.g.
initial memory assigned and JADE communication port to be used).

In the implementation, a Test is realised as an extension of a JUnit class.
JUnit (junit.sourceforge.net) is a widespread framework for unit testing in Java.
The default test produced by the system contains a skeleton of code with exam-
ples of the kind of evaluations a developer can do. This skeleton is modified by
the developer using several utilities. Among others, the IAF provides read/write
access to the mental state of individual agents as well as some basic synchroni-
sation primitives all of them with timeouts to prevent blocking calls.

TestingPackage is realised as an additional entry in the build and launch
scripts, a JUnit suite class for running all the tests referred from the Testing-
Package, and a JUnit specialisation of the JUnit class representing the test.

Testing and Debugging of MAS Interactions with INGENIAS 203

Fig. 1. Test infrastructure meta-model

This specialisation incorporates methods for initialising the system to be tested
according to the DeploymentPackage referred within the TestingPackage.

The developer is supposed to elaborate the tests mainly observing the men-
tal state of the agents and checking against the mental states depicted in the
MAS specification. This approach permits as well to check interactions, since
interactions in runtime are asserted in the mental state of INGENIAS agents as
conversation entities. By accessing these entities and inspecting their values, a
developer determines if the conversation among agents has finished or not, and
what items of information they have exchanged.

The manipulation of mental states can be used as well to test conversations.
This requires careful selection of the values of the mental entities so that they
meet the conditions required to, first, launch the conversation, and, second, make
the conversation progress towards the desired state.

The expected configuration of the mental state in runtime is defined in IN-
GENIAS by means of the agent viewpoint. The agent viewpoint represents a
collection of agent diagrams. These agent diagrams depict mental states to be
reached along the execution of tasks and interactions. The mental state is an
aggregation of mental entities such as goals, beliefs, facts, compromises, and
others. These mental state representations are interleaved along the interactions
in form of guards to be satisfied on delivering a message or on receiving it. Al-
ternatively, a developer can choose to define agent diagrams representing mental
states reached after a task execution. These diagrams do not have to declare
all the entities of the mental state, only those that should exist together with
boolean statements about the values they contain. The definition of tasks ap-
pear within the task goal viewpoint. These definitions include the list of expected
inputs, outputs, and affected system components.

Another information source for test definition is the organisation viewpoint,
which includes the definition of workflows and groups of agents. A workflow is a

204 J.J. Gomez-Sanz et al.

kind of view of the collaboration between two or more agents where tasks play
a dominant role. Somehow, this view complements the protocol specification of
an interaction as it appears in the interaction viewpoint.

4 An Example of Development with Testing and
Debugging Capabilities

This section presents some of the new debugging capabilities of the IDK with
a case study that is included in the IDK distribution, about a ticket selling
service. This service provides user assistant agents, acting in representation of
the user, which can contact cinemas for getting tickets for specific movies, and
taking into account user characteristics. A user connects to the system and
instructs a representative (User assistant agent) to obtain a cinema ticket. The
assistant contacts another representative (buyer agent), which will be responsible
for locating an appropriate cinema. The representative contacts different cinemas
representatives (seller agent) until an adequate cinema is located. It is adequate
when there are free seats and the price is good enough. Once obtained, the ticket
is delivered, through the different representatives, to the user. The challenges in
this case study are mainly the selection of a movie matching the interests of
the user and selecting an appropriate cinema where this movie is available. The
example will focus on the second aspect, which is more suitable for showing the
interaction debugging capabilities.

Fig. 2. Workflow defining the cinema ticket buying scenario

Initially, it was considered using a Contract-Net to solve the problem. How-
ever, the real situation discourages it. If a buyer made a call for proposals to
the different cinemas, the cinema would be forced to block the offered seats. If
enough buyers are considered, it may turn out that a subset of buyers block all
the seats in all cinemas. This reduces the opportunities to let other buyers get
seats in parallel. So this solution, while benefitting the buyer, makes cinemas
lose money. An alternative to the solution is not to query all the cinemas at the
same time, but going one by one.

Testing and Debugging of MAS Interactions with INGENIAS 205

Fig. 3. Protocol for a buyer to obtain a ticket from seller

The workflow involved in the case study appears at the upper part of figure 2.
This workflow starts with the user assistant selecting a movie and a candidate
agent to act as buyer. The movie selection is passed to the chosen buyer so that
it can start choosing a cinema to interact with. This cinema acts as a seller of
tickets. The cinema determines if there are seats available and makes an offer.
The Buyer decides if the offer is adequate or, if it is not, looks for another cinema.
If it is adequate, it proceeds with the payment and delivers the ticket to the user.

A main interaction here is the dialogue between the buyer and the seller to
obtain a cinema ticket. This dialogue is represented at the lower part of in figure
3. It uses interaction unit entities which represent the act of transferring infor-
mation from one agent to another. The transferred information appears as info
attributes while the speech act used follows FIPA conventions. Each interaction
unit is initiated by the role supplying the information and continued by the role
receiving the informations. The different interaction units are chained by means
of precedence in time relationships. The sequence covers the information transfer
required to execute part of the workflow represented with figure 2, concretely
from task ChooseCinema to tasks ProcessTicket and GetMoney.

The scenario considers a deployment with one agent playing the role buyer,
one agent playing the role user assistant, and five agents playing the role seller.

4.1 Testing the Scenario of the Example

To show how to test the system, a simple test is defined, see figure 4. The setup
of the test requires one interface agent (User assistant), one buyer agent and
five cinemas playing the seller role. The test to be applied is CheckingATick-
etWasObtained. The content of this test is presented on the right side of the

206 J.J. Gomez-Sanz et al.

figure. The test starts disabling the automatic garbage collection mechanisms to
prevent entities to dissappear in the mental state. Not used entities are always
removed in periodical checks of the system. Next, the mental state manager
of the buyer and interface agents are acquired with two purposes. The first is
gaining access to the mental state of these two agents. The second is synchro-
nising the test with the lifecycle of the agents. To initiate the test, an event
User Wants to watch a Movie is asserted in the mental state of the interface
agent. This event was generated automatically from the specification as a Java
class. Next, the buyer is checked looking for the entity to be present when the
buyer finishes its participation in the protocol from figure 3. The information
Ticket data is obtained as a result of the execution of task Process ticket, shown
in figures 2. Before the system starts, this entity should not exist, and so it is
asserted in the test. Following, the system is released from its manual execu-
tion mode (see section 2) so that all tasks are executed automatically. After 2
seconds, the buyer is expected to have the Ticket data entity.

Fig. 4. Example of the testing of a final state in the interaction protocol. At the top,
the testing setup defined in the specification. At the bottom, the actual content of the
test.

Further tests are defined to check if the selection of cinemas is appropriate.
One should expect the user assistant agent to have some criteria about cinema
selection. Hence, all cinemas should be consulted at some point in the execution.
This is checked in the testing infrastructure as a consult to RuntimeConversation
entities. These are entities contained within the mental state with references and
data about interactions being executed. Hence, it is easy to collect traces of all
executed interactions and ask if the number of cinemas asked matches the total
population of the system. In the current development, this does not happen, as
it will be seen in the next section.

Testing and Debugging of MAS Interactions with INGENIAS 207

4.2 A Debugging Session in INGENIAS

A first run of the system seems to work fine since the user sees in the user
assistant agent, which is connected to a GUI, that the agent actually gets the
tickets under the default preference parameters, concretely that the price of the
ticket is under 3 euros and there is at least one seat available in the cinema.

Fig. 5. ACLAnalyser communication graph indicating a coupling with only one cinema

Fig. 6. ACLAnalyser communication graph showing a more relaxed coupling than in
figure 5

To be sure, the IAM is run and specific debugging scripts are generated to
connect generated instances with ACLAnalyser. Once launched, ACLAnalyser
collects the statistics and presents the figure 5 . The graph shows a wrong result,
since the agent seems to stick to only one cinema, concretely SellerAgent1 1,
while it should be showing communications with other cinemas as well. After

208 J.J. Gomez-Sanz et al.

modifying the cinema selection task, ChooseCinema task in the figure 2, the
result is the figure 6. This time, all cinema agents, the five of them, seem to be
in touch with the buyer agent. This fits better in the image of an agent looking
for an offer among existing cinemas. The debugging can go further by using
the clustering capabilities of the ACLAnalyser. For instance, one may expect, if
trust models are applied, that after a time, the agent engages with a subset of
existing cinemas.

5 Related Work

This section presents research works in the field of testing and debugging of
MAS software, which have been categorised following the three levels that are
considered by Ferber [13]: agent, group, and society.

5.1 The Agent Level

Literature includes many examples of testing single agents, almost all of them
influenced by the BDI (Belief, Desire, Intention) model of agency. For example,
the Tracer Tool [16] uses beliefs, goals, intentions, actions, events, messages, and
relations between them to create a concept graph. This concept graph defines
the behaviour model that the agent must accomplish. Sudeikat et al. [25] con-
siders beliefs, goals and plans in the context of JADEX agents platform. Their
approach focuses on checking, by means of assertions and static checking, the
consistency of beliefs, the correct adoption of goals and appropriate plan ex-
ecution. AgentFactory [8] offers syntactic checking at compile time and some
debugging facilities at run time by using the Agent viewing tool through which
it is possible to analyser the agent’s internal state and control execution steps.
An alternative approach, which does not rely on the BDI model is that of Coelho
et al. [7]. In this work, agents are seen as black boxes. Testing is performed by
sending concrete messages to agents and checking if responses for individual
messages are correct.

Visual debugging and testing facilities at the agent level in INGENIAS are
similar to those in [8], for mental state inspection and testing. There are also
facilities to visualise interactions. Furthermore, code generation performs static
checks on the specification. However, the automatic generation of models to check
agent behaviour, as in [16] remains as future work. Validation of agents is not
addressed as in [7]. Since the system generates automatically all agents, it does
not make sense to produce additional mock agents to simulate the interaction:
it is already done.

5.2 The Group Level

Testing at the group level consists in testing coordination issues derived from
interaction protocol (IP) based conversations.

At the moment, there are few references in the literature that properly ad-
dress group testing. Well known works are those done in the context of the

Testing and Debugging of MAS Interactions with INGENIAS 209

Prometheus methodology [21,22] although they check mainly the correct ac-
complishment of conversations following clearly defined interaction protocols. A
different approach is that of Alberti et al. [1]. This work follows a declarative
approach and takes advantage of the semantics of communicative acts to verify
some social integrity constraints. More works in the line of interaction protocols
verification are [11,23,20]. These works are three examples which show how to
convert some diagrammatic and informal specification of any IP into a formal
one, allowing to model any IP in a general way, to analyse and verify it later.
Another approach to model and analyse some IP is proposed in [12]. In this
case an IP is analysed by capturing events causality occurrence in the MAS and
obtaining a diagram that shows event causality. By means of an IP pattern li-
brary and performing pattern recognition, interactions occurred in the MAS are
analysed to improve them.

INGENIAS is not applying formal approaches yet to verify the system be-
haviour. It relies on the expertise of developers to define a collection of tests
that is sufficient to validate the group level behaviour. In INGENIAS, testing
at this level would imply checking that workflows, like the one presented in the
figure 2, are executed. This can be programmed in a test by asking each in-
dividual agent about the pieces of information being asserted into individual
mental states across different agents. Also, the IAM would help here with the
observation of agent protocols with the ACLAnalyser.

5.3 The Society Level

Testing a MAS as a society refers to check if some properties, restrictions and/or
rules are accomplished during the life time of the society. Hence, the scope of
such properties, restrictions, and rules is the whole system, not individual or
group components. Properties may be related with quality features the system
must observe.

The importance of quality features in MAS is considered in [26]. Examples of
these quality features are flexibility, manageability, response time, or openness.
Others may make sense depending on the domain. For instance, a MAS of agents
in an electronic market would use a global wealth measurement to track MAS
evolution. An alternative way to look at the society implies that, instead of
tracking the accomplishment of properties, we look at emergent properties which
were not specified in the design. This is specially interesting for the multi-agent
based simulation community [9]. It is of interest, for example, to detect emergent
behaviours in the society which were not included in the specification of a group
of agents in the general MAS design [10]. Also, emergent behavior can imply
direct influence in the individual agents as individual beliefs can be affected [6].

The testing and debugging facilities are considered in part in INGENIAS.
Response time is easily tested by the implicit definition of timeouts in the tests,
just like the wait 2 seconds command from figure 4. Also, since INGENIAS
can define arbitrary deployment configurations for testing, the developer can
choose the workload of the system. Emergence of properties is harder to define

210 J.J. Gomez-Sanz et al.

and test. It would imply defining in the test what values are expected in the
agents after some simulation time. Part of this emergence detection could be
aided with the ACLAnalyser. For instance, the creation of communities of agents
with strong interaction links can be detected with the clustering facilities of
the ACLAnalyser. Nevertheless, the society level testing and debugging requires
more work.

6 Conclusions

The paper has introduced advances in testing and debugging made in the INGE-
NIAS methodology and implemented on IDK. In this context, we have integrated
the functionality provided by a stand alone tool for debugging MAS software,
ACLAnalyser, into a MAS development framework, the IDK. Also, the support
for testing and debugging of IDK have been introduced.

The scope of the work presented reaches the agent, group, and society testing
levels, though the later in a lower degree. Testing is based on the assertion of the
mental state of individual agents. This assertion covers as well the interaction
execution, since its state is recorded into the mental state of its participants.
This permits to address testing at all levels, though the society level requires
more effort.

The transference of the presented results to other methodologies is not trivial.
A methodology willing to reuse these results needs to satisfy three requirements.
First, the target methodology needs to be strongly based on meta-models and
have a design tool that takes advantage of them, otherwise, the test meta-model
reuse would not make sense. Second, the reuse of the IAM requires being able
to process protocol descriptions to produce ACL Analyser configuration files.
Though most methodologies do use protocol descriptions, not all of them provide
facilities to explore the specification and produce other files. Third, the reuse of
the ACL Analyser itself requires using JADE as the target platform. Despite the
general purpose of existing methodologies, implementation stage tends to focus
on concrete agent platforms, not always JADE. For instance, Prometheus rely
on Jack agent platform, which is not compatible with the ACL Analyser.

Acknowledgements

This work has been supported by the project Methods and tools for agent-based
modelling supported by Spanish Council for Science and Technology with grants
TIN2005-08501-C03-01 and TIN-2005-08501-C03-02,by the project Análisis, Es-
tudio y Desarrollo de Sistemas Inteligentes y Servicios Telemáticos through the
Fundación Séneca within the Program Generación del Conocimiento Cient́ıfico
de Excelencia, and by the grant for Research Group 921354 by the Region of
Madrid (Comunidad de Madrid) and the Universidad Complutense Madrid.

Testing and Debugging of MAS Interactions with INGENIAS 211

References

1. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specifi-
cation and verification of agent interaction protocols in a logic-based system. In:
SAC 2004: Proceedings of the ACM symposium on Applied computing, pp. 72–78.
ACM, New York (2004)

2. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): PROMAS
2006. LNCS, vol. 4411. Springer, Heidelberg (2007)

3. Bordini, R.H., Braubach, L., Dastani, M., El Fallah Seghrouchni, A., Leite, J.,
Gómez-Sanz, J.J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming
languages and platforms for multi-agent systems. Informatica Journal 30(1), 33–44
(2006)

4. Bot́ıa, J.A., Hernansaez, J.M., Gómez-Skarmeta, A.F.: Towards an approach for
debugging mas through the analysis of acl messages. In: Lindemann, G., Denzinger,
J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS, vol. 3187, pp. 301–312.
Springer, Heidelberg (2004)

5. Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multi-agent systems
implementation and testing. In: From Agent Theory to Agent Implementation
Fourth International Symposium (AT2AI-4), Vienna, Austria (2004)

6. Castelfranchi, C.: Simulating with cognitive agents: The importance of cognitive
emergence. In: Sichman, et al. (eds.) [24], pp. 26–44

7. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent
systems using mock agents and aspects. In: SELMAS 2006: Proceedings of the
2006 international workshop on Software engineering for large-scale multi-agent
systems, pp. 83–90. ACM, New York (2006)

8. Collier, R.W.: Debugging agents in agent factory. In: Bordini, et al. (eds.) [2], pp.
229–248

9. Conte, R., Gilbert, N., Sichman, J.S.: Mas and social simulation: A suitable som-
mitment. In: Sichman, et al. (eds.) [24], pp. 1–9.

10. David, N., Sichman, J.S., Coelho, H.: Towards an emergence-driven software pro-
cess for agent-based simulation. In: Sichman, J.S., Bousquet, F., Davidsson, P.
(eds.) MABS 2002. LNCS, vol. 2581, pp. 89–104. Springer, Heidelberg (2003)

11. Fadil, H., Koning, J.-L.: Rules for translating interaction protocols into a b formal
representation. In: Skowron, A., Barthès, J.-P.A., Jain, L.C., Sun, R., Morizet-
Mahoudeaux, P., Liu, J., Zhong, N. (eds.) IAT, pp. 495–498. IEEE Computer
Society, Los Alamitos (2005)

12. El Fallah-Seghrouchni, A., Haddad, S., Mazouzi, H.: A formal study of interactions
in multi-agent systems. I. J. Comput. Appl. 8(1) (2001)

13. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

14. Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Model driven development of
multi-agent systems with repositories of social patterns. In: O’Hare, G.M.P., Ricci,
A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS, vol. 4457, pp. 126–142.
Springer, Heidelberg (2007)

15. Gómez-Sanz, J.J., Pavón, J.: Methodologies for developing multi-agent systems.
Journal of Universal Computer Science 10(4), 359–374 (2004)

16. Lam, D.N., Barber, K.S.: Comprehending agent software. In: AAMAS 2005: Pro-
ceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pp. 586–593. ACM, New York (2005)

212 J.J. Gomez-Sanz et al.

17. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M.: The Art of Software Testing,
2nd edn. Wiley, Chichester (2004)

18. Nguyen, C.D., Perini, A., Tonella, P.: A goal-oriented software testing methodol-
ogy. In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII.
LNCS, vol. 4951, pp. 58–72. Springer, Heidelberg (2008)

19. Nguyen, D.C., Perini, A., Tonella, P.: ecat: a tool for automating test cases gener-
ation and execution in testing multi-agent systems. In: AAMAS (Demos), IFAA-
MAS, pp. 1669–1670. (2008)

20. Paurobally, S., Cunningham, J., Jennings, N.R.: Developing agent interaction pro-
tocols using graphical and logical methodologies. In: Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2003. LNCS, vol. 3067, pp. 149–168. Springer,
Heidelberg (2004)

21. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using
design artifacts: the case of interaction protocols. In: AAMAS, pp. 960–967. ACM,
New York (2002)

22. Poutakidis, D., Padgham, L., Winikoff, M.: An exploration of bugs and debugging
in multi-agent systems. In: AAMAS 2003: Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, pp. 1100–1101.
ACM, New York (2003)

23. Quenum, J.G., Aknine, S., Briot, J.-P., Honiden, S.: A modeling framework for
generic agent interaction protocols. In: Baldoni, M., Endriss, U. (eds.) DALT 2006.
LNCS, vol. 4327, pp. 207–224. Springer, Heidelberg (2006)

24. Sichman, J.S., Conte, R., Gilbert, N. (eds.): MABS 1998. LNCS, vol. 1534, pp.
1–9. Springer, Heidelberg (1998)

25. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation of
bdi agents. In: Bordini, et al. (eds.) [2], pp. 185–200

26. Weyns, D., Schelfthout, K., Holvoet, T.: Architectural design of a distributed ap-
plication with autonomic quality requirements. SIGSOFT Softw. Eng. Notes 30(4),
1–7 (2005)

PASSI Methodology in the Design of Software
Framework: A Study Case of the Passenger

Transportation Enterprise

Daniel Cabrera-Paniagua and Claudio Cubillos

Pontificia Universidad Católica de Valparáıso, Escuela de Ingenieŕıa Informática,
Av. Brasil 2241, Valparáıso, Chile

daniel.cabrerap@gmail.com, claudio.cubillos@ucv.cl

Abstract. This paper presents a practical experience on the use of the
PASSI methodology in conjunction with a general framework develop-
ment process, in obtaining a software framework for a virtual enterprise
for passenger transportation. In addition to background information on
each of the topics discussed, diverse PASSI artifacts complemented with
notational elements drawn from UML-F are shown. In addition, the ex-
perience on the use of PASSI for framework development is provided.

Keywords: PASSI, Framework Development Process, Agents, Passen-
ger Transportation.

1 Introduction

The agent paradigm constitutes a significant forward step in the future of sys-
tems development, similar to a revolution in the software area [5]. Until a few
years ago, the development of multiagent systems considered very few the use of
software engineering techniques [9]. The development of these systems was based
on ad hoc procedures, which allowed a high degree of flexibility to the character-
istics of the project tackled. However, there were innumerable problems, which
mainly are summarized in deficiencies of utilization of available resources, and
precarious levels of quality, since the formal processes of testing and quality as-
surance did not exist. Therein lays the importance of using software engineering
techniques in the systems development, and in this particular case, its applica-
tion to the development of multiagent systems. While this offers various direct
benefits, it should be noted that the level of the final obtained result depends,
among others, on the quality of the software development process used.

The present work describes the application experience with PASSI method-
ology [1] in the design of a software framework for the domain of passenger
transportation. Because the project involved a software framework, it has been
considered the use of a general process for framework development along with
PASSI. Additionally, we have incorporated some elements offered by a non-
standard UML profile called UML-F [7], devoted to the development of object-
oriented software frameworks.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 213–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

214 D. Cabrera-Paniagua and C. Cubillos

The novelty of our work relies on: 1) show the practical experience of using
PASSI in obtaining a software framework and 2) An analysis of the evidence
obtained through the study case.

2 Related Work

In some European countries local authorities have introduced flexible public
transport and demand responsive services that have proved to be most popular
among users, and thus support the retention of citizens in their every day en-
vironment. Pilot experiences for DRT systems were developed during projects
such as SAMPO [10], SIPTS [11], and FAMS [13]. Regarding examples of MAS
applied to ITS, just to mention some initiatives, Ferreira et al. [14] presented a
multi-agent decentralized strategy where each agent was in charge of managing
the signals of an intersection and optimized an index based on its local state and
”opinions” coming from adjacent agents. In 2002, Cai and Song [12] introduced
a traffic control model with MAS, in which a more flexible agent self-control
framework was described and a multi-agent negotiating strategy was conceived.

This work represents the continuity of a past research in this transportation
domain [6] [17], concerning the development of an agent system for passenger
transportation for a single operator under a demand-responsive scenario.

3 The Framework Development Process

As mentioned above, the methodology to use for developing software is of vital
importance. Here are reviewed those aspects relating to software development
process adopted in the present work.

3.1 The PASSI Methodology

PASSI (Process for Agent Societies Specification and Implementation) is a
step-by-step methodology for designing and developing multiagent systems.
PASSI integrates design models and concepts from both OO software engineering
and artificial intelligence approaches using the UML notation. Figure 1 shows
the PASSI methodology, which is made up of five models plus twelve steps in
the process of building a multi-agent system. For a more detailed description on
the different steps please refer to [1]. According to the figure, and considering as
an exception the phase of ”Agent Implementation Model”, highlights the promi-
nent sequentiality of the methodology. This contrasts with the iterative nature
of the development of software frameworks. That is why PASSI has been used
within an overall process of software framework development.

3.2 Process of Developing Software Frameworks

Historically, one of the most important topics taken into account in the area of
software development is its reuse. Software reuse allows reaching a faster soft-
ware development while promising a higher quality level. In this sense, software

PASSI Methodology in the Design of Software Framework 215

Fig. 1. The PASSI methodology

frameworks, one of the alternatives to carry out reuse, have gained considerable
popularity in both the industry and academia. According to [8], ”a framework
is a set of classes that embodies an abstract design for solutions to a family of
related problems, and supports reuses at a larger granularity than classes”.

Certainly, the software systems development is not an easy task, given mainly
by the large number of variables and constraints involved. And in this respect,
to develop reusable software system in time is much more difficult. A flexible
software system must meet its requirements, while confining the solution for a
wide range of future problems. That is why it is necessary to have the maxi-
mum possible aid elements. One is the process of developing frameworks, in a
systematic way that will get a higher quality framework.

In the literature exists several proposals about development process for the
obtaining of software frameworks [2] [19]. The considered process for frame-
work development corresponds to the one presented in [3], where some stages
are identified that should be part of an overall process of software framework
development (see Figure 2). The steps involved in this approach are [3]:

Analysis of the problem domain. This is performed systematically or through
development of one or a few applications in the domain and the key abstractions
are identified. The first version of the framework is developed utilizing the key
abstractions found.

One or possibly a few applications are developed based on the framework.
This is the testing activity of the framework. Testing a framework to see if it is
reusable is the same activity as developing an application based on the frame-
work. Problems when using the framework in the development of the applications
are captured and solved in the next version of the framework. After repeating
this cycle a number of times the framework has reached an acceptable maturity
level and can be released for multi-user reuse in the organization. Is important
to say that the success of development process of a framework depends on the

216 D. Cabrera-Paniagua and C. Cubillos

Fig. 2. The General Framework Development Process

experience of the organization in the problem domain the framework addresses. A
more experienced organization can select a more advanced development process
since they will have fewer problems with the problem domain.

The software frameworks raise that it is possible achieve reuse, through the
development of software configurable architectures, based primarily on identify-
ing points of fixed nature, and points of variability. Determine the points of the
architecture that should be variable and the points that are not is the most diffi-
cult task in developing software frameworks. So, the general framework process
development mentioned previously indicates, as a basis, an iterative develop-
ment process, considering the experience and feedback to the fullest possible
way. Hence it is mentioned that a software framework never ends developing it.
Over time, sooner or later it is necessary to make modifications, to a greater or
lesser degree, to initial architecture reached.

Particularly at present work, the main objective consists in development an
agent architecture for a specific problem domain, the passenger transportation
enterprise. But must not lose sight of that the architecture should offer a flexible
capacity, in the sense of dispose obtaining several final systems from it. In other
words, is necessary achieve a software framework for the specific problem domain
addressed. For this reason, the framework design is supported by the use of two
processes as a whole. On the one hand, there is a general framework development
process, which roughly indicates the overall development line, namely: an initial
analysis of the problem domain, actors and systems involved, and so on; devel-
opment of the framework itself (obtaining the software artifacts) and validation,
through an application built by extending the framework.

On the other hand, lays PASSI, a multiagent systems development method-
ology, aiding the development of complex, multi-party, distribute and heteroge-
neous software systems based in the agent concept as base modeling unit.

PASSI Methodology in the Design of Software Framework 217

3.3 The UML-F Profile

The UML-F profile represents an important alternative in the development of
software frameworks, because it formalizes aspects not covered by the UML
standard. Some of the most important features of the UML-F profile are: to pro-
vide elements of notation to adequately document well-known design patterns;
is built on the standard UML, that is, the extensions generated can be defined
on the basis of extension mechanisms which in UML already exist; is, in itself,
the medium that allows a direct way to document any pattern framework. The
PASSI methodology was designed for the development of agents systems and
not precisely for the developing of agent-oriented software frameworks. For the
same reason, the UML-F profile was used in the development of some artifacts,
with the aim to fill this gap. Please refer to [7] for more details on the UML-F
notation.

4 The Study Case: Passenger Transportation Enterprise

The Intelligent Transport Systems (ITS) have been attracting interest of the
transport professionals, the automotive industry and governments around the
world. The ITS aim at the development of the road infrastructure (for example,
ways) and to integrate them together with the persons and vehicles by means of
advanced technologies of integration, from several research areas.

Regarding the public transport domain, in the last years the Demand Respon-
sive Transport (DRT) services have risen in popularity. A DRT is understandable
as a component of a long chain of inter modal service, delivering local and com-
plementary mobility to other conventional transport means, such as fixed-line
buses and trains. However, geographical coverage problems among transport op-
erators services, difference in the volume and quality of handled information
and, in general, a fragmentation in the transport service provision, gives origin
to problems that range from wrong evaluations coming from state-regulatory
entities, up to direct problems with the system final users, which definitively
results in a poor quality of service. For these reasons in many cases the solution
implies a better integration and coordination of the diverse parties, leveraging
the concept of virtual enterprise.

4.1 Virtual Enterprise

A virtual enterprise is a cooperation network of legally independent companies,
which are quickly united and mainly contributed their basic competences in
sequence to exploit a specific business opportunity. In general terms, the life cycle
of a virtual enterprise is marked by four phases, that go from the identification,
evaluation and selection of business opportunities, to the selection of partners to
conform the virtual enterprise; later, a phase of operation, in where the business
opportunity is exploit; and a phase associated at the end of the virtual enterprise,
with the corresponding separation of assets. In general, virtual enterprises are
applicable to all those domains where it is possible to conceive a collaboration of

218 D. Cabrera-Paniagua and C. Cubillos

different companies or entities, taking as a benchmark to reach certain goals for
themselves while using information technologies. In this sense, we may think in
a virtual transportation enterprise, with an increased level of adaptability to the
offer, considered the variability in the levels of existing demand. With this, and
under new business opportunities, the virtual transportation enterprise adapts
its structure to meet the existing demand.

4.2 Transport Requirements

In a complex system like the passengers transportation one, there are many users
or actors who have a direct interest in the commercial, social and infrastructure
impacts. The actors considered in a DRT service correspond to:

User: Represents the end user of the passengers transport system. The user
has the faculty to make request of transport (with its respective conditions), as
well as to indicate some problem that affects to him and that has incidence in
the concretion of the trip requested.

Transport Operator: Represents a transport company within the system. A
transport operator can correspond to an only person (even handling to she her-
self a vehicle, without delegating that responsibility in a conductor), or also
correspond to a company composed by multiple vehicles (fleet of vehicles). The
virtual transportation enterprise is conformed by manifold operators.

VE Administrator: The Virtual Enterprise Administrator represents the
central administration of the virtual transportation enterprise. Its faculties are
related to affiliation control of new transport operators into the virtual trans-
portation enterprise and its permanence, and taking action when extern events
to virtual transportation enterprise happen, without restricting the future allo-
cation of other responsibilities.

Driver: This is a vehicle driver belonging to a transport operator. Receives the
itinerary to follow, and can notify problems or indications to meet your itinerary
(for example, report a delay in the time of encounter with a passenger).

Government Entity: Is a governmental organization with regulating or control
faculties, which guard current legislation and that service contracts are fulfilled.

Active Destination: Represents a frequent destiny within total set of existing
destinations. An active destination can make the virtual transportation enter-
prise see a necessity or a business opportunity available; as well as indicate
problems associated to the same transport service, like a loss in the quality of
service, or restrictions on the operation.

Traffic Information System: Represents an external information system that
gives information on present traffic conditions, collisions, among others.

VE - Customers Manager System: Controls the profile of each user of the
virtual transportation enterprise. The life of each user (related to the virtual
transportation enterprise) is recorded in the first instance, with purely opera-
tional purposes, which does not prevent in the future can use this information
for strategic purposes.

PASSI Methodology in the Design of Software Framework 219

VE - Transaction System: This system controls all transportation requests
completed, the requests are under way, and even those that have been canceled
for various reasons, including all information existing in the request for transport,
and the service characteristics offered by the virtual transportation enterprise.

VE - Affiliates Enterprises Management System: This system manages the
life cycle of the virtual enterprise, from transport operators incorporation until
the separation of transport operator from the virtual transportation enterprise.

TO - Fleet Management System: This system is responsible for managing the
vehicles that comprise the transport operator fleet. This system depends directly
on the transport operator.

TO Solver: This system has the task to optimize transportation operations
(planning and scheduling) using a solver and/or heuristic software, on which are
scheduled trips to perform for each vehicle.

5 Multiagent Framework Design

In this section, the agent framework artifacts are depicted following the PASSI
steps. The first diagram presented shows a portion from the Agent Identification
Diagram (see Figure 3), which is framed within the first stage of the PASSI
methodology, corresponding to the System Requirements Model.

This diagram takes as starting point the description of UML use-cases, offering
a general view of all the functionality provided by the system and in addition, it
incorporates a grouping of use-cases for each agent identified within the system in
order to visualize the responsibility level that each of the agents has regarding
the system. The generation of diagrams is given on the basis of the use of a
graphical tool available for PASSI, called PASSI Toolkit [4].

The UserAgent is who represents within the system the interests of the trans-
port service user. It administers the transport preferences user, and manages
his service requests. For this reason, it establishes communication with the

Fig. 3. Agent Identification Diagram

220 D. Cabrera-Paniagua and C. Cubillos

Fig. 4. Task Specification of the UserAgent

Trip-RequestAgent. Also, it allows the user the generation of an advanced-
payment request, considering for this several means to carry it out. It can also
communicate problems (called ”events”), for example, report as late for meeting
with the transport vehicle assigned for the trip. Each event is recorded in a single
list for each user, and is sent to PlannerAgent for administration.

The Trip-RequestAgent manages the request of trips emitted by the user
of the transport service, and maintains a registry of the pending requests. It
sends the requests for its processing to the OperatorManagerAgent, receiving
the proposals generated for each conducted request. Later, is recorded in the VE
- Transactions System, the received request and the vehicle identifier.

The OperatorManagerAgent receives users trip requests, and active mech-
anisms for transport operators affiliated to the virtual enterprise attempt to
generate an offer to the request. For this, knows the vehicles available at all
times, and in operational service.

The ScheduleAgent verifies for a particular vehicle if it fulfills the conditions
specified on a requested trip (user conditions, conditions of the virtual enterprise,
or conditions caused by external events), checking its itinerary obtained from
the information system of the transport operator. Considering the feasibility
verification, a proposal or a declination takes place.

Figure 4 shows a portion from Task Specification Diagram for the agent User-
Agent, where a user of the transportation system sends a service request.

PASSI Methodology in the Design of Software Framework 221

Fig. 5. Multiagent Structure Definition Diagram

The send of a transport request involves indicating a set of parameters on
the trip, which are clustered: places (origin and destination), schedules (hour
meeting at the place of origin, and arrival time at destination), and trip pref-
erences. These preferences are managed through a user profile, which can vary
over time. After having details of the travel request, it is received by the agent
OperationManagerAgent, which establishes the operational fleet and makes a
broad call for sending proposals to meet the request. Each vehicle (represented
by the agent ScheduleAgent) tries to schedule the trip requested within their
itinerary.

The Figure 5 shows a portion from diagram of the phase of Agent Implemen-
tation Model,which is the Multiagent Structure Definition. It is possible to view
all actors within the defined architecture in development, and its relationship
with the various agents, and the identifying the transactions related to each of
them. The classes identified in the figure with the symbol ”...”, indicates that
have not yet been established all internal elements of them (both attributes and
methods). On the other hand, the classes with the symbol ” c©” are those that
their methods and attributes shown are actually all the ones the class possesses.
The stereotype <<agent>> indicates that the classes are agents, and the stereo-
type <<adap-static>> denotes those classes that may be subject to changes,
but only changes at the design phase (at runtime is not possible to observe
changes in its internal structure). The stereotype <<hook>> indicates that the
class has at least one method of type ”hot spot”, that is, their characteristics
depends on each particular implementation derived from the model defined.

222 D. Cabrera-Paniagua and C. Cubillos

Fig. 6. Deployment/Component hybrid diagram of the framework

Next, a deployment/component hybrid diagram shows a portion of the general
framework architecture (see Figure 6). Some packages have the UML-F stereo-
type <<framework>>. This means that these components are owned solely to
the framework architecture. On the other hand, there are some packages that
have the stereotype <<application>>. This stereotype indicates that these el-
ements do not belong directly to the framework architecture, but are external
components to framework, related somehow to it.

This architecture allows each transport operator affiliated to the virtual trans-
portation enterprise to control at any moment the status of its operative fleets,
as well as to administer all the information of their own information systems, in
such a way that independence between the different transport operators stays in
the operative scope. Each transport operator has his own mechanism for alloca-
tion and control of the itineraries for the different vehicles conforming its fleet,
having the virtual transportation enterprise the only responsibility of receiving
trip requests and the assignment of these requests to the vehicle that constituted
the most attractive provider for the service user.

The Figure 7 shows a portion code of the UserAgent agent. This code is
part of a functional prototype that is currently under development and is being
tested with Solomons benchmark data sets for VRP and specially adapted for
the passenger transportation problem.

The objective sought to develop a functional prototype is get some measure of
how architecture raised behaves in a context closer to reality, so that in the future
decide to develop applications from it, in a real context. The development of a
functional prototype of large-scale, also demand efforts and resources to the same
extent. That is why it is considered a limited scenario in the functional prototype.

The agents considered in the prototype for those who are directly involved in
the receipt and administration of transport requests: UserAgent, ScheduleAgent,

PASSI Methodology in the Design of Software Framework 223

Fig. 7. Code from the Controller Agent

Fig. 8. Code from the UserAgent agent

Trip-RequestAgent, and OperationManagerAgent. In addition to the previously
agents, an agent is incorporated during the prototype performance. This agent
is called Controller (see Figure 8).

The Controller Agent performs certain tasks: Get the User Profile of each
user’s transportation system considered within the prototype; obtain transporta-
tion requests of each of the users of transport system (from an XML file); obtain
the properties of each vehicles considered within the prototype (from an XML
file), and generate the instances of agent ScheduleAgent with such information;
generate the instances of agent UserAgent, including both the User Profile as
the transportation request associated with each user; and finally, generate the
instances of the remaining agents.

224 D. Cabrera-Paniagua and C. Cubillos

Fig. 9. XML Code from an user profile

The prototype code being developed by Jade Platform [16]. The Jade platform
offers some assurances of stability for applications developed with its technology,
because it has the backing of major companies, and is implemented on Java
technology, an industry technology consolidated around the world.

The information from each user profile, applications for transport, vehicles
and properties, are obtained by the use of XML files (see Figure 9). The feed
prototype based on XML files replaced the inclusion of real people and systems
that deliver this information in a real context.

The prototype takes as its bases the work developed by Cubillos et al., which
is based in a work developed in the year 1986 by Jaw et al. [18].

As mentioned, the scope of the current prototype is limited. Mainly, they
are looking to get some kind of feedback on the overall architecture raised, as
well as the entities included in it, and business processes defined. In this sense,
has completed implementation of all actors involved in the scenario described,
by subtracting complete the development of the component called TO Solver,
associated with the node TransportOperator-IS. At present, prototype does not
incorporate a mechanism for scheduling the requests of trip received to the var-
ious vehicles available within the virtual transportation enterprise, because the
component TO Solver is currently in development.

6 Analyzing PASSI

Based on the experience with the PASSI methodology and from the present study
case, it is possible to make some analysis on PASSI appropriateness. First, its use
provides a traceability of requirements along its phases, through the obtaining
of its various artifacts. This allows easily identify and isolate any problems that
exist within the system models, and the same way, more accurately verify that
the requirements tackled in the early stages of the methodology are adequately
represented in the final solution.

On the other hand, the early identification of actors, agents and functionality
associated with each agent is of vital importance, since it allows the work team
to have an overview but comprehensive system development. Fundamentally,

PASSI Methodology in the Design of Software Framework 225

this is reflected in having clarity about which agents will be integrated into
the system, without needing to think about elements to be addressed in the
future, as is its implementation technology. The tasks assignment to each agent
complements the above mentioned, giving an overview of the features that are
the responsibility of each agent.

The multiagent structure definition diagram describes agent classes involved
in the system. These classes have a direct relationship with the agents identified
in the first phase of PASSI. At this level, it is possible to observe attributes and
behaviors in each agent, which gives a closer view to the final implementation.
Automatic generation of this diagram through the PASSI Toolkit contributes
significantly to the maintenance of consistency during systems development. In
view of the above, the PASSI methodology constitutes an important guide in
the development of systems based on agent technology. However, it also suffers
from some elements that, if incorporated, would significantly improve the PASSI
adoption in industry and academia. For example, it does not engage the user
explicitly within the development process, for example, the inclusion of the final
users from the initial steps, in order to guide the development. In the domain
tackled in the present work, this has relevance, because the passenger trans-
port domain considers direct participation of various human actors with the
information system. Therefore, it becomes necessary to incorporate the user, for
example, in some stage of usability tests on user interfaces.

Also, although PASSI incorporates the ”testing idea” (both individual agent
and overall level of the multiagent society), it does not explicit how carry them
out. This lack of guidance in the testing reveals perhaps more important, as
reflects the general lack of quality assurance processes. Anyway, it is necessary
to mention that the Agile PASSI methodology [15] incorporates formally this
step into the development process.

On the same line, a possible future work is to develop a proposal of process for
the development of multiagent systems, but incorporating project management
tasks, e.g. risk management, quality assurance, among others. With this, we can
achieve a major improvement in agent software projects at industrial level, while
complementing its existing level of use in the academic environment.

Finally, as regards the framework development and PASSI, it is possible to
say that it is necessary to adapt PASSI at various points, in order to accommo-
date the iterative nature of the framework development process. Although it is
iterative, the period of time required to complete a full PASSI iteration requires
considerable effort.

Therefore, on some occasions it was necessary to return quickly to any past
stage of PASSI, in order to correct and stabilize some requirements not entirely
clear, breaking this sequentiality established by PASSI. Although this action
have a cost (because stops the process, apply the necessary improvements, and
finally, check the consistency between the different diagrams), it is better than
waiting until the last steps of development process and start a new iteration
just to begin to apply the corrections needed. For example on some occasions
different problems were discovered in the step of Roles Identification and was

226 D. Cabrera-Paniagua and C. Cubillos

necessary to return directly to Agent Identification Diagram, breaking the nat-
ural sequentiality of PASSI.

7 Conclusions

A practical experience on the use of the PASSI methodology in conjunction with
a general framework development process has been achieved. An analysis on the
results obtained from the use of PASSI has been exposed. It is worth noting
that PASSI is not a complete development methodology of software projects, it
lacks certain stages and some generic software project artifacts. Future work is
devoted principally to gather more background on the advantages and challenges
offered by PASSI methodology to be used in obtaining agent-oriented software
frameworks, in order to make any specific proposal to extent the obtained results.

Acknowledgments

This work has been partially funded by the Pontifical Catholic University of
Valparáıso (www.pucv.cl) through project No. 037.215/2008 ”Collaborative Sys-
tems” Nucleus Project and by CONICYT through FONDECYT research grant
No 11080284.

References

1. Burrafato, P., Cossentino, M.: Designing a multiagent solution for a bookstore
with the passi methodology. In: Fourth International Bi-Conference Workshop on
AgentOriented Information Systems, AOIS 2002 (2002)

2. Johnson, R.: How to Design Frameworks. In: Tutorial Notes, 8th Conference on
Object-Oriented Programming Systems, Languages and Applications, Washington,
USA (1993)

3. Mattsson, M.: Object-Oriented Frameworks: A Survey of Methodological Issues.
Technical Report 96-167, Dept. of Software Eng. and Computer Science, University
of Karlskrona/Ronneby

4. PASSI Toolkit (PTK), http://sourceforge.net/projects/ptk
5. Jennings, N.: On agent-based software engineering. Artificial Intelligence 117, 277–

296 (2000)
6. Cubillos, C., Guidi-Polanco, F.: An Agent Solution to Flexible Planning and

Scheduling of Passenger Trips. IFIP AI 217, 355–364 (2006)
7. Fontoura, M., Pree, W., Rumpe, B.: The UML Profile Framework Architectures.

Addison Wesley, Reading (2000)
8. Johnson, R., Foote, B.: Designing reusable classes. Journal of Object-Oriented

Programming 1(2), 22–35 (1988)
9. Gomez, J.: Metodoloǵıas para el diseño de sistemas multiagente. Revista

Iberoamericana de Inteligencia Artificial 18, 51–64 (2003)
10. SAMPO TR1046 - Systems for Advanced Management of Public Transport Opera-

tions, http://www.cordis.lu/telematics/tap_transport/research/projects/

sampo.html

http://sourceforge.net/projects/ptk
http://www.cordis.lu/telematics/tap_transport/research/projects/sampo.html
http://www.cordis.lu/telematics/tap_transport/research/projects/sampo.html

PASSI Methodology in the Design of Software Framework 227

11. SIPTS - TEN45607 - Services for Intelligent Public Transport Systems,
http://www.novacall.fi/sipts/e_default.htm

12. Cai, Z.H., Song, J.Y.: Model of Road Traffic Flow Control based on Multi-agent.
Journal of Highway and Transportation Research and Development 19(2), 105–109
(2002)

13. FAMS - Flexible Agency for Collective Demand Responsive Services. IST-2001-
34347, http://www.famsweb.com

14. Ferreira, E.D., Subrahmanian, E.: Intelligent Agens in Decentralized Traffic Con-
trol. In: IEEE Intelligent Transportation Systems Conference Proceedings, USA,
August 2001, pp. 705–709 (2001)

15. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile PASSI: An agile process
for designing agents. Journal of Computer Systems: Science and Engineering 21(2)
(2006)

16. JADE: Java Agent Development Framework, http://jade.tilab.com
17. Cubillos, C., Guidi-Polanco, F., Demartini, C.: Towards a Virtual Enterprise for

Passenger Transportation Using Agents. In: Sixth IFIP Working Conference on
Virtual Enterprises, Valencia, Spain, vol. 186, pp. 569–576 (2005) ISBN 978-0-387-
28259-6

18. Jaw, J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H.M.: A heuristic algorithm for
the multi-vehicle advance-request dial-a-ride problem with time windows. Trans-
portation Research B 20B, 243–257 (1986)

19. Wilson, D., Wilson, S.: Writing frameworks - capturing your expertise about a
problem domain. In: Tutorial notes, The 8th Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, Washington (1993)

http://www.novacall.fi/sipts/e_default.htm
http://www.famsweb.com
http://jade.tilab.com

Developing and Evolving a Multi-agent System
Product Line: An Exploratory Study

Ingrid Nunes1, Camila Nunes1, Uirá Kulesza2, and Carlos Lucena1

1 PUC-Rio, Computer Science Department, LES
Rio de Janeiro - Brazil

{ioliveira,cnunes,lucena}@inf.puc-rio.br
2 New University of Lisbon

Lisboa - Portugal
uira@di.fct.pt

Abstract. Software Product Line (SPL) approaches motivate the devel-
opment and implementation of a flexible and adaptable architecture to
enable software reuse in organizations. The SPL architecture addresses
a set of common and variable features of a family of products. Based
on this architecture, products can be derived in a systematic way. A
multi-agent system product line (MAS-PL) defines a SPL architecture,
whose design and implementation is accomplished using software agents
to address its common and variable features. This paper presents the evo-
lutionary development of a MAS-PL from an existing web-based system.
The MAS-PL architecture developed is composed of: (i) the core archi-
tecture represented by the web-based system that addresses the main
mandatory features; and (ii) a set of software agents that extends the
core architecture to introduce in the web system new optional and alter-
native autonomous behavior features. We report several lessons learned
from this exploratory study of definition of a MAS-PL.

Keywords: Software product lines, multi-agent systems, object-
oriented design, aspect-oriented programming.

1 Introduction

Software engineering aims to produce methods, techniques and tools to develop
software systems with high levels of quality and productivity. Software reuse
is one of the main strategies proposed to address these software engineering
aims. Software reuse techniques provide many benefits, such as reduction of de-
velopment costs and time to market, and quality enhancement. Over the last
years, many reuse techniques have been proposed and refined by the software
engineering community. Examples of these techniques are: component-based de-
velopment, object-oriented (OO) application frameworks and libraries, software
architectures and patterns. One of the latest trends in software reuse is the
product line approach.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 228–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Developing and Evolving a Multi-agent System Product Line 229

Software product lines [26,6] (SPLs) refer to engineering techniques for cre-
ating similar software systems from a shared set of software assets using a sys-
tematic method in order to build applications. Clements & Northrop [6] define
a software product line (SPL) as “a set of software intensive systems that share
a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way”. The main idea of SPL engineering is to develop a
reusable infrastructure that supports the software development of a family of
products. A family of products is a set of systems that has some commonali-
ties, but also variable features. According to [7], a feature is a system property
that is relevant to some stakeholder and is used to capture commonalities or
discriminate among products in a product line.

Over the last years, agent-oriented software engineering (AOSE) has also
emerged as a new software engineering paradigm to allow the development of
distributed complex applications which are characterized by a system composed
of many interrelated subsystems [18]. Most of the current AOSE methodologies
are dedicated to developing single multi-agent systems [25]. New approaches
[24,9] have started to explore the adoption of SPL techniques to the context of
multi-agent systems (MASs) development. The aim of these new approaches is
to integrate SPL and AOSE techniques by incorporating their respective benefits
and helping the industrial exploitation of agent technology. Nevertheless, there
are still many challenges to overcome in the development of multi-agent systems
product lines (MAS-PLs) [25].

In this work, we relate our experience of development of a MAS-PL in a
bottom-up fashion. Our MAS-PL has been developed and emerged from the
evolution of a conference management web-based system. Each new version of the
system includes the design and implementation of new features that the previous
version does not address. Most of the new features are related to the introduction
of autonomous behavior in the original system using MAS technology, such as
agents, roles and their associate behaviors. All the three versions of our MAS-PL
share a common SPL core architecture. The purpose of this case study was to
create a scenario to identify problems related to the integration of the SPL and
MAS technologies. Some of the challenges that we are trying to deal with during
the development of the MAS-PL were: (i) how to modularize agency features
in a MAS-PL; (ii) how to seamlessly incorporate autonomous behavior (agency
features) in a traditional web-based system; (iii) which SPL models are useful
and essential to specify and document an MAS-PL, and how to adapt them
to the context of MAS-PL development. We also discuss possible solutions to
these problems, such as adopting aspect-oriented programming (AOP) to isolate
existing agency features.

This remainder of this paper is organized as follows. Some works related to
multi-agent systems and product lines are described in Section 2. The Expert-
Committee MAS Product Line is presented in Section 3. The discussions and
lessons learned are presented in Section 4. Finally, the conclusions and directions
for future works are discussed in Section 5.

230 I. Nunes et al.

2 Multi-agent Systems and Product Lines

Some recent research work has investigated the integration synergy of Multi-
Agent Systems (MASs) and Software Product Lines (SPLs) technologies. Deh-
linger & Lutz [9] have proposed an extensible agent-oriented requirements speci-
fication template for distributed systems that supports safe reuse. Their proposal
adopts a product line to promote reuse in multi agent systems, which was de-
veloped using the Gaia methodology. The requirements are documented in two
schemas: the role schema and the role variation point. The first defines a role and
the variation points that a role can play during its lifetime. The second captures
the requirements of role variation points capabilities. The proposed approach
allows the reuse of agent configuration along the system evolution. Each agent
configuration can be dynamically changed and reused in similar applications.

Pena et al [24] describe an approach to describing, understanding, and an-
alyzing evolving systems. The approach is based on viewing different instances
of a system as it evolves as different “products” in a software product line. Fol-
lowing their approach, a SPL is developed with an AOSE methodology, and the
system is viewed as a MAS-PL. Their approach proposes a set of software engi-
neering techniques based on an agent-oriented methodology, called Methodology
for analyzing Complex Multi-Agent Systems (MaCMAS), whose main aim is to
deal with complex unpredictable systems. The MaCMAS allows for the descrip-
tion of the same feature at different levels of abstraction. It presents a process
to building the core architecture of a MAS-PL at the domain engineering stage,
whose activities are: (i) to build an acquaintance organization; (ii) to build a
feature model; and (iii) to analyze commonalities and to compose core features.
The main advantage of the approach resides in the fact that it makes it possible
to derive a formal model of the system and each state that it may reach.

Our work also explores the combination of MAS and SPL techniques and
technologies in the context of development and evolution of systems. We focus
specifically in the web-based systems domain by proposing the introduction of
autonomous behavior features inside traditional web layered architectures. Our
main aim was to investigate and understand the benefits of the agency feature
modularization during this process.

3 The ExpertCommittee MAS Product Line

This section describes our experience in the development of a multi-agent system
product line (MAS-PL) for the web domain. Our experience is presented along
the next sections in a stepwise fashion. We initially present the ExpertCommit-
tee (EC), a web-based conference management system that supports the paper
submission and reviewing processes from a conference (Section 3.1). After that
we describe an evolved version of this system in which we have incorporated new
agency optional and alternative features related mainly to the specification and
implementation of user agents (Section 3.2). This new version of the EC sys-
tem is characterized as a multi-agent system product line (MAS-PL), because

Developing and Evolving a Multi-agent System Product Line 231

it addresses a new set of optional and alternative agency features which allows
providing different customized versions of the system. The EC MAS-PL archi-
tecture designed to address the new agency features is then presented in terms
of the components and agents that compose the system (Section 3.3). Finally,
we detail the OO design and implementation of the EC MAS-PL by describing
the mechanisms adopted to implement its variabilities (Section 3.4).

3.1 The ExpertCommittee Web-Based System

The ExpertCommittee (EC) is a typical web-based application whose aim is
to manage the paper submission and reviewing processes from conferences and
workshops. The EC system provides functionalities to support the complete pro-
cess of conference management, such as: (i) create conferences; (ii) define confer-
ence basic data, program committee, areas of interest and deadlines; (iii) choose
areas of interest; (iv) submit paper; (v) assign papers to be reviewed; (vi) ac-
cept/reject to review a paper; (vii) review paper; (viii) accept / reject paper;
(ix) notify authors about the paper review; and (x) submit camera ready. Each
of these functionalities can be executed by an appropriate user of the system,
such as, conference chair, coordinator, program committee members and authors.
Figure 1(a) shows the feature model [7] of the first version of EC system. This
version was considered the core of our MAS-PL, created with the incorporation
of new optional features in the subsequent versions.

The EC web-based system was structured according to the Layer architec-
tural pattern [11] and is composed of the following components/layers: (i) GUI
- this layer is responsible to process the web requests submitted by the system
users. It was implemented using the Struts1 framework; (ii) Business - is respon-
sible to structure and organize the business services provided by the EC system.
The transaction management of the business services was implemented using
the mechanisms provided by the Spring2 framework; and (iii) Data - aggregates
the classes of database access of the system, which was implemented using the
Data Access Object (DAO) design pattern. The Hibernate3 framework was used
to make persistent the objects in a MySQL4 database. Figure 2 illustrates the
architecture of the EC web-based system and highlights the core architecture.

The first implemented version of our EC system is a common web applica-
tion that has the features mentioned above. In the following versions, software
agents were introduced on the EC system, adding autonomous behavior. We
consider autonomous behavior actions that the system automatically performs
and previously needed human intervention. Examples of features provided by
the agents are the deadline monitoring and tasks management. We also added
a new role, the reviewer, which can review a paper delegated by a committee
member. Next sections detail these new versions and respective features present
in their implementations.
1 http://struts.apache.org/
2 http://www.springframework.org/
3 http://www.hibernate.org/
4 http://www.mysql.org/

232 I. Nunes et al.

3.2 Evolving the EC System to an MAS-PL

There are different SPLs adoption strategies [20]. The proactive approach mo-
tivates the development of product lines considering all the products in the
foreseeable horizon. A complete set of artifacts to address the product line is
developed from scratch. In the extractive approach, a SPL is developed start-
ing from existing software systems. Common and variable features are extracted
from these systems to derive an initial version of the SPL. Finally, the reactive
approach advocates the incremental development of SPLs. Initially, the SPL ar-
tifacts address only a few products. When there is a demand to incorporate new
requirements or products, the common and variable artifacts are incrementally
extended in reaction to them.

Our case study was developed considering the reactive approach. We have
evolved the original version of the EC System (Section 3.1) to incorporate new
optional and alternative features mainly related to autonomous behavior. The
main aim of these new features was to help the tasks assigned to all the system
users by giving them a user agent that addresses the following functionali-
ties: (i) deadline and pending tasks monitoring; and (ii) automation (or semi-
automation) of the user activities. In the third version of the EC system, we
improved the modularization of many of these optional and alternative agency
features to enable their automatic (un)plugging into the original system.

Table 1 summarizes the three different versions of our EC system. The first
version was built without any autonomous behavior, in other words, without
software agents. It was detailed in Section 3.1. The second version of the EC
system contains features that are related to autonomous behavior and it has also
some new features that add functionalities to the system as well. This version

Table 1. The three versions of ExpertCommittee

Version Description

Version 1 Typical web-based application that represents our MAS-PL core.
It has the mandatory features that support the conference man-
agement process. These features are described in Section 3.1.

Version 2 Release 1: Addition of the Reviewer role and the functionalities
related to it: accept/reject review and review paper.
Release 2: Addition of automatic suggestion of conferences to the
authors.
Release 3: Addition of message notifications to the system users
through email or SMS (alternative feature).
Release 4: Addition of deadline monitoring, to trigger specific ac-
tions when they expire.
Release 5: Addition of automatic assignment of papers to commit-
tee members review them.
Release 6: Addition of task management.

Version 3 Refactoring of Version 2 to improve the modularization of some
agency features in order to make possible the automatic product
derivation.

Developing and Evolving a Multi-agent System Product Line 233

was developed in six different releases, each of them addressing a new optional
or alternative feature. Each new release was implemented based on the previous
one. The software agent abstraction was used to model and implement the au-
tonomous behavior presented by the new agency features. A software agent is an
abstraction that enjoys mainly the following properties [29]: autonomy, reactiv-
ity, pro-activeness and social ability. Thus, in this second version, we have used
the agent abstraction and AOSE techniques to allow the introduction of new
optional and alternative agency features in the system. Figure 1(b) illustrates
the feature model containing the new agency optional and alternative features
introduced in the second version of the EC system.

(a) Mandatory Features of the EC (b) Optional Features of the EC

Fig. 1. Expert Committee Feature Model

The third and last version of the EC system was implemented by applying
a series of refactorings in version 2. The system was restructured to make the
(un)plugging of optional features possible. Each optional feature was modular-
ized by using a combination of OO design patterns and techniques with Spring
configuration files that allows the injection of dependencies inside the variable
points of the EC SPL architecture. It improves the capacity to produce and
compose different configurations (products) of the SPL, and it also enables the
automatic product derivation by means of model-based tools, such as: software
factories [16], generative programming [7], GenArch [5,4], pure::variants [27].
Product derivation is the process of constructing a product from the set of as-
sets specified or implemented for a SPL [8]. Each product is composed of the

234 I. Nunes et al.

Fig. 2. MAS-PL Architecture

core features and a valid combination of optional and alternative features, ac-
cording to the feature model. In an automatic product derivation process, the
application engineer can generate a configuration (product) of the SPL by only
selecting and choosing the features that are going to compose your product.

3.3 The EC MAS-PL Architecture

The EC Version 2 was implemented as an SPL architecture, which is illustrated
in Figure 2. New features associated with the autonomous behavior of the sys-
tem were added as a set of optional features. Different software agents and agent
roles were specified to modularize these features. The JADE5 framework was
used as the base platform to implement our agents. These agents are responsible
for monitoring the execution of different functionalities of the EC in order to
provide their respective functionalities. The integration between the web archi-
tecture and the agents was accomplished by means of the introduction of the
Observer pattern [12]. All the services that make part of the Business layer ex-
tends the Observable class. This class has a set of objects that implement the
Observer interface. The EnvironmentAgent implements this interface, and is
notified about changes in the system. Details about each agent that comprises
the system are listed below:

5 http://jade.tilab.com/

Developing and Evolving a Multi-agent System Product Line 235

Environment Agent: this agent monitors the EC system by observing the ex-
ecution of specific business services. These monitored events of the EC sys-
tem represent the environment in which the user agents are situated. Each
user agent is specified to perceive changes in the environment and make ac-
tions according to them. The environment agent was implemented using the
Observer design pattern [12]. When it is initialized, it registers itself as an
observer of the services that compose the Business layer. These services are
observable objects that allow the observation of their actions. That means
that, for each call of the system business methods, the services not only exe-
cute the requested methods, but they also notify their respective observers.
The only observer in our implementation is the EnvironmentAgent, whose
aim is to notify the other agents of the MAS-PL about the system changes;

User Data Agent: this agent receives notifications when new users are created
in the database. When it happens, it creates a new user agent that will be
the representation of the user in the system. The initial execution of the user
data agent demands the creation of a user agent for each user already stored
in the database;

User Agent: each user stored in the system has an agent that represents them
in the system. This is the autonomous behavior, agents performing actions
that the users should do. The user agent was designed in such a way that
it can dynamically incorporate new roles. Each agent role perform specific
actions according to the role that the user plays in the conference, such as
chair, coordinator and author. An example of autonomous behavior is when
the paper submission deadline expires and the user agent in the chair role
will automatically distribute the papers to the committee members. Besides
this example, most of the user agents are responsible: (i) for analyzing and
discovering pending tasks for user agents based on the roles the users play
in the system; and (ii) for asking the notifier agent to send email or SMS
notifications;

Deadline Agent: this agent is responsible for monitoring the conference dead-
lines. This monitoring serves two purposes: (i) to notify the user agents
when a deadline is nearly expiring; and (ii) to notify the user agents when a
deadline has already expired;

Task Agent: this agent is responsible for managing the user tasks. It receives
requests for creating, removing and setting the execution date of tasks. The
requests are made by the user agents;

Notifier Agent: this agent receives requests from other agents to send mes-
sages to the system users. In the current implementation, it sends these
messages through email and SMS.

3.4 Evolving the EC MAS-PL Architecture

In versions 2 and 3 of the EC system, the MAS PL architecture was developed
to provide the minimum impact when the new optional and alternative features
must be added. In this way, different architectural and design decisions were

236 I. Nunes et al.

accomplished to facilitate the creation of different configurations (products) of
the MAS-PL.

In the EC Version 2 of our MAS-PL, we adopt traditional design patterns to
implement its variabilities (variable features). First, as we mentioned before, the
integration between the web system and the environment agent was implemented
using the Observer design pattern [12]. The Observer pattern was used to allow
the (un)plugability of the agency features and maintain the alternative to have
all the agency feature as optional. Second, we used the Role Object pattern [3]
to better modularize the implementation of each of our agents (Section 3.3).
The Role Object pattern models context-specific views of an object as separate
role objects which are dynamically attached to or are removed from the core
object. This pattern was mainly used to provide a base implementation of the
user agents whose behavior can be incremented by attaching new roles (such as
chair, author, committee, reviewer) to be played by these agents.

Listing 1.1. XML Configuration File

<bean id=”ExpertCommitteeConfig”
c l a s s=”br . puc . maspl . c on f i g . ExpertCommittee”>

<property name=” op t i ona lFea tu r e s”>
< l i s t>

<va lue>ed i t u s e r</ va lue>
</ l i s t>

</ property>
<property name=” r o l e s ”>

<map>
<entry key=”CHAIR”><r e f bean=”Chair ” /></ entry>
. . .

<entry key=”AUTHOR”><r e f bean=”Author” /></ entry>
</map>

</ property>
<property name=” agents”>

<map>
<entry key=”deadl ineAgent ”><r e f bean=”DeadlineAgent ” /></ entry>
<entry key=” taskAgent ”><r e f bean=”TaskAgent” /></ entry>
<entry key=” not i f i e rAgen t ”><r e f bean=” Not i f i e rAgent” /></ entry>

</map>
</ property>
<property name=” s e r v i c e s ”>

< l i s t>
<r e f bean=”AuthorService ” />
. . .

<r e f bean=”TaskServ ice” />
</ l i s t>

</ property>
</bean>
<bean id=”Chair ” c l a s s=”br . puc . maspl . c on f i g . Role”>

<property name=” op t i ona lFea tu r e s”>
< l i s t>

<va lue>automat i c pape r d i s t r i bu t i on</ va lue>
</ l i s t>

</ property>
</bean>

The EC Version 2 provided an improved modularization of the MAS-PL op-
tional and alternative features through the adoption of design patterns. However,

Developing and Evolving a Multi-agent System Product Line 237

we noticed the need to accomplish new adaptations in the MAS-PL architecture
in order to facilitate the production of different configurations of our MAS-PL.
These required adaptations were: (i) to split the agent plans in small units to
address only specific MAS features, because in the Version 2, the plans were
implemented incorporating different features; and (ii) to define a mechanism to
provide an easy way to configure the different features, including fine-grained
properties. The EC Version 3 incorporated the implementation of these adap-
tations by providing: (i) a feature-oriented modularization of the agent plans;
and (ii) a Spring-based mechanism to configure the main MAS-PL components.
Both implementation decisions enable the automatic instantiation of our MAS
PL architecture using product derivation tools, such as: pure::variants [27] and
GenArch [5,4].

The customization of the MAS PL components using the Spring framework
was accomplished by specifying a configuration file that aggregates different
options of configuration of the MAS-PL, such as: (i) different functional features
of the conference management base system (edit user, paper distribution) and
respective properties; (ii) the different agents and the respective plans; and (iii)
the different agent roles and respective plans. These important elements of the
system were modeled using the bean abstraction of the Spring framework, which
offers a model to build applications as a collection of simple components (called
beans) that can be connected or customized using dependency injection and
aspect-oriented technologies. Spring container uses a XML configuration file to
specify the dependency injection on application components. This file contains
one or more bean definitions which typically specify: (i) the class that implements
the bean, (ii) the bean properties and (iii) the respective bean dependencies.
Listing 1.1 illustrates a fragment of our MAS-PL configuration file.

4 Discussions and Lessons Learned

In this section, we present and discuss some lessons learned from our experience
of development and evolution of the EC MAS-PL. Our lessons learned are related
to the following main points: variability types, aspect-oriented refactoring, and
adaptation of SPL methodologies.

4.1 MAS-PL Variability Types

SPL architectures address the implementation of different types of variable fea-
tures, such as optional, alternative and OR-features [7]. In our development
experience, we have found that in a MAS-PL, the occurrence of variable fea-
tures varies not only in term of its functional features, but it also depends and
is structured based on the agency features that the MAS-PL needs to address.
According to [26], these two types of variability are classified as external and
internal respectively. Since one of the main aims of the implementation of SPL
architectures is to improve the modularization and management of their fea-
tures, in a MAS-PL is essential to consider the agency features and to evaluate
how the existing technologies can help to address them.

238 I. Nunes et al.

In our exploratory study, we have identified three types of variability in
agency feature, all of them are internal. We believe that these three types can
be considered in most of the MAS-PL, because they are really useful to improve
the variability management of the MAS-PL. Next we briefly describe these three
types:

New Autonomous Behavior. We had to introduce agents into the architec-
ture when we added autonomous behavior to the system. The Task Man-
agement feature, for example, implied in the addition of a new agent in
the system with a set of associated behaviors, which can be present or not,
depending on the product being derived;

New Role for an Agent. Each role played by the users in the EC system has
a corresponding role in the user agent of the MAS-PL. However, not all roles
are mandatory, such as the role Reviewer. Thus, roles must be modeled in
a way that they can be easily (un)plugged from the core architecture of the
MAS-PL;

New Behavior for an Agent or Role. Some optional features have an im-
pact inside the agent or the role. They allow specifying agent internal vari-
abilities by defining new behaviors of agents. The Conference Suggestion
feature is an example of such autonomous optional feature. The user agent,
or more specifically the author role, can perform it. When a paper is regis-
tered in a conference, the author agent role perceives it and sends suggestions
of related conferences for the author who has registered his/her paper.

In a MAS, it is common to specify the autonomous behavior features by
means of the collaboration of several and different agents. When developing the
versions 2 and 3 from the EC MAS-PL, we observed that the modularization of
many of the agency features involved to codify different pieces of code related to
agents and respective roles along different classes and agents from the SPL archi-
tecture. Figure 2 illustrates two examples of this scattering - the Task Manage-
ment and Conference Suggestion features. It presents a colored indication that
shows the elements (classes, interfaces, methods) related to the implementation
of these features. Thus, it becomes a fundamental challenge to modularize some
of these crosscutting features in order to allow their (un)plugability.

4.2 AO Refactoring

Recent research work presents the benefits of adopting aspect-oriented program-
ming (AOP) techniques to improve the modularization of features in SPL [1,10],
framework based [21] or multi-agent systems [14] architectures. The increasing
complexity of agent-based applications motivates the use of AOP. AOP has been
proposed to allow a better modularization of crosscutting concerns, and as a con-
sequence to improve the reusability and maintenance of systems [19]. Among the
problems of crosscutting variable features, we can enumerate: (i) tangled code
- the code of variable features is tangled with the base code (core architecture)
of a SPL; (ii) spread code - the code of variable features is spread over several

Developing and Evolving a Multi-agent System Product Line 239

classes; and (iii) replicated code the code of variable features is replicated over
many places. All these problems can cause difficulties regarding the management,
maintenance and reuse of variable features in SPL.

In order to promote improved separation of concerns, some crosscutting fea-
tures that present the problems mentioned above are natural candidates to be
designed and implemented using AOP. In our MAS-PL exploratory case study,
we have found the following interesting situations to adopt AOP techniques:

(i) modularization of the glue-code that integrates the web-based system (base
code) with the agent features (new variable agency features) - in our current
implementation, this is addressed by the Observer design pattern [17] that is
used to observe/intercept the execution of business methods of the services
of the Business layer. AOP can be used to modularize the intercepted code
that allows the agents monitor the execution of the web-based system. It
facilitates the (un)plug of the agency features in the system. In our case
study, 17 methods distributed among the services are intercepted to collect
information for the agents; and

(ii) modularization of the agent roles - in the EC case study, we have used the
Role OO design pattern to modularize the agent roles. We have noticed
that the use of this pattern cannot provide an improved isolation of the
agent role features, which is essential to SPL variability management. The
implementation of the agent classes (e.g. UserAgentCore class) requires, for
example, the activation and deactivation of the agent roles over different
points of the execution of the agent behavior, such as agent initialization,
execution of specific plans, etc. The adoption of AOP to modularize agent
roles [13] is thus a better option to improve the modularization and evolution
of the agent roles features.

We have recently refactored the EC MAS-PL version 3 in order to modularize
the crosscutting features mentioned above using aspect-oriented programming
techniques. This activity was part of an empirical quantitative study developed in
order to compare the OO and AO implementations of the EC MAS-PL. Both im-
plementations were compared in terms of size, separation of concerns and feature
interaction metrics. The preliminary results from this quantitative study have
shown that the AO implementation of the EC MAS-PL exhibits a better separa-
tion of concerns/features and reduced values for interactions between concerns,
but on the other hand, it caused the increasing of the number of classes/aspects,
operations and lines of code. For further details about this quantitative study,
please refer to [22].

4.3 Adaptation of SPL Methodologies

Over the last years, many SPL methodologies have been proposed [26,15,2]. They
cover a great variety of SPL development activities [26,6,15], related to domain
and application engineering, as well to management processes. Some of these
methodologies incorporate concepts and techniques from the object-oriented or
component-based paradigms. Most of these SPL methodologies provide useful

240 I. Nunes et al.

notations to model the agency features [23]. However, none of them completely
covers their specification. Agent technology provides particular characteristics
that need to be considered in order to take advantage of this paradigm.

Pena et al [25] identify current challenges to integrate the MAS and SPL
software engineering approaches, such as: (i) management of evolving systems;
(ii) need to provide new adapted techniques to cover distributed systems and
the fact that agent-oriented software engineering does not cover typical activities
of SPL development. There is some recent research work that addresses initial
proposals to define a MAS-PL development methodology [24,9]. These proposals
consider MAS methodology as a base and adapt it to document features of a
product line. The main problems that we have observed in these approaches were
[23]: (i) they do not offer a complete solution to address the modeling of agency
features in domain analysis and design; and (ii) they suggest the introduction
of complex and heavyweight notations that are difficult to understand when
adopted in combination with existing notations (e.g. UML) and do not capture
explicitly the separated modeling of agency features.

In our work, we have developed and evolved a web-based system by intro-
ducing the implementation of new variable agency features on its original ar-
chitecture. We focused mainly on the use of OO techniques to modularize the
implementation of the new agency features. The feature model was used to orga-
nize the SPL variabilities and guide us during the maintenance and refactoring
of the different EC versions. The idea to introduce agency features in a web sys-
tem was motivated by the growing need of this kind of systems to incorporate
recommendations and alerts of pending tasks to their users. Based on the results
of this exploratory study, we are currently investigating the need of proposing
new extensions to existing SPL methodologies in order to model and modularize
each of different agency features specified. The main aim is to allow an explicit
documentation and tracing of these agency variabilities along the SPL develop-
ment process. In particular, we are focusing on these two research directions: (i)
documentation of MAS-PL architectures considering the integration of SPL and
MAS proposed methodologies; and (ii) definition of a MAS-PL agile methodol-
ogy to model their requirements and features. Preliminary results obtained to
address these topics can be found in [23].

Our case study has defined an architectural style to increment web-based
systems with new agency features. It allowed introducing new agency features re-
lated to recommendations and alerts to the system users. Since many web-based
system are typically structured following the guidelines of the Layer architectural
pattern, we are currently exploring the application of this same architectural
style to different web-based systems in order to validate its applicability.

5 Conclusions and Future Work

This paper presented an exploratory study of development and evolution of a
MAS-PL. We initially developed a traditional web-based system to support the
process of conference management. After that, we evolved this system to incor-
porate a series of new agency features, which addresses autonomous behavior

Developing and Evolving a Multi-agent System Product Line 241

associated with recommendations to the system users. Different user agents and
roles were implemented to modularize these features. The feature model was also
adopted to drive the incorporation of the new features. As a result of our study,
we presented a SPL architecture that allows to integrating agency features in
traditional web-based system. Additionally, we presented a set of lessons learned
from our study, related to: (i) the variability types encountered in our MAS-PL;
(ii) the possibility of using aspect-oriented techniques to improve the modular-
ization of agency features in our architecture; and (ii) the need of adaptation
of existing SPL methodologies to allow the modeling of the different agency
features during the SPL development.

We are currently extending the research work presented in this paper in
several directions. We are working to define a base and lightweight SPL method-
ology that allows the specification and documentation of autonomous behavior
along the domain and application engineering processes. We are also interested
to explore the use of our MAS-PL architecture to incorporate autonomous be-
havior in other web-based systems in order to validate it as an architectural
style [28]. Finally, we are also investigating what is the impact of OO and AO
implementations of a MAS-PL to the automatic product derivation supported
by existing tools [5,27].

References

1. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring
product lines. In: GPCE 2006, pp. 201–210. ACM, New York (2006)

2. Atkinson, C., Bayer, J., Muthig, D.: Component-based product line development:
The kobrA approach. In: Donohoe, P. (ed.) SPLC 2000, pp. 289–309 (2000)

3. Bäumer, D., Riehle, D., Siberski, W., Wulf, M.: The Role Object Pattern. In: PLoP
1997 (1997) (submitted), citeseer.ist.psu.edu/baumer97role.html

4. Cirilo, E., Kulesza, U., Coelho, R., Lucena, C., von Staa, A.: Integrating Compo-
nent and Product Lines Technologies. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030,
pp. 130–141. Springer, Heidelberg (2008)

5. Cirilo, E., Kulesza, U., Lucena, C.: A Product Derivation Tool Base on Model-
Driven Techniques and Annotations. Journal of Universal Computer Science (2008)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2002)

7. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley, Longman, Amsterdam (2000)

8. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product fam-
ilies: a case study. Journal of Systems and Software 74(2), 173–194 (2005)

9. Dehlinger, J., Lutz, R.R.: A Product-Line Requirements Approach to Safe Reuse
in Multi-Agent Systems. In: SELMAS 2005, pp. 1–7. ACM Press, New York (2005)

10. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F., Khan, S., Filho, F., Dantas, F.: Evolving software product
lines with aspects: An empirical study on design stability. In: ICSE 2008, pp. 261–
270. ACM, New York (2008)

11. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, Reading (2002)

citeseer.ist.psu.edu/baumer97role.html

242 I. Nunes et al.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Reading (1995)

13. Garcia, A., Chavez, C., Kulesza, U., Lucena, C.: The role aspect pattern. In: Eu-
roPLoP 2005, Isree, Germany (2005)

14. Garcia, A., Lucena, C., Cowan, D.: Agents in object-oriented software engineering.
Software Practice Experience 34(5), 489–521 (2004)

15. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co.,
Inc., Redwood City (2004)

16. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. John Wiley and Sons,
Chichester (2004)

17. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and aspectJ.
In: OOPSLA 2002, pp. 161–173. ACM, New York (2002)

18. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

19. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

20. Krueger, C.W.: Easing the transition to software mass customization. In: PFE
2001, London, UK, pp. 282–293. Springer, London (2002)

21. Kulesza, U., Alves, V., Garcia, A.F., de Lucena, C.J.P., Borba, P.: Improving Ex-
tensibility of Object-Oriented Frameworks with Aspect-Oriented Programming. In:
Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 231–245. Springer, Heidelberg
(2006)

22. Nunes, C., Kulesza, U., SantÁnna, C., Nunes, I., Lucena, C.: On the modularity
assessment of aspect-oriented multi-agent systems product lines: a quantitative
study. In: SBCARS 2008, Porto Alegre, Brazil (2008)

23. Nunes, I., Kulesza, U., Nunes, C., Lucena, C.: Documenting and modeling multi-
agent systems product lines. In: SEKE 2008, Redwood City, USA (2008)

24. Pena, J., Hinchey, M.G., Resinas, M., Sterritt, R., Rash, J.L.: Designing and man-
aging evolving systems using a MAS product line approach. Science of Computer
Programming 66(1), 71–86 (2007)

25. Pena, J., Hinchey, M.G., Ruiz-Cortés, A.: Multi-agent system product lines: chal-
lenges and benefits. Communications of the ACM 49(12), 82–84 (2006)

26. Pohl, K., Bóckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

27. Pure systems. pure-systems GmbH (2008), http://www.pure-systems.com/
28. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice Hall, Englewood Cliffs (1996)
29. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of

the Art. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
pp. 1–28. Springer, Heidelberg (2001)

http://www.pure-systems.com/

Combining JADE and Repast for the Complex
Simulation of Enterprise Value-Adding Networks

Min-Jung Yoo and Rémy Glardon

EPFL-STI-IGM-LGPP
Swiss Federal Institute of Technology

Station 9, CH-1015 Lausanne, Switzerland
{min-jung.yoo,remy.glardon}@epfl.ch

http://lgpp.epfl.ch

Abstract. This paper describes how to combine the JADE agent plat-
form with Repast-provided simulation functions for rapidly developing
an environment for the simulation of complex agent model. The main
motivation comes from our requirements concerning the simulation of
enterprise Value-Adding Networks, whose ultimate objective is to anal-
yse management performance. JADE is useful for creating and deploy-
ing a distributed agent organisation modelling enterprise workflow model
and supply chain network, as well as for system monitoring at the level
of agents and communications. Integrating dynamically human interac-
tion during the simulation is relatively easy. Repast was developed as
a general purpose framework for agent based simulation with appropri-
ate graphic interfaces. Their combination makes it possible to construct
complex model of multi-agent organisation whose execution states can
be observed from users and the global simulation results can be used for
performance analysis. Their extension and composition mechanisms are
described using a case study of a manufacturing enterprise.

Keywords: Simulation, supply chain, agent platform, enterprise
modelling, JADE, Repast.

1 Introduction

The continuous trend towards global operation leads enterprises to create strong
links with a wide-ranging, complex network of partners. These networks, called
Value-Adding Networks (VAN), constitute highly complex systems that operate
in very dynamic and unpredictable environments, which render intuitive deci-
sions, based on experience and common sense, impossible or extremely risky.

Modern enterprises therefore require an adequate support tool which helps
them in decision making processes (such as where to manufacture, assemble, and
store what for which market) by making it possible to test several alternative
supply chain configurations. Simulation-based approaches are often chosen as one
of the best solutions for such tools thanks to their predictable features [1][2][3][4].
Our ultimate goal is to develop the model of enterprise VAN for different supply
chain configurations and to test it varying performance parameters so as to

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 243–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://lgpp.epfl.ch

244 M.-J. Yoo and R. Glardon

analyse different results from simulation. In that context, rather than developing
all the functions from scratch, we are interested in using existing toolkits as much
as possible.

There are already many simulation frameworks and agent-based toolkits which
are available for simulation approaches (Section 2). For the purpose of achiev-
ing our objectives, we have used JADE (Java Agent DEvelopment Framework
[17]) combining it with supplementary functions from Repast (REcursive Porous
Agent Simulation Toolkit [18]) such as step-by-step simulation and developing
statistical monitoring functions.

Even though such an extension was achieved for our particular needs, the
resulting outcome is sufficiently general to be applied to other contexts. The
contribution of this paper is therefore to detail how the combination of JADE
and Repast was achieved so that other research can benefit from the result.

This paper is organized as follows. Section 2 discusses the context of enterprise
VAN simulation and our motivation in combining two platforms as a basic envi-
ronment for that purpose. The fusion of the platforms, which were necessary to
enable their integration into a common development environment, are detailed
in Section 3. A case study example using the extended two-agent platforms is
given in Section 4. Finally, conclusions are presented in Section 5.

2 Simulation Approach: Context, Motivation and
Objective

This section discusses what is meant by enterprise VAN modelling, why JADE
was used and why the decision was made to combine it with Repast.

2.1 Context: Enterprise Simulation for Supply Chain Performance
Analysis

Enterprise VAN modelling and simulation involves building a functional model of
enterprise business processes and value adding activities in production including
external supply chain actors, and runing the model during a pre-determined time
span. This approach is described below.

1. All of the involved business departments, such as production and purchase
planning, manufacturing, or inventory management have to be modelled, in-
cluding their workflow or enterprise-specific management and planning pro-
cedures.

2. For the purpose of testing the external impacts of their Supply Chain, ex-
ternal actors such as Distribution Logistics, Suppliers, or Clients should be
modelled according to their behavioural characteristics.

3. The simulation model must integrate not only key flows of materials or infor-
mation (contracts and order forms) but also financial flows such as payments
or costs, which can be influenced by variations in currency conversion rates
or the location of transactions.

Combining JADE and Repast for Complex Simulation 245

4. For the purpose of improving the clarity of the simulation for users, the
changing states of modelled elements should be visually monitored. This
might include stock levels which changes dynamically according to input-
output transactions, or the global job load of manufacturing centers.

5. The simulation results, which show the detailed transaction information in
inventory or production operation records, should be retrieved afterwards
for the purpose of performance analysis.

Another important aspect to integrate into the simulation is the possibility
of user interactions during run-time. This means that the tool should be able to
respond interactively to user inputs, such as a client order for a huge amount of
a product, or output transactions from stock, so that the simulation shows the
real impact of such changes on the whole organisation.

Such an approach is of great interest to supply chain management and de-
cision support. Within the design phases of a supply network or of production
nodes, it is possible to compare the simulation results of different variations,
or to evaluate the effects of changes in a planning scheme or management pol-
icy. In addition, it can help to optimize the processes of value-adding activities,
including sales planning, inventory planning, and distribution. Whereas other
simulation approaches ([3] [4]) partially achieved some selected objectives using
an abstract and simplified enterprise model, our work aims at achieving a com-
plex simulation with the help of an enterprise model closely reflecting the real
world functional details of the enterprise.

2.2 Motivation: JADE as a Platform for Enterprise VAN Modelling
and Simulation

The above discussion reveals not only the complexity of the modelled system
but also the necessity and difficulty of developing a modelling framework that
can support the creation of such complex models. There are many simulation
packages either commercially available today, such as AnyLogic [20], Arena [19],
or open sources (see Section 2.3), to mention only a few of them. They provide
good modelling elements and various types of histograms developing functions
and statistical analysis. Nevertheless, they were not conceived to satisfy all the
needs related to the above-mentioned model characteristics. Most of them are
based on waiting queues; even though they are able to model material flow,
albeit with limited flexibility, they are not capable of satisfactorily integrating
either the information or the enterprise management procedures [3]. Integrating
user interaction during run-time is not straight-forward with such tools. In or-
der to develop such a complex modelling framework, the use of a multi-agent
architecture is strongly recommended [5] [12] [16].

From our point of view, the characteristics of our simulation model are close to
the decentralised organisation of autonomous agents in an “open and dynamic
environment” [9] which as studies in [10] [16]. In the context of our former
research experiences, JADE was experimented and received a good evalusation
for that purpose. JADE provides the following characteristics.

246 M.-J. Yoo and R. Glardon

Generic agent structure. The generic agent structure provided by JADE
helps to encapsulate different levels of business activities within an autonomous
software agent, separating them from other concerns such as agent communica-
tion and collaboration.

ACL message semantics. FIPA specifies the ACL (Agent Communication
Language) as a means of interaction among agents. Even though the language
suffers from its limited semantic richness [7], ACL semantics (“performatives”)
are mainly based on human language act theory. By using a unified meaning of
expression in communication, it is possible to model seamless communication for
agent-to-agent and agent-to-human interaction. It also provides the possibility
of flexible modification following agent acquaintance.

Dummy Agent. Among several utilities offered by JADE, “Dummy Agent”,
a user interfacing agent, is useful for the integration of human user interaction.

Agent organisation modelling. The platform provides several utilities for
managing agent collaboration in an open organisation, which consists of com-
munication lines, an agent directory facilitator, and the notion of agent services.

Several evaluation reports on performance tests concerning agent development
tools already concluded that JADE is highly efficient in terms of its performance
on agent message transport layer [13], internal database access and message ex-
change capabilities [14], or its appropriateness as an efficient tool for a manu-
facturing control application [16] . These are the reasons why JADE was chosen
for the modelling platform.

The main issue is that JADE does not provide simulation capabilities, such as
synchnonising agents with the step-by-step simulation cycle or tools for statiscal
analysis concerning the changes of some internal agent states, which were well
integrated in other simulation tools [6]. Rather than developing these missing
points from scratch, our decision was to study first of all a possible means of
combining JADE with another toolkit for the purpose of rapid development.

2.3 Objective: Incrementing JADE Features towards a
Repast-Enabled Simulation Environment

In [6], several software platforms, Swarm[21], NetLogo[22], and Repast, were
reviewed as scientific agent-based models (ABMs) by comparing these platforms
based on several criteria such as model structure, scheduling, or execution speed,
and other general agent development issues. According to the authors, Repast is
a good JAVA platform simulation implementing almost all of Swarm’s functions
with other added capabilites, such as the ability to reset and restart models from
the graphical interface while at the same time guaranteeing good performance
on execution speed.

Repast received a less favourable evaluation concerning its modelling structure
in comparison with other candidates. In the absence of a platform-provided

Combining JADE and Repast for Complex Simulation 247

agent structure (at least with the version of Repast 3), any user-defined Java
class can be defined as an “agent” in that environment. However, ironically, this
weakness becomes a positive characteristic in order to be combined with JADE
because the agent model itself in the simulation must be based on the JADE
proposed agent framework. As a result, we decided to study the feasibility of
using Repast in order to complement the JADE-based supply chain modelling.
More particularly, the following aspects are interesting to be integrated with the
JADE-based enterprise model.

Simulation scheduling and control. Repast, along with other platforms in
the same family, is particularly developed as a general-purpose platform for
step-by-step simulation for which a rich set of functions is predefined. One of
these is the generic simulation model (SimModelImpl) which is provided with
some predefined template methods for making models and planning schedules.
In particular, the “buildSchedule” method involves activating all agents in the
simulation model.

Visualisation. Repast also supports efficient display functions used to show
the changing state of observable data according to some predefined performance
criteria. Such functions are useful for rapidly developing monitoring functions,
illustrating simulation progression in real-time.

Other features. Other functions, such as controlling the total number of sim-
ulations, or saving the graphs, are also helpful for simulation monitoring, data
saving and retrieving.

3 JADE and Repast Combination

For the purpose of efficiently using different characteristics within a unified
agent development context, the following modifications and improvements were
achieved.

1. Creation of a specialized JADE agent class and Simulation Cycle Synchro-
nisation behaviour.

2. Creation of a specialised synchronisation behaviour.
3. Modification of the JADE ACL message scheme to include temporal aspects.
4. Implementation of a specialised Jade Behaviour class in order to use Repast-

provided display functions: named “ObservableBehaviour” hereafter.
5. Capacility of recognizing current time according to the simulated Gregorian

calendar

3.1 SCAgent

SCAgent class is a subclass of the JADE “Agent” class with the following ex-
tensions:

248 M.-J. Yoo and R. Glardon

1. The possibility of representing the notion of “simulation time” in accordance
with the agent lifecycle. For instance, if one simulation cycle is equivalent
to one-day length of time of the simulated environment, then the agent
activities of a day must be terminated within one simulation cycle, which
corresponds to a clock tick of Repast.

2. The ability to handle a special type of agent message (“TickerACLMessage”,
see Section 3.2).

3. The ability to track global simulation time (“currentTick” value) and cor-
responding date notion according to Gregorian calendar. This is necessary
in order to synchronise with other agents and to control the simulation in
terms of current simulation step value.

4. Integration of “Simulation Cycle Synchronisation” Behaviour which has to
be activated at the end of the SCAgent’s one-tick cycle (see below).

The notion of simulation time discussed in the first point means a synchro-
nised value with the clock tick (one step of simulation) in Repast. It can be
used in association with notions such as “what day is today?” (global time of
the simulated environment), and “how long does it take?” (duration) of certain
manufacturing operations.

Fig. 1. SCAgentController, SCAgent, and TickerACLMessage: subclass relationships
and associations

Simulation Cycle Synchronisation Behaviour. Being based on the first
version of this prototype presented at AOSE 2008, the JADE-Repast fusion
have improved, and this behaviour simplifies the handling of simulation cycle
synchronisation within the subclasses of SCAgent. The Simulation Cycle Syn-
chronisation Behaviour simply increments the tick value and make the agent
suspend itself.

3.2 TickerACLMessage and Associated Handling Mechanisms

This is a subclass of JADE’s “ACLMessage”, integrating the notion of simula-
tion time (Fig. 1). It represents the duration of the number of simulation steps

Combining JADE and Repast for Complex Simulation 249

which is needed for the delivery of messages from a sender agent to a receiver.
This value must be initialised at its creation and decreased while the simulation
continues. While a normal ACLMessage can be opened and verified by an agent
as soon as the message is delivered to the receiver agent’s message box, a Tick-
erACLMessage must not be opened until the tick value reaches zero. This test
is achieved by an SCAgent (“tickerReceive” method).

This modification makes it possible to model temporal aspects related to
the material and information flows. The importance of integrating the temporal
aspect will be further discussed in Section 4.2.

3.3 ObservableBehaviour

As was discussed above, Repast already provides special monitoring functions for
users, ranging from the state of individuals to statistics of the population. These
kinds of observation or display functions should be implemented using special
interfaces - “DataSource” and “Sequence” (see Repast programming guide on
the web site [18] for more details). For the purpose of providing the same type of
observability, a specialised JADE “Behaviour” class was created to implement
these “interfaces” (Fig. 2). If the execution of an agent behaviour concerns state
changes, such as stock evolution, or the progress of manufacturing processes,
statistical data that is to be observed can be exported to the appropriate graphic
user interfaces in Repast by this method (c on Fig. 5).

Fig. 2. ObservableBehaviour, a subclass of JADE’s “Behaviour” class

3.4 Synchronisation between Simulation Cycle and Gregorian
Calendar Type Value

The improved version of the SC agent class integrates the notion of the Gregorian
Calendar which is initialised with a given date valule (for example, 1st January
2007 at the start of first cycle). This change makes it possible to know what day
is today (work day or week-end). By associating the working calendar specific to
each department, the simulation results show the impact of changing the work
day, or taking into account seasonal characteristic analysis.

250 M.-J. Yoo and R. Glardon

3.5 Overall Configuration

Fig. 3 shows the overall configuration of the composed architecture. The simula-
tion step control from Repast arrives at SCAgents in the JADE environment by
passing through the corresponding AgentControllers. After activation by its con-
troller (“resume” method), an SCAgent accomplishes its activities, which must
be done within a simulation cycle, and then suspends itself, while waiting for
the next activation from its AgentController. If an agent includes an Observ-
ableBehaviour object, changes in the internal agent state can be observed from
the Repast monitoring environment (see also Fig. 5 and Section 4.3). Regardless
of the type of internal behaviour objects, every agent on the composed plat-
form is able to communicate using either standard ACL messages or extended
TickerACL messages.

Fig. 3. Overall configuration of the composed architecture of JADE-Repast

4 Application to a Case Study of a Swiss Manufacturing
Firm

Currently, the modelling environment is being applied to a real-world case study
concerning a Swiss manufacturing company with a view to analysing current
and another possible Supply Chain configurations.

4.1 Model Description

The enterprise VAN model is composed of the following supply chain actors
(Fig. 4).

Combining JADE and Repast for Complex Simulation 251

1. A set of agents representing the enterprise (business departments or actors),
such as “Supply Chain (SC) Manager”, “Stock Manager”, “Purchase Man-
ager”, or assembly and manufacturing centre (“Atelier” on the figure) , in
order to design activities and business processes in detail.

2. Agents representing other supply chain actors: suppliers and transport
logistics.

Each agent is modelled as a subclass of SCAgent implementing necessary
value-adding activities by using one of the subclasses of Behaviour or newly
added ObservableBehaviour objects. For example, the following text describes
the agent behaviour of “Stock Manager” including the default “Simulation Cycle
Synchronisation” and several other behaviours.

The Stock Manager receives manufacturing orders from the SC Manager.
If there are sufficient materials to produce the requested final product, Stock
Manager takes them and send them, together with a Manufacturing Order to
the appropriate ateliers (“Kitting and Launching” - CyclicBehaviour). In order
to find pertinent ateliers, the Stock Manager refers to the internal database
of the “Manufacturing Operation Series” of production. If there are not enough
materials, then the Manufacturing Order will be kept until the materials arrive at
stock. Inventory Management keeps track of input and output stock transactions
(“Inventory Management” - ObservableBehaviour).

The Stock Manager manages the bill of materials of these products. The
production strategy is based on a pull mechanism, that is to say, the enterprise
produces only the quantity ordered by its clients.

Fig. 4. The simplified supply chain organisation of the case study

4.2 Communication Model for Material and Information Flows

Apart from agents, the modelling environment already provides some prede-
fined documents and primitive data types in order to model the material and

252 M.-J. Yoo and R. Glardon

information flows, such as “Order of Product”, “Bill of Materials”, “Manufac-
turing Order”, “Purchase Order”, “Ship”, “Product Delivery”, “Operation” and
many more.

Different agents communicate in order to share information and materials
according to their value-adding activities. Here are some examples:

1. SC Manager sends a “Request” message of “Manufacturing Order” to the
Stock Manager ((1) on Fig. 4).

2. Stock Manager sends an “Inform” message of “Manufacturing Order” to the
Ateliers ((2) on Fig. 4.).

3. The Ateliers send their final products and associated documents (“Ship”) to
Stock Manager during a predefined delay time ts ((3) on Fig. 4).

4. The Suppliers deliver materials to Transport Logistics and then to Stock
Manager (“Product Delivery”) during the delay time tp ((4) on Fig. 4).

In JADE, when an agent sends an ACL message, it is immediately delivered to
the receiver agent. Meanwhile, in a real-world example, the document-sending
of “Manufacturing Order” can take place within a day, while the delivery of
products depends on the logistical means and locations. For example, the prod-
uct shipped from Morocco requires two to three business days whereas it may
be dealt with immediately from other centres (Atelier 22, 24, 26 in Switzer-
land). That is the reason why they were modelled using different types of agent
communication mechanisms, either standard ACL Communication or modified
TickerACL Communication. Here we can see the importance of using the Tick-
erACLMessage, which enables us to model this difference in delivery duration
for different flows.

4.3 SCAgent Class Creation with an “Observable Behaviour”
Object

The manufacturing centres (atelier) are modelled as a subclass of SCAgent in-
cluding a specific behaviour class, “Production Management”, which is a kind
of “ObservableBehaviour” (left-hand side on Fig. 3).

ProductionManagement is a subclass of “CyclicBehaviour” (JADE) which
implements Repast’s interfaces “DataSource” and “Sequence”. When an Ate-
lier agent receives a Manufacturing Order, the agent saves the corresponding
operations process within its job queue. Each Operation object keeps track of
the number of steps required for the purpose of finishing the manufacturing
operation.

Production process execution is simulated by decreasing the number of steps
associated with every Operation object. Each time the Repast’s display func-
tion activates the “getSValue” method of “Sequence” interface, ProductionMan-
agement returns the total number of operations that the agents are currently
dealing with.

Combining JADE and Repast for Complex Simulation 253

4.4 Simulation

The agent model was successfully implemented and run on the composed agent
execution environment (Fig. 5). The following enterprise data was integrated as
simulation-enabling data.

– Product Bill of Materials concerning selected top ten final products
– Manufacturing Operation series (Bonding, reception, packaging, etc.) con-

cerning these products
– Launched Manufacturing Order in 2007
– Purchase Order history in 2007
– Client Orders in 2007

The simulation scenario corresponded to the annual client order data, pur-
chase order history and launched production orders. The enterprise historical
databases were stored in Microsoft’s Excel spreadsheets and retrieved with the
help of Java Excel APIs [23] for the purpose of initialising agents with corre-
sponding data (e.g., SC Manager with Client orders, Purchase Manager with
Purchase order history). The results in Fig. 5 shows an intermediate status on
about 7th June in the middle of one year simulation from January to December
2007.

During the simulation, the material and information flows were visualised in
the Sniffer Agent’s graphic window as agent message passing (b). In the middle
of the simulation, users could easily suspend it by using the button (a) and

Fig. 5. Screen Copy: during the simulation of the case study

254 M.-J. Yoo and R. Glardon

send an arbitrary product order with the help of the Dummy Agent interface to
observe the impact of this supplementary order on the graphic interfaces.

5 Conclusion

This paper describes how to combine JADE with Repast-provided simulation
facilities. The JADE framework is useful for deploying collaborative agents in
an open environment as well as for monitoring the organisation. The extended
agent communication mechanism is appropriate for flexible modelling of the
supply chain material and information flows. During the simulation, the Repast
framework controls the simulation steps and makes it possible to show changes
in agent states which result from the agent activities and communications taking
place on the other side of the agent platform - JADE. The combined use of two
platforms is possible thanks to some extensions discussed in this paper thereby
enabling savings to be made in development costs and time.

Lessons learned. The most important lesson was that we could prove the
suitability of the approach. Using two distinctive platforms within a unified
environment was a new idea. The positive result shown in this paper opens up
a new potential for “open-source” users and the opportunity to create other
interesting combinations.

Another lesson was that FIPA-compliant ACL semantics seem quite promis-
ing in terms of modelling supply chain flow and user interaction, as well as later
exploration of the agent organisation in the real context of supply chain man-
agement, or in an open organisation such as in [10]. We should also mention that
the agent organisation mechanism in JADE, for instance the notion of “Agent
Service Description”, was useful for describing the different roles of SC actors
and their relationships.

Benefits from using JADE. The benefits from using JADE are therefore the
modelling power provided by JADE for developing such systems. The supply
chain model of extended enterprises is a distributed organization of autonomous
business actors. These include the notions of workflow management, collabora-
tion and information sharing among actors, cooperation protocols, and so on.
Using JADE makes it easy to develop such an organization based on an individ-
ual model close to the real agent behaviour.

Another important and interesting point is that Jade Web Services Integration
Gateway [8] makes agents possible to access to Web services. It enables agents to
use numerous Web services during the simulation. For example, there are several
currency converters available on standard Web service. By directly using this
function during the simulation of a payment operation , the financial flows can
be correctly modelld so that cost performance analysis becomes more credible.

Benefits from using Repast. As was described before, the Repast-provided
GUIs help developers to rapidly construct simulation prototypes. A pre-defined

Combining JADE and Repast for Complex Simulation 255

agent controlling mechanism makes it easy to integrate each JADE agent be-
haviour and synchronise it with the environmental simulation clock. If the Repast
part should not be provided, then they would have to be developed from scratch.
Ultimately, it is up to the developers whether to use them or not. We preferred
to benefit from the existing simulation libraries. We are planning to test other
features from Repast such as file output function (for the purpose of facilitat-
ing data recording actions) and geographical data integration, or the integration
with the version of Repast Simphony.

Future work. One of our current studies concerns the design of a high-level
abstract agent architecture in order to further generalise the SCAgent structure.
We are continuing to develop a methodological approach to SC sensitivity anal-
ysis and the test of robustness for the enterprise model presented in this paper.
The integration of the financial flows by accessing directly to a Web Service is
ongoing.

Given that we are aiming to use the enterprise simulation for a broad range
of decision support and supply chain management, a consideration of other re-
lated issues is also very important. Our project is therefore also exploring the
possibility of integrating the enterprise competence model [11] using an ontol-
ogy language, or considering environmental aspects and ecological issues, which
could be an important future factor in the strategic decisions of supply chain
modelling.

The system extension on JADE and Repast presented here can be used for
other types of simulation models if the requirements from the simulation envi-
ronment are identical to which descirbed in Section 2. We are planning to open
the API, which concerns the extension of JADE-Repast discussed in this paper,
to publicly available resources in the near future.

Acknowledgments. This work is supported by the Innovation Promotion
Agency of Switzerland (CTI grant 9160.1) and is currently ongoing. The authors
thank all industrial partners in this project and Mr. S. Naciri from LGPP-EPFL
for their close collaboration. The authors thank Dr. F. Bellifemine from Telecom
Italia for his helpful comments on JADE extension. Our heartfelt thanks go as
well to anonymous reviewers whose useful comments helped us to improve the
paper.

References

1. Terzi, S., Cavalieri, S.: Simulation in the supply chain context- a Survey. Computers
in Industry 53, 3–16 (2004)

2. Robinson, S.: General concepts of quality for discrete-event simulation. European
Journal of Operational Research 138, 103–117 (2002)

3. Ridall, C.E., Bennet, S., Tipi, N.S.: Modeling the dynamics of supply chains. In-
ternational Journal of Systems Science 31, 969 (2000)

4. Van der Zee, D.J., Van der Vorst, J.G.A.J.: A modeling Framework for Supply
Chain Simulation - Opportunities for Improved Decision Making. Decision Sci-
ences 36, 65 (2005)

256 M.-J. Yoo and R. Glardon

5. Parunak, H.V.D., Savit, R., Riolo, R.L.: Agent-Based Modeling vs. Equation-Based
Modeling- A Case Study and Users’ Guide. In: Sichman, J.S., Conte, R., Gilbert,
N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–25. Springer, Heidelberg
(1998)

6. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms:
Review and Development Recommendations. Simulation 82(9), 609–623 (2006)

7. Petrie, C., Bussler, C.: Service Agents and Virtual Enterprises - A Survey. IEEE
Internet Computing 7(4), 68–78 (2003)

8. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology (2007)

9. Luck, M., Ashiri, R., D’Inverno, M.: Agent-Based Software Development. Artech
House (2004)

10. Nguyen, D., Thompson, S.G., Patel, J., Teacy, L.W.T., Jennings, N.R., Luck, M.,
Dang, V., Chalmers, S., Oren, N., Norman, T.J., Preece, A., Gray, P.M.D., Shercliff,
G., Stockreisser, P.J., Shao, J., Gray, W.A., Fiddian, N.J.: Delivering services by
building and running virtual organisations. BT Technology Journal 25(1) (2006)

11. Yoo, M.-J., Furbringer, J.-M., Naciri, S., Glardon, R.: Integrating Competence
Model and the Multiagent Simulation of Value-Adding Networks. In: Conférence
internationale de Modélisation et Simulation, Paris, France (2008)

12. Muller, J.-P.: Towards a formal semantics of event-based multi-agent simulations.
In: International workshop on Multi-Agent Based Simulation, MABS Estoril, Por-
tugal (2008)

13. Shakshuki, E., Jun, Y.: Multi-agent Development Toolkits: An Evaluation. In: Or-
chard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp.
209–218. Springer, Heidelberg (2004)

14. Chminel, K., Tomiak, D., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzy-
cki., M.: Testing the Efficiency of JADE Agent Platform. In: Third International
Symposium on Algorithms, Models and Tools for Parallel Computing on Hetero-
geneous Networks (2004)

15. Vrba, P.: JAVA-Based Agent Platform Evaluation. In: Mař́ık, V., McFarlane,
D.C., Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 47–58.
Springer, Heidelberg (2003)

16. Vrba, P.: Simulation in agent-based control systems: MAST case study. Inter-
national Journal of Manufacturing Technology and Management 8(1-3), 175–187
(2006)

17. JADE, http://JADE.tilab.com
18. Repast, http://repast.sourceforge.net/repast_3/index.html
19. Arena, http://www.arenasimulation.com
20. AnyLogic, http://www.xjtek.com
21. Swarm, http://www.swarm.org
22. NetLogo, http://ccl.northwestern.edu/netlogo
23. Java Excel API, http://jexcelapi.sourceforge.net

http://JADE.tilab.com
http://repast.sourceforge.net/repast_3/index.html
http://www.arenasimulation.com
http://www.xjtek.com
http://www.swarm.org
http://ccl.northwestern.edu/netlogo
http://jexcelapi.sourceforge.net

OperA and Brahms: A Symphony?
Integrating Organizational and Emergent Views on

Agent-Based Modeling

Bart-Jan van Putten1,2, Virginia Dignum2,
Maarten Sierhuis2,4, and Shawn R. Wolfe3

1 Utrecht University, Intelligent Systems Group,
PO Box 80089, 3508 TB Utrecht, The Netherlands

{bartjan,virginia}@cs.uu.nl
2 RIACS / NASA Ames Research Center,

Mail Stop B269-1, Moffett Field, CA 94035, USA
Maarten.Sierhuis-1@nasa.gov

3 NASA Ames Research Center, Intelligent Systems Division,
Mail Stop B269-2, Moffett Field, CA 94035, USA

Shawn.R.Wolfe@nasa.gov
4 Delft University of Technology, Man-Machine Interaction Group,

Mekelweg 4, 2628 CD Delft, The Netherlands
M.Sierhuis@tudelft.nl

Abstract. The organizational view on work systems focuses on the de-
sired outcomes of work (i.e., the work process) while the emergent view
focuses on how the work actually gets done (i.e., the work practice). Often
a gap exists between these two, because workers pursue individual objec-
tives in addition to the organizational objectives. Agent-based modeling
and simulation can be used to improve work systems and thereby or-
ganizational performance. Current modeling and simulation frameworks
only represent either one of the two views. In order to model both views,
we propose an integration of two modeling and simulation frameworks,
OperA and Brahms. Using the integrated model, we are able to run
simulations that show to what degree work practice differs from work
processes.

1 Introduction

Organizations are intentionally formed to accomplish a set of common objec-
tives, defined by the policy makers of the organization. People that work for
those organizations often only partially pursue the global objectives of the or-
ganization. Workers often pursue their individual objectives as well, frequently
resulting in a gap between the a priori designed flows of tasks and procedures
reflecting the ideal activity of the organization (i.e., the work process), and the
activities that actually get things done (i.e., the work practice) [2]. This gap
does not exist only because of the difference in objectives between individuals
and the organization, but also because many policy makers abstract from work

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 257–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

258 B.-J. van Putten et al.

practice when they design work systems (i.e., business operations). For example,
it is uncommon for a job description to include ’socialize with co-workers’, ’drink
coffee’, or ’read e-mail’.

Human Resource Management research has recognized that ultimately em-
ployee behaviors, rather than management practices, are the key to value cre-
ation in organizations [3]. Policy makers of successful organizations therefore
want to understand work practice and align it with the organizational objec-
tives. Modeling and simulation can support the description, prescription, and
prediction of work practice [15], but also need to show in what ways work prac-
tice deviates from the organizational objectives.

Agent-based modeling and simulation used to focus on either the individual,
’micro’ level in a way that the collective behavior emerges from individual actions
(i.e., the bottom-up, emergent view), or on the global objectives and desired
collective behavior at a ’macro’ level (i.e., the top-down, organizational view).
In order to bridge the gap between what the policy makers of an organization
want and what the people do, a Work Systems Modeling and Simulation (WSMS)
framework is needed that integrates the organizational and emergent views. This
will allow policy makers to analyze effects of the micro on the macro level and
vice-versa [4].

Related approaches, such as S-Moise+ [11], RNS2 [21], and [18] are similar
to our research, in the sense that all aim to develop organizational models to
support different levels of coordination and autonomy. However, the difference
is that they aim to develop open, heterogeneous multi-agent systems from an
engineering perspective, whereas we aim to develop models of work practice from
a human-centered perspective, where norms may be violated. Furthermore, our
approach demonstrates that the model that is based on the organizational view
can be combined with the model that is based on the emergent view. Any agent
behavior is allowed, but monitored, and possibly sanctioned if organizational
rules are violated.

In this paper we will show how two multi-agent modeling frameworks, OperA
[5], a methodology developed to represent and analyze organizational systems,
and Brahms [17], a language developed to describe and simulate work practice,
have been integrated into one WSMS framework. By running simulations using
the integrated model, it is possible to determine in what ways work processes
differ from work practice. The results of these simulations are used by policy
makers, for example to:

– change organizational policies (e.g., make them more realistic or more chal-
lenging), or

– implement new forms of control in the organization to enforce different be-
havior, or

– help individual workers in adopting new work behavior, e.g., with protocols
that are known to conform to the organizational policies.

This paper is organized as follows: section 2 introduces the case of Collaborative
(Air) Traffic Flow Management, section 3 describes OperA and Brahms, section 4

OperA and Brahms: A Symphony? 259

describes their integration into one framework, section 5 describes validation of
the framework, section 6 describes related work, and finally section 7 concludes
this paper.

2 Case Study: Simulation

Air traffic in the United States of America (USA) has been projected to increase
as much as threefold by the year 2025. A simulation of this level of traffic with the
current air traffic systems shows a disproportionate and unacceptable increase in
average delay per flight. As a result, NASA is researching new technologies and
approaches to handle the problems associated with this projected traffic increase.
One promising area is Collaborative Traffic Flow Management (CTFM), which
seeks to increase the amount of collaboration between the controllers of the
airspace (i.e., the Federal Aviation Administration (FAA)) and the many airlines
that use the airspace to find beneficial solutions to traffic flow problems. A
concept of operations (i.e., a future work process) has been suggested as a specific
way to address the problem [14]. Figure 1 is an example of a work process from
the concept of operations. Because it is a work process it abstracts from work
practice. The process consists of four main phases: Constraint Identification,
Impact Assessment, Flow Planning and Flight Implementation. During these
phases several parties collaborate to refine the routing and planning of flights.

Fig. 1. The four main phases of the CTFM work process

260 B.-J. van Putten et al.

At NASA Ames Research Center, this concept of operations is being eval-
uated through agent-based modeling and simulation, along with other CTFM
concepts [22]. We want to know if the new, planned work processes are effec-
tive and feasible for the stakeholders, e.g., the FAA, airlines, and passengers.
Most of the work processes have only been described on an abstract level (the
organizational view), i.e., the desired outcomes of the processes. The specific im-
plementation of the work processes that will lead to these outcomes still needs
to be defined. This is not straightforward because it requires the coordination
of many collaborative activities among highly specialized people in distributed
and heterogeneous organizations. Additionally, it is hard to prescribe an exact
work process. People may deviate from the objectives (e.g., file the flight plan of
each flight) and violate norms, which are constraints on, or specializations of the
objectives (e.g., file the flight plan before the flight takes off). Thus, the work
process is not necessarily the work practice. Therefore, investigating varied work
practice implementations (i.e., the expected future work practice) and their per-
formance on the organizational objectives supports the evaluation of the CTFM
concept of operations. This way, we need to model both the organizational view
resulting in a work process model and the emergent view resulting in a work
practice model (figure 2). The work process model in our case study has been
derived from Airline Operations Centers’ (AOC) documented field observations
[13], and modeled in OperA. The work practice model in our case study has been
made up, simply to show that the behavior of individual workers may conflict
with the overall desired behavior of the AOC.

Fig. 2. The two views and the resulting models

3 OperA and Brahms

OperA models cannot be simulated without another framework for the specifica-
tion of the agents’ behavior. This is because OperA treats agents partly as ’black
boxes’, i.e., only the desired outcomes of their behavior are specified. However,
the way in which these outcomes should be achieved is not specified. Because
of that, an OperA model is not executable on its own. Brahms has been used
to implement the agents’ behavior. This is called an ‘instantiation’ or ‘popu-
lation’ of the OperA model. This decoupling of the abstract description of the
organization and the concrete description of the individuals is useful, because it is

OperA and Brahms: A Symphony? 261

in accordance with reality, where different groups of people with different work
styles may achieve the same objectives in different ways.

3.1 OperA

The OperA model for agent organizations enables the specification of organi-
zational requirements and objectives, and at the same time allows workers to
have the freedom to act according to their own capabilities and demands [5]. An
OperA model can be seen as a recipe for collective activity; organizations are de-
scribed in terms of roles, their dependencies and groups, interactions and global
norms and communication requirements. Given that OperA assumes organiza-
tions as being open systems, it does not include constructs to the specification of
the actual agents, treating them as ’black boxes’ that commit to a specific (ne-
gotiable) interpretation of the organizational roles. OperA meets the following
requirements:

– Internal autonomy requirement: The internal behavior of the partici-
pating agents should be represented independently from the structure of the
society.

– Collaboration autonomy requirement: The external behavior of the
participating agents should be specified without completely fixing the inter-
action possibilities in advance.

Table 1. Overview of OperA methodology

The OperA framework consists of three interrelated models. The Organi-
zational Model (OM) is the result of the observation and analysis of the
domain and describes the desired behavior of the organization, as determined
by the organizational stakeholders in terms of objectives, norms, roles, interac-
tions and ontologies. The Social Model (SM) maps organizational roles to
specific agents. Agreements concerning the roles an agent will play and the con-
ditions of the participation are described in social contracts. The Interaction

262 B.-J. van Putten et al.

Model (IM) specifies the interaction agreements between role-enacting agents
as interaction contracts.

A generic methodology to determine the type and structure of an application
domain is described in [5]. Organizational design starts from the identification
of business strategy, stakeholders, their relationships, goals and requirements.
It results in a comprehensive organizational model including roles, interactions,
objectives, and norms, which fulfill the requirements set by the business strategy.
A brief summary of the methodology is given in 1.

There are many dimensions that can be included or excluded from organi-
zational modeling. We have compared OperA with several other organizational
modeling languages on the following five dimensions:

– Structural : what the organization consists of, e.g. groups, roles
– Functional : what the organization wants to achieve: objectives, procedures
– Behavioral : what the individuals in the organization actually do: activities
– Communicative: also called ‘dialogical’ or ‘ontological’; how individuals in

the organization communicate
– Normative: also called ’deontic’; how behavior within the organization can

be controlled

Most organizational models (e.g., AGR [10]) used to focus on the structural
and functional dimensions. Recently, models have also started to incorporate
the normative dimension (e.g., Moise+ [12]). A few models also include the
communicative dimension (e.g., OMNI [8]). OperA mainly covers the structural,
functional and normative dimensions. In our opinion, the behavioral dimension,
which is related to the emergent view, is underexposed in most organizational
modeling languages [19]. In section 6 we will go into more detail on related work
in this respect.

3.2 Brahms

Modeling and simulating work processes is often done at such an abstract level
that individual work practice, such as collaboration, communication, ‘off-task’
behaviors, multi-tasking, interrupted and resumed activities, informal interac-
tions, use of tools and movements, is left out, making the description of how
the work in an organization actually gets done impossible. The Brahms mod-
eling language is geared towards modeling people’s activity behavior, making
it an ideal environment for simulating organizational processes at a level that
allows the analysis of the work practice and designing new work processes at the
implementation level [5,17].

The Brahms framework consists of several interrelated models. The Agent
Model describes the behavior of individuals (i.e., people) and groups of indi-
viduals (i.e., communities of practice). Individuals are members of groups and
inherit the behavior of the groups. Individuals can also have additional behavior
that distinguishes them from other individuals, and they can be a member of
multiple groups (i.e., multiple inheritance). Groups can be organized in a hi-
erarchical way, to define behavior at different levels of abstraction. Sub-groups

OperA and Brahms: A Symphony? 263

inherit the behavior of super-groups. This is convenient for the modeling of
common objectives and activities, and does not limit the agents’ autonomy be-
cause anything specified on the group level can be overloaded on the agent
level. The Object Model describes non-cognitive objects (i.e., things). Objects
can be physical, or conceptual. The latter means that they only exist within
the minds of agents, and can therefore not influence and react on the world.
The Knowledge Model describes the reasoning of agents and objects, which
is based on beliefs and facts. Beliefs are propositions that represent the world
state and are internal to the agent or object. Facts are actual world states, and
are global in the simulation world. The Activity Model defines the behavior
of agents and objects by means of activities and workframes. Brahms has an
activity-based subsumption architecture by which an agent’s activities can be
decomposed into sub-activities. Activities can be interrupted and resumed, just
as humans can multitask by switching between different activities. Workframes
control when activities are executed based on the beliefs of the agent, and on
facts in the world. The Communication Model defines communication ac-
tivities between agents and objects. When an agent or object communicates,
it either sends or receives beliefs from other agents or objects. The Geogra-
phy Model defines a hierarchy of geographical locations representing the space
where activities occur. Agents and objects are located in areas and can move
from area to area, possibly carrying other agents or objects, by performing a
move activity.

There are several requirements for a work practice modeling language. First,
it should be a simulation language, i.e., a language that supports the modeling
of time. Second, it should support the modeling of activities rather than goals.
Third, it should support subsumption, and reactive behavior. Brahms fulfills
these requirements because it is a BDI-like activity language. Brahms differs from
Jack and Jade in that Brahms is a compiled declarative agent-oriented language.
Brahms differs from Jason in that Jason is a goal-based language, while Brahms
is an activity-based language. Jason agents are represented using prescribed
problems and plans to solve them. Brahms is a behavioral BDI language based
on a reactive subsumption architecture, where competing activities are active
at once on multiple levels. This allows for seamless activity switching, based
on context information the agent is aware of (i.e., has beliefs about). For a
description of different multi-agent languages see [1]. For a discussion of how the
Brahms language differs from other BDI languages, see [16].

3.3 Rationale for Integration of OperA and Brahms

Although OperA was developed almost 10 years later than Brahms, the
philosophy behind OperA and Brahms is similar. Brahms was developed be-
cause work processes were often modeled too abstract, i.e., formal descriptions
of work processes differed too much from the actual work practice. Similarly,
OperA tries to bridge the gap between the official and the real-world. How-
ever, OperA and Brahms have a different viewpoint on the solution to this

264 B.-J. van Putten et al.

problem. Brahms tries to bridge the gap between the abstracted and the real
work practice bottom-up, i.e., by observing and describing the individual behav-
ior of people. The modeler can then observe what collective behavior emerges
from the interaction of the individual behavior of the people: the emergent view
on agent-based modeling. OperA tries to bridge the gap top-down, by describ-
ing the objectives of an organization. This way it defines what the result of the
emergent behavior of the collective should be, rather than describing the practice
(i.e., the individual activities and interactions) that should lead to that result:
the organizational view on agent-based modeling.

The difference in the viewpoints becomes clear when we compare the models
that result from the different methodologies. Brahms mainly consists of agents
that reason (Knowledge Model) and work (Activity Model). These are defini-
tions of the work that gets done, rather than the results that should be achieved.
OperA defines roles, objectives, and norms (Organizational Model). It also de-
fines social contracts (Social Model), which allow the modeler to define which
particular agent executes which roles, and which special norms apply. Finally, it
defines interaction contracts (Interaction Model), which allow the modeler to de-
scribe norms that apply when two or more specific agents, enacting specific roles,
interact. These are definitions of (the restrictions on) the results that should be
achieved, rather than definitions of the process itself. This shows that OperA
and Brahms are orthogonal in this respect.

OperA and Brahms are different languages. Brahms is an implementation
language. It is formal, and can be compiled to Java, and executed using the
Java virtual machine. OperA is a conceptual language, which level of formality
depends on the preferences of the modeler and on the development state of the
model. Modeling can start by defining objectives and norms in terms of natural
language, and then moving gradually to pseudo-logic and finally to deontic logic.
OperA semantics are formally grounded on the temporal deontic logic LCR [6].

While Brahms is mainly a language, OperA is more of a methodology be-
cause it provides guidelines on how to get from abstract definitions of work pro-
cesses (i.e., objectives and norms) to more specific definitions of work
processes (i.e., social contracts). This way, there is an order in the models that
are created, while in Brahms this is completely up to the modeler.

4 Integration of OperA and Brahms

Based on the complementary viewpoints of OperA and Brahms described in the
previous section, we hypothesized that, after integration, the two frameworks
could complement each other in the following two ways: (1) OperA adds the
organizational (top-down) view to Brahms, Brahms adds the emergent (bottom-
up) view to OperA, so that both perspectives are represented, (2) simulations can
be run that show the difference between the two perspectives (i.e., the normative
gap). Figure 3 shows our WSMS methodology, which consists of several steps
that are needed to realize point 2. The next section explains this figure.

OperA and Brahms: A Symphony? 265

4.1 Methodology

Figure 3 is a schematic view of our WSMS methodology. The squares represent
models, the squares with rounded corners represent actions of the modeler (i.e.,
methods). The operational concept can be defined in any formal or informal way
(see the OperA methodology [5]. It then needs to be defined in OperA during the
organizational modeling action, resulting in the organizational model in OperA.
It is also possible that the operational concept only exists in the mind of the
modeler and is modeled in OperA right away. At the same time, before, or after
organizational modeling, the work practice should be modeled, resulting in the
work practice model in Brahms. The work practice can be defined in any formal
or informal way and can then be defined in Brahms, or it can only exist in the
mind of the modeler (e.g., after observation of human behavior) and be defined
in Brahms right away.

Fig. 3. Work Systems Modeling and Simulation methodology

Because both models need to be described in Brahms in order to be ex-
ecutable together, the organizational model in OperA needs to be converted
to Brahms. Currently, this is done manually, using the mappings, but it seems

266 B.-J. van Putten et al.

realistic that this can be automated. Currently, OperettA, a tool for automated
verification of OperA models is being developed and is very promising in this
respect [7]. After conversion, both models are defined in Brahms.

Although both levels are now defined in the same language, they may not
yet be totally integrated due to possible structural and ontological differences.
Therefore a combination method is required, which requires some interpretation
of the modeler. This method is out of the scope of this paper, but is described
in more detail in [21].

Finally, the two layers are integrated and the simulation can be run. The
output of the simulation will show which organizational objectives have been
achieved, or not, and which norms have been violated. Additionally, it will
show which agents were involved and the context of the compliance or violation
situation.

4.2 Conversion

OperA consists of three main models: OM, SM and IM. Each of these models
is further subdivided into levels and structures (cf. table 1). If we break these
constructs further down we get OperA’s atomic constructs, some of which have
been listed in Table 2. In order to be able to convert an OperA model to a Brahms
model, we have defined Brahms equivalents for each of the OperA constructs
(also in Table 2). Sometimes an OperA construct can be represented by a single,
simple Brahms construct, other times several interrelated constructs are needed.
Currently, we have defined almost all mappings, without any major difficulties.

Space and scope limitations do not allow for an in-depth discussion of all
mappings, for which we refer to [19]. We suffice with an example of one of
them, to show that the mapping meets the internal autonomy requirement. Row
‘Objective’ in table 2 shows a part of the OperA role definition of the dispatcher,
which is a common role in Airline Operation Centers [13]. Dispatchers’ main task
is to ensure the safety of flights. The code shows that the objective is defined
on the role level by means of a protocol, which is a workframe that is executed
by all agents that are members of the Dispatchers group. However, agents can
decide to ignore the protocol and implement a different kind of behavior. Agent
Diana is an example of an agent that decides to use her autonomy: she supervises
Dave and she knows that she only needs to ensure the safety when Dave is not
available. This is the kind of information that is often abstracted from in work
process models, but which is included in work practice models. This mapping
meets OperA’s internal autonomy requirement, as it allows the designer to define
the individual behavior of agents independently from the desired behavior that is
defined on the role (organizational) level. The protocol is a useful mechanism to
prevent code duplication in the case of common behavior among multiple agents.
By making those agents members of one group with a protocol, the protocol’s
workframe only needs to be defined once.

OperA and Brahms: A Symphony? 267

Table 2. Overview of OperA constructs with Brahms equivalents

268 B.-J. van Putten et al.

5 Case Study: Validation

The integration of OperA and Brahms makes it possible to run a simulation in
Brahms in which both the organizational view (e.g., roles, objectives, norms) and
the emergent view (e.g., activities, workframes) are represented. But these two
views are not necessarily aligned: the work practice may differ from the intentions
of the organization’s policy makers. Objectives may not be met, and norms may
be violated. We have therefore extended the simulation with a monitoring agent
(’agent Monitor’), which can detect norm violations. (This is the simplest way,
but in the future we would like to support different types of organizations that
require agents to monitor themselves or each other.) This makes it possible to
perform norm-based evaluation of the proposed CTFM operational concepts,
which are usually described from the organizational perspective.

Fig. 4. Output of a simulation (the virtual machine’s log)

The code in row ‘Role Norm’ in table 2 shows the conversion of an OperA
norm into Brahms code. The Monitor checks if there are dispatchers who are
responsible for flights, that have taken off, but that have not yet been released.
If this is the case, a norm violation occurs, because normally flights are released
before they take off. Agent Diana complies with the norm by releasing the flight.
Agent Dave is reading e-mail and is therefore not able to comply with the norm.
When a norm is violated, an object is created that contains the identifier of the
norm, the situation in which it has been violated (e.g., for which flight), the
moment in time, and the agent by which it has been violated. The monitoring
agent creates the objects, and reports them to the user of the simulation (e.g., via
the virtual machine’s log: figure 4). The user can then determine the frequency
and type of the violations, and which agents are more likely to violate which
norms. These simulations show to what degree the actual work practice differs
from the organizational objectives (i.e., the work process model). Eventually,
this information can be used by policy makers and workers themselves to change
organizational objectives and norms, or to improve the work system.

6 Related Work

In this research we integrate work process modeling with work practice sim-
ulation. To our knowledge this is a novel approach for the specification of

OperA and Brahms: A Symphony? 269

complex distributed environments where cooperation is necessary and the en-
tities are autonomous. For this effect, we used two modeling languages: OperA
and Brahms. Both are existing, exemplary, frameworks for their own class of
modeling paradigms: OperA for organizational modeling and Brahms for work
practice simulation.

In section 3.2 we have discussed how Brahms differs from other agent
languages, rather than work practice languages, because to the best of our
knowledge, there is no other work practice modeling and simulation language.
Replacing Brahms with another agent language (and defining new mappings
from OperA to this language), could still lead to an integration of the organiza-
tional and emergent views. However, for work practice modeling and simulation,
the agent language would have to be BDI-based, declarative, activity-based, and
support subsumption [19].

In section 3.1 we have shortly discussed how OperA differs from other orga-
nizational modeling languages. OperA is an organizational model that supports
(rather than incorporates) the emergent view because it allows the specification
of individuals in another implementation language and does not put any require-
ments on the internal specification of those agents. An organizational model that
incorporates the emergent view allows the specification of the internal behavior
of individuals, independently of the specification of organizational policies.

Some other languages, such as HarmonIA [20], OMNI [8] and RNS2 [21], also
support the emergent view and may replace OperA in that respect. Approaches
like ISLANDER [9], do not support nor incorporate the emergent view because
either the agent population is specifically generated to fulfill the norms of the
organization or because there is a control mechanism that blocks all disallowed
activities. Although one could argue that there is low level behavior that emerges,
the behavior is fully predictable, which is useful for the modeling of electronic
institutions, but is not suitable for work practice modeling.

S-Moise+ [11] even incorporates the emergent view by means of the J-Moise+
agent architecture. However, this is a goal-based architecture rather than an
activity-based architecture, while an activity-based architecture is required for
work systems modeling [16]. RNS2 is activity-based, however can only be used to
specify activities on the role level, which means that unique human individuals
cannot be described. Therefore this language cannot be used to describe actual
behavior and is thus not suitable for work systems modeling.

7 Conclusion

The design and evaluation of work systems can be supported with agent-based
modeling and simulation that incorporates both an organizational view (top-
down) and an emergent view (bottom-up) on work systems. Most current model-
ing and simulation frameworks only focus on either one of these views. Therefore
we have integrated two frameworks, each representing one of the two views. The
combined Work Systems Modeling and Simulation (WSMS) framework makes
it possible to simulate work practice, and to monitor the gap between the emer-
gent behavior and the desired outcomes as defined by the organization’s policy

270 B.-J. van Putten et al.

makers. Our initial WSMS methodology has been applied to the CTFM concept
of operations, by investigating which population and specification of agents’ ac-
tivities and interactions leads to the desired objectives, and conversely, which
objectives can be met, based on a certain work practice.

The hypotheses for this research were that the integration of OperA and
Brahms meets the following requirements: (1) OperA adds the organizational
(top-down) view to Brahms, Brahms adds the emergent (bottom-up) view to
OperA, so that both perspectives are represented, (2) simulations can be run
that show the difference between the two perspectives (i.e., the normative gap).
The work presented in this paper provides a proof of concept that supports
the validity of these hypotheses. However, more work is needed to improve the
integrated methodology by applying it to different cases, and to determine the
actual usefulness of norm-based evaluation of operational concepts.

This work contributes to our more general research objective: How can we
improve models of work practice by incorporating the organizational view, What
happens when agents become aware of the fact that they are violating a norm?,
What is the influence of norms on work practice?, and: How do norms arise from
work practice? New insights in these areas will lead to more realistic models
of work practice, and thereby to improved agent-oriented system engineering
methodologies.

Acknowledgements

This material is based on work supported by NASA under award NNA07BB97C.
The research of V. Dignum is funded by the Netherlands Organization for Sci-
entific Research (NWO), through Veni-grant 639.021.509.

References

1. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.: Multi-Agent Programming:
Languages, Platforms and Applications. Springer, Heidelberg (2005)

2. Clancey, W.J., Sachs, P., Sierhuis, M., Hoof, R.V.: Brahms: Simulating practice
for work systems design. International Journal on Human-Computer Studies 49,
831–865 (1998)

3. Colvin, A., Boswell, W.: The problem of action and interest alignment: Beyond
job requirements and incentive compensation. Human Resource Management Re-
view 17, 38–51 (2007)

4. Dignum, V., Dignum, F., Jonker, C.: Towards agents for policy making. In: David,
N., Sichman, J. (eds.) MABS@AAMAS 2008 (2008)

5. Dignum, V., Dignum, F., Meyer, J.: An agent-mediated approach to the support of
knowledge sharing in organizations. Knowledge Engineering Review 19(2), 147–174
(2004)

6. Dignum, V., Meyer, J., Dignum, F., Weigand, H.: Formal specification of interac-
tion in agent societies. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff,
C.A., Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, pp. 37–
52. Springer, Heidelberg (2003)

OperA and Brahms: A Symphony? 271

7. Dignum, V., Okouya, D.: Operetta: A prototype tool for the design, analysis and
development of multi-agent organizations. In: Proc. AAMAS 2008, Demo Track
(2008)

8. Dignum, V., Vzquez-salceda, J., Dignum, F.: Omni: Introducing social structure,
norms and ontologies into agent organizations. In: Bordini, R.H., Dastani, M., Dix,
J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS, vol. 3346, pp. 181–198.
Springer, Heidelberg (2005)

9. Esteva, M., Cruz, D., Sierra, C.: Islander: an electronic institution editor. In: Proc.
AAMAS 2002 (2002)

10. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

11. Hübner, J., Sichman, J., Boissier, O.: S-moise+: A middleware for developing or-
ganised multi-agent systems. In: Boissier, O., et al. (eds.)COIN I. LNCS (LNAI),
vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

12. Hübner, J., Sichman, J., Boissier, O.: Developing organised multi-agent systems
using the moise+ model: Programming issues at the system and agent levels. In-
ternational Journal of Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

13. Idris, H., Evans, A., Vivona, R., Krozel, J., Bilimoria, K.: Field observations of
interactions between traffic flow management and airline operations. In: 6th AIAA
Aviation, Technology, Integration, and Operations Conference (2006)

14. Idris, H., Vivona, R., Penny, S., Krozel, J., Bilimoria, K.: Operational concept for
collaborative traffic flow management based on field observations. In: 5th AIAA
Aviation, Technology, Integration, and Operations Conference (2005)

15. Sierhuis, M.: Modeling and Simulating Work Practice; Brahms: A Multiagent Mod-
eling and Simulation Language for Work System Analysis and Design. SIKS Dis-
sertation Series 2001-10. University of Amsterdam, Ph.D Thesis (2001)

16. Sierhuis, M.: It’s not just goals all the way down - it’s activities all the way down.
In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006.
LNCS (LNAI), vol. 4457, pp. 1–24. Springer, Heidelberg (2007)

17. Sierhuis, M., Clancey, W., van Hoof, R.: Brahms: A multiagent modeling environ-
ment for simulating work processes and practices. International Journal of Simu-
lation and Process Modelling 3(3), 134–152 (2007)

18. van der Vecht, B., Dignum, F., Meyer, J.-J., Neef, M.: A dynamic coordination
mechanism using adjustable autonomy. In: Sichman, J.S., Padget, J., Ossowski, S.,
Noriega, P. (eds.) COIN 2007. LNCS, vol. 4870, pp. 83–96. Springer, Heidelberg
(2008)

19. van Putten, B.-J.: Opera and brahms: a symphony? integrating organizational
and emergent views on agent-based modeling and simulation. Technical Report
INF/SCR-07-79, Utrecht University (2008)

20. Vazquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent
Systems applied to complex domains. The HARMONIA framework. Ph.D thesis,
Universitat Politecnica de Catalunya (2003)

21. Weiss, G., Nickles, M., Rovatsos, M., Fischer, F.: Specifying the intertwining of co-
operation and autonomy in agent-based systems. International Journal of Network
and Computer Applications 30(3), 1196–1215 (2007)

22. Wolfe, S.: Supporting air traffic flow management with agents. In: AAAI Spring
Symposium: Interaction Challenges for Intelligent Assistants. AAAI, Menlo Park
(2007)

Support for Analysis, Design, and Implementation
Stages with MASDK

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoylov, and Victor Konushy

St. Petersburg Institute for Informatics and Automation
39, 14 Liniya, St. Petersburg, 199178, Russia

{gor,ok,samovl,kvg}@mail.iias.spb.su

Abstract. In spite of much research and development on agent-oriented software
engineering methodologies and supporting software tools, the problem remains of
topmost importance. Many efforts are still needed to make such methodologies
and software tools practically applicable at an industrial scale. This paper pro-
poses extension of the Gaia methodology with a formal specification language,
making it possible to implement Gaia as a model-driven engineering process
supported by a corresponding agent-based software development environment,
MASDK 4.0. The paper outlines MASDK 4.0 through the extended Gaia, and
demonstrates the technology supported by MASDK 4.0 on the basis of a frag-
ment of a case study on autonomous air traffic control.

1 Introduction

Over the last decade, different tools, software libraries, frameworks and program lan-
guages [1] have been developed for multi-agent system (MAS) development. Among
them, the most widely used are Living SystemsRTechnology Suite [18] AgentBuilder
[17], agentTool [5], Coguaar [8], JADE [2], INGENIAS IDE [12], etc. These differ in
methodologies used (MaSE [6], Tropos [11]), Gaia [20], etc.), architecture of target
applications (BDI, reactive architecture, etc.), and in levels of maturity achieved and
classes of applications they are able to develop. However, there is no single methodol-
ogy and software tool that is the best one.

Among other agent-oriented software engineering methodologies, the main peculiar-
ity of Gaia is that it is not explicitly goal-oriented, although this feature does not mean
that goal-oriented MAS applications of BDI architectures cannot be developed on the
basis of Gaia. It focuses on organizational abstractions of applications with subsequent
explicit separation and specification of internal and external behaviour of agents com-
posing MAS, and exactly this feature determines its specificity as opposed to many
other existing methodologies. External behaviour determines agent interactions in var-
ious use cases that is specified in terms of interaction protocols and constrained by
organizational rules. Explicitly introduced protocols actually make it much simpler to
represent collective behaviour of agents, and the behaviour itself is more predictive in
comparison with the goal-oriented BDI approach. In the BDI approach, the emerging
behaviour of individual agents and collective behaviour results from rich knowledge and
reliable beliefs of the particular agents, as well as from sophisticated inference mecha-
nisms that need to use, as a formal basis, modal and temporal logic. In many cases, the
BDI approach works well, but the problem of complexity should be managed carefully.

M. Luck and J.J. Gomez-Sanz (Eds.): AOSE 2008, LNCS 5386, pp. 272–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Support for Analysis, Design, and Implementation Stages with MASDK 273

In contrast, Gaia attempts to transfer MAS development complexity into more care-
ful analysis of the system’s organizational issues, and the explicit design of the MAS
interaction model thus makes collective behaviour of agents more predictable and un-
derstandable. In general, such an approach simplifies agent-oriented software engineer-
ing and there exist many classes of applications where Gaia-based technology could
outperform purely goal-oriented ones.

The objectives of this paper are twofold. One is to extend Gaia in order to make it
more applicable by enriching it with a formal specification language that can make it
possible to practically implement Gaia as model-driven engineering. The second ob-
jective is, based on the extended Gaia and a design process and formal specification
language, to introduce the MAS development environment that implements a graphical
MAS development process, according to the extended Gaia methodology. Accordingly,
the paper is organized as follows. Section 2 presents a general view of the Multi-agent
System Development Kit (MASDK 4.0) components and their interactions in the de-
velopment procedure. Section 3 sketches Gaia as it was proposed by the authors [20]
and presents generally in what aspects it is extended in this paper. Section 4 introduces
the Agent System Modeling language, ASML, that supports model-driven engineering
technology of the Gaia implementation. Section 5 describes the stage-by-stage devel-
opment process supported by MASDK 4.0 bridging it with Gaia and describing the
particular products. This is done using a fragment of a case study for an autonomous
air traffic control system. Section 6 surveys related work on the existing extensions of
Gaia. The conclusion summarizes the main paper contributions, emphasizes the advan-
tages of the proposed Gaia extensions and the MASDK 4.0 development environment
implementing Gaia. Future work is also outlined.

2 Architecture of MASDK 4.0 Environment

MASDK 4.0 is a software tool implementing an extended version of the Gaia method-
ology. It is provided with a graphical and formal specification language that supports
thorough and consistent conceptual analysis, detailed design, code generation and de-
ployment of target multi-agent applications, including those operating in dynamic and
Peer-to-Peer (P2P) environments.

The basic components of MASDK 4.0 and their interaction are shown in Fig. 1.
The Agent-based System Modeling Language (ASML), based on UML, is exploited
for in-progress-design specification of MAS formal models. ASML-based specification
of MAS is supported by a Visual Design Environment (VDE) component providing for
user-friendly graphical notation of ASML. The final formal model or model-in-progress
is stored in the MAS Model Description (MMD) component. The resulting MAS formal
model serves as input for producing the agent classes’ source code. This functionality
is performed by the Source Code Builder (SCB) component. Two more components,
Generic Agent (GA) and Agent Platform (AP), are implemented as reusable solutions
(source code). The code of the GA component realizes application-independent func-
tionality of agents behaviour, implemented as a reusable library producing the agent
classes’ source code. The AP is FIPA compliant developed according to the reference
model [8], and realizes distributed “white” and “yellow” pages services and provides

274 V. Gorodetsky et al.

Fig. 1. MASDK environment components and their interaction

for communication. The AP is a self-dependent software component that can be ex-
ploited separately from MASDK 4.0. Its description and downloadable run-time code
can be found in [15].

MASDK Lite is an auxiliary component intended for agent deployment. Specification
of agent classes (source code of agent classes) is used as its input. The agent instances
deployment requires identification of their names and addresses, and, when necessary,
specification of their initial mental models and services they possess. MASDK Lite, like
AP, can be used separately from MASDK 4.0 for application maintenance.

MASDK 4.0 supports analysis, architectural and detailed design of MAS applica-
tions by Gaia, but also software implementation using the SCB component, and de-
ployment using MASDK Lite. The ASML-based formal specification of MAS models
is used by the SCB component to produce source code of agent classes. The source code
contains fully specified behaviour logic and mental models of agent classes. Therefore,
the implementation stage is limited to encoding of the agent class activities. This code
should be manually developed by programmers using the MS VC++ environment.

3 Methodological Basis: Extended Gaia

As stated above, the Gaia methodology for agent-oriented software engineering [20]
is focused on organizational abstractions of complex systems with explicit separation
and specification of internal and external behaviours of agents. External behaviour de-
termines agent interactions in various use cases, specified by interaction protocols. In-
teraction protocols are distributed algorithms performed by a subset of agents each of
which performs, within particular protocol, a specific role. The scenario of the role per-
formance and some other role activities correspond to what is above called “internal
agent behaviour”. Accordingly, Gaia explicitly determines the decomposed system or-
ganization components, the subtasks to be solved by each component in various use
cases (roles), and interaction protocols associated with the use cases. The results of the
Gaia analysis constitute the input of the subsequent architectural and detailed design.

In fact, Gaia, as described by the authors [20], specifies a general methodological
framework for analysis and architectural design, whereas methodology applicability
needs detailed development and formal support for all aforementioned stages and imple-
mentation, and deployment issues as well. In other words, applicability of Gaia requires

Support for Analysis, Design, and Implementation Stages with MASDK 275

its technology-oriented extension. Extensions of various kinds were proposed in [10],
[3], [13], [14], etc. reviewed in Section 6. This section outlines the applicability-oriented
Gaia extensions proposed in this paper that then constitute the methodological basis for
the agent-oriented software engineering technology fully supported by MASDK 4.0
components presented in Fig. 1.

3.1 Analysis

Subdivide System into Sub-organizations. The objective of this stage is description and
analysis of the organization aiming at discovery of appropriate decomposition of the
whole organization into more or less weakly-coupled sub-organizations.

Identify Environmental Entities. This activity aims at detection of environment con-
ditions, constraints and environment entity interfaces. Examples of entities include
databases, external services, user interface, sensors (e.g. controllers of an assembly
line), etc.

Discover Roles, Create their Preliminary Internal and Interaction Models. Role dis-
covery is fulfilled by an expert. Preliminary role model creation includes description
of their permissions (e.g. regarding interaction with environment, etc.), responsibilities
and activities together determining the role internal behaviour. The responsibilities are
specified by Liveness Expressions (LE) using the formal language Fusion. The discov-
ered roles are represented by the Role Schemata. Role interaction protocols are also
identified. These models are preliminary and may be refined later.

Determine Organizational Rules. Organizational rules determine global system
behaviour policy that must be satisfied by all the agents. E.g., security policy rules
regulate access to confidential information. Safety policy rules in air traffic control de-
termine admissible movements of the aircrafts in various situations when separation
distances between aircrafts may be violated. In Gaia, organizational rules are intro-
duced informally, constituting inputs for the architectural design stage.

An extension of the Gaia analysis proposed regards using a specific formal spec-
ification language, Agent-based System Modeling Language (ASML), supporting all
the analysis-related activities and specifying formally the results. It is described below.
These extensions are fully supported by MASDK 4.0.

3.2 Architectural Design

Gaia determines two kinds of activities that should be performed at this stage.
Select Organizational Structure. Decomposition is a subject of the analysis stage, while
organizational structure is developed at the architectural design stage so that various
sub-organizations can be structured differently. E.g., some components can be struc-
tured in P2P mode, whereas others can be hierarchical.
Final Role and Interaction Models. The organizational structures can require refining
of the preliminary role schemata (i.e., models of roles and interaction protocols).

The proposed Gaia extension supports formal specification of the design results using
ASML and supported by MADK 4.0 (see below).

276 V. Gorodetsky et al.

3.3 Detailed Design

The core of this stage is identification and detailed design of agent class models and ser-
vices. Each agent class is allocated one or several identified roles. The products should
correspond to a fully developed agent architecture, including its services, providing the
specifications necessary for software implementation.

Agent Model. All the agents allocated the same roles determine a particular agent class.
Detailed design of agent class software architectures is the main subject of this stage in
Gaia, but Gaia gives no concrete methodology for this activity.

This paper extends Gaia in two aspects. First, it proposes the use of ASML for speci-
fication of the in-progress and final products of the agent model detailed design and, sec-
ond, it proposes a generic agent architecture implemented as reusable software within
MASDK 4.0.

Service Model. Gaia defines agent services vaguely. In this paper, an agent service is
understood as a single activity or a sequence of activities (a scenario) that provides an
agent with functionalities that do not necessarily fall into the block of functions invoked
by an agent interaction protocol. They can be composed of LEs, proactive behaviour
invoked by internal agent state and/or by the state of the environment (e.g. when agent
requests for resources from environment).

Implementation and deployment. These very important stages are outside the scope
of Gaia. The proposed extension, and the corresponding software engineering means
implemented in MASDK 4.0 are described below.

4 Introduction to ASML Language

The ASML language is based on UML notation. It is supported by a user interface
providing, for ASML, a graphic notation that allows representing and editing of MAS
models via the VDE component (Fig. 1) by creating diagrams formally representing
in-progress and final analysis and design solutions. The set of diagram types, their in-
terrelations and use at the respective stages of MAS design correspond to Fig. 2. Below
we provide a brief outline of ASML.

MAS macro model diagram. This diagram type is specified using ASML concepts:
tasks, agent roles, protocols, active entities (components), and agent class.

The notion of task is used for assigning names to use cases. Agent role, in the macro
model, is identified by the name and template containing the list of LE names defining
the role internal behaviour and also the list of identifiers of the rules triggering proac-
tive agent behaviour1 (triggering rules, for short). Each of these rules is linked to the
LE it triggers. Active entity specifies the interface of agents to external components that
are not agents. Examples of active entities are interfaces to sensors, effectors, etc. The
macro model is constituted of instances of the above notions and the relations between
them. The following types of relations are used in ASML: task – is initiated by – trig-
gering rule / functionality of active entity; LE – is initiated by – protocol / triggering

1 Here proactive behaviour is initiated by something other than a protocol.

Support for Analysis, Design, and Implementation Stages with MASDK 277

Detailed DesignAnalysis and Architectural design

Agent class Role

MAS Macro
Model

Role
Schemata

Behavior
Scenario

Protocols

Ontology

Behavior
Scenario

Fig. 2. Development process models and their interactions

rule; protocol – is initiated by – active entity / Role / LE / functionality of active en-
tity; functionality of active entity – is initiated by – protocol; agent class – plays – role.
Corresponding diagrams are intended for specification of the organizational structures
and interactions, and a MAS application is specified by a single macro model that can
contain several diagrams.

Protocol diagram. ASML provides the following protocol specification concepts: (role)
lifeline of the protocol participant, communication act, (role) lifeline end, alternative
combined by a fragment comprising two or more operands. Use of auxiliary dialogs al-
lows specifying communication acts in terms of cardinality of the protocol respondents,
cardinality of the respondents for each operand of combined fragments as well as for
each message respondent. Communication act is specified in ACL language [9]. Spec-
ification of message content is done in terms of ontology concepts, while protocols are
specified using the diagram editor. These diagrams specify interaction protocols among
the roles and among the roles and active entities.

Role scheme. Detailed specification of each LE is performed at two abstraction levels
using Role scheme and behaviour scenario diagrams respectively. The former is used
to specify LE decomposition if necessary and scheme of inter-role behaviour coordina-
tion. Role scheme diagrams are represented in terms of such notions as scenario, event,
triggering rule and protocol.

The LE decomposition is performed using two types of the designing rules, manda-
tory and optional. The former correspond to a case when the LE is linked to protocols
or/and to triggering rules. In this case, the LE is decomposed into simpler scenarios
with one-to-one relation to protocols, and triggering rules should be linked to a sim-
ple scenario. Optional rules allow experts to elaborate more detailed decompositions
via adding new simple scenarios. The role scheme comprises scenarios reflecting LE
decomposition and relations of type scenario-uses-scenario.

Each role’s LE is run within a separate control thread that admits concurrency of
role performance but this may require coordination. It is done using the notion of event
and additional relations, i.e. event – is generated by – scenario, event – is used by –
scenario and event – is used by – triggering rule. The relation of the first type identifies
the behaviour scenario generating the corresponding event. The next type is intended

278 V. Gorodetsky et al.

for specification of the scenario interrupt processing. The same relation determines the
events initiating continuation of the interrupt processing. The last type of the relation
determines the conditions initiating triggering rules.

Role behaviour scenario. Diagrams of this type are used for specification of simple sce-
narios as a set of nodes and transitions between them, while representing behaviour log-
ics of each scenario. ASML introduces the following self-explanatory types of notions
defining classes of scenario nodes: activity, complex activity, generating / waiting event,
event handling, sending / waiting message, message handling, interface with agent plat-
form, control node, etc. E.g., in the nodes of type control node, different variants of the
behaviour scenario performance continuations are specified. In the nodes representing
a complex activity, the conditions invoking the behaviour embedded scenarios are de-
termined, etc.

Ontology. Ontology diagrams are used for description of domain notions and relation-
ships between them. Ontologies are used as the language for message content specifi-
cation and, in the detailed design of agent classes, it is used to specify their behaviour
scenarios in terms of model variables and attributes. Ontology relations are specified
using three standard relations types: generalization (inheritance), association and com-
position.

Agent class behaviour scenario. When an agent class is allocated roles (at architectural
design) the former inherits the roles’ behaviour scenario list of these roles. Detailed de-
sign assumes formal specification of agent variables, scenario interface, scenario vari-
ables and scenario node calls represented using scenario and agent variables.

5 Support of Gaia in MASDK 4.0

5.1 Case Study: Autonomous Air Traffic Control

Due to the ever increasing intensity of air traffic and stiffening safety requirements,
air traffic control relying on purely human-based control needs to reconsider its basic
organizational principles. According to current opinion, some complex real time control
responsibilities of air traffic control operators should be assigned to aircraft software
to make control more autonomous. The case study of an agent-based autonomous air
traffic control system, used for explanation of the developed software tool, MASDK
4.0, is outlined below.

The air traffic safety is provided by two measures. The first is structuring the air-
port airspace according to a topology that determines all the admissible trajectories of
aircraft arrivals, landing and departure. It encompasses two zones (Fig. 3): (1) arrival
zone and (2) approach one. The arrival zone comprises arrival schemes, which begin
with entry points and are specified as sequences of legs ending with a holding areas.
The airport airspace (AA) topology also determines admissible echelons, i.e. admissi-
ble altitude ranges for passing through leg exit points. The AA topology also contains
departure schemes but departure control is omitted in the case study. An example of an
AA topology for JFK airport of New York City (NYC) is depicted in Fig. 3.

The second measure of the air traffic safety provision assumes the separation stan-
dards that determine the minimal admissible distances between aircrafts along each of

Support for Analysis, Design, and Implementation Stages with MASDK 279

LG

JFK

R

R –Airport name –Approach zone

–Holding area –Leg –Arrival zone

SHARK

FRILL

TRAIT
PARCH

CCC

ROBER

Identifiers of the points
of the arrival zone

Fig. 3. Airspace topology within NYC area (horizontal projection), and arrival / approach zones

three spatial dimensions. These standards may be different for various air traffic-related
situations. In the case study, meeting the separation standards is achieved by using a
rule-based distributed safety policy that has to be followed by every aircrafts operating
within airport airspace.

The idea of the autonomous air traffic control in the arrival zone is to delegate, to the
aircraft’s pilot-assisting software, the right to autonomously compute the safe landing
trajectory, predict potential conflicts (violation of the separation standards) with other
aircraft and to autonomously resolve these conflicts using a distributed safety policy
and peer-to-peer negotiations with the potentially conflicting aircraft.

5.2 MASDK 4.0 Products Supporting Gaia

The whole air traffic control system (ATC) organization contains two sub-organizations:
ATC in arrival zone and ATC in approach zone. Below, the latter sub-organization is not
considered. The environmental model includes the model of the AA topology, the real
time model, and visualization model of the whole situation in the AA. These models
are composed in the component called Simulation server that, in terms of ASML, is an
active entity.

In the considered fragment of the ATC system, the set of use cases is developed for
individual aircraft, since all operate equally. The following use cases are considered
below: ATC in arrival zone, corresponding to elaboration (computation) of the landing
plan by an aircraft; Aircraft grouping, intended for rough evaluation, by an individual
aircraft, of a subset of other aircraft that potentially can be the sources of conflicts.
The use cases involving the Simulation server include Airliner initialization when an
aircraft enters the arrival zone, instead of Simulation when the current time variable is
increased for one simulation duration. Each of the above use cases assumes interactions
according to the corresponding protocols.

Role discovery results in one role, Pilot (aircraft) assistant (PA). It should partic-
ipate in these use cases to be responsible for autonomous planning and scheduling
of landing trajectory, prediction of potential conflicts with other aircrafts and conflict

280 V. Gorodetsky et al.

–Task – Role & its LEs – Active entity
 and its functions

– Protocol –Triggering rule

Fig. 4. Example of MAS macro model diagram

resolution through negotiation and reaching agreement. Accordingly, the listed use
cases determine the list of LEs of the PA role while determining its interaction model
and list of protocols. The single agent class, PA-agent class assigned the PA role is
introduced.

An important component of the macro model is a set of organizational rules. In this
case study, organizational rules represent the distributed safety policy, but since analysis
of this is not the focus of this paper, its description is omitted.

MASDK 4.0, implementing ASML, supports all aforementioned analysis-related ac-
tivities with graphical means. Fig. 4 shows the MADK 4.0 product, i.e. graphical nota-
tion of the macro model of agent-based autonomous ATC system and its components,
representing PA role scheme and environment model, Simulation server. It is worth not-
ing that this macro model is not only “a picture”, but is also the formal model specified
in ASML, and used as input for the next development stages. In general, architectural
design should result in selection of the organizational structure, and refinement of the
roles and interaction models. Below, these Gaia activities and their support in MASDK
4.0, as well as the products, are considered by example.

Organizational structure. The autonomous ATC assumes negotiations of PA roles in
several use cases with no mediation by a centralized server, i.e. with no hierarchy. This
requires use of P2P negotiations of the PA roles, so that agents have to negotiate using
the distributed P2P platform that is a component of MASDK 4.0 environment [15].

Interaction model architectural design. Fig. 5 depicts an example of the protocol spec-
ification. It represents the protocol P4 identified in the macro model (Fig. 4). According
to the latter, this protocol is used by a PA role when it agrees with maneuvers proposed
by the same role of other PA agent class instances. In the diagram, these roles are de-
noted as I-Airliner (the protocol initiator) and P-Airliner (participant, or respondent of
the P4 protocol) respectively. In the example, only one respondent of the P4 protocol

Support for Analysis, Design, and Implementation Stages with MASDK 281

Fig. 5. Example of a protocol diagram Fig. 6. Example of a scenario diagram

exists. It receives a request from I-Airliner to perform some maneuver, either accept-
ing the request or rejecting it, while sending a corresponding message, either Accept
or Reject respectively (Fig. 5). In Fig. 5 the protocol description consists of two par-
ticipants and includes one combined fragment. In general, the protocol can consist of
several participants and can include several nested combined fragments. It is worth not-
ing that UML Sequence diagrams are used as prototypes of the protocol diagram used
in MASDK 4.0. The limitation of such diagrams is that they do not allow for speci-
fying nested protocols so far. This limitation is actually made up for by other types of
diagrams aimed at specification of the role scheme.

Thus, the second important product of MASDK 4.0 in architectural design is the set
of formal protocol models composing the MAS interaction model that is specified in
terms of UML-like Sequence diagrams. Let us note that this specification is later used
in automatic generation of the corresponding LE scenario scheme represented via the
set of its nodes and transitions between them.

Role model: Liveness expression specification. Role scheme diagram. Architectural
design of an agent role consists in specification of its LEs. It is done using two types
of diagrams, Role scheme and Behaviour scenario. The former diagrams are used for
decomposition of the LE into several simpler behaviour sub-scenarios, as well as for
specification of the inter-roles behaviour coordination scheme.

Fig. 6 explains by example the decomposition rules described above. It represents
the PA Role scheme diagram for the LE Arrival planning (Fig. 4). According to the
macro model, this LE is capable of proactive behaviour, and participates in three inter-
action protocols, P4, P5 and P6. Accordingly, this LE scheme is decomposed to four
simple behaviour scenarios denoted as Safety assurance, P4 Maneuver, P5 Decision
and P6 Coordination. The fifth simple scenario, Arrival planning, is added to provide
a specification of the logically complete sub-scenario that is the computation of the ad-
missible set of landing plans. The arrows connecting the scenarios are interpreted as
“scenario – invokes – scenario” imposing order on performance of simple scenarios.

E.g., according to the diagram given in Fig. 6, the simple scenario Safety assurance is
initiated by a proactive behaviour rule. This rule is triggered when event 1 has happened,
for instance. The latter is generated as an output of another LE, Simulation (Fig. 4),
when an airliner is approaching the airport airspace point connected to holding area. In

282 V. Gorodetsky et al.

Fig. 7. Example of scenario diagram

that point, the PA role has to compute a flight plan for moving within the next sector
of the arrival scheme. If, at the same time, other PA-agent instances begin computing
their flight plans within the same sector then, according to the distributed safety policy,
these PA-agent instances have to compute their priorities using the Safety assurance
scenario. These priorities determine the order of their entry in the same sector, while
granting entry permission to the highest priority aircraft. If an aircraft is not granted
this permission, it interrupts execution of the Safety assurance scenario and waits for
event 2, which arrives when the situation is changed in a way leading to a change of the
aircraft priorities. In this case, the PA-agent instance repeats computation according to
the above described scenario and, in case it has highest priority, continues performance
of the LE and invokes the Arrival planning scenario, determining its behaviour within
the next sector.

Role model: Liveness expression specification. Behaviour scenario diagram. Behaviour
scenario diagrams are used for specification of simple scenarios. This type of diagram is
an extension of UML activity charts [19]. Two types of simple scenarios are discerned,
associated and not associated with the interaction protocols, and specified differently.
Fig. 7 presents a self-explanatory example of a scenario that is not associated with any
interaction protocol.

Behaviour scenarios of the second type, i.e. associated with participation of the role
in an interaction protocol, must be consistent with the protocol specification, (protocol
specification determines scenario behaviour logic). In the MASDK 4.0 environment,
this dependency is automatically supported by two mechanisms. The first provides for
automatic generation of scenario behaviour logic, and the second allows for preservation
of this logic during further development (refinement) of the scenario by the designer.
Both these mechanisms are explained in Fig. 8 where description of the P4 Maneuver
scenario is shown. This scenario specifies the performance of the PA role (as initiator)
in interaction protocol P4 (Fig. 4) represented by the diagram in Fig. 5.

Fig. 8. Diagram example of scenario related to protocol

Support for Analysis, Design, and Implementation Stages with MASDK 283

Ready code Produced code Partially
produced

code

External libraries

Agent class'
library

Ontologies'
library

Scenario
nodes
library

Generic
Agent

Generic
Ontology

External
library_1

External
library_N

Fig. 9. Class libraries’ scheme

The core of the detailed design is in depth development of the agent classes and ser-
vice models. Let us outline how these activities are supported by MASDK. Agent classes
inherit behaviours of the roles assigned. In particular, they inherit the roles’ schemes and
behaviour scenarios that require detailed specification of the agent class model (scenario
nodes and transitions between them) in terms of variables and attributes.

This task of detailed design is aimed at more precise specification of agent class
behaviour in terms of the agent class model variables, attributes, behaviour scenarios
and functionalities of the scenario nodes. Variable and attribute types are defined either
according to the ontology concepts used, or by standard data types usually supported
by programming languages.

The resulting specification is used as an input to the SCB (Fig. 1), which checks
MAS model specification correctness and either reports (through messaging) on the de-
veloped model incompleteness or inconsistency, or automatically builds source code of
agent classes. In the former case, the messages inform the designer about what has to be
redesigned in the model specification, e.g. the messages can be as follows: “Description
of behaviour scenario 〈name〉 is not completed”, or “Proactive behaviour of liveness
expression 〈name〉 is not described”. Model completeness and consistency can also be
checked during the design process, i.e. independently of generation of the source code.
This helps the designer to earlier fix the current state of MAS model development.

The architecture of the agent class software produced by SCB is depicted in Fig. 9.
Generic agent and Generic ontology are provided by MASDK 4.0 environment as ready
(reusable) components in terms of source code from the very beginning. They represent
invariant behaviour of agent classes and abstract ontology. Generic agent, in particu-
lar, includes classes representing the abstract behaviour scheme of agent classes, the
abstract proactive behaviour model of agent classes, abstract simple scenarios, etc.

The source code of Agent class and Ontology components is generated by the SCB
component. For this purpose, the SCB translates elements of the model specification
of each agent class to the corresponding class libraries. In particular, simple behaviour
scenarios of an agent class and scenario performance order are represented by the Agent
class library. The Ontology library provides for access to data and knowledge storage
of Agent class. The source code of these two libraries is automatically generated in full
without any additional programmer efforts.

The Scenario nodes library specifies scenario node functionalities, whose classes
and methods correspond to simple scenarios of agent class and their nodes, respectively.
Specification of scenario nodes includes identification of their names, and informal de-
scription (comment) and strict specification of their input/output attributes. Therefore,

284 V. Gorodetsky et al.

source code generated by SCB component is composed of the headers, the variables
and the attributes of the classes and their methods, but the “bodies” of methods must be
encoded by programmers manually. The agent class can use some external entities (e.g.,
applications, resources, etc). If they are not agent-based software, these components are
developed externally, outside the MASDK 4.0 environment.

Development of MAS can be of iterative nature. In this case, the main problem is the
maintenance of the source code developed earlier. This problem is solved by the SCB,
which reports which classes and methods 1) are new, 2) which of them can be reused
since they were developed earlier and do not require any modification, 3) which of
them have to be rewritten according to MAS model modification, and 4) which of them
should be deleted. It is worth noting that the source code maintenance problem concerns
only the Scenario nodes component. The components Agent class and Ontology are
generated by the SCB anew using the new MAS model specification.

6 Related Work

Since the first publication [20], Gaia was accepted as a valuable abstract methodology
focusing on organizational issues. Many publications were devoted to its extensions and
in-depth development to make it practically applicable.

Cernuzzi et al [3] proposed enriching Gaia with AUML for protocol specification.
Indeed, the interaction model is a key issue of the organizational model, and adding
the formal notation of AUML to Gaia can significantly enrich the methodology. The
Agent Interaction Protocol (AIP) of AUML regards the protocol as an integrated en-
tity combining roles, constraints, and communication acts, while clearly expressing, in
UML-like notation, the formal protocol semantics. The paper pays specific attention
to the problem of modeling the complexity of open MAS and emergent behaviours. It
introduces a distinguished set of agent class instances allocated the same roles while
Gaia just specifies the role. An additional argument for AUML is that it is capable of
specifying timely message ordering that is important to implement concurrency.

Garcia-Ojeda, et al [10] propose a similar extension of Gaia, using benefits provided
by AIP of AUML. In fact, UML is well developed and widely used as a de-facto soft-
ware design standard and, therefore, would be accepted by practitioners. The authors
proposed to refine the architectural design interaction model based on the two first lay-
ers of AIP in terms of AUML for more detailed interaction model representation. Role
and service models (at architectural and detailed design) are refined via integration of
the AIP third layer and extended UML Class Diagrams. Finally, they refine the orga-
nizational model by integrating all the Gaia models developed at previous stages using
the Alaadin model proposed by Ferber et al [7], that naturally provides a basis for de-
veloping representational mechanisms for organizational concepts.

In order to make Gaia more practically applicable, Gonzalez-Palacios, et al [13] pro-
posed an extension of Gaia in two aspects. First, they consider the design of the internal
composition of agents that is omitted in Gaia. This activity uses, as the input, the or-
ganizational design results. The proposed agent model is composed of two parts, the
structure model and the functionality model. The first model decomposes roles into
classes, while the functionality model is intended to specify collaboration of the above

Support for Analysis, Design, and Implementation Stages with MASDK 285

classes determining the expected role classes behaviour. An advantage of this approach
is that such design activity is independent of the specific agent architecture (reactive,
BDI, etc.). The second extension regards an iterative approach to large scale applica-
tion development. The whole development process is divided into simply manageable
units that are analyzed, designed and implemented one after another, thus extending
previously produced executable deliverables. The final deliverables must contain all the
functionality expected from the system.

The Roadmap methodology described in [14] is motivated by the desire to extend
Gaia to engineering of large scale open systems, viewing the latter as computational
organizations. Roadmap introduces use cases in order to discover requirements (like
MASE [6]), make explicit agent environment and knowledge models, and also to enrich
Gaia by interaction AUML-based models. However, the authors do not regard these
refinements in the needed detail, while other issues remain unclear.

The main drawback of the reviewed and other existing works is that all of them
deal mostly with particular stages or aspects of Gaia, extending its particular modeling
issues. In contrast, in this paper we treat the whole lifecycle of Gaia, while proposing
a formal specification language supported by a powerful software tool, MASDK 4.0,
implementing a model- driven agent-based software engineering approach.

7 Conclusion

The MAS development environment, MASDK 4.0, thoroughly implements the pro-
posed extension of the Gaia methodology. It supports user-friendly technology for MAS
application development. Its advantages and novelties are as follows:

1. It is based on an extended version of the well founded Gaia methodology. The
proposed extensions are intended for making Gaia applicable to practical use.

2. It realizes a model-driven engineering approach, providing automatic support for
consistency and integrity of all the intermediate and final solutions produced by
developers at all Gaia development stages. The use of model-driven engineering al-
lows for substantial speeding up of the development process. This approach is sup-
ported by the formal specification language, ASML, that is provided with graphical
notation, thus supporting the user-friendly graphical design style.

3. MASDK 4.0 supports the development activity at all development stages: at the
analysis stage when organizational issues of the MAS macro-model are decided;
at the architectural and detailed design stages where the development process is
represented in graphical notation of the formal specification language; and at semi-
automatic code generation and deployment stages.

4. MASDK 4.0 provides automatic generation of agent behaviour scenarios schemes
using formal protocol specifications as input. This is one of the most important
advantages of MASDK4.0, distinguishing it from other existing MAS development
environments and tools.

5. MASDK 4.0 is integrated with a FIPA-compatible distributed P2P agent platform,
supporting a service-oriented approach. It can provide a distributed P2P infrastruc-
ture for interaction of heterogeneous software agents running over various operat-
ing systems and using heterogeneous communication protocols.

286 V. Gorodetsky et al.

The MASDK environment was tested on various applications during recent years. Its
current runtime version and documentation are available on the web [16]. In addition,
the FIPA compliant agent platform (runtime version) is freely available. This version,
together with the documentation, can be found at [15].

Future work is aimed at: thorough testing of the current version on various appli-
cations, including embedded and mobile ones in order to determine the directions of
Gaia and MASDK’s further enrichment to make it of industrial level. The intended en-
richment of the FIPA compliant P2P agent platform should also be done in order to
provide it with more system services and capabilities supporting operation of heteroge-
neous nomadic agents. Development of the light versions of the MASDK environment
specifically intended for mobile applications is also planned.

References

1. AgentLink. Agent Software,
http://eprints.agentlink.org/view/type/software.html

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE — A FIPA-compliant agent framework,
http://sharon.cselt.it/projects/jade/papers/PAAM.pdf

3. Cernuzzi, L., Zambonelli, F.: Experiencing AUML in the Gaia Methodology. In: 6th Interna-
tional Conference on Enterprise Information Systems — ICEIS 2004, Porto, Portugal (2004)

4. Coguaar web site, http://www.cougaar.org
5. DeLoach, S., Wood, M.: Developing Multiagent Systems with agentTool. In: Castelfranchi,

C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986, p. 46. Springer, Heidelberg (2001)
6. DeLoach, S., Wood, M., Sparkman, C.H.: Multiagent systems engineering. International

Journal of Software Engineering and Knowledge Engineering 11(3), 231–258 (2001)
7. Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in

Multiagent Systems. In: Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS 1998), pp. 128–135. IEEE Computer Society, Los Alamitos (1998)

8. FIPA P2P NA WG6, Functional Architecture Specification Draft 0.12,
http://www.fipa.org/subgroups/P2PNA-WG-docs/
P2PNA-Spec-Draft0.12.doc

9. FIPA ACL Message Structure Specification,
http://www.fipa.org/specs/fipa00061/SC00061G.htm

10. Garcia-Ojeda, J., Arenas, A., Perez-Alcazar, J.: Paving the way for implementing multiagent
systems. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 179–189.
Springer, Heidelberg (2006)

11. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos software development methodology:
Processes, Models and Diagrams. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE
2002. LNCS, vol. 2585, pp. 162–173. Springer, Heidelberg (2003)

12. Gomez, J., Fuentes, R., Pavon, J.: The INGENIAS Methodology and Tools. In: Agent-
oriented Methodologies, pp. 236–275. Idea Publishing Group, USA (2005)

13. Gonzalez-Palacios, J., Luck, M.: Extending Gaia with Agent Design and Iterative Develop-
ment. In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS,
vol. 4951, pp. 16–30. Springer, Heidelberg (2008)

14. Juan, T., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology for Complex
Open Systems. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002), pp. 3–10. ACM, New York (2002)

15. LIS Agent Platform, http://space.iias.spb.su/ap/

http://eprints.agentlink.org/view/type/software.html
http://sharon.cselt.it/projects/jade/papers/PAAM.pdf
http://www.cougaar.org
http://www.fipa.org/subgroups/P2PNA-WG-docs/P2PNA-Spec-Draft0.12.doc
http://www.fipa.org/subgroups/P2PNA-WG-docs/P2PNA-Spec-Draft0.12.doc
http://www.fipa.org/specs/fipa00061/SC00061G.htm
http://space.iias.spb.su/ap/

Support for Analysis, Design, and Implementation Stages with MASDK 287

16. MASDK 4.0, http://space.iias.spb.su/masdk
17. Reticular Systems Inc.: AgentBuilder An Integrated Toolkit for Constructing Intelligent Soft-

ware Agents. Revision 1.3 (1999), http://www.agentbuilder.com/
18. Rimassa, G., Kernland, M., Ghizzioli, R.: LS/ABPM — An Agent-powered Suite for Goal-

oriented Autonomic BPM. In: Proceediongs of AAMAS 2008, Portugal (2008)
19. Unified Modeling Language: Superstructure,

http://www.omg.org/docs/formal/07-02-05.pdf
20. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: The Gaia

Methodology. Transactions on Software Engineering and Methodology 2(3), 317–370 (2003)

http://space.iias.spb.su/masdk
http://www.agentbuilder.com/
http://www.omg.org/docs/formal/07-02-05.pdf

Author Index

Argente, Estefańıa 16

Boissier, Olivier 1
Bot́ıa, Juan 199
Botti, Vicent 16
Brandão, Anarosa A.F. 1

Cabrera-Paniagua, Daniel 213
Çetin, Övünç 173
Cossentino, Massimo 46, 86, 116
Coutinho, Luciano R. 1
Cubillos, Claudio 213

Dam, Khanh Hoa 159
DeLoach, Scott 116
Dignum, Virginia 257
Dikenelli, Oguz 173

Ekinci, Erdem Eser 173

Fernández-Caballero, Antonio 131
Fischer, Klaus 145
Fuentes-Fernández, Rubén 101

Gaglio, Salvatore 46, 86
Galland, Stéphane 86
Garćıa-Magariño, Iván 60, 101
Gascueña, José M. 131
Gaud, Nicolas 86
Glardon, Rémy 243
Gleizes, Marie-Pierre 74
Gómez-Rodŕıguez, Alma 60
Gómez-Sanz, Jorge J. 101, 199
González-Moreno, Juan C. 60
Gorodetsky, Vladimir 272

Hahn, Christian 145
Hilaire, Vincent 86

Julian, Vicente 16

Karsaev, Oleg 272
Konushy, Victor 272
Koukam, Abderrafiaa 86
Kulesza, Uirá 228

Lucena, Carlos 228

Migeon, Frederic 74
Millan, Thierry 74

Nguyen, Cu D. 187
Nunes, Camila 228
Nunes, Ingrid 228

Padgham, Lin 116
Pavón, Juan 199
Perini, Anna 187

Renz, Wolfgang 31
Rougemaille, Sylvain 74

Samoylov, Vladimir 272
Seidita, Valeria 46, 86
Serrano, Emilio 199
Sichman, Jaime S. 1
Sierhuis, Maarten 257
Sudeikat, Jan 31

Tiryaki, Ali Murat 173
Tonella, Paolo 187

van Putten, Bart-Jan 257

Winikoff, Michael 116, 159
Wolfe, Shawn R. 257

Yoo, Min-Jung 243

	Title Page
	Preface
	Organization
	Table of Contents
	Multi-agent Organizations
	Model-Driven Integration of Organizational Models
	Introduction
	Motivation
	Model Management Algebra
	Models and Mappings
	Operators
	Scripts
	Correspondence Metamodel

	Integration of Organizational Models
	General Process
	Iteration 1
	Iteration 2
	Other Iterations

	Implementation and Application
	Related Work
	Conclusions and Future Work
	References

	MAS Modeling Based on Organizations
	Introduction
	Modeling MAS Organizations
	Modeling MAS Services
	Modeling MAS Environment
	Modeling MAS Norms
	Discussion
	References

	A Systemic Approach to the Validation of Self–Organizing Dynamics within MAS
	Introduction
	Building Self-Organizing MAS
	Modeling Macroscopic MAS Dynamics
	System Dynamics
	System Dynamics for MAS

	Validating Macroscopic MAS Dynamics
	Procedure
	Automating Qualitative Validations

	Case Study: Intrusion Detection Dynamics
	A Simplified Intrusion Detection System
	Conception
	Simulation
	Analysis

	Conclusions
	References

	Method Engineering and Software Development Processes
	Using and Extending the SPEM Specifications to Represent Agent Oriented Methodologies
	Introduction
	The Formal Description of a Design Process
	Using SPEM for Representing Agent Oriented Design Process
	Extending SPEM Specifications
	Representing PASSI with SPEM 2.0
	Discussions and Conclusions
	References

	Definition of Process Models for Agent-Based Development
	Introduction
	Comparison of Editor Tool with Others
	The Process Model Editor Tool
	Technique for Defining Process Models
	Lifecycle View
	Disciplines View
	Guidances View

	Conclusions and Future Work
	References

	Methodology Fragments Definition in SPEM for Designing Adaptive Methodology: A First Step
	Introduction
	Introducing ADELFE Methodology
	SPEM 2.0 Overview
	SPEM 2.0 Capabilities
	Concerns Separation
	Modularity and Re-usability

	AOSE Methodology Fragments
	Definition
	Fragment Compliance with SPEM 2.0

	SPEM2.0 Fragments Definition
	ADELFE Fragments
	PASSI DOD Fragment

	Discussion and Prospects
	References

	A MAS Metamodel-Driven Approach to Process Fragments Selection
	Introduction
	The Proposed Approach
	MAS Metamodel Elements Prioritization

	Building ASPECS
	Requirements for the Construction of ASPECS
	The Core Metamodel
	Prioritization of MAS Metamodel Elements
	Selection of Fragments
	Completion of the Process and Extension of the Core Metamodel
	The Resulting Design Process

	Related Works
	Conclusion
	References

	An Evaluation Framework for MAS Modeling Languages Based on Metamodel Metrics
	Introduction
	Evaluation Framework
	Availability Metric
	Specificity Metric
	Maximizing the Availability and Specificity
	Expressiveness Metric

	Measuring MAS MLs with the Availability and Specificity Metrics
	Analyzing the Improvements in a ML with the Expressiveness Metric
	Related Work
	Conclusions and Future Work
	References

	A Unified Graphical Notation for AOSE
	Introduction
	The Unified Graphical Notation
	Using the Notation
	Discussion and Future Work
	References

	Prometheus and INGENIAS Agent Methodologies: A Complementary Approach
	Introduction
	Combining Prometheus and INGENIAS
	In-depth Comparison of Prometheus and INGENIAS
	Mapping Prometheus into INGENIAS
	Mapping Prometheus Goals
	Mapping Prometheus Agents
	Mapping Prometheus Percepts and Actions
	Mapping Prometheus Data
	Mapping Prometheus Interaction Protocols

	Conclusions
	References

	The Formal Semantics of the Domain Specific Modeling Language for Multiagent Systems
	Introduction
	Object-Z Language
	Semantics of {\sc Dsml4mas}
	Multiagent System View
	Agent View
	Organization View
	Role View
	Behavior View

	Transferring Object-Z to OCL
	Related Work
	Conclusion
	References

	Evaluating an Agent-Oriented Approach for Change Propagation
	Introduction
	An Overview of the Approach
	Implementation
	Evaluation
	Results and Analysis

	Related Work
	Conclusions and Future Work
	References

	Testing and Debugging
	Goal-Oriented Agent Testing Revisited
	Introduction
	Background on Goal-Oriented Agent Testing
	Goal-Oriented Testing Approach
	Applying Goal-Oriented Testing on HTN-Based Agent Architecture
	Unit Test Detail
	Integration Test Detail

	The Architecture of SEAUnit
	Case Study
	Evaluation and Conclusion
	References

	Experimental Evaluation of Ontology-Based Test Generation for Multi-agent Systems
	Introduction
	Related Work
	Background
	The $eCAT$ Testing Framework
	Agent Interaction Ontology

	Ontology-Based Test Generation
	Domain Ontology and Ontology Alignment
	Ontology-Based Test Generator

	Case Study
	Conclusions
	References

	Testing and Debugging of MAS Interactions with INGENIAS
	Introduction
	Debugging MAS in INGENIAS
	Testing MAS in INGENIAS
	An Example of Development with Testing and Debugging Capabilities
	Testing the Scenario of the Example
	A Debugging Session in INGENIAS

	Related Work
	The Agent Level
	The Group Level
	The Society Level

	Conclusions
	References

	Tools and Case Studies
	PASSI Methodology in the Design of Software Framework: A Study Case of the Passenger Transportation Enterprise
	Introduction
	Related Work
	The Framework Development Process
	The PASSI Methodology
	Process of Developing Software Frameworks
	The UML-F Profile

	The Study Case: Passenger Transportation Enterprise
	Virtual Enterprise
	Transport Requirements

	Multiagent Framework Design
	Analyzing PASSI
	Conclusions
	References

	Developing and Evolving a Multi-agent System Product Line: An Exploratory Study
	Introduction
	Multi-agent Systems and Product Lines
	The ExpertCommittee MAS Product Line
	The ExpertCommittee Web-Based System
	Evolving the EC System to an MAS-PL
	The EC MAS-PL Architecture
	Evolving the EC MAS-PL Architecture

	Discussions and Lessons Learned
	MAS-PL Variability Types
	AO Refactoring
	Adaptation of SPL Methodologies

	Conclusions and Future Work
	References

	Combining JADE and Repast for the Complex Simulation of Enterprise Value-Adding Networks
	Introduction
	Simulation Approach: Context, Motivation and Objective
	Context: Enterprise Simulation for Supply Chain Performance Analysis
	Motivation: JADE as a Platform for Enterprise VAN Modelling and Simulation
	Objective: Incrementing JADE Features towards a Repast-Enabled Simulation Environment

	JADE and Repast Combination
	SCAgent
	TickerACLMessage and Associated Handling Mechanisms
	ObservableBehaviour
	Synchronisation between Simulation Cycle and Gregorian Calendar Type Value
	Overall Configuration

	Application to a Case Study of a Swiss Manufacturing Firm
	Model Description
	Communication Model for Material and Information Flows
	SCAgent Class Creation with an “Observable Behaviour” Object
	Simulation

	Conclusion
	References

	OperA and Brahms: A Symphony?
	Introduction
	Case Study: Simulation
	OperA and Brahms
	OperA
	Brahms
	Rationale for Integration of OperA and Brahms

	Integration of OperA and Brahms
	Methodology
	Conversion

	Case Study: Validation
	Related Work
	Conclusion
	References

	Support for Analysis, Design, and Implementation Stages with MASDK
	Introduction
	Architecture of MASDK 4.0 Environment
	Methodological Basis: Extended Gaia
	Analysis
	Architectural Design
	Detailed Design

	Introduction to ASML Language
	Support of Gaia in MASDK 4.0
	Case Study: Autonomous Air Traffic Control
	MASDK 4.0 Products Supporting Gaia

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

